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RESUMO

Nesta tese foram desenvolvidos modelos moleculares numéricos e tebricos para particulas
anisotropicas, como uma estratégia para descrever o comportamento termodindmico de
moléculas nao-esféricas. Equacoes de estado moleculares baseadas em teoria de pertur-
bacao foram formuladas para particulas elipsoidais, cilindricas e esferocilindricas para a
modelagem de fluidos de interesse comercial como diéxido de carbono, benzeno, tolueno,
alcanos e compostos fluorados. As equagoes de estado tiveram um bom desempenho
na descricao de propriedades termodinamicas dos fluidos. Simula¢oes moleculares de
Monte Carlo foram realizadas para estudo dos impactos das aproximacgoes tebricas no
desempenho de equagoes de estado moleculares, e dos efeitos da escolha do potencial na
predicao do calor especifico a volumer constante. Observou-se que o truncamento da ex-
pansao perturbativa no segundo termo impacta negativamente a predi¢ao de propriedades
a temperaturas mais baixas, ao passo que a escolha de um potencial discreto tem grande
influéncia no célculo do calor especifico a volume constante e possivelmente na estimativa
do ponto critico. Simulacoes de Monte Carlo para o fluido de cilindros duros foram real-
izadas para estudo dos limites de formacao das fases de cristais liquidos. Fases isotropica,
nemética, esmética e cristalina foram observadas no caso de cilindros, e, além das isotropi-
cas e nematicas, fases colunar e cubatica foram encontradas no caso de discos cilindricos.
Com base no modelo de cilindros duros, modelos exploratorios foram propostos para o
estudo de efeitos comumente encontrados em sistemas biologicos: adesivos para promover
fases auto-organizaveis, um colar helicoidal de esferas duras para representar a repulsao
entre hélices e adicionar quiralidade e um potencial cilindrico para levar em conta os

efeitos da concentracao de sal na formacao de fases de cristais liquidos.



ABSTRACT

Theoretical and numerical molecular models were developed for anisotropic particles as
a strategy to capture the thermodynamic behavior of nonspherical molecules. Molecular
equations of state for ellipsoidal, cylindrical, and spherocylindrical particles were formu-
lated to predict properties of industrial relevant fluids such as carbon dioxide, benzene,
toluene, n-alkanes, and n-perfluoroalkanes. Monte Carlo molecular simulations were car-
ried out to investigate the impacts of theoretical approximations made in the development
of equations of state and the effects of the choice of the intermolecular potential on the
prediction of the isochoric specific heat. The truncation of the perturbative expansion on
the second-order term has a negative impact on the performance of the equations of state
at low temperatures, while the application of a discrete potential affects the calculation of
the isochoric specific heat and possibly the critical point prediction. Monte Carlo simula-
tions of hard cylinders were carried out to investigate the boundaries of liquid crystalline
phases formation. Isotropic, nematic, smectic, and crystalline phases were observed in
a system of cylindrical rods, and isotropic, nematic, cubatic, and columnar phases were
found in a system of cylindrical disks. Based on the hard cylinder model, exploratory
models were proposed to study effects commonly found in biological systems: attractive
patches to promote self-assembly phases, a helical array of hard beads to represent the
repulsion between helices and to add chirality, and a cylindrical Yukawa potential to take

into consideration the effects of salt molality in the formation of liquid crystalline phases.



List of Figures

1.1
1.2
1.3

2.1

2.2
2.3
2.4
2.5

2.6

2.7

2.8

[lustration of an axes coordinate system on a particle. . . . . . .. .. ..
Liquid crystalline phases. . . . . . . . . .. . .. ...
[llustration of a transversal section of cylindrical particles with in-plane

hexagonal order. . . . . . . ...

Diagram to illustrate the residual free energy in SAFT model and in our
proposed equation of state . . . . . . . ... .. L
Ellipsoids configurations. . . . . . . . . . . . .. ... L
Two ellipsoids with different orientations at a certain distance |7]. . . . . .
van der Waals excluded volume. . . . . . . . . .. ...
Vapor-liquid equilibrium for pure ethane: (a) coexistence curve, (b) vapor
pressure as a function of temperature. Open symbols, NIST data (Linstrom
and Mallard). Continuous lines, our proposed equation of state. Dotted
lines, SAFT-VR SW (Gil-Villegas et al., 1997).. . . . . . . ... ... ...
Vapor-liquid equilibrium for pure carbon dioxide: (a) coexistence curve,
(b) vapor pressure as a function of temperature. Open symbols, NIST
data (Linstrom and Mallard). Continuous lines, our proposed equation of
state. Dotted lines, SAFT-VR SW (Gil-Villegas et al., 1997) with opti-
mized parameters from Galindo and Blas (2002).. . . . . . ... ... ...
Pressure versus density at constant temperature for: (a) ethane, and (b)
carbon dioxide. Open symbols, NIST data (Linstrom and Mallard). Con-
tinuous lines, our proposed equation of state. Dotted lines, SAFT-VR SW
(Gil-Villegas et al., 1997). . . . . . . . ...
Isochoric heat capacity: (a) carbon dioxide (b) ethane Open symbols, NIST
data (Linstrom and Mallard). Continuous lines, our proposed equation of

state. Dotted lines, SAFT-VR SW (Gil-Villegas et al., 1997). . . . . . . . .



2.9

2.10

2.11

2.12

2.13

2.14

3.1
3.2

Isobaric heat capacity: (a) carbon dioxide (b) ethane Open symbols, NIST
data (Linstrom and Mallard). Continuous lines, our proposed equation of
state. Dotted lines, SAFT-VR SW (Gil-Villegas et al., 1997). . . . . . . ..
Speed of sound: (a) carbon dioxide (b) ethane Open symbols, NIST data
(Linstrom and Mallard). Continuous lines, our proposed equation of state.
Dotted lines, SAFT-VR SW (Gil-Villegas et al., 1997). . . . ... ... ..
Joule-Thomson coefficient: (a) carbon dioxide (b) ethane Open symbols,
NIST data (Linstrom and Mallard). Continuous lines, our proposed equa-
tion of state. Dotted lines, SAFT-VR SW (Gil-Villegas et al., 1997). . . . .
Isothermal compressibility: (a) carbon dioxide (b) ethane Open symbols,
NIST data (Linstrom and Mallard). Continuous lines, our proposed equa-
tion of state. Dotted lines, SAFT-VR SW (Gil-Villegas et al., 1997). . . . .
Thermal expansion: (a) carbon dioxide (b) ethane Open symbols, NIST
data (Linstrom and Mallard). Continuous lines, our proposed equation of
state. Dotted lines, SAFT-VR SW (Gil-Villegas et al., 1997). . . . . . . . .
[lustrative comparison between TraPPE molecular model for ethane(Martin
and Siepmann, 1998) and carbon dioxide(Potoff and Siepmann, 2001) and
the ellipsoidal geometry obtained with the fitted parameters for the pro-
posed EoS. . . . ..

Metropolis method flowchart for a cycle in the NVT ensemble. . . . . . . .
Isochoric heat capacity for carbon dioxide at 360 K. Dashed line, NIST
data (Linstrom and Mallard). Closed black triangles, MC simulations for
HGO + SW force field. Closed red circles, MC simulations for SAFT-y Mie
force field (Avendano et al., 2011). Dash-double-dotted red line, SAFT-VR
Mie equation of state (Lafitte et al., 2013). Continuous black line, HGO
+ SW equation of state (Lopes and Franco, 2019). Dotted line, SAFT-VR
SW equation of state (Gil-Villegas et al., 1997; Galindo and Blas, 2002).

29

60

75



3.3

3.4

3.5

3.6

3.7

3.8

Isochoric heat capacity for carbon dioxide at 700 K. Dashed line, NIST
data (Linstrom and Mallard). Closed black triangles, MC simulations for
HGO + SW force field. Closed red circles, MC simulations for SAFT-y Mie
force field (Avendano et al., 2011). Dash-double-dotted red line, SAFT-VR
Mie equation of state(Lafitte et al., 2013). Continuous black line, HGO +
SW equation of state (Lopes and Franco, 2019). Dotted line, SAFT-VR
SW equation of state (Gil-Villegas et al., 1997; Galindo and Blas, 2002).

Different contributions of the SAFT-VR Mie (Lafitte et al., 2013) equation
of state to the residual heat capacity of carbon dioxide at 360 K. Continuous
black line, residual heat capacity. Dash-dotted blue line, repulsive contri-
bution to heat capacity. Dash-double-dotted red line, attractive contribu-
tion to heat capacity. Triangles, first-order contribution to heat capacity.

Circles, second-order contribution to heat capacity. Squares, higher-order

contribution to heat capacity. . . . . . . ... ... L L

Different contributions of the SAFT-VR Mie (Lafitte et al., 2013) equation
of state to the residual heat capacity of carbon dioxide at 700 K. Continuous
black line, residual heat capacity. Dash-dotted blue line, repulsive contri-
bution to heat capacity. Dash-double-dotted red line, attractive contribu-
tion to heat capacity. Triangles, first-order contribution to heat capacity.

Circles, second-order contribution to heat capacity. Squares, higher-order

contribution to heat capacity. . . . . . . ... ... L L.

Isochoric heat capacity for carbon dioxide at 360 K. Dashed line, NIST
data (Linstrom and Mallard). Continuous black line, original HGO + SW
equation of state. Dash-dotted blue line, HGO + SW equation of state

using Zhang’s correction to the macroscopic compressibility approximation.

Isochoric heat capacity for carbon dioxide at 700 K. Dashed line, NIST
data (Linstrom and Mallard). Continuous black line, original HGO + SW
equation of state. Dash-dotted blue line, HGO + SW equation of state

using Zhang’s correction to the macroscopic compressibility approximation.

Order parameter for HGO + SW force field as a function of density at
different temperature. Blue closed triangles, 360 K. Red closed circles, 700

76

80

80



4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

[lustration of a molecule of benzene (right) and the HGO (red) and HC
(blue) models for the component. . . . . . . ... .. ...
Vapor-liquid equilibria for carbon dioxide. Circles: NIST, continuous red
line: HGO-SAFT, dashed blue line: HC-SAFT, dash-dotted line: HSC-
SAFT, dash-double-dotted yellow line: SAFT-VR SW. . .. ... .. ...
Vapor pressure as a function of temperature for carbon dioxide. Circles:
NIST, continuous red line: HGO-SAFT, dashed blue line: HC-SAFT, dash-
dotted line: HSC-SAFT, dash-double-dotted yellow line: SAFT-VR SW.
Enthalpy of vaporization as a function of temperature for carbon diox-
ide. Circles: NIST, continuous red line: HGO-SAFT, dashed blue line:
HC-SAFT, dash-dotted line: HSC-SAFT, dash-double-dotted yellow line:
SAFT-VR SW. . . . .
Vapor-liquid equilibria for n-alkanes. Circles: NIST, continuous red line:
HGO-SAFT, dashed blue line: HC-SAFT, dash-dotted line: HSC-SAFT,
dash-double-dotted yellow line: SAFT-VR SW. . .. ... ... ... ...
Vapor pressure as a function of temperature for n-alkanes. CHy to CgHig
from left to right. Circles: NIST, continuous red line: HGO-SAFT, dashed
blue line: HC-SAFT, dash-dotted line: HSC-SAFT, dash-double-dotted
yellow line: SAFT-VR SW. . . . .. .. .. ... ... ... ...
Enthalpy of vaporization as a function of temperature for n-alkanes. CHy to
CgHig from left to right. Circles: NIST, continuous red line: HGO-SAFT,
dashed blue line: HC-SAFT, dash-dotted line: HSC-SAFT, dash-double-
dotted yellow line: SAFT-VR SW. . . ... ... ... ... ... .....
Vapor-liquid equilibria for benzene and toluene. Circles: NIST, continuous
red line: HGO-SAFT, dashed blue line: HC-SAFT, dash-dotted line: HSC-
SAFT, dash-double-dotted. . . . . . . . . ... ... ... ... ... ....
Vapor pressure as a function of temperature for benzene and tolune. Cir-
cles: NIST, continuous red line: HGO-SAFT, dashed blue line: HC-SAFT,
dash-dotted line: HSC-SAFT, dash-double-dotted yellow line: SAFT-VR
SW. e

87



4.10

4.11

4.12

4.13

4.14

4.15

4.16

5.1
5.2
5.3
5.4
2.5
5.6
5.7
2.8
2.9
5.10
5.11

5.12

Enthalpy of vaporization as a function of temperature for benzene and
toluene. Circles: NIST, continuous red line: HGO-SAFT, dashed blue
line: HC-SAFT, dash-dotted line: HSC-SAFT, dash-double-dotted yellow

line: SAFT-VR SW. . . . . . . 98
Vapor-liquid equilibria for CF,. Circles: NIST, continuous red line: HGO-

SAFT, yellow line: SAFT-VRSW. . .. ... ... .. ... .. ...... 98
Vapor-liquid equilibria for CoFg. Circles: NIST, continuous red line: HGO-
SAFT, yellow line: SAFT-VRSW. . . ... ... .. .. ... ....... 99

Vapor-liquid equilibria for C3Fg. Circles: NIST, continuous red line: HGO-
SAFT, yellow line: SAFT-VR SW. . . ... ... ... ... .. ...... 99
Vapor pressure as a function of temperature for n-perfluoroalkanes. Circles:
NIST, continuous red line: HGO-SAFT, yellow line: SAFT-VR SW. . . . . 100
Enthalpy of vaporization as a function of temperature n-perfluoroalkanes.
Circles: NIST, continuous red line: HGO-SAFT, yellow line: SAFT-VR SW.100
Black diamonds: optimized anisotropy used to adjust the function, contin-
uous blue line: adjusted function (Equation 4.6/Equation 4.7), red circles:
w and L/D calculated using the adjusted function (CF,, CoFg, and C3Fy),
yellow open squares: optimized w and L/D of CFy, CsFg, and C3Fg, yellow

closed squares: optimized w and L/D of CgHg, COy, and C;Hg. . . . . . . 101
Metropolis method flowchart for a cycle in the NPT ensemble. . . . . . .. 104
Possible overlap configurations between two cylinders. . . . . . . .. .. .. 106
Cylinder Overlap Flowchart. . . . . . .. ... .. ... .. ... ...... 108
Contact of two spherocylinders. . . . . . . . .. ... ... ... ... .. 109

The star symbols represent the points of closest approach on each cylinder. 110

Disks of two cylinders. . . . . . .. ... 110
Disks of two cylinders. . . . . . . ... .. 112
Disk-rim configuration. . . . . . .. .. ..o 114

[ustration of the numerical calculation of the radial distribution function. 116
[lustration of the numerical calculation of the parallel distribution function.117
[llustration of the numerical calculation of the perpendicular distribution

function. . . . . .. L 118

[ustration of rod phases. . . . . . . . . . . .. ... ... ... ..., 122



5.13
5.14

5.15

0.16

0.17

0.18

5.19
5.20

0.21

5.22

6.1
6.2

6.3
6.4

6.5

[Mustrations of disk phases. . . . . . . . . . ... ... ... ... 122
Sketched phase diagram of cylindrical rods. Color and symbol codes are
presented in Table 5.1. . . . . . . . . ... . 124
Distribution functions of cylinders with L/D = 7.0. p* = 3.96: continuous
red line, p* = 4.40: yellow dashed line, p* = 7.70: green dotted line,
p* =9.90: dash-dotted line. Color code is outlined in Table 5.1. . . . . . . 125
Order parameters for hard cylinders with L/D = 10 (closed symbols) and
L/D =5 (open symbols). Color code is outlined in Table 5.1. . . . . . .. 126
Sketched phase diagram of cylindrical disks. Color and symbol codes are
presented in Table 5.2. . . . . . . . ... 128
Order parameters for hard cylinders with L/D = 0.05 (closed symbols) and
L/D = 0.2 (open symbols). Color code is outlined in Table 5.2. . . . . .. 129
Snapshots of the simulations of hard cylindrical disks. . . . . . . . ... .. 130
Distribution functions of hard cylindrical disks. L/D = 0.1 and Px = 1.18:
continuous line, L/D = 0.05 and Px = 1.37: dashed line, L/D = 0.2 and
Px = 5.50: dotted line, L/D = 0.5 and Px = 9.82: dash-dotted line. Color
code is outlined in Table 5.2. . . . . . . . .. ... ... L. 131
Continuous line: I'gns, dashed line:I'jgg, circles: simulations in the isotropic
phase, squares:simulations in the cubatic phase. . . . . . . .. .. ... .. 132
Radial distribution function of HC with L/D = 5. Continuous line: P* =
0.79, dashed line: P* = 3.93, dotted line: P*=5.65.. . . .. ... .. ... 132

[Mustration of some of the models developed. . . . . . . . . ... ... ... 135
A helix wrapped around a cylinder with diameter D and length L. [, and
ry are the pitch and radius of the helix, respectively. . . . . . . . .. .. .. 137
An illustration of an “unfolded” helix with one pitch. . . . . .. ... ... 137
[lustration of the total length L, of a helix considering that the beads are
partially fused. dj is the diameter of the beads and f is the percentage of
fusion between them. . . . . . . . .. ..o 137

[lustration of an electric double layer on a spherical colloidal particle (blue).140



6.7 Snapshot of the simulation of hard cylinders with patches at the top and

bottom. p* = 0.31, T* = 0.2 and L* = 2. The coloring scale is such that

the particle is blue if its orientation is aligned with the phase director 7,

red if it is perpendicular to 77 and a combination of both colors depending

on the angle between the orientation and director. . . . . . . . . . .. ... 145
6.8 Snapshot of the simulation of hard cylinders with and without patches at

p* = 0.31 and L* = 2. The color scale is the same as in Figure 6.7. . . . . 146
6.9 p* = 0.3. Red circles are in the isotropic phase and yellow triangles in the

nematic. . . . . . .. 147
6.10 p* = 0.8. Yellow triangles in the nematic and green squares in the smectic. 147
6.11 Comparison between p* = 2.36 (open symbols) and p* = 6.28 (closed

symbols). Red circles: isotropic, yellow triangles: nematic, green squares:

smectic. . . . ... e 148
6.12 Dotted line: p* = 2.36 and kd* = 1.0, dash-dotted line: p* = 2.36 and

kd* = 10.0, continuous line: p* = 6.28 and kd* = 1.0, dashed line: p* =

6.28 and kd* =10.0 . . . . . . . . 148

List of Tables

2.1 Optimized parameters for ethane and carbon dioxide. . . . . . . . . . . .. 51
2.2 Critical properties of ethane and carbon dioxide. . . . . . . . . . .. .. .. 51
2.3 Average Absolute Relative Deviation (%) for vapor pressure, saturated lig-

uid density, and saturated vapor density. . . . . . .. .. ..o 54
2.4 Average Absolute Relative Deviation (%) for supercritical density, isochoric

heat capacity, isobaric heat capacity, Joule-Thomson coefficient, speed of

sound, thermal expansion coefficient, and isothermal compressibility. . . . . 58
3.1 Optimized Parameters for Carbon Dioxide . . . . . . . .. ... ... ... 74

4.1 Parameters optimized to fit vapor pressure and saturated liquid density

data from NIST (Linstrom and Mallard). . . . . . .. ... ... ... ... 85



4.2 Average Absolute Relative Deviation (%) . . . . . .. ... ... ... ... 88

4.3 Average Absolute Relative Deviation (%) . . . . ... ... ... ... ... 89
4.4  Critical properties and acentric factors . . . . . . . .. ... ... ... .. 91
4.5 Critical properties and acentric factors . . . . . .. .. .00 92

4.6 Average Absolute Relative Deviation (%) for vapor pressure, saturated lig-

uid density, saturated vapor density and enthalpy of vaporization of C3Fg. 93

4.7  Critical properties and acentric factor of C3Fg. . . . . . . . .. ... ... 93
5.1 Color and symbol used to represent rod phases. . . . ... ... ... ... 122
5.2 Color and symbol used to represent disk phases. . . . . . . ... ... ... 122
5.3 Number of particles in the simulations of rods. . . . . . . . ... ... ... 123
5.4 Number of particles in the simulations of disks. . . . . .. ... ... ... 127
Cl L/D =250 . ... . 188
C2 L/D =300 ... ... 189
C3 L/D =325 . . . . e 189
Cd L/D =350 . ... . 190
Ch L/D =500 ... .. . 191
C6 L/D=06.00 . ... .. . 192
C7T L/D =025 . . . . e 192
C8 L/D=0650 . ... . 193
CO L/D=700 . ... . . 193
CA0L/D =750 . . . . 194
CA1L/D =10.00 . . . . . 194
CA2L/D =0.05 . . . . . 195
CA3L/D =010 . . . . . . 196
CAAL/D =011 . . . . 196
CASL/D =012 . . . .. 197
CA6 L/D =012 . . . . . . 197
CATL/D =015 . . . . e 197
CABL/D =02 . . . . . 198
CA9L/D =025 . . . . 198

C20L/D =030 . .. ... 198



C.21 L/D =0.35
C.22 L/D = 0.50



Summary

1 Introduction

1.1

1.2

2.1
2.2

2.3
24

3.1
3.2

3.3

3.4
3.5

Fundamentals of Statistical Mechanics . . . . . . .. ... ... ... ...
1.1.1 Canonical ensemble . . . . . . ... ...
1.1.2  Perturbation Theory . . . . . . .. ... ... ... . ... .....
Nonspherical Systems . . . . . . . . ...
1.2.1 Nematic order parameter . . . . . . . . . . . . ... ... ... ...
1.2.2  Smectic order parameter . . . . . . ... ...

1.2.3 Hexatic order parameter . . . . . . . . . ... ...

New approach for nonspherical particles

Introduction . . . . . . ..
Formulation of the Equation of State . . . . . . .. ... ... ... ....
2.2.1 Hard Gaussian Overlap (HGO) . . .. ... ... ... ... ...,
2.2.2  Square-Well Potential - Gil-Villegas et al. (1997) . . . . . . .. ...
Results and Discussion . . . . . . . .. .. . oo

Conclusion . . . . . . . .

A top-down approach for ellipsoids

Introduction . . . . . ...
Equations of state . . . . . . . . ...
3.2.1 SAFT-VR Mie . . ... ... .
Monte Carlo Simulations . . . . . . .. .. ... ..o
3.3.1 Metropolis Monte Carlo . . . . .. ... ... .. ... .......
3.3.2 Calculation of nematic order parameter and phase director . . . . .
3.3.3 Simulation Details . . . . . .. ... oo
Results and Discussion . . . . . . .. . .. .. oL

Conclusion . . . . . . . .

24
27
28
30
36
37
39
39

41
41
44
44
48
50
62



4 Equations of State for different geometries

4.1
4.2
4.3

4.4

5.1
5.2

9.3

5.4

9.5
2.6
2.7

Introduction . . . . . . ...
Formulation . . . . . . . . . ...
Results . . . . . . .
4.3.1 Anisotropy versus acentric factor . . . .. ... ... L.

Conclusion . . . . . . . .

5 Phase boundaries of hard cylinders
Introduction . . . . . .. .. L
NPT Monte Carlo simulations . . . . . . . ... ... ... ... ......
5.2.1 Floppy-box Monte Carlo . . . . . . ... ... ... ... .. ....
Overlap between two cylinders . . . . . .. .. ... ... ...
5.3.1 Spherocylinders . . . . . .. ..o
5.3.2 Cylinders . . . . . . . .
Distribution functions . . . . . . .. ... L Lo
5.4.1 Radial distribution function . . . . . . .. .. ... ...
5.4.2 Parallel distribution function . . . . . . . ... ..o
5.4.3 Perpendicular distribution function . . . . . ... ... ... ...
Equation of State for the Isotropic Phase . . . . . . . .. ... ... ....
Simulation Details . . . . . . . ...
Results . . . . . . . o
5.7.1 Rods . . . . .
572 Disks . . . .o
5.7.3 Equation of State for the Isotropic phase . . . . . . .. ... .. ..
Conclusions . . . . . . . . .

5.8

6 Exploratory models for cylindrical particles

6.1
6.2
6.3

6.4

Introduction . . . . . . ... oL
Hard Cylinders decorated with Patches . . . . . . . . .. ... ... ....
Hard Cylinders decorated with a helical array of beads . . . . . .. .. ..
6.3.1 Building the particle . . . . .. .. ... 0oL
6.3.2 Checking theoverlap . . . . . . .. ... ... 0L
Modified DLVO Potential for Cylinders . . . . . . . . ... ... ... ...

82
82
33
84
90
94

102
102
103
105
106
107
107
116
116
116
117
120
121
121
123
127
130
131



6.4.1 Modified electrostatic potential for cylinders . . . . . . . .. .. .. 142

6.5 Simulation Details . . . . . .. .. 144
6.6 Results. . . . . . . . 145
6.6.1 Hard Cylinders with attractive patches . . . . . . . .. ... .. .. 145
6.6.2 Hard Cylinders + cylindrical Yukawa . . . . . . ... ... ... .. 146
6.7 Conclusions . . . . . . . .. 149
7 Conclusions and suggestions for future works 150
7.1 Conclusions . . . . . . . . . e 150
7.2 Suggestions for future works . . . . .. ... 152
Appendices 163
A Chapter 2 164
A1l Codes . . . . o 164
A.1.1 HGO + SW Equation of state . . . . . . .. ... ... ... .... 164
B Chapter 3 173
B.1 Quaternions . . . . . . . ... 173
B.2 Codes . . . . . . . 174
B.2.1 NVT Monte Carlo code for HGO + SW potential . . . . .. .. .. 174
C Chapter 5 188
C.1 MC-NPT simulations results . . . . . . . . . . ... ... .. ... .. 188
C.2 Codes . . . . . . 200
C.2.1 NPT Monte Carlo code for hard cylinders
(main_hc_mc_npt.f90) . . . . ... 201

C.2.2 Module to set global variables

(module global global variables.f90) . . . . ... ... ... ... 210
C.2.3 Module to generate initial configurations

(module initial configuration.f90) . . . . . ... ... ... 212
C.2.4 Module with main subroutines

(module_mec.f90) . . . . ..o 215
C.25 Ovitomodifier. . . . . . .. .. . 251



D Chapter 6 256

D.1 Codes . . . . . . . 256
D.1.1 NPT Monte Carlo code for hard cylinders + patches . . . . . ... 256
D.1.2 NPT Monte Carlo code for hard cylinders + helices . . . . . . . .. 267

D.1.3 NPT Monte Carlo code for hard cylinders + Cylindrical Yukawa . . 277



24

“Likewise, the scientist asks not what are the currently most important question, but ‘which
are at present solvable?’ or sometimes merely ‘in which can we make some small but genuine

advance?”’

— Ludwig Boltzmann

Introduction

Admitting the existence of unseen entities seems perhaps more religious than scientific.
Without immediate sensory perception, however, Boltzmann and Maxwell recognized the
existence of atoms and molecules in the late nineteenth century, and this was crucial to
the authors’ major contributions to physics. Being at that time a controversial issue, this
idea drew huge criticism from well-established scientists such as Ernst Mach. The atomic
hypothesis would only begin to be accepted by the scientific community shortly after
Boltzmann tragic death, when scientists as Planck and Einstein endorsed the author’s
methods. It is fascinating that, against the common sense of the intellectuals of the time,
the bold belief in the existence of bodies too small to excite our senses led Boltzmann,
Maxwell, and Gibbs to lay the foundations of statistical mechanics.

Over the last century, statistical mechanics has been established as one of the pillars
of modern physics. The advances in Thermodynamics, “an incomplete expression of the
principles of statistical mechanics” in Gibbs’ (1902) words, owe much to the development

of this new branch of physics. Statistical thermodynamics has allowed the prediction of
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the behavior of matter from the calculation of the interactions between its atoms and
molecules, and hence has become a strong theoretical framework to understand a broad
variety of systems: from fluids of industrial interest to biological systems.

Molecular simulation, a family of computational methods to solve complex statistical
mechanics calculations, is a modern key tool in thermodynamics. Frequently referred to
as “computational experiments”, its place has been consolidated in science besides the
traditional theoretical and experimental analysis. Molecular simulation results have been
increasingly gaining attention from the scientific community, and it is already widely used
to guide experimental work. Computational experiments are very useful to predict prop-
erties and the behavior of systems at a wide range of conditions that would be arduous,
or even impossible, to reproduce experimentally. Monte Carlo and Molecular Dynam-
ics simulations have been extensively used to substantiate theories and experiments; the
methods are also powerful tools in providing insights into structural and dynamical be-
havior of molecules in different systems, to name a few: Nylon 66 crystals (Wendoloski
et al., 1990), confined fluids in calcite nanopores (Santos et al., 2018), and biomolecule
release in drug delivery (Pakulska et al., 2016). More recently, molecular simulations are
also being applied to develop treatments and vaccines for the novel coronavirus (Bzéwka
et al., 2020; Han and Kral, 2020), whose outbreak has caused an unprecedented pandemic
in 2020.

Although molecular simulations provide an exact solution for a specific intermolecular
model, they take considerable computational time to yield the results. Therefore, it is an
inadequate tool for predicting properties at the industrial process operation time scale,
when a fast response is needed. In this kind of application, theoretical and empirical
models arise as a better suited alternative. Fundamental to process design and operation,
the development of volumetric models for fluid property prediction had been for a long
time confined to the generalization of the model proposed by van der Waals, a class known
as cubic Equations of State (EoS). Statistical mechanics theories have, nevertheless, paved
the way for a new class of models: the molecular-based equations of state. In comparison
to the traditional cubic EoSs, these models have a stronger theoretical basis, and they are
often more precise and versatile. On the other hand, in contrast to molecular simulations,
approximations are needed for the formulation of these models even for the simplest

intermolecular potential.
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Even though molecular simulations provide an exact solution for a specific intermolec-
ular model, the potential itself is already an approximation of the reality. For engineering
applications, the main concern is not to unravel nature’s ultimate reality, but to formulate
models that reproduce the essential features of a specific system, neglecting secondary de-
tails (Wu and Prausnitz, 2019). To that end, in regard to the development of physical
models, a balance between simplicity and accuracy is required. For instance, the geometry
of molecules is usually very complex to be described mathematically, but has a great deal
of influence on the calculation of the intermolecular interactions. Therefore, to model the
shape of the particles, one should make simplifications that are still physically meaningful.

Nonspherical molecules have often been modeled as a set of spherical parts to account
for their anisotropy, both in molecular simulations (e.g. the multi-site approach), and
in theoretical models. In numerical methods, this strategy demands more computational
effort, since, to model the interaction between two particles, one has to compute the in-
teractions between each site on a molecule with all the other sites on the other molecule.
This inspired Berne and Pechukas (1972) to propose an intermolecular potential to model
molecules as a single ellipsoidal site, hence, the molecule anisotropy was accounted for con-
sidering only one interaction. Following a similar strategy, in this dissertation, the main
goal is to develop both theoretical and numerical anisotropic models that can describe
the geometry of the molecules and capture their behavior.

On the next Chapter, we introduce a new approach for developing equations of state
for nonspherical molecules, based on a perturbation theory for ellipsoids. The SAFT
(Statistical Associating Fluid Theory) approach (Chapman et al., 1989) and a Gaussian
model potential (Berne and Pechukas, 1972) underpinned the development of the model.
The equation of state was used to calculate thermodynamic properties of carbon dioxide
and ethane.

On Chapter 3, a bridge between the theoretical model presented in Chapter 2 and
molecular simulations was made. The parameters optimized using the equation of state
were applied in Monte Carlo simulations using the same potential, unveiling the effects of
the choice of the intermolecular potential on the prediction of the isochoric heat capacity.
In addition to that, the validity and limitations of the theoretical approximations were
tested.

Chapter 4 is devoted to extending the approach introduced on Chapter 2 to model
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molecules as cylinders and spherocylinders, besides ellipsoids. Furthermore, all three
equations of state are applied to calculate vapor-liquid equilibrium of longer chains and
disk-like molecules as well. The models were tested for n-alkanes from methane to octane,
carbon dioxide, benzene, toluene, and n-perfluoroalkanes.

Although we have considered an isotropic distribution to formulate the equations of
state for industrial relevant fluids, the hard gaussian overlap (HGO), hard spherocylinder
(HSC), and hard cylinder (HC) models are often used to study liquid crystalline (LC)
phase formation. Since the literature on LC phases of hard cylinders is very limited, on
Chapter 5 we provide an investigation of the phase boundaries of the hard cylinder model
using Monte Carlo molecular simulations.

The focus is then moved to the development of models to study liquid crystalline
phases in biological systems, in Chapter 6. Monte Carlo simulation codes for cylinders
with different features and interactions were developed in an attempt to capture some
characteristics often present in biological systems such as hydrophobicity, chirality, and

dependence on salt molality.

1.1 Fundamentals of Statistical Mechanics

In a thermodynamic system, there is a huge number of possible different ways for par-
ticles to be arranged (in terms of position and velocity) while expressing the same macro-
scopic properties. Each possible configuration defines a different state, or microstate, and
together they compose an ensemble. Gibbs has postulated that the average of a property
over all possible microstates, that is, the ensemble average, is equal to its corresponding

thermodynamic property. The ensemble average of a property ¢ is written as:

X
<¢>ensemble = Z ¢um (11)

where P, is the probability that the system is found in a microstate m, and X is the

total number of possible microstates.
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1.1.1 Canonical ensemble

In an N-body system, at a certain temperature 7' occupying a volume V', the proba-

bility that the system is in a certain state m is:

exp(—GEy,)

P =~
;exp(—ﬁEj)

(1.2)

where = 1/(kgT), where kp is the Boltzmann constant, 7" is the absolute temperature,
E,, is the total energy of the microstate m, E; is the total energy of each microstate j of
the ensemble. From Equations 1.1 and 1.2, the average of a property ¢ in the canonical

ensemble (NVT) is written as:

NIE

¢m eXp(_ﬁErrJ

(@)nvr = "= (1.3)
Y. exp(—BEn,)
m=1
The continuous description of the probability P, is given in Equation 1.4.
- m Km
Pm - +o0 400 exp( B(U - >> (14)
[ [ exp (AU )+ K (- 53)dd - ddvdh - diy

where ¢ and p’ denote the configuration coordinates (position and orientation) and the
momenta of each particle, respectively, U is the total potential energy, and K is the total
kinetic energy. The denominator is the sum of the probability of all states, that is, the
integration over all possible configurations and momenta, and it is related to the partition

function Q(N,V,T) defined as:

+0o0 “+oo
1 o "
QN V.T) :WZ 4 exp(~BU -+ i) -

+ K(Pr, -+ Pn)))dgr - - dgvdpy - - dpy

where h is the Planck constant. The Helmholtz free energy of the system is inherently
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connected to Q(N,V,T) via the expression presented in Equation 1.6:

BA(N,V,T) = ~InQ(N,V.T) (16)

Performing the momentum integration in the partition function, one can write:

A
Q(N,V,T) = N!ZN (1.7)

where v is the de Broglie volume that incorporates translational and rotational contribu-
tions to the kinetic energy. For the matter of this dissertation, since only rigid particles
are studied, the vibrational degrees of freedom are neglected. Zy is the configurational

integral defined as:

+o00 +00
Zy = / / exp (=BU (G, @v))ddi -+ - ddy (18)

The probability of finding particle 1 in a configuration ¢; and a particle 2 in a config-

uration ¢ irrespective of the configuration of the other particles is then:

+o0 +o00
J o ] en(=pU(@, -+ dv))dGs - - ddv

P(q1, ) = ——— 7 (1.9)

The probability that a particle is in ¢} and any other particle is in ¢ is then:

+oo +o0o
ni Lo S ee(=BU(G, -, qv))dds - A
p(@r: G) = ™ _'2)!_“ — 7 (1.10)

If the molecules were uncorrelated (as for the ideal gas), p(¢i, @) would be equal to
(N?/V?), and this probability would be redefined as p(®). The function ¢(qi, ) is defined
as a correction to p® due to the presence of an intermolecular potential, that is, when

the position of each particle affects the position of the others. Equation 1.10 is rewritten

as:
+oo +oo
J oo Joexp(=BU(G, -+, qn))dgs - - - dgy
291, ) = N(N — 1) (1.11)

Zn
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1.1.2 Perturbation Theory

Finding an analytical solution for the Helmholtz free energy (Equation 1.6) is far
from being an easy task, since such an endeavor involves solving a very complex integral
(Equation 1.8). Carnahan and Starling (1969) developed an equation of state for the
hard-sphere potential by approximating the virial coefficients by integers, and expressing

them as a geometric series. The resulting expression is presented in Equation 1.12.

pvV o l4n+n =7
NkgT (1 —n)3

(1.12)

where 77 = Nuparticle/V 1s the packing fraction, where vpaicie 1S the volume of each

particle, p is the pressure, and V' is the volume of the system.

Since p = — (g—é) o integrating Equation 1.12, the expression for APS g obtained:
BCZHS — 477 B 37]2 (1 13)
(1—mn)?

where o™ = A" /N is the molar Helmholtz free energy.

Perturbation theory is a popular strategy for obtaining an approximate solution for the
Helmholtz free energy of more complex intermolecular potentials. The cornerstone idea
in perturbation theory is that, at least at high densities, the structure of a liquid is mostly
determined by the way in which the hard cores pack together (Hansen and McDonald,
2006), while the long-range attraction interactions provide an uniform attractive potential.
In this sense, one can treat the repulsive short-range part of an intermolecular potential
as a reference system, and the forces of attraction as small perturbations on the forces of
repulsion.

Longuet-Higgins (1951) proposed a separation of the intermolecular potential into a
reference (superscript 0) and perturbed system (superscript 1) (Equation 1.14). Zwanzig
(1954) applied the hard-sphere potential as the reference system and the Lennard-Jones
potential as the perturbation and proposed a high-temperature expansion to formulate

the equation of state.

U=094yW (1.14)
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Replacing Equation 1.14 into Equation 1.8:

—+oo —+o00
Iy = / e / exp (—BU) exp(—AUM)AG, - - - dgy (1.15)
0 “+oo “+o0o
Multiplying and dividing Equation 1.15 by 79 = [ [ exp(=pUD)dgG ...dqy,
one has: B )
Zn = 2 (exp (=BUD))s (1.16)

where (exp (—B8UW))g is the average of exp (—BUW) over the reference system configu-
rational integral.

Applying the Taylor series expansion:

62<U(1)2>0 ﬁ3<U(1)3>0

(exp (=BU M) = 1= B} + -

T (1.17)

The Helmholtz free energy is then written, considering only the translational and

rotational degrees of freedom of the kinetic energy, as:

(0)
—BA=InQ =1n(Zy) —In(N'w*) =1n (NZ!53N> + In ((exp (—=BUWM))0) (1.18)
—BA=—BAY — gAY (1.19)
—BAY =1n ({exp(—AU™M))o) (1.20)
exp (—BAW) = (exp(—pUM)), (1.21)
Writing AM) as a power series of /3
+oo wnﬁn—l
AN =% g (1.22)

n=1

Replacing Equations 1.22 and 1.17 into Equation 1.21, applying a Taylor series expan-

sion:

+o0 !
too Z”“”,;zﬁ”)
1+Z—(“ 1+ 20 T 1
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2 3 —wq B — w2 _ wsB 2
R P L S
S %6_ o (1.24)
2/77(1)2 3/77(1)3
=1 gy + PO T 4 o)

Truncating A expansion at the second term, and substituting Equation 1.22 into

Equation 1.19:
w252

—BA=—BAY —wf — +0(8°) (1.25)

Taking like powers of § in Equation 1.24, one can compute expressions for w; and wsy:

w1 = (U(1)>0

2 (1.26)
wy = (UM = (UM) )

First-order term

To calculate w;, one needs to find an expression for (UM):

wy = (U /OO /U exp (—BU)dq, - - - dgy (1.27)

Assuming pairwise-additive interactions:

N(N —1)
U= 7.0 = ——u(qy, ¢ 1.2

> 2 uldi,q) 5 uld, 3) (1.28)

i=1 75>
Replacing Equation 1.28 in Equation 1.27 :

+00 +00 +00
wy = / / u(qi, ¢) / / exp(—pU)dGs - - dgnd@ddy  (1.29)
From Equation 1.11, one may rewrite Equation 1.29 in terms of pg® (g1, ¢&):
“+00 +00
=5 / / (G, )9 (q1, 3)dq1dgy (1.30)

where ¢ (1, ¢) is the pair correlation function of the unperturbed system. An exact
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solution for the second order term wy is complex, since in the calculation of <(U (1))2)
terms as u(q, ¢;)u(qk, /) appear, that is, three and four body interactions. Nevertheless,
Barker and Henderson (1967) formulated an expression for ws based on approximations
discussed on the next section. Franco et al. (2017a) formulated a two-body perturbation
theory for the Helmholtz free energy and demonstrated that the first order theory is a

truncated approximation of the former.

Second-order term - Barker-Henderson approach

Barker and Henderson (1967) proposed two slightly different approximations to con-
sider the second-order term in the temperature expansion. First, to solve Equation 1.16,
the strategy was to imagine the existing intermolecular distances that contribute to the
potential arranged into groups of small intervals, such as ro and ry, ---, 7;_1, and r;.
Hence, let 71 be the number of intermolecular distances lying between ¢ and r;, 7; be-
tween r;_; and r;, and so on. By taking small enough intervals, one can assume a constant

potential in each one of them and write the total intermolecular potential as:
U = ZTjugl) (1.31)
J

Replacing Equation 1.31 into Equation 1.16:

Zn = Z](\(,]) <exp (—BZTju§1)> > (1.32)
J 0

The normalized probability that a combination of exactly 7, ---, 7; molecular pairs
lie in each interval in the reference system is written as P(7y,---,7;) = P({7;}). Thus,

the configurational integral is rewritten as:

Zy = 23" P{{7;}) exp (—ﬁ > Tju§1>> (1.33)

{r}
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Expanding exp ( Z iU (U) :

<_62Tju§1))x
Zn =203 P} 1+Z d

- (1.34)
{mi}
Since P({;}) is the normalized probability, >  P({r;}) =1, then:
{7
0) =1-p Z ne Z P({r;})m; + Z Z Ujug Z P({r;})rim +O(B*) (1.35)
{ri} {73}

Equation 1.35 can be rewritten as:
_ZN 1 1) (1
Z0 1 —BZU§ 1o + ZZ“( (o + O(8%) (1.36)
N J

By expanding the natural logarithm of Equation 1.36 using Taylor series expansion,

one finds the expression for the free Helmholtz energy:
—BA+BAY == By "ui (7)o + £ SN Wl (rm
4 J J 2 : - 7k J
J J
1 BQZZ“(I) D (230 mde | + O
2

(1.37)

Rearranging Equation 1.37:

—BA+ BAO = — BZU§I)<Tj>O
"3 <Zzu<”u<”<w> DI BURTANCY )
9 i Uk \TjTk)o j Uk \Tj)0\Tk)0 (1.38)
J k#j J k#j

(Zu Zu(”z (7;) ) +O(5°)

The first moment (7;)( is the average number of intermolecular distances lying in an
interval between r;_; and r; in the unperturbed system, and can be readily calculated

from the radial distribution function g(r). The probability of finding a molecule at a
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distance r from a central particle is pg(r). Hence, the number of particles at a distance
r from each other is Npg(r). Therefore, the number of molecules at a distance between
rj—1 and r; apart from each other in the reference system is:

Ty

Ny »,=Np / g O (r)dmridr (1.39)

Ti—1

The average number of molecules pairs (or intermolecular distances) in the given in-

terval is half N, _, ;.

(15)0 = 2mpN / g(o)('r’)Ter = 277,0Ng(r)7“2(7"j —7j_1) (1.40)

Tj—

The exact numerical calculation of the second moment is a hard task, thus Barker and
Henderson resorted to a physical approximation. 7; might be understood as the number of
molecules in spherical shells surrounding other central molecules. Barker and Henderson
(1967) assumed that the shells could be treated as large macroscopic volumes, and for

this reason one could consider that:

1. The number of molecules in different shells would be uncorrelated:
(Tjme) — (mi)(m) =0, if j#k (1.41)

2. The fluctuation of the number in a given shell is:

0
<Tj2> —(r;)* = <Tj>kBTa—p (1.42)
P
This approach is known as the Macroscopic Compressibility Approximation (MCA).

Substituting Equation 1.40 into Equation 1.38, and considering the continuum description:

0
—BA+ BAO = —,BQNWp/u(l)(r)g(o) (r)r*dr + BQNWp/u(l)Q(r)g(O)(r)rszT (8_p) dr
P/ o
(1.43)
Since the shells are in fact microscopic, a more plausible alternative to Equation 1.42 is

to replace p by the local density pg(® (r). This strategy is known as the local compresibility
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approzimation (LCA). Equation 1.43 then becomes:

BA = BAO 4+ 418 + ay8? (1.44a)
where
a; = 2N7rp/u(1)(7“)g(0)(r)r2d7" (1.44b)
(0)
as = —Nﬂp/u(l)Q(r)rszT (3pga—p(7’)) dr (1.44c¢)
0

Zhang’s correction to the MCA

Zhang (1999) improved the Barker-Henderson MCA by assuming that the number of
molecules in two neighbor shells would be correlated, and that the correlation coefficient
would be directly proportional to the square of the packing fraction. After this correction,

the resulting expression for the second-order term is simply a3 = (1 +8.23n?)a5", where

aSH is the Barker-Henderson formulation. One may write a, in a generalized form as:
) 9pg®
az = —(1+ T)Nﬂp/u(l) (r)r?ksT (pgf)—(T)) dr (1.45)
p 0

where T = 0 for Barker-Henderson expression and T = 8.23n% for Zhang’s formulation.

1.2 Nomnspherical Systems

Modeling nonspherical particles is very common in the study of liquid crystalline
mesophases, which entail a state of matter that has liquid and crystals properties at the
same time, combining mobility and order. Besides the translational, orientational degrees
of freedom are added to the problem when it comes to nonspherical bodies configurations
in a microstate. To define the orientations, a coordinate axes system wj;, v;, u; is fixed on
each particle (where i is the index of the particles). The orientation of a particle is set
as an unit vector parallel to the u-axis, in a reference coordinate system x,y, z fixed in
time (Figure 1.2).

A system of elongated nonspherical bodies can be categorized by its degree of order
(Figure 1.2). An isotropic phase is completely disorded, while a nematic phase is char-

acterized by a positional disorder coupled with orientational order. A smectic phase, on
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X

Figure 1.1: Illustration of an axes coordinate system on a particle.

the order hand, exhibits both orientational and positional order, where the molecules are
arranged in layers. The phase director n is an unit vector along the particles preferred

orientation.

(a) Isotropic (b) Nematic (¢) Smectic

Figure 1.2: Liquid crystalline phases.

1.2.1 Nematic order parameter

The nematic order parameter s is defined as the average over orientations of the second
Legendre polynomial P, of the angle between the phase director n and the orientation Q

of each particle (Equation 1.46).

5= (Py(cos 6)), — <;COSZH - %>Q _ <§(n Q) - %> (1.46)

Considering cylindrical symmetric particles, the orientation is solely a function of the
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polar angle 6. Given the normalized orientational distribution function f(#), the nematic

order parameter s can be calculated as:

2T w 5 , 1
s = 0/0/ (5 cos” f — 5) f(6)dode (1.47)

The isotropic phase is characterized by a uniform distribution of the orientations, i.e.,
there is no preferable direction. The isotropic orientational distribution function f(#) is

calculated as shown in Equation 1.48.

f%(0) = SR (1.48)

[ sin(0)dodg
0

The nematic order parameter for an isotropic phase is obtained:

2r ™

. 3 1\ .
5% = (— cos? ) — —) F10(0)d0ds
-1
1 1 3 (1.49)
= 5/(5—5‘”2)‘“

1
= 0
For a phase with perfect orientational organization, the orientational distribution func-

tion is zero everywhere with exception of § = 0 and 8 = w. Therefore, the distribution

function for a perfect nematic phase is treated as a Dirac-¢ function:

perfect nematic _ 1 3 1 3 1
frert 0) = yo (5 cos(0(8 —0)) — 513 cos(0( —m)) — 5) (1.50)

2T
: 3 1 i
gperfect nematic _ // <§ cosZfh — 5) fperfeCt nematlc(g)d9d¢
0 0

_ (3 1,3 1 (151)
o 2\2 2 2 2
= 1

Accordingly, s = 1 in a perfect nematic phase, and s = 0 in a isotropic phase. Fluc-

tuations, however, might appear due to finite-size effects.
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1.2.2 Smectic order parameter

The smectic order parameter 7 is defined as follows:

I

is the projection of the vector of the center of mass of particle ¢ along the

where ry

direction parallel to the phase director n, N is the total number of particles, and d is the
periodicity of the smectic layers. Hence, if the phase is organized in layers, |ry |/d tends to
be an integer and 7 — 1. Since the periodicity is previously unknown, one should apply

different values and find such d that maximizes 7.

1.2.3 Hexatic order parameter

The hexatic order parameters ¢ is a measure of the two-dimensional in-plane hexag-

onal order present in columnar and crystalline phases. 1 is defined as:

_ %; (L(Z 510 (1.53)

where n ) is the number of all possible pairs of nearest neighbors of particle k within
a single layer, 0;; is the angle between the projection of the intermolecular vectors ri; and
ri; onto the plane perpendicular to the phase director (ry; and rﬁj) (Figure 1.3), and the
sum Z is over all possible pairs of the nearest neighbors of particle £ within the first
coord?g;tion shell. In this way, s tends to one for phases with in-plane hexagonal order

(six nearest neighbors within the same layer), and it approaches zero otherwise.
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Figure 1.3: Illustration of a transversal section of cylindrical particles with in-plane hexag-
onal order.
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“Thoroughly conscious ignorance is a prelude to every real advance in knowledge.”

— James Clerk Maxwell

A new approach for the development of

equations of state for nonspherical particles

The content of this chapter was reprinted (adapted) with permission from (Lopes, J.
T. and Franco, L. F. New Thermodynamic Approach for Nonspherical Molecules Based
on a Perturbation Theory for Ellipsoids. Ind. Eng. Chem. Res. 58, 6850-6859 (2019).).
Copyright (2020) American Chemical Society. https://doi.org/10.1021/acs.iecr.9b00766
Lopes and Franco (2019)

2.1 Introduction

Volumetric equations of state play a pivotal role in a wide range of scientific and
industrial processes. Over the past decades, molecular-based equations of state (EoS)
have risen as powerful alternatives to the so called cubic equations of state, since the

latter are sensitive to the experimental data used to adjust their parameters and can be
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inadequate to extrapolated conditions.

Chapman et al. (1989) proposed the Statistical Association Fluid Theory (SAFT),
a successful approach that laid ground for other relevant models. Differing mainly with
respect to the intermolecular potential applied in the reference and perturbed terms, many
variations of SAFT have been developed over the last decades, e.g., SAFT-VR SW (Gil-
Villegas et al., 1997), soft-SAFT (Blas and Vega, 1997), PC-SAFT (Gross and Sadowski,
2001), and SAFT-VR Mie (Lafitte et al., 2013). These equations have been successfully
applied to different fluid mixtures (Economou, 2002) for both phase equilibrium as well as
derivative properties (Nikolaidis et al., 2018), and have also been extended to electrolytes
(Cameretti et al., 2005; Das et al., 2015; Eriksen et al., 2015; Selam et al., 2018), and
confined fluids (Franco et al., 2017b; Aratjo and Franco, 2019; Aslyamov et al., 2019).
PC-SAFT (Gross and Sadowski, 2001) and SAFT-VR Mie (Lafitte et al., 2013) are present
in many commercial chemical process simulators.

Based on the perturbation theory developed by Wertheim (Wertheim, 1984b,a, 1986a,b,c,
1987) for highly anisotropic fluid interactions, in SAFT original approach, Chapman et al.
(1989) consider that the Helmholtz free energy of a system is a sum of different contribu-

tions (Equation 2.1).
A= Aideal+Asegment _|_Achain+Aassociation (21)

where A'9°d is the ideal gas contribution, A*®™e™ ig the contribution of the interaction

Achain ig the contribution due to covalent bond formation

between spherical segments,
between segments, and A2s°¢iation jg the contribution of the hydrogen bonds.

In this approach, the anisotropic shape of the molecule is built by associating isotropic
shaped particles, that is, spherical segments. To retain physical meaning, the number of
segments m, one of the parameters of the model, should be an integer. Nevertheless,
for the sake of better correlation with experimental data, m has been often fitted to a
non-integer in most of SAFT EoS applications. Some molecules, however, when consid-
ered to be spherical, are modeled as a single segment, e.g. methane (Gil-Villegas et al.,
1997; Gross and Sadowski, 2001; Lafitte et al., 2013), water (Dufal et al., 2015), and
hydrogen (Nikolaidis et al., 2018). A non-integer number of segments fitted for nonspher-

ical molecules weakens its physical meaning and precludes a more predictive use of it.

Gil-Villegas et al. (Gil-Villegas et al., 1997) have shown that, for chains of square-well
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monomers, as the number of segments increases, the overprediction of the vapor-liquid
coexistence curve obtained with SAFT-VR SW when compared to results obtained with
Monte Carlo simulations is magnified. These observations might lead to the conclusion
that something is rather missing in the theory, or that some approximations used in the
chain formation contribution are inadequate.

For nonspherical molecules, one might suppose that, instead of having spherical seg-
ments in a chain, such molecules could be represented as single ellipsoids. In this perspec-
tive, we propose a modification of the SAFT original approach in which small chains and
linear molecules are taken as one single ellipsoidal segment rather than a set of spherical
segments. We account for A%eme™ and Ahain i only one new term, called A*"sotropy  For

non-associative molecules, the fluid free energy is given by Equation 2.2.
A= Aideal + Aanisotropy (22>

Figure 2.1 illustrates how the residual free energy is composed in the SAFT original

approach and in our proposed model.

oo'.’ou Q¢
* %ol ™ | o
e o © 9 O @ e

Asegment + pchain pAanisotropy

(a) SAFT original approach (b) Proposed model

Figure 2.1: Diagram to illustrate the residual free energy in SAFT model and in our
proposed equation of state

Wu et al. (2014) have developed a theoretical equation of state for hard sphero-
cyllinders (HSC) with an anisotropic square-potential to study the LC behavior. Williamson
and Del Rio (1998) have presented two different theories to describe the isotropic and
nematic phases in a fluid of HSC with a spherocylindrical square-well potential, which
Garcia-Sanchez et al. (2002) extended to second-order perturbation theory. With a strat-
egy similar to the one we propose in this work, Williamson and Guevara (1999) applied

the earlier developed EoS(Williamson and Del Rio, 1998) for spherocylinders to exam-



44

ine the deviation from corresponding states as a function of molecular shape anisotropy.
They also fitted the theoretical results to experimental data to use the model to calculate
saturated densities of n-alkanes as a function of temperature. Here, we optimize the pa-
rameters of our proposed equation of state to correlate saturated properties and we also
use the EoS to assess the predictive power of the model by calculating supercritical and

derivative properties.

2.2 Formulation of the Equation of State

An exact solution to A by means of classical statistical mechanics is complex even for
the simplest intermolecular potential (Equations 1.6, 1.7, 1.8), since it involves, among
other complex calculations, the still unsolved many-body problem. Theoretical approxi-
mations with reasonable physical arguments must be made to formulate A"S°toPY  Per-
turbation theory is one of the most popular routes to find an approximate solution. To
calculate As°toPY we apply the Hard Gaussian Overlap (HGO) as the reference system
in the Barker-Henderson second-order perturbation theory, and the attractive part of the

spherical square-well potential as the perturbation (Equation 1.44).
aanisotropy — aHGO + a?Wﬁ + CLSW 2 (23)

where ganisotropy — Aanisotropy /\ apd qHGO = AHGO /N,

Although the application of the spherical square-well attractive potential is a strong
approximation, it is based on the assumption that, at larger distances, the orientations
become less significant for the interaction. On the next sections, the derivations of AHGO,

a}V, and a5V are presented.

2.2.1 Hard Gaussian Overlap (HGO)

The Gaussian Model Potentials were proposed by Berne and Pechukas (1972) as a
strategy to reduce computational demands in simulating polyatomic and nonspherical
molecules. The molecules are represented as ellipsoids (or a rigid union of them) and the
potential between the particles is associated with the mathematical overlap of two Gaus-

sian distributions. Hence, the number of interactions between two particles considerably
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decreases if compared to the multi-site approach.

The mathematical structure of the model is similar to the Lennard-Jones potential,
but the main difference is that the contact distance depends on the orientations of the
particles. The ellipsoids are characterized by the parameters o, and ., which correspond
to the distances where the potential becomes zero when the particles are on a side-by-side

or end-by-end configuration, respectively. See Figure 2.2.

g
o |
Os
(a) Side-by-side (b) End-by-end

Figure 2.2: Ellipsoids configurations.

From o, and 0., the elongation, s, and the shape anisotropy parameter, y, can be
defined as:
(2.4)

For spherical particles, x — 1 and xy — 0, for long rods x — oo and xy — 1, and for
very thin disks kK — 0 and y — —1.

The Hard Gaussian Overlap is based on the Gaussian Model Potentials, and it is
equivalent to the hard sphere model in the sense that the potential is infinite if the
particles are in contact with each other, and zero otherwise. Nevertheless, the HGO
contact distance, oygo, varies with the orientation of the particles and also with the
vector linking the centers of mass, as illustrated in Figure 2.3. For the HGO potential, o,
and o, are simply the diameters of the ellipsoids of revolution.

The HGO contact distance, oggo(T, Q, Qg), is constrained between the values of o,
and o, depending on the orientation of the particles, as presented in Equation 2.5:

—-1/2

(2.5)

T S RSP Sy
OHGO — Oy 1—K (1T+A 2AT)+(ITA 2Ar)
L4 x(£2 - ) L —x(£2 - €)

2

where 7 is the unit vector along the vector connecting two ellipsoids centers of mass,

and O and €2y are the unit vectors along the axis of the ellipsoids, which represent the
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GS
Figure 2.3: Two ellipsoids with different orientations at a certain distance |7].

molecules orientations.

HGO overestimates the contact distance of two perpendicular ellipsoids, leading to
differences when compared to the Hard Ellipsoid of Revolution (HER). HER contact dis-
tance, however, is much more difficult to be obtained (Vieillard-Baron, 1972). Perera
(2008) has examined the differences between fluids of hard and Gaussian ellipsoids, show-
ing that, although the latter leads to small differences in Mayer function, quite similar

values for the integral of these functions are obtained.

Derivation of AHGO

Omnsager (1949) proposed an expression for the configurational-integral of fluids with
orientational degrees of freedom by treating particles of different orientations as particles
of different kinds. Neglecting the terms which depend on second-order or higher clus-
ter integrals in the configurational expansion, the configurational-integral expression for

cylindrical symmetric particles proposed by the author is shown in Equation 2.6.

IHZN

—1-lp—o(+5 [ [ B@ @@ 20

where Zy is the configuration integral, p is the number density N/V, Bj is excluded

volume, f(€) is the normalized orientational distribution function and ¢ (€2) is the orien-
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tational entropy given by Equation 2.7.

/f ) In(47 £())dS2 (2.7)

For the purposes of this chapter, an isotropic distribution will be assumed, thus f (Q)
is constant (Equation 1.48). In this way, o(€2) = 0, and the Helmholtz free energy can be
written as:

BA (pv

N = In E) —-1- g//Bl(QlaQQ)f(Ql)f(Q2)dﬂldQ2 (2.8)

where = 1/(kgT), kp is Boltzmann constant, 7" is the absolute temperature, v is the
de Broglie volume incorporating rotational and translational degrees of freedom.

In the case of hard potentials, that is, when particles cannot overlap, —B; equals the
inaccessible volume for a particle due to the presence of a second particle. In the case of
hard-spheres, By = —8Vsphere, as shown in Figure 2.4. The light grey area represents the

volume denied to the center of mass of the sphere, —B; = veye = 47d?/3.

d/2
. ‘
k d i

Figure 2.4: van der Waals excluded volume.

Based on the equation of state formulated by Carnahan and Starling (1969) for the
hard-sphere model, Lee (1987) proposed a generalized expression for the Helmholtz free

energy of nonspherical particles, shown in Equation 2.9.

Anonspherical pv 1 47] 37] Vexc
N (47r) o(f)+ 3 (1 —=n)? < Vo >Q 2

where Ve is the excluded volume, vy is the volume of the particle and ()¢, is the average
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over the orientations. The factor 1/8 was chosen in such a way that the expression is equal
to the Carnahan and Starling (1969) original expression for hard spheres (Equation 1.12).
Parsons (1979) derived the expression for the excluded volume of the HGO potential,

shown in Equation 2.10.

= 1 —x?cos? 0 2.10
Yo 1_X2\/( X? cos? 012) (2.10)

where 6 is the angle between the particles. Assuming an isotropic distribution and taking

the average over orientations of Equation 2.10, AHG© is derived from Equation 2.9:

4_ .
8aHGO — | (ﬂ) PO Gkl 377)’27 ] X (2.11)

2.2.2 Square-Well Potential - Gil-Villegas et al. (1997)

As previously mentioned , for the perturbed potential in Equation 2.3, we have chosen
the spherical square-well potential:
(
400, if r<o

W = —e, if o<r<Ao (2.12)

0, if r>M\o

\

where ¢ is the well depth, \ is the attractive range, and o = /o,20., which is formulated
by equating the hard core volumes (or the packing fraction) of a sphere and of an ellipsoid

of revolutions:

mod  wolo
— 8¢ 2.13
5 5 (2.13)
Applying the square-well potential in Equations (1.44b) and (1.44c):
A
a; = —2N7rpea3/g(0)(x)x2dx (2.14a)
1

A
(0)
as = —NWpEQgngT/ (E?pg&—p(a:)) rdx (2.14b)
0
1
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where = r/o. Rearranging Equation (2.14b):

A
9a\®
as = —N7Tp6203/<:BT/ (g(o)(x)ap +p J (x)) ridx
1

8_]7 dp
h op  09O(x)0
=—N 23k:T/ O ()22 4 p29 LIP ) 12 2.15
mpe’a’kp (9 @5 TP 5, op) " (2.15)
dp 0 /\
= _Nrp2odlyTL L 0) ()22
Tpe“okp 90 90 pg" (z)r dx
1

Introducing Equation (2.14a) into Equation 2.15:
LT K (2.16)
ag = €p= ——— = —¢ — .
2 P5FB 77 an

where Kr is the isothermal compressibility, which can be calculated with the Percus-
Yevick expression for hard-sphere (Equation 2.17). Nonetheless, the molecular volume of

an ellipsoid of revolution is used to calculate the packing fraction (n = pro20./6).

(1—mn)*
= 2.17
T+ An + 4n? (2.17)
To solve Equation (2.14a), we adopt the same strategy as Gil-Villegas et al. (1997), 1.
e., the mean-value theorem (MVT) is applied to evaluate the integral. In the original work,
the full function ¢"'5(¢&;n) is represented, which comes from the application of MVT, by
its contact value evaluated at an effective packing fraction .. So that ¢"5(¢;7n) becomes

HS(

9" (1; et

A
a; = —2N7ea® g™ (1; neg) /$2da7 = —4ne(A® — 1)g™(1;1eq) (2.18)

1

The Carnahan and Starling expression for the radial distribution function at the con-

tact value is:
1- neff/Q
(1 - neff>3

The parameters obtained by Gil-Villegas et al. (1997) are used to calculate neg (Equa-

9" (15 nesr) = (2.19)
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tion 2.20).
et = C11) + Co1” + c3m° (2.20a)

where the coefficients ¢, are given by:

¢ 2.25855  —1.50349 0.249434 | | 1
co| = |—0.669270 1.40049 —0.827739| | A (2.20b)
c3 10.1576  —15.0427  5.30827 | [A?

Although the form of a; and ay terms are the same as is in SAFT-VR SW (Gil-Villegas
et al. (1997)), strictly, since the repulsive core is different in the two models and the terms
are integrated from the contact distance, they should be different. The radial distribution
function of the HGO, however, is a complicated function of orientations and the vector
joining the particles centers of mass. To have a closed and more tractable formulation, we
apply the decoupling approximation (Parsons, 1979) to map the HGO radial distribution
as the hard-sphere one at the same packing fraction: g% (7, Qy, Q) = ¢"S(r/o,n). Such
an assumption is exact at lower densities. In addition to that, since we have applied a
spherical square-well potential as the repulsive part of the potential, the terms are the
same as SAFT-VR SW.

With Equations 2.11, 2.18, and 2.16, Equation 2.3 can finally be evaluated. With
an expression for the Helmholtz free energy, A, the fluid properties are derived through

classical thermodynamics relations.

2.3 Results and Discussion

The proposed equation of state was applied to ethane and carbon dioxide, both small
nonspherical molecules. For spherical molecules like methane, the proposed EoS and
SAFT-VR SW are completely equivalent. The model parameters were optimized to fit
vapor pressure and saturated liquid density data obtained in NIST (Linstrom and Mal-
lard). Although taking into account supercritical derivative properties such as heat ca-
pacity and speed of sound improves the applicability of the fitted parameters (Lafitte
et al., 2013); we have maintained the same properties used in the original optimization
of SAFT-VR SW EoS (Gil-Villegas et al., 1997) for the sake of a fair comparison. The

optimized parameters are shown in Table 2.1.
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Table 2.1: Optimized parameters for ethane and carbon dioxide.

Compound EoS AN elkg /K o0,/ A o,/ A mP

ethane This work 1.597 243.5 2.968 6.864 -
SAFT-VR SW (Gil-Villegas et al., 1997) 1.448 241.8 3.788 - 1.3

carbon dioxide This work 1.626 275.0 2.144 7.494 -
SAFT-VR SW (Galindo and Blas, 2002) 1.516 179.3 2.786 - 2.0

¢ for SAFT-VR SW, o, = 0.

b m stands for the number of spherical segments in a chain.

Figures 2.5 and 2.6 present the vapor-liquid equilibrium of ethane and carbon dioxide.
The proposed equation of state correlates the coexistence curves of both ethane and
carbon dioxide better than SAFT-VR SW when compared to NIST data. Both the
proposed equation of state and SAFT-VR SW (Gil-Villegas et al., 1997) overpredict the
critical point of ethane and carbon dioxide. Nevertheless, our proposed EoS predicts more
accurately the values of critical temperature and critical pressure when compared to NIST

data (Linstrom and Mallard), as shown in Table 2.2.

Table 2.2: Critical properties of ethane and carbon dioxide.

Compound T. /K p./ MPa

ethane NIST 305.33 4.87
This work 320.57 6.10
SAFT-VR SW 325.33 7.43

carbon dioxide NIST 304.12 7.38
This work 315.49 8.52

SAFT-VR SW  322.97 11.18

The reason behind the overprediction of the critical properties (temperature and pres-
sure) for both models is twofold: the choice of a discrete perturbed potential as the
square-well potential, and the truncation of the high temperature series expansion on the
second term. Lafitte et al. (2013) showed that, with the inclusion of the third term in the
expansion with a Mie potential, the prediction of the critical point is much more accurate.
Likewise Sastre et al. (2018) observed that the higher the order of the terms introduced
the lower the critical point obtained. Moreover, the prediction of the coexistence curve
near the critical point is improved by higher order perturbation theory for square-well
(Gil-Villegas and Benavides, 1996; Espindola-Heredia et al., 2009) and Lennard-Jones
(van Westen and Gross, 2017) fluids. Another strategy would be to take into account the
critical point in the fitting procedure, but the correlation of the saturated liquid density

would certainly be deteriorated.
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Figure 2.5: Vapor-liquid equilibrium for pure ethane: (a) coexistence curve, (b) vapor
pressure as a function of temperature. Open symbols, NIST data (Linstrom and Mallard).
Continuous lines, our proposed equation of state. Dotted lines, SAFT-VR SW (Gil-
Villegas et al., 1997).

For the sake of a quantitative comparison, the Average Absolute Relative Deviation

(AARD) was calculated:

Np

1 (PNIST . ngos
AARD(%) = sz W x 100% (2.21)
=1 g

where N,, is the number of calculated points, V5T is the NIST (Linstrom and Mallard)
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Figure 2.6: Vapor-liquid equilibrium for pure carbon dioxide: (a) coexistence curve, (b)
vapor pressure as a function of temperature. Open symbols, NIST data (Linstrom and
Mallard). Continuous lines, our proposed equation of state. Dotted lines, SAFT-VR SW
(Gil-Villegas et al., 1997) with optimized parameters from Galindo and Blas (2002).

value for a certain property ¢, and ¢ is the property value calculated by the Equation
of State.

Table 2.3 presents the AARD values for vapor pressure, saturated liquid density, and
saturated vapor density of both ethane and carbon dioxide calculated with the proposed
EoS and with SAFT-VR SW. The vapor pressure of ethane is better correlated with the

proposed equation of state; whereas the opposite is observed to carbon dioxide. Never-
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theless, the saturated liquid density for both fluids is better correlated with the proposed
EoS.

Table 2.3: Average Absolute Relative Deviation (%) for vapor pressure, saturated liquid
density, and saturated vapor density.

vap

Compound P ol Do

ethane This work 1.96 1.41 8.78
SAFT-VR SW 5.07 6.08 7.96

carbon dioxide This work 3.53 0.78 6.41

SAFT-VR SW 0.76 2.26 7.95

The parameters of the proposed equation of state were adjusted solely to correlate
saturated properties. The supercritical properties of ethane and carbon dioxide, however,
can be used to assess the predictive power of the proposed model. Figure 2.7 presents
the results for supercritical density of ethane and carbon dioxide. Overall the proposed
EoS predictions are more accurate than those obtained with SAFT-VR SW, with the
exception of ethane at a low temperature (350 K). SAFT-VR SW generally overpredicts
pressure at a given density and temperature for both ethane and carbon dioxide.

Supercritical derivative properties of ethane and carbon dioxide, such as isochoric
and isobaric heat capacities, speed of sound, Joule-Thomson coefficient, isothermal com-
pressibility, and thermal expansion coefficient, were also investigated. Figures 2.8, 2.9,
2.10, 2.11, 2.12, and 2.13 show the results for the proposed EoS and SAFT-VR SW
(Gil-Villegas et al., 1997), compared to NIST data (Linstrom and Mallard). The ideal
gas isobaric heat capacity was calculated according to the empirical expression proposed
by Passut and Danner (1972). The proposed EoS captures the trends observed for all
thermodynamic derivative properties, with the exception of the isochoric heat capacity
(Figure 2.8). Insights regarding the inadequacy of the models to quantitatively describe
the ¢, are given in Chapter 3 of this dissertation. The original SAFT-VR SW, however,
describes qualitatively well only the speed of sound and the isothermal compressibility
(Figures 2.10 and 2.12). Lafitte et al. (2007) underline that the SAFT VR Mie approach
enhances the derivative properties prediction and, in another work, Lafitte et al. (2006)
imply that a possible origin of the failure in describing these properties might be the
use of the square-well potential. A deeper discussion with regard to that is also present
in Chapter 3. Nonetheless, it is interesting to note that our approach was capable of

significantly improving the calculation of derivative properties even while using the SW
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Figure 2.7: Pressure versus density at constant temperature for: (a) ethane, and (b)
carbon dioxide. Open symbols, NIST data (Linstrom and Mallard). Continuous lines,
our proposed equation of state. Dotted lines, SAFT-VR SW (Gil-Villegas et al., 1997).

potential as the perturbed potential.

Larger deviations are observed for the proposed EoS at high pressures and low tem-
peratures. At these thermodynamic conditions, a high dense fluid is found, and the
approximation made in the formulation of the equation of state in which the reference
and the perturbed potential are treated with different molecular geometries is challenged.

The replacement of the square-well potential by an anisotropic intermolecular potential in
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Figure 2.8: Isochoric heat capacity: (a) carbon dioxide (b) ethane Open symbols, NIST
data (Linstrom and Mallard). Continuous lines, our proposed equation of state. Dotted
lines, SAFT-VR SW (Gil-Villegas et al., 1997).

the attractive part of the perturbation theory might improve the prediction of derivative
properties at these specific conditions. The decoupling approximation applied to formu-
late the HGO Helmholtz free energy also has a significant impact on the prediction of
properties at higher densities. Since the DA takes ¢(7, Qi Qz) as g(r/ouco), it is exact
at low densities where g ~ exp(—funco), but not at high ones.

The AARD values for the calculation of supercritical density and derivative properties
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Figure 2.9: Isobaric heat capacity: (a) carbon dioxide (b) ethane Open symbols, NIST
data (Linstrom and Mallard). Continuous lines, our proposed equation of state. Dotted
lines, SAFT-VR SW (Gil-Villegas et al., 1997).

for ethane and carbon dioxide are shown in Table 2.4. With the exception of the carbon
dioxide isothermal compressibility, the proposed EoS gives better predictions than SAFT-
VR SW for all supercritical properties. The highest deviations are observed for the Joule-
Thomson coefficient predictions. A thorough analysis shows that such high deviations are
exclusively related to the deviation in the prediction of the inversion point.

The results obtained here by the proposed equation of state shows that somehow
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Figure 2.10: Speed of sound: (a) carbon dioxide (b) ethane Open symbols, NIST data
(Linstrom and Mallard). Continuous lines, our proposed equation of state. Dotted lines,
SAFT-VR SW (Gil-Villegas et al., 1997).

Table 2.4: Average Absolute Relative Deviation (%) for supercritical density, isochoric
heat capacity, isobaric heat capacity, Joule-Thomson coefficient, speed of sound, thermal
expansion coefficient, and isothermal compressibility.

Compound P Cy Cp KT Cs o kr
ethane This work 1.69 339 1.90 114.13 2.00 5.55 4.74
SAFT-VR SW 386 3.63 7.10 157.34 234 10.25 5.28
carbon dioxide This work 2.43 775 279 13145 244 11.05 8.26
SAFT-VR SW 6.88 9.29 2491 724.19 6.43 36.32 3.64
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Figure 2.11: Joule-Thomson coefficient: (a) carbon dioxide (b) ethane Open symbols,
NIST data (Linstrom and Mallard). Continuous lines, our proposed equation of state.
Dotted lines, SAFT-VR SW (Gil-Villegas et al., 1997).

the assumption of an ellipsoidal geometry seems to be more adequate to represent these
molecules than the original SAFT-VR SW (Gil-Villegas et al., 1997) approach for which
the Helmholtz free energy of spherical segments forming a chain is calculated with Wertheim’s
first-order thermodynamic perturbation theory.

The proposed formulation has also the benefit of eliminating the apparent physical

issue of a non-integer number of segments. Nevertheless, the fitted parameters for the
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Figure 2.12: Isothermal compressibility: (a) carbon dioxide (b) ethane Open symbols,

NIST data (Linstrom and Mallard). Continuous lines, our proposed equation of state.
Dotted lines, SAFT-VR SW (Gil-Villegas et al., 1997).

proposed EoS assuming an ellipsoidal geometry must be physically sound. A simple way
to check this is to compare the shape and the volume of the fitted ellipsoid with the
molecular models for ethane and carbon dioxide.

The Transferable Potential for Phase Equilibria (TraPPE) (Martin and Siepmann,
1998) is a united atom molecular model using Lennard-Jones potential frequently applied

in molecular simulations to calculate phase equilibrium and thermodynamic properties
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Figure 2.13: Thermal expansion: (a) carbon dioxide (b) ethane Open symbols, NIST data
(Linstrom and Mallard). Continuous lines, our proposed equation of state. Dotted lines,
SAFT-VR SW (Gil-Villegas et al., 1997).

(Aimoli et al., 2014). For TraPPE (Martin and Siepmann, 1998), ethane is represented
as two spherical particles. The distance between these two particles is kept fix as 1.54
A Assuming the diameter of such spherical particles as the distance at which the inter-
molecular potential is zero, then the volume of a single ethane molecule is 43.7 A®. The
volume of the ellipsoid, calculated with the fitted parameters shown in Table 2.1, is 31.7
A3. Therefore, the ratio between the volume of the fitted ellipsoid and the volume ob-
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tained with TraPPE molecular model is 0.73. For carbon dioxide, TraPPE model (Potoff
and Siepmann, 2001) gives a volume of 22.9 A3, while the fitted ellipsoid has a volume of
18.0 A3, giving a ratio between the volume of the fitted ellipsoid and the volume obtained
with TraPPE molecular model of 0.79. Being the calculated volume ratios for ethane
and carbon dioxide close to 1, one might conclude that the fitted parameters provide a

physically meaningul geometry for both ethane and carbon dioxide, as also illustrated in

Figure 2.14.

H3C _CH3 O:C:0

(a) Ethane (b) Carbon Dioxide

Figure 2.14: Illustrative comparison between TraPPE molecular model for ethane(Martin
and Siepmann, 1998) and carbon dioxide(Potoff and Siepmann, 2001) and the ellipsoidal
geometry obtained with the fitted parameters for the proposed EoS.

An explanation for why the ellipsoids volumes are lower than the ones calculated with
TraPPE model might reside in a compensation for the use of the square-well potential
as the perturbed term. Taking the potential well-depth proposed by Berne and Pechukas
(1972) and analyzing the four site molecule example in Gay and Berne (1981), one may
see that the well-depth of nonspherical particles tend to be larger than that for spherical
particles. Thus, the attractive term on perturbation theory might be larger if one applies
an anisotropic potential. Therefore, a smaller volume in the proposed EoS reduces the
repulsive contribution to be compatible to the attractive contribution given by the square-

well perturbed potential.

2.4 Conclusion

We have formulated an alternative equation of state for nonspherical molecules based
on a perturbation theory, in which the Hard Gaussian Overlap model is used as the ref-
erence potential and the perturbed contribution is given by a square-well potential. The

vapor-liquid equilibrium for ethane and carbon dioxide was successfully correlated with
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the proposed EoS. Moreover, the proposed EoS predicts more accurate critical properties,
when compared to SAFT-VR SW. For suprecritical thermodynamic derivative properties,
the proposed EoS generally provides better estimates than the original SAFT-VR SW for
both ethane and carbon dioxide. The results obtained with the proposed EoS might im-
ply that the choice of a single ellipsoid to represent such small molecules is an adequate
alternative as to fitting a non-integer number of segments, as commonly done in SAFT
framework using Wertheim’s first-order thermodynamic perturbation theory. In addition
to that, we showed that this approach is capable of significantly improving the derivative
properties prediction even using the square-well as the perturbed potential. The com-
parison between the ellipsoid volume resulting from the fitted parameters with molecular
models such as TraPPE shows that the proposed EoS parameters are physically mean-
ingful. Finally, the extension of the proposed model for larger and associating molecules

remains to be addressed.
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“ ...pendurou-se-me uma Iideia no trapézio que eu tinha no cérebro. Uma vez pendurada,
entrou a bracejar, a pernear, a fazer as mais arrojadas cabriolas de volatim, que é possivel crer.

Eu deixei-me estar a contemplé-la. Stubito, deu um grande salto, estendeu-se os bragos e as

pernas, até tomar a forma de um X: decifra-me ou devoro-te.” !

— Machado de Assis, Memorias Postumas de Bras Cubas

A top-down approach for ellipsoids to
investigate the isochoric heat capacity

prediction.

The content of this chapter was reprinted (adapted) from Lopes, J. T. and Franco, L.
F. M. Prediction of isochoric heat capacity: Discrete versus continuous potentials. Fluid
Phase Equilib. 506, 112380 (2020). hittps://doi.org/10.1016/j.fluid.2019.112380 Lopes
and Franco (2020)

1 .. an idea took hold of the trapeze that I used to carry about in my head. Once it had taken hold,
it flexed its arms and legs and began to do the most daring acrobatic feats one can possible imagine. I
just stood and watched it. Suddenly it made a great leap, extended its arms and legs until it formed an
X, and said, “Decipher me or I devour thee.”’ - Epitaph of a Small Winner, Machado de Assis.
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3.1 Introduction

In Chapter 2, theoretical approximations were made to develop a molecular based
equation of state for the intermolecular potential in Equation 3.1, modeling carbon dioxide

and ethane as ellipsoidal particles.

0o, if |r| < ouco(F,Q, Q)
u(@ 0, Q) =<~ i ool O, Q) < |1 < Aduphere (3.1)

0, if |T| > )\Usphere

In this chapter, the same intermolecular potential is studied in Monte Carlo molecular
simulations, and the parameters optimized using the equation of state are used as a force-
field, in a fashion known as “top-down” approach. The advantage of molecular simulation
is that the solution for the chosen potential is exact, that is, no approximation is needed.
In this way, comparing the results of the equation of state and of the molecular simulations,
it is possible to discriminate the influence of the theoretical approximations and of the
choice of the intermolecular potential on the structural and thermodynamic properties
prediction.

As recognized in Chapter 2, neither of the studied equations of state (Gil-Villegas
et al., 1997; Lopes and Franco, 2019) were able to capture the trends of the isochoric
heat capacity. Lafitte et al. (2006) suggested that deficiencies of SAFT-VR SW (Gil-
Villegas et al., 1997) in predicting derivative properties could result from the choice of
the SW model as intermolecular potential. We, however, showed on the previous chapter
that the calculation of derivative properties could be improved solely by changing the
repulsive potential to an anisotropic one, while keeping the attractive spherical square-
well potential as the perturbed part. Llovell and Vega (2006) have examined separately
the different contributions of soft-SAFT (Blas and Vega, 1997) (reference fluid, chain,
and association) to the total derivative properties, which allowed a better understanding
of the significance of each contribution to the calculation of each property. In a similar
fashion, Maghari and Sadeghi (2007), proposing a modified version of the SAFT-BACK
(Chen and Mi, 2001), have analyzed the different contributions to the residual isochoric
heat capacity (hard-convex body, chain, chain dispersion, and dispersion).

Although equations of state derived for both discrete and continuous potentials have
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been extensively studied, a thorough investigation through molecular simulation to check
the effects of theoretical approximations on the heat capacity was yet to be addressed.
Therefore, besides the proof-of-concept of our top-down approach to generate a coarse-
grained force field for carbon dioxide as an ellipsoidal particle, in this chapter we aim at
shedding some light in the effects, validity, and limitations of theoretical approximations
and of the choice of intermolecular potentials in the prediction of the isochoric heat
capacity. COsy has been chosen as a case study for its extreme relevance in our today’s
society, and because carbon dioxide is a reasonably small non-polar molecule for which
parameters for the chosen models are available in the open literature.

To investigate the isochoric capacity behavior, the NVT Monte Carlo simulations are
more suitable, since, in this case, the residual isochoric molar heat capacity ¢ can be
calculated from the potential energy fluctuations extracted from the simulation, as show

in Equation 3.2.
o= - wp) (32

where U is the total intermolecular potential energy.

We compare results of Monte Carlo simulations using SAFT-v Mie and the force field
proposed in this work to SAFT-VR SW (Gil-Villegas et al., 1997), SAFT-VR Mie (Lafitte
et al., 2013), and our recently proposed equation of state (Lopes and Franco, 2019). The
choice of these three models among so many versions of SAFT is due to the similar

fundamental basis in their derivation that allows a fairer comparison. The Mie potential

QT e e

where ¢ is the potential well-depth, ¢ is the distance at which the potential becomes zero,

is expressed as:

and A, and A\, are the repulsive and attraction exponents, respectively.

3.2 Equations of state

The theoretical development and formulation of SAFT-VR SW and our proposed EoS

is addressed in Chapter 2.
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3.2.1 SAFT-VR Mie

Lafitte et al. (2013) formulated a new version of SAFT for both repulsive and attractive
potentials of variable range. Mie potential (Equation 3.3) is applied to model spherical
segments interaction, as a strategy to develop a more versatile and accurate equation of
state, especially in the description of derivative properties.

The authors express the molar Helmholtz free energy of the repulsive potential as the

free energy of a temperature-dependent hard-sphere system with an effective diameter:

g

d(T) = / [1— exp (—Bue(r))] dr (3.4)

0

Thus an effective packing fraction to calculate the reference contribution is defined:

prd(T)?

- (3.5)

Tlehs =

where 7,5 is the packing fraction of an effective hard-sphere system.

In the SAFT-VR MIE equation of state (Lafitte et al., 2013), an improved form of the
second-order perturbation term as is used. In Equation 1.45, Y is a function of 703 /6, and
also depends on the repulsive and attractive exponents A, and \, of the Mie potential. The
function coefficients were adjusted to match accurate values of ay obtained via molecular
simulations. In addition to that, an empirical expression to account for higher-order
terms Zwanzig’s high-temperature expansion is included, represented by a}"®. Finally, for

non-associating fluids, the residual molar Helmholtz free energy is given by:
ﬁCI,R — ﬁaHS + Ball\/lie + BZQQ/Iie + 53a1§/[ie + ﬁaCHAIN (36)

The reader is referred to the original work (Lafitte et al., 2013) for more details regard-
ing the calculation of these terms. The intermolecular potential parameters for carbon
dioxide were taken as (Avendafio et al., 2011): €/kg = 361.69 K, 0 = 3.741 A, A, = 23.0

and A\, = 6.66. In this case, CO5 molecule is represented as a single-site spherical particle.
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3.3 Monte Carlo Simulations

A Monte Carlo algorithm is a probabilistic interpretation of mathematical problems
in which the solution is found by a stochastic sampling of the system. Different types of
Monte Carlo algorithms are used to solve complex mathematical problems. In our case,
the Metropolis Monte Carlo algorithm is used to solve the statistical mechanics integrals

introduced in Chapter 1.

3.3.1 Metropolis Monte Carlo

From statistical mechanics, a property ® of a system is equal to its average over
all possible microstates (Equation 1.3). The Monte Carlo method consists of selecting
random configurations (I';), and averaging ® over these systems, rather than following

the dynamic evolution of the system:

Tmax

> (') exp(—=BU(I';))
<(I)>NVT = TZlex (3-7)
> exp(—pU(T7))

=1

where Thax is the number of sampled microstates, and I'; the configuration of each state.
If every possible state had the same probability of occurring, i.e., if the probability dis-
tribution was uniform, the configurations could be picked without criteria, and the en-
semble average would be a simple average of the properties over the sampled microstates.
Nonetheless, the probability distribution is not uniform, and it is related to the Boltzmann
factor, as presented on Chapter 1.

Omne can say that the Boltzmann factor exp(—/SU) weights the property in a given
configuration: if the state has a large probability, the property calculated in that given
calculation should be more significant to the ensemble average. For a close-packed con-
figuration, a large number of sampled microstates would give a very large and positive
potential energy due to particles overlap (U,, — o0). As a consequence, the Boltzmann
factor would be very small, and the calculated property of that given configuration would
have very low weight. Metropolis et al. (1953) presented a method to sample the mi-
crostates in such a way that, by the end of the simulation, the number of occurrences

of each state is consistent with its probability. As a consequence, an average over the
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sampled microstates gives the ensemble average. The authors proposed a procedure to

set up a Markov chain; provided that enough steps are taken, the system goes to the

desired distribution (equilibrium distribution) regardless of the initial configuration.
From Equation 1.2, the probability in the canonical ensemble that a system in state

m goes to a state n is given by:

P(T,)  exp(—=BU,)  exp(—BU,)exp(—B(U, — Uy))
P(T,,) - exp(—AU,) - exp(—BU,) = exp(—BAUn) (3.8)

A flowchart of the method is given in Figure 5.1. The method is initiated with a system
in a random state m (configuration I, and total potential energy U,,). A new state I,
is generated by moving randomly one particle. The potential energy U, is calculated
for this new state. If AU,,, < 0, the number of systems in state n is greater than m
(exp(—=BAU,,,) > 1), therefore the new configuration I',, is accepted. If the change in

the potential energy is greater than 0 (exp(—fAU,.,) < 1), the movement is accepted

I'n

with the probability of ]Ij((rm

] by generating a random number ¢ between 0 and 1, and
comparing it with the ratio. If the selected random number is less than exp(—SAU,,,),
the movement is accepted, otherwise the particle remains at its old position I',,,. The
procedure is repeated as many times as necessary to reach the equilibrium distribution.
A new state can be generated solely by moving one particle. A trial move is the
generation of a new state by changing the position and orientation of a particle, which
can be defined as a cycle. In the present chapter, we try to move all the N particles per

step, therefore each step consists of N cycles.

Change in position

A new position "V is generated by applying Equation 3.9.
(i) = (i) + (2¢ — 1) Ar™ (3.9)

where ¢ = 1 to 3 and represents each axis, ( is a number randomly selected from a

max

uniform distribution between zero and one, and Ar is the maximum displacement

allowed, which is an adjustable parameter.
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Change in orientation

To be able to define and adjust a maximum rotation, rotation quaternions are ap-
plied to obtain a new orientation. A succinct introduction to quaternions is given in

appendix B.1. The procedure is described below:

1. a random angle # is generated in a similar fashion of Equation 3.9.
2. a random axis a = [ay, ag, ag] is obtained by creating a random unit vector.
3. a rotation quaternion is calculated (Equation B.2).

4. a new orientation is obtained by applying Equation B.4.

There are two important points to take into consideration when applying the method.
If the potential energy U, is too large (when SAU,,, > 75, for example), the Boltzmann
factor would be very small. Hence, to avoid underflow and to save computational time,
the move should be immediately rejected. This is one way of avoiding considerable overlap
of particles too (Allen and Tildesley, 2017). The second point is related to the maximum
allowed displacement of the particle. If it is too large, many moves would be rejected,
and the phase space would be poorly explored. On the other hand, if it is too small,
most of the moves would be accepted; nonetheless, systems would be highly correlated,
and it would take a long time to explore the phase space. To avoid these extremes, the
maximum displacement should be adjusted in function of the percentage of movements

accepted.

3.3.2 Calculation of nematic order parameter and phase director

The nematic order parameter s is obtained from Equation 1.46. The phase director
n is defined as the vector that maximizes s. The computation of the order parameter,
however, is tricky, since n is unknown in the beginning of the calculation. The @) tensor
method (Zannoni, 1979) is applied to calculate s and the phase director n. @ is defined

as a symmetric traceless 3x3 matrix, in such a way that Equation 3.10 is true.

=1 j=1
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Figure 3.1: Metropolis method flowchart for a cycle in the NVT ensemble.
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3 3 3
where n = Y n;0; and Q = ) > (Qi;)9:0;. The right hand side of Equation 3.10 is
=1 1

i=1j=
written as:

n® - (Q) - n = ni(Qu1) + n1na(Qua) + nins(Qis)
naony (Qa1) + n§<Q22> + nong(Qa3)

nsni (Qs1) + nana(Qsz) + n?,(@s?))

_.I_
+ (3.11)

Since ) is symmetric, (Q;; = Q;i, replacing Equation 3.11 into Equation 1.46 gives:

N | —

3
S = <§ (TL%Q% + ngQg + n§§2§ + 27127139293 + 2n1n2§21§23)> —

= n}(Qu) + 2nmn2(Qua) + 2n1n3(Qus)  + (3.12)

n3(Qa2) + 2nan3(Qas) + n3(Qss)

Equating the coefficients of Equation 3.12, ();; could be in principle be defined as:

3
Qij = éQin (3.13)

If @) were given as in Equation 3.13, a —% would still be missing on the right hand

side of Equation 3.12 for both sides to be equal. Hence, we redefine () as:

3

Substituting Equation 3.14 into Equation 3.12:

= (3 202 40202 4 202 _M_ma
S = 9 (nlﬁl -+ HQQQ + TL3Q3 + 27’LQTL3Q293 + innngQg) 9 B 5 (315)
: : : ni _n3 _ n3 1002 2 2 1 .
Since n is a unit vector, —5t — 2 — 5 = —5(n]+n;5+n3) = —5. Hence, the definition

of @ in Equation 3.14 satisfies Equation 3.10.
As stated earlier in this section, n maximizes s, thus we apply the method of the

Lagrange multipliers to find n with the constraint that it should be a unit vector:

g=n"-n—1=0 (3.16)

3 3

L=n"{Q) n—An"-n-1)= Z anjQijéiéj — A <Z 3n; — 1) (3.17)

i=1 j=1
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3 3 3
ve=>>) %nmj@jd, =20 midy, (3.18)

i=1 j=1 I=1 k=1

3 3
23 ) nQud =20 midy (3.19)
An equivalent expression for Equation 3.19 is:

Qn =n (3.20)

Therefore, n is the eigenvector, and A the eigenvalue of ). Multiplying both sides of

equation 3.19 by n, and bearing in mind that n is a unit vector:

3

Comparing Equations 3.21 and 3.10, we infer that s = A, 7.e., the order parameter is
the eigenvalue of Q).
Since ) is a symmetric 3x3 matrix, we apply the method proposed by Smith (1961)

to find its the eigenvalues.

A1 m + 2,/pcos ¢
Xo| = |m — /plcos ¢+ 3./(3)sin ¢) (3.22)
A3 m — /p(cos ¢ — 31/(3) sin ¢)
where Q)
"
q ==det(Q) —ml)
ERE (3.23)
P=5% 121 ;(Qz‘j — mdy;)?
¢ :é tan~! P ; ¢

Once s is found, which is the largest eigenvalue, the phase director n is determined by

applying the Gauss elimination method.
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3.3.3 Simulation Details

Monte Carlo simulations with 864 particles were carried out in the canonical ensemble.
We have run simulations with 15 x 10* cycles of 864 steps each. The properties were
averaged over 75 x 10® production cycles divided into 5 blocks. The code is provided in

the appendix B.2.1.

3.4 Results and Discussion

The potential parameters for carbon dioxide were optimized in the original works
to fit saturated liquid density and vapor pressure, hence the models can be used in a
predictive way to calculate the isochoric heat capacity. Table 3.4 summarizes the values

of parameters of the models.

Table 3.1: Optimized Parameters for Carbon Dioxide

EoS Ar N e/ky/ K ot/ o/ m°
SAFT-VR SW (Galindo and Blas, 2002) - 1.5157 179.27 2.7864 - 2
HGO + SW (Lopes and Franco, 2019) - 1.626  275.0 2.144 7494 -
SAFT-VR MIE (Avendano et al., 2011) 23.0  6.66 - 3.741 - 1

¢ for SAFT-VR SW and HGO + SW, A\, = .
b for SAFT-VR SW and SAFT-VR MIE, o, = 0.
¢ m stands for the number of spherical segments in a chain.

Figures 3.2 and 3.3 present the supercritical isochoric heat capacity for carbon dioxide
as function of density at 360 K and 700 K, respectively. NIST data (Linstrom and
Mallard) are taken as a reference for comparison. Calculated results using equations of
state (SAFT-VR SW, HGO + SW, and SAFT-VR Mie) and force fields (SAFT-y Mie
and HGO + SW) show that all the tested models fail in predicting quantitatively the
reference values for the heat capacity.

At a higher temperature, the results from molecular simulations agree quite accurately
to the results obtained with the equations of state from which their parameters were
derived. At a lower temperature, however, some discrepancies emerge, and molecular
simulations do a better job when compared to the reference values. A possible explanation
for this could be the truncation of higher-order perturbation terms considered in the
development of the equations of state. In Zwanzig’s perturbation theory (Zwanzig, 1954),

the perturbed contribution to the Helmholtz free energy is written as an expansion on
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Figure 3.2: Isochoric heat capacity for carbon dioxide at 360 K. Dashed line, NIST data
(Linstrom and Mallard). Closed black triangles, MC simulations for HGO + SW force
field. Closed red circles, MC simulations for SAFT-y Mie force field (Avendano et al.,
2011). Dash-double-dotted red line, SAFT-VR Mie equation of state (Lafitte et al., 2013).
Continuous black line, HGO + SW equation of state (Lopes and Franco, 2019). Dotted
line, SAFT-VR SW equation of state (Gil-Villegas et al., 1997; Galindo and Blas, 2002).

the inverse of temperature, 3:
AW =3 "= (g (3.24)

where A is the perturbed contribution to the Helmholtz free energy.

Therefore, as temperature decreases, the contribution from high-order terms increases.
Since all the used equations of state consist of a truncation of such an expansion, they fail
to provide an exact value of the Helmholtz free energy, especially at lower temperatures.
Molecular simulations, however, prescind from such an approximation, hence they provide
exact values for a given potential model. One interesting finding is that, taking the same
parameters fitted using the equation of state, molecular simulations give better results.
This is a valuable advantage for force fields based on top-down approaches.

SAFT-VR SW provides a negative value for the residual heat capacity at the limit
of zero density. This seems a bit odd, since at this limit the residual heat capacity

should be zero. Such an inconsistency is a consequence of an approximation taken in the
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Figure 3.3: Isochoric heat capacity for carbon dioxide at 700 K. Dashed line, NIST data
(Linstrom and Mallard). Closed black triangles, MC simulations for HGO + SW force
field. Closed red circles, MC simulations for SAFT-y Mie force field (Avendano et al.,
2011). Dash-double-dotted red line, SAFT-VR Mie equation of state(Lafitte et al., 2013).
Continuous black line, HGO + SW equation of state (Lopes and Franco, 2019). Dotted
line, SAFT-VR SW equation of state (Gil-Villegas et al., 1997; Galindo and Blas, 2002).

calculation of the chain contribution to the Helmholtz free energy. At the low density

CHAIN' 0, and consequently y™ (o) — 1. Nevertheless, taking the zero density

limit, a
limit in the expression proposed by the authors in the original work (Gil-Villegas et al.,
1997), y™ (o) — (1+B¢)/ exp (Be), which gives a negative value for the chain contribution
to the heat capacity. At high temperatures, or low values of €, such an inconsistency is
less pronounced.

Overall, SAFT-y Mie force field provides the best predictions for the heat capacity.
At 360 K, HGO + SW equation of state is unable to capture the increasing trend of
the heat capacity at high densities. The same happens to SAFT-VR SW. Besides that
for SAFT-VR SW and HGO + SW the perturbed potential is a discrete potential and
that for SAFT-VR Mie is a continuous potential, the reference potentials are different as
well. Whereas for SAFT-VR Mie the reference potential is calculated with an effective
temperature-dependent diameter, which emulates somehow a softer repulsion, for SAFT-

VR SW and HGO + SW the reference potential is athermal. For SAFT-y Mie and
HGO + SW force fields, a similar analysis is possible, since SAFT-y Mie has a soft
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repulsive potential and HGO + SW has a hard repulsive potential. The isochoric heat
capacity is obtained by the second derivative of the Hemlholtz free energy with respect to
temperature. Therefore, the contribution of an athermal reference potential to the heat
capacity vanishes.

Figures 3.4 and 3.5 present the residual isochoric heat capacity for carbon dioxide at
360 K and 700 K respectively, calculated by SAFT-VR Mie equation of state (Lafitte et al.,
2013), expliciting the different contributions of the repulsive reference and the attractive
perturbed potentials. The contributions of each term on the perturbed temperature ex-
pansion are also presented. At high densities, and at high temperature, the repulsive
contribution is quite relevant to the heat capacity. Since both SAFT-VR SW and HGO
+ SW lack such a contribution, the athermal repulsive contribution might explain why
they fail to give even a qualitative description of the heat capacity at high densities.
Boshkova and Deiters (2010) and Canas-Marin et al. (2019) have investigated the role of
soft repulsion upon the prediction of the characteristic curves of Brown (Brown, 1960).
The authors point out that at high densities and temperatures the magnitude of the re-
pulsion have a significant impact on the thermodynamics, since the closeness of molecules
and collision at high speed in such conditions forces the molecules into repulsive regions
of their pair potential.

The attractive contribution also seems to play an important role in the heat capacity,
especially at a lower temperature. The second-order term seems to be the most relevant
one for the attractive contribution. Anyway, as the density increases, the importance of
the first-order term also increases. For both SAFT-VR SW and HGO + SW, the second
derivative of the first-order term with respect to temperature vanishes, which means that
only the second order contributes to heat capacity.

In HGO + SW formulation (Lopes and Franco, 2019), Barker-Henderson macroscopic
compressibility approximation (MCA) for the second-order perturbation term is applied.
Zhang (1999) proposed an improvement for the second-order perturbation contribution.
Applying such a modified second-order perturbation theory to HGO + SW (Equation 1.45,
section 1.1.2), and optimizing the potential parameters, a considerable improvement is
observed in the prediction of the heat capacity as shown in Figures 3.6 and 3.7. But
still HGO + SW is unable to capture the trend of increase in the heat capacity at higher

densities. In contrast, Lafitte et al. (2013) used a more generic expression for T that
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Figure 3.4: Different contributions of the SAFT-VR Mie (Lafitte et al., 2013) equation
of state to the residual heat capacity of carbon dioxide at 360 K. Continuous black line,
residual heat capacity. Dash-dotted blue line, repulsive contribution to heat capacity.
Dash-double-dotted red line, attractive contribution to heat capacity. Triangles, first-
order contribution to heat capacity. Circles, second-order contribution to heat capacity.
Squares, higher-order contribution to heat capacity.

was fitted to ay values of molecular simulations and also depends on the soft repulsive
core exponent. They showed that their approach captures the as simulation complex
non-monotonic trend at high densities, hence, this probably explains the behavior of the
as contribution to the ¢, in Figures 3.4 and 3.5.

Another approximation made in the formulation of HGO + SW equation of state
(Lopes and Franco, 2019) is that the fluid is isotropic, and therefore there is no preferred
orientation. This assumption simplifies the formulation of the Helmholtz free energy, since
the isotropic orientational distribution is uniform. Such an approximation is impossible to
be tested with the equation of state itself, but applying a top-down approach generating
a coarse-grained force field it is possible to check the validity of such an approximation.
Figure 3.8 presents the order parameter (S) as a function of the density. S — 0 for
isotropic phases, S — 1, for nematic phases and S ~ 0.6 for the isotropic-nematic phase
transition (Mottram and Newton, 2014). (S) increases with density, as expected, since
the orientational entropy tends to be smaller at higher densities due to the geometric

limitations. Nonetheless, (S) is pretty close to zero even for extremely high densities,
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Figure 3.5: Different contributions of the SAFT-VR Mie (Lafitte et al., 2013) equation
of state to the residual heat capacity of carbon dioxide at 700 K. Continuous black line,
residual heat capacity. Dash-dotted blue line, repulsive contribution to heat capacity.
Dash-double-dotted red line, attractive contribution to heat capacity. Triangles, first-
order contribution to heat capacity. Circles, second-order contribution to heat capacity.
Squares, higher-order contribution to heat capacity.

which leads us to conclude that the isotropic orientational distribution is a reasonable

approximation in the theoretical development of this equation of state.

3.5 Conclusion

The isochoric heat capacity of supercritical carbon dioxide has been calculated using
three different equations of state (SAFT-VR SW (Gil-Villegas et al., 1997; Galindo and
Blas, 2002), HGO + SW (Lopes and Franco, 2019), and SAFT-VR Mie (Lafitte et al.,
2013)) and two different coarse-grained force fields (SAFT-y Mie (Avendano et al., 2011)
and HGO + SW). The role of the repulsive reference potential and the attractive per-
turbed potential in the prediction of this derivative property has been investigated, as well
as the differences between the use of discrete or continuous models for the intermolecular
potential. Molecular simulations prove that the truncation of the temperature expansion
on the perturbed potential affects the prediction of heat capacity at low temperatures. An

athermal reference potential, naturally employed when dealing with discrete potentials,
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Figure 3.6: Isochoric heat capacity for carbon dioxide at 360 K. Dashed line, NIST data
(Linstrom and Mallard). Continuous black line, original HGO + SW equation of state.
Dash-dotted blue line, HGO + SW equation of state using Zhang’s correction to the
macroscopic compressibility approximation.
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Figure 3.7: Isochoric heat capacity for carbon dioxide at 700 K. Dashed line, NIST data
(Linstrom and Mallard). Continuous black line, original HGO + SW equation of state.
Dash-dotted blue line, HGO + SW equation of state using Zhang’s correction to the
macroscopic compressibility approximation.
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Figure 3.8: Order parameter for HGO + SW force field as a function of density at different
temperature. Blue closed triangles, 360 K. Red closed circles, 700 K.

causes a great loss of accuracy, especially at high densities. The macroscopic compress-
ibility approximation applied in the calculation of the second-order perturbation term is
found to affect to a great extent the prediction of heat capacity behavior at high densi-
ties. SAFT-v Mie coarse-grained force field, based on a continuous potential, is the most
accurate model, among the studied ones, for predicting carbon dioxide heat capacity. The
results of this investigation suggest that a possible promising path to improve the accu-
racy of molecular-based equations of state in the prediction of derivative properties might
be the development of models that account for higher-order terms of the perturbation

theory, besides the application of continuous intermolecular potentials.
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“Everything is physics and math.”

— Katherine Johnson

Equations of state for ellipsoidal, cylindrical,

and spherocylindrical particles

4.1 Introduction

On Chapter 2 we have shown that, substituting the spherical segment and chain
contribution in the original SAFT approach for a single contribution of an ellipsoidal
segment, one could improve the thermodynamic properties prediction of small molecules
such as carbon dioxide and ethane. On this Chapter, we test the same approach for
longer molecules (n-alkanes up to octane and n-perfluoroalkanes) and disk-like molecules
(benzene and toluene). We include Zhang’s correction to the Barker-Henderson’s Macro-
scopic Compressibility Approximation, as discussed on Chapter 3. Furthermore, we also
test the performance of equations of state for different geometries such as cylindrical and
spherocylindrical particles.

To take into account the nonsphericity of molecules, Chen and Kreglewski (1977)
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combined the equation of state for hard convex bodies formulated by Boublik (1974)
with the dispersion term developed by Alder et al. (1972) and introduced the BACK
EoS (Boublik-Alder-Chen-Kreglewski). A parameter o characterizes the degree of non-
sphericity of particles in BACK EoS. The model, however, does not attribute any specific
geometry to the particle and, even though it predicts better critical properties of small
molecules when compared to SAFT approach, it cannot be used for longer chains.

Pfohl and Brunner (1998) combined SAFT with BACK to model supercritical solvent
with the latter, as a small convex body, and the other molecules as a chain of spherical
segments. Chen and Mi (2001) completely combined SAFT and BACK (SAFT-BACK)
to describe long chain fluids, where the molecule is described as a set of nonspherical seg-
ments. It was shown that the SAFT-BACK EoS improves critical points when compared
to the SAFT approach (Dargahi and Jafari, 2015).

Among others, when compared to SAFT-BACK, the main difference of our approach
is that we eradicate the chain contribution altogether, describing the whole molecule as
a nonspherical segment. The model for the spherocylinders is very similar to the one

proposed by Williamson and Guevara (1999) with some small differences.

4.2 Formulation

The formulation of the equations of state in this Chapter follows the same approach as
previously described in Chapters 2 and 3, applying the modification proposed by Zhang
(1999) (T = 8.23n% in Equation 1.45, section 1.1.2). To develop the equations of state
for cylinders and spherocylinders, we use the excluded volume expressions formulated by

Onsager (1949):

1
(05°),, = g <L2D + LD +3) + %DS) (4.1)
B 47 DL’*rm

(U3, = ?D?’ +27D?L + + (4.2)

2

exc exc

where v&© and vgE are the excluded volumes of the cylinder and spherocylinder,
respectively, <>y is the average over orientations, ¢ is the angle between two particles, L
and D are the length and the diameter of the particle.

Applying the excluded volumes in Equation 2.9 and considering only the residual
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contribution:

14n — 3n? s
4 (L/D)*
8gSC = = 2= 2N 3 2 (4.4)

8 (1—n)? 3L/D +2

where a is the molar Helmholtz free energy. The general equation of state can be

written as:
(ZR — anonspherical + aiwg + a;w 2 (45)
where g"orspherical jg either a'“O (considering only the residual part of Equation 2.11),
AHC op oHSC.

4.3 Results

The equations of state for ellipsoids (HGO), cylinders (HC), and spherocylinders
(HSC) were used to calculate the vapor-liquid equilibrium for carbon dioxide, benzene,
toluene, n-alkanes and n-perfluoroalkanes. The parameters A, €, ogphere, and the aspect
ratio, L/D, were optimized to fit vapor pressure and saturated liquid density. L/D is
equivalent to 0. /oy in the case of the ellipsoids and ogppere is the diameter of a sphere with
the same volume of the particle. The optimized parameters are outlined in Table 4.1.
The SAFT-VR SW parameters were taken from Gil-Villegas et al. (1997), with exception
of the parameters for carbon dioxide, that were taken from Galindo and Blas (2002). The
results were compared to NIST data (Linstrom and Mallard).

The adjusted aspect ratios are larger for longer molecules, and for benzene and toluene
L/D is lower than one, characterizing oblates/disks. In this sense, with exception of the
HSC model for the aromatics, the models are physically sound (Figure 4.1).

The HGO anisotropy parameter y (Equation 2.4) is lower than zero for oblates and
larger than zero for prolates. For the same absolute value of x, however, there is no
difference in the calculations for negative or positive values (Equation 2.11). That is, for
the calculations, it does not matter whether the particle is a prolate or an oblate, and

X is the relevant value rather than the aspect ratio. For cylinders, however, there is no
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Table 4.1: Parameters optimized to fit vapor pressure and saturated liquid density data
from NIST (Linstrom and Mallard).

compound EoS A €e/kg/K o /A L/D®]| compound EoS AN e/kg/K o/A L/D®
CH, HGO 1.513  152.603  3.549 0.604 CsHis HGO 1.466  764.922  5.650 4.999
HC 1.558 150.000 3.489 0.878 HC 1.589 685.456  5.396 6.990
HSC 1.461 159.823 3.610 0.217 HSC 1.455 770.294  5.681 4.999
SAFT-VR SW 1444 168.800 3.670 1.000 SAFT-VR SW 1.574 250.300 3.945 3.300
CyHg HGO 1.546  269.066 3.917 2.750 CO, HGO 1.627  290.557  3.180 4.398
HC 1.479  290.558 4.016 1.728 HC 1.594  299.599  3.220 4.248
HSC 1.516  265.322  3.997 1.430 HSC 1.511  321.679 3.318 3.281
SAFT-VR SW 1448 241.800 3.788 1.300 SAFT-VR SW 1516 179.270 2.786 2.000
C3Hg HGO 1.543  351.964 4.297 3.276 CgHg HGO 1.472  613.440 4.721 0.298
HC 1.531 356.953 4.313 2.809 HC 1.510  590.141 4.666 0.238
HSC 1.527 356.851 4.321 2.620 HSC 1.444 636.152 4.762 2.744
SAFT-VR SW 1452 261.900 3.873 1.600 SAFT-VR SW - - - -
C4Hyo HGO 1.468 463.340 4.722 3.319 C7Hg HGO 1.526  652.679  4.919 0.240
HC 1.485 455.309 4.696 3.069 HC 1.539  650.839 4.888 0.176
HSC 1.477  459.362 4.708 2.894 HSC 1.440 698.573 5.075 3.000
SAFT-VR SW 1.501 257.200 3.887 2.000 SAFT-VR SW - - - -
CsHyo HGO 1.474  537.300  4.992 3.735 CF, HGO 1.495 234.709 3.880 3.306
HC 1.511  522.183 4.920 4.037 HC 1.497 233972 3.878 2.924
HSC 1.474  539.644 4.988 3.476 HSC 1.491  235.352  3.888 2.743
SAFT-VR SW 1.505 265.000 3.931 2.300 SAFT-VR SW 1.287 278.600 4.346 1.000
CeHia HGO 1.548  574.850  5.100 4.775 CoFg HGO 1.483 331.969 4.451 3.848
HC 1.540 579.321  5.113  4.990 HC 1.483  331.969 4.451 3.848
HSC 1.496 604.519 5.181 4.384 HSC 1.488 330.515 4.444 3.594
SAFT-VR SW 1.552 250.400 3.920 2.600 SAFT-VR SW 1.339 289.000 4.436 1.370
C7Hyg HGO 1.514 664.700 5.361 4.990 CsFs HGO 1.514 410.163 4.786 4.725
HC 1.486 679.234  5.417 5.000 HC 1.514  410.163 4.786 4.725
HSC 1.494 674.863 5.400 4.923 HSC 1.477 424338 4.858 4.430
SAFT-VR SW 1.563 251.300 3.933 3.000 SAFT-VR SW 1.359 298.800 4.474 1.740

@ for HGO, L/D stands for o./os and for SAFT-VR SW it stands for the number of spherical segments
in a chain. ogphere stands for the diameter of the sphere with the same volume of the particle.

such equivalence. The HSC model is unable to describe disk-like particles (in the limit of
L/D — 0, the particle is a sphere).

Larger adjusted aspect ratios are observed for carbon dioxide and ethane when com-
pared to the ones optimized in Chapter 2. A possible explanation for this might be
that, since the Zhang’s correction captures better the second-order perturbed term as,
the attractive contribution is larger than the Barker-Henderson macroscopic approxima-
tion used in Chapter 2 for the same packing fraction. It can thus be suggested that the
anisotropy is increased to compensate the larger attractive contribution.

The HGO and HC models have a superior performance for predicting the vapor-
liquid equilibrium and enthalpy of vaporization of carbon dioxide (Figures 4.2 and 4.4),
while the SAFT-VR SW shows the larger deviations from empirical data (Linstrom and
Mallard). No significant differences between the models were observed for the vapor
pressure (Figure 4.3). The average absolute relative deviations are presented in Table 4.3.

For smaller alkane molecules, CH; and CyHg, SAFT-VR SW predictions have slightly
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Figure 4.1: Ilustration of a molecule of benzene (right) and the HGO (red) and HC (blue)
models for the component.
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Figure 4.2: Vapor-liquid equilibria for carbon dioxide. Circles: NIST, continuous red line:
HGO-SAFT, dashed blue line: HC-SAFT, dash-dotted line: HSC-SAFT, dash-double-
dotted yellow line: SAFT-VR SW.

T /K

smaller deviations from empirical data (Table 4.2) when it comes to the saturated vapor
density. For the other components, however, even if the model predicts more accurately
a specific property, it is unable to do so without considerably increasing the deviations of
other properties. Overall, the anisotropic models, HGO, HC, and HSC, predict the vapor-
liquid equilibrium properties more accurately than SAFT-VR SW (Figure 4.5). The larger

deviations in the SAFT-VR SW results are observed in the prediction of the vapor pressure
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Figure 4.3: Vapor pressure as a function of temperature for carbon dioxide. Circles:
NIST, continuous red line: HGO-SAFT, dashed blue line: HC-SAFT, dash-dotted line:
HSC-SAFT, dash-double-dotted yellow line: SAFT-VR SW.
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Figure 4.4: Enthalpy of vaporization as a function of temperature for carbon dioxide.
Circles: NIST, continuous red line: HGO-SAFT, dashed blue line: HC-SAFT, dash-
dotted line: HSC-SAFT, dash-double-dotted yellow line: SAFT-VR SW.

(Figure 4.6) and enthalpy of vaporization (Figure 4.7) of larger chains. These results raise

the possibility of the chain contribution in SAFT-VR SW being altogether dispensable



Table 4.2: Average Absolute Relative Deviation (%)

compound Range T(K) EoS pYeP o1 Do Avaph
CH,4 101-181 HGO 0.328 1.177 5525 7.131
HC 2.073 0.972 5.234 7.000

HSC 0.461 1.880 5.902 8.324

SAFT-VR SW  0.767 1.297 4.020 6.463

CyHg 130-300 HGO 1.739 1.348 6.022 7.814
HC 1.333 2.636 6.389  9.218

HSC 10.210 2.475 13.732 9.021

SAFT-VR SW 5420 2.843 5.879  9.247

CsHg 195-365 HGO 0.528 1.391 5.627 8.872
HC 0.528 1.363 5.612 9.174

HSC 0.557 1.390 5.915 9.389

SAFT-VR SW 24.269 3.772 19.619 6.207

C4Hyg 225-420 HGO 1.279 1.560 6.277 11.154
HC 0.941 1.470 6.058 10.555

HSC 1.090 1.498 5.880 10.734

SAFT-VR SW 4573 2.629 8918 14.731

CsHio 223-463 HGO 1.376  1.126 6.003  8.790
HC 1.298 1.264 4.627 7.291

HSC 1.395 1.091 5.334 8.498

SAFT-VR SW 8541 1.541 4.748 9.437

CgH1y 223-503 HGO 1.848 1982 5.111  5.869
HC 1.841 1.822 5.160 6.091

HSC 1.824 1.201 5.083 7.160

SAFT-VR SW 16.855 2.807 13.207 8.372

CrHy6 283-523 HGO 1.248 1.483 4.799 6.212
HC 1.343 1.116 5.213  6.967

HSC 1.311  1.199 5.083  6.749

SAFT-VR SW 4469 1.791 8.733 11.834

CgHis 306-566 HGO 1.514 1.721 5.502 11.716
HC 0.854 3.232 4.849 7.619

HSC 1.556 1.698 6.402 12.645

SAFT-VR SW  3.959 2,997 4534 17.491
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provided that the anisotropy of the molecule is taken into account in the geometry of the

segment, which turns out to be simpler in terms of calculation.

The HGO and HC models predictions of vapor-liquid equilibrium properties of benzene

and toluene showed lower deviations from the empirical data when compared to the HSC

equation of state, with exception of the saturated vapor density of benzene (Table 4.3).

This was expected since the HSC model has no physical meaning for the compounds.

Apart from the toluene saturated liquid density, the HC EoS presented a better perfor-
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Table 4.3: Average Absolute Relative Deviation (%)

compound Range T(K) EoS pYeP o1 Do Avaph
CO, 230-302 HGO 0.488 1.210 6.470 10.227
HC 0.189 1.089 7.218 11.319

HSC 0.453 1.993 8.714 15.057

SAFT-VR SW 0.937 3.956 10.431 20.478

CgHg 349-559 HGO 0.855 2.200 7.001 14.339
HC 0.494 1.691 6.858 12.819

HSC 1.891 2.458 6.484 15.361

C,Hg 298-588 HGO 1.091 1.466 6.966 11.249
HC 1.034 1.609 6.172 10.453

HSC 1.253 2.246 8.379 14.677

CF, 120-220 HGO 0.612 0.782 3.875 5.261
HC 0.601 0.788 3.880  5.227

HSC 0.610 0.776 3.961  5.370

SAFT-VR SW 3.812 4.847 3.342 10.796

CoFg 180-290 HGO 0.453 1.325 5.588  9.781
HC 6.819 1.947 6.113 6.266

HSC 0.443 1.321 5484  9.566

SAFT-VR SW 1.282 4812 7.228 15.911

CsFg 180-330 HGO 1.470 1.721 3.871 4.128
HC 12.327 3.707 16.110 7.415

HSC 1.465 1.037 3.584  4.602

SAFT-VR SW  1.925 2209 4.504 8.076

mance than the HGO for predicting the VLE properties of cyclic aromatics (Figures 4.8,
4.9 and 4.10).

Except for the saturated vapor density of CFy, when compared to SAFT-VR SW, the
HGO and HSC predict more accurate equilibrium properties for all three perfluoroalkanes
(Figures 4.11, 4.12 and 4.13), as shown in Table 4.3. For the CyFg and C3Fg, the HC
model yield results for the vapor pressure (Figure 4.14) and saturated vapor density with
deviations from empirical data considerably larger than the other models. The HGO and
HSC EoSs yield better estimates for the enthalpy of vaporization (Figure 4.15) of C3Fsg,
while for CoFg the HC EoS has smaller deviations. The three anisotropic models predict
better the enthalpy of vaporization of n-perfluoroalkanes when compared to SAFT-VR
SW.

Tables 4.4 and 4.5 show the predictions of critical temperatures, T,, pressures, P,
compressibility factors, Z., critical densities, p., and acentric factors predicted with each

model. For smaller n-alkanes and carbon dioxide, the HGO EoS yields better estimates
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of T, and P,, with exception of the critical temperature of methane, for which SAFT-VR
SW prediction is slightly more accurate. SAFT-VR SW predicts a more accurate critical
temperature for propane, but it loses a great deal of accuracy in the prediction of the
vapor pressure and saturated vapor density for the fluid, with significant larger deviations
when compared to the other models, as shown in Table 4.2. For larger n-alkanes chains
(starting from butane) and the aromatics, the HC model yields better results for critical
temperatures and pressures. All three nonspherical models describe the critical points
better than SAFT-VR SW for the n-perfluoroalkanes.

Although the HGO, HC, and HSC models generally improve the calculation of critical
properties when compared to SAFT-VR SW, all the models overpredict the critical point.
As discussed on previous Chapters, the overprediction is likely to be attributed in part
to the truncation of perturbation theory on the second-term. Lafitte et al. (2013) showed
that incorporating higher-order terms improved properties prediction near the critical
region and Ghobadi and Elliott (2015) introduced the Gaussian extrapolation method, an
extrapolation of perturbation theory to infinite order that can also improve the critical
properties prediction.

Interestingly, for the perfluoroalkanes and carbon dioxide, the anisotropic models not
only yield better estimates of the critical points (Table 4.5) when compared to SAFT-VR
SW, but also the overprediction observed for other components is less pronounced. These
results might suggest that another possible explanation for the overshooting of the critical
point is the use of a hard potential as the reference, since the these components have
a more repulsive core (represented by higher adjusted repulsive coefficients on SAFT-
VR Mie (Lafitte et al., 2013)), the impact of the application of a discrete potential is

minimized.

4.3.1 Anisotropy versus acentric factor

The acentric factor (Pitzer, 1955) is somehow related to the nonsphericity of a molecule
(Liu and Chen, 1996). In this regard, the HGO and HSC models have the characteristic
of describing a spherical particle in the limit of y — 0 (Equation 2.4) and L/D — 0,
respectively. Williamson and Guevara (1999) have presented the acentric factor as a
function of the aspect ratio (L/D < 3) for a HSC model similar to ours, showing a linear

behavior for values of the acentric factor w < 0.15.
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Table 4.4: Critical properties and acentric factors

compound NIST HGO HC HSC SAFT-VR SW
CO, T. (K) 304.13 313.68 314.64 318.80 322.98
P. (MPa) 7.38 8.99 9.17 10.02 11.18
Z. 0.275 0.343  0.347  0.361 0.374
pe (kgm™3) 467.60 441.78 444.45 461.02 490.17
w 0.224 0.178 0.176  0.163 0.164
CgHg T. (K) 562.05 594.44 591.26 594.76 -
P. (MPa) 4.89 7.11 6.78 7.32 -
Z. 0.265 0.370 0.363  0.376 -
pe (kgem™3)  309.00 303.50 297.06 307.71 -
w 0.209 0.152 0.152  0.162 -
C;Hg T. (K) 591.75 617.45 613.67 630.89 -
P, (MPa) 413 546 531  6.28 -
Z. 0.265 0.352 0.348 0.373 -
pe (kgm™3) 292.00 278.60 275.35 296.06 -
w 0.262 0.215 0.228 0.190 -
CFy T. (K) 227.51 238.28 238.29 238.58 249.40
P. (MPa) 3.75 5.01 5.01 5.05 7.19
Ze 0.279 0.368 0.368  0.370 0.426
pe (kgm™3) 625.66 604.38 604.08 605.58 716.38
w 0.178 0.130 0.129  0.128 0.102
CyFg T. (K) 293.03 305.37 301.48 305.13 315.67
P. (MPa) 3.05 4.01 3.91 3.99 5.09
Z. 0.282  0.360 0.359  0.360 0.393
pe (kgm™3) 613.30 605.12 600.06 603.60 679.66
w 0.257  0.207  0.219  0.207 0.175
CsFg T. (K) 345.02  354.40 362.69 355.66 365.60
P. (MPa) 2.64 3.20 3.36 3.33 4.19
Z. 0.276  0.344 0.347  0.351 0.382
pe (kgm™3) 628.00 592.81 603.19 603.38 678.33
w 0.317  0.290 0.268  0.290 0.270

When plotting |x| (calculated from the optimized aspect ratio) and L/D"C as a
function of the acentric factor w (Linstrom and Mallard) (Table 4.5), we have observed
that for w > 0.14, both functions exhibited a sigmoidal behavior. Correlating |y| and
L/DUSC with the acentric factor w of the n-alkanes (from propane to octane), we have

adjusted the following functions:

0.0920159

= 0.831352 4.6

XW) = T 55 79(w — 0.260047)) (4.6)
2.5222

L/D"SC = 4 2.58321 (4.7)

1 + exp(—29.1866(w — 0.270769))



Table 4.5: Critical properties and acentric factors

compound NIST HGO HC HSC SAFT-VR SW

CHy4 T. (K) 190.56 205.89 201.43 208.66 204.19
P. (MPa) 4.60 6.79 6.25 7.28 6.71

Z. 0.286 0.392 0.379  0.405 0.382

pe (kgm™3) 162.66 162.40 158.07 166.15 165.90

w 0.011  -0.067 -0.034 -0.079 -0.048

CyHg T. (K) 305.33 32294 325.18 327.62 325.33
P. (MPa) 4.87 6.67 7.01 7.02 7.43

Z. 0.279 0.371 0.384 0.383 0.378

pe (kgm™3) 207.00 201.02 203.05 202.68 218.23

w 0.098 0.036  0.041 -0.005 0.043

CsHg T. (K) 369.82 388.33 388.75 389.64 382.83
P. (MPa) 4.25 5.69 5.75 5.80 6.59

Z. 0.277 0.364 0.366  0.367 0.376

Pe (kg~m_3) 220.00 213.53 214.46 215.12 242 .49

w 0.149  0.098  0.099  0.095 0.123

Cy4Hyp T. (K) 425.12 448.43 447.42 447.58 449.71
P. (MPa) 3.80 5.42 5.31 5.35 5.80

Z. 0.274 0.371  0.368  0.369 0.374

Pe (kg~m_3) 228.00 227.42 225.42 226.30 241.30

w 0.197 0.150  0.150  0.151 0.177

CsHyo T. (K) 469.70 493.81 488.45 492.25 490.10
P. (MPa) 3.37 4.73 4.45 4.69 5.27

Z. 0.268 0.363 0.354  0.362 0.374

pe (kg:m 3) 232.00 228.81 223.11 228.16 249.35

w 0.251  0.200 0.214  0.207 0.237

CegHyy T. (K) 507.82 522.77 523.39 526.31 532.22
P. (MPa) 3.03 3.73 3.77 3.98 4.89

Z. 0.266 0.342 0.343  0.350 0.375

Pe (kg~m_3) 233.18 216.41 217.61 224.01 253.85

w 0.304 0.268 0.268 0.269 0.250

C7Hyg T. (K) 540.13 556.65 559.81 558.90 572.48
P. (MPa) 2.74 3.45 3.60 3.56 4.43

Z. 0.263 0.341 0.346  0.344 0.376

Pe (kg-m_g) 232.00 219.30 224.12 222.79 247.73

w 0.346  0.321 0.314 0.316 0.310

CgHig T. (K) 569.32 588.04 580.25 590.55 600.98
P. (MPa) 2.50 3.29 2.88 3.37 4.11

Z. 0.257 0.343  0.328  0.346 0.377

pe (kg'm 3) 234.90 224.44 207.59 226.69 249.43

w 0.396 0.369 0.370  0.363 0.350
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We have then used the adjusted function to predict the aspect ratios and anisotropies

of CFy, CoFg and C3Fg (red circles in Figure 4.16). In this way, only A, € and ogphere

were optimized for the components and the HGO aspect ratio was calculated using Equa-
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tion 2.4.

The optimized HGO anisotropy of benzene and toluene are close to the calculated with
Equation 4.6. The HSC aspect ratio calculated with Equation 4.7 for these components,
however, are not as close. Conversely, the optimized L/D for carbon dioxide is close to
the one calculated with the function (Equation 4.7), whereas the optimized anisotropy is
far from the calculated one (Equation 4.6).

The aspect ratios of the n-perfluoroalkanes calculated using the correlated functions
are the same as the optimized for CF, and CyFg (red circles and open yellow squares,
respectively). As for the C3Fg, though not exactly the same, the calculated and optimized
values of the aspect ratio are close. We have calculated the average absolute deviation
(Table 4.6) and the critical properties (Table 4.7) using the correlated functions to cal-
culate the aspect ratio of CsFg and then optimizing A, €, and ogphere to compare with the
results obtained by optimizing all four parameters. Comparing these results with the ones
obtained on the previous section, the differences are insignificant. Thus, the correlated

functions appear to be good adjustments for predicting the aspect ratio.

Table 4.6: Average Absolute Relative Deviation (%) for vapor pressure, saturated liquid
density, saturated vapor density and enthalpy of vaporization of C3Fsg.
compound T range EoS P Pl P AH,
CsFyg 180-330 HGO 1.297 2.136 2.671 3.478
HSC 1.434 1.295 3.095 4.432

Table 4.7: Critical properties and acentric factor of C3Fg.

compound HGO  HSC
C4Fy T, (K) 352.20 354.48
P. (MPa) 3.11 3.28

7. 0.342  0.349

pe (kg -m~3) 584.46 600.19

w 0.302  0.299

Deviations are slightly larger when the optimized aspect ratios are used, with exception
of the saturated liquid density. Since the vapor pressure and saturated liquid density were
used in the objective function, one possible explanation is that the saturated liquid density

error was being minimized at the expense of the vapor pressure error.
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4.4 Conclusion

Vapor-liquid equilibrium properties of several molecules (carbon dioxide, n-alkanes,
cyclic aromatics and perfluoroalkanes) were calculated using equations of state for el-
lipsoidal (HGO), cylindrical (HC), and spherocylindrical (HSC) particles. The results
were tested against empirical data (Linstrom and Mallard) and SAFT-VR SW. We have
shown that, overall, the results are improved solely by modeling the molecules as a single
anisotropic segment (ellipsoid, cylinder, or spherocylinder) instead of a set of spherical
segments, even while applying the anisotropic potential as the reference but keeping the
isotropic square potential to model the segment dispersion. The results suggest that,
for the molecules investigated in this work, the chain contribution in SAFT approach
could be completely eliminated provided that the segment contribution is modeled with a
nonspherical geometry. The prediction of the vapor-liquid equilibrium properties of the n-
perfluoralkanes were considerably better than SAFT-VR SW results. In addition to that,
the overprediction of the critical point was less pronounced for the n-perfluoroalkanes
when compared to the other molecules, raising the possibility that the overshooting could
be related to, besides the truncation of perturbation theory on the second-order term,
the use of a discrete potential as the reference. Since the n-perfluoroalkanes have a more
repulsive core, the impact of the application of a hard potential on the critical properties
prediction is minimized. We have correlated the optimized aspect ratio of n-alkanes with
the acentric factor of the molecules to predict the aspect ratio of n-perfluoralkanes. In
this way, we only had to optimize three parameters for the components: the well-depth
€, the potential range A, and the volume, represented by the diameter ogppere 0f a sphere
with the same volume of the particle. The results were satisfactory, implying that the
correlated functions could be used to predict the aspect ratio of similar molecules instead
of having to optimized it. A natural progression of this work is to include higher-order
terms in the perturbation theory expansion and to develop a soft anisotropic potential, for
instance, by including an effective diameter dependent on the temperature. We believe

that those would be fruitful approaches for further development.
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Figure 4.6: Vapor pressure as a function of temperature for n-alkanes. CH,4 to CgHig
from left to right. Circles: NIST, continuous red line: HGO-SAFT, dashed blue line: HC-
SAFT, dash-dotted line: HSC-SAFT, dash-double-dotted yellow line: SAFT-VR SW.

Figure 4.7: Enthalpy of vaporization as a function of temperature for n-alkanes. CH, to
CgHig from left to right. Circles: NIST, continuous red line: HGO-SAFT, dashed blue
line: HC-SAFT, dash-dotted line: HSC-SAFT, dash-double-dotted yellow line: SAFT-VR
SW.
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Figure 4.8: Vapor-liquid equilibria for benzene and toluene. Circles: NIST, continuous
red line: HGO-SAFT, dashed blue line: HC-SAFT, dash-dotted line: HSC-SAFT, dash-
double-dotted.
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Figure 4.9: Vapor pressure as a function of temperature for benzene and tolune. Circles:
NIST, continuous red line: HGO-SAFT, dashed blue line: HC-SAFT, dash-dotted line:
HSC-SAFT, dash-double-dotted yellow line: SAFT-VR SW.
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Figure 4.10: Enthalpy of vaporization as a function of temperature for benzene and
toluene. Circles: NIST, continuous red line: HGO-SAFT, dashed blue line: HC-SAFT,
dash-dotted line: HSC-SAFT, dash-double-dotted yellow line: SAFT-VR SW.
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Figure 4.14: Vapor pressure as a function of temperature for n-perfluoroalkanes. Circles:
NIST, continuous red line: HGO-SAFT, yellow line: SAFT-VR SW.
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Figure 4.15: Enthalpy of vaporization as a function of temperature n-perfluoroalkanes.
Circles: NIST, continuous red line: HGO-SAFT, yellow line: SAFT-VR SW.
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Figure 4.16: Black diamonds: optimized anisotropy used to adjust the function, contin-
uous blue line: adjusted function (Equation 4.6/Equation 4.7), red circles: w and L/D
calculated using the adjusted function (CFy, CoFg, and C3Fg), yellow open squares: opti-
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of CGH67 0027 and C7H8.



102

“...quanto alla verita di che ci danno cognizione le dimostrazioni matematiche, ella é I'istessa

che conosce la sapienza divina;”

— Galileo Galilei, Dialogo sopra i due massimi sistemi

Investigation of the phase boundaries of hard

cylinders

The content of the next two chapters is the result of a research period at Universita

Ca’ Foscari Venezia under the supervision of Professor Achille Giacometti.

5.1 Introduction

On chapter 4, we have derived equations of state for fluids of industrial relevance
based on the equations of state for the isotropic phase of the hard Gaussian overlap fluid,
spherocylinders, and cylinders. Nonspherical particles like these are often used to study
liquid crystals, since their shape anisotropy promotes the formation of organized phases
at sufficient large packing fractions and aspect ratios.

The phase transitions of the hard Gaussian overlap (De Miguel and Del Rio, 2001)
and hard spherocylinder (Bolhuis and Frenkel, 1997) have been studied, but, although
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the hard cylinder has been used as the base model to study more complex systems such
as hard cylinders with attractive patches (Orellana et al., 2018; Nguyen et al., 2014; De
Michele, 2019; De Michele et al., 2012)), to our knowledge no systematic investigation of
the phase boundaries of hard cylinders has been carried out.

Therefore, in this chapter, we aim at providing a benchmark for the development of
more complex models based on the hard cylinder fluid. To this end, we investigate the
liquid crystalline phase formation over a wide range of aspect ratios, including both rod

and disk-like particles.

5.2 NPT Monte Carlo simulations

An introduction to the Monte Carlo method was given in section 3.3. In this chapter,
we develop Monte Carlo simulations in the isobaric-isothermal ensemble (NPT), since
most real experiments are performed under conditions of controlled temperature and
pressure. In this case, the total volume of the system is allowed to change to stabilize the
system at the given pressure. The probability of the system going from a state m to a
state n in the NPT ensemble is:

P(T,) VN exp(—B(U, + PV,,))
P(Tn) VN exp(=3(Un + PVy)) (5.1)
= exp(—B(AUpn + PAV,) + NIn AV,,,)

In comparison to the prescription given in section 3.3, there are two main differences
with regard to the implementation of the MC code in the NPT ensemble: a trial move
consists of either changing randomly the position and orientation, or the volume, and
the acceptance criterion is a function of the following quantity AH = AU,,, + PAV,,, +
kgT N In AV,,,,,. A flowchart for the method is given in Figure 5.2.

Eppenga and Frenkel (1984) pointed out that a change in the natural logarithm of the
volume would be more convenient rather the in the volume itself. Nevertheless, AH has
to change to AH = AU, + PAV,y, + kgT (N + 1) In AV,,,,,. The Fortran 90 pseudo-code

for the volume move can be written as follows:

Call random_number (rnum)

! Make a random change in the logarithm:
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Figure 5.1: Metropolis method flowchart for a cycle in the NPT ensemble.
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lnvnew = dlog(v) + (2.dO0*rnum - 1.d0)*max_v

! Calculate the equivalent change in the volume:
vnew = dexp(lnvnew)

! Calculate the scale ratio of the change

boxr = (vnew/v)**(1.d0/3.d0)

! Calculate the new sizes of the box (on x, y and z)

boxlnew(:) = boxr*boxl(:)

! Scale the positions of the particles
Do j=1,n

rnew(1,j) = boxr*r(1,j)

rnew(2,j) = boxr*r(2,j)

rnew(3,j) = boxr*r(3,j)

End Do

Floppy-box Monte Carlo

The floppy-box is used to allow the box shape to fluctuate and obtain an isotropic

pressure

in smectic and crystalline phases. In this case, we choose randomly one of the

three axes to make a change, as presented below in the pseudo-code:

boxlnew = boxl

rnew = r

lmax = max_v**(1.d0/3.d40)

Call random_number (rnum)

if (rnum .1t. 0.3333333d0) then

axis = 1

else if (rnum .1t. 0.6666666d0) then
axis = 2

else
axis = 3

end if

Call random_number (rnum)
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boxlnew(axis) = boxl(axis) + (2.d0*rnum - 1.d0)*1lmax
boxr = boxlnew(axis)/boxl(axis)

Do j=1,n

rnew(axis,j) = boxr*r(axis,j)

End Do

vnew = boxlnew(1)*boxlnew(2)*boxlnew(3)

For hard core potentials, an essential part for the development of Monte Carlo simula-
tions is to check whether the trial move results or not in an overlap between the particles.
Monte Carlo simulations of spherocylinders are abundant in the literature, since the test
for the overlap is relatively simple. For cylinders, however, there are a few (Orellana et al.,
2018) but insufficient data in the literature, since checking the overlap between two cylin-
ders is considerably more complex, and computationally expensive. On the next sections,

we provide a detailed procedure of how to check the overlap between two cylinders.

5.3 Overlap between two cylinders

We define L and D as being the length and diameter of two identical cylinders, respec-
tively. The orientations are defined as Ql and fAZQ. The overlap of two cylinders can occur
in one of the three manners: disk-rim, rim-rim, or disk-disk (Figure 5.2). Therefore, to
ensure that the cylinders do not overlap, we have to check if the overlap occurs in any of

these possible configurations.

\ ) &
[ \
v ‘/
/ » 4
4 - -
(a) Rim-rim overlap (b) Disk-rim overlap (c) Disk-disk overlap

Figure 5.2: Possible overlap configurations between two cylinders.
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To optimize the simulation, we start from the simpler and less expensive tests, as shown
in Figure 5.3. The first step is to check if the spheres that enclose the cylinders overlap;
if they do not, the cylinders cannot overlap either. If the spheres do overlap, the test
is then done for the spherocylinders enclosing the particles. Only if the spherocylinders
overlap, one should check the overlap between two cylinders.

On the next sections, we provide detailed explanation on how to proceed with each

test.

5.3.1 Spherocylinders

When two spherocylinders touch each other, the shortest distance between their seg-
ments is always equal to the diameter D, as shown in Figure 5.4. Hence, the test for
overlap comes down to finding the shortest distance s; between the two segments of
length L. In this sense, Vega and Lago (1994) proposed a fast algorithm to calculate the
shortest distance between two segments. The prescription for calculating the distance
between parallel rods was later improved by Abreu et al. (2003). We shall use, however,
the original Vega and Lago’s algorithm to calculate the shortest distance between two seg-
ments. To avoid the “go to” used by the authors, some small modifications were applied

to the original algorithm. The code is provided in the appendix.

5.3.2 Cylinders

Parallel Cylinders

If two cylinders are parallel, ?21 . ﬁg = =41, the overlap can occur between disk-disk
or rim-rim only, and it can be easily checked. We decompose the vector joining the two
centers of mass ry; into a vector parallel to the orientations r;;, and one perpendicular

to it 75,1, as presented in Equation 5.2.

~

g :(1'12 : ﬁl)Ql

iyl =Ii2 — (1"12 : Q1)91
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Spheres
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Figure 5.3: Cylinder Overlap Flowchart.
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Figure 5.4: Contact of two spherocylinders.

The overlap occurs if both of the conditions in Equation 5.3 are satisfied.

g < L
Jl (5.3)
lrij | <D

Rim-rim overlap - (Dr. Flavio Romano, Universita Ca’ Foscari Venezia, per-

sonal communication, 2019)

Since the overlap between spherocylinders is the first test that is done, and the rim
of a spherocylinder is similar to the rim of a cylinder, if the spherocylinders overlap, the
cylinders will certainly overlap as well. Hence, to check if there is an overlap between two
rims, a sufficient test is to check whether the cylinders are in a rim-rim configuration.

To that end, we define the vectors Vi = —rs + )\ﬁl and Vo = ry +/1/§2, where \ and
1 are the points of closest approach between the two cylinders, which is calculated using
the Vega and Lago (1994)’s algorithm. If the cylinders are in a rim-rim configuration, the

two conditions below are satisfied.
o Vi Oy <L/2
° |V2 . §1| < L/2

In Figure 5.3.2, we see that in the case of a disk-rim configuration, for instance, the

projection of Vi on the direction of QAQ is larger than L/2.
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(a) Rim-rim configuration (b) Disk-rim configuration

Figure 5.5: The star symbols represent the points of closest approach on each cylinder.

Disk-disk overlap - (Allen et al. (2007))

The orientations of the cylinders are perpendicular to the planes of the disks. The
planes of the two disks intersect in a line parallel to Ql X Qg. We define P, and P, as
being the points in the intersection line that are closer to the disks centers d; and ds,

respectively, as shown in Figure 5.8.

l ﬁ 1 ﬁz

P, 4 D

Py

h

Figure 5.6: Disks of two cylinders.

To find P, we minimize (P, — d3)?, which is equivalent to minimizing |P; — d;|. The
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minimization can be done by applying the Lagrange multipliers with two constraints:

(Pl—dl)-f\Zl:O

(5.4a)

(5.4b)

The constraints presented in Equation 5.4 ensure that P; is in a line perpendicular to

both @1 and ﬁg. Applying the Lagrange multipliers:

£:(P1—d1)2—/\(P1—d1)Ql—M(Pl—dg)ﬁ

From the optimality condition, for which V£ = 0, one has:

)\ﬁl [LQQ
P=d +21 422
1 1+ 5 + 5

Replacing Equation 5.4a into Equation 5.6:
A= —p({ - Q)

Substituting Equations 5.4b and 5.7 into 5.6 yields:

_ =2 —dy) - O
1— (€ - Q)2

Replacing Equation 5.8 into 5.7:

_ 2[(dy —dy) - Qo] - (01~ Q)
1— (€ - 0,)2
Replacing Equations 5.9 and 5.8 into 5.6:

A

-~

Py =d + [(d1 — dp) - $o] - ((Ql i §2) 0y - §2>
1— (92 - Q)2

We define dis = dy — dy and A? = (P, — d;)?, and rewrite Equation 5.10 as

~

a2 (a2 00) - (- Q) —2(00 - ) +1)
2 _

(5.5)

(5.8)

(5.10)

(5.11)
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Simplifying Equation 5.11:

A2 (chz - )

=—— 5.12
TR (5.12)

Similarly for disk 2: R
dip - )2
np = (e )
1 — (92 - Q)2

A necessary, but insufficient, condition for the overlap to occur is that both A; and A,

(5.13)

have to be less than the cylinder radius, %. If this condition is satisfied, the intersection

line crosses both disks through segments of length 26, and 2J,, as presented in Figure 5.7.

262/\

PN
\

d

/

251

Figure 5.7: Disks of two cylinders.

The expressions to calculate §; and 09 are presented in Equation 5.14.

D2

(51 - T - A%
= (5.14)
(52 - T - A%

The overlap will occur if the condition in Equation 5.15 is true.

d12 ) (ﬁl X Ql)
—ﬁ =

1 X

An alternative formulation for the calculation of P; is given below. Reformulating
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Equation 5.10:

(dy- Q) x N)  (do- Q2)(Q1 x N)
P =d + W - W (5.16)

where N = Q; x Q. Knowing that:

Qo x (1 x N) xdy) = (Qo-d)(Q x N) = (Qa - (4 x N))dy (5.17)
one can write as:

(- d)(Q x N) = Qs x (1 x N) x dy) + (Qa- (4 x N))dy (5.18)

Working on the first term of equation 5.18:

—Qy % (dy x (Qy X N)) = (dy - n)(Qy x Q) + (dy - 2)(Q x N)

L (5.19)
= (dl . n)n + (dl . Ql)(QQ X N)
Now working on the second term of Equation 5.18:
Q- (2 x N))dy = (N - (05 x Q))dy = —|N|*d, (5.20)

Replacing Equations 5.19 and 5.20 into Equation 5.18, and then applying the result
in Equation 5.16:

_ i+ (di - N)N + (di - ©1)(Q x N) = di[N[? = (ds - ) (2 x N)

P
' [N

(5.21)

which gives: P ~ o~
p  Ldm)n - (d 91>(Qz|]>v<|£\f> — (d2 - ) (S x N) (5.22)

Disk-rim overlap - (Dr. Flavio Romano, Universita Ca’ Foscari Venezia, per-

sonal communication, 2019)

We define the variables as follows:

e d; : center of disk j
e r; : center of cylinder ¢

e wj, vj, u; : axis system fixed on cylinder j ((AZ] = u;)
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U; : point on cylinder ¢ that is the closest to d;

Py : point on the disk j that is the closest to cylinder ¢

P. : point on cylinder 7 that is the closest to disk j

¢ : angle between w; and d;Pq4

Figure 5.8: Disk-rim configuration.

U; is obtained from:

First, we test the following conditions:
1. If |d; — U;| > d : there is no overlap

2. It |d; — Uy| < d/2 and |d; — ;| > L/2 : the overlap would be a disk-disk kind and

not a disk-rim, therefore, we do not test it here.

3. If |dj —uy| < d/2 and |(dj — ;)| < L/2 : there is an overlap (the center of the disk

J is within cylinder 7).

Test number 3 is a sufficient, but not necessary, condition for the overlap to occur,

since another point can be touching cylinder j even if d; is not within cylinder 7. Hence,
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if condition 3 is unsatisfied, we have to find py, . e., the closest point in disk j to cylinder

i. Arbitrary points on disk j (d), and on the line of cylinder i (¢) are defined as:
d . d . ~
d=d; + 5 cos (p)w; + 7 sin (), (5.24a)

¢ =i+ A (5.24b)

We define I' = (d — ¢)%.

[ =djry® + R* + A\* + 2R cos ¢(djr - @;) + 2 sin ¢(djr; - ;)

R R R (5.25)
—2X\(dyr; - ;) — 2Ar cos p(w; - ;) — 2Arsin ¢(v; - ;)
P. and P, are the points that minimize I', therefore:
or A A A
o 0=A—rcosp(w;- ;) —rsing(v; - ;) — (djry - ;) (5.26a)
or . ~ A - ~ A -
9 =0 = sin ¢\ (w; - ;) — (djr; - W;)] — cos p[A(V; - ;) — (djri - V;)] (5.26b)
Rewriting Equation 5.26b gives:
singb _ )\(/i}} . 91) — (de'i : @:z) (527)
cosd (@ - Q) — (dyry - @;)

If the numerator and denominator of Equation 5.27 are taken as the catheti of a
triangle, the hypotenuse can then be found to give the expressions for cos¢ and sin ¢.
Once we have these expressions, they are applied into Equation 5.26a, resulting in an
equation for A. Since the resulting expression is not trivial, a numerical method such as
Newton-Raphson or bisection method is used to find .

Once P, is obtained, we define T' = P; — r;, and calculate the components of T that

are parallel T} and perpendicular T'; to QZ
Ty = (t- Q) (5.28a)

T, =Tt (5.28b)

Finally, the overlap only occurs if [T}| < L/2 and |T' | < D/2.
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5.4 Distribution functions

The calculation of the distribution functions is important to study the structure of
fluids. Besides the radial distribution function g(r), the parallel ¢//(r) and perpendicular
g*(r) distribution functions are useful to identify layering and hexagonal order, respec-
tively. The definition of the g(r) is given in section 1.1, but, in general, distribution
functions are the probability of finding a particle in the system at some specific places
divided by the probability of the same condition in an ideal gas (Nyo/Nigea). A Fortran
90 pseudo-code for the calculation of the radial, parallel and perpendicular distribution

functions is given in Listing 5.1.

5.4.1 Radial distribution function

The radial distribution function g(r) is the probability of finding two particles in a
distance r from each other divided by the same probability in an ideal gas. In a finite
system, we find the number of particles Ny lying between a distance riower and rypper from
each other, that is, whose centers of mass are found in the volume represented by the gray
area in Figure 5.9. Since in an ideal gas the probability distribution function is uniform,
the number of particles lying in the same volume is equal t0 Nigear = p47 (17 er = Tiower) /35

where p is the number density.

ruper = rlower+ Ar

Ny

/

Figure 5.9: lustration of the numerical calculation of the radial distribution function.

5.4.2 Parallel distribution function

Given the vector r;; linking two particles 4 and j centers of masse, g!l(r) is the prob-

ability that |7°ZH]| = r;; - 1 lies between a distance rigyer and rypper, where 72 is the phase
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director, divided by the same probability in an ideal gas. N, in this case is the number
of particles whose vector 7“1”] lies in the volume represented by the gray area in Figure 5.10.
Nigeal = p2L3  * Ary;, where Ar,;, = Tupper — Tlower aNd Loy is the dimension of the sim-
ulation box. Since we often work with a simulation box with different lengths, we take

Lyox as the larger length of the box.

Lbox

Figure 5.10: Hlustration of the numerical calculation of the parallel distribution function.

5.4.3 Perpendicular distribution function

To calculate g (r), we take the parallel component r;; of r;; - 7, instead. The relevant

volume is represented by the gray area in Figure 5.11 and Ngea = proxw(rﬁpper — 12 o)

subroutine distribution_functions()

constl = 4.d0*pi*rho/3.d0

2.d0*rho*maxbox*maxbox

const?2

const3 = pi*rho*maxbox

hist(:) = 0.40

hist_par(:) = 0.4d0

0.d0

hist_per(:)
gr(:) = 0.d0

gr_par(:) = 0.d0

gr_per(:) = 0.40
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rupper

Lbox

Figure 5.11: Ilustration of the numerical calculation of the perpendicular distribution

function.

do i=1,n-1

do j =

end do
end do

i+l,n
rl1(:) = r(:,1i)
r12(:) = r(:,j)

r112(:) = r12(:) - rl1(:)

'Minimum Image

r112(:) = r112(:) - boxl(:)*dnint(r112(:)/box1(:))

rl12sq = r112(1)*rl12(1) + rl12(2)*rl12(2) + rl112(3)*rl12(3)

modrl = dsqrt(rli2sq)

rpar = dabs(rl12(1)*pd(1) + rl12(2)*pd(2) + rl1l12(3)*pd(3))

rper = dsqrt(modrl*modrl - rpar*rpar)
Call rdf_iso(Q)
Call rdf_par()

Call rdf_per()

'Normalizing hist

Do bin =1,nbins

dble(bin - 1)*delr

rlower

rupper = rlower + delr

nideal = constl*(rupper**3.0 - rlower**3.0)



gr(bin) = hist(bin)/dble(n)/nideal

rlower = dble(bin - 1)*delr_par
rupper = rlower + delr_par
nideal = const2*delr_par

gr_par(bin) = hist_par(bin)/dble(n)/nideal
nideal = const3*(rupper**2.0 - rlowerx*2.0)
gr_per(bin) = hist_per(bin)/dble(n)/nideal
end do
return
end subroutine
subroutine rdf_iso()
bin = floor(modrl/delr) + 1
if (bin .le. nbins) then
hist(bin) = hist(bin) + 2.d0
end if
end subroutine
subroutine rdf_par()
bin = floor(rpar/delr_par) + 1
if (bin .le. nbins) then
hist_par(bin) = hist_par(bin) + 2.d0
end if
end subroutine
subroutine rdf_per()
bin = floor(rper/delr_par) + 1
if (bin .le. nbins) then
hist_per(bin) = hist_per(bin) + 2.d0
end if

end subroutine

Listing 5.1: Pseudo-code to calculate distribution functions.

119
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5.5 Equation of State for the Isotropic Phase

Peters et al. (2020) developed algebraic equations of state for the liquid crystalline
phases of hard rods based on previous numerical calculations. Although an analytical
description of phase behavior of hard nonspherical particles can be complex, an equation of
state for the isotropic phase is easily obtained through Equation 2.9 (Lee, 1987), provided
that an expression for the excluded volume of the particle is available.

Onsager (1949) formulated an expression for the excluded volume of cylinders 4.1.
Ibarra-Avalos et al. (2007), however, found a small deviation between simulations and
Onsager results, and proposed a new expression that reproduced Monte Carlo simulations

and semianalytical values:

exc

2 4
12?; —2+§+ (L/D +L/D8) sin g + 2 {(%T — 1) | cos 0] + (3— — (104>c0529>}
(5.29)

where vy is the volume of the cylinder and 6 is the relative orientations. We define
I' as the average over 6 of the ratio between the excluded volume and the volume of the

particle, considering an isotropic distribution function:

2w
oxe I [ Zexj sin #dfd¢
r_<” > _08 (5.30)
UC ™ T .
e [ [sindAdg
00
The Onsager’s and Ibarra-Avalos et al.’s averages are:
1 T 8 4
ek = ——— 5.31
3 2L/ D + T 37 (5:31)
TONS = 2L/D + 7143+ —— (5.32)

2L/ D
The difference between I'ON5 and I''A is 0.116, that is, when the average over the
relative orientations is taken, the models are quite similar.
Considering the residual part of Equation 2.9, the reduced pressure for a system of

hard cylinders is obtained:
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Py, T 4n% — 213

P = =
kT 8 (1—mn)3

(5.33)

5.6 Simulation Details

In this chapter, the number of cycles used is about twice the total number of particles.
In each cycle, either the position and orientation of a particle or the total volume is chosen
randomly to be changed. For this purpose, a random number between 1 < ( < N + 1
is generated, if ( < N a particle is moved, otherwise, the volume is changed. The codes
are provided in the appendix. There is a main code for the hard cylinder system and the

subroutines that are common for multiple systems are provided in three different modules:

e MC NPT for Hard Cylinders (C.2.1)
e Module to set global variables (C.2.2)
e Module to create initial configurations (C.2.3)

e Module with the main subroutines (including the overlap checks and calculation of

the potentials) (C.2.4)

We used the OVITO visualization tool (Stukowski, 2010) to make the snapshots of
the simulations. We added a python script to add color to the particles according to
the angle between its orientation and the phase director. The scripts are provided in the

appendix C.2.5.

5.7 Results

The systems were equilibrated using 5.85 x 106 Monte Carlo steps, with additional
production runs of 1.5 x 10° steps. Simulations of cylindrical disks and rods with several
different aspect ratios L/D.

The colors and symbols used to represent the rods and disks phases are outlined
in Tables 5.1 and 5.2, respectively. Figures 5.12 and 5.13 present illustrations of each
phase. The phases were identified using the radial, parallel and perpendicular distribution

functions, by analyzing snapshots, and by calculating the nematic, smectic and hexatic
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order parameter, as described on sections 1.2.1, 1.2.2 and 1.2.3. To calculate the hexatic
order parameter we have defined the nearest neighbors as the particles at a distance less
than 1.3D from the central particle. The simulation data obtained for all aspect ratios

are provided in the appendix C.1.

Table 5.1: Color and symbol used to represent rod phases.
Color Phase Notation  Symbol

red isotropic I circle
yellow  nematic N triangle
green smectic A SmA square
blue Crystal X diamond
Isotropic Nematic Smectic A Crystal

Figure 5.12: Illustration of rod phases.

Table 5.2: Color and symbol used to represent disk phases.
Color Phase  Notation Symbol

red isotropic I circle
yellow  nematic N triangle
purple  cubatic Cub squares
blue  columnar C diamond
Isotropic Cubatic Nematic Columnar

Figure 5.13: Illustrations of disk phases.
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5.7.1 Rods

The initial configuration for the rods was parellel cylinders at a packing fraction n ~
0.77 in an elongated box with 6 layers of particles parallel to the z-axis, since Dussi
et al. (2018) showed that a mechanical unstable columnar phase is formed in systems
with a small number of layers (= 4). Moreover, Bolhuis and Frenkel (1997) argue that
the pressure of a smectic can become anisotropic, hence, to obtain an isotropic pressure
we have used the floppy-box Monte Carlo, as describe previously. The simulated aspect

ratios and number of particles are outlined in Table 5.3:

Table 5.3: Number of particles in the simulations of rods.

L/D N L/D N

25 968 6.25 1350

3.0 1152 6.5 1350

3.25 1152 7.0 1536

3.5 1352 7.5 1536

5.0 1176 10.0 1944

6.0 1350

A sketched phase diagram for hard cylinders with aspect ratios ranging from L/D =
2.5 to 10 is displayed in Figure 5.14, with the packing fraction 7 as a function of L/D.
The phase behavior of the system is very rich, exhibiting isotropic, nematic, smectic A,
and crystalline phases. For L/D < 3.0, no liquid crystalline phase was observed. This
fact is in accordance with Onsager’s theories, in the sense that, since the ratio between
the covolume and volume of rods with lower L/D are not considerably larger than the
one of a sphere, there is enough room for the orientational entropy to be maximize. The
excluded volume effects then are insufficient to promote an organized phase.

At sufficiently high densities and aspect ratios, the maximization of the orientational
entropy is limited by the geometry, that is, the excluded volume. The system then tends
to promote orientational order to increase the translational entropy, minimizing the free
energy. For any L/D, an isotropic phase is formed below a certain packing fraction.
The longer the aspect ratio, the smaller is the packing fraction necessary to promote an
organized phase, as longer particles have a larger excluded volume with respect to their
volumes.

For increasing L/D, the first seen organized phase is a smectic A at L/D = 3.0. At

L/D = 6.5, a nematic phase region appears. This result agrees with previous simulations
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Figure 5.14: Sketched phase diagram of cylindrical rods. Color and symbol codes are
presented in Table 5.1.

of HSC (Bolhuis and Frenkel, 1997; McGrother et al., 1996) that showed that the smectic
phase stabilizes first, at shorter aspect ratios when compared to the nematic phase.

The sketched phase diagram in Figure 5.14 suggests that there might be an I-SmA-X
triple point around L/D = 3, and an [-N-SmA around L/D = 6.5. The prediction of the
[-SmA-X triple point location is quite close to the one in a system of hard spherocylinders,
found at L/D = 3.1. On the other hand, for HSC, Bolhuis and Frenkel (1997) located
an [-N-SmA triple point at L/D = 3.7, instead. That is, the nematic phase stabilizes
at shorter aspect ratios in the HSC system when compared to the HC fluid. The region
where the transition to a smectic A phase occurs directly from the isotropic one extends
from 3 > L/D < 6.25, whereas, in a system of HSC, the region is considerably shorter,
ranging from about 3 < L/D < 4.

Figure 5.15 presents the radial, parallel, and perpendicular distribution functions of
cylinders with L/D = 7.0 for increasing pressure. At p* = 3.96 and p* = 4.40, the

system forms an isotropic and a nematic phase, respectively, and, thefore, do not exhibit
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positional order in any direction. At p* = 7.70, the system forms a smectic A phase,

exhibiting positional order in the parallel direction, but not in the perpendicular direction.

At p* = 9.90, there is long range positional ordering both in the parallel and perpendicular

directions.

a(r)

g'(n

LS

0.00

15.00

N
=}
T

>
o — e

30 40 50 60 70 80

20.00

Figure 5.15: Distribution functions of cylinders with L/D = 7.0. p* = 3.96: continuous
red line, p* = 4.40: yellow dashed line, p* = 7.70: green dotted line, p* = 9.90: dash-
dotted line. Color code is outlined in Table 5.1.

The order parameters were calculated to help identify the phases. Figure 5.16 shows

the nematic, hexatic and smectic order parameters for L/D = 10 and L/D = 5.

The nematic order parameter is only sufficient to identify the isotropic phase. The

calculation of the smectic and hexatic order parameters ( 7 and v, respectively) are

valuable to distinguish between the other phases. The nematic phase presents low values

of the hexatic and smectic order parameters, while for the smectic phase 7 > 0.5 and

g < 0.6. The crystalline phase exhibits both layering and in-plane hexagonal order,
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Figure 5.16: Order parameters for hard cylinders with L/D = 10 (closed symbols) and
L/D =5 (open symbols). Color code is outlined in Table 5.1.

thus, 7 and 14 are closer to one. The columnar phase presents hexagonal order but no
layering.

We have observed the formation of a columnar phase when a simulation box with
only two layers of particles was used, in accordance to the results observed by Dussi
et al. (2018), who showed that an unstable columnar phase is formed in a system of HSC
with a small number of layers. Moreover, a smectic C phase is observed when a rigid
simulation box is used, since, as pointed out by Bolhuis and Frenkel (1997), the pressure
of a smectic phase is anisotropic and a floppy-box might be used to obtain an isotropic

pressure (Figure 5.7.1).
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(a) Columnar (b) Smectic C

5.7.2 Disks

The initial configuration was roughly a cubix box with 7 ~ 0.75. The number of
particles for each L/D is outlined in Table 5.4. The simulated aspect ratios and number

of particles in each system are shown in Table 5.4.

Table 5.4: Number of particles in the simulations of disks.
L/D N L/D N
0.05 540 0.2 625
0.1 640 0.25 864
0.11 576 0.3 720
0.12 528 0.35 612
0.125 528 0.5 686
0.15 825

The sketched phase diagram for cylindrical disks with aspect ratios ranging from
L/D = 0.05 to 0.5 is displayed in Figure 5.17. The results agree qualitatively with the
theoretical predictions of Wensink and Lekkerkerker (2009). For flatter disks, there is a
nematic phase region that becomes narrower as L/ D increases, until it completely vanishes
around L/D = 0.1. For L/D > 0.3, there is a transition from the isotropic directly to the
columnar phase. It is important to note, however, that the the aforementioned authors
do not take into account the formation of the cubatic phase, reported by Veerman and
Frenkel (1992) in the simulation of cut spheres. In addition to that, the theoretical
packing fractions predicted in the phase transitions are larger than our results. The
values of )y ~ wL/D for the isotropic-nematic transition and nyc ~ 0.4 for the nematic-

columnar one, however, are in line with the simulations results for cut-spheres (Duncan
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et al., 2009).
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Figure 5.17: Sketched phase diagram of cylindrical disks. Color and symbol codes are
presented in Table 5.2.

From L/D = 0.11 to 0.3, a cubatic phase appears between the isotropic and colum-
nar phase. In the cubatic phase, the particles tend to assemble in short stacks of about
four, five particles, and neighboring columns are usually perpendicular to each other.
Veerman and Frenkel (1992) named the phase cubatic to differentiate it from the cubic
phase, since, although it has extended cubic orientational order (particles aligned over
three perpendicular axes), it does not have translational order. The nematic order pa-
rameter characterizes an isotropic phase, however, analyzing the simulations snapshots
and distribution functions, the cubatic phase is identified.

Snapshots of simulations forming isotropic, nematic, cubatic, and columnar phases are
shown in Figure 5.19. The correspondent radial, parallel, and perpendicular distribution
functions are presented in Figure 5.20. Figure 5.18 shows the nematic, hexatic, and
smectic order parameters for L/D = 0.05 and L/D = 0.2.

The radial distribution function of the cubatic phase is quite different from the isotropic
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Figure 5.18: Order parameters for hard cylinders with L/D = 0.05 (closed symbols) and
L/D = 0.2 (open symbols). Color code is outlined in Table 5.2.

phase, even though the order parameters are close to zero for both phases. An evidence of
the formation of short stacks is the peak at short distances (L/D < r/D < 2L/D) in the
radial distribution function (purple line in Figure 5.20) of the cubatic phase (Veerman and
Frenkel, 1992), which is absent in the g(r) of an isotropic phase (red line in Figure 5.20).

Duncan et al. (2009) simulated cut spheres of L/D = 0.1, 0.15, 0.2, 0.25, and 0.3 and,
despite the differences in shape, the results are very similar to ours. The authors showed
that there is a nematic but no cubatic phase at L/D = 0.1, and the opposite is true for
L/D > 0.15. Figure 5.17 shows, however, that a cubatic phase is seen at L/D = 0.11, as
the nematic phase vanishes. The cubatic phase is apparent until L/D = 0.3. For larger
aspect ratios, only an isotropic and columnar phase are apparent.

Blaak et al. (1999) inquired whether a cubatic phase could be formed in a system
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a) L/D = 0.1 and Px = 1.18, (b) L/D = 0.05 and Px = 1.37, ne-
1sotroplc matlc

¢) L/D = 0.2 and P* = 5.50, cu- (d) L/D = 0.5 and Px = 9.82,
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Figure 5.19: Snapshots of the simulations of hard cylindrical disks.

of hard cylinders. The authors simulated a system of HC with L/D = 0.9 and did not
find such a phase. Our results support evidence that the HC fluid does exhibit a cubatic
phase, the aspect ratio simulated by Blaak et al. (1999), however, is out of the range in
which the phase appears.

5.7.3 Equation of State for the Isotropic phase

We have tested the Lee-Parsons approach - Equation 5.33 - with the excluded volume
expressions derived by Onsager (1949) (Equation 5.32) and Ibarra-Avalos et al. (2007)
(Equation 5.31). Figure 5.7.3 shows the theoretical predictions and simulation results for
rods (L/D = 2.5, 5, 7.5 and 10) and disks (L/D = 0.05, 0.1, 0.2 and 0.5).

The equations of state are quite accurate for the isotropic phase of both rods and
disks with different shape anisotropies. The differences between the EoS formulated with

I'ons and I'igr are unnoticeable. Larger deviations are observed for higher pressures for
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Figure 5.20: Distribution functions of hard cylindrical disks. L/D = 0.1 and Px = 1.18:
continuous line, L/D = 0.05 and P+ = 1.37: dashed line, L/D = 0.2 and P% = 5.50:
dotted line, L/D = 0.5 and Px = 9.82: dash-dotted line. Color code is outlined in

Table 5.2.

L/D = 5. The radial distribution functions (Figure 5.22) show that a peak is formed and

becomes larger as the pressure increases, hence, the deviations might be attributed to the

start of a transition to the smectic phase. Likewise, for L/D = 0.2, the deviations are

larger for the cubatic phase represented by the square symbol.

5.8 Conclusions

Simulations of both rod and disk-like hard cylinders with a wide range of aspect

ratios were carried out to investigate the boundaries of liquid crystalline phases. The

rod-like system exhibited isotropic, nematic, smectic A, and crystalline phases, while the
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Figure 5.22: Radial distribution function of HC with L/D = 5. Continuous line: P* =
0.79, dashed line: P* = 3.93, dotted line: P* = 5.65.

disk-like fluid showed isotropic, nematic, cubatic, and columnar phases. The isotropic
phase is stable below a certain packing fraction for any aspect ratio; as the anisotropy
increases (L/D >> for rods, and L/D << for disks), the transition to an organized
phase occurs at lower packing fractions. On the other hand, a nematic phase is only
found when the particle is sufficiently anisotropic. The results suggest that there are two
triple points for rod-like cylinders, an I-SmA-X at about L /D = 3 and an I-N-SmA around
L/D = 6.5. The location of the I-SmA-X triple point is quite close to the one found in
a hard spherocylinder fluid at L/D = 3.1. The location of the I-N-SmA, however, is
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considerably different in comparison to the HSC system, in which it occurs at L/D = 3.7.
For L/D < 1, a cubatic phase between the isotropic and columnar phases was found in
a small range of aspect ratios (0.11 < L/D < 0.3), appearing when the nematic phase
vanishes. The results presented on this chapter provide a general mapping of the phase
boundaries of the hard cylinder fluid. Further study applying Monte Simulations on the
Grand-canonical or Gibbs ensemble could provide the exact locations of the triple points

and asses the phase equilibrium of the system.
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“We can only see a short distance ahead, but we can see plenty there that needs to be done.”

— Alan Turing

Exploratory models for cylindrical particles

6.1 Introduction

In chapters 2 and 3, molecules were modeled as ellipsoids in an attempt to capture the
essential features of the system of interest, while simplifying theoretical and numerical
calculations. On this chapter, we follow the same philosophy, but instead of focusing on
properties prediction of industrial relevant fluids, we turn our attention to the investigation
of liquid crystalline phase formation in biological systems.

Many biological nanounits adjust their intrinsic material properties due to changes in
temperature, concentration, pH, and ionic strength. Charged viruses form different liquid
crystalline phases depending on salt concentration (Grelet, 2014), and the self-assembly
might be vital to their survival (Liu et al., 2015). Chromatin has to change its organization
to achieve its genetic activity (Leforestier et al., 2008), and, although many aspects of
their organization are still obscure, their building blocks, the nucleosomes, are known to

have a rich diagram of liquid crystalline and crystalline phases (Livolant et al., 2006).
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(a) Hard Cylinder. A simple (b) A helical array of spheric beads (¢) Short cylinder with two

model for DNA duplexes. wrapped around a cylinder. A patches and a helical array
model for helices. of spherical beads wrapped
around it. A simple model for

nucleosomes.

Figure 6.1: Ilustration of some of the models developed.

We aim at providing a set of models to be applied individually, or combined, to re-
produce specific types of liquid crystalline structure in different systems. Spherocylinders
have been widely used to simulate liquid crystalline phases (Avendano et al., 2009), and
a complete phase diagram of hard spherocylinders is available in the literature (Bolhuis
and Frenkel, 1997). Nevertheless, some viruses (Grelet, 2014), DNA duplexes, and nucle-
osomes have geometries much closer to cylinders instead (Nakata et al., 2007; Leforestier
et al., 2008; De Michele et al., 2012; Grelet, 2014; Wensink, 2014).

Therefore, we have chosen the hard cylinder model to underpin the development of all
the other models, having the results from chapter 5 as a benchmark. Then, we decorate
the cylinders to mimic specific features of biological systems: we add attractive patches
to promote self-assembly behavior, a helical array of spherical beads to mimic repulsion
between helices and add chirality, and a cylindrical electrostatic potential to effectively

account for salt concentration (Figure 6.1).

6.2 Hard Cylinders decorated with Patches

Once that the code for the hard cylinders is implemented, the addition of the patches is
straightforward. We have added a patch on the bottom and on the top of each cylinder to
investigate the self-assembly of the system. The attractive part of the isotropic square-well

potential was applied to model the interaction between two patches.
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6.3 Hard Cylinders decorated with a helical array of
beads

Many studies of liquid crystalline phases of hard helices are present in the literature
(Frezza et al., 2011, 2013; Kolli et al., 2016). Wensink (2014) investigated the chirality
of liquid crystals by developing a model of a cylinder enwrapped with a helical segment
potential. Our model is a sort of a combination between the hard helices and the Wensink’s
model, following the author’s suggestion to take into account the helical backbone steric

interactions.

6.3.1 Building the particle
Calculation of helix parameters

The input variables are:

The cylinder diameter D and length L.

The beads diameter dp,.

The percentage of fusion between the beads f.

The number of pitches n, (which has to be an integer to ensure that the helix is

symmetric). A pitch is the height of one complete helix turn.

The radius of the helix is equal to r, = D/2 + d,/2 and the pitch is [, = [/n,. An
illustration of a helix with three pitches is provided in Figure 6.3.1.

The total length of the helix [, and the number of beads n; are calculated taking into
consideration the fusion f, diameter of the beads d;, helix radius 7, and pitch [,. The

length I, = Lj/n, of the same helix with only one pitch is obtained from Equation 6.1

I = \J4x2r2 + 12 (6.1)

Taking into consideration the percentage of the fusion between the beads, the total

(Figure 6.3.1).

length Lj, can be written as (figure 6.3.1):

Lh = nplh = (nb — 1)(1 — f)db (62)
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Figure 6.2: A helix wrapped around a cylinder with diameter D and length L. [, and 7,
are the pitch and radius of the helix, respectively.

=

2nrhp

Figure 6.3: An illustration of an “unfolded” helix with one pitch.

dp(1-f)

Figure 6.4: Illustration of the total length L, of a helix considering that the beads are
partially fused. d, is the diameter of the beads and f is the percentage of fusion between
them.
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Equating the expressions in Eqs 6.1 and 6.2, an expression for the total number of

Tip /l% + 472r?

dp(1 = f)

We then approximate n;, to an integer and then calculate the f again, therefore, the

beads n; emerges:

ny =

+1 (6.3)

input value f is only an approximate value.

Positions of each bead

The parametric equation of a helix is:

x = 15, cos()

y = rp,8in(0)

I (6.4)
z = _p

27
0<6<2m

The angular increment of each bead is:
2mn

0= —2>_ 6.5

Recalling the axis system fixed on the cylinder, w, v and u, the beads position are

calculated as demostrated in the Fortran 90 pseudo-code below:

do i =1,nb
rbead(:,i) = rcylinder(:) - L/2*%ez(:) & ! Bottom of the cylinder
& + rhxex(:)*cos(thetaxdble(i - 1)) &
& + rhxey(:)*sin(thetaxdble(i-1)) &
& + lp*ezxthetax(i-1)/2/pi
end do

where the variables rbead and rcylinder store the x, y, and z positions of each bead

and cylinder, respectively, and ez, ey and ez correspond to the axis w, v and wu.
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6.3.2 Checking the overlap

To check if there is an overlap between two particles, we proceed with the following

tests:
1. Check if there is an overlap between two cylinders (section 5.3).

2. Check if the beads on each cylinder overlap with the beads on the other cylinder

(the distance between two beads is less than the beads diameter).

3. Check if the cylinders overlap with the beads (the two conditions in Equation 6.6

has to be satisfied for an overlap to occur):

L+d
il < 2D (6.60)
D+d
7| < % (6.6b)
where Filc and 7, are the parallel and perpendicular components of the vector 7. =

Filc + 7 that joins the bead and cylinder center of mass.

6.4 Modified DLVO Potential for Cylinders

Charged groups on colloidal particles surfaces tend to dissociate into the dispersion
medium, forming counterions (microions). As a consequence, the mesoscopic particles
accumulate charges of the opposite sign at their surface, becoming electrically charged
entities called macroions.

Even though the microions are strongly attracted to the opposite sign charges on
the colloidal particles, they are not adsorbed on their surfaces, since the attraction is
counteracted by the thermal motion of these ions. Therefore, at equilibrium, there will be
a layer of microions surrounding the layer of opposite sign charges on the colloids surfaces,
forming the electric double layer (Figure 6.5). The layer screening the macroion charges
weakens the repulsion between the colloidal particles. In addition to that, due to thermal
motion, the electric charge is carried by dissolved ions and extends over certain distance
into the liquid phase (Verwey, 1947). To simplify the model, this charge is approximated
by regarding it as a continuous space charge, and the layers are taken as a homogeneous

surface charge.
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Figure 6.5: Illustration of an electric double layer on a spherical colloidal particle (blue).

As a mean-field theory, the Poisson’s equation provides an expression for the elec-
trostatic potential ¢ that each ion sees as a function of the charge density profile p.(r),

assuming that (Andelman, 2006):

e The solution is modeled as a continuous media with dielectric constant e,.

Only Coulombic interactions between charged bodies are considered.

Induced and permanent dipole-dipole interactions are ignored.

Charges are taken as point-like objects.

¢ is a continuous function that depends in a mean-field way of all other ions.
The Poisson’s equation can be written as:

V24(r) = —‘i—jpxr) = T Zna () + Zona () (6.7)

where e is the electron charge, Z, and Z_ are the valency of the cations and an anions,
and n, (r) and n_(r) are the number density per unit volume.
Assuming that that the ions have a Boltzmann distribution at thermodynamic equi-

librium:

ny = nS exp (—eZ+f9) (6.8)

where n is the equilibrium distribution when ¢ = 0.
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By applying Equation 6.8 in Equation 6.7, the Poisson-Boltzmann equation is

derived:
dre

Vie(r) =

(Zy exp (—eZ fo(r)) + Z- exp (—eZ_p¢(r))) (6.9)

e

For added salt with symmetric monovalent ions (e. g., NaCl, where Z* = 41 and

nY =n? =n’), Equation 6.10 is simplified to:

Vip(r) = n(exp (~eBor)) — exp (e6o(r) (6.10)

e

The Debye-Hiickel’s theory consists of linearizing Equation 6.10, which is valid
for low electrostatic potentials. Truncating the Maclaurin series of the exponentials of

Equation 6.10 at the first order term, the linearized equation becomes:

8me?

Vip(r) = ———n"Bo(r) = \p'¢ (6.11)

e

where \p is the Debye-Hiickel screening length, defined as:

1 Eek'BT
Ap = — =/ 25— 12
D= kD 8me2n0 (6.12)

where kp is defined as the inverse of the Debye-Hiickel length. The differential Equa-
tion 6.11 can be solved in spherical coordinates (for a spherical particle) by applying two

boundary conditions:
1. The electric field and potential vanishes at infinity: ¢ = 0 and % =0 for r — 4o00.

2. The electrostatic potential is assumed to be constant at the surface of the particles:
do _ Ze

dr T €c0?
r=c

where o is the diameter of the sphere, and Z is the bare charge of the particle.

Solving the differential equation:

_ Zeexp(—kp(r—o))
) = 0T kpo)

(6.13)

The expression in Equation 6.13 is for the electrostatic potential. The potential energy
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between two particles seeing one another is given by Equation 6.14.

Ze Z%e®  exp(—kp(r —o))

oY (r) = mqﬂr) = 0T kpo)? . (6.14)

To model colloidal particles in solutions containing counterions neutralizing the ions on
the surface of the particles, and also microions originated from the addition of electrolytes,
the DLVO (Derjaguin-Landau-Vervey-Overbeek) model (Verwey and Overbeek, 1948) is
an usual strategy. The idea that grounds the model is that the van der Waals attraction
is balanced with the screened electrostatic repulsion in Equation 6.14. Accordingly, the
solvent and microions are accounted for as an effective interaction between the charged
particles. In the spirit of the DLVO model, Giacometti et al. (2005) described the inter-
action between the monomers and dimers of a charged globular protein S-lactoglobulin

in solution with the following potential:
u(r) = uS(r) + ¥ (r) (6.15)

where u(r) is the total intermolecular potential between two particles and u™® is the
hard-sphere potential.
In a similar fashion, we shall model the interactions between rod-like particles in

solution as:

u(, 1, Qo) = uMC(F, 1, Qo) + ¢°(7, Q1, Qo) (6.16)
where uf¢ is the hard-cylinder potential, which in the code consists of merely checking

the overlap, as presented in section 5.3), and ¢“ is a modified electrostatic potential for

cylinders.

6.4.1 Modified electrostatic potential for cylinders

We propose a simplified model for the electrostatic potential between charged cylin-

ders:

A\ Z%e? eXp[_kD(lﬂ - O—Sh(f’an?Q?))}

C F,Q 7Q — S— 6.17
gb ( ' 2) Ee(1+kD0'sh(FyﬂlaQ2))2 |F1 ( )
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where 7 is the vector joining the particles centers of mass and o, (7, Oy, Q2) is the contact
distance between the two cylindrical shells along 7. A more rigorous approach would be
to take o, (T, Ql, Qg) as the contact distance of the cylinders along the vector of closest
approach between the two particles. Nonetheless, since the contact will be precluded by
the cylinder overlap algorithm, we apply it as the contact distance along 7, for the sake

of simplicity, as displayed in Equation 6.18.

N

s (T, €, QQ) = 1 (7, Ql) + 22(7, 22) (6.18)

where x1 and x5 are the distances between the center of mass and shell of each cylinder.
712 goes through either the rim or the disk of each cylinder. For instance, in Figure 6.6,

712 goes through the disk of cylinder 1 and through the rim of cylinder 2.

Figure 6.6:

If 712 goes through the disk of the cylinder, x is calculated as:

1 L 1

L (6.19)
r=—": == — .
2 |COS€| 2 |COS(TA’Q>|
On the other hand, if 75 goes through the rim, x is obtained from:
D 1
= _. 2
. 2 sinf (6.20)

where 6 is the angle between the orientation Q) and 72, and 7 is the unit vector along 7.

Therefore, before calculating x, we have to check which is the case for each cylinder.



144

We define a limiting angle 6, in such a way that if | cos 8| < cos#,., the vector goes through
the rim and x is calculated with Equation 6.20. Otherwise, it goes through the disk and
x is obtained from Equation 6.19. The cosine of the limiting angle is obtained from

Equation 6.21.
L

NG

We have carried out the simulations with a slightly simpler model resembling an

cos B, = (6.21)

Yukawa potential, in which the potential strength is independent of oy,:

¢Y*(7—,», Ql’ Q2> _ exp[_kD(lfl - O-Sh(ﬁ Ql? QQ))] (622)

71/ D

where ¢¥* = ¢Y /e, where ¢ is the potential strength.

6.5 Simulation Details

In this chapter, the number of cycles used is about twice the total number of particles.
In each cycle, either the position and orientation of a particle or the total volume is chosen
randomly to be changed. For this purpose, a random number between 1 < ( < N + 1 is
generated, if ( < N a particle is moved, otherwise, the volume is changed. All the codes
are provided in the appendix. There is a main code for each system and the subroutines

that are common for multiple systems are provided in three different modules:

e MC NPT for Hard Cylinders + patches (D.1.1)

MC NPT for Hard Cylinders + helical array of beads (D.1.2)

MC NPT for Hard Cylinders + cylindrical Yukawa (D.1.3)

Module to set global variables (C.2.2)

Module to create initial configurations (C.2.3)

Module with the main subroutines (including the overlap checks and calculation of

the potentials) (C.2.4)

We used the OVITO visualization tool (Stukowski, 2010) to make the snapshots of

the simulations. We added a python script to add color the particles according to the
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angle between its orientation and the phase director. The scripts are provided in the

appendix C.2.5.

6.6 Results

6.6.1 Hard Cylinders with attractive patches

We have simulated hard cylinders with aspect ratio L* = 2 and two attractive patches:
one on the top and one at the bottom of each cylinder. To avoid kinetic trapping, we
have started the simulation at 7* = 1 and then we have frozen the system until 7 = 0.2
(T* = 1, 0.8, 0.6, 0.4 and 0.2), at the same pressure p* = 0.31. The last configuration of
a higher temperature is set as the initial configuration of a lower one. The range of the

patches square-well potential was set to A = 1.5.

Figure 6.7: Snapshot of the simulation of hard cylinders with patches at the top and
bottom. p* = 0.31, T* = 0.2 and L* = 2. The coloring scale is such that the particle
is blue if its orientation is aligned with the phase director 77, red if it is perpendicular to
7 and a combination of both colors depending on the angle between the orientation and
director.

The particles self-assembled in directions parallel and perpendicular to the phase di-
rector (Figure 6.7). Although this phase is, as far as we know, incomparable to any real
phases, it is interesting to notice that the patches location and/or potential range can
be changed to promote some specific phase behavior. For instance, with a smaller range,
Nguyen et al. (2014) observed the stacking of cylinders into longer units, reproducing the
behaviour of short DNA duplexes observed by Nakata et al. (2007).
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This elongation is insufficient for the cylinders to form organized phases only with
steric interactions, as well-known from Onsager’s theories (Onsager, 1949). On chapter 5
we have shown that at this aspect ratio no organized phase should be found. This is
verified by a snapshot of a simulation without the patches (Figure 6.8a). At a higher
temperature, the attractive interactions are less significant, and the fluid also remains in

the isotropic phase (Figure 6.8b).

a) Hard Cylinders without patches. p* = (b) Hard Cylinders with patches. p* = 0.31,
0.31 T =1.0

Figure 6.8: Snapshot of the simulation of hard cylinders with and without patches at p*
= 0.31 and L* = 2. The color scale is the same as in Figure 6.7.

6.6.2 Hard Cylinders + cylindrical Yukawa

Simulations of hard cylinders with an anisotropic repulsive Yukawa potential (Equa-
tion 6.22) were carried out for cylinders with aspect ratio of L* = 10, at 7* = 1.0, and
p* =2.36 and 6.28. The pressure and temperature were chosen to be equivalent to the
condition at which a system of hard cylinders with this aspect ratio exhibits a nematic/s-
mectic organization (chapter 5).

In this case, kp is the screening parameter, and sets the range of the repulsion. Fig-
ure 6.9 and 6.10 show that the total intermolecular potential is larger for lower kp, i. e.,
when the screening is weak, the repulsion forces prevail, and the system occupies a larger
volume. On the other hand, as the screening becomes stronger, the range of the repulsion
decreases, and the system approaches the hard cylinder case (limit of kp — oo and zero
intermolecular potential). The screening parameter also plays an important role in the
phase organization. As kp increases and the systems approach the hard cylinder case, a

nematic phase is formed at p* = 0.3. Conversely, for lower kp, the system remains at the
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Figure 6.9: p* = 0.3. Red circles are in the isotropic phase and yellow triangles in the
nematic.
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Figure 6.10: p* = 0.8. Yellow triangles in the nematic and green squares in the smectic.

isotropic phase, since by occupying a larger volume, the particles have enough space to
maximize the orientational entropy.

Although at p* = 6.28, the nematic order parameter approaches 1 for every value
of kp, a snapshot of the simulations reveals the formation of a smectic phase at higher
kps (Figure 6.11). It is worth noticing, however, that we have not used the floppy-
box Monte Carlo to simulate these cases, hence, what seems like a smectic C phase is
probably actually a smectic A. Since, as discussed on chapter 5, the pressure of a smectic
is anisotropic Bolhuis and Frenkel (1997) and the floppy-box should be used to obtain an
isotropic pressure.

Although the potential is purely repulsive, values above one of the radial distribution
function and the negative values of the potential of mean force (Figure 6.12) reveal an

effective attraction, probably due to the many-body interactions, which are more signifi-
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Figure 6.11: Comparison between p* = 2.36 (open symbols) and p* = 6.28 (closed sym-
bols). Red circles: isotropic, yellow triangles: nematic, green squares: smectic.

cant at higher densities. Franco et al. (2015) showed that the many-body interactions are

somehow attractive when compared to the two-body interactions.
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Figure 6.12: Dotted line: p* = 2.36 and kd* = 1.0, dash-dotted line: p* = 2.36 and
kd* = 10.0, continuous line: p* = 6.28 and kd* = 1.0, dashed line: p* = 6.28 and
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6.7 Conclusions

We have introduced three models to study different features in biological systems:
attractive patches to mimic hydrophobicity and promote self-assembly, a helical array of
hard beads to mimic helices repulsion and chirality, and a cylindrical Yukawa-like potential
to account effectively for salt molality. Despite its exploratory nature, since only a limited
number of tests have been carried out, this study offers some insight into how each model
could be used to describe specific liquid crystalline phases. A systematic study of each
model at different conditions could be usefully explored in further research, as they might

be a good strategy to investigate liquid crystalline formation in biological systems.
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“It is disastrous when instead of merely attending to a rose we are forced to think of ourselves
looking at the rose, with a certain type of mind and a certain type of eyes. It is disastrous
because, if you are not very careful, the color of the rose gets attributed to our optic nerves

and its scent to our noses, and in the end there is no rose left.”

—Clive Staples Lewis

Conclusions and suggestions for future works

7.1 Conclusions

The main goal of this work was to develop theoretical and numerical models for
anisotropic particles as a strategy to capture the thermodynamic behavior of nonspher-
ical molecules. The properties prediction of industrial relevant fluids is improved solely
by modeling the molecule as a single nonspherical segment rather than a set of spherical
segments; diverse liquid crystalline and self-assembly phases were obtained by applying
cylindrical models in Monte Carlo molecular simulations, which can be useful to study
biological systems. The general conclusion is that modeling molecules and nanounits as
nonspherical particles to characterize their geometry might improve the description of
thermodynamic systems, as it seems to provide more physically meaningful models.

Based on Barker-Henderson second order perturbation theory, a new approach to the
development of equations of state for linear molecules and small chains was introduced,

in which the Hard Gaussian Overlap model (HGO) is used as the reference fluid and the
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attractive part of the spherical square-well potential as the perturbation. In comparison
to the SAFT-VR SW, in which the reference potential is the hard-sphere, our proposed
approach predicts more accurately critical properties and generally provides better su-
percritical and derivative properties estimates for the fluids tested. In addition to that,
the use of a single ellipsoidal segment described by the HGO potential eradicates two is-
sues with the chain contribution calculations in the SAFT-VR SW original approach: the
commonly fitted non-integer number of segments (which weakens the physical meaning)
and the negative value on the zero density limit.

The trends of the isochoric heat capacity are not captured neither by SAFT-VR SW
nor by the EoS proposed in this work. Therefore, we compared the predictions of the
EoSs also with SAFT-VR Mie and two different coarse-grained force fields (SAFT-vy Mie
and HGO + SW). The comparison of theoretical and Monte Carlo simulations results was
revealing in several ways. First, it showed that the choice of a hard repulsive potential
causes a significant loss of accuracy at higher densities. Furthermore, theoretical approxi-
mations were also found to have a substantial influence on the predictions: the truncation
of the temperature expansion on the perturbed potential affects the predictions at low
temperatures, and at high densities the macroscopic compressibility approximation ap-
plied in the calculation of the second-order perturbation term is inadequate to describe
the behavior of the property.

A similar approach to the one introduced on the first chapter was applied to develop
equations of state for spherocylindrical and cylindrical particles as well. The equations of
state for ellipsoids, cylinders and spherocylinders were used to calculate the vapor-liquid
equilibrium of several components, including longer chains and disk-like molecules. In
general, the proposed equations of state have a better performance than SAFT-VR SW,
raising the possibility that, at least for the molecules studied in this work, the chain
contribution could be completely eliminated provided that the entire molecule is modeled
as a nonspherical segment. Furthermore, the results showed that the overprediction of
the critical point might be related to the fact that the reference potential is independent
of the temperature.

Although studies on the liquid crystalline phases of ellipsoids and spherocylinders are
abundant in the literature, much less was known about the hard cylinder. Therefore,

we provided a general mapping of the phase boundaries of both rod and disk-like hard
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cylinders. Hard cylinders with any aspect ratio exhibit an isotropic phase at lower densi-
ties. The nematic phase was observed in sufficient anisotropic disks (L/D <<) and rods
(L/D >>). Smectic A and crystalline phases formed at higher packing fractions in rod
fluids, while cubatic and columnar phases formed in disk-like fluids.

Even though the numerical model for cylinders is considerably more complex to imple-
ment than the Hard Gaussian Overlap or the one for spherocylinders, it might be better
suited to describe the geometry of some molecules and nanounits. Diverse self-assembly
phases are obtained by decorating the cylinders with attractive patches that can mimic,
for instance, terminal DNA bases hydrophobicity. An effective electrostatic potential was
added in the fluid of cylinders and different phases were obtained solely by changing
the screening parameter. The proposed model might be a good strategy to account for
the effects of salt concentration on the liquid crystalline phase formation of biological

nano-objects such as nucleosomes.

7.2 Suggestions for future works

We hope to provide with this work ‘a small but genuine’ contribution, and, since there
is still ‘plenty that needs to be done’, we propose some suggestions for further research.
With regards to the equation of state proposed in this work, some extensions and

modifications should be helpful to continue the work initiated:

e Extend the EoS for mixtures
e Apply an anisotropic potential as the perturbation.

e Use an effective diameter dependent on temperature to develop an equation of state
for ellipsoids with a thermal reference potential mapped as a hard-sphere potential

with an effective packing fraction.

e Include higher order perturbation terms in the development of the equation of state.

NPT Monte Carlo simulations of the HGO + SW potential might shed some light on
the effects of the theoretical approximations and choice of the intermolecular potential
also on other properties such as pressure, isobaric specific heat, isothermal compressibility

and thermal expansion coefficient. The application of Monte Carlo optimization methods
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on the simulations proposed on Chapter 6 would be extremely helpful to to speed up
equilibration. In addition to that, using the algorithm to calculate the shortest distance
between two segments might be sufficient to know a prior: the kind of overlap between

two cylinders, which could speed up the overlap check.
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Chapter 2

A.1 Codes

A.1.1 HGO + SW Equation of state

An input file named hgoinput.sci is required to run the subroutine, which takes the
value of the absolute temperature and the density in kg-m ™ and returns the pressure in
MPa. An example of the input file is given below.

System= HGO_SW_fluid

Fluid_formula=  C0O2

Lambda= ! range of the potential

Sigma_O_Angstrom= ! diameter of a sphere with same volume
Molec_Weigth(kgmol)= ! molecular weight

Epsilon_Kb(K)= ! Well-depth divided by Boltzmann constant
Elogantion_k= ! Elongation of the ellipsoid

Cp_Correlation_coef= A B C D E ! cp coeff. Passut and Danner 1972
Listing A.1: Example of the input file hgoinput.sci

D skokofeofokskokskskskok ok o ok ok ok sk sksksk sk ok sk o ok ok sk sksksksk sk sk o ke okok sk sksksk sk sk sk s ok ok ok sk sk sk sk sk sk sk skok sk o ok ok sk sk sk sk sk ok ok
D skokokokok sk sk sksk sk sk ok o ok ok sk sk sksk sk ok ok o ok ok sk sk sk sksk sk sk o ok ok sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk sk ok sk o ok ok sk sk sk sk sk ok
! Program to calculate thermodynamic properties using hgo-saft
1 stk sk ok ok sk sk sk ok ok ok ok o o ok ok sk sk sk ok ok ok ok o ok ok sk sk sk sk ok sk sk o ok ok sk sk sk sk sk sk ok o ok sk sk sk ok sk sk sk sk sk ok sk o ok ok sk sk sk sk sk ok ok
! Developer: Joyce Tavares Lopes
! Supervisor: Dr. Luis Fernando Mercier Franco
! School of chemical engineering (FEQ) - UNICAMP
stk skeok ok sk sk sk sk ok sk ok o ok ok sk sk sksk sk ok ok o ok ok sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk sk sk sk sk o ok ok ok sk sk sk sk sk sk ok
! Main reference: Gil-Villegas et al. 1997
D skokofeofokskokokok ok ok ok s ok ok ok sk skskok ok ok ok s ok ok sk sksksk sk sk ok s ke ok ok sk sksksk sk sk ok s ok ok ok sk sk sk sk sksksk sk ok ok ok ok sk sk sk sk ok ok
subroutine hgosaft(t,rhoin,p)
implicit none
double precision,intent(in) :: t,rhoin



double precision rho,rhoi,rhof,deltarho,pt(7),rhoaux
double precision cv,cp,kt,sspeed,jtc,alfa,co(8)
double precision lambda,lam(2),sig_O,mm,epskb,k
integer 1i,j,points,tint

double precision p,dpdrho,dump,potq,miid

character (len=20) :: filename,fluid
character(len=100) :: get,get2

open(10,file="hgoinput.sci’)

read (10, *)
read (10, *)
read (10, *)
read (10, *)
read (10, *)
read (10, *)
read (10, *)
read (10, *)
close(10)

get,get2

get,fluid

get,lambda

get,sig_0

get ,mm

get,epskb

get .,k

get, co(1),co(2),co(3),co(4),co(5)

rho = rhoin

call eos(t,rho,pt(1),lambda,cv,cp,kt,alfa,sspeed, jtc,sig_0,&

&mm, epskb,k,co,dpdrho,potq,miid)
p = pt(1)

end

subroutine eos(t,rho,pt,lambda,cv,cp,kt,alfa,sspeed,jtc,sig_0,&
&mm, epskb,k,co,dpdrho,potq,miid)

implicit none

165

1 sk ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok 3k ok ok 3k ok ok ok ok ok ok ok ok ok ok ok >k 3k ok ok 3k ok >k 5k ok ok ok ok >k ok ok ok ok ok >k 3k >k >k 3k >k >k %k ok >k %k >k

!'Constants *

1otk sk ook ok ok ok ok sk sk ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok k

!Boltzmann constant (j/k) *

double precision, parameter

double precision kb

'Pi

double precision, parameter :: pi = 4.d0O*datan(1.d0)
'Avogadro number

double precision, parameter :: na = 6.022140857d23

1 kbj = 1.3806485279d-23

1 sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok ok ok ok ok ok 5k ok ok ok ok ok >k 3k >k >k 3k ok >k k ok >k %k %k

1ok sk sk ook ok ok ok ok sk ok ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk sk ok ok ok ok sk sk sk ok ok ok ok sk ok ok ok ok sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok

1 sk ok ok sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k ok 5k

!Input parameters *
sk ke ofokskokeokok ok ok ok o ok ok sk skeskok sk ok ok s ok ok sk sksksk ok sk s s ok ok sk sksksk sk ok o s ok ok sk sk sk sk sk sksk sk ok s ok ok sk sksk sk ok ok o

!Temperature

double precision t,tt
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1Volume v (angstrom~3)
double precision v
IMolecular weigth (kg/mol)
double precision mm
!Number of chain molecules
double precision n
!Number density of chain molecules (kg/m~3) and (n/v)
double precision rho
1 stk sk ok ok sk sk sk ok ok ok ok o ok ok sk sk sk ok sk ok ok o ok ok sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk o ok ok sk sk k sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk ok ok

1ok ok sk ook ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk sk ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok

D skokfeofok ok sk sksksk sk ok o ok ok sk sk sksksk ok ok o ok ok sk skskskosk sk sk ok ok ok sk sk sksk sk sk ok o ok ok sk sk sk sk sk sksk sk sk sk o ok ok sk sk sk sk sk sk ok ok
'Energy input parameters
1 stk ok ok ok sk sk sk ok ok ok ok o ok ok sk sk sk ok sk ok ok o ok ok sk sk sk ok sk sk sk o ok ok sk sk sk sk sk sk sk o ok ok sk sk ok sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk ok ok
IWell depth/kb (k) *
double precision epskb,eps
'Ellipsoid shape parameters
double precision sig_0,sig_s,sig_e
'Ellipsoid elongation and anisotropy parameters
double precision k,chi,gama
!Square-well parameter - range of attractive forces *
double precision lambda
!Coefficients to calculate specific heat in ideal gas state *

double precision co(8)
1 sk sk ook ook oK oK oK KoK KoK Kok ook ook ook oK ok oK ok K ok K ok oK ok ok ok ok o oK oK oK K oK oK o Kok K ok oK ok oK o oK oK oK KoK KoK

1ok ok sk ook ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok

1 stk sk ok ok sk sk sk ok ok sk ok o ok ok ok sk sk skok sk sk ok o ok ok sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk ok o ok ok sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok ok
!Variables
D skokofeofokokokokok sk ok ok s ok ok ok sk skesksk sk ok ok s ok ok sk skesksk sk sk s s ok ok sk sksksk sk sk ok s ok ok ok sk sk ok sk sk sksk sk sk sk o ok ok sk sksk sk sk sk ok
IThermal de broglie wavelength/mass of particle

double precision bro,mp,hp
!'Total pressure, specific heats, sound speed and joule-thompson coeff. *

double precision pt(7), cv, cp, sspeed, jtc,potq
!Tsothermal compressibility and coeff. of thermal expansion *
double precision kt, alfa

'Packing fraction and effective packing fraction *

double precision eta(10), etaef(12), detadv
!Tdeal free energy, pressure and specific heat *

double precision aid,pid(7),cvid,cpid,miid
!Monomer free energy, pressure, specific heat and entropy *

double precision am,pm(7),cvm,cpm,sm,patr(7)
'Hard Gaussian overlap free energy and pressure *

double precision ahgo,phgo(7)
'Percus-Yevick isothermal compressibility x*

double precision khs
'Khs*packing fraction *
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double precision keta(11)
INumerator and denominator of keta(2) *
double precision num(2),den(2)
'Effective radial distribution at contact- Carnahan-Starling eos *
double precision gef(12)
!Baker-Henderson coefficients *
double precision al(13),a2(10)
!Derivative of gef with respect to etaef *
double precision dgdef (10),d2gdef (3),d3gdef (3)
IBeta = 1/(kb*t)
double precision beta

1 stk sk ok o ok ok sk ok st ok s ok sk ok s ok ok ok sk ok sk ok ok s ok s ok s ok sk sk ok sk ok ok ok s ok s ok sk ok sk sk ok sk sk ok sk ok sk ok ok ok ok sk ok sk ok ok ok ok
1 stk sk ok ok ok ok ok st ok st ok st ok s ok s ok sk sk ok st ok st ok s ok s ok s ok sk ok ok sk ok st ok st ok sk ok s ok sk ok sk sk ok sk sk sk sk ok sk ok ok ok ook ook sk ok ok kok ok
'Variables to calculate numeric derivative *

double precision dam,aml,am2,beta2,dam2,am3, cvnum,snum,snum?2

double precision dpdrho,dpdrhonum
1 stk sk ok ok sk sk sk ok ok sk ok o ok ok sk sk sk ok sk ok ok o ok ok sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk ok o ok ok sk sk ok sk sk sk sk sk sk sk o sk sk sk sk sk sk sk sk ok ok

!|Parameterization variables to calculate eta
1k s sk sk ok ok ok sk sk sk ok ok ok s sk ok ok ok ok sk sk ok ok ok sk s sk sk ok ok sk sk sk ok ok ok sk sk sk ok ok ok sk sk sk sk ok ok sk sk ok sk sk sk ok sk sk sk ok ok ok sk sk ok ok ok ok sk ok ok ok

integer 1i,j

double precision, dimension(3) :: c
double precision, dimension(3) :: lambs
double precision, dimension(3,3) :: matrix

matrix(1,1) = 2.25855d0
matrix(1,2) = -1.50349d0
matrix(1,3) = 0.24943440
matrix(2,1) = -0.66927d0
matrix(2,2) = 1.40049d0
matrix(2,3) = -0.827739d0
matrix(3,1) = 10.1576d0
matrix(3,2) = -15.042740
matrix(3,3) 5.3082740
1 sk sk skook ok ok sk ok ok o ok sk ok ok o ok sk ok ok o ok sk ok ok ok sk sk sk ok sk sk ok ok sk sk ok sk sk sk ok sk sk sk ok ok ok sk sk sk ok ok sk sk ok ok sk sk ok ok ok sk ok ok

!'Tnitialization *
D stk kst o skok sk ok sk sk ok sksk ok stk o skok s ok sk sk ok sk sk ok stk o skok s sk sk sk ok sk sk ok sk sk e skok s sk sk sk ok sk sk ok sk sk ok sk sk sk ok sk ok ok sk ok ok
!Constants

kb = kbj*1d20 !kg*angstrom~2(k*s~2)
'Parameters and properties

eps = epskb*kb !kg*angstrom~2(s~2)

sig_s = sig_0*x3/k

sig_s = sig_s**(1.40/3.d0)

chi = (-1+k*x2)/(1+k**2)

sig_e = k*sig_s

lambs(1) = 1.d0

lambs(2) = lambda

lambs(3) = lambda**2.d0

o~ 1
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rho = rho*na/mm ! (# molecules)/volume m~3
rho = rho*1d-30 !to (# molecules )/angstrom~3
n = 100.d0
mp = mm/na ! (mass of each particle)
bro = sqrt (hp*hp/(2.d0*pi*mp*xkbj*t))
v = (n/rho) 'angstrom~3
eta(1l) = (rhoxpixsig_0%*3.d0)/6.d0
eta(3) = -eta(1)/v
khs = ((1.d0-eta(1))*x4.d0)/(1.d0+4.d0*eta(1)+4.d0&
&xeta(1)*x2.d0)
keta(l) = khs*eta(l)
beta = 1/(kbxt)
D sk sk ok sk ok o Kok o K ok ok oK oK ok K oK ok KoK K oK K oK o K oK ok oK oK K ok KoK o K oK ok K ok ok ok ok ok sk ok Kok Kok o oK ok ok K ok ok ok ok
'Parameterization calculation and effectives values *
D sksk ok sk ok o sk ok o oK oK ok K oK ok oK oK oK oK ok oK oK o K oK o K oK ok oK oK ok o K oK K oK o K oK ok K ok ok o ok ok ok o sk ok Kok K ok o K oK ok K ok ok ok ok
c(1) = 0.d0
c(2) = 0.40
c(3) = 0.40
do 11 i=1,3
do 10 j=1,3
c(i) = matrix(i,j)*lambs(j) + c(i)
10 continue
11 continue

etaef(1) = c(1)*eta(l) + c(2)*eta(1)**2.d0 + c(3)*eta(l)*%*3.d0
etaef(2) = c(1) + 2.d0*c(2)*eta(l) + 3.d0*c(3)*eta(l)**2.d0
etaef(4) = 2.d0*c(2) + 6.d0*c(3)*eta(l)

etaef (12) = 6.d0*c(3)

etaef (3) = etaef(2)*eta(3)

eta(5) = 2.d0*eta(1)/(v**2.d0)

eta(6) = 0!-2.d0/v

eta(10) = -2.d0/v

gef (1) = (1.d0-0.5d0*etaef(1))/((1.d0-etaef (1))**3.d0)

stk ok ok ok sk sk sk sk sk sk ok o ok ok sk sk sksk sk ok ok o ok ok sk sk sk sk sk sk sk o ok ok sk sk sksk sk sk sk o ok ok sk sk sk sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk ok ok
!Tdeal contribution calculations
D skokofeofokskokokok ok ok ok o ok ok ok sk skesksk sk ok ok s ok ok sk sksksk sk sk sk s ok ok sk sksksk sk sk ok s ok ok ok sk sk ok sk sk sksk sk ok ok ok ok sk sksk sk ok sk o
aid = (n*xkb*t)*(log(rho*xbroxbro*bro) - 1.d0)
pid(1) = nxkb*t/v 'kg/(angstrom*s~2)
pid(3) = -kb*txn/(v*x2)
pid(7) = kb*n/v
miid = (aid+pid(1)*v)/n
miid = miid*1d4+*1d-30*na/mm !to mjoule/kg
ISpecific heat - passut, c. a., & danner, r. p. (1972). correlation of
!Ideal gas enthalpy, heat capacity, and entropy. ind. eng. process. des.
IDevelop., 11(4), -543546.
ICp = b + 2ct+3ct**x2+4et**3+5ft**x4 --> btu/(1lb °r )
IBtu/(1b ©r ) to j/(kg k) --> %4186.8
'B = co(1), c=co(2), d=co(3), e=co(4),f=co(b)
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tt = 1.8d0x*t
cpid = co(1)+2.d0*co(2)*tt+3.d0*co(3) *tt**2.d0+4.d0*&
&co(4)*tt*+*3.d0+5.d0*co (5) *tt**4.d0
cpid = cpid*4186.800000009d0*mm !to j/mol k
cvid = cpid - na*kbj !cv = cp - r 'kb back to j
1ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok k

1 sk st ok sk sk ok ok sk ok ok sk ok ok s ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok s ok ok s ok sk s ok ok sk ok ok sk ok ok sk ok ok sk sk ok ok sk ok ok sk sk ok sk sk ok sk ook ok sk ok ok sk

D stk sk o skok ook ook ok K ok o oK o oK ok o ok oK ok oK ok o oK o oK ok o ok oK ok o ok o ok o K ok o ok ok ok o ok o Kok ok ok K ok ok sk ok o ok ok ok K ok
!Monomer contribution calculations
1 skok ok o ok ok ook ook ok Kok o oK o oK ok ook oK ok oK ok oK o oK ok o oK oK ok o ok o oK o K ok o oK oK ok ook o Kok oK ok K ok ok oK ok ook ok ok Kok
'Hard Gaussian overlap
gama = 0.5d0*(1.d0+asin(chi)/(chi*sqrt(1.d0-chi*chi)))
!Ahgo/nkbt
ahgo = gamaxeta(1)*(4.d0-3.d0xeta(1))/((1.d0-eta(1))**2.d0)
phgo (1) = nxkbxt*gamaxeta(3)*((2.d0*eta(1)-4.d0)&
&/ ((1.d0-eta(1))**3.d0))
phgo(3) = nxkb*tkxgama*(eta(5)*((2.d0*eta(1)-4.40)/&
&((1.d0-eta(1))*x3.d0))&
&+eta(3)*eta(3)*((4.d0*eta(1)-10.d0)/&
&((1.d0-eta(1))*x4.d0)))
phgo(7) = phgo(1)/t

'Dispersion
al(1) = -4.dOxeta(1)*eps*(-1.d0+lambda**3)*gef (1)
dgdef (1) = (2.5d0-etaef(1))/((1-etaef(1))**4.d0)
gef (2) = dgdef (1)*etaef(2)

al(2) = gef(1)+gef(2)*eta(l)
al(2) = -4.d0*eps*(-1.d0+lambdax*3.d0)*al(2)
a2(1) = 0.5d0*eps*eta(l)*khs*al(2)

!'Total --> hgo + attractive
am = (ahgo + al(l)x*beta + a2(1)*betax*2)*nxkb*t

'Derivativess with respect to v to calculate pressure

d2gdef (1) = (9.d0-3.d0*etaef(1))/(1.d0-etaef (1))**5.d0

d3gdef (1) = (42.d0-12.d0*etaef(1))/(1.d0-etaef (1))**6.d0

dgdef (2) = etaef (2)*d2gdef (1)

gef (4) = etaef(2)*dgdef(2) + dgdef(1)*etaef (4)

gef(3) = dgdef(1)*etaef(3)

al(4) = -4.dO*eps*(-1.d0+lambda**3)*(2.d0*gef (2)&

&t+eta(1)*gef (4))
al(6) = (-eta(1)/v)*a1(4)
dgdef (3) = eta(3)*dgdef(2)
etaef (6) = eta(3)*etaef(4)!+eta(6)*etaef (2)
gef(6) = etaef(6)*dgdef (1) + etaef(2)*dgdef(3)

num(1l) = ((1.40+4.d0*eta(1)+4.d0*xeta(l)**x2)*&
&(((1.d0-eta(1))**4.d0)-&



&4 .d0*eta(1)*(1.d0-eta(1))**3)-eta(1)&
&*x(4.40+8.d0*eta(1))&
&*x(1.d0-eta(1))**4.40)

den(1) = ((1.d0+4.d0*eta(1)+4*eta(1)**2.d0)**2.d0)

keta(2) = num(1)/den(1)

keta(3) = keta(2)*(-eta(1)/v)

a2(3) = 0.5d0x*eps*((keta(3))*al(2)+khs*eta(1)*al(6))
al(3) = ((-eta(1))/v)*al(2)
pm(1) = (nxkbxt)*(phgo(1)/(nxkb*t) -&
& al(3)*beta- a2(3)*beta*x2)
'Entropy

sm = (a2(1)*beta/t - kb*ahgo)*n
'Constant volume
cvm = -2.d0*n*a2(1)*beta/t

'Derivatives to calculate kt, alfa and cp
ICalculation of d2al/dv2
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etaef (5) = eta(3)*(etaef(4)*eta(3)+eta(10)*etaef(2))

gef (5) = dgdef (3)*etaef (3)+etaef (5)*dgdef (1)

al(5) =-4.d0*eps*(-1.d0+lambda**3.d0)*(eta(3)*gef (2)+eta(10)*&
&gef (1)+gef (3)+eta(l)*(gef (5)/eta(3)))*eta(3)
eta(3)*(al(4)*eta(3)+eta(10)*al(2))
-4.d0*eps*(-1.d0+1lambda**3.d0) * (2.d0*gef (3) xeta(3)+&
&eta(5)*gef (1)+gef (5)*eta(l1))

a1(5)
al(b5)

1Calculation of d2a2/dv2

num(2) = ((1.d0-eta(1))**4.d0)*(4.d0+8.d0*eta(1)) - 4.d40*((1.d0-
eta(1))&
&**3)*(1.d0+4.d0*eta(1)+4.d0*eta(l) **2)+&
&3.d0*((1.d0-eta(1))*x2&
&) *(4.d0*xeta(1)+(16.d0xeta (1) **2)+16.d0*eta (1) **3)-((1.d40
—eta(1))&
&**3)*(4.d0+32.d0*eta(1)+48.d0*eta (1) **2.d0)-((1.d0-eta
(1)N&
&**4.d0)*(4.d0+16.d0*eta(1))+4.d0*((1.d0-eta (1)) **3)* (4.
dOx*&
&eta(l) + 8.dOxeta(1)*x*2)
den(2) = 2.d0*(1.d0+4.d0*eta(1)+4.d0*eta(1)**2.d0)*(4.d0+8.d0*eta
1)
keta(4) = (num(2)*den(1l) - den(2)*num(1))/(den(1)*%2.40)
keta(10) = eta(3)*keta(4)+eta(10)*keta(2)
d2gdef (2) = d3gdef (1)*etaef (2)
gef (12) = etaef(12)*dgdef (1) + dgdef (2)*etaef(4)+&
&2.d0xetaef (2) *xetaef (4) *d2gdef (1) +d2gdef (2) *xetaef (2)
*x2,.d0
al(12) = -4.d0x*eps*(-1.d0+1lambda**3.d0)*(3.d0*gef (4)+eta(l)*gef
(12))
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al(11)
a2(10)

eta(10)*al(4)+al1(12)*eta(3)

0.5d0*eps*(keta(10)*al(2)+al(4)*keta(3)&
&+al(11)*keta(1l)+keta(2)*al1(6))

a2(5) = eta(3)*a2(10)

!Dp/dv
patr(3) = nxkbxt*(-al(5)*beta-a2(5)*betax*2)
pm(3) = n*(phgo(3)+patr(3))/n
'Derivative of pressure with respect to t
patr(7) = n*x(a2(3)*beta/t)
pm(7) = n/n*(phgo (7)+patr(7))

1 stk sk o ko ok ok ook ok ok ok ook ok Kok oK oK ok oK oK ook ok K ok oK o K ok o oK ok ok K oK ok ok oK ok KoK o KoK ok Kok K ok ok ok K ok ok ok K ok ok ok K
!'Total properties
1 skok sk o ok ok ook oK ok ook o oK ok K ok o oK oK ok o oK oK ok o oK oK ok K ok o oK oK ok o oK ok ok o ok oK o K oK ok K ok o ok o oK ok ook oK ok K ok ok oK K
pt(1) = pid(1) + pm(1) !+ pc(1)
potq = (aid+am+pt(1)*v)/n
potq = potgx1d4x1d-30*na/mm !to mpa*m~3/kg
pt(1) = pt(1)*1d10*1d-6 !convert to mpa
cv = cvid + cvm*1d-20*na/n !cvid is already in j/mol.k
'Derivatives of total pressure
pt(3) = pm(3) + pid(3) !+ pc(3)
kt = -1.d0/(vxpt(3))
pt(7) = pm(7) + pid(7) '+ pc(7)
alfa = ktxpt(7)
cp = txvk(alfa*xx2.d0)/kt
cp = cp*1d-20*na/n + cv !convert to j/mol.k and add cv
kt = kt*x1d-10
IRho is n/v(ang~3) but v is extensive. convert rho to extensive:
rho = rho/n
!Pressure is kg*angs~-1*s~-2. so i1 have to divide for the system total
IMass = n*mm/na
sspeed = sqrt(-(cp/cv)*pt(3)/(rho**2)/(n*mm/na)) !angs/s
sspeed = sspeed*1d-10
!To calculate the joule-thompson coefficient, cp has to be heat capacity
!= j/k. but cp is already in j/mol.k. so it has to be multiplied by
IN/na

jtc = -(v-txvxalfa)/(cp*n/na)

jtc = jtcx1d-24 'kxmpa”-1
1 sk sk ook ook oK oK oK KoK KoK oK ook o ok o ok o ok oK ok K ok K ok K ok ok ok ok o oK oK oK K oK oK o Kok oK ok oK ok oK oK oK KoK oK KoK
1 skok sk o sk ok ook o oK ok K ok o oK oK ok ook oK ok oK ok o oK o oK ok o ok oK ok o ok o oK ok K ok o oK oK ok ook o Kok oK ok K ok ook oK ok ok ok ok K ok

IDp/drho
pt(3) = pt(3)*1d34 !'mpa/m~3
pt(3) = pt(3)*n/na !mpa*mol/m~3

pt(3) = pt(3)*mm !mpaxkg/m~3
v = v¥1d-30/n*na/mm !from ang~3 to m~3/kg
rho = rho*1d30*n/na*mm 'kg/m~3
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dpdrho = -pt(3)*v*v !mpa*m~3/kg

1 sk ok sk ok ok sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k ok ok

end
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Chapter 3

B.1 Quaternions

The quaternion number system was conceived by William Hamilton in the nineteenth
century as an extension of the complex number system. This four-dimensional number
system is vastly used to describe rotations of vectors in three dimensions. A quaternion

q is defined as follows:

q=qo+qi+qj+ gk (B.1)

where 12 = j? = k? = ijk = —1, and ¢ is the scalar part of the number. The quaternion

algebra is noncommutative and a unit quaternion, where \/¢? + ¢ + g3 = 1, represents a
three-dimensional rotation. A rotation-quaternion that executes a rotation about an unit

vector a by an angle # is described as:

B 0
qo = COs (§>
_ : 0
¢1 =aq sin (§>
/b (B.2)
G2 =as sin (§>
g3 =as sin <§>

Then, to rotate a vector e around a by 6, one should apply the following opetation:

e =qeq! (B.3)
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where €' is the vector e after the rotation, ¢=! = gy — 17 — q2j — ¢sk is the inverse of
q and represents the same rotation. The operation in Equation B.3 can be rewritten in

another form as follows:

e =ATe (B.4)

where AT is the transpose of a rotation matrix A defined as:

@+ —a - 2(qe+ ) 2(q1q3 — qoq2)
A= 2 —qoa3) @—G+6 -G 2(00+ on) (B.5)
2(q193 + 9092) 2(q2q3 — Qoq1) @ — G — @5+ ¢

B.2 Codes

B.2.1 NVT Monte Carlo code for HGO + SW potential

The code requires two input files:

e conf0 ellip.xyz: initial configuration file. The first line is the total number of
particles, second line is the x, y and z dimensions of the simulation box, and from
the third line on, we have the positions and orientations of each particle (type of
the molecule, x position, y position, z position, scalar part of the quaternion, x
component of the quaternion, y component of the quaternion, z component of the
quaternion, oy, o5 and o).

e hgo isosw_input.sci. An example of the file is given below.

Number_of_steps=

Print_every_x_steps= x !Print properties every x steps
Max_rotational_displacement_rad=
Max_translational_displacement=
Adjust_drmax_every_y_step= y !Adjust maximum displacement
EpsO= 1d0 ! Well-depth (reduced)

Ellipdois_sigs_sige= a b ! a is sigma_s and b is sigma_e
Range_parameter_lambda=

Reduce_Temperature=

Molecule_Type= 1

Listing B.1: Example of the input file hgo isosw_input.sci

The output files are conf hgo isosw.xyz (file with the trajectory) and prop.dat: step,
acceptance ratio, maximum translational displacement, elapsed time, total potential, and
nematic order parameter.

1 sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k 3k ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok >k ok ok 3k ok >k ok ok >k ok ok >k >k ok >k >k %k >k %k

! NVT Monte simulation of HGO + SW potential
1 sk sk sk ok ok sk sk ok sk sk ok ok s ok ok s ok sk sk ok ok sk ok ok sk ok ok sk sk ok sk sk ok sk s ok sk sk ok sk sk ok sk sk sk ok sk sk ok sk ok sk sk ok sk sk ok sk sk ok sk sk ok ok sk sk ok k
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! Developer: Joyce Tavares Lopes

! Supervisor: Dr. Luis Fernando Mercier Franco

! University of Campinas - School of Chemical Engineering

D skskook sk ok ook ok o oK oK ok KoK ok K oK oK oK oK K oK o K oK ok oK oK ok K ok KoK o K oK ok KoK ok o K ok K ok ok Kok o KoK ok K oK ok K ok ok ok ok
! Matrix r(:,N) for N particles

' v(1,N) = x-axis

! r(2,N) = y-axis

' r(3,N) z-axis

I Matrix q(:,N)

! q(0,N) = quaternion w (real number)

! q(1,N) = quaternion x (i imaginary number)

! q(2,N) = quaternion y (j imaginary number)

! q(3,N) = quaternion z (k imaginary number)
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! Energy variables are reduced
Dok fokokokokokokokok ok o ok ok ok okokokokok ok sk ok ok sk sk okskokok ok sk ok ok ok sk ok skoskokok ok ok ok sk ok sk ok sk ok okokok o sk ok ok ok ok ok ok ok ok

Program HGOSW_MC_NVT

Implicit None

Integer :: seed = 349766914 !Input for the pseudo-random number
algorithm

Real(8) :: rnum

Real(8), Allocatable :: r(:,:),q(:,:),e(:,:) !Position, quaternion and
orientation

Real(8) :: sige,sigs,box1(3)

Integer :: n,i,j,k

Character :: get*100,moltype*1l

Real(8) :: sigma,sig,chi,chil,ke,kel,modrij,rcut,utotal
Real(8), dimension(3) :: el,e2,rij,ri,efixed,ei,urij
Integer :: moves,nsteps,step,step2print,stepdrmax
Real(8) :: max_angle, max_r,eps,uatrgb,urepgb,acc_mov

Real(8) :: ni,mi,epsO
Real(8), dimension(0:3) :: qi
Real(8) :: deltap,new_pot,old_pot

Real(8) :: lambda,tr,t !'Reduced temperature and temperature
Logical :: overlap
Real :: start,finish,startstep,finishstep

Real(8),dimension(0:3) :: gnew,qteste
Real(8),Allocatable :: odf(:),theta(:)

Real(8) :: s2 !Order Parameter
Integer :: maxbinori
Real :: dump

Call cpu_time(start)
!Simulation Input Files

'Monte Carlo simulation and Potential parameters
Open(101,File= ’hgo_isosw_input.sci’)



Read(101,*) get,nsteps
Read(101,*) get,step2print
Read(101,*) get,max_angle
Read(101,*) get,max_r
Read(101,*) get,stepdrmax
Read(101,*) get,epsO !Well-depth
Read(101,*) get,sigs,sige !Ellipsoid parameters
Read(101,*) get,lambda
Read(101,*) get,tr
Read(101,*) get,moltype
Close(101)

!Simulation Output Files
Open(200,File="conf_hgo_isosw.xyz’)
Open(201,File=’prop.dat’)
Write(201,*) ’> Step ’,’acc_mov ’,’dr_max &
& ’,’ time ’,’ U/N &
&,’ Order Parameter’

'Read Initial Configuration File
Open(102,FILE="conf0O_ellip.xyz’)

Read(102,*) n

IBox length (1) = x-axis, (2) = y-axis, (3) = z-axis
Read (102,*) box1(1),box1(2),box1(3)

Write(200,%*) n

Write(200,*) boxl(1l),box1l(2),box1(3)

'Allocate Matrix of particles positions and orientations
Allocate(r(3,N),q(0:3,N),e(3,N))
Do 99 i=1,n

Read(102,*) moltype,r(1,i),r(2,i),r(3,1),q(0,1),q(1,1),&

&q(2,1i),q(3,1),sigs,sigs,sige

Write(200,%*) moltype,r(1,i),r(2,1),r(3,1),q(0,1),q(1,1),&

&q(2,1),q(3,1),sigs,sigs,sige
99 End Do
Close(102)

!Calculates elongation ’ke’ and anisotropy ’chi’
ke = sige/sigs
chi = (kexke - 1.d0)/(ke*ke + 1.d0)

chil = (kel**(1.d0/mi) - 1.d0)/(kelx**(1.d0/mi) + 1.d0)

rcut = 4.d0*sigs
max_r = max_r*xsigs

!Calculate orientations from initial quaternion rotation

efixed = (/0.d40,0.d40,1.40/) !Ellipsoid orientation with

rotation

no
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Do 100 i=1,n !'Loop over particles
Call quat_to_ori(efixed,q(:,1i),e(:,1))
100 End Do

'Detect overlap in intial configuration
Do 101 i=1,n-1
Do 102 j=i+1l,n

el = e(:,1)
e2 = e(:,j)
rij = r(1:3,i) - r(1:3,j)
modrij = sqrt(rij(1)*rij(1) + rij(2)*rij(2) + rij(3)
*rij(3))
urij = rij/modrij
sig = sigma(el,e2,urij,sigs,chi)
If (modrij .1t. sig) then
print*,’0verlap detected in initial
configuration’
STOP
End if
102 End Do
101 End Do

Call total_pot(boxl,n,sigs,sige,e,r,epsO,chi,chil,mi,ni,rcut,lambda,
utotal)
print*,’Initial Total Potential Energy per particle=’,utotal/n

!Start trial moves
Do 103 step=1,nsteps !Loop over steps
Call cpu_time(startstep)
moves = 0
acc_mov = 0
Do 104 i=1,n !Loop over particles
Call partial_pot(boxl,n,i,sigs,sige,e(:,i)&
&,r(:,1),e,r,eps0,&
&chi,chil,mi,ni,rcut,lambda,old_pot,
overlap)
If (overlap) then
print*,’Error: overlap detected’
STOP
End If

!Translation Move for particle i

Call rand_numb(seed,rnum)

ri(1) = r(1,i) + (2.d0*rnum - 1.d0)*max_r
Call rand_numb(seed,rnum)

ri(2) = r(2,i) + (2.d0*rnum - 1.d0)*max_r
Call rand_numb(seed,rnum)
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ri(3) = r(3,i) + (2.d0*rnum - 1.d0)*max_r

!Coordinates in central box after translation

ri(1) = ri(1) - boxl(1)*Anint(ri(1)/box1(1))
ri(2) = ri(2) - boxl(2)*Anint(ri(2)/boxl1(2))
ri(3) = ri(3) - box1(3)*Anint(ri(3)/boxl1l(3))

'Rotational Move for particle i
'Randomly rotate old quaternion
Call random_rotate_quat(seed,q(:,i),max_angle,qi)
INew orientation after rotation
Call quat_to_ori(efixed,qi,ei)

Call partial_pot(boxl,n,i,sigs,sige,ei,ri,e,r,eps0,
chi,chil,&
&mi,ni,rcut,lambda,new_pot,overlap)

If (.not. overlap) then

deltap = new_pot - old_pot

deltap = deltap/tr

If (deltap .1t. 0) then
q(:,1i) = qi(:)
r(:,i) = ri(:)
e(:,i) = ei(:)
utotal = utotal + new_pot - old_pot
moves = moves + 1

Else if ((deltap/eps0) .1lt. 75) then
Call rand_numb(seed,rnum)
If (exp(-(deltap/(eps0))) .gt. rnum)

then
q(:,1i) = qi(:)
r(:,i) = ri(:)
e(:,i) = ei(:)
utotal = utotal + new_pot -

old_pot
moves = moves + 1
End If
End if
End if
104 End Do
Call cpu_time(finishstep)
'Adjust maximum displacement
acc_mov = dble(moves)/dble(n)
If (mod(step,stepdrmax) == 0) then
If (acc_mov .gt. 0.5) then
max_r = 1.05*%max_r
Else
max_r = 0.95%max_r
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End If
End If
If (Mod(step,step2print) == 0) then
Call orderparameter(n,e,s2)
Write(201,*) step,real(acc_mov),real(max_r),&
finishstep-startstep,utotal/n,real(s2)

IWrite Output File (position and quaternions)
Write(200,*) n
Write(200,*) boxl(1l),box1(2),box1(3)
Do 200 i=1,n
Write(200,%*) moltype,r(1,i),r(2,1),r(3,1),&
8q(0,1),q(1,1),q(2,1),9(3,1) ,sigs
,8igs,sige
200 End DO
End If
103 End Do

Call cpu_time(finish)
Print*,’Final Total Potential Energy per particle=’,utotal/n
Print*,’Total run time=’,finish-start,’s’

Call orderparameter(n,e,s2)
Print#*,’Final Order Parameter=’,s2

Close(200)
Close(201)
End
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ISubroutines used within the code
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!Calculates contact distance of ellipsoids given their orientaions and
the orientation of the vector joining their centers of mass

Double Precision Function sigma(el,e2,urij,sig0,chi)

Implicit None

! Scalar Product of unit vector and orientations and between the two
orientations

Real(8) :: rel,re2,ele2

! urij is the unit vector of vector rij joining the particles centers of
mass

Real(8), Dimension(3) :: urij,rij

! Particles orientation

Real(8), Dimension(3) :: el,e2
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Real(8) :: chi,sig0

rel = urij(1)*el(1) + urij(2)*e1(2) + urij(3)*el(3)

re2 = urij(1)*e2(1) + urij(2)*e2(2) + urij(3)*e2(3)

ele2 = el(1)*e2(1) + el(2)*e2(2) + e1(3)*e2(3)

sigma = sig0*(1.d0-0.5d0*chi*((rel+re2)**2.d0/(1.d0+chixele2)+&
&(rel-re2)**2.d0/(1.d0-chi*ele2)))**(-0.5)

End

!Takes the old orientation e, the rotation quaternion q and returns the
'new orientation after rotation

Subroutine quat_to_ori(e,q,enew)

Implicit None

Real(8),Dimension(3),Intent(in) :: e

Real(8) ,Dimension(3),Intent(out) :: enew
Real(8),Dimension(0:3),Intent(in) :: q

Real(8),Dimension(3,3) :: rotM, rotMT

Integer :: 1i,j

'Rotation Matrix rotM(3,3) - Allen and Tildesley, 2th edition page 110
rotM(1,1) = q(0)*q(0) + q(1)*q(1) - q(2)*q(2) - q(3)*q(3)

rotM(1,2) = 2.d0*(q(1)*q(2) + q(0)*q(3))

rotM(1,3) = 2.d0*(q(1)*q(3) - q(0)*q(2))

rotM(2,1) = 2.d0*(q(1)*q(2) - q(0)*q(3))

rotM(2,2) = q(0)*q(0) - q(1)*q(1) + q(2)*q(2) - q(3)*q(3)

rotM(2,3) = 2.d0*(q(2)*q(3) + q(0)*q(1))

rotM(3,1) = 2.d0*(q(1)*q(3) + q(0)*q(2))

rotM(3,2) = 2.d0*(q(2)*q(3) - q(0)*q(1))

rotM(3,3) = q(0)*q(0) - q(1)*q(1) - q(2)*q(2) + q(3)*q(3)

!Transpose of Rotation Matrix

Do i=1,3
Do j=1,3
rotMT(i,j) = rotM(j,i)
End Do
End Do

!'New orientation

enew (1) e(1)*rotMT(1,1) + e(2)*rotMT(1,2) + e(3)*rotMT(1,3)
enew(2) = e(1)*rotMT(2,1) + e(2)*rotMT(2,2) + e(3)*rotMT(2,3)
enew(3) e (1) *rotMT(3,1) + e(2)*rotMT(3,2) + e(3)*rotMT(3,3)
End

!Generates a random number between [0,1]
Subroutine Rand_numb(seed,rnum)
Implicit None
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Integer :: seed
Integer, Parameter :: a=1029, b=221591, M=1048576
Real(8) :: rnum

seed = mod((a*seed+b) ,M)
rnum = dble(seed)/dble(M)
End

!Generates a vector on the surface of a unit sphere.

!Allen and Tildesley 2th edition, page 514 (routine:Marsaglia 1972).
Subroutine Rand_vector(seed,v)

Implicit None

Real(8), Intent(out) :: v(3)

Real(8) :: nl,n2,nsq

Integer, Intent(in) :: seed

nsq = 2.d0

Do while (nsq .gt. 1.d0)
Call rand_numb(seed,nl)
Call rand_numb(seed,n2)
nl = 2d0*nl1 - 1.d0
n2 = 2d0*n2 - 1.d0
nsq = nl*nl + n2+*n2

End Do
v(1) = 2.d0*nl*sqrt(1.d0-nsq)
v(2) = 2.d0*n2*sqrt(1.d0-nsq)
v(3) = 1.d0-2.d0*nsq

End

'Randomly rotates a quartenion given a maximum angle
Subroutine random_rotate_quat(seed,qold,ang_max,qnew)
Implicit None
Real(8),Dimension(0:3),Intent(in) :: qold
Real(8) :: ang_max
Real(8),Dimension(0:3),Intent(out) :: gnew
Real(8),Dimension(0:3) :: qrot
Integer :: seed
Call rotation_quat(seed,ang_max,qrot)
Call multiply_quats(qrot,qold,qgnew)
End Subroutine

!Generates a rotation quaternion
Subroutine rotation_quat(seed,max_ang,quat)
Implicit None

Integer,Intent(in) :: seed
Real(8),Intent(in) :: max_ang
Real(8),Dimension(0:3) :: quat

Real(8) :: rn,ang

Real(8),Dimension(3) :: axis



Call rand_numb(seed,rn) !Random number ’rn’ in range [0,1]
rn = 2.d0*rn - 1d0 !Random number ’rn’ now in range [-1,1]

ang = max_ang*rn 'Random angle
quat (0) = cos(angx*0.5)

'Random axis

Call rand_vector(seed,axis)
quat(1:3) = sin(ang*0.5)*axis(:)
End Subroutine

'Multiplies two quaternions

Subroutine multiply_quats(a,b,qab)
Implicit None

Real(8) ,Dimension(0:3),Intent(in) :: a,b

Real(8),Dimension(0:3),Intent(out) :: gab

qab(0) = a(0)*b(0) - a(1)*b(1) - a(2)*b(2) -
gqab(1) = a(1)*b(0) + a(0)*b(1) - a(3)*b(2) +
qab(2) = a(2)*b(0) + a(3)*b(1) + a(0)*b(2) -
qab(3) = a(3)*b(0) - a(2)*b(1) + a(1)*b(2) +

End Subroutine

!Calculates resulting epsilon of the Gay-Berne potential
Subroutine eps_calc(el,e2,eps0O,chi,chil,mi,ni,urij,eps)

Implicit None

Real(8),Dimension(3),Intent(in) :: el,e2,urij
Real(8),Intent(in) :: epsO,chi,chil,mi,ni
Real(8) :: epsl,eps2,ele2,rel,re2

Real(8), Intent(out) :: eps

a(3)*b(3)
a(2)*b(3)
a(1)*b(3)
a(0)*b(3)

*xe1(3)
*e2(3)

rel = urij(1)*el(1) + urij(2)*e1(2) + urij(3)
re2 = urij(1)*e2(1) + urij(2)*e2(2) + urij(3)
ele2 = el(1)*e2(1) + el(2)*e2(2) + e1(3)*e2(3)
epsl = (1.d0 - chi*chi*ele2*ele2)**(-0.5d0)
eps2 =

/(1.d0-chil*ele2))
eps = epsO*(epslx**ni)*(eps2%*mi)
End Subroutine

!Calculates attractive part of the Gay-Berne potential
Double precision Function uatrgb(sigma,sigs,el,e2,distij,epsO,chi,chil,mi

,ni,urij)
Implicit None
Real(8),Intent(in) :: sigma,sigs,distij,epsO,chi,chil,mi,ni
Real(8),Dimension(3),Intent(in) :: el,e2,urij
Real(8) :: eps
Call eps_calc(el,e2,epsO,chi,chil,mi,ni,urij,eps)
uatrgb = - 4.d0*eps*(sigs/(distij - sigma + sigs))**(6.d0)

End Function
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1.d0-0.5d0*chil*((rel+re2)**2.d0/(1.d0+chil*ele2)+(rel-re2)**2.d0
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!Calculates the repulsive part of the Gay-Berne potential
Double precision Function urepgb(sigma,sigs,el,e2,distij,epsO,chi,chil,mi

,ni,urij)
Implicit None
Real(8),Intent(in) :: sigma,sigs,distij,epsO,chi,chil,mi,ni
Real(8),Dimension(3),Intent(in) :: el,e2,urij

Real(8) :: eps

Call eps_calc(el,e2,epsO,chi,chil,mi,ni,urij,eps)

urepgb = 4.dO*eps*(sigs/(distij - sigma + sigs))**(12.d0)
End Function

'Checks if the trial move of particle 1 causes any overlap.
!'Tt goes over the other particles until an overlap is found.
!'Then, if an overlap is found, it immediately returns the overlap as true

!'Tf it does not find any overlap, it returns as false.
Subroutine check_overlap(n,boxl,i,ei,ri,e,r,sigs,sige,chi,overlap)
Implicit None
'Position and Orientation of moved particle
Real(8) ,Dimension(3),Intent(in) :: ri,ei,boxl
'Position and Orientation of all particles
Real(8) ,Dimension(3,n),Intent(in) :: r,e
Real(8),Intent(in) :: sigs,sige,chi
Logical,Intent(out) :: overlap
Integer,Intent(in) :: i,n
Integer :: j
Real(8) :: sig,sigma,modrij,maxsig
Real(8),Dimension(3) :: rij,urij
maxsig = max(sige,sigs)
Do j=1,n
If (i .ne. j) then
rij(:) =ri(:) - r(:,j)

'Minimum Image

rij(1) = rij(1) - boxl(1)*Anint(rij(1)/box1(1))
rij(2) = rij(2) - box1l(2)*Anint(rij(2)/box1(2))
rij(3) = rij(3) - box1l(3)*Anint(rij(3)/box1(3))

modrij = sqrt(rij(1)*rij(1)+rij(2)*rij(2)+rij(3)*rij(3))
If (modrij .1t. maxsig) then
urij(:) = rij(:)/modrij
sig = sigma(ei,e(:,j),urij,sigs,chi)
If (modrij .le. sig) then
overlap = .true.
Return
End If
End If



End if
End Do

overlap = .false.
End Subroutine
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Subroutine partial_pot(boxl,n,i,sigs,sige,ei,ri,e,r,epsO,chi,chil,mi,ni,&
&rcut,lambda,potij,overlap)

Implicit None

Integer,Intent(in) :: n,i
Real(8),Intent(in) :: sigs,sige,epsO,chi,chil,mi,ni,rcut,lambda
Real(8) ,Dimension(3),Intent(in) :: ei,ri, boxl
Real(8) ,Dimension(3,n),Intent(in) :: e,r
Real(8),Intent(out) :: potij
Logical, Intent(out) :: overlap
i rij,urij

Real(8),Dimension(3)

Real(8) :: modrij != distij

Integer :: j

Real(8) :: uatr,urep,sig,sigma,urepgb,uatrgb
Real(8) :: swrange,eps,sigsphere

sigsphere = sigs*sigs*sige
sigsphere = sigspherex*(1.d0/3.d0)

swrange = lambda*sigsphere
potij = 0.d0
overlap = .false.
Do j =1,n
If (j .ne. i) then
rij(:) =ri(:) - r(:,3)
'Minimum image
rij(1) = rij(1) - boxl(1)*Anint(rij(1)/box1(1))
rij(2) = rij(2) - boxl(2)*Anint(rij(2)/box1(2))
rij(3) = rij(3) - boxl(3)*Anint(rij(3)/box1(3))

ICalculate versor of rij (urij)

modrij =

sqrt (rij (D *rij (1) +rij(2)*rij(2)+rij(3)*rij(3))

If (modrij .1t. rcut) then
urij(:) = rij(:)/modrij
sig = sigma(ei,e(:,j),urij,sigs,chi)
If (modrij .lt. sig) then

overlap = .true.
Return

Else if (modrij .l1t. swrange) then

potij = potij - epsO

End If

End If
Else
End if
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End Do
End Subroutine

Subroutine total_pot(boxl,n,sigs,sige,e,r,epsO,chi,chil,mi,ni,rcut,lambda

,utotal)
Implicit None
Integer,Intent(in) :: n
Real(8),Intent(in) :: sigs,sige,epsO,chi,chil,mi,ni,rcut,lambda
Real(8),Dimension(3),Intent(in) :: boxl
Real(8),Dimension(3,n),Intent(in) :: e,r
Real(8),Intent(out) :: utotal
Real(8),Dimension(3) :: rij,urij

Real(8) :: modrij != distij

Integer :: 1i,j

Real(8) :: uatr,urep,sig,sigma,uatrgb,urepgb, swrange,eps

utotal = 0.d0

Do i =1,n-1

Do j=1+1,n

rij(:) = r(:,1)
'Minimum image
rij(1) = rij(1)

r(:,j)

box1(1)*Anint (rij(1)/box1(1))
rij(2) = rij(2) - boxl(2)*Anint(rij(2)/box1(2))
rij(3) = rij(3) - boxl(3)*Anint(rij(3)/box1(3))
ICalculate versor of rij (urij)
modrij = sqrt(rij(1)*rij(1)+rij(2)*rij(2)+rij(3)*rij(3))
If (modrij .1t. rcut) then
urij(:) = rij(:)/modrij
sig = sigma(e(:,1i),e(:,j),urij,sigs,chi)
swrange = lambdaxsig
If (modrij .lt. sig) then
print*,’0verlap detected: not possible for
this potential’
STOP
Else if (modrij .lt. swrange) then
uatr = uatrgb(sig,sigs,e(:,1i),e(:,j),&
&modrij,epsO,chi,chil,mi,ni,urij)
utotal = utotal - epsO
End If

End If
End Do
End Do
End Subroutine

Subroutine orderparameter(n,e,s)

Implicit None

Integer, Intent(in) :: n

Real(8), Intent(in),Dimension(3,n) :: e !Orientation

Real(8), Parameter,Dimension(3) :: efixed = (/0.d0,0.40,1.40/)



186

!0Order tensor of particle i and average

Real(8), Dimension(3,3) :: Qabi,Qab

Real(8) :: dkro,m,dump,qq,eigenv(3),p,phi,det,pq
Real(8), Intent(out) :: s

Integer :: io,1i,j,nstep,step,alpha,beta
Character :: infile*100, outfile*100

Qabi(:,:) = 0.40
s = 0.d0
Qab(:,:) = 0.d0

'Construct order tensor Qab
Do i =1,n !'Loop over particles
Do alpha = 1,3
Do beta = 1,3
If (alpha .eq. beta) then

dkro = 1.d0

Else
dkro = 0.d0

End If

Qabi(alpha,beta) = 1.5d0*e(alpha,i)*e(beta,i) - 0.5

dO*dkro + &
& Qabi(alpha,beta)
End Do
End Do
End Do

Qab(:,:) = Qabi(:,:)/dble(n)

'Find Eigenvalues of Qab
!Smith, 0. K.(1961). Eigenvalues of a symmetric 3 x 3 matrix.
'Communications of the ACM, 4(4), 168.
Ihttps://doi.org/10.1145/355578.366316tps://doi.org
/10.1145/355578.366316)
m = (Qab(1,1) + Qab(2,2) + Qab(3,3))/3.d0
det = (Qab(1,1)-m) *(Qab(2,2)-m)*(Qab(3,3)-m) + Qab(2,3)*Qab(1,2)*Qab
(3,1) +&
&Qab(1,3)*Qab(2,1)*Qab(3,2) - Qab(1,3)*(Qab(2,2)-m)*Qab(3,1)&
& - (Qab(1,1)-m)*Qab(2,3)*Qab(3,2) - Qab(1,2)*Qab(2,1)*(Qab(3,3)-
m)
qq = 0.5d0*det
p = (Qab(1,1)-m)*(Qab(1,1)-m)+(Qab(2,2)-m)*(Qab(2,2)-m)+(Qab(3,3)-m)*(
Qab(3,3)-m&
& + Qab(1,2)*Qab(1,2) + Qab(1,3)*Qab(1,3) + Qab(2,1)*Qab(2,1) + Qab
(2,3)*Qab(2,3)&
& + Qab(3,1)*Qab(3,1) + Qab(3,2)*Qab(3,2)
p = p/6.d0
Pq = p*p*p - qgq*qq
If (pq .ge. 0) then
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phi = atan(sqrt(pq)/qq)/3.d40
Else
phi = 0.d0
End If
eigenv(1l) = m + 2.d0*sqrt(p)*cos(phi)
eigenv(2) = m - sqrt(p)*(cos(phi) + sqrt(3.d0)*sin(phi) )
eigenv(3) = m - sqrt(p)*(cos(phi) - sqrt(3.d0)*sin(phi) )
s = maxval(eigenv)
End Subroutine



C.1 MC-NPT simulations results

¢ Simulated in a box with constant shape.

Table C.1: L/D = 2.50

P*

Ui

S

Phase

7.07

7.46

7.85

8.25

8.64

9.03

9.42

9.82
10.21
10.6

0.467 £ 0.003
0.477 £ 0.002
0.481 + 0.004
0.575 £ 0.005
0.598 + 0.004
0.606 £ 0.002
0.607 £ 0.005
0.616 = 0.005
0.623 £ 0.004
0.631 £ 0.004

0.029 £ 0.007
0.034 £ 0.008
0.030 = 0.008
0.931 £ 0.004
0.979 = 0.001
0.981 £ 0.001
0.980 £ 0.001
0.983 = 0.002
0.984 £ 0.001
0.986 + 0.001

PP G R K K
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Table C.2:

L/D = 3.00

n

S

Phase

7.07
7.3
7.54
7.78
8.01
8.25
8.48
8.72
8.95
9.19
9.42
9.66
9.9
10.13

0.460 £ 0.001
0.465 £ 0.003
0.467 £ 0.003
0.542 £+ 0.002
0.550 £+ 0.003
0.556 £ 0.002
0.590 £+ 0.003
0.594 £ 0.002
0.602 += 0.003
0.605 = 0.005
0.609 + 0.004
0.616 = 0.003
0.621 £ 0.003
0.624 £ 0.003

0.035 = 0.017
0.034 = 0.013
0.041 + 0.019
0.922 + 0.002
0.948 £ 0.003
0.953 = 0.005
0.981 + 0.001
0.982 £ 0.002
0.983 = 0.001
0.983 = 0.001
0.985 + 0.001
0.985 + 0.002
0.987 £ 0.001
0.986 = 0.001

I

I

I
SmA
SmA
SmA

SRRl e

Table C.3:

L/D =3.25

P*

n

S

Phase

6.89
7.4
791
8.93
9.19
9.44
9.7
9.95
10.21
10.47

0.453 £+ 0.002
0.532 £+ 0.002
0.551 £ 0.002
0.601 £ 0.005
0.604 £ 0.002
0.612 £ 0.005
0.613 £ 0.002
0.621 £ 0.002
0.621 £ 0.003
0.627 £ 0.003

0.028 = 0.008
0.926 = 0.003
0.958 £ 0.002
0.984 £ 0.001
0.984 £ 0.001
0.987 £ 0.001
0.987 + 0.001
0.988 £ 0.002
0.987 £ 0.001
0.988 = 0.001

SmA
SmA

Sl

SRRl
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Table C.4: L/D = 3.50

P*

n

S

Phase

6.87
7.15
7.42
7.7
7.97
8.25
8.52
8.8
9.07
9.35
9.62
9.9
10.17
10.45
10.72
11.0

0.451 £+ 0.002
0.524 £ 0.003
0.537 £ 0.003
0.544 + 0.001
0.550 = 0.004
0.559 =+ 0.003
0.588 &+ 0.003
0.595 = 0.003
0.604 £+ 0.003
0.607 = 0.003
0.616 £ 0.005
0.621 + 0.004
0.625 £ 0.004
0.626 = 0.003
0.631 = 0.003
0.637 = 0.005

0.038 £ 0.017
0.923 £ 0.004
0.951 %+ 0.005
0.957 = 0.001
0.961 £ 0.001
0.965 £ 0.001
0.982 £ 0.001
0.984 £ 0.001
0.988 + 0.001
0.986 + 0.001
0.988 £ 0.001
0.988 £ 0.001
0.989 =+ 0.001
0.989 + 0.001
0.989 + 0.001
0.991 + 0.001

I
SmA
SmA
SmA
SmA
SmA

PP R K R K KK
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Table C.5: L/D = 5.00

P*

Ui

S

Phase

0.39
0.79
1.18
1.57
1.96
2.36
2.75
3.14
3.53
3.93
4.32
4.71
5.11
5.9
5.89
6.28
6.68
7.07
7.46
7.85
8.25
8.64
9.03
9.42
9.82
10.21
10.6
11.39
11.78
12.17
12.57
12.96
13.35
13.74
14.14
14.53
14.92
15.32
15.71

0.139 + 0.001
0.193 £ 0.003
0.229 + 0.004
0.256 £ 0.004
0.280 £ 0.002
0.299 £+ 0.003
0.317 £ 0.004
0.332 = 0.003
0.348 £ 0.002
0.359 £ 0.002
0.372 £ 0.001
0.385 £ 0.002
0.397 £ 0.002
0.408 £ 0.003
0.480 +£ 0.004
0.500 £ 0.002
0.515 £+ 0.002
0.526 £ 0.001
0.537 £ 0.003
0.549 +£ 0.002
0.561 £ 0.004
0.567 = 0.002
0.603 £ 0.004
0.608 £ 0.005
0.617 £ 0.003
0.618 = 0.003
0.633 = 0.006
0.642 = 0.004
0.650 = 0.001
0.655 = 0.001
0.661 £ 0.002
0.663 = 0.003
0.673 £ 0.002
0.679 £ 0.001
0.678 £ 0.002
0.686 = 0.001
0.689 = 0.003
0.694 = 0.002
0.697 £ 0.001

0.028 = 0.004
0.029 £ 0.005
0.030 £ 0.004
0.029 £ 0.002
0.034 = 0.009
0.034 = 0.007
0.033 £ 0.004
0.032 £ 0.010
0.041 £ 0.006
0.040 £ 0.029
0.045 £ 0.010
0.042 = 0.010
0.059 £ 0.011
0.044 + 0.015
0.927 £ 0.002
0.951 + 0.003
0.963 £ 0.001
0.966 £ 0.002
0.971 £ 0.001
0.974 £ 0.001
0.978 £ 0.001
0.979 £ 0.001
0.992 £ 0.001
0.991 £ 0.001
0.992 £ 0.001
0.991 £ 0.001
0.993 + 0.001
0.995 £ 0.001
0.995 = 0.001
0.995 = 0.001
0.996 + 0.001
0.995 + 0.001
0.996 £ 0.001
0.996 £ 0.001
0.996 = 0.001
0.997 £ 0.001
0.997 + 0.001
0.997 £ 0.001
0.997 £ 0.001

bt bt b e b b e b e b b —

—

SmA
SmA
SmA
SmA
SmA
SmA
SmA
SmA

PP K G R K K K KK X

191



Table C.6:

L/D = 6.00

n

S

Phase

4.71
9.65
6.13
6.6
7.07
7.54
8.01
8.48
8.95
9.42
9.9
10.37
10.84
11.31
11.78
12.25
12.72
13.19
13.67
14.14

0.381 £ 0.003
0.475 £ 0.004
0.498 £ 0.002
0.513 £ 0.004
0.526 = 0.005
0.542 £+ 0.002
0.555 &+ 0.002
0.564 £ 0.001
0.576 £ 0.003
0.604 £ 0.005
0.620 £ 0.004
0.627 £ 0.003
0.636 £ 0.004
0.641 £ 0.003
0.652 £ 0.001
0.655 £ 0.003
0.665 £ 0.003
0.670 £ 0.002
0.682 £ 0.002
0.682 = 0.003

0.045 £ 0.030
0.949 £ 0.003
0.965 = 0.002
0.970 = 0.003
0.975 £ 0.002
0.979 £ 0.003
0.981 £ 0.001
0.983 = 0.001
0.986 + 0.001
0.993 + 0.001
0.995 £ 0.001
0.995 £ 0.001
0.996 = 0.001
0.995 + 0.001
0.997 + 0.001
0.996 £ 0.001
0.997 £ 0.001
0.997 £ 0.001
0.999 + 0.001
0.997 + 0.001

I
SmA
SmA
SmA
SmA
SmA
SmA
SmA
SmA

PP PG K K R K s

Table C.7:

L/D = 6.25

P*

n

S

Phase

4.42
4.91
5.4
5.89
6.38
6.87
7.36
7.85
8.34
8.84
9.33
9.82
10.31
10.8
11.29
11.78
12.27
12.76

0.369 £ 0.002
0.434 £+ 0.002
0.464 = 0.004
0.487 £ 0.002
0.503 £ 0.008
0.523 = 0.003
0.537 = 0.001
0.547 £ 0.003
0.562 £ 0.004
0.572 £ 0.005
0.583 = 0.001
0.615 £+ 0.005
0.627 = 0.002
0.638 £ 0.004
0.642 £ 0.006
0.649 £+ 0.004
0.657 £+ 0.002
0.664 = 0.003

0.101 + 0.016
0.896 = 0.009
0.947 £ 0.002
0.963 = 0.003
0.969 =+ 0.002
0.975 = 0.002
0.979 = 0.001
0.981 £ 0.002
0.984 £ 0.001
0.986 = 0.002
0.987 = 0.001
0.995 + 0.001
0.995 £ 0.001
0.996 £ 0.001
0.996 = 0.001
0.996 + 0.001
0.997 + 0.001
0.997 + 0.001

SmA
SmA
SmA
SmA
SmA
SmA
SmA
SmA
SmA
SmA

SRR e
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Table C.8: L/D = 6.50
P n S Phase
419 0.363 £+ 0.001 0.068 £ 0.004 I
4.29 0.366 = 0.003 0.058 £ 0.018 I
4.39 0.370 = 0.002 0.086 £ 0.033 I
4.49 0.395 = 0.005 0.709 £ 0.029 N
4.59 0.409 = 0.004 0.868 £ 0.018 SmA
4.7 0.415 £ 0.002 0.885 & 0.012 SmA
5.11  0.447 £ 0.002 0.921 £ 0.004 SmA
5.62  0.473 £0.004 0.959 + 0.003 SmA
6.13  0.497 £ 0.003 0.969 £ 0.002 SmA
6.64 0.513 £ 0.001 0.972 £ 0.004 SmA
7.15  0.529 £ 0.004 0.977 £ 0.004 SmA
7.66 0.543 £ 0.004 0.981 £ 0.003 SmA
8.17 0.556 £ 0.002 0.984 + 0.001 SmA
8.68 0.570 £ 0.001 0.986 £ 0.001 SmA
9.19 0.608 £ 0.005 0.995 £ 0.001 X
9.7 0.624 £ 0.003 0.998 £ 0.001 X
10.21  0.623 £ 0.003 0.995 +£ 0.001 X
10.72  0.642 £+ 0.001 0.998 + 0.001 X
11.23  0.642 £+ 0.002 0.996 + 0.001 X
11.74 0.654 £+ 0.001 0.997 + 0.001 X
12.25 0.655 £ 0.003 0.997 £ 0.001 X
12.76  0.666 £ 0.001 0.997 £ 0.001 X
Table C.9: L/D = 7.00
P n S Phase
3.96 0.354 £ 0.002 0.097 £ 0.031 I
4.07 0.384 £ 0.003 0.823 £ 0.015 N
4.18 0.392 =+ 0.003 0.863 £ 0.016 N
4.29 0.397 = 0.001 0.876 £ 0.009 N
4.4 0401 £ 0.002 0.880 £ 0.009 N
5.5 0.471 £0.003 0.963 = 0.003 SmA
6.05 0.495 £ 0.004 0.971 = 0.001 SmA
6.6 0.517 £0.002 0.977 £ 0.002 SmA
7.15 0.532 £0.004 0.981 £ 0.001 SmA
7.7 0.546 = 0.002 0.984 £ 0.001 SmA
8.25 0.560 £ 0.003 0.986 = 0.002 SmA
8.8 0.607 £ 0.004 0.998 £ 0.001 X
9.35 0.619 £ 0.002 0.998 +£ 0.001 X
9.9 0.621 £ 0.003 0.996 £ 0.001 X
10.45 0.629 £+ 0.004 0.996 =+ 0.001 X
11.0  0.637 £ 0.001 0.996 &+ 0.001 X

193



Table C.10:

L/D =750

P*

Ui

S

Phase

2.95
3.53
4.12
5.3
5.89
6.48
7.07

0.305 £ 0.002
0.335 £ 0.003
0.390 £ 0.002
0.464 £ 0.001
0.491 £ 0.003
0.509 £ 0.005
0.530 £ 0.003

0.050 £ 0.030
0.076 £ 0.026
0.898 £ 0.013
0.965 £ 0.002
0.973 £ 0.002
0.978 = 0.002
0.982 £ 0.001

I

I

N
SmA
SmA
SmA
SmA

Table C.11: L/D = 10.00

P*

Ui

S

Phase

0.79
1.57
2.36
3.93
9.9
6.28
7.07
7.85
8.64
9.42
10.21
11.0
11.78

0.165 £ 0.001
0.224 = 0.001
0.299 £+ 0.042
0.386 4 0.002
0.475 £ 0.001
0.504 £ 0.002
0.528 £ 0.002
0.548 £ 0.002
0.570 £ 0.002
0.611 + 0.001
0.628 £ 0.002
0.642 = 0.001
0.652 £ 0.003

0.024 £ 0.008
0.043 = 0.013
0.804 + 0.113
0.953 = 0.003
0.982 £ 0.002
0.986 + 0.001
0.989 £ 0.001
0.991 £ 0.001
0.993 = 0.001
0.998 + 0.001
0.998 + 0.001
0.998 + 0.001
0.999 £ 0.001
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Table C.12:

L/D = 0.05

P*

Ui

S

Phase

0.2
0.39
0.59
0.98
1.18
1.37
1.57
1.77
1.96
2.16
2.36
2.55
2.75
2.95
3.14
3.34
3.53
3.73
3.93
4.32
4.52
4.71
4.91
5.11

5.3

5.5
5.69
7.85

0.066 £ 0.001
0.096 £ 0.001
0.121 + 0.001
0.187 £ 0.001
0.212 £ 0.003
0.231 £ 0.004
0.251 £ 0.003
0.267 £ 0.001
0.283 £ 0.005
0.296 + 0.004
0.310 £ 0.003
0.322 £ 0.001
0.335 £ 0.003
0.346 £ 0.004
0.357 £ 0.005
0.369 £ 0.005
0.376 = 0.003
0.388 £ 0.005
0.396 £ 0.007
0.445 £ 0.007
0.455 £ 0.008
0.467 £ 0.006
0.473 £ 0.006
0.481 £ 0.007
0.489 £ 0.006
0.502 £ 0.006
0.511 = 0.007
0.575 £ 0.001

0.047 = 0.008
0.061 £ 0.002
0.086 £ 0.027
0.830 = 0.019
0.883 £ 0.014
0.896 + 0.031
0.925 £ 0.008
0.935 = 0.009
0.955 = 0.008
0.959 £+ 0.005
0.963 = 0.009
0.966 £ 0.006
0.976 £ 0.005
0.978 £ 0.006
0.977 £ 0.007
0.983 + 0.004
0.984 + 0.002
0.986 £ 0.001
0.987 £ 0.003
0.990 = 0.001
0.991 +£ 0.001
0.992 = 0.001
0.993 £ 0.001
0.992 £ 0.002
0.992 +£ 0.002
0.994 £ 0.001
0.994 + 0.001
0.999 £ 0.001

I

O Z22Z22222222 2222222 ——
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Table C.13:

L/D =0.10

P*

n

S

Phase

0.39
0.79
1.18
1.57
1.96
2.75
3.14
3.53
3.93
4.32
4.71
5.11
5.5
5.89
6.28
6.68
7.07
7.46
7.85

0.118 + 0.001
0.165 + 0.002
0.200 = 0.001
0.231 £ 0.003
0.257 £ 0.004
0.321 £ 0.002
0.349 = 0.001
0.370 £ 0.004
0.388 £ 0.007
0.413 £ 0.001
0.461 £ 0.004
0.478 £ 0.003
0.504 = 0.007
0.516 £ 0.004
0.530 £ 0.001
0.546 £ 0.003
0.559 £ 0.004
0.569 + 0.005
0.580 £ 0.003

0.043 £ 0.005
0.053 = 0.010
0.058 + 0.013
0.071 = 0.019
0.078 £ 0.034
0.742 £ 0.035
0.887 £ 0.016
0.912 + 0.013
0.929 £+ 0.009
0.956 £ 0.006
0.972 £ 0.002
0.972 £ 0.001
0.981 £+ 0.003
0.982 +£ 0.002
0.983 £ 0.002
0.982 £ 0.002
0.984 £ 0.003
0.986 = 0.001
0.987 = 0.001

|

Qoo QZz22Z222 22 — = — -

Table C.14:

L/D=0.11

P*

n

S

Phase

2.16
2.59
3.02
3.46
4.75
5.18
5.62
6.05
6.48
6.91
7.34
7.78
8.21
8.64

0.275 £ 0.001
0.302 £ 0.005
0.327 £ 0.002
0.354 £ 0.004
0.462 = 0.007
0.489 £ 0.006
0.506 £ 0.003
0.527 £ 0.006
0.543 £ 0.003
0.556 £ 0.004
0.566 £ 0.005
0.578 £ 0.004
0.587 £ 0.001
0.597 £ 0.005

0.081 £ 0.017
0.091 £ 0.043
0.094 + 0.041
0.120 + 0.028
0.962 = 0.008
0.975 £ 0.003
0.956 £+ 0.002
0.977 £ 0.002
0.981 £+ 0.002
0.981 £+ 0.002
0.984 £ 0.003
0.985 &+ 0.002
0.987 = 0.001
0.988 + 0.001

Cub
Cub
Cub

aoaoaocacaoaoaaa
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Table C.15:

L/D =0.12

P*

n

S

Phase

1.88
2.36
2.83
3.3
3.77
4.24
4.71
5.18
5.65
6.13
6.6
7.07
7.54
8.01
8.48
8.95

0.259 + 0.005
0.287 £ 0.002
0.317 £ 0.003
0.344 £ 0.003
0.369 £ 0.006
0.395 + 0.005
0.457 £ 0.005
0.486 £ 0.004
0.510 £ 0.003
0.524 £ 0.007
0.543 £ 0.005
0.558 £ 0.004
0.570 £ 0.002
0.582 £ 0.007
0.593 £ 0.003
0.592 £ 0.004

0.072 + 0.014
0.081 + 0.024
0.088 = 0.059
0.112 £+ 0.060
0.114 + 0.054
0.092 £ 0.057
0.950 £+ 0.008
0.969 £+ 0.002
0.978 £ 0.002
0.982 £ 0.002
0.978 £ 0.003
0.981 £+ 0.002
0.966 = 0.001
0.984 = 0.003
0.986 £ 0.001
0.964 £ 0.003

I

I
Cub
Cub
Cub
Cub

ONONONONONONORONON®!

Table C.16:

L/D =0.12

P*

Ui

S

Phase

4.52
4.62

0.441 + 0.005
0.460 £ 0.006

0.937 =+ 0.014
0.943 £ 0.010

C
C

Table C.17:

L/D =0.15

P*

Ui

S

Phase

2.95
3.53
4.12
4.71
4.83
4.95
5.07
5.18
5.3
5.89

0.324 £ 0.002
0.353 £ 0.003
0.382 £ 0.003
0.412 £ 0.003
0.470 £ 0.004
0.476 £ 0.006
0.483 £ 0.002
0.489 £ 0.005
0.497 £ 0.002
0.516 + 0.005

0.054 £ 0.028
0.058 £ 0.043
0.068 += 0.030
0.080 &= 0.019
0.888 = 0.002
0.905 £+ 0.002
0.918 £ 0.005
0.930 £ 0.005
0.938 = 0.005
0.946 £ 0.002

Cub
Cub
Cub

aaoaoaaa

197



Table C.18:

L/D =02

Ui

S

Phase

0.79
1.57
2.36
3.14
3.93
4.71
5.5
5.65
5.81
2.97
6.13
6.28
7.07
7.85
8.64

0.194 + 0.002
0.260 £ 0.001
0.304 £ 0.002
0.342 £ 0.003
0.372 £ 0.004
0.405 £ 0.004
0.434 £ 0.004
0.508 £ 0.003
0.512 £ 0.004
0.515 = 0.001
0.525 £ 0.002
0.532 £ 0.003
0.551 £ 0.004
0.560 = 0.001
0.583 £ 0.004

0.042 + 0.004
0.043 £ 0.006
0.048 + 0.011
0.052 + 0.011
0.051 + 0.012
0.058 = 0.028
0.048 £+ 0.016
0.898 £ 0.006
0.861 £ 0.007
0.886 = 0.008
0.924 +£ 0.006
0.930 £ 0.006
0.927 £ 0.007
0.946 £ 0.004
0.955 £+ 0.006

I
I
I
I
I

Cub
Cub

aaoaoaoaaaa

Table C.19:

L/D =025

P*

Ui

S

Phase

4.91
5.89
6.87
7.85
8.84

0.411 £ 0.004
0.444 £ 0.004
0.537 £ 0.002
0.563 £ 0.003
0.591 + 0.002

0.032 = 0.008
0.042 £+ 0.010
0.838 £ 0.007
0.908 £+ 0.008
0.959 + 0.004

I
Cub
C
C
C

Table C.20:

L/D =0.30

P*

n

S

Phase

5.89
6.48
7.07
7.66
8.25
8.84
9.42

0.443 £ 0.002
0.460 £ 0.003
0.536 £ 0.004
0.561 £ 0.003
0.580 £ 0.003
0.606 £ 0.005
0.589 =+ 0.002

0.051 + 0.024
0.041 + 0.016
0.770 £ 0.006
0.865 = 0.003
0.910 = 0.003
0.941 £ 0.003
0.915 £ 0.004

I
Cub

ONONORON@!

Table C.21:

L/D =0.35

P*

n

S

Phase

4.12
5.5
6.87
8.25

0.394 £ 0.003
0.434 £ 0.006
0.469 £ 0.004
0.567 £ 0.003

0.038 £ 0.010
0.044 £ 0.020
0.041 £+ 0.009
0.822 £ 0.011

O —
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Table C.22:

L/D = 0.50

P*

Ui

S

Phase

1.96
3.93
5.89
7.85
8.25
8.64

0.320 £ 0.002
0.398 = 0.001
0.451 £ 0.003
0.492 £ 0.003
0.573 £ 0.003
0.594 £ 0.003

0.035 £ 0.002
0.034 £ 0.005
0.037 £ 0.006
0.039 £ 0.015
0.855 £ 0.007
0.926 £ 0.005

I

I
I
I
C
C
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C.2 Codes

The program requires an input file named hc_input.sci. An example is given below.

Number_of_particles=

Molecule_Type= 1

Cold_Configuration= .true. ! If false it will require an initial
configuration file

Production_run= .false.

Reduced_pressure= p_red ! p_red = p*D~3/kT

Number_of_steps=

Number_of_cycles_per_step=

Print_every_x_steps= x ! Print hc.dat every x steps

Max_rotational_displacement_rad= 0.05d0 ! Maximum rotational displacement
in radians

Max_translational_displacement= 0.05d0

Max_volume_scaling= 0.00140

Adjust_drmax_every_x_step= 1000 ! Adjust maximum translational
displacement

Adjust_dvmax_every_x_step= 1000 ! Adjust maximum volumetric
displacement

Acceptance_Ratio= 0.4

Cylinder_D_and_L= diameter length

Inputs_to_generate_initial_configuration_only_if_cold

Cubic_box_1_or_fcc_2_or_packed_3= 1 ! This example will generate a cubic
box

Initial_Packing_Fraction=  0.01d0

Initial_Quaternion_axis= 0d0 1.d0 0.d0

Rotation_around_axis_degrees= 45.d0

Listing C.1: Example of the input file hc_input.sci
The main code needs three modules to run properly:
e module global global variables.f90: contains the global variables

e module initial configuration.f90: contains the routines to generate the initial con-
figuration

e module mc.f90: contains the main routines
The program will generate three output files:

— conf.xyz: contains the trajectory. The file is organized as follows: the first line
is the total number of particles, second line is the x, y and z dimensions of the
simulation box, and from the third line on, we have the positions and orienta-
tions of each particle (type of the molecule, x position, y position, z position,
scalar part of the quaternion, x component of the quaternion, y component of
the quaternion, z component of the quaternion, D/2, D/2, L).

— current conf.xyz: contains the current configuration of the particles (same
organization of file 'conf.xyz’.)
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— he.dat: The file is organized as follows: step, acceptance ratio (translational
and rotational), acceptance ratio (volume moves), maximum translational dis-
placement, maximum angular displacement, maximum change in volume, re-
duced pressure, packing fraction, nematic order parameter, x component of the
phase director, y component of the phase director, z component of the phase
director.

C.2.1 NPT Monte Carlo code for hard cylinders
(main _hc mc npt.f90)
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! NPT Monte Carlo simulation of hard cylinders
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! Developer: Joyce Tavares Lopes

! Supervisor: Dr. Luis Fernando Mercier Franco

! School of chemical engineering (FEQ) - UNICAMP
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! This code was developed during a research period at

! Universita Ca’ Foscari Venezia under the supervision of

! Professor Achille Giacometi. (SEP 2019/FEB 2020)
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Program HC_MC_NPT

use monte_carlo

use initial_configuration

use global_variables

use order_parameters

Implicit None

! Local Variables

Integer,Dimension(:),Allocatable :: vseed

Integer :: seed_size,seed = 349766914

Real(8) :: rnum

| o el
! Properties

! Characterization of Particle



Real(8), Allocatable :: rnew(:,:)

Real(8) :: boxlnew(3),rij(3),ri(3),ei(3)
Real(8) :: quatO_axis(3),quatO_angle
Logical :: cold_conf,production

Integer :: structure

Integer :: 1i,j,k,jlayer
Character :: get*100,moltype*1l,outfile*100
Character :: inputfilel*100,inputfile2*100,outfile2*100

Integer :: moves_re,move_v
Integer :: step2print,stepdrmax,stepdvmax
Real(8) :: acc_mov,acc_mov_v,acc_ratio

Real(8), dimension(0:3) :: qi

Real(8) :: deltap,deltav,deltah,new_pot,old_pot
Logical :: overlap

Real :: start,finish,startstep,finishstep
Real(8),dimension(0:3) :: gnew

Real(8) :: s2,evec(3)

Real :: attempts_re

Character :: fileOx1
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! Initialize Random_Number (Fortran intrinsic function)
|

Call Random_seed(size=seed_size)
Allocate(vseed(seed_size))
vseed(:) = seed

Call Random_seed(put=vseed)

Call cpu_time(start)
!

!Simulation Input File

!
'Monte Carlo simulation and Potential parameters
Open(101,File="hc_input.sci’)

Read(101,*) get,n

Read(101,%*) get,moltype

Read(101,*) get,cold_conf

Read(101,*) get,production

Read(101,*) get,p

Read(101,*) get,nsteps

Read(101,*) get,ncycles

Read(101,*) get,step2print

Read(101,%*) get,max_angle

Read(101,*) get,max_r

Read(101,*) get,max_v

Read(101,*) get,stepdrmax

Read(101,*) get,stepdvmax
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Read(101,%*) get,acc_ratio
! Cylinder parameters
Read(101,*) get,d,l

1

aspect_ratio = 1/d

v_particle = 0.25d0*pixd*d*1l

halfl = 0.5d0x*1

halfd = 0.5d0*d

!Variable ’space’ is only used in packed box initial configuration
spacex = 0.d0

spacez = 0.d0
!

! Initial Configuration - Warm or Cold
|
Select Case (cold_conf)
Case(.true.)
Read(101,%*) get
Read(101,*) get,structure
Read(101,%*) get,etal
Read(101,*) get,quatO_axis(1l),quatO_axis(2),quatO_axis(3)
Read(101,*) get,quatO_angle
Select Case(structure)
Case(1)
Allocate(r(3,N) ,rnew(3,N),q(0:3,N),e(3,N))
call cubic(etal,quatO_axis,quatO_angle)
Case(2)
Allocate(r(3,N),rnew(3,N),q(0:3,N),e(3,N))
call fcc(eta0,quatO_axis,quatO_angle)
Case(3)
call packed_box(eta0,quatO_axis,quatO_angle)
Allocate(rnew(3,N))
End Select
Case(.false.)
inputfile2 = ’current_conf.xyz ’
Open(102,FILE=trim(adjustl(inputfile2)))
Read(102,%*) n
Allocate(r(3,N),rnew(3,N),q(0:3,N),e(3,N))
Read (102,*) box1l(1),box1(2),box1(3)
Do 99 i=1,n
Read(102,*) moltype,r(1,i),r(2,1i),r(3,1),&
&q(0,1),q(1,i),9(2,1) ,q(3,i) ,halfd,halfd,1
99 End Do
Close(102)
End Select
Close(101)
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! Simulation Output Files

1

1

1

! Formats

1 Format(4x,A4,2x,A7,3x,a7,4x,a6,3x,a7,3x,a7,&
&3x,al13,3x,all,4x,a4,3x,a7,6x,a4,10x,a2,2x,a2)

2 Format(I7,f10.5,f10.5,f10.5,f10.5,f10.5,2x%,&
&f10.5,4x,f10.5,2x,f10.5,f10.3,f10.3,f10.3)

3 Format(A13,f10.5)

4 Format(A13,I5)

Open(200,File=’conf.xyz’)

Write(200,%) n

Write(200,*) boxl(1l),box1(2) ,box1(3)

Do i=1,n

Write(200,*) moltype,r(1,i),r(2,1),r(3,1),&
&q(0,1),q(1,1),q(2,1),q(3,1) ,halfd,halfd,1

End Do

Call flush(200)

Open(203,File=’current_displacements’)
Open(202,File=’current_conf.xyz’)

Write(outfile2,’ ("PropP",£3.1,".dat")’) p
Open(201,File=’hc.dat’,status=’unknown’)

Open(204,file = ’parameters.dat’)

! Tnitialization
|

v = box1(1)*boxl(2)*box1(3)
rho = dble(n)/v

d3 = dx*dxd

max_v = max_v*d3

rcut = 4.d0%*d

max_r = max_r*d
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! Calculate orientations from initial quaternion rotation

Do 100 i=1,n !'Loop over particles
Call quat_to_ori(efixed,q(:,1i),e(:,1))
100 End Do

! Check Overlap in Initial Configuration
!

overlap = .false.
Do i=1,n-1

ei(:) = e(:,1)
ri(:) = r(:,1)

qi(:) = q(:,1)
Call check_overlap_cylinder(boxl,i,qi,ei,ri,r,overlap)
If (overlap) then
Print*, ’Overlap detected in initial configuration!’
STOP
End If
End Do

! Print Initial Conditions and Parameters

Call orderparameter(s2,evec)

Write(*,4) °N =’ ,N

Write(*,3) ’L/D =’,aspect_ratio
Write(*,3) ’P* =2,p

Write(*,3) ’eta_i =’,rho*v_particle
Write(*,3) ’rho =’,rho

Write(*,3) ’<P2> =’,s2

Write(204,4) °N =’,N

Write(204,3) ’L/D =’,aspect_ratio
Write(204,3) ’Px =’ p

Write(204,3) ’eta_i =’,rho*v_particle
Write(204,3) ’rho =’,rho

Write(204,3) ’<P2> =’,s2

flush(204)

step = 0
acc_mov = 0.d0



acc_mov_v = 0.d0

Write(201,2) step,acc_mov,acc_mov_v,max_r/d,max_angle,max_V/d3,&

&p,rho*v_particle,s2,evec(l) ,evec(2),evec(3)
Call flush(201)

206

! Start Trial moves

Do 103 step=1,nsteps !Loop over steps
overlap = .false.

attempts_re = 0

moves_re = 0

move_v = 0

acc_mov = 0

Do 104 cyclei=1,ncycles !Loop over cycles
deltah = 0.d0

Call random_number (rnum)

i = Idint(rnum*dble((n+1))) + 1

If (i .le. n) then
attempts_re = attempts_re + 1

! Translation move for particle i
Call new_position(i,boxl,ri)
! Rotational move for particle i

! Randomly rotate old quaternion
Call random_rotate_quat(q(:,i),qi)
! New orientation after rotation
Call quat_to_ori(efixed,qi,ei)

! Check Overlap
Call check_overlap_cylinder(boxl,i,qi,ei,ri,r,overlap)

If (.not. overlap) then
q(:,i) = qi(:)
r(:,i) =ri(:)
e(:,1) = ei(:)
moves_re = moves_re + 1
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Call new_volume(rnew,boxlnew,vnew)
deltav = vnew - v
ICheck Overlap after volume scaling

Do i=1,n-1
ei = e(:,1)
ri = rnew(:,1)
qi = q(:,1)

Call check_overlap_cylinder(boxlnew,i,qi,ei,ri,rnew,overlap)
If (overlap) exit

End Do
If (.not. overlap) then
deltah = pxdeltav/d3
deltah = deltah - (dble(n)+1d0)*dlog(vnew/v)

If (deltah .1t. 0.0) then
r(:,:) = rnew(:,:)
rho = dble(n)/vnew
box1(:) = boxlnew(:)
v = box1(1)*box1(2)*box1(3)
move_v = 1 + move_v
Else If ((deltah) .1t. 75) then
Call random_number (rnum)
If (dexp(-deltah) .gt. rnum) then
r(:,:) = rnew(:,:)
rho = dble(n)/vnew
box1(:) = boxlnew(:)
v = box1(1)*box1(2)*box1(3)
move_v = 1 + move_v
End If
End If
End If
End If
104 End Do

acc_mov = dble(moves_re)/dble(attempts_re)
if (attempts_re .1t. ncycles) &
& acc_mov_v = dble(move_v)/dble(ncycles - attempts_re)

!
! Write properties and configuration every step2print steps
!
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if (mod(step,step2print) == 0) then

! Properties File

Write(201,2) step,acc_mov,acc_mov_v,max_r/d,&
&max_angle,max_V/d3,&
&p,eta,s2,evec(l) ,evec(2) ,evec(3)

Call flush(201)

! Last Configuration File (position and quaternions)

Write(203,*) ’Max Translational displacement’,max_r

Write(203,*) ’Max Rotational displacement’,max_angle

Write(203,*) ’Max Volume’ ,max_v

Rewind (203)

Write(202,*) n

Write(202,*) boxl(1),box1(2) ,box1(3)

Do 200 i=1,n

Write(202,*) moltype,r(1,i),r(2,i),r(3,1),q(0,1i),&
&q(1,1),q(2,1),q(3,1) ,halfd,halfd,1

200 End DO

Call flush(202)

Call flush(203)

Rewind (202)

Rewind (203)

I If (Mod(step,10*step2print) == 0) then

! Configuration File (position and quaternions)

Write(200,*) n

Write(200,*) boxl(1),box1(2),box1(3)

Do 205 i=1,n

Write(200,*) moltype,r(1,i),r(2,i),r(3,1),q(0,1i),&
&q(1,i),q(2,1),q(3,1) ,halfd,halfd,1

205 End DO
Call flush(200)
| End If

End If
!




! Adjust Maximum Displacement
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! Adjust max_r every stepdrmax steps
If (mod(step,stepdrmax) == 0) then
If (acc_mov .gt. acc_ratio) then
max_r = 1.05*max_r
max_angle = 1.05*max_angle
Else
max_r = 0.95%max_r
max_angle = 0.95*max_angle
End If
End If

! Adjust max_v every stepdvmax steps
If (attempts_re .1t. ncycles) then
If (mod(step,stepdvmax) == 0) then
If (acc_mov_v .gt. acc_ratio) then
max_v = 1.05%max_v
Else
max_v = 0.95xmax_v
End If
End If
End If
103 End Do

Call cpu_time(finish)
Call orderparameter(s2,evec)
erte (* , *) )======= Flnal ======="

Write(x,3) ’eta_f =’,eta
Write(*,3) ’<P2> =7,s82

Write(*,3,advance = "no") ’Run Time =’, (finish-start)/60.d0

Write(*,*) ’min’

wr1te(204’*) === Flnal —_——====="
Write(204,3) ’eta_f =’,eta
Write(204,3) ’<P2> =?,s2

Write(204,3,advance = "no") ’Run Time =’, (finish-start)/3600.d0

Write(204,*) ’h’

Close(200)
Close(201)
Close(202)
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Close(203)
Close(204)
End

C.2.2 Module to set global variables
(module global global variables.f90)

module global_variables

implicit none

! Variables Declaration
|

Integer,Public :: n

Integer,Public :: n_ave

Integer,Public :: nsmectic_layers,nlayers

| o
! Properties

Real(8),Public :: d,dsq,l,lsq,aspect_ratio
Real(8),Public :: halfl,halfd,v_particle
Real(8),Public :: spacex,spacez
Real(8),Public :: dist_cutoff
Real(8),Public :: DL_spacing,hlayer

Real(8) ,Public :: EV1(3)
Real(8),Public :: p2, pd(3) ! Nematic order parameter and Phase director

Real(8),Allocatable,Public :: r(:,:),q(:,:),e(:,:)
Real(8),Public :: v,box1(3)

Real(8),Public :: Lbox

Real (8),Parameter,Public :: efixed(3) = (/0.40,0.d0,1.40/)
Real(8) ,Parameter,Public :: eyfixed(3) (/0.40,140,040/)
Real (8) ,Parameter,Public :: exfixed(3) (/1.40,0d40,0d0/)

! Potential - Patches Paramters - Helix parameter



Real(8),Public ::
Integer,Public ::
Real(8),Public ::
Real(8),Public ::
Integer,Public ::

t,eps,lambda,rcut,rcutsq,swrange
n_patches

pitch,1_h,r_h thelices radius
d_bead,r_bead,fusion,sqd_bead
n_beads,np

'Reduced temperature

Real(8),Public ::

Real(8),Public ::
Real(8),Public ::
Real(8),Public ::
Real(8),Public ::
Real(8),Public ::

reduced_temperature !kbT/eps

Z1,Z2 ! charge

eps_elec !dielectric constant of solvent

kd !inverse Debye screening length [cm™-1]
Ic,Is 'ionic strength

1b !Bjerrum length (LB=e~2/epsilon*KB*T) [cm]

!0ther Reduced temperature

Real(8),Public ::
Real(8),Public ::
Real(8),Public ::
'Renormalization
Real(8),Public ::
Real(8) ,Public ::
Real(8),Public ::
Real(8),Public ::

Real(8),Public ::
Real(8),Public ::

(20),2z1(20)

Real(8),Public ::

! RDF

Real(8),Public ::
Integer,Public ::
Real(8),Public,allocatable ::

T_star !diameter/Bjerrum length
P_star
zeta !'independent reduced screening parameter

Z_big

yuk_cte,y_energy
d_cm,d3_cm3 !Diameter in cm
v_cm3

dspacing(20),smectic_R(20),smectic_I(20),smectic(20)
nz(20) ,nz_ave (20) ,sinterm(20),costerm(20) ,Psi6l_ave

dsp,theta,smR,smI

delr,delr_par,delr_per
nbins

gr_par(:), gr_per(:)

Real(8),Parameter,Public :: na = 6.0221409d23

Real(8),Parameter,Public ::

pi = 4.d0*datan(1.d0)

Real (8) ,Parameter,Public :: kb = 1.38064852d-23
Real(8) ,Parameter,Public :: kb_cgs= 1.38d-16 ! [erg/K]
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hist(:), hist_per(:), hist_par(:), gr(:),
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Real(8) ,Parameter,Public :: e_charge = 4.803d-10 !electronic charge [cm

~3/2%g~1/2*sec”-1]

Real(8) ,Parameter,Public :: mpa2pa = 1d6
Real(8) ,Parameter,Public :: m2ang = 1d10
Real(8) ,Parameter,Public :: ang3tocm3 = 1d-24
Real(8),Parameter,Public :: bartoba = 1d6

end module

C.2.3 Module to generate initial configurations
(module initial configuration.f90)
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! Module to generate initial configurations
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! Developer: Joyce Tavares Lopes
! Supervisor: Dr. Luis Fernando Mercier Franco
! School of chemical engineering (FEQ) - UNICAMP
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! This code was developed during a research period at
! Universita Ca’ Foscari Venezia under the supervision of
! Professor Achille Giacometi.
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module initial_configuration
use global_variables
use monte_carlo
implicit none
contains

Subroutine cubic(etal,quatO_axis,quatO_angle)
Implicit None
Integer :: 1i,j,k,id,nl
Real(8) :: a,etal,quatO_axis(3),quatO_angle
Real(8),Allocatable :: rx(:),ry(:),rz(:)
Character :: moltypex*l

! Convert to radians
quatO_angle = quatO_angle*pi/180.d0
quatO_angle = quatO_angle/2.d0
q(0,:) = dcos(quatO_angle)
q(1,:) = dsin(quatO_angle)*quatO_axis(1)
q(2,:) = dsin(quatO_angle)*quat0_axis(2)
q(3,:) = dsin(quatO_angle)*quat0_axis(3)
! Calculation of Volume

V = N*v_particle/eta0 !Angstrom



box1(:) = Vx%x(1.d0/3.d0) !'Box length
nl = nint(dble(n)**(1.d40/3.40))
a = box1l(1)/nl

! Qutput File

! Start positioning particles

id = 1
Do 101 i = 1,nl
Do 102 j = 1,nl
Do 103 k = 1,nl
! Particles on the right vertice of unit cell
r(1,id) = (dble(i)-1.d0)*a - 0.5%box1(1)
r(2,id) = (dble(j)-1.d0)*a - 0.5%box1(2)
r(3,id) = (dble(k)-1.d0)*a - 0.5%box1(3)

id = id + 1
103 End DO
102 End Do
101 End Do
End

Subroutine fcc(etal,quatO_axis,quatO_angle)
Implicit None
Integer :: 1i,j,k,uc,id
Real(8) :: 1x,ly,lz,ucl,lbox

Real(8) :: quatO_axis(3),quatO_angle,quatw,quatx,quaty,quatz

Real(8) :: etal
Character :: get*100,moltypex*1l

! Convert to radians

quatO_angle = quatO_anglexpi/180.d0
quatO_angle = quatO_angle/2.d0

q(0,:) = dcos(quatO_angle)

q(1,:) = dsin(quatO_angle)*quatO_axis(1)
q(2,:) = dsin(quatO_angle)*quat0_axis(2)
q(3,:) = dsin(quatO_angle)*quat0O_axis(3)

! Calculation of Volume
V = N*v_particle/eta0 !'3Angstrom
lbox = V*x%(1.d0/3.d0) ! Cubic Box length
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uc = nint((dble(n)*0.25)**(1.d40/3.d0)) ! Number of unit cells per

axis
ucl = 1lbox/uc ! Length of unit cell
! Make the unit cell proportional to the ellipsoid: 1lz/lx =
1x*ly*lz, ly=1x --> 3ucl = S1x*1/d

1x = (ucl**3.d0*d/1)*%*(1.40/3.40)
1z = 1xx*1/d
ly = 1x

1/d, B%ucl =
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box1(1) = lx*uc
box1(2) = ly*uc
box1(3) = lz*xuc

print*,box1(1),box1(2),box1(3)

! Start positioning particles
id = 1
Do 101 i = 1,uc
Do 102 j = 1,uc

Do 103 k = 1,uc

! Particles on the right vertice of unit cell
r(1,id) = (dble(i)-1.d0)*1x - 0.5%box1(1)
r(2,id) = (dble(j)-1.d0)*1ly - 0.5%box1(2)
r(3,id) = (dble(k)-1.d0)*1z - 0.5%box1(3)

! Particles on the front face of unit cell
r(1,id+1) = 0.5d0*1x + (dble(i)-1.d0)*1x -

0.5%box1(1)
r(2,id+1) = (dble(j)-1.d0)*1ly - 0.5%box1(2)
r(3,id+1) = 0.5d0*1z + (dble(k)-1.d0)*1z -
0.5%box1(3)

! Particles on the left face of unit cell
r(1,id+2) = (dble(i)-1.d0)*1x - 0.5%box1(1)
r(2,id+2) = 0.5d0*ly + (dble(j)-1.d0)*1ly -

0.5%box1(2)
r(3,id+2) = 0.5d0*1z + (dble(k)-1.d0)*1z -
0.5%box1(3)

! Particles on the down face of unit cell
r(1,id+3) = 0.5d0*1x + (dble(i)-1.d0)*1x -

0.5%box1(1)
r(2,1id+3) = 0.5d0*ly + (dble(j)-1.d0)*ly -
0.5%box1(2)
r(3,id+3) = (dble(k)-1.d0)*1z - 0.5*box1(3)
id = id + 4
103 End DO
102 End Do
101 End Do
End
Subroutine packed_box(etal,quatO_axis,quatO_angle)
Implicit None
Integer :: i,j,k,id,nl,nxx,nzz
Real(8) :: az,ax,etal,quatO_axis(3),quatO_angle
Real(8),Allocatable :: rx(:),ry(:),rz(:)
Character :: moltypexl

! Calculation of Volume

I 'V = N*0.25d0*pi*d*d*1/eta0 !*Angstrom
1 + 0.01d0 + spacez
d + 0.01d0 + spacex

az
ax
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Inl

nint (dble(n)**(1.40/3.40))
nxx = dnint(dble(n)*1/d)**(1.40/3.40)
nzz = dnint(dble (nxx)*d/1)
box1(1) dble (nxx) *ax
box1(2) box1 (1)
box1(3) dble(nzz)*az
V = box1(1)*box1(2)*box1(3)
N = nxx*nxx*nzz
! Qutput File

Allocate(r(3,N),q(0:3,N),e(3,N))

! Convert to radians

quatO_angle = quatO_angle*pi/180.d0
quatO_angle = quatO_angle/2.d0

q(0,:) = dcos(quatO_angle)

q(1,:) = dsin(quatO_angle)*quatO_axis(1)
q(2,:) = dsin(quatO_angle)*quatO_axis(2)
q(3,:) = dsin(quatO_angle)*quat0_axis(3)

! Start positioning particles
id = 1
Do 101 i = 1,nxx
Do 102 j = 1,nxx
Do 103 k = 1,nzz
! Particles on the right vertice of unit cell

r(1,id) = (dble(i)-1.d0)*ax - 0.5d0*box1(1)
r(2,id) = (dble(j)-1.d0)*ax - 0.5d0*box1(2)
r(3,id) = (dble(k)-1.d0)*az - 0.5d0*box1(3)
id = id + 1
103 End DO
102 End Do
101 End Do
End

end module

C.2.4 Module with main subroutines
(module mc.f90)
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! Module with important routines to Monte Carlo simulations

! (including overlap check and the calculation of potentials

! between several different nonspherical particles).
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! Developer: Joyce Tavares Lopes

! Supervisor: Dr. Luis Fernando Mercier Franco

! School of chemical engineering (FEQ) - UNICAMP
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! Some subroutines were developed during a research period at

! Universita Ca’ Foscari Venezia under the supervision of

! Professor Achille Giacometi.
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module monte_carlo

use global_variables

implicit none

Real (8) ,Dimension(3),Private :: el,e2,rl1,r2,r12
Real(8),Dimension(0:3),Private :: q1,q92

Real(8) ,Dimension(3),Private :: mule2,lanlel
Real(8),Private :: cc,ele2,r12el,r12e2,r12sq
Real(8),Private :: dlvo_pot,sphere_dlvo_pot
Real(8),Private :: yukawa_pot

contains

Subroutine check_overlap_sc(boxlc,i,ei,ri,rc,overlap)
Implicit None
Real(8) ,Dimension(3),Intent(in) :: ri,ei,boxlc
! Matrix of Positions to be checked
Real(8),Intent(in) :: rc(3,n)
Logical,Intent(out) :: overlap
Integer,Intent(in) :: i
Integer :: j
Real(8) :: rijsq,dsph,dsph2,sd2

Real(8),Dimension(3) :: rij,urij
Logical :: parallel

dsq = dxd

dsph =1 +d

dsph2 = dsph*dsph

r1(:) = ri(:)

el(:) = ei(:)

overlap = .false.

Do j=1,n

If (i .ne. j) then
r2(:) = rc(:,j)
r12(:) = r2(:) - r1(:)
e2(:) = e(:,j)

'Minimum Image

r12(1) = r12(1) - boxlc(1)*Dnint(r12(1)/boxlc(1))
r12(2) = r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) = r12(3) - boxlc(3)*Dnint (r12(3)/box1lc(3))

r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)
If (r12sq .le. dsph2) then
Call shortest_distance(sd2,parallel)
If (sd2 .le. dsq) then
overlap = .true.
Return
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End If
End If
End if
End Do
Return
End Subroutine

Subroutine multiply_quats(a,b,qab)
Implicit None
Real(8),Dimension(0:3),Intent(in) :: a,b
Real(8),Dimension(0:3),Intent(out) :: gab

qab(0) = a(0)*b(0) - a(D)*b(1) - a(2)*b(2) - a(3)*b(3)
qab(1) = a(1)*b(0) + a(0)*b(1) - a(3)*b(2) + a(2)*b(3)
qab(2) = a(2)*b(0) + a(3)*b(1) + a(0)*b(2) - a(1)*b(3)
qab(3) = a(3)*b(0) - a(2)*b(1) + a(1)*b(2) + a(0)*b(3)

End Subroutine

Subroutine new_position(i,boxlc,ri)
Implicit None
Integer, Intent(in) :: i
Real(8), Intent(in) :: boxlc(3)
Real(8), Intent(out) :: ri(3)
Real(8) :: rnum

Call random_number (rnum)

ri(1) = r(1,i) + (2.d0*rnum - 1.d0)*max_r

Call random_number (rnum)

ri(2) = r(2,i) + (2.d0*rnum - 1.d0)*max_r

Call random_number (rnum)

ri(3) = r(3,i) + (2.d0*rnum - 1.d0)*max_r
! Cooral box after translation

ri(1) = ri(1) - boxlc(1)*Dnint(ri(1)/boxlc(1))
ri(2) = ri(2) - boxlc(2)*Dnint(ri(2)/boxlc(2))
ri(3) = ri(3) - boxlc(3)*Dnint(ri(3)/boxlc(3))

End Subroutine

Subroutine new_volume(rnew,boxlnew,vnew)
Implicit None
Integer :: j
Real(8), Intent(out) :: boxlnew(3),rnew(3,n),vnew
Real(8) :: rnum,lnvnew,boxr,vcheck

Call random_number (rnum)
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lnvnew = dlog(v) + (2.dO*rnum - 1.d0)*max_v
vnew = dexp(lnvnew)

boxr = (vnew/v)**(1.d0/3.d0)

boxlnew(:) = boxr*boxl(:)

Do j=1,n
rnew(1,j) = boxrx*r(1,j)
rnew(2,j) = boxr*r(2,j)
rnew(3,j) = boxr*r(3,j)

End Do
End Subroutine

Subroutine floppy_new_volume(rnew,boxlnew,vnew)
Implicit None

Integer :: j,axis
Real(8), Intent(out) :: boxlnew(3),rnew(3,n),vnew
Real(8) :: rnum,boxr,lmax

boxlnew = boxl
T
max_v**x(1.d0/3.40)

rnew
Imax

Call random_number (rnum)

if (rnum .1t. 0.33d0) then

axis = 1

else if (rnum .1t. 0.66d0) then
axis = 2

else
axis = 3

end if

Call random_number (rnum)
boxlnew(axis) = boxl(axis) + (2.dO0*rnum - 1.d0)*1lmax

boxr = boxlnew(axis)/boxl(axis)

Do j=1,n
rnew(axis,j) = boxrx*r(axis,j)
End Do

vnew = boxlnew(1l)*boxlnew(2)*boxlnew(3)

End Subroutine
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Subroutine quat_to_ori(eold,qc,enew)
Implicit None

Real(8) ,Dimension(3),Intent(in) :: eold
Real(8),Dimension(3),Intent(out) :: enew
Real(8),Dimension(0:3),Intent(in) :: qc
Real(8),Dimension(3,3) :: rotM,rotMT
Integer :: 1i,]

IRotation Matrix rotM(3,3) - Allen and TilVdesley, 2th edition page 110,
equation 3.40

rotM(1,1) = qc(0)*qc(0) + gc(1)*qc(l) - qc(2)*qc(2) - qc(3)*qc(3)
rotM(1,2) = 2.d0*(qc(1)*qc(2) + qc(0)*qc(3))
rotM(1,3) = 2.d0*(qc(1)*qc(3) - qc(0)*qc(2))
rotM(2,1) = 2.d0*(qc(1)*qc(2) - qc(0)*qc(3))
rotM(2,2) = qc(0)*qc(0) - qc(1)*qc(l) + qc(2)*qc(2) - qc(3)*qc(3)
rotM(2,3) = 2.d0*(qc(2)*qc(3) + gqc(0)*qc(1))
rotM(3,1) = 2.d0*(qc(1)*qc(3) + qc(0)*qc(2))
rotM(3,2) = 2.d0*(qc(2)*qc(3) - qc(0)*qc(1))
rotM(3,3) = qc(0)*qc(0) - gc(1)*qc(1) - qc(2)*qc(2) + qc(3)*qc(3)

!Transpose of Rotation Matrix

Do i=1,3
Do j=1,3
rotMT(i,j) = rotM(j,1i)
End Do
End Do

INew orientation

enew(l) = eold(1)*rotMT(1,1) + eold(2)*rotMT(1,2) + e0ld(3)*rotMT(1,3)
enew(2) = eo0ld(1)*rotMT(2,1) + eold(2)*rotMT(2,2) + eo0ld(3)x*rotMT(2,3)
enew(3) = eold(1)*rotMT(3,1) + eo0ld(2)*rotMT(3,2) + eold(3)*rotMT(3,3)
End

Subroutine random_rotate_quat(qold,qgnew)
Implicit None
Real(8),Dimension(0:3),Intent(in) :: qold
Real(8),Dimension(0:3),Intent(out) :: gnew
Real(8),Dimension(0:3) :: qrot
Call rotation_quat(qrot)

Call multiply_quats(qrot,qold,qgnew)

End Subroutine

Subroutine rotation_quat(quat)
Implicit None



Real(8),Dimension(0:3) :: quat

Real(8) :: rn,ang

Real(8),Dimension(3) :: axis

Call random_number(rn) !Random number ’rn’ in range [0,1]
rn = 2.d0*rn - 1d0 !Random number ’rn’ now in range [-1,1]
ang = max_angle*xrn !Random angle

quat (0) = dcos(ang*0.5)

'Random axis

Call rand_vector(axis)

quat(1:3) = dsin(ang*0.5)*axis(:)

End Subroutine
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Code to calculate shortest distance between segments

Outputs the square of the shortest distance

Reference:

"A Fast Algorithm To Evaluate The Shortest Distance Between Rods"
Carlos Vega and Santiago Lago

Computers Chem. Vol. 18, No.1li, pp. 55-59, 1994

sksk sk sksk ok ok ok ok ok ok sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk o ok k ok sk sksksk sk sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok kok sk sk sk sk sk sk ok ok ok ok
Subroutine shortest_distance(sd2,parallel)

Implicit None

Real(8),Intent(out) :: sd2

Real(8) :: mul,lanl

Real(8) :: deltamu,deltalan

Real(8) :: halfll,halfl2

Real :: start, finish

Logical,Intent(out) :: parallel

Initialization

halfll = 0.5d0*1

halfl2 = 0.5d0x*1

r12sq = r12(1)*r12(1) + ri12(2)*r12(2) + r12(3)*r12(3)

ri2el = r12(1)*el1(1) + r12(2)*e1(2) + r12(3)*el1(3)

r12e2 = r12(1)*e2(1) + r12(2)*e2(2) + r12(3)*e2(3)

ele2 = el(1)*e2(1) + el(2)*e2(2) + e1(3)*e2(3)

cc = 1.d0 - ele2xele2

parallel = .false.

Check if the segments are parallel to each other
If (cc .1t. 1d-10) then
parallel = .true.
Check if the segments are not (almost) perpendicular to rij
If (dabs(ri2el) .gt. 1d-10) then
Take the extreme closer to the other particle
lanl = dsign(halfll,ri2el)
Calculate closest point between segment 1 and line 2

220
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mul = lanl*ele2 -ri12e2
If (dabs(mul) .gt. halfl2) then
mul = dsign(halfl2,mul)
End If
! Case in which segments are perperpendicular to rij. sd = rij
Else
mul = 0.40
lanl = 0.4d0
End if

Else
! Calculate values of mu’ and lambda’
mul = (ri2elx*ele2 - ri2e2)/cc
lanl = (ri12el - ri12e2*ele2)/cc

If ((dabs(mul) .le. halfl2) .and. (dabs(lanl) .le. halfll)) then
Else

deltalan = dabs(lanl) - halflil

deltamu = dabs(mul) - halfl2

! Check if it is in Regions 3 or 1
If (deltalan .gt. deltamu) then
lanl = dsign(halfll,lanl)
mul = lanl*ele2 - ri2e2
If (dabs(mul) .gt. halfl2) mul = dsign(halfl2,mul)

! Regions 2 or 4

Else
mul = dsign(halfl2,mul)
lanl = mulx*ele2 + ri2el
If (dabs(lanl) .gt. halfll) lanl = dsign(halflil,lanl
)
End if

End If

End If

! Vectors to be used in the cylinder overlap check

lanlel(:) = lanlx*el(:)

mule2(:) = mulxe2(:)

! Calculates shortest distance sd

sd2 = rl12sq + lanl*lanl + mul*mul + 2.dO0*mul*rl2e2 -&
&2.d0*lanl*ri12el - 2.dO*mul*lanl*ele2

Return

End Subroutine
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Subroutine Rand_vector(vec)
Implicit None

Real(8), Intent(out) :: vec(3)
Real(8) :: nl,n2,nsq

nsq = 2.d0

Do while (nsq .gt. 1.d0)
Call random_number (nl)
Call random_number (n2)
nl = 2d0*nl1 - 1.40
n2 = 2d0*n2 - 1.40
nsq = nl*nl + n2*n2

End Do
vec(1) = 2.d0*nl*dsqrt(1.d0-nsq)
vec(2) = 2.d0*n2+*dsqrt(1.d0-nsq)
vec(3) = 1.d0-2.d0*nsq

End

Subroutine check_overlap_cylinder(boxlc,i,qi,ei,ri,rc,overlap)
Implicit None
Real(8) ,Dimension(3),Intent(in) :: ri,ei,boxlc
Real(8),Dimension(0:3),Intent(in) :: qi
! Matrix of Positions to be checked
Real(8),Intent(in) :: rc(3,n)
Logical,Intent(out) :: overlap
Integer,Intent(in) :: i
Integer :: j
Real(8) :: dsph,dsph2,sd2
Logical :: parallel

dsq = dxd

1sq = 1x1

dsph =1 + d
dsph2 = dsph*dsph
r1(:) = ri(:)
el(:) = ei(:)
ql(:) = qi(:)

Do j=1,n

If (i .ne. j) then

r2(:) = rc(:,j)

ri2(:) = r2(:) - r1(:)

e2(:) = e(:,j)

q2(:) = q(:,3)

'Minimum Image

r12(1) = r12(1) - boxlc(1)*Dnint(r12(1)/boxlc (1))
r12(2) = r12(2) - boxlc(2)*Dnint (r12(2)/boxlc(2))
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r12(3) = r12(3) - boxlc(3)*Dnint(r12(3)/boxlc(3))
r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)

! Check if the spheres overlap
If (r12sq .le. dsph2) then
! Check overlap of spherocylinders
Call shortest_distance(sd2,parallel)
If (sd2 .le. dsq) then
r2(:) = r1(:) + r12(:)
Call overlap_cylinder(sd2,parallel,overlap)
If (overlap) return

End If
End If
End if
End Do
overlap = .false.

End Subroutine

Subroutine overlap_cylinder(sd2,parallel,overlap)
Implicit None
! Matrix of Positions to be checked
Logical,Intent(out) :: overlap
Logical,Intent(in) :: parallel
! Square of Shortest Distance betweem segments
Real(8),Intent(in) :: sd2
Real(8) :: r12_parallel(3)
Real(8) :: r12_perpendicular(3)
ISquare of the parallel ri12psq(l) and perpendicular r12psq(2)
!components of ril2
Real(8) :: ri2psq(2)
! Position of Disks of Cylinders 1 and 2
Real(8) :: d1(2,3),d2(2,3),di(3),dj(3)
Real(8) :: ei(3),ej(3),ri(3),qi(0:3),qj(0:3)
Integer :: 1i,j
halfl 0.5d0*1
halfd 0.5d0*d

! Check overlap if the cylinders are parallel
If (parallel) then
r12_parallel(:) = el(:)*ri12el
r12_perpendicular(:) = r12(:) - r12_parallel(:)
r12psq(1l) = r12_parallel(1)*r12_parallel(1)&
&+ r12_parallel(2)*r12_parallel(2)&
&+ r12_parallel(3)*r12_parallel(3)
r12psq(2) = r12_perpendicular(1)*r12_perpendicular(1)&
&+ r12_perpendicular(2)*r12_perpendicular(2)&
&+ r12_perpendicular(3)*ri12_perpendicular(3)
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If (r12psq(l) .le. 1*1 .and. ri2psq(2) .le. dxd) then

overlap = .true.
Else

overlap = .false.
End If

Else
Call rim_rim(sd2,overlap)
ITf (overlap) print*,’rim-rim overlap’
If (overlap) return
! Check overlap between all disks

di(1,:) =r1(:) + el1(:)*halfl
d1(2,:) =r1(:) - el(:)*xhalfl
d2(1,:) = r2(:) + e2(:)*xhalfl
d2(2,:) = r2(:) - e2(:)*halfl
ei(:) = el(:)
ej(:) = e2(:)
Do i=1,2
di(:) = d1(i,:) !Disks on cylinder 1
Do j=1,2
dj(:) = d2(j,:)
Call disk_disk(di,dj,ei,ej,overlap)
ITf (overlap) print*,’disk-disk overlap’
If (overlap) return
End Do
End Do

! Rim of Cylinder 1 versus Disks on Cylinder 2

ri(:) = r1(:)

ei(:) = el(:)

qi(:) = q1(:)

ej(:) = e2(:)

qj(:) = q2(:)

Do j=1,2
dj(:) = d2(j,:)
Call disk_rim(dj,ej,qj,ri,ei,qi,overlap)
ITf (overlap) print*,’disk-rim overlap’
If (overlap) return

End Do

! Rim of Cylinder 2 versus Disks on Cylinder 1

ri(:) = r2(:)

ei(:) = e2(:)

qi(:) = q2(:)

ej(:) = el(:)

qj(:) = q1(:)



Do j=1,2
dj(:) = 4d1(j,:)
Call disk_rim(dj,ej,qj,ri,ei,qi,overlap)
ITf (overlap) print*,’disk-rim overlap’
If (overlap) return

End Do

End If
End Subroutine

Subroutine rim_rim(sd2,overlap)
Implicit None
Logical,Intent(out) :: overlap
Real(8),Intent(in) :: sd2
Real(8) :: projl,proj2

! mu and lambda are from the shortest_distance algorithm

! Calculate the projection of rl2 + mue2 on el
projl = (r12(1) +mule2(1))*el(1)

projl = projl + (r12(2) +mule2(2))*el(2)
projl = projl + (r12(3) +mule2(3))*el(3)
projl = dabs(proj1)

! Calculate the projection of rl12 + lambdael on e2

proj2 = (-r12(1) +lanlel(1))*e2(1)

proj2 = proj2 + (-r12(2) +lanlel(2))*e2(2)
proj2 = proj2 + (-r12(3) +lanlel(3))*e2(3)
proj2 = dabs(proj2)

! If the shortest distance between the two cylinders pass through
! both rims, the overlap occurs since it is the same as in the
! spherocylinders overlap, which has already been tested and found

! to be true

If ( projl .1t. halfl .and. proj2 .l1t. halfl) then

overlap = .true.
Else

overlap = .false.
End If

! If (sd2 .le. D) overlap = .true.

End Subroutine

Subroutine disk_disk(di,dj,ei,ej,overlap)
Implicit None

Logical,Intent(out) :: overlap
Real(8),Intent(in) :: di(3),dj(3),ei(3),ej(3)
Real(8) :: idistsq,jdistsq,dij(3),dijsq
Real(8) :: segi,segj,radiussq
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Real(8) :: eij(3),modeij,pipj
! Vector joining disks centers of mass

dij(:) = dj(:) - di(:)
dijsq = dij(1)*dij(1) + dij(2)*dij(2) + dij(3)*dij(3)
! Check if the distance between disks is less than D. If it is larger
than D,
! there is no overlap
If (dijsq .gt. dsq) then
overlap = .false.
return
End If
! Square of Shortest Distance between disk i and
! interesection line between plans of the disks
idistsq = dij(1)*ej(1) + dij(2)*ej(2) + dij(3)*ej(3)
idistsq = idistsqg*idistsq
idistsq = idistsq/cc

! Square of Shortest Distance between disk j and

! interesection line between plans of the disks
jdistsq = dij(1)*ei(1) + dij(2)*ei(2) + dij(3)*ei(3)
jdistsq = jdistsq*jdistsq

jdistsq = jdistsqg/cc

! Test the necessary but not sufficient condition for the
! overlap
radiussq = halfdxhalfd
If (idistsq .lt. radiussq .and. jdistsq .lt. radiussq) then
! Test overlap
segi = dsqrt(radiussq - idistsq)
segj = dsqrt(radiussq - jdistsq)

! Calculate the projection of dij in the
! direction of the instersection line

! Direction of intersection line between the plans of the
! two disks --> eij
Call cross_product(ei,ej,eij)
! Normalize orientation of intersection line eij
modeij = eij(1)*eij (1) + eij(2)*eij(2) + eij(3)*eij(3)
modeij = dsqrt(modeij)
eij(:) = eij(:)/modeij
! Projection of dij in the eij
pipj = dij(1)*eij (1) + dij(2)*eij(2) + dij(3)*eij(3)
pipj = dabs(pipj)
If (pipj .le. (segi + segj)) then
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overlap = .true.
Else
overlap = .false.
End If
Else
overlap = .false.
End If

End Subroutine

Subroutine disk_rim(dj,ej,qj,ri,ei,qi,overlap)
Logical,Intent(out) :: overlap

Logical :: do_bisec

Real(8),Intent(in) :: dj(3),ri(3),ei(3),ej(3)
Real(8),Intent(in) :: qi(0:3),qj(0:3)

! ei1 = eiz -- > eiy and eix are the other axis on the particle
Real(8),Dimension(3):: ejy(3),ejx(3)

Real(8), Dlmen81on(3) : ui,djri,djui,pc,pd,T
Real(8) :: Tpsq(2),Tsq,djri_ei

Real(8) :: djuisq,dhyp,fact

Real(8) :: ejx_ei,ejy_ei,djri_ejy,djri_ejx
Real(8) :: lambda,num,den,hyp,cosphi,sinphi
Real(8) :: lambdal,lambda2,lambdai,fi

Real(8) :: tol,w,f1,f2,f,df,ddhyp,dump

Integer :: cont,contb
djri(:) = djC:) - ri(:)
djri_ei = djri(1)*ei(1) + djri(2)*ei(2) + djri(3)*ei(3)

! uj is the closest point to disk i on cylinder j (or on the cylinder
axis line)

ui(:) = ri(:) + ei(:)*djri_ei

djui(:) = djC:) - ui(:)

djuisq = djui(1)*djui(1) + djui(2)*djui(2) + djui(3)*djui(3)

If (djuisq .gt. dsq) then
overlap = .false.
Else If (djuisq .1t. halfd*halfd .and. dabs(djri_ei) .gt. halfl) then
! In this case, the overlap check is a disk-disk check, so, if it
! the disk-disk overlap has already been tested, there is no
! overlap. Otherwise, this test should not be done here, but in
! disk-disk check.
overlap = .false.
return

Else If (djuisq .le. halfd*halfd .and. dabs(djri_ei) .le. halfl) then
! In this case, there is overlap
!printx*, ’here’



Else

overlap = .true.
!print*,’disk-rim center overlap’
return
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! The overlap might happen between another point on the circle of disk i

! and cylinder j. Here a iterative process is necessary to find the
closest

! approach between any point on the circle of the disk and the rim.

! Axis on cylinders i

! Calculate the function with f1 = f(lambda = L/2) and f2 = f(lambda

Call quat_to_ori(eyfixed,qj,ejy)

Call quat_to_ori(exfixed,qj,ejx)

ejx_ei = ejx(D*ei(l) + ejx(2)*ei(2) + ejx(3)*ei(3)

ejy_ei = ejy(1)*ei(1) + ejy(2)*ei(2) + ejy(3)*ei(3)
djri_ejx = djri(1)*ejx(1) + djri(2)*ejx(2) + djri(3)*ejx(3)
djri_ejy = djri(1)*ejy(1) + djri(2)*ejy(2) + djri(3)*ejy(3)

Point on disk --> Pd = Dj + Rcos(phi)ejx + Rsin(phi)ejx
Point on cylinder i --> Pc = ri + lambdaei

Function that minimizes the distance between disk and cylinder =
lambda - R(eejxei)cos(phi) - Rsin(phi) (ejy*ei) - (Djrixei) =
lambda - R(ejx*ei)den/hyp - R(ejy*ei)num/hyp - (Djrixei) = 0

0

L/2)

lambda = halfl

Call func_lambda(ejy_ei,djri_ejy,ejx_ei,djri_ejx,djri_ei,lambda,fl

,dump)

lambda = -halfl

Call func_lambda(ejy_ei,djri_ejy,ejx_ei,djri_ejx,djri_ei,lambda,f2

,dump)

' if £f1xf2 > O, the point of closest of the disk j is outside the

rim

! of the cylinder i (root of f is out the limits of the cylinder

segment)
! and so, it is checked in the other possible configurations
If (f1xf2 .gt. 0 ) then
overlap = .false.
return
End If

! Newton-Raphson (max of 20 iterations)
lambda = 0.d0

w = 0.95d0

cont = 0
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tol = 1d-6
do_bisec = .false.

Call func_lambda(ejy_ei,djri_ejy,ejx_ei,djri_ejx,djri_ei,lambda,f,
df)

Do while (dabs(f) .gt. tol .and. .not. do_bisec)
cont = cont + 1
If (cont .gt. 20 ) do_bisec = .true.
If (cont .gt. O .and. mod(cont,10) .eq. 0) w = 0.99d0*w
fact = -f/df
! If it fact gives a value outside the length of the
cylinder,
! do this to put it back in
If (dabs(fact) .gt. halfl) fact = dsign(halfl,fact)
lambda = lambda + w*xfact
Call func_lambda(ejy_ei,djri_ejy,ejx_ei,djri_ejx,djri_ei,
lambda, f,df)
End Do

! Bisection (if over 20 Newton-Raphson Iterations)

If (do_bisec) then

contb = 0

lambdal = -halfl

lambda2 = halfl

Call func_lambda(ejy_ei,djri_ejy,ejx_ei,djri_ejx,djri_ei,lambdal,
f1,dump)

Call func_lambda(ejy_ei,djri_ejy,ejx_ei,djri_ejx,djri_ei,lambda2,
£2,dump)

lambdai = 0.5d0*(lambdal + lambda2)

Call func_lambda(ejy_ei,djri_ejy,ejx_ei,djri_ejx,djri_ei,lambdai,
fi,dump)

Do while (dabs(fi) .gt. tol)

If (fixf1l .gt. 0.d0) then

lambdal = lambdai
f1 = fi

Else
lambda2 = lambdai
f2 = fi

End If

lambdai = 0.5d0*(lambdal + lambda2)
Call func_lambda(ejy_ei,djri_ejy,ejx_ei,djri_ejx,djri_ei,&
&lambdai,fi,dump)
contb = contb + 1
If (contb .gt. 100000) print*,’Too many bisection
iterations=’,contb

End Do
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lambda = lambdai
End If

! Point on Disk (Pd) and on Cylinder (Pc)
num = lambda*ejy_ei - djri_ejy
den = lambdax*ejx_ei - djri_ejx
hyp = dsqrt(num*num + den*den)
cosphi = den/hyp
sinphi = num/hyp
Pd(:) = dj(:) + halfd*cosphi*ejx(:) + halfd*sinphixejy(:)
Pc(:) = ri(:) + lambdaxei(:)
IT(:) = Pd(:) - Pc(:)
T(:) = Pd(:) - ri(:)
Tsq = T(1)*T(1) + T(2)*T(2) + T(3)*T(3)
! Square of Component of T parallel to ei
Tpsq(1) = ei(1)*T(1) + ei(2)*T(2) + ei(3)*T(3)
Tpsq(1l) = Tpsq(1)*Tpsq(l)
! Square of Component of T perpendicular to ei
Tpsq(2) = Tsq - Tpsq(1)

If (Tpsq(1) .1t. halflxhalfl .and. Tpsq(2) .1t. halfdxhalfd) then
overlap = .true.

Else

overlap .false.
End If

End If
End Subroutine

Subroutine func_lambda(ejy_ei,djri_ejy,ejx_ei,djri_ejx,djri_ei,lambda,f,
df)

Implicit None

Real(8),Intent(in) :: ejy_ei,djri_ejy,ejx_ei,djri_ejx,djri_ei,lambda

Real(8),Intent(out) :: f,df

Real(8) :: num,den,hyp,dhyp,ddhyp

num = lambdax*ejy_ei - djri_ejy
den = lambda*ejx_ei - djri_ejx
hyp = dsqrt(num*num + den*den)

dhyp = (num*ejy_ei + den*ejx_ei)/hyp

f = lambda - halfdxdhyp - djri_ei

ddhyp = ((ejy_ei*ejy_ei + ejx_ei*ejx_ei) - dhyp*dhyp)/hyp
df = 1.d0 - halfd*ddhyp

End Subroutine

Subroutine cross_product(vl,v2,vout)



Implicit none

Real(8),Intent(in) :: v1(3),v2(3)
Real(8),Intent(out) :: vout(3)
v1i(2)*v2(3) - v1(3)*v2(2)
v1i(3)*v2(1) - v1(1)*v2(3)
vi(1D)*v2(2) - v1(2)*xv2(1)

vout (1)
vout (2)
vout (3)

End Subroutine

231

Subroutine partial_potential_patchy_cylinder(boxlc,i,qi,ei,ri,rc,overlap,

potij)

Implicit None

Real(8) ,Dimension(3),Intent(in) :: ri,ei,boxlc
Real(8),Dimension(0:3),Intent(in) :: qi

! Matrix of Positions to be checked
Real(8),Intent(in) :: rc(3,n)
Logical,Intent(out) :: overlap
Real(8),Intent(out) :: potij

Real(8)
Integer,I

Integer ::
:: dsph,dsph2,sd2

:: patches_c1(3,n_patches)
:: patches_c2(3,n_patches)

Real(8)
Real(8)
Real(8)

nt

Logical ::

overlap =

dsq = dxd
1sq = 1x1

:: r12_patch(3),sq_r12_patch

ent(in) :: 1
j,k,z,n_inter

parallel

.false.
potij = 0.d0

dsph =1 + d

dsph2
ri(:)
el(:)
q1(:)
halfl
Do j=1,n

dsph*xdsph
ri(:)
ei(:)
qi(:)
0.5d0*1

If (i .ne. j) then

r2(:) = rc(:,j)

ri2(:) = r2(:) - r1(:)

e2(:) = e(:,j)

q2(:) = q(:,3)

'Minimum Image

r12(1) = r12(1) - boxlc(1)*Dnint(r12(1)/boxlc(1))
ri2(2) r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) r12(3) - boxlc(3)*Dnint(r12(3)/boxlc(3))
r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)
r2(:) = r1(:) + r12(:)
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! Check if the spheres overlap
If (r12sq .le. dsph2) then
! Check overlap of spherocylinders
Call shortest_distance(sd2,parallel)
If (sd2 .le. dsq) then
Call overlap_cylinder(sd2,parallel,overlap)
If (overlap) return
End If

End If

If (.not. overlap .and. rl2sq .lt. rcutsq) then
Call patches_allocation(rl,el,patches_cl)
Call patches_allocation(r2,e2,patches_c2)
Call patches_interaction(boxlc,patches_cl,patches_c2

,n_inter)

potij = potij - dble(n_inter)*eps

End If

End if
End Do

End Subroutine

Subroutine total_potential_patchy_cylinder(boxlc,rc,overlap,potij)
Implicit None
Real(8),Dimension(3),Intent(in) :: boxlc
! Matrix of Positions to be checked
Real(8),Intent(in) :: rc(3,n)
Logical,Intent(out) :: overlap
Real(8),Intent(out) :: potij
Real(8) :: ri12_patch(3),sq_ri12_patch
Integer :: 1
Integer :: j,k,z,n_inter
Real(8) :: dsph,dsph2,sd2
Real(8) :: patches_c1(3,n_patches)
Real(8) :: patches_c2(3,n_patches)
Logical :: parallel
overlap = .false.
potij = 0.d0
dsq = dxd
1sq = 1x*1
dsph =1 + d
dsph2 = dsph*dsph
halfl = 0.5d0x*1
Do i =1,n-1

=
[
~
—~
Il

rc(:,i)
e(:,1)

o®
—
N\
N~
Il
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ql(:) = q(:,1)

Do j=i+1l,n
r2(:) = rc(:,j)
ri2(:) = r2(:) - r1(:)
e2(:) = e(:,j)
q2(:) = q(:,3)
'Minimum Image
ri2(1) r12(1) - boxlc(1)*Dnint(r12(1)/boxlc(1))
r12(2) r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) = r12(3) - boxlc(3)*Dnint(r12(3)/boxlc(3))
r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)
r2(:) =ri1(:) + r12(:)

! Check if the spheres overlap
If (r12sq .le. dsph2) then
! Check overlap of spherocylinders
Call shortest_distance(sd2,parallel)
If (sd2 .le. dsq) then
Call overlap_cylinder(sd2,parallel,overlap)
If (overlap) return
End If

End If

If (.not. overlap .and. rl12sq .lt. rcutsq) then
Call patches_allocation(rl,el,patches_c1)
Call patches_allocation(r2,e2,patches_c2)
Call patches_interaction(boxlc,patches_cl,patches_c2
,n_inter)
potij = potij - dble(n_inter)*eps
End If
End Do
End Do

End Subroutine

Subroutine patches_allocation(rc,ec,patches)
implicit none

real(8),intent(out) :: patches(3,n_patches)
real(8),intent(in) :: rc(3),ec(3)

integer :: 1i,j

patches(:,1) = rc(:) + ec(:)*halfl
patches(:,2) = rc(:) - ec(:)*halfl

End Subroutine

Subroutine helices_allocation(rc,ec,qc,helix)
implicit none



real(8),intent(in) :: rc(3),ec(3),qc(0:3)
real (8),intent(out) :: helix(3,n_beads)
real(8) :: ang,bottom(3),ex(3),ey(3)
integer :: 1

Call quat_to_ori(exfixed,qc,ex)

Call quat_to_ori(eyfixed,qc,ey)
bottom(:) = rc(:) - ec(:)*halfl

ang = 2.d0*pi*dble(np)/dble(n_beads - 1)
Do i=1,n_beads

helix(:,i) = bottom(:) + r_h*dcos((i-1)*ang)*ex(:)&

234

&+ r_h*dsin((i-1)*ang)*ey(:) + ((i-1)*ang*pitch/(2.d0*pi))*

ec(:)
End Do

End Subroutine

Subroutine helices_parameters()
implicit none

real(8) :: aux,nb,f,a,b,c,x(2)
d_bead = d*xd_bead

sqd_bead = d_beadx*d_bead

f =1.40 - fusion

halfd = 0.5d0*d

r_bead = 0.5d0*d_bead

r_h = halfd + r_bead

aux = dble(np)*dsqrt((1l/dble(np))**2.d0 + pi*pix(d+d_bead)**2.d0)/d_bead

n_beads = floor(aux/f +1.d40)
printx*,’fusion before’,1.40 - £
f = aux/dble(n_beads-1)
print*,’fusion after’,1.d0 - £
pitch = 1/dble(np)

1_h = dsqrt(pitch*pitch + 4.d0*pi*pi*r_h*r_h)

End Subroutine

Subroutine patches_interaction(boxlc,patches_cl,patches_c2,n_inter)

implicit none
real(8),intent(in) :: boxlc(3)

real(8),intent(in) :: patches_c1(3,n_patches)
real(8),intent(in) :: patches_c2(3,n_patches)

real(8) :: ri12_patch(3),sq_r12_patch
integer :: 1i,]

integer,intent(out) :: n_inter
n_inter = 0
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Do i=1,n_patches !Loop over patches on cylinder 1
Do j=1,n_patches !Loop over patches on cylinder 2
r12_patch(:) = patches_c1(:,i) - patches_c2(:,j)

! ! Minimum Image Convention

sq_r12_patch = r12_patch(1)*r12_patch(1l) + r12_patch(2)x*
r12_patch(2) + &
& r12_patch(3)*ri12_patch(3)
if (sq_r12_patch .le. swrange) then
n_inter = n_inter + 1
end if
End do
End do

End Subroutine
Subroutine partial_potential_helical_patchy_cylinder(boxlc,i,qi,ei,ri,rc,
overlap,potij)

Implicit None

Real(8),Dimension(3),Intent(in) :: ri,ei,boxlc
Real(8),Dimension(0:3),Intent(in) :: qi

! Matrix of Positions to be checked

Real(8),Intent(in) :: rc(3,n)

Logical,Intent(out) :: overlap

Real(8),Intent(out) :: potij

Real(8) :: r12_patch(3),sq_r12_patch
Integer,Intent(in) :: i

Integer :: j,k,z,n_inter

Real(8) :: dsph,dsph2,sd2

Real(8) :: patches_c1(3,n_patches),beads_c1(3,n_beads)
Real(8) :: patches_c2(3,n_patches),beads_c2(3,n_beads)
Logical :: parallel

overlap = .false.
potij = 0.40

dsq = dxd

1sq = 1%1

dsph =1 + d
dsph2 = dsph*dsph
r1i(:) = ri(:)
el(:) = ei(:)
ql(:) = qi(:)
halfl = 0.5d0x*1
Do j=1,n

If (i .ne. j) then
r2(:) = rc(:,j)
r12(:) = r2(:) - r1(:)
e2(:) = e(:,j)
q2(:) = q(:,3)
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'Minimum Image

r1i2(1) = r12(1) - boxlc(1)*Dnint (r12(1)/boxlc(1))
r12(2) = r12(2) - boxlc(2)*Dnint (r12(2)/boxlc(2))
r12(3) = r12(3) - boxlc(3)*Dnint (r12(3)/boxlc(3))
r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)
r2(:) =ri1(:) + r12(:)

! Check if the spheres overlap
If (r12sq .le. dsph2) then
! Check overlap of spherocylinders
Call shortest_distance(sd2,parallel)
If (sd2 .le. dsq) then
Call overlap_cylinder(sd2,parallel,overlap)
If (overlap) return
End If

End If

! Check beads overlap
if (.not. overlap) then
Call helices_allocation(rl,el,ql,beads_cl)
Call helices_allocation(rc(:,j),e2,92,beads_c2)
Call beads_overlap(boxlc,beads_cl,beads_c2,overlap)
if (overlap) return
end if

If (.not. overlap .and. rl2sq .lt. rcutsq) then
Call patches_allocation(rl,el,patches_cl)
Call patches_allocation(r2,e2,patches_c2)
Call patches_interaction(boxlc,patches_cl,patches_c2

,n_inter)

potij = potij - dble(n_inter)*eps

End If

End if
End Do

End Subroutine

Subroutine total_potential_helical_patchy_cylinder(boxlc,rc,overlap,potij
)

Implicit None

Real(8) ,Dimension(3),Intent(in) :: boxlc

! Matrix of Positions to be checked

Real(8),Intent(in) :: rc(3,n)

Logical,Intent(out) :: overlap

Real(8),Intent(out) :: potij

Real(8) :: r12_patch(3),sq_r12_patch

Integer :: i



Integer ::

Real(8)
Real(8)
Real(8)

Logical ::

overlap
potij =

j,k,z,n_inter

:: dsph,dsph2,sd2
:: patches_c1(3,n_patches),beads_c1(3,n_beads)
:: patches_c2(3,n_patches) ,beads_c2(3,n_beads)

parallel
= .false.
0.d0

dsq = dxd
1sq = 1%1
dsph =1 + d

dsph2 =
halfl =
Do 1 =1

dsph*dsph
0.5d0*1

,n-1
ri(:)
el(:) = e(:,1)
ql(:) = q(:,1)

Do j=i+1,n

r2(:) =
ri2(:) =
e2(:) =

rc(:,1i)

rc(:,j)

r2(:) - r1(:)

e(:,3)

q2(:) = q(:,3)

'Minimum
r12(1)
r12(2)
r12(3) =

Image

r12(1) - boxlc(1)*Dnint(r12(1)/boxlc(1))
r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) - boxlc(3)*Dnint(r12(3)/boxlc(3))

r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)

r2(:) =

r1(:) + r12(:)

! Check if the spheres overlap

If (r12sq .le. dsph2) then

! Check overlap of spherocylinders

Call shortest_distance(sd2,parallel)
If (sd2 .le. dsq) then

Call overlap_cylinder(sd2,parallel,overlap)

! Check

If (overlap) return

End If

End If

beads overlap

if (.not.
Call helices_allocation(rl,el,ql,beads_cl)
Call helices_allocation(rc(:,j),e2,92,beads_c2)

overlap) then
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Call beads_overlap(boxlc,beads_cl,beads_c2,overlap)
if (overlap) return

end if
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If (.not. overlap .and. rl12sq .lt. rcutsq) then
Call patches_allocation(rl,el,patches_cl)
Call patches_allocation(r2,e2,patches_c2)
Call patches_interaction(boxlc,patches_cl,patches_c2
,n_inter)
potij = potij - dble(n_inter)*eps
End If
End Do
End Do

End Subroutine
Subroutine beads_overlap(boxlc,beads_1,beads_2,overlap)

implicit none
real(8),intent(in) :: boxlc(3),beads_1(3,n_beads) , beads_2(3,n_beads)

logical,intent(out) :: overlap
real(8) :: bij(3),bijsq
integer :: 1i,j

overlap = .false.

Do i =1,n_beads !'Loop over beads on cylinder 1
Do j=1,n_beads !Loop over beads on cylinder 2
bij(:) = beads_1(:,i) - beads_2(:,j)

! Minimum image

bijsq = bij(1)*bij(1) + bij(2)*bij(2) + bij(3)*bij(3)
if (bijsq .le. sqd_bead) then
overlap = .true.
return
end if
End Do
End Do
End Subroutine

Subroutine bead_cylinder_overlap(boxlc,beads_1,beads_2,overlap)
implicit none

real(8),intent(in) :: boxlc(3),beads_1(3,n_beads) , beads_2(3,n_beads)
logical,intent(out) :: overlap

integer :: 1i,]

real(8) :: rcb(3),rcb_pll(3),rcb_per(3),rcb_ori

real(8) :: mod_per,mod_pll

real(8) :: dist_per,dist_pll

dist_pll = halfl + r_bead
dist_pll = dist_pll*xdist_pll
dist_per = halfd + r_bead

dist_per = dist_per*dist_per



overlap = .false.
! Cylinder 1 x Beads on cylinder 2
Do i=1,n_beads

rcb(:) = r1(:) - beads_2(:,1i)

! Minimum Image

rcb_ori = el(1)*rcb(1) + el(2)*rcb(2) + el(3)*rcb(3)
rcb_pll(:) = el(:)*rcb_ori
rcb_per(:) = rcb(:) - rcb_pll(:)
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mod_per = rcb_per(1)*rcb_per(1) + rcb_per(2)*rcb_per(2) + rcb_per

(3)*rcb_per(3)

mod_pll = rcb_pll(1)*rcb_pll(1) + rcb_pll(2)*rcb_pll(2) + rcb_pll

(38)*rcb_pll(3)
if (mod_per .1t. dist_per .and. mod_pll .1t. dist_pll) then

overlap = .true.
return
end if
End Do

! Cylinder 2 x Beads on cylinder 1

Do i=1,n_beads
rcb(:) = r2(:) - beads_1(:,1i)

! Minimum Image
I rcb(:) = rcb(:) - boxlc(:)*dnint(rcb(:)/boxlc(:))

rcb_ori = e2(1)*rcb(1) + e2(2)*rcb(2) + e2(3)*rcb(3)
rcb_pll(:) = e2(:)*rcb_ori
rcb_per(:) = rcb(:) - rcb_pll(:)

mod_per = rcb_per(1)*rcb_per(1) + rcb_per(2)*rcb_per(2) + rcb_per

(3)*rcb_per(3)

mod_pll = rcb_pll(1)*rcb_pll(1) + rcb_pll(2)*rcb_pll(2) + rcb_pll

(3)*rcb_pll(3)
if (mod_per .1t. dist_per .and. mod_pll .1t. dist_pll) then
overlap = .true.
return
end if
End Do

End subroutine

Subroutine check_overlap_helices_cylinder(boxlc,i,qi,ei,ri,rc,overlap)

Implicit None
Real(8),Dimension(3),Intent(in) :: ri,ei,boxlc
Real(8),Dimension(0:3),Intent(in) :: qi

! Matrix of Positions to be checked
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Real(8),Intent(in) :: rc(3,n)
Logical,Intent(out) :: overlap
Integer,Intent(in) :: i

Integer ::

Real(8)

Logical ::

Real(8)
Real(8)

overlap =
dsq = dxd

J

:: dsph,dsph2,sd2

parallel

:: beads_c1(3,n_beads)
:: beads_c2(3,n_beads)

1sq = 1x*1
dsph = 1 + maxval((/d,d_bead/))
dsph*dsph

ri(:)

ei(:)

qi(:)

dsph2
r1i(:)
el(:)
ql(:) =
Do j=1

,n

.false.

If (i .ne. j) then

r2(:) = rc(:,3)

ri2(:) = r2(:) - r1(:)
e2(:) = e(:,j)

q2(:) = q(:,3)
'Minimum Image

r12(1) = r12(1) - boxlc(1)*Dnint(r12(1)/boxlc (1))
r12(2) = r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) = r12(3) - boxlc(3)*Dnint (r12(3)/box1lc(3))

r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)

! Check if the spheres overlap

If (r12sq .le. dsph2) then
r2(:) =ri1i(:) + r12(:)

! Check overlap of spherocylinders

Call shortest_distance(sd2,parallel)
If (sd2 .le. dsq) then

! Check overlap of cylinders

Call overlap_cylinder(sd2,parallel,overlap)
If (overlap) return
End If

! Check Overlap overlap between beads and then between bead-cylinder
! Allocate helical beads around cylinders

Call helices_allocation(rl,el,ql,beads_cl)

Call helices_allocation(r2,e2,q2,beads_c2)

! Check bead-bead overlap

Call beads_overlap(boxlc,beads_cl,beads_c2,overlap)
If (overlap) return

! Check bead-cylinder overlap

Call bead_cylinder_overlap(boxlc,beads_cl,beads_c2,



overlap)
If (overlap) return

End If

End if

End Do

End Subroutine

Subroutine partial_potential_patchy_sphere(boxlc,i,qi,ei,ri,rc,overlap,

potij)

Implicit None

Real(8),Dimension(3),Intent(in) :: ri,ei,boxlc
Real(8),Dimension(0:3),Intent(in) :: qi

! Matrix of Positions to be checked
Real(8),Intent(in) :: rc(3,n)
Logical,Intent(out) :: overlap
Real(8),Intent(out) :: potij

Real(8)
Integer,I

Integer ::
:: dsph,dsph2,sd2

:: patches_c1(3,n_patches)
:: patches_c2(3,n_patches)

Real(8)
Real (8)
Real(8)

nt

Logical ::

overlap =

dsq = dxd
1sq = 1x*1

:: r12_patch(3),sq_r12_patch

ent(in) :: 1
j,k,z,n_inter

parallel

.false.
potij = 0.d0

dsph =1 + d

dsph2
ri(:)
el(:)
ql(:)
halfl
Do j=1,n

dsph*dsph
ri(:)
ei(:)
qi(:)
0.5d0*1

If (i .ne. j) then

r2(:) = rc(:,j)

r12(:) = r2(:) - ri1(:)

e2(:) = e(:,j)

q2(:) = q(:,3)

'Minimum Image

r12(1) = r12(1) - boxlc(1)*Dnint(r12(1)/boxlc(1))
r12(2) r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) r12(3) - boxlc(3)*Dnint(r12(3)/boxlc(3))
r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)
r2(:) =ri1(:) + r12(:)

! Check if the spheres overlap

If (r12sq .le. dsq) then
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overlap = .true.
return

Else If (r12sq .lt. rcutsq) then
Call patches_allocation(rl,el,patches_c1)
Call patches_allocation(r2,e2,patches_c2)
Call patches_interaction(boxlc,patches_cl,patches_c2

,n_inter)

potij = potij - dble(n_inter)*eps

End If

End if

End Do

End Subroutine

Subroutine total_potential_patchy_sphere(boxlc,rc,overlap,potij)

Implicit None
Real(8),Dimension(3),Intent(in) :: boxlc
! Matrix of Positions to be checked

Real(8),Intent(in)
Logical,Intent (out)
Real(8),Intent (out)

:: rc(3,n)

:: overlap

11 potij

:: r12_patch(3),sq_r12_patch

Real(8)

Integer :: 1

Integer :: j,k,z,n_inter

Real(8) :: dsph,dsph2,sd2

Real(8) :: patches_c1(3,n_patches)
Real(8) :: patches_c2(3,n_patches)
Logical :: parallel

overlap = .false.

potij = 0.d0

dsq = dxd

1sq = 1x*1

dsph =1 + d

dsph2 = dsph*dsph
halfl = 0.5d0*1

Do i =1,n-1
ri(:
el(:
ql(:

) = rc(:,1)
) = e(:,1)
) = q(:,1)

Do j=i+l,n
r2(:) = rc(:,3)

r12(:) = r2(:) - r1(:)

e2(:) = e(:,j)

g2(:) = q(:,3)

'Minimum Image

r12(1) = r12(1) - boxlc(1)*Dnint (r12(1)/boxlc(1))
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r12(2)
r12(3)

r2(:) = r1(:) + r12(:)

! Check if the spheres overlap

If (r12sq .le. dsq) then

overlap = .true.
return

Else if (r12sq .1t. rcutsq) then
Call patches_allocation(rl,el,patches_cl)
Call patches_allocation(r2,e2,patches_c2)

r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) - boxlc(3)*Dnint(r12(3)/boxlc(3))
r12sq = r12(D)*r12(1)+r12(2)*r12(2)+r12(3) *r12(3)
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Call patches_interaction(boxlc,patches_cl,patches_c2

,n_inter)

potij = potij - dble(n_inter)*eps

End If
End Do
End Do

End Subroutine

subroutine cylinder_shell_shortest_distance(sd_shell)
real(8) :: unit_r12(3),cosl,cos2,sinl,sin2

real(8) :: cosr,x1,x2,absri12
real(8),intent(out) :: sd_shell

absr12 = dsqrt(ri2sq)
'Limiting angle

cosr = aspect_ratio/(dsqrt(1.d0 + aspect_ratio*aspect_ratio))

unit_ri12(:) = r12(:)/absrl2

cosl = unit_r12(1)*el1 (1) + unit_r12(2)*el1(2) + unit_r12(3)*el1(3)
cos2 = unit_r12(1)*e2(1) + unit_r12(2)*e2(2) + unit_r12(3)*e2(3)

dabs(cosl)
dabs (cos2)

cosl
cos?2

if (cosl .gt. cosr) then
x1 = halfl/cosl

else
sinl = dsqrt(1.d0 - cosl*cosl)
x1 = halfd/sinl

end if

if (cos2 .gt. cosr) then
x2 = halfl/cos2
else
sin2 = dsqrt(1.d0 - cos2*cos2)
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x2 = halfd/sin2
end if

sd_shell = x1 + x2
end subroutine

! Reduced potential (u/kb_cgs*T)

function dlvo_pot(sd_shell,dist)

implicit none

real(8) :: dist,sd_shell

sd_shell = sd_shell/d

dist = dsqrt(dist)

dist = dist/d

dlvo_pot = (zl1*z1/((1.d0+0.5d0*zeta*sd_shell)**2.d0))*dexp(-zeta*x(dist -
sd_shell))/dist/T_star

end function

function yukawa_pot(sd_shell,dist)

implicit none

real(8) :: dist,sd_shell

sd_shell = sd_shell/d

dist = dsqrt(dist)

dist dist/d

yukawa_pot = dexp(-zetax(dist - sd_shell))/dist/T_star
end function

Subroutine total_potential_dlvo_hc(boxlc,rc,overlap,potij)
Implicit None

Real(8) ,Dimension(3),Intent(in) :: boxlc

! Matrix of Positions to be checked
Real(8),Intent(in) :: rc(3,n)
Logical,Intent(out) :: overlap
Real(8),Intent(out) :: potij

Real(8) :: sd_shell,r12_patch(3),sq_r12_patch
Integer :: 1

Integer :: j,k,z,n_inter

Real(8) :: dsph,dsph2,sd2

Logical :: parallel

overlap = .false.

potij = 0.d0

dsq = dxd

1sq = 1x*1

dsph =1 +d

dsph2 = dsph*dsph

halfl = 0.5d0*1

Do i =1,n-1



r1(:)
el(:)
ql(:)
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=rc(:,1)
=e(:,1)
= q(:,1)

Do j=i+1,n

r2(:) = rc(:,j)

ri2(:) = r2(:) - r1(:)

e2(:) = e(:,j)

q2(:) = q(:,3)

'Minimum Image

ri2(1) r12(1) - boxlc(1)*Dnint(r12(1)/boxlc(1))
r12(2) r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) = r12(3) - boxlc(3)*Dnint (r12(3)/boxlc(3))
r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)
r2(:) =r1(:) + r12(:)

! Check if the spheres overlap

If (r12sq .le. dsph2) then

! Check overlap of spherocylinders

End Do
End Do

End Subroutine

Call shortest_distance(sd2,parallel)

If (sd2 .le. dsq) then
Call overlap_cylinder(sd2,parallel,overlap)
If (overlap) return

End If

End If

If (.not. overlap) then
Call cylinder_shell_shortest_distance(sd_shell)
potij = potij + dlvo_pot(sd_shell,ri2sq)

End If

Subroutine partial_potential_dlvo_hc(boxlc,i,qi,ei,ri,rc,overlap,potij)

Implicit None

Real(8),Dimension(3),Intent(in) :: ri,ei,boxlc
Real(8),Dimension(0:3),Intent(in) :: qi

! Matrix of Positions to be checked
Real(8),Intent(in) :: rc(3,n)

Logical,Intent(out) :: overlap
Real(8),Intent(out) :: potij
Integer,Intent(in) :: i
Integer :: j,k,z,n_inter

Real(8) :: sd_shell,dsph,dsph2,sd2
Logical :: parallel
overlap = .false.
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potij = 0.d0

dsq = dxd

1sq = 1x1

dsph =1 + d
dsph2 = dsph*dsph
ri(:) = ri(:)
el(:) = ei(:)
ql(:) = qi(:)
halfl = 0.5d0x*1
Do j=1,n

If (i .ne. j) then
r2(:) = rc(:,j)
ri2(:) = r2(:) - r1(:)
e2(:) = e(:,j)
q2(:) = q(:,3)
'Minimum Image

r12(1) = r12(1) - boxlc(1)*Dnint(r12(1)/boxlc(1))
r12(2) = r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) = r12(3) - boxlc(3)*Dnint(r12(3)/box1lc(3))

r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)
r2(:) = ri1(:) + r12(:)

! Check if the spheres overlap
If (r12sq .le. dsph2) then
! Check overlap of spherocylinders
Call shortest_distance(sd2,parallel)
If (sd2 .le. dsq) then
Call overlap_cylinder(sd2,parallel,overlap)
If (overlap) return
End If

End If

If (.not. overlap) then
Call cylinder_shell_shortest_distance(sd_shell)
potij = potij + dlvo_pot(sd_shell,ri2sq)
End If
End if
End Do

End Subroutine

Subroutine total_potential_yukawa_hc(boxlc,rc,overlap,potij)
Implicit None

Real(8),Dimension(3),Intent(in) :: boxlc

! Matrix of Positions to be checked

Real(8),Intent(in) :: rc(3,n)

Logical,Intent(out) :: overlap
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Real(8),Intent(out) :: potij

Real(8) :: sd_shell,r12_patch(3),sq_r12_patch
Integer :: 1
Integer :: j,k,z,n_inter

Real(8) :: dsph,dsph2,sd2
Logical :: parallel
overlap = .false.

potij = 0.40

dsq = dxd

1sq = 1x*1

dsph =1 +d

dsph2 = dsph*dsph

halfl = 0.5d0x*1

Do i =1,n-1
r1(:) = rc(:,i)
el(:) = e(:,1)

ql(:) = q(:,1)

Do j=i+1l,n
r2(:) = rc(:,j)
r12(:) = r2(:) - r1(:)
e2(:) = e(:,j)
q2(:) = q(:,3)
'Minimum Image

r12(1) = r12(1) - boxlc(1)*Dnint(r12(1)/boxlc (1))
r12(2) = r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) = r12(3) - boxlc(3)*Dnint (r12(3)/boxlc(3))

r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)
r2(:) = ri1(:) + r12(:)

! Check if the spheres overlap
If (r12sq .le. dsph2) then
! Check overlap of spherocylinders
Call shortest_distance(sd2,parallel)
If (sd2 .le. dsq) then
Call overlap_cylinder(sd2,parallel,overlap)
If (overlap) return
End If

End If

If (.not. overlap) then
Call cylinder_shell_shortest_distance(sd_shell)
potij = potij + yukawa_pot(sd_shell,r12sq)
End If
End Do
End Do

End Subroutine
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Subroutine partial_potential_yukawa_hc(boxlc,i,qi,ei,ri,rc,overlap,potij)

Implicit None

Real(8),Dimension(3),Intent(in) :: ri,ei,boxlc
Real(8),Dimension(0:3),Intent(in) :: qi

! Matrix of Positions to be checked
Real(8),Intent(in) :: rc(3,n)

Logical,Intent(out) :: overlap
Real(8),Intent(out) :: potij
Integer,Intent(in) :: i
Integer :: j,k,z,n_inter

Real(8) :: sd_shell,dsph,dsph2,sd2
Logical :: parallel

overlap = .false.
potij = 0.d0

dsq = dxd

1sq = 1x*1

dsph =1 +d
dsph2 = dsph*dsph
r1(:) = ri(:)
el(:) = ei(:)
ql(:) = qi(:)
halfl = 0.5d0x*1
Do j=1,n

If (i .ne. j) then
r2(:) = rc(:,3)
r12(:) = r2(:) - r1(:)
e2(:) = e(:,j)
q2(:) = q(:,3)
'Minimum Image

r12(1) = r12(1) - boxlc(1)*Dnint(r12(1)/boxlc(1))
r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) - boxlc(3)*Dnint(r12(3)/boxlc(3))
r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)

r12(2)
r12(3)

r2(:) = r1(:) + r12(:)
! Check if the spheres overlap

If (r12sq .le. dsph2) then
! Check overlap of spherocylinders

Call shortest_distance(sd2,parallel)

If (sd2 .le. dsq) then

Call overlap_cylinder(sd2,parallel,overlap)

If (overlap) return
End If

End If

If (.not. overlap) then



Call cylinder_shell_shortest_distance(sd_shell)
potij = potij + yukawa_pot(sd_shell,r12sq)
End If
End if
End Do

End Subroutine

Subroutine total_potential_dlvo_sphere(boxlc,rc,overlap,potij)
Implicit None

Real(8) ,Dimension(3),Intent(in) :: boxlc

! Matrix of Positions to be checked

Real(8),Intent(in) :: rc(3,n)

Logical,Intent(out) :: overlap

Real(8),Intent(out) :: potij

Real(8) :: sd_shell,r12_patch(3),sq_r12_patch
Integer :: 1
Integer :: j,k,z,n_inter

Real(8) :: dsph,dsph2,sd2
Logical :: parallel
overlap = .false.

potij = 0.d0

dsq = dxd

1sq = 1x*1

dsph =1 +d

dsph2 = dsph*dsph

halfl = 0.5d0*1

Do i =1,n-1
r1(:) = rc(:,i)
el(:) = e(:,1)

qi(:) = q(:,1)

Do j=i+1,n
r2(:) = rc(:,j)
ri2(:) = r2(:) - r1(:)
e2(:) = e(:,j)
q2(:) = q(:,3)
'Minimum Image
r12(1) = r12(1) - boxlc(1)*Dnint(r12(1)/boxlc(1))
r12(2) = r12(2) - boxlc(2)*Dnint (r12(2)/boxlc(2))
r12(3) = r12(3) - boxlc(3)*Dnint (r12(3)/boxlc(3))
r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)
r2(:) = r1(:) + r12(:)

! Check if the spheres overlap
If (r12sq .le. dsq) then

overlap = .true.
print*,’i’,i,’j’,j,’r12sq=",r12sq, ’dsq=",dsq
return

End If
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End Do
End Do

End Subroutine

Subroutine partial_potential_dlvo_sphere(boxlc,i,qi,ei,ri,rc,overlap,

potij)
Implicit None

If (.not. overlap) then
potij = potij + sphere_dlvo_pot(rl2sq)
End If

Real(8) ,Dimension(3),Intent(in) :: ri,ei,boxlc
Real(8),Dimension(0:3),Intent(in) :: qi

! Matrix of Positions to be checked
Real(8),Intent(in) :: rc(3,n)

Logical,Intent(out) :: overlap
Real(8),Intent(out) :: potij
Integer,Intent(in) :: i
Integer :: j,k,z,n_inter

Real(8) :: sd_shell,dsph,dsph2,sd2
Logical :: parallel
overlap = .false.

potij = 0.d0
dsq = dxd

1sq = 1x*1

dsph = 1 + d
dsph2
r1(:)
el(:)
ql(:)

ri(:)
ei(:)
qi(:)

dsph*dsph

halfl = 0.5d0x*1

Do j=1,n
If (i

.ne. j) then

r2(:) = rc(:,j)

r12(:) = r2(:) - r1(:)
e2(:) = e(:,j)

q2(:) = q(:,3)
'Minimum Image

r12(1) = r12(1) - boxlc(1)*Dnint(r12(1)/boxlc(1))
r12(2) = r12(2) - boxlc(2)*Dnint(r12(2)/boxlc(2))
r12(3) = r12(3) - boxlc(3)*Dnint (r12(3)/box1lc(3))

r12sq = r12(1)*r12(1)+r12(2)*r12(2)+r12(3)*r12(3)
r2(:) = ri1(:) + r12(:)

! Check if the spheres overlap

If (ri2sq .le. dsq) then
overlap = .true.
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return
End If

If (.not. overlap) then
potij = potij + sphere_dlvo_pot(ri2sq)
End If
End if
End Do

End Subroutine

! Reduced potential (u/kb_cgs*T)

function sphere_dlvo_pot(dist)

implicit none

real(8) :: dist

dist = dsqrt(dist)

dist dist/d

sphere_dlvo_pot = yuk_ctexdexp(-zeta*x(dist - 1.d0))/dist

end function

End module
C.2.5 Ovito modifier

g S
# Ovito modified to colour particles depending on their orientation

# relative to the phase director

SRR S R e e s R
# Developer: Joyce Tavares Lopes
R

from ovito.modifiers import PythonScriptModifier
from ovito.data import ParticleProperty

from ovito.io import import_file

import numpy as np

import math

import ovito

def modify(frame,input,output):
#lists(vectors) starts from indice O

# INPUT DATA

I HHEHBHEH
particle_position = input.particle_properties.position.array
particle_orientation = input.particle_properties.orientation.array
n = input.number_of_particles
rx = np.zeros((n))
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ry = np.zeros((n))
rz = np.zeros((n))
gx = np.zeros((n))
qy = np.zeros((n))
qz = np.zeros((n))
qw = np.zeros((n))
color = np.zeros((n))
blue = np.zeros((n))

for i in range(O,n):
rx[i] = particle_position[i] [0]
ry[i] = particle_position[i][1]
rz[i] = particle_position[i][2]
qwli] = particle_orientation[i] [3]
qx[i] = particle_orientation[i] [0]
qy[i] = particle_orientation[i] [1]
qz[i] = particle_orientation[i] [2]
HERHHAHH AR HHY

eigenv = [0.0,0.0,0.0]
evec = [0.0,0.0,0.0]

#Quaternion to Orientation

rotM = np.zeros((3,3))

eold = [0.0,0.0,1.0] # orientation corresponds to z-axis of the
partcile

e = np.zeros((3,n))

for i in range(O,n):
#Rotation Matrix rotM(3,3) - Allen and TilVdesley, 2th edition
page 110, equation 3.40
# This is actually already the transpose of the rotation matrix:
rotM[0] [0] = qwlil*qw[i] + qx[il*qx[i] - qyl[il*qy[i]l - qz[il*qz[i]
rotM[0] [1] = 2.00*(gx[il*qy[i] - qw[il*qz[i])
rotM[0] [2] = 2.00*%(gx[i]l*qz[i] + qwl[il*qy[i])
rotM[1] [0] = 2.00*(gx[il*qy[i] + qw[il*qz[i])
rotM[1] [1] = qwlil*qw[i] - qx[i]*qx[i] + qy[il*qy[i] - qz[il*qz[il]
rotM[1] [2] = 2.00%(qy[il*qz[i] - qw[il*qx[il)
rotM[2] [0] = 2.00%(gx[il*qz[i] - qw[il*qy[il)
rotM[2] [1] = 2.00x(qy[il*qz[i] + qwlil*qgx[i])
rotM[2] [2] = qwlil*qw[i] - qx[il*qx[i]l - qy[ilxqy[i]l + qz[il*qz[il]

#New orientation

e[0] [i] = eo0ld[0]*rotM[0][0] + eold[1]*rotM[0][1] + eold[2]*rotM
(0] [2]

e[1][i] = eo0ld[0]*rotM[1][0] + eold[1]*rotM[1][1] + eold[2]*rotM
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(1] [2]
e[2] [i] = eo0ld[0]*rotM[2] [0] + eold[1]*rotM[2][1] + eold[2]*rotM
[2] [2]

Qabi = np.zeros((3,3))
Qab = np.zeros((3,3))
A = np.zeros((3,4))

for i in range(O,n):
for alpha in range(0,3):
for beta in range(0,3):
if alpha == beta:
dkrho = 1.000000
else:
dkrho = 0.000
Qabi[alpha] [beta] = 1.5000000%e[alpha] [i]*e[beta] [i] - \
0.500000000*%dkrho + Qabi[alphal [betal]

Qab[0] = Qabi[0]/float(n)
Qab[1] = Qabil[1]/float(n)
Qab[2] = Qabi[2]/float(n)

# Calculate EigenValue of Qab
m = (Qab[0] [0] + Qab[1][1] + Qab[2][2])/3.00

det = (Qab[0] [0]-m)*(Qab[1] [1]-m)*(Qab[2] [2]-m) + Qab[1] [2]*Qab[0] [1]x*
Qab[2] [0] + \
Qab[0] [2]*Qab[1] [0]*Qab[2] [1] - Qab[0] [2]*(Qab[1] [1]-m)*Qab
(2] [0] -\
(Qab[0] [0]-m)*Qab[1] [2]*Qab[2] [1] - Qab[0] [1]*Qab[1] [0]*(Qab
[2] [2] -m)

qq = 0.500*det
p = (Qab[0] [0]-m)*(Qab[0] [0]-m)+(Qab[1] [1]-m)*(Qab[1] [1]-m)+(Qab
[2] [2] -m)\

*(Qab[2] [2]-m) + Qab[0] [1]1*Qab[0] [1] + Qab[0] [2]*Qab[0] [2]\
+ Qab[1] [0]*Qab[1] [0] + Qab[1][2]*Qab[1] [2] \
+ Qab[2] [0]*Qab[2] [0] + Qab[2] [1]*Qab[2] [1]

p = p/6.00

Pq = p*p*p - q9*qq

if pq >= 0.00:

phi = math.atan(math.sqrt(pq)/qq)/3.00
else:

phi = 0.00



254

eigenv[0] = m + 2.00*math.sqrt(p)*math.cos(phi)

eigenv[1] = m - math.sqrt(p)*(math.cos(phi) + math.sqrt(3.00)*math.sin
(phi))

eigenv([2] = m - math.sqrt(p)*(math.cos(phi) - math.sqrt(3.00)*math.sin
(phi))

p2 = max(eigenv)
# Calculate Eigenvector

for i in range(0,3):
for j in range (0,3):

Afo] [0]
A[1][1]
A[2][2]
A[0][3]
A[1]1[3]
A[2][3]

# Gauss

ml
m2

Alil[j] = Qablil[j]

A[01[0] - p2
= A[1I[1] - p2
= A[2]1[2] - p2
= 0.00
= 0.00
0.00

Elimination

A[1][o]/A[0] [0]
A[2] [0]/Af0] [0]

for j in range(0,3):

Al1] (5]
A[2] [5]

A[11[j] - A[0] [jI*m1
A[2]1[j1 - A[0][j1*m2

m3 = A[2] [1]/A[1][1]

for j in range(0,3):
A[2][j] = A[2][j] - A[1][j]*m3

evec[2]
evec[1]
evec|[0]
modevec
modevec
evec|[0]
evec[1]
evec[2]

PythonScriptModifier.order_p

1.00

= [A[1]1[3] - evec[2]*A[1]([2]]1/A[1][1]

= [A[0] [3]-evec[1]*A[0] [1]-evec[2]*A[0] [2]]1/A[0] [O]

= evec[0]*evec[0] + evec[1l]*evec[1l] + evec[2]*evec[2]
= math.sqrt (modevec)

= evec[0] /modevec

= evec[1]/modevec

= evec[2] /modevec

p2

output.attributes["order_p"] = p2
color_property = output.create_particle_property(ParticleProperty.Type
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.Color)

PythonScriptModifier.anglei = []

for i in range(O,n):
color[i] = evec[0]*e[0][i] + evec[1]xe[1][i] + evec[2]*e[2] [i]
blue[i] = math.sqrt(color[i]*color[i])
PythonScriptModifier.anglei.append(blue[i])
color_property.marray[i] = (1.0 - blue[i],0.0,bluel[i])
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Chapter 6

D.1 Codes

The main codes on this section need three modules to run properly, as described in
the appendix C.2. Each main program will generate a file with extension ’.dat’ and two
files containing the configuration of the particles (as described in the appendix C.2).

D.1.1 NPT Monte Carlo code for hard cylinders + patches

This program requires an input file named patchy hc input.sci. An example is given
below.

Number_of_particles= 512

Molecule_Type= 1

Cold_Configuration= .true. ! If false it will require an initial
configuration file

Production_run= .false.

Reduced_pressure= p_red ! p_red = p*D~3/epsilon

Number_of_steps= 2000000

Number_of_cycles_per_step= 1000

Print_every_x_steps= 1000

Max_rotational_displacement_rad= 0.05d0 ! Maximum rotational displacement
in radians

Max_translational_displacement= 0.05d0

Max_volume_scaling= 0.00140

Adjust_drmax_every_x_step= 1000

Adjust_dvmax_every_x_step= 1000

Acceptance_Ratio= 0.4
Cylinder_D_and_L= diameter length
Well_depth_and_potential_range= eps lambda
Reduced_temperature= temperature

Number_of_patches_per_cylinder= 2 ! Patches on the top/bottom
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Inputs_to_generate_initial_configuration_only_if_cold
Cubic_box_1_or_fcc_2= 1

Initial_Packing_Fraction=  0.02d0
Initial_Quaternion_axis= 0d0 1.d0 0.4d0
Rotation_around_axis_degrees= 45.d40

Listing D.1: Example of the input file patchy hc input.sci
The output files are the following:

e patchy hc.dat: The file is organized as follows: step, acceptance ratio (translational
and rotational), acceptance ratio (volume moves), maximum translational displace-
ment, maximum angular displacement, maximum change in volume, reduced pres-
sure, packing fraction, nematic order parameter, x component of the phase director,
y component of the phase direct or , z component of the phase director, reduced
total potential, reduced temperature.

e current displacements: containing the current maximum translational, rotational,
and change in volume.

e parameters.dat

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk skokokokokofokokokokokok ok skokskokokoskoskosk sksk sk sk sk sk sk sk skokskskskskskokokokokokokokok ok skokskok
sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk skskskskskokkokokokokok ok ok skokoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk skskskskkokokokokokokok ok skokkok
! NPT Monte Carlo simulation of hard cylinders + patches
D ek ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk ok skokokokokokofokokokokokokokok koo ok okokokokok sk sk sk sk sk sk sk ok skt skokokokskokokfok ok ok skokokok
! Developer: Joyce Tavares Lopes
! Supervisor: Dr. Luis Fernando Mercier Franco
! School of chemical engineering (FEQ) - UNICAMP
1 sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skskokokokok ok kokokokok skok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skskskskkokokokok ok kokok ok
! This code was developed during a research period at
! Universita Ca’ Foscari Venezia under the supervision of
! Professor Achille Giacometi. (SEP 2019/FEB 2020)
sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk skokskofkofokokokokokok ok skokskokokskok sk sk sk sk sk sk sk sk sk sk ok sk skskskskkokokokokokokok ok skokkok
Program Patchy_HC_MC_NPT

use monte_carlo

use initial_configuration

use global_variables

use order_parameters

Implicit None

! Local Variables

Integer,Dimension(:),Allocatable :: vseed
Integer :: seed_size,seed = 349766914
Real(8) :: rnum

! Properties
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Real(8), Allocatable :: rnew(:,:)

Real(8) :: boxlnew(3),rij(3),ri(3),ei(3)
Real(8) :: quatO_axis(3),quatO_angle
Logical :: cold_conf,production

Integer :: structure

Integer :: 1i,j,k,jlayer

Character :: get*100,outfile*100,moltype*1
Character :: inputfilelx100

Character :: inputfile2*100,outfile2*100
Real(8) :: utotal,new_utotal

Integer :: moves_re,move_v
Integer :: step2print,stepdrmax,stepdvmax
Real(8) :: acc_mov,acc_mov_v,acc_ratio

Real(8), dimension(0:3) :: qi
Real(8) :: deltau,deltav

Real(8) :: deltah,new_pot,old_pot
Logical :: overlap

Real :: start,finish,startstep,finishstep
Real(8),dimension(0:3) :: gnew
Real(8) :: s2,evec(3)

Real :: attempts_re,dumpl,dumpd,dump
Character :: fileOx*1

! Patches

Real(8),allocatable :: patches(:,:)

! Initialize Random_Number (Fortran intrinsic function)
1

Call Random_seed(size=seed_size)
Allocate(vseed(seed_size))
vseed(:) = seed

Call Random_seed(put=vseed)

Call cpu_time(start)
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!Simulation Input Files
!

'Monte Carlo simulation and Potential parameters
Open(101,File=’patchy_hc_input.sci’)
Read(101,*) get,n

Read(101,*) get,moltype

Read(101,*) get,cold_conf
Read(101,*) get,production
Read(101,%*) get,p

Read(101,*) get,nsteps

Read(101,*) get,ncycles

Read(101,*) get,step2print
Read(101,*) get,max_angle
Read(101,%*) get,max_r

Read(101,*) get,max_v

Read(101,*) get,stepdrmax
Read(101,%*) get,stepdvmax
Read(101,*) get,acc_ratio

! Cylinder parameters

Read(101,*) get,d,1l

Read(101,*) get,eps,lambda
Read(101,%*) get,reduced_temperature
Read(101,*) get,n_patches

aspect_ratio = 1/d

v_particle = 0.25d0*pi*xd*d*1l

halfl = 0.5d0*1

halfd = 0.5d0*d

'Variable ’space’ is only used in packed box initial configuration
spacex = 0.d0

spacez = 0.d0
!

! Initial Configuration - Warm or Cold
I
Select Case (cold_conf)
Case(.true.)

Read(101,%*) get

Read(101,*) get,structure

Read(101,*) get,etal

Read(101,*) get,quatO_axis(1l),quatO_axis(2),quatO_axis(3)

Read(101,%) get,quatO_angle

Select Case(structure)

Case(1)




Allocate(r(3,N),rnew(3,N),q(0:3,N),e(3,N),patches(3,n_patches))
call cubic(eta0l,quatO_axis,quatO_angle)

Case(2)
Allocate(r(3,N),rnew(3,N),q(0:3,N),e(3,N),patches(3,n_patches))
call fcc(etal,quatO_axis,quatO_angle)

Case(3)
call packed_box(eta0,quatO_axis,quatO_angle)
Allocate(rnew(3,N),patches(3,n_patches))

End Select

Case(.false.)

inputfile2 = ’current_conf.xyz ’

Open(102,FILE=trim(adjustl(inputfile2)))

Read(102,*) n

Allocate(r(3,N),rnew(3,N),q(0:3,N),e(3,N),patches(3,n_patches))

Read (102, *) box1(1),box1(2),box1(3)

Do 99 i=1,n

Read(102,*) moltype,r(1,i),r(2,i),r(3,1),&
&q(0,1i),q(1,1),9(2,1),9(3,1) ,dumpd,dumpd , dumpl

If (dumpl .ne. 1 .or. dumpd .ne. halfd) then
printx*,&

&’initial configuration does not match&
& cylinder specification’
stop

end if

99 End Do

Close(102)

End Select
Close(101)
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! Simulation Output Files
!

1 Format(4x,A4,2x,A7,3x,a7,4x,a6,3x,a7,3x,a7,&
&3x,al3,3x,all,4x,a4,3x,a’7,6x,a4,10x,a2,11x,a2,10x,a2)

2 Format(I7,f10.5,f10.5,f10.5,f10.5,f10.5,2x%,&
&f10.5,4x,f10.5,2x,f10.5,f10.3,f10.3,2x,f10.3,2x%,f10.3,2x,£f10.3)

3 Format(A13,f10.5)

4 Format(A13,I5)

Open(200,File=’conf.xyz’)

Write(200,%*) n

Write(200,*) boxl(1l),box1(2),box1(3)

Do i=1,n

Write(200,%*) moltype,r(1,i),r(2,1i),r(3,1),&
&q(0,1i),q(1,1),9q(2,1),9(3,1) ,halfd,halfd,1
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End Do
Call flush(200)

Open(203,File=’current_displacements’)
Open(202,File=’current_conf.xyz’)

Write(outfile2,’ ("PropP",£3.1,".dat")’) p
Open(201,File=’patchy_hc.dat’,status=’unknown’)

Open(204,file = ’parameters.dat’)

! Tnitialization
|

v = box1(1)*boxl(2)*box1(3)
rho = dble(n)/v

d3 = d*dxd

max_v = max_v*d3

swrange = lambdaxd
aspect_ratio = 1/d

rcut = 4.d0*d
rcutsq = rcut*rcut
max_r = max_r*d

Do 100 i=1,n !'Loop over particles
Call quat_to_ori(efixed,q(:,i),e(:,1))
100 End Do

! Check Initial Configuration and Calculate Total Potential
!




Call total_potential_patchy_cylinder(boxl,r,overlap,utotal)
If (overlap) then
Print*, ’0Overlap detected in initial configuration!’

STOP
End If
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! Print Initial Conditions

Call orderparameter(s2,evec)

Write(*,4) °N =’ N
Write(*,3) ’L/D =’,aspect_ratio
Write(*,3) ’Px =7 p

Write(*,3) ’eta_i =’,rho*v_particle
Write(*,3) ’rho =’,rho
Write(*,3) ’T* =’,reduced_temperature

Write(*,3) ’Lambda =’,lambda
Write(*,3) ’eps =’,eps
Write(*,3) ’U*_i =’,utotal/eps/n
Write(*,3) ’<P2> =’ s2

Write(204,4)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
flush(204)

step = 0
acc_mov = 0.
acc_mov_v =

Write(201,2) step,acc_mov,acc_mov_v,max_r/d,max_angle,max_V/d3,&
&p,rho*v_particle,s2,evec(l),evec(2),evec(3),utotal/eps/n,&

do
0

'N =’,N
’L/D =’,aspect_ratio

Y Px =>’p

’eta_i =’,rho*xv_particle
’rho =’,rho

’T* =’ ,reduced_temperature
’Lambda =’,lambda

’eps =’,eps

"U%_1i =’,utotal/eps/n
I<P2> =’ 82

.do

&reduced_temperature
Call flush(201)

! Start Trial moves
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!'Loop over steps

Do 103 step=1,nsteps
overlap = .false.
attempts_re = 0

moves_re = 0

move_v = 0

acc_mov = 0

! Call cpu_time(startstep)
Do 104 cyclei=1,ncycles
deltah = 0.d0

Call random_number (rnum)

i = Idint(rnum*dble((n+1))) + 1

If (i .le. n) then

Call partial_potential_patchy_cylinder(boxl,i,q(:,i),e(:,1)&
&,r(:,i),r,overlap,old_pot)

if (overlap) print*,’error with overlap from previous conf’

attempts_re = attempts_re + 1

! Translation move for particle 1
Call new_position(i,boxl,ri)
! Rotational move for particle i1

! Randomly rotate old quaternion
Call random_rotate_quat(q(:,i),qi)
! New orientation after rotation
Call quat_to_ori(efixed,qi,ei)

I Check Overlap and Calculate Partial Potential
Call partial_potential_patchy_cylinder(boxl,i,qi,ei,ri&
&,r,overlap,new_pot)

If (.not. overlap) then
deltau = new_pot - old_pot
deltau = deltau/reduced_temperature
deltau = deltau/eps
if (deltau .1t. 0.0) then
q(:,1) = qi(:)

r(:,i) = ri(:)
e(:,1) = ei(:)
utotal = utotal + new_pot - old_pot
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moves_re = moves_re + 1
else if ((deltau) .1t. 75) then
Call random_number (rnum)
if (dexp(-deltau) .gt. rnum) then
q(:,1) = qi(:)
r(:,i) = ri(:)
e(:,i) = ei(:)
utotal = utotal +&
& new_pot - old_pot
moves_re = moves_re + 1
end if
end if
End if

Call new_volume(rnew,boxlnew,vnew)

deltav = vnew - v

ICheck Overlap and Calculate Total Potential after volume scaling

Call total_potential_patchy_cylinder(boxlnew,rnew,&
&overlap,new_utotal)

If (.not. overlap) then

deltau = new_utotal - utotal

deltau = deltau/reduced_temperature
deltau = deltau/eps

deltah = pxdeltav/d3/reduced_temperature

deltah = deltah - (dble(n)+1d0)*dlog(vnew/v)
deltah deltah + deltau
If (deltah .le. 0.0) then
r(:,:) = rnew(:,:)
rho = dble(n)/vnew
box1(:) = boxlnew(:)
v = box1(1)*box1(2)*box1(3)
utotal = new_utotal
move_v = 1 + move_v
Else If ((deltah) .l1t. 75) then
Call random_number (rnum)
If (dexp(-deltah) .gt. rnum) then
r(:,:) = rnew(:,:)
rho = dble(n)/vnew
box1(:) = boxlnew(:)
v = box1(1)*boxl(2)*box1(3)
utotal = new_utotal
move_v = 1 + move_v
End If



End If
End If
End If
104 End Do

acc_mov = dble(moves_re)/dble(attempts_re)
If (attempts_re .1t. ncycles) &
& acc_mov_v = dble(move_v)/dble(ncycles - attempts_re)
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! Write properties and configuration every step2print steps

If (Mod(step,step2print) == 0) then

! Properties File

Write(201,2) step,acc_mov,acc_mov_v,max_r/d,&
&max_angle,max_V/d3,&
&p,eta,s2,evec(l) ,evec(2),evec(3),utotal/eps/n,&
&reduced_temperature

Call flush(201)

! Last Configuration File (position and quaternions)

Write(203,*) ’Max Translational displacement’,max_r

Write(203,*) ’Max Rotational displacement’,max_angle

Write(203,*) ’Max Volume’ ,max_v

Rewind (203)

Write(202,*) n

Write(202,*) box1l(1),box1(2) ,box1(3)

Do 200 i=1,n

Write(202,*) moltype,r(1,i),r(2,i),r(3,1),q(0,1i),&
&q(1,1),q(2,i),q(3,1) ,halfd,halfd,1

200 End DO

Call flush(202)

Call flush(203)
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Rewind (202)

I If (Mod(step,10*step2print) == 0) then

! Configuration File (position and quaternions)

Write(200,%) n

Write(200,*) boxl(1),box1(2),box1(3)

Do 205 i=1,n

Write(200,*) moltype,r(1,i),r(2,i),r(3,1),q(0,1i),&
&%q(1,1i),q(2,1),q(3,1) ,halfd,halfd,1

205 End DO
! End If

End If
1

! Adjust Maximum Displacement
!

! Adjust max_r every stepdrmax steps
If (mod(step,stepdrmax) == 0) then
If (acc_mov .gt. acc_ratio) then
max_r = 1.05%max_r
max_angle = 1.05*max_angle
Else
max_r = 0.95%max_r
max_angle = 0.95*max_angle
End If
End If

! Adjust max_v every stepdvmax steps
If (attempts_re .lt. ncycles) then
If (mod(step,stepdvmax) == 0) then
If (acc_mov_v .gt. acc_ratio) then
max_v = 1.05%max_v
Else
max_v = 0.95*max_v
End If
End If
End If
103 End Do

Call cpu_time(finish)
Call orderparameter(s2,evec)

Write(*,%) ’======= Final ======="

Write(*,3) ’Ux_f =’ utotal/eps/n

Write(*,3) ’eta_f =’,eta

Write(*,3) ’<P2> =’,s2

Write(*,3,advance = "no") ’Run Time =’,(finish-start)/60.d0
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Write(*,*) ’min’

Write(204,%*) ’======= Final =======’

Write(204,3) ’Ux_f =’,utotal/eps/n

Write(204,3) ’eta_f =’,eta

Write(204,3) ’<P2> =’,s2

Write(204,3,advance = "no") ’Run Time =’, (finish-start)/3600.d0
Write(204,%*) ’h’

Close(200)
Close(201)
Close(202)
Close(203)
Close(204)
End

D.1.2 NPT Monte Carlo code for hard cylinders + helices

This program requires an input File named heliz_hc_input.sci. An example is given
below.

Number_of_particles= 512

Molecule_Type= 1

Cold_Configuration= .true. ! If false it will require an initial
configuration file

Production_run= .false.

Reduced_pressure= p_red ! p_red = p*D~3/epsilon

Number_of_steps= 2000000

Number_of_cycles_per_step= 1000

Print_every_x_steps= 1000

Max_rotational _displacement_rad= 0.05d0 ! Maximum rotational displacement
in radians

Max_translational_displacement= 0.05d0

Max_volume_scaling= 0.0014d0

Adjust_drmax_every_x_step= 1000

Adjust_dvmax_every_x_step= 1000

Acceptance_Ratio= 0.4

Cylinder_D_and_L= diameter length

Fusion_Bead_diam_and_number_of_pitches= fusion d_b np ! Fusion between
beads (from 0.0 to 1.0), diameter of the beads and number of pitches (
integer) .

Inputs_to_generate_initial_configuration_only_if_cold

Cubic_box_1_or_fcc_2_or_packed_3= 1

Initial_Packing_Fraction= 0.014d0
Initial_Quaternion_axis= 0d0 1.d0 0.dO
Rotation_around_axis_degrees=  45.d0

Listing D.2: Example of the input file helix hc_input.sci
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The output files are the following:

e hc helices.dat: The file is organized as follows: step, acceptance ratio (translational
a nd rotational), acceptance ratio (volume moves), maximum translational displace-
ment, maximum angular displacement, maximum change in volume, reduced pres-
sure, packing fraction, nematic order parameter, x component of the phase director,
y component of the phase direct or , z component of the phase director, reduced
total potential, reduced temperature.

e current displacements: containing the current maximum translational, rotational,
and change in volume.

e parameters.dat

D skokofeokokskoksksk sk sk ok ko ok sk sksksk sk ok sk ok ok ok skskskskosk ok sk ko sk sksksk sk sk sk sk ok ook sk sksk sk sk sksk sk sk ok s ok ok ok sk sksksk sk ok ok ok ok
D skoksfeokokskskskskok sk ok o fok ok sk sk sk sk skok sk o ok sk skskskskosk sk o ok ok sk sksksk sk sk sk ok ok okok sk sk sk sk sk sk sksk sk ok o ok ok sk sk sk sk sk ok ok o ok
! NPT Monte Carlo simulation of hard cylinders + helical array of beads
1 stk ke ok ok sk sk sk ok ok sk ok o ok ok sk sk sk ok sk ok ok o ok ok sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk sk sk sk o ok kok sk sk sk sk sk sk ok o ok
! Developer: Joyce Tavares Lopes
! Supervisor: Dr. Luis Fernando Mercier Franco
! School of chemical engineering (FEQ) - UNICAMP
stk skeokok sk sk skok sk sk ok o ok ok ok sk sk sk sk sk ok sk o ok sk sk sksk sk sk sk o ok ok sk sk sk sk sk sk sk o ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok o ok
! This code was developed during a research period at
! Universita Ca’ Foscari Venezia under the supervision of
! Professor Achille Giacometi. (SEP 2019/FEB 2020)
D skokofeofoksksksksksk sk ok o ofok ok sksksksk sk ok sk ok ok sk skskskskosk ok ok o kok sk sksksk sk sk sk ok ok okok sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok ok ok
Program Helices_HC_MC_NPT

use monte_carlo

use initial_configuration

use global_variables

use order_parameters

Implicit None

Integer,Dimension(:),Allocatable :: vseed

Integer :: seed_size,seed = 349766914

Real(8) :: rnum

|
! Properties



Real(8), Allocatable :: rnew(:,:)

Real(8) :: boxlnew(3),rij(3),ri(3),ei(3)
Real(8) :: quatO_axis(3),quatO_angle
Logical :: cold_conf,production

Integer :: structure

Integer :: 1i,j,k,jlayer

Character :: get*x100,moltype*1l,outfile*100
Character :: inputfilel*100,inputfile2*100,outfile2*100
Integer :: moves_re,move_v

Integer :: step2print,stepdrmax,stepdvmax
Real(8) :: acc_mov,acc_mov_v,acc_ratio

Real(8), dimension(0:3) :: qi

Real(8) :: deltap,deltav,deltah,new_pot,old_pot
Logical :: overlap

Real :: start,finish,startstep,finishstep
Real(8),dimension(0:3) :: gnew

! Order Parameter

Real(8) :: s2,evec(3)

Real :: attempts_re

Character :: fileOx*1

Real(8),allocatable :: helices(:,:)
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! Initialize Random_Number (Fortran intrinsic function)

Call Random_seed(size=seed_size)
Allocate(vseed(seed_size))
vseed(:) = seed

Call Random_seed(put=vseed)

Call cpu_time(start)

!Simulation Input Files

'Monte Carlo simulation and Potential parameters
Open(101,File="helix_hc_input.sci’)
Read(101,*) get,n

Read(101,*) get,moltype

Read(101,*) get,cold_conf

Read (101,*) get,production
Read(101,*) get,p

Read(101,*) get,nsteps

Read(101,%*) get,ncycles

Read(101,*) get,step2print
Read(101,%*) get,max_angle
Read(101,%*) get,max_r



Read(101,*) get,max_v
Read(101,*) get,stepdrmax
Read(101,%*) get,stepdvmax
Read(101,*) get,acc_ratio

! Cylinder parameters
Read(101,*) get,d,1l

Read(101,*) get,fusion,d_bead,np
1
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aspect_ratio = 1/d

v_particle = 0.25d0*pi*d*d*1l + n_beads*(pi*d_bead*d_bead*d_bead)/6.d0

halfl = 0.5d0x*1
halfd = 0.5d0x*d
!Variable ’space’ is only used in packed box initial configuration
spacex = d_bead
spacez = d_bead

Call helices_parameters()

!
! Initial Configuration - Warm or Cold

Select Case (cold_conf)
Case(.true.)
Read(101,*) get
Read(101,*) get,structure
Read(101,*) get,etal
Read(101,*) get,quatO_axis(1l),quatO_axis(2),quatO_axis(3)
Read(101,*) get,quatO_angle
Select Case(structure)
Case(1)
Allocate(r(3,N),rnew(3,N),q(0:3,N),e(3,N) ,helices(3,n_beads))
call cubic(etaO,quatO_axis,quatO_angle)
Case(2)
Allocate(r(3,N) ,rnew(3,N),q(0:3,N),e(3,N) ,helices(3,n_beads))
call fcc(eta0,quatO_axis,quatO_angle)
Case(3)
call packed_box(eta0,quatO_axis,quatO_angle)
Allocate(rnew(3,N) ,helices(3,n_beads))
End Select
Case(.false.)
inputfile2 = ’current_conf.xyz ’
Open(102,FILE=trim(adjustl(inputfile2)))
Read(102,*) n
Allocate(r(3,N),rnew(3,N),q(0:3,N),e(3,N) ,helices(3,n_beads))
! Box length (1) = x-axis, (2) = y-axis, (3) = z-axis
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Read(102,%*) box1l(1l),box1(2),box1l(3)
Do 99 i=1,n
Read(102,*) moltype,r(1,i),r(2,1i),r(3,1),&
&q(0,1),q(1,1),q9(2,1),9(3,1) ,halfd,halfd,1
99 End Do
Close(102)
End Select
Close(101)

! Simulation Output Files
|

! Formats

1 Format(4x,A4,2x,A7,3x,a7,4x,a6,3x,a7,3x,a7,&
&3x,al3,3x,all1,4x,a4,3x,a7,6x,a4,10x,a2,2x,a2)

2 Format(I7,f10.5,f10.5,f10.5,f10.5,f10.5,2x,&
&f10.5,4x,f10.5,2x,f10.5,f10.3,f10.3,f10.3)

3 Format(A13,f10.5)

4 Format(A13,I5)

Open(200,File=’conf.xyz’)

Write(200,%*) n

Write(200,*) boxl(1),box1(2),box1(3)

Do i=1,n

Write(200,%*) moltype,r(1,i),r(2,1i),r(3,1),&
8q(0,1),q(1,1),q(2,i),q(3,i) ,halfd,halfd,1

End Do

Call flush(200)

Open(203,File=’current_displacements’)
Open(202,File=’current_conf.xyz’)

Write(outfile2,’ ("PropP",£3.1,".dat")’) p
Open(201,File="hc_helices.dat’,status=’unknown’)

Open(204,file = ’parameters.dat’)
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v = box1(1)*box1(2)*box1(3)
rho = dble(n)/v

d3 = dx*dxd

max_v = max_v*d3

eta = rhoxv_particle

rcut = 4.d0*xd

max_r = max_r*d

Do 100 i=1,n !Loop over particles
Call quat_to_ori(efixed,q(:,1),e(:,1))
100 End Do

! Check Overlap in Initial Configuration
!

overlap = .false.
Do i=1,n-1

ei(:) = e(:,1)
ri(:) = r(:,1)

qi(:) = q(:,1)
Call check_overlap_helices_cylinder(boxl,i,qi,ei,ri,r,overlap)
If (overlap) then
Print*, ’Overlap detected in initial configuration!’
STOP
End If
End Do

|
! Print Initial Conditions and Parameters

!
Call orderparameter(s2,evec)

Write(*,4) °N =’,N

Write(*,4) ’# pitches =’,np
Write(*,4) ’# beads =’,n_beads
Write(*,3) ’L/D =’,aspect_ratio
Write(*,3) ’D cyl. =’,d
Write(*,3) ’d beads =’,d_bead
Write(*,3) ’L Pitch =’,pitch



Write(*,3) °L Helix =’,1_h

Write(*,3) ’P*x =2,p

Write(*,3) ’eta_i =’,rho*v_particle

Write(*,3) ’rho =’,rho
Write(*,3) ’<P2> =’,s2

Write(204,4)
Write(204,4)
Write(204,4)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
flush(204)

step = 0

N =’,N

’# pitches =’ ,np
# beads =’,n_beads
’L/D =’ ,aspect_ratio

'D cyl. =?,d

’d beads =’,d_bead
’L Pitch =’,pitch
’L Helix =’,1_h

’eta_i =’,rho*v_particle

Y Px =7’p
’rho =’,rho
Y<P2> =782

acc_mov = 0.dO

acc_mov_v =

0.d0
Write(201,2) step,acc_mov,acc_mov_v,max_r/d,max_angle,max_V/d3,&
&p,rho*v_particle,s2,evec(l) ,evec(2),evec(3)

Call flush(201)
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! Start Trial moves

'Loop over steps

Do 103 step=1,nsteps
overlap = .false.
attempts_re = 0

moves_re = 0
move_v = 0
acc_mov = 0

! Call cpu_time(startstep)

Do 104 cyclei=1,ncycles

deltah = 0.d0

Call random_number (rnum)

i = Idint(rnumxdble((n+1))) + 1

If (i .le. n) then



attempts_re = attempts_re + 1

I Translation move for particle i
Call new_position(i,boxl,ri)

! Rotational move for particle 1

! Randomly rotate old quaternion
Call random_rotate_quat(q(:,i),qi)

! New orientation after rotation
Call quat_to_ori(efixed,qi,ei)

! Check Overlap

Call check_overlap_helices_cylinder(boxl,i,qi,ei,ri,r,overlap)

If (.not. overlap) then
q(:,1i) = qi(:)

r(:,i) = ri(:)
e(:,i) = ei(:)
moves_re = moves_re + 1
End if
Else

Call new_volume(rnew,boxlnew,vnew)

deltav = vnew - Vv

ICheck Overlap after volume scaling

Do
el
ri
qi

i:

1,n-1
e(:,1)
rnew(:,1i)
q(:,1)
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Call check_overlap_helices_cylinder(boxlnew,i,qi,ei,ri,rnew,overlap)

If (overlap) exit

End Do

If (.not. overlap) then
deltah = pxdeltav/d3

deltah = deltah - (dble(n)+1d0)*dlog(vnew/v)
If (deltah .1t. 0.0) then

r(:,:) = rnew(:,:)



rho = dble(n)/vnew
box1(:) = boxlnew(:)
v = box1(1)*box1(2)*box1(3)
move_v = 1 + move_v
Else If ((deltah) .1t. 75) then
Call random_number (rnum)
If (dexp(-deltah) .gt. rnum) then
r(:,:) = rnew(:,:)
rho = dble(n)/vnew
box1(:) = boxlnew(:)
v = box1(1)*boxl(2)*box1(3)
move_v = 1 + move_v
End If
End If
End If
End If
104 End Do

acc_mov = dble(moves_re)/dble(attempts_re)
If (attempts_re .lt. ncycles) &
& acc_mov_v = dble(move_v)/dble(ncycles - attempts_re)
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! Write properties and configuration every step2print steps
!

If (Mod(step,step2print) == 0) then
Call orderparameter(s2,evec)

Call orderparameter(s2,evec)

! Properties File

Write(201,2) step,acc_mov,acc_mov_v,max_r/d,&
&max_angle,max_V/d3,&
&p,eta,s2,evec(1) ,evec(2),evec(3)

Call flush(201)

! Last Configuration File (position and quaternions)

Write(203,*) ’Max Translational displacement’,max_r
Write(203,*) ’Max Rotational displacement’,max_angle
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Write(203,*) ’Max Volume’ ,max_v
Rewind (203)
Write(202,%) n
Write(202,*) boxl(1l),box1(2),box1(3)
Do 200 i=1,n
Write(202,%*) moltype,r(1,i),r(2,1i),r(3,1),&
&q(0,1),q(1,i),q(2,1) ,q(3,i) ,halfd,halfd,1
200 End DO
Call flush(202)
Call flush(203)
Rewind (202)
Rewind (203)
If (Mod(step,10*step2print) == 0) then
! Configuration File (position and quaternions)
Write(200,*) n
Write(200,*) box1l(1),box1(2),box1(3)
Do 205 i=1,n
Write(200,%*) moltype,r(1,i),r(2,1),r(3,1),&
&q(0,1i),q(1,1),q(2,1),9(3,1) ,halfd,halfd,1

205 End DO
Call flush(200)
End If

End If

! Adjust Maximum Displacement

! Adjust max_r every stepdrmax steps
If (mod(step,stepdrmax) == 0) then
If (acc_mov .gt. acc_ratio) then
max_r = 1.05*max_r
max_angle = 1.05*max_angle
Else
max_r = 0.95%max_r
max_angle = 0.95*max_angle
End If

End If

! Adjust max_v every stepdvmax steps
If (attempts_re .1lt. ncycles) then
If (mod(step,stepdvmax) == 0) then
If (acc_mov_v .gt. acc_ratio) then
max_v = 1.05*max_v
Else
max_v = 0.95%max_v
End If
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End If
End If
103 End Do

Call cpu_time(finish)
Call orderparameter(s2,evec)

Write(*,*) ’======= Final =======’
Write(*,3) ’eta_f =’,eta

Write(*,3) ’<P2> =7,s2

Write(*,3,advance = "no") ’Run Time =’, (finish-start)/60.d0
Write(*,*) ’min’

Write(204,%) ’======= Fipal =======’

Write(204,3) ’eta_f =’,eta

Write(204,3) ’<P2> =’,s2

Write(204,3,advance = "no") ’Run Time =’, (finish-start)/60.d0
Write(204,%*) ’min’

Print*,’Total run time=’,(finish-start)/3600.0,’min’

Close(200)
Close(201)
Close(202)
Close(203)
Close(204)
End

D.1.3 NPT Monte Carlo code for hard cylinders + Cylindrical
Yukawa

This program requires an input File named yuk hc_input.sci. An example is given
below.

Number_of_particles= 512

Molecule_Type= 1

Cold_Configuration= .true. ! If false it will require an initial
configuration file

Production_run= .false.

Reduced_pressure= p_red ! p_red = p*D~3/epsilon

Number_of_steps= 2000000

Number_of_cycles_per_step= 1000
Print_every_x_steps= 1000
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Max_rotational _displacement_rad= 0.05d0 ! Maximum rotational displacement
in radians

Max_translational_displacement= 0.05d0

Max_volume_scaling= 0.001d0

Adjust_drmax_every_x_step= 1000

Adjust_dvmax_every_x_step= 1000

Acceptance_Ratio= 0.4
Cylinder_D_and_L= diameter length
Reduced_Temperture= 1d0

Reduced_Screening_Parameter= 140
Inputs_to_generate_initial_configuration_only_if_cold
Cubic_box_1_or_fcc_2= 2

Initial_Packing_Fraction=  0.02d0
Initial_Quaternion_axis= 0d0 1.d0 0.4d0
Rotation_around_axis_degrees= 0.d0

Listing D.3: Example of the input file yuk hc input.sci
The output files are the following:

e yukawa helices.dat: The file is organized as follows: step, acceptance ratio (trans-
lational a nd rotational), acceptance ratio (volume moves), maximum translational
displacement, maximum angular displacement, maximum change in volume, reduced
pressure, packing fraction, nematic order parameter, x component of the phase di-
rector, y component of the phase direct or , z component of the phase director,
reduced total potential, reduced temperature.

e current displacements: containing the current maximum translational, rotational,
and change in volume.

e parameters.dat

D skoksfeokokoksksksk sk sk ok o fok ok sk sk sksk sk ok sk o ok sk sksksksksk ok o ok ok sk sksksk sk sk sk ok ok ok sk sk sk sk sk sk sksk sk sk ok ok ok sk sk skskskok ok o ok
sk skeok ok sk sk sk ok ok sk ok o ok ok sk sk sk sk sk ok sk o ok sk sk sk sk sk sk sk o o sk ok sk sk sk sk sk sk sk o sk ok sk sk sk sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk ok o ok
! NPT Monte Carlo simulation of cylindrical yukawa + hard cylinders
sk ofeofokskeokeokok ok ok ok ok ok ok skskesk ok sk ok o ok ok sk stk sk ok ok s ko ok sksksk sk sk sk s ok ko sk skeok sk sk sk sk sk sk ok s ok ok sk sksksk sk ok ok ok
! Developer: Joyce Tavares Lopes
! Supervisor: Dr. Luis Fernando Mercier Franco
! School of chemical engineering (FEQ) - UNICAMP
1 stk ke ok ok sk sk sk ok ok sk ok o ok ok sk sk sk ok sk ok ok o ok ok sk sk sk sk ok sk o sk ok sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk sk sk sk o ok ok ok sk sk sk sk sk sk ok o ok
! This code was developed during a research period at
! Universita Ca’ Foscari Venezia under the supervision of
! Professor Achille Giacometi. (SEP 2019/FEB 2020)
D skoksfeofok sk sk skosk ok sk ok o ok ok sk sk sksk sk ok ok o ok ok sk sk sksk sk sk o ok ok sk sk sksk sk sk sk ok ok ok sk sk sk sk sk sksk sk sk sk o sk ok sk sk sk sk sk ok ok o ok
Program Yukawa_HC_MC_NPT

use monte_carlo

use initial_configuration

use global_variables

use order_parameters

Implicit None



Integer,Dimension(:),Allocatable :: vseed

Integer :: seed_size,seed = 349766914

Real(8) :: rnum

| L _______
! Properties

Real(8), Allocatable :: rnew(:,:)

Real(8) :: boxlnew(3),rij(3),ri(3),ei(3)
Real(8) :: quatO_axis(3),quatO_angle
Logical :: cold_conf,production

Integer :: structure

Integer :: 1i,j,k,jlayer

Character :: get*100,moltype*l,outfile*100
Character :: inputfilelx100

Character :: inputfile2*100,outfile2+*100
Real(8) :: utotal,new_utotal,deltau

Integer :: moves_re,move_v
Integer :: step2print,stepdrmax,stepdvmax
Real(8) :: acc_mov,acc_mov_v,acc_ratio

Real(8), dimension(0:3) :: qi

Real(8) :: deltap,deltav,deltah

Real(8) :: new_pot,old_pot

Logical :: overlap

Real :: start,finish,startstep,finishstep
Real(8),dimension(0:3) :: gnew

Real(8) :: s2,evec(3)

Real :: attempts_re

Character :: fileOx1

! Initialize Random_Number (Fortran intrinsic function)
1

Call Random_seed(size=seed_size)
Allocate(vseed(seed_size))



vseed(:) = seed
Call Random_seed(put=vseed)

Call cpu_time(start)
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!Simulation Input File
!

'Monte Carlo simulation and Potential parameters
Open(101,File=’yuk_hc_input.sci’)

Read(101,*) get,n

Read(101,*) get,moltype

Read(101,*) get,cold_conf

Read(101,*) get,production

Read (101,x*)
Read (101, %)
Read (101, %)

get,p_star
get,nsteps
get,ncycles

Read(101,*) get,step2print
Read(101,*) get,max_angle
Read(101,*) get,max_r
Read(101,*) get,max_v
Read(101,%*) get,stepdrmax
Read(101,*) get,stepdvmax
Read(101,*) get,acc_ratio
! Cylinder parameters
Read(101,%) get,d,1
Read(101,*) get,T_star

Read(101,*) get,zeta
|

aspect_ratio = 1/d

v_particle = 0.25d0*pixd*d*1l

halfl = 0.5d0x*1

halfd = 0.5d0*d

!Variable ’space’ is only used in packed box initial configuration
spacex = 0.d0

spacez = 0.d0

! Initial Configuration - Warm or Cold

Select Case (cold_conf)
Case(.true.)
Read(101,*) get
Read(101,*) get,structure
Read(101,*) get,etal
Read(101,*) get,quatO_axis(1),quatO_axis(2),quatO_axis(3)
Read(101,*) get,quatO_angle
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Select Case(structure)

Case(1)
Allocate(r(3,N),rnew(3,N),q(0:3,N),e(3,N))
call cubic(etaO,quatO_axis,quatO_angle)

Case(2)
Allocate(r(3,N),rnew(3,N),q(0:3,N),e(3,N))
call fcc(eta0,quatO_axis,quatO_angle)

Case(3)
call packed_box(etal,quatO_axis,quatO_angle)
Allocate(rnew(3,N))

End Select

Case(.false.)

inputfile2 = ’current_conf.xyz ’

Open(102,FILE=trim(adjustl(inputfile2)))

Read(102,*) n

Allocate(r(3,N),rnew(3,N),q(0:3,N),e(3,N))

Read(102,%*) box1(1),box1(2),box1(3)

Do 99 i=1,n

Read(102,*) moltype,r(1,i),r(2,1i),r(3,1),&
&q(0,1),q(1,1),q(2,1),q(3,1) ,halfd,halfd,1

99 End Do

Close(102)

End Select
Close(101)

! Simulation Output Files
!

! Formats

1 Format(4x,A4,2x,A7,3x,a7,4x,a6,3x,a7,3x,a7,&
&3x,al13,3x,all,4x,a4,3x,a7,6x,a4,10x,a2,11x,a2,10x,a2)

2 Format(I7,f10.5,f10.5,f10.5,f10.5,f10.5,2x,&
&f10.5,4x,f10.5,2x,f10.5,f10.3,f10.3,2x,f10.3,2x,f10.3,2x,£f10.3)

3 Format(A13,f10.5)

4 Format(A13,I5)

Open(200,File=’conf.xyz’)

Write(200,%*) n

Write(200,*) boxl(1),box1(2),box1(3)

Do i=1,n

Write(200,%*) moltype,r(1,i),r(2,1i),r(3,1),&
&q(0,1),q(1,i),q(2,1) ,q(3,i) ,halfd,halfd,1

End Do

Call flush(200)

! Current Configuration File
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Open(203,File=’current_displacements’)
Open(202,File=’current_conf.xyz’)

Write(outfile2,’ ("PropP",£3.1,".dat")’) p
Open(201,File= ’yukawa_hc.dat’,status=’unknown’)

Open(204,file = ’parameters.dat’)

! Tnitialization
|

v = box1(1)*box1(2)*box1(3)
rho = dble(n)/v

d3 = dx*dxd

max_v = max_v*d3

d_cm = dx1d-8

d3_cm3 = d_cm*d_cm*d_cm
rcut = 4.d0xd

max_r = max_r*d

! Calculate orientations from initial quaternion rotation
!

Do 100 i=1,n !'Loop over particles
Call quat_to_ori(efixed,q(:,1i),e(:,1))
100 End Do

! Check Overlap in Initial Configuration
!

overlap = .false.

Call total_potential_yukawa_hc(boxl,r,overlap,utotal)
If (overlap) then
Print*, ’Overlap detected in initial configuration!’
STOP
End If

! Print Initial Conditions and Parameters
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Call orderparameter(s2,evec)

Write(*,4) °N =’,N

Write(*,3) ’L/D =’,aspect_ratio
Write(*,3) ’P* =’,p_star

Write(*,3) ’eta_i =’,rho*v_particle
Write(*,3) ’rho =’,rho

Write(*,3) T*x =’ ,T_star

Write(*,3) ’Kd*x =’,zeta

Write(*,3) ’eps_elec =’,eps_elec
Write(x,3) ’Z =’,71

Write(*,3) ’LB =’,1b

Write(*,3) ’Ux_i =’,utotal*T_star/n
Write(*,3) ’<P2> =’,s2

Write(204,4)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
Write(204,3)
flush(204)

step = 0

acc_mov = 0.d0
=0

acc_mov_v

Write(201,2) step,acc_mov,acc_mov_v,max_r/d,max_angle,max_V/d3,&
&p_star,rhoxv_particle,s2,evec(1l),evec(2),evec(3),&

’N =7 ,N

’L/D =’ ,aspect_ratio

’Px =’ ,p_star

’eta_i =’,rho*v_particle
’rho =’,rho

YT =2 T_star

Kd*x =7 ,zeta

’eps_elec =’ ,eps_elec

’Z =2,71

’LB =’,1b

'U*_i =’ ,utotal*T_star/n
Y<P2> =782

.do

&utotal*T_star/n,&

&T_star

Call flush(201)

! Start Trial moves

Do 103 step=1,nsteps !Loop over steps
overlap = .false.
attempts_re = 0
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moves_re = 0

move_v = 0

acc_mov = 0

Do 104 cyclei=1,ncycles !Loop over cycles
deltah = 0.d0

Call random_number (rnum)

i = Idint(rnum*dble((n+1))) + 1

If (i .le. n) then

Call partial_potential_yukawa_hc(boxl,i,q(:,i),e(:,1i)&
&,r(:,i),r,overlap,old_pot)

if (overlap) print*,’error with overlap from previous conf’

attempts_re = attempts_re + 1

! Translation move for particle 1
Call new_position(i,boxl,ri)
! Rotational move for particle i

! Randomly rotate old quaternion
Call random_rotate_quat(q(:,i),qi)
! New orientation after rotation
Call quat_to_ori(efixed,qi,ei)

! Check Overlap and Calculate New Partial Potential
Call partial_potential_yukawa_hc(boxl,i,qi,ei&
&,ri,r,overlap,new_pot)

If (.not. overlap) then
deltau = new_pot - old_pot
if (deltau .le. 0.0) then
q(:,i) = qi(:)
r(:,i) = ri(:)
e(:,i) = ei(:)
utotal = utotal + new_pot - old_pot
moves_re = moves_re + 1
else if ((deltau) .1lt. 75) then
Call random_number (rnum)
if (dexp(-deltau) .gt. rnum) then
q(:,1) = qi(:)
r(:,i) = ri(:)

e(:,1) = ei(:)
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utotal = utotal +&
& new_pot - old_pot
moves_re = moves_re + 1
end if
end if
End if

Call new_volume(rnew,boxlnew,vnew)
deltav = vnew - Vv
ICheck Overlap and Calculate New Total Volume after volume scaling
Call total_potential_yukawa_hc(boxlnew,rnew,overlap,new_utotal)
If (.not. overlap) then
deltau = new_utotal - utotal

deltah = p_star*deltav*ang3tocm3/d3_cm3/T_star
deltah = deltah - (dble(n)+1d0)*dlog(vnew/v)
deltah = deltah + deltau

If (deltah .le. 0.0) then
r(:,:) = rnew(:,:)
rho = dble(n)/vnew
box1(:) = boxlnew(:)
v = box1(1)*box1(2)*box1(3)
utotal = new_utotal
move_v = 1 + move_v
Else If ((deltah) .l1t. 75) then
Call random_number (rnum)
If (dexp(-deltah) .gt. rnum) then
r(:,:) = rnew(:,:)
rho = dble(n)/vnew
box1(:) = boxlnew(:)
v = box1(1)*box1(2)*box1(3)
utotal = new_utotal
move_v = 1 + move_v
End If
End If
End If
End If
104 End Do

acc_mov = dble(moves_re)/dble(attempts_re)
if (attempts_re .lt. ncycles) &
& acc_mov_v = dble(move_v)/dble(ncycles - attempts_re)
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! Write properties and configuration every step2print steps
!

if (mod(step,step2print) == 0) then

! Properties File

Write(201,2) step,acc_mov,acc_mov_v,max_r/d,&
&max_angle,max_V/d3,&
&p_star,eta,s2,evec(l),evec(2),evec(3),&
&utotal*T_star/n,&
&T_star

Call flush(201)

! Current Configuration File (position and quaternions)

Write(203,*) ’Max Translational displacement’,max_r

Write(203,*) ’Max Rotational displacement’,max_angle

Write(203,*) ’Max Volume’ ,max_v

Rewind (203)

Write(202,*) n

Write(202,*) box1l(1),box1(2),box1(3)

Do 200 i=1,n

Write(202,*) moltype,r(1,i),r(2,i),r(3,1),q(0,1i),&
&q(1,1),q(2,i),q(3,1) ,halfd,halfd,1

200 End DO

Call flush(202)

Call flush(203)

Rewind (202)

I If (Mod(step,10*step2print) == 0) then

! Configuration File (position and quaternions)

Write(200,%) n

Write(200,*) box1l(1),box1(2),box1(3)

Do 205 i=1,n

Write(200,*) moltype,r(1,i),r(2,i),r(3,1),q(0,1i),&
&q(1,1),q(2,i),q(3,1) ,halfd,halfd,1

205 End DO
Call flush(200)



! End If

End If
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! Adjust Maximum Displacement

! Adjust max_r every stepdrmax steps
If (mod(step,stepdrmax) == 0) then
If (acc_mov .gt. acc_ratio) then
max_r = 1.05*max_r
max_angle = 1.05*max_angle
Else
max_r = 0.95%max_r
max_angle = 0.95*max_angle
End If
End If

! Adjust max_v every stepdvmax steps
If (attempts_re .l1t. ncycles) then
If (mod(step,stepdvmax) == 0) then
If (acc_mov_v .gt. acc_ratio) then
max_v = 1.05*max_v
Else
max_v = 0.95%max_v
End If
End If
End If
103 End Do

Call cpu_time(finish)
Call orderparameter(s2,evec)

Write(*,*) ’======= Final =======’

Write(*,3) °Ux_f =’ utotal*T_star/n

Write(*,3) ’eta_f =’,eta

Write(*,3) ’<P2> =’,s2

Write(*,3,advance = "no") ’Run Time =’, (finish-start)/60.d0
Write(*,*) ’min’

Write(204,%) ’======= Final =======’
Write(204,3) ’Ux_f =’ utotal*T_star/n
Write(204,3) ’eta_f =’,eta
Write(204,3) ’<P2> =’,s2

Write(204,3,advance = "no") ’Run Time =’, (finish-start)/3600.d0

Write(204,*) ’h’



Close(200)
Close(201)
Close(202)
Close(203)
Close(204)
End
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