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ABSTRACT 

The level control of interactive tanks adjusting flow rates is a multiple input multiple output 

(MIMO) system that poses many challenges in the control problem, such as nonlinearities, 

interactions between manipulated and process variables and dead times. Therefore, 

conventional techniques such as the Proportional Integral Derivative (PID) controller might 

not work properly in this process. Artificial neural network (ANN) is a parallel processing 

technique that can capture highly nonlinear relationships among input and output variables. 

Hence, some control techniques that use ANN have been proposed for processes in which 

traditional feedback techniques may not work properly. This work aimed to test the 

experimental feasibility of two control techniques based on artificial neural networks applied 

to level control in coupled tanks: the model predictive control based on neural modeling (MPC-

ANN) and an inverse neural network control. In the first strategy, an artificial neural network 

model of the process and an optimization algorithm are used to derive a satisfactory error 

performance. The second one is a control technique based on predicting the manipulated 

variables straight from the measurements of the process variables. Moreover, this work aimed 

to compare the performance of the two techniques mentioned with the conventional PID. The 

experiments were carried out using interactive tanks set up in of the Laboratory of Control and 

Automation at the University of Campinas (UNICAMP). Both levels of coupled tanks were to 

be controlled by manipulating the power of the two pumps that regulates output flow rates. An 

intermediate manual valve connected the tanks, generating nonlinearities and interaction 

between the levels, which made the success of PID control more difficult. The experimental 

application of the three mentioned techniques was performed with algorithm developed in 

MATLAB® and using a PLC to acquire the plant data. The comparison between the two-control 

neural network control techniques showed that the inverse neural control was not capable to 

track the set-point satisfactorily since it left an offset while the MPC-ANN was capable to track 

the set-point faster than the PID and it left smaller overshoots than the PID. The MPC-ANN 

performed better than the PID due to the capacity of model predictive control algorithm to 

minimize the deviations between the desired and predicted outputs, and the ability of artificial 

neural networks to deal with nonlinearities and interactions between manipulated and 

controlled variables. Besides, MPC-ANN couples feedback and feedforward strategy so it 

compensates model plant mismatches with the disturbance model.  

 

 

 



RESUMO 

O controle de nível de tanques interativos a partir da vazão é um sistema MIMO (multiple input 

multiple output), que envolve uma série de desafios como não linearidades acentuadas, 

interação entre as variáveis do processo e tempos mortos e, por isso, nem sempre pode ser 

controlado por técnicas de controle convencionais como o PID. Rede neurais artificiais (RNA) 

são uma técnica de processamento paralelo capaz de capturar relações bastante não lineares 

entre várias variáveis de entradas e várias variáveis de saídas. Dessa forma, diversas técnicas 

de controle utilizando RNA tem sido propostas para processos em que o controle feedback 

tradicional possa não funcionar satisfatoriamente. O presente trabalho visava testar a 

viabilidade experimental de duas técnicas de controle baseadas em redes neurais aplicadas no 

controle de nível em tanques interativos: o controle preditivo baseado em redes neurais (MPC-

RNA), que consiste em utilizar um modelo neural do processo e um algoritmo de otimização 

para obter uma performance satisfatória; e o controle neural inverso, que é uma técnica de 

controle baseada na predição da variável manipulada diretamente das variáveis controladas. 

Além disso, o trabalho também visava comparar a performance das duas técnicas mencionadas 

com a performance do controlador PID convencional. Os experimentos foram realizados no 

sistema de tanques interativos do Laboratório de controle e automação (LCAP) na Unicamp. 

Ambos os níveis dos tanques acoplados eram controlados a partir da manipulação das potências 

das duas bombas que regulavam as vazões. Uma válvula intermediária manual conectava os 

tanques e gerava não linearidades, bem como interação entre os níveis, o que dificultava o 

controle PID. A aplicação experimental das três técnicas mencionadas foi feita por meio de um 

programa desenvolvido em MATLAB® e um CLP foi utilizado para fazer a aquisição dos dados 

da planta. Uma comparação entre as duas técnicas de controle baseadas em redes neurais 

mostrou que o controle neural inverso não foi capaz de seguir o setpoint satisfatoriamente, já 

que a técnica deixou um offset. Enquanto isso, a técnica MPC-RNA foi capaz de seguir o 

setpoint mais rapidamente e com menores overshoots do que o PID. A performance melhor do 

MPC-RNA em relação ao PID pode ser atribuída a capacidade do algoritmo de controle 

preditivo de minimizar os desvios entre a saída desejada e predita, e a habilidade das redes 

neurais artificiais de lidar com não linearidades e interação entre variáveis manipuladas e 

controladas. Além disso, o controlador MPC-RNA acopla a estratégia feedback e feedforward, 

dessa forma, compensando desvios entre o valor real e o valor predito a partir do modelo 

distúrbio. 

 

 



Figure Index 

Figure 1: Layout of the pressurized water reactor system (KOTHARE et al., 2000). 21 

Figure 2: Wastewater treatment plant (CONCEPCION; MENESES; VILANOVA, 
2011). ....................................................................................................................................... 22 

Figure 3: Diagram of the power plant (LABBE et al.). .............................................. 23 

Figure 4:  Structure of a single neuron, adapted (HIMMELBLAU, 2000). ............... 27 

Figure 5: Feedforward neural network architecture, adapted (HIMMELBLAU, 2000).
.................................................................................................................................................. 27 

Figure 6: Block Diagram of Model Predictive Control, adapted (DEMUTH; BEALE; 
HAGAN, 2010). ....................................................................................................................... 30 

Figure 7: The receding horizon principle (CAMACHO, 2004). ................................. 31 

Figure 8: Block Diagram of Inverse Artificial Neural Network controller. ............... 36 

Figure 9: Block Diagram of PID loop. ....................................................................... 37 

Figure 10: Block diagram of an open loop control system. ........................................ 38 

Figure 11: Multivariable control loop with loop decoupling. ..................................... 41 

Figure 12: Experimental scheme of coupled tanks. .................................................... 42 

Figure 13: Instrumentation Diagram of coupled tanks. .............................................. 43 

Figure 14: a) Level pressure transducers. b) PLC, model DVP20EX3. c) Pump used in 
this work................................................................................................................................... 43 

Figure 15: Flow chart used to determine the position of the valves. .......................... 44 

Figure 16: Simulink® Diagram of the Identification Process. ................................... 45 

Figure 17: FOPDT response curve. ............................................................................ 46 

Figure 18: Block Diagram of the multiloop PID control. ........................................... 48 

Figure 19: Block diagram of the PID transfer function. ............................................. 48 

Figure 20: Block diagram of Multivariable PID control with decoupling technique. 49 

Figure 21: Stability analysis through simulation. ....................................................... 50 

Figure 22: Neural network setting used to predict outputs in the prediction horizon. 51 

Figure 23: Architecture of the ANN using four inputs (a); eight inputs (b); twelve inputs 
(c). ............................................................................................................................................ 51 

Figure 24: Simulink block diagram used to collect identification data. ..................... 53 

Figure 25: Simulink diagram used to control the system by MPC-ANN. ................... 54 

Figure 26: Inverse neural network structure. .............................................................. 56 

Figure 27: Simulink block diagram of the inverse neural network control. ............... 57 

Figure 28: Identification of the process transfer function Gp11(s). .............................. 61 

Figure 29: Identification of the process transfer function Gp12 (s). ............................. 61 

Figure 30: Identification of the process transfer function Gp21(s). .............................. 62 

Figure 31: Identification of the process transfer function Gp22(s). .............................. 62 

Figure 32: Comparison of the closed loop response of level 1 using different tuning 
methods. ................................................................................................................................... 63 

Figure 33: Comparison of the closed loop response of level 2 using different tuning 
methods. ................................................................................................................................... 64 

Figure 34: Comparison of the control action (Power 1) using different tuning methods.
.................................................................................................................................................. 64 

Figure 35: Comparison of the control action (Power 2) using different tuning methods.
.................................................................................................................................................. 65 



Figure 36: Comparison between multivariable PID strategy with multiloop PID 
strategy for level 1. .................................................................................................................. 65 

Figure 37: Comparison between multivariable PID strategy with multiloop PID 
strategy for level 2. .................................................................................................................. 66 

Figure 38: Ultimate gain for the control loop 1 (level 1 and power of the pump P-101).
.................................................................................................................................................. 67 

Figure 39: Critic gain for the control loop 2 (level 2 and power of the pump P-102).
.................................................................................................................................................. 67 

Figure 40: Linearity analysis of level 1. ..................................................................... 68 

Figure 41: Linearity analysis of level 2. ..................................................................... 68 

Figure 42: Dynamic Behavior of level 1 and the division between training and test set.
.................................................................................................................................................. 70 

Figure 43: Dynamic Behavior of level 2 and the division between training and test set.
.................................................................................................................................................. 70 

Figure 44: Dynamic Behavior of power of pump P-101 and the division between 
training and test set. ................................................................................................................. 71 

Figure 45: Dynamic Behavior of power of pump P-102 and the division between 
training and test set. ................................................................................................................. 71 

Figure 46: Definition of the number of neurons in the first neural network (prediction 
of level 1). ................................................................................................................................ 74 

Figure 47: Definition of the number of neurons in the second neural network 
(prediction of level 2)............................................................................................................... 74 

Figure 48: Accuracy of the prediction of Level 1. ...................................................... 75 

Figure 49: Accuracy of the prediction of Level 2. ...................................................... 75 

Figure 50: Effect of control and prediction horizon on the control response for w = 
0.01. (a) Np = 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. .............. 77 

Figure 51: Effect of control and prediction horizon on the control response for w = 0.1. 
(a) Np = 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. ..................... 78 

Figure 52: Effect of control and prediction horizon on the control response for w = 1. 
(a) Np = 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. ..................... 78 

Figure 53: Effect of control and prediction horizon on the manipulated variables for w 
= 0.01. (a) Np = 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. ......... 79 

Figure 54: Effect of control and prediction horizon on the manipulated variables for w 
= 0.1. (a) Np = 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. ............. 79 

Figure 55: Effect of control and prediction horizon on the manipulated variables for w 
= 1. (a) Np = 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. .............. 80 

Figure 56: Performance versus number of neurons and activation function. ............. 81 

Figure 57: Accuracy of the inverse neural network prediction of power 1. ............... 82 

Figure 58: Accuracy of the inverse neural network prediction of power 2. ............... 83 

Figure 59: Performance comparison among predictive control based on neural network 
(MPC-ANN), inverse neural network (IANN) and conventional PID control for the level 1. . 84 

Figure 60: Performance comparison among predictive control based on neural network 
(MPC-ANN), inverse neural network (IANN) and conventional PID control for the level 2. 85 

Figure 61: Control action of the power of the pump P-101. ....................................... 86 

Figure 62: Control action of the power of the pump P-102. ....................................... 86 

Figure 63: Step test of the flow rate in the identification process. .............................. 88 



Figure 64: Open loop response in the identification process. ..................................... 88 

Figure 65: Simulation of the closed loop response. .................................................... 89 

Figure 66: Control action for the simulated closed loop response. ............................. 89 

Figure 67: Comparison between simulation and real process for level 1 closed loop 
response using MPC-ANN. ..................................................................................................... 90 

Figure 68: Comparison between simulation and real process for level 2 closed loop 
response using MPC-ANN. ..................................................................................................... 90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table Index 

Table 1: Common activation functions. ...................................................................... 26 

Table 2: Tuning relationships for PID. ....................................................................... 47 

Table 3: Physical parameters of the coupled tanks system. ........................................ 59 

Table 4: Transfer functions obtained by the identification method. ........................... 60 

Table 5: Tuning parameters of the PID 1. ................................................................... 63 

Table 6: Tuning parameters of the PID 2. ................................................................... 63 

Table 7: Level variation when a positive and negative step are performed in the 
manipulated variable. ............................................................................................................... 68 

Table 8: Maximum and minimum value of each variable. ......................................... 69 

Table 9: Effect of the neural network parameters in the performance of the network.
.................................................................................................................................................. 73 

Table 10: Effect of MPC tuning parameters on the performance criteria. .................. 76 

Table 11: Variation in performance with the change in the number of neurons and the 
activation function. .................................................................................................................. 82 

Table 12: Comparison of the performance criteria. .................................................... 84 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



List of abbreviations and acronyms 
 

ANN  -  Artificial Neural Network 

ARMAX  -  Moving Average Models 

CARIMA  -  Controlled Autoregressive Moving Average 

DMC  -  Dynamic Matrix Control 

DMPC  -  Distributed Model Predictive Control 

FOPDT  -  First Order Plus Dead Time 

GPC  -  Generalized Predictive Control 

IAE  -  Integral of Absolute Error 

IANN  -  Inverse Neural Network 

IMC  -  Internal Model Control 

ISE  -  Integral of Squared Error 

ITAE  -  Integral of Time-weighted Absolute Error 

LCAP  -  Laboratory of Control and Automation of Processes 

LMPC - Linear Model Predictive Control 

MAC  -  Model Algorithm Control 

MIMO  -  Multiple Input Multiple Output 

MPC  -  Model Predictive Control 

MPC-ANN  -  Model Predictive Control based on Artificial Neural Network 

MSEtest  -  Mean Squared Error of the test set 

MSEtraining  -  Mean Squared Error of the training set 

NMPC - Nonlinear Model Predictive Control 

PI  -  Proportional Integral 

PID  -  Proportional Integral Derivative 

PLC  -  Programmable Logic Controller 

RGA  -  Relative Gain Analysis 

SISO  -  Single Input Single Output 

SSE - Sum of Squared Errors 

SSW  -  Sum of Squared Weights and Bias 

 

 

 

 



Simbology 

φ − Activation function 

wij − Sinaptic weight of the connection between neuron “i” and neuron “j” 

bj − Bias 

γ − Number of effective parameters 

xi − Neuron input 

yj − Neuron output 

xn − Normalized variable 

xmin − Minimum value of the variable 

xmax − Maximum value of the variable 

ym − Predicted output 

ysp − Set point 

ysp1 − Set point of level 1 

ysp2 − Set point of level 2 

yr − Reference trajectory 

yp − Measured output 

u' − Calculated future input value 

U − Current input 

J − Objective function 

Np − Prediction Horizon 

Nc − Control Horizon 

w − Weight of the control action in the objective function 

wy − Weight of the control error in objective function 

dk − Discrepancy between the measured value of the plant and the predicted 

value 

yc − Output corrected by the disturbance model 

Gc(s) − Control transfer function 

Gm(s) − Sensor transfer 

Gf(s) − Final element of control transfer function 

Gp(s) − Process transfer function 

Gp11(s) − Process transfer function that relates y1 with u1 

Gp12(s) − Process transfer function that relates y1 with u2 



Gp21(s) − Process transfer function that relates y2 with u1 

Gp22(s) − Process transfer function that relates y2 with u2 

Gproc(s) − Product of Gp, Gf and Gm 

Gd(s) − Disturbance transfer function 

e(s) − Error in the PID block diagram 

c(s) − Control signal in the PID block diagram 

m(s) − Manipulated variable in the PID block diagram 

d(s) − Disturbance in the PID block diagram 

Kc − Proportional gain 

τi − Integral time 

τd − Derivative time 𝜆ij − Relative Gain between the controlled variable yi and the manipulated 

variable uj 𝛬 − Relative Gain Array 

yi − Level of the tank “i” 

Pi − Power of the pump “i” 

Kp − Gain of the process 

τp − Time constant 

td − Dead time 

Kcr − Ultimate Gain 

Tcr − Ultimate period 

ρ − Mass Density 

Aj − Cross Sectional Area of the tank “j” 

Cvj − Valve coefficient 

Lc − Height of the tank 

T − Time to complete the volume of the vessel 

 

 

 

 

 

 

 



1. INTRODUCTION.............................................................................................. 18 

1.1. INDUSTRIAL APPLICATIONS .......................................................................... 20 

1.1.1. Nuclear Steam Generation ...................................................................... 20 

1.1.2. Wastewater treatment process ................................................................. 21 

1.1.3. Dearation process ................................................................................... 22 

2. OBJECTIVE ...................................................................................................... 24 

2.1. MAIN ............................................................................................................ 24 

2.2. SPECIFIC........................................................................................................ 24 

3. THEORETICAL FRAMEWORK ................................................................... 25 

3.1. ARTIFICIAL NEURAL NETWORKS .................................................................. 25 

3.2. MODEL PREDICTIVE CONTROL ..................................................................... 29 

3.3. MODEL PREDICTIVE CONTROL BASED ON ARTIFICIAL NEURAL NETWORKS . 34 

3.4. INVERSE NEURAL CONTROL ......................................................................... 35 

3.5. PID ............................................................................................................... 36 

4. METHODOLOGY ............................................................................................ 42 

4.1. PROCESS DESCRIPTION ................................................................................. 42 

4.2. PID CONTROLLER ......................................................................................... 44 

4.2.1. Process Identification .............................................................................. 44 

4.2.2. PID Control ............................................................................................. 47 

4.2.3. Linearity and Stability ............................................................................. 49 

4.3. MODEL PREDICTIVE CONTROL BASED ON ARTIFICIAL NEURAL NETWORK... 50 

4.3.1. ANN setting .............................................................................................. 50 

4.3.2. MPC-ANN Identification ......................................................................... 52 

4.3.3. MPC-ANN Control .................................................................................. 54 

4.4. INVERSE NEURAL NETWORK CONTROL ........................................................ 55 

4.4.1. Definition of Inputs and Outputs ............................................................. 55 

4.4.2. Inverse Neural Network Identification .................................................... 56 

4.4.3. Inverse Neural Network Control ............................................................. 57 

4.5. MPC-ANN MODELLING AND SIMULATION ................................................... 57 

5. RESULTS AND DISCUSSION ........................................................................ 60 

5.1. PID IDENTIFICATION AND TUNING ............................................................... 60 

5.2. PID DECOUPLING .......................................................................................... 65 

5.3. PID STABILITY AND LINEARITY ANALYSIS .................................................. 66 

5.4. MPC-ANN IDENTIFICATION .......................................................................... 69 

5.5. MPC-ANN TUNING....................................................................................... 75 

5.6. INVERSE NEURAL NETWORK IDENTIFICATION .............................................. 80 

5.7. COMPARISON AMONG THE CONTROLLERS .................................................... 83 

5.8. MPC-ANN SIMULATION ............................................................................... 87 

6. CONCLUSION .................................................................................................. 91 

7. FUTURE WORKS ............................................................................................. 92 

8. REFERENCES ................................................................................................... 93 



APPENDIX ................................................................................................................. 97 

APPENDIX A1 – TRAINING ALGORITHM FOR THE NEURAL NETWORK OF THE MPC-

ANN. ..................................................................................................................................... 97 

APPENDIX A2 – ALGORITHM OF THE MODEL PREDICTIVE CONTROLLER BASED ON 

NEURAL NETWORKS .............................................................................................................. 98 

APPENDIX A3 - TRAINING ALGORITHM FOR THE INVERSE NEURAL NETWORK. .... 100 

APPENDIX A4 – ALGORITHM OF INVERSE NEURAL NETWORK. ............................. 101 

APPENDIX A5 – SIMULATION OF THE COUPLED TANKS PROCESS. ........................ 102 

APPENDIX A6 – ALGORITHM OF IDENTIFICATION OF THE COUPLED TANKS PROCESS 

FOR SIMULATION. ................................................................................................................ 103 

APPENDIX A7 – ALGORITHM OF MPC-ANN FOR SIMULATION. ........................... 104 



18 
 

1. Introduction 

In chemical industries, certain process variables such as temperature, pressure, 

concentration, and level must be kept at given values, which can be achieved by manipulating 

some variables like the position of a valve or the power of a pump. Although these variables 

can be controlled by a human operator, automatic control is generally desirable because 

humans often make more mistakes and cannot respond as fast as a machine to a disturbance in 

the process. 

Process control is becoming more and more important for several reasons. First, the 

safety and environmental regulations are very stringent nowadays. Second, due to global 

competition, it is important to keep a high standard of quality by reducing the variability of the 

process. Third, it is possible to lower variable costs of an industry by maintaining some process 

variables at a constant level (SEBORG; EDGAR; MELICHAMP, 2003). Besides, it is 

important to satisfy some operational constraints of industrial equipment. For coupled tanks, 

the importance of level control is usually related to equipment safety and product quality 

(DERDIYOK; BAŞÇI, 2013). 

There are several important control purposes that must be taken into consideration in a 

process. A good control system must have the ability to suppress disturbances so that the 

control strategy makes the right change in the manipulated variables to cancel the impact of 

the disturbances. Besides, the control strategy must track the setpoint and optimize the control 

performance, by minimizing the control errors (the difference between the setpoint and the 

measured controlled variable), the overshoot and the response time. Finally, a good control 

cannot give an unstable response under any circumstance.  

The level control of interactive tanks is a nonlinear problem due to the valves, so it is 

unlikely to be satisfactorily controlled by a conventional feedback controller (NOEL; 

PANDIAN, 2014). Moreover, according to Derdiyok and Başçi (2013), the problem has dead 

time and interactions between the manipulated and controlled variables of different loops, 

which makes the control by conventional techniques difficult. Roy and Roy (2016) stated that 

although PID can work properly in 80% of the situations, there are some situations that more 

advanced techniques should be used. For example, in a wastewater treatment plant, when it is 

necessary to vary the level of one tank while keeping the level of the other tank constant, it is 

likely that the PID does not work well due to very stringent restrictions. Therefore, advanced 

techniques should be used in situations that conventional control techniques do not work 

properly. 
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As level control of coupled tanks is not an easy task, many works have proposed 

different advanced techniques. For example, Roy and Roy (2016) used the fractional order PI 

along with a feedforward controller to control the level of interactive tanks. Mercangöz and 

Doyle (2007) used the technique of distributed model predictive control (DMPC) for 

controlling the level in a system of four tanks connected and got a better result than the control 

using decentralized MPC. Saaed, Udin, and Katebi (2010) compared a multivariable predictive 

PID controller and a simple multi-loop PI and derived a better result for the first technique. 

Vadigepalli, Gatzke and Doyle (2001) compared the performance and robustness of a PI 

decentralized control with “inner-outer” factorization-based multivariable internal model 

control (IMC) and H∞ control. The multivariable IMC and H∞ provided a better performance 

than the PI controller. Qamar (2012) showed the use of sliding mode control to control 

interconnected tanks. Moreover, Dharamniwas et al. (2012) used a fuzzy controller to control 

coupled tanks.  

Model predictive control (MPC) is the most used advanced control technique in the 

industry. Indeed, Mayne (2014) stated that MPC had an explosive growth in both the academy 

and the process industry because it proved itself very successful in comparison with other 

methods of multivariable control. According to Qin and Badgwell (2003), its success in the 

industry is related to its conceptual simplicity and its ability to handle easily and effectively 

complex systems with hard constraints and several inputs and outputs. 

The application of neural network in the field of control of processes is promising due 

to its ability to deal with complex and nonlinear relationships among many inputs and outputs. 

Besides, neural networks can deal with noisy data (TAYYEBI; ALISHIRI, 2014). Hence, they 

are more representative than conventional empirical models and phenomenological models 

(HIMMELBLAU, 2000). Therefore, this work will study the use of two neural networks 

control techniques in the interactive tank system: the model predictive control based on neural 

networks and the inverse neural network control.  

 The liquid level control is one of the most common problems found in industry with 

several applications found in the literature, such as water and effluent treatment (ALEX et al., 

1999), (CONCEPCION; MENESES; VILANOVA, 2011), boilers (GAIKWAD et al., 2011)  

(ÅSTROÖM; BELL, 2000), in chemical and pharmaceutical processing, food processing  

(ROY; ROY, 2016), nuclear steam generation (GAIKWAD et al., 2011), (TAN, 2011), 

(KOTHARE et al., 2000).  

The next section will discuss some industrial applications of tank level control in order 

to show its importance in practical situations and to show some difficulties related to its control. 
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Section 1.2 will briefly show the theory behind artificial neural networks, its structure, how it 

works and the training process. Section 1.3, 1.4, 1.5 and 1.6 will discuss the three controllers 

that will be used in this work: the model predictive control based on neural networks, the 

inverse neural network control, and the PID controller. 

 

1.1. Industrial Applications 

This section will discuss industrial applications of level control in which the control is 

challenging due to nonlinearities, process variables interactions and inverse response. The 

purpose of this section is to illustrate the importance of designing advanced control techniques 

for level control problems. 

 

1.1.1. Nuclear Steam Generation 

One of the most interesting applications of level control is in steam generators of 

nuclear power plants because problems in the control can cause a violation of safety limits and 

so reactor shutdown. Besides, according to Kothare et al. (2000), the water level control of the 

steam generator is difficult because it exhibits strong inverse response, nonlinear plant 

characteristics, unreliable sensor measurements and hard constraints that can lead to instability. 

The pressurized water reactor system showed in Figure 1 is composed of two 

subsystems: the steam supply system and the power conversions system. The steam supply 

system is composed by the reactor vessel and the steam generator. Its function is to transform 

the power released in the nuclear fiction reaction in thermal energy. The power conversion 

system is composed by the condenser, the turbine, and the electric generator. Its function is to 

transform the heat energy into electrical power. The manipulated variable used in this control 

level problem is the feedwater flow rate. The main problem is to keep the level within the 

allowable limits, even when the steam demand increases as a result of an increase in electrical 

energy. 

The inverse response is caused by the “swell and shrink” effects. When the feed water 

flow rate is increased, the cold feed water causes a collapse in the bubbles of the tube. Hence, 

the liquid level decreases at the first moment. However, after some time, the effect of increasing 

the water mass flow surpasses the effect of collapsing the bubbles which make the level to 

increase. The inverse response can be also caused by the effect of the steam flow rate in the 

level. If the steam flow rate is increased, the level initially rises, because the pressure of the 

tank decreases, which causes an expansion of the water in the tube. However, the total effect 

of the water mass flow causes an increase in the level after some time. 
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Figure 1: Layout of the pressurized water reactor system (KOTHARE et al., 2000). 

 

1.1.2. Wastewater treatment process 

Level control is extremely important in wastewater treatment process in order to 

minimize environmental impact on receiving water by removing pollutants to meet the strict 

standards imposed by authorities. Moreover, the wastewater treatment process is highly 

nonlinear, it is subject to large perturbations in flow, and it has uncertainties related to the 

composition in the incoming wastewater. These characteristics pose some difficulties to the 

control system, so ALEX et al. (1999) studied a methodology to assess control performance in 

a wastewater treatment plant depicted in Figure 2.  

A suitable liquid level control is essential in slurry treatment to equalize the very 

different influent stream that can vary a lot in flow and composition. This equalization by the 

level control is important to achieve the highest performance in the conversion from organic 

matter to methane. 
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Figure 2: Wastewater treatment plant (CONCEPCION; MENESES; VILANOVA, 2011). 

 

1.1.3. Dearation process 

The dearation process is applied in power plants where it is important to remove oxygen 

and prevent corrosion in the boiler. The dearator is a device that is placed between the turbine 

and the boiler. It receives condensate from the turbine and provides feedwater to the boiler by 

heating to remove the oxygen. The dearator is a two-chamber pressure vessel that consists of 

two sections: the storage section and the deaerating section shown in Figure 3, as parts 43 and 

41. 

The level control is necessary for reducing the condensate flow to the dearator during 

the transient conditions and to avoid flooding of the column. Conventional controllers will have 

problem to control the system because when the pressure on the turbine falls, the level in the 

tank will also decrease and a simple controller will try to compensate the problem by increasing 

the condensate in-flow thereby putting further energy demands on the system. The increase in 

condensate in-flow will also increase the pressure drop which may cause the flooding of the 

column if the pressure drop across the equalizers (the equipment that links the two parts of the 

deaerator, 57 in Figure 3) exceeds the static head in the deaerating section. 
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Figure 3: Diagram of the power plant (LABBE et al.). 
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2. Objective  

2.1. Main 

The main purpose of this work was to develop a neural network control based on two 

strategies: the inverse neural network control and the model predictive control based on neural 

network; and to test their performance in a coupled tanks system, which presents some 

difficulties in the control due to nonlinearities and interactions between the manipulated and 

controlled variables. Besides, the work also aimed to compare the two proposed strategies with 

conventional PID in order to understand the potential advantages and disadvantages that these 

strategies may have. All these strategies will be performed aiming to control two levels in a 

coupled tanks system. 

 

2.2.  Specific 

The specific objectives of this work were: 

- To develop Simulink models for multiloop PID control strategy and for PID with 

decouplers; 

- To develop first principle models based on mass balances to simulate the process; 

- To develop Matlab® algorithms for identification and control of an MPC-ANN and 

neural network control based on the inverse model for both simulation and the real process of 

coupled tanks system; 

- To determine the values of the MPC-ANN tuning parameters (like the prediction 

horizon, control horizon, weight of the control weight and sampling time). 
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3. Theoretical Framework 

This section will discuss the theory used in this work and it will be divided into five 

parts. Section 3.1 will give a brief review about artificial neural network advantages, the 

learning process, the neural network topology, the preprocessing and postprocessing steps. 

Section 3.2 will discuss about the Model predictive controller and the last three sections will 

discuss the three control techniques used in this work: Model predictive control based on neural 

networks, the inverse neural network control and the PID controller. 

 

3.1.  Artificial Neural Networks 

Artificial Neural Networks (ANN) are mathematical models constituted by basic 

processing units called neurons, that are distributed in many layers connected by a complex 

network (FILETI; PACIANOTTO; CUNHA, 2006). As its own name implies, neural networks 

are an attempt to model the way human brain performs a particular task or function of interest. 

They are able to storage experimental knowledge through a learning process and interneuron 

connections, known as synaptic weights, used to store the acquired knowledge (HAYKIN, 

2008).  

However, it is important to highlight that engineering systems are considerably simpler 

than the human brain. Therefore, ANN can be seen as a nonlinear empirical model that 

processes the information in a parallel way and it is useful to represent input-output data, to 

recognize patterns, to classify data and to predict data in time series (HIMMELBLAU, 2000). 

The problem solution through ANN are rather attractive due to its natural massive 

parallel distributed structure that makes neural networks capable to have a better performance 

than conventional models. Moreover, ANN are capable to generalize the learning since they 

can produce reasonable output prediction when inputs different from those from the training 

data set are presented. 

According to Haykin (2008), ANN have several useful properties such as: 

- Nonlinearity, which is an extremely important characteristic of neural networks 

because most of the processes are nonlinear; 

- Adaptivity, since neural networks can change their parameters to adapt to changes in 

the surrounding environment. So, they can be retrained to deal with changes in the operating 

environmental conditions or they can be trained to change their parameters with time in the 

nonstationary environment. This adaptive structure might increase the robustness of the 

system; 
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- Evidential Response, that is, the ANN can not only provide information about a 

particular pattern to select, but also the confidence in the decision made; 

- Fault Tolerance, which means that neural networks are able to perform robust 

computation and its performance does not worsen a lot under adverse operating conditions. 

 The processing structure of a neuron is shown in Figure 4. It is possible to realize that 

the input data (xi) is weighted by the neural connections known as synaptic weights (wji). The 

result is added to a bias creating an activation state. A function called transfer function is 

applied to the activation state creating the output. The purpose of the transfer function is to 

generate a nonlinear relationship between the input and output data. The calculation described 

is shown in Equation 1.  

 𝑦𝑗 = 𝜑 (∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗𝑛
𝑖=1 ) (1) 

 

Theoretically, the activation function may be whatever differentiable function, such as 

log-sigmoid function, hyperbolic tangent function or even linear function (HIMMELBLAU, 

2000). A list of the most important activation functions used in neural networks is shown in 

Table 1. 

 

Table 1: Common activation functions. 

Activation Function Mathematical 

Description (f(x)=) 

Output 

Linear x [-inf; +inf] 

Log-Sigmoid 11 − 𝑒−𝑥 
[0; 1] 

Hyperbolic 𝑒𝑥 − 𝑒−𝑥𝑒𝑥 + 𝑒−𝑥   [-1; +1] 

Exponential 𝑒−𝑥 [0; inf] 

Sinoidal sin (𝑥) [-1; 1] 

Tan-Sigmoid 21 + 𝑒−2𝑥 − 1 
[-1; +1] 
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Figure 4:  Structure of a single neuron, adapted (HIMMELBLAU, 2000). 

 

It is possible to classify the neural network according to the topology as feedback or 

feedforward. In the feedback topology there are loops, so the output signal is not sent only from 

layers nearer to the input to layers nearer to output. In the feedforward structures there are no 

loops, so the output signal from a neuron is always sent to neurons that do not receive any 

information from the input. When all neurons from one layer send output signal only for the 

next layer, the neural network is called strictly feedforward. An illustration of a feedforward 

neural network is shown in Figure 5. This architecture is the most used in chemical engineering 

problems (FILETI; PACIANOTTO; CUNHA, 2006). 

 

 

Figure 5: Feedforward neural network architecture, adapted (HIMMELBLAU, 2000). 
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Feedforward neural networks might have one or more hidden layers. Usually, a 

nonlinear function is used in the hidden layers and a linear function is used in the output layer. 

This allows that the neural network acts as a universal approximator, that is, it can predict from 

linear relationships to highly nonlinear relationships (DEMUTH; BEALE; HAGAN, 2010).  

One of the most important phases of neural network is the learning or training phase. 

In this phase, a set of examples of input and target output data is presented to the network and 

the parameters of the neural network, the weights and biases are adjusted interactively to 

minimize the objective function. This is made by the information provided to the supervisor. 

The learning may be supervised or non-supervised. In the supervised learning, there is 

a supervisor and the neural network learns how to imitate the supervisor from the input and 

output data. In the non-supervised learning, only inputs are provided to network and the 

supervisor acts providing labels to the groups. 

In supervised learning, there are many kinds of learning. The most common is called 

Backpropagation Algorithm, in which weights and bias are moved to the negative gradient 

direction of the objective function, that is, the direction that the objective function is reduced 

faster. In the Backpropagation Algorithm, the new values of weights and bias are computed 

from the output layer to the input layer (HAGAN et al., 2014). 

One of the biggest problems in the neural network training is the overfitting, in which 

the training error goes to small values, but, when new values are presented to the network the 

error is large. This means that the neural network will not have a suitable predictive capacity, 

which happens when the ANN simply link the dots during the training phase. Overfitting is 

usually caused when the neural network has a great number of parameters.  

To avoid overfitting, some strategies can be used. The first strategy is simply to collect 

more data so that the number of network parameters is much less than the number of data points 

in the training set. However, this methodology is not always feasible, since the amount of data 

is usually limited. Therefore, two methodologies are often used to avoid overshooting: the early 

stop and the Bayesian regularization. 

In the early stop methodology, the data set is divided into three: the training set, the 

validation set, and the test set. The training set aims to adjust the weights and bias. The 

validation set aims to determine when the training will stop.  At the beginning of the training, 

the error of both the validation and the training set decrease until a certain point when the error 

of validation starts to increase while the training error continues to decrease. At this moment, 

the network stops the training. The last set of data is the test set which aims to test the 

generalization ability of the neural network. 
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The other methodology to improve generalization is the regularization. It consists in 

modifying the objective function so that the sum of squared errors (SSE) is added to the term 

of the sum of the squared weights and bias (SSW). The resulting objective function is shown in 

the Equation 2 (HAYKIN, 2008). 

 𝐹 = 𝛼𝑆𝑆𝐸 + 𝛽𝑆𝑆𝑊 
(2) 

 

α and β are parameters of the objective function. 

Changing this objective function decrease the number of weights and bias found in the 

training phase. Thus, the response will be smoother and less likely to overfit the data. One of 

the most important characteristics of this method is to provide the number of parameters that 

are being effectively used by the neural network (γ). During the training phase, it is common 

to increase the number of neurons of the hidden layer to improve the network. However, when 

a certain number of neurons is reached, a further increase in neurons will not cause a further 

increase in γ. According to Foresee and Hagan (1997), this number of neurons should be chosen 

to the hidden layer, so that the number of effective parameters will not change when the number 

of neurons is increased. 

Some preprocessing and postprocessing steps can be applied in the input and output 

vector in order to make the neural network more efficient. One possible strategy is to normalize 

the data, so that all variables have values between -1 and 1, and neither of the variables has 

more importance than the others. Equation 3 shows the normalization. 

 𝑥𝑛 = 2(𝑥 − 𝑥𝑚𝑖𝑛)(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) − 1 (3) 

 

Where xn is the normalized variable, xmax is the maximum value of the variable in the 

training set and xmin is the minimum value in the training set. 

 

3.2.  Model Predictive Control 

Model predictive control (MPC) is one of the most used advanced control techniques 

in the industry and scientific community (SEBORG; EDGAR; MELICHAMP, 2003). This can 

be explained by the fact that MPC integrates techniques such as the optimal control, the 

stochastic control and control of processes with dead time. Moreover, MPC has many 
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characteristics of an ideal controller since it is able to handle processes with multivariable 

interactions, time delay, inverse response, nonlinearities, input/output constraints. Besides, 

MPC can compensate measurable and unmeasurable disturbances due to its feedback and 

feedforward structure and it is also able to optimize the use of control effort (OGUNNAIKE; 

RAY, 1994). 

According to Ogunnaike and Ray (1994), not all processes have to be controlled by an 

MPC to present a good performance and a robust control. However, some processes that have 

complicated dynamics, with dead time, inverse response, nonlinearities and hard constraints in 

the input and output are more benefited by the technique. 

In MPC applications output variables are also referred to as controlled variables and 

input variables are also called manipulated variables. 

Model predictive control can be defined as a class of advanced control techniques that 

uses the current and past information of input and output variables to calculate the future output 

of the process through a model of the process. Then, the input variables that optimize the future 

performance of the system are calculated through an optimization algorithm. Figure 6 shows a 

block diagram of the process.  

 

 

Figure 6: Block Diagram of Model Predictive Control, adapted (DEMUTH; BEALE; 

HAGAN, 2010). 

 

The variable yr represents the reference trajectory which is given by Equation 4, ysp is 

the set point and yp represent the measured output. The reference trajectory is the desired output 

trajectory, which can be either the set point (if α = 0) or trajectory that is less abrupt than a step. 
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 𝑦𝑟 = 𝛼𝑦𝑝 + (1 − 𝛼)𝑦𝑠𝑝 (4) 

 

The variable u’ is the calculated future input variables, ym is the future output predicted 

by the model variables and u is the current input variable since only the first input variable is 

implemented. 

The future controlled variables are calculated through a time interval known as the 

prediction horizon (Np), while the input variables are predicted by the optimization algorithm 

for the control horizon (Nc). Between the control horizon and the prediction horizon, the input 

variables are constant and equal to the last predicted value. Besides, it is important to emphasize 

that, although Nc future values of manipulated variables are calculated at each sample time, 

only the first move is implemented, and the optimization algorithm runs every sample time. 

This principle is known as Receding Horizon and it is shown in Figure 7. 

 

 

Figure 7: The receding horizon principle (CAMACHO, 2004). 

 

The optimization algorithm commented above and shown in Figure 6 has a cost function 

that must be minimized which is shown in Equation 5. This cost function takes into 

consideration the future predicted deviation from the target trajectory over the prediction 

horizon; and the minimization of the expenditure of the control effort through the control 

horizon in order to avoid great changes in the manipulated variables that could decrease the 

lifetime of the actuator (OGGUNAIKE, 1994).  
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 𝐽 = ∑ 𝑤𝑦(𝑦𝑟(𝑘) − 𝑦(𝑘 + 𝑗|𝑘))2𝑁𝑝𝑗=1 + ∑ 𝑤(𝑢(𝑘 + 𝑗 − 1|𝑘) − 𝑢(𝑘 + 𝑗 − 2))2𝑁𝑐𝑗=1     (5) 

 

The model of the process must be able to represent the dynamic behavior of the system 

accurately. It can be either linear or nonlinear depending on the complexity of the control 

problem and it can be updated through online identification methods in order to incorporate an 

adaptive scheme in the control. 

As no model can represent perfectly the reality, MPC usually has an error prediction 

update technique to correct these model inaccuracies by comparing the measured output values 

of the plant with the values predicted by the model. A simple form of this correction is the 

disturbance model given by Equations 6 and 7. 

 𝑑𝑦(𝑘) = 𝑦𝑝(𝑘) − 𝑦𝑚(𝑘|𝑘 − 1) 
(6) 

 𝑦𝑐(𝑘 + 1) = 𝑦𝑚(𝑘 + 1) + 𝑑𝑦(𝑘) 
(7) 

 

MPC techniques have several advantages. As commented earlier, MPC is able to deal 

with complex process, with dead times, inverse responses, interactions between the controlled 

and manipulated variables and nonlinearities. However, MPC have also some disadvantages 

such as: it is more complex than the conventional PID so it needs more computational effort to 

run the algorithm; in the adaptive control case, all the computation must be carried out at every 

sampling time; it requires a prior knowledge of the process since an appropriate model of the 

process is necessary. It is important to emphasize that, although the MPC might work even 

with model discrepancies, an inappropriate model may affect the benefits of the technique. 

There are several MPC techniques used in industries and they differ only in the kind of 

model used, and the cost function used. Some of the most known MPC techniques are Dynamic 

Matrix Control (DMC), Model Algorithm Control (MAC), state space MPC and Generalized 

Predictive Control (GPC). 

DMC was developed by Cutler and Ramaker in 1979 and was the first MPC algorithm 

developed. The technique uses a nonparametric model based on the response to a step in the 

input. MAC is very similar to DMC, but its model is based on the response to an impulse in the 
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input. The state space MPC is based on the state space model while GPC is based on controlled 

autoregressive moving average (CARIMA) model. 

The techniques cited before are all linear. Linear Model Predictive Control (LMPC) is 

well established to control multivariable processes. However, LMPC is inadequate for highly 

nonlinear processes, such as high purity distillation column, and moderately nonlinear 

processes which have large operation regimes, such as multi-grade polymer reactors. 

Therefore, Nonlinear Model Predictive Control (NMPC) is being more and more used in these 

processes due to the increasingly stringent demands on product quality (HENSON, 1998). 

According to Henson (1998), another reason for the increase in the use of NMPC is the 

improvement in software and hardware capabilities which make it possible to use complex 

algorithms.  

Moreover, according to Qin (2003), NMPC has several advantages. First, it is able to 

deal with the nonlinearities of the problem and, thus, increase the profit. Second, it might be 

based on either first principle models or empirical models. Finally, it can efficiently deal with 

constraints in the manipulated variables and controlled variables. 

It is important to highlight that NMPC has also some drawbacks. First, the optimization 

problems are nonconvex, which means that the solution is much more complex since the local 

minimum can affect the performance and stability of the control. The optimization algorithm 

is much more complicated since a nonlinear problem must be solved online at each sampling 

period, so the computational effort is rather greater than in LMPC. Third, the study of the 

robustness and stability in NMPC is very complex. Therefore, NMPC technique should be used 

only when the benefits of the technique are greater than the disadvantages listed before. 

 Nonlinear models in NMPC can be derived either by first principle models or empirical 

models. First principle models are obtained by applying transient mass, energy or momentum 

balance to the processes (OGUNNAIKE; RAY, 1994). Fist principle models have some 

advantages over empirical models since less process data is required for their development 

because they are highly constrained with respect to their structure, and model parameters can 

be estimated from laboratory experiments and routine operating data instead of plant tests. 

However, first principle models are difficult to derive in large-scale process and the first 

principle modeling approach can be too complex to be useful in NMPC design (HENSON, 

1998). 

 Empirical models are usually used in large-scale and complicated processes because 

they do not need a deep understanding of the process. Some examples of nonlinear models that 

can be used in NMPC are Hammerstein and Wiener models, Volterra models, polynomial 
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autoregressive moving average models (ARMAX models) and artificial neural networks 

models. Artificial neural networks are the most popular nonlinear models used in NMPC 

techniques due to their capacity to capture highly nonlinear dynamics of multivariable 

processes (HERMANSSON; SYAFIIE, 2015). 

 

3.3.  Model Predictive Control based on Artificial Neural Networks 

The predictive control using neural networks appeared for the first time when Willis 

(1992) applied the model predictive control based on artificial neural networks (MPC-ANN) to 

control a nonlinear system in a distillation column. The objective of the work was to test the 

performance of the new control approach and to compare its performance to the conventional 

PI controller and with the Generalized Predictive Controller. 

The system was multivariable and there were three inputs: the reflux ratio, the feed rate 

and the vapor rate in the reboiler. Besides, there was one output: the methanol molar fraction 

in the bottom product. The performance criteria used was the integral of the absolute error 

(IAE). The results showed that the MPC-ANN presented a great improvement in the 

performance compared to the other two techniques used (GPC and PI) since its IAE was 5.7 

against 62.1 of the GPC and 78.1 of the PI. 

Willis (1992) also compared the three controllers cited before for the situation that there 

were two controlled variables: the molar fraction of methanol in the bottom and the molar 

fraction of methanol in the top of the column. In this test, the MPC-ANN also performed better 

than the other two techniques since it had IAE of 3.0 and 22.4 for the top and bottom 

composition respectively. The PI presented an IAE of 11.52 and 31.58 for the top and bottom 

composition respectively. According to the authors, the better performance of MPC-ANN was 

due to the fact that ANN had the ability to predict interactions between the top and bottom loop. 

Other recent studies showed the application of ANN on highly nonlinear problems. 

Hosen, Hussain e Mjalli (2011) used the hybrid model of artificial neural networks and first 

principle models to control the temperature of a batch reactor in a polymerization reaction to 

produce styrene. The results showed that the overshoot and the response time were smaller for 

the MPC-ANN technique when compared with the performance of a PID. Besides, the control 

action was smooth. The authors point out that linear controllers are not able to capture 

nonlinearities in the process (HOSEN; HUSSAIN; MJALLI, 2011). 

Long et al (2014) applied the predictive control based on neural networks to control the 

temperature of a reactor of methylamine removal and compared its performance with the PID. 

They also found a better performance of the MPC-ANN. 
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Afram et al. (2017) used the MPC-ANN in the heating, ventilation and air conditioning. 

Others researchers used the technique to control the output temperature of a heat exchanger 

used in the petroleum pre-heating (VASIčKANINOVÁ; BAKOŁOVÁ, 2015). 

Yu, Gomm and Williams (1999) investigated the use of predictive control based on 

neural networks in the neutralization reactor. The process had three controlled variables: 

temperature of the reactor, the pH and the dissolved oxygen. According to the authors the 

process was very difficult to control due to the large dead time, coupling interactions and the 

dissolved oxygen. The controller demonstrated a satisfactory performance to track the set point 

and to reject disturbances. Wior et al. (2010) applied an approximate predictive control strategy 

in a neutralization tank. The model used was the multi-layer perceptron networks based on 

NNARX models. Draeger, Engel e Ranke (1995) used a feedforward neural network as the 

nonlinear prediction model in an extended DMC-algorithm to control the pH value in a 

neutralization process. The authors used actual data of the process operating with a PI to 

identify the process. 

Yu et al. (2006) stated that, although the application of neural networks in nonlinear 

processes are promising, they present some disadvantages such as the great computational 

effort, the long time needed to train the neural network, the uncertainties of the process 

generated by process variations and the fact that there is no accepted theory to tuning these 

controllers. The authors trained the neural networks offline and then applied an online 

modification of the controller parameters. The results showed a better performance of the ANN 

when compared with the PID. 

Neural networks have already been applied in many processes with complicated 

dynamics with large dead times, inverse response, nonlinearities, and interactions between the 

manipulated and controlled variables. However, no work has studied the application of neural 

networks for multivariable level control in coupled tanks. Therefore, this work will use the 

structure of MPC-ANN to control levels of coupled tanks process since this process has 

nonlinear behavior and interaction between the levels. 

 

3.4.  Inverse Neural Control 

Another neural network control structure that can be used in process control is the 

inverse neural control. This technique uses an inverse model to predict the manipulated 

variables, that is, the inputs of the process are the outputs of the model and the outputs of the 

process are the input of the model. 
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The inverse neural network modeling was applied by Fileti, Pacianotto e Cunha (2006) 

to adjust the end blow oxygen and coolant requirement in a basic oxygen steelmaking process 

in order to match the temperature and carbon percentage requirement. The results showed a 

better performance of the neural network structure proposed than the commercial model that 

was being used at the moment of the study. 

Moreover, Eyng and Fileti (2010) developed a feedback-feedforward controller, based 

on neural network inverse models aiming to keep a low concentration of ethanol and water in 

the effluent gas phase from an absorption column. The authors compared the ANN controller 

with the PID for situations under uncertainties of 5 %, 10 % and 15 % in measurements and 

showed that the ANN controller outperformed the PID. 

A scheme of the inverse neural network controller is shown in Figure 8. It is possible 

to note that the manipulated variables are calculated through the controlled variables and their 

setpoints. 

 

 

Figure 8: Block Diagram of Inverse Artificial Neural Network controller. 

 

3.5.  PID 

Proportional Integral and Derivative (PID) is a feedback three-mode controller that was 

developed in the 1930s and became widely used in industry in 1940s. The first computer 

control applications were developed in the 1950s and digital PID has been used in industry 

since the 1980s. 

The basic block diagram of a PID controller is shown in Figure 9 where the transfer 

functions representing each part of the process is shown. The setpoint (ysp(s)) is compared with 

the measured output (ym(s)) of the process (controlled variable) generating the error signal 

(e(s)). The error is the input of the PID controller represented by the transfer function Gc(s), 

which generates the control signal (c(s)). The control signal is then transmitted to the actuator 
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that is represented by the transfer function Gv(s), which gives the manipulated variable (m(s)). 

The manipulated variable actuates in the process that has the controlled variable as an output 

(y(s)). Finally, the controlled variable is measured by a sensor (ym(s)). The disturbance is 

represented by “d(s)” and the disturbance transfer function is represented by Gd(s). 

 

 

Figure 9: Block Diagram of PID loop. 

 

The first control action of PID is the proportional action which actuates reducing the 

response time of the system and the final error. However, by increasing this action the system 

may become unstable or highly oscillatory. The second action in the PID controller is the 

integral action, which can reduce the offset to zero. Nevertheless, by increasing the integral 

action the system tends to oscillate and may become unstable. Therefore, the third action in 

PID is the derivative action, which can reduce oscillations and decrease the time response 

increasing the performance of the system. Therefore, the three actions work together to improve 

the transient response of the system in order to reject disturbances and track the setpoint 

changes. The Equation 8 shows the calculation of the control signal in the PID controller. 

 𝑐(𝑡) = 𝑢𝑠𝑠 + 𝐾𝑐 (𝑒(𝑡) + 1𝜏𝑖 ∫ 𝑒(𝑡)𝑑𝑡𝑡
0 + 𝜏𝑑 𝑑𝑒(𝑡)𝑑𝑡  ) 𝑒(𝑠) (8) 

 

Where Kc is the gain of the controller, τi is the integral time and τd is the derivative time 

of the controller. 

A good performance of the control system depends on the tuning parameters choice (Kc, 

τi, τd). So, a small overshoot, a zero offset, and fast response can only be achieved with a 

reasonable choice of tuning parameters. There are some well-known methods to tune PID like 

the methods based on the response curve of the system, methods that are based on integral error 

criteria, methods based in frequency response like Bode Diagram and Nyquist Diagram. 
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In the methods based on the curve response, the control loop is “opened” and some 

perturbations in the manipulated variable are performed in order to get a model of the system 

that relates the input and output variables. This methodology is known as identification and is 

shown in Figure 10. The “Gproc(s)” function represents the product of the actuator, process and 

sensor transfer function. After the identification process, the dead time, the time constant and 

process gain are used to calculate the tuning parameters through correlations like Ziegler-

Nichols correlation. 

The PID controller can also be tuned using techniques that use the stability limit like 

the Ultimate Gain technique. In this technique, the system is kept in closed loop and the 

controller gain (Kc) is increased until the moment that the system reaches the stability limit.  

 

 

Figure 10: Block diagram of an open loop control system. 

 

After using Ultimate Gain or Ziegler-Nichols correlation to find the initial guesses of 

tuning parameters, it is possible to run some simulations with models of the process (Gproc) and 

the control (Gc) in order to find out a set of control parameters that give a satisfactory 

performance. This proceeding is known as fine-tuning. 

There are some parameters that can be used to assess the performance of the system. 

They are called performance criteria. According to Stephanoupoulos (1983), there are two 

kinds of performance criteria: the steady state performance criteria and the dynamic response 

performance criteria. 

The most important steady state performance criteria is the offset, that is, the final error 

of the system or the error of the system in the steady state. A good controller will drive the 

offset of the system to zero. 

There are two kinds of dynamic performance criteria: the ones that use only a single 

point of the response curve such as the overshoot and the response time and the ones that use 

the entire closed loop response like integral absolute error (IAE), integral of time-weighted 
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absolute error (ITAE) and the integral of square error (ISE), which are shown in Equation 9, 10 

and 11 respectively. 

 𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡∞
0  (9) 

     𝐼𝑇𝐴𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡∞
0  (10) 

 𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡∞
0  (11) 

    

Although the feedback control has many positive features, it has an inconvenient 

characteristic. If the controller is not well designed and the operation conditions of the system 

change after the implementation of the controller, the controller may lead the system to 

instability, that is, a limited input can lead to an unlimited output. Therefore, it is extremely 

important to understand under which conditions the controller may become unstable. 

Equation 12 shows the relationship between the controlled variable with setpoint 

changes and disturbance variable. The poles of the equation or the roots of the denominator 

provide information about the stability of the system. If all poles have the negative real part the 

system is stable. Otherwise, the system is unstable. 

 𝑌(𝑠) = 𝐺𝑐(𝑠)𝐺𝑓(𝑠)𝐺𝑝(𝑠)1 + 𝐺𝑐(𝑠)𝐺𝑓(𝑠)𝐺𝑝(𝑠)𝐺𝑚(𝑠) 𝑌𝑠𝑝(𝑠) + 𝐺𝑑(𝑠)1 + 𝐺𝑐(𝑠)𝐺𝑓(𝑠)𝐺𝑝(𝑠)𝐺𝑚(𝑠) 𝐷(𝑠) (12) 

 

The criteria shown above is true only for linear systems. However, this criteria provide 

important information for nonlinear systems that works near to the operation point. 

One of the methods that can be used to determine the poles of the system is the root 

locus. Root locus is simply the plot of the roots of the characteristic equation as the gain Kc is 

varied. Therefore, it is possible to determine which values of Kc lead the system to instability. 

Multiple-Input Multiple-Output (MIMO) problems are very usual in the modern 

industry since there are many variables to control. The control of these processes is usually 

more complicated than Single-Input Single-Output (SISO) problem due to process interactions 
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between the control loops, which means that one manipulated variable can affect all controlled 

variables. 

One way of dealing with MIMO control problems is to use one feedback controller (like 

the PID) to control each control loop. This technique is known as a multiloop control variable 

and it raises a lot of questions like which manipulated variable should be used to control which 

controlled variable? Will the interactions between the control loops cause problems? 

In order to answer these questions, the relative gain analysis (RGA) concept is usually 

used. The relative gains between the controlled variable yi and the manipulated variable uj are 

defined as the dimensionless ratio between the two steady-state gains. They are calculated 

through Equation 13. 

 

𝜆𝑖𝑗 = (𝜕𝑦𝑖𝜕𝑢𝑗)𝑢(𝜕𝑦𝑖𝜕𝑢𝑗)𝑦
= 𝑜𝑝𝑒𝑛 𝑙𝑜𝑜𝑝 𝑔𝑎𝑖𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑜𝑜𝑝 𝑔𝑎𝑖𝑛 (13) 

 

For a generic system with n input variables and n output variables, the relative gain 

array can be calculated through the matrix transfer function of the plant (Gp(s)) as shown in 

Equation 14. 

 𝛬 = 𝐺𝑝(0) ⊗ ((𝐺𝑝(0))−1)𝑇
 (14) 

 

For a system with two inputs and two outputs (2x2), equation 14 can be rewritten to 

Equation 15, and 𝝺 can be calculated through Equation 16. 

 𝛬 = [ 𝜆 1 − 𝜆1 − 𝜆 𝜆 ] (15) 

 𝜆 = 𝐾11𝐾22|𝐾|  (16) 
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The pairing between the controlled and manipulated variable should be chosen in order 

to reduce the process interactions between the control loops. Therefore, the ratio between the 

open loop gain and closed loop gain should be as close to one as possible. Large relative gains 

mean that uj does not have a great influence in yi when the loop is closed, which could make 

the control difficult. Besides, 𝝺 < 0 may lead the system to instability and must be avoided. 

In order to improve the control performance of multivariable control is to use loop 

decoupling. This strategy, shown in Figure 11, consists of using transfer functions called 

decouplers to eliminate loop interactions. The decouplers transfer function is shown in 

Equations 17 and 18. 

 𝑇21 = − 𝐺𝑝21𝐺𝑝22 (17) 

 𝑇12 = 𝐺𝑝12𝐺𝑝11 (18) 

 

The use of decouplers will not always represent an improvement in the performance of 

the system since the transfer functions might not successfully represent the process, especially 

in nonlinear systems. The ability of the decoupling technique improves the performance by 

eliminating the interactions between the loops of the system is limited to the accuracy of the 

model of the transfer function. 

 

 

Figure 11: Multivariable control loop with loop decoupling. 
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4. Methodology 

4.1.  Process Description 

The experiments were performed using an interactive tank plant placed in the 

Laboratory of Control and Automation of Processes (LCAP), which is shown in Figure 12. 

 

 

Figure 12: Experimental scheme of coupled tanks. 

  

The process has two controlled variables: the level of each upper tank. Besides, there 

are two manipulated variables: the power of the two pumps (P-101 and P-102). Therefore, the 

process is a MIMO process, with two inputs and two outputs. 

Figure 13 shows the instrumentation diagram of the coupled tanks system used in this 

work. The hand valves HV-101 and HV-102 regulate the flow in the tanks V-101 and V-102. 

The hand valve HV-103 has the purpose of communicating two tanks, adding nonlinearity to 

the system and adding process interactions between the two controlled variables. The pumps 

P-101 and P-102 can manipulate the flow that gets in each tank (Figure 14). 
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The levels of the vessels were obtained by the level pressure transducers represented by 

LT-101 and LT-102 Siemens, series MPX5010 plugged at the bottom of the tanks (Figure 14). 

Delta PLC, model DVP20EX3 (YIC-101), shown in Figure 14, read the data and sent to the 

computer, where a MATLAB® program calculated the control action of both pumps sending 

the sign back to the plant, hence closing the loop. It is important to point out that vessel V-103 

has only the purpose of recirculating the water. 

 

 

Figure 13: Instrumentation Diagram of coupled tanks. 

 

   

Figure 14: a) Level pressure transducers. b) PLC, model DVP20EX3. c) Pump used in this 

work. 
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4.2.  PID Controller 

The first step of the design of the PID was to construct the calibration curve in order to 

transform the levels given in bits from the level pressure transducers in actual level values. 

After that, the design of PID followed the following steps: identification, control and tuning 

using multiloop PID and decoupled multivariable PID; and the analysis of stability and 

linearity of the loop. 

 

4.2.1. Process Identification 

The identification procedure is the development of empirical dynamic models from 

input-output data of the process. Usually, this is the most time-demanding step in the 

application of control techniques in industrial processes. In PID applications, this step is 

important to derive initial guesses for the controller parameters from the correlations shown in 

Table 2. Moreover, this model can be used to derive decouplers equation through Equations 13 

and 14. 

For the identification process, the hand valves HV-101, HV-102 and HV-103 were kept 

partially opened in a fixed position since a change in the hand valve position would change the 

model of the plant. The hand valves HV-101 and HV-102 were opened until the level of each 

tank reached about 95% when the power of each pump (P-101 and P-102) was 100%. Besides, 

the hand valve that made the connection between the vessels (HV-103) was maintained 

partially opened so that the level of the tank one (LT-101) was about 65% when the power of 

pump P-101 (power 1) was 100% and the power of pump P-102 (power 2) was 0%. Therefore, 

the partial opening of HV-103 caused interactions between the controlled variables. The flow 

chart explaining the determination of the valves opening is shown in Figure 15. 

 

 

Figure 15: Flow chart used to determine the position of the valves. 
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One model that can be used to identify processes that have S-curve responses is the 

transfer function model first-order-plus-dead-time (FOPDT). Aiming to identify the model, the 

open loop configuration of Simulink® shown in Figure 16 was used. Two identification 

experiments were performed, the first one was to keep the power of P-102 constant while 

varying power of P-101 from 30% to 50% through a step. The second experiment was to vary 

the power of P-102 from 30% to 50% through a step change while keeping the power of P-101 

constant. In the first experiment, the transfer functions Gp11(s) and Gp21(s) of the Figure 11 are 

obtained while in the second experiment Gp12(s) and Gp22(s) are obtained. 

The step in the power of each pump was performed only after the levels had reached 

the steady state and the total time of the experiment was 450 seconds, which was enough for 

the levels to reach a new steady state. 

The block “OPC write” is the block that sent the power signal to the PLC, while the 

“OPC read” is the block that read the data from the plant. 

 

Figure 16: Simulink® Diagram of the Identification Process. 

 

After the step in each pump, the fitting in the FOPDT curve can be performed using 

minimization of the sum of squared errors as shown in Equation 19. The “f” represents the 

value predicted by the FOPDT equation (shown in Equation 20) and “ydeviant” represents the 

deviation of the level data collected from the plant through a Simulink program shown in Figure 

16 and the level in the steady state before applying the step. 
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 𝐹𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = ∑(𝑓 − 𝑦𝑑𝑒𝑣𝑖𝑎𝑛𝑡) (19) 

 𝑓 = 𝐴 (1 − (1 + 𝑡𝐵) 𝑒−( 𝑡𝐵)) (20) 

 

The next step is to calculate the three parameters of response curve (the process gain, 

the time constant and the dead time) using the graph of the response curve and the parameters 

A, B.  The process gain is calculated through Equation 21. 

 𝐾𝑝 = 𝐴𝐷 (21) 

 

Where D is the step in the manipulated variable (20%) and A is the parameter obtained 

from Equation 20. The parameter td (dead time) was determined through the crossing of the 

tangent line of the point of maximum slope with the time axis. The time constant (τ) was gotten 

through the subtraction between the time that the tangent line crosses the straight line of the 

new steady state and the dead time. This proceeding is shown in Figure 17. 

 

 

Figure 17: FOPDT response curve. 

 

The final transfer function model obtained (FOPDT) is shown in Equation 22. 
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 𝐺𝑝 = 𝐾𝑝𝜏𝑝𝑠 + 1 𝑒−𝑡𝑑.𝑠 (22) 

 

The parameters of the transfer function model (FOPDT) can be used to calculate the 

tuning parameters of the PID (Kc, τi, τd) through the Ziegler-Nichols correlation while the 

Ultimate gain correlation is based on the parameters obtained using the proportional contoller 

in limit of stability: the period of oscilation (Tc) and the ultimate gain. 

 

Table 2: Tuning relationships for PID. 

 Kc τi τd 

Ziegler-Nichols 
1.2𝜏𝐾𝑡𝑑  2𝑡𝑑 

𝑡𝑑2  

Ultimate Gain 0.6 𝐾𝑝𝑐 
𝑇𝑐2  

𝑇𝑐8  

 

4.2.2. PID Control 

After the process identification, the PID multiloop control was performed using the 

block diagram shown in Figure 18. The subsystems near the y1 and y2 blocks represent the 

filter of data that was designed due to the noise of the sensor signal. The error subsystem was 

used to calculate the integral of error performance criteria shown in Equation 9, Equation 10 

and Equation 11 (IAE, ITAE, and ISE). Besides, PID subsystem is shown in Figure 19. 

The servo problem was performed changing the set point of level 1 and level 2 through 

step tests. The sequence of set points used in level 1 was 0%, 50%, 20%, 50%, 70%; while the 

sequence of set points used in level 2 was 0%, 60%, 40%, 30%, 70%. The steps were applied 

every 300 seconds and simultaneously, which means that after 300 seconds setpoint of level 1 

was changed from 50% to 20% and setpoint of level 2 was changed from 60% to 40%. 

Therefore, the total time of the experiment was 1200 seconds. The set points of the two levels 

were varied to different points in order to make the problem of control more difficult due to 

the interactions between the two levels.  
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Figure 18: Block Diagram of the multiloop PID control. 

 

 

Figure 19: Block diagram of the PID transfer function. 

 

Aiming to compensate process interactions between the variables, the decouplers were 

designed using Equations 17 and 18. The same sequence of setpoint changes that was 

performed for the PID multiloop control was also performed for the PID multivariable control 

(with decouplers) so that the performance between the two strategies could be compared. 

Figure 20 shows the block diagram of PID multivariable control using decouplers. 
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Figure 20: Block diagram of Multivariable PID control with decoupling technique. 

 

4.2.3. Linearity and Stability 

In order to verify the nonlinearities of the system, four linearity experiments were 

performed: one positive step and one negative step for the power of each pump. In the first 

experiment, the power of Pump P-101 was varied from 50% to 60%; while the power of pump 

P-102 was kept constant at 50%. In the second experiment, the power of Pump P-101 was 

varied from 50% to 40%; while the power of pump P-102 was kept constant at 50%. In the 

third experiment, the power of Pump P-102 was varied from 50% to 60%; while the power of 

pump P-101 was kept constant. In the fourth experiment, the power of Pump P-102 was varied 

from 50% to 40%; while the power of pump P-101 was kept constant. 

In order to carry out the stability analysis, transfer functions found in the process 

identification step were used. The critical gain was then obtained through the Root Locus 

method and the Padé approximation, shown in Equation 23, was used to get a rational function, 

as shown in Equation 24. 

 𝑒−𝑡𝑑𝑠 = 𝑡𝑑2𝑠2 − 6𝑡𝑑 + 12𝑡𝑑2𝑠2 + 6𝑡𝑑 + 12 (23) 

 𝐺𝑝𝑟𝑜𝑐 = 𝐾𝑝𝜏𝑝𝑠 + 1 (𝑡𝑑2𝑠2 − 6𝑡𝑑 + 12𝑡𝑑2𝑠2 + 6𝑡𝑑 + 12) (24) 
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Another way that can be used to analyze the stability is to simulate the process, 

replacing the PID block to a gain block (Kcr block) and increasing the gain until the limit of 

stability. The block diagram of this simulation is shown in Figure 21. 

 

 

Figure 21: Stability analysis through simulation. 

 

4.3.  Model Predictive Control based on Artificial Neural Network 

The MPC-ANN design can be divided into three parts: the definition of ANN setting, 

the identification process to obtain the model based on input/output data and the control and 

tuning to obtain a set of parameters of the MPC that provides a good performance. 

 

4.3.1. ANN setting 

According to Souza (1993), two different architectures can be used in the prediction of 

the long horizon. The first strategy is to predict all the Np future values of each output in a 

single step. So, this neural network will have 2Np (Y1,k+1 , Y1,k+2 , …, Y1,k+Np, Y2,k+1 , Y2,k+2 , …, 

Y2,k+Np) outputs as it is shown in Figure 22.  

The second strategy is to predict just output one-step-ahead using past and present 

output and input and then feedback this information moving forward in the time horizon, so 

that in the second time horizon the Y1,k is substituted by Y1,k+1,Y1,k+1 is replaced by Y1,k+2 and 

so on. This recurrent proceeding is performed until all the Np values of each output have been 

calculated. Figure 23a, Figure 23b, and Figure 23c shows this setting. 
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Figure 22: Neural network setting used to predict outputs in the prediction horizon. 

 

 

Figure 23: Architecture of the ANN using four inputs (a); eight inputs (b); twelve inputs (c). 

 

According to Souza (1993), the first method has several drawbacks. The first problem 

is that this structure produces greater networks since its architecture is much more complex. 

Second, this setting is less flexible than the second one since a new training of ANN will have 
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to be performed if a new prediction horizon is picked. Third, the modeling error of this structure 

is greater than the second structure. 

As the process has two outputs (the level of both vessels) and two inputs (the power of 

both pumps), three network architectures were proposed. The first option is to calculate the 

level one-step-ahead (Yi,k+1) by using four network inputs: the level of each tank in the current 

moment (Y1,k and Y2,k), and the power of each pump in the current moment (P1,k and P2,k) as 

depicted in Figure 23a. The subscript “i” represents the level one or level two, since two 

networks are used, one for the prediction of each tank level. The second option is to calculate 

the level one-step-ahead using eight network inputs: the level of each tank in the current 

moment, the level one-step-delayed  (Y1,k-1 and Y2,k-1), the power of the pump in the current 

moment and the power of the pump one-step-delayed (P1,k-1 and P2,k-1) as illustrated in Figure 

23b. The third option is to use twelve inputs to calculate the level one-step-ahead (Yi,k+1): the 

level of each tank at the present moment and one and two-step delayed and the power of the 

pump in the current moment and one and two-step delayed as shown in Figure 23c. 

 

4.3.2. MPC-ANN Identification 

The identification process could be divided into two phases: the build-up of the data-

set and the training process aiming to obtain the best neural network architecture. 

The data-set was built using the Simulink® program shown in Figure 24. Y1p, y2p 

represent the level 1 and 2 at the current time; y1p1 and y2p1 represent levels 1 and 2 at one-

step-delayed; u1p and u2p represent the power of pumps P-101 and P-102 at the current 

moment; and u1p1 and u2p1 represent the power of pumps P-101 and P-102 one-step-delayed. 

The subsystems of the Simulink block diagram are the calibration curves. 

Open loop perturbations were performed simultaneously in the power of Pump P-101 

and P-102 et every 180 seconds (about three times the process time constant) and they are 

represented in Figure 24 by the block “repeating sequence stair”. These perturbations were step 

tests. Random values of input were chosen from 20% to 80% of the maximum power since the 

actual power did not change after 80% and the real power was zero bellow 20% of maximum 

power. Therefore, the identification experiment aimed to use the ability of nonlinear mapping 

of the neural networks to model the behavior of the system in the entire range of possible levels. 

One point was obtained at every Δt seconds (where Δt is the sample time). The total 

time of the identification process was 3600 seconds in order to get enough points to capture the 

dynamic behavior and to avoid overfitting. Therefore, the number of data points was about 

3600/Δt. Since three values of sampling time were tested in this work 3 seconds, 5 seconds and 
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7 seconds; the number of data points used in the neural network training was respectively 1200, 

720 and 514. 

 

 

Figure 24: Simulink block diagram used to collect identification data. 

 

The second part was to train a neural network to find the best architecture possible. In 

this process, the dataset collected was divided into two sets: the training set, which had 70% of 

the data points and the test set, which had 30% of the data points. The validation set was not 

necessary, because the strategy used to avoid overfitting was the Bayesian regularization, so 

the learning algorithm used was the Levenberg-Macquart algorithm with Bayesian 

regularization, that is the function trainbr of Matlab®.  

Some ANN parameters were varied such as the number of hidden layers, the number of 

neurons in each hidden layer and the activation function used. The number of hidden layers 

tested was one and two, while the number of neurons ranged from one to five since a greater 

number of parameters did not improve the performance of ANN. Besides, three activation 

functions were tested: the tan-sigmoid function (tansig in Matlab®), the log-sigmoid function 

(logsig in Matlab®) and the linear function (purelin in Matlab®). The training algorithm is 

shown in Appendix A1. 

The parameter used to determine the performance of the network was the mean square 

error of the test set (MSEtest). 
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4.3.3. MPC-ANN Control 

The control block diagram is shown in Figure 25, in which the block “interpreted 

Matlab function” is the MPC-ANN algorithm, shown in Appendix A2. This block calculates 

the manipulated variables from the information of past and present input and output 

information and the setpoint information. The variables ysp1 and ysp2 represent the set points of 

level 1 and level 2; y1p1 and y2p1 represent the measured levels of one-step-delayed, y1p and 

y2p represent the value of each level at the present moment; u1p and u2p represent the power 

of pump P-101 and P-102 at the present moment; while u1p1 and u2p1 are the power of pump 

P-101 and P-102 one-step-delayed; ynn1 and ynn2 represent the level predicted by the neural 

network in the last step, namely y1(k|k-1), y2(k|k-1). These last values were used to correct the 

model inaccuracies and the effect of unmeasurable disturbances through the disturbance model 

like it is shown in Equations 6 and 7. 

Therefore, by using this model, the discrepancy between the current measured output 

(yp(k)) and the output predicted by the neural network model in the last step (ym(k|k-1)) is 

calculated based on Equation 6 and the predicted output of the next step is then corrected with 

the discrepancy, according to Equation 7. 

 

 

Figure 25: Simulink diagram used to control the system by MPC-ANN. 
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In order to find the set of MPC parameters that gives a reasonable performance, the 

closed-loop experiments were performed varying the setpoint of level 1 from 0 % to 50 % and 

the setpoint of level 2 from 0% to 60%. The control horizon was varied from 1 to 4 and the 

prediction horizon was kept at four times the control horizon (Np = 4Nc). Three weight of 

control action (w1, w2) were tested; 0.01, 0.1 and 1, while the weight of control error (wy1, wy2) 

was fixed at 1. The total time used in the tuning process was 300 seconds, which was the time 

necessary for the system to settle down. 

After the tuning part, the closed-loop experiment was performed in order to compare 

the MPC-ANN controller to the PID and inverse model neural network controllers. The 

experiment was the same of the PID part, in which the set point of level 1 was changed every 

300 seconds and had the following values 0%, 50%, 20%, 50%, 70%; and the set point of level 

2 was simultaneously varied every 300 seconds and assumed the following values 0%, 60%, 

40%, 30%, 70%. 

 

4.4.  Inverse Neural Network Control 

The control based on inverse neural network model calculates the manipulated variables 

of the process from the controlled variables. Therefore, the artificial neural network computes 

the power of the pumps P-101, P-102 using the value of current and past level. It is possible to 

divide the design of the inverse neural network control into three phases: the definition of inputs 

and outputs, the identification and the control. 

 

4.4.1. Definition of Inputs and Outputs 

As the Inverse Neural Network calculates the inputs from the outputs, the simplest 

structure possible is shown in Figure 26. The only inputs are the current level (y1k and y2k) and 

one step delayed level (y1k-1 and y2k-1) and the outputs are the power of pump P-101 and P-

102: P1 and P2. In this work, we used this structure because more complex structures don’t 

make any improvement in the neural network performance. 
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Figure 26: Inverse neural network structure. 

 

4.4.2. Inverse Neural Network Identification 

The identification process for Inverse Neural Network is similar to the identification 

for the MPC-ANN. The first step is to collect data from open-loop perturbations in the power 

of pumps P-101 and P-102. The hand valves (HV-101, HV-102 and HV-103) were kept 

constant during the build-up of the dataset. Figure 24 shows how the data was collected. The 

difference here is that the manipulated variables were varied at every 300 seconds instead of 

180 seconds, which was the settling time.  

In order to collect a satisfactory amount of data, the experiment was planned to have 

33900 seconds. 

Since the model accuracy is critical for this method, the training procedure is very 

important. The parameters varied during training were the same of MPC-ANN technique, that 

is: the activation function (tan-sigmoid, log-sigmoid or linear), the number of hidden layers 

(one and two) and the number of neurons in each hidden layer. The dataset was divided into 

only two parts: the training set and the test set since Levemberg-Macquart with regularization 

(trainbr in Matlab®) was the learning rule used in order to avoid overfitting. The criteria used 

to determine the best neural network structure was the minimization of mean square error of 

the test set. The algorithm used to train the neural network is shown in Appendix A3. 
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4.4.3. Inverse Neural Network Control 

The implementation in Simulink of the Inverse Neural Network Control is shown in 

Figure 27. The block “INVERSE NEURAL CONTROL” comprises the control algorithm, 

shown in appendix A4, in which the control action is calculated. 

The structure of the neural network employed was similar to that shown in Figure 26. 

The main difference here is that the inputs are anticipated one step, which means Y1k-1 and 

Y2k-1 are replaced by Y1k and Y2k, represented as y1 and y2 in Figure 27. The inputs Y1k. and 

Y2k are replaced by inputs y1sp and y2sp.  

 

 

Figure 27: Simulink block diagram of the inverse neural network control. 

 

4.5. MPC-ANN Modelling and Simulation 

The model predictive control based on artificial neural network was also implemented 

in simulation. The non-linear dynamic differential equations used were based on mass balance 

as shown in the equation below, in which Qi represent the flow that gets into the tanks through 

the pumps (P-101 and P-102) and the hand-valve HV-103; and Qo is the flow leaving the tanks 

through the valves HV-101, HV-102 and HV-103. The subscript j represents the tank V-101 (j 

= 1) or V-102 (j = 2). Besides, Aj is the tank cross sectional area and ρ is the water density. 

 𝜌𝐴𝑗 𝑑ℎ𝑗𝑑𝑡 = 𝜌𝑄𝑖 − 𝜌𝑄𝑜  (25) 
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Equation 26 represents the total input flow rate. The first term represents the 

relationship between the input flowrate (in cm³/s) and the power of the pump, uj (in %), related 

to the tank (for example, P-101 for tank V-101). The signal of the second term is positive if the 

level of the tank “j” is smaller than the other tank, and it is negative if the level of tank “j” is 

larger than the level of the other tank the difference on pressure. Equation 27 represent the 

relationship between the output flowrate and the level of each vessel. 

 𝑄𝑖 = 𝐹(𝑢𝑗) ± 𝐶𝑣3√|ℎ1 − ℎ2| (26) 

 𝑄𝑜 = 𝐶𝑣𝑗√ℎ𝑗 (27) 

   

In which Cvj is the valve coefficient of the hand-valve HV-10j, F is the function that 

relates the power of each pump (“u”) with flow rate that get in the tank through the pumps. 

The final differential equations (Equations 28 and 29) are derived through the 

combination of Equations 25 with Equations 26 and 27. 

 𝑑ℎ1𝑑𝑡 = 𝐹1(𝑢1)𝐴1 − 𝐶𝑣1√ℎ1𝐴1 ± 𝐶𝑣3√|ℎ1 − ℎ2|𝐴1  (28) 

 𝑑ℎ2𝑑𝑡 = 𝐹2(𝑢2)𝐴2 − 𝐶𝑣2√ℎ2𝐴2 ± 𝐶𝑣3√|ℎ1 − ℎ2|𝐴2  (29) 

 

The input flow rate was obtained keeping all hand valves closed and measuring the time 

to complete the volume of the tank through Equation 30. The power of each pump was varied 

from 0% to 100% and a calibration curve was fitted to relate the uj with F(uj). 

 𝐹(𝑢𝑗) = 𝐿𝑐𝐴𝑗𝑇  (30) 

 

In which Lc is the maximum height of the tanks, Aj is the cross-sectional areas of the 

tanks and T is the time to complete the vessel. 

The physical parameters of the coupled tanks apparatus are shown in Table 3. The cross-

sectional areas (A1 and A2) were calculated through the multiplication of length and width, 
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while the valves coefficients (Cv1, Cv2, Cv3) were calculated through simulation, according to 

the following methodology. First, the coefficient Cv3 was kept at a value of zero to simulate the 

closed valve HV-103. Then, the power of pump P-101 and P-102 was kept at 100%, and the 

Cv1 and Cv2 were fitted to keep the level between 90% and 100%. After that, the Cv3 was fitted 

aiming to keep the level 1 between 60% and 70% when the power of pump P-101 was 100% 

and pump P-102 was 0%. The Matlab® code used to simulate the process is shown in appendix 

A5. 

 

Table 3: Physical parameters of the coupled tanks system. 

Parameter Value 

A1 80 cm² 

A2 80 cm² 

Cv1 13.5 cm5/2/s 

Cv2 13.5 cm5/2/s 

Cv3 2.7 cm5/2/s 

Lc 20 cm 

  

After discovering the valves coefficients (Cv1, Cv2 and Cv3), the identification procedure 

was performed in a way similar to the procedure in the experiment shown in section 3.3.2, 

which means that some steps were applied in the power of the pump and the response in the 

level was obtained through simulation of the Equations 29 and 30. The sample time was fixed 

at 3 seconds, total time of the simulation was 7200 seconds, and the time between the step tests 

was 300 seconds. The algorithm code of the identification procedure is shown in appendix A6.  

The last step was the tuning of the controller and application of the MPC-ANN. The 

sample time in this step must be the same defined in the identification, and the maximum 

predictive horizon is the time between the steps and the sample time, which in this work was 

Np = 100. 
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5. Results and Discussion 

5.1.  PID Identification and Tuning 

As explained in section 3.2.1, a first-order-plus-dead-time model (Equation 22) was 

used to identify the system. The hand valves (HV-101, HV-102 and HV-103) were kept 

partially opened and the power of each pump changed from 30% to 50%.  

Transfer function G11(s) was obtained from the response of level 1 when the power of 

pump P-101 changed. Transfer function G12(s) was obtained from the response of level 1 when 

the power of pump P-102 was varied. Transfer function G21(s) was obtained from the response 

of level 2 when the power of pump P-101 changed. Transfer function G22(s) was obtained 

from the response of level 2 when the power of pump P-102 was varied. 

The resulting transfer functions are shown in Table 4, while the comparison between 

the data points provided by the sensor (y1 and y2) and the transfer function model fitted 

(y1FOPDT and y2FOPDT) is shown in Figure 28, Figure 29, Figure 30 and Figure 31. 

 

Table 4: Transfer functions obtained by the identification method. 

Transfer function Kp (%/%) τp (s) td (s) 

G11(s) 1.93 32.16 4.84 

G12(s) 0.89 37.34 5.66 

G21(s) 0.78 44.30 6.70 

G22(s) 1.72 32.20 4.80 

 

These parameters show that the total time (300 seconds) used in the identification 

experiments is adequate since level 1 and level 2 can reach the new steady state. Besides, the 

interactions between the two variables are evident. The Relative Gain Analysis, explained in 

the Introduction Section (item 3.5) and shown in Equation 26, not only shows that the power 

of Pump P-101 should control the level 1 and the power of Pump P-102 should control level 2, 

but it also shows that the interactions between the variables can pose challenges to the control 

problem because there are relative gains smaller than 0 (𝜆12 and 𝜆21) and larger than 1 (𝜆11 and 𝜆22). 

 𝛬 = [ 1.26 −0.26−0.26 1.26 ] (31) 
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Figure 28: Identification of the process transfer function Gp11(s). 

 

 

Figure 29: Identification of the process transfer function Gp12 (s). 
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Figure 30: Identification of the process transfer function Gp21(s). 

 

 

Figure 31: Identification of the process transfer function Gp22(s). 
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%/%, τi1 = 12.00 s, τd1 = 2.29 s; and for the second controller shown in Table 6, Kc2 = 3.00 

%/%, τi2 = 12.00 s, τd2 = 2.28 s. Figure 32 and Figure 33 show the result of both controllers 

when a step test of 10% was applied in the setpoint of level 1 and level 2, respectively. Figure 

34 and 34 show the control action response (power 1 and power 2) of each tuning method. 

 

Table 5: Tuning parameters of the PID 1. 

 Kc1 (%/%) τi1 (s) τd1 (s) IAE1 ITAE1 ISE1 Overshoot1 

Ziegler-

Nichols 
4.13 9.68 2.42 311 20130 1147 0.67 

Ultimate Gain 3.44 9.15 2.29 135 1701 826 0.55 

Fine tuning 2.50 12.00 2.29 134 1953 773 0.22 

 

Table 6: Tuning parameters of the PID 2. 

 Kc2 (%/%) τi2 (s) τd2 (s) IAE2 ITAE2 ISE2 Overshoot2 

Ziegler-

Nichols 
4.68 9.60 2.40 306 19660 1125 0.67 

Ultimate Gain 3.90 9.10 2.28 134 1675 819 0.55 

Fine tuning 3.00 12.00 2.28 130 1804 757 0.24 

 

 

Figure 32: Comparison of the closed loop response of level 1 using different tuning methods. 
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Figure 33: Comparison of the closed loop response of level 2 using different tuning methods. 

 

 

Figure 34: Comparison of the control action (Power 1) using different tuning methods. 
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Figure 35: Comparison of the control action (Power 2) using different tuning methods. 

 

5.2. PID decoupling  

In order to eliminate the effect of control loop interactions, decouplers shown in 

Equation 17 and 18 and in Figure 11 were added to the PID strategy. The multivariable PID 

(with the decouplers) were then compared with the multiloop PID (without the decouplers). 

The results are shown in Figure 36 and Figure 37. 

 

 

Figure 36: Comparison between multivariable PID strategy with multiloop PID strategy for 

level 1. 
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Figure 37: Comparison between multivariable PID strategy with multiloop PID strategy for 

level 2. 

 

According to Seborg, Edgar and Mellichamp (2003), the decoupling control can predict 

and eliminate control loop interactions. However, this is possible only when the model of 

transfer functions can predict accurately the interactions between control loops. As it can be 

shown in Figure 36 and Figure 37, the gain in the performance when decoupling is performed 

is negligible. This can be explained by the fact that the process is nonlinear; and there are 

mismatches between the transfer function model and the real process, so the decoupling cannot 

anticipate the effect of interactions between manipulated and process variables. 

 

5.3. PID Stability and Linearity Analysis 

The stability analysis was performed using the Root-locus method (function rlocus of 

Matlab®), for the functions identified of the process (Gp11(s) and Gp22(s)). Figure 38 and Figure 

39 shows the result of the stability analysis. It is possible to see that there are three poles and 

three zeros since the second order Padé approximation was applied as shown in Equation 32. 

From Figure 38, the ultimate gain of controller 1 is Kc = 6.51 %/% and from Figure 39 the 

ultimate gain of controller 2 is Kc = 5.74 %/%. These parameters were used to determine the 

tuning from the Ultimate Gain method. 
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Figure 38: Ultimate gain for the control loop 1 (level 1 and power of the pump P-101). 

 

 

Figure 39: Critic gain for the control loop 2 (level 2 and power of the pump P-102). 

 

In a linear system, the gain in the process variable is proportional to the variation in the 

manipulated variable, hence Kp assumes a constant value. Therefore, according to Figure 40 

and Figure 41, the system is nonlinear, since for the same variation in the manipulated variable 

in module the controlled variable responds differently. Table 7 shows the process gain for the 

positive and negative step in the manipulated variable. 
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Table 7: Level variation when a positive and negative step are performed in the manipulated 

variable. 

 Positive Step (10%) Negative Step (10%) 

AKp1 (%) 20.0 % -27.8 % 

AKp2 (%) 10.1 % -16.0 % 

 

 

Figure 40: Linearity analysis of level 1. 

 

 

Figure 41: Linearity analysis of level 2. 
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Therefore, linear designed controllers, such as conventional PID, could not work 

properly when controlling the presented nonlinear experiment. Besides, large overshoots were 

observed in Figure 36 and Figure 37. According to the theory, the use of nonlinear techniques 

of control should be tested to improve the performance of the system. 

 

5.4.  MPC-ANN Identification 

The first phase of the identification was the build-up of the dataset in order to obtain 

the dynamic behavior of the level of tank 1 and tank 2. The power of each pump was randomly 

varied through values from 20% to 80% so that the neural network could capture the entire 

process range. The maximum and minimum values of each controlled and manipulated variable 

are shown in Table 8. 

 

Table 8: Maximum and minimum value of each variable. 

Variable Maximum Value Minimum Value 

Level 1 (%) 110 3 

Level 2 (%) 100 3 

Power 1 (%) 78 22 

Power 2 (%) 80 24 

 

Figure 42 and Figure 43 shows the behavior of level 1 and level 2 respectively and the 

division between the training set and the test set of the neural network. The first 70% of the 

data points were used to train the network, while the last 30% was used to test the generalization 

ability of the network. It is possible to imply from the figures that the test and training set cover 

the entire range of levels possible for the opening used in the hand valves HV-101, HV-102 

and HV-103. Figure 44 and Figure 45 show the range of power of the pump imposed in the 

experiment and the division between the training and test sets. 
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Figure 42: Dynamic Behavior of level 1 and the division between training and test set. 

 

 

Figure 43: Dynamic Behavior of level 2 and the division between training and test set. 
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Figure 44: Dynamic Behavior of power of pump P-101 and the division between training and 

test set. 

 

 

Figure 45: Dynamic Behavior of power of pump P-102 and the division between 

training and test set. 
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The second phase of identification is the choice of the best architecture of the neural 

network. Some architecture parameters were varied such as the number of hidden layers the 

number of neurons in each layer, and the activation function. Besides, the sample time was 

varied over 3 seconds, 5 seconds and 7 seconds. These values were based in the correlation of 

Astrom and Wittenmark (1997), which says that the value of the sample time should be between 

1% and 5% of the time constant of the process.  

It is important to point out that the choice of the sample time must balance the benefits 

of the identification and control design. Large sample time may lead to poor control 

performance, but the sample time cannot be so small due to the computational time required to 

process the algorithm. Moreover, small sample times can lead to numerical problems 

(MELEIRO, 2002). Table 9 shows that the sample time that gave the smallest prediction error 

was the 3 seconds. Since the computational processing time to run the MPC-ANN controller 

algorithm was about 0.4 seconds (the processor was Intel® CoreTM i5-3300 CPU @ 3.00 GHz), 

there is no problem in using 3 seconds as the sample time of the controller. 

The definition of the number of delayed inputs used in the neural network is also an 

important step. In the methodology section, we show that it is possible to propose a neural 

network that predicts all Np outputs in one single step (Figure 22) or to predict only one output 

and feedback the information so that the neural network can predict the Np future outputs 

(Figure 23). The second structure is more flexible and gives a smaller error, so only the second 

structure was used.  

According to Willys (1992), a neural network with a small number of delayed inputs 

may not capture the dynamics of the process due to delays intrinsic of the process. However, 

many delayed inputs may lead to unnecessary complex neural network structure. In this work, 

three structures were tested: with 4 inputs (0 delayed inputs), 8 inputs (1 delayed input) and 

with 12 inputs (2 delayed inputs). According to Table 9, the best neural network structure was 

the one with only 8 inputs, which can be explained because of the small dead time of the 

process. 

Table 9 shows the comparison between different ANN structural parameters. The 

number of neurons and the activation function presented for every sample time and ANN setting 

are the ones that minimized the error criteria.  Figure 46 and Figure 47 show how the number 

of neurons and the activation function of Table 9 were chosen. It is possible to conclude that 

there is no need to use a complex network for this problem since simple structures gave a better 

performance. 
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Table 9: Effect of the neural network parameters in the performance of the network. 

Sample time 

(seconds) 

Output 

variable 

Number 

of inputs 

Activation 

function 

Number of 

neurons in the 

hidden layer 

MSEtest (x10-4) 

3 

Y1 

4 logsig 2 6.00 

8 logsig 2 5.71 

12 logsig 2 6.16 

Y2 

4 logsig 5 6.65 

8 logsig 4 5.49 

12 tansig 4 6.23 

5 

Y1 

4 tansig 3 9.40 

8 logsig 3 8.09 

12 tansig 3 8.31 

Y2 

4 tansig 2 11.05 

8 tansig 2 9.26 

12 tansig 2 9.30 

7 

Y1 

4 tansig 1 13.59 

8 logsig 1 17.49 

12 logsig 1 14.32 

Y2 

4 logsig 2 16.32 

8 tansig 3 6.89 

12 logsig 2 7.43 
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Figure 46: Definition of the number of neurons in the first neural network (prediction of 

level 1). 

 

 

Figure 47: Definition of the number of neurons in the second neural network (prediction of 

level 2). 
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A comparison between the predicted and actual values for the best neural network 

architecture is shown in Figure 48 and Figure 49. The figures show the suitable prediction of 

level 1 and level 2, hence the neural network model can be used in the model predictive 

controller. 

 

 

Figure 48: Accuracy of the prediction of Level 1. 

 

 

Figure 49: Accuracy of the prediction of Level 2. 

 

5.5. MPC-ANN Tuning 

After the identification of the MPC-ANN approach, the next step was to find a set of 

controller parameters like Np, Nc, w, and wy that gives a suitable performance. As explained by 

Seborg, Edgar and Mellichamp (2003), large control horizons can lead to instability and 
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aggressive responses, so Nc was kept between 1 and 4. Large predictions horizon can improve 

the performance since the MPC algorithm perform an optimization of the future performance 

of the system in the prediction horizon. Besides small prediction horizons make the response 

more aggressive. 

The ratio between the prediction horizon and the control horizon was defined as four 

(Np/Nc = 4), which lies in the range given by Seborg, Edgar and Mellichamp (2003). Four 

values of prediction horizon were tested: Np = 4, Np = 8, Np = 12 and Np = 16. The weight of 

the control action in the objective function was also varied. Three values were tested: wi = 0.01, 

wi = 0.1 and wi = 1. Besides, the weight of the control error (wyi) was fixed at 1.  

The experimental tests were performed as explained in section 3.3.3., in which the set 

point was varied from 0% to 50% for the level 1 and from 0% to 60% for the level 2. The 

results of the effect of the tuning parameters of MPC in the performance criteria are 

summarized in Table 10.  

 

Table 10: Effect of MPC tuning parameters on the performance criteria. 

Tuning Parameters Performance criteria 

Np Nc w IAE ITAE ISE Overshoot 

4 1 0.01 2955 133628 84426 3.9% 

8 2 0.01 2811 123160 81224 9.1% 

12 3 0.01 3545 268683 80911 12.6% 

16 4 0.01 8227 1081411 190932 - 

4 1 0.1 3430 203039 93895 11.8% 

8 2 0.1 2526 82928 78226 4.5% 

12 3 0.1 2965 137552 89298 7.4% 

16 4 0.1 2679 132622 75708 17.8% 

4 1 1 3872 248632 93601 28.6% 

8 2 1 3224 175112 88502 10.9% 

12 3 1 3752 262479 92901 10.1% 

16 4 1 3059 237185 66665 28.2% 

 

Based on the Table 10, the tuning parameters of MPC-ANN chosen were wi = 0.1, Np = 

8 and Nc = 2. These MPC parameters gave the best performance since the overshoot was only 

4.5 % and the integral error criteria were smaller than for other values of Np, Nc and wi. 
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 Further analysis of the control response for all values of tuning parameters can be made 

by observing Figure 50, Figure 51 and Figure 52. It is possible to see that large Nc values can 

turn the response more oscillatory and may even lead to instability. Besides, according to 

Figure 53, Figure 54 and Figure 55 small weights on the control actions lead to oscillatory 

responses since the objective function does not punish large variations on the control action.  

 

 

Figure 50: Effect of control and prediction horizon on the control response for w = 0.01. (a) 

Np = 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. 
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Figure 51: Effect of control and prediction horizon on the control response for w = 0.1. (a) 

Np = 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. 

 

 

Figure 52: Effect of control and prediction horizon on the control response for w = 1. (a) Np 

= 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. 



79 
 

 

Figure 53: Effect of control and prediction horizon on the manipulated variables for w = 

0.01. (a) Np = 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. 

 

 

Figure 54: Effect of control and prediction horizon on the manipulated variables for w = 0.1. 

(a) Np = 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. 
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Figure 55: Effect of control and prediction horizon on the manipulated variables for w = 1. 

(a) Np = 4, Nc = 1. (b) Np = 8, Nc = 2. (c) Np = 12, Nc = 3. (d) Np = 16, Nc = 4. 

 

5.6.  Inverse Neural Network Identification 

The identification process for the inverse neural network is also based on two steps. 

First, the dataset was built collecting data from open-loop perturbations in the power of Pump 

P-101 and the power of Pump P-102. Then, the neural network of Figure 26 was trained in 

order to find the best number of neurons of the hidden layer, activation function and the number 

of hidden layers. Figure 56 shows the behavior of the performance of the network as the number 

of neurons and the activation function varies. The best neural network had one hidden layer 

with seven neurons and with the log-sigmoid activation function. 
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Figure 56: Performance versus number of neurons and activation function. 

 

The ANN power predictions are shown in Figure 57 and Figure 58, in which it is 

possible to see that the prediction of the neural network model was similar to the actual values 

for almost every point. The angular coefficient, m1 and m2, the linear coefficient, b1 and b2, 

and the correlation coefficient, r1 and r2, are shown in Table 11. Besides, the dashed line 

represents the ideal prediction, that is, when the prediction of the inverse neural network is 

equal to the actual values of the test set. However, according to Figure 57 and Figure 58, there 

are mismatches between the predicted and actual power, which can cause an offset in the 

response, since the inverse neural network control strategy is very sensitive to model errors and 

small variations in the power of the pump can cause an error between the final value of the 

controlled values and the setpoint. 
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Table 11: Variation in performance with the change in the number of neurons and the 

activation function. 

 

Number 

of 

Neurons 

m1 b1 r1 m2 b2 r2 MSEtest MSEtraining 

Logsig 

4 0.984 0.526 0.993 0.688 13.325 0.796 0.019 0.002 

7 0.976 1.105 0.990 0.910 3.677 0.974 0.014 0.001 

10 0.976 1.144 0.989 0.836 6.816 0.923 0.028 0.001 

13 0.977 1.151 0.989 0.779 9.406 0.890 0.031 0.001 

16 0.977 1.195 0.987 0.779 9.419 0.888 0.031 0.001 

Tansig 

4 0.983 1.266 0.955 0.783 9.170 0.905 0.033 0.001 

7 0.951 1.872 0.985 0.886 4.535 0.937 0.022 0.001 

10 0.974 1.752 0.966 0.896 4.246 0.960 0.019 0.001 

13 0.989 0.962 0.960 0.879 4.965 0.953 0.030 0.001 

16 0.958 2.302 0.980 0.787 9.072 0.900 0.029 0.001 

 

 

Figure 57: Accuracy of the inverse neural network prediction of power 1. 
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Figure 58: Accuracy of the inverse neural network prediction of power 2. 

 

5.7.  Comparison among the Controllers 

After the identification and tuning steps, the three control approaches were compared 

based on the experiment explained in the Methodology Section, in which the setpoint of level 

1 and setpoint of level 2 were varied simultaneously (0, 50, 20, 30, 70 for level 1 and 0, 60, 40, 

30, 70 for level 2). The controlled variables response are shown in Figure 59 and Figure 60 and 

the manipulated variable response are shown in Figure 61 and Figure 62. 

For the first level, the inverse neural network control could not eliminate the offset, so 

it was not capable of tracking the set point in the supervisory problem. The multivariable PID 

strategy presented an overshoot larger than the MPC-ANN strategy. Indeed, the maximum 

overshoot of MPC-ANN was 12.0 %, while the maximum overshoot of PID was 42.4%. 

Besides, the MPC-ANN response was faster than the PID response for all the perturbations in 

the setpoint of the supervisory problem.  

For the second level, none of the control strategies had an offset and the predictive 

controller based on neural network had a faster response than the other two strategies. The 

predictive control also presented overshoot quite smaller than the PID controller. Moreover, 

the time integral performance criteria (Table 12) showed that MPC-ANN technique presented 

a better closed-loop performance than the other two techniques. The response of the inverse 

neural network controller was slower than the PID response, but the technique did not present 

any overshoot. It is important to emphasize that the power 2 reached the saturation in the PID 
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control as it can be seen in Figure 62 which explains the atypical shape of the closed loop 

response for level 2 in the PID control (Figure 60). 

 

Table 12: Comparison of the performance criteria. 

  IAE ITAE ISE 

Y1 

MPC-ANN 4671 2642174 132309 

PID 6566 3217326 117904 

IANN 11700 6233448 209767 

Y2 

MPC-ANN 5584 1469384 91081 

PID 6319 3322417 110379 

IANN 9147 6244135 149271 

 

 

Figure 59: Performance comparison among predictive control based on neural network 

(MPC-ANN), inverse neural network (IANN) and conventional PID control for the level 1. 
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Figure 60: Performance comparison among predictive control based on neural network 

(MPC-ANN), inverse neural network (IANN) and conventional PID control for the level 2. 

 

Figure 61 and Figure 62 shows that the control effort of the MPC-ANN controller was 

smaller than PID controller, so its response was smoother than the PID response. The use of a 

filter in the PID prevented that the response was even more aggressive, within greater 

variations in the manipulated variable. For the MPC-ANN scheme, a large control effort was 

prevented by choosing an ideal weight for the control action, which, in the system used in this 

work, was w = 0.1. For the inverse neural network control the control action was very smooth 

because it depended mainly on the setpoint, so the control action will quickly stabilize. 
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Figure 61: Control action of the power of the pump P-101. 

 

 

Figure 62: Control action of the power of the pump P-102. 
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The superior performance of the Model predictive controller based on artificial neural 

networks to the “well-tuned” decoupled PID can be explained for several reasons:  

First, the decoupled PID is not capable to predict accurately the nonlinear interactions 

between the variables because it uses transfer function models, which are linear and might not 

give a satisfactory response for nonlinear problems as the coupled tanks process. Indeed, 

Seborg, Edgar and Mellichamp (2003) argues that the theoretical benefits of decouplers may 

not be fully realizable due to imperfect process models. On the other hand, neural network 

models are very accurate, and they are capable to predict complex nonlinear relationships 

between all inputs and outputs. Second, the ability of the model predictive control of optimizing 

the performance is well known. Therefore, these controllers can present a better performance, 

within smaller overshoots and time response. 

The inverse neural network control does not perform well because this controller acts 

with only a feedforward action, which means it does not couple feedback with feedforward 

action like the MPC-ANN. Therefore, the performance will depend strongly on the accuracy of 

the model. Mismatches between the model and the real process, or unmeasured disturbances 

like variations in the opening of the hand valves will affect the steady state of the process 

variables and can lead to large offsets. 

The regulatory problem was not tested in this work because the change in the position 

of the valves can hinder the prediction of the neural network, since the model that relates the 

future level with the past and current values of manipulated and controlled variables will 

change. Therefore, the PID would have a better performance than both neural network 

techniques for the regulatory problem since it calculates the control action based on the error. 

A possible way to deal with this problem is to train the neural network offline and 

change the weights and biases model online as it was proposed by Muniz (2004). Another way 

is to use the output flow as input of the neural network so that the influence of the position of 

the valves in the level is captured by the neural network modelling. 

 

5.8. MPC-ANN Simulation 

The physical parameters shown in section 4.5 (Cv1, Cv2, Cv3, A1, A2) were used in the 

algorithm code (Appendix A6) in order to perform the identification of the simulated process. 

The open loop step tests in the flow rate of pump 1 and pump 2 are shown in Figure 63, and 

the response of the controlled variables are shown in Figure 64. The analysis of both figures 

allowed us to conclude that the total time of 7200 seconds and the time between the steps of 

300 seconds was adequate since the controlled variables reached the steady state. 
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Figure 63: Step test of the flow rate in the identification process. 

 

 

Figure 64: Open loop response in the identification process. 
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result was that the control horizon was 2, the prediction horizon was 8 and the weight of the 

control action was 0.5. 

Finally, the model predictive controller based on artificial neural network was designed 

using algorithm given in appendix A7. The result of the closed loop response is shown in Figure 

65 while the control action is shown in Figure 66. The maximum overshoot for the first level 

was 8.6 % and the maximum overshoot for the second level was 6.2 %. Besides the controller 

gave a fast response and it presented a smooth control action. 

 

 

Figure 65: Simulation of the closed loop response. 

 

Figure 66: Control action for the simulated closed loop response. 
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 A comparison between the results of the simulation given in this section with the closed 

loop response for MPC-ANN given in section 5.7 is shown in Figure 67 and Figure 68. Both 

figures prove that the model used in the simulation was adequate since the results were similar 

in terms of response time and overshoot. Small deviations between the simulation and the real 

processes can be assigned to the noises inherent of the process that were not considered in 

simulation. 

 

 

Figure 67: Comparison between simulation and real process for level 1 closed loop 
response using MPC-ANN.  

 

 

Figure 68: Comparison between simulation and real process for level 2 closed loop 
response using MPC-ANN. 
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6. Conclusion 

In this work, three control strategies were compared: the PID controller, the Inverse 

neural network control, and the model predictive controller based on artificial neural network. 

The main objective was to control the level of two coupled tanks. The problem proved to be 

nonlinear and presented loop interactions between the manipulated variables and controlled 

variables, which posed challenge to the control problem. 

At first, the PID was identified using the first order plus dead time transfer function 

and, then, tuned using Ziegler-Nichols relationships followed by a fine-tuning. The set of 

tuning parameters were: Kc = 2.5 %/%, τi = 12.0 seconds and τd = 2.29 seconds for the first 

control loop and Kc = 3.0 %/%, τi = 12.0 seconds and τd = 2.28 seconds for the second control 

loop. A decoupling control was applied using the transfer functions found in the identification 

process in order to eliminate loop interactions. However, the decoupling was not able to 

improve PID control performance since the process was nonlinear and the transfer functions 

should vary in time. 

The use of a model predictive controller based on neural network was, then, proposed 

in order to improve control performance of a servo problem. The tuning parameters that 

optimize the performance were Nc = 2, Np = 8, wi = 0.1 and wyi = 1. It was found that small 

values of control weight may lead to an oscillatory response. Besides, large control horizons 

also led to an oscillatory response.  

The comparison of the three controllers was performed in a servo problem in which the 

level of the first and second tank were varied to different values to cause interactions between 

the process variables. The results showed that the MPC-ANN was the best control technique 

since it had a faster response and smaller overshoot than the other two techniques. Besides the 

control effort of MPC-ANN is smaller than the one of the PID controller, which could increase 

the lifetime of the actuator. 

The first reason that explains why the predictive controller tracked the setpoint better 

than the other controllers was that the neural network can capture nonlinear relationships 

between all inputs and outputs. Second, the predictive controller couples feedforward and 

feedback strategy so it anticipates future process behavior and it has an adaptive structure that 

responds to control error and can compensate model-plant mismatches. On the other hand, 

inverse neural network control has only the feedforward action, so it was sensitive to model 

errors and unmeasured disturbances and it could not perform a satisfactory control leading to 

offsets. 
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7. Future Works 

In this dissertation, the proposed strategy was used only to solve the supervisory 

problem because the algorithm was not capable to deal with large model mismatches caused, 

for example, by the change in the valve in the regulatory problem. Small model mismatches 

were dealt well by the disturbance model (Equations 6 and 7), but for large errors another 

adaptive technique is required, such as the adaptive strategy proposed by Muniz (2004), in 

which the neural network is trained offline and the weights and bias are changed online. 

Another possibility to deal with the regulatory problem is to use flow sensors in the output of 

the tank so that changes in the position of the valve can be captured by the neural network 

model as long as the flow measurements are used as input of the neural network. 

The study of the stability and robustness of the MPC-ANN is also important and should 

be considered in future works. Finally, the algorithm developed in this work may be used in 

other control problems in chemical industry, in which the conventional feedback controller 

does not present a suitable performance.  
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APPENDIX 

APPENDIX A1 – Training algorithm for the neural network of the MPC-ANN. 

% Script for neural network training 
close all; clear all;clc; 
M=load('RNA.mat');   %load datafile for training 
entrada=M.RNA(1:8,:); %define inputs of the neural network (columns 1 to 8) 
saida=M.RNA(9,:); % define the output of the neural network (column 9) 
pause 
  
%define maximum and minimum parameters, perform normalization. The 
variables “entradan” e “saidan” are the normalized input and normalized 
output respectively; 
[entradan,minentrada,maxentrada,saidan,minsaida,maxsaida]=premnmx(entrada,s
aida); 
  
% Separate the data file in training and test 
ent_treina_nor=entradan(:,1:840); %input training data 
sai_treina_nor=saidan(:,1:840); %output training data 
ent_teste_nor=entradan(:,841:1199); %input test data 
sai_teste_nor=saidan(:,841:1199); %output test data 
  
%% Comands for neural network training 
N=2; %number of neurons 
net=newff(minmax(ent_treina_nor),[N,1],{'logsig','purelin'},'trainbr'); 
%comand to create the neural network 
net.trainParam.epochs=3000;         %maximum number of steps 
net.trainParam.show=50;             %update the number of steps in the 
graph 
net.trainParam.goal=1e-8;           %convergence goal 
net.initFcn='initlay';              %initialization of weights and bias 
net.performFcn='mse';               %objective function: mean square error 
net.trainParam.min_grad=1e-100;     %minimum gradient 
net.trainParam.mu_max=1e+100 ;      %max MU 
net=init(net);                      %random initialization of the weights 
and bias 
[net,tr]=train(net,ent_treina_nor,sai_treina_nor); %training function  
  
%%  
Y=sim(net,ent_teste_nor);  %Y is the normalized predicted values with the 
inputs of the test set 
Ytreino=sim(net,ent_treina_nor); 
e_nor = sai_teste_nor-Y; 
etreino = sai_treina_nor-Ytreino; 
mse_teste_nor = mse(e_nor); 
mse_treino_nor = mse(etreino); 
  
X=postmnmx(Y,minsaida,maxsaida);  %X is the denormalized output data 
  
figure(1); %graph of the level 1 normalized 
plot(Y(1,:),'-'); 
hold on 
plot(sai_teste_nor(1,:),'.'); 
xlabel('test data'); 
ylabel('Level 1'); 
legend('Predicted Level 1 normalized','Real Level 1 normalized'); 
hold off; 
  
figure(2); % 
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[m1,b1,r1]=postreg(X(1,:),saida(1,841:1199));    %calculation of: m1 = 
angular coeficient, b1 = linear coeficient, r1 = correlation coeficient 
title('TEST'); 
legend('Level 1','fit','predicted = real'); 
xlabel('real');ylabel('Predicted'); 
y1=X(1,:); 
y1=y1'; 
x1=saida(1,841:1199); 
x1=x1'; 
  
par=[m1,b1,r1,mse_teste_nor,mse_treino_nor];   %performance parameters of 
the neural network 

 

APPENDIX A2 – Algorithm of the model predictive controller based on neural 

networks 

%observação 1: tirar modeloneural1 e modeloneural2 
function out=controle2(in) 
global ynn1 ynn2 yn1 yn2 y1sp y2sp y1p y1p1 y2p y2p1 u1p u2p settings1 
settings2 settings Np Nc modeloneural1 modeloneural2 
tic() 
%% inputs of the MPC-ANN 
y1sp=in(1); % setpoint of level 1 
y2sp=in(2); % setpoint of level 2 
y1p=in(3); % current value of level 1, y1(k) 
y1p1=in(4); % one-step-delayed value of level 1, y1(k-1) 
y2p=in(5); % current value of level 2, y2(k) 
y2p1=in(6); % one-step-delyed of level 2, y2(k-1) 
u1p=in(7); % current value of power 1, u1(k) 
u2p=in(8); % current value of power 2, u2(k) 
ynn1=in(9); % predicted value of y1 at the time k-1, y1(k|k-1) 
ynn2=in(10); % predicted value of y2 at the time k-2, y2(k|k-1) 
%% Tuning parameters Np = prediction horizon, Nc = control horizon 
Np=16;Nc=4; 
  
%% Load datafile with the input and output data 
load ('entrada_3'); 
load ('saida1_3'); 
load ('saida2_3'); 
  
%% Normalization of input and output 
[entradan,settings]=mapminmax(entrada_3); 
[saida1n,settings1]=mapminmax(saida1_3); 
[saida2n,settings2]=mapminmax(saida2_3); 
%% 
lb=0*ones(Nc,2); %lower limit of the manipulated variable 
ub=100*ones(Nc,2); % upper limit of the manipulated variable 
  
u0=50*ones(Nc,2); % initial guess 
  
options = optimoptions('fmincon','Algorithm','sqp'); % definition of 
optimization algorithm 
options = optimoptions(options, 'TolFun', 1e-6, 'TolX', 1e-6); % definition 
of tolerance 
  
[Fv]=fmincon(@Fobjetivo,u0,[],[],[],[],lb,ub,[],options); % application of 
the optimization algorithm 
u=Fv(1,:); 
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ynn1=yn1;ynn2=yn2; 
out=[u ynn1 ynn2]; %output of the algorithm, u = vector of manipulated 
variables, ynn1 = y1(k|k-1) and ynn2 = y2(k|k-1) 
toc 
end 
%% 
function J=Fobjetivo(Fv) 
global ynn1 ynn2 yn1 yn2 y1sp y2sp y1p y1p1 y2p y2p1 u1p u2p settings 
settings1 settings2 Np Nc 
w1=0.01;w2=0.01;wy1=1;wy2=1; % weight tuning parameters 
  
u1(1)=u1p;u2(1)=u2p; 
for j=2:Nc 
    u1(j)=Fv(j-1,1);u2(j)=Fv(j-1,2); 
end 
u1(Nc+1:Np+2)=Fv(Nc,1);u2(Nc+1:Np+2)=Fv(Nc,2); 
y1(1)=y1p1;y1(2)=y1p;y2(1)=y2p1;y2(2)=y2p; 
  
soma1=0;soma2=0; 
for j=1:Nc 
    soma1=soma1+(u1(j+1)-u1(j))^2; 
    soma2=soma2+(u2(j+1)-u2(j))^2; 
end 
  
soma3=0;soma4=0; 
for k=3:Np+2 
    x1=y1(k-1); 
    x2=y1(k-2); 
    x3=y2(k-1); 
    x4=y2(k-2); 
    x5=u1(k-1); 
    x6=u1(k-2); 
    x7=u2(k-1); 
    x8=u2(k-2); 
    ent=[x1;x2;x3;x4;x5;x6;x7;x8];    
    ent=mapminmax.apply(ent,settings); % normalization of the input 
    
x1=ent(1);x2=ent(2);x3=ent(3);x4=ent(4);x5=ent(5);x6=ent(6);x7=ent(7);x8=en
t(8); 
    %neural network function  
    %yt1 = prediction of level 1 
    %yt2 = prediction of level 2 
    yt1=(((1/(1+exp(-(x1*4.534498e-01 + x2*2.378115e-01 + x3*2.161676e-02 + 
x4*5.867031e-03 + x5*4.699665e-02 + x6*3.227962e-02 + x7*1.422370e-03 + 
x8*4.950159e-03 + 7.385048e-02))))*5.356746e+00 + -2.769476e+00)); 
    yt2=(((1/(1+exp(-(x1*4.472666e-01 + x2*-3.610939e-01 + x3*-1.036978e+00 
+ x4*-5.254495e-01 + x5*-7.959184e-02 + x6*1.211340e-01 + x7*-7.538054e-01 
+ x8*-3.406064e-01 + -1.592219e+00))))*-1.668303e+00 + (1/(1+exp(-
(x1*3.039242e-02 + x2*4.974226e-02 + x3*8.761524e-01 + x4*1.068648e+00 + 
x5*-3.431507e-02 + x6*-1.569495e-01 + x7*5.586484e-01 + x8*3.166613e-01 + -
1.803750e+00))))*1.226841e+00 + (1/(1+exp(-(x1*-8.383311e-01 + x2*-
1.969045e-01 + x3*3.434415e-01 + x4*1.701615e-02 + x5*-2.404522e-01 + x6*-
6.234841e-01 + x7*3.184416e-01 + x8*6.341119e-01 + 6.100933e-02))))*-
3.304020e-01 + (1/(1+exp(-(x1*-4.342128e-01 + x2*6.063844e-01 + x3*-
5.450199e-01 + x4*-5.567256e-01 + x5*7.734122e-02 + x6*-5.911347e-02 + 
x7*1.010859e+00 + x8*2.550675e-01 + -4.946456e-01))))*-9.124021e-01 + 
6.752432e-01)); 
    e1=(y1p-ynn1); 
    e2=(y2p-ynn2); 
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    y1(k)=mapminmax.reverse(yt1,settings1)+e1; %denormalization and 
application of the disturbance model 
    y2(k)=mapminmax.reverse(yt2,settings2)+0*e2; %denormalization and 
application of the disturbance model 
  
    soma3=soma3+(y1sp-y1(k))^2; 
    soma4=soma4+(y2sp-y2(k))^2; 
end 
  
J=w1*soma1+w2*soma2+wy1*soma3+wy2*soma4; %calculation of the objective 
function 
yn1=y1(3); 
yn2=y2(3); 
end 
 

APPENDIX A3 - Training algorithm for the inverse neural network. 

% Script for neural network training 
close all;clear all;clc; 
M=load('RNAinv.mat');   %load datafile for training 
entrada=M.RNAinv(1:4,:); %define inputs of the neural network (colunms 1 to 
4) 
saida=M.RNAinv(5:6,:); % define the output of the neural network (colunms 5 
and 6) 
pause 
  
%Perform normalization. The variables “entradan” e “saidan” are the 
normalized input and normalized output respectively; 
[entradan,settings]=mapminmax(entrada); 
[saida1n,settings1]=mapminmax(saida); 
  
% Separate the data file in training and test 
ent_treina_nor=entradan(:,1:138); %input training data 
sai_treina_nor=saidan(:,1:138); %output training data 
ent_teste_nor=entradan(:,139:198); %input test data 
sai_teste_nor=saidan(:,139:198); %output test data 
  
%% Comands for neural network training 
 N=14; %number of neurons 
%INÍCIO DOS COMANDOS PADRÃO PARA TREINO DA REDE 
net=newff(minmax(ent_treina_nor),[N,1],{'logsig','purelin'},'trainbr'); 
%comand to create the neural network 
net.trainParam.epochs=3000;         %maximum number of steps 
net.trainParam.show=50;             %update the number of steps in the 
graph 
net.trainParam.goal=1e-8;           %convergence goal 
net.initFcn='initlay';              %initialization of weights and bias 
net.performFcn='mse';               %objective function: mean square error 
net.trainParam.min_grad=1e-100;     %minimum gradient 
net.trainParam.mu_max=1e+100 ;      %max MU 
net=init(net);                      %random initialization of the weights 
and bias 
[net,tr]=train(net,ent_treina_nor,sai_treina_nor); %training function  
%% 
Y=sim(net,ent_teste_nor);  %Y is the normalized predicted values with the 
inputs of the test set 
Ytreino=sim(net,ent_treina_nor); 
e_nor = sai_teste_nor-Y; 
etreino = sai_treina_nor-Ytreino; 
mse_teste_nor = mse(e_nor); 
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mse_treino_nor = mse(etreino); 
  
X=postmnmx(Y,minsaida,maxsaida);  %X is the denormalized output data 
  
figure(1); %graph of the level 1 normalized 
plot(Y(1,:),'-'); 
hold on 
plot(sai_teste_nor(1,:),'.'); 
xlabel('vetor de teste'); 
ylabel('Power 1'); 
legend('Power 1 normalizada calculado','Nivel 1 normalizada real'); 
hold off; 
  
figure(2); 
% power 1 
[m1,b1,r1]=postreg(X(1,:),saida(1,139:198));    %calculation of: m1 = 
angular coeficient, b1 = linear coeficient, r1 = correlation coeficient 
title('TESTE'); 
legend('Power 1','fit','Predicted=Real'); 
xlabel('Real');ylabel('Predicted'); 
y1=X(1,:); 
y1=y1'; 
x1=saida(1,139:198); 
x1=x1'; 
  
figure(3); 
% power 2 
[m2,b2,r2]=postreg(X(2,:),saida(2,139:198));    %calculation of: m2 = 
angular coeficient, b2 = linear coeficient, r2 = correlation coeficient 
title('TESTE'); 
legend('Power 2','fit','Predicted=Real'); 
xlabel('Real');ylabel('Predicted'); 
y2=X(2,:); 
y2=y2'; 
x2=saida(1,139:198); 
x2=x2'; 
  
par=[m1,b1,r1,mse_teste_nor,mse_treino_nor]; %performance parameters of the 
neural network 1 
par2=[m2,b2,r2,mse_teste_nor,mse_treino_nor]; %performance parameters of 
the neural network 2 

 

APPENDIX A4 – Algorithm of inverse neural network. 

function u=controleinverso(in) 
x1=in(1); 
x2=in(2); 
x3=in(3); 
x4=in(4); 
load ('entrada'); 
load ('saida1'); 
load ('saida2'); 
[entradan,settings]=mapminmax(entrada); 
[saida1n,settings1]=mapminmax(saida1); 
[saida2n,settings2]=mapminmax(saida2); 
ent=[x1;x2;x3;x4];     
ent=mapminmax.apply(ent,settings) 
x1=ent(1);x2=ent(2);x3=ent(3);x4=ent(4); 
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ut1=(((1/(1+exp(-(x1*8.380805e-02 + x2*-3.870490e-01 + x3*-1.012338e+00 + 
x4*3.257835e-01 + -2.828167e-01))))*-1.467070e+00 + (1/(1+exp(-
(x1*9.219810e-02 + x2*1.989005e-01 + x3*5.413571e-01 + x4*-1.625672e-01 + 
5.118996e-02))))*6.008189e-01 + (1/(1+exp(-(x1*3.546345e-01 + x2*-
6.870465e-01 + x3*1.473152e+00 + x4*-5.300009e-01 + -7.519748e-
01))))*1.658855e+00 + (1/(1+exp(-(x1*9.219830e-02 + x2*1.989002e-01 + 
x3*5.413561e-01 + x4*-1.625667e-01 + 5.118978e-02))))*6.008177e-01 + -
3.707118e-01)); 
x1=x4; 
ut2=(((2/(1+exp(-2*(x1*1.748690e+00 + -1.788634e+00)))-1)*1.835610e+00 + 
(2/(1+exp(-2*(x1*2.374874e+00 + -9.450189e-01)))-1)*-2.029085e+00 + 
(2/(1+exp(-2*(x1*-4.817538e+00 + 1.541341e+00)))-1)*-1.580950e+00 + 
(2/(1+exp(-2*(x1*1.117982e+00 + 1.529792e-01)))-1)*-8.345086e-01 + 
(2/(1+exp(-2*(x1*-2.878223e+00 + -5.899749e-01)))-1)*-1.038933e+00 + 
(2/(1+exp(-2*(x1*1.117982e+00 + 1.529792e-01)))-1)*-8.345086e-01 + 
(2/(1+exp(-2*(x1*-1.478342e+00 + -1.734772e+00)))-1)*-1.440537e+00 + -
1.725358e-01)); 
u(1)=mapminmax.reverse(ut1,settings1); 
u(2)=mapminmax.reverse(ut2,settings2); 
 

APPENDIX A5 – Simulation of the coupled tanks process. 

%%Simulation of the neural controller 
function simulacao 
global U 
clc; clear all; close all; 
t0=0;tmax=600;h=1; %simulation of the neural training 
Lc=20; %height of the tank 
y0=[0,0]'; %initial value of the tank 
%transformation from % to cm 
y0=y0/100;  
y0=y0*Lc; 
[t,y]=RK_1(@modelo,h,t0,tmax,y0); %application of the runge-kutta function 
plot(t,5*y(:,1),t,5*y(:,2)); 
legend('y1','y2'); 
end 
function dydt=modelo(t,y) 
global U 
  h1=y(1);h2=y(2); % h1 e h2 are the current levels (k) 
    A1=80;A2=80;Cv1=13.5;Cv2=13.5;Cv3=2.7; %parâmetros da EDO 
    if t<300 
        u=[0 0]; % initial power of the pump 1 and 2 respectively (in %) 
    else 
        u=[100 100]; % final power of the pump 1 and 2 respectively (in %) 
    end 
     
    if u(1)>20 
%correlation between the power 1 (in %) and the input flowrate(cm³/s) 
        F(1)=(-1.013*10^-1)+2.115*(u(1)-20)-(2.43*10^-2)*(u(1)-
20)^2+(8.80*10^-5)*(u(1)-20)^3; 
    else 
        F(1)=0; 
    end 
%correlation between the power 2 (in %) and the input flowrate(cm³/s)     
    if u(2)>30 
        F(2)=-1.62+2.249*(u(2)-30)-(2.70*10^-2)*(u(2)-30)^2+(1.06*10^-
4)*(u(2)-30)^3; 
    else 
        F(2)=0; 
    end 
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    % differential equation 
    if(h1>h2) 
        dydt(1)=F(1)/A1-(Cv1/A1)*(h1)^(1/2)-(Cv3/A1)*(h1-h2)^(1/2); 
        dydt(2)=F(2)/A2-(Cv2/A2)*(h2)^(1/2)+(Cv3/A2)*(h1-h2)^(1/2); 
    else if(h1==h2) 
        dydt(1)=F(1)/A1-(Cv1/A1)*(h1)^(1/2); 
        dydt(2)=F(2)/A2-(Cv2/A2)*(h2)^(1/2); 
        else 
        dydt(1)=F(1)/A1-(Cv1/A1)*(h1)^(1/2)+(Cv3/A1)*(h2-h1)^(1/2); 
        dydt(2)=F(2)/A2-(Cv2/A2)*(h2)^(1/2)-(Cv3/A2)*(h2-h1)^(1/2);        
        end 
    end 
    % 
    dydt=dydt'; 
U=[U;F]; 
end 
 

APPENDIX A6 – Algorithm of identification of the coupled tanks process for 

simulation. 

%%Simulation of the neural training 
function treinamentoRK_1 
clc; clear all; close all; 
global F rtempos p x h 
    Lc=20; %height of the tank 
    h=3; %sample time of the process 
    t0=0;tmax=7200; %Simulation time limit 
    tspan=[t0,tmax]; 
    x=-h; 
    rtempos=int64(300/h); 
    p=rtempos; 
    y0=[0,0]; %initial height 
    F=[1,1]; %initial flowrate 
    [t,y]=RK_1(@modelo,h,t0,tmax,(y0/100)*Lc); %aplication of the runge-
kutta function 
    figure(1) 
    y=real(y); 
    plot(t,(y(:,1)*100/Lc),t,(y(:,2)*100/Lc)); 
    legend('y1','y2');xlabel('Time (s)');ylabel('Level (%)') 
    figure(2) 
    plot(t,F(:,1),t,F(:,2)); 
    legend('u1','u2');xlabel('Time (s)');ylabel('Power (%)') 
    %definition of inputs and outputs of the neural network 
    for k=3:length(y) 
    %inputs 
    entrada(1,k-2)=y(k-1,1); 
    entrada(2,k-2)=y(k-2,1); 
    entrada(3,k-2)=y(k-1,2); 
    entrada(4,k-2)=y(k-2,2); 
    entrada(5,k-2)=F(k-1,1); 
    entrada(6,k-2)=F(k-2,1); 
    entrada(7,k-2)=F(k-1,2); 
    entrada(8,k-2)=F(k-2,2); 
    %outputs 
    saida1(1,k-2)=y(k,1); 
    saida2(1,k-2)=y(k,2); 
    end 
    save entrada 
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    save saida1 
    save saida2 
end 
  
function dydt=modelo(t,y) 
global F rtempos p x h F1 F2 
    h1=y(1); 
    h2=y(2); 
    A1=80;A2=80;Cv1=13.5;Cv2=13.5;Cv3=2.7; %Coeficients of the neural 
network 
    LI=0;LS=60; %Superior limit (LS) and inferior limit (LI) of the 
flowrate in cm³/s (power of 100% means 60 cm³/s) 
    %definition of flowrate of each pump 
    if t==x+h 
        if p==rtempos 
            F1=LI+(LS-LI)*rand(1,1); 
            F2=LI+(LS-LI)*rand(1,1); 
        p=1; 
        else 
            F1=F(end,1);F2=F(end,2); 
            p=p+1; 
        end 
        u=[F1,F2]; 
        F=[F;u]; 
        x=t; 
    end 
    %calculation of the derivatives 
    if(h1>h2) 
        dydt(1)=F1/A1-(Cv1/A1)*(h1)^(1/2)-(Cv3/A1)*(h1-h2)^(1/2); 
        dydt(2)=F2/A2-(Cv2/A2)*(h2)^(1/2)+(Cv3/A2)*(h1-h2)^(1/2); 
    else if(h1==h2) 
        dydt(1)=F1/A1-(Cv1/A1)*(h1)^(1/2); 
        dydt(2)=F2/A2-(Cv2/A2)*(h2)^(1/2); 
        else 
        dydt(1)=F1/A1-(Cv1/A1)*(h1)^(1/2)+(Cv3/A1)*(h2-h1)^(1/2); 
        dydt(2)=F2/A2-(Cv2/A2)*(h2)^(1/2)-(Cv3/A2)*(h2-h1)^(1/2);        
        end 
    end 
end 
 

APPENDIX A7 – Algorithm of MPC-ANN for simulation. 

%%Simulação de um controle neural em um sistema de tanques interativos 
%OBSERVAÇÃO 1: o passo da equação diferencial deve ter sido o mesmo 
% daquele utilizado no treinamento da rede neural 
%OBSERVAÇÃO 2: a rede deve ser treinada com a função treinamentoRK_1 e 
%explicitada com a função getNeuralNetExpression 
function control 
clc; clear all; close all; 
global U h1p1 h2p1 settings settings1 settings2 ynn1 ynn2 y1sp1 y2sp1 y1sp2 
y2sp2 y1sp3 y2sp3 y1sp4 y2sp4 Np Nc 
load entrada 
load saida1 
load saida2 
[entradan,settings]=mapminmax(entrada); % normalization of the input vector 
[saida1n,settings1]=mapminmax(saida1); % normalization of the output vector 
1 (level 1) 
[saida2n,settings2]=mapminmax(saida2);% normalization of the output vector 
2 (level 2) 
% definition of the input variables of the numerical method 
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Lc=20; 
h=3; % h is the sample time 
y0=[0.1,0.1]'; % y0 is the initial condition 
t0=0;tmax=1200; % initial (t0) and final (tmax) of the simulation 
% definition of the global variables 
U=[0,0]; % U is the vector of manipulated varibales (flowrate).  
h1p1=y0(1);h2p1=y0(2); % h1p1 e h2p1 are the levels of  k-1 
ynn1=y0(1);ynn2=y0(2); %ynn1 e ynn2 are the values predicted in k-1 moment, 
y(k/k-1) 
% setpoints 
y1sp1=50; y2sp1=60; 
y1sp2=20; y2sp2=40; 
y1sp3=50; y2sp3=30; 
y1sp4=70; y2sp4=70; 
% controller parameters 
Np=8; Nc=2; 
[t,y]=RK_1(@modelo,h,t0,tmax,y0*Lc/100); % application of the Runge Kutta 
method 
% definition of the vector of setpoints 
Y1SP(1)=0;Y2SP(1)=0; 
Y1SP(2:101)=y1sp1;Y2SP(2:101)=y2sp1; 
Y1SP(102:201)=y1sp2;Y2SP(102:201)=y2sp2; 
Y1SP(202:301)=y1sp3;Y2SP(202:301)=y2sp3; 
Y1SP(302:401)=y1sp4;Y2SP(302:401)=y2sp4; 
  
% control graph 
figure(1) 
pl=plot(t,(y(:,1)*100/Lc),'b',t,(y(:,2)*100/Lc),'r',t,Y1SP,'b--',t,Y2SP,'r-
-'); 
set(pl(1),'linewidth',3); 
set(pl(2),'linewidth',3); 
legend('Nível 1','Nível 2','Y1SP','Y2SP'); 
ylabel('Nível (m)'); 
xlabel('tempo (s)'); 
% Flowrate graph 
figure(2) 
plot(t,U(:,1),t,U(:,2)) 
legend('u1','u2');xlabel('Time (s)');ylabel('Flowrate (cm³/s)'); 
end 
function dydt=modelo(t,y) 
global h1 h2 h1p1 h2p1 U time 
    h1=y(1);h2=y(2); % h1 e h2 are the current levels (k) 
    time=t; 
    A1=80;A2=80;Cv1=13.5;Cv2=13.5;Cv3=2.7; %parameters of the ODE 
    F=controle; %calculation of the flowrate 
     
    % differential equations 
    if(h1>h2) 
        dydt(1)=F(1)/A1-(Cv1/A1)*(h1)^(1/2)-(Cv3/A1)*(h1-h2)^(1/2); 
        dydt(2)=F(2)/A2-(Cv2/A2)*(h2)^(1/2)+(Cv3/A2)*(h1-h2)^(1/2); 
    else if(h1==h2) 
        dydt(1)=F(1)/A1-(Cv1/A1)*(h1)^(1/2); 
        dydt(2)=F(2)/A2-(Cv2/A2)*(h2)^(1/2); 
        else 
        dydt(1)=F(1)/A1-(Cv1/A1)*(h1)^(1/2)+(Cv3/A1)*(h2-h1)^(1/2); 
        dydt(2)=F(2)/A2-(Cv2/A2)*(h2)^(1/2)-(Cv3/A2)*(h2-h1)^(1/2);        
        end 
    end 
    dydt=dydt'; 
    h1p1=h1;h2p1=h2; % h1p1 e h2p1 recebem os valores de nível atual para 
que no próximo instante tenham os valores dos níveis em k-1 
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end 
  
function F=controle 
global Nc U yn1 yn2 ynn1 ynn2 
%initial guess of the flowrate 
F01=30*ones(Nc,1); 
F02=30*ones(Nc,1); 
F0=[F01 F02]; 
lb=zeros(Nc,2); % inferior limit 
ub=60*ones(Nc,2); % superior limit 
options = optimoptions('fmincon','Algorithm','sqp','Display','off'); 
options = optimoptions(options, 'TolFun', 1e-9, 'TolX', 1e-9); 
Fv=fmincon(@Fobjetivo,F0,[],[],[],[],lb,ub); % optimization equation 
ynn1=yn1;ynn2=yn2; 
F=Fv(1,:); % Nc values of flowrate are predicted, but only one is 
implemented (receding horizon) 
U=[U;F]; % U is the vector of the of flowrate since the beggining of the 
process 
end 
  
function J=Fobjetivo(Fv) 
global Nc Np U h1 h2 h1p1 h2p1 settings settings1 settings2 ynn1 ynn2 yn1 
yn2 y1sp1 y2sp1 y1sp2 y2sp2 y1sp3 y2sp3 y1sp4 y2sp4 time 
Lc=20; 
y1r1=y1sp1*Lc/100;y2r1=y2sp1*Lc/100; 
y1r2=y1sp2*Lc/100;y2r2=y2sp2*Lc/100; 
y1r3=y1sp3*Lc/100;y2r3=y2sp3*Lc/100; 
y1r4=y1sp4*Lc/100;y2r4=y2sp4*Lc/100; 
w1=0.5;w2=0.5;wy1=1;wy2=1; % weight parameters 
u1(1)=U(end,1);u2(1)=U(end,2); % definition of the control actions at the 
moment k-1 
for j=2:Nc 
u1(j)=Fv(j-1,1);u2(j)=Fv(j-1,2); % definition of the control actions from 
the moment k to the moment k+Nc-2 
end 
u1(Nc+1:Np+2)=Fv(Nc,1);u2(3:Np+2)=Fv(Nc,2); % definition of the control 
action from k+Nc-1 to k+Np (constante) 
y1(1)=h1p1;y2(1)=h2p1;y1(2)=h1;y2(2)=h2; % levels of the moment k and k-1 
soma1=0;soma2=0; 
for j=1:Nc 
soma1=soma1+(u1(j+1)-u1(j))^2;  
soma2=soma2+(u2(j+1)-u2(j))^2;  
end 
soma3=0;soma4=0; 
for k=3:Np+2 
x1=y1(k-1); 
x2=y1(k-2); 
x3=y2(k-1); 
x4=y2(k-2); 
x5=u1(k-1); 
x6=u1(k-2); 
x7=u2(k-1); 
x8=u2(k-2); 
in=[x1;x2;x3;x4;x5;x6;x7;x8]; 
in=mapminmax.apply(in,settings); % normalization of the input of neural 
network 
x1=in(1);x2=in(2);x3=in(3);x4=in(4);x5=in(5);x6=in(6);x7=in(7);x8=in(8); 
% explicit equations, obtained by the function getNeuralNetExpression 
yt1=(((2/(1+exp(-2*(x1*2.819016e-01 + x2*1.949106e-02 + x3*-5.865203e-02 + 
x4*1.482387e-01 + x5*9.494317e-04 + x6*-7.034781e-03 + x7*-1.688970e-03 + 
x8*-4.399566e-02 + 8.658786e-02)))-1)*6.005468e-01 + (2/(1+exp(-
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2*(x1*3.407487e-01 + x2*2.443808e-02 + x3*1.723912e-02 + x4*2.284365e-01 + 
x5*-6.579133e-02 + x6*-5.289355e-04 + x7*-5.711147e-03 + x8*2.415948e-02 + 
-1.103093e-01)))-1)*6.320098e-01 + (2/(1+exp(-2*(x1*2.819006e-01 + 
x2*1.949049e-02 + x3*-5.865179e-02 + x4*1.482383e-01 + x5*9.502991e-04 + 
x6*-7.033653e-03 + x7*-1.687004e-03 + x8*-4.399131e-02 + 8.658136e-02)))-
1)*6.005439e-01 + (2/(1+exp(-2*(x1*2.994366e-01 + x2*1.901327e-02 + x3*-
1.957330e-01 + x4*-4.358254e-02 + x5*3.819426e-02 + x6*1.314739e-02 + 
x7*1.839636e-02 + x8*-3.871393e-02 + -2.683485e-01)))-1)*6.135540e-01 + 
(2/(1+exp(-2*(x1*1.156525e-01 + x2*2.164519e-01 + x3*-1.802159e-01 + x4*-
2.764737e-01 + x5*1.637405e-01 + x6*2.533575e-01 + x7*-3.105567e-01 + x8*-
3.933703e-01 + -4.479905e-03)))-1)*-1.853420e-01 + (2/(1+exp(-2*(x1*-
1.560405e-01 + x2*1.402003e-01 + x3*1.624949e-01 + x4*-5.298958e-02 + x5*-
1.655863e-01 + x6*-1.351127e-01 + x7*2.013989e-01 + x8*2.252530e-01 + -
5.052635e-02)))-1)*-5.671674e-01 + (2/(1+exp(-2*(x1*-2.578701e-01 + x2*-
1.795982e-02 + x3*2.207109e-01 + x4*1.830374e-02 + x5*-9.760966e-02 + 
x6*4.709090e-02 + x7*-1.943519e-01 + x8*-1.964619e-01 + -2.129366e-02)))-
1)*-5.897930e-01 + 5.459090e-02)); 
yt2=(((1/(1+exp(-(x1*5.306134e-02 + x2*-1.799700e-01 + x3*-5.332491e-01 + 
x4*1.395022e-01 + x5*-1.604432e-01 + x6*8.489266e-02 + x7*-9.537278e-02 + 
x8*-1.990108e-01 + -4.202810e-01))))*-1.024518e+00 + (1/(1+exp(-(x1*-
3.058151e-01 + x2*3.150818e-01 + x3*1.314145e+00 + x4*-1.756939e-01 + 
x5*1.295084e-01 + x6*2.516001e-01 + x7*2.078133e-01 + x8*-3.738689e-01 + 
1.771614e-01))))*1.580659e+00 + (1/(1+exp(-(x1*9.500831e-02 + x2*-
1.139980e-01 + x3*-6.932309e-01 + x4*4.146418e-01 + x5*5.871150e-02 + x6*-
9.551917e-02 + x7*-2.100131e-01 + x8*-2.780395e-02 + 3.612882e-01))))*-
1.184877e+00 + (1/(1+exp(-(x1*1.063424e-01 + x2*-1.524168e-01 + x3*-
5.781159e-01 + x4*8.719311e-02 + x5*2.256239e-01 + x6*2.383932e-01 + 
x7*6.394211e-01 + x8*-1.046199e-01 + -3.247029e-01))))*-9.596357e-01 + 
(1/(1+exp(-(x1*8.615060e-02 + x2*-1.535650e-02 + x3*-5.702494e-01 + 
x4*2.991390e-01 + x5*-3.522824e-02 + x6*5.129424e-02 + x7*-4.454425e-02 + 
x8*-7.157821e-02 + 1.291094e-01))))*-1.005734e+00 + (1/(1+exp(-(x1*-
8.834785e-02 + x2*4.751083e-02 + x3*6.859910e-01 + x4*-4.109392e-01 + x5*-
7.433157e-03 + x6*2.281875e-03 + x7*9.650158e-02 + x8*5.570399e-02 + -
2.527870e-01))))*1.226195e+00 + (1/(1+exp(-(x1*-3.744634e-02 + x2*-
7.822372e-02 + x3*6.821928e-01 + x4*-4.208513e-01 + x5*7.119735e-03 + x6*-
1.001318e-01 + x7*-5.182710e-02 + x8*1.083755e-01 + -3.668772e-
01))))*1.256422e+00 + 9.865168e-02)); 
yt1=mapminmax.reverse(yt1,settings1); % denormalization of level 1 
yt2=mapminmax.reverse(yt2,settings2); % denormalization of level 2 
e1=h1-ynn1;e2=h2-ynn2; 
y1(k)=yt1+e1;y2(k)=yt2+e2; % application of the disturbance model to 
correct the model-plant mismatches  
if time<300 
    soma3=soma3+(y1(k)-y1r1)^2;soma4=soma4+(y2(k)-y2r1)^2; 
    elseif time<600 
     soma3=soma3+(y1(k)-y1r2)^2;soma4=soma4+(y2(k)-y2r2)^2;    
    elseif time<900 
     soma3=soma3+(y1(k)-y1r3)^2;soma4=soma4+(y2(k)-y2r3)^2;        
    else 
     soma3=soma3+(y1(k)-y1r4)^2;soma4=soma4+(y2(k)-y2r4)^2; 
end 
if k==3 
    yn1=yt1;yn2=yt2;  
end 
end 
J=w1*soma1+w2*soma2+wy1*soma3+wy2*soma4 
end 

 


