UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA ÁREA DE CONCENTRAÇÃO : PROCESSOS QUÍMICOS

CARACTERIZAÇÃO E QUANTIFICAÇÃO DA DISTRIBUIÇÃO DO LÍQUIDO DESCENDENTE DE UMA COLUNA DE RECHEIO EM ESCALA PILOTO

AUTOR: MARINA SATIE KOBAYASI ORIENTADOR: MARIA REGINA WOLF MACIEL

Dissertação de Mestrado apresentada à Faculdade de Engenharia Química como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia Química.

2181

Novembro/1998

Dissertação de Mestrado defendida e aprovada em 30 de novembro de 1998 pela banca examinadora constituída pelos professores doutores:

Aucep off lace

Profa. Dra. Maria Regina Wolf Maciel Orientadora

contractor

Prof. Dr. Deovaldo de Moraes Júnior

Profa. Dra. Liliane Maria Ferrareso Lona Batista

Esta versão corresponde a redação final da Dissertação de Mestrado em Engenharia Química defendida pela Enga. Marina Satie Kobayasi e aprovada pela Comissão Julgadora em 30/novembro/1998.

101 Mail an

Profa. Dra. Maria Regina Wolf Maciel Orientadora

Aos meus pais, Shigeru e Yoshie (in memorian) e aos meus irmãos Shoiti, Kazuo, Keiko e Kátia.

Ao Joaquim, as palavras que não conseguimos expressar.

Agradecimentos

Meus agradecimentos são destinados à todos que contribuíram para a realização do presente trabalho e, de modo especial,

A Prof^a Dra. Maria Regina Wolf Maciel, orientadora deste trabalho, o meu reconhecimento pela dedicação e pela inestimável confiança e amizade.

Ao Prof. Dr. Deovaldo de Moraes Júnior, o meu sincero agradecimento não só pelo apoio técnico, mas também pela amizade e acima de tudo a grande capacidade motivadora e dedicação como pessoa humana.

Ao técnico do Laboratório de Processos Químicos da UNIMEP, Ródinei José Pazini, pelo auxílio técnico na obtenção dos dados experimentais e ao Oscar da Silva pelo apoio na montagem experimental.

Aos colegas Sandro Megale Pizzo, Fabiano A .N. Fernandes, Cristian Andres Carranza e Profa. Maria Izalina Ferreira Alves pelo assessoramento na elaboração da análise estatística.

A Universidade Metodista de Piracicaba, que por intermédio de seu laboratório, tornou possível a realização deste trabalho.

Aos Prof. José Antonio Arantes Salles e Antonio Fernando Godoy, diretor e vice-diretor do Centro de Tecnologia, e aos colegas e amigos da UNIMEP, pela confiança e por ajudarem a criar condições para o desenvolvimento deste trabalho.

SUMÁRIO

1 Introdução e Objetivos	01
2 Revisão Bibliográfica	03
3. Materiais e Métodos	06
3.1 - Equipamento Utilizado	06
3,2 - Procedimento Experimental	09
3.3 - Planejamento Experimental	11
3.4- Tratamento dos Dados	22
3.4.1.Medida da uniformidade na distribuição da massa de água	22
3.4.2. Medida da distribuição espacial da massa de água	23
3.4.3. Estudo da uniformidade da distribuição	23
3.4.4.Estudo da forma de distribuição	25
3.4.5. Teste da falta de ajuste	25
3.4.6. Ótimo fora da região experimental	25
3.4.7. Modelo matemático	27
4. Resultados e Discussões	31
4.1 - Análise dos Resultados da Etapa 1, Experimento I, tubo como distribuidor	33
4.1.1 .Homogeneidade na distribuição da massa de água	36
4.1.2. Forma da distribuição da massa de água	44
4.2. Análise dos Resultados da Etapa 2, Experimento II, Distribuidor do tipo I de 0,5 in.	49
4.2.1.Distribuidor do tipo I de 0,5 in., Coluna sem recheio, Experimento II	54
4.2.1.1.Homogeneidade na Distribuição da massa de água	54
4.2.1.2. Forma da distribuição da massa de água	62
4.2.2Distribuidor do tipo I de 0,5 in., Coluna com recheio, Experimento II	66
4.2.2.1. Homogeneidade na distribuição da massa de água	66
4.2.2.2. Forma da distribuição da massa de água	72
4.3. Análise dos Resultados da Etapa 3: Experimento III, utilizando distribulidor de 1,0 in.	77
4.3.1. Distribuidor do tipo II de 1,0 in., Coluna com recheio, Experimento III	82
4.3.1.1. Homogeneidade na distribuição da massa de água	82
4.3.1.2. Forma da distribuição da massa de água	86
4.3.2. Distribuidor do tipo II de 1,0 in., Coluna sem recheio, Experimento III	89
4.3.2.1.Homogeneidade na distribuição da massa de água	89

4.3.2.2. Distribuição da massa de água	91
4.3.3. Distribuidor do tipo II de 1,0 in., com diâmetros de orifícios variáveis, Experimento III.3	93
4.3.3.1.Tratamento adicional em função da Estrutura fatorial	93
4.3.3.2. Estrutura fatorial	94
4.4. Análise dos Resultados da Etapa 4	96
4.4.1. Análise da Variância	99
4.4.2. Comparação dos Distribuidores	101
4.4.3. Estudo da Altura do Recheio e da Vazão para cada distribuidor	104
4.4.4. Distribuição espacial da massa de água	106
5 Conclusões e Sugestões	108
Referências Bibliográficas	112
Anexo	114

LISTAS DE FIGURAS

3.1	Esquema do equipamento utilizado	06
3.2	Aspecto geral do sistema utilizado	07
3.3	Tubo de PVC de ¾ in. para alimentação de líquido	08
3.4	Distribuidor do tipo I, de 0,5 in.	08
3.5	Distribuidor do tipo II de 1,0 in.	08
3.6	Representação do distribuidor do tipo II	08
3.7	Visualização da distribuição de líquido na coluna e da água coletada	10
3.8	Representação da numeração dos tubos do módulo de coleta de amostra	11
3.9	Resposta com distribuição central	25
3.10	Resposta com distribuição periférica	26
3.11	Distribuição central homogênea	26
3.12	Distribuição central heterogênea	27
3.13	Representação da forma da função de ajuste para os dados de distribuição de líquido	27
4.1	Representação da distribuição de líquido no Ensaio 1.1	31
4.2	Distribuição de água no Ensaio 1.23	32
4.3	Colunas de água obtidas no Ensaio 1.30	32
4.4	Gráfico de dispersão de resíduos padronizados	37
4.5	Interação posição versus altura	38
4.6	Gráficos de contorno da função ajustada	41
4.7	Superfície de resposta da função ajustada	41
4.8	Função resultante da fixação da posição em zero e vazão em 2,5 m ³ /h	42
4.9	Contorno da função ajustada	44
4.10	Gráficos de contorno categorizados pela vazão e altura para Experimento I, centro	46
4.11	Gráficos de contorno categorizados pela vazão e altura para Experimento I, 7,5 cm	47
4.12	Gráficos de contorno categorizados pela vazão e altura para Experimento I, 15,0 cm	48
4.13	Gráfico dos resíduos padronizados	55
4.14	Gráficos de contorno	58
4.15	Superfície de resposta fixando a posição	59
4.16	Estudo das vazões	60
4.17	Estudos dos diâmetros	60
4.18	Gráfico de contorno da função ajustada	62
4.19	Gráfico de contorno da melhor combinação para Experimento II.1, distribuidor no topo	64
4.20	Gráfico de contorno da melhor combinação para Experimento II.1, distribuidor a 54,8 cm	64
4.21	Gráfico de contorno da melhor combinação para Experimento II.1, distribuidor 84,5 cm.	65

4.22	Gráfico de contorno da melhor combinação para Experimento II.1, distribuidor na base	65
4.23	Diagrama de dispersão dos resíduos padronizados	67
4.24	Gráficos de contorno da função ajustada	71
4.25	Gráficos de contorno da melhor combinação de níveis	72
4.26	Gráficos de contorno categorizados pela altura do recheio (30,0cm), Experimento II.2	74
4.27	Gráficos de contorno categorizados pela altura do recheio (40,0cm), Experimento II.2	74
4.28	Gráficos de contorno categorizados pela altura do recheio (600,0cm), Experimento II.2	75
4.29	Gráficos de contorno categorizados pela altura do recheio (75,0cm), Experimento II.2	75
4.30	Gráficos de contorno categorizados pela altura do recheio (90,0cm), Experimento II.2	76
4.31	Gráfico da interação altura de recheio e vazão	83
4.32	Diagrama de dispersão dos resíduos padronizados	84
4.33	Reta de regressão ajustada à altura do recheio	85
4.34	Reta de regressão ajustada à vazão	86
4.35	Gráfico de contorno para a melhor combinação dos níveis	87
4.36	Gráfico de contorno categorizado pela altura e vazão	88
4.37	Gráfico da interação Distância e vazão	89
4.38	Gráfico de contorno para a melhor combinação de níveis	91
4.39	Gráfico de contorno categorizado pela posição e vazão	9 2
4.40	Diagrama de dispersão dos resíduos padronizados	94
4.41	Gráfico dos resíduos padronizados para a estrutura fatorial	95
4.42	Gráfico das médias segundo a vazão, altura de recheio e tipo distribuidor	100
4.43	Comparação dos distribuidores em cada nível de altura de recheio	102
4.44	Comparação dos distribuidores em cada nível de vazão	103
4.45	Superfície de resposta segundo tipo de distribuidor	105
4.46	Distribuição da massa de água, distribuidor tipo I	106
4.47	Distribuição da massa de água, distribuidor tipo II	107

LISTAS DE TABELAS

3.1	Planejamento do Experimento I	13
3.2	Planejamento do Experimento II.1, utilizando distribuidor tipo I, com recheio	15
3.3	Planejamento do Experimento II.2, utilizando distribuidor tipo I, sem recheio	16
3.4	Planejamento do Experimento III.1.1, utilizando distribuidor tipo II, furo de 3,0 mm, com	18
	recheio	
3.5	Planejamento do Experimento III.1.2, utilizando distribuidor tipo II, sem recheio	19
3.6	Planejamento do Experimento II.2, utilizando distribuidor tipo II, com recheio	19
3.7	Planejamento do Experimento IV, utilizando distribuidor tipo I e II, com recheio	21
4.1	Valores das eficiências e dos fatores de deslocamento do centro para o Experimento I	34
4.2	Parâmetros de ajuste da Equação 3.8 para Experimento I	35
4.3	Análise da variância	37
4.4	Soma de quadrado	39
4.5	Teste da falta de ajuste	40
4.6	Valores das eficiências e dos fatores de deslocamento do centro para o Experimento II.1	50
4.7	Valores das eficiências e dos fatores de deslocamento do centro para o Experimento II.2	51
4.8	Parâmetros de ajuste da Equação 3.8 para Experimento II.1	52
4.9	Parâmetros de ajuste da Equação 3.8 para Experimento II.2	53
4.10	Análise da variância	55
4.11	Soma dos quadrados	56
4.12	Ajuste de uma superfície de resposta	56
4.13	Análise da variância	67
4.14	Soma de quadrados	68
4.15	Teste de falta de ajuste	68
4.16	Valores das eficiências e dos fatores de deslocamento do centro para o Experimento III.1.1	78
4.17	Valores das eficiências e dos fatores de deslocamento do centro para o Experimento III.1.2	78
4.18	Valores das eficiências e dos fatores de deslocamento do centro para o Experimento III.2	79
4.19	Parâmetros de ajuste da Equação 3.8 para Experimento III.1.1	80
4.20	Parâmetros de ajuste da Equação 3.8 para Experimento III.1.2	80
4.21	Parâmetros de ajuste da Equação 3.8 para Experimento III.2	81
4.22	Análise da variância	84
4.23	Soma dos quadrados	85
4.24	Análise da variância	90
4.25	Soma dos quadrados	.90
4.26	Teste F	93

4.27	Análise da variância	95
4.28	Valores das eficiências e dos fatores de deslocamento do centro para o Experimento IV	97
4.29	Parâmetros de ajuste da Equação 3.8 para Experimento IV	98
4.30	Análise da variância	99
4.31	Comparações dentro dos níveis de altura de recheio	101
4.32	Comparações dentro dos níveis de vazão	102
4.33	Distribuidor tipo I - Análise da variância	104
4.34	Distribuidor tipo II - Análise da variância	104

RESUMO

A eficiência de vários equipamentos industriais como coluna de destilação, torres de lavagem de gases e colunas de extração, está diretamente relacionada com a homogeneidade da distribuição do líquido no topo destas unidades. Neste trabalho, foi empregado um método simplificado de quantificação da eficiência da distribuição de líquido para caracterizar uma coluna de recheio em escala - piloto (diâmetro de 0.4 m e altura de 1.8m), operada com anéis de Pall plásticos de 1/2 in., utilizando três dispositivos para alimentação do líquido na coluna. Foram definidos dois fatores de eficiência de distribuição - global e de dispersão - a partir de uma superfície normal tridimensional. A eficiência global é derivada da amplitude normalizada da distribuição de líquido e a eficiência de dispersão da variância da distribuição. A distribuição de líquido foi obtida na forma de colunas de líquido em um módulo de coleta localizado na base da coluna e as alturas dessas colunas foram correlacionadas com as suas posições, através de um modelo com 5 parâmetros. As variáveis estudadas foram a vazão de água na alimentação, o ponto de alimentação (centro e duas posições diferentes, equivalente a distância radial de 7,5 e 15 cm), a altura da seção de recheio, dispositivo distribuidor de líquido na alimentação (tubo e dois modelos de distribuidores) e diâmetro do orifício do distribuidor. Foram efetuados 4 séries de ensaios. Na primeira série, empregou-se um tubo como dispositivo alimentador de líquido. Na segunda série, os testes foram efetuados com um distribuidor de ramos laterais de 1/2 in de PVC e na terceira um distribuidor de 1 in., representativo de aplicações industriais (100 pontos de distribuição/m²). Na quarta série, a comparação dos dois distribuidores, sob as mesmas condições experimentais. A análise dos resultados foram efetuadas através de dois métodos: pelo coeficiente de variação (C.V.) e pelo modelo proposto. A homogeneidade da distribuição foi obtida utilizando-se um distribuidor apropriado, levando-se em consideração o diâmetro dos orifícios do distribuidor, a altura do distribuidor em relação ao leito, a localização do ponto de alimentação, a altura do recheio e a vazão. Através do modelo apresentado para a quantificação da eficiência de distribuição, verificou-se que o recheio sem um dispositivo distribuidor não foi capaz de distribuir eficientemente o líquido para as condições estudadas. Os dois modelos de distribuidores não apresentaram uma diferença significativa em termos de eficiência global e de dispersão.

ABSTRACT

The efficiency of several industrial equipment as distillation columns, gas cleaning towers and extraction columns, is directly related with the homogeneity of the distribution of the liquid on the top of these units. In this work, a simple method of quantification of liquid distribution efficiency was employed to characterise a packed column (diameter, 0,4 m; height, 1,8 m), on a pilot scale, operated with 1 in. plastic Pall ring, using three distributing device for liquid feeding in the column. Two distribution efficiency factors - global and dispersion - were defined from a normal tridimensional surface. The global efficiency is derived from the normalized amplitude of the distribution of the liquid, and the dispersion efficiency, from the distribution variance. The liquid distribution was obtained in the form of liquid columns in a collecting module located at the base of the column and the heights of those columns were correlated its positions, through a model with 5 parameters. The study variables were the water flow rate, the feeding point on the upper head of the column (center and two different positions, equivalent to the radial distances 7,5 and 15 cm), the height of the random packing section, distributing devices (tube and two models of distributors) and orifice diameter of the distributor. Four series of tests were run. In the first series, just one pipe was employed to feed the column, in the sequence, the tests were run with a pipe lateral distributor of 0,5 in. of PVC and a distributor of 1 in., representative of commercial application (100 distribution points/m²). In the fourth series, the comparison of the two distributors, under the same experimental conditions. The analysis of the results was made through two methods: by the variation coefficient (C.V.) and by the proposed model. The homogeneity of the distribution was obtained by employing the proper liquid distributors, being taken in consideration the orifice diameter of the distributor, the distance between the distributor and the top of the packing section, the packing bed height and the flow rate. Through the model presented for the quantification of the distribution efficiency it was verified that on the experimental conditions employed, the packing without a distributor was not capable of distributing the liquid efficiently. The two distributors models didn't present a significant difference in terms of global efficiency and of dispersion.

1 - INTRODUÇÃO E OBJETIVOS

As colunas de recheio são largamente utilizadas para promover o contato íntimo entre dois fluidos imiscíveis ou parcialmente miscíveis, quer seja um gás e um líquido, ou dois líquidos. Operam normalmente com as fases em contracorrente, com o gás ou líquido mais leve entrando pela base da coluna e o segundo fluido pelo topo. Possuem um importante papel nas indústrias químicas, em particular, nos processos com transferência de massa. Estão presentes nas operações de destilação e separação de subprodutos, assim como nas operações de lavagem de gases.

Depois dos elementos de recheio, os distribuidores de líquido são os constituintes mais importantes das colunas de empacotamento. Esses dispositivos são determinantes para que se consiga uma separação eficiente dos fluidos que entram no equipamento. Muitos dos problemas relacionados aos processos de absorção, limpeza de gases e destilação são originários da distribuição heterogênea da fase líquida descendente. A queda da eficiência das colunas de recheio que não apresentem uma homogeneidade da distribuição de líquido é mais acentuada quando a razão dos diâmetros da coluna e do elemento de recheio é maior que 40 ou menor que 10, e quando o fluxo de líquido é baixo, da ordem de 1 gal /(min ft² de seção da coluna) (40 L/(min m² de seção da coluna)).

Um parâmetro utilizado no projeto dos dispositivos distribuidores de líquido é o número de pontos de distribuição requeridos por área de seção transversal da coluna. É comum entre os fabricantes, se adotar 100 pontos por m². Entretanto, lembram que esse número depende, também, do fluxo e da natureza da fase líquida. Assim, para valores de fluxo aproximadamente iguais a 20 gal. /min/ ft² (820 L /min/m²), o líquido apresenta uma tendência natural de espalhamento, o que não se observa quando esses valores caem para 1 gal/min/ft² (40 L/min /m²). Contudo, a vazão da fase líquida pelas saídas do distribuidor não pode ser tão alta, sob o risco de provocar a passagem direta dos " jatos" pelas seções de recheio, antes que o líquido consiga se difundir no plano horizontal.

A redistribuição do líquido entre os leitos de empacotamento é outra questão a ser levada em consideração quando do projeto das colunas de recheio. Costuma-se instalar redistribuidores de líquido a cada 10 ou 20 pés (3 ou 6 m) de leito de recheio, embora, às vezes, esse número chegue a 30 pés (9 m). Recomenda-se que o espaço entre as seções de recheio seja de pelo menos 0,5 m. Esse espaço é necessário para se permitir a redistribuição do vapor antes que ele entre no leito imediatamente acima. Quando são empregados anéis ou celas, essa redistribuição é mais freqüente que com os recheios estruturados, uma vez que aqueles tipos estão mais sujeitos à formação dos canais preferenciais. Investigações com vários tipos de recheio verificaram a formação de 100 - 170 canais/m² com até 1 m de profundidade a partir da origem do fenômeno, independente do tamanho dos elementos de recheio, incluindo a canalização do escoamento pelas paredes da coluna.

Pelo exposto, devido à própria natureza do sistema, torna-se difícil apontar regras fixas e seguras de escolha e projeto de distribuidores de líquido para as colunas de recheio nos processos de absorção, extração e destilação.

O objetivo desse trabalho foi a construção e caracterização de uma coluna de recheio, com e sem um dispositivo distribuidor, em escala piloto, para o estudo de um tipo de recheio aleatório ainda bastante empregado industrialmente (anéis de Pall de 1"), visando quantificar a distribuição do líquido descendente através de um modelo matemático para a determinação da eficiência de distribuição de líquido em colunas de recheio, avaliando a influência dos seguintes parâmetros: vazão, altura do recheio, tipo de distribuidor e distância do distribuidor em relação ao recheio.

2 - REVISÃO BIBLIOGRÁFICA

O material a ser empregado na formação do recheio das colunas de leito fixo deve apresentar como características a capacidade de promover considerável área interfacial entre as fases, conter altas frações de espaços vazios, permitir a passagem de grandes volumes do líquido descendente por seções transversais e gerar baixas perdas de carga para o gás (Kister,1992). Portanto, para se obter uma boa velocidade de transferência por unidade de volume da torre, seleciona-se um recheio que promova uma elevada área interfacial entre as duas fases e um elevado grau de turbulência nos fluidos (Coulson, 1965).

A exigência mais difícil de se cumprir quando da operação dessas colunas, especialmente nas de maior porte, é o bom contato entre o líquido e o gás. No caso ideal, o líquido uma vez distribuído na parte superior do leito, desce na forma de lâminas delgadas sobre a superfície do recheio. Na prática, entretanto, essas lâminas tornam-se mais espessas em algumas zonas e mais delgadas em outras, de maneira que o líquido tende a se reunir, formando pequenos canais que circulam ao longo de trajetórias determinadas. Consequentemente, algumas zonas tornam-se mais secas enquanto outras são recobertas por uma camada estagnada de líquido. Esse fenômeno que é conhecido como canalização (ou canais preferenciais) é a principal causa da baixa eficiência das colunas de recheio (McCabe, Smith, Harriott, 1993). Deve-se promover uma distribuição homogênea do líquido a ser contactado com o gás, evitando zonas de estagnação ou inoperantes dentro da coluna.

A distribuição de líquido exerce uma influência marcante sobre o funcionamento desses equipamentos, pois é nas regiões efetivamente molhadas que ocorrem os processos de transferência de massa (Treybal, 1980; Kister, 1992). Com esta finalidade, são projetados suportes ou pratos de contenção de recheio, além dos distribuidores e redistribuidores, permitindo a passagem da fase gasosa com um mínimo de perda de carga bem como um espalhamento de líquido entre um módulo e outro do empacotamento (Chen, 1984). Apesar de fabricantes recomendarem o emprego desses dispositivos, é bastante comum em centros de pesquisa (Haure et. al., 1992; Metzinger et. al., 1992) e em inúmeras unidades industriais encontrarem-se colunas sem estes dispositivos, uma vez que se acredita que o próprio recheio promova a distribuição do líquido. Dessa forma, são realizados estudos com o intuito de se explicar e quantificar a hidrodinâmica nas colunas de recheio.

Hoeck et. al.(1986) estudaram a distribuição de líquido em colunas de recheio aleatório e estruturado e observaram no corpo dos recheios aleatórios um escoamento semiestável caracterizado pela formação acentuada de canais preferenciais, principalmente nas regiões próximas da parede, graças à distribuição radial. Veer et. al. (1997) concluíram experimentalmente que a condição ideal de operação foi conseguida com 60 pontos de distribuição por metro quadrado de seção transversal. Outros autores (Gunn, 1978; Gunn e Al-Saffar, 1993 e Furzer, 1984) apresentaram modelos de dispersão para explicar a distribuição de líquido no seio de um leito de recheio, formado especificamente por anéis de Rashing, pertencentes à primeira geração de recheios aleatórios.

Bonilla (1993) e Klemas e Bonilla (1995) apresentaram um modelo de má distribuição de líquido, que permitia o projeto de distribuidores e estabelecia regras de seleção e instalação para esses componentes. Zuiderweg et. al. (1993), considerando as misturas radiais de líquido e de vapor, propuseram um cálculo da distribuição de líquido e da eficiência de uma coluna de recheio, para uma dada distribuição inicial. Já Gunn e Al-Saffar (1993), a partir de modelos de dispersão, explicaram a distribuição de líquido em um leito formado por anéis de Rasching.

Kouri e Sohlo (1996) observaram os padrões de escoamento em uma coluna de 0,5 m de diâmetro preenchida com anéis de Pall plásticos de 25 ou 50 mm, ou ainda com celas cerâmicas Intalox, notadamente o desenvolvimento do escoamento pela parede. Concluíram que os perfis de escoamento eram uma função das vazões e distribuição iniciais de líquido e do gás e da altura da seção de recheio.

O efeito da má distribuição de líquido em colunas de recheio é descrito também por Killat e Rey (1996), que forneceram um método para se determinar esse fenômeno em escala macroscópica. Perceberam que a divisão do leito de recheio em zonas com pré-distribuidores eliminou a maior parte da má distribuição macroscópica, embora uma heterogeneidade nas seções pudesse ocorrer.

Procurando observar o efeito da molhabilidade no espalhamento na fase líquida, Bemer e Zwiderweg (1978) utilizaram uma coluna de recheio de 0,2 m de diâmetro, preenchida com anéis de Rasching recobertos de vidro ou teflon, além de misturas de água e butanol de diferentes composições na alimentação. Concluíram que o comprimento do leito, a taxa de irrigação e mesmo a molhabilidade não apresentaram influência marcante no comportamento da coluna. O tamanho dos elementos de recheio foi o fator determinante para a variação na distribuição radial de líquido. Propuseram, ainda, um fator N representante da má distribuição para quantificar o caráter anisotrópico do escoamento de líquido e perceberam o aumento desse fator para as baixas vazões.

Albright (1984) realizou algumas simulações em computador da distribuição de líquido através de uma coluna de recheio com vários tipos de distribuidores. Utilizando diferentes valores para a relação entre diâmetro da coluna e o diâmetro dos elementos de recheio concluiu que todo tipo de recheio possui uma distribuição natural do escoamento de líquido. Assim, independente de quão perfeita ou imperfeita seja a distribuição inicial, o escoamento de líquido tenderá a essa distribuição natural. Também notou que a heterogeneidade do escoamento a partir de qualquer distribuidor pode causar séria degradação na performance de um leito, mesmo para distribuidores de projeto otimizado.

São poucos os trabalhos apresentados na literatura aberta sobre a distribuição de líquidos. Os trabalhos experimentais em colunas piloto não contemplam a quantificação da má distribuição do líquido. É recomendável, sempre que possível, a construção de plantas pilotos para a correta caracterização da operação do equipamento a ser empregado num processo industrial.

3 - MATERIAIS E MÉTODOS

3.1- Equipamento Utilizado

O equipamento empregado nos ensaios (Figura 3.1 e 3.2) consistiu basicamente de uma coluna para adição do recheio, um módulo de coleta, uma unidade de bombeamento, um tubo de alimentação e dois tipos de distribuidores.

O módulo de coleta foi composto de um banco de 21 tubos de acrílico transparente. Esses tubos, de 4 mm de espessura, 800 mm de altura e 52 mm de diâmetro interno, estavam dispostos em arranjo quadrado e possuíam pontos na base para a retirada das amostras de líquido.

No topo do banco de tubos localizava-se um espelho intermediário e acima dele encontrava-se uma coluna do mesmo material dos tubos, com diâmetro interno de 400 mm e altura de 1800 m . Neste módulo de estudo foi introduzido o recheio investigado (anel plástico de Pall de 1"). No topo desta coluna estava localizado um espelho superior para a alimentação de água, com orifícios distribuídos em arranjo quadrado idêntico àquele do módulo de tubos de coleta. Neste espelho (removível) era fixado os tubos de alimentação (construído com tubo de PVC de ³/₄ in., conforme Figura 3.3) e os distribuídores (tubulação e acessórios de PVC de 0,5 e 1,0 in. de diâmetro nominal, de acordo com as Figuras 3.4 , 3.5 e 3.6).

Figura 3.1 - Esquema do equipamento utilizado: 1 - Base de cantoneira, 2- Tomada de amostra, 3 - Banco de tubos de coleta, 4 - Espelho intermediário, 5 - Coluna com recheio, 6 - Espelho superior, 7 - Mangueira, 8 - Tubo de PVC para alimentação de líquido, 9 - Mangueira flexível, 10 - válvula gaveta, 11 - Válvula de três vias, 12 - Rotâmetro, 13 - Manômetros, 14 - Válvula para controle de vazão, 15 - Bomba centrífuga, 16-Duto de sucção, 17-Reservatório, 18-Descarga

Figura 3.2 - Aspecto geral do sistema utilizado: Coluna de recheio com módulo de coleta de líquido.

Figura 3.3 - Tubo de PVC de $\frac{3}{4}$ in. usado para alimentação de líquido: tubo 1 : L₁ = 64 cm, tubo2: L₂ = 50cm, tubo 3: L₃ = 34 cm.

Figura 3.4 - Distribuidor tipo I de PVC de $\frac{1}{2}$ in., distância entre os orifícios de 10 mm.

Figura 3.5 - Distribuidor tipo II de PVC de 1 in., correspondente a 100 pontos de distribuição/m² de área transversal da coluna

Figura 3.6 - Representação do distribuidor tipo II, com as dimensões em milímetros

3.2 - Procedimento Experimental

O procedimento experimental adotado para o tubo de alimentação e os dois distribuidores de líquido foi o seguinte:

Conforme Figura 3.1, a fase líquida (água) era aspirada a partir do reservatório de 250 L, por meio de uma bomba centrífuga, passava por um rotâmetro e retornava para o reservatório. Uma válvula de três vias com passagem plena, promovia a mudança do escoamento da água do reservatório para a coluna em estudo.

Através da válvula gaveta colocada na linha de retorno da caixa d'água, regulava-se a abertura da mesma, de maneira que a água sofresse uma perda de carga igual àquela da linha de alimentação da coluna, para que ao se acionar a válvula de três vias, se reduzissem as oscilações nas vazões previamente reguladas. A pertinência dessa medida foi corroborada por um cálculo simples de vazão, a partir da massa total obtida em cada ensaio e do intervalo de tempo no qual o fluxo foi desviado para a coluna.

As vazões mássicas iniciais para cada ensaio foram obtidas através da média de 4 amostras de água coletadas nos pontos de amostragem, localizados nas bases de cada um dos 21 tubos inferiores (da Figura 3.1), em função do tempo de amostragem, e convertidas para vazões volumétricas em função da densidade do líquido (obtida através da temperatura da água), procurando-se, assim, desprezar a perda de carga na entrada do ponto de alimentação.

Para cada ensaio, utilizando-se o dispositivo distribuidor em estudo (tubo ou distribuidor tipo I ou II), coletou-se a massa de água distribuída entre os 21 tubos (Figura 3.7), através de mangueiras providas de presilhas adaptadas nos pontos de amostragem, tempo em que o fluxo de água foi desviado para a coluna, temperatura da água e a pressão na saída da válvula.

Nos experimentos realizados, as variáveis estudadas foram a vazão, o ponto de alimentação no espelho superior da coluna, altura da seção de recheio aleatório empregado e distância do distribuidor em relação ao topo do recheio, conforme o planejamento experimental (item 3.3).

Adotou-se um processo não aleatório para a execução dos ensaios. Assim para cada uma das alturas da seção de recheio previamente escolhidas, foram realizados os ensaios, variando-se crescentemente a vazão de água na alimentação em cada posição radial, iniciandose com a central. Dessa forma, procurou-se preservar as características do leito, como a disposição dos anéis e, por conseqüência, a fração de vazios.

Figura 3.7 - Visualização da distribuição de líquido pela coluna de recheio e a água coletada nos 21 tubos, utilizando-se tubo de PVC ou distribuidor tipo I ou II para alimentar a coluna.

3.3- Planejamento Experimental

Os experimentos realizados foram baseados num planejamento estatístico de três níveis completos. A resposta de cada um desses experimentos foi a massa de água coletada através dos pontos de amostragem localizados nas bases de cada um dos 21 tubos inferiores, numerados conforme aparece no esquema da Figura 3.8

	1	2	3	
4	5	6	7	8
9	10	11	12	13
14	15	16	17	18
	19	20	21	

Figura 3.8 - Representação da numeração dos tubos do módulo de coleta de amostra.

Uma vez que os tubos de coleta estavam dispostos em arranjo quadrado, pode-se estabelecer uma orientação cartesiana de eixos x e y, tendo como origem do sistema, o tubo 11 (central). Estabeleceu-se, a partir de considerações estatísticas, que o passo do arranjo seria igual a 1,5. Assim, por exemplo, o tubo 3 estava localizado na posição (1,5 ; 3,0).

Os experimentos foram realizados em 4 etapas descritas a seguir:

Etapa I: Experimento I

<u>Objetivo</u>: Demonstrar que a coluna com recheio utilizada sem distribuidores não é suficiente para gerar uma distribuição homogênea de líquido. Assim, para cada uma das alturas da seção de recheio previamente escolhidas foram realizados 9 ensaios variando-se crescentemente a vazão de água na alimentação em cada posição radial, iniciando-se com a central. Procurou-se preservar as características do leito, como a disposição dos anéis e, por conseqüência, a fração de vazios.

<u>Delineamento Experimental</u>: Adotou-se um delineamento inteiramente casualizado, com esquema fatorial de tratamentos e sem repetição, conforme Tabela 3.1, com as respectivas numerações dos ensaios.

<u>Fatores:</u> Utilizou-se um tubo de P.V.C. de ½ polegada e recheio de anéis de plástico Pall de 1 polegada para efetuar a alimentação de líquido. Para estudar o comportamento da distribuição de líquido (água) foram estudados os seguintes fatores:

- a) Altura do recheio de 30, 40, 60, 75 e 90 cm (cinco níveis);
- b) Vazão de 1,0; 2,0 e 2,5 m^3/h (três níveis) e
- c) Posição do tubo de 0,0; 7,5 e 15,0 cm do centro do espelho superior, distância radial (três níveis).

No caso deste experimento, tem-se 3 fatores (altura do recheio, vazão e posição do tubo) com 5, 3 e 3, níveis respectivamente. Como foram analisadas todas as combinações possíveis desses níveis, tem-se uma estrutura fatorial completa. Uma vantagem deste tipo de estrutura é a de permitir estudar o comportamento de um fator na medida em que um outro fator varia, isto é, a interação entre fatores.

A alimentação da coluna para cada altura da seção de recheio foi realizada através da colocação de um tubo a aproximadamente 5 cm acima do topo da seção de recheio, garantindo que a água não se espalhasse antes de chegar ao leito.

Foram analisadas todas as combinações possíveis entre os níveis, conformando um esquema fatorial completo de $5x3x3 = 5x3^2$.

Ensaio nº	Altura do recheio	Posição do tubo (cm)	Vazão (m ³ /h)
1 1	<u> </u>	centro	1 0
12	30	centro	2.0
13	30	centro	2,0
1.5	30	7 5	10
15	30	7.5	2.0
1.6	30	7.5	2.5
1.7	30	15.0	1.0
1.8	30	15.0	2.0
1.9	30	15,0	2,5
1.10	40	centro	1,0
1.11	40	centro	2,0
1.12	40	centro	2,5
1.13	40	7,5	1,0
1.14	40	7,5	2,0
1.15	40	7,5	2,5
1.16	40	15,0	1,0
1.17	40	15,0	2,0
1.18	40	15,0	2,5
1.19	60	centro	1,0
1.20	60	centro	2,0
1.21	60	centro	2,5
1.22	60	7,5	1,0
1.23	60	7,5	2,0
1.24	60	7,5	2,5
1.25	60	15,0	1,0
1.26	60	15,0	2,0
1.27	60	15,0	2,5
1.28	75	centro	1,0
1.29	75	centro	2,0
1.30	75	centro	2,5
1.31	75	7,5	1,0
1.32	75	7,5	2,0
1.33	75	7,5	2,5
1.34	75	15,0	1,0
1.35	75	15,0	2,0
1.36	75	15,0	2,5
1.37	90	centro	1,0
1.38	90	centro	2,0
1.39	90	centro	2,5
1.40	90	7,5	1,0
1.41	90	7,5	2,0
1.42	90	7,5	2,5
1.43	90	15,0	1,0
1.44	90	15,0	2,0
1.45	90	15,0	2,5

Etapa II: Experimento II

<u>Objetivo</u>: Avaliar a importância do uso de um tipo determinado de distribuidor, construído em laboratório com tubo e acessórios (cruzetas, cotovelos e tês) de PVC de 0,5 in. de diâmetro, com orifícios de 1,0 ; 2,0 e 3,0 mm de diâmetros espaçados de 5mm nos ramos do distribuidor, conforme Figura 3.3.

Delineamento Experimental: Inteiramente casualizado com esquema fatorial de tratamentos sem repetição, conforme Tabelas 3.2 e 3.3.

O experimento foi conduzido utilizando-se uma coluna <u>com</u> e <u>sem</u> recheio de anéis de plástico Pall de 1 polegada e analisando-se o efeito de fatores diferentes em cada caso. No caso da coluna sem recheio, o distribuidor foi colocado a quatro alturas diferentes e, no caso da coluna com recheio, o distribuidor ficou a uma altura constante durante todo o experimento mas, a altura do recheio de anéis de Pall de 1 pol. foi analisada através de cinco alturas diferentes.

O Experimento II foi dividido em duas partes e analisado separadamente: II.1 - coluna sem recheio e II.2 - coluna com recheio.

Experimento II.1: Coluna sem recheio

Tratamentos - foram estudados os seguintes fatores:

- a) Altura do distribuidor de 0,0; 54,8; 84,5 e 150 cm;
- b) Diâmetro de orificios no distribuidor de 1, 2 e 5 mm e
- c) Vazão de 1, 2 e 2,5 m^3/h .

Foram analisadas todas as combinações possíveis entre os níveis conformando, assim, um esquema fatorial completo de tratamentos $4X3^2$.

Experimento II.2: Coluna com recheio

Tratamentos

- a) Altura do recheio de 30, 40, 60, 75 e 90 cm;
- b) Diâmetro de orifícios no distribuidor de 1, 2 e 5 mm e
- c) Vazão de 1, 2 e 2,5 m^3/h .

Como no caso anterior, os níveis conformam um esquema fatorial de tratamentos 5X3².

Ensaio	H(altura do	diâmetro do	Vazões
	recheio) (cm)	furo dist. (mm)	(m ³ /h)
2.1.1	30	1,0	1,0
2.1.2	30	1,0	2,0
2.1.3	30	1,0	2,5
2.1.4	30	2,0	1,0
2.1.5	30	2,0	2,0
2.1.6	30	2,0	2,5
2.1.7	30	5,0	1,0
2.1.8	30	5,0	2,0
2.1.9	30	5,0	2,5
2.1.10	40	1,0	1,0
2.1.11	40	1,0	2,0
2.1.12	40	1,0	2,5
2.1.13	40	2,0	1,0
2.1.14	40	2,0	2,0
2.1.15	40	2,0	2,5
2.1.16	40	5,0	1,0
2.1.17	40	5,0	2,0
2.1.18	40	5,0	2,5
2.1.19	60	1,0	1,0
2.1.20	60	1,0	2,0
2.1.21	60	1,0	2,5
2.1.22	60	2,0	1,0
2.1.23	60	2,0	2,0
2.1.24	60	2,0	2,5
2.1.25	60	5,0	1,0
2.1.26	60	5,0	2,0
2.1.27	60	5,0	2,5
2.1.28	75	1,0	1,0
2.1.29	75	1,0	2,0
2.1.30	75	1,0	2,5
2.1.31	75	2,0	1,0
2.1.32	75	2,0	2,0
2.1.33	75	2,0	2,5
2.1.34	75	5,0	1,0
2.1.35	75	5,0	2,0
2.1.36	75	5,0	2,5
2.1.37	90	1,0	1,0
2.1.38	90	1,0	2,0
2.1.39	90	1,0	2,5
2.1.40	90	2,0	1,0
2.1.41	90	2,0	2,0
2.1.42	90	2,0	2,5
2.1.43	90	5,0	1,0
2.1.44	90	5,0	2,0
2.1.45	90	5,0	2,5

Tabela 3.2 - Planejamento do Experimento II.1, utilizando distribuidor, com recheio

Ensaio	Distância do distribuidor (cm)	Distribuidor diâmetro do furo (mm)	Vazões (m ³ /h)
2.2.1	Торо	1.0	1.0
2.2.2	Торо	1.0	2.0
2.2.3	Торо	1.0	2.5
2.2.4	Торо	2.0	1.0
2.2.5	Торо	2.0	2.0
2.2.6	Торо	2.0	2.5
2.2.7	Торо	5,0	1,0
2.2.8	Торо	5,0	2,0
2.2.9	Торо	5,0	2,5
2.2.10	54,8	1.0	1,0
2.2.11	54,8	1,0	2,0
2.2.12	54,8	1,0	2,5
2.2.13	54,8	2,0	1.0
2.2.14	54,8	2,0	2.0
2.2.15	54,8	2,0	2,5
2.2.16	54,8	5,0	1,0
2.2.17	54,8	5,0	2,0
2.2.18	54,8	5,0	2,5
2.2.19	84,5	1,0	1,0
2.2.20	84,5	1,0	2,0
2.2.21	84,5	1,0	2,5
2.2.22	84,5	2,0	1,0
2.2.23	84,5	2,0	2,0
2.2.24	84,5	2,0	2,5
2.2.25	84,5	5,0	1,0
2.2.26	84,5	5,0	2,0
2.2.27	84,5	5,0	2,5
2.2.28	base	1,0	1,0
2.2.29	base	1,0	2,0
2.2.30	base	1,0	2,5
2.2.31	base	2,0	1,0
2.2.32	base	2,0	2,0
2.2.33	base	2,0	2,5
2.2.34	base	5,0	1,0
2.2.35	base	5,0	2,0
2.2.36	base	5,0	2,5

Tabela 3.3 - Planejamento do experimento II.2, com distribuidor, sem recheio

Etapa III: Experimento III

<u>Objetivo</u>: Avaliar a importância do uso de outros tipos de distribuidores do tipo tubos perfurados, constituídos de tubos de PVC de 1 in. contendo 12 orificios de 1,0; 3,0 e 5,0 mm. de diâmetro, respectivamente, conforme representado na Figura 3.4. As características desses distribuidores correspondem aproximadamente àquelas dos distribuidores empregados comercialmente, que apresentam 100 pontos de distribuição/m² de seção de leito.

O Experimento III foi dividido em 3 etapas analisadas separadamente. Na primeira etapa, foram utilizadas as alturas de leito de 30,0; 60,0 e 90,0 cm., de acordo com as Tabelas 3.4 e 3.5. A segunda etapa consistiu na determinação da influência do distribuidor no espalhamento de líquido - Tabela 3.6. Assim, variou-se a distância do distribuidor ao módulo de coleta, sendo de quatro as posições escolhidas para análise.

Nestas duas etapas, utilizou-se o distribuidor com diâmetro de orifício de 3,0 mm, e as vazões de líquido na alimentação foram de 0,1; 0,3 e 0,6 m³/h. É importante observar a distribuição de líquido nessa nova faixa de vazões, devido ao crescimento do número de processos que operam abaixo da faixa inicialmente utilizada $(1,0 - 3,0 \text{ m}^3/\text{h} \text{ ou } 8 - 24 \text{ m}^3/\text{h/m}^2)$ e que aparece na maioria dos processos de destilação à pressão atmosférica.

Na terceira etapa, procurou-se avaliar a influência do diâmetro do orifício do distribuidor na distribuição, variando-se, então, o diâmetro do orifício do distribuidor (orifícios de 1,0; 3,0 e 5,0 mm de diâmetro).

Experimento III.1-<u>Distribuidor de 1in. com diâmetro de orifícios de 3 mm</u> Experimento III.1.1:Com recheio de anéis de plástico Pall de 1 pol.

Tratamentos

- a) Altura do recheio de 30, 60 e 90 cm e
- b) Vazão de $0,1; 0,3 e 0,6 m^3/h$.

Arranjados em esquema fatorial completo 3² sem repetição.

Experimento III.1.2 - Sem recheio

Tratamentos

- a) Distância do distribuidor de 0,0; 54,8; 84,5 e 150 cm e
- b) Vazão de 0,1; 0,3 e 0,6 m³/h.

Arranjados em esquema fatorial completo 4X3 sem repetição.

Experimento III.2 - Distribuidor de 1,0 in. com diâmetros variáveis

Tratamentos

- a) Altura do recheio de 20 e 40 cm;
- b) Distância do distribuidor de 20 e 80 cm;
- c) Diâmetro do orifício do distribuidor de 1 e 5 mm;
- d) Vazão de $0,1 e 0,3 m^3/h e$

e) Tratamento adicional utilizando altura do recheio de 30 cm; com o distribuidor colocado a 50 cm e furos de 3 mm de diâmetro, trabalhando com uma vazão de 0,2 m³/h. Este tratamento tem 4 repetições.

Tem-se aqui um esquema fatorial completo de tratamentos 2^4 com um tratamento adicional dos pontos centrais.

Tabela 3.4 - Planejamento do Experimento III.1.1, com distribuidor de 1 in. e furo de 3,0 mm. - com recheio

Ensaio	Altura do Recheio (cm)	Vazão (m ³ /h)	
3.1.1.1	30	0,1	
3.1.1.2	30	0,3	<u> </u>
3.1.1.3	30	0,6	
3.1.1.4	60	0,1	······
3.1.1.5	60	0,3	
3.1.1.6	60	0,6	
3.1.1.7	90	0,1	······
3.1.1.8	90	0,3	
3.1.1.9	90	0,6	MTT

Ensaio	Posição do distribuidor (cm) -	Vazão (m ³ /h)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	distância		
3.1.2.1	topo	0,1	
3.1.2.2	topo	0,3	
3.1.2.3	topo	0,6	······
3.1.2.4	54,8	0,1	
3.1.2.5	54,8	0,3	
3.1.2.6	54,8	0,6	
3.1.2.7	84,5	0,1	
3.1.2.8	84,5	0,3	
3.1.2.9	84,5	0,6	
3.1.2.10	base	0,1	
3.1.2.11	base	0,3	
3.1.2.12	base	0,6	

Tabela 3.5 - Planejamento do Experimento III.1.2, com distribuidor de 1 in. e furo de 3,0 mm. - sem recheio

Tabela 3. 6 - Planejamento do Experimento III.2, com distribuidor de 1 in., com recheio

Ensaio	altura	h(dist. da base do chuveiro ao topo	diâmetro furo/ distr.	vazão
	recheio	do recheio) cm	(mm)	m ³ /h
3.2.1	20	20	1,0	0,1
3.2.2	20	20	1,0	0,3
3.2.3	20	20	5,0	0,1
3.2.4	20	20	5,0	0,3
3.2.5	20	80	1,0	0,1
3.2.6	20	80	1,0	0,3
3.2.7	20	80	5,0	0,1
3.2.8	20	80	5,0	0,3
3.2.9	30	50	3,0	0,2
3.2.10	30	50	3,0	0,2
3.2.11	30	50	3,0	0,2
3.2.12	30	50	3,0	0,2
3.2.13	40	20	1,0	0,1
3.2.14	40	20	1,0	0,3
3.2.15	40	20	5,0	0,1
3.2.16	40	20	5,0	0,3
3.2.17	40	80	1,0	0,1
3.2.18	40	80	1,0	0,3
3.2.19	40	80	5,0	0,1
3.2.20	40	80	5,0	0,3

Etapa IV: Experimento IV

Objetivo: Comparar os 2 tipos de distribuidores sob as mesmas condições operacionais

<u>Delineamento Experimental</u>: Inteiramente casualizado com esquema fatorial de tratamentos com uma repetição.

O experimento foi conduzido utilizando-se uma coluna com recheio de anéis de plástico Pall de 1,0 in., e analisando-se o efeito de fatores diferentes em cada caso, conforme Tabela 3.7.

Tratamentos

a) Altura do recheio de 30, 50, 75 e 100 cm;

b) Tipos de Distribuidores: distribuidor de 1/2in com furos de 3,0 mm de diâmetro

e distribuidor de 1,0in com furos de 3,0 mm de diâmetro e

a) Vazão de 0,3; 0,5 e 0,7 m^3/h .

Tem-se, então, 24 combinações de tratamentos, arranjadas em esquema fatorial 4x2x3. Foram realizadas duas repetições para cada combinação de tratamentos.

4.1 30.0 distr. de 0.5^{**} (fireo.3mm) 0.3 4.2 30.0 0.5 4.3 30.0 0.5 4.4 30.0 0.7 4.6 30.0 0.7 4.6 30.0 0.7 4.6 30.0 0.3 4.7 30.0 distr. de 1.0^{or} (fure.3mm) 0.3 4.8 30.0 0.5 4.10 30.0 0.5 4.11 30.0 0.5 4.12 30.0 0.7 4.13 50.0 0.7 4.14 50.0 0.7 4.15 50.0 0.5 4.16 50.0 0.7 4.18 50.0 0.7 4.19 50.0 0.7 4.18 50.0 0.7 4.19 50.0 0.7 4.19 50.0 0.5 4.20 50.0 0.5 4.21 50.0 0.5 4.22 50.0 0.5 4.23 50.0 0.5 <th>Ensaio</th> <th>Altura do Recheio</th> <th>(cm)</th> <th>Tipo de distribuidor, posição: centro</th> <th>vazão (m³/h)</th>	Ensaio	Altura do Recheio	(cm)	Tipo de distribuidor, posição: centro	vazão (m ³ /h)
4.2 $30,0$ $0,3$ 4.3 $30,0$ $0,5$ 4.4 $30,0$ $0,7$ 4.5 $30,0$ $0,7$ 4.6 $30,0$ $0,7$ 4.7 $30,0$ distr. de $1,0^{o}$ (furo3mm) 0.3 4.8 $30,0$ 0.5 4.10 $30,0$ 0.5 4.11 $30,0$ 0.7 4.12 $30,0$ 0.7 4.13 $50,0$ 0.7 4.14 $50,0$ 0.5 4.15 $50,0$ 0.5 4.16 $50,0$ 0.5 4.17 $50,0$ 0.5 4.18 $50,0$ 0.5 4.19 $50,0$ 0.5 4.21 $50,0$ 0.5 4.22 $50,0$ 0.5 4.23 $50,0$ 0.5 4.24 $50,0$ 0.5 4.25 $75,0$ 0.5 4.26 $75,0$ 0.5 4.27 $75,0$ 0.5 4.30 <td>4.1</td> <td>30,0</td> <td></td> <td>distr. de 0,5" (furo:3mm)</td> <td>0,3</td>	4.1	30,0		distr. de 0,5" (furo:3mm)	0,3
4.3 $30,0$ $0,5$ 4.4 $30,0$ $0,7$ 4.5 $30,0$ $0,7$ 4.6 $30,0$ $0,7$ 4.7 $30,0$ $0,3$ 4.8 $30,0$ $0,3$ 4.9 $30,0$ $0,5$ 4.10 $30,0$ $0,5$ 4.11 $30,0$ $0,7$ 4.12 $30,0$ $0,7$ 4.13 $50,0$ $0,7$ 4.14 $50,0$ $0,7$ 4.15 $50,0$ $0,5$ 4.16 $50,0$ $0,5$ 4.17 $50,0$ $0,7$ 4.18 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.20 $50,0$ $0,7$ 4.21 $50,0$ $0,7$ 4.22 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,5$ 4.26 $75,0$ $0,5$ 4.29 $75,0$ $0,5$	4.2	30,0			0,3
4.4 $30,0$ $0,7$ 4.5 $30,0$ $0,7$ 4.6 $30,0$ $0,7$ 4.7 $30,0$ $0,3$ 4.8 $30,0$ $0,3$ 4.9 $30,0$ $0,5$ 4.10 $30,0$ $0,7$ 4.12 $30,0$ $0,7$ 4.13 $50,0$ $0,7$ 4.14 $50,0$ $0,3$ 4.14 $50,0$ $0,3$ 4.15 $50,0$ $0,5$ 4.16 $50,0$ $0,5$ 4.17 $50,0$ $0,7$ 4.18 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.20 $50,0$ $0,7$ 4.21 $50,0$ $0,7$ 4.22 $50,0$ $0,7$ 4.23 $50,0$ $0,7$ 4.24 $50,0$ $0,7$	4.3	30,0			0,5
4.5 $30,0$ $0,7$ 4.6 $30,0$ distr. de 1.0" (furo:3mm) 0.3 4.8 $30,0$ 0.5 4.10 $30,0$ 0.5 4.10 $30,0$ 0.5 4.11 $30,0$ 0.7 4.12 $30,0$ 0.7 4.13 $50,0$ 0.7 4.14 $50,0$ 0.7 4.15 $50,0$ 0.5 4.16 $50,0$ 0.5 4.17 $50,0$ 0.5 4.18 $50,0$ 0.7 4.18 $50,0$ 0.7 4.19 $50,0$ 0.7 4.19 $50,0$ 0.5 4.20 $50,0$ 0.5 4.21 $50,0$ 0.5 4.22 $50,0$ 0.7 4.23 $50,0$ 0.7 4.24 $50,0$ 0.7 4.25 $75,0$ 0.5 4.26 $75,0$ 0.5 4.27 $75,0$ 0.5 4.28 <td>4.4</td> <td>30,0</td> <td></td> <td></td> <td>0,5</td>	4.4	30,0			0,5
4.6 $30,0$ dist. de $1,0^{\circ}$ (furo:3mm) $0,3$ 4.7 $30,0$ 0.3 0.3 4.8 $30,0$ 0.5 4.10 $30,0$ 0.5 4.11 $30,0$ 0.7 4.12 $30,0$ 0.7 4.13 $50,0$ 0.7 4.14 $50,0$ 0.3 4.14 $50,0$ 0.3 4.15 $50,0$ 0.5 4.17 $50,0$ 0.5 4.17 $50,0$ 0.7 4.18 $50,0$ 0.7 4.19 $50,0$ 0.3 4.21 $50,0$ 0.5 4.22 $50,0$ 0.5 4.23 $50,0$ 0.5 4.24 $50,0$ 0.5 4.25 $75,0$ 0.5 4.24 $50,0$ 0.7 4.25 $75,0$ 0.5 4.27 $75,0$ 0.5 4.28 $75,0$ 0.5 4.31 $75,0$ 0.5	4.5				0,7
4.7 30.0 distr. de 1,0" (furo:3mm) 0.3 4.8 30.0 0.5 4.10 30.0 0.5 4.10 30.0 0.7 4.12 30.0 0.7 4.13 50.0 0.7 4.14 50.0 0.3 4.15 50.0 0.3 4.16 50.0 0.5 4.17 50.0 0.7 4.18 50.0 0.7 4.19 50.0 0.7 4.19 50.0 0.7 4.20 50.0 0.3 4.21 50.0 0.3 4.22 50.0 0.3 4.23 50.0 0.5 4.24 50.0 0.5 4.25 75.0 0.5 4.24 50.0 0.7 4.25 75.0 0.5 4.24 50.0 0.7 4.25 75.0 0.5 4.26 75.0 0.5 4.28 <td>4.6</td> <td>30,0</td> <td></td> <td></td> <td>0,7</td>	4.6	30,0			0,7
4.8 $30,0$ 0.5 4.10 $30,0$ 0.5 4.11 $30,0$ 0.7 4.12 $30,0$ 0.7 4.13 $50,0$ 0.7 4.14 $50,0$ 0.7 4.15 $50,0$ 0.5 4.16 $50,0$ 0.5 4.17 $50,0$ 0.7 4.18 $50,0$ 0.7 4.19 $50,0$ 0.7 4.19 $50,0$ 0.7 4.19 $50,0$ 0.7 4.21 $50,0$ 0.5 4.22 $50,0$ 0.5 4.23 $50,0$ 0.5 4.24 $50,0$ 0.7 4.25 $75,0$ 0.5 4.26 $75,0$ 0.5 4.27 $75,0$ 0.5 4.28 $75,0$ 0.5 4.30 $75,0$ 0.5 4.31 $75,0$ 0.5 4.32 $75,0$ 0.5 4.33 $75,0$ 0.5		30.0		distr. de 1,0" (furo:3mm)	0,3
4.9 $30,0$ $0,5$ 4.10 $30,0$ $0,5$ 4.11 $30,0$ $0,7$ 4.12 $30,0$ distr. de $0,5"$ (furo 3 mm) $0,3$ 4.14 $50,0$ $0,5$ 4.15 $50,0$ $0,5$ 4.16 $50,0$ $0,5$ 4.17 $50,0$ $0,7$ 4.18 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.20 $50,0$ $0,7$ 4.21 $50,0$ $0,5$ 4.22 $50,0$ $0,5$ 4.23 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,7$ 4.26 $75,0$ $0,7$ 4.27 $75,0$ $0,5$ 4.28 $75,0$ $0,5$ 4.29 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,7$ 4.33 $75,0$ $0,7$ 4.34	4.8	30,0			0,3
4.10 $30,0$ 0.7 4.11 $30,0$ 0.7 4.12 $30,0$ 0.7 4.13 $50,0$ 0.5 4.14 $50,0$ 0.3 4.15 $50,0$ 0.5 4.16 $50,0$ 0.5 4.17 $50,0$ 0.7 4.18 $50,0$ 0.7 4.19 $50,0$ distr. de $1,0^{\circ}$ (furo.3mm) 0.3 4.20 $50,0$ distr. de $1,0^{\circ}$ (furo.3mm) 0.3 4.21 $50,0$ 0.5 4.21 4.22 $50,0$ 0.5 4.22 4.23 $50,0$ 0.5 4.24 4.24 $50,0$ 0.7 4.24 $50,0$ 0.7 4.24 $50,0$ 0.7 0.3 4.27 $75,0$ 0.5 4.25 $75,0$ 0.5 0.5 4.28 $75,0$ 0.7 4.30 $75,0$ 0.5 0.5 4.33 $75,0$ 0.5 4.32 $75,0$	4.9	30,0			0,5
4.11 $30,0$ $0,7$ 4.12 $30,0$ distr. de $0,5^{v}(furo 3 mm)$ $0,3$ 4.13 $50,0$ distr. de $0,5^{v}(furo 3 mm)$ $0,3$ 4.14 $50,0$ $0,5$ 4.15 $50,0$ $0,5$ 4.16 $50,0$ $0,7$ 4.18 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.20 $50,0$ $0,5$ 4.21 $50,0$ $0,5$ 4.22 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,5$ 4.26 $75,0$ $0,5$ 4.29 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,5$ 4.32 $75,0$	4.10	30,0			0,5
4.12 $30,0$ distr. de $0,5^{\circ}$ (furo 3 mm) $0,7$ 4.13 $50,0$ $0,3$ 4.14 $50,0$ $0,5$ 4.15 $50,0$ $0,5$ 4.16 $50,0$ $0,5$ 4.17 $50,0$ $0,7$ 4.18 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.20 $50,0$ $0,5$ 4.21 $50,0$ $0,5$ 4.22 $50,0$ $0,5$ 4.23 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,3$ 4.26 $75,0$ $0,5$ 4.28 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,7$ 4.33 $75,0$ $0,7$ 4.34 $75,0$ $0,7$	4.11	30,0			0,7
4.13 $50,0$ 0.3 4.14 $50,0$ 0.5 4.15 $50,0$ 0.5 4.16 $50,0$ 0.5 4.17 $50,0$ $0,7$ 4.18 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ 0.3 4.20 $50,0$ 0.3 4.21 $50,0$ 0.5 4.22 $50,0$ 0.5 4.23 $50,0$ 0.5 4.24 $50,0$ 0.5 4.25 $75,0$ 0.5 4.24 $50,0$ 0.7 4.25 $75,0$ 0.5 4.26 $75,0$ 0.5 4.27 $75,0$ 0.5 4.28 $75,0$ 0.7 4.30 $75,0$ 0.7 4.31 $75,0$ 0.7 4.32 $75,0$ 0.5 4.33 $75,0$ 0.5 4.34 $75,0$ 0.5 4.35 $75,0$ 0.5	4.12	30,0			0,7
4.14 50,0 0,3 4.15 50,0 0,5 4.16 50,0 0,5 4.17 50,0 0,7 4.18 50,0 0,7 4.19 50,0 distr. de 1,0"(furo.3mm) 0,3 4.20 50,0 0,5 0,3 4.21 50,0 0,5 0,5 4.22 50,0 0,7 0,3 4.23 50,0 0,7 0,3 4.24 50,0 0,7 0,5 4.25 75,0 0,7 0,3 4.26 75,0 0,3 0,7 4.27 75,0 0,5 0,5 4.28 75,0 0,7 0,3 4.30 75,0 0,7 0,3 4.31 75,0 0,7 0,3 4.32 75,0 0,5 0,5 4.33 75,0 0,5 0,5 4.34 75,0 0,5 0,5 4.35 75,0 0,5 0,5 4.34 75,0 0,5	4.13	50,0		distr. de 0,5"(furo 3 mm)	0,3
4.15 $50,0$ $0,5$ 4.16 $50,0$ $0,7$ 4.18 $50,0$ $0,7$ 4.19 $50,0$ $0,7$ 4.19 $50,0$ $0,3$ 4.20 $50,0$ $0,3$ 4.21 $50,0$ $0,5$ 4.22 $50,0$ $0,5$ 4.23 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,7$ 4.26 $75,0$ $0,7$ 4.27 $75,0$ $0,5$ 4.28 $75,0$ $0,5$ 4.29 $75,0$ $0,5$ 4.29 $75,0$ $0,7$ 4.30 $75,0$ $0,5$ 4.32 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,7$ 4.33 $75,0$ $0,7$ 4.34 $75,0$ $0,7$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ $0,$	4.14	<u>50,0</u>			0,3
4.16 $50,0$ $0,7$ 4.17 $50,0$ $0,7$ 4.18 $50,0$ $0,7$ 4.19 $50,0$ $distr. de 1,0"(furo3mm)$ $0,3$ 4.20 $50,0$ $0,5$ 4.21 $50,0$ $0,5$ 4.22 $50,0$ $0,5$ 4.23 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,7$ 4.26 $75,0$ $0,3$ 4.27 $75,0$ $0,5$ 4.28 $75,0$ $0,5$ 4.29 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,5$ 4.33 $75,0$ $0,7$ 4.34 $75,0$ $0,5$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $75,0$ $0,5$ 4.38 $100,0$ $0,5$ 4.39 $100,0$ $0,5$ 4.3	4.15	50,0			0,5
4.17 $50,0$ $0,7$ 4.18 $50,0$ $0,7$ 4.19 $50,0$ $0,3$ 4.20 $50,0$ $0,3$ 4.21 $50,0$ $0,5$ 4.22 $50,0$ $0,5$ 4.22 $50,0$ $0,5$ 4.22 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,7$ 4.26 $75,0$ $0,7$ 4.26 $75,0$ $0,5$ 4.27 $75,0$ $0,5$ 4.28 $75,0$ $0,5$ 4.29 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,7$ 4.33 $75,0$ $0,7$ 4.34 $75,0$ $0,7$ 4.35 $75,0$ $0,7$ 4.34 $75,0$ $0,7$ 4.33 $75,0$ $0,7$ 4.34 $75,0$ $0,7$ <t< td=""><td>4.16</td><td>50,0</td><td></td><td></td><td>0,5</td></t<>	4.16	50,0			0,5
4.18 50.0 distr. de 1,0"(furo:3mm) 0.3 4.20 50.0 0.3 4.21 50.0 0.5 4.22 50.0 0.5 4.23 50.0 0.7 4.24 50.0 0.7 4.25 75.0 0.7 4.26 75.0 0.3 4.27 75.0 0.5 4.28 75.0 0.5 4.29 75.0 0.5 4.30 75.0 0.7 4.31 75.0 0.3 4.32 75.0 0.7 4.33 75.0 0.7 4.34 75.0 0.5 4.33 75.0 0.5 4.34 75.0 0.7 4.35 75.0 0.7 4.36 75.0 0.7 4.37 100.0 distr. de $0.5"(furo:3mm)$ 0.3 4.34 75.0 0.7 0.7 4.37 100.0 0.5 0.7 4.	4.17	50,0			0,7
4.19 $50,0$ distr. de 1,0 ('turo.3mm) $0,3$ 4.20 $50,0$ $0,5$ 4.21 $50,0$ $0,5$ 4.22 $50,0$ $0,5$ 4.23 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,7$ 4.26 $75,0$ $0,3$ 4.27 $75,0$ $0,5$ 4.28 $75,0$ $0,5$ 4.28 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,5$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,7$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ distr. de $0,5^{sv}(furo.3mm)$ $0,3$ 4.33 $75,0$ $0,7$ $0,7$ 4.34 $75,0$ $0,7$ $0,7$ 4.35 $75,0$ $0,7$ $0,3$ 4.36 $75,0$ $0,7$	4.18	50.0			0,7
4.20 $50,0$ $0,5$ 4.21 $50,0$ $0,5$ 4.22 $50,0$ $0,7$ 4.23 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $distr. de 0,5"(furo:3mm)$ $0,3$ 4.26 $75,0$ $0,5$ 4.27 4.26 $75,0$ $0,5$ 4.27 4.29 $75,0$ $0,5$ 4.29 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,3$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ $distr. de 0,5"(furo:3mm)$ $0,3$ 4.38 $100,0$ $0,5$ $0,7$ 4.39 $100,0$ $0,7$ $0,7$ 4.44 $100,0$ $0,7$ $0,7$	4.19	50,0		distr. de 1,0"(furo:3mm)	0,3
4.21 $50,0$ $0,5$ 4.22 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,3$ 4.26 $75,0$ $0,5$ 4.28 $75,0$ $0,5$ 4.28 $75,0$ $0,5$ 4.29 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,3$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.34 $75,0$ $0,7$ 4.35 $75,0$ $0,7$ 4.34 $75,0$ $0,7$ 4.37 $100,0$ $0,5$ 4.38 $100,0$ $0,7$ 4.41 $100,0$ $0,7$ 4.42 $100,0$ $0,7$	4.20	50,0			0,3
4.22 $50,0$ $0,7$ 4.23 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,5^{*'}(\text{furo:3mm})$ $0,3$ 4.26 $75,0$ $0,5$ 4.28 $75,0$ $0,5$ 4.28 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,7$ 4.33 $75,0$ $0,7$ 4.34 $75,0$ $0,5$ 4.35 $75,0$ $0,5$ 4.34 $75,0$ $0,7$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ distr. de $0,5''(furo:3mm)$ $0,3$ 4.38 $100,0$ $0,5$ 4.41 $100,0$ $0,7$ 4.42 $100,0$ $0,7$ $0,5$ 4.44	4.21	50,0			0,5
4.23 $50,0$ $0,7$ 4.24 $50,0$ $0,7$ 4.25 $75,0$ $0,3$ 4.26 $75,0$ $0,3$ 4.27 $75,0$ $0,5$ 4.28 $75,0$ $0,7$ 4.29 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,7$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,7$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.34 $75,0$ $0,7$ 4.35 $75,0$ $0,7$ 4.37 $100,0$ distr. de $0,5''(furo:3mm)$ $0,3$ 4.38 $100,0$ $0,5$ 4.41 $100,0$ $0,7$ 4.42 $100,0$ $0,7$ $0,3$ $0,3$ $0,7$ 4.44 $100,0$ $0,5$ $0,7$ <td>4.22</td> <td>50.0</td> <td></td> <td></td> <td>0,5</td>	4.22	50.0			0,5
4.24 $50,0$ distr. de $0,5^{\circ}(furo:3mm)$ $0,3$ 4.26 $75,0$ $0,3$ 4.26 $75,0$ $0,5$ 4.28 $75,0$ $0,5$ 4.29 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.32 $75,0$ $0,7$ 4.33 $75,0$ $0,7$ 4.34 $75,0$ $0,5$ 4.32 $75,0$ $0,5$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.34 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ $0,5$ 4.40 $100,0$ $0,5$ 4.40 $100,0$ $0,7$ 4.42 $100,0$ $0,7$ 4.44 $100,0$ $0,5$ 4.44 $100,0$ $0,5$ 4.44 $100,0$ </td <td>4.23</td> <td>50.0</td> <td></td> <td></td> <td>0,7</td>	4.23	50.0			0,7
4.25 $75,0$ $0,3$ 4.26 $75,0$ $0,5$ 4.27 $75,0$ $0,5$ 4.28 $75,0$ $0,5$ 4.29 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,3$ 4.32 $75,0$ $0,3$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ distr. de $0,5"$ (furo:3mm) $0,3$ 4.38 $100,0$ $0,5$ 4.41 $100,0$ $0,7$ 4.42 $100,0$ $0,7$ $0,7$ 4.42 $100,0$ $0,7$ 4.44 $100,0$ $0,5$ $0,7$ $0,7$ $0,7$ 4.44 $100,0$ $0,5$ $0,7$	4.24	<u> </u>		diata do 0.522(6.00.2.000)	0,7
4.27 75.0 0.5 4.28 75.0 0.5 4.29 75.0 0.7 4.30 75.0 0.7 4.30 75.0 0.7 4.31 75.0 0.7 4.32 75.0 0.3 4.32 75.0 0.3 4.32 75.0 0.3 4.33 75.0 0.5 4.34 75.0 0.5 4.35 75.0 0.5 4.36 75.0 0.7 4.36 75.0 0.7 4.36 75.0 0.7 4.37 100.0 distr. de $0.5^{"}$ (furo:3mm) 0.3 4.38 100.0 0.5 4.41 100.0 0.5 4.41 100.0 0.7 0.7 4.42 100.0 0.7 4.44 100.0 0.5 0.5 0.5 0.5 4.44 100.0 0.5 0.5 0.7 4.44 100	4.25	75,0		distr. de 0,5 (luro:smm)	0,3
4.27 $75,0$ $0,5$ 4.29 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,7$ 4.31 $75,0$ $0,3$ 4.32 $75,0$ $0,3$ 4.32 $75,0$ $0,3$ 4.32 $75,0$ $0,5$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ distr. de $0,5^{*'}$ (furo:3mm) $0,3$ 4.39 $100,0$ $0,5$ 4.40 $100,0$ $0,7$ 4.42 $100,0$ $0,7$ 0.7 4.42 $100,0$ $0,3$ 4.44 $100,0$ $0,5$ 0.5 0.5 0.5 4.44 $100,0$ 0.5 0.5 0.5 0.7 0.7	4.20	75,0 75 A			0,5
4.29 $75,0$ $0,7$ 4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,3$ 4.32 $75,0$ $0,3$ 4.32 $75,0$ $0,3$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,7$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ distr. de $0,5$ "(furo:3mm) $0,3$ 4.38 $100,0$ $0,5$ 4.40 $100,0$ 4.40 $100,0$ $0,7$ 4.42 $100,0$ $0,7$ 4.42 $100,0$ $0,7$ $0,3$ $0,3$ 4.44 $100,0$ $0,5$ $0,5$ 4.44 $100,0$ $0,5$ $0,5$ 4.45 $100,0$ $0,5$ $0,7$ 4.45 $100,0$ $0,5$ $0,$	4.27	75,0			0,5
4.30 $75,0$ $0,7$ 4.31 $75,0$ $0,3$ 4.32 $75,0$ $0,3$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.34 $75,0$ $0,7$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ distr. de $0,5"(furo:3mm)$ $0,3$ 4.38 $100,0$ $0,5$ 4.41 $100,0$ $0,5$ 4.40 $100,0$ $0,7$ 0.7 0.7 4.42 $100,0$ $0,7$ 0.7 4.43 $100,0$ $0,7$ 0.3 4.44 $100,0$ $0,7$ 0.3 4.44 $100,0$ $0,5$ 0.5 4.46 $100,0$ $0,5$ 0.5 4.46 $100,0$ $0,7$ 0.7 4.48 $100,0$ $0,7$ 0.7	4.20	75,0			0,5
4.31 $75,0$ distr. de 1,0"(furo:3mm) $0,3$ 4.32 $75,0$ $0,3$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ distr. de $0,5"(furo:3mm)$ $0,3$ 4.38 $100,0$ $0,5$ 4.41 $100,0$ 4.40 $100,0$ $0,5$ 4.41 $100,0$ $0,7$ 4.42 $100,0$ $0,7$ $0,3$ $0,3$ 4.44 $100,0$ $0,7$ $0,3$ 4.44 $100,0$ $0,5$ $0,5$ 4.44 $100,0$ $0,5$ $0,5$ 4.44 $100,0$ $0,5$ $0,5$ 4.45 $100,0$ $0,5$ $0,5$ 4.46 $100,0$ $0,5$ $0,7$ 4.48 $100,0$ $0,7$ $0,7$	4 30	75,0			0.7
4.32 $75,0$ $0,3$ 4.33 $75,0$ $0,5$ 4.34 $75,0$ $0,5$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ distr. de $0,5$ "(furo:3mm) $0,3$ 4.38 $100,0$ $0,5$ 4.40 $100,0$ $0,5$ 4.41 $100,0$ $0,7$ 4.42 $100,0$ $0,7$ 4.43 $100,0$ $0,7$ 4.44 $100,0$ $0,3$ 4.44 $100,0$ $0,5$ 4.46 $100,0$ $0,5$ 4.46 $100,0$ $0,5$ 4.46 $100,0$ $0,5$ 4.47 $100,0$ $0,7$ 4.48 $100,0$ $0,7$	431	7 <u>5,0</u> 75,0		distr de 1.0"(furo:3mm)	0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.32	75.0			0.3
4.34 $75,0$ $0,5$ 4.35 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.36 $75,0$ $0,7$ 4.37 $100,0$ distr. de $0,5"(furo:3mm)$ $0,3$ 4.38 $100,0$ $0,5$ 4.40 $100,0$ $0,5$ 4.40 $100,0$ $0,5$ 4.41 $100,0$ $0,7$ 4.42 $100,0$ $0,7$ 4.43 $100,0$ $0,7$ 4.44 $100,0$ $0,3$ 4.45 $100,0$ $0,5$ 4.46 $100,0$ $0,5$ 4.47 $100,0$ $0,7$ 4.48 $100,0$ $0,7$	4.33	75.0			0,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.34	75.0		······	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.35	75.0			0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.36	75.0	<u>.</u>		0.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.37	100,0		distr. de 0.5"(furo:3mm)	0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.38	100,0			0.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.39	100,0		annan an a	0.5
	4.40	100,0			0,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.41	100,0			0,7
4.43 100,0 distr. de 1,0"(furo:3mm) 0,3 4.44 100,0 0,3 4.45 100,0 0,5 4.46 100,0 0,5 4.47 100,0 0,7 4.48 100,0 0,7	4.42	100,0		······································	0,7
4.44 100,0 0,3 4.45 100,0 0,5 4.46 100,0 0,5 4.47 100,0 0,7 4.48 100,0 0,7	4.43	100,0		distr. de 1,0"(furo:3mm)	0,3
4.45 100,0 0,5 4.46 100,0 0,5 4.47 100,0 0,7 4.48 100,0 0,7	4.44	100,0			0,3
4.46 100,0 0,5 4.47 100,0 0,7 4.48 100,0 0,7	4.45	100,0			0,5
4.47 100,0 0,7 4.48 100,0 0,7	4.46	100,0			0,5
4.48 100,0 0,7	4.47	100,0			0,7
	4.48	100,0			0,7

Tabela 3.7 - Planejamento do Experimento 4, com distribuidor de 0,5 e 1 in., com recheio

3.4 - Tratamento dos dados

Os dados obtidos experimentalmente foram analisados através de dois métodos: a) pelo Coeficiente de Variação (C.V.) e metodologia de superfície de resposta, e b) por um modelo matemático simplificado de 5 parâmetros, obtido através de tratamento estatístico dos dados, correlacionando as alturas de líquidos obtidas em cada tubo com suas posições x e y.

3.4.1 - Medida da uniformidade na distribuição da massa de água

Pelas características do processo em estudo, a variável resposta de interesse é "homogeneidade na distribuição da massa de água" sendo preferível aquela combinação de fatores que gera a distribuição mais homogênea.

O experimento foi realizado utilizando-se um banco de 21 tubos, os quais, numa situação ideal, deveriam conter cada um a mesma massa de água no final do experimento, o que representaria a homogeneidade perfeita. Em termos práticos, procurou-se a combinação de fatores que gerasse a distribuição mais homogênea dentre as obtidas durante o experimento.

Sob estas condições, decidiu-se considerar o Coeficiente de Variação (C.V.) como variável resposta para o estudo. O C.V. é definido como o percentual de variação de uma amostra de tamanho n em relação à sua média aritmética. Em símbolos:

C. V. (%) =
$$\frac{S}{\overline{X}}$$
.100 (3.1)

onde:

е

$$S = \sqrt{S^{2}} = \left[\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}\right]^{1/2}$$
(3.2)

S² é o "quadrado médio" ou "variância amostral" e S representa a variabilidade da amostra,

$$\overline{\mathbf{X}} = \frac{\sum_{i=1}^{n} \mathbf{x}_{i}}{n}$$
(3.3)

representa a média aritmética da amostra.

Assim, amostras com pouca variação entre as observações apresentarão um C.V. baixo, indicando homogeneidade na distribuição da massa de água. Ao contrário, amostras heterogêneas apresentarão um C.V. alto.

3.4.2 - Medida da distribuição espacial da massa de água

Embora o C.V. seja útil para estudar a homogeneidade na distribuição da massa de água, ele não dá informação sobre a forma em que a massa se distribui. É de grande interesse saber se a massa de água acumula-se nos tubos centrais da malha, diminuindo até os da periferia ou ocorre o contrário.

O problema das diferentes quantidades totais de água utilizadas em cada execução foi contornado utilizando-se a "proporção de água recebida em cada tubo", calculada por:

% água no tubo j =
$$\frac{\text{massa de água no tubo (m_j)}}{\sum_{i=1}^{21} m_i}$$
 (3.4)

Permitindo, assim, realizar comparações válidas entre execuções do experimento.

3.4.3 - Estudo da uniformidade da distribuição

Foi realizada a análise de variância do esquema fatorial de tratamentos para detectar os efeitos significativos. Devido à natureza quantitativa dos níveis dos fatores, foi aplicada a metodologia de superfície de resposta (Montgomery & Myers) para analisar o comportamento da resposta em função dos fatores em estudo. Em símbolos, e para o caso específico do experimento I (tubo), tem-se:
As equações do tipo polinomial são muito utilizadas devido à sua variedade de formas, à facilidade de interpretação dos sinais dos parâmetros e à simplicidade da análise canônica para encontrar o ótimo da função.

Por exemplo, seja x = altura do recheio. O polinômio de segundo grau ajustado poderá ser:

$$C.V. = 40-80x + x^2 \tag{3.5}$$

Esta equação indica que, devido ao sinal positivo do coeficiente quadrático, o coeficiente de variação diminuirá à medida que aumenta a altura do recheio. A análise canônica consiste em se estudar as primeiras derivadas desta função. Assim:

$$\frac{dC.V.}{dx} = -80 + 2x \tag{3.6}$$

é a derivada primeira que, quando igualada a 0 fornece $-80 + 2x = 0 \Rightarrow x = \frac{80}{2} = 40$, o que indica que a função apresenta um ponto crítico quando a altura do recheio é de 40 cm. A derivada segunda é:

$$\frac{\mathrm{d}^2\mathrm{C.V.}}{\mathrm{dx}^2} = 2 \tag{3.7}$$

Esta derivada sendo maior que zero implica que o ponto encontrado corresponde a um <u>mínimo</u> (se a segunda derivada for menor que zero, o ponto será de máximo). Portanto, neste exemplo, percebe-se que a homogeneidade na distribuição da massa de água, medida através do C.V., diminui à medida que se aumenta a altura do recheio até atingir o valor máximo nos 40 cm após o qual o C.V. começa a aumentar.

Com este exemplo hipotético, pretende-se mostrar as vantagens do uso das equações polinomiais.

A desvantagem destes tipos de equações é que elas somente são confiáveis dentro dos intervalos estudados, isto é, não é recomendável se extrapolar resultados.

3.4.4 - Estudo da forma da distribuição

Neste caso, foi utilizada a metodologia de superfície de resposta somente como ferramenta descritiva. Ajustou-se uma equação polinomial de segundo grau e realizou-se o gráfico de contorno para visualizar a sua forma.

3.4.5 - Teste de falta de ajuste

A fim de avaliar se a superfície obtida ajusta-se bem aos dados, realizou-se um teste de falta de ajuste através do teste F (técnica da análise da variância que permite a tomada de decisão entre hipóteses, recomendado quando se trabalha com mais de duas amostras). Este teste se baseará na relação de variâncias expressas a partir dos quadrados médios, isto é, F é a relação entre o quadrado médio do tratamento e o quadrado médio do resíduo. A fim de simplificar a equação final, trabalhou-se com o número mínimo de parâmetros significativos, embora geralmente a equação obtida tenha sido de 8 ou mais parâmetros.

3.4.6 - Ótimo fora da região experimental

Quando o ponto de mínimo encontra-se fora da região experimental, procura-se o mínimo absoluto na fronteira da região abrangida pelo experimento. Para isso, fixam-se os níveis nos quais o C.V. foram menores e procura-se o mínimo nessas condições. Os gráficos de contorno indicam quais os níveis a fixar. Este ponto de mínimo absoluto permite definir a estratégia a seguir em novos experimentos que permitam atingir o ótimo (ou seja, novos níveis para os fatores estudados). As Figuras 3.9 e 3.10 apresentam a forma da superfície de resposta para o caso "central" e "periférica", respectivamente.

Distribuição "Central" da massa de agua

Figura 3.9 - Resposta com distribuição central

Figura 3.10 - Resposta com distribuição periférica

A escala de cores representa variações de até 5% na proporção de água recebida em cada tubo, variando de 0% (branco) até mais de 25% (azul escuro).

Estes tipos de gráficos apresentam uma correspondência direta com a uniformidade da distribuição, no sentido de que uma distribuição homogênea apresentará uma ou duas intensidade de cores, enquanto que a distribuição heterogênea apresentará três ou mais.

As Figuras 3.11 e 3.12 apresentam distribuições "centrais" homogêneas e heterogêneas, respectivamente.

Figura 3.11: Distribuição central homogênea

Figura 3.12: Distribuição central heterogênea

Para o caso da combinação de tratamentos mais próxima do ótimo, apresenta-se o gráfico de contorno com o esquema dos tubos e a proporção de água recebida por cada um deles.

3.4.7 - Modelo matemático

De posse dos resultados dos ensaios, relacionados nas Tabelas 1 a 216 no Anexo realizou-se um tratamento estatístico dos dados com vistas à aquisição de um modelo matemático que se ajustasse às respostas, permitindo a correlação das alturas de líquido em cada tubo com suas posições x e y. A função de ajuste deveria reproduzir a distribuição das colunas de líquido obtidas nos ensaios, sendo que o agrupamento dessas colunas assemelhavase a uma distribuição normal tridimensional, conforme Figura 3.13.

Figura 3.13 - Representação da forma da função de ajuste para os dados de distribuição de líquidos Através da estatística (Pizzo, S.M.; Moraes Jr.,D.; Kobayasi, M.S.; Fernandes, F.N.; Pazzini, R.J., 1998), procedeu-se o ajuste de uma superfície de resposta baseado na função de uma curva normal, chegando-se ao seguinte modelo:

$$Z = b \pm a \exp\left[\frac{-c(x-d)^2}{2}\right] \exp\left[\frac{-c(y-e)^2}{2}\right] \qquad (3.8)$$

Na Equação 3.8, a é a amplitude da curva normal, b é o deslocamento da curva em relação à base z=0, c é o multiplicador da variância da distribuição e d e e são os deslocamentos da variância da distribuição em relação a x e y, respectivamente. Z é a altura normalizada de uma coluna de líquido para um dado par (x , y). O sinal que antecede o parâmetro **a** pode ser positivo, no caso da distribuição apresentar um pico (ponto de máximo), ou negativo, denotando a presença de uma depressão final de líquido (ponto de mínimo).

A comparação da ordem de grandeza dos parâmetros envolvidos no ajuste permite a confrontação das influências relativas das três variáveis em estudo na resposta do sistema, qual seja a altura da coluna d' água em cada tubo para cada ensaio realizado.

Através do software Sigmaplot foi possível o ajuste paramétrico da equação 3.8, para cada um dos ensaios, sendo que os parâmetros (a, b, c, d, e) representam a influência das três variáveis abordadas neste estudo: altura da seção de recheio e condições de alimentação (vazão e ponto de operação).

Os valores de massa de água normalizados, foram então utilizados no programa Sigmaplot para se obter os valores dos parâmetros do modelo de distribuição normal tridimensional, dado pela Equação 3.8, escolhida para representar a distribuição final de líquido.

A partir do significado físico dos parâmetros definidos na Equação 3.8, estabelecem-se duas medidas de eficiência de distribuição de líquido na coluna de recheio. A primeira é a eficiência global, dada pela Equação 3.9, que fornece uma indicação da qualidade de distribuição em termos das diferenças de altura das colunas d'água obtidas. Assim, uma alta eficiência global corresponde a uma distribuição de líquido sem diferenças marcantes no nível de água dos tubos de coleta.

$$Ef_G = (1 - a) \times 100\%$$
 (3.9)

onde:

Ef_G - eficiência global da distribuição, percentual;

 a - coeficiente de amplitude normalizada da distribuição de líquido, parâmetro ajustável

A segunda eficiência definida é a eficiência de dispersão, dada pela Equação 3.10. Nesse caso, é analisado o grau de espalhamento do líquido pela seção de coleta. Uma baixa eficiência de dispersão equivale a uma situação em que a água coletada concentrou-se em um conjunto determinado de tubos, dependendo do ponto a partir do qual é feita a alimentação no espelho superior.

$$Ef_{D} = (1 - c) \times 100\%$$
 (3.10)

onde:

Ef_D é eficiência de dispersão da distribuição, percentual e

c é o coeficiente de amplitude normalizada da distribuição de líquido, parâmetro ajustável.

De maneira a se localizarem as regiões eventualmente favorecidas pela distribuição irregular de líquido foram definidos, ainda, dois fatores de "deslocamento do centro", dados pelas Equações 3.11 e 3.12

$$R = \sqrt{(x/3)^2 + (y/3)^2}$$
(3.11)

$$\theta = \arccos\left(\frac{y}{3R}\right) \tag{3.12}$$

onde:

R é o raio de deslocamento, valor fracionário;

x é a posição do tubo de coleta no eixo x, conforme definido anteriormente;

y é a posição do tubo de coleta no eixo y, conforme definido anteriormente;

 θ é o ângulo de deslocamento

A Equação 3.11 é a representação do raio de deslocamento e diz respeito à posição radial (fração do raio), tendo como origem o tubo 11 do pico ou depressão (ponto máximo ou de mínimo) da distribuição em cada ensaio. Já a equação 3.12 fornece o ângulo medido a partir do eixo positivo das abcissas no sentido anti-horário, relativo a esse pico ou depressão.

Os coeficientes de correlação (r^2) , são calculados a partir dos valores normalizados (Norm) e indicam a qualidade do ajuste .

Norm =
$$1 - r^2$$
 (3.13)

$$r^2 = 1$$
- Norm (3.14)

Logo, se Norm = 0, indica um ajuste de 100%.

Assim, utilizando-se como ferramenta o Coeficiente de Variação (C.V.) para estudar a homogeneidade na distribuição do líquido, a metodologia de superfície de resposta (Montgomery & Myers) para avaliar a natureza quantitativa dos níveis dos fatores e o modelo matemático simplificado de 5 parâmetros, pode-se caracterizar de modo bastante abrangente a distribuição de líquido resultante da influência das variáveis analisadas (vazão de água, altura da seção de recheio e ponto de alimentação), para cada um dos ensaios efetuados.

4 - RESULTADOS E DISCUSSÕES

Uma vez que os tubos de coleta eram constituídos de acrílico transparente, a formação do perfil de distribuição de líquido foi observada durante os experimentos. Um exemplo deste perfil é apresentado na Figura 4.1 como resultado do ensaio 1.1 (Tabela 3.1), com água sendo alimentada no centro do espelho superior a uma vazão de 1,0 m³/h, sobre uma seção de recheio de 30,0 cm. de altura de anéis de Pall plástico de 1 in.

Figura 4.1 - Representação da distribuição de líquido no Ensaio 1.1: alimentação central, vazão de 1,0 m³/h e altura de recheio de 30,0 cm.

Nas condições da Figura 4.1, houve uma distribuição cônica irregular de água, ou seja, as posições da região central foram privilegiadas em detrimento das mais periféricas. Essa configuração com a presença de um ponto máximo da distribuição repetiu-se ao longo dos primeiros 45 ensaios realizados apenas com recheio. Uma das características que diferenciava a resposta de cada experimento era justamente a localização desse pico, denotando o papel exercido pelo ponto de alimentação.

Outro exemplo desta dependência aparece na Figura 4.2 (ensaio1.23 da Tabela 3.1, alimentação a 7,5 cm do centro e 2,0 m³/h de vazão e altura de recheio de 60 cm).

Figura 4.2- Distribuição de água no ensaio 1.23, alimentação a 7,5 cm do centro, vazão de $2,0 \text{ m}^3/\text{h}$ e altura de recheio de 60,0 cm.

A presença de regiões não alcançadas pela água na Figura 4.2 deixa claro que visualmente o recheio por si só nas condições e altura estudadas (60 cm) não foi eficiente na distribuição do líquido.

Ao longo da realização dos ensaios percebeu-se que o caráter da não homogeneidade da distribuição de líquido era paulatinamente abrandado à proporção em que eram empregadas maiores alturas de seção de recheio, além de se efetuar a alimentação da coluna a partir do centro. Esse processo pode ser observado na Figura 4.3 (ensaio 1.30, da Tabela 3.1, alimentação central, vazão de 2,5 m³/h e altura de recheio de 75,0 cm). Percebe-se, neste caso, um preenchimento maior dos tubos periféricos. Em uma condição ideal de distribuição, todos os tubos estariam preenchidos na mesma altura.

Figura 4.3 – Colunas de água obtidas no ensaio 1.30, alimentação central, vazão de 2,5 m³/h e altura de recheio de 75,0 cm.

4.1 - Análise dos resultados da Etapa 1, Experimento I, tubo como distribuidor

Analisando-se os resultados obtidos pelo ajuste da equação 3.8 no software Sigmaplot, listados na Tabela 4.1, referentes aos ensaios citados, nota-se que os valores das eficiências globais obtidas com o tubo de alimentação de líquido localizado no centro, tendem a aumentar com o aumento do leito e com o aumento da vazão. Para alturas de recheio maiores que 60 cm, a eficiência global diminui provavelmente devido à formação de canais preferenciais.

À medida que o ponto de alimentação de líquido é deslocado do centro na direção radial, observa-se que a eficiência de dispersão diminui, atingindo o valor zero, situação esta que demonstra claramente que a água concentrou-se em um conjunto determinado de tubos.

Comparando-se os valores de eficiência global e de dispersão, percebe-se que deslocando o ponto de alimentação de água do centro obtém-se uma distribuição bastante irregular de líquido denotando a influência da variável "ponto de alimentação" nos valores de eficiência calculados.

Os coeficientes de correlação ($r^2 = 1$ -Norm) relacionados na Tabela 4.2 variam desde 0,822 até 0,958, indicando que a qualidade do ajuste pode ser considerada boa.

				Eficiência			Deslocamento
Ensaios	Altura leito (cm)	vazão (m ³ /h)	ponto de alimentação	Global	Dispersão	Raio	ângulo (°)
1.1	30.0	1,0	centro	81,53	45,42	0,048	180
1.2	30,0	2,0	centro	82,78	49,21	0,122	113
1.3	30,0	2,5	centro	84,27	50,37	0,0975	102
1.4	30,0	1,0	7,5cm	64,81	0,0	0,539	19
1.5	30,0	2,0	7,5	67,44	0,0	0,529	18
1.6	30,0	2,5	7,5	68,57	0,0	0,511	15
1.7	30,0	1,0	15,0 cm	64,09	0,0	0,848	17
1.8	30,0	2,0	15,0	67,47	0,0	0,833	18
1.9	30,0	2,5	15,0	65,56	0,0	0,842	17
1.10	40,0	1,0	centro	78,85	28,55	0,1897	99
1.11	40,0	2,0	centro	82,64	41,56	0,0832	118
1.12	40,0	2,5	centro	85,20	46,63	0,0864	121
1.13	40,0	1,0	7,5 cm	69,08	0,0	0,372	8
1.14	40,0	2,0	7,5	71,32	0,0	0,399	4
1.15	40,0	2,5	7,5	75,61	14,69	0,393	0
1.16	40,0	1,0	15,0 cm	64,14	0,0	0,928	9
1.17	40,0	2,0	15,0	73,28	49,58	0,906	8
1.18	40,0	2,5	15,0	71,94	33,15	0,826	11
1.19	60,0	1,0	centro	84,52	47,00	0,172	111
1.20	60,0	2,0	centro	88,53	58,71	0,142	139
1.21	60,0	2,5	centro	88,39	59,77	0,168	167
1.22	60,0	1,0	7,5 cm	73,26	3,41	0,426	3
1.23	60,0	2,0	7,5	81,85	45,57	0,406	13
1.24	60,0	2,5	7,5	84,18	52,55	0,432	6
1.25	60,0	1,0	15,0 cm	69,32	0,0	0,896	17
1.26	60,0	2,0	15,0	68,38	0,0	0,938	16
1.27	60,0	2,5	15,0	65,85	0,0	1,011	17
1.28	75,0	1,0	centro	86,25	53,27	0,1908	47
1.29	75,0	2,0	centro	86,72	41,27	0,157	36
1.30	75,0	2,5	centro	90,72	55,25	0,066	150
1.31	75,0	1,0	7,5 cm	74,50	17,88	0,419	00
1.32	75,0	2,0	7,5	73,33	0,17	0,456	2
1.33	75,0	2,5	7,5	76,52	12,50	0,455	0
1.34	75,0	1,0	15,0 cm	67,76	0,0	0,751	0
1.35	75,0		15,0	72,16	0,0	0,901	14
1.36	75,0	2,5	15,0	72,47	0,0	0,892	13
1.37	90,0	1,0	centro	84,71	47,59	0,149	16
1.38	90,0	2,0	centro	87,08	48,39	0,148	17
1.39	90,0	2,5	centro	87,51	48,04	0,223	4
1.40	90,0	1,0	7,5 cm	77,52	27,99	0,502	5
1.41	90,0	2,0	7,5	82,71	50,33	0,497	3
1.42	90,0	2,5	7,5	79,40	31,25	0,543	4
1,43	90,0	1,0	15,0 cm	79,41	61,01	0,931	3
1.44	90,0	2,0	15,0	81,02	71,18	1,03	00
145	90.0	2.5	15.0	71.20	0.0	0.810	3

TABELA 4.1- Valores das eficiências e dos fatores de deslocamento do centro, para oExperimento I utilizando tubo como distribuidor

Ensaio	H (cm)	Q(m ³ /h)	aliment.	a	b	c	đ	e	N	r ²
1.1	30,0	1,0	centro	0,185	0,0010	0,5458	0,0032	-0,1444	0,0706	0,929
1.2	30,0	2,0	centro	0,172	0,0030	0,5079	0,3358	-0,1461	0,0662	0,934
1.3	30,0	2,5	centro	0,157	0,0059	0,4963	0,2862	-0,0607	0,0559	0,944
1.4	30,0	1,0	7,5cm	0,352	0	1	0,5380	1,526	0,0849	0,915
1.5	30,0	2,0	7,5	0,326	0	1	0,5046	1,505	0,0962	0,904
1.6	30,0	2,5	7,5	0,314	0	1	0,4105	1,477	0,1063	0,894
1.7	30,0	1,0	15,0 cm	0,359	0	1	0,7345	2,435	0,0799	0,92
1.8	30,0	2,0	15,0	0,325	0	1	0,7914	2,371	0,1203	0,88
1.9	30,0	2,5	15,0	0,344	0	1	0,7381	2,416	0,1036	0,897
1.10	40,0	1,0	centro	0,212	0,0066	0,7145	-0,5619	-0,0903	0,0641	0,936
1.11	40,0	2,0	centro	0,174	0,0078	0,5844	-0,2200	-0,1182	0,0612	0,939
1.12	40,0	2,5	centro	0,148	0,0098	0,5337	-0,2230	-0,1324	0,0694	0,931
1.13	40,0	1,0	7,5 cm	0,309	0,0014	1	0,1537	1,106	0,0765	0,923
1.14	40,0	2,0	7,5	0,287	0,0044	1	0,0740	1,194	0,0748	0,925
1.15	40,0	2,5	7,5	0,244	0,0048	0,8531	-0,0056	1,179	0,0784	0,922
1.16	40,0	1,0	15,0 cm	0,359	0	1	0,4316	2,752	0,0906	0,909
1.17	40,0	2,0	15,0	0,267	0	0,5042	0,3723	2,693	0,1562	0,844
1.18	40,0	2,5	15,0	0,281	0	0,6685	0,4731	2,433	0,1156	0,885
1.19	60,0	1,0	centro	0,155	0,0089	0,53	-0,4832	-0,1817	0,0669	0,933
1.20	60,0	2,0	centro	0,115	0,0127	0,4129	-0,2802	-0,3219	0,0565	0,943
1.21	60,0	2,5	centro	0,116	0,0112	0,4023	-0,1081	-0,492	0,0419	0,958
1.22	60,0	1,0	7,5 cm	0,267	0,0043	0,9659	0,0957	1,276	0,085	0,915
1.23	60,0	2,0	7,5	0,182	0,0032	0,5443	0,2877	1,184	0,0843	0,916
1.24	60,0	2,5	7,5	0,158	0,0040	0,4745	0,1308	1,289	0,07089	0,929
1.25	60,0	1,0	15,0 cm	0,307	0	1	0,7920	2,568	0,1482	0,852
1.26	60,0	2,0	15,0	0,316	0	1	0,7607	2,708	0,1777	0,822
1.27	60,0	2,5	15,0	0,342	0	1	0,8886	2,899	0,1404	0,86
1.28	75,0	1,0	centro	0,138	0,0096	0,4673	-0,4226	0,3864	0,04893	0,951
1.29	75,0	2,0	centro	0,133	0,0183	0,5873	-0,2898	0,3732	0,054	0,946
1.30	75,0	2,5	centro	0,093	0,0194	0,4475	-0,1019	-0,1709	0,0941	0,906
1.31	75,0	1,0	7,5 cm	0,255	0,0012	0,8212	-0,0023	1,258	0,0732	0,927
1.32	75,0	2,0	7,5	0,267	0,0036	0,9983	-0,0008	1,367	0,0857	0,914
1.33	75,0	2,5	7,5	0,235	0,0050	0,875	-0,0183	1,365	0,0793	0,921
1.34	75,0	10	15,0 cm	0,322	0	1	0,4705	2,557	0,127	0,873
1.35	75,0	2,0	15,0	0,278	0	1	0,6816	2,616	0,1798	0,82
1.36	75,0	2,5	15,0	0,275	0	1	0,5915	2,609	0,1721	0,828
1.37	90,0	1,0	centro	0,153	0,0088	0,5241	-0,1340	0,4285	0,0448	0,955
1.38	90,0	2,0	centro	0,129	0,0162	0,5161	0,1293	0,424	0,0657	0,934
1.39	90,0	2,5	centro	0,125	0,0164	0,5196	-0,0410	0,6669	0,0816	0,918
1.40	90,0	1,0	7,5 cm	0,225	0,0017	0,7201	-0,1320	1,5	0,0739	0,926
1.41	90,0	2,0	7,5	0,173	0,0024	0,4967	-0,0938	1,489	0,1072	0,893
1.42	90,0	2,5	7,5	0,206	0,0043	0,6875	-0,1226	1,625	0,0953	0,905
1.43	90,0	1,0	15,0 cm	0,206	0	0,3899	0,1534	2,789	0,1432	0,857
1.44	90,0	2,0	15,0	0,190	0	0,2882	0,2628	3,105	0,1083	0,892
1.45	90,0	2,5	15,0	0,288	0,0008	1	0,0301	2,427	0,1282	0,872

Tabela 4.2 - Parâmetros de ajuste da Equação (3.8) para o Experimento I, usando o tubo comodistribuidor-Resultados do ajuste utilizando Sigmaplot

4.1.1- Homogeneidade na Distribuição da massa de água

Análise da Variância

Tentou-se o ajuste do seguinte modelo:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk} + \varepsilon_{ijk}$$
(4.1)

onde y_{ijk} representa a observação obtida na ijk-ésima combinação dos níveis dos fatores, μ representa a média geral do experimento, α_i denota o efeito da posição do tubo *i*, β_j denota o efeito da vazão *j* e γ_k representa o efeito da altura do recheio *k*. Os termos $\alpha\beta_{ij}$; $\alpha\gamma_{ik} e\beta\gamma_{jk}$ denotam os efeitos das respectivas interações. Por último, o termo ε_{ijk} denota o erro aleatório para a ijk-ésima observação. Dado que o experimento foi realizado sem repetição, a estimativa da variação do acaso utilizada é a da interação tripla entre esses fatores ($\alpha\beta\gamma_{ijk}$).

O ajuste deste modelo foi considerado bom, como pode ser observado no gráfico de dispersão dos resíduos padronizados da Figura 4.4, no qual não é detectado nenhum padrão especial de distribuição, possível indicador de falhas na verificação dos pressupostos do modelo. Observa-se também que os resíduos estão concentrados na faixa de (-1,5 a 1,5), estabelecendo-se, então, que o passo do arranjo seria igual a 1,5, conforme visto no item 3.3, do planejamento experimental.

Figura 4.4: Gráfico de dispersão dos resíduos padronizados

O exame dos resíduos é fundamental na avaliação da qualidade do ajuste de qualquer modelo. Um modelo que deixe resíduos consideráveis é considerado um modelo ruim. Realizado o teste de Shapiro & Wilks para verificar a normalidade dos resíduos, obteve-se o valor W=0,964, não significativo ao nível de 5% de significância, portanto, consideram-se verificados os pressupostos da análise. A Tabela 4.3 fornece a análise da variância.

Causa de Variação	G.L.	Soma de	Quadrado	F	prob.	
		Quadrados	Médio			
Posição do Tubo	2	34.601,775	17.300,888			
Vazão	2	1.371,989	685,994	16,05	0,0001	
POSICAO*VAZAO	4	421,862	105,466	2,47	0,0867	
Altura do Recheio	4	6.733,612	1.683,403			
POSICAO*ALTURA	8	2.264,400	283,050	6,62	0,0007**	
VAZAO*ALTURA	8	322,456	40,307	0,94	0,5096	
Resíduo	16	683,698	42,731	<u></u>		
Total Corrigido	44	46.399,792	<u>,</u>			

Tabela 4.3 - Análise da variância

** não significativo ou nível de 1% de significância

Foi detectado o efeito da interação posição x altura, ao nível de significância de 1%, o que indica que existe um comportamento diferente da resposta em função da posição, quando muda a altura do distribuidor. Na figura 4.5, apresenta-se o gráfico dessa interação. Percebe-se, claramente, que as linhas correspondentes às alturas são mais ou menos paralelas, o que evidenciaria uma falta de interação, mas, na altura 30 cm verifica-se que o coeficiente de

variação não mudou, quando a posição do tubo foi de 15 cm a 7,5 cm do centro do espelho superior, o que não aconteceu nos outros casos, em que o C.V. diminuiu sensivelmente, portanto, detectou-se evidência da interação.

Figura 4.5: Interação posição e altura

Não foi detectada interação entre os efeitos posição e vazão e entre vazão e altura. Dada a natureza quantitativa dos fatores e a existência de interação, a metodologia de superfície de resposta é a maneira apropriada de analisar o comportamento da variável resposta. Tentou-se o ajuste de uma equação polinomial a fim de estudar a existência de efeitos lineares, quadráticos, etc. nos fatores analisados. Foram estudadas somente interações entre os efeitos lineares e quadráticos de forma a não complexar desnecessariamente o modelo.

A soma de quadrados associadas a cada efeito está apresentada na Tabela 4.4.

Efeito	G.L	s.g.	Q.M	F	prob.
posicao linear	1	13477.173	13477.173	315.39	0.0001**
posicao quadra	1	21124.602	21124.602	494.36	0.0001**
vazao linear	1	1289.074	1289.074	30.17	0.0001**
vazao quadra	1	82.915	82.915	1.94	0.1827
altura linear	1	5831.170	5831.170	136.46	0.0001**
altura quadra	1	430.255	430.255	10.07	0.0059**
altura cubica	1	77.641	77.641	1.82	0.1965
altura quarti	1	394.546	394.546	9.23	0.0078**
poslin x vazlin	1	16.486	16.486	0.39	0.5433
poslin x vazqua	1	1.032	1.032	0.02	0.8784
posqua x vazlin	1	361.911	361.911	8.47	0.0102
posqua x vazqua	1	42.432	42.432	0.99	0.3338
poslin x altlin	1	508.026	508.026	11.89	0.0033**
posqua x altlin	1	15.509	15.509	0.36	0.5553
poslin x altqua	1	150.006	150.006	3.51	0.0794
posqua x altqua	1	889.769	889.769	20.82	0.0003**

Tabela 4.4 - Soma de quadrado

Os efeitos marcados com ** são significativos ao nível de 1% de significância. Efeitos significativos indicam que esses termos são importantes e deveriam constar na equação que descreve o comportamento do C.V. Porém, o efeito quártico da altura foi desconsiderado de modo a simplificar o modelo final.

Ajuste de uma superfície de resposta

A metodologia de superfícies de resposta é uma técnica de otimização baseada no emprego de planejamentos fatoriais, com o objetivo de atingir uma região ótima (máxima ou mínima) da superfície investigada. Normalmente, efetua-se uma modelagem ajustando-se modelos lineares ou quadráticos a resultados experimentais obtidos a partir de planejamentos fatoriais, e depois se analisa a trajetória na qual a resposta varia de forma mais pronunciada.

Reagrupando as somas de quadrados em função dos efeitos que serão incluídos na equação final, pode-se testar a falta de ajuste da superfície, isto é, se os dados do experimento ajustam-se ou não apropriadamente à função obtida. A Tabela 4.5 apresenta esse teste.

Efeito	G.L	S.Q.	Q.M	F	prob.	
Regressão Polinom.	8	43.911,98	5.488,99	60,85	0,0001**	
Desvíos de Reg.	28	1.804,11	90,20	2,11	0,067ns	
Erro Puro	16	683,7	42,73			

Tabela 4.5 - Teste da falta de ajuste

O valor da estatística F = 60,85 (5499,99/90,20) indica que a equação obtida explica aproximadamente 60 vezes mais do que a variação do acaso, fato significativo ao nível de 1% de significância (confiança de 99%). A falta de ajuste da equação, medida através dos desvios de regressão, com uma estatística F = 2,11 (90,20/42,73), não é significativa ao nível de 5% (95% de confiança). Portanto, os coeficientes da equação obtida, foram estimados, chegandose à expressão:

$$C.V. = 161,18 + 8,57 Pos - 12,57 Vaz - 1,51 Alt - 0,03 Pos * Alt -0,28 Pos2 + 0,01 Alt2 + 0,04 Vaz * Pos2 + 0,00001 Alt2 * Pos2$$
(4.2)

onde Pos é a posição do tubo, Alt é a altura do recheio e Vaz é a vazão. Embora um pouco extensa, a análise canônica desta função não é complicada, dado que o interesse está em encontrar a combinação de fatores que gera o menor coeficiente de variação.

Os sinais positivos dos coeficientes correspondentes a Vaz x Pos² e Alt² x Pos² indicam que mudanças na posição levarão a incrementos no coeficiente de variação (o sinal negativo de Pos x Alt não é suficiente para atenuar o efeito dos outros dois). Existe também um efeito linear importante de vazão, pois, fixando os outros fatores em zero, um incremento de 1 na vazão levará a uma diminuição de 12,57 no C.V.

Devido à representação gráfica da função requerer um sistema coordenado de quatro eixos, tentou-se visualizar o comportamento fixando um fator por vez e realizando o gráfico de contorno correspondente.

Representação gráfica da função e Análise Canônica:

Os gráficos de contorno da Figura 4.6, foram realizados fixando um fator por vez, permitindo, assim, o estudo da relação Altura x Posição; Altura x Vazão e Vazão x Posição. Valores baixos do C.V. estão associados com cores verdes, enquanto que valores altos correspondem a cores vermelhas. Analisando os gráficos Altura x Posição e Vazão x Posição,

percebe-se que os menores valores do C.V. foram obtidos na posição zero, isto é, com o tubo no centro do espelho superior. A primeira conclusão importante é que não é conveniente afastar do centro o tubo, já que isso acarreta, de acordo com a função obtida, um aumento no C.V. e, em conseqüência, uma maior heterogeneidade na distribuição da massa de água. Além disso, pode-se estudar o comportamento da função fixando a posição em zero, o que determina que agora, esta função pode ser visualizada em um gráfico em três dimensões (Figura 4.7).

Figura 4.6: Gráficos de contorno da função ajustada

Coeficiente de Variação da massa de água

Figura 4.7: Superfície de resposta da função ajustada, fixando a posição em zero

Percebe-se pela Figura 4.7, que a função diminui à medida que aumenta a vazão e que o mínimo da função não foi atingido no experimento, fornecendo evidência de que vazões maiores contribuirão a diminuir mais ainda o C.V., pois quanto menor o C.V. melhor será a distribuição de líquido.

No entanto, o fator Altura do recheio parece ter atingido o mínimo (dado que a posição foi fixada em zero e fixando a vazão em 2,5 m³/h), pois a função começa a aumentar depois da altura 75 cm.

Neste caso, a equação reduz-se a:

$$C.V. = 129,75 - 1,51Alt + 0,01Alt^{2}$$
(4.3)

dado que Pos=0 e Vaz=2,5. A derivada primeira dessa função é:

$$\frac{d CV}{d Alt} = -1,51 + 0,02Alt$$
(4.4)

que, igualada a zero, fornece o ponto Alt = 75,5, que corresponde a um mínimo, já que o sinal da derivada segunda é positivo. A Figura 4.8 apresenta a equação resultante e o mínimo encontrado.

Figura 4.8: Função resultante da fixação da posição em zero da vazão em 2,5.

Através da Figura 4.8, confirma-se que o ponto de mínimo absoluto corresponde ao ponto de 75,5 cm de altura, portanto, como a posição foi fixada em zero e a vazão em 2,5, temos: o ponto (0; 2,5; 75,5) - (posição do tubo central, vazão em m^3/h e altura do recheio em centímetros, respectivamente). A combinação de fatores experimentais mais próxima a esse ponto corresponde a posição central do tubo (0 cm); vazão de 2,5 m^3/h e altura do recheio de 75 cm. O C.V. observado nesse caso foi de 65,96 %.

4.1.2 - Forma da distribuição da massa de água

Melhor combinação de fatores

A combinação de fatores mais próxima a esse ponto corresponde à posição central (0 cm); vazão de 2,5 m³/h e altura do recheio de 75 cm. O C.V. observado nesse caso foi de 65,96 %. A figura 4.9 apresenta o gráfico de contorno da função ajustada.

Gráfico de contorno - Proporção de água nos tubos

Figura 4.9: Contorno da função ajustada

A equação obtida foi :

$$C.V. = 9,037+0,12X-0,07Y-0,63X^2-0,54Y^2$$
(4.5)

Percebe-se claramente que existe uma tendência central na distribuição da água nos tubos. Os cinco tubos que formam a cruz central, receberam 46,7 % da massa total de água.

Estudo das combinações dos fatores

Apresentam-se a seguir, os gráficos de contorno categorizados segundo a posição do tubo, a vazão e a altura do recheio.

As seguintes observações são verificadas através da inspeção dos gráficos das Figuras 4.10, 4.11 e 4.12 (comparados com os gabaritos das Figuras 3.9, 3.10, 3.11 e 3.12)

a) Somente com o uso do tubo, a distribuição da massa de água tende a ser central, com o centro variando segundo a posição do tubo de (0, 0) no caso do tubo colocado no centro do espelho superior, a (0, -1, 5) quando colocado a 7,5 cm e finalmente a (0, -3) quando colocado a 15 cm.

b) A heterogeneidade da distribuição da massa de água pode ser percebida pelo tamanho relativo da área de cor azul mais intenso, que corresponde, neste caso, a tubos que recebem até 15 % da massa de água total. Áreas menores correspondem a C.V. mais baixos, indicando mais homogeneidade da distribuição.

c) Nem a vazão nem a altura do recheio parecem ter efeito visível sobre a forma da distribuição da massa de água, a qual parece depender somente devido à posição do tubo.

d) Quando a posição do tubo é de 15 cm, a massa de água se acumula por uma determinada região da parede do recipiente favorecendo os tubos 19, 20 e 21.

Gráficos de Contorno

Posição: Centro do Espelho Superior

Figura 4.10 - Gráfico de contorno categorizado pela vazão e altura para Experimento I, utilizando tubo de PVC para alimentação de líquido

Gráficos de Contorno

Figura 4.11 - Gráfico de contorno categorizado pela vazão e altura para Experimento I, utilizando tubo de PVC para alimentação de líquido

Gráficos de Contorno

Posição: 15 cm do Espelho Superior (distância radial)

Figura 4.12 - Gráfico de contorno categorizado pela vazão e altura para Experimento I utilizando tubo de PVC para alimentação de líquido

4.2 - Análise dos Resultados da Etapa 2 - Experimento 2, Distribuidor do tipo I de 0,5 in.

Os valores da quantificação da distribuição, no caso dos experimentos da Etapa 2 relativos ao uso do distribuidor de 0,5 in., podem ser vistos nas Tabelas 4.6 e 4.7, que demonstram que uma melhor distribuição de líquido foi possível graças à utilização do dispositivo distribuidor.

Analisando os resultados de eficiência quando se trabalha sem recheio relativos aos Experimentos II.1 (Tabela 4.6), observa-se uma melhora na eficiência global da distribuição e na eficiência de dispersão da distribuição. Através da Tabela 4.8, observa-se que os valores de r^2 (=1-N) com exceção de 3 ensaios cujos resultados estão na faixa de (0,556 - 0,757), apresentam bons resultados de ajuste (0,812 - 0,948).

Comparando esses resultados com os obtidos do Experimento 2.2, com recheio e com distribuidor (Tabela 4.7), observa-se que os últimos apresentaram melhores resultados quanto a eficiência global e de dispersão. Note-se que as eficiências de distribuição cresceram com o aumento da seção de recheio e com o aumento da vazão, provavelmente graças a diminuição da canalização da fase líquida. Os valores de r^2 (0,87 - 0,938) revelam um melhor ajuste dos resultados, conforme Tabela 4.9.

<u></u>		<u> </u>	Distr. tipo 0,5	Eficiência		Deslocamento	
			in.		1		
Ensaio	Distância do	vazão	Diâmetro furo	Global	Dispersão	Raio	ângulo
311	topo	(<u>m /n</u>)	(mm)	80.20	00 64	0.000	+ $()$ $ ()$ $ ()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$
2.1.1	topo	2.0	1,0	09,29	00,04	0.14	41
2.1.2	topo	2,0	1,0	07,37	80.04	0,14	51
2.1.3	topo	1.0	20	00,30	97.04	0.12	- 51
2.1.4	topo	2.0	2,0	94,00	82.40	0,21	00
2.1.5	topo	2,0	2,0	93,31	70.00	0,10	02
2.1.0		2,3	5.0	95,50	79,00	0,11	0/
2.1./	topo	1,0	5.0	89,93	03,74	0,22	49
2.1.8		2,0	5.0	89,50	91,81	0,35	99
2.1.9		2,3	10	89,90	87,54	0,27	99
2.1.10	54.0			90,37	89,70	0,030	
2.1.11	54,8	2,0		90,35	87,38	0,008	66
2.1.12	54,8	2,5	1,0	90,15	88,49	0.013	135
2.1.13	54,8	1,0	2,0	94,68	90,61	0,26	43
2.1.14	54,8	2,0	2,0	94,74	84,18	0,11	46
2.1.15	54,8	2,5	2,0	93,90	84,91	0,036	22
2.1.16	54,8	<u>_1,0</u>	5,0	81,47	0,0	0,28	180
2.1.17	54,8	2,0	5,0	91,38	96,68	0,22	75
2.1.18	54,8	2,5	5,0	91,36	92,45	0,20	84
2.1.19	84,5	1,0	1,0	92,35	89,86	0,33	101
2.1.20	84,5	2,0	1,0	94,01	97,53	0,73	100
2.1.21	84,5	2,5	1,0	94,12	97,92	1,12	96
2.1.22	84,5	1,0	2,0	93,02	87,33	0,11	97
2.1.23	84,5	2,0	2,0	92,92	91,63	0,15	83
2.1.24	84,5	2,5	2,0	94,27	93,36	0,039	71
2.1.25	84,5	1,0	5,0	68,13	0	0,094	0
2.1.26	84,5	2,0	5,0	77,10	0	0,50	89
2.1.27	84,5	2,5	5,0	76,61	0	0,015	18
2.1.28	base	[_1,0	_1,0	86,00	88,94	0,12	69
2.1.29	base	2,0	1,0	86,89	86,81	0,098	78
2.1.30	base	2,5	1,0	87,38	87,22	0,089	63
2.1.31	base	1,0	2,0	94,50	90,76	0,12	56
2.1.32	base	2,0	2,0	93,14	89,95	0,14	67
2.1.33	base	2,5	2,0	93,25	87,71	0,12	70
2.1.34	base	1,0	5,0	82,07	0	0,39	0
2.1.35	base	2,0	5,0	90,46	0	0,84	174
2.1.36	base	2,5	5,0	90,82	94,27	0,15	157

TABELA 4.6 - Valores das eficiências e dos fatores de deslocamento do centro, para os ensaios referentes ao Experimento II.1, utilizando distribuidor de 0,5 in., sem recheio

			Distr. tipo	Eficiência		Deslocamento	
Ensaio	Altura	vazão	Diâmetro	Global	Dispersão	Raio	ângulo
	leito (cm)	(m³/h)	furo (mm)				<u>(°)</u>
2.2.1	30,0	1,0	1,0	92,87	0	0,75	12
2.2.2	30,0	2,0	1,0	93,28	0	0,79	10
2.2.3	30,0	2,5	1,0	92,51	0	0,73	13
2.2.4	30,0	1,0	2,0	92,59	98,33	0,69	99
2.2.5	30,0	2,0	2,0	99,50	99,37	0,66	70
2.2.6	30,0	2,5	2,0	98,70	99,46	0,76	75
2.2.7	30,0	1,0	5,0	87,25	61,12	0,20	39
2.2.8	30,0	2,0	5,0	93,36	86,91	0,30	0
2.2.9	30,0	2,5	5,0	94,59	88,46	0,39	7
2.2.10	40,0	1,0	1,0	94,74	97,89	0,34	147
2.2.11	40,0	2,0	1,0	91,56	0	0,76	103
2.2.12	40,0	2,5	1,0	95,26	98,58	0,63	73
2.2.13	40,0	1,0	2,0	95,79	94,15	0,21	99
2.2.14	40,0	2,0	2,0	95,90	94,58	0,025	55
2.2.15	40,0	2,5	2,0	96,55	93,32	0,081	168
2.2.16	40,0	1,0	5,0	91,42	75,21	0,082	42
2.2.17	40,0	2,0	5,0	94,79	89,68	0,15	180
2.2.18	40,0	2,5	5,0	95,91	94,09	0,19	73
2.2.19	60,0	1,0	1,0	94,70	95,74	0,35	32
2.2.20	60,0	2,0	1,0	95,51	96,75	0,50	11
2.2.21	60,0	2,5	1,0	94,87	96,26	0,53	7
2.2.22	60,0	1,0	2,0	96,30	89,27	0,23	122
2.2.23	60,0	2,0	2,0	95,85	96,71	0,32	150
2.2.24	60,0	2,5	2,0	96,57	92,26	0,078	94
2.2.25	60,0	1,0	5,0	90,30	68,83	0,15	116
2.2.26	60,0	2,0	5,0	95,60	93,34	0,30	143
227	60,0	2,5	5,0	96,0	94,57	0,28	131
2.2.28	75,0	1,0	1,0	96,22	92,81	0,29	119
2.2.29	75,0	2,0	1,0	98,14	99,81	0,77	101
2.2.30	75,0	2,5	1,0	95,96	94,82	0,53	92
2.2.31	75,0	1,0	2,0	94,81	92,44	0,30	95
2.2.32	75,0	2,0	2,0	95,72	93,45	0,17	118
2.2.33	75,0	2,5	2,0	96,29	92,70	0,25	108
2.2.34	75,0	1,0	5,0	89,57	67,29	0,16	19
2.2.35	75,0	2,0	5,0	94,83	91,54	0,34	12
2.2.36	75,0	2,5	5,0	96,00	95,20	0,55	0
2.2.37	90,0	1,0	1,0	94,48	97,46	0,38	62
2.2.38	90,0	2,0	1,0	96,14	96,64	0,52	50
2.2.39	90,0	2,5	1,0	97,83	0	0,33	167
2.2.40	90,0	1,0	2,0	89,03	05 20	0,74	104
2.2.41	90,0	2.5	2,0	95,02	93,30	0.54	13
2.2.44	90.0	1.0	5.0	91.27	76.10	0.073	48
2.2.44	90,0	2,0	5.0	95.54	93.06	0.12	175
2.2.45	90,0	2,5	5,0	96,24	98,68	1,05	178

TABELA 4.7 - Valores das eficiências e dos fatores de deslocamento do centro, para os ensaios do experimento II.2, utilizando distribuidores de 0,5 in., com recheio.

Ensaio	Altura	vazão	Diâmetro	а	Ь	c	d	e	N	$r^2 = 1 - N$
	leito (cm)	(m ³ /h)	furo (mm)							
2.1.1	30,0	1,0	1,0	0,07122	0,023489	1,0	0,5541	2,196	0,1091	0,891
2.1.2	30,0	2,0	1,0	0,06718	0,025749	1,0	_0,3812	2,332	0,10125	0,899
2.1.3	30,0	2,5	1,0	0,07493	0,02336	1,0	0,4359	2,134	0,10961	0,890
2.1.4	30,0	1,0	2,0	0,07410	0,088498	0,0166	2,062	-0,336	0,08369	0,916
2.1.5	30,0	2,0	2,0	0,00496	0,083956	0,00629	-1,856	0,684	0,07593	0,924
2.1.6	30,0	2,5	2,0	0,01252	0,085323	0,00537	-2,192	0,588	0,07855	0,921
2.1.7	30,0	1,0	5,0	0,1275	0,004073	0,3888	-0,3882	0,465	0,1076	0,892
2.1.8	30,0	2,0	5,0	0,06364	0,007506	0,1309	-0,0989	0,917	0,11878	0,881
2.1.9	30,0	2,5	5,0	0,05410	0,012163	0,1154	0,01280	1,160	0,12145	0,878
2.1.10	40,0	1,0	1,0	0,05258	0,095842	0,02108	-0,5808	-0,859	0,07891	0,921
2.1.11	40,0	2,0	1,0	0,08441	0,079185	1,0	2,211	-0,532	0,08774	0,912
2.1.12	40,0	2,5	1,0	0,04741	0,09159	0,01417	-1,817	0,538	0,07765	0,922
2.1.13	40,0	1,0	2,0	0,04212	0,081576	0,05854	0,6276	-0,103	0,08051	0,919
2.1.14	40,0	2,0	2,0	0,04096	0,081430	0,05420	0,06288	0,042	0,07165	0,928
2.1.15	40,0	2,5	2,0	0,03454	0,074897	0,06680	0,05074	-0,237	0,07026	0,930
2.1.16	40,0	1,0	5,0	0,08577	0,007673	0,2479	0,1674	0,182	0,11665	0,883
2.1.17	40,0	2,0	5,0	0,05211	0,011304	0,1032	0,01053	-0,450	0,11278	0,887
2.1.18	40,0	2,5	5,0	0,04094	0,014665	0,05913	0,5514	0,162	0,11381	0,886
2.1.19	60,0	1.0	1,0	0,05299	0,092205	0,04264	-0,5642	0,892	0,0718	0,928
2.1.20	60,0	2,0	1,0	0,04491	0,086290	0,03250	0,2338	1,470	0,06622	0,934
2.1.21	60,0	2,5	1,0	0,05128	0,090600	0,03937	0,2521	1,579	0,06792	0,932
2.1.22	60,0	1,0	2,0	0,03698	0,072699	0,1073	0,5857	-0,371	0,06659	0,933
2.1.23	60,0	2,0	2,0	0,04146	0,083393	0,03288	-0,5147	-0,831	0,06681	0,933
2.1.24	60,0	2,5	2,0	0,03425	0,073709	0,07741	-0,2342	-0,016	0,06248	0,937
2.1.25	60,0	1,0	5,0	0,09698	0,010157	0,3117	-0,3995	-0,199	0,09280	0,907
2.1.26	60,0	2,0	5,0	0,04397	0,013495	0,06659	-0,5527	-0,722	0,10411	0,896
2.1.27	60,0	2,5	5,0	0,03968	0,015347	0,05426	-0,6197	-0,550	0,09546	0,904
2.1.28	75,0	1,0	1,0	0,03781	0,076453	0,07191	0,7617	-0,428	0,06954	0,930
2.1.29	75,0	2,0	1,0	0,01861	0,077745	0,00186	2,2560	-0,454	0,07140	0,929
2.1.30	75,0	2,5	1,0	0,04040	0,079554	0,05179	1,6040	-0,050	0,06732	0,933
2.1.31	75,0	1,0	2,0	0,05193	0,086675	0,07564	0,8918	-0,079	0,07901	0,921
2.1.32	75,0	2,0	2,0	0,04277	0,081378	0,06546	0,4642	-0,242	0,07758	0,922
2.1.33	75,0	2,5	2,0	0,03713	0.075974	0,07297	0,7140	-0,229	0,06630	0,934
2.1.34	75,0	1,0	5,0	0,1043	0.007109	0,3271	-0,2002	0,454	0,08800	0,912
2.1.35	75,0	2,0	5,0	0,05170	0,010061	0,08460	-0,1884	0,997	0,09227	0,908
2.1.36	75,0	2,5	5,0	0,04002	0,015529	0,04801	0,06718	1,657	0,09188	0,908
2.1.37	90,0	1,0	1,0	0,05517	0,097237	0,02541	0,9977	0,538	0,09313	0,907
2.1.38	90,0	2,0	1,0	0,03859	0,080624	0,03356	1,199	1,001	0,06288	0,937
2.1.39	90,0	2,5	1,0	0,02170	0.080299	1,0	-0,1849	-0,965	0,06427	0,936
2.1.40	90,0	1,0	2,0	0,1097	0,084327	1,0	2,167	-0,542	0,07887	0,921
2.1.41	90,0	2,0	2,0	0,04975	0.089240	0,04698	0,7447	0,225	0,0/14/	0,928
2.1.42	90,0	2.5	2,0	0.00722	0.006280	0,02857	1,178	1,112	0,06234	0,938
2.1.43	90,0	1,0	5,0	0,08733	0.0105388	0,2390	-0,1645	0,147	0,08215	0,918
2.1.44	90,0	2,0	5,0	0,04464	0,012737	0,06940	0,08955	-0,559	0,09359	0,906
2.1.45	90,0	2,5	5,0	0,03762	0,013932	0,01315	0,3103	-3,148	0,09309	0,907

TABELA 4.8 - Parâmetros de ajuste da Equação 3.8 para o Experimento II, usando distribuidor tipo I -Resultados obtidos através do Sigmaplot - SEM RECHEIO

Ensaio	Distância do distribuidor	vazão (m ³ /h)	Diâmetro furo (mm)	8	b	с	d	e	N	r ² : (1- N)
2.2.1	topo	1,0	1,0	0,1071	0,11997	0,1136	-0,1737	0,1999	0,122377	0,878
2.2.2	topo	2,0	1,0	0,1263	0,13094	0,1154	-0,3116	0,2928	0,146949	0,853
2.2.3	topo	2,5	1,0	0,1162	0,12702	0,1096	-0,2891	0,2247	0,139525	0,860
2.2.4	topo	1,0	2,0	0,05320	0,08129	0,1299	0,6279	0,1079	0,075693	0,924
2.2.5	topo	2,0	2,0	0,06693	0,08487	0,1751	0,3065	0,0405	0,062872	0,937
2.2.6	topo	2,5	2,0	0,06497	0,08022	0,2101	0,3192	0,0188	0,051971	0,948
2.2.7	topo	1,0	5,0	0,1007	0,00963	0,3426	-0,4852	0,4316	0,143756	0,856
2.2.8	topo	2,0	5,0	0,1044	0,12375	0,08191	1,038	-0,1628	0,10696	0,893
2.2.9	topo	2,5	5,0	0,1010	0,11218	0,1246	0,8067	-0,1332	0,106819	0,893
2.2.10	54,8	1,0	1,0	0,09628	0,11513	0,1030	-0,05759	0,0903	0,140475	0,860
2.2.11	54,8	2,0	1,0	0,09651	0,11042	0,1262	0,02189	0,0099	0,133461	0,866
2.2.12	54,8	2,5	1,0	0,09854	0,11405	0,1151	0,02696	0,0277	0,128501	0,871
2.2.13	54,8	1,0	2,0	0,05318	0,08519	0,09389	-0,5401	0,5704	0,085152	0,915
2.2.14	54.8	2,0	2,0	0,05255	0,07837	0,1582	-0,2535	0,2277	0,074819	0.925
2.2.15	54,8	2,5	2,0	0,06100	0,08437	0,1509	-0,03925	0,0998	0,071513	0,928
2.2.16	54,8	1,0	5,0	0,1853	0,01228	1,0	-0,09239	-0,8462	0,162582	0,837
2.2.17	54,8	2,0	5,0	0,08615	0,12365	0,03321	<u>0,6315</u>	0,1699	0,134751	0,865
2.2.18	54,8	2,5	5,0	0,08642	0,11325	0,07550	0,5993	0,0582	0,120257	0,880
2.2.19	84,5	1,0	1,0	0,07647	0,09982	01014	0,9866	-0,1899	0,115835	0,884
2.2.20	84,5	2,0	1,0	0,05986	0,09957	0,02468	2,150	-0,4056	0,100452	0,900
2.2.21	84,5	2,5	1,0	0,05881	0,09668	0,02078	3,336	-0,3318	0,102365	0,898
2.2.22	84,5	1,0	2,0	0,06981	0,09269	0,1267	0,3173	-0,0428	0,111058	0,890
2.2.23	84,5	2,0	2,0	0,07075	0,10020	0,08369	0,4435	0,0545	0,099318	0,900
2.2.24	84,5	2,5	2,0	0,05733	0,09300	0,06641	0,1115	0,0385	0,101242	0,900
2.2.25	84,5	1,0	5,0	0,3187	0,00000	1,0	-0,0048	0,2820	0,187738	0,812
2.2.26	84,5	2,0	5,0	0,2290	0,00143	1,0	-1,492	0,0121	0,243091	0,757
227	84,5	2,5	5,0	0,2339	0,00000	1,0	-0,01349	0,0427	0,444066	0,556
2.2.28	base	1,0	1,0	0,1400	0,14297	0,1106	0,3273	0,1283	0,155067	0,845
2.2.29	base	2,0	1,0	0,1311	0,13126	0,1319	0,2873	0,0597	0,142582	0,857
2.2.30	base	2,5	1,0	0,1262	0,12919	0,1278	0,2399	0,1212	0,135759	0,664
2.2.31	base	1,0	2,0	0,05502	0,08736	0,09242	0,2967	0,1999	0,078496	0,921
2.2.32	base	2,0	2,0	0,06858	0,09581	0,1005	0,3896	0,1612	0,075419	0,924
2.2.33	base	2,5	2,0	0,06753	0,09181	0,1229	0,3374	0,1207	0,067199	0,933
2.2.34	base	1,0	5,0	0,1793	0,01678	1,0	-0,05532	1,180	0,184134	0,816
2.2.35	base	2,0	5,0	0,09536	0,01371	1,0	0,3242	-2,508	0,159857	0,840
2.2.36	base	2,5	5,0	0,09175	0,12623	0,05727	0,2107	-0,4145	0,126228	0,874

TABELA 4.9 - Parâmetros de ajuste da Equação 3.8 para o Experimento II, usando distribuidor tipo I -Resultados obtidos através do Sigmaplot - COM RECHEIO

4.2.1 - Distribuidor do tipo I, de 0,5 in. Coluna sem recheio, Experimento II:

4.2.1.1 - Homogeneidade na Distribuição da massa de água

Análise da Variância

Neste caso, ajustou-se o modelo

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{ik} + \varepsilon_{ijk}$$
(4.6)

onde y_{ijk} representa a observação obtida na ijk-ésima combinação dos níveis dos fatores, μ representa a média geral do experimento, α_i denota o efeito da posição do tubo *i*, β_j denota o efeito da vazão *j* e γ_k representa o efeito da altura do recheio *k*. Os termos $\alpha\beta_{ij}$; $\alpha\gamma_{ik} e\beta\gamma_{jk}$ denotam os efeitos das respectivas interações. Por último, o termo ε_{ijk} denota o erro aleatório para a ijk-ésima observação. Dado que o experimento foi realizado sem repetição, a estimativa da variação do acaso utilizada é a da interação tripla entre esses fatores ($\alpha\beta\gamma_{ijk}$).

Pelo gráfico da Figura 4.13 percebe-se que o ajuste do modelo foi bom, não apresentando problemas em relação à distribuição dos resíduos padronizados.

Figura 4.13 - Gráfico dos resíduos padronizados

A normalidade dos resíduos foi verificada mediante o teste de Shapiro & Wilks, cuja estatística W= 0,98 não foi significativa ao 5% de significância. Em função disto, consideramse atendidos os pressupostos da análise de variância.

A análise de variância é apresentada na Tabela 4.10

Efeito	G.L	S.Q.	Q.M	F	prob.
POSICAO	3	2.149,519	716,506		
VAZAO	2	2.062,415	1031,208		
POSICAO*VAZAO	6	754,818	125,803	2,28	0,1062ns
DIAMETRO	2	12.749,070	6374,535		
POSICAO*DIAMETRO	6	8.868,501	1478,083	26,50	0,0001**
VAZAO*DIAMETRO	4	3.046,118	761,529	13,78	0,0002**
Resíduo	16	138.9308	8.6832		
Total corrigido	44	6210.6990			

Tabela 4.10 - Análise de variância

Interpretação:

Foi detectada evidência significativa ao nível de 5% de probabilidade para as interações Posição do distribuidor x Diâmetro do orifício e Vazão x Diâmetro. Tentou-se, então, determinar uma equação polinomial que descreva apropriadamente o comportamento do C.V..

Obtiveram-se as somas de quadrados associadas a efeitos que, a priori, poderiam ser importantes na equação. A Tabela 4.11 fornece esses contrastes e a Tabela 4.12, o ajuste de uma superfície de resposta.

Efeito	G.L	s.Q.	Q.M	F	prob.
posicao linear	1	2.105	2.105	0,04	0,8485
posicao quadra	1	550,513	550,513	9,96	0,0083**
posicao cubica	1	1.596,901	1.596,901	28,90	0,0002**
vazao linear	1	1.210,479	1.210,479	21,90	0,0005**
vazao quadra	1	851,937	851,937	15,42	0,0020**
diametro linear	1	2.327,748	2.327,748	42,12	0,0001**
diametro quadra	1	10.421,322	10.421,322	188,58	0,0001**
vazlin x diamlin	1	983,536	983,536	17,80	0,0012**
vazlin x diamqua	1	346,911	346,911	6,28	0,0276*
vazqua x diamlin	1	1.318,292	1.318,292	23,85	0,0004**
vazqua x diamqua	1	397,378	397,378	7,19	0,0200*
poslin x dialin	1	469,196	469,196	8,49	0,0130*
poslin x diaqua	1	20,238	20,238	0,37	0,5563
posqua x dialin	1	3.844,583	3.844,583	69,57	0,0001**
posqua x diaqua	1	6,431	6,431	0,12	0,7389
poscub x dialin	1	4.337,494	4.337,494	78,49	0,0001**
poscub x diaqua	1	190,558	190,558	3,45	0,0880

Tabela 4.11 - Soma de quadrados

Os contrastes marcados com ** são significativos a 1%, enquanto que os marcados com * são a 5% de significância.

Efeito prob. G.L s.Q. Q.M F 2.168,399 0,0001** Regressão 28.189,199 15,04 13 Desvíos de Reg. 10 1.441,241 144,124 2,61 0,06ns 663,16 55,260 Erro puro 12

Tabela 4.12 - Ajuste de uma superfície de resposta:

Pelos resultados do teste de falta de ajuste, constata-se que a equação obtida com 13 G.L. ajusta-se bem aos dados. Os desvios de regressão não são significativos a 5%. Porém, a equação obtida conta com 14 parâmetros (um por cada grau de liberdade mais a média geral) o que torna bastante complicada qualquer tentativa de realizar a análise canônica através do cálculo das primeiras derivadas.

A equação obtida foi a seguinte

$$C.V. = 147,5 - 0,052 Pos - 19,82 Vaz - 99,34 Dia + 0,0038 Pos^{2} - 0,000034 Pos^{3} + 3,78 Vaz^{2} - 15,16 Vaz * Dia^{2} + 3,8 Vaz^{2} * Dia^{2} + 23,91 Dia^{2} + 39,86 Vaz * Dia - 9,72 Dia * Vaz^{2} - 0,000844 Dia * Pos^{2} + 0,000012 Pos^{3} * Dia$$

$$(4.7)$$

Onde, Pos é a posição do distribuidor, Vaz a vazão e Dia o diâmetro. A existência de um efeito cúbico para a posição do distribuidor e de várias interações linear-quadráticas tornam impossível a descrição desta equação. Tentou-se, então, estudar o comportamento desta função através de gráficos de contorno, fixando um fator por vez.

Representação gráfica e estudo da função

Os gráficos da Figura 4.14 apresentam o contorno da função em um estudo fixando um fator por vez.

Figura 4.14 - Gráficos de contorno

Percebe-se que o mínimo da função encontra-se numa área delimitada pelos diâmetros 2 e 5 mm, sugerindo que talvez, coeficientes de variação menores sejam conseguidos trabalhando com um diâmetro de 3 mm.

Da visualização dos gráficos Posição x Diâmetro e Posição x Vazão, percebe-se que o C.V. diminui à medida que diminui a posição do distribuidor. Fixando a posição do distribuidor em zero (topo), poder-se-á analisar com maior facilidade o comportamento da função.

A Figura 4.15 permite determinar que o mínimo absoluto da função encontra-se na vizinhança do diâmetro igual a 3, porém, a vazão não parece ser um fator importante para a localização do mínimo da função.

Posição fixada em zero

Figura 4.15 - Superfície de resposta fixando a posição

As Figuras 4.16 e 4.17 apresentam diagramas de dispersão onde se visualizam os pontos da função ajustada (com a posição fixada em zero) em função da Vazão e do Diâmetro do orifício, respectivamente.

Figura 4.16 - Diagrama de dispersão em função das Vazões, com alimentação central

Figura 4.17 - Diagrama de dispersão em função dos Diâmetros, com alimentação central

Através da Figura 4.16, percebe-se que o diâmetro de 2 mm apresentou os menores C.V. mas, pela ausência de observações nos diâmetros de 3 e 4 mm, poder-se ia esperar uma maior diminuição do C.V.. Neste sentido o experimento não é conclusivo.

A Figura 4.17 demonstra claramente que o diâmetro de 2 mm apresentou os menores C.V. Porém, o aumento da vazão não parece ter efeito importante na diminuição do C.V..

O uso do distribuidor tipo I foi efetivo na redução do C.V. da distribuição da massa de água. No caso do experimento I (somente tubo), a média do C.V. foi de 121,4%, enquanto que para o presente experimento a média diminuiu para 68,5%, o que implica uma redução de 43,58% em relação ao primeiro. Porém, o comportamento do C.V. demonstrou ser muito complicado para ser descrito por uma equação polinomial. Este fato não invalida a análise realizada, mas os resultados obtidos devem ser considerados com cautela. Não foi possível determinar algebricamente o ponto de mínimo mas, percebe-se que os valores menores do C.V. foram atingidos quando a posição do distribuidor foi de 0 cm e o diâmetro do orifício variando entre 2 e 4 mm.

A vazão não parece afetar sensivelmente os valores mínimos do C.V. Porém, ela afetou sensivelmente o comportamento da função quando o diâmetro do orifício de 5 mm. Na realidade, de acordo com os gráficos apresentados, a utilização de um diâmetro de 5 mm parece ser a causa dos problemas no ajuste da superfície de resposta devido à grande variação que provocou no C.V. Isto é percebido claramente nos diagramas de dispersão das Figuras 4.16 e 4.17.

O experimento não foi conclusivo em relação ao ponto de mínimo da função obtida, mas forneceu evidência suficiente contra o uso do tubo de P.V.C. sem o distribuidor.

Um outro experimento seria conveniente estudando somente o diâmetro do orificio.

A combinação de níveis com o menor C.V. (40,21%) foi a posição igual a zero, vazão igual a 2,5 e diâmetro igual a 2 mm.

4.2.1.2 - Forma da distribuição da massa de água

A Figura 4.18 apresenta a forma da distribuição da massa de água para a combinação de níveis 0;2,5 e 2, correspondentes à posição, vazão e diâmetro, respectivamente.

Gráfico de contorno - Proporção de água nos tubos

Figura 4.18 - Gráfico de contorno da função ajustada

Percebe-se que a distribuição é homogênea, com uma leve tendência às acumulações nas coordenadas 3 e -3 de Y (tubos 1,2,3 e 19,20,21). A equação que descreve esse comportamento apresenta-se a seguir:

$$C.V.=1,974+0,153X+0,029Y+0,278X^{2}-0,01XY+0,488Y^{2}$$

$$(4.8)$$

As Figuras 4.19, 4.20, 4.21 e 4.22 representam os gráficos de contorno categorizados pela distância do distribuidor, diâmetro e vazão.

Através dos gráficos de contorno dessas figuras, percebe-se que a posição do distribuidor não teve influência perceptível na forma da distribuição da massa de água, dado que, de um modo geral, os gráficos de contorno apresentam as mesmas formas. A combinação de diâmetro igual a 1 e vazão 2,5 m³/h pareceu afetar sensivelmente a distribuição, que apresentou uma tendência central. No caso da posição 150 cm, a vazão 2,5 m³/h pareceu provocar um comportamento irregular nessa distribuição à medida que incrementaram-se os diâmetros.

Gráficos de Contorno

Distribuidor Tipo I (Sandro)

Distância do distribuidor: Topo (0 cm)

Figura 4.19 -Gráfico de contorno caracterizado pelo diâmetro e vazão para o Experimento II.1, distância do distribuidor de 0,5 in. : topo (0 cm), sem recheio

Gráficos de Contorno

Distribuidor Tipo I (Sandro)

Distância do distribuidor: 54,8 cm

Figura 4.20 -Gráfico de contorno caracterizado pelo diâmetro e vazão para o Experimento II.1, distância do distribuidor de 0,5 in. : 54,8cm, sem recheio

Gráficos de Contorno

Distribuidor Tipo I (Sandro)

Distância do distribuidor: 84,5 cm

Figura 4.21 -Gráfico de contorno caracterizado pelo diâmetro e vazão para o Experimento II.1, distância do distribuidor de 0,5 in. : 84,5 cm, sem recheio

Gráficos de Contorno

Distribuidor Tipo I (Sandro) Distância do distribuidor: Base (150 cm) 0,0 0.0 0.0 -1.5 -1.5 -3,0 -3.0 3 (-3,0 -1,5 0,0 1,5 3,0 -3,0 -1,5 0,0 1,5 3,0 -3,0 -1,5 0,0 1,5 3,0 Diâmetro 1 - Vazão 1 Diâmetro 1 - Vazão 2 Diâmetro 1 - Vazão 2,5 3.0 3.0 3.01,5 0,0 0.0 0.0 -1.5 -3.0 3 0 -3.0 -3,0 -1,5 0,0 1,5 3,0 -3,0 -1,5 0,0 1,5 3,0 -3,0 -1,5 0,0 1,5 3,0 70 Diâmetro 2 - Vazão 1 Díâmetro 2 - Vazão 2 Diâmetro 2 - Vazão 2,5 5 3.03.0 10 1.5 1 0,0 0.0 0.0 15 -1 20 -3.0 -3.0 25 -3,0 -1,5 0,0 1,5 3,0 -3,0 -1,5 0,0 1,5 3,0 -3,0 -1,5 0,0 1,5 3,0 above Diâmetro 5 - Vazão 1 Diâmetro 5 - Vazão 2 Diâmetro 5 - Vazão 2,5

Figura 4.22 -Gráfico de contorno caracterizado pelo diâmetro e vazão para o Experimento II.1, distância do distribuidor de 0,5 in. : base (150 cm), sem recheio

Х

4.2.2 - Distribuidor tipo I de 0,5 in., com recheio, Experimento II

4.2.2.1 - Homogeneidade na Distribuição da massa de água

Análise da Variância:

Como nos casos anteriores, tentou-se o ajuste:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk} + \varepsilon_{ijk}$$

(4.9)

onde y_{ijk} representa a observação obtida na ijk-ésima combinação dos níveis dos fatores, μ representa a média geral do experimento, α_i denota o efeito do diâmetro do orifício *i*, β_j denota o efeito da vazão *j* e γ_k representa o efeito da altura do recheio *k*. Os termos $\alpha\beta_{ij}$; $\alpha\gamma_{ik} e\beta\gamma_{jk}$ denotam os efeitos das respectivas interações. Por último, o termo ε_{ijk} denota o erro aleatório para a ijk-ésima observação. Dado que o experimento foi realizado sem repetição, a estimativa da variação do acaso utilizada é a da interação tripla entre esses fatores ($\alpha\beta\gamma_{ijk}$).

Pela diagrama de dispersão dos resíduos, apresentado na Figura 4.23, observa-se que o ajuste do modelo foi bom, pois os resíduos não apresentam um padrão definido de dispersão. O teste de Shapiro & Wilks para verificação da normalidade dos resíduos indicou resultado não significativo.

Figura 4.23: Diagrama de dispersão dos resíduos padronizados

A análise da variância é apresentada na Tabela 4.13

Efeito	G.L	S.Q.	Q.M	F	prob.
DIA	2	4.155,6375	2.077,8187		·····
VAZ	2	689,7397	344,8699		
DIA*VAZ	4	421,7881	105,4470	12,14	0,0001**
ALT	4	522,5824	130,6456		
DIA*ALT	8	258,1190	32,2649	3,72	0,0122*
VAZ*ALT	8	23,9014	2,9877	0,34	0,9351
Resíduo	16	138,9308	8,6832		
Total corrigido	44	6.210,6990			

Tabela 4.13 - Análise da variância

Interpretação

Foram detectados efeitos significativos das interações Diâmetro x Altura do recheio e Diâmetro x Vazão, portanto, considerou-se apropriado o ajuste de uma superfície de resposta para estudar o comportamento do C.V..

A Tabela 4.14 apresenta as somas de quadrados associados a cada efeito considerado:

Efeito	G.L	S.Q.	Q.M	F	prøb.
dia linear	1	3.198,9582	3.198,9582	368,41	0,0001**
dia quadra	1	956 , 6793	956,6793	110,18	0,0001**
vaz linear	1	572,6227	572,6227	65,95	0,0001**
vaz quadra	1	117,1171	117,1171	13,49	0,0021**
alt linear	1	425,7206	425,7206	49,03	0,0001**
alt quadra	1	77,8166	77,8166	8,96	0,0086**
alt cubica	1	13,2738	13,2738	1,53	0,2342
alt quarti	1	5,7714	5,7714	0,66	0,4269
dialín x vazlin	-	296,1522	296,1522	34,11	0,0001**
dialin x vazqua	1	30,1769	30,1769	3,48	0,0807
diaqua x vazlin	1	43,1940	43,1940	4,97	0,0404
diaqua x vazqua	1	52,2650	52,2650	6,02	0,0260
dialin x altlin	1	196,1078	196,1078	22,58	0,0002**
diaqua x altlin	1	33,5034	33,5034	3,86	0,0671
dialin x altqua	1	0,4886	0,4886	0,06	0,8155
diaqua x altqua	1	0,9959	0,9959	0,11	0,7393

Tabela 4.14 - Soma de quadrados

Neste caso, uma equação com 9 parâmetros (8 G.L. mais a média) ajustou-se muito bem aos dados de acordo com os resultados do teste de falta de ajuste (Tabela 4.15).

Tabela 4.15 - Teste de faita de a	ajuste
-----------------------------------	--------

Efeito	G.L	S.Q.	Q.M	F	prob.
Regressão	8	5.348,91	668,61	18,5	0,0001**
Desvíos de Reg.	20	266,76	13,33	1,5	0,21ns
Erro puro	16	138,93	8,68		

Com efeito, a equação resultante foi altamente significativa, enquanto que os desvios de regressão foram não significativos a 5%. A equação obtida foi a seguinte:

C. V. =
$$55,64 - 0,41$$
Alt + $4,88$ Dia - $12,73$ Vaz - $2,98$ Dia * Vaz - $0,06$ Dia * Alt + $0,0036$ Alt² + $1,58$ Dia² + $4,16$ Vaz² (4.10)

Pelos sinais positivos dos coeficientes dos efeitos quadráticos, percebe-se que esta equação tem um ponto de mínimo que, talvez, esteja contido na região experimental.

Representação gráfica e análise canônica:

A análise canônica desta equação pode ser facilmente realizada através do estudo das suas primeiras derivadas:

a) Derivadas primeiras:

$$\frac{\partial CV}{\partial Alt} = -0.41 - 0.06Dia + 0.0072Alt$$
(4.11)

$$\frac{\partial CV}{\partial Dia} = 4,88 - 2,98 Vaz - 0,06 Alt + 3,16 Dia$$
(4.12)

$$\frac{\partial CV}{\partial Vaz} = -12,73 - 2,98Dia + 8,32Vaz$$
(4.13)

Igualando a zero essas derivadas, constrói-se e o seguinte sistema:

-0,06	0,0072	0]	[Dia		0,41	
3,16	-0,06	-2,98	Alt	=	-4,88	(4.14)
2,98	0	8,32	Vaz		12,73	

Portanto,

$$\begin{bmatrix} \text{Dia} \\ \text{Alt} \\ \text{Vaz} \end{bmatrix} = \begin{bmatrix} -0,06 & 0,0072 & 0 \\ 3,16 & -0,06 & -2,98 \\ -2,98 & 0 & 8,32 \end{bmatrix}^{-1} \begin{bmatrix} 0,41 \\ -4,88 \\ 12,73 \end{bmatrix}$$
(4.15)

chegando-se a

$$\begin{bmatrix} \text{Dia} \\ \text{Alt} \\ \text{Vaz} \end{bmatrix} = \begin{bmatrix} 2 \\ 73 \\ 2,2 \end{bmatrix}$$
(4.16)

b) Derivadas segundas:

$$\frac{\partial^2 CV}{\partial A l t^2} = 0,0072; \qquad \frac{\partial^2 CV}{\partial D i a^2} = 3,16; \qquad \frac{\partial^2 CV}{\partial V a z^2} = 8,32; \qquad (4.17)$$

$$\frac{\partial^2 CV}{\partial A lt \partial Dia} = -0,06; \quad \frac{\partial^2 CV}{\partial A lt \partial V az} = 0; \quad \frac{\partial^2 CV}{\partial Dia \partial V az} = -2,98$$
(4.18)

Logo, a matriz de derivadas segundas é:

$$\begin{bmatrix} 0,0072 & -0,06 & 0 \\ -0,06 & 3,16 & -2,98 \\ 0 & -2,98 & 8,32 \end{bmatrix}$$
(4.19)

Como os elementos da diagonal principal (0,0072; 3,16 e 8,32) são todos maiores que zero, a matriz é positiva definida o que indica que o ponto encontrado corresponde ao ponto de mínimo da função.

Os gráficos de contorno da Figura 4.24 apresentam o comportamento da função fixado a um fator por vez. O ponto vermelho indica o ponto de mínimo encontrado.

Figura 4.24 - Gráficos de contorno da função ajustada

O ponto de mínimo que pode ser observado na Figura 4.24, corresponde ao ponto P(2;73;2,2) (Diâmetro do orifício, Altura do recheio e Vazão, respectivamente). A combinação de níveis mais próxima a esse ponto corresponde ao Diâmetro=2; Altura do recheio=75 cm e Vazão=2 m³/h, com um C.V. de 37,84 %. Observa-se que quando o diâmetro do furo é de 5 mm, os C.V. são grandes demais. Um novo experimento seria conveniente para estudar os diâmetros variando entre 2 e 4 mm.

A utilização do distribuidor tipo I juntamente com o recheio de anéis de plástico Pall de 1 in., permitiu reduzir ainda mais o C.V. e, consequentemente, a heterogeneidade na distribuição da amostra. Neste caso, a média do C.V. foi de 42,84%, bastante menor que a obtida sem o uso do recheio que foi de 68.5%. Isto implica uma redução de 25,66% em relação ao último e de 64,7%, em relação ao tubo sem o uso de distribuidor.

4.2.2.2 - Forma da distribuição da massa de água:

Melhor combinação de fatores:

A Figura 4.25 apresenta o gráfico de contorno da superfície de resposta ajustada. A equação obtida foi:

Figura 4.25 - Gráfico de contorno da melhor combinação dos níveis

A equação obtida foi

$$C.V.=3.941+0.06X-0.062X-0.119X^2-0.018XY+0.344Y^2$$
 (4.20)

Verifica-se que existe uma leve tendência a acumulação de água nos tubos da periferia. Porém, a distribuição é notavelmente mais uniforme que a dos experimento anteriores. Estudo das combinações de fatores:

As Figuras 4.26, 4.27, 4.28, 4.29 e 4.30 representam os gráficos de contorno categorizados pela altura do recheio, pelo diâmetro do orifício e pela vazão, sendo que todos os gráficos de contorno indicam, em geral, que as combinações da massa de água são mais homogêneas do que nos experimentos anteriores. Percebe-se que a altura do recheio parece não ter muito efeito na distribuição da massa de água. O uso do diâmetro de 5 mm gerou comportamentos mais heterogêneos e de forma mais irregular do que em diâmetros menores, independentemente da altura do recheio e da vazão. Há indicação de uma leve tendência à acumulação de água nos tubos da periferia.

Altura do Recheio 30 cm

Figura 4.26 - Gráfico de contorno categorizada pela altura do recheio (30 cm), pelo diâmetro do furo e pela vazão para Experimento.2

Altura do Recheio 40 cm

Figura 4.27 - Gráfico de contorno categorizada pela altura do recheio (40,0 cm) pelo diâmetro do furo e pela vazão para a experimento II.2, com recheio.

Altura do Recheio 60 cm

Figura 4.28 - Gráfico de contorno categorizado pela altura do recheio (60,0 cm), diâmetro do orifício e pela vazão para Experimento II.2, com recheio.

Altura do Recheio 75 cm

Figura 4.29 - Gráfico de contorno categorizado pela altura do recheio (75 cm), diâmetro do orificio e pela vazão para Experimento II.2, com recheio

Altura do Recheio 90 cm

Figura 4.30 - Gráfico de contorno categorizado pela altura do recheio (90,0 cm), diâmetro do orifício e pela vazão para o Experimento II.2, com recheio

1.25%

4.3 Análise dos Resultados da Etapa 3: Experimento III, utilizando distribuidor de 1,0 in.

As Tabelas 4.16, 4.17 e 4.18 apresentam os valores de eficiência e de deslocamento, calculados a partir da Equação 3.8 proposta e ajustada pelo software Sigmaplot, para a série de Experimentos III. Comparando-se os valores de eficiência obtidos para o distribuidor de 1 in. operando com recheio (Tabela 4.16 - Experimento III.1.1) com a coluna sem recheio (Tabela 4.15 - Experimento III.1.2), observa-se que no primeiro caso (com distribuidor e com recheio) maiores valores de eficiência globais e de dispersão foram obtidos, sendo que também neste experimento obteve-se melhores valores de r^2 , ($r^2 = 1$ -N : 0,90-0,95), indicando a boa qualidade do ajuste, conforme Tabela 4.19, enquanto se obteve valores de r^2 entre 0,82 - 0,91, para o experimento sem recheio (Tabela 4.20).

A Tabela 4.18 apresenta dados de eficiência e deslocamento para o Experimento III.2, trabalhando-se com distribuidores de 1 in. com diâmetros variáveis (1,0 ; 3,0 e 5,0 mm.), variando-se também a altura do recheio (20, 30 e 40 cm.), distância do distribuidor (base do distribuidor até o topo do recheio : 20, 50 e 80 cm) e vazão (0,1; 0,2 e 0,3 m³/h).

Neste caso, observa-se que a eficiência global aumenta levemente quando o diâmetro do furo aumenta de 1,0 - 3,0 mm. e diminui pouco para o diâmetro de 3,0 - 5,0 mm.

Percebe-se também que quanto maior a distância do distribuidor em relação ao recheio (80 cm entre base do distribuidor e topo do leito), vazões baixas $(0,1 \text{ m}^3/\text{h})$ e diâmetro do orificio pequeno (1 mm.), a eficiência global diminui (82%), demonstrando que o ponto de distribuição influi no espalhamento do líquido, sendo que neste caso parte do escoamento foi para as paredes, além de que esse fator associado à baixa vazão e ao pequeno diâmetro de furo pode proporcionar pontos de estagnação no recheio. Aumentando-se o diâmetro do furo (5 mm.), e mantendo-se as outras condições, obteve-se uma melhor eficiência global (90%), demonstrando, assim, a importância desse fator. Os coeficientes de correlação (r^2), apresentados na Tabela 4.21, variaram entre 0,79 -0,92 para o conjunto de 20 ensaios, denotando que o ajuste pode ser considerado bom.

			Distr. tipo 1,0 in.	Efi	ciência	Deslocamento		
Ensaios	Altura recheio(cm)	vazão (m ³ /h)	Diâmetro furo (mm)	Global	Dispersão	Raio	ângulo (°)	
3.1.1.1	30	0,1	3,0	86,62	91,34	0,28	44	
3.1.1.2	30	0,3	3,0	88,81	88,94	0,21	45	
3.1.1.3	30	0,6	3,0	91,80	81,89	0,11	0	
3.1.1.4	60	0,1	3,0	90,00	91,44	0,37	12	
3.1.1.5	60	0,3	3,0	92,02	88,50	0,23	58	
3.1.1.6	60	0,6	3,0	91,81	88,32	0,22	70	
3.1.1.7	90	0,1	3,0	91,43	91,71	0,53	172	
3.1.1.8	90	0,3	3,0	95,48	86,43	0,20	155	
3.1.1.9	90	0,6	3,0	94,20	88,84	0,075	146	

TABELA 4.16- Valores das eficiências e dos fatores de deslocamento do centro, para os ensaios doExperimento III.1.1,utilizandodistribuidor de 1,0 in., com orifício de 3,0 mm, com recheio

TABELA 4.17 - Valores das eficiências e dos fatores de deslocamento do centro, para os ensaiosdo Experimento III.1.2, utilizandodistribuidor de 1,0 in., com orifício de 3,0 mm, sem recheio

- <u> </u>			Distr. tipo 1,0 in.	Efi	ciência	Deslocamento		
Ensaios	Distância (cm)	vazão (m³/h)	Diâmetro furo (mm)	Global	Dispersão	Raio	ângulo (°)	
3.1.2.10	0,0	0,1	3,0	79,40	94,07	0,56	120	
3.1.2.11	0,0	0,3	3,0	85,37	89,78	0,29	126	
3.1.2.12	0,0	0,6	3,0	87,11	89,07	0,20	118	
3.1.2.4	54,8	0,1	3,0	70,62	92,97	0,32	90	
3.1.2.5	54,8	0,3	3,0	83,69	89,74	0,15	95	
3.1.2.6	54,8	0,6	3,0	86,72	82,73	0,17	107	
3.1.2.7	84,5	0,1	3,0	83,11	87,32	0,22	140	
3.1.2.8	84,5	0,3	3,0	86,57	83,86	0,044	133	
3.1.2.9	84,5	0,6	3,0	87,97	78,16	0,14	118	
3.1.2.1	150,0	0,1	3,0	78,57	90,02	0,31	92	
3.1.2.2	150,0	0,3	3,0	88,70	77,56	0,14	57	
3.1.2.3	150,0	0,6	3,0	86,92	82,35	0,16	105	

TABELA 4.18 - Valores das eficiências e dos fatores de deslocamento do centro, para os ensaios do Experimento III.2, utilizando distribuidor de 1,0 in., com orifício de 1,0 ; 3,0 e 5,0 mm, com recheio

Ensaio		Distância do distribuidor		Distr. tipo	Efic	ciência	Desloc	amento
Plástico	Alt. do Recheio (cm)	(base do distr. até o topo rechejo)	vazão (m ³ /h)	Diâmetro furo (mm)	Global	Dispersão	Raio	ângulo (°)
3.2.1	20	20	0.1	1.0	85.47	86.51	0.076	152
3.2.2	20	20	0,3	1,0	87,61	86,73	0,044	86
3.2.3	20	20	0,1	5,0	86,58	85,40	0,12	110
3.2.4	20	20	0,3	5,0	90,89	80,45	0,12	64
3.2.5	20	80	0,1	1,0	87,87	83,05	0,075	48
3.2.6	20	80	0,3	1,0	89,58	75,21	0,065	73
3.2.7	20	80	0,1	5,0	88,50	85,00	0,16	57
3.2.8	20	80	0,3	5,0	91,43	81,87	0,11	26
3.2.9	30	50	0,2	3,0	91,02	81,71	0,088	101
3.2.10	30	50	0,2	3,0	90,90	79,29	0,086	103
3.2.11	30	50	0,2	3,0	90,50	78,35	0,070	86
3.2.12	30	50	0,2	3,0	90,63	79,27	0,088	84
3.2.13	40	20	0,1	1,0	87 <u>,</u> 59	90,69	0,074	135
3.2.14	40	20	0,3	1,0	88,91	88,92	0,14	105
3.2.15	40	20	0,1	5,0	84,24	0	1,14	136
3.2.16	40	20	0,3	5,0	90,98	79,81	0,062	8
3.2.17	40	80	0,1	1,0	82,11	88,63	0,17	64
3.2.18	40	80	0,3	1,0	85,94	86,63	0,13	59
3.2.19	40	80	0,1	5,0	88,40	86,86	0,14	0
3.2.20	40	80	0,3	5,0	89,22	80,86	0,088	15

Ensaio	Altura	vazão	Diâmetro	а	b	с	d	e	N	(1-N)
	recheio (cm)	(m [*] /h)	furo (mm)						_	r ²
3.1.1.1	30	0,1	3,0	0,1338	0,144511	0,08662	0,5694	0,6032	0,10421	0,896
3.1.1.2	30	0,3	3,0	0,1119	0,122976	0,1106	0,4593	0,4438	0,076253	0,924
3.1.1.3	30	0,6	3,0	0,0820	0,092548	0,1811	-0,0423	0,3343	0,052973	0,947
3.1.1.4	60	0,1	3,0	0,0999	0,118835	0,08562	0,2810	1,086	0,084983	0,915
3.1.1.5	60	0,3	3,0	0,0798	0,100316	0,1150	0,6072	0,3621	0,054435	0,945
3.1.1.6	60	0,6	3,0	0,0819	0,101571	0,1168	0,6151	0,2250	0,066260	0,934
3.1.1.7	90	0,1	3,0	0,0856	0,106647	0,08294	-0,2279	-1,575	0,066082	0,934
3.1.1.8	90	0,3	3,0	0,0452	0,075798	0,1357	0,2493	-0,5447	0,048981	0,951
3.1.1.9	90	0,6	3,0	0,0580	0,08713	0,1116	0,1236	-0,1869	0,054191	0,946

TABELA 4.19 - Parâmetros de ajuste da Eq.(3.8), para o Experimento III.1.1, usando o distribuidor tipo II de 1 in. - Resultados obtidos através do Sigmaplot - COM RECHEIO

TABELA 4.20 - Parâmetros de ajuste da Eq.(3.8), para o Experimento III.1.2, usando o distribuidor tipo II de 1 in. - Resultados obtidos através do Sigmaplot - SEM RECHEIO

Ensaio	Distância (cm)	vazão (m ³ /h)	Diâmetro furo (mm)	a	b	c	d	e	N	(1-N)
3.1.2.1	topo	0.1	3.0	0.2143	0.19443	0.09976	0.9416	-0.03198	0 18736	0.813
3.1.2.2	topo	0,3	3.0	0.1130	0.10189	0.2244	0,3402	0.2260	0.10218	0.898
3.1.2.3	topo	0,6	3,0	0,1308	0,11969	0,1765	0,4740	-0,1223	0,08511	0,915
3.1.2.4	54,8	0,1	3,0	0,2938	0,27124	0,07028	0,9649	0,00035	0,22763	0,772
3.1.2.5	54,8	0,3	3,0	0,1631	0,16124	0,1026	0,4560	-0,04026	0,15090	0,849
3.1.2.6	54,8	0,6	3,0	0,1328	0,12125	0,1727	0,4830	-0,1538	0,11406	0,886
3.1.2.7	84,5	0,1	3,0	0,1689	0,15533	0,1268	0,4112	-0,5059	0,13681	0,863
3.1.2.8	84,5	0,3	3,0	0,1343	0,12589	0,1614	0,09522	-0,09048	0,13904	0,861
3.1.2.9	84,5	0,6	3,0	0,1203	0,10581	0,2184	0,3714	-0,2010	0,09069	0,909
3.1.2.10	base	0,1	3,0	0,2060	0,20365	0,05929	-1,462	-0,8546	0,24076	0,759
3.1.2.11	base	0,3	3,0	0,1463	0,14768	0,1022	-0,7017	-0,5128	0,17878	0,821
3.1.2.12	base	0,6	3,0	0,1289	0,13499	0,1093	-0,5418	-0,2851	0,16955	0,830

TABELA 4.21 - Parâmetros de ajuste da Eq.(3.8), para o Experimento III.1.2, usando o distribuidor tipo II de 1 in.,com diâmetrao de furo de 1,0; 3,0 e 5,0 mm - Resultados obtidos através do Sigmaplot - COM RECHEIO

Ensaio	Alt. do	(base do	vazão	Diâm.	a	b	c	d	e	N	(1-N)
	Recheio (cm)	distr. até o topo recheio)	(m²/h)	furo (mm)							r^2
3.2.1	20	20	0,1	1,0	0,1453	0,13926	0,135	0,103	-0,2022	0,14695	0,853
3.2.2	20	20	0,3	1.0	0,1239	0,12649	0,133	-0,131	0,00826	0,09540	0,905
3.2.3	20	20	0,1	5,0	0,1342	0,12925	0,146	0,327	-0,1244	0,13007	0,870
3.2.4	20	20	0,3	5,0	0,09105	0,09521	0,195	0,318	0,1590	0,08884	0,911
3.2.5	20	80	0,1	1,0	0,1213	0.11647	0,169	0,169	0,1502	0,09752	0,902
3.2.6	20	80	0,3	1,0	0,1042	0,09426	0,248	0,187	0,05749	0,07099	0,929
3.2.7	20	80	0,1	5,0	0,1150	0,11625	0,150	0,388	0,2630	0,11728	0,883
3.2.8	20	80	0,3	5,0	0,08574	0,09444	0,181	0,133	0,2963	0,09629	0,904
3.2.9	30	50	0,2	3,0	0,08979	0,09649	0,183	0,261	-0,0497	0,07639	0,924
3.2.10	30	50	0,2	3,0	0,09101	0,09374	0,207	0,252	-0,0606	0,08609	0,914
3.2.11	30	50	0,2	3,0	0,09498	0,09448	0,216	0,208	0,01342	0,08840	0,912
3.2.12	30	50	0,2	3,0	0,09371	0,09509	0,207	0,262	0,02544	0,08631	0,914
3.2.13	40	20	0,1	1,0	0,1241	0,13734	0,093	0,156	-0,1566	0,10922	0,891
3.2.14	40	20	0,3	1,0	0,1109	0,12293	0,111	0,421	-0,1119	0,07986	0,920
3.2.15	40	20	0,1	5,0	0,1576	0,00587	1,0	2,356	-2,479	0,21181	0,788
3.2.16	40	20	0,3	5,0	0,09021	0.09384	0,202	0,024	0,1841	0,07413	0,926
3.2.17	40	80	0,1	1,0	0,1789	0,16752	0,114	0,450	0,2235	0,11178	0,888
3.2.18	40	80	0,3	1,0	0,1406	0,13645	0,134	0,335	0,1982	0,10401	0,896
3.2.19	40	80	0,1	5,0	0,1160	0,12117	0,131	-0,037	0,4274	0,12001	0,880
3.2.20	40	80	0,3	5,0	0,1078	0,10473	0,191	0,077	0,2544	0,08312	0,917

4.3.1 - Distribuidor do tipo II de 1,0 in.; Coluna com Recheio; Experimento III

4.3.1.1 - Homogeneidade na Distribuição da massa de água

Análise da Variância:

Neste caso, somente foram estudados dois fatores, Altura do recheio de anéis e Vazão. Como o experimento foi realizado sem repetição, a interação entre esses fatores teve que ser usada para determinar a significância desses efeitos principais. Portanto, considerou-se apropriado estudar visualmente o comportamento dessa interação, já que, caso seja importante estar-se-á testando apenas se os efeitos Altura e Vazão são mais significativos do que esta última, e isto poderá dificultar as conclusões do experimento. Merece salientar que o uso de repetições permite contornar este problema.

Pelo gráfico da Figura 4.31, nota-se que a interação poderia ser significativa devido à falta de paralelismo das retas. O C.V. correspondente à vazão de 0,6 m³/h e altura de 30 cm foi muito menor do que o esperado para considerar as retas aproximadamente paralelas. Os resultados deste experimento devem ser considerados com cautela.

Figura 4.31 - Gráfico da Interação Altura do recheio e Vazão

Tentou-se, portanto, o ajuste do modelo:

$$y_{ii} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$
(4. 21)

onde y_{ij} representa a observação obtida na ij-ésima combinação dos níveis dos fatores, μ representa a média geral do experimento, α_i denota o efeito da altura do recheio *i* e β_j denota o efeito da vazão *j*. Por último, o termo ε_{ij} denota o erro aleatório para a ij-ésima observação. Dado que o experimento foi realizado sem repetição, a estimativa da variação do acaso utilizada é a da interação dupla entre esses fatores ($\alpha\beta_{ij}$).

Devido ao baixo número de observações fica difícil a verificação dos pressupostos exigidos pela análise. O gráfico da figura 4.32 apresenta o diagrama de dispersão dos resíduos padronizados em função dos valores estimados pelo modelo, do qual não se percebem problemas com o ajuste.

Figura 4.32 - Diagrama de dispersão dos resíduos padronizados

Considerando os efeitos independentes, tentou-se o ajuste de uma equação de regressão para cada efeito. A análise da variância e as somas de quadrados associadas aos efeitos linear e quadrático de cada equação são apresentadas nas Tabelas 4.22 e 4.23, respectivamente.

Efeito	G.L	s.g.	Q.M	F	prob.
ALT	2	512,77110	256,38555	13,98	0,0157*
VAZAO	2	482,72432	241,36216	13,16	0,0174*
Resíduo	4	73,38173	18,34543		
Total corrigido	8	1.068,87715			

Tabela 4.22 - Análise da variância

Tabela 4.23 - Soma	dos	quadrados
--------------------	-----	-----------

Efeito	G.L	S.Q.	Q.M	F	prob.
altura linear	1	511,912	511,912	27,90	0,0062**
altura quadratic	a 1	0,858	0,858	0,05	0,8393
vazao linear	1	391,389	391,389	21,33	0,0099**
vazao quadratic	a 1	91,334	91,334	4,98	0,0895

** significativos ao nível de 1% de significância

Ajuste das equações:

Verifica-se que apenas os efeitos lineares são significativos (em relação à interação). As retas de regressão obtidas são as seguintes:

C.V.=64,70-0,31Alt	(4.22)
C.V.=56,26-30,1Vaz	(4.23)

Os gráficos das Figuras 4.33 e 4.34 apresentam essas equações.

Figura 4.33 - Reta de regressão ajustada à altura do recheio

Figura 4.34 - Reta de regressão ajustada à vazão

Existe evidência para supor que tanto a vazão como a altura do recheio poderão ser incrementados a fim de minimizar o C.V. da distribuição da massa de água. A média do C.V. para este experimento foi de 46,23% um pouco superior à obtida no caso do distribuidor tipo I (distribuidor de 0,5 in.) com recheio. A melhor combinação dos níveis foi a de vazão igual a $0,3 \text{ m}^3$ /h e altura do recheio de 90 cm, com um C.V. igual a 29,49 %.

4.3.1.2 - Forma na distribuição da massa de água

Melhor combinação dos níveis:

O gráfico da Figura 4.35 apresenta o contorno da superfície ajustada a esta combinação. Verifica-se que existe uma tendência à acumulação de água nos tubos da periferia.

Figura 4.35 - Gráfico de contorno para a melhor combinação dos níveis

A equação ajustada foi:

$$C.V.=3,121+0,039X-0,059Y+0,286X^{2}+0,044XY+0,164Y^{2}$$

$$(4.24)$$

Estudo das combinações de níveis

A Figura 4.36, representa os gráficos de contornos categorizados pela altura e pela vazão, para o distribuidor do tipo II, numa coluna operada com recheio.

Figura 4.36 - Gráficos de contorno categorizados pela altura e pela vazão

Os gráficos de contorno mostram que a distribuição espacial da massa de água tem uma tendência periférica, embora bastante irregular.

Os efeitos da altura e da vazão sobre a distribuição não são bem definidos.

4.3.2 - Distribuidor do tipo II de 1,0 in.; Coluna sem Recheio; Experimento III

4.3.2.1 - Homogeneidade na Distribuição da massa de água

Análise da Variância

Contrariamente ao caso do experimento anterior (com recheio), existiu uma interação muito grande entre a vazão e a distância do distribuidor. Com efeito, pelo gráfico da Figura 4.37 nota-se que a vazão igual a 0,1 m³/h teve um comportamento anormal à medida que se aumenta a distância do distribuidor (talvez a distância igual a 84,5 tenha gerado esse comportamento, pois o C.V. foi bem menor do que esperado na ausência de interação).

Figura 4.37 - Gráfico da interação Distância e Vazão

Tentou-se ajustar o modelo:

$$y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$
(4. 25)

onde y_{ij} representa a observação obtida na ij-ésima combinação dos níveis dos fatores, μ representa a média geral do experimento, α_i denota o efeito da distância do distribuidor *i* e β_j denota o efeito da vazão *j*. Por último, o termo ε_{ij} denota o erro aleatório para a ij-ésima observação. Dado que o experimento foi realizado sem repetição, a estimativa da variação do acaso utilizada é a da interação dupla entre esses fatores ($\alpha\beta_{ij}$).

A análise da variância e das somas de quadrados associadas aos efeitos lineares são apresentadas nas Tabelas 4.24 e 4.25.

Efeito	G.L	s.Q.	Q.M	F	prob.
ALT	3	1.116,9457	372,3152	3,34	0,1027
VAZAO	2	4.037,9924	2.018,9962	17,57	0,0031**
Resíduo	6	689,6353	114,9392		
Total corrigido	11	5.844,5734			

Tabela 4.24 - Análise da variância

** significativos ao nível de 1% de significância

Tabela 4.25 - Soma dos quadrados

Efeito		G.L	s.Q.	Q.M	F	prob.
vazão	linear	1	3.523,7697	3.523,7697	30,66	0,0015**
vazão	quadrática	1	514,2227	514,2227	4,47	0,0788

** significativos ao nível de 1% de significância

Observa-se que o efeito da distância do distribuidor não foi significativo. Porém, detectou-se um efeito linear significativo para a vazão, cuja reta de regressão tem a equação:

C.V.=123,64-7,919Vaz

(4.26)

o que indica que poder-se-ia estudar razões maiores para minimizar o C.V..

Dado que o efeito da interação Vazão x Altura parece ser importante, um novo experimento com repetições deveria ser realizado para compreender melhor o processo.

4.3.2.2 - Distribuição da massa de água

Melhor combinação do níveis:

A melhor combinação foi obtida na posição 0 cm (topo) e vazão $0,6 \text{ m}^3/\text{h}$ e está apresentada no gráfico de contorno da Figura 4.38.

Figura 4.38 - Gráfico de contorno para a melhor combinação dos níveis

A distribuição espacial da massa de água é marcadamente periférica.

Estudo das combinações dos níveis:

A Figura 4.39 apresenta os gráficos de contorno, categorizados pela posição (distância do distribuidor em relação ao módulo de coleta) e pela vazão, em coluna sem recheio, utilizando o distribuidor tipo II, com diâmetro de orifício de 3,0 mm.

Figura 4.39 - Gráficos de contorno categorizados por posição e vazão

Pelos gráficos da Figura 4.39, observa-se que as distribuições são menos uniformes do que nos casos anteriores, e são marcadamente periféricas.

4.3.3 - Distribuidor de 1 in. - Diâmetro de orifícios variáveis - Experimento III.3

Distribuição da massa de água

Análise da Variância

Analisou-se o experimento como um esquema fatorial de tratamentos mais tratamento adicional. Primeiramente, determinou-se a significância do tratamento adicional em relação à estrutura fatorial e depois analisou-se a estrutura fatorial separadamente.

4.3.3.1.- Tratamento adicional em função da estrutura fatorial:

Realizou-se um teste de F para comparar os níveis, e os resultados são apresentados na Tabela 4.46.

Tabela 4.26 - Teste F

Efeito	G.L	S.Q.	Q.M	F	prob.
Adicional vs. Fatorial	1	327,671	327,671	3,55	0,0757
Resíduo	18	1.660,755	92,264		
Total corrigido	19	1.988,426			

Através da Figura 4.40 a seguir, existe evidência de heterogeneidade de variâncias, dada a forma característica de "funil" na dispersão dos resíduos. Porém, a aplicação de uma transformação aos dados (neste caso foi aplicado o logaritmo) não mudou o resultado do teste de F. Por isso, decidiu-se apresentar os dados sem transformação.

Figura 4.40 - Diagrama de dispersão dos resíduos padronizados

Pelo quadro, verifica-se que a diferença entre o C.V. do tratamento adicional e o da estrutura fatorial são significativamente diferentes, porém estão próximos ao 5% empregado usualmente.

4.3.3.2 - Estrutura fatorial

Neste caso, ajustou-se o modelo:

$$\mathbf{y}_{ijkl} = \boldsymbol{\mu} + \boldsymbol{\alpha}_i + \boldsymbol{\beta}_j + \boldsymbol{\gamma}_k + \boldsymbol{\delta}_1 + \boldsymbol{\varepsilon}_{ijkl}$$
(4.27)

onde y_{ijkl} representa a observação obtida na ijkl-ésima combinação dos níveis dos fatores, μ representa a média geral do experimento, α_i denota o efeito da posição do tubo *i*, β_j denota o efeito da vazão *j*, γ_k representa o efeito da altura do recheio *k* e δ_1 representa o diâmetro do orifício. Por último, o termo ε_{ijkl} denota o erro aleatório para a ijk-ésima observação. Dado que o experimento foi realizado sem repetição, a estimativa da variação do acaso utilizada é a da interação entre esses fatores ($\alpha\beta\gamma\delta_{ijkl}$).

O gráfico dos resíduos padronizados da Figura 4.41 permite verificar que não existem problemas com a pressuposição da análise de variância. Porém, foi detectado somente efeito significativo do fator vazão.

Figura 4.41 - Gráfico dos resíduos padronizados para a estrutura fatorial

O quadro da análise da variância é apresentado na Tabela 4.27

Efeito	G.L	S.Q.	Q.M	F	prob.
ALT	1	20,75	20,75	0,32	0,5803
DIS	1	13,96	13,96	0,22	0,6494
DIA	1	15,19	15,19	0,24	0,6354
VAZ	1	870,80	870,80	13,62	0,0036**
Resíduo	11	703,37	63,94		
Total corrigido	15	1.624,09	······································		

Tabela 4.27 - Análise da variância

Com efeito, a média do C.V. para a vazão igual a 0,1 m³/h foi de 77,15% e para a vazão 0,3 m³/h de 62,4%.

Não foram detectados efeitos da altura, da distância do distribuidor e do diâmetro do orifício. Existe efeito da vazão sendo a de 0,3 m³/h a que gerou menor C.V..
4.4 - Análise dos Resultados da Etapa 4 - Experimento 4 - Comparação entre os dois modelos de distribuidores.

Através da Tabela 4.28, observa-se como nos experimentos anteriores que a eficiência global e de dispersão aumenta com o aumento da vazão para ambos os distribuidores, enquanto a altura do recheio exerce pouca influência na eficiência da distribuição, tendo sido um pouco mais significativo para o distribuidor de 1in.(89% de eficiência para vazão de 0,3 m³/h, altura de recheio de 30 cm, contra 93% para vazão de 0,3 m³/h, altura de recheio de 100 cm. por exemplo).

Percebe-se, ainda, que a eficiência global se manteve estável acima de 75 cm de recheio para os dois casos, e que os melhores valores de eficiência global e de dispersão foram obtidos para o distribuidor de 0,5 in., com mais orifícios do que o de 1 in.

A Tabela 4.29 fornece valores de r^2 (variando de 0,90 a 0,95), demonstrando a ótima qualidade do ajuste.

TABELA 4.28 - Valores das eficiências e dos fatores de deslocamento do centro, para osensaios utilizando 2 tiposde distribuidores (de 0,5 e 1,0 in.), com orifício de 3,0 mm,comrecheio

				Efic	iência	Deslo	camento
Ensaio	Alt. Rechein (cm)	Distr tino	V97ão (m ³ /b)	Glabal	Disnersão	Rain	ângulo (°)
4 1	30.0	dist 0 5"(furo: 3mm)	03	91.52	80.12	0.26	25
4.2	30.0		03	92.46	80.20	0.105	33
4.3	30.0		0,5	92.42	74 94	0.031	
4.0	30.0		0,5	92.66	75.76	0,098	11
45	30.0		0,5	94.86	85.57	0.058	84
4.6	30,0		0,7	94 64	82.05	0.087	10
4.0	30.0	dist 1 0"(furo: 3mm)	0,7	89.83	76 34	0.07	111
4.8	30.0	dist. (10 (1010, 5100)	0,3	89.20	77.80	0.02	6
4.0	30,0		0,5	90.23	79.30	0,013	38
4 10	30.0		0,5	91.0	76.91	0.015	148
4 11	30.0		0,5	90.20	70,97	0.021	03
4 12	30.0	· · · ·	0,7	92.41	87.13	0.021	146
4 13	50.0	dist 0 5"(furo: 3mm)	0,7	87.61	66 72	0.19	108
4 14	50,0		0,3	89.68	70.78	0.12	122
4 15	50,0		0,5	07,03	82.55	0.17	122
4 16	50.0		0,5	91.07	74 56	0,17	108
4.17	50,0		0,5	94.76	85.07	0.12	1/18
4.18	50.0	······	0,7	03.68	83.56	0,22	176
4 19	50,0	dist 1 0"(furo: 3mm)	0,7	86.48	85,50	0,17	53
4.19	50,0		0,3	87.56	80,74	0.20	38
4.20	50,0	· · · · ·	0,5	89.75	85,00	0,20	40
4.21	50,0		0,5	80.72	80.70	0.13	40
4.23	50,0		0,3	90.87	84 75	0,15	37
4.74	50,0		0,7	90.54	88.52	0,10	40
4 25	75.0	dist 0 5"(furo: 3mm)	0,7	91.25	76.07	0.19	118
4 76	75.0	ust.0,5 (late, 5mm)	0,3	91.25	76.48	0,12	125
4.20	75.0		0,5	94 20	84 53	0,19	140
4.28	75.0		0,5	93 32	80.61	0.20	137
4.29	75.0	·····	0.7	94,79	90.32	0.39	144
4.30	75.0		0.7	95.97	94 32	0.30	146
4.31	75.0	dist.1.0"(furo: 3mm)	0.3	91.17	80.22	0.071	119
4.32	75,0	<u> </u>	0.3	92,44	79.10	0.073	117
4.33	75.0		0.5	93.81	76.74	0.055	130
4.34	75,0	·····	0.5	94.04	73,47	0.046	147
4.35	75,0		0.7	94.36	75,85	0.042	180
4.36	75.0		0.7	94.88	75.19	0.085	129
4.37	100,0	dist.0,5"(furo: 3mm)	0.3	91,44	71.65	0.18	177
4.38	100,0		0,3	92,17	75,81	0,22	170
4.39	100,0		0,5	94,00	83,53	0,30	170
4.40	100,0		0,5	93,60	80.06	0,22	172
4.41	100,0		0,7	95,65	87,93	0,46	174
4.42	100,0	· · · ·	0,7	95,60	87,86	0,30	154
4.43	100,0	dist.1,0"(furo: 3mm)	0,3	92,79	77,73	0,094	26
4.44	100,0		0,3	93,02	76,38	0,107	30
4.45	100,0	· · · · · · · · · · · · · · · · · · ·	0,5	92,95	78,10	0,084	64
4.46	100,0		0,5	93,43	77,03	0,079	43
4.47	100,0		0,7	94,26	78,31	0,07	45
4.48	100,0		0,7	94,05	82,4	0,156	34

Tabela 4.29 - Parâmetros de ajuste para o Experimento IV, utilizando distribuidor I e II, com orifícios de 3,0 mm.

Ensaio	Alt. do	Distr.	a	b	c	d	e	N	(1-N)
	Recheio	tipo							د ا
41	<u>(cm)</u> 30.0	r r	0.08478	0.004107	0.1088	-0.3142	0 7045	0.0960633	<u> </u>
4.2	30.0		0.07540	0.004107	0,1980	-0,3142	0.2643	0.102156	0,903
4.3	30.0	Î	0.07575	0.012839	0.2506	-0.000277	0.09252	0.0777317	0.922
4.4	30.0	Î	0.07334	0.013335	0.2424	0.06120	0.2881	0.0926123	0.907
4.5	30.0	Ī	0.05141	0.015914	0.1443	-0.1742	0.01773	0.0929971	0.907
4.6	30,0	Ī	0,05364	0.017791	0.1795	0.03987	0.2569	0.0846635	0.915
4.7	30,0	II	0.1017	0.095008	0.2366	0.05731	-0.02123	0.0841504	0.916
4.8	30,0	II	0.1080	0,100011	0.2221	-0,000084	0.02982	0.0852709	0.915
4.9	30,0	П	0,09770	0,097411	0,2070	0,02566	0,03064	0,0864715	0,913
4.10	30,0	П	0,09004	0,090417	0,2309	0,01835	-0,02546	0,0758961	0,924
4.11	30,0	П	0,09708	0,098063	0,2004	-0,06264	-0,003552	0,0890822	0,911
4.12	30,0	Π	0,07585	0,092131	0,1587	-0,1446	-0,2080	0,0980822	0,902
4.13	50,0	I	0,1239	0,000890	0,3328	-0,5432	-0,1787	0,103772	0,896
4.14	50,0	I	0,1032	0,005522	0,2922	-0,5981	-0,3671	0,0940336	0,906
4.15	50,0	Ι	0,06971	0,008677	0,1745	-0,3973	-0,3216	0,0859151	0,914
4.16	50,0	1	0,08930	0,007391	0,2544	-0,5405	-0,1817	0,0921784	0,908
4.17	50,0	I	0,05243	0,016257	0,1493	-0,3471	-0,5626	0,0690815	0,931
4.18	50,0	1	0,06318	0,011494	0,1644	-0,4536	-0,3347	0,0918457	0,908
4.19	50,0	II	0,1352	0,132696	0,1326	0,3907	0,3097	0,0869602	0,913
4.20	50,0	II	0,1244	0,131821	0,1094	0,3571	0,4716	0,0875806	0,912
4.21	50,0	II	0,1025	0,111491	0,1384	0,1898	0,2302	0,0696601	0,930
4.22	50,0	II	0,1028	0,118334	0,1071	0,2820	0,2838	0,0894112	0,911
4.23	50,0	<u>I</u> I	0,09131	0,102111	0,1525	0,1676	0,2405	0,0719381	0,928
4.24	50,0	II	0,09464	0,111192	0,1148	0,2304	0,2498	0,0752084	0,925
4.25	75,0	1	0,08745	0,006702	0,2393	-0,4895	-0,2715	0,0897069	0,910
4.26	75,0	1	0,08735	0,006357	0,2352	-0,3515	-0,2434	0,0982785	0,902
4.27	75,0	I	0,05802	0,013358	0,1547	-0,3539	-0,4358	0,0708982	0,929
4.28	75,0	I	0,06676	0,012350	0,1939	-0,4379	-0,4418	0,0860684	0,914
4.29	75,0	I	0,05214	0,011917	0,09675	-0,6844	-0,9467	0,078559	0,921
4.30	75,0	I	0,04033	0,015170	0,05679	-0,5176	-0,7452	0,0835631	0,916
4.31	75,0	<u>II</u>	0,08827	0,093573	0,1978	0,1865	-0,1022	0,0563064	0,944
4.32	75,0	II	0,07560	0,085786	0,2090	0,1950	-0,1013	0,0514483	0,948
4.33	75,0	II	0,06192	0,076932	0,2326	0,1257	-0,1067	0,0499874	0,950
4.34	75,0	II	0,05957	0,073396	0,2653	0,07281	-0,1168	0,0456105	0,954
4.35	75,0	<u>[]</u>	0,05642	0,073747	0,2415	-0,01862	-0,1261	0,0472075	0,953
4.36	75,0	<u> </u>	0,05123	0,070796	0,2481	-0,1967	-0,1612	0,0518949	0,948
4.37	100,0		0,08556	0.011865	0,2835	0,1408	-0,5394	0,0698299	0,930
4.38	100,0		0,07833	0,011665	0,2419	0,1408	-0,6496	0,0820067	0,918
4.39	100,0		0,06010	0,013626	0,1647	0,1075	-0,8871	0,0798317	0,920
4.40	100,0	1	0,06412	0,014419	0,1994	0,09026	-0,6535	0,067/115	0,932
4.41	100,0		0,04350	0,020522	0,1207	0,001267	+1,372	0,0666936	0,933
4.42	100,0		0.07214	0,020443	0,1214	0,3914	-0,8116	0.0525021	0,940
4,43	100,0		0.07214	0,082309	0,2227	-0,1230	0.2331	0.0527097	0,947
4.44	100,0		0,00983	0,079824	0,2302	-0,1628	0,2778	0,052/98/	0.947
4.43	100,0	<u>11</u> Tr	0.07033	0.079524	0,2190	-0,2279	0,1093	0.051010	0,930
4.40	100,0	Ll IT	0.05742	0,075910	0,2297	-0,1039	0.1496	0,031019	0.949
4.4/	100,0		0.05042	0,073810	0.1760	-0,1438	0.2870	0.04600	0.933
4.40	U,U	<u> </u>	0,03940	0,000371		-0,2042	0,3870	0,04090	0,933

4.4.1- Análise da Variância

Tentou-se o ajuste do seguinte modelo:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk} + \varepsilon_{ijk}$$
(4.28)

onde y_{ijk} representa a observação obtida na ijk-ésima combinação dos níveis dos fatores, μ representa a média geral do experimento, α_i denota o efeito da altura do recheio *i*, β_j denota o efeito do tipo de distribuidor *j* e γ_k representa o efeito da vazão *k*. Os termos $\alpha\beta_{ij}$; $\alpha\gamma_{ik} e\beta\gamma_{jk}$ denotam os efeitos das respectivas interações. Por último, o termo ε_{ijk} denota o erro aleatório para a ijk-ésima observação.

Na verificação dos pressupostos da análise da variância, os testes indicaram heterogeneidade de variâncias e a transformação logaritmo foi apropriada para estabilizálas. Porém, os resultados não mudaram com a aplicação da transformação, portanto, a Tabela 4.30 apresenta os dados originais. A interação tripla foi eliminada do modelo, pois foi não significativa.

Causa de Variação	G.L.	Soma de	Quadrado	F	prob.
		Quadrados	Médio		
Altura do Recheio	3	2264.9111	754.9704		
Vazão	2	2048.6740	1024.3370		
Altura x Vazão	6	194.9645	32.4941	2.58	0.0390
Tipo de Distrib.	1	31.9831	31.9831		
Altura x Distrib.	3	469.0219	156.3406	12.41	0.0001
Vazão x Distrib.	2	199.4913	99.7456	7.92	0.0017
Resíduo	30	377.9699	12.5990		
Total corrigido	47	5587.0158	<u></u>		

Tabela 4.30 - Análise da variância

Foi detectada evidência significativa de todas as interações duplas, portanto, não faz sentido estudar somente os efeitos principais. Foi realizado um gráfico das médias

das combinações de tratamentos, para visualizar o comportamento dos resultados obtidos. Ele apresenta-se na Figura 4.42

Figura 4.42 - Gráfico das médias segundo vazão, altura do recheio e tipo de distribuidor

Interpretação:

No eixo Y, apresenta-se o Coeficiente de Variação e, no eixo X, altura do recheio em cm, agrupados em três classes segundo a vazão. À primeira vista, percebe-se que à medida que a vazão aumenta, diminui o C.V (nos três gráficos, o C.V. diminui de esquerda para direita), nos dois tipos de distribuidores. Também, à medida que a altura do recheio aumenta, o C.V. também diminui (em cada gráfico, as linhas são decrescentes). Este comportamento não era o esperado, pois, em função dos resultados anteriores, os valores a se obter deveriam ser menores, já que se pensava estar na região do mínimo da função que exprime a uniformidade na distribuição da massa de água. Visualmente, confere-se que o C.V. mínimo deverá achar-se no nível 0,7 de vazão e no nível 100 da altura do recheio, mas, parece existir evidência de que maiores alturas do recheio e vazões, permitiriam atingir o mínimo da função.

4.4.2.- Comparação dos Distribuidores

Dado que o fator Tipo de Distribuidor é uma variável qualitativa com dois níveis, estudou-se o seu comportamento através da técnica dos contrastes ortogonais, que seria uma modificação da técnica dos polinômios ortogonais, para o caso de níveis qualitativos.

Dado que foi detectada interação entre Altura do recheio e Tipo de distribuidor e Vazão e Tipo de distribuidor, os distribuidores foram comparados estudando-os dentro de cada nível dos outros fatores. As Tabelas 4.31 e 4.32 apresentam essas comparações:

Tabela 4.31 - Comparações dentro dos níveis de Altura do recheio

Contraste	GL	Soma de Q.	Quad. Médio	F	Prob.
TipoI -TipoII(30cm)	1	205.79923	205.79923	16.33	0.0003
TipoI -TipoII(50cm)	1	14.16378	14.16378	1.12	
0.2975ns					
TipoI -TipoII(75cm)	1	240.11771	240.11771	19.06	0.0001
TipoI -TipoII(100cm)	1	40.92422	40.92422	3.25	
0.0816ns					

A Figura 4.43 apresenta essas comparações.

Figura 4.43 - Comparação dos distribuidores em cada nível de altura do recheio

Interpretação

O fato de que, na altura do recheio de 30 cm, o melhor distribuidor (com C.V. menor), tenha sido o tipo I (0,5 in.), é, práticamente o responsável pela significância da interação: altura x distribuidor. Nota-se, porém, que o distribuidor tipo II (1,0 in.) apresentou menor C.V. em todos os outros níveis de altura do recheio, mas, somente na altura de recheio de 75 cm essa diferença foi significativa a 5%. O distribuidor tipo II parece se estabilizar a partir dos 75 cm, enquanto que o tipo I a variância continua diminuindo. Portanto, existe uma fraca evidência de que o distribuidor tipo II apresenta C.V. menor quando comparado com o tipo I.

Tabe	ela 4	.32 -	Comparação	dentro	dos	níveis	de	Vazão
------	-------	-------	------------	--------	-----	--------	----	-------

Contraste	GL	Soma de Q.	Quad. Médio	F	Prob.
TipoI -TipoII(0.3m ³)	1	179.66739	179.66739	14.26	0.0007**
TipoI -TipoII(0.5m ³)	1	8.73001	8.73001	0.69	0.4118ns
TipoI -TipoII(0.7m ³)	1	43.07693	43.07693	3.42	0.0743ns

A Figura 4.44, apresenta as comparações em cada nível de vazão:

Figura 4.44 - Comparação dos distribuidores em cada nível de vazão

Os distribuidores diferem significativamente somente na vazão de $0.3 \text{ m}^3/\text{h}$, enquanto que para as outras isso não acontece. Em função dos contrastes e do gráfico, parece não existir diferença importante entre os dois tipos de distribuidores, já que, na vazão $0.3 \text{ m}^3/\text{h}$ o tipo II é melhor, na vazão de $0.5 \text{ m}^3/\text{h}$, os dois tipos não se diferenciam e, na vazão de $07 \text{ m}^3/\text{h}$, parece existir uma pequena vantagem em favor do distribuidor tipo I.

Não parece existir muita diferença entre os dois tipos de distribuidores, pelo menos dentro dos níveis dos fatores considerados. Nota-se, no entanto uma leve evidência a favor do distribuidor tipo II, já que, pelos gráficos, os C.V. obtidos em cada combinação de fatores foram menores que os obtidos com o tipo I. Porém, essas diferenças não são sempre significativas a nível de 5%.

4.4.3 - Estudo da Altura do Recheio e da Vazão para cada distribuidor

O efeito da interação Altura e Vazão foi significativo a nível de 5%. Para estudar o comportamento desses dois fatores, realizou-se um estudo individual por distribuidor, já que os resultados apresentados nas Tabelas 4.33 e 4.34, são melhor interpretados dessa maneira.

		t	,		
Contraste	GL	Soma de Q.	Quad. Médìo	F	
Prob.					
Altura Linear	1	379.2931	379.2931	16.87	
Altura Quadra	1	143.6786	143.6786	6.3	
Altura Cúbica	1	103.5640	103.5640	4.61	0.0530
Vazão Linear	1	1732.4140	1732.4140	77.06	0.0001
Vazão Quadra	1	26.0044	26.0044	1.16	0.3033

Tabela 4.24 - Distribuidor Tipo I (0,5 in.) - Análise da variância

Foi detectado efeito cúbico da altura e somente efeito linear da vazão. A equação ajustada para o distribuidor tipo I, foi:

$$C.V. = 23,61 + 3,12Alt - 0,052 Alt^2 + 0,00024 Alt^3 - 52,03Vazão.$$
 (4.29)

Tabela 4.34 - Distribuidor Tipo II (1,0in.) - Análise da variância

Contraste	GL	Soma de Q.	Quad. Médi	.0 F	Prob.
Altura Linear	1	1837.3193	1837.3193	290.71	
Altura Quadra	1	52,5938	52.5938	8.32	
Altura Cúbica	1	217.4843	217.4843	34.41	0.0001
Vazão Linear	1	468.9377	468.9377	74.20	0.0001
Vazão Quadra	1	20.8092	20.8092	3.29	0.0947

Foi detectado efeito cúbico da altura e somente efeito linear da vazão. A equação ajustada para o distribuidor tipo II foi:

$$C.V. = 37,02 + 2,66Alt - 0,055 Alt^2 + 0,0003 Alt^3 - 27,1Vazão.$$
 (4. 30)

As equações são muito parecidas, já que não só os efeitos cúbico da altura e linear de vazão aparecem nas duas, mas os sinais de todos os efeitos são iguais. O efeito linear da vazão foi bem maior no distribuidor tipo I do que no tipo II. A existência de efeitos cúbicos, dificulta a interpretação, portanto, foram realizados os gráficos de superfície de resposta para cada distribuidor. Eles apresentam-se na Figura 4.45

Figura 1.45 - Superfícies de resposta segundo tipo de distribuidor

A escala de cores utilizada é a mesma daquela utilizada nas outras discussões. Nota-se que o mínimo absoluto das duas funções encontra-se no ponto:

Altura do recheio: 100 cm; Vazão: 0,7 m³/h.

No caso do distribuidor tipo I, o C.V. mínimo atingido foi de 34,31%, média aritmética das duas repetições. No caso do distribuidor tipo II, o C.V. mínimo foi de 35,71%. Esto indica que um novo experimento, com maiores alturas do recheio e vazões, poderia ser realizado a fim de atingir valores menores do C.V.

Repetindo o já expressado, era esperado que este novo experimento fornecesse valores menores do C.V. e permitisse que um ótimo fosse determinado. Porém, isso não ocorreu, fato que é indicador da existência de algum fator não considerado que afetou os resultados dos dois experimentos, provavelmente o efeito do tempo de realização dos experimentos.

4.4.4 - Distribuição espacial da massa de água:

O estudo da distribuição da massa de água apresenta-se para as melhores combinações dos fatores.

Tipo I : A Figura 4.46 apresenta a distribuição espacial da massa de água nos 21 tubos utilizados:

Figura 4.46 - Distribuição da massa de água para o distribuidor tipo I.

Pela Figura 4.46, nota-se que a distribuição espacial tende a ser um pouco central, com uma tendência à acumulação no lado superior (tubos 1, 2 e 3). Em nenhum caso, foi registrada uma proporção maior a 10%, o que indica que essa distribuição é bastante homogênea.

Tipo II: A Figura 4.47 apresenta a distribuição espacial da massa de água

Figura 4.47 - Distribuição da massa de água para o distribuidor tipo Seader.

Através da Figura 4.47, observa-se que a distribuição espacial tende a ser um pouco periférica. Este resultado confirma o obtido na primeira série de experimentos. Em nenhum caso foi registrada um proporção maior do que 10%, indicando, neste caso também, uma distribuição homogênea da massa de água.

Analisando-se os dois tipos de distribuidores, observa-se que com o diâmetro do orificio do distribuidor fixado em 3mm, tanto a vazão como a altura do recheio poderiam ser aumentadas a fim de obter distribuições de água mais homogêneas. Não parece existir grandes diferenças entre os distribuidores tipo I e II, pelo menos nos níveis dos fatores estudados. Existiria evidência para modificar o delineamento experimental utilizado, já que algum fator desconhecido influencia os resultados dos experimentos.

5 - CONCLUSÕES E SUGESTÕES

O trabalho realizado em uma coluna de 400 mm de diâmetro, com anéis de plástico de Pall de 1,0 polegada, permite concluir que:

a) Utilizando-se apenas um tubo para alimentação de líquido no topo da coluna (Experimento I), constatou-se uma distribuição insuficiente de água, para baixas vazões $(1m^3/h)$, pequenas alturas de recheio (30 cm) e ponto de alimentação deslocado do eixo da coluna (7,5 e 15 cm de distância radial), conforme resultados de eficiências e dos fatores de deslocamento listados na Tabela 4.1 e pelos gráficos de contorno das Figuras 4.10, 4.11 e 4.12. Melhores distribuições (eficiência global de 90,7% e eficiência de dispersão de 55,2%) foram obtidas, quando se trabalhou com maiores alturas de recheio (75 cm), vazão de 2,5 m³/h e ponto de alimentação central.

b) Na 2ª etapa, utilizando-se um dispositivo distribuidor do tipo I de 0,5 in. com diâmetros de orifícios variáveis (1,0; 2,0 e 5,0 mm), em uma coluna sem recheio, obteve-se os melhores valores de eficiências globais (Tabela 4.6) para o distribuidor com furo de 2,0 mm (confirmado pela análise estatística do coeficiente de variação em função do diâmetro do furo e vazão - Figuras 4.16 e 4.17), enquanto os piores valores de eficiências (global e dispersão) foram apresentados pelo dispositivo de 5,0 mm de diâmetro de orifício. O estudo do comportamento da função representada pela equação 4.7, através de gráficos de contorno da Figura 4.14 e superfície de resposta da Figura 4.15, apontam o diâmetro de furo do distribuidor de 3 mm, como o mínimo da função (ideal), enquanto o de 5 mm apresenta os maiores valores de coeficiente de variação, confirmando então a análise efetuada anteriormente através das eficiências listadas na Tabela 4.6. A distância do distribuidor em relação aos tubos coletores nesse caso não afetou sensivelmente os valores de eficiência de distribuição do líquido, sendo que os melhores valores estão relacionados ao posicionamento do distribuidor no topo (0 cm) e a 54.8 cm em relação ao espelho superior (quando se trabalha sem recheio, quanto maior a distância do distribuidor em relação ao ponto de coleta, melhor o espalhamento de líquido). Esta análise é confirmada pelo gráfico de contorno da Figura 4.14, onde se

observa que os menores valores de coeficiente de variação (C.V.) encontram-se para posição do distribuidor entre 0,0 (topo) a 50 cm.

Comparando-se os resultados obtidos nesses ensaios (coluna sem recheio) com o Experimento II.2, **com recheio** (Tabela 4.7), estes últimos apresentaram melhores resultados quanto a eficiência global e de dispersão, sendo que os melhores resultados obtidos corresponde ao distribuidor com diâmetro de furo de 2 mm e altura do recheio de 75 cm. Através do gráfico de contorno da função ajustada para este experimento, Figura 4.24, pode-se visualizar resultado com análise semelhante. Portanto pode-se concluir que o distribuidor de líquido exerce um papel muito importante na qualidade da distribuição (homogeneidade) e grau de espalhamento do líquido numa coluna com recheio.

c) Utilizando-se o distribuidor de líquido do tipo II de 1,0 in. em coluna com recheio na etapa 3, observou-se também que a eficiência global e de dispersão aumenta quando o diâmetro do furo aumenta de 1,0 para 2,0 mm e diminui para o diâmetro de 5,0 mm, confirmando os resultados de análises obtidos no Experimento II com o distribuidor tipo I. No Experimento III. quando se trabalha em coluna com recheio, percebe-se que quanto maior a distância do distribuidor em relação ao recheio (distribuidor localizado a 80,0 cm em relação ao topo do recheio), baixas vazões (0,1 m³/h), pequeno diâmetro do orifício (1,0 mm) e altura do recheio de 40 cm, a eficiência global (Ef_G) diminui (82%), parte do escoamento foi direcionado para as paredes e observou-se pontos de estagnação no recheio associado a baixa vazão. Mantendo-se a mesmas condições e variando o orifício para 5 mm, a Ef_G melhora para 90%.

Comparando-se os valores de eficiência obtidos com esse distribuidor (tipo II) com o tipo I, observa-se que os melhores valores de distribuição foram obtidos com o tipo I, em função da faixa de vazões trabalhadas terem sidas maiores para o tipo I (1 - $2,5 \text{ m}^3/\text{h}$) contra (0,1 - 0,3 m³/h com o tipo II).

d) Através do Experimento IV quando se compara os dois modelos de distribuidores, observa-se como nos experimentos anteriores que a eficiência global e de dispersão (Tabela 4.28) aumenta com o aumento da vazão para ambos os distribuidores. A altura do recheio exerce pouca influência na eficiência da distribuição, tendo sido um pouco mais significativo para o distribuidor de 1in., tipo II (Altura de recheio de 30 cm e vazão de 0,3 m³/h : Eficiência de 89%, contra 93% para altura de recheio de 100 cm e vazão de 0,3 m³/h, por exemplo).

A eficiência global manteve-se estável acima de 75 cm de recheio para os dois casos, e os melhores valores de eficiência global e de dispersão foram obtidos para o distribuidor do tipo I de 0,5 in., com mais orifícios do que o tipo II de 1 in.

A Tabela 4.29 fornece valores de r^2 (variando de 0,90 a 0,95), demonstrando a ótima qualidade do ajuste.

 e) A literatura fornece como base para distribuidores 100 pontos de distribuição/m² de seção transversal de coluna, que se constitui numa boa indicação para a construção de um distribuidor, no entanto deve-se levar em consideração:

- a influência do diâmetro dos pontos, sendo que para as condições estudadas, o melhor diâmetro foi o de 3 mm.
- A altura do distribuidor
- Altura do recheio
- Localização do ponto de alimentação
- vazão
- natureza do fluido

f) O modelo matemático apresentado - Equação 3.8 e as equações decorrentes da proposta de caracterização da distribuição de líquido, Equações 3.9 a 3.12, apesar da sua simplicidade, mostraram-se bastante úteis na determinação das eficiências de distribuição dos ensaios efetuados, quando comparados com as análises efetuadas pelo C.V.

g) Verificou-se, a partir dos resultados apresentados anteriormente, que nas condições experimentais empregadas, o recheio sem um distribuidor não foi capaz de distribuir eficientemente o líquido, o que é verificado pelos baixos valores de eficiência e de deslocamento do centro listados nas Tabela 4.1. A homogeneidade dessa distribuição deve ser obtida empregando-se, necessariamente, os distribuidores e redistribuidores de líquido específicos para esse fim, no topo e entre as unidades de recheio, além de pratos distribuidores. Essa hipótese é confirmada a partir da observação dos resultados exibidos nos ensaios em que foram utilizados dispositivos distribuidores (vide Tabela 4.6-com distribuidor, sem recheio e Tabela 4.7-com distribuidor, com recheio) que por sua vez, foi responsável por uma melhora das eficiências de distribuição nas condições analisadas.

h) Portanto, deve-se dar uma atenção especial ao projeto de um distribuidor,
 dado que ele apresenta um efeito marcante na operação e na eficiência de uma coluna
 de recheio. Uma possível abordagem para o projeto encontra-se nos trabalhos de Metcalf
 e Otis (1982).

Como sugestão para a continuidade do trabalho destacam-se:

 o projeto de um distribuidor de líquidos, considerando-se o efeito da perda de carga no projeto dos ramos laterais do distribuidor, e a razão diâmetro do ramo e diâmetro do orifício.

 outros elementos de recheio de dimensões diferentes (5/8" - 1") de anéis de Pall plásticos poderão vir a ser empregados de maneira a se atingir uma relação de diâmetro da coluna e o diâmetro do recheio, próxima daquela encontrada nas colunas comerciais e recheios estruturados.

• influência : da vazão de gás na distribuição de líquido e da tensão superficial.

REFERÊNCIAS BIBLIOGRAFICAS:

- Albright, M.A. Packed Tower Distributors Tested. Hydrocarbon Processing, 1984, Spt, 173.
- 2. Bemer,G.G.,Zuiderweg,F.J. Radial Liquid Spread and Maldistribution in Packed Columns under Different Wetting Conditions. Chem. Eng. Sci.1978,33,1637.
- Bonilla, J. A. Don't neglect liquid distributors. Chem. Eng. Prog. 1993, Vol. 89, pp 47-61.
- 4. Chen, G.K. Packed column internals. Chemical Engineering 1984, pp 40-51.
- 5. Furzer, I.A. Liquid dispertion in packed columns. Chemical Engineering Science, 1984, Vol. 33, pp. 1283-1300.
- 6. Gunn,D.J. Liquid distribution and redistribution in packed columns. 1978, Chemical Engineering Science, Vol. 33, pp. 1211-1219.
- Gunn, D.J.; Al-Saffar, H.B.S. Liquid distribution in packed columns. Chem. Engng.Sci. 1993, Vol 48, pp 3845-3854.
- Haure, P.M.; Hudgins, R.R.; Silveston, P.L.Investigation of SO₂ oxidation rates in trickle-bed reactors operating at low liquid flow rates. The Can. J.of Chem. Engng. 1992, Vol. 70, pp 600-603.
- 9. Hoek, P.J.et.al. Small scale and large scale liquid maldistribution in packed columns, 1986, Chemical Engineering Reserch Design, Vol. 64, pp.431-449.
- Killat, G.R.; Rey, T.D. Properly assess maldistribution in packed towers. Chem. Eng. Prog. 1996, Vol. 92, pp 69-73
- 11. Kister, H.Z. Distillation design; McGraw-Hill Inc., New York, 1992.
- 12. Klemas, L.;Bonilla, J.A .Accurately assess packed-column efficiency. Chem. Eng. Prog. 1995, Vol 91, pp 27-44.
- 13. Kouri, R.J.;Sohlo, J. Liquid and gas flow patterns in random packing. Chem. Engng. J. 1996, Vol. 61, pp 95-105.
- 14. Leva, M. Tower packing and packed tower design; The United States Stoneware Company, Akron, 1953.
- Macintyre, A J. Bombas e Instalações de Bombeamento, 2^a ed. Editora Guanabara, Rio de Janeiro, 1987.
- 16. McCabe, W.L.; Smith, J.C. Unit operations of Chemical Engineering, 1978.

- 17. Metcalf & Eddy, Inc. Wastewater Engineering: Treatment, Disposal and Reuse, ed. McGrawHill, Inc., New York. 1991,1334 p.
- Metzinger, J.; Hasokowati, W.; Hudgins, R.R.; Silveston, P.L.; Gangwal, S. Application of a periodically operated trickle bed to sulfur removal from stack gas. Chem. Engng. Sci. 1992, Vol.47, pp 3723-3727.
- Otis, R.J. Pressure Distribution Design for Septic Tank Systems. Journal of Environmental Engineering Division. 1982. 108,123.
- Pizzo, S.M.; Moraes Jr., D.; Fernandes, F. A N.; Kobayasi, M.S.; Pazini, R.J. Analysis of Liquid Distribution in a Packed Column on a Pilot Scale. Ind. Eng. Chem. Res. 1998, Vol.37, pp 2844 - 2849.
- 21. Treybal, R.E. Mass-transfer operations; McGraw-Hill Inc., New York, 1980.
- Veer, K.J.R., Klooster, H.W., Drinkenburg, A.A. H.(1979). The influence of the initial liquid distribution on the efficiency of a packed column. Chemical Engng. Sci., Vol.35, pp 759-761.
- 23. Zanetti,R.,Short,H.,Hope,A Boosting tower performance by more than a trickle; Chemical Engineering, Vol. 92, n° 11, pp.22-27.
- Zuiderweg, F.J.; Kunesh, J.G.; King, D.W. A model for the calculation of the effect of maldistribution on the efficiency of a packed column. Chem. Engng. Res. Des. 1993, Vol. 71, pp 38-44.

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	127,51	0,02231228
2	103,25	0,01806716
3	71,91	0,01258314
4	15,50	0,00271226
5	567,31	0,09927049
6	609,01	0,10656735
7	234,19	0,04097963
8	195,52	0,03421298
9	46,75	0,00818053
10	505,45	0,08844594
11	1094,73	0,19156084
12	542,08	0,09485563
13	92,75	0,01622982
14	38,60	0,00675440
15	197,57	0,03457170
16	533,50	0,09335426
17	327,11	0,05723920
18	268,58	0,04699735
19	5,850	0,00102366
20	18,760	0,00328271
21	118,86	0,02079866

Tabela 1 - Experimento 1.1

Tabela 2 - Experimento 1.2

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	80,68	0,01282532
2	144,88	0,02303090
3	281,69	0,04477894
4	256,22	0,04073010
5	461,65	0,07338634
6	798,38	0,12691474
7	210,13	0,03340338
8	28,45	0,00452256
9	186,8	0,02969472
10	746,88	0,11872802
11	1032,75	0,16417144
12	374,04	0,05945939
13	18,78	0,00298537
14	137,14	0,02180050
15	265,49	0,04220370
16	765,59	0,12170226
17	262,13	0,04166958
18	31,8	0,0050551
19	96,28	0,01530518
20	48,61	0,00772730
21	62,31	0,00990513

Tabela 3 - Experimento 1.3

Tabela 4 - Experimento 1.4

N⁰Tubo	Massa H ₂ O (g)	MassaH ₂ O	Nº Tubo	Massa
		normalizada		
1	144,91	0,02251124	1	0
2	182,92	0,02841595	2	0
3	239,18	0,03715573	3	4
4	279,75	0,04345813	4 (17
5	400,88	0,06227523	5	30
6	716,65	0,11132894	6	10
7	210,53	0,03270506	7	1
8	41,83	0,00649814	8	0
9	206,48	0,03207591	9	87
10	703,2	0,10923953	10	31
11	1005,7	0,15623180	11	22
12	459,1	0,07131950	12	72
13	38,14	0,00592491	13	14
14	175,98	0,02733785	14	22
15	306,08	0,04754840	15	85
16	760,57	0,11815175	16	142
17	280.13	0.04351716	17	71
18	68.05	0.01057132	18	2
19	102.53	0.01592766	19	36
20	58,41	0.00907378	20	26
21	56,21	0.00873202	21	46

N ^o Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	0,00	0,00000000
2	0,95	0,00022656
3	4,71	0,00112324
4	171,86	0,04098501
5	30,68	0,00731654
6	10,85	0,00258750
7	1,37	0,00032672
8	0,00	0,00000000
9	87,81	0,02094085
10	315,66	0,07527831
11	227,33	0,05421345
12	72,87	0,01737797
13	14,95	0,00356526
14	223,41	0,05327861
15	854,28	0,20372790
16	1429,52	0,34091061
17	71,56	0,01706556
18	2,91	0,00069397
19	363,52	0,08669191
20	262,68	0,06264368
21	46,32	0,01104635

Tabela 5 - Experimento 5

N° Tubo	Massa H ₂ O (g)	Massa H ₂ O normalizada	N° Tubo
1	0,00	0,0000000	1
2	0,00	0,0000000	2
3	37,71	0,00881132	3
4	170,29	0,03978999	4
5	41,14	0,00961278	5
6	33,44	0,00781360	6
7	4,04	0,00094399	7
8	0,00	0,0000000	8
9	128,00	0,02990850	9
10	328,57	0,07677371	10
11	267,70	0,06255082	11
12	78,63	0,01837270	12
13	4,82	0,00112624	13
14	277,85	0,06492247	14
15	743,98	0,17383848	15
16	1352,03	0,31591553	16
17	107,16	0,02503902	17
18	4,12	0,00096268	18
19	383,13	0,08952221	19
20	249,81	0,05837064	20
21	67,30	0,01572533	21

Tabela 6 - Experimento 1.6

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	0,00	0,0000000
2	0,00	0,00000000
3	23,58	0,00681879
4	143,85	0,04159811
5	69,55	0,02011226
6	45,10	0,01304188
7	5,71	0,00165120
8	0,00	0,00000000
9	165,97	0,04799470
10	269,12	0,07782331
11	215,13	0,06221064
12	82,88	0,02396699
13	5,26	0,00152107
14	204,59	0,05916272
15	503,57	0,14562085
16	1109,69	0,32089680
17	89,27	0,02581483
18	3,78	0,00109309
19	262,08	0,07578750
20	198,95	0,05753176
21	60,01	0,01735351

Tabela 7 - Experimento 1.7

Tabela 8 - Experimento 1.8

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O	Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada			normalizada
1	0,00	0,0000000	1	0,00	0,00000000
2	0,00	0,0000000	2 [0,00	0,00000000
3	0,00	0,0000000	3	4,53	0,00096569
4	57,69	0,01251755	4	93,28	0,01988514
5	0,00	0,0000000	5	5,13	0,00109360
6	0,00	0,0000000	6	2,99	0,00063740
7	0,00	0,0000000	7	0,00	0,00000000
8	0,00	0,0000000	8	0,00	0,00000000
9	80,26	0,01741478	9	84,88	0,01809445
10	49,68	0,01077954	10	77,59	0,01654039
11	53,03	0,01150642	11	80,59	0,01717993
12	1,62	0,00035151	12	22,77	0,00485404
13	0,00	0,00000000	13	0,00	0,0000000
14	311,17	0,06751752	14	391,05	0,08336282
15	668,09	0,14496184	15	641,94	0,13684677
16	925,65	0,20084709	16	905,8	0,19309563
17	62,64	0,01359160	17	55,92	0,01192085
18	0,00	0,0000000	18	32,06	0,00683445
19	1131,42	0,24549496	19	1089,39	0,23223277
20	980,20	0,21268332	20	759,14	0,16183110
21	287,28	0,06233388	21	443,88	0,09462496

Tabela 9 - Experimento 1.9

	Massa H ₂ O (g)	Massa H ₂ O
Nº Tubo		normalizada
1	0,00	0,00000000
2	0,00	0,0000000
3	0,00	0,00000000
4	49,43	0,01223954
5	8,55	0,00211710
6	4,47	0,00110683
7	0,00	0,0000000
8	0,00	0,00000000
9	53,90	0,01334637
10	71,20	0,01763009
11	82,17	0,02034641
12	21,12	0,00522960
13	0,00	0,0000000
14	258,64	0,06404279
15	508,19	0,12583477
16	834,79	0,20670538
17	47,63	0,01179384
18	23,17	0,00573721
19	997,35	0,24695745
20	753,77	0,18664372
21	324,17	0,08026891

Tabela 10 - Experimento 1.10

Tabela 12 - Experimento 1.12

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	73,40	0,01517077
2	84,33	0,01742986
3	84,90	0,01754767
4	56,34	0,01164471
5	269,84	0,05577223
6	565,90	0,11696378
7	253,26	0,05234537
8	66,96	0,01383971
9	39,09	0,00807937
10	234,72	0,04851341
11	878,29	0,18153051
12	887,86	0,18350850
13	31,85	0,00658296
14	38,61	0,00798016
15	126,38	0,02612101
16	362,24	0,07487005
17	359,59	0,07432233
18	121,91	0,02519713
19	106,36	0,02198316
20	47,02	0,00971839
21	149,40	0,03087893

Tabela 11 - Experimento 1.11

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O normalizada	Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O normalizada
1	110,14	0,0180261	1	111,7	0,01955026
2	112,06	0,01834034	2	135,05	0,02363708
3	88,29	0,01445001	3	124,41	0,02177482
4	68,69	0,01124217	4	105,69	0,01849836
5	301,29	0,04931072	5	491,71	0,08606138
6	817,78	0,13384222	6	531,72	0,09306412
7	227,74	0,03727314	7	245,95	0,04304732
8	106,99	0,01751055	8	124,59	0,02180632
9	54,59	0,00893449	9	72,19	0,01263503
10	455,94	0,07462156	10	366,26	0,06410454
11	1051,28	0,17205808	11	937,38	0,16406463
12	723,13	0,11835130	12	646,38	0,11313245
13	79,65	0,01303594	13	93,33	0,01633505
14	47,53	0,00777901	14	55,74	0,00975588
15	236,54	0,03871339	15	205,48	0,03596407
16	494,92	0,08100124	16	364,67	0,06382625
17	449,70	0,07360029	17	399,43	0,06991011
18	290,11	0,04748095	18	334,87	0,05861051
19	132,31	0,02165456	19	127,59	0,02233140
20	90,49	0,01481007	20	72,16	0,01262978
21	170,86	0,02796386	21	167,18	0,02926063

Tabela 13 - Experimento 1.13

	Massa H ₂ O (g)	Massa H ₂ O
Nº Tubo		normalizada
1	19,83	0,00611673
2	4,62	0,00142508
3	20,65	0,00636966
4	26,36	0,00813096
5	32,31	0,00996629
6	42,48	0,01310331
7	18,87	0,00582061
8	51,48	0,01587943
9	51,54	0,01589794
10	247,33	0,07629097
11	487,00	0,15021916
12	273,82	0,08446203
13	13,06	0,00402846
14	93,77	0,02892413
15	346,31	0,10682217
16	969,63	0,29909036
17	144,56	0,04459072
18	39,17	0,01208231
19	127,34	0,03927907
20	92,78	0,02861875
21	139,02	0,04288186

Tabela 14 - Experimento 1.14

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	27,28	0,00570832
2	20,85	0,00436285
3	36,29	0,00759365
4	53,18	0,01112787
5	99,01	0,02071777
6	139,66	0,02922375
7	54,46	0,01139571
8	54,44	0,01139153
9	87,79	0,01836999
10	413,59	0,08654339
11	546,37	0,11432750
12	340,08	0,07116148
13	32,97	0,00689895
14	131,02	0,02741583
15	423,40	0,08859613
16	1409,14	0,29486147
17	349,59	0,07315144
18	79,12	0,01655580
19	160,37	0,03355730
20	147,93	0,03095424
21	172,45	0,03608503

Tabela 15 - Experimento 1.15

Tabela 16 - Experimento 1.16

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	25,12	0,00529212
2	22,63	0,00476754
3	41,04	0,00864604
4	49,19	0,01036303
5	139,87 (0,02946691
6	165,15	0,03479274
7	56,35	0,01187146
8	34,58	0,00728509
9	110,02	0,02317831
10	357,88	0,07539586
11	508,66	0,10716122
12	390,56	0,08228067
13	22,980	0,00484128
14	142,65	0,03005258
15	406,80	0,08570201
16	1226,98	0,25849225
17	387,67	0,08167182
18	116,21	0,02448238
19	158,81	0,03345707
20	142,23	0,02996410
21	241,30	0,05083553

N ^o Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	0,40	0,00013107
2	0,00	0,00000000
3	0,00	0,00000000
4	5,58	0,00182838
5	0,00	0,00000000
6	0,00	0,00000000
7	0,00	0,00000000
8	16,39	0,00537044
9	29,63	0,00970874
10	33,75	0,01105872
11	18,57	0,00608475
12	2,55	0,00083555
13	4,02	0,00131722
14	213,87	0,07007789
15	348,52	0,11419809
16	408,49	0,13384821
17	59,81	0,01959769
18	40,33	0,01321476
19	599,89	0,19656344
20	939,56	0,30786169
21	330,53	0,10830338

Tabela 17 - Experimento 1.17

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		<u>normalizada</u>
1	2,44	0,00058424
2	0,00	0,00000000
3	3,82	0,00091467
4	15,53	0,00371856
5	5,49	0,00131454
6	3,45	0,00082608
7	0,00	0,00000000
8	22,66	0,00542579
9	42,53	0,01018353
10	61,36	0,01469226
11	58,99	0,01412477
12	11,25	0,00269374
13	6,42	0,00153723
14	247,99	0,05937960
15	395,69	0,09474541
16	806,79	0,19318065
17	81,10	0,01941887
18	52,57	0,01258755
19	789,86	0,18912687
20	1102,47	0,26397931
21	465,94	0,11156632

Tabela 18 - Experimento 1.18

-	Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
			normalizada
—	1	0,00	0,0000000
	2	0,00	0,00000000
	3	4,04	0,00084478
	4	17,05	0,00356524
	5	9,78	0,00204505
	6	0,00	0,00000000
	7	0,00	0,00000000
	8	20,84	0,00435774
	9	48,63	0,01016877
	10	83,13	0,01738289
	11	60,46	0,01264248
	12	18,28	0,00382244
	13	6,30	0,00131736
	14	256,30	0,05359357
	15	481,71	0,10072789
	16	1178,74	0,24648024
	17	135,22	0,02827516
	18	52,28	0,01093200
	19	1010,06	0,21120844
	20	929,22	0,19430440
	21	470,25	0,09833155

Tabela 19 - Experimento 1.19

Tabela 20 - Experimento 1.20

Nº	Massa H ₂ O (g)	Massa H ₂ O	N ^o Tubo	Massa H ₂ O (g)	Massa H ₂ O
Tubo		normalizada			normalizada
1	153,71	0,02233579	1	216,89	0,02558830
2	200,63	0,02915379	2	357,10	0,04213003
3	157,27	0,02285310	3	366,26	0,04321071
4	97,28	0,01413588	4	219,80	0,02593162
5	505,83	0,07350279	5	666,26	0,07860418
6	671,72	0,09760847	6	855,76	0,10096105
7	400,57	0,05820732	7	459,18	0,05417324
8	212,75	0,03091497	8	180,84	0,02133518
9	123,32	0,01791978	9	182,04	0,02147676
10	453,06	0,06583471	10	548,87	0,06475471
11	936,22	0,13604329	11	919,38	0,10846683
12	1139,92	0,16564319	12	1023,74	0,12077903
13	120,04	0,01744316	13	167,90	0,01980854
14	102,23	0,01485517	14	107,52	0,01268502
15	206,32	0,02998062	15	233,12	0,02750309
16	535,63	0,07783306	16	695,76	0,08208453
17	342,66	0,04979235	17	483,84	0,05708259
18	177,20	0,02574915	18	234,87	0,02770955
19	61,06	0,00887270	19	117,44	0,01385536
20	71,26	0,01035488	20	127,85	0,01508352
21	213,10	0,03096583	21	311,72	0,03677617

Tabela 21 - Experimento 1.21

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	240,64	0,02557954
2	430,21	0,04573044
3	409,79	0,04355983
4	326,40	0,03469565
5	626,89	0,06663712
6	1069,73	0,11371010
7	568,92	0,06047502
8	193,40	0,02055802
9	257,26	0,02734621
10	769,09	0,08175268
11	1040,35	0,11058706
12	939,75	0,09989349
13	179,03	0,01903052
14	135,62	0,01441613
15	267,90	0,02847722
16	678,77	0,07215185
17	467,84	0,04973043
18	313,67	0,03334247
19	105,55	0,01121975
20	115,80	0,01230930
21	270,91	0,02879718

Tabela 21 - Experimento 1.22

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	31,94	0,00727013
2	18,72	0,00426101
3	26,75	0,00608879
4	36,26	0,00825344
5	120,70	0,02747353
6	102,28	0,02328080
7	29,13	0,00663052
8	85,37	0,01943177
9	96,09	0,02187184
10	369,90	0,08419601
11	429,16	0,09768467
12 312,88		0,07121721
13	25,13	0,00572005
14	151,26	0,03442954
15	366,41	0,08340162
16	1237,65	0,28171178
17	261,96	0,05962689
18	71,17	0,01619959
19	189,52	0,04313822
20	210,49	0,04791137
21	220,55	0,05020121

Tabela 23 - Experimento 1.23

Tabela 24 - Experimento 1.24

	Massa H ₂ O (g)	Massa H ₂ O	Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
Nº Tubo		normalizada			normalizada
1	36,67	0,00582613	1	35,33	0,00489863
2	19,91	0,00316330	2	28,86	0,00400154
3	35,32	0,00561164	3	42,13	0,00584147
4	63,28	0,01005392	4	105,26	0,01459467
5	187,58	0,02980270	5	212,60	0,02947775
6	149,71	0,02378592	6	220,75	0,03060777
7	70,30	0,01116926	7	112,85	0,01564705
8	87,10	0,01383844	8	90,47	0,01254399
9	163,27	0,02594033	9 (220,08	0,03051488
10	782,90	0,12438712	10	610,54	0,08465355
11	550,30	0,08743164	11	641,12	0,08889357
12	387,54	0,06157234	12	387,69	0,05375460
13	42,65	0,00677623	13	72,09	0,00999554
14	261,85	0,04160272	14	352,03	0,04881021
15	542,04	0,08611929	15	591,15	0,08196505
16	1337,48	0,21249877	16	1394,11	0,19329832
17	406,90	0,06464826	17	549,17	0,07614438
18	132,23	0,02100870	18	255,60	0,03543985
19	348,81	0,05541892	19	393,62	0,05457682
20	338,08	0,05371414	20	382,11	0,05298091
21	350,14	0,05563023	21	514,66	0,07135944

Tabela 25 - Experimento 1.25

	Massa H ₂ O (g)	Massa H ₂ O
Nº Tubo	- (8/	normalizada
1	15,06	0,00322487
2	0,00	0,00000000
3	5,29	0,00113277
4	29,85	0,00639192
5	3,36	0,00071949
6	0,00	0,0000000
7	0,00	0,0000000
8	76,53	0,01638772
9	69,81	0,01494874
10	68,03	0,01456758
11	23,96	0,00513066
12	7,83	0,00167667
13	10,15	0,00217347
14	499,87	0,10703946
15	502,59	0,10762191
16	668,06	0,14305476
17	121,32	0,02597881
18	73,10	0,01565324
19	1082,24	0,23174503
20	835,86	0,17898654
21	577,05	0,12356637

Tabela 26 - Experimento 1.26

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
_		normalizada
1	14,76	0,00255935
2	0,00	0,00000000
3	6,93	0,00120165
4	31,91	0,00553313
5	5,45	0,00094502
6	5,05	0,00087566
7	0,00	0,00000000
8	64,20	0,01113215
9	65,71	0,01139398
10	82,23	0,01425852
11	30,39	0.00526956
12	14,13	0,00245011
13	11,03	0,00191258
14	505,61	0,08767175
15	547,55	0,09494406
16	715,81	0,12412001
17	201,28	0,03490154
18	90,30	0,01565784
19	1418,03	0,24588353
20	1150,50	0,19949437
21	806,21	0,13979518

Tabela 27 - Experimento 1.27

Tabela 28 - Experimento 1.28

	Massa H ₂ O (g)	Massa H ₂ O
N° Tubo		normalizada
1	11,04	0,00219597
2	0,00	0,00000000
3	3,68	0,00073199
4	10,39	0,00206667
5	3,44	0,00068425
6	4,06	0,00080757
7	0,00	0,0000000
8	45,91	0,00913196
9	54,36	0,01081275
10	79,60	0,01583323
11	37,45	0,00744918
12	15,40	0,00306321
13	8,58	0,00170665
14	429,59	0,08544974
15	414,52	0,08245216
16	507,11	0,10086924
17	166,77	0,03317222
18	78,20	0,01555476
19	1467,85	0,29197000
20	1042,83	0,20742929
21	646,62	0,12861917

N°	Massa H ₂ O (g) Massa H ₂ O	
Tubo		normalizada
1	168,33	0,02221345
2	187,82	0,02478543
3	106,53	0,01405810
4	72,72	0,00959640
5	281,12	0,03709764
6	421,64	0,05564119
7	422,33	0,05573224
8	245,42	0,03238654
9	139,00	0,01834296
10	641,00	0,08458875
11	885,57	0,11686312
12	986,98	0,13024556
13	201,49	0,02658937
14	166,52	0,02197460
15	353,04	0,04658847
16	953,77	0,12586304
17	588,55	0,07766725
18	269,83	0,03560777
19	119,51	0,01577098
20	169,47	0,02236389
21	197,20	0,02602325

	122

Tabela 30 - Experimento 1.30

	Massa H ₂ O (g)	Massa H ₂ O
Nº Tubo		normalizada
1	220,82	0,0237785
2	275,51	0,02966767
3	246,10	0,02650072
4	206,27	0,02221172
5	428,52	0,04614420
6	771,45	0,08307184
7	263,78	0,02840455
8	194,55	0,02094968
9	187,28	0,02016682
10	656,04	0,07064418
11	1130,97	0,12178594
12	1110,85	0,11961936
13	185,91	0,02001930
14	201,19	0,02166469
15	404,37	0,04354367
16	1205,71	0,12983415
17	607,57	0,06542480
18	288,76	0,03109447
19	169,60	0,01826299
20	210,66	0,02268444
21	320,63	0,03452631

N^{o}	Massa H ₂ O (g)	Massa H ₂ O
 Tubo		normalizada
 1	791,99	0,07110970
2	258,56	0,02321510
3	250,46	0,02248783
4	196,47	0,01764028
5	520,85	0,04676510
6	842,68	0,07566096
7	231,82	0,02081422
8	282,52	0,02536637
9	219,96	0,01974935
10	872,30	0,07832043
11	1174,46	0,10545020
12	1055,76	0,09479259
13	217,12	0,01949436
14	223,49	0,02006630
15	537,49	0,04825914
16	1254,27	0,11261603
17	737,49	0,06621636
18	601,47	0,05400365
19	198,60	0,01783152
20	256,14	0,02299781
 21	413,68	0,03714272

Tabela 31 - Experimento 1.31

Tabela 32 - Experimento 1.32

Nº	Massa H ₂ O (g)	Massa H ₂ O	N° Tubo	Massa H ₂ O (g)	Massa H ₂ O
Tubo		normalizada			normalizada
1	20,06	0,00437331	1	27,71	0,00476630
2	5,31	0,00115764	2	20,91	0,00359665
3	12,08	0,00263358	3	42,64	0,00733435
4	30,42	0,00663192	4	105,93	0,01822063
5	98,88	0,02155700	5	164,60	0,02831224
6	102,31	0,02230478	6	189,10	0,03252639
7	30,21	0,00658613	7	83,26	0,01432125
8	73,67	0,01606092	8	72,07	0,01239650
9	73,25	0,01596936	9	121,99	0,02098305
10	341,83	0,07452294	10	397,96	0,06845163
11	555,71	0,12115128	11	529,15	0.09101714
12	295,58	0,06443990	12	293,92	0,05055610
13	30,10	0,00656215	13	59,61	0.01025330
14	148,41	0,03235511	14	164,06	0,02821936
15	336,10	0,07327373	15	391,72	0,06737831
16	1232,72	0,26874737	16	1640,40	0,28215916
17	347,25	0,07570456	17	398,67	0,06857376
18	91,16	0,01987395	18	162,03	0.02787018
19	191,69	0,04179066	19	236,00	0,04059349
20	275,80	0,06012762	20	329,62	0,05669672
21	294,37	0,06417610	21	382,39	0,06577350

123

Tabela 34 - Experimento 1.34

Nº	Massa H ₂ O (g)	Massa H ₂ O
Tubo		normalizada
1	29,60	0,00557282
2	26,63	0,00501366
3	56,02	0,01054695
4	100,46	0,01891371
5	153,48	0,02889585
6	137,67	0,02591928
7	80,09	0,01507863
8	60,74	0,01143559
9	123,88	0,02332302
10	320,00	0,06024675
11	516,58	0,09725708
12	231,68	0,04361865
13	53,23	0,01002167
14	215,93	0,04065338
15	354,08	0,06666303
16	1346,47	0,25350137
17	426,47	0,08029197
18	146,33	0,02754971
19	311,01	0,05855419
20	281,22	0,05294560
21	339,92	0,06399711

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	0,00	0,00000000
2	0,00	0,0000000
3	0,00	0,0000000
4	9,36	0,00218883
5	14,41	0,00336977
6	5,58	0,00130488
7	0,00	0,00000000
8	0,00	0,0000000
9	75,61	0,01768134
10	97,45	0,02278860
11	40,75	0,00952936
12	16,69	0,00390294
13	0,00	0,0000000
14	317,86	0,07433131
15	393,30	0,09197289
16	732,77	0,17135768
17	118,98	0,02782338
18	39,12	0,00914818
19	852,43	0,19934008
20	979,02	0,22894305
21	582,93	0,13631772

Tabela 35 - Experimento 1.35

Tabela 36 - Experimento 1.36

	Massa H ₂ O (g)	Massa H ₂ O	Nº Tubo	Massa H2O (g)	Massa H ₂ O
№ Tubo		normalizada			normalizada
1	0,00	0,0000000	1	0,00	0,00000000
2	0,00	0,0000000	2	0,00	0,0000000
3	0,00	0,0000000	3	0,00	0,0000000
4	21,92	0,00433244	4	19,98	0,00485711
5	27,89	0,00551240	5	29,90	0,00726864
6	9,90	0,00195672	6	11,15	0,00271055
7	2,83	0,00055934	7	2,77	0,00067338
8	2,05	0,00040518	8	0,00	0,0000000
9	81,05	0,01601937	9	81,68	0,01985628
10	196,74	0,03888527	10	145,71	0,03542187
11	78,36	0,01548770	11	90,38	0,02197124
12	42,50	0,00840004	12	32,54	0,00791042
13	6,56	0,00129657	13	5,42	0,00131759
14	462,71	0,09145370	14	448,53	0,10903694
15	419,77	0,08296670	15	383,51	0,09323068
16	625,82	0,12369206	16	471,35	0,11458445
17	256,50	0,05069671	17	165,10	0,04013555
18	78,35	0,01548572	18	63,88	0,01552913
19	1062,49	0,20999901	19	761,28	0,18506598
20	847,16	0,16743947	20	764,11	0,18575395
21	836,90	0,1654116	21	636,27	0,15467624

Tabela 37 - Experimento 1.37

N ⁰	Massa H2O (g)	Massa H2O
Tubo	1744004 1120 (g)	normalizada
1	57,48	0,01199962
2	78,83	0,01645669
3	42,30	0,00883062
4	57,52	0,01200797
5	234,31	0,04891496
6	313,81	0,06551152
7	218,04	0,04551841
8	78,73	0,01643581
9	117,15	0,02445644
10	356,34	0,07439015
11	714,19	0,14909554
12	510,85	0,10664593
13	100,10	0,02089705
14	135,51	0,02828930
15	254,60	0,05315074
16	664,82	0,13878897
17	284,39	0,05936975
18	82,33	0,01718735
19	149,79	0,03127042
20	110,94	0,02316003
21	228,12	0,04762273

124

Tabela 38 - Experimento 1.38

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	128,83	0,01621590
2	143,06	0,01800704
3	135,03	0,01699630
4	164,08	0,02065284
5	421,43	0,05304563
6	584,54	0,07357637
7	227,86	0,02868086
8	164,85	0,02074976
9	232,70	0,02929008
10	968,33	0,12188423
11	871,98	0,10975660
12 718,82		0,09047827
13 146,74		0,01847024
14 160,02		0,02014181
15	368,65	0,04640218
16	1104,30	0,13899885
17	507,66	0,06389944
18	193,91	0,02440756
19	198,23	0,02495132
20	186,06	0,02341947
21	317,59	0,03997523

Tabela 39 - Experimento 1.39

Tabela 40 - Experimento 1.40

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O		Massa H ₂ O (g)	Massa H ₂ O
	- (6)	normalizada			normalizada
1	82,92	0,01641593	- 1	13,94	0,00302325
2	122,16	0,02418440	2	7,98	0,00173067
3	83,20	0,01647137	3	13,34	0,00289313
4	100,08	0,01981315	4	23,30	0,00505321
5	312,84	0,06193392	5	70,07	0,01519650
6	432,23	0,08556994	6	70,21	0,01522686
7	178,16	0,03527090	7	52,87	0,01146623
8	106,08	0,02100099	8	70,29	0,01524421
9	112,37	0,02224624	9	76,98	0,01669511
10	347,45	0,06878577	10	269,72	0,05849579
11	472,90	0,09362150	11	387,16	0,08396571
12	439,29	0,08696763	12	297,03	0,06441867
13	99,19	0,01963696	13	106,65	0,02312982
14	132,56	0,02624332	14	131,46	0,02851052
15	300,60	0,05951073	15	288,33	0,06253185
16	848,91	0,16806139	16	1139,53	0,24713669
17	282,50	0,05592742	17	414,45	0,08988425
18	121,06	0,02396663	18	231,67	0,05024366
19	124,40	0,02462786	19	229,51	0,04977521
20	120,45	0,02384587	20	416,17	0,09025728
21	231,84	0,04589810	21	300,27	0,06512135

Tabela 42 - Experimento 1.42

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		<u>normalizada</u>
1	22,28	0,00353276
2	14,86	0,00235623
3	19,57	0,00310305
4	44,85	0,00711150
5	120,28	0,01907181
6	181,08	0,02871237
7	91,53	0,01451316
8	76,47	0,01212522
9	118,22	0,01874517
10	549,88	0,08718995
11	599,67	0,09508474
12	276,30	0,04381062
13	72,33	0,01146877
14	179,54	0,02846818
15	355,02	0,05629260
16	1353,89	0,21467521
17	424,52	0,06731265
18	266,14	0,04219963
19	355,85	0,05642421
20	417,54	0,06620589
21	766,87	0,12159627

N° Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	19,95	0,00483990
2	21,55	0,00522806
3	17,79	0,00431588
4	52,09	0,01263710
5	75,35	0,01828001
6	89,57	0,02172980
7	64,67	0,01568902
8	45,48	0,01103351
9	95,96	0,02328002
10	260,95	0,06330680
11	271,12	0,06577406
12	195,35	0,04739216
13 54,48		0,01321692
14	155,11	0,03762988
15	273,71	0,06640239
16	979,42	0,23760853
17	330,40	0,08015546
18	110,39	0,02678075
19	232,82	0,05648243
20	307,02	0,07448344
21	468,81	0,11373390

Tabela 43 - Experimento 1.43

Tabela 41 - Experimento 1.41

Tabela 44 - Experimento 1.44

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O	Nº Tu
		normalizada	
1	15,10	0,00365135	1
2	0,00	0,00000000	2
3	0,00	0,00000000	3
4	18,79	0,00454363	4
5	9,58	0,00231655	5
6	7,58	0,00183293	6
7	0,00	0,00000000	7
8	70,11	0,01695337	8
9	53,75	0,01299734	9
10	112,75	0,02726420	10
11	78,61	0,01900877	11
12	54,84	0,01326092	12
13	17,60	0,00425587	13
14	232,72	0,05627427	14
15	321,43	0,07772533	15
16	838,38	0,20272956	16
17	228,79	0.05532395	17
18	113,22	0,02737785	18
19	651,14	0,15745286	19
20	689,98	0,16684480	20
21	621,09	0,15018644	21

N° Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada 📃
The second se	14,32	0,00310157
2	0,00	0,00000000
3	7,51	0,00162659
4	30,72	0,00665364
5	29,28	0,00634175
6	14,86	0,00321853
7	4,57	0,00098982
8	49,97	0,01082300
9	80,75	0,01748964
10	146,98	0,03183439
11	103,00	0,02230876
12 62,69		0,01357802
13 16,13		0,00349360
14	264,41	0,05726854
15	471,81	0,10218929
16	865,20	0,18739360
17	195,69	0,04238448
18	90,49	0,01959922
19	734,96	0,15918493
20	633,20	0,13714474
21	800,48	0,17337590

Tabela 45 - Experimento 1.45

	84 . TT O ()	M
	Massa H ₂ O (g)	Massa H ₂ O
Nº Tubo		<u>normalizada</u>
1	11,50	0,00250344
2	3,67	0,00079893
3	6,71	0,00146071
4	19,77	0,00430375
5	22,50	0,00489804
6	12,62	0,00274726
7	7,60	0,00165445
8	40,05	0,00871852
9	63,46	0,01381466
10	127,45	0,02774470
11	104,28	0,02270080
12	72,70	0,01582613
13	18,17	0,00395544
14	289,81	0,06308899
15	327,09	0,07120451
16	853,04	0,18569902
17	215,64	0,04694286
18	107,31	0,02336041
19	638,88	0,13907834
20	930,74	0,20261360
21	720,68	0,15688545

Experimento II.1 - Distribuidor do tipo I

Tabela 46 - Experimento 2.1.1

N°	Massa H ₂ O	Massa Normalizada
Tubo	(g)	
1	874,23	0,08586641
2	803,19	0,0788889
3	438,47	0,04306629
4	240,52	0,02362375
5	350,73	0,03444852
6	523,97	0,05146406
7	572,37	0,05621788
8	522,09	0,05127941
9	278,21	0,02732564
10	287,22	0,02821060
11	425,35	0,04177765
12	368,22	0,03616638
13	239,15	0,02348919
14	579,24	0,05689265
15	540,43	0,05308075
16	718,49	0,07056971
17	306,95	0,03014847
18	331,72	0,03258137
19	632,59	0,06213266
20	637,39	0,06260411
21	510,75	0,05016560

Tabela 47- Experimento 2.1.2

Nº Tubo	Massa H ₂ O (g)	massa
		normalizada
1	1031,39	0,09235416
2	821,09	0,07352318
3	418,24	0,03745063
4	318,06	0,02848017
5	378,72	0,03391187
6	477,67	0,04277219
7	546,87	0,04896859
8	594,44	0,05322817
9	363,76	0,03257230
10	287,57	0,02574999
11	378,75	0,03391456
12	567,68	0,05083199
13	302,56	0,02709225
14	571,23	0,05114987
15	515,77	0,04618379
16	788,97	0,07064705
17	365,31	0,03271110
18	397,52	0,03559529
19	698,48	0,06254427
20	767,78	0,06874963
21	575,91	0,05156893

Tabela 48- Experimento 2.1.3

Nº	Massa H ₂ O	Massa normalizada
Tubo	(g)	
1	921,65	0,08503820
2	963,54	0,08890328
3	447,74	0,04131178
4	253,18	0,02336025
5	438,58	0,04046661
6	483,28	0,04459096
7	477,51	0,04405858
8	633,88	0,05848643
9	322,72	0,02977652
10	277,60	0,02561342
11	417,61	0,03853177
12	445,33	0,04108942
13	268,68	0,02479039
14	511,06	0,04715415
15	624,61	0,05763111
16	826,34	0,07624420
17	330,78	0,03052019
18	367,11	0,03387227
19	586,44	0,05410926
20	740,69	0,06834150
21	499,74	0,04610969

Tabela 49 - Experimento 2.1.4

Nº Tubo	Massa H ₂ O (g)	Massa
		normalizada
1	954,47	0,08513282
2	992,20	0,08849810
3	668,52	0,05962785
4	499,05	0,04451217
5	466,48	0,04160713
6	568,29	0,05068795
7	440,56	0,03929523
8	426,04	0,03800013
9	316,42	0,02822271
10	333,96	0,02978717
11	528,85	0,04717015
12	498,65	0,04447649
13	152,10	0,01356638
14	605,44	0,05400150
15	507,73	0,04528637
16	868,42	0,07745769
17	322,22	0,02874003
18	158,86	0,01416933
19	747,17	0,06664294
20	793,69	0,07079224
21	362,42	0,03232562

	Massa H ₂ O	Massa normalizada
Nº Tubo	(g)	
1	933,50	0,07812990
2	1003,12	0,08395680
3	732,37	0,06129619
4	483,68	0,04048192
5	547,00	0,04578153
6	689,71	0,05772574
7	519,25	0,04345897
8	493,35	0,04129126
9	337,39	0,02823808
10	382,61	0,03202280
11	396,42	0,03317864
12	343,25	0,02872854
13	247,41	0,02070714
14	636,50	0,05327229
15	503,80	0,04216588
16	833,65	0,06977289
17	360,17	0,03014467
18	295,82	0,02475885
19	867,46	0,07260264
20	840,30	0,07032947
21	501,29	0,04195580

Tabela 51 - Experimento 2.1.6

Nº Tubo	Massa H ₂ O	Massa
	(g)	normalizada
1	1023,60	0,08532304
2	962,47	0,08022749
3	723,67	0,06032212
4	521,01	0,04342923
5	588,18	0,04902824
6	595,46	0,04963507
7	528,33	0,04403939
8	502,40	0,04187797
9	350,02	0,02917621
10	362,56	0,03022149
11	424,09	0,03535038
12	342,42	0,02854271
13	234,04	0,01950860
14	654,41	0,05454889
15	550,09	0,04585321
16	901,47	0,07514279
17	331,24	0,02761079
18	307,30	0,02561525
19	754,43	0,06288615
20	862,43	0,07188858
21	477,14	0,03977241

Tabela 52 - Experimento 2.1.7

Tabela 53 - Experimento 2.1.8

Nº	Massa H ₂ O	Massa
Tubo	(g)	normalizada
1	371,70	0,04952137
2	408,92	0,05448017
3	80,66	0,01074628
4	30,57	0,00407282
5	133,80	0,01782610
6	486,77	0,06485208
7	493,78	0,06578602
8	242,83	0,03235210
9	51,70	0,00688796
10	202,27	0,02694831
11	893,06	0,11898186
12	907,04	0,12084441
13	121,41	0,01617538
14	126,30	0,01682688
15	340,67	0,04538726
16	1059,17	0,14111260
17	313,09	0,04171280
18	96,18	0,01281401
19	454,74	0,06058474
20	422,98	0,05635338
21	268,21	0,03573346

Tabela 54 - Experimento 2.1.9

Nº Tubo	Massa H ₂ O	Massa
	(g)	normalizada
1	826,81	0,09218027
2	518,32	0,05778701
3	200,21	0,02232122
4	67,33	0,00750656
5	210,67	0,02348740
6	447,17	0,04985456
7	554,43	0,06181288
8	370,57	0,04131450
9	86,28	0,00961928
10	243,00	0,02709184
11	737,85	0,08226220
12	649,59	0,07242218
13	174,27	0,01942920
14	298,45	0,03327391
15	409,03	0,04560237
16	891,58	0,09940142
17	260,75	0,02907077
18	131,34	0,01464297
19	710,28	0,07918845
20	779,88	0,08694809
21	401,68	0,04478293

21 401,68 Tabela 55 - Experimento 2.1.10

N ⁹	Massa H ₂ O	Massa
Tubo	(g)	normalizada
1	971,09	0,10129840
2	675,13	0,07042559
3	199,48	0,02080858
4	116,60	0,01216303
5	217,46	0,02268415
6	465,93	0,04860308
7	499,19	0,05207257
8	411,55	0,04293048
9	127,43	0,01329275
10	275,04	0,02869056
11	787,29	0,08212546
12	503,46	0,05251799
13	167,70	0,01749348
14	252,29	0,02631741
15	452,23	0,04717397
16	924,97	0,09648743
17	312,47	0,03259503
18	156,78	0,01635437
19	731,95	0,07635272
20	832,06	0,08679561
21	506,33	0,05281737

N ^o Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	575,51	0,06658914
2	585,69	0,06776702
3	466,12	0,05393222
4	184,75	0,02137642
5	392,26	0,04538628
6	404,25	0,04677358
7	385,50	0,04460412
8	405,06	0,04686730
9	256,68	0,02969905
10	276,75	0,03202124
11	270,86	0,03133974
12	316,07	0,03657075
13	274,83	0,03179909
14	480,12	0,05555208
15	385,54	0,04460874
16	828,34	0,09584273
17	271,77	0,03144503
18	260,79	0,03017460
19	573,85	0,06639707
20	556,16	0,06435026
21	491,80	0,05690351

Tabela 56 - Experimento 2.1.11

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	734,13	0,0741786
2	783,68	0,07918527
3	416,92	0,04212679
4	231,11	0,02335202
5	472,93	0,04778620
6	484,90	0,04899568
7	510,90	0,05162280
8	431,06	0,04355554
9	332,68	0,03361494
10	316,89	0,03201947
11	375,61	0,03795271
12	364,96	0,03687660
13	296,11	0,02991980
14	517,65	0,05230484
15	446,05	0,04507017
16	708,53	0,07159190
17	285,16	0,02881338
18	324,08	0,03274597
19	645,40	0,06521306
20	635,02	0,06416424
21	583,02	0,05891001

Tabela 57 - Experimento 2.1.12

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	776,92	0,07491245
2	751,13	0,07242572
3	439,89	0,04241523
4	311,57	0,03004231
5	559,14	0,05391359
6	504,06	0,04860265
7	569,49	0,05491156
8	472,20	0,04553063
9	311,77	0,03006159
10	301,11	0,02903373
11	352,34	0,03397345
12	412,75	0,03979832
13	277,64	0,02677070
14	532,23	0,05131886
15	375,27	0,03618441
16	949,91	0,09159255
17	321,78	0,03102678
18	334,42	0,03224556
19	675,04	0,06508894
20	543,52	0,05240747
21	598,86	0,05774349

Tabela 58 - Experimento 2.1.13

Tabela 59 - Experimento 2.1.14

	Massa H ₂ O	Massa H ₂ O	
Nº Tubo	(g)	normalizada	
1	882,26	0,08157676	
2	836,30	0,07732714	
3	549,30	0,05079015	
4	234,20	0,02165493	
5	327,96	0,03032430	
6	507,36	0,04691223	
7	473,35	0,04376755	
8	609,30	0,05633795	
9	259,30	0,02397576	
10	296,78	0,02744129	
11	479,44	0,04433065	
12	400,73	0,03705286	
13	373,57	0,03454155	
14	497,08	0,04596171	
15	473,02	0,04373704	
16	823,53	0,07614638	
17	285,16	0,02636686	
18	376,15	0,03478011	
19	690,49	0,06384505	
20	791,21	0,07315797	
21	648,60	0,05997176	

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	1031,59	0,08143056
2	907,02	0,07159738
3	673,10	0,05313245
4	344,69	0,02720877
5	588,46	0,04645123
6	579,25	0,04572422
7	567,96	0,04483302
8	603,98	0,04767633
9	375,42	0,02963451
10	347,80	0,02745427
11	407,63	0,03217707
12	478,50	0,03777133
13	387,91	0,03062043
14	538,66	0,04252017
15	508,66	0,04015206
16	967,28	0,07635412
17	545,32	0,04304589
18	416,83	0,03290328
19	833,63	0,06580420
20	805,16	0,06355687
21	759,49	0,05995182

Tabela 60 - Experimento 2.1.15

	Massa H ₂ O	Massa H ₂ O
Nº Tubo	(g)	normalizada
1	829,94	0,06707101
2	926,79	0,07489787
3	600,96	0,04856615
4	323,96	0,02618060
5	535,40	0,04326797
6	567,65	0,04587423
7	771,48	0,06234660
8	546,87	0,04419491
9	346,89	0,02803367
10	354,82	0,02867452
11	424,85	0,03433395
12	436,98	0,03531423
13	342,29	0,02766192
14	656,88	0,05308529
15	497,86	0,04023420
16	844,40	0,06823958
17	454,60	0,03673817
18	442,62	0,03577002
19	858,89	0,06941058
20	876,90	0,07086605
21	733,02	0,05923849

Tabela 62 - Experimento 2.1.17

Tabela 61 - Experimento 2.1.16

Nº Tubo	Massa H ₂ O	Massa H ₂ O	
	(g)	normalizada	
	535,59	0,06685899	
2	719,91	0,0898681	
3	225,04	0,02809229	
4	61,47	0,00767345	
5	247,17	0,03085483	
6	568,73	0,07099594	
7	362,99	0,04531292	
8	214,70	0,02680152	
9	81,45	0,01016760	
10	263,18	0,03285339	
11	728,59	0,09095165	
12	799,94	0,09985844	
13	77,14	0,00962957	
14	221,62	0,02766536	
15	383,24	0,04784077	
16	964,74	0,12043082	
17	263,39	0,03287961	
18	79,30	0,00989921	
19	469,47	0,05860507	
20	436,86	0,05453429	
21	306,22	0,03822618	

Tabela 63 - Experimento 2.1.18

	Massa H ₂ O	Massa H ₂ O	
Nº Tubo	(g)	normalizada	
1	962,56	0,08413971	
2	1092,03	0,0954570	
3	504,52	0,04410132	
4	152,15	0,01329980	
5	367,43	0,03211795	
6	647,33	0,05658469	
7	519,47	0,04540814	
8	362,76	0,03170973	
9	166,36	0,01454193	
10	338,64	0,02960135	
11	816,43	0,07136613	
12	914,18	0,07991070	
13	133,87	0,01170190	
14	430,81	0,03765815	
15	489,17	0,04275954	
16	906,29	0,07922102	
17	532,86	0,04657859	
18	129,32	0,01130418	
19	898,98	0,07858203	
20	781,56	0,06831806	
21	293,30	0,02563807	

Nº Tubo	Massa H ₂ O (g)	Massa H2O normalizada
1	915.93	0.08135858
2	1075,74	0,09555389
3	465,20	0,04132195
4	185,43	0,01647104
5	433,44	0,03850083
6	690,80	0,06136114
7	470,62	0,04180338
8	328,32	0,02916342
9	166,78	0,01481443
10	315,60	0,02803355
11	813,80	0,07228676
12	528,05	0,04690467
13	174,74	0,01552149
14	399,43	0,03547985
15	481,64	0,04278225
16	932,87	0,08286329
17	360,43	0,03201563
18	165,10	0,01466521
19	1059,10	0,09407583
20	720,27	0,06397885
21	574,65	0,05104397

Tabela 64 - Experimento 2.1.19

1	Massa H ₂ O	Massa H ₂ O
Nº Tubo	(g)	normalizada
1	945,14	0,09220563
2	837,53	0,08170745
3	524,18	0,05113777
4	310,04	0,03024677
5	360,18	0,03513831
6	513,55	0,05010073
7	445,96	0,04350681
8	531,08	0,05181091
9	268,10	0,02615520
10	330,95	0,03228670
11	415,89	0,04057325
12	408,16	0,03981913
13	308,92	0,03013751
14	569,80	0,05558835
15	510,87	0,04983927
16	658,34	0,06422610
17	304,25	0,02968191
18	339,69	0,03313936
19	567,24	0,05533860
20	557,55	0,05439326
21	542,93	0,05296697

Tabela 65 - Experimento 2.1.20

N° Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	1126,66	0,08629079
2	999,62	0,07656081
3	738,27	0,05654403
4	375,94	0,02879321
5	489,84	0,03751680
6	657,30	0,05034255
7	757,17	0,05799158
8	651,26	0,04987995
9	344,51	0,02638599
10	430,33	0,03295894
11	556,56	0,04262688
12	530,61	0,04063937
13	379,90	0,02909651
14	599,30	0,04590033
15	597,25	0,04574332
16	809,80	0,06202251
17	420,14	0,03217849
18	465,75	0,03567175
19	675,78	0,05175793
20	770,26	0,05899414
21	680,30	0,05210412

Tabela 66 - Experimento 2.1.21

Tabela 67 - Experimento 2.1.22

N º Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	963,48	0,07955583
2	1097,23	0,09059975
3	756,31	0,06244953
4	389,74	0,03218135
5	517,52	0,04273232
6	606,15	0,05005062
7	618,85	0,05109927
8	583,29	0,04816304
9	339,16	0,02800489
10	358,58	0,02960843
11	470,56	0,03885477
12	511,60	0,04224350
13	307,50	0,02539069
14	575,13	0,04748925
15	547,84	0.04523588
16	767,76	0,06339497
17	391,10	0,03229365
18	425,96	0,03517209
19	674,31	0,05567868
20	604,69	0,04993006
21	603,98	0,04987144

Nº Tubo	Massa H ₂ O	Massa H ₂ O	
	(g)	normalizada	
1	695,53	0,07269913	
2	676,75	0,07073618	
3	437,74	0,04575405	
4	275,76	0,02882336	
5	313,54	0,03277225	
6	442,53	0,04625472	
7	444,33	0,04644286	
8	437,27	0,04570493	
9	284,79	0,02976721	
10	340,69	0,03561006	
11	366,09	0,03826495	
12	367,10	0,03837052	
13	272,86	0,02852024	
14	596,97	0,06239731	
15	413,29	0,04319846	
16	502,68	0,05254180	
17	313,25	0,03274194	
18	312,13	0,03262487	
19	743,67	0,07773088	
20	674,41	0,07049159	
21	655,86	0,06855269	

Tabela 68 - Experimento 2.1.23

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	819,21	0,06421767
2	826,69	0,06480402
3	611,82	0,04796042
4	380,39	0,02981868
5	492,42	0,03860068
6	631,89	0,04953370
7	672,37	0,05270692
8	303,14	0,02376307
9	420,10	0,03293153
10	401,15	0,03144605
11	442,13	0,03465846
12	521,85	0,04090769
13	543,21	0,04258210
14	759,59	0,05954407
15	532,32	0,04172843
16	781,47	0,06125924
17	438,13	0,03434490
18	430,29	0,03373033
19	863,90	0,06772090
20	1063,83	0,08339337
21	820,87	0,06434779

Tabela 69 - Experimento 2.1.24

Nº Tubo	Massa H ₂ O (g)	Massa H2O normalizada
2	860,20	0,07370904
3	643,04	0,05510098
4	369,84	0,03169095
5	460,88	0,03949201
6	535,50	0,04588606
7	560,38	0,04801799
8	541,60	0,04640876
9	368,42	0,03156927
10	405,66	0,03476030
11	374,26	0,03206969
12	453,46	0,03885620
13	315,41	0,02702693
14	595,91	0,05106249
15	463,10	0,03968223
16	820,26	0,07028665
17	460,02	0,03941831
18	424,24	0,03635239
19	781,01	0,06692339
20	696,86	0,05971272
21	704,46	0.06036395
Tabela 70 - Experimento 2.1.25

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	371,38	0,05349062
2	490,33	0,07062323
3	225,28	0,03244754
4	70,52	0,01015714
5	250,58	0,03609155
6	568,81	0,08192686
7	460,56	0,06633539
8	245,54	0,03536563
9	75,50	0,01087442
10	414,10	0,05964366
11	528,86	0,07617278
12	865,83	0,12470725
13	146,49	0,02109925
14	157,08	0,02262455
15	285,23	0,04108226
16	820,93	0,11824022
17	230,33	0,03317490
18	84,53	0,01217503
19	212,61	0,03062265
20	230,99	0,03326996
21	207,42	0,02987512

Nº Tubo Massa H₂O Massa H₂O (g) normalizada 829,12 0,08230279 1 0,09248344 2 931,68 3 446,69 0,04434079 4 147,89 0,01468034 5 272,21 0,02702099 6 531,29 0,05273863 7 0,04580396 461,43 8 461,48 0,04580892 9 135,95 0,01349511 10 310,84 0,03085561 11 625,71 0,06211125 12 768,64 0,07629923 13 249,52 0,02476866 14 289,74 0,02876111 15 375,01 0,03722546 16 848,29 0,08420571 324,46 0,03220760 17 18 207,22 0,02056974 744,08 19 0,07386128 20 626,82 0,06222144

Tabela 72 - Experimento 2.1.27

labela	14 -	Experimence a.i.a.	

Nº	Massa H ₂ O	Massa H ₂ O
Tubo	(g)	normalizada
1	860,29	0,08226497
2	867,32	0,08293721
3	454,98	0,04350732
4	160,50	0,01534776
5	356,00	0,03404239
6	553,82	0,05295887
7	521,50	0,04986828
8	521,80	0,04989696
9	136,36	0,01303938
10	316,14	0,03023079
11	608,89	0,05822492
12	631,46	0,06038317
13	287,67	0,02750836
14	346,14	0,03309953
15	401,44	0,03838758
16	912,10	0,08721928
17	358,61	0,03429197
18	215,31	0,02058895
19	678,66	0,06489665
20	729,51	0,06975917
21	539,05	0,05154649

Tabela 73 - Experimento 2.1.28

21

485,95

0,04823794

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	944,76	0,07645384
2	919,85	0,07443802
3	467,16	0,03780450
4	287,83	0,02329238
5	492,90	0,03988748
6	492,20	0,03983084
7	571,62	0,04625783
8	625,83	0,05064472
9	270,04	0,02185274
10	438,50	0,03548521
11	401,04	0,03245380
12	578,01	0,04677493
13	432,17	0,03497296
14	715,70	0,05791737
15	463,65	0,03752045
16	862,60	0,06980512
17	529,74	0,04286873
18	499,62	0,04043129
19	714,92	0,05785425
20	713,52	0,05774096
21	935,60	0,07571258

Tabela 71 - Experimento 2.1.26

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O normalizada
1	907,31	0,07774548
2	876,78	0,07512943
3	557,33	0,04775643
4	276,05	0,02365414
5	492,94	0,04223899
6	567,49	0,04862702
7	469,72	0,04024932
8	577,06	0,04944706
9	284,54	0,02438163
10	361,59	0,03098389
11	458,25	0,03926648
12	476,41	0,04082257
13	354,57	0,03038236
14	542,39	0,04647626
15	444,88	0,03812083
16	797,71	0,06835409
17	566,59	0,04854990
18	428,99	0,03675925
19	654,28	0,05606388
20	691,24	0,0592309
21	884,14	0,07576009

 Tabela 75 - Experimento 2.1.30

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	843,20	0,07955392
2	680,54	0,06420734
3	549,15	0,0518110
4	245,44	0,02315668
5	442,94	0,04179034
6	492,39	0,04645583
7	466,09	0,04397449
8	575,12	0,05426121
9	229,83	0,02168392
10	305,38	0,02881188
11	398,9	0,03763527
12	504,34	0,04758329
13	325,92	0,03074978
14	524,31	0,04946741
15	404,87	0,03819853
16	802,59	0,07572247
17	454,55	0,04288572
18	482,86	0,04555670
19	552,68	0,05214405
20	526,03	0,04962969
21	791,97	0,07472050

Tabela 76 - Experimento 2.1.31

N	Massa H ₂ O	Massa H ₂ O
<u>Tubo</u>	(g)	<u>normalizada</u>
1	701,18	0,08140326
2	746,59	0,08667512
3	383,73	0,04454901
4	166,95	0,01938200
5	303,27	0,03520803
6	362,24	0,04205413
7	335,43	0,03894163
8	492,57	0,05718475
9	144,87	0,01681863
10	230,80	0,02679465
11	300,19	0,03485046
12	378,95	0,04399407
13	321,44	0,03731747
14	485,77	0,05639531
15	326,84	0,03794438
16	586,75	0,06811855
17	349,62	0,04058902
18	345,36	0,04009445
19	520,24	0,06039709
20	466,98	0,05421389
21	663,89	0,07707409

Tabela 78 - Experimento 2.1.31

•	Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
_			normalizada
	1	723,33	0,08137883
	2	664,85	0,07479949
	3	388,27	0,04368263
	4	211,11	0,02375110
	5	369,53	0,04157427
	6	431,98	0,04860026
	7	416,11	0,04681479
	8	454,27	0,05110801
	9	197,52	0,02222215
	10	260,49	0,02930664
	11	302,15	0,03399363
	12	319,50	0,03594561
	13	252,00	0,02835146
	14	420,83	0,04734582
	15	335,93	0,03779408
	16	653,64	0,07353830
	17	326,06	0,03668364
	18	339,37	0,03818110
	19	573,19	0,06448720
	20	594,92	0,06693196
-	21	653,38	0,07350904

Tabela 79 - Experimento 2.1.33

N°	Massa H ₂ O (g)	Massa H ₂ O
Tubo		normalizada
1	647,43	0,07597410
2	619,19	0,07266021
3	457,40	0,05367461
4	232,93	0,02733368
5	304,61	0,03574513
6	369,89	0,04340556
7	337,07	0,03955422
8	446,16	0,05235563
9	201,51	0.02364663
10	278,56	0,03268824
11	330,02	0,03872692
12	396,27	0,04650118
13	227,58	0,02670588
14	382,15	0,04484423
15	400,25	0,04696822
16	545,48	0,06401055
17	334,53	0,03925616
18	338,99	0,03977953
19	528,59	0,06202856
20	533,54	0,06260943
21	609,57	0,07153133

Tabela 80 - Experimento 2.1.34

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	392,41	0,05010483
2	528,13	0,06743422
3	187,70	0,02396645
4	55,68	0,00710949
5	254,19	0,03245622
6	535,86	0,06842123
7	325,65	0,04158059
8	260,42	0,03325170
9	113,69	0,01451650
10	369,51	0,04718085
11	832,50	0,10629767
12	679,09	0,08670953
13	154,13	0,01968007
14	188,50	0,02406860
15	362,01	0,04622321
16	1055,30	0,13474587
17	345,51	0,04411641
18	153,89	0,01964943
19	311,74	0,03980449
20	349,97	0,04468588
21	375,90	0,04799675

Tabela 81 - Experimento 2.1.35

	Massa H ₂ O	Massa H ₂ O
Nº Tubo	(g)	normalizada
1	764,86	0,08142768
2	662,87	0,07056974
3	285,76	0,03042227
4	94,51	0,01006162
5	358,49	0,03816517
6	555,99	0,05919120
7	367,22	0,03909457
8	368,19	0,03919784
9	143,42	0,01526862
10	342,79	0,03649373
11	639,27	0,06805726
12	531,58	0,05659248
13	162,51	0,01730096
14	340,68	0,03626910
15	421,78	0,04490308
16	776,49	0,08266582
17	456,03	0,04854936
18	224,18	0,02386640
19	600,75	0,06395639
20	565,03	0,06015360
21	730,72	0,07779311

Tabela 82 - Experimento 2.1.36

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
.1	813,59	0,08140296
2	736,12	0,07365177
3	347,66	0,03478478
4	155,21	0,01552939
5	354,07	0,03542613
6	504,60	0,05048726
7	453,75	0,04539952
8	377,33	0,03775339
9	219,77	0,02198887
10	375,96	0,03761631
11	571,89	0,05721990
12	643,65	0,06439978
13	162,21	0,01622976
14	431,28	0,04315130
15	431,16	0,04313930
16	754,20	0,07546075
17	363,07	0,03632662
18	192,24	0,01923439
19	649,73	0,06500810
20	640,23	0,06405759
21	816,88	0,08173214

Tabela 83 - Experimento 2.1.37

	Massa H-O	Massa HaO
N [®] Tubo	(a)	normalizada
1 1	697.29	0.00722746
1	601.62	0,09723710
2	601,63	0,08511930
3	274,42	0,03882525
4	150,35	0,02127169
5	230,00	0,03254066
6	277,74	0,03929497
7	242,08	0,03424975
8	403,47	0,05708339
9	157,76	0,02232006
10	259,18	0,03666908
11	241,58	0,03417901
12	314,71	0,04452553
13	232,91	0,03295237
14	355,76	0,05033333
15	267,82	0,03789148
16	659,71	0,09333652
17	313,64	0,04437414
18	276,88	0,03917330
19	300,31	0,04248820
20	373,44	0,05283472
21	447,41	0,06330008

Nº Tubo Massa H₂O Massa H₂O (g) normalizada 1 679,95 0,08062441 2 647,17 0.07673755 3 447,88 0,05310694 206,92 4 0,02453534 5 310,85 0,03685874 6 418,04 0,04956869 7 410,80 0,04871021 8 447,26 0,05303342 9 209,18 0,02480332 10 333,04 0,03948989 345,84 0,04100764 11 12 363,57 0,04310996 13 241,15 0,02859413 14 399,94 0,04742250 385,87 15 0,04575416 528,22 0,06263317 16 17 343,02 0,04067326 18 346,33 0,04106574 19 414,16 0,04910862 20 411,56 0,04880033

Tabela 85 - Experimento 2.1.39

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	745,80	0,08029897
2	742,70	0,07996520
3	512,03	0,05512937
4	236,60	0,02547431
5	351,37	0,03783139
6	494,92	0,05328717
7	441,30	0,04751399
8	464,92	0.05005712
9	202,61	0,02181466
10	372,83	0,04014195
11	442,73	0,04766796
12	428,07	0,04608954
13	257,18	0,02769012
14	455,06	0,04899551
15	409,42	0,04408153
16	588,72	0.06338645
17	331,31	0,03567156
18	396,76	0,04271845
19	436,13	0,04695735
20	447,68	0,04820092
21	529,65	0,05702648

Tabela 86 - Experimento 2.1.40

<u>542,</u>80

0,06436198

21

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	630,93	0,07819155
2	680,44	0,08432736
3	377,43	0,04677514
4	183,14	0,02269666
5	264,77	0,03281311
6	329,86	0,04087976
7	349,06	0,04325923
8	476,77	0,05908641
9	167,92	0,02081043
10	222,62	0,02758944
11	270,79	0,03355918
12	379,25	0,04700069
13	313,30	0,03882747
14	361,44	0,04479349
15	336,96	0,04175967
16	608,63	0,07542790
17	328,54	0,04071617
18	318,73	0,03950041
19	448,51	0,05558413
20	481,46	0,05966764
21	538,48	0,06673417

Tabela 84 - Experimento 2.1.38

Tabela 87 - Experimento 2.1.41

		r
	Massa H ₂ O	Massa H ₂ O
Nº Tubo	(g)	normalizada
1	756,55	0,08924022
2	628,07	0,07408513
3	400,47	0,04723816
4	242,35	0,02858683
5	306,92	0,03620330
6	355,88	0,04197847
7	368,20	0,04343169
8	447,74	0,05281398
9	187,64	0,02213341
10	257,00	0,03031490
11	338,40	0,03991658
12	359,02	0,04234885
13	287,74	0,03394089
14	385,29	0,04544758
15	397,75	0,04691732
16	591,72	0,06979740
17	332,19	0,03918407
18	339,19	0,04000977
19	432,73	0,05104345
20	438,13	0,05168041
21	624,70	0,07368761

Tabela 89 - Experimento 2.1.43

N° Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	436,34	0,06115316
2	479,93	0,06726231
3	128,70	0,01803734
4	45,58	0,00638805
5	291,92	0,04091266
6	509,97	0,07147242
7	404,21	0,05665013
8	258,04	0,03616437
9	120,67	0,01691193
10	419,70	0,05882106
11	659,01	0,09236041
12	539,51	0,07561246
13	129,59	0,01816207
14	187,29	0,02624874
15	295,78	0,04145364
16	800,40	0,11217625
17	308,55	0,04324336
18	130,12	0,01823635
19	246,84	0,03459469
20	320,12	0,0448649
21	422,93	0,05927374

Tabela 88 - Experimento 2.1.42

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	913,25	0,08482526
2	671,29	0,06235133
3	657,14	0,06103704
4	297,69	0,02765030
5	491,17	0,04562127
6	495,18	0,04599373
7	435,85	0,04048299
8	600,81	0,05580495
9	259,00	0,02405666
10	451,37	0,04192453
11	462,07	0,04291838
12	442,55	0,04110531
13	283,50	0,02633229
14	478,57	0,04445095
15	430,96	0,04002879
16	738,95	0,06863578
17	472,57	0,04389365
18	475,41	0,04415744
19	522,01	0,04848578
20	500,99	0,04653338
21	685,92	0,06371021

Tabela 90 - Experimento 2.1.44

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	813,68	0,08747244
2	777,14	0,08354431
3	376,34	0,04045740
4	118,48	0,01273687
5	372,43	0,04003707
6	491,95	0,05288574
7	501,75	0,05393926
8	343,10	0,03688403
9	145,56	0,01564803
10	428,59	0,04607439
11	567,78	0,06103763
12	451,71	0,04855985
13	173,49	0,01865057
14	323,5	0,03477698
15	427,09	0,04591314
16	749,82	0,08060734
17	347,85	0,03739466
18	170,83	0,01836461
19	555,61	0,05972933
20	623,01	0,06697498
21	542,42	0,05831138

Tabela 91 - Experimento 2.45

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	933,63	0,09834009
2	763,93	0,08046544
3	406,39	0,04280543
4	132,27	0,01393212
5	338,33	0,03563660
6	528,31	0,05564737
7	428,85	0,04517116
8	415,93	0,04381028
9	151,67	0,01597554
10	345,48	0,03638972
11	582,01	0,06130364
12	377,84	0,03979823
13	255,15	0,02687518
14	351,35	0,03700801
15	434,75	0,04579261
16	659,59	0,06947521
17	386,13	0,04067142
18	219,01	0,02306852
19	584,39	0,06155433
20	568,66	0,05989747
21	630,22	0,06638164

Distribuidor tipo I - Sem Recheio

Tabela 92 - Experimento 2.2.1

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	716,30	0,119969786
2	639,09	0,107038239
3	431,63	0,072291719
4	166,43	0,027874594
5	113,50	0,019009592
6	162,37	0,027194603
7	229,85	0,038496517
8	393,74	0,065945698
9	97,05	0,016254457
10	91,36	0,015301465
11	161,78	0,027095787
12	118,91	0,019915688
13	112,91	0,018910776
14	331,34	0,055494609
15	216,82	0,036314182
16	204,05	0,034175394
17	192,01	0,032158870
18	127,53	0,021359412
19	603,24	0,101033887
20	529,36	0,088660067
21	331,40	0,055504659

nº Tubo massa H₂O massa H₂O (g) normalizada 563,34 0,113434363 1 650,27 0,130938621 2 3 349,94 0,070464055 0,015597376 4 77,46 5 109,84 0,022117425 127,73 0,025719763 6 7 196,57 0,039581412 8 347,80 0,070033144 9 82,76 0,016664586 65,64 0,013217296

99,00

90,79

99,53

291,83

163,97

131,01

137,85

86,47

629,49

447,86

217,07

0,019934679

0,018281510

0,020041400

0,058763003

0,033017063

0,026380225

0,027757530

0,017411633

0,126754352

0,090181265

0,043709300

Tabela 94 - Experimento 2.2.3

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	692,05	0,111640775
2	787,37	0,127017697
3	395,37	0,063780671
4	84,33	0,013604027
5	209,33	0,033768894
6	167,88	0,027082224
7	246,97	0,039840940
8	421,08	0,067928181
9	111,37	0,017966091
10	84,31	0,01360080
11	120,59	0,019453451
12	106,44	0,017170788
13	119,83	0,019330849
14	351,17	0,056650373
15	237,62	0,038332607
16	183,53	0,029606866
17	167,75	0,027061253
18	123,11	0,019859975
19	754,43	0,121703851
20	563,28	0,090867735
21	271,09	0,043731952

Tabela 95 - Experimento 2.2.4

n° Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	594,22	0,079829009
2	418,01	0,056156514
3	380,72	0,051146882
4	349,08	0,046896285
5	353,00	0,047422908
6	402,68	0,054097044
7	321,43	0,043181714
8	605,11	0,081291999
9	150,55	0,020225266
10	104,58	0,014049540
11	286,38	0,038473009
12	149,03	0,020021065
13	206,52	0,027744416
14	245,58	0,032991835
15	247,41	0,033237681
16	409,21	0,054974300
17	237,75	0,031939933
18	445,99	0,059915418
19	515,25	0,069219980
20	580,40	0,077972395
21	440,76	0,059212807

Tabela 93 - Experimento 2.2.2

10

11

12

13 14

15

16

17

18

19

20 21

Tabela 96 - Experimento 2.2.5

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	791,37	0,084869511
2	495,69	0,053159670
3	692,56	0,074272753
4	478,77	0,051345105
5	282,22	0,030266340
6	399,31	0,042823514
7	401,67	0,043076610
8	628,03	0,067352312
9	279,31	0,029954261
10	137,53	0,014749237
11	209,36	0,022452558
12	218,44	0,023426332
13	237,53	0,025473615
14	388,36	0,041649195
15	410,25	0,043996761
16	407,95	0,043750101
17	362,82	0,038910189
18	678,08	0,072719863
19	755,94	0,081069864
20	480,47	0,051527420
21	588,89	0,063154790

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	577,99	0,080218342
2	350,29	0,048616210
3	490,79	0,068115988
4	434,43	0,060293871
5	212,76	0,029528633
6	294,28	0,040842668
7	310,45	0,043086877
8	517,83	0,071868828
9	231,43	0,032119813
10	114,78	0,015930139
11	134,85	0,018715624
12	191,65	0,026598808
13	291,02	0,040390218
14	300,83	0,041751732
15	317,86	0,044115300
16	287,16	0,039854494
17	257,89	0,035792156
18	442,33	0,061390300
19	570,12	0,079126077
20	342,40	0,047521169
21	534,07	0,074122753

Tabela 98 - Experimento 2.2.7

Tabela 99- Experimento 2.2.8

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	269,96	0,037890133
2	332,51	0,046669315
3	208,03	0,029197972
4	187,91	0,026374037
5	68,62	0,009631134
6	718,09	0,100787249
7	349,59	0,049066572
8	564,86	0,079280711
9	107,42	0,015076893
10	73,42	0,010304836
11	769,69	0,108029547
12	406,78	0,057093452
13	168,25	0,023614665
14	147,87	0,020754238
15	76,17	0,010690811
16	1235,69	0,173434800
17	288,99	0,040561082
18	310,99	0,043648883
19	205,45	0,028835857
20	359,49	0,050456082
21	275,03	0,038601731

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	479,05	0,077267500
2	481,48	0,077659442
3	358,98	0,057901027
4	188,33	0,030376345
5	140,19	0,022611691
6	302,32	0,048762155
7	291,22	0,046971801
8	471,22	0,076004574
9	117,26	0,018913239
10	56,90	0,009177582
11	182,39	0,029418264
12	222,19	0,035837733
13	182,89	0,029498910
14	128,88	0,020787466
15	92,32	0,014890587
16	298,72	0,048181500
17	228,88	0,036916784
18	253,90	0,040952339
19	390,79	0,063031763
20	767,22	0,123747357
21	564,76	0,091091939

Tabela 97 - Experimento 2.2.6

Tabela 100 - Experimento 2.2.9

n° Tubo	massa	Massa H ₂ O
	H ₂ O(g)	normalizada
1	588,70	0,096893228
2	438,49	0,072170395
3	278,20	0,045788510
4	157,03	0,025845326
5	173,72	0,028592308
6	241,27	0,039710258
7	265,13	0,043637339
8	483,55	0,079586751
9	135,74	0,022341238
10	53,71	0,008840046
11	136,56	0,022476201
12	208,10	0,034250859
13	136,60	0,022482784
14	148,09	0,024373905
15	105,47	0,017359145
16	193,14	0,031788616
17	208,72	0,034352904
18	374,46	0,061631796
19	413,25	0,068016182
20	681,56	0,112176913
21	654,27	0,107685294

n^o Tubo massa H₂O massa H₂O (g) normalizada 721,63 0,100255491 1 828,73 0,115134810 2 0,070762207 3 509,34 97,45 0,013538652 4 109,97 0,015278046 5 333,00 0,046263429 6 7 386,39 0,053680860 8 435,57 0,060513399 60,50 0,008405218 9 22,81 0,003168975 10 221,06 0,030711693 11 0,005094534 36,67 12 86,52 0,012020156 13 14 427,15 0,059343615 15 362,97 0,050427138 298,64 16 0,041489821 261,63 0,036348051 17 170,91 0,023744392 18 714,40 0,099251033 19 754,18 0,104777637 20 358,39 0,049790842 21

Tabela 102 - Experimento 2.2.11

Tabela 103- Experimento 2.2.12

n° Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	666,65	0,099243892
2	679,49	0,101155377
3	542,06	0,080696233
4	108,09	0,016091311
5	87,68	0,013052883
6	278,51	0,041461661
7	226,31	0,033690670
8	493,24	0,073428421
9	88,83	0,013224083
10	53,47	0,007960055
11	232,43	0,034601752
12	91,50	0,013621565
13	101,73	0,015144500
14	390,57	0,058143984
15	293,24	0,043654509
16	183,75	0,027354781
17	239,77	0,035694454
18	164,50	0,024489042
19	713,92	0,106280956
20	741,76	0,110425484
21	339,79	0,050584387

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	686,90	0,090256882
2	744,62	0,097841141
3	648,97	0,085272978
4	128,66	0,016905591
5	104,41	0,013719204
6	293,82	0,038607187
7	299,05	0,039294396
8	536,03	0,070432954
9	97,16	0,012766572
10	71,73	0,009425136
11	243,90	0,032047829
12	103,25	0,013566783
13	119,50	0,015701991
14	459,22	0,060340319
15	328,91	0,043217923
16	284,77	0,037418041
17	270,13	0,035494383
18	193,95	0,025484528
19	867,95	0,114046383
20	762,59	0,100202352
21	364,98	0,047957427

Tabela 101 - Experimento 2.2.10

Tabela 104 - Experimento 2.2.13

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	742,39	0,085191764
2	650,03	0,074593142
3	447,14	0,051310828
4	604,65	0,069385633
5	336,73	0,038640907
6	558,16	0,064050749
7	398,18	0,045692502
8	520,64	0,059745202
9	223,18	0,025610660
10	97,58	0,011197635
11	469,28	0,053851468
12	157,18	0,018036937
13	191,87	0,022017732
14	275,61	0,031627180
15	308,49	0,035400271
16	431,60	0,049527560
17	255,03	0,029265555
18	309,13	0,035473713
19	688,31	0,078985901
20	610,71	0,070081039
21	438,45	0,050313621

nº Tubo massa H₂O massa H₂O normalizada (g) 0,078375915 1 653,42 572,32 0,068648195 2 552,74 0,066299628 3 0,065274079 544,19 4 0,037501499 5 312,65 0,062583663 521,76 6 7 372,26 0,044651553 8 420,36 0,050421015 9 236,36 0,028350726 10 94,82 0,011373396 226,86 0,027211227 11 12 139,78 0,016766223 13 183,49 0,022009116 305,78 14 0,036677462 358,53 15 0,043004678 16 425,29 0,051012355 17 344,22 0,041288233 407,74 18 0,048907281 715,07 0,085770661 19 495,79 0,059468634 20 0,054404462 453,57 21

Tabela 106 - Experimento 2.2.15

Ta	bela	107	-	Experimento	2.2.	1	6
----	------	-----	---	-------------	------	---	---

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	647,73	0,067007776
2	617,66	0,063897030
3	727,36	0,075245513
4	660,41	0,068319524
5	326,57	0,033783721
6	566,32	0,058585898
7	447,36	0,046279466
8	502,02	0,051934053
9	263,08	0,027215670
10	115,28	0,011925735
11	201,38	0,020832795
12	144,52	0,014950618
13	253,68	0,026243238
14	370,02	0,038278631
15	475,00	0,049138829
16	491,20	0,050814722
17	417,72	0,043213204
18	477,62	0,049409869
19	815,57	0,084370852
20	526,47	0,054463409
21	619,52	0,064089447

n° Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	147,55	0,030556626
2	148,81	0,030817563
3	78,85	0,016329312
4	113,46	0,023496813
5	102,69	0,021266417
6	906,13	0,187653508
7	228,08	0,047233854
8	251,79	0,052144038
9	95,09	0,019692508
10	104,24	0,021587412
11	650,03	0,134616898
12	162,49	0,033650600
13	59,28	0,012276494
14	93,59	0,019381868
15	107,45	0,022252182
16	729,22	0,151016621
17	135,43	0,028046654
18	111,15	0,023018427
19	116,21	0,024066320
20	375,12	0,077684862
21	112,08	0,023211024

Tabela 105 - Experimento 2.2.14

Tabela 108 - Experimento 2.2.17

n ^e Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	646,68	0,092819773
2	676,80	0,097142980
3	324,44	0,046567773
4	206,54	0,029645259
5	152,31	0,021861477
6	436,97	0,062719515
7	214,61	0,030803568
8	383,98	0,055113714
9	139,48	0,020019951
10	62,06	0,008907644
11	581,56	0,083472919
12	146,28	0,020995974
13	159,39	0,022877689
14	168,06	0,024122118
15	124,85	0,017920067
16	365,24	0,052423910
17	230,38	0,033067080
18	279,39	0,040101621
19	475,69	0,068277104
20	861,47	0,123649177
21	330,87	0,047490688

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	718,31	0,088829173
2	801,57	0,099125447
3	507,44	0,062752120
4	270,41	0,033440014
5	167,30	0,020689007
6	391,87	0,048460258
7	206,03	0,025478518
8	477,65	0,059068166
9	167,05	0,020658091
10	71,62	0,008856824
11	565,92	0,069983998
12	144,22	0,017834839
13	201,49	0,024917083
14	204,88	0,025336305
15	143,83	0,017786610
16	346,26	0,042819938
17	291,76	0,036080243
18	381,45	0,047171678
19	588,99	0,072836929
20	916,40	0,113325798
21	521,97	0,064548960

Tabela 110 - Experimento 2.2.19

Tabela 111 ·	 Experimento 	2.2.20
--------------	---------------------------------	--------

n° Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	875,63	0,142969103
2	679,82	0,110998088
3	478,43	0,078115994
4	77,76	0,012696319
5	45,48	0,007425779
6	169,11	0,027611554
7	214,82	0,035074886
8	545,85	0,089124042
9	34,80	0,005681994
10	10,43	0,001702966
11	125,40	0,020474773
12	84,68	0,013826186
13	55,10	0,008996491
14	200,72	0,032772699
15	186,30	0,030418263
16	210,93	0,034439744
17	212,52	0,034699352
18	172,00	0,028083421
19	618,73	0,101023575
20	609,75	0,099557360
21	516,35	0,084307409

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	726,96	0,131261917
2	600,25	0,108382808
3	380,34	0,068675247
4	92,05	0,016620804
5	54,33	0,009809976
6	117,82	0,021273907
7	177,53	0,032055310
8	497,25	0,089784841
9	74,37	0,013428454
10	36,87	0,006657350
11	94,12	0,016994569
12	109,45	0,019762596
13	154,87	0,027963757
14	215,57	0,038923918
15	140,36	0,025343792
16	127,34	0,022992864
17	184,29	0,033275914
18	156,84	0,028319466
19	595,03	0,107440270
20	636,13	0,114861400
21	366,47	0,066170841

Tabela 109 - Experimento 2.2.18

Tabela 112 - Experimento 2.2.21

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	729,24	0,129188154
2	617,75	0,109437198
3	366,62	0,064948386
4	111,96	0,019834219
5	54,32	0,009623033
6	150,56	0,026672383
7	235,98	0,041804921
8	471,51	0,083530122
9	81,93	0,014514269
10	47,21	0,008363464
11	95,10	0,016847394
12	126,85	0,022472049
13	156,03	0,027641418
14	220,73	0,039103315
15	151,92	0,026913313
16	140,47	0,024884894
17	154,34	0,027342027
18	160,21	0,028381924
19	650,01	0,115152202
20	527,10	0,093378142
21	394,95	0,069967173

nº Tubo massa H₂O massa H₂O normalizada (g) 661,45 0,087362343 1 512,85 0,067735698 2 431,21 0,056952930 3 4 354,45 0,046814699 5 205,5 0,027141827 6 450,37 0,059483526 7 389,41 0,051432111 8 424,32 0,056042920 9 152,44 0,020133820 10 138,87 0,018341535 11 371,24 0.049032272 96,73 0,012775810 12 168,28 0,022225920 13 0,040852742 14 309,31 0,038187428 15 289,13

406,26

303,40

419,74

517,61

518,17

450,60

0,053657609

0,040072167

0,055438007

0,068364385

0,068438348

0,059513904

Tabela 114 - Experimento 2.2.23

Tabela 115 - Experimento 2.2.24

16

17

18

19

20

21

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	622,10	0,095809398
2	336,81	0,051871987
3	399,92	0,061591536
4	296,17	0,045613035
5	293,27	0,045166407
6	334,04	0,051445380
7	332,83	0,051259029
8	358,23	0,055170874
9	136,62	0,021040797
10	90,61	0,013954814
11	204,03	0,031422587
12	93,57	0,014410682
13	197,72	0,030450786
14	200,79	0,030923596
15	313,41	0,048268162
16	334,85	0,051570128
17	255,61	0,039366404
18	412,77	0,06357056
19	443,72	0,068337158
20	346,91	0,053427485
21	489,12	0,075329196

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
-	738,41	0,091810637
2	385,01	0,047870442
3	527,57	0,065595723
4	335,62	0,041729508
5	383,93	0,047736160
6	389,04	0,048371515
7	420,82	0,052322900
8	476,92	0,059298126
9	175,44	0,021813434
10	130,26	0,016195953
11	187,04	0,023255727
12	134,35	0,016704485
13	259,26	0,032235243
14	369,00	0,045879830
15	347,44	0,043199155
16	415,33	0,051640297
17	307,39	0,038219514
18	510,15	0,063429797
19	523,41	0,065078487
20	431,99	0,053711728
21	594,37	0,073901340

Tabela 113 - Experimento 2.2.22

Tabela 116 - Experimento 2.2.25

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	131,68	0,030310773
2	92,63	0,021322045
3	99,51	0,022905718
4	90,44	0,020817940
5	74,03	0,017040602
6	780,26	0,179604220
7	180,00	0,041433317
8	243,51	0,056052372
9	74,53	0,017155695
10	74,09	0,017054413
11	455,98	0,104959798
12	140,75	0,032398552
13	72,92	0,016785097
14	81,08	0,018663407
15	73,25	0,016861058
16	946,82	0,217943849
17	145,89	0,033581703
18	109,74	0,025260512
19	91,12	0,020974466
20	282,77	0,065089438
21	103,33	0,023785026

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	571,53	0,081403630
2	554,92	0,079037850
3	345,56	0,049218481
4	203,32	0,028959085
5	147,98	0,021076950
6	489,69	0,069747071
7	253,26	0,036072093
8	374,14	0,053289161
9	124,45	0,017725547
10	96,26	0,013710415
11	417,96	0,059530490
12	235,44	0,033533971
13	196,79	0,028029010
14	188,40	0,026834014
15	173,98	0,024780158
16	377,15	0,053717878
17	240,11	0,034199124
18	278,03	0,039600111
19	522,12	0,074366111
20	840,43	0,119703345
21	389.42	0.055465507

Tabela 118 - Experimento 2.2.27

Tabela	119 -	Experimento	2.2.28
	~ ~ ~	where the second second second	

n° Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	641,88	0,108580293
2	369,40	0,062487630
3	257,82	0,043612780
4	146,18	0,024727780
5	166,90	0,028232771
6	301,36	0,050977997
7	118,19	0,019992997
8	385,77	0,065256776
9	151,03	0,025548205
10	61,93	0,010476066
11	386,37	0,065358272
12	143,43	0,024262590
13	134,27	0,022713086
14	158,66	0,026838894
15	133,81	0,022635273
16	319,69	0,054078697
17	203,40	0,034407103
18	223,09	0,037737860
19	488,96	0,082712376
20	722,16	0,122160441
21	397,27	0,067202114

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	595,43	0,080736490
2	625,81	0,084855823
3	392,40	0,053206924
4	146,21	0,019825139
5	218,99	0,029693640
6	456,50	0,061898473
7	255,03	0,034580433
8	636,59	0,086317522
9	85,46	0,011587828
10	20,23	0,002743058
11	249,66	0,033852295
12	9,77	0,001324749
13	137,39	0,018629203
14	178,49	0,024202100
15	343,50	0,046576397
16	496,71	0,067350691
17	275,37	0,037338406
18	490,97	0,066572384
19	557,16	0,075547324
20	736,16	0,099818576
21	467,15	0,063342545

Tabela 120 - Experimento 2.2.29

nº Tubo	massa H2O	Massa H ₂ O
	(g)	normalizada
1	596,80	0,070782102
2	644,77	0,076471474
3	340,75	0,040413876
4	151,71	0,017993218
5	366,22	0,043434687
6	595,54	0,070632662
7	435,84	0,051691808
8	563,33	0,066812469
9	145,24	0,017225859
10	171,97	0,020396109
11	349,55	0,041457580
12	119,14	0,014130328
13	146,47	0,017371740
14	265,72	0,031515114
15	364,50	0,043230691
16	595,85	0,070669429
17	379,13	0,044965848
18	466,03	0,055272425
19	495,73	0,058794925
20	839,57	0,099575284
21	397,65	0,047162371

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	487,74	0,075028728
2	485,42	0,074671844
3	259,63	0,039938714
4	114,44	0,017604231
5	284,65	0,043787525
6	465,98	0,071681401
7	325,48	0,050068377
8	433,54	0,066691177
9	90,63	0,013941554
10	139,60	0,021474577
11	272,90	0,041980030
12	119,96	0,018453369
13	81,45	0,012529401
14	179,87	0,027669285
15	260,64	0,040094082
16	479,90	0,073822706
17	308,30	0,047425589
18	408,48	0,062836213
19	372,18	0,057252208
20	628,49	0,096680209
21	301.43	0,046368781

Tabela 122 - Experimento 2.2.31

Tabela	123	-	Expe	rimento	2.2.3	2
--------	-----	---	------	---------	-------	---

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	814,38	0,087615035
2	861,58	0,092693045
3	384,48	0,041364263
4	372,92	0,040120581
5	235,28	0,025312588
6	620,95	0,066804877
7	200,00	0,021516991
8	655,21	0,070490738
9	154,84	0,016658454
10	31,30	0,003367409
11	416,62	0,044822044
12	38,40	0,004131262
13	165,93	0,017851571
14	451,09	0,048530497
15	273,28	0,029400816
16	563,26	0,060598301
17	265,73	0,028588550
18	720,55	0,077520339
19	642,22	0,069093209
20	808,94	0,087029773
21	618,02	0,066489654

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	666,94	0,073260323
2	912,22	0,100203214
3	407,23	0,044732362
4	366,53	0,040261652
5	349,34	0,038373409
6	583,73	0,064120083
7	329,81	0,036228127
8	510,01	0,056022277
9	198,75	0,021831783
10	57,22	0,006285357
11	315,84	0,034693586
12	71,95	0,007903380
13	197,92	0,021740611
14	336,52	0,036965190
15	296,25	0,032541714
16	607,37	0,066716829
17	406,95	0,044701605
18	598,00	0,065687578
19	562,71	0,061811132
20	780,96	0,085784901
21	547,45	0,060134890

Tabela 121 - Experimento 2.2.30

Tabela 124 - Experimento 2.2.33

Tabela]	25 -	Experimento	2.2.34
----------	------	-------------	--------

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	737,17	0,077661833
2	882,78	0,093002039
3	386,28	0,040695108
4	374,37	0,039440374
5	428,97	0,045192556
6	657,58	0,069276921
7	346,94	0,036550587
8	468,33	0,049339184
9	206,61	0,021766636
10	54,51	0,005742700
11	379,45	0,039975558
12	101,17	0,010658393
13	171,36	0,018053002
14	359,73	0,037898030
15	364,21	0,038370004
16	653,58	0,068855516
17	449,99	0,047407041
18	528,31	0,055658156
19	574,89	0,060565421
20	843,39	0,088852250
21	522,43	0,05503869

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	167,28	0,041238435
2	178,39	0,043977310
3	34,46	0,008495196
4	12,41	0,003059355
5	16,74	0,004126802
6	547,95	0,135082499
7	56,02	0,013810241
8	339,89	0,083790840
9	0,00	0,000000000
10	58,31	0,014374780
11	1355,90	0,334261083
12	57,32	0,014130722
13	35,35	0,008714602
14	0,00	0,000000000
15	90,42	0,022290646
16	796,97	0,196471757
17	79,97	0,019714477
18	71,74	0,017685589
19	5,57	0,001373135
20	98,42	0,024262833
21	53,30	0,013139697

Tabela 126 - Experimento 2.2.35

Tabela 127 - Experimento 2.2.36

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	273,36	0,019902555
2	426,35	0,031041317
3	96,41	0,007019335
4	16,66	0,001212967
5	51,34	0,003737918
6	133,59	0,009726303
7	55,71	0,004056085
8	251,58	0,018316816
9	5,36	0,000390246
10	7,68	0,000559159
11	29,01	0,002112135
12	11125,35	0,810004718
13	31,23	0,002273766
14	10,86	0,000790685
15	57,72	0,004202427
16	248,99	0,018128245
17	81,39	0,005925772
18	65,92	0,004799446
19	204,19	0,014866486
20	422,22	0,030740623
21	140,00	0,010192997

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	343,24	0,099582799
2	339,47	0,098489025
3	127,66	0,037037467
4	26,00	0,007543272
5	46,95	0,013621409
6	92,07	0,026711888
7	41,87	0,012147570
8	235,49	0,068321738
9	10,31	0,002991198
10	0,00	0,000000000
11	1062,61	0,308290636
12	0,00	0,000000000
13	28,23	0,008190253
14	15,79	0,004581087
15	37,03	0,010743360
16	165,00	0,047870766
17	57,67	0,016731558
18	72,68	0,021086347
19	226,86	0,065817952
20	335,33	0,097287903
21	182,52	0,052953771

Tabela 128- Experimento 3.1.1.1

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O normalizada
1	664,63	0,08461483
2	304,93	0,03882100
3	323,16	0,04114188
4	347,70	0,04426610
5	602,06	0,07664897
6	171,29	0,02180713
7	424,58	0,05405378
8	1135,10	0,14451092
9	453,93	0,05779036
10	315,50	0,04016668
11	27,95	0,00355835
12	121,69	0,01549250
13	424,41	0,05403214
14	252,57	0,03215498
15	121,28	0,01544030
16	159,82	0,02034687
17	273,88	0,03486798
18	652,75	0,08310237
19	208,75	0,02657621
20	347,36	0,04422281
21	521,43	0,06638387

Tabela 129- Experimento 3.1.1.2

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
.,		normalizada
1	459,61	0,07302015
2	249,97	0,03971377
3	399,62	0,06348929
4	282,17	0,04482952
5	396,13	0,06293482
6	132,80	0,02109849
7	300,85	0,04779729
8	774,05	0,12297654
9	270,71	0,04300882
10	277,14	0,04403038
11	22,50	0,00357467
12	97,89	0,01555219
13	386,61	0,06142234
14	384,72	0,06112206
15	119,91	0,01905060
16	150,66	0,02393598
17	259,47	0,04122308
18	482,10	0,07659323
19	184,60	0,02932817
20	295,63	0,04696797
21	367,15	0,05833065

Tabela 130 - Experimento 3.1.1.3

-	Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O	<u> </u>
			normalizada	
-	1	601,59	0,07639869	
	2	392,14	0,04979967	
	3	468,29	0,05947031	
	4	507,80	0,06448786	
	5	328,90	0,04176853	
	6	203,83	0,02588531	
	7	334,38	0,04246446	
	8	728,76	0,09254859	
	9	515,22	0,06543016	
	10	384,01	0,04876720	
	11	37,13	0,00471531	
	12	151,02	0,01917873	
	13	302,61	0,03842984	
	14	519,69	0,06599783	
	15	133,12	0,01690552	
	16	211,03	0,02679967	
	17	375,71	0,04771314	
	18	519,58	0,06598386	
	19	375,41	0,04767505	
	20	328,24	0,04168471	
	21	455,89	0,05789557	

Tabela 131 - Experimento 3.1.1.4

N ^o Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	532,15	0,07967761
2	542,97	0,08129766
3	463,57	0,06940928
4	247,36	0,03703665
5	524,90	0,07859208
6	211,20	0,03162249
7	280,94	0,04206451
8	793,68	0,11883590
9	148,36	0,02221360
10	281,61	0,04216482
11	84,08	0,01258911
12	94,16	0,01409836
13	313,96	0,04700852
14	387,05	0,05795211
15	263,68	0,03948021
16	263,78	0,03949518
17	196,53	0,02942599
18	284,71	0,04262898
19	216,14	0,03236215
20	165,43	0,02476946
21	382,53	0,05727534

Tabela 132 - Experimento 3.1.1.5

Nº Tubo	Massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	560,70	0,0718836
2	492,42	0,06312988
3	521,90	0,06690931
4	294,94	0,03781229
5	339,00	0,04346093
6	237,46	0,03044316
7	326,55	0,04186479
8	782,48	0,10031653
9	254,69	0,03265210
10	287,11	0,03680846
11	150,93	0,01934973
12	136,49	0,01749847
13	420,71	0,05393642
14	376,14	0,04822240
15	314,94	0,04037635
16	303,29	0,03888278
17	355,27	0,04554679
18	449,26	0,05759662
19	345,38	0,04427886
20	279,44	0,03582514
21	571,01	0,07320538

Nº Tubo Massa H₂O massa H₂O (g) normalizada 673,44 1 0,07486435 2 639,29 0,07106799 3 453,05 0,05036424 4 260,90 0,02900349 5 277,36 0,03083330 6 282,98 0,03145806 7 352,19 0,03915193 8 913,68 0,10157112 9 301,36 0,03350131 10 383,54 0,04263702 11 110,27 0,01225839 12 256,65 0,02853103 13 514,20 0,05716210 14 626,37 0,06963171 15 283,70 0,03153810 16 381,45 0,04240468 17 417,60 0,04642337 18 542,69 0,06032925 19 329,99 0,03668402 20 324,07 0.03602591 21 670,69 0,07455864

Tabela 133 - Experimento 3.1.1.6

Tabela 134 - Experimento 3.1.1.7

21

645,23

Massa H₂O (g) Massa H₂O Nº Tubo Normalizada 268,81 0,0311913 1 513,60 0,0595955 2 3 126,11 0,0146332 4 265,54 0,0308119 5 324,63 0,0376684 205,22 6 0,0238127 7 343,31 0,0398359 8 322,17 0,0373829 9 353,35 0,0410009 10 303.32 0.0351957 11 244,13 0,0283276 12 190,71 0,0221290 13 531,84 0,0617120 14 744,58 0,0863972 15 374,22 0,0434226 16 453,76 0,0526520 17 329,50 0,0382335 18 500,11 0,0580302 19 919,10 0,1066476 20 658,86 0,0764507

0,0748692

Tabela 135	- Ex	perimento	• 3	.1.]	1.8
------------	------	-----------	-----	------	-----

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
	- (6)	Normalizada
1	364,48	0,03741776
2	615,99	0,06323794
3	327,90	0,03366243
4	439,18	0,04508651
5	451,69	0,04637079
6	301,98	0,03100146
7	373,83	0,03837763
8	624,71	0,06413314
9	414,99	0,04260315
10	502,88	0,05162599
11	192,41	0,01975294
12	349,00	0,03582857
13	652,02	0,06693680
14	672,72	0,06906188
15	406,17	0,04169768
16	466,23	0,04786348
17	416,88	0,04279717
18	556,78	0,05715940
19	459,55	0,04717770
20	413,10	0,04240912
21	738,34	0,07579847

Nº Tubo	Massa H ₂ O (g)	massa H ₂ O
		normalizada
1	461,98	0,05861262
2	471,74	0,05985090
3	282,23	0,03580727
4	339,86	0,04311894
5	314,72	0,03992936
6	272,73	0,03460198
7	268,37	0,03404881
8	551,69	0,06999437
9	357,15	0,04531256
10	253,27	0,03213303
11	200,80	0,02547603
12	303,22	0,03847032
13	513,47	0,06514529
14	686,75	0,08712979
15	324,03	0,04111054
16	395,62	0,05019335
17	374,09	0,04746179
18	386,37	0,04901978
19	364,79	0,04628187
20	249,23	0,03162047
21	509.81	0.06468094

Tabela 136 - Experimento 3.1.1.9

Utilizando Distribuidor Tipo II - tubo 1" - SEM RECHEIO

Tabela 137 - Experimento 3.1.2.1

Tabela 138- Experimento 3.1.2.2

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O normalizada	Nº Tubo	Massa H ₂ O (g)	Massa H2O normalizada
1	441,87	0,10046085	- 1	639,34	0,10189416
2	78,19	0,01777680	2	195,20	0,03110980
3	119,96	0,02727337	3	460,35	0,07336781
4	271,72	0,06177659	4	337,80	0,05383653
5	47,70	0,01084478	5	491,87	0,07839128
6	12,75	0,00289876	6	15,77	0,00251333
7	44,73	0,01016954	7	150,77	0,02402881
8	855,2	0,19443301	8	635,33	0,10125507
9	107,97	0,02454740	9	157,77	0,02514443
10	59,98	0,01363668	10	25,09	0,00399869
11	6,38	0,00145052	11	5,95	0,00094828
12	32,42	0,00737081	12	91,72	0,01461778
13	249,68	0,05676571	13	464,28	0,07399415
14	97,41	0,02214654	14	549,95	0,08764772
15	81,65	0,01856344	15	130,45	0.02079034
16	12,29	0,00279418	16	18,76	0,00298986
17	403,24	0,09167817	17	381,36	0,06077886
18	747,97	0,17005386	18	503,34	0,08021930
19	78,19	0,01777680	19	229,06	0,03650620
20	27,76	0,00631134	20	169,65	0,02703780
21	621,37	0,14127086	21	620,74	0.09892980

Nº Tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	294,76	0,05164876
2	136,45	0,02390919
3	511,74	0,08966867
4	391,33	0,06857006
5	101,07	0,01770980
6	19,42	0,00340283
7	180,96	0,03170837
8	523,04	0,09164869
9	216,81	0,03799012
10	86,18	0,01510073
11	12,81	0,00224461
12	139,81	0,02449794
13	683,08	0,11969140
14	550,93	0,09653566

0,02019446

0,00864901

0,04971255

0,09231980

0,05886620

0,03302255

0,06290860

		- an an a limada
		Bormanzaga
1	309,09	0,10916199
2	56,56	0,01997542
3	32,56	0,01149929
4	161,73	0,05711854
5	47,04	0,01661322
6	6,65	0,00234860
7	17,06	0,00602512
8	841,79	0,29729682
9	50,73	0,01791643
10	19,14	0,00675972
11	2,44	0,00086174
12	10,56	0,00372950
13	166,1	0,05866190
14	27,02	0,00954271
15	80,94	0,02858576
16	8,14	0,00287482
17	275,09	0,09715414
18	508,27	0,17950683
19	207,27	0,07320200
20	3,30	0,00116547
21	271,96	0,09604871

Massa H₂O (g)

Tabela 140 - Experimento 3.1.2.4

Nº Tubo

Tabela 141 - Experimento 3.1.2.5

115,25

49,36

283,71

526,87

335,95

188,46

359,02

15

16 17

18

19

20

21

Tabela 142 - Experimento 3.1.2.6

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O normalizada
1	349,81	0,05950151
2	216,10	0,03675789
3	168,61	0,02868000
4	484,84	0,08246967
5	470,79	0,08007981
6	13,37	0,00227419
7	64,87	0,01103417
8	947,91	0,16123633
9	27,89	0,00474400
10	9,35	0,00159040
11	2,94	0,00050008
12	49,49	0,00841808
13	506,6	0,08617097
14	300,45	0,05110554
15	415,81	0,07072789
16	10,69	0,00181833
17	414,95	0,07058161
18	435,87	0,07414003
19	395,64	0,06729704
20	33,69	0,00573056
21	559,34	0,09514187

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O
		normalizada
1	343,72	0,06406985
2	168,01	0,03131728
3	333,88	0,06223566
4	232,00	0,04324510
5	316,77	0,05904633
6	44,37	0,00827062
7	39,30	0,00732557
8	650,47	0,12124844
9	45,77	0,00853159
10	15,44	0,00287804
11	6,01	0,00112027
12	44,62	0,00831723
13	596,26	0,11114363
14	571,23	0,10647800
15	198,5	0,03700065
16	26,31	0,00490422
17	304,00	0,05666599
18	534,25	0,09958488
19	289,29	0,05392403
20	143,75	0,02679518
21	460,82	0,08589744

Massa H₂O

Tabela 143 - Experimento 3.1.2.7

Tabela 🛛	44-	Experimento	3.1.2.8
----------	-----	-------------	---------

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O normalizada	Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O normalizada
1	158,32	0,04957104	1	332,49	0,06564967
2	57,16	0,01789718	2	150,41	0,02969824
3	144,11	0,04512180	3	211,84	0,04182750
4	223,28	0,06991045	4	453,77	0,08959624
5	85,26	0,02669547	5	398,59	0,07870103
6	6,99	0,00218862	6	12,05	0,00237926
7	31,24	0,00978145	7	63,70	0,01257747
8	412,16	0,12905003	8	637,62	0,12589716
9	131,39	0,04113908	9	15,55	0,00307033
10	13,89	0,00434905	10	6,18	0,00122023
11	3,43	0,00107396	11	3,60	0,00071081
12	17,95	0,00562026	12	45,91	0,00906486
13	258,81	0,08103513	13	480,79	0,09493130
14	101,08	0,03164882	14	416,2	0,08217809
15	259,45	0,08123552	15	401,70	0,07931509
16	8,66	0,00271150	16	10,93	0,00215811
17	157,20	0,04922036	17	139,85	0,02761318
18	310,46	0,09720709	18	303,91	0,06000659
19	302,85	0,09482435	19	385,66	0,07614802
20	14,02	0,00438976	20	38,80	0,00766100
21	496,09	0,15532908	21	555,06	0,10959580

152

Tabela 145 - Experimento 3.1.2.9

Tabela 146- Experimento 3.1.2.10

Nº tubo	Massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	400,22	0,06007406
2	201,12	0,03018863
3	420,37	0,06309863
4	363,28	0,05452927
5	277,40	0,04163846
6	52,41	0,00786688
7	128,57	0,01929869
8	678,90	0,10190465
9	171,16	0,02569156
10	37,35	0,00560633
11	14,68	0,00220351
12	152,82	0,02293868
13	609,20	0,09144250
14	692,13	0,10389051
15	139,52	0,02094231
16	49,34	0,00740606
17	209,93	0,03151104
18	704,91	0,10580882
19	537,14	0,08062611
20	167,6	0,02515719
21	654,06	0,0981761

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O normalizada
1	242,53	0.06422764
2	0,00	0,00000000
3	41,02	0,01086306
4	647,36	0,17143614
5	435,56	0,11534652
6	0,00	0,00000000
7	231,55	0,06131988
8	26,65	0,00705755
9	30,40	0,00805063
10	0,00	0,0000000
11	0,00	0,0000000
12	0,00	0,0000000
13	0,00	0,0000000
14	152,72	0,04044384
15	400,01	0,10593205
16	0,00	0,0000000
17	288,61	0,07643071
18	8,93	0,00236487
19	769,02	0,20365456
20	0,00	0,0000000
21	501,74	0,13287254

Tabela	147 -	Experimento	3.1.2.11
--------	-------	-------------	----------

Tabela 148 - Experimento 3.1.2.12

Nº Tubo	Massa H ₂ O (g)	Massa H ₂ O normalizada	Nº Tubo	Massa H ₂ O (g)	Massa H2O normalizada
1	480,44	0,08694787	1	530,62	0,09515782
2	12,84	0,00232373	2	120,41	0,02159352
3	119,38	0,02160485	3	171,79	0,03080766
4	749,18	0,13558322	4	752,74	0,13499133
5	422,00	0,07637166	5	358,75	0,06433581
6	0,00	0,00000000	6	27,40	0,00491373
7	439,61	0,07955864	7	456,88	0,08193379
8	171,24	0,03099024	8	154,31	0,02767292
9	113,77	0,02058958	9	79,19	0,01420140
10	0,00	0,00000000	10	50,96	0,00913882
11	0,00	0,0000000	11	5,91	0,00105986
12	0,00	0,0000000	12	3,83	0,00068685
13	12,38	0,00224048	13	45,04	0,00807717
14	335,42	0,06070280	14	216,36	0,03880055
15	482,26	0,08727724	15	492,82	0,08837902
16	0,00	0,00000000	16	12,32	0,00220939
17	431,58	0,07810540	17	430,23	0,07715455
18	400,19	0,07242458	18	449,31	0,08057623
19	816,02	0,14767962	19	694,56	0,12455772
20	11,57	0,00209389	20	17,93	0,00321545
21	527,73	0,0955062	21	504,85	0,09053640

Com distribuidores tipo II - tubo 1in, com diâmetros de furos de : 1,0mm; 3,0 e 5,0mm

Tabela 149 - Experimento 3.2.1

Tabela	150	-	Exper	imento	3.2	.2
--------	-----	---	-------	--------	-----	----

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	128,03	0,027956651
2	18,89	0,004124823
3	234,06	0,051109379
4	535,66	0,116966803
5	152,04	0,033199479
6	34,51	0,007535609
7	386,38	0,084369998
8	337,92	0,073788265
9	250,64	0,054729790
10	82,63	0,018043100
11 (22,71	0,004958959
12	109,37	0,023882051
13	206,07	0,044997478
14	416,35	0,090914252
15	20,84	0,004550626
16	26,08	0,005694833
17	78,99	0,017248269
18	637,74	0,139257008
19	540,69	0,118065154
20	25,24	0,005511410
21	334,75	0,073096063

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	572,18	0,067803801
2	230,70	0,027338140
3	340,45	0,040343605
4	582,33	0,069006584
5	451,48	0.053500751
6	135,91	0,016105447
7	460,50	0,054569629
8	662,91	0,078555380
9	411,70	0,048786789
10	175,64	0,020813484
11	63,55	0,007530727
12	281,99	0,033416047
13	561,63	0,066553617
14	1067,42	0,126490148
15	122,09	0,014467765
16	83,18	0,009856898
17	170,13	0,020160545
18	586,91	0,069549318
19	789,09	0,093507814
20	178,99	0,021210462
21	509,98	0,060433049

Tabela 151 - Experimento 3.2.3

nº Tubo	massa de H ₂ O	Massa H ₂ O
	(g)	normalizada
1	508,19	0,098536084
2	125,02	0,024240897
3	454,43	0,088112227
4	416,46	0,080749990
5	29,22	0,005665645
6	16,42	0,003183775
7	287,52	0,055749021
8	501,35	0,097209834
9	111,49	0,021617482
10	62,77	0,012170861
11	22,22	0,004308372
12	187,37	0,036330321
13	152,73	0,029613759
14	153,41	0,029745608
15	174,51	0,033836817
16	142,46	0,027622445
17	169,3	0,032826618
18	214,55	0,041600419
19	666,61	0,129253112
20	120,70	0,023403265
21	640,67	0.124223446

n^o Tubo Massa H₂O massa H₂O <u>normalizada</u> (g) 594,21 0,084134619 ļ 155,61 0,022032931 2 3 628,30 0,088961446 4 445,64 0,063098486 5 401,88 0,056902477 6 39,87 0,005645222 7 347,36 0,049182951 8 672,44 0,095211260 9 198,61 0,028121332 10 137,03 0,019402176 11 51,77 0,007330151 273,39 12 0,038709486 345,05 13 0,048855876 408,61 14 0,057855382 15 184,89 0,026178707 172,86 16 0,024475371 276,39 17 0,039134258 346,58 0,049072510 18 605,83 19 0,085779903 20 119,33 0,016896020 21 656,96 0,093019436

Tabela 153- Experimento 3.2.5

Tabela 154- Experimento 3.2.6

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	493,30	0,061516475
2	129,63	0,016165377
3	658,56	0,082125056
4	689,24	0,085950974
5	466,16	0,058132009
6	27,34	0,003409407
7	130,67	0,016295070
8	934,01	0,116474768
9	508,60	0,063424446
10	101,99	0,012718559
11	32,06	0,003998010
12	364,71	0,045480790
13	750,30	0,093565399
14	473,45	0,059041101
15	231,40	0,028856502
16	89,75	0,011192183
17	37,21	0,004640235
18	405,33	0,050546266
19	452,44	0,056421070
20	341,12	0,042539023
21	701,72	0,08750728

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	659,13	0,071543161
2	425,8	0,046217101
3	850,94	0,092362564
4	764,27	0,082955246
5	370,29	0,040191945
6	44,43	0,004822512
7	69,76	0,007571876
8	826,65	0,089726084
9	522,62	0,056726119
10	85,93	0,009326997
11	98,12	0,010650122
12	227,67	0,024711713
13	615,39	0,066795542
14	411,6	0,044675807
15	297,45	0,032285760
16	124,47	0,013510199
17	167,98	0,018232853
18	834,79	0,090609614
19	467,46	0,050738953
20	479,87	0,052085956
21	868,42	0,094259875

Tabela 152 - Experimento 3.2.4

Tabela 155- Experimento 3.2.7

n ^o Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	677,05	0,116254112
2	206,79	0,035507256
3	622,08	0,106815388
4	290,99	0,049964972
5	331,19	0,056867587
6	90,41	0,015524015
7	202,31	0,034738010
8	590,91	0,101463286
9	51,22	0,008794824
10	84,90	0,014577910
11	43,72	0,007507023
12	169,21	0,029054513
13	195,87	0,033632218
14	144,62	0,024832242
15	186,53	0,032028476
16	136,96	0,023516968
17	166,25	0,028546261
18	272,54	0,046796981
19	588,06	0,100973921
20	178,42	0,030635933
21	593,85	0,101968104

nº Tubo massa H₂O Massa H₂O normalizada (g) 0,078166926 1 675,27 200,86 0,023250861 2 0,094437666 815,83 3 4 0,071350022 616,38 5 0,065197562 563,23 6 0,006174454 53,34 7 329,45 0,038135995 8 801,01 0,092722154 9 354,60 0,041047273 10 237,36 0,027475975 11 45,17 0,005228723 12 492,21 0,056976532 281,25 13 0,032556530 494,7 14 0,057264765 240,27 15 0,027812826 16 154,97 0,017938793 364,27 17 0,042166638 360,91 18 0,041777696 667,12 0,077223510 19 110,02 0,012735536 20 780,6 0,090359563 21

Tabela 157- Experimento 3.2.9

Tabela 158- Experimento 3.2.10

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	476,78	0,053958500
2	228,16	0,025821493
3	709,58	0,080305114
4	746,52	0,084485715
5	476,15	0,053887201
6	81,70	0,009246213
7	248,60	0,028134743
8	740,62	0,083817996
9	332,22	0,037598248
10	138,34	0,015656317
11	72,39	0,008192575
12	436,89	0,049444039
13	502,82	0,056905518
14	577,21	0,065324438
15	300,02	0,033954086
16	257,98	0,029196304
17	322,94	0,036548005
18	586,19	0,066340729
19	561,65	0,06356347
20	186,63	0,021121429
21	852,66	0,09649787

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	498,21	0,054233019
2	191,68	0,020865468
3	812,74	0,088471415
4	591,43	0,064380551
5	586,59	0,063853689
6	47,67	0,005189153
7	239,44	0,026064419
8	859,30	0,093539738
9	401,20	0,043672923
10	109,14	0,011880516
11	42,42	0,004617661
12	444,38	0,048373314
13	495,04	0,053887946
14	705,38	0,076784663
15	301,6	0,032830892
16	224,38	0,024425051
17	348,11	0,037893772
18	629,96	0,068574763
19	652,27	0,071003334
20	144,37	0,015715503
21	861,16	0,09374221

Tabela 156- Experimento 3.2.8

Tabela 159- Experimento 3.2.11

	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	547,73	0,057974773
2	211,53	0,022389505
3	827,86	0,087625281
4	779,12	0,082466370
5	585,07	0,061927045
6	43,66	0,004621216
7	191,52	0,020271536
8	859,33	0,09095624
9	401,77	0,042525559
10	93,05	0,009848927
11	34,09	0,003608274
12	494,45	0,052335323
13	512,55	0,054251127
14	688,52	0,072876765
15	269,14	0,028487266
16	181,33	0,019192970
17	352,17	0,037275621
18	653,51	0,069171113
19	680,70	0,072049053
20	147,94	0,015658788
21	892,69	0,094487247

201,71 0,021573077 2 800,27 0,085589642 3 760,91 0,081380052 4 5 591,21 0,063230475 44,15 0,004721885 6 7 215,68 0,023067182 8 889,10 0,095090095 9 327,55 0,035031786 10 105,73 0,011307925 11 35,31 0,003776438 456,63 12 0,048837015 557,34 13 0,059608046 720,59 0,077067790 14 266,33 0,028484248 15 16 214,50 0,022940980 402,10 0,043004980 17

Tabela 161 - Experimento 3.2.13

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	380,53	0,040954945
2	472,82	0,050887754
3	787,03	0,084704938
4	723,50	0,077867454
5	241,60	0,026002456
6	189,59	0,020404825
7	396,75	0,042700639
8	517,82	0,055730926
9	339,95	0,036587479
10	361,64	0,038921888
11	87,93	0,009463559
12	581,61	0,062596393
13	368,03	0,039609619
14	675,76	0,072729386
15	123,76	0,013319801
16	166,02	0,017868078
17	355,29	0,038238463
18	248,88	0,026785974
19	743,43	0,080012442
20	253,35	0,027267062
21	1276,14	0,137345920

Tabela 162 - Experimento 3.2.14

621,40

600,60

167,86

828,34

n° Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	378,48	0,038306568
2	476,87	0,048264778
3	848,66	0,085894240
4	629,89	0,063752177
5	380,91	0,038552512
6	203,07	0,020553040
7	421,32	0,042642473
8	704,82	0,071335963
9	347,21	0,035141681
10	289,14	0,029264323
11	132,19	0,013379162
12	453,38	0,045887317
13	512,73	0,051894226
14	585,53	0,059262431
15	242,23	0,024516487
16	168,46	0,017050107
17	425,67	0,043082744
18	428,72	0,043391439
19	737,42	0,074635461
20	298,97	0,030259233
21	1214,62	0,122933639

Massa H₂O normalizada

0,058049771

0,066459324

0,064234745

0,017952788

0,088591755

Tabela 160 - Experimento 3.2.12

massa H₂O

(g)

542,77

nº Tubo

1

18

19

20

21

Tabo

Tabela 163 - Experimento 3.2.15

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	574,78	0,098384844
2	357,56	0,061203391
3	890,92	0,152498391
4	526,74	0,090161858
5	373,90	0,064000301
6	72,69	0,012442316
7	179,92	0,030796829
8	476,75	0,081605091
9	130,35	0,022311953
10	130,62	0,022358169
11	88,70	0,015182741
12	214,15	0,036655963
13	34,31	0,005872828
14	374,71	0,064138949
15	231,32	0,039594944
16	87,64	0,015001301
17	57,68	0,009873061
18	122,90	0,021036740
19	501,16	0,085783340
20	119,22	0,020406836
21	296,14	0,050690156

nº Tubo massa H₂O Massa H₂O normalizada (g) 1 597,47 0,065803487 2 382,82 0,042162604 852,08 3 0,093845440 830,09 4 5 0,091423530 353,93 0,038980749 6 7 82,70 0.009108321

279,63

745,30

349,15

240,61

150,54

357,70

278,19

658,14

247,02

158,59

266,99

635,19

665,17

207,27 741,03

Tabela 1	65 -	Experimento	3.2.17
----------	------	-------------	--------

Tabela 166 -	Experimento	3.2.18
--------------	-------------	--------

n ^o Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	393,07	0,074860352
2	352,16	0,067069025
3	879,62	0,167524011
4	225,16	0,042881820
5	81,29	0,015481716
6	56,59	0,010777590
7	67,66	0,012885876
8	386,55	0,073618615
9	216,53	0,041238233
10	126,34	0,024061508
11	16,00	0,003047207
12	123,54	0,023528247
13	333,22	0,063461894
14	199,92	0,038074851
15	102,57	0,019534501
16	54,42	0,010364313
17	99,69	0,018986004
18	364,12	0,069346812
19	389,65	0,074209012
20	171,45	0,032652727
21	611,16	0,116395687

n° Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	348,66	0,050634713
2	939,54	0,136446218
3	459,99	0,066802792
4	551,84	0,080141857
5	241,42	0,035060610
6	41,92	0,006087900
7	171,75	0,024942672
8	497,53	0,072254600
9	174,8	0,025385613
10	129,43	0,018796681
11	37,23	0,005406787
12	207,01	0,030063362
13	382,53	0,055553539
14	238,00	0,034563935
15	167,43	0,024315293
16	69,22	0,010052587
17	155,17	0,022534814
18	438,6	0,063696395
19	464,11	0,067401126
20	336,54	0,048874566
21	833,07	0,120983939

0,030797578

0,082085023

0,038454295

0,026500037

0,016580007

0,039395965

0,030638981

0,072485492

0,027206014

0,017466609

0,029405448

0,069957851

0,073259755 0,022828073

0,081614739

Tabela 164 - Experimento 3.2.16

8

9

10

11

12 13

14

15

16

17 18

19

20

21

Tabela 167- Experimento 3.2.19

Tabela 168 - Experimento 3.2.

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	620,99	0,095838446
2	294,48	0,045447601
3	785,11	0,121167365
4	412,16	0,063609356
5	328,39	0,050680989
6	65,54	0,010114900
7	176,38	0,027221026
8	598,31	0,092338202
9	154,32	0,023816469
10	101,55	0,015672385
11	62,31	0,009616409
12	451,60	0,069696198
13	89,02	0,013738608
14	504,64	0,077881952
15	207,64	0,032045435
16	71,91	0,011097993
17	167,53	0,025855191
18	138,67	0,021401178
19	565,52	0,087277666
20	110,20	0,017007354
21	573,28	0,08847528

n [°] Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	570,62	0,069176793
2	278,99	0,033822217
3	712,08	0,086326121
4	818,70	0,099251763
5	348,09	0,042199275
6	50,48	0,006119737
7	246,08	0,029832507
8	863,93	0,104735038
9	377,43	0,045756190
10	193,56	0,023465459
11	31,17	0,003778768
12	335,64	0,040689949
13	411,71	0,049911986
14	608,68	0,073790843
15	183,46	0,022241026
16	86,43	0,010477989
17	297,87	0,036111057
18	424,89	0,051509810
19	590,05	0,071532310
20	110,70	0,013420264
21	708,16	0,085850896

4ª PARTE- COMPARAÇÃO DOS 2 DISTRIBUIDORES

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	302,70	0,04668011
2	250,06	0,03856237
3	82,07	0,01265622
4	26,63	0,00410668
5	174,80	0,02695634
6	642,95	0,09915091
7	230,07	0,03547966
8	296,99	0,04579956
9	67,45	0,01040163
10	280,52	0,04325968
11	646,89	0,09975850
12	529,25	0,08161695
13	54,33	0,00837836
14	192,39	0,02966894
15	285,99	0,04410322
16	580,98	0,08959436
17	252,56	0,03894790
18	274,34	0,04230665
19	394,98	0,06091084
20	402,32	0,06204276
21	516,29	0,07961835

Tabela 169 - Experimento 4.1

n° Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	214,50	0,04406264
2	260,58	0,05352840
3	175,51	0,03605330
4	39,49	0,00811204
5	204,35	0,04197762
6	540,09	0,11094541
7	233,69	0,04800465
8	105,10	0,02158966
9	40,52	0,00832363
10	264,80	0,05439527
11	344,53	0,07077343
12	361,52	0,07426352
13	43,41	0,00891729
14	117,00	0,02403417
15	199,85	0,04105323
16	485,74	0,09978082
17	121,57	0,02497294
18	184,74	0,03794933
19	276,94	0,05688908
20	268,85	0,05522723
21	385,29	0,07914636

Tabela 171 - Experimento 4.3

Tabela 172 - Experimento 4.4

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	272,14	0,03219643
2	493,26	0,05835677
3	299,71	0,03545819
4	200,76	0,02375158
5	428,15	0,05065371
6	722,47	0,08547422
7	384,11	0,04544341
8	346,39	0,04098082
9	153,28	0,01813430
10	492,18	0,05822900
11	678,31	0,08024973
12	635,61	0,07519796
13	108,52	0,01283882
14	280,41	0,03317484
15	340,45	0,04027807
16	942,37	0,11149022
17	215,03	0,02543984
18	215,16	0,02545522
19	480,66	0,05686608
20	365,14	0,04319910
21	398,38	0,04713167

n ^o Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	237,49	0,03143098
2	522,49	0,06914975
3	308,10	0,04077597
4	165,08	0,02184777
5	412,18	0,05455060
6	557,53	0,07378718
7	357,02	0,04725037
8	258,84	0,03425658
9	146,88	0,01943906
10	435,38	0,05762104
11	500,71	0,06626724
12	475,11	0,06287917
13	100,76	0,01333524
14	255,44	0,03380660
15	340,25	0,04503092
16	1046,34	0,13847950
17	217,09	0,02873111
18	228,08	0,03018560
19	351,64	0,04653834
20	317,11	0,04196842
21	322,40	0,04266853

Tabela 170 - Experimento 4.2

Tabela 173 - Experimento 4.5

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	365,76	0,04378524
2	746,42	0,08935416
3	367,22	0,04396002
4	191,74	0,02295325
5	396,82	0,04750344
6	565,34	0,06767702
7	339,24	0,04061052
8	389,27	0,04659963
9	132,94	0,01591429
10	297,41	0,03560304
11	531,33	0,06360567
12	478,25	0,05725145
13	162,34	0,01943377
14	297,19	0,03557670
15	339,74	0,04067038
16	949,21	0,11363021
17	271,07	0,03244987
18	230,99	0,02765188
19	418,04	0,05004369
20	450,32	0,05390794
21	432,86	0,0518178

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	419,00	0,04432183
2	663,50	0,07018505
3	443,22	0,04688383
4	251,13	0,02656454
5	430,67	0,04555629
6	749,17	0,07924723
7	343,44	0,03632909
8	336,42	0,03558652
9	185,11	0,01958094
10	368,59	0,03898946
11	525,39	0,05557577
12	653,15	0,06909023
13	168,19	0,01779114
14	378,93	0,04008323
15	534,26	0,05651404
16	1056,85	0,11179363
17	267,08	0,02825173
18	289,22	0,03059370
19	504,28	0,05334275
20	432,02	0,04569909
21	453,96	0,04801990

Tabela 175 - Experimento 4.7

Tabela 176 - Experimento 4.8

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	749,23	0,074608
2	228,27	0,022731
3	845,61	0,084205
4	954,10	0,095008
5	382,69	0,038108
6	47,16	0,004696
7	177,75	0,017700
8	884,81	0,088109
9	539,40	0,053713
10	101,33	0,010090
11	41,64	0,004146
12	417,01	0,041525
13	585,51	0,058305
14	783,25	0,077995
15	331,82	0,033042
16	121,38	0,012087
17	404,46	0,040276
18	600,38	0,059785
19	804,29	0,080090
20	134,50	0,013393
21	907,68	0,090386

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	713,23	0,079837
2	238,93	0,026745
3	745,44	0,083442
4	893,46	0,100011
5	315,63	0,035331
6	56,96	0,006376
7	138,13	0,015462
8	863,41	0,096647
9	477,23	0,053420
10	85,34	0,009553
11	33,40	0,003739
12	308,87	0,034574
13	398,37	0,044592
14	753,62	0,084358
15	280,36	0,031383
16	123,06	0,013775
17	378,39	0,042356
18	567,14	0,063484
19	636,93	0,071296
20	129,98	0,014550
21	795,74	0,089073

Tabela 174 - Experimento 4.6

Tabela 177 - Experimento 4.9

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	743,66	0,065507
2	266,20	0,023449
3	810,72	0,071414
4	856,13	0,075414
5	439,84	0,038744
6	53,09	0,004677
7	246,84	0,021743
8	1000,41	0,088123
9	819,32	0,072171
10	257,83	0,022711
11	47,20	0,004158
12	488,63	0,043042
13	1105,85	0,097411
14	1067,96	0,094073
15	380,66	0,033531
16	189,53	0,016695
17	368,48	0,032458
18	568,08	0,050040
19	754,04	0,066421
20	166,79	0,014692
21	721,16	0,063525

nº Tubo massa H₂O massa H₂O normalizada (g) 621,53 0,066640 1 224,23 0,024042 2 697,79 0,074817 3 4 640,39 0,068662 5 381,21 0,040873 6 48,73 0,005225 7 185,46 0,019885 8 843,29 0,090417 726,75 0,077922 9 10 220,98 0,023693 46,75 0,005013 11 421,20 0,045161 12 13 674,49 0,072319 761,50 14 0,081648 0,033616 15 313,52 169,79 0,018205 16 322,59 0,034588 17 573,46 0,061486 18 19 656,53 0,070393 20 147,79 0,015846 648,67 0,069550 21

Tabela179 - Experimento 4.11

Tabela 180 - Experimento 4.12

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normaliza da
1	568,79	0,065173
2	209,70	0,024028
3	554,06	0,063485
4	534,55	0,061250
5	324,65	0,037199
6	41,08	0,004707
7	220,56	0,025272
8	755,71	0,086591
9	855,83	0,098063
10	251,05	0,028766
11	41,54	0,004760
12	352,99	0,040446
13	756,12	0,086638
14	815,13	0,093399
15	246,16	0,028206
16	143,07	0,016393
17	293,95	0,033681
18	540,27	0,061905
19	639,45	0,073270
20	111,06	0,012726
21	471,63	0,054040

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	494,60	0,059059
2	192,07	0,022934
3	332,61	0,039716
4	562,31	0,067144
5	320,11	0,038223
6	65,86	0,007864
7	178,93	0,021365
8	719,03	0,085857
9	771,57	0,092131
10	374,94	0,044770
11	69,26	0,008270
12	625,85	0,074731
13	613,57	0,073264
14	739,36	0,088285
15	269,77	0,032212
16	164,43	0,019634
17	323,95	0,038682
18	393,77	0,047019
19	558,77	0,066721
20	121,98	0,014565
21	481,99	0,057553

Tabela 178 - Experimento 4.10

Tabela 181 - Experimento 4.13

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normaliza da
1	409,31	0,05612768
2	331,11	0,04540431
3	218,87	0,03001311
4	6,49	0,00088996
5	216,64	0,02970731
6	535,21	0,07339204
7	446,85	0,06127545
8	528,28	0,07244175
9	24,64	0,00337882
10	480,22	0,06585140
11	817,24	0,11206613
12	1104,97	0,15152184
13	76,71	0,01051906
14	117,37	0,01609466
15	246,56	0,03381017
16	718,9	0,09858100
17	169,37	0,02322530
18	185,53	0,02544128
19	244,25	0,03349341
20	226,42	0,03104842
21	187,54	0,02571690

nº Tubo massa H₂O massa H₂O (g) normalizada 1 379,29 0,05285859 2 348,03 0,04850214 247,48 0,03448929 3 55,65 0,00775549 4 5 258,88 0,03607802 6 531,69 0,07409735 7 495,66 0,06907614 8 566,84 0,07899593 9 39,62 0,00552152 10 465,41 0,06486044 664,09 0,09254887 11 12 981,51 0,13678514 13 69,64 0,00970517 14 129,62 0,01806410 15 265,46 0.03699502 609,49 16 0,08493971 165,5 0,02306440 17 200,18 0,02789747 18 267,96 19 0,03734343 20 216,63 0,03018998 21 216,93 0,03023179

Tabela 183 - Experimento 4.15

Tabela	184	-	Experimento	4.16
--------	-----	---	-------------	------

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	731,45	0,06867611
2	668,96	0,0628089
3	397,89	0,03735804
4	92,42	0,00867735
5	360,55	0,03385217
6	669,52	0,06286148
7	575,02	0,05398884
8	657,97	0,06177704
9	113,67	0,01067252
10	723,23	0,06790433
11	758,13	0,07118110
12	1056,02	0,09915010
13	175,53	0,01648058
14	316,97	0,02976043
15	479,85	0,04505329
16	902,60	0,08474544
17	240,94	0,02262194
18	365,68	0,03433383
19	480,58	0,04512183
20	390,66	0,03667921
21	493,08	0,04629546

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	519,95	0,06453467
2	398,78	0,04949540
3	253,70	0,03148850
4	59,55	0,00739117
5	318,57	0,03953997
6	519,55	0,06448502
7	520,21	0,06456694
8	493,13	0,06120585
9	73,99	0,00918342
10	469,09	0,05822207
11	653,45	0,08110429
12	1006,01	0,12486301
13	95,62	0,01186807
14	196,18	0,02434929
15	278,53	0,03457033
16	793,41	0,09847572
17	225,98	0,02804797
18	280,81	0,03485331
19	290,64	0,03607338
20	240,04	0,02979306
21	369,72	0,04588856

Tabela 185 - Experimento 4.17

n ^e Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	907,61	0,07777405
2	647,03	0,05544468
3	491,39	0,04210773
4	247,73	0,02122824
5	424,84	0,03640499
6	710,28	0,06086464
7	618,22	0,05297592
8	661,29	0,05666664
9	189,72	0,01625731
10	745,14	0,06385183
11	757,18	0,06488355
12	964,76	0,08267130
13	273,55	0,02344079
14	450,61	0,03861324
15	481,89	0,04129366
16	868,64	0,07443467
17	335,91	0,02878448
18	426,96	0,03658665
19	464,83	0,03983177
20	456,45	0,03911368
21	545,8	0,04677018

nº Tubo massa H₂O massa H₂O (g) normalizada 736,02 1 0.07823500 561,73 2 0,05970890 3 348,81 0,03707664 161,95 0,01721442 4 5 366,14 0,03891873 6 628,36 0,06679131 7 474,64 0,05045170 8 522,60 0,05554959 9 108,13 0,01149364 10 549,96 0,05845781 493,03 0,05240646 11 880,41 12 0,09358288 214,22 0,02277044 13 14 281,34 0,02990494 15 361,42 0,03841702 16 1027,51 0,10921883 17 280,74 0,02984116 18 363,16 0,03860197 19 316,46 0,03363801

267

464,18

0,02838068

0,04933986

Tabela 187 - Experimento 4.19

Tabela 18	8 -	Experimento	4.20
-----------	-----	-------------	------

20

21

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	807,81	0,09685542
2	199,30	0,02389582
3	712,96	0,08548302
4	629,25	0,07544629
5	214,13	0,02567392
6	63,09	0,00756441
7	265,64	0,03184991
8	1106,73	0,13269555
9	322,34	0,03864817
10	188,25	0,02257094
11	70,00	0,00839291
12	246,47	0,02955145
13	500,26	0,05998055
14	477,13	0,05720729
15	224,79	0,02695204
16	183,26	0,02197265
17	254,83	0,03055380
18	692,69	0,08305267
19	438,71	0,05260078
20	156,75	0,01879413
21	585,98	0,07025827

n° Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	814,79	0,09392608
2	187,21	0,02158090
3	685,93	0,07907156
4	634,17	0,07310486
5	313,29	0,03611495
6	106,33	0,01225734
7	299,29	0,03450108
8	1143,52	0,13182091
9	327,72	0,03777839
10	310,60	0,03580486
11	114,91	0,01324641
12	333,55	0,03845045
13	481,21	0,05547217
14	492,57	0,05678171
15	229,17	0,02641790
16	210,94	0,02431641
17	272,39	0,03140015
18	615,58	0,07096187
19	436,47	0,05031470
20	169,84	0,01957855
21	<u>495,32</u>	0,05709872

Tabela 186 - Experimento 4.18

Tabela 189 - Experimento 4.21

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	829,27	0,07705151
2	311,28	0,02892254
3	713,12	0,06625945
4	743,57	0,06908871
5	392,35	0,03645515
6	144,06	0,01338532
7	292,95	0,02721941
8	1199,93	0,11149134
9	652,97	0,06067062
10	381,57	0,03545353
11	130,83	0,01215605
12	430,06	0,03995897
13	668,61	0,06212381
14	660,31	0,06135262
15	334,42	0,03107259
16	251,02	0,02332349
17	348,35	0,03236689
18	757,14	0,07034956
19	599,39	0,05569224
20	223,44	0,02076090
21	697,90	0,06484529

nº Tubo massa H₂O massa H₂O normalizada (g) 753,85 0,08096077 1 240,33 0,02581057 2 630,48 0,06771128 3 4 623,49 0,06696057 5 383,89 0,04122840 98,20 0,01054633 6 7 316,36 0,03397592 8 1101,84 0,11833364 9 449,05 0,04822635 10 316,63 0,03400492 106,72 11 0.01146134 356,42 0,03827822 12 13 572,14 0,06144577 14 618,29 0,06640211 286,70 15 0,03079054 248,83 0,02672344 16 683,68 0,07342476 17 292,21 0,03138230 18 444,64 0,04775273 19 20 205,01 0,02201733 582,54 0,06256269 21

Tabela 191 - Experimento 4.23

Tabela 1	92 -	Experimento	4.24
----------	------	-------------	------

Tabela 190 - Experimento 4.22

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	935,80	0,07276946
2	358,28	0,02786049
3	842,42	0,06550807
4	846,86	0,06585333
5	538,33	0,04186149
6	96,17	0,00747835
7	397,77	0,03093130
8	1313,13	0,10211131
9	943,25	0,07334879
10	427,11	0,03321283
11	130,89	0,01017824
12	655,58	0,05097906
13	847,64	0,06591398
14	823,98	0,06407414
15	426,42	0,03315917
16	294,60	0,02290862
17	441,79	0,03435437
18	852,28	0,06627480
19	607,60	0,04724805
20	258,44	0,02009675
21	821,45	0,0638774

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	613,02	0,06327269
2	270,09	0,02787727
3	618,92	0,06388166
4	520,66	0,05373978
5	507,04	0,05233399
6	102,38	0,01056712
7	316,07	0,03262308
8	1077,29	0,11119219
9	633,10	0,06534524
10	395,40	0,04081110
11	135,71	0,01400727
12	500,24	0,05163213
13	592,03	0,06110621
14	604,04	0,06234582
15	283,23	0,02923351
16	230,93	0,02383538
17	354,36	0,03657517
18	623,21	0,06432445
19	591,39	0,06104016
20	192,81	0,01990083
21	526,62	0,05435494

Tabela 193 - Experimento 4.25

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	604,64	0,06262811
2	507,33	0,05254882
3	312,52	0,03237056
4	64,70	0,00670157
5	375,34	0,03887741
6	713,73	0,07392757
7	602,16	0,06237124
8	621,08	0,06433096
9	61,71	0,00639187
10	599,75	0,06212161
11	766,25	0,07936755
12	1163,12	0,12047501
13	79,67	0,00825215
14	206,20	0,02135803
15	352,02	0,03646194
16	828,66	0,08583192
17	286,04	0,02962779
18	288,50	0,02988259
19	415,75	0,04306304
20	403,45	0,04178902
21	401,83	0,04162122

nº Tubo massa H₂O massa H₂O (g) normalizada 1 432,71 0,05345002 2 427,06 0,05275211 3 262,67 0,03244602 4 51,46 0,00635654 5 337,63 0,04170537 6 543,95 0,06719082 7 411,98 0,05088937 8 588,41 0,07268269 9 56,01 0,00691857 10 775,82 0,09583230 605,17 11 0,07475295 1003,2 12 0,12391917 91,19 0,01126414 13 173,06 14 0,02137704 15 297,99 0,03680888 16 650,83 0,08039305 195,95 0,02420451 17 230,33 0,02845126 18 19 351,78 0,04345323 20 303,23 0,03745615 21 305,17 0,03769579

Tabela 195 - Experimento 4.27

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	980,97	0,06713537
2	763,43	0,05224743
3	627,21	0,04292484
4	277,21	0,01897163
5	709,28	0,04854152
6	944,27	0,06462371
7	667,24	0,04566440
8	1015,15	0,06947458
9	195,19	0,01335836
10	909,11	0,06221744
11	968,88	0,06630796
12	1217,30	0,08330927
13	264,09	0,01807372
14	452,45	0,03096466
15	617,86	0,04228494
16	1144,56	0,07833110
17	467,25	0,03197754
18	469,52	0,03213289
19	651,94	0,04461730
20	582,27	0,03984925
21	686,64	0,04699209

Tabela 196 - Experimento 4.28

-

nº Tubo	massa H ₂ O	massa H ₂ O	
	(g)	normalizada	
1	584,56	0,06126025	
2	554,49	0,05810900	
3	457,41	0,04793529	
4	254,67	0,02668870	
5	318,08	0,03333389	
6	592,75	0,06211854	
7	552,28	0,05787740	
8	514,34	0,05390139	
9	153,69	0,01610628	
10	566,98	0,05941791	
11	590,28	0,06185969	
12	1133,31	0,11876771	
13	117,85	0,01235035	
14	379,87	0,03980931	
15	348,84	0,03655745	
16	787,96	0,08257600	
17	261,73	0,02742857	
18	236,28	0,02476148	
19	386,21	0,04047373	
20	345,18	0,03617390	
21	405,48	0,04249317	

Tabela 194 - Experimento 4.26

Tabela 197 - Experimento 4.29

nº Tubo	massa H ₂ O	Massa H ₂ O	
	(g)	normalizada	
1	954,84	0,08035568	
2	846,10	0,07120454	
3	556,10	0,04679925	
4	219,86	0,01850258	
5	542,47	0,04565220	
6	721,38	0,06070858	
7	501,10	0,04217066	
8	707,03	0,05950094	
9	141,61	0,01191736	
10	533,88	0,04492930	
11	736,71	0,06199869	
12	960,79	0,08085641	
13	251,48	0,02116359	
14	347,75	0,02926531	
15	390,95	0,03290085	
16	926,52	0,07797237	
17	425,91	0,03584295	
18	460,13	0,03872278	
19	483,48	0,04068783	
20	477,99	0,04022581	
21	696,59	0,05862235	

nº Tubo	massa H ₂ O	massa H ₂ O	
	(g)	normalizada	
1	906,91	0,06469717	
2	926,02	0,06606044	
3	587,16	0,04188683	
4	315,74	0,02252427	
5	649,98	0,04636829	
6	1045,31	0,07457035	
7	587,06	0,04187970	
8	812,23	0,05794288	
9	212,65	0,01517003	
10	920,17	0,06564311	
11	588,93	0,04201310	
12	1132,58	0,08079602	
13	227,25	0,01621157	
14	455,41	0,03248805	
15	467,17	0,03332698	
16	571,62	0,04077824	
17	431,69	0,03079591	
18	508,39	0,03626754	
19	967,22 0,06899956		
20	841,67	0,06004307	
21	862,61	0,06153689	

Tabela 199 - Experimento 4.31

Tabela 200 - Experimento 4.32

nº Tubo	massa H ₂ O	Massa H ₂ O	
	(g)	normalizada	
1	761,74	0,07216912	
2	439,05	0,04159668	
3	721,49	0,06835574	
4	747,55	0,07082472	
5	286,93	0,02718445	
6	227,05	0,02151127	
7	230,15	0,02180498	
8	832,31	0,07885509	
9	552,42	0,05233763	
10	251,03	0,02378320	
11	100,54	0,00952541	
12	417,20	0,03952655	
13	467,05	0,04424946	
14	651,78	0,06175124	
15	305,22	0,02891729	
16	298,39	0,02827020	
17	425,89	0,04034986	
18	833,94	0,07900952	
19	715,84	0,06782044	
20	301,70	0,02858380	
21	987,66	0,09357333	

n" Tubo	massa H ₂ O	massa H ₂ O
	, (g)	normalizada
1	676,76	0,06725505
2	375,99	0,03736513
3	679 <u>,</u> 69	0,06754623
4	671,64	0,06674624
5	316,44	0,03144717
6	206,47	0,02051857
7	302,27	0,03003899
8	832,53	0,08273516
9	578,62	0,05750209
10	284,40	0,02826310
11	94,15	0,00935644
12	430,60	0,04279216
13	459,95	0,04570891
14	577,50	0,05739079
15	331,31	0,03292492
16	333,84	0,03317635
17	426,16	0,04235093
18	676,08	0,06718747
19	651,55	0,06474973
20	293,41	0,02915850
21	863.23	0.08578607

Tabela 198 - Experimento 4.30

Tabela 201 - Experimento 4.33

nº Tubo	massa H₂O	Massa H ₂ O	
	(g)	normalizada	
1	1074,76	0,07693233	
2	506,43	0,03625073	
3	821,13	0,05877725	
4	963,88	0,06899543	
5	551,84	0,03950122	
6	261,02	0,01868406	
7	460,25	0,03294513	
8	1058,2	0,07574695	
9	711,95	0,05096205	
10	349,10	0,02498890	
11	182,36	0,01305350	
12	658,00	0,04710026	
13	686,48	0,04913888	
14	815,11	0,05834634	
15	508,67	0,03641108	
16	637,76	0,04565146	
17	535,47	0,03832944	
18	863,42	0,06180441	
19	905,81	0,06483873	
20	425,12	0,03043049	
21	993,44	0,07111137	

massa H₂O massa H₂O normalizada (g) 902,77 0,06851837 1 630,98 2 0,04789008 753,47 0,05718681 3 4 869,65 0,06600463 5 587,82 0,04461432 6 259,50 0,01969551 7 388,74 0,02950456 8 879,88 0.06678107 9 712,86 0,05410460 10 353,47 0,02682764 162,95 11 0,01236757 549,89 12 0,04173551 13 627,83 0,04765100 14 829,88 0,06298617 422,32 15 0,03205321 591,64 0,04490425 16 550,81 0,04180534 17 955,07 0,07248784 18 818,58 0,06212853 19

360,45

967,03

0,02735741

0,07339557

Tabela 203 - Experimento 4.35

Tabela 204 - Experimento 4	.36
----------------------------	-----

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	939,60	0,06391572
2	595,67	0,04052009
3	705,77	0,04800957
4	959,22	0,06525035
5	739,75	0,05032104
6	273,15	0,01858086
7	491,16	0,03341086
8	969,83	0,06597209
9	829,81	0,05644732
10	535,61	0,03643454
11	191,54	0,01302939
12	700,29	0,04763680
13	777,75	0,05290597
14	1084,13	0,07374728
15	477,67	0,03249321
16	496,93	0,03380336
17	667,64	0,0454158
18	997,91	0,06788222
19	873,45	0,05941590
20	404,96	0,02754716
21	988,77	0,06726047

nº Tubo	massa H ₂ O	massa H ₂ O	
	(g)	normalizada	
1	976,57	0,06713104	
2	556,28	0,03823961	
3	612,74 0,04212076		
4	913,64	0,06280513	
5	749,43	0,05151706	
6	317,22	0,02180623	
7	466,35	0,03205767	
8	1019,19	0,07006081	
9	993,88	0,06832096	
10	570,29	0,03920268	
11	188,73	0,01297361	
12	723,81	0,04975590	
13	657,26	0,04518114	
14	943,42	0,06485225	
15	479,92	0,03299050	
16	552,05	0,03794883	
17	598,68	0,04115425	
18	909,60	0,06252741	
19	1029,89	0,07079634	
20	396,24	0,02723819	
21	892,03	0,06131962	

nº Tubo

20

21

Tabela 205 - Experimento 4.37

Tabela 206 - Expe	erimento 4.38
-------------------	---------------

n° Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
1	685,65	0,05593668
2	524,38	0,04277995
3	581,94	0,04747581
4	327,96	0,02675562
5	595,25	0,04856167
6	951,36	0,07761383
7	753,81	0,06149731
8	691,98	0,05645309
9	255,53	0,02084664
10	1327,57	0,10830578
11	1144,84	0,09339831
12	1001,00	0,08166355
13	145,44	0,01186528
14	548,83	0,04477463
15	434,69	0,03546287
16	712,76	0,05814837
17	281,80	0,02298980
18	221,61	0,01807938
19	464,82	0,03792093
20	328,90	0,02683231
21	277,49	0,02263818

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	577,61	0,04998274
2	420,71	0,03640560
3	596,28	0,05159832
4	480,30	0,04156214
5	667,66	0,05777510
6	968,74	0,08382867
7	615,26	0,05324073
8	696,56	0,06027592
9	200,27	0,01733011
10	1171,44	0,10136905
11	778,94	0,06740457
12	1195,47	0,10344845
13	134,80	0,01166474
14	559,05	0,04837667
15	439,97	0,03807224
16	680,77	0,05890955
17	179,08	0,01549646
18	214,87	0,01859350
19	477,78	0,04134408
20	268,21	0,02320921
21	232,42	0,02011216

Tabela 207 - Experimento 4.39

Tabela 208 - Experimento 4.40

.

nº Tubo	massa H ₂ O	Massa H ₂ O
	(g)	normalizada
I	597,80	0,06233856
2	494,92	0,05161024
3	427,25	0,04455361
4	282,13	0,02942051
5	513,52	0,05354985
6	863,42	0,09003741
7	555,79	0,05795776
8	476,53	0,04969253
9	201,70	0,02103327
10	771,73	0,08047598
11	353,76	0,03689008
12	873,79	0,09111879
13	130,67	0,01362626
14	481,25	0,05018473
15	337,07	0,03514965
16	613,79	0,06400600
17	202,46	0,02111252
18	219,46	0,02288528
19	516,06	0,05381472
20	317,78	0,03313809
21	358,69	0,03740418

nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada
1	570,53	0,05602841
2	507,83	0,04987101
3	468,92	0,04604989
4	359,18	0,03527296
5	542,39	0,05326494
6	690,80	0,06783942
7	574,13	0,05638194
8	527,29	0,05178206
9	223,56	0,02195452
10	823,69	0,08088977
11	701,67	0,06890690
12	976,34	0,09588063
13	146,83	0,01441931
14	544,93	0,05351438
15	376,93	0,03701609
16	606,37	0,05954804
17	191,71	0,01882672
18	239,87	0,02355623
19	460,04	0,04517783
20	307,10	0,03015849
21	342,76	0,03366045
Tabela 209 - Experimento 4.41

nº Tubo	massa H ₂ O	Massa H ₂ O	
	(g)	normalizada	
1	913,46	0,06759421	
2	880,09	0,06512489	
3	717,94	0,05312612	
4	491,41	0,03636335	
5	663,46	0,04909471	
6	740,71	0,05481105	
7	643,91	0,04764805	
8	673,67	0,04985023	
9	358,25	0,02650978	
10	904,37	0,06692157	
11	729,37	0,05397192	
12	1293,82	0,09574008	
13	277,33	0,02052186	
14	601,51	0,04451053	
15	482,88	0,03573215	
16	642,09	0,04751337	
17	327,11	0,02420548	
18	364,83	0,02699669	
19	688,45	0,05094392	
20	508,02	0,03759246	
21	611,20	0,04522757	

nº Tubo massa H₂O massa H₂O (g) normalizada 788,25 0,06257065 1 2 754,22 0,05986937 3 612,87 0,04864912 471,08 4 0,03739395 5 564,74 0,04482860 909,04 0,07215886 6 7 564,89 0,04484051 8 575,41 0,04567558 9 258,92 0,02055286 10 914,2 0,07256846 694,53 0,05513123 11 756,88 0,06008052 12 13 257,53 0,02044252 14 664,48 0,05274588 15 494,80 0,03927682 16 791,57 0,06283419 17 327,94 0,02603161 369,48 18 0,02932902 700,75 19 0,05562497 502,23 0,03986661 20 0,04952865 623,95 21

Tabela 211 - Experimento 4.43

Tabela 212 - Experimento 4.44

p° Tubo	massa H ₂ O	Massa H ₂ O	nº Tubo	massa	massa H ₂ O
	(g)	normalizada		H ₂ O(g)	normalizada
1	723,53	0,07142885	1	756,91	0,07129690
2	391,94	0,03869338	2	475,08	0,04475001
3	789,72	0,07796331	3	847,44	0,07982435
4	775,93	0,07660192	4	829,16	0,07810247
5	356,66	0,03521045	5	477,82	0,04500811
6	249,5	0,02463132	6	233,57	0,02200105
7	330,41	0,03261898	7	286,52	0,02698866
8	780,60	0,07706296	8	773,87	0,07289444
9	622,43	0,06144799	9	634,94	0,05980797
10	296,06	0,02922785	10	296,83	0,02795981
11	179,99	0,01776910	11	169,59	0.01597448
12	331,93	0,03276903	12	372,08	0.03504796
13	445,20	0,04395136	13	442,91	0,04171977
14	833,74	0,08230909	14	820,31	0.07726884
15	319,54	0,03154586	15	327,05	0,03080637
16	288,42	0.02847361	16	317.38	0.02989551
17	294,69	0,02909260	17	335,70	0,03162116
18	625,55	0,0617560	18	628.37	0.05918912
19	513,93	0,05073657	19	578,96	0.05453496
20	278,28	0,02747256	20	247,79	0.02334050
21	701,33	0,06923721	21	764,03	0,07196757

Tabela 210 - Experimento 4.42

Tabela 213 - Experimento 4.45

nº Tubo	massa H ₂ O Massa H ₂ O			
1	(g)	normalizada		
1	1009,30	0,07397597		
2	526,69	0,03860339		
3	936,61	0,06864820		
4	1117,93	0,08193793		
5	593,12	0,04347233		
6	279,78	0,02050629		
7	397,86	0,02916088		
8	936,62	0,06864894		
9	877,66	0,06432750		
10	345,01	0,02528728		
11	239,70	0,01756865		
12	529,50	0,03880935		
13	532,12	0,03900138		
14	1041,25	0,07631772		
15	431,92	0,03165729		
16	417,51	0,03060112		
17	429,10	0,03145060		
18	779,74	0,05715052		
19	752,78	0,05517451		
20	466,20	0,03416982		
21	1003,22	0,07353034		

nº Tubo massa H₂O massa H₂O normalizada (g) 839,3 0,07406969 1 412,94 0,03644268 2 758,87 0,06697161 3 4 938,13 0,08279161 5 411,76 0,03633854 225,49 0,01989989 6 7 417,61 0,03685481 8 889,89 0.07853435 9 680,34 0,06004120 10 346,27 0,03055893 11 204,16 0,01801748 412,59 12 0,03641179 13 481,75 0,04251528 14 855,12 0,07546584 15 357,78 0,03157471 379,48 0,03348977 16 372,37 0,03286230 17 608,93 0,05373914 18 651,32 0,05748013 19 359,02 0,03168414 20 728,1 0,06425610 21

Tabela 215 - Experimento 4.47

Tabela 216 - Experimento 4.48

nº Tubo	massa H ₂ O	Massa H ₂ O	nº Tubo	massa H ₂ O	massa H ₂ O
	(g)	normalizada		(g)	normalizada
1	925,45	0,06119786	1	851,81	0,06156227
2	553,26	0,03658580	2	517,55	0,03740453
3	1133,67	0,07496697	3	953,10	0,06888273
4	1146,42	0,07581010	4	1112,06	0,08037113
5	674,44	0,04459915	5	563,80	0,04074712
6	334,14	0,02209590	6	534,81	0,03865195
7	469,14	0,03102314	7	462,12	0,03339847
8	1046,02	0,06917088	8	1026,65	0,07419836
9	773,62	0,05115770	9	751,54	0,05431552
10	606,21	0,04008726	10	615,31	0,04446987
11	361,34	0,02389458	11	254,59	0,01839980
12	531,29	0,03513298	12	553,96	0,04003596
13	843,23	0,05576085	13	581,49	0,04202562
14	1102,55	0,07290908	14	1018,78	0,07362957
15	494,26	0,03268427	15	409,54	0,02959840
16	508,12	0,03360080	16	485,70	0,03510266
17	528,33	0,03493724	17	424,34	0,03066803
18	770,18	0,05093022	18	708,49	0,05120420
19	811,19	0,05364211	19	713,74	0,05158363
20	529,22	0,03499609	20	451,01	0,03259553
21	980,18	0,06481703	21	846,17	0,06115465

Tabela 214 - Experimento 4.46