UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA SISTEMAS DE PROCESSOS QUÍMICOS E INFORMÁTICA

TRANSFERÊNCIA DE MASSA COM REAÇÃO QUÍMICA EM PROCESSOS DE BORBULHAMENTO

Autor: Arlan Lucas de Souza Orientador: Prof. Dr. Alberto Luiz de Andrade

> Dissertação de Mestrado apresentada à Faculdade de Engenharia Química como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia Química

Campinas Dezembro de 1997 Dissertação de Mestrado defendida e aprovada em 17 de Dezembro de 1997 pela banca examinadora constituída pelos professores doutores:

"olisoly

Prof. Dr. Alberto Luiz de Andrade Orientador

Toulo 1 au

Prof. Dr. Paulo Laranjeira da Cunha Lage

In

Prof. Dr. Satoshi Tobinaga

Esta versão corresponde à redação final da Dissertação de Mestrado em Engenharia Química defendida pelo Eng. Arlan Lucas de Souza e aprovada pela Comissão Julgadora em 17/12/1997.

Kolmosy

Prof. Dr. Alberto Luiz de Andrade Orientador

Agradecimentos

Deixo sinceros agradecimentos aos meus pais, que constituíram, e constituem, uma sólida base em que me apoiei, e apóio, durante a condução da minha jornada; ao Prof. Dr. Alberto Luiz de Andrade, que compartilhou comigo seus conhecimentos de vida e acadêmico; a todos os amigos que contribuíram direta ou indiretamente na concretização deste trabalho e a CAPES pelo auxílio financeiro.

Resumo

Neste trabalho, estuda-se transferência de massa entre fases com reação química. Um modelo matemático, que propicia o cálculo do fluxo mássico associado a um processo de borbulhamento, é confrontado com dados experimentais obtidos em laboratório.

O modelo, que poderia denominar-se modelo difusivo transiente, é utilizado para descrever a transferência de massa interna à bolha e tem como hipótese fundamental a transferência de massa exclusivamente por difusão molecular na fase gasosa (bolhas). O líquido, por sua vez, absorve e reage quimicamente com um dos componentes proveniente da fase gasosa (bolhas). Salienta-se o caráter transiente das condições interfaciais e a ausência de quaisquer efeitos térmicos.

Para obtenção das pressões parciais dentro da partícula esférica, bem como os fluxos de massa, a equação da difusão (2ª Lei de Fick) foi resolvida numericamente pelo método de Colocação Ortogonal.

Um pequena coluna de borbulhamento em acrílico, com seção retangular de $13,7 \times 15,0$ cm foi construída, onde um difusor cônico distribuía o gás através de cinco furos (1 mm de diâmetro) pela base da coluna.

Tabela 1 - Gases e solventes utilizados para verificação do modelo					
GÁS	SOLVENTE	REAÇÃO	SOLUBILIDADE		
SO ₂ - N ₂	HC1	A↔B	baixa		
$NH_3 - N_2$	H_2O	$A \leftrightarrow 2B$	alta	.*	
Cl ₂ - N ₂	H_2O	$A \rightarrow 2B + C$	baixa		

A tabela abaixo mostra os sistemas estudados, explicitando-se os gases (sempre balanceados com nitrogênio) e os solventes utilizados.

De uma maneira geral, o modelo apresentou boa concordância com os dados experimentais, oferecendo uma alternativa teórica para o cálculo dos coeficientes de transferência de massa da fase gasosa.

Abstract

Interface mass transfer with chemical reaction is studied in this work. A mathematical model, which gives a mass flux associated with a bubbling process, is compared with experimental results.

The model, for which the fundamental hypothesis is that mass transfer occurs only by molecular diffusion at the gas phase (bubbles), has been used to compute the mass flux into bubbles. As well as absorbing the soluble gas, the solvent should also react to it. It is pointed out the unsteady state interface conditions and that bubbling occurs at constant temperature.

The diffusion equation (Fick's second law) has been solved to determine the partial pressure into spherical particles and the mass fluxes through the Orthogonal Collocation method.

The experimental studies were performed in an acrylic column with a rectangular cross section $(13.5 \times 15 \text{ cm})$ in semibatch regime The gas mixture was fed continuously at the bottom of the column through a distribution cone. Between the cone and the column there was a perforated plate with five orifices of 1 mm in diameter.

Table 1 - Studied gases and solvents.					
GAS	SOLVENT	REACTION	SOLUBILITY		
SO ₂ - N ₂	HCI	A ↔ B	low		
NH3 - N2	H_2O	$A \leftrightarrow 2B$	high		
Cl ₂ - N ₂	H_2O	$A \rightarrow 2B + C$	low		

Table 1 shows the gases and solvents chosen.

Based on the results obtained, it could be said that the mathematical modelling employed in this work satisfactorily describes the mass transfer in bubbling processes with chemical reaction. A good quantitative agreement was obtained. The model offers a theoretical alternative to compute the bubble internal mass transfer coefficient.

Sumário

Resumo	i
Abstract	ii
Índice de Figuras e Tabelas	v
Nomenclatura	vii
Capítulo 1 - Introdução	T
Capítulo 2 - Análise da Literatura	3
2.1. Introdução	3
2.2. As Colunas de Borbulhamento	3
2.3. Hidrodinâmica das Bolhas	5
2.4. Coeficiente de Transferência de Massa	7
2.5. Transferência de Massa com Reação Química	11
Capítulo 3 - Fundamentação Teórica	14
3.1. Introdução	14
3.2. O Modelo	14
3.3. Análise das Hipóteses do Modelo	16
3.4. Propriedades Físicas	20
3.5. Constante de Henry e Constante de Equilíbrio	23
3.6. Parâmetros Hidrodinâmicos e Fator de Aumento	25

Capítulo 4 - Metodologia	28
4.1. Introdução	28
4.2. Estratégia Computacional	28
4.3. Equipamento e Medidas Experimentais	35
Capítulo 5 - Resultados e Discussão	39
5.1. Introdução	39
5.2. Resultados Típicos	39
Capítulo 6 - Conclusão e Sugestões	51
Apêndice A - Resultados Experimentais	53
A.1. Introdução	53
A.2. Planilha dos Experimentos	54
Apêndice B - Resultados do Modelo	74
B.1. Introdução	74
B.2. Arquivos de Saída do Programa	75
Apêndice C - Programa Elaborado	95
C.1. Introdução	95
C.2. Definição de Variáveis	95
C.3. Subrotinas Utilizadas	96
C.4. Listagem do Programa	97
Referências Bibliográficas	110

Índice de Figuras e Tabelas

Figura 2.2-1	Regimes de escoamento numa coluna de borbulhamento.	4
Figura 2.4-1	Etapas na determinação de $k_L a$.	9
Figura 3.3-1	Simulação considerando a concentração na fase líquida constante e variável no tempo de residência.	19
Figura 4.2-1	Solução analítica e numérica (2 ptos. de colocação) quando $\theta_{s}(\tau)$ = sen100 τ .	31
Figura 4.2-2	Solução analítica e numérica (3 ptos. de colocação) quando $\theta_{S}(\tau)$ = sen100 τ .	31
Figura 4.2-3	Desvio entre as soluções numérica e analítica e respectivo tempo computacional em função do número de pontos de colocação para variação senoidal ($\omega = 10$).	31
Figura 4.2-4	Desvio entre as soluções numérica e analítica e respectivo tempo computacional em função do número de pontos de colocação para variação senoidal ($\omega = 100$).	31
Figura 4.2-5	Desvio entre as soluções numérica e analítica e respectivo tempo computacional em função do número de pontos de colocação para variação senoidal ($\omega = 1000$).	31
Figura 4.2-6	Desvio entre as soluções numérica e analítica e respectivo tempo computacional em função do número de pontos de colocação para variação degrau unitário.	31
Figura 4.2-7	Fluxograma do programa elaborado.	34
Figura 4.3-1	Montagem Experimental.	36
Figura 5.2-1	Pressão parcial média durante o primeiro e o milésimo tempo de residência.	40
Figura 5.2-2	Concentração a diferentes alturas de dispersão para SO ₂ - HCl.	43
Figura 5.2-3	Concentração a diferentes alturas de dispersão para NH_3 - H_2O_1	44

Figura 5.2-4	Concentração a diferentes alturas de dispersão para Cl_2 - H_2O .	45			
Figura 5.2-5	Concentração a diferentes alturas de dispersão para SO_2 - HCl com modelo modificado.				
Figura 5.2-6	Concentração a diferentes alturas de dispersão para NH_3 - H_2O com modelo modificado.	49			
Figura 5.2-7	Concentração a diferentes alturas de dispersão para Cl_2 - H_2O com modelo modificado.	50			
Tabela 3.4-1	Equações para o cálculo da viscosidade gasosa pelo método de Chang et al.	21			
Tabela 3.4-2	Volumes de difusão.	22			
Tabela 3.5-1	Constantes para o cálculo da constante de Henry.	23			
Tabela 3.5-2	Contribuição das espécies para o efeito salino.	24			
Tabela 3.5-3	Constantes para o cálculo da constante de equilíbrio.	24			
Tabela 3.6-1	Comparação entre correlações para o cálculo de $k_L a$ e k_L .	26			
Tabela 3.6-2	Fatores de aumento utilizados.				
Tabela 4.3-1	Gases e solventes utilizados para verificação do modelo.	35			

Nomenclatura

- N_b número de bolhas alimentadas na coluna por segundo
- A área transversal, cm²
- a área específica, cm^2/cm^3
- C concentração do gás solúvel no seio do líquido, mol/cm³
- D difusividade do gás solúvel, cm²/s
- d diâmetro, cm
- g aceleração da gravidade, cm/s^2
- G_{orif} vazão por orificio, cm³/s
- *H* constante de Henry ($p_{AS} = HC_{AS}$), atm.cm³/mol
- h altura de dispersão, cm
- *K* constante de equilíbrio
- k coeficiente local de transferência de massa, cm/s
- N fluxo molar, mol/(s.cm²)
- p pressão parcial, atm
- P_T pressão total, atm
- r distância radial do centro da bolha, cm
- R constante universal dos gases, atm.cm³/mol.K
- R_b raio da bolha, cm
- s parâmetro hidrodinâmico da teoria da superficie renovável
- Sc número de Shmidt dado por $\mu_A/(\rho_A D_L)$
- T temperatura, K
- t tempo, s
- *t*^{*} parâmetro hidrodinâmico da teoria da penetração
- u distância radial adimensional
- Vasc velocidade de ascensão, cm/s
- V volume, cm³

w velocidade superficial, cm/s

Letras gregas

- θ concentração adimensional
- τ tempo adimensional
- ρ densidade, g/cm³
- μ viscosidade dinâmica, cP
- σ tensão superficial, dyn, cm
- v viscosidade cinemática, cm²/s
- ε holdup (fração volumétrica num volume de dispersão)
- δ parâmetro hidrodinâmico da teoria do filme
- ϕ fator de aumento

Subscrito

- 0 tempo inicial
- A gás solúvel
- b bolha
- *B* produto de reação
- *col* coluna de borbulhamento
- D dispersão
- G fase gasosa
- L fase líquida
- R residência
- S interface
- T total

capítulo UM

Introdução

Diversos são os processos que se baseiam na transferência de massa entre uma fase dispersa e um meio contínuo. Seja num processo de destilação, absorção, *spray dryer* ou outra operação unitária dentro da Eng^a. Química, o conhecimento do fluxo mássico entre as fases, representado quantitativamente pelos coeficientes de transferência de massa, é de suma importância.

As colunas de borbulhamento, particularmente, ganham cada vez maior importância nos processos químicos e, desde muito, são usadas como absorvedores, fermentadores ou reatores dada sua simplicidade de construção, operação e, por conseqüência, baixo custo.

Diferentemente dos tanques mecanicamente agitados, que apresentam níveis de turbulência elevados nas proximidades das pás agitadoras (Merchuk *et al.*, 1994), as colunas de borbulhamento, possuem distribuição uniforme de turbulência. Tal característica, favorece também seu uso em processos biotecnológicos, onde é comum se trabalhar com culturas sensíveis à agitação.

Para o cálculo dos fluxos mássicos entre as fases, inúmeros parâmetros são necessários, como: área específica de transferência de massa, *holdup* (fração ocupada por uma das fases num volume de dispersão) e principalmente os coeficientes de transferência de massa.

Frente à complexidade do fenômeno de transferência de massa entre fases, que se traduz na ausência de um tratamento teórico adequado, diversos autores optam por um tratamento empírico. Ainda assim, muitas simplificações são exigidas. Por exemplo: admite-se comumente que a resistência à transferência de massa entre fases concentra-se numa única fase. Sendo assim, para sistemas em que a fase líquida oferece a maior resistência, toma-se o coeficiente local desta fase numericamente igual ao coeficiente global. Em sistemas em que as resistências se apresentem de forma distribuída, tal simplificação seria naturalmente inadequada.

Atualmente, várias correlações empíricas destinam-se ao cálculo dos coeficientes de transferência de massa, a grande maioria referindo-se à fase líquida. Não raro, os valores obtidos de diferentes correlações apresentam grandes diferenças entre si, devido principalmente a

divergências nas hipóteses quanto ao nível de mistura das fases como também às imprecisões inerentes às medidas experimentais (Keitel e Onken, 1981).

Poucos autores, no entanto, dispensaram esforços no cálculo dos coeficientes de transferência de massa para a fase gasosa. Stragevitch (1996), inspirada nos trabalhos de Andrade (1972, 1985) em transferência de calor, atacou teoricamente o problema admitindo transferência de massa por difusão molecular no interior das bolhas, além de reação química na fase contínua, e obteve excelente concordância com dados experimentais no borbulhamento da mistura gasosa SO_2/N_2 em água. Kleinman e Reed (1995) também analisaram o transporte difusional intra partícula seguido de reação, porém, desconsideraram o transporte convectivo no líquido. Brauer (1978a, b), por sua vez, admitiu *creeping flow* ($Re \rightarrow 0$) na fase contínua sem, contudo, considerar a presença de reação química.

O objetivo do presente trabalho é estudar a absorção gás-líquido acompanhada de reação química associada a um processo de borbulhamento. Para isto, será empregada a metodologia utilizada por Stragevitch (1996) na qual admite a ocorrência de um mecanismo difusivo para a transferência de massa no interior da bolha. Uma montagem experimental é utilizada para obtenção de dados experimentais, os quais são confrontados com os resultados previstos pela modelagem matemática. Os conjuntos de gás/solvente SO₂/HCl, NH₃/H₂O e Cl₂/H₂O foram utilizados para concepção de experimentos que possibilitaram meios de se avaliar o modelo frente a diferentes solubilidades e tipos de reação.

CAPÍTULO DOIS

Análise da Literatura

2.1. Introdução.

Pretende-se discorrer, neste capítulo, acerca de alguns tópicos considerados importantes para o entendimento deste trabalho. Para cada tópico, será dada uma visão geral dos trabalhos realizados até esta data comentando-se os trabalhos mais relevantes. Cabe aqui, uma referência às publicações de Shah *et al.* (1982), Merchuk *et al.* (1994) e Koide (1996), que contêm uma vasta compilação de trabalhos acerca de colunas de borbulhamento e aos livros *Mass Transfer with Chemical Reaction*, de Astarita (1967), e *Gas-Liquid Reactions*, de Danckwertz (1970), clássicos em transferência de massa com reação química.

2.2. As Colunas de Borbulhamento.

De maneira simplificada, pode-se descrever uma coluna de borbulhamento como um vaso (geralmente cilíndrico) dotado de um distribuidor de gás em sua base. Em sua forma mais simples, o regime de operação da coluna seria semi-batelada. A carga líquida presente no vaso, seria percolada continuamente pelo gás em forma de bolhas que, naturalmente, promoveria a agitação do líquido na sua passagem. Outras formas de operação, cocorrente ou contracorrente, também seriam possíveis e ao invés de gás poder-se-ia injetar um outro líquido pelo distribuidor. Neste caso, a fase dispersa seria formada de gotas e não de bolhas.

O distribuidor de gás se apresenta nas mais variadas formas, como: pratos porosos (feitos de cerâmica, plásticos ou metais sinterizados), pratos perfurados ou espargidores que, a depender do diâmetro da coluna, podem ser únicos ou múltiplos. Possui a função de introduzir a corrente gasosa uniformemente em forma de bolhas garantindo maior área de contato e maior agitação do líquido.

Figura 2.2-1. Regimes de escoamento numa coluna de borbulhamento.

Por não apresentar partes móveis, as colunas de borbulhamento oferecem relativa simplicidade na sua construção e manutenção. Problemas, corriqueiramente encontrados nos tanques mecanicamente agitados, como a dificuldade na selagem de eixos, inexistem nas colunas de borbulhamento.

Simplicidade mecânica é particularmente interessante nos processos biotecnológicos onde deve-se manter ambiente estéril por longos períodos de tempo.

Dependendo das dimensões da coluna e da velocidade superficial do gás (vazão volumétrica pela seção transversal da coluna) três regimes de escoamento podem ser observados em colunas de borbulhamento: regime homogêneo, heterogêneo e *slugging* (ver Figura 2.2-1). No regime homogêneo as bolhas são relativamente pequenas, de diâmetro uniforme e o nível de turbulência é baixo. Em colunas de diâmetros reduzidos, e com altas vazões favorece-se o surgimento do regime *slugging* que é caracterizado por bolhas com diâmetro próximos ao diâmetro da coluna e em forma de projétil. Devido ao grande diamêtro das bolhas, o *slugging* deve ser evitado na operação por oferecer baixa área específica. Um terceiro regime de escoamento seria o heterogêneo ou turbulento, onde as bolhas coexistem numa ampla faixas de diâmetros imersas numa fase líquida em alta turbulência. Para se atingir este regime, pode-se partir do regime homogêneo, aumentando-se a velocidade superficial do gás, ou aumentando-se o diâmetro da coluna possui fronteiras bem definidas e alguns trabalhos (Bakshi *et al.*, 1995) foram feitos no sentido de caracterizar cada regime como também as regiões de transição entre eles.

2.3. Hidrodinâmica da Bolha.

Vários fenômenos podem acontecer simultaneamente durante a ascensão de uma bolha percolando uma coluna de líquido. Devido à diminuição da pressão hidrostática, o volume da bolha aumenta progressivamente durante a subida e conseqüentemente sua velocidade. Por outro lado, a transferência de massa da bolha para o líquido favorece a diminuição do volume. Complicação adicional aparece se o líquido transfere massa simultaneamente ou se o gás solúvel reage exotermicamente com o líquido, como por exemplo na cloração do tolueno (Mann e Clegg, 1975). Um interessante trabalho relacionando esses três aspectos, ou seja, hidrodinâmica, transferência de massa e reação química foi realizado por Fleisher *et al.* (1995) através do borbulhamento de CO_2 em solução de NaOH.

Pelo exposto, pode-se notar a complexidade matemática que é possível se deparar ao se tentar modelar um processo de borbulhamento.

Quando se refere a fluidodinâmica interna à bolha, três modelos podem ser aplicados: (1) mistura perfeita, onde não existe resistência à transferência de massa e a concentração é constante independente da posição, (2) circulante, onde o fluxo de líquido induz a formação de um perfil interno de velocidade e (3) estagnada. Neste último caso, a transferência de massa se dá somente por difusão. O modelo fluidodinâmico mais adequado depende das propriedades físicas dos fluidos, das dimensões da bolha e da velocidade de ascensão.

Basicamente, a velocidade de ascensão de uma bolha atinge um estado estacionário quando o empuxo iguala-se à força de arraste imposta pelo líquido. É dita então velocidade terminal de ascensão doravante denominada simplesmente velocidade de ascensão.

Para pequenas bolhas ($d_b < 0,7$ mm) comportando-se como esferas rígidas, ou seja, com superficie imóvel, a velocidade de ascensão em cm/s pode ser calculada, pressupondo-se a Lei de Stokes, pela relação (Treybal, 1981):

$$V_{asc} = \frac{gd_b^2 \Delta \rho}{18\mu_I} \tag{2.01}$$

onde g é a aceleração da gravidade, $\Delta \rho$ a diferença entre as densidades do líquido e gás, d_b o diâmetro da bolha e μ_L a viscosidade do líquido num conjunto consistente de unidades.

Admitindo pressão constante na parte superior da bolha, a relação (Davidson e Harrison, 1963)

$$V_{asc} = \frac{2}{3}\sqrt{gR_b} , \qquad (2.02)$$

em que a aceleração da gravidade g e o raio da bolha R_b estão no Sistema CGS de unidades, pode ser usada para o cálculo da velocidade de ascensão de uma bolha em cm/s num líquido incompressível e invíscido.

Um outro parâmetro básico no estudo dos processos de borbulhamento é o diâmetro da bolha. Dada a sua importância, encontra-se na literatura inúmeros trabalhos destinados ao seu cálculo e ao estudo das variáveis (velocidade superficial do gás, propriedades físicas, diâmetro do orificio, etc.) que possuem ou não influência significativa. É importante notar, que a maioria dos trabalhos referem-se ao diâmetro obtido pela razão entre o volume da bolha e sua área superficial (diâmetro Sauter), já que a forma da bolha só se aproxima de uma esfera para diâmetros reduzidos. Para maiores diâmetros e grandes velocidades, as bolhas adquirem um formato próximo ao de um elipsóide com o eixo menor na direção do fluxo e com sua parte inferior retraída (Davidson *et al.*, 1985).

Coppock e Meiklejohn (1951), observando o grande número de fenômenos envolvendo a interação entre bolhas e líquido e paralelamente notando a escassez de publicações, analisaram o volume de bolhas a partir do borbulhamento de ar e oxigênio em água. Os autores determinavam o volume das bolhas aprisionando um certo número delas numa bureta invertida e observavam o volume de líquido deslocado.

Outros métodos, de maior confiabilidade, também foram e são utilizados, como por exemplo: ensaios fotográficos, usados abundantemente pela sua simplicidade (Deindoerfer e Humphrey, 1961; Grund, 1992; Motarjemi e Jameson, 1978; Varley, 1995), eletro-resistividade, medições por meio de fibra ótica e ainda métodos químicos. Motarjemi e Jameson (1978) determinaram através de ensaios fotográficos o diâmetro de bolha ideal para aeração de água e chegaram a diâmetros extremamente reduzidos quando comparados com os atualmente observados na prática.

Para o cálculo do volume da bolha num líquido invíscido, Davidson e Harrisson (1963)[,] propuseram a relação:

$$V_b = 1,138 \frac{G_{orif}^{0,3}}{g^{0,6}}$$
(2.03)

onde G_{orif} e g são a vazão de gás por orificio e aceleração da gravidade respectivamente. A constante 1,138 pressupõem V_b , G_{orif} e g no Sitema CGS de unidades. Esta relação reproduziu satisfatoriamente dados experimentais de Andrade (1972, 1985).

Revelando discordância entre os resultados produzidos por diferentes correlações empíricas para o cálculo do diâmetro de bolhas, Winterton (1994) compara resultados de alguns trabalhos e sugere um equação surpreendentemente simplificada

$$d_b = 0.4d_{col} \tag{2.04}$$

onde o diâmetro da bolha é somente função do diâmetro da coluna d_{col} , ambos na mesma unidade de comprimento, e independe das propriedades dos fluidos. Dentre as equações utilizadas pelo autor para comparação, uma dispõem de base teórica e é obtida através de um balanço entre a força de empuxo e força originada pela tensão superficial agindo na bolha, donde se obtém:

$$d_b = 0.5 \sqrt{\frac{9\sigma}{\Delta \rho g}}$$
(2.05)

com o diâmetro da bolha d_b em cm, a tensão superficial do líquido σ em dyn/cm, g em cm/s² e a diferença entre as densidades do líquido e gás $\Delta \rho$ expressa em g/cm³.

Mais recentemente, Wilkinson e Dierendonck (1994) verificaram que as propriedades do gás e a pressão reinante no orificio podem ter considerável influência na formação de bolhas.

2.4. Coeficientes de Transferência de Massa.

Neste item, uma sucinta descrição acerca dos coeficientes de transferência de massa será feita abordando-se os métodos em obtê-lo, as variáveis que o afetam e as principais correlações disponíveis na literatura.

Admitindo-se como válida a teoria das duas resistências de Lewis e Whitman, onde admite-se que a resistência ao fluxo em cada fase concentra-se nas proximidades da interface e que na interface propriamente dita a resistência é nula estando as fases em equilíbrio por conseqüência, pode-se relacionar os coeficientes de transferência de massa pela relação:

$$\frac{1}{K_L} = \frac{1}{k_L} + \frac{1}{Hk_G} \,. \tag{2.06}$$

onde K e k são os coeficientes global e local respectivamente das fases líquida L e gasosa G. Equação equivalente poderia ter sido escrita para os coeficientes volumétricos de transferência de massa K_La , k_La e k_Ca , onde a é a área específica de transferência de massa.

Em geral, a fase gás oferece menor resistência que a fase líquida, razão pela qual inúmeros autores desprezam o termo $1/Hk_G$ considerando o coeficiente global numericamente igual ao coeficiente local da fase líquida, ou seja:

$$K_L \cong k_L. \tag{2.07}$$

Porém, a depender da solubilidade do gás no solvente e da presença ou não de reação química, pode-se incorrer em graves erros no cálculo do fluxo assumindo válida tal hipótese.

O coeficiente volumétrico de transferência de massa ($k_L a$ ou $k_G a$) é um parâmetro de grande representatividade nos processos que envolvem a troca de massa entre fases. É composto pelo produto de dois termos: (1) o coeficiente de transferência de massa, que depende das propriedades do fluido em questão e da fluidodinâmica na região interfacial, e (2) da área específica *a*, que é a área interfacial por unidade de volume de dispersão. Métodos experimentais para determinação de *a* são razoavelmente complicados e, sendo assim, a determinação direta do produto $k_L a$ é preferida à determinação dos parâmetros em separado.

Com o propósito de determinar $k_L a$, efetua-se o contato de um solvente com um fluxo de gás contendo o componente a ser transferido e analisa-se os resultados do experimento. Inúmeros procedimentos experimentais podem ser empregados e podem ser divididos em dois grupos: métodos estacionários e métodos dinâmicos (Rodemerck e Seidel, 1991; Vuuren, 1988), a depender da concentração na fase líquida variar ou não com o tempo.

Usualmente, os métodos estáticos são matematicamente simples, porém, mais complexos experimentalmente. Experimentos dinâmicos são relativamente simples, mas seu tratamento matemático torna-se mais trabalhoso à medida que surge a dimensão tempo.

Concentração constante no equipamento pode ser alcançada nos métodos em estado estacionário por dois modos: (1) retirada constante de líquido e posterior realimentação com prévia eliminação (*sttripping*) do componente transferido ou (2) consumo total do componente transferido por reação química, por exemplo oxigênio pode reagir com sulfito ou hidrazina. Estabelecido o estado estacionário, obtêm-se k_La através de um simples balanço material e das medidas experimentais das concentrações.

Nos métodos dinâmicos, aplica-se uma perturbação em degrau ou pulso ao fluxo de gás, por exemplo, alterando-se um fluxo de nitrogênio para ar. A partir da variação da concentração com o tempo, o coeficiente de transferência de massa pode ser avaliado aplicando-se um modelo matemático que descreva o nível de mistura no equipamento. Dentre os diversos modelos utilizados (Chandreasekhran e Calderbank, 1980), destacam-se: (1) regime empistonado (*plug flow*), em que cada porção de gás ou líquido possui o mesmo tempo de residência e perfil de velocidade reto numa seção transversal do equipamento, (2) mistura perfeita, onde a composição é independente da posição e, por fim, (3) dispersão axial (Ouyoung *et al.*, 1988), que seria um regime intermediário entre os anteriores. Aqui, observa-se um compromisso entre os processo convectivo e difusivo e os elementos possuem diferentes tempos de residência.

A Figura 2.4-1 representa de maneira esquemática as etapas na determinação de k_La pelo método dinâmico. O mesmo poderia ser feito para o coeficiente para fase gasosa, mas omitiu-se a título de concisão. Os comentários posteriores respondem também por k_Ca , salvo comentário adicional.

Dada uma perturbação, compara-se a resposta do sistema real com a da modelagem matemática e escolhe-se um k_La que melhor ajuste os dados. O modelo nada mais é que uma descrição matemática simplificada do sistema e o k_La não deve ser

Figura 2.4-1. Etapas na determinação de k_La.

entendido como uma propriedade do sistema, como temperatura ou tensão superficial, mas, como um parâmetro do modelo que tenta representá-lo. Deste modo, ao se procurar um k_La para um determinado equipamento deve-se atentar para as hipóteses assumidas na sua determinação antes da sua utilização.

Admitindo mistura perfeita na fase líquida Calderbank e Moo-Young (1961) correlacionaram dados experimentais de $k_L a$ distinguindo duas regiões a depender do diâmetro da bolha, estabelecendo a relação:

$$k_{L}Sc^{a} = b \left(\frac{\Delta \rho \,\mu_{L}g}{\rho_{L}^{2}}\right)^{1/3}$$

$$d_{b} < 2.5 \text{ mm} \quad a = 2/3 \text{ e } b = 0.31$$

$$d_{b} > 2.5 \text{ mm} \quad a = 1/2 \text{ e } b = 0.42$$

$$(2.08)$$

onde Sc é o número de Schmidt dado por $\mu_L/\rho_L D_L$.

Nota-se, que os autores prevêem uma dependência de $k_L a$ somente com as propriedades dos fluidos. A Equação 2.08, tomando-se a = 1/2 e b = 0,42, reproduziu bem os dados de Motarjemi e Jameson (1978). Posteriormente, Mangartz e Pilhofer (1981) verificaram a concordância da Equação 2.08, agora com a = 2/3 e b = 0,31, ou seja para $d_b < 2,5$ mm, com seus dados experimentais. No entanto, investigações ainda são necessárias, já que o diâmetro médio das bolhas medidos por Mangartz e Pilhofer (1981) foram extremamente superiores a 2,5 mm.

Para colunas com até 5,5 m de diâmetro, as correlações proposta por Akita e Yoshida (1973),

$$k_L a = 0.6 D_L^{0.5} v_L^{-0.12} \left(\frac{\sigma}{\rho_L}\right)^{-0.62} D_{col}^{0.17} g^{0.93} \varepsilon_G^{1.1}$$
(2.09)

Hughmark (1967), para num líquido parado,

$$\frac{k_L d_b}{D_L} = 2 + 0.0187 \left[\left(\frac{d_b w_G}{\varepsilon_G D_L} \right)^{0.484} \left(\frac{v_L}{D_L} \right)^{0.339} \left(\frac{D_L g^{1/3}}{D_L^{2/3}} \right)^{0.072} \right]^{1.61}$$
(2.10)

e Hikita et al.(1981)

$$k_L a = 14.9 g^{0.752} w_G^{0.752} \rho_L^{0.852} \mu_G^{0.852} \mu_L^{-0.079} \sigma^{-1.016} D_L^{0.604}$$
(2.11)

estimam razoavelmente bem o coeficiente de transferência de massa e são amplamente utilizadas (Koide, 1996). Nessas equações, as variáveis ainda não definidas são: a viscosidade cinemática v_L , a fração volumétrica de gás na dispersão ε_G (holdup) e a velocidade superficial do gás w_G .

Gestrich *et al.* (1978) reuniram 135 medidas de $k_L a$ advindos de sete grupos de autores numa correlação que apresentava desvios em torno de 20%.

Através do *stripping* de oxigênio e cinco líquidos orgânicos, Cho e Wakao (1988) propuseram uma correlação para $k_L a$ admitindo dependência somente com a difusividade do gás solúvel na fase líquida e com a velocidade superficial do gás:

$$k_L a = 6.5 \times 10^3 D_L^{0.5} w_G^{0.81}$$
(2.12)

onde $k_L a$ está em 1/s, D_L em m²/s e w_G em m/s.

Note que, tanto a correlação de Cho e Wakao (1988) como a de Akita e Yoshida (1973) estão em concordância com a Teoria da Penetração de Higbe (ver item 2.5 a seguir), onde:

$$k_L a \propto D_L^{0.5}. \tag{2.13}$$

Alguns autores investigaram o coeficiente de transferência de massa frente à substâncias orgânicas (Cho e Wakao ,1988; Grund *et al.*, 1992; Syaiful *et al.*, 1995) como também observaram a influência de eletrólitos (Hikita *et al.*, 1981; Syaiful *et al.*, 1995).

Para o cálculo do coeficiente de transferência de massa para a fase gasosa, bem menos trabalhos podem ser encontrados na literatura.

Através do *stripping* de algumas substâncias orgânicas, Tamir e Merchuk (1978) e Cho e Wakao (1988) analisaram experimentalmente o coeficiente de transferência de massa gasoso. Os autores (Cho e Wakao, 1988) notaram a pouca influência do *holdup* de gás e apresentaram a relação:

$$k_G a = 2.0 \times 10^3 D_L^{0.5} w_G^{0.88} \tag{2.14}$$

onde $k_G a$ está em 1/s, D_G em m²/s e w_G em m/s.

Outro interessante trabalho foi desenvolvido por Zaritzky e Calvelo (1979) que propuseram um modelo teórico para o cálculo do coeficiente de transferência de massa gasoso admitindo circulação interna na bolha e obtiveram alguma concordância com seus experimentos.

2.5. Transferência de Massa com Reação Química.

O fenômeno de transferência de massa com reação química ocorre quando duas fases que não estejam em equilíbrio são postas em contato. Considere então, uma bolha imersa num líquido absorvedor. O fenômeno de transferência de massa neste sistema pode ser decomposto em quatro etapas (Astarita, 1967):

- i) difusão de um ou mais reagentes do seio da fase gasosa para a interface entre as fases,
- ii) difusão dos reagentes gasosos através da interface em direção à fase líquida,
- iii) reação química na fase líquida e
- *iv)* difusão dos reagentes inicialmente presentes na fase líquida e dos produtos em função do gradiente gerado pela reação química.

As etapas *ii*, *iii* e *iv* ocorrem simultaneamente e em série com a etapa *i*. Se a etapa *i* é a etapa limitante, ou seja, a velocidade com que acontece é bem inferior à velocidade das etapas *ii*, *iii* e *iv* o processo global não é influenciado pela reação química e pode ser tratado como uma absorção puramente física. Sendo assim, a análise de transferência de massa com reação química só se justifica quando o fenômeno resultante dos etapas *ii*, *iii* e *iv* possui velocidade pequena quando comparada a da etapa *i*.

Na absorção gás-líquido, a maioria dos processos industriais economicamente atrativos envolve uma reação rápida entre o gás dissolvido e a fase líquida. Existem duas razões para isso: (1) permitindo que o gás reaja, a capacidade do líquido em absorver o gás solúvel é grandemente aumentada e (2) a reação pode aumentar o coeficiente de transferência de massa se for rápida o suficiente para ocorrer apreciavelmente próxima à interface.

Um modo conveniente de expressar o aumento do fluxo pela reação química é através do fator de aumento ϕ inserido na equação do fluxo:

$$N_A = k_L \phi (C_{AS} - C_A) \tag{2.15}$$

onde ϕ é definido como a razão entre o fluxo molar na presença da reação pelo fluxo puramente físico e C_{AS} e C_A são a concentração do gás solúvel na interface e no seio da fase líquida.

Para o cálculo de ϕ , necessita-se do conhecimento das condições junto à interface. Antes de

qualquer explanação concernente ao cálculo do fator de aumento faz-se necessário o entendimento dos modelos hidrodinâmicos destinados à descrição da região entre as fases.

As condições junto à interface são dificeis de serem tratadas. Para permitir um tratamento matemático, diversas teorias, ou modelos, foram propostas como: teoria do filme, teoria da penetração, teoria da superficie renovável, entre outras (Haario e Seidman, 1994; Wang e Langemann, 1994). Um breve resumo acerca das três teorias será feito.

Teoria do filme. Assume-se que junto à interface há um filme estagnado de espessura δ onde a transferência de massa ocorre somente por difusão molecular. A concentração no seio da fase considerada é constante com exceção do interior do filme. Este, ou seja o filme, possui espessura tão pequena que o regime estacionário é logo estabelecido. Como resultado, o modelo prevê que

$$k_L = \frac{D_G}{\delta} \tag{2.16}$$

onde D_G é a difusividade do gás.

Teoria da penetração. Proposto por Higbe em 1935, este modelo supõe que a interface gáslíquido é composta de uma infinidade de pequenos elementos líquidos que são continuamente trazidos do seio da fase para a interface. Cada elemento permanece estagnado na interface por um tempo fixo t^* e retorna para o seio da fase. O coeficiente de transferência de massa é calculado pela relação:

$$k_L = 2\sqrt{\frac{D_G}{\pi t^*}} \tag{2.17}$$

Teoria da superfície renovável. Uma importante extensão da teoria da penetração foi sugerida por Danckwerts em 1951. Aqui, os elementos que compõem a interface não permanecem estagnados por um tempo fixo. Danckwerts utilizou uma distribuição de tempos e admitiu que a probabilidade de um elemento ser substituído é independente de sua idade. Segundo esta teoria, tem-se:

$$k_{L} = \sqrt{D_{G}s} \tag{2.18}$$

onde s é a fração da área interfacial que é renovada na unidade de tempo.

Para o cálculo do fator de aumento, seja via métodos numéricos ou solução analítica, procede-se sempre da seguinte forma:

- *i)* Escolhe-se um dos modelos (filme, penetração, etc.) para descrever as condições interfaciais e calcula-se o fluxo molar.
- ii) Encontra-se o fluxo molar na presença de reação química repetindo-se o passo

anterior adicionando, contudo, o termo de reação nas equações que compõem o modelo.

iii) Dividindo-se os fluxos encontrados em ii e i obtém-se o fator de aumento.

O grande mérito dessa metodologia é o fato de mesmo incorrendo em erros por imprecisões nas hipóteses dos modelos o fator de aumento estimado possui relativa exatidão.

Admitindo reagentes com mesma difusividade, Danckwerts (1968) e DeCoursey (1982) estudaram o problema de absorção seguida de uma reação reversível.

Utilizando a teoria da penetração, Brian e colaboradores (1961) calcularam numericamente o fator de aumento para uma reação irreversível de 2ª ordem infinitamente rápida e compararam com resultados vindos da teoria do filme obtendo desvios de 16%.

O caso de reação reversível de 2^ª ordem foi estudado à luz das teorias apresentadas neste trabalho: teoria do filme (Onda *et al.*, 1970), penetração (Onda *et al.*, 1972; Secor e Beutler, 1967) e renovação de superfície (Chang e Rochelle, 1980; Onda *et al.*, 1972) e observou-se que as teorias prevêem resultados próximos quanto ao fator de aumento quando a razão entre as difusividades dos reagentes se aproxima da unidade. Particularmente, Secor e Beutler (1967) estenderam os resultados encontrados para reações a taxas finitas para alguns casos específicos de reação irreversível e instantânea.

Chang e Rochelle (1980, 1982) estudaram numericamente vários casos de reações reversíveis instantâneas e compararam com soluções analíticas derivadas da teoria do filme.

Adicionalmente, os autores verificaram que os resultados previstos pela teoria do filme se aproximam da teoria da superficie renovável com erros em torno de 10% quando a razão entre as difusividades é substituída pela sua raiz. Verificou-se também que a expressão do fator de aumento para reações reversíveis bimoleculares com altas constantes de equilíbrio aproxima-se da solução apresentada por Brian *et al.* (1961) para reações irreversíveis.

Alguns autores estudaram ainda situações mais complexas como a ocorrência de reações paralelas (Versteeg *et al.*, 1990) e consecutivas como também a influência de efeitos térmicos no fator de aumento (Allan e Mann, 1979).

CAPÍTULO TRÊS

Fundamentação Teórica

3.1. Introdução.

Neste capítulo, será apresentado o fenômeno que se pretende estudar, as equações propostas para a modelagem deste fenômeno e as hipóteses em que as equações estão baseadas. Outras equações (cálculo de propriedades físicas, parâmetros hidrodinâmicos, etc.), que não constituem propriamente o modelo matemático mas influem decisivamente nos resultados, também serão apresentadas.

3.2. O Modelo.

Deseja-se estabelecer um conjunto de equações que possibilite o cálculo do fluxo mássico envolvido num processo de borbulhamento. Seja então, uma coluna de líquido percolada continuamente por um conjunto de bolhas provenientes de um prato perfurado. Desta forma, estabelece-se um processo de transferência de massa entre cada bolha e o líquido até seu rompimento na superfície livre do líquido. O tempo gasto pela bolha para percorrer toda a coluna de líquido é denominado tempo de residência da bolha.

Considera-se que:

Fase gás (bolhas):

- composta por uma mistura de gases, onde apenas um deles se solubiliza na fase líquida (solvente). Além de se solubilizar, o gás reage quimicamente com o solvente absorvedor,
- a transferência de massa dentro da bolha se dá por difusão molecular apenas,
- as bolhas possuem geometria perfeitamente esférica e volume invariável durante a ascensão.

Fase líquida (solvente):

- possui igual composição independente do ponto de amostragem (mistura perfeita),
- a composição permanece constante durante o tempo de residência das bolhas.

Admite-se ainda que todo o processo de borbulhamento se dá a temperatura constante e que a Lei de Henry descreve satisfatoriamente o equilíbrio entre as fases.

Apresentadas as hipóteses referentes às fases gasosa e líquida, bem como às condições interfaciais, está-se em condições de se iniciar o equacionamento do fenômeno.

Considere então que a bolha em estudo seja esférica com raio R_b , onde a transferência de massa em seu interior se dá exclusivamente por difusão molecular na direção radial, de acordo com as hipóteses assumidas anteriormente.

A equação a seguir, escrita em coordenadas esféricas, juntamente com suas condições inicial e de contorno descrevem o fenômeno.

$$D_{G}\left[\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial p_{A}}{\partial r}\right)\right] = \frac{\partial p_{A}}{\partial t}$$
(3.01)

$$t = 0 \qquad p_A = p_{A0} \tag{3.02}$$

$$r = 0 \quad \frac{\partial p_A}{\partial r} = 0 \tag{3.03}$$

$$r = R_b \quad p_A = p_{AS}(t) \tag{3.04}$$

onde $p_{AS}(t)$ é dada pela relação:

$$-\frac{aD_{G}}{RT}\frac{\partial p_{A}}{\partial r}\Big|_{r=R_{b}} = k_{L}a\phi(p_{A})\left(\frac{p_{A}}{H}-C_{A}\right)$$
(3.05)

e onde a seguinte notação foi utilizada:

 $a = \text{área especifica, } \text{cm}^2/\text{cm}^3$

 C_A = concentração do gás solúvel no seio do líquido, mol/cm³

 D_G = difusividade gasosa do gás solúvel sobre o gás inerte, cm²/s

 ϕ = fator de aumento

$$H = \text{constante de Henry } (p_{AS} = HC_{AS}), \text{ atm.cm}^3/\text{mol}$$

 k_L = coeficiente físico de transferência de massa, cm/s

 p_A = pressão parcial da bolha, atm

 p_{A0} = pressão parcial da bolha no início do processo de borbulhamento, atm

 p_{AS} = pressão parcial da bolha junto à interface gás/líquido, atm

 $R = \text{constante universal dos gases, atm.cm}^3/\text{mol.K}$

T =temperatura, K

$$t = tempo, s$$

A Equação 3.01, também conhecida como *equação da difusão* ou 2^ª Lei de Fick, é obtida facilmente através de um balanço material no interior da bolha em que se desprezou o termo convectivo e admitiu-se como constante a temperatura e a difusividade gasosa. Sua resolução, daria o perfil das pressões parciais no interior da bolha em função da posição radial e em função do tempo.

Nota-se que inicialmente a bolha está a uma pressão p_{A0} , Equação 3.02, e que se estabelece uma distribuição simétrica do perfil de pressões parciais em torno do centro da bolha, r = 0, conforme Equação 3.03.

A última condição de contorno, Equação 3.04, demonstra o caráter transiente das condições interfaciais. O valor de p_{AS} a cada instante de tempo deve satisfazer à Equação 3.05 que exprime a igualdade dos fluxos junto a interface. Ou seja, não há acumulo de massa na interface. O fluxo difusivo N_{AG} proveniente da bolha,

$$N_{AG} = -\frac{D_G}{RT} \frac{\partial p_{AS}}{\partial r}$$
(3.06)

é numericamente igual ao fluxo convectivo N_{AL} que chega à fase líquida,

$$N_{AL} = k_L \phi(p_{AS}) \left(\frac{p_{AS}}{H} - C_A \right)$$
(3.07)

O fator ϕ , na equação anterior, exprime o aumento no fluxo mássico originado pela reação química existente na fase líquida. É definido como a razão entre o fluxo real, com reação química, pelo fluxo puramente físico, ou seja, na ausência de reação.

3.3. Análise das Hipóteses do Modelo.

O êxito ou não de qualquer modelo matemático em descrever um fenômeno depende basicamente das hipóteses assumidas na sua concepção. Pode-se compor um modelo extremamente rigoroso na sua formulação, a ponto de se criar um impasse matemático na busca de sua solução, ou admitir hipóteses bastante simplificadoras comprometendo a descrição do fenômeno estudado. Um bom modelo certamente busca o máximo de rigor dentro de um conjunto de soluções factíveis delineadas pelos objetivos pretendidos e pelo conhecimento do fenômeno estudado.

Na formulação do modelo no item 3.2, considerou-se que:

Fase gás (bolhas):

 H1) composta por uma mistura de gases, onde apenas um deles se solubiliza na fase líquida (solvente). Além de se solubilizar, o gás reage quimicamente com o solvente absorvedor,

- H2) a transferência de massa dentro da bolha se dá por difusão molecular apenas,
- H3) as bolhas possuem geometria perfeitamente esférica e volume invariável durante a ascensão.

Fase líquida (solvente):

- H4) possui igual composição independente do ponto de amostragem (mistura perfeita),
- H5) a composição permanece constante durante o tempo de residência das bolhas.

Admitiu-se ainda que todo o processo de borbulhamento se dá à temperatura constante (H6) e que a Lei de Henry descreve satisfatoriamente o equilíbrio entre as fases (H7).

A hipótese H1 é pouco comprometedora pois, basicamente, desconsidera a transferência de massa do solvente para à fase gasosa e a solubilização do gás inerte, nitrogênio, que é praticamente insolúvel em água. Desde que o borbulhamento foi conduzido à baixas temperaturas, a transferência de massa do solvente para à fase gasosa não é significativa. A pressão de vapor da água a 25 °C, por exemplo, é 0,03 atm e, já que se trabalhou com pressões parciais de gás solúvel em 0,1 atm, o erro na composição da fases seria de no máximo 3%.

A hipótese H2, hipótese básica do modelo, é a primeira vista inadequada quando presume-se que, de alguma forma, o contato entre uma bolha em ascensão e o líquido que a circunda induz a formação de fluxos convectivos. Porém, para pequenas alturas de dispersão, não existe tempo suficiente para a formação de um perfil interno de velocidade completamente desenvolvido e, adicionalmente, sabe-se que pequenas quantidades de impurezas inibem grandemente a circulação interna em bolhas (Davies, 1966).

Em colunas de borbulhamento operando no regime homogêneo, as bolhas possuem forma próximas a de uma esfera e, a partir dos valores do diâmetro equivalente e da velocidade superficial do gás utilizados neste trabalho, pode-se verificar, por exemplo através da Figura 2.2-1, que a coluna opera em regime homogêneo. Sendo assim, a hipótese H3 é aceitável no que se refere à geometria das bolhas. Contudo, a afirmação de que o volume das bolhas permanece constante requer maior cautela, dada a complexidade de fatores que influenciam no volume de uma bolha em ascensão transferindo massa (ver item 2.3 do capítulo anterior). Para sistemas que envolvam altos fluxos de massa, certamente o volume da bolha diminuirá à medida que ela ascende e, para este tipo de sistema, a hipótese H3 superestima a área específica, quando admite volume constante para as bolhas.

Analisando-se, agora, as hipóteses referentes à fase líquida, H4 e H5, tem-se que: para pequenas alturas de dispersão, altos níveis de turbulência são facilmente alcançados e, através da

adição de algumas gotas de corante no borbulhador, percebeu-se, visualmente, que o volume de líquido rapidamente se homogeneizava. A hipótese H5 estabelece que a concentração na fase líquida aumenta aos saltos. Para verificar sua influência, o programa listado no Apêndice C foi alterado, de modo a considerar a variação da concentração durante o tempo de residência através da relação:

$$\frac{\partial C_{A,TOTAL}}{\partial t} = k_L a \phi(p_{AS}) \left(\frac{p_{AS}}{H} - C_A \right)$$
(3.08)

A Figura 3.3-1 exibe os resultados da simulação numérica para a variação da concentração do gás solúvel em função do tempo de borbulhamento para o caso em que a concentração é considerada constante no tempo de residência, ou seja, varia aos saltos, e quando é considerada variável, ou seja, varia continuamente.

Observa-se que as simulações apresentaram resultados próximos para os sistemas SO_2 - HCl e Cl_2 - H_2O . Para NH_3 - H_2O , os desvios foram mais significativos. Nota-se, com base nos gráficos apresentados, que a hipótese H5 superestima a transferência de massa, já que previu concentrações maiores que o caso em que a concentração varia continuamente, tido como mais realístico.

No caso em que se considera a concentração variável no tempo de residência, o tempo computacional foi um pouco superior ao outro caso e, dependendo dos objetivos, a hipótese H5 pode ser perfeitamente desconsiderada.

A adequação ou não da hipótese H6, que considera o processo como isotérmico, é naturalmente dependente da variação de entalpia envolvida no processo. Para sistemas fortemente exotérmicos ou endotérmicos, a inclusão do balanço de energia é naturalmente requerida. Um comparação para se antever a influência da hipótese H6 nos mesmos moldes da realizada na avaliação da hipótese H5, ou seja, através da alteração do modelo, seria bem mais complexa, já que os balanços material e de energia haveriam de ser resolvidos simultaneamente. Sendo assim, os dados experimentais obtidos neste trabalho é que poderão orientar a respeito da influência da transferência de energia na transferência de massa. A título de informação, a variação de entalpia envolvida no processo de solubilização e hidrólise para os sistemas estudados são: - 9,71, -8,30 e - 6,40 kcal/mol, respectivamente para SO₂ - HCl, NH₃ - H₂O e Cl₂ - H₂O, mostrando que os sistemas liberam energia.

Por fim, sabe-se que a Lei de Henry é bastante utilizada e descreve satisfatoriamente o equilíbrio gás/líquido envolvendo soluções diluídas (Treybal, 1981).

Figura 3.3-1. Simulação considerando a concentração na fase líquida constante (----) e variável (----) no tempo de residência: a) $SO_2 - HCl$, b) $NH_3 - H_2O$, c) $Cl_2 - H_2O$.

3.4. Propriedades Físicas.

Serão apresentas as equações utilizadas no cálculo das propriedades fisicas referentes à fase gasosa e líquida. Com relação a fase gás, deve-se notar que no cálculo da *viscosidade* e *densidade* as propriedades se referem à mistura gasosa como um todo, diferentemente da *difusividade* que, naturalmente, observa a propriedade de um componente com relação ao outro. No que diz respeito à fase líquida, admitiu-se válido os valores das propriedades da água para as soluções de HCl por tratar-se de soluções diluídas.

Fase Gasosa

Para o cálculo da viscosidade da mistura gasosa μ_G , empregou-se o método de Chang *et al.* (Reid *et al.*, 1987). Esta metodologia oferece a vantagem de não requerer a viscosidade dos componentes puros e apresenta erros médios inferiores a \pm 5%. A equação utilizada é dada por:

$$\mu_{G} = \frac{26,69F_{cm}(M_{m}T)^{1/2}}{\sigma_{m}^{2}\Omega_{v}}$$
(3.09)

onde M_m e σ_m são a massa e o raio molecular para a mistura, T a temperatura absoluta e Ω_v a integral de colisão dada por:

$$\Omega_{\nu} = A \left(T_m^* \right)^{-B} + C \exp \left(-DT_m^* \right) + E \exp \left(-FT_m^* \right)$$
(3.10)

em que A = 1,16145, B = 0,14874, C = 0,52487, D = 0,77320, F = 2,43787 e $T_m^* = kT/\varepsilon$.

O fator F_{cm} é definido por

$$F_{cm} = 1 - 0,275\omega_m + 0,059035\Lambda_{rm}^4$$
(3.11)

onde

$$\Lambda_{rm} = \frac{131,3\Lambda_m}{(V_{cm}T_{cm})^{1/2}}, \quad V_{cm} \left(\frac{\sigma_m}{0,809}\right)^3 \quad \text{e} \quad T_{cm} = 1,2593 \left(\frac{\varepsilon}{k}\right)_m$$
(3.12)

As propriedades com subscrito *m* concebem a propriedade para a mistura a partir da propriedade de cada componente e da interação entre eles. Para sistemas binários, a Tabela 3.3-1 oferece as equações necessárias para o cálculo da viscosidade da mistura gasosa, onde se observa as seguintes variáveis:

<i>c</i> =	energia característica	ω =	fator acentrico
------------	------------------------	-----	-----------------

$$\Lambda = \text{momento de dipolo} \qquad \qquad y = \text{fração molar}$$

$$k = \text{constante de Boltzmann}$$
 $T_m^* = \text{temperatura adimensional}$

REGRAS DE MISTURA	REGRAS DE COMBINAÇÃO
$\sigma_m^3 = \sum_{i=1}^2 \sum_{j=1}^2 y_i y_j \sigma_{ij}^3$ $T_m^* = \frac{T}{\left(\varepsilon/k\right)_m}$ $\left(\frac{\varepsilon}{k}\right)_m = \frac{\sum_{i=1}^2 \sum_{j=1}^2 y_i y_j \left(\varepsilon_{ij}/k\right) \sigma_{ij}^3}{\sigma_m^3}$ $M_m = \left[\frac{\sum_{i=1}^2 \sum_{j=1}^2 y_i y_j \left(\varepsilon_{ij}/k\right) \sigma_{ij}^2 M_{ij}^{1/2}}{\left(\varepsilon/k\right)_m \sigma_m^2}\right]^2$ $\omega_m = \frac{\sum_{i=1}^2 \sum_{j=1}^2 y_i y_j \omega_{ij} \sigma_{ij}^3}{\sigma_m^3}$ $\Lambda_m^4 = \sigma_m^3 \sum_{i=1}^2 \sum_{j=1}^2 \left(\frac{y_i y_j \Lambda_i^2 \Lambda_j^2}{\sigma_{ij}^3}\right)$	$\sigma_{ii} = \sigma_i = 0,809 V_{ci}^{1/3}$ $\sigma_{ii} = (\sigma_i \sigma_j)^{1/2}$ $\frac{\varepsilon_{ii}}{k} = \frac{\varepsilon_i}{k} = \frac{T}{1,2593}$ $\frac{\varepsilon_{ij}}{k} = \left(\frac{\varepsilon_i \varepsilon_j}{k k}\right)^{1/2}$ $\omega_{ii} = \omega_i$ $\omega_{ij} = \frac{\omega_i + \omega_j}{2}$ $M_{ij} = \frac{2M_i M_j}{M_i + M_j}$

Tabela 3.4-1. Equações para o cálculo da viscosidade gasosa pelo método de Chang et al..

No cálculo da densidade da mistura gasosa, admitiu-se que o gás comportava-se como ideal, levando-se em conta as baixas pressões a que era submetido. Sendo assim, obtem-se diretamente da Lei dos Gases Ideais:

$$\rho_G = \frac{P_T}{RT} \tag{3.13}$$

onde P_T , pressão total, foi tomada como 1 atm.

Por fim, a difusividade gasosa foi obtida pelo método de Fuller et al. que conforme Reid *et al.* (1987), apresenta os menores desvios médios quando comparado com outros métodos apresentados em seu trabalho. O coeficiente de difusão gasosa para uma mistura binária, ou difusividade, é dado então por:

$$D_{G} = \frac{0,00143T^{1.75}}{P_{T}M_{AB}^{1/2} \left[\left(\Sigma_{V} \right)_{A}^{1/3} + \left(\Sigma_{V} \right)_{B}^{1/3} \right]^{2}}$$
(3.14)

onde:

 D_{AB} = difusividade do gás A no gás B, cm²/s P_T = pressão total, bar

Tabela 3.4-2. Vol. de difusão		T		temperatura, K			
GÁS	Σν	M	-	peso molecular, g/mol			
SO ₂	41,8	M_{AB}	_	$2[(1/M_A) + (1/M_B)]^{-1}$, g/mol			
Cl_2	38,4	~ ,		cometório dos volumos etômicos	da		
NH_3	20,7	ĹV		somatorio dos volumes atomicos	ue		
N_2	18,5			difusão (ver Tabela 3.4-2)			

Fase Líquida

No cálculo das propriedades físicas da fase líquida, empregou-se correlações empíricas (Daubert e Danner, 1985) ou diretamente valores experimentais.

A expressão abaixo fornece a viscosidade da água μ_L entre as temperaturas 273,16 e 640,65 K.

$$\mu_L = 10^{-3} \exp(A + B/T + C \ln T + DT^E)$$
(3.15)

onde μ_L está em Pa.s, T em K e os valores das constantes para água são: A = -52,267, B = 3665,2, C = 5,786, D = -5,8463E-29 e E = 10,0.

Para a densidade da água usou-se

$$\rho_L = \frac{A}{B^{\left[1 + (1 - T/C)^p\right]}}$$
(3.16)

em que ρ_L está em kmol/m³, T em K e as constantes, neste caso, valem: A = 4,6137, B = 0,26214, C = 647,29, D = 0,23072.

Já no caso da difusividade para a fase líquida, optou-se pelo uso de valores à diluição infinita e à temperatura de 25 °C e uma posterior correção para a temperatura desejada pela relação de Stokes-Einstein:

$$\frac{D_L \mu_L}{T} = \text{ constante}, \qquad (3.17)$$

onde os valores a 25 °C para SO₂, NH₃ e Cl₂ em água foram obtidos dos trabalho de Leaist (1984), Ibusuki e Aneja (1984) e Yadav e Sharma (1981), respectivamente.

3.5. Constante de Henry e Constante de Equilíbrio.

Em se tratando de soluções diluídas, admitiu-se que a Lei de Henry

$$p_{AS} = HC_{AS} \tag{3.18}$$

descrevia satisfatoriamente o equilíbrio interfacial, onde H é a constante de Henry, dada em atm.l/mol, e p_{AS} e C_{AS} são a pressão parcial na bolha e a concentração no líquido respectivamente, ambas avaliadas junto à interface gás/líquido.

Para o cálculo de H utilizou-se a forma descrita por Edwards et al. (1975),

$$\ln H = D_1 + D_2 / T + D_3 \ln T + D_4 T \tag{3.19}$$

onde as constantes para H em atm.l/mol e T em K estão presentes na Tabela 3.5-1.

GÁS	D ₁	D2	D_3	D ₄	FONTE
SO ₂	1135,630	-32143,30	-198,1400	0,338360	Edwards et al., 1975
NH_3	160,559	-8621,06	-25,6767	0,035388	Edwards et al., 1975
Cl ₂	13,447	-3180,00	0	0	Brian et al., 1962

Tabela 3.5-1. Constantes para o cálculo da constante de Henry.

A constante de Henry, *H*, descreve o equilíbrio dos gases em água. No entanto, a medida que o borbulhamento evolui torna-se mais marcante a presença de ions, devido à hidrólise dos gases, alterando a solubilidade (Hermann *et al.*, 1995). Para levar em conta o efeito salino na solubilidade, usou-se a equação proposta por van Krevelen e Hoftijzer que estima a constante de Henry a partir da constante em água à mesma temperatura:

$$\log_{10} = \left(\frac{H}{H_0}\right) = hI \tag{3.20}$$

onde H_0 é a constante em água e I a força iônica da solução definida por

$$I = \frac{1}{2} \sum_{i} c_i z_i^2$$
(3.21)

onde c_i é a concentração de ions com valência z_i . A constante de proporcionalidade h é obtida pela soma das contribuições das espécies positivas, negativas e do gás na forma não reagida:

$$\boldsymbol{h} = \boldsymbol{h}_{+} + \boldsymbol{h}_{-} + \boldsymbol{h}_{G} \tag{3.22}$$

onde os valores utilizados (Danckwerts, 1970; Ueyama e Hatanaka, 1982) encontram-se na Tabela 3.5-2.

dara o efeito salino.					
ESPÉCIE	<i>h_i</i> <i>i</i> = +, - ou <i>G</i>				
Ħ	0,0000				
$\mathbf{NH_4}^+$	0,0356				
HSO ₃ -	0,0663				
Cľ	0,0210				
OH	0,0669				
HOCI	0,0200				
Cl_2	-0,0247				
SO_2	-0,1030				
NH3	-0,0540				

Tabela 3.5-2. Contribuição das espéciespara o efeito salino.

Na descrição do equilíbrio das espécies envolvidas na fase líquida, a constante K, definida como:

$$K = \frac{\left[H^{+}\right]\left[HSO_{3}^{*}\right]}{\left[SO_{2}\right]_{aq}}, \quad K = \frac{\left[NH_{4}^{+}\right]\left[OH^{-}\right]}{\left[NH_{3}\right]_{aq}} \quad \text{ou } K = \frac{\left[H^{+}\right]\left[CI^{-}\right]\left[HCIO\right]}{\left[CI_{2}\right]_{aq}} \tag{3.23}$$

respectivamente para os gases SO₂, NH₃ e Cl₂, pode ser obtida pela expressão:

$$\ln K = C_1 + C_2/T + C_3 \ln T + C_4 T$$
(3.24)

onde as constantes, para K em mol/l ou $(mol/l)^2$, no caso do Cl₂, e T em K, são dadas na Tabela 3.5-3.

Tabela 3.5-3. Constantes para o cálculo da constante de equilíbrio.

GÁS	Ci	<i>C</i> ₂	C,	C,	FONTE
SO ₂	1958,840	-50481,00	-344,3310	0,5634420	Edwards et al., 1975
\mathbf{NH}_3	191,970	-8451,61	-31,4335	0,0152123	Edwards et al., 1975
Cl_2	9,486	-5198,26	0	0	Whitney e Vivian, 1941
3.6. Parâmetros Hidrodinâmicos e Fator de Aumento.

Serão apresentadas as equações utilizadas para o cálculo de três importantes parâmetros hidrodinâmicos, a saber: o raio e a velocidade de ascensão da bolha, R_b e V_{asc} , e o coeficiente de transferência de massa físico para a fase líquida, k_L . A importância desses parâmetros é evidenciada quando se observa que: o raio da bolha está diretamente ligado à área de transferência de massa; a velocidade de ascensão determina o tempo de residência das bolhas e, o coeficiente de transferência de massa, k_L , por sua vez é o parâmetro mais representativo da transferência de massa na fase líquida.

Para o estimar o raio da bolha, utilizou-se a relação:

$$R_b = 0,6477 \frac{G_{orif}^{0,4}}{g^{0,2}}$$
(3.25)

derivada da expressão proposta por Davidson e Harrison (1963) para o volume da bolha num líquido invíscido.

Admitiu-se que a velocidade da bolha permanecia constante durante sua ascensão e para o seu cálculo usou-se a relação proposta por Davidson *et al.*, 1985):

$$V_{asc} = \frac{2}{3}\sqrt{gR_b}$$
(3.26)

com as variáveis no sistema CGS e onde assumiu-se o fluido que envolve a bolha era incompressível e invíscido e que a pressão nas vizinhanças da parte superior da bolha era constante.

A partir dos valores do raio e da velocidade de ascensão das bolhas, pode-se derivar facilmente as expressões para o tempo de residência,

$$t_{R} = \frac{V_{liq}}{A_{col}V_{asc} - N_{b}V_{b}}$$
(3.27)

e área específica,

$$a = \frac{4\pi R_b^2 N_b t_R}{V_{lia} + N_b t_R V_b}$$
(3.28)

onde A_{col} , N_b e V_{liq} são, respectivamente, a área transversal do borbulhador, o número de bolhas alimentado na unidade de tempo e o volume de solvente utilizado. Uma comparação entre os valores fornecidos pela Equação 3.28 e os obtidos experimentalmente por Guedes de Carvalho *et al.* (1986) numa coluna semelhante à usada neste trabalho demonstrou que a Equação 3.28 prevê valores maiores para a área específica. As expressões para o cálculo do raio e da velocidade de ascensão disponíveis na literatura possuem uma certa uniformidade nas suas estimativas. Tal fato não se verifica porém, quando se refere ao coeficiente de transferência de massa. É surpreendente a disparidade de valores que se pode encontrar quando se compara diferentes expressões. A Tabela 3.6-1 apresenta os resultados de $k_L a$ ou k_L vindos de sete diferentes correlações, a maior parte já vista no Capítulo 1, para um caso fictício numa coluna com 11 cm de diâmetro e um único orificio em condições de operação próximas às realizadas nos experimentos deste trabalho. Nota-se a heterogeneidade dos dados. A título de esclarecimento, o diâmetro e altura de dispersão apresentados na Tabela 3.6-1 correspondem aos valores da coluna originalmente usada pelos autores na determinação das respectivas correlações.

Por ter sido gerada numa coluna com dimensões próximas às da utilizada neste trabalho a relação proposta por Cho e Wakao (1988) foi usada:

REFERÊNCIA		COLUNA		k _L a	k _l
		diâm., cm	alt.disp., cm	× 10 ⁴ s ⁻¹	× 10 ³ cm/s
Calderbank e Moo-Young	1961	13,7	31		13,3
Hughmark	1967				21,6
Akita e Yoshida	1973	15,2	200-300	1,0	
Gestrich et al.	1978				1,5
Hikita <i>et al.</i>	1981	10,0	130	21,5	
Guedes de Carvalho et al.	1986	10,0	4-18	7,0	
Cho e Wakao	1988	11,0	40	7,6	

Tabela 3.6-1. Comparação entre correlações para o cálculo de k_La e k_L.

$$k_L a = 1,559 D_L^{0.5} W_G^{0.81}$$
(3.29)

onde D_L está em cm²/s, w_G em cm/s e $k_L a$ em s⁻¹.

Os valores calculados a partir desta equação mostram também uma boa concordância com os resultados de Guedes de Carvalho *et al.* (1986) como se vê na Tabela 3.6-1.

A Tabela 3.6-2 mostra as expressões utilizadas para os fatores de aumento devido à reação. Vale ressaltar, que a terceira coluna refere-se ao tipo de reação sob a ótica da transferência de massa. Por exemplo: no caso do sistema SO₂ - HCl, que reage segundo

$$SO_2 + H_2O \leftrightarrow H^+ + HSO_3^-,$$

a concentração de H⁺ é extremamente superior a de HSO₃⁻ podendo ser considerada como constante. Sendo assim, o efeito da hidrólise do SO2 na sua distribuição é negligenciável. A reação é representada por A \leftrightarrow B e não por A \leftrightarrow B + C. Para NH₃-H₂O e Cl₂-H₂O existem somente duas espécies iônicas no meio, logo, a exigência da neutralidade elétrica define o tipo de reação como A \leftrightarrow 2B e A \leftrightarrow 2B + C, respectivamente.

Tabela 3.6-2.	Fatores de aumento utilizados		
SISTEMA	FATOR DE AUMENTO	REAÇÃO	REFERÊNCIA
SO ₂ -HCl	$\phi = \sqrt{\left(1 + \frac{D_B}{D_A}K'\right)\left(1 + K'\right)}$, onde $K' = \frac{K}{\left[H^+\right]}$	$A \leftrightarrow B$	Chang e Rochelle, 1981
NH ₃ -H ₂ O	$\phi = 1 + \sqrt{\frac{D_B}{D_A}} \frac{\sqrt{K}}{\sqrt{C_{AS}} + \sqrt{C_{A0}}}$	A ↔ 2B	Chang e Rochelle, 1981
Cl ₂ -H ₂ O	$\phi = \frac{\sqrt{M}}{\tanh\sqrt{M}}$, onde $M = \frac{D_A k_1}{(k_L)^2}$	$A \rightarrow 2B + C$	Danckwerts, 1970

Tabela 3.6-2	2. Fatores	de aumento	utilizados

CAPÍTULO QUATRO

Metodologia

4.1. Introdução.

Como visto anteriormente, o objetivo deste trabalho é o estudo de um processo de absorção acompanhado de reação química através do emprego de um modelo matemático difusivo aplicado internamente à bolha. Para comprovação do modelo, os resultados são comparados com alguns resultados experimentais.

No capítulo anterior foram apresentadas as equações que compõem o modelo e portanto formulou-se o problema matemático.

Neste capítulo, serão apresentados os meios escolhidos para se alcançar a solução deste problema matemático bem como os materiais e métodos para a concepção dos experimentos.

4.2. Estratégia Computacional.

A equação utilizada para descrever o mecanismo de transferência de massa interno à bolha é a conhecida equação da difusão. Dispõem-se na literatura soluções analíticas associadas às mais diversas condições de contorno. A grande maioria originada de estudos de problemas de transferência de calor por condução (Carslaw e Jaeger, 1959). O caso porém aqui apresentado trata-se de um problema do tipo contorno livre e a busca da solução através de métodos numéricos torna-se inevitável.

Para garantir melhor desempenho computacional, independente do método numérico escolhido, as Equações 3.01 a 3.05 podem ser escrita numa forma adimensional:

$$6\frac{\partial\theta}{\partial u} + 4u\frac{\partial^2\theta}{\partial u^2} = \frac{\partial\theta}{\partial\tau}$$
(4.01)

$$\tau = 0 \qquad \theta = 0 \tag{4.02}$$

$$u = 0 \quad \frac{\partial \theta}{\partial u} = 0 \tag{4.03}$$

$$u = 1 \quad \theta = \theta_s(\tau) \tag{4.04}$$

onde $\theta_{S}(\tau)$ deve satisfazer a relação:

$$u^{1/2} \left. \frac{\partial \theta}{\partial u} \right|_{u=1} = \left[\frac{1}{2} \frac{C_{AS0} RTR_b k_{\perp}^o a}{a D_G p_{A0}} \right] \phi(\theta) (\theta_L - \theta)$$
(4.05)

e onde as seguintes relações foram utilizadas:

$$\theta = \frac{p_{A0} - p_A}{p_{A0}}, \quad \theta_L = \frac{C_{AS0} - C_A}{C_{AS0}}, \quad (4.06)$$

$$u = \frac{r^2}{R_b^2} e \tau = \frac{D_G t}{R_b^2}$$
(4.07)

Numericamente, a equação da difusão é geralmente resolvida ou pelo método de colocação ortogonal ou por diferenças finitas. O primeiro é amplamente utilizado e tem se mostrado bem mais eficiente que o último (Finlayson, 1972). A ineficiência do método das diferenças finitas é causada essencialmente pela baixa ordem de aproximação (polinômio de 2ª ordem com diferença centrada) ou pelo uso de pontos equidistantes em geometrias não-cartesianas (Sun e Levan, 1995).

Utilizou-se aqui o método de colocação ortogonal. Em linhas gerais, o método consiste em aproximar a solução por polinômios ortogonais. Os coeficientes de tais polinômios são ajustados de modo que em determinados pontos o resíduo com relação à solução exata seja nulo. Esses pontos são denominados pontos de colocação. Com base na teoria dos polinômios ortogonais, o uso do método de colocação ortogonal simplifica o cálculo de integrais por meio de quadratura numéricas como também as interpolações. Os textos de Villadsen e Michelsen (1978) e Finlayson (1972, 1980) oferecem maiores esclarecimentos.

A escolha do número de pontos de colocação, bem como das respectivas posições, são fundamentais para um bom desempenho do método. Poucos pontos de colocação podem ser insuficientes para descrever curvas acentuadas (mal comportadas), porém, um número elevado de pontos pode resultar em instabilidade no método além de um esforço computacional significativo. Quanto à posição, os pontos devem ter maior concentração em regiões onde a curva da solução tenha maiores singularidades. No caso da transferência de massa interior à bolha, por exemplo, os pontos devem figurar em maior concentração nas proximidades da superficie onde acontecem variações bruscas de concentração.

Para se chegar a uma estimativa inicial do número de pontos de colocação, comparou-se a concentração média advinda da solução numérica e analítica das Equações 4.01 a 4.04 em que a

Equação 4.04 foi substituída por uma função de τ conhecida. Dois casos foram testados: degrau unitário, $\theta_{s}(\tau) = 1$, e variação senoidal, $\theta_{s}(\tau) = \operatorname{sen}\omega\tau$.

Para variação senoidal com freqüência ω , a pressão parcial média no interior da bolha em função do tempo é dada por (Carslaw e Jaeger, 1959):

$$\overline{\theta} = A \operatorname{sen}(\omega\tau + \varphi) + 6 \sum_{n=1}^{\infty} \frac{\omega}{\omega^2 + n^4 \pi^4} \exp(-n^2 \pi^2 \tau)$$
(4.08)

onde:
$$A = \sqrt{\delta_c^2 + \delta_s^2}$$
, $\varphi = \arctan(\delta_s/\delta_c)$, $\delta_c = \frac{3(\operatorname{senh} 2\lambda - \operatorname{sen} 2\lambda)}{2\lambda(\cosh 2\lambda - \cos 2\lambda)}$
 $\delta_s = \frac{3}{2\lambda} \left(\frac{1}{\lambda} - \frac{\operatorname{senh} 2\lambda + \operatorname{sen} 2\lambda}{\cosh 2\lambda - \cos 2\lambda}\right)$, $\lambda = \sqrt{\omega/2}$.

As Figuras 4.2-1 e 4.2-2, a seguir, mostram a pressão parcial média no interior da bolha para uma variação senoidal na pressão superficial quando $\omega = 100$. Na Figura 4.2-1, utilizando-se apenas 2 pontos de colocação, já se observa boa concordância entre as soluções numérica e analítica a exceção dos picos e vales que apresentam pequenos desvios. Com a adição de mais um ponto de colocação a discordância entre as curvas não é mais percebida visualmente.

Para quantificar o desvio entre a solução numérica e analítica, calculou-se o desvio ou erro absoluto médio $\overline{\epsilon}$ entre os instantes 0 e τ de acordo a expressão abaixo, onde $\overline{\theta} = \overline{\theta}(\tau)$.

$$\overline{\varepsilon} = \frac{\int_{0}^{\tau} \left\| \overline{\theta}_{numerico} - \overline{\theta}_{analitico} \right\| d\tau}{\int_{0}^{\tau} d\tau}$$
(4.09)

As Figuras 4.2-3 a 4.2-6 exibem o desvio absoluto médio em função do número de pontos de colocação para uma variação senoidal a diferentes freqüências ($\omega = 10, 100, 1000$) e para um degrau unitário positivo na pressão superficial. Também pode ser observado, o comportamento do tempo computacional despendido em cada caso. É necessário observar, que esses pequenos tempos computacionais observados, sempre inferiores a 20 segundos, nada se comparam aos tempos observados quando a condição de contorno na superficie é regida pela Equação 4.05. Sua inclusão nos gráficos servem apenas para se avaliar o esforço computacional frente ao aumento do número de pontos de colocação.

Figura 4.2-1. Solução analítica — e numérica — (2 ptos. de colocação) quando $\theta_{s}(\tau) = \text{sen}100 \tau$.

Figura 4.2-2. Solução analítica --- e numérica (3 ptos. de colocação) quando $\theta_{\rm S}(\tau) = \text{sen}100\tau$.

para variação senoidal ($\omega = 10$).

18 16 0.1 Erro Absoluto Médio 0.01 0.001 0.0001 Tempo 6 0.00001 0.000001 2 0.0000081 Ð 15 20 10 Pontos de Colocação

Figura 4.2-3. Desvio entre as soluções numérica e Figura 4.2-4. Desvio entre as soluções numérica e analítica (28) e respectivo tempo computacional analítica (28) e respectivo tempo computacional (□) em função do número de pontos de colocação (□) em função do número de pontos de colocação para variação senoidal ($\omega = 100$).

Figura 4.2-5. Desvio entre as soluções numérica e Figura 4.2-6. Desvio entre as soluções numérica e para variação senoidal ($\omega = 1000$).

analítica () e respectivo tempo computacional analítica () e respectivo tempo computacional (□) em função do número de pontos de colocação (□) em função do número de pontos de colocação para variação degrau unitário.

A análise dos erros absolutos médios apresentada aqui não poderia oferecer diretamente o número de pontos ótimos para resolução das Equações 4.01 a 4.05. Nota-se, que cada curva apresenta-se de maneira particular e não seria possível a generalização da variação do erro com o número de pontos de colocação. Contudo, o que se pode apreender é que inicialmente o erro diminui apreciavelmente com o aumento do número de pontos até alcançar um patamar de relativa estabilidade.

Na Figura 4.2-4 por exemplo, $\theta_{s}(\tau) = \text{sen}100\tau$, um número de pontos superior a cinco elevaria grandemente o esforço computacional sem diminuições significativas no erro. Como visto anteriormente, quatro pontos de colocação já mostraram excelente concordância entre as soluções numérica e analítica (ver Figura 4.2-2).

Pode-se concluir então, que uma boa estratégia para se chegar a um número adequado de pontos de colocação é aumentar o número de pontos até não se obter variações significativas entre duas aproximações. Neste trabalho, cinco pontos de colocação foram considerados satisfatórios, ou seja, os resultados advindos de simulações com um número superior a cinco pontos de colocação não apresentavam diferenças significativas entre si.

Para simular um processo de borbulhamento com absorção, um programa em FORTRAN foi elaborado. A Figura 4.2-7 mostra esquematicamente as principais etapas deste programa. As etapas descritas nas primeiras quatro caixas, a saber: (1) cálculo das propriedades físicas e parâmetros hidrodinâmicos, (2) constante de equilíbrio, (3) solubilidade e sua (4) correção devida ao efeito salino, foram comentadas no capítulo anterior. Quanto às etapas seguintes, tem-se:

<u>Etapa (5)</u>: Um dos grandes méritos da abordagem matemática deste trabalho é a análise das condições interfaciais no estado transiente. Em inúmeros trabalhos, a análise da transferência de massa entre gás e líquido é efetuada a partir de gases puros e, consequentemente, a concentração interfacial é tida como constante no tempo. Aqui, a concentração interfacial é obtida a cada instante a partir da relação de fluxo dada pela Equação 4.05.

<u>Etapa (6)</u>: Aplicando-se o método de colocação ortogonal, a Equação 4.01 é transformada num conjunto de (N-1) equações do tipo:

$$\frac{\partial \theta}{\partial \tau}\Big|_{j} = f(\theta_{1}, \theta_{2}, \cdots, \theta_{N}) \text{ para } j = 1, N-1$$
(4.10)

onde N é o número de pontos de colocação e θ_i o valor da concentração adimensional no *i*-ésimo ponto de colocação. Particularmente, θ_N é o valor da concentração na interface obtido na Etapa (5). Tendo-se os valor θ_i 's num determinado instante, pode-se obter os θ_i 's em instantes seguintes através de um método de integração apropriado. O método *Backward Differentiation Formula* (BDF) (Hall e Watt, 1976), codificado em FORTRAN na subrotina D02EBF da biblioteca de rotinas NAG (*Numerical Algorithmic Group*), mostrou-se bastante adequado. Por tratar-se de um método a passo e ordem variados, o método revelou-se bem mais eficiente que outros métodos testados, como Runge-Kutta de 4^ª ordem.

Etapa (7) e (8): A massa transferida num intervalo igual a um tempo de residência foi obtida através de:

$$\Delta C_{A,TOTAL} = \frac{1}{1 - \varepsilon_G} \frac{R_b^2 C_{AS0}}{D_G} \int_0^{\tau_R} k_L a \phi (\theta_L - \theta_S) d\tau$$
(4.11)

onde utilizou-se o método de Simpson (100 pontos por intervalo) para o cálculo da integral.

Considerou-se que a concentração do gás solúvel na fase líquida era invariável durante o tempo de residência das bolhas, sendo incrementada aos saltos ao final deste. Deste modo, as variáveis do integrando da Equação 4.11 dependem do tempo, a exceção de θ_L .

Tal consideração é muito razoável para sistemas que apresentem baixos fluxos de massa e pequenos tempos de residência. Havendo reação irreversível e instantânea a hipótese é ainda mais realista, pois, o soluto é totalmente consumido apresentando concentração invariavelmente nula.

<u>Etapa 9</u>: As relações de equilíbrio entre as fases são dadas em função da concentração do gás na sua forma não-combinada. Sendo assim, a partir da concentração total do gás e das relações de equilíbrio na fase líquida obtinha-se a concentração do gás em sua forma não-combinada. Utilizou-se aqui o método das substituições sucessivas para os casos em que as relações não eram passíveis de solução analítica.

Etapa 10: As etapas anteriores (Etapa 4 em diante) foram incluídas num processo de iteração até que se atingisse a região de saturação da fase líquida em relação ao gás solúvel ou um tempo de borbulhamento superior a 120 minutos.

Figura 4.2-7. Fluxograma do programa elaborado.

4.3. Equipamento e Medidas Experimentais.

Os dados gerados pelo modelo foram confrontados com os resultados experimentais do borbulhamento de três gases apresentados na Tabela 4.3-1 a seguir:

1 adeia 4.5-1.	Gases e solve	ntes utilizados para	i vernicação do modeio
GÁS	SOLVENTE	REAÇÃO	SOLUBILIDADE
SO ₂ - N ₂	HCl	A ↔ B	baixa
NH3 - N2	H_2O	$A \leftrightarrow B$	alta
Cl ₂ - N ₂	H_2O	$A \rightarrow B$	baixa

Tabela 4.3-1. Gases e solventes utilizados para verificação do modelo

onde se vê também os respectivos solventes e o tipo de reação envolvida. Em alguns experimentos, a mistura SO_2 - N_2 também foi borbulhada em água pura semelhantemente ao trabalho de Stragevitch (1996), porém, a uma concentração três vezes menor que a utilizada pela autora.

A escolha dos gases baseou-se nos valores da difusividade, solubilidade (que caracterizam a resistência à transferência de massa) e nos tipos de reação que cada sistema desenvolve. Com relação à solubilidade, por exemplo, os valores 0,06, 1,2 e 60 mol/l.atm da solubilidade em água a 25 °C, respectivamente para Cl₂, SO₂, NH₃, já sinalizam alta resistência à transferência de massa na fase líquida para o cloro quando comparada à da amônia, bem inferior. Analisando-se, agora, a difusividade de cada gás em N₂ a uma mesma temperatura, nota-se que a amônia apresenta uma difusividade cerca de duas vezes maior que a dos outros gases. Portanto, espera-se uma resistência menor na fase gasosa também para este gás (amônia).

A Figura 4.3-1, a seguir, esquematiza a montagem experimental utilizada. A mistura gasosa de composição conhecida (sempre 10% molar em gás solúvel e 90% em nitrogênio) era alimentada na coluna de borbulhamento após o ajuste da vazão desejada (em torno de 30 cm³/s).

Para cada sistema, efetuou-se o borbulhamento a diferentes alturas de dispersão gás-líquido (h = 5, 10 e 15 cm) com o intuito de observar a influencia das condições hidrodinâmicas no processo de transferência de massa.

A coluna, feita em acrílico, de seção retangular de 13,5×15,0 cm, operava em regime de semibatelada. O gás era alimentado continuamente pela base por um cone de distribuição. Entre o cone e coluna existia um prato perfurado com cinco orificios de 1 mm de diâmetro cada dispostos de maneira que quatro dos orificios rodeavam um orificio central numa circunferência de 3,2 cm de raio.

Além da coluna, faziam parte da montagem experimental:

- Rotâmetro de precisão da Gilmont Instruments modelo 20187 com flutuador de vidro de 0,125 polegadas de diâmetro.
- Indicador de temperatura TDB-40C12 da IOPE Instrumentos de Precisão Ltda ligado a dois termopares bainha tipo J com 1 mm de espessura também da IOPE.
- Regulador de pressão modelo R07-202-NGAG da IMI Norgren Ltda.

À exceção do cilindro de gás, todos os integrantes da montagem experimental situavam-se sob uma capela dotada de um sistema de exaustão próprio.

As misturas gasosas a 10% molar e 1% de precisão foram fornecidas pela Air Liquide Brasil S/A e eram conduzidas por tubos de 1/4" de diâmetro em aço inoxidável.

Das muitas variáveis passíveis de medição, optou-se pela medida da concentração do gás solúvel na fase líquida como variável de confronto com a modelagem matemática.

Cada experimento durava de duas a três horas de borbulhamento, indo algumas vezes até a saturação do líquido. As etapas a seguir descrevem o procedimento de cada experimento (ver Figura 4.3-1):

1) Efetuadas todas as conecções da tubulação, bem como dos termopares e indicador de temperatura, o sistema de exaustão era acionado;

Figura 4.3-1. Montagem Experimental

- 2) A mistura gasosa era então alimentada, sendo feita uma inspeção quanto a possíveis vazamentos por meio de uma solução diluída de detergente;
- Ajustava-se o controlador de pressão PCI para uma pressão manométrica de 0,5 kgf/cm², aproximadamente, a jusante;
- Mantinha-se o flutuador do rotâmetro R na posição desejada pela manipulação da válvula V;
- Após a estabilização do sistema, alcançada em alguns minutos, um volume de solvente previamente medido era adicionado pela parte superior do borbulhador enquanto paralelamente era acionado o cronômetro;
- 6) Novo ajuste da vazão seguido do acionamento do sistema de medição de temperatura TI.
- 7) Após cerca de 5 min, coletava-se 1 ml da fase líquida e analisava-se por titulometria.

Amostras subseqüentes, sempre de 1 ml, eram recolhidas em intervalos de 10 min aproximadamente. Para o recolhimento das amostras, usou-se pipetador automático modelo *S* da Kacil Indústria e Comércio Ltda. Quanto as análise titulométricas, tem-se a seguir o resumo do procedimento analítico (Vogel, 1987; Ohhlweiler, 1986; ABNT, NBR 12979, 1993; Greenberg, 1992):

1) $\underline{SO_2 - HCl} \in \underline{SO_2 - H_2O}$

Cada amostra era tratada com peróxido de hidrogênio para oxidar o SO₂, livre e combinado, a sulfato, SO₄²⁻, de acordo com as reações:

$$SO_{2} + H_{2}O \leftrightarrow H^{+} + HSO_{3}^{-}$$
$$HSO_{3}^{-} + H_{2}O_{2} \leftrightarrow + 2H^{+} + SO_{4}^{2-}$$
$$\boxed{SO_{2} + H_{2}O_{2} \leftrightarrow 2H^{+} + SO_{4}^{2-}}$$

e posteriormente titulada com tetraborato de sódio decaidratado, Na₂B₄O₇·10H₂O:

$$B_4O_7^{2-} + 2H^+ 5H_2O \leftrightarrow 4H_3BO_3$$

A partir das reações anteriores tem-se, para 1 ml de amostra, que a concentração SO₂ total em mol/cm³ é dada pela expressão:

$$[SO_2]_{Total} = \frac{2V_T M_T - [HCl]}{1000}$$
(4.12)

onde V_T e M_T são o volume gasto em cm³ e a molaridade do titulante respectivamente e [HCl] a molaridade do solvente.

Para evidenciar o ponto de viragem, utilizou-se um indicador misto com: verde de bromocresol, vermelho de metila e metanol como solvente.

2) <u>NH₃ - H₂O</u>

A reação de hidrólise da amônia é dada por:

 $NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$

Para este sistema, titulava-se diretamente a amostra com ácido clorídrico utilizando-se vermelho de metila como indicador.

A concentração de amônia em mol/cm³ em 1 ml de amostra pode ser obtida de:

$$\left[\mathrm{NH}_{3}\right]_{\mathrm{Total}} - \frac{\mathrm{V}_{\mathrm{T}}\mathrm{M}_{\mathrm{T}}}{1000} \tag{4.13}$$

onde V_T e M_T são o volume gasto em cm³ e a molaridade do titulante respectivamente.

3) <u>Cl₂ - H₂O</u>

A reação de hidrólise do cloro é dita irreversível entre pH 3 e 7 (Spalding, 1962). Abaixo de 3 a reação assume caráter de reversibilidade.

Para este sistema, optou-se por uma titulação iodométrica. O Cl₂, livre e combinado, reagia com iodeto de potássio, KI, gerando iodo molecular, I₂. As principais reações são (Lahiri *et al.*, 1983):

$$Cl_{2} + H_{2}O \rightarrow H^{+} + Cl^{-} + HClO$$

$$2KI + HClO \rightarrow KCl + KOH + I_{2}$$

$$Cl_{2} + 2KI \rightarrow 2KCl + I_{2}$$

$$2Cl_{2} + 4KI + H_{2}O \rightarrow HCl + 3KCl + KOH + 2I_{2}$$

Posteriormente, o iodo liberado era titulado com tiossulfato de sódio pentaidratado, Na₂S₂O₃·5H₂O, empregando-se amido solúvel como indicador:

$$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I_1^{2-}$$

Com base nas reação anteriores, chega-se a expressão para o cálculo de cloro livre e combinado em mol/cm³ contido em 1 ml de amostra:

$$[Cl_{2}]_{Total} = \frac{V_{T}M_{T}}{2000}$$
(4.14)

onde V_T e M_T são o volume gasto na titulação em cm³ e a molaridade do titulante, respectivamente.

CAPÍTULO CINCO

Resultados e Discussões

5.1. Introdução.

Numa primeira etapa, este capítulo apresenta alguns resultados que evidenciam as diferentes características de cada sistema quanto à transferência de massa. Em seguida, apresenta simultaneamente os resultados teórico e experimental em diferentes condições de operação através de gráficos da concentração total do gás solúvel com o tempo de borbulhamento. A título de concisão, somente os resultados de alguns experimentos, escolhidos pela representatividade e pelo maior apuro da técnica experimental, foram exibidos. No Apêndice A, os resultados são encontrados em sua totalidade, desta vez, em forma de tabela.

5.2. Resultados Típicos.

As diferentes características de cada conjunto gás/solvente são facilmente identificadas a partir das Figura 5.2-1, respectivamente para SO₂ - HCl, NH₃ - H₂O e Cl₂ - H₂O, que mostram a pressão parcial média do gás solúvel, \overline{p}_A , no interior de bolhas, geradas no primeiro e no milésimo tempo de residência. Ou seja, pode-se dividir o tempo total de borbulhamento em subintervalos iguais ao tempo de residência das bolhas. Refere-se aqui, ao primeiro e ao milésimo desses subintervalos. A simulação foi realizada para o borbulhamento do gás em questão a 10% molar, como se observa nos gráficos pela pressão média inicial, em dois litros de solvente e a uma mesma vazão.

A análise dos gráficos da Figura 5.2-1 fornece subsídios para se prever a magnitude dos fluxos mássicos envolvidos no borbulhamento, como também a capacidade de absorção do solvente em questão.

Figura 5.2-1. Pressão parcial média durante o primeiro (----) e o milésimo (-----) tempo de residência: a) SO₂ - HCl, b) NH₃ - H₂O, c) Cl₂ - H₂O.

Quanto ao fluxo, uma grande inclinação inicial indica que a bolha está perdendo massa rapidamente e, portanto, altos fluxos de massa são esperados. Sendo assim, tanto o sistema SO_2 - HCl como NH₃ - H₂O apresentam grandes fluxos de massa no processo de borbulhamento. Note que, ao final do primeiro tempo de residência, para esses sistemas, as bolhas praticamente só contém nitrogênio, haja visto que a pressão parcial do gás solúvel é praticamente nula. Ao final do milésimo tempo de residência (cerca de quinze minutos de borbulhamento) o perfil da pressão parcial é praticamente o mesmo para NH₃ - H₂O e as bolhas ainda chegam à superfície livre do líquido quase que isentas de amônia.

No caso do sistema $Cl_2 - H_2O$, a inclinação inicial da curva é bem menos pronunciada, em comparação aos sistemas anteriores, e a modelagem prevê fluxos bem menos expressivos. Nem no primeiro tempo de residência, quando se verifica os maiores gradientes de concentração, as bolhas perdem apreciavelmente o cloro retido. Outro fato interessante, previsto pela modelagem, é que o fluxo varia muito pouco num tempo de residência (inclinação da curva aproximadamente constante), o que é esperado para gases pouco solúveis, como o cloro, reagindo irreversivelmente e instantaneamente. Por ser pouco solúvel, a concentração interfacial deve variar pouco e, por reagir irreversivelmente, a concentração do cloro na forma não-reagida é invariavelmente nula. Como o fluxo mássico é proporcional à diferença dessas duas concentrações, permanece aproximadamente constante.

A capacidade de absorção do solvente também pode ser analisada a partir da Figura 5.2-1. Antes de qualquer consideração, note que no caso limite, em que o volume de solvente está completamente saturado, o perfil da pressão parcial em um tempo de residência seria uma reta horizontal passando na pressão parcial inicial ($\bar{p}_A = 0,1$ atm neste caso). Ou seja, as bolhas percolariam toda a coluna de líquido sem transferir massa. A área compreendida entre qualquer curva considerada e a reta $\bar{p}_A = 0,1$ atm é, naturalmente, proporcional a quantidade de gás solúvel que ainda pode ser absorvido pelo volume de solvente. Sendo assim, é esperado que um mesmo volume de solvente absorva bem menos cloro que amônia ou dióxido de enxofre, nas mesmas condições de operação, já que a área entre a curva de \bar{p}_A no primeiro tempo de residência e a reta $\bar{p}_A = 0,1$ para o sistema Cl₂ - H₂O é bem inferior à respectiva área para os sistemas SO₂ - HCl e NH₃ - H₂O.

Um outro aspecto que a análise da Figura 5.2-1 pode contribuir é quanto a perda da capacidade de absorção do volume de solvente considerado ou, mais claramente, quanto ao tempo de saturação do sistema. A área compreendida entre duas curvas, referentes a dois subintervalos de tempo (por exemplo entre a curva do primeiro e do milésimo tempo de

residência), é proporcional a perda da capacidade de absorção do volume de solvente entre os subintervalos de tempo considerado. É possível observar que, de acordo com a modelagem, entre o primeiro e o milésimo tempo de residência a perda da capacidade de absorção do sistema SO_2 - HCl é bem superior a dos outros dois, já que a área entre as curvas é relativamente maior. Provavelmente, os sistemas SO_2 - HCl e Cl_2 - H_2O alcançarão o regime de saturação bem antes que o sistema NH_3 - H_2O . O primeiro por possuir uma alta taxa de perda da capacidade de absorção do solvente e o segundo pela baixa solubilidade do gás.

A partir desse ponto, percebe-se que cada sistema apresenta suas particularidades e que os experimentos gerados por esses sistemas, ou seja, o borbulhamento de cada gás em seu respectivo solvente, servem para uma adequada validação do modelo matemático em estudo.

As Figuras 5.2-2 a 5.2-4 comparam os resultados do modelo com os dados obtidos experimentalmente. a partir da a variação concentração do gás solúvel na fase líquida com o tempo de borbulhamento para os sistemas estudados a diferentes alturas de dispersão. Nota-se, que cada sistema apresentou comportamento distinto dos demais.

Antes de qualquer explanação, deve ficar claro que a concentração do gás solúvel no tempo zero é conhecida, bem como o valor máximo que esta concentração pode atingir (concentração de saturação). Qualquer desvio, entre a concentração de saturação previsto pela modelagem e o valor experimental, deve ser atribuído basicamente à imprecisões na descrição do equilíbrio entre as fases ou a influência de efeitos térmicos, que não foram levados em conta na modelagem.

Observando-se as Figuras 5.2-2 a 5.2-4, nota-se que o borbulhamento referente aos sistemas SO_2 - HCl e Cl_2 - H_2O alcançou rapidamente a região de saturação, como previsto anteriormente pela simulação, sendo que o sistema Cl_2 - H_2O atingiu a região, sempre em menores tempos. Para altura de dispersão igual a 5 cm, por exemplo, o sistema SO_2 - HCl atingiu a saturação aproximadamente em 50 min de borbulhamento. No caso de Cl_2 - H_2O , em 30 min de borbulhamento o regime de saturação é claramente definido. Para NH_3 - H_2O , a saturação não foi alcançada, sendo evidente a tendência de crescimento mesmo após duas horas de borbulhamento.

Observa-se também, que o aumento na concentração é bem mais pronunciado nos experimentos com menores alturas de dispersão, já que para uma mesma quantidade de soluto, obtêm-se maiores concentrações para menores volumes de solvente.

Particularmente, a simulação para o sistema SO_2 - HCl (Figura 5.2-2) apresentou as melhores concordâncias com os dados experimentais. Note que, de maneira geral, a modelagem descreveu satisfatoriamente todo o processo de transferência de massa desde o início do borbulhamento até a saturação. Para este sistema, o equilíbrio entre as fases foi descrito razoavelmente bem, já que

tanto os pontos experimentais como a curva do modelo tendem aproximadamente para a mesma assíntota. O experimento para 5 cm de altura de dispersão (Figura 5.2-2a) apresentou uma transferência de massa relativamente superior aos demais, quando se observa que os pontos experimentais situaram-se sempre acima da curva teórica.

Figura 5.2-2. Concentração a diferentes alturas de dispersão para SO_2 - HCl : a) h = 5 cm, b) h = 10 cm, c) h = 15 cm; — modelo, meteoremento.

Figura 5.2-3. Concentração a diferentes alturas de dispersão para $NH_3 - H_2O$: a) h = 5 cm, b) h = 10 cm, c) h = 15 cm; — modelo, **m** experimento.

Figura 5.2-4. Concentração a diferentes alturas de dispersão para Cl_2 - H_2O : a) h = 5 cm, b) h = 10 cm, c) h = 15 cm; — modelo, experimento.

Diferentemente das simulações do sistema SO_2 - HCl, que apresentaram desvios positivos e negativos com relação aos pontos experimentais, as simulações do sistema NH₃ - H₂O (Figura 5.2-3) mostraram desvios sempre positivos, ou seja, os valores teóricos estavam sempre acima dos experimentais. Observa-se que, para este sistema, a modelagem descreve satisfatoriamente os dados experimentais a menos de um desvio que, à primeira vista, parece sistemático. Note que, para um mesmo instante, o desvio é praticamente o mesmo independente da altura de dispersão considerada, à exceção do experimento com a menor altura de dispersão (h = 5 cm) que apresenta desvios um pouco maiores.

Para o sistema $Cl_2 - H_2O$, e particularmente para os experimentos com alturas de dispersão de 10 e 15 cm, obteve-se um excelente concordância nos primeiros trinta minutos de borbulhamento, porém o modelo não reproduziu bem a região de saturação. Dada a baixa solubilidade do cloro, provavelmente os desvios na concentração de saturação devem-se a variações na temperatura (Connick e Chia, 1959; Brian *et al.*, 1966), que não foram consideradas, ou a precariedade na descrição do equilíbrio entre as fases. Mais uma vez, o experimento com h = 5 cm, fugiu um pouco da tendência dos demais.

Pelo exposto nos três últimos parágrafos e com base nas Figuras 5.2-2 a 5.2-4 pode-se depreender que: (1) de maneira geral, a modelagem descreve adequadamente a transferência de massa, à exceção do sistema NH₃ - H₂O onde o modelo previu concentrações maiores que os valores experimentais, e (2) que experimentalmente verificou-se que a transferência de massa com altura dispersão igual a 5 cm é relativamente superior à transferência de massa com alturas de dispersão iguais a 10 e 15 cm, ou seja, os experimentos com h = 5 cm apresentam concentrações um pouco superiores a estimativas feitas a partir dos experimentos com altura de dispersão igual a 10 e 15 cm. Quanto a este último item (item 2), pode-se afirmar que provavelmente a explicação está no maior nível de turbulência alcançado, favorecendo à transferência de massa nos borbulhamentos a menores alturas de dispersão. Já quanto ao item (1), uma possível explicação para os desvios, aparentemente sistemáticos no sistema NH3 - H2O é o uso de uma área específica superestimada, como comentou-se no Capítulos 3, pelo uso da Equação 3.28 e a respeito da hipótese que admite volume constante para as bolhas em ascensão. Para verificar este fato, efetuou-se novas simulações utilizando-se, desta vez, a correlação empírica proposta por Guedes de Carvalho (1986) para a área específica ao invés da Equação 3.28. A referida correlação é dada por:

$$a = 5,73G_{ortf}^{0,4}g^{-0,2} \tag{5.01}$$

onde a área específica a está em cm² por cm de altura de dispersão, a vazão de gás por orificio

 G_{ortf} em cm³/s e a aceleração da gravidae em cm/s².

As novas simulações foram adicionadas aos gráficos anteriores e são exibidas nas Figuras 5.2-5 a 5.2-7. No sistema SO₂ - HCl, houve uma melhor concordância, entre modelo e experimento, quanto ao instante em que se atinge a concentração de saturação experimental, mas em tempos intermediários, a substituição da Equação 3.28 pela 5.01 não foi satisfatória, aumentando os desvios. Para NH₃ - H₂O, o ganho de concordância foi mais significativo, sobretudo quando h = 5 cm. Por fim, nota-se que a modificação no modelo praticamente não produziu efeito no borbulhamento de Cl₂ em H₂O.

Esses novos resultados indicam que a simples substituição da Equação 3.28 por uma outra, que forneça uma menor área específica, não é capaz, por si só, de melhorar generalizadamente a concordância entre os dados da modelagem e os dos experimentos, já que houve, ao mesmo tempo, ganhos e perdas na concordância de sistema para sistema. Provavelmente, o que acontece é a inadequação da consideração de que a bolha permanece com o mesmo volume durante sua ascensão para sistemas que envolvem altos fluxos de massa, como NH₃ - H₂O.

Figura 5.2-5. Concentração a diferentes alturas de dispersão para SO₂ - HCl : a) h = 5 cm, b) h = 10 cm, c) h = 15 cm; — modelo original, ---modelo modificado, ■ experimento.

Figura 5.2-6. Concentração a diferentes alturas de dispersão para $NH_3 - H_2O$: a) h = 5 cm, b) h = 10 cm, c) h = 15 cm; — modelo original, — modelo modificado, **=** experimento.

Figura 5.2-7. Concentração a diferentes alturas de dispersão para Cl_2 - H_2O : a) h = 5 cm, b) h = 10 cm, c) h = 15 cm; — modelo original, — - modelo modificado, \blacksquare experimento.

CAPÍTULO SEIS

Conclusão e Sugestões

De maneira geral, pode-se afirmar que o modelo reproduziu satisfatoriamente os resultados experimentais, obtidos a partir do borbulhamento de gases com diferentes valores de solubilidade e apresentando reação reversível ou irreversível de primeira ordem, e, portanto, descreve adequadamente a transferência de massa em processos de borbulhamento com reação química na fase contínua.

Os resultados forneceram, além da análise do modelo como um todo, subsídios para uma avaliação das hipóteses do modelo separadamente. Pôde-se concluir, que a transferência de massa no interior de bolhas, em colunas de diâmetro reduzido, se aproxima de um processo puramente difusional e, deste modo, a hipótese fundamental do modelo é prontamente aceitável. Porém, para uma descrição realística do processo de transferência de massa em borbulhamentos, a importância das hipóteses secundárias ficou evidente.

Para sistemas envolvendo altos fluxos de massa, a modelagem forneceu inícios da necessidade de se considerar a variação do volume das bolhas na sua ascensão. Em compensação, para sistemas que envolvem fluxos não tão significativos, a hipótese de que a bolha permanece com o mesmo volume durante sua ascensão permitiu o cálculo da área específica de transferência de massa de maneira simples e adequada.

Apesar do pouco ganho no esforço computacional, a consideração de que a concentração de gás solúvel na fase líquida é invariável durante um intervalo de tempo correspondente a um tempo de residência simplifica o algoritmo de resolução do modelo e é aplicável em sistemas que envolvam fluxos de massa não muito elevados, como SO₂ - HCl e Cl₂ - H₂O. Entretanto, em sistemas como NH₃ - H₂O, que envolvem significativos fluxos de massa, esta hipótese deve ser evitada e a concentração do gás solúvel na fase líquida deve ser tratada de forma contínua.

Para gases com baixa solubilidade a modelagem mostrou-se surpreendentemente realística, à exceção da região de saturação, onde, provavelmente, os desvios seriam minimizados pela inclusão de um balanço energético, para levar em conta a influência de efeitos térmicos na solubilidade, ou por uma descrição mais aprimorada do equilíbrio entre as fases.

Para trabalhos futuros, sugere-se:

- i) Verificar os limites da hipótese de mistura perfeita na fase líquida confrontado o modelo com dados experimentais gerados em borbulhamentos a maiores alturas de dispersão;
- *ii)* Verificar a eficiência do modelo na descrição da transferência de massa em sistemas do tipo líquido-líquido ou sólido-líquido;
- iii) Incluir na modelagem a variação do volume das bolhas durante sua ascensão.

Resultados Experimentais

A.1. Introdução.

Os experimentos realizados são aqui apresentados em forma de planilha. Em cada uma delas, pode-se ver o tabelamento da concentração total do gás solúvel com o tempo de borbulhamento, bem como as condições operacionais em que os experimentos foram realizados. Os experimentos 1 a 6 referem-se ao sistema SO₂ - HCl, 7 a 11, a NH₃ - H₂O, 12 a 18, a Cl₂ - H₂O e 19 e 20, ao sistema SO₂ - H₂O.

A.2. Planilhas dos Experimentos.

EXPERIMENTO nº 1

DATA:	18/11/96	TITULANTE
INÍCIO:	15:40 h	Na ₂ B ₄ O ₇ ·10H ₂ O a 0,006 M

F, GÁS	ASE GASOS % molar	SA posição rotâmetro	FA SOLVENTE	ISE LÍQUII CONC., M	DA VOLUME, I
SO ₂	10	80	HCl	0,0102	1,0

TEMPO	TEMPERATURA °C		VOLUME TITULANTE	CONC.
min	GÁS	<i>LÍQ</i> .	ml	mol/cm ³
5	24,3	25,5	4,90	4,860E-05
10	25,4	25,6	7,75	8,280E-05
15	25,7	25,5	9,90	1,086E-04
20	26,0	25,5	11,15	1,236E-04
25	26,2	25,4	12,20	1,362E-04
30	26,3	25,4	13,05	1,464E-04
35	26,7	25,3	13,60	1,530E-04
40	26,8	25,3	13,70	1,542E-04
45	27,0	25,2	14,15	1,596E-04
50	27,2	25,2	14,50	1,638E-04
55	27,1	25,2	14,55	1,644E-04
60	27,0	25,2	14,65	1,656E-04
70	27,3	25,1	15,10	1,710E-04
80	27,3	25,2	15,35	1,740E-04
90	26,8	25,1	14,90	1,686E-04
100	26,3	25,0	15,20	1,722E-04
110	26,1	24,9	15,35	1,740E-04
120	26,4	24,8	15,70	1,782E-04
125	26,3	24,8	16,00	1,818E-04

TEMP.	GÁS	LÍQ.
MÉDIA, °C	26,4	25,2

DATA:	25/11/96	TITULANTE
INÍCIO:	16:15 h	Na ₂ B ₄ O ₇ ·10H ₂ O a 0,006 M

F. GÁS	ASE GASOS % MOLAR	SA POSIÇÃO ROTÂMETRO	FA SOLVENTE	ISE LÍQUII CONC., M	DA VOLUME, I
SO ₂	10	80	HCl	0,0102	2,0

TEMPO	TEMPE	RATURA	VOLUME TITULANTE	CONC.
min	GÁS	LÍQ.	ml	mol/cm ³
5			3,10	2,700E-05
10			5,00	4,980E-05
15			6,50	6,780E-05
20			7,60	8,100E-05
25			8,48	9,156E-05
30			9,20	1,002E-04
35			9,90	1,086E-04
40			10,49	1,157E-04
45			10,60	1,170E-04
50	· · · · · · · · · · · · · · · · · · ·		10,91	1,207E-04
55			11,02	1,220E-04
60			11,28	1,252E-04
81	26,4	25,0	11,60	1,290E-04
90	26,4	25,2	11,82	1,316E-04
100	26,4	25,1	12,07	1,346E-04
110	26,5	25,0	12,50	1,398E-04
120	26,6	24,9	12,75	1,428E-04
130	26,4	24,8	12,70	1,422E-04
140	26,1	24,7	12,80	1,434E-04
			M 0007	

TEMP.	GÁS	LÍQ.
MĖDIA, °C	26,4	25,0

OBS.: Indicador de temperatura inicialmente com problemas

DATA:	03/10/96	TITULANTE
INÍCIO:	14:20 h	Na ₂ B ₄ O ₇ ·10H ₂ O a 0,006 M

F2 GÁS	ASE GASOS % MOLAR	SA posição rotâmetro	F# solvente	ASE LÍQUII CONC., M	DA VOLUME, I
SO ₂	10	80	HCl	0,0101	2,0

ТЕМРО	TEMPERATURA °C		VOLUME TITULANTE	CONC.
min	GÁS	LÍQ.	ml	mol/cm ³
5	21,1	22,8	4,25	4,090E-05
12	21,4	22,8	6,60	6,910E-05
15	21,5	22,8	7,85	8,410E-05
20	21,4	22,8	9,40	1,027E-04
25	21,5	22,8	10,40	1,147E-04
30	21,9	22,8	11,00	1,219E-04
35	22,1	22,8	12,15	1,357E-04
40	22,4	22,8	13,40	1,507E-04
45	22,6	22,7	13,50	1,519E-04
51	22,8	22,7	13,35	1,501E-04
56	22,8	22,7	14,10	1,591E-04
60	23,0	22,7	14,30	1,615E-04
70	23,1	22,7	16,10	1,831E-04
80	23,2	22,7	16,90	1,927E-04
90	23,2	22,6	14,85	1,681E-04
100	23,2	22,6	15,40	1,747E-04
111	23,2	22,6	17,30	1,975E-04
114	23,2	22,5	17,90	2,047E-04

TEMP.	GÁS	LÍQ.
MÉDIA, °C	22,4	22,7

DATA:	08/11/96	TITULANTE
INÍCIO:	15:45 h	Na ₂ B ₄ O ₇ ·10H ₂ O a 0,006 M

F. GÁS	ASE GASOS % MOLAR	SA posição rotâmetro	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
SO ₂	10	90	HCl	0,0099	2,0

TEMPO	TEMPERATURA °C		VOLUME TITULANTE	CONC.
min	GÁS	LÍQ.	ml	mol/cm ³
5	23,2	26,5	3,65	3,390E-05
10	25,2	26,5	5,60	5,730E-05
15	25,8	26,5	7,10	7,530E-05
20	26,2	26,4	8,25	8,910E-05
25	26,4	26,3	9,10	9,930E-05
30	26,7	26,3	9,85	1,083E-04
35	27,0	26,2	10,40	1,149E-04
40	27,2	26,1	10,80	1,197E-04
45	27,4	26,1	11,20	1,245E-04
50	27,4	26,1	11,55	1,287E-04
55	27,4	26,0	11,95	1,335E-04
60	27,5	26,0	12,15	1,359E-04
70	27,3.	25,9	12,35	1,383E-04
80	27,1	25,8	12,40	1,389E-04
90	26,8	25,5	12,65	1,419E-04
100	26,6	25,4	12,70	1,425E-04
110	26,4	25,2	12,85	1,443E-04
120	26,2	25,0	12,80	1,437E-04
130	26,1	24,9	12,85	1,443E-04

TEMP.	GÁS	LÍQ.
MÉDIA, °C	26,5	25,9

DATA:	20/12/96	TITULANTE
INÍCIO:	19:45 h	Na ₂ B ₄ O ₇ ·10H ₂ O a 0,006 M

EXPERIMENTO n^o 5

F. GÁS	ASE GASOS % MOLAR	SA posição rotâmetro	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
SO ₂	10	80	HCl	0,0978	2,0

TEMPO	TEMPERATURA °C		VOLUME TITULANTE	CONC.	
min	GÁS	LÍQ.	ml	mol/cm ³	
5			10,60	2,940E-05	
12	24,7	26,6	13,00	5,820E-05	
16	25,0	26,7	13,77	6,744E-05	
20	25,3	26,6	14,50	7,620E-05	
25	25,2	26,5	15,05	8,280E-05	
30	25,4	26,3	15,65	9,000E-05	
35	25,4	26,2	16,05	9,480E-05	
40	25,2	26,0	16,39	9,888E-05	
45	25,2	25,8	16,61	1,015E-04	
50	25,2	25,7	16,82	1,040E-04	
55	25,0	25,5	17,20	1,086E-04	
60	24,9	25,4	17,30	1,098E-04	
70	24,7	25,2	17,40	1,110E-04	
80	24,7	24,9	17,70	1,146E-04	
90	24,7	24,7	18,00	1,182E-04	
100	24,7	24,5	18,12	1,196E-04	
110	24,3	24,3	18,40	1,230E-04	
120	24,3	24,1	18,70	1,266E-04	
125	24,3	24,0	18,40	1,230E-04	

TEMP.	GÁS	LÍQ.
MÉDIA, °C	24,9	25,5

DATA:	10/01/97	TITULANTE
INÍCIO:	16:25 h	Na ₂ B ₄ O ₇ ·10H ₂ O a 0,006 M

F. GÁS	4SE GASOS % MOLAR	SA posição rotâmetro	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
SO ₂	10	80	HCl	0,00992	3,0

TEMPO	TEMPERATURA °C		VOLUME TITULANTE	CONC.	
min	GÁS	<i>LÍQ</i> .	ml	mol/cm ³	
5	22,3	24,8	2,55	2,068E-05	
10	22,7	24,8	4,10	3,928E-05	
15	23,0	24,6	5,22	5,272E-05	
20	23,5	24,6	6,30	6,568E-05	
25	23,7	24,5	7,11	7,540E-05	
32	24,2	24,4	8,10	8,728E-05	
40	24,2	24,3	9,01	9,820E-05	
50	24,3	24,3	9,80	1,077E-04	
60	24,5	24,3	10,40	1,149E-04	
70	24,6	24,1	10,81	1,198E-04	
80	24,3	24,0	10,95	1,215E-04	
90	24,2	23,9	11,28	1,254E-04	
100	24,3	23,8	11,50	1,281E-04	
110	24,3	23,7	11,55	1,287E-04	
120	24,3	23,7	11,70	1,305E-04	
130	24,5	23,7	11,80	1,317E-04	

TEMP.	GÁS	LÍQ.
MÉDIA, °C	23,9	24,2

OBS.: T_{amb.} = 25,9 °C

DATA:	03/03/97	TITULANTE
INÍCIO:	14:45 h	HCl a 0,0211 M

F. GÁS	4SE GASOS % MOLAR	SA POSIÇÃO ROTÂMETRO	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
NH3	10	80	H ₂ O	0,0	1,0

TEMPO	TEMPERATURA °C		VOLUME TITULANTE	CONC.	
min	GÁS	Č LÍQ.	ml	mol/cm ³	
5	21,5	24,4	1,78	3,756E-05	
10			3,50	7,385E-05	
15			5,00	1,055E-04	
20	23,1	24,3	6,60	1,393E-04	
25			8,15	1,720E-04	
30			9,58	2,021E-04	
40			12,49	2,635E-04	
50			15,30	3,228E-04	
60			17,89	3,775E-04	
70	24,0	24,1	20,20	4,262E-04	
80			22,60	4,769E-04	
90			24,79	5,231E-04	
100			27,00	5,697E-04	
120	24410/02/0400/04/07/04/20/04/20/04/20/07/07/20/20/07/04/20/04/20/04/20/04/20/04/20/04/20/04/20/04/20/04/20/04/		31,11	6,564E-04	
140	23,9	23,6	34,80	7,343E-04	

TEMP.	GÁS	LÍQ.
MÉDIA, °C	23,1	24,1

OBS.: indicador de temperatura instável
DATA:	17/02/97	TITULANTE
INÍCIO:	15:00 h	HCl a 0,1031 M

F/ GÁS	4SE GASOS % molar	SA POSIÇÃO ROTÂMETRO	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
NH ₃	10	80	H_2O	0,0	1,0

ТЕМРО	<i>TEMPERATURA</i> °C		VOLUME TITULANTE	CONC.	
min	GÁS	ĽÍQ.	ml	mol/cm ³	
5	22,9	24,6	0,30	3,093E-05	
10	22,7	24,7	0,61	6,289E-05	
15	22,7	24,7	0,90	9,279E-05	
20	22,8	24,7	1,18	1,217E-04	
25	24,1	24,1	1,47	1,516E-04	
30	24,6	24,7	1,78	1,835E-04	
40	25,2	24,8	2,25	2,320E-04	
50	25,2	24,9	2,77	2,856E-04	
60	25,2	24,9	3,20	3,299E-04	
70	25,3	24,9	3,68	3,794E-04	
80	25,4	24,9	4,10	4,227E-04	
90	25,4	25,0	4,49	4,629E-04	
100	25,3	25,0	4,88	5,031E-04	
110	25,5	25,0	5,25	5,413E-04	
120	25,4	24,9	5,60	5,774E-04	

TEMP.	GÁS	LÍQ.
MÉDIA, °C	24,5	24,8

DATA:	23/04/97	TITULANTE
INÍCIO:	15:30 h	HCl a 0,0103 M

F. GÁS	ASE GASOS % MOLAR	IA POSIÇÃO ROTÂMETRO	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
NH ₃	10	50	H_2O	0,0	1,0

ТЕМРО	TEMPERATURA °C		VOLUME TITULANTE	CONC.	
min	GÁS	LÍQ.	ml	mol/cm ³	
5	21,9	23,6	2,00 2,00	2,060E-05	
11	22,7	23,6	4,50	4,635E-05	
16	23,2	23,6	6,40	6,592E-05	
20	23,6	23,6	7,89	8,127E-05	
26	24,0	23,7	10,25	1,056E-04	
35	24,4	23,8	13,42 13,40	1,381E-04	
46	24,7	23,9	17,39	1,791E-04	
60	25,0	24,0	21,80	2,245E-04	
80	25,2	24,2	28,00	2,884E-04	
100	24,9	24,3	33,70	3,471E-04	
120	24,8	24,4	39,51	4,070E-04	

TEMP.	GÁS	LÍQ.	¢
MÉDIA, °C	24,0	23,9	

OBS.: T_{amb} = 26,6 °C

DATA:	05/03/97	TITULANTE
<i>INÍCIO</i> :	15:45 h	HCl a 0,0103 M

F. GÁS	ASE GASOS % MOLAR	ŠA posição rotâmetro	FA SOLVENTE	ISE LÍQUIL CONC., M)A VOLUME, I
NH ₃	10	8	H_2O	0,0	2,0

ТЕМРО	<i>TEMPERATURA</i> °C		VOLUME TITULANTE	CONC.	
min	GÁS	LÍQ.	ml	mol/cm ³	
5	<u></u>		1,75	1,803E-05	
10			3,51	3,615E-05	
15			5,40	5,562E-05	
20			7,20	7,416E-05	
25			8,82	9,085E-05	
30			10,60	1,092E-04	
41			14,20	1,463E-04	
50			17,11	1,762E-04	
60			20,30	2,091E-04	
70			23,11	2,380E-04	
80		24,0	26,01	2,679E-04	
90			29,49	3,037E-04	
100			31,85	3,281E-04	
120			37,85	3,899E-04	
140			42,82	4,410E-04	

TEMP.	GÁS	LÍQ.
MÉDIA, °C		24,0

OBS.: Indicador de temperatura $T_{amb} = 24,5 \ ^{\circ}C$

DATA:	14/03/97	TITULANTE
INÍCIO:	13:40 h	HCl a 0,0103 M

F. GÁS	ASE GASOS % molar	SA posição rotâmetro	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
NH3	10	80	H ₂ O	0,0	3,0

TEMPO	TEMPERATURA °C		VOLUME TITULANTE	CONC.	
min	GÁS	LÍQ.	ml	mol/cm ³	
5	22,7	24,8	1,21	1,246E-05	
10	23,0	24,7	2,40	2,472E-05	
15	23,3	24,7	3,60	3,708E-05	
20	23,5	24,7	4,88	5,026E-05	
30	24,0	24,7	7,00	7,210E-05	
40	24,3	24,6	9,20	9,476E-05	
50	24,5	24,6	11,39	1,173E-04	
60	24,5	24,6	13,30 13,31	1,370E-04	
70	24,4	24,6	15,50	1,597E-04	
80	24,5	24,5	17,60	1,813E-04	
90	24,3	24,4	19,50	2,009E-04	
100	24,5	24,4	21,50	2,215E-04	
120	24,6	24,3	25,20	2,596E-04	
140	24,7	24,3	28,96	2,983E-04	
				·	

TEMP.	GÁS	LÍQ.
MÉDIA, °C	24,1	24,6

OBS.: T_{amb} = 25,6 °C

DATA:	04/07/97	TITULANTE
INÍCIO:	16:45 h	Na ₂ S ₂ O ₃ ·5H ₂ O a 0,002498 M

EXPERIMENTO	n⁰	12
--------------------	----	----

F. GÁS	ASE GASOS % MOLAR	SA POSIÇÃO ROTÂMETRO	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
Cl ₂	10	80	H ₂ O	0,0	1,0

ТЕМРО	TEMPERATURA °C		VOLUME TITULANTE	CONC.	
min	GÁS	LÍQ.	ml	mol/cm ³	
5	33,1	21,0	6,00	7,494E-06	
10	31,4	21,1	10,82	1,351E-05	
20	27,3	21,1	14,50	1,811E-05	
30	22,4	21,2	15,30	1,911E-05	
40	22,0	21,2	15,49	1,935E-05	
50	22,3	21,2	15,25	1,905E-05	
55			15,40	1,923E-05	

TEMP.	GÁS	LÍQ.	(
<i>MÉDIA</i> , °C	26,4	21,1	

OBS.: T_{amb} = 24,0 °C

DATA:	08/05/97	TITULANTE
INÍCIO:	14:45 h	Na ₂ S ₂ O ₃ ·5H ₂ O a 0,002498 M

F. GÁS	ASE GASOS % MOLAR	SA posição rotâmetro	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
Cl ₂	10	80	H ₂ O	0,0	1,0

TEMPO	TEMPERATURA °C		VOLUME TITULANTE	CONC.
min	GÁS	⊂ <i>LÍQ</i> .	ml	mol/cm ³
5	28,9	22,6	7,60	7,600E-06
12	22,3	22,5	13,61	1,361E-05
20	22,9	22,5	17,19	1,719E-05
30	23,4	22,5	17,91	1,791E-05
40	23,4	22,4	17,90	1,790E-05
50	23,3	22,3	18,29	1,829E-05
60	23,3	22,3	18,06	1,806E-05
80	23,4	22,3	17,90	1,790E-05
93	23,3	22,2	17,61	1,761E-05
				1102-01-02-01-01-01-01-01-01-01-01-01-01-01-01-01-

TEMP.	GÁS	LÍQ.
MÉDIA, °C	23,8	22,4

OBS.: Titulante não padronizado $T_{amb} = 25,0$ °C

DATA:	16/06/97	TITULANTE
INÍCIO:	16:15 h	Na ₂ S ₂ O ₃ ·5H ₂ O a 0,002498 M

F. GÁS	ASE GASOS % MOLAR	ŠA POSIÇÃO ROTÂMETRO	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
Cl ₂	10	50	H ₂ O	0,0	1,0

ТЕМРО	<i>TEMPERATURA</i> °C		VOLUME TITULANTE	CONC.
min	GÁS	LÍQ.	ml	mol/cm ³
5	17,0	17,5	3,82	4,771E-06
13	17,3	17,4	8,06	1,007E-05
20	17,8	17,3	10,22	1,276E-05
30	18,1	17,3	11,16	1,394E-05
40	18,2	17,2	11,39	1,423E-05
50	18,2	17,1	11,41	1,425E-05
60	18,1	17,0	11,30	1,411E-05
70	18,0	16,9	11,12	1,389E-05
80	18,0	19,6	11,18	1,396E-05
		 		<u></u>

TEMP.	GÁS	LÍQ.	OB
MĖDIA, °C	17,9	17,5	

OBS.: T_{amb} = 19,5 °C

INÍCIO:	17:55 h	Na ₂ S ₂ O ₃ ·5H ₂ O a 0,002498 M
DATA:	05/07/97	TITULANTE

, F	ASE GASOS	SA POSICÃO	FA	ISE LÍQUII)A
GAS	% MOLAR	ROTÂMETRO	SOLVENTE	CONC., M	VOLUME, l
Cl_2	10	80	H_2O	0,0	2,0

ТЕМРО	TEMPERATURA °C		VOLUME TITULANTE	CONC.	
min	GÁS	LÍQ.	ml	mol/cm ³	
5	27,9	21,0	3,38	4,222E-06	
10	25,5	20,9	6,11	7,631E-06	
20	21,2	20,7	9,61	1,200E-05	
30	20,5	20,6	10,90	1,361E-05	
40	20,8	20,4	11,72	1,464E-05	
50	20,8	20,2	11,89	1,485E-05	
65	20,6	20,0	12,00	1,499E-05	
70	20,6	19,9	12,05	1,505E-05	
<u>.</u>					
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				, , , , , , , , , , , , , , , , , , ,	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

TEMP.	GÁS	LÍQ.
MÉDIA, °C	22,2	20,5

OBS.: T_{amb} = 22,0 °C

DATA:	06/05/97	TITULANTE	
INÍCIO:	14:00 h	Na ₂ S ₂ O ₃ ·5H ₂ O a 0,0008 M	

EXP	ERIMENTO) nº 16
-----	-----------------	---------

F. GÁS	ASE GASOS % MOLAR	IA POSIÇÃO ROTÂMETRO	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
Cl ₂	10	80	H ₂ O	0,0	2,0

TEMPO	TEMPERATURA °C		VOLUME TITULANTE	CONC.
min	GÁS	<i>LÍQ</i> .	ml	mol/cm ³
5	22,1	22,3	10,27	4,108E-06
13	22,3	22,3	22,68	9,072E-06
20	22,1	22,2	28,88	1,155E-05
30	22,8	22,2	33,65	1,346E-05
40	22,5	22,1	37,70	1,508E-05
50	23,0	22,1	38,20	1,528E-05
60	23,2	22,1	37,49	1,500E-05
67	23,2	22,1	37,61	1,504E-05
80	23,3	22,1	36,80	1,472E-05
90	23,3	22,1	38,40	1,536E-05
110	23,4	22,1	38,42	1,537E-05
130	23,3	22,0	39,39	1,576E-05
140	23,4	22,1	39,00	1,560E-05
				ursense average in the second

TEMP.	GÁS	LÍQ.
MÉDIA, °C	22,9	22,1

OBS.: Titulante não padronizado $T_{amb} = 24.8 \ ^{\circ}C$

DATA:	04/07/97	TITULANTE
INÍCIO:	20:00 h	Na ₂ S ₂ O ₃ ·5H ₂ O a 0,002498 M

F2 GÁS	4SE GASOS % molar	SA posição rotâmetro	FA SOLVENTE	ISE LÍQUII CONC., M	DA VOLUME, I
Cl ₂	10	80	H_2O	0,0	3,0

ТЕМРО	TEMPE	TEMPERATURA °C		CONC.
min	GÁS	Č <i>LÍQ</i> .	ml	mol/cm ³
5	33,1	22,5	2,60	3,247E-06
10	31,1	22,5	4,91	6,133E-06
20	27,2	22,3	8,55	1,068E-05
32	22,7	22,1	10,92	1,364E-05
40	21,0	22,0	11,50	1,436E-05
50	21,3	21,7	12,04	1,504E-05
60	21,5	21,6	12,19	1,523E-05
70	21,5	21,4	12,25	1,530E-05
				:

TEMP.	GÁS	LÍQ.
MÉDIA, °C	24,9	22,0

DATA:	07/05/97	TITULANTE
INÍCIO:	15:00 h	Na ₂ S ₂ O ₃ ·5H ₂ O a 0,0008 M

F. GÁS	ASE GASOS % MOLAR	SA posição rotâmetro	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
Cl ₂	10	80	H_2O	0,0	3,0

ТЕМРО	<i>TEMPERATURA</i> °C		VOLUME TITULANTE	CONC.
min	GÁS	LÍQ.	ml	mol/cm ³
5	27,8	22,2	8,06	3,224E-06
12	23,3	22,1	18,11	7,244E-06
20	22,1	22,1	26,40	1,056E-05
30	22,9	22,0	31,80	1,272E-05
40	23,0	21,9	34,91	1,396E-05
60	23,2	21,9	36,83	1,473E-05
80	23,3	21,8	37,20	1,488E-05
100	23,2	21,8	37,27	1,491E-05
120	23,2	21,8	37,10	1,484E-05
130	23,1	21,7	37,30	1,492E-05
140	23,2	21,8	37,40	1,496E-05

TEMP.	GÁS	LÍQ.	<i>OBS.:</i> Ti
MÉDIA, °C	23,5	21,9	

DBS.: Titulante não padronizado $T_{amb} = 24.9 \ ^{\circ}C$

DATA:	04/12/96	TITULANTE
INÍCIO:	15:10 h	Na ₂ B ₄ O ₇ ·10H ₂ O a 0,006 M

F. GÁS	4SE GASOS % MOLAR	SA POSIÇÃO ROTÂMETRO	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
SO ₂	10	80	H_2O	0,0	2,0

TEMPO	TEMPE	RATURA	VOLUME TITLU ANTE	CONC.
min	GÁS	LÍQ.	ml	mol/cm ³
5	23,3	25,1	2,50	3,000E-05
10	23,9	25,1	4,48	5,376E-05
15	24,1	25,1	6,00	7,200E-05
20	24,4	25,0	7,11	8,532E-05
25	24,7	24,9	8,10	9,720E-05
30	24,8	24,9	8,90	1,068E-04
35	24,8	24,8	9,50	1,140E-04
40	24,8	24,7	9,95	1,194E-04
45	24,9	24,6	10,41	1,249E-04
50	25,1	24,5	10,69	1,283E-04
55	25,2	24,5	10,91	1,309E-04
60	25,2	24,4	11,04	1,325E-04
70	25,3	24,3	11,50	1,380E-04
80	25,1	24,2	11,82	1,418E-04
90	25,1	24,1	12,10	1,452E-04
100	24,9	24,1	12,35	1,482E-04
110	24,9	24,0	12,52	1,502E-04
120	24,9	23,9	12,80	1,536E-04
130	24,9	23,9	12,91	1,549E-04
135	24,9	23,8	13,00	1,560E-04

TEMP.	GÁS	LÍQ.
MÉDIA, °C	24,8	24,5

DATA:	29/11/96	TITULANTE
INÍCIO:	15:45 h	Na ₂ B ₄ O ₇ ·10H ₂ O a 0,006 M

F. GÁS	ASE GASOS % MOLAR	SA posição rotâmetro	FA SOLVENTE	ISE LÍQUII CONC., M)A VOLUME, I
SO ₂	10	80	H ₂ O	0,0	2,0

ТЕМРО	TEMPE	RATURA C	VOLUME TITULANTE	CONC.
min	GÁS	LÍQ.	ml	mol/cm ³
5	23,1	24,3	2,52	3,024E-05
10	23,3	24,3	4,52	5,424E-05
15	23,8	24,3	6,10	7,320E-05
20	24,3	24,3	7,38	8,856E-05
26	24,9	24,2	8,40	1,008E-04
		NGC2HCC2220000000020000000000000000000000		
-				

TEMP.	GÁS	LÍQ.
<i>MÉDIA</i> , °C	23,9	24,3

OBS.: cilindro de gás esvaziou

Resultados do Modelo

B.1. Introdução.

Os resultados da simulação são apresentados neste apêndice. Para se alcançar os resultados mostrados em B.2., o programa listado no Apêndice C necessita do arquivo ENTRADA DAT no formato abaixo, onde tomou-se como exemplo o experimento 14,

14		
Gas soluvel	Posicao rotametro	Fracao molar
'Cl2'	50	0.1
Solvente	Volume de solvente(l)	Conc. molar
'H20'	1.0	0.0
Pressao(atm)	Temperatura(oC)	
1	17.5	
Arquivos de s	saida	
'RESUL 14.DAT	F' 'CA T 14.DAT'	
TEXP	CEXP	
5	4.77E-06	
13	1.01E-05	
20	1.28E+05	
30	1.39E-05	
40	1.42E-05	
50	1.43E-05	
60	1.41E-05	
70	1.39E-05	
80	1.40E-05	
999	999	
'FIM'		

bem como dos arquivos GAS_1.DAT e GAS_2.DAT

'N2' 'SO2' 'CO2'	28.013 64.063 44.010	33.9 78.8 73.8	126.2 430.8 304.1	77.4 263.2 194.0	89.8 122.2 93.9	31.75985 43.86273 33.28116	5 0.039 L 0.256 5 0.239	0.29 0.269 0.274	0.0 1.6 0.0	18.5 41.8 26.9	
'H2S'	34.080	89.4	373.2	213.5	98.6	35.0290	L 0.081	0.284	0.9	27.5	
'NH3'	17.031	113.5	405.5	239.8	72.5	25.00	0.250	0.244	1.5	20.7	
'Cl2'	70.906	79.8	416,9	239.2	123.8	44.4647	7 0.090	0.285	0.0	38.4	
	PM	Pc	Tc	Tb	Va	Vb	Ŵ	Ze	m	Vd	
' SO2 '	1958.84	-5048	31.0	-344.331	0.!	563442	1135.63	-321	43.3	-198.14	0.33836
' CO2 '	2767.92	-8000	\$3.5	-478.653	0.1	714984	1082.37	-344	17.2	-182.28	0.25159
'H2S'	-45.453	-5322	2.37	11.952	-0.(070000	-403.658	705	6.07	74.6926	-0.14529
'NH3'	191.97	-8451	1.61	-31.4335	0.03	152123	160.559	-862	1.06	-25.6767	0.035388
'Cl2'	9.486	-5198	3.26	0.0	i	0.0	13.447	-31	80.0	0.0	0.0
	CC1	CC2		CC3	C	C4	DD1	DD2	2	DD3	DD4

B.2. Arquivos de Saída do Programa.

EXPERIMEN	1TO 1				
TEMPO min	CG NUM (NC.TOTAL mol/cm3) EXP	DIFEREN	VCA	
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 50.0 50.0 70.0 80.0 90.0 100.0 110.0 120.0	0.2994E-0 0.5494E-0 0.7543E-0 0.9209E-0 0.1056E-0 0.1253E-0 0.1323E-0 0.1323E-0 0.1326E-0 0.1426E-0 0.1463E-0 0.1492E-0 0.1592E-0 0.1592E-0 0.1599E-0 0.1604E-0	4 0.4860E-04 4 0.8280E-04 4 0.1090E-03 3 0.1360E-03 3 0.1360E-03 3 0.1530E-03 3 0.1540E-03 3 0.1640E-03 3 0.1640E-03 3 0.1640E-03 3 0.1660E-03 3 0.1710E-03 3 0.1740E-03 3 0.1720E-03 3 0.1740E-03 3 0.1780E-03 3	-0.1866 -0.2786 -0.3357 -0.3357 -0.3191 -0.3042 -0.2952 -0.2774 -0.2167 -0.2198 -0.2141 -0.1773 -0.1678 -0.1776 -0.1776 -0.1799 -0.1285 -0.1285 -0.1411 -0.17764	$\begin{array}{c}\\$	
TEMPO CO Desvio n	DMPUTACIONAL = MEDIO QUADRATI FASE GASOS	27.7 min CO = 0.4654E-C A (T = 25	2 .2 oC) FASE 1	LIQUIDA	
GAS	VAZAO/ROT cm3/s	FRACAO MOLAR %	SOLVENTE	VOLUME litro	CONC. M
SO2	28.47/80	10.00	HCl	1.0	0.010
PI	ROPRIEDADES DO	GAS	PROPRI	IEDADES DO I	.IQUIDO
DIFUSIV. cm2/s	. VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS. g/cm3
0.1294	0.0174	0.129E-02	0.243E-04	0.9018	1.0125
		SOLUB. EM H20 mol/l.atm	CTE. DE EQUIL mol/l		
		1.2382	0.1295E-04		
		HIDROE	DINAMICA		

RAIO BOLHA cm	VEL. ASC. cm/s	T.RESID s	HOLDUP %	kla FISICO 1/s
0.3276	11.94	0.4122	1.16	0.211E-02

EXPERIMENTO	2			
TEMPO min	CONC. NUM (mol	TOTAL /cm3) EXP	DIFERI	ENCA
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 81.0 90.0 100.0 110.0 120.0 130.0 140.0	$\begin{array}{c} 0.1658\pm-04\\ 0.3176\pm-04\\ 0.4555\pm-04\\ 0.5798\pm-04\\ 0.6916\pm-04\\ 0.7918\pm-04\\ 0.8817\pm-04\\ 0.9620\pm-04\\ 0.1034\pm-03\\ 0.1034\pm-03\\ 0.1098\pm-03\\ 0.1155\pm-03\\ 0.1206\pm-03\\ 0.1367\pm-03\\ 0.145\pm-03\\ 0.145\pm-03\\ 0.1493\pm-03\\ 0.1520\pm-03\\ 0.1558\pm-03\\ \end{array}$	0.2700E-04 0.4980E-04 0.6780E-04 0.8100E-04 0.9160E-04 0.1000E-03 0.1160E-03 0.1210E-03 0.1210E-03 0.1220E-03 0.1220E-03 0.1220E-03 0.1320E-03 0.1350E-03 0.1400E-03 0.1420E-03 0.1430E-03	-0.1042 -0.1804 -0.2225 -0.22302 -0.2244 -0.2082 -0.1986 -0.1986 -0.1126 -0.4377 0.7710 0.9544 0.1084 0.9282 0.8996 0.1214 0.1284	$\begin{array}{c} 22 - 04 \\ 12 - 04 \\ 52 - 04 \\ 22 - 04 \\ 42 - 04 \\ 22 - 04 \\ 32 - 04 \\ 32 - 04 \\ 32 - 04 \\ 32 - 04 \\ 32 - 04 \\ 32 - 04 \\ 32 - 04 \\ 32 - 05 \\$
TEMPO COMPU DESVIO MEDI	JTACIONAL = IO QUADRATICO FASE GASOSA	19.3 min = 0.2533E-02 (T = 25.0	oC) FASE	LIQUIDA
GAS VA	LAO/ROT FRA 3/s	CAO MOLAR	SOLVENTE	VOLUN litro

	FASE GAS	osa (T ≃	25.0 oC) FASE	LIQUIDA	
GAS	VAZAO/ROT cm3/s	FRACAO MOLAR §	SOLVENTE	VOLUME litro	CONC. M
 SO2	28.47/80	10.00	HCl	2.0	0,010

	PROPR	IEDADES DO GA	\S	PROPRIEI	DADES DO LIQU	JIDO
D	IFUSIV. cm2/s	VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS. g/cm3
	.1293	0.0174	0.129E-02	0.242E-04	0.9057	1.0126

SOLUB. EM H20	CTE. DE EQUIL
mol/l.atm	mol/l
1.2470	0.1301E-04

		HIDRODINAMICA			
RAIO BOLHA cm	VEL. ASC. cm/s	T.RESID s	HOLDUP %	kla FISICO l/s	
0,3275	11.94	0.8244	1.16	0.210E-02	

EXPERIMENTO	3				
TEMPO min	CONC. NUM (mol	TOTAL /cm3) EXP	DIFER	enca	
5.0 12.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 51.0 56.0 60.0 70.0 80.0 90.0 100.0 111.0 114.0	0.1692E-04 0.3839E-04 0.4675E-04 0.5970E-04 0.7139E-04 0.9154E-04 0.1002E-03 0.1079E-03 0.1223E-03 0.1268E-03 0.1268E-03 0.1264E-03 0.1264E-03 0.1504E-03 0.1554E-03 0.1598E-03 0.1609E-03	0.4090E-04 0.6910E-04 0.8410E-04 0.1030E-03 0.1150E-03 0.1200E-03 0.1510E-03 0.1510E-03 0.1500E-03 0.1590E-03 0.1620E-03 0.1830E-03 0.1930E-03 0.1980E-03 0.1980E-03 0.2050E-03	$\begin{array}{c} -0.2394\\ -0.3073\\ -0.4333\\ -0.4333\\ -0.4363\\ -0.4403\\ -0.5083\\ -0.4444\\ -0.5083\\ -0.4444\\ -0.5083\\ -0.3363\\ -0.3363\\ -0.3364\\ -0.3524\\ -0.4655\\ -0.4884\\ -0.1764\\ -0.1766\\ -0.1955\\ -0.3811\\ -0.4414\end{array}$	SE-04 IE-04 SE-04 DE-04 IE-04 IE-04 SE-04 SE-04 DE-04 IE-04 SE-04 DE-04 DE-04 DE-04 IE	
TEMPO COMPUT DESVIO MEDIO F	ACIONAL = QUADRATICO ASE GASOSA	16.7 min = 0.6142E-02 (T = 22.	? 7 oC) FASE	LIQUIDA	
GAS VAZA cm3/	.0/ROT FRA S	ACAO MOLAR §	SOLVENTE	VOLUME litro	CONC. M
SO2 28.4	1/80	10.00	HCl	2.0	0.010
PROPRI	EDADES DO GA	\S	PROPI	RIEDADES DO	D LIQUIDO
DIFUSIV. cm2/s m	VISC. Micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS. g/cm3
0.1275	0.0173	0.130E-02	0.2285-04	0.9529	1.0144
	SOI	UB. EM H20 mol/l.atm	CTE. DE EQUII mol/l		
		1.3535	0.1374E-04	ar van 444	
		HIDRODI	NAMICA		
RAIO BOLHA	VEL. AS	SC. T.RE	SID HO	LDUP	kla FISICO
0	cm/s	ŝ	4	ŝ	1/s

EXPERIMENTO	4		
TEMPO	CONC.	TOTAL	DI FERENCA
min	NUM (mol	/cm3) EXP	
$\begin{array}{c} 5.0\\ 10.0\\ 15.0\\ 20.0\\ 25.0\\ 36.0\\ 35.0\\ 40.0\\ 45.0\\ 50.0\\ 55.0\\ 60.0\\ 70.0\\ 80.0\\ 90.0\\ 100.0\\ 110.0\\ 120.0\\ 130.0\\ \end{array}$	0.1906E-04 0.3619E-04 0.5135E-04 0.6476E-04 0.7651E-04 0.8685E-04 0.9588E-04 0.1038E-03 0.1107E-03 0.120E-03 0.1266E-03 0.1340E-03 0.1397E-03 0.1440E-03 0.1447E-03 0.1516E-03 0.1530E-03	0.3390E-04 0.5730E-04 0.7530E-04 0.8910E-04 0.9930E-04 0.1080E-03 0.1150E-03 0.1200E-03 0.1200E-03 0.1290E-03 0.1380E-03 0.1390E-03 0.1420E-03 0.1440E-03 0.1440E-03 0.1440E-03	-0.1484E-04 -0.2111E-04 -0.2395E-04 -0.22395E-04 -0.2279E-04 -0.2115E-04 -0.1912E-04 -0.1621E-04 -0.1228E-04 -0.1228E-04 -0.1201E-04 -0.3961E-05 0.2020E-05 0.4279E-05 0.5749E-05 0.7619E-05 0.9036E-05
TEMPO COMPU	TACIONAL =	18.0 min	
DESVIO MEDI	O QUADRATICO	= 0.3129E-02	

FASE GASOSA(T = 25.9 oC)FASE LIQUIDAGASVAZAO/ROTFRACAO MOLARSOLVENTEVOLUMECONC.cm3/s%1itroMSO233.13/9010.00HCl2.00.010

PI	ROPRIEDADES DO	GAS	PROP	RIEDADES DO I	LIQUIDO
DIFUSIV. cm2/s	. VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS, g/cm3
0.1300	0.0174	0.129E-02	0.248E-04	0.8881	1.0119

SOLUB. EM H20	CTE. DE EQUIL
mol/l.atm	mol/l
1.2080	0.1274E-04

		HIDRODINAMICA		
RAIO BOLHA cm	VEL. ASC. cm/s	T.RESID s	HOLDUP %	kla FISICO 1/s
0,3481	12.31	0.8009	1.31	0.240E-02

EXPERIMENT	'O 5			
TEMPO	CONC.	TOTAL	DI FERENCA	
min	NUM (mol	/cm3) EXP		
$\begin{array}{c} 5.0\\ 12.0\\ 16.0\\ 20.0\\ 25.0\\ 30.0\\ 35.0\\ 40.0\\ 45.0\\ 50.0\\ 55.0\\ 50.0\\ 55.0\\ 60.0\\ 70.0\\ 80.0\\ 90.0\\ 100.0\\ 100.0\\ 120.0\\ 125.0\\ \end{array}$	0.1584E-04	0.2940E-04	-0.1356E-04	
	0.3506E-04	0.5820E-04	-0.2314E-04	
	0.4467E-04	0.6740E-04	-0.2273E-04	
	0.5339E-04	0.7620E-04	-0.2281E-04	
	0.6318E-04	0.8280E-04	-0.1962E-04	
	0.7185E-04	0.9000E-04	-0.1815E-04	
	0.7955E-04	0.9480E-04	-0.1527E-04	
	0.8634E-04	0.9890E-04	-0.1526E-04	
	0.9236E-04	0.1020E-03	-0.9637E-05	
	0.9770E-04	0.1040E-03	-0.6300E-05	
	0.1024E-03	0.1090E-03	-0.6575E-05	
	0.1066E-03	0.1100E-03	-0.3390E-05	
	0.1191E-03	0.1100E-03	0.4072E-05	
	0.1234E-03	0.1150E-03	0.6358E-05	
	0.1294E-03	0.1150E-03	0.6722E-05	
	0.1294E-03	0.1200E-03	0.6359E-05	
	0.1314E-03	0.1230E-03	0.4425E-05	
	0.1323E-03	0.1230E-03	0.9285E-05	
TEMPO COMPUTACIONAL = 16.2 min DESVIO MEDIO QUADRATICO = 0.2665E-02				

	FASE GAS	OSA (T =	25.5 oC) FASE	LIQUIDA	
GAS	VAZAO/ROT cm3/s	FRACAO MOLAR %	SOLVENTE	VOLUME litro	CONC. M
S02	28,48/80	10.00	HCl	2.0	0.098

PROPRIEDADES DO GAS			PROPR	IEDADES DO L	IQUIDO
DIFUSIV. cm2/s	VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS. g/cm3
0.1297	0.0174	0.129E-02	0.245E-04	0.8959	1.0122

SOLUB. EM H20	CTE. DE EQUIL
mol/l.atm	mol/l
1.2251	0.1286E-04

HIDRODINAMICA					
RAIO BOLHA cm	VEL. ASC. cm/s	T.RESID s	HOLDUP	kla FISICO 1/s	
0.3276	11.95	0.8243	1.16	0.211E-02	

TEMPO min	COI NUM (1	NC.TOTAL mol/cm3) EXP	DIFERI	ENCA	
5.0 10.0	0.1132E-0 0.2205E-0	4 0.2070E-04 4 0.3930E-04	4 -0.9382 4 -0.1725	2E-05 5E-04	
15.0 20.0	0.3212E-0 0.4160E-0	4 0.5270E-04 4 0.6570E-04	4 -0.2058 4 -0.2410	8E-04 0E-04	
32.0	0.5044E-0- 0.6189E-0-	4 0.7540E-04 4 0.8730E-04	4 -0.2490 4 -0.2541	68-04 18-04	
40.0 50.0 60.0	0.9588E-0 0.8659E-0 0.9778E-0	4 0.1080E-03 4 0.1150E-03 4 0.1150E-03	-0.243 3 -0.214 3 -0.172	1E-04 2E-04	
70.0 80.0	0.1075E-0. 0.1158E-0.	3 0.1200E-03 3 0.1210E-03	3 -0.1253 3 -0.5193	3E-04 3E-05	
90.0 100.0 110.0	0.1230E-0. 0.1292E-0. 0.1345E-0.	3 0.1250E-0. 3 0.1280E-0. 3 0.1290E-0.	3 -0.2003 3 0.1180 3 0.551	58-05 68-05 18-05	
120.0 130.0	0.1391E-0 0.1430E-0	3 0.1300E-03 3 0.1320E-03	3 0.9092 3 0.1103	2E-05 3E-04	
TEMPO CO DESVIO M	MPUTACIONAL = EDIO QUADRATIO	13.9 min CO = 0.3333E-(02		
	FASE GASOS	A $(T = 24)$	4.2 oC) FASE	LIQUIDA	
~					
GAS	VAZAO/ROT I cm3/s	FRACAO MOLAR	SOLVENTE	VOLUME litro	CONC M
GAS	VAZAO/ROT 1 cm3/s 28.45/80	FRACAO MOLAR % 10.00	SOLVENTE HCl	VOLUME litro 3.0	CONC M 0.01
GAS SO2	VAZAO/ROT 1 cm3/s 28.45/80 OPRIEDADES DO	FRACAO MOLAR % 10.00 GAS	SOLVENTE HCl PROPI	VOLUME litro 3.0 RIEDADES DO	CONC M 0.01 LIQUIDO
GAS SO2 PRO DIFUSIV. cm2/s	VAZAO/ROT cm3/s 28.45/80 OPRIEDADES DO VISC. micropoise	FRACAO MOLAR % 10.00 GAS DENS. mol/cm3	SOLVENTE HCl PROPF DIFUSIV. cm2/s	VOLUME litro 3.0 RIEDADES DO VISC. cP	CONC M 0.01 LIQUIDO DENS g/cm
GAS SO2 PRO DIFUSIV. cm2/s 0.1287	VAZAO/ROT cm3/s 28.45/80 OPRIEDADES DO VISC. micropoise 0.0173	FRACAO MOLAR % 10.00 GAS DENS. mol/cm3 0.130E-02	SOLVENTE HCl PROPH DIFUSIV. cm2/s 0.237E-04	VOLUME litro 3.0 RIEDADES DO VISC. cP 0.9217	CONC M 0.01 LIQUIDO DENS g/cm 1.01
GAS SO2 DIFUSIV. cm2/s 0.1287	VAZAO/ROT cm3/s 28.45/80 OPRIEDADES DO VISC. micropoise 0.0173	FRACAO MOLAR % 10.00 GAS DENS. mol/cm3 0.130E-02 SOLUB. EM H20 mol/l.atm	SOLVENTE HCl PROPH DIFUSIV. cm2/s 0.237E-04 CTE. DE EQUII mol/1	VOLUME litro 3.0 RIEDADES DO VISC. CP 0.9217	CONC M 0.01 LIQUIDO DENS g/cm 1.01
GAS SO2 PRO DIFUSIV. cm2/s 0.1287	VAZAO/ROT cm3/s 28.45/80 OPRIEDADES DO VISC. micropoise 0.0173	FRACAO MOLAR % 10.00 GAS DENS. mol/cm3 0.130E-02 SOLUB. EM H20 mol/1.atm 1.2829	SOLVENTE HCl PROPH DIFUSIV. cm2/s 0.237E-04 CTE. DE EQUII mol/1 0.1326E-04	VOLUME litro 3.0 RIEDADES DO VISC. cP 0.9217	CONC M 0.01 LIQUIDO DENS g/cm 1.01
GAS SO2 DIFUSIV. cm2/s 0.1287	VAZAO/ROT cm3/s 28.45/80 OPRIEDADES DO VISC. micropoise 0.0173	FRACAO MOLAR % 10.00 GAS DENS. mol/cm3 0.130E-02 SOLUB. EM H20 mol/1.atm 1.2829 HIDROI	SOLVENTE HCl PROPH DIFUSIV. cm2/s 0.237E-04 CTE. DE EQUII mol/1 0.1326E-04 DINAMICA	VOLUME litro 3.0 RIEDADES DO VISC. cP 0.9217	CONC M 0.01 LIQUIDO DENS g/cm 1.01
GAS SO2 DIFUSIV. cm2/s 0.1287 RAIO BOLI cm	VAZAO/ROT cm3/s 28.45/80 OPRIEDADES DO VISC. micropoise 0.0173 S	FRACAO MOLAR % 10.00 GAS DENS. mol/cm3 0.130E-02 SOLUB. EM H20 mol/1.atm 1.2829 HIDROI ASC. T.F	SOLVENTE HCl PROPH DIFUSIV. cm2/s 0.237E-04 CTE. DE EQUII mol/l 0.1326E-04 DINAMICA RESID HOI s 8	VOLUME litro 3.0 VISC. cP 0.9217	CONC M 0.01 LIQUIDO DENS g/cm 1.01 1.01

EXPERIME	NTO 7				
TEMPO min	COI NUM (1	NC.TOTAL mol/cm3) EXP	DI	FERENCA	
5.0 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 120.0 140.0 TEMPO C	0.4676E-0 0.9314E-0 0.1392E-0 0.2302E-0 0.2753E-0 0.3643E-0 0.4520E-0 0.5384E-0 0.6236E-0 0.6236E-0 0.7076E-0 0.7906E-0 0.8722E-0 0.1032E-0 0.1186E-0 0.1186E-0 0.1090E-0 0.1186E-0 0.1090E-0 0.1186E-0	4 0.3760E-0 4 0.7390E-0 3 0.1060E-0 3 0.1390E-0 3 0.2020E-0 3 0.2020E-0 3 0.2020E-0 3 0.2640E-0 3 0.3230E-0 3 0.4260E-0 3 0.4260E-0 3 0.5730E-0 2 0.6560E-0 2 0.7340E-0 61.2 min	4 0.4 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1	9162E-05 1924E-04 3317E-04 4587E-04 5823E-04 7327E-04 1003E-03 1290E-03 1614E-03 1976E-03 2306E-03 2306E-03 2676E-03 3022E-03 3756E-03 4524E-03	
DESVIO	MEDIO QUADRATI FASE GASOS	CO = 0.1279E-	01 4.1 oC) F/	ASE LIQUIDA	
GAS	VAZAO/ROT : cm3/s	FRACAO MOLAR	SOLVENTE	VOLUME litro	Conc. M
NH3	30.62/80	10.00	H2O	1.0	0.000
P	ROPRIEDADES DO	GAS	Pi	ROPRIEDADES D	0 LIQUIDO
DIFUSIV cm2/s	. VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS. g/cm3
0.2245	0.0166	0.110E-02	0.244E-04	4 0,9238	1.0133
		SOLUB. EM H20 mol/l.atm	CTE. DE E(mol/1	 DII	
		63.1067	0.1771E-0	07	
		HIDRO	DINAMICA		
RAIO BO CM	LHA VEL. cm/	ASC. T. s	RESID	HOLDUP %	kla FISICO 1/s
0.3373	12.3	L2 0.	4065	1.23	0.224E-02

EXPERIMENT	08				
TEMPO min	CON NUM (m	C.TOTAL ol/cm3) EXP	DI	FERENCA	
5.0 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0	0.4637E-04 0.9233E-04 0.1380E-03 0.2283E-03 0.2283E-03 0.2728E-03 0.3610E-03 0.4480E-03 0.5338E-03 0.6183E-03 0.7835E-03 0.7835E-03 0.8641E-03 0.9434E-03 0.1022E-02 PUTPCTONEL =	0.3090E-0 0.6290E-0 0.9280E-0 0.1220E-0 0.1520E-0 0.1840E-0 0.2320E-0 0.2860E-0 0.3300E-0 0.3790E-0 0.4230E-0 0.4630E-0 0.5030E-0 0.5410E-0 0.5770E-0 53.1 min	4 0. 4 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0.	1547E-04 2943E-04 4518E-04 6130E-04 7626E-04 8885E-04 1290E-03 2038E-03 2393E-03 2786E-03 3205E-03 3611E-03 4024E-03 4446E-03	
DESVIO ME	FASE GASOSA	$0 = 0.1380E^{-1}$	01 4.8 oC) E	ASE LIQUIDA	
GAS V	AZAO/ROT F m3/s	RACAO MOLAR %	SOLVENTE	: VOLUME litro	Conc. M
NH3 3	0.64/80	10.00	H2O	1.0	0.000
PRC	PRIEDADES DO	GAS	P	ROPRIEDADES D	O LIQUIDO
DIFUSIV. cm2/s	VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS. g/cm3
0.2254	0.0166	0.110E-02	0.249E-0	0.9097	1.0128
	 s	OLUB. EM H20 mol/l.atm	CTE. DE E mol/l	QUIL	
		61.0870	0.1777E-	-07	
		HIDRO	DINAMICA		
RAIO BOLH CM	A VEL. cm/	ASC. T.I	RESID s	HOLDUP %	kla FISICO 1/s
0.3373	12.1	2 0.	4065	1.23	0.226E-02

TEMPO min	COI NUM (1	NC.TOTAL nol/cm3) EXP	DIFE	RENCA	
5.0 11.0 16.0 20.0 26.0 35.0 46.0 60.0 80.0 100.0 120.0	0,2599E-04 0.5705E-04 0.8281E-05 0.1034E-05 0.1341E-05 0.1799E-05 0.2353E-05 0.3052E-05 0.4035E-05 0.5004E-05 0.5958E-05	1 0.2060E-0 1 0.4640E-0 1 0.6590E-0 3 0.1060E-0 3 0.1380E-0 3 0.1790E-0 3 0.2250E-0 3 0.2880E-0 3 0.3470E-0 3 0.4070E-0	4 0.53 4 0.10 4 0.16 4 0.22 3 0.28 3 0.41 3 0.56 3 0.80 3 0.11 3 0.15 3 0.18	91E-05 65E-04 91E-04 06E-04 06E-04 87E-04 32E-04 17E-04 55E-03 34E-03 88E-03	
TEMPO CO DESVIO N	MPUTACIONAL = EDIO QUADRATIO	50.3 min CO = 0.8086E-	02 3.9.0C) FAS	F LIGHTDA	
GAS	VAZAO/ROT I cm3/s	FRACAO MOLAR	SOLVENTE	VOLUME litro	CONC. M
NH3	17.01/50	10.00	Н20	1.0	0.000
PF	OPRIEDADES DO	GAS	PRC	PRIEDADES D	O LIQUIDO
DIFUSIV. cm2/s	VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS. g/cm3
					the star water while while pass man area and the star
0.2242	0.0166	0.110E-02	0.243E-04	0,9279	1.013
0.2242	0.0166	0.110E-02 SOLUB. EM H20 mol/l.atm	0.243E-04 CTE. DE EQU mol/l	0.9279 IL	1.013
0.2242	0.0166	0.110E-02 SOLUB. EM H20 mol/1.atm 63.6980	0.243E-04 CTE. DE EQU mol/1 0.1769E-07	0.9279 IL	1,013
0.2242	0.0166	0.110E-02 SOLUB. EM H20 mol/1.atm 63.6980 HIDRO	0.243E-04 CTE. DE EQU mol/1 0.1769E-07 DINAMICA	0.9279 IL	1.013
0.2242 RAIO BOI CM	0.0166 	0.110E-02 SOLUB. EM H20 mol/l.atm 63.6980 HIDRO ASC. T.	0.243E-04 CTE. DE EQU mol/1 0.1769E-07 DINAMICA RESID H s	0.9279 IL 0LDUP %	1.013 kla FISICO 1/s

ì

· · ·

Ì

Ð

EXPERIMENTO	/ ./					
TEMPO min	CC NUM (NC.TOTAL mol/cm3) EX	P	DIFEREN	ICA	
5.0 10.0 15.0 20.0 25.0 30.0 41.0 50.0 60.0 70.0 80.0 90.0 120.0 120.0 140.0 TEMPO COME	0.2913E-0 0.5812E-0 0.8698E-0 0.1157E-0 0.1444E-0 0.1729E-0 0.2351E-0 0.2856E-0 0.3412E-0 0.3963E-0 0.4508E-0 0.5586E-0 0.6645E-0 0.6645E-0 0.7684E-0	04 0.1800 04 0.3620 04 0.5560 03 0.7420 03 0.9080 03 0.1090 03 0.1460 03 0.2090 03 0.2380 03 0.2680 03 0.2680 03 0.3280 03 0.3280 03 0.3280 03 0.3280 03 0.3280 03 0.3280 03 0.4410 03 0.4410 04 0.3550 04 0.5560 05 0.500 05 0.5000 05 0.50000 05 0.50000 05 0.50000 05 0.50000 05 0.50000 05 0.5000000000000000000000000000000000	E - 04 E - 04 E - 04 E - 04 E - 03 E - 03	0.1113E 0.2192E 0.3138E 0.6356E 0.6386E 0.1096E 0.1322E 0.1683E 0.1096E 0.2009E 0.2306E 0.2366E 0.2745E 0.3274E		
<i>~~~</i>	FASE GASOS	3A (T :	= 24.0 oC)	FASE I	JQUIDA	
GAS VA cm	AZAO/ROT n3/s	FRACAO MOLA	R SOLV	ENTE	VOLUME litro	CONC. M
GAS VA on NH3 30	AZAO/ROT n3/s).62/80	FRACAO MOLA % 10.00	R SOLV	ente 0	VOLUME litro 2.0	CONC. M 0.000
GAS VA on NH3 30 PROE	AZAO/ROT 13/s),62/80 PRIEDADES DO	FRACAO MOLA * 10.00 GAS	R SOLV	ENTE O PROPRI	VOLUME litro 2.0 EDADES D	CONC. M 0.000 0 LIQUIDO
GAS VA cm NH3 30 PROE DIFUSIV. cm2/s	AZAO/ROT 13/s 0.62/80 PRIEDADES DO VISC. micropoise	FRACAO MOLA % 10.00 GAS DENS. mol/cm3	R SOLV H2 DIFU cm2	ENTE O PROPRI SIV. /s	VOLUME litro 2.0 EDADES D VISC. cP	CONC. M 0.000 O LIQUIDO DENS. g/cm3
GAS VA cm NH3 30 PROF DIFUSIV. cm2/s 0.2244	AZAO/ROT h3/s).62/80 PRIEDADES DO VISC. micropoise 0.0166	FRACAO MOLA * 10.00 GAS DENS. mol/cm3 0.110E-0	R SOLV H2 DIFU cm2 2 0.24	ENTE O PROPRI SIV. /s 4E-04	VOLUME litro 2.0 EDADES D VISC. cP 0.9258	CONC. M 0.000 0 LIQUIDO DENS. g/cm3 1.013
GAS VF cn NH3 3C PROP DIFUSIV. cm2/s 0.2244	AZAO/ROT h3/s 0.62/80 PRIEDADES DO VISC. micropoise 0.0166	FRACAO MOLA % 10.00) GAS DENS. mol/cm3 0.110E-0: SOLUB. EM H: mol/l.atm	R SOLV H2 DIFU cm2 2 0.24 20 CTE. m	ENTE O PROPRI SIV. /s 4E-04 DE EQUIL ol/1	VOLUME litro 2.0 EDADES D VISC. cP 0.9258	CONC. M 0.000 O LIQUIDO DENS. g/cm3 1.013
GAS VA cm NH3 3C PROE DIFUSIV. cm2/s 0.2244	AZAO/ROT h3/s).62/80 PRIEDADES DO VISC. micropoise 0.0166	FRACAO MOLA % 10.00 0 GAS DENS. mol/cm3 0.110E-0 SOLUB. EM H mol/l.atm 63.4016	R SOLV H2 DIFU cm2 2 0.24 20 CTE. m 0.17	ENTE O PROPRI SIV. /s 4E-04 DE EQUIL ol/1 70E-07	VOLUME litro 2.0 EDADES D VISC. cP 0.9258	CONC. M 0.000 O LIQUIDO DENS. g/cm3 1.013
GAS VA cm NH3 30 PROE DIFUSIV. cm2/s 0.2244	AZAO/ROT h3/s).62/80 PRIEDADES DC VISC. micropoise 0.0166	FRACAO MOLA * 10.00 0 GAS DENS. mol/cm3 0.110E-0 SOLUE. EM Hi mol/1.atm 63.4016 HI	R SOLV H2 DIFU cm2 2 0.24 20 CTE. m 0.17 DRODINAMICA	ENTE O PROPRI SIV. /s 4E-04 DE EQUIL ol/1 70E-07	VOLUME litro 2.0 EDADES D VISC. cP 0.9258	CONC. M 0.000 O LIQUIDO DENS. g/cm3 1.013
GAS VP cm NH3 30 PROE DIFUSIV. cm2/s 0.2244 RAIO BOLHA cm	AZAO/ROT h3/s 0.62/80 PRIEDADES DO VISC. micropoise 0.0166 	FRACAO MOLA 10.00 GAS DENS. mol/cm3 0.110E-0 SOLUB. EM HI mol/1.atm 63.4016 HII ASC.	R SOLV H2 DIFU cm2 2 0.24 20 CTE. m 0.17 DRODINAMICA T.RESID s	ENTE O PROPRI SIV. /s 4E-04 DE EQUIL ol/1 70E-07 HOLE %	VOLUME litro 2.0 EDADES D VISC. CP 0.9258	CONC. M 0.000 DENS. g/cm3 1.013 1.013 kla FISICC 1/s

ŧ ļ

Ì ł ļ Ì. ł) 4

EXPERIMENTO	11				
TEMPO min	CONC NUM (mc	.TOTAL 1/cm3) EXP	DI	FERENCA	
5.0 10.0 15.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 120.0 140.0	0.2375E-04 0.4729E-04 0.7076E-04 0.9414E-04 0.1406E-03 0.1867E-03 0.2325E-03 0.3229E-03 0.3675E-03 0.4118E-03 0.4158E-03 0.5429E-03 0.6287E-03	0,1250E-04 0,2470E-04 0,3710E-04 0,5030E-04 0,7210E-04 0,9480E-04 0,1170E-03 0,1370E-03 0,1600E-03 0,2600E-03 0,2210E-03 0,2980E-03	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	1125E-04 2259E-04 3366E-04 4384E-04 6852E-04 9194E-04 1155E-03 1408E-03 1629E-03 1865E-03 2108E-03 2348E-03 2348E-03 2829E-03 3307E-03	
TEMPO COMPI DESVIO MED	UTACIONAL = IO QUADRATICC FASE GASOSA	23.4 min = 0.1176E-0 (T = 24	1 .6 oC) F	ASE LIQUIDA	
GAS VA	ZAC/ROT FR 3/s	ACAO MOLAR %	SOLVENTE	VOLUM litro	E CONC, M
NH3 30	.63/80	10.00	H2O	3.0	0.000
PROPI	RIEDADES DO G	AS	Ē	ROPRIEDADES	DO LIQUIDO
DIFUSIV. cm2/s	VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VIS	C. DENS. g/cm3
0.2252	0.0166	0.110E-02	0,2486-0	0.91	37 1.0129
	SC	LUB. EM H20 mol/l.atm 61.6563	CTE. DE E mol/1 0.1775E-	QUIL	
		HIDROD	INAMICA		
RATO BOLHA	VEL. A	SC. T.R	ESTD	HOLDUP	kla FISICO
cm	cm/s		S	8	1/s
0.3373	12.12	1.2	194	1.23	0.225E-02

TEMPO	CONC.	TOTAI,	DIFERENCA
min	NUM (mol	/cm3) EXP	
5.0	0.3429E-05	0.7490E-05	-0.4061E-05
10.0	0.6534E-05	0.1350E-04	-0.6966E-05
20.0	0.1161E-04	0.1810E-04	-0.6490E-05
30.0	0.1498E-04	0.1910E-04	-0.4116E-05
40.0	0.1705E-04	0.1930E-04	-0.2251E-05
50.0	0.1827E-04	0.1900E-04	-0.7340E-06
55.0	0.1867E-04	0.1920E-04	-0.5338E-06

	FASE GAS	OSA (T =	21.1 oC) FASE	LIQUIDA	
GAS	VAZAO/ROT cm3/s	FRACAO MOLAR %	SOLVENTE	VOLUME litro	CONC. M
C12	28.08/80	10.00	н20	1.0	0,000

 PROE	PRIEDADES DO (GAS	PROPR	IEDADES DO L	IQUIDO
DIFUSIV. cm2/s	VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS. g/cm3
 0.1285	0.0173	0.134E-02	0.140E-04	0.9879	1.0156

SOLUB. EM H20	CTÉ, DE EQUIL
mol/l.atm	(mol/l)^2
0.0715	0.2793E-09

		HIDRODINAMICA		
RAIO BOLHA CM	VEL. ASC. cm/s	T.RESID S	HOLDUP %	kla FISICO 1/s
0.3258	11.91	0.4133	1.15	0.158E-02

HIDRODINAMICA

.

ł 1 1 ŧ ł

EXPERIME	NTO 13				
TEMPO min	CC NUM	DNC.TOTAL (mol/cm3) EXP	DIFERE	NCA	
5.0 12.0 20.0 30.0 40.0 50.0 60.0 80.0 93.0	0.2224E-(0.4932E-(0.7793E-(0.1083E-(0.1322E-(0.1503E-(0.1635E-(0.1801E-(0.1862E-(05 0.7600E-C 05 0.1361E-O 05 0.1719E-C 04 0.1791E-C 04 0.1790E-C 04 0.1829E-O 04 0.1806E-O 04 0.1790E-C 04 0.1806E-O 04 0.1790E-C 04 0.1766E-O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E-05 E-05 E-05 E-05 E-05 E-05 E-05 E-06 E-05	
TEMPO C DESVIO I	OMPUTACIONAL = MEDIO QUADRATI FASE GASO:	= 17.5 min ICO = 0.2083E-	02 2.4 oC) FASE	LIQUTDA	
GAS	VAZAO/ROT cm3/s	FRACAO MOLAR %	SOLVENTE	VOLUME litro	CONC. M
C12	15.68/50	10.00	H20	1.0	0.000
P	ROPRIEDADES DO) gas	PROPR	IEDADES DO I	IQUIDO
DIFUSIV cm2/s	. VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS. g/cm3
0.1295	0.0174	0.133E-02	0.1452-04	0.9593	1.0146
		SOLUB. EM H20 mol/l.atm	CTE. DE EQUIL (mol/1)^2		
		0.0682	0.3019E-09		

		HIDRODINAMICA		
RAIO BOLHA	VEL. ASC.	T.RESID	HOLDUP	kla FISICO
CM	cm/s	S	S	1/s
0,2580	10.60	0.4624	0.72	0.100E-02

чтовортмамтса

EXPERIMEN	VTO 14					
TEMPO min	C(NUM	DNC.TOTAL (mol/cm3) EXP	E)I FERENCA		
5.0 13.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0	0.2406E- 0.5811E- 0.8504E- 0.1171E- 0.1417E- 0.1600E- 0.1733E- 0.1828E- 0.1896E-	05 0.4770E 05 0.1010E 05 0.1280E 04 0.1390E 04 0.1420E 04 0.1430E 04 0.1430E 04 0.1430E 04 0.1430E 04 0.140E 04 0.140E	-05 -0 -04 -0 -04 -0 -04 -0 -04 -0 -04 0 -04 0 -04 0 -04 0).2364E-05).4289E-05).4296E-05).2187E-05).2609E-07).1699E-05).3225E-05).4378E-05).4958E-05		
TEMPO CO DESVIO N	MPUTACIONAL : 4EDIO QUADRAT: FASE GASO:	= 15.9 min ICO = 0.34921	17.5 oC)	FASE LIQUI	DA	
GAS	VAZAO/ROT cm3/s	FRACAO MOLAR	SOLVENI	TE VOL lit	UME ro	CONC. M
C12	15.64/50	10.00	H20	1.0		0.000
PI	ROPRIEDADES D) GAS		PROPRIEDAD	es do li	QUIDO
DIFUSIV cm2/s	. VISC. micropois	DENS. e mol/cm3	DIFUSI\ cm2/s	7. V	ISC. cP	DENS. g/cm3
0.1258	0.0171	0.135E-02	0,128E-	-04 1.	0735	1.0184
		SOLUB. EM H2 mol/l.atm	0 CTE. DE (mol/l)	EQUIL ^2		
		0.0817	0.2244E	3-09		
		HID	RODINAMICA			
RAIO BOI CM	LHA VEL CI	. ASC. n/s	T.RESID s	HOLDUP %	kla	FISICO 1/s

0.2577 10.60 0.4626 0.72 0.938E+03

88

EXPERIME	NTO 15						
TEMPO min	CC NUM	NC.TOTAL (mol/cm3) EXP		DIFERENC	A		
5.0 10.0 20.0 30.0 40.0 50.0 65.0 70.0	0.3301E-0 0.6308E-0 0.1130E-0 0.1470E-0 0.1684E-0 0.1814E-0 0.1917E-0 0.1936E-0	05 0.4220E 05 0.7630E 04 0.1200E 04 0.1360E 04 0.1460E 04 0.1490E 04 0.1499E 04 0.1510E	-05 -05 -04 -04 -04 -04 -04 -04 -04	-0.9195E- -0.1322E- 0.7044E- 0.1097E- 0.2239E- 0.3238E- 0.4180E- 0.4265E-	06 05 06 05 05 05 05 05		
TEMPO C DESVIO	OMPUTACIONAL = MEDIO QUADRATI	= 7.9 min ICO = 0.1228	E-02				
	FASE GASOS	3A (T =	20.5 oC)	FASE LI	QUIDA		
GAS	VAZAO/ROT cm3/s	FRACAO MOLAR	SOLVE	INTE	VOLUME litro	CONC M	·
C12	28.06/80	10.00	н2С	>	2.0	0.00	0
P	ROPRIEDADES DO) GAS		PROPRIE	DADES DO) LIQUIDO	
DIFUSIV cm2/s	. VISC. micropoise	DENS. e mol/cm3	DIFUS cm2/	siv.	visc. cP	DENS g/cm	ι3
0,1280	0.0173	0.134E-02	0.138)E-04	1.0014	1.01	.61
		SOLUB. EM H2 mol/l.atm	0 CTE.E (mol/	DE EQUIL (1)^2			
		0.0731	0.269	94E-09			
		HID	RODINAMICA				
RAIO BC cm	LHA VEL	ASC. n/s	T.RESID s	HOLDU %	P	kla FISIC 1/s	:0
0.3257	11	. 91	0.8266	1.15		0.157E-	

SAFERIMEN	10 16				
TEMPO min	CO1 NUM (1	NC.TOTAL nol/cm3) EXP	DIFEF	RENCA	
$\begin{array}{c} 5.0\\ 13.0\\ 20.0\\ 30.0\\ 40.0\\ 50.0\\ 60.0\\ 67.0\\ 80.0\\ 90.0\\ 110.0\\ 130.0\\ 140.0 \end{array}$	0.3227E-0 0.7776E-0 0.1106E-0 0.1443E-0 0.1657E-0 0.1857E-0 0.1864E-0 0.1899E-0 0.1937E-0 0.1952E-0 0.1952E-0 0.1971E-0 0.1972E-0	0.4108E-0 0.9072E-0 0.1155E-0 0.1346E-0 0.1508E-0 0.1528E-0 0.1500E-0 0.1504E-0 0.1536E-0 0.1536E-0 0.1536E-0 0.1536E-0 0.1536E-0 0.1556E-0 0.1566E-0 0.1560E-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4E = 06 6E = 05 16E = 06 3B = 05 39E = 05 33E = 05 13E = 05 16E = 05 22E = 05 26E = 05 54E = 05 54E = 05 54E = 05	
TEMPO CO DESVIO M	MPUTACIONAL = EDIO QUADRATIO FASE GASOS)	12.1 min CO = 0.1548E- (T = 2)	02 2.1 oC) FASE	E LIQUIDA	
GAS	VAZAO/ROT] cm3/s	FRACAO MOLAR	SOLVENTE	VOLUME litro	CONC. M
C12	28.10/80	10.00	H2O	2.0	0.000
PR	OPRIEDADES DO	GAS	PROF	PRIEDADES D	O LIQUIDO
DIFUSIV. cm2/s	VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS. g/cm3
0.1293	0.0174	0.133E-02	0.144E-04	0.9658	1.0149
		SOLUB. EM H20 mol/l.atm	CTE. DE EQUI (mol/l)^2	<u> </u>	
		0.0689	0.2966E-09		
		HIDRO	DINAMICA		
RAIO BOL cm	HA VEL.	ASC. T.	RESID HC s	LDUP %	kla FISICO 1/s
0.3259	11.9	0.1	8264 1	15	0.160E-02

EXPERIME	NTO 17						
TEMPO min	NUM	ONC.TOTAL (mol/cm3) E	CXP	DIFEREN	NCA		
5.0 10.0 20.0 32.0 40.0 50.0 60.0 70.0	0.3082E- 0.5892E- 0.1067E- 0.1457E- 0.1626E- 0.1763E- 0.1848E- 0.1899E-	05 0.325 05 0.613 04 0.107 04 0.136 04 0.146 04 0.156 04 0.155 04 0.153	50E-05 30E-05 70E-04 50E-04 10E-04 10E-04 20E-04 30E-04 30E-04	-0.16771 -0.23771 -0.30122 0.97121 0.18561 0.26341 0.32791 0.36901	2-06 2-06 2-07 2-06 2-05 2-05 2-05 2-05		
TEMPO CO Desvio i	OMPUTACIONAL VEDIO QUADRAT	= 5.5 mi ICO = 0.12	in 224E-02				
GAS	VAZAO/ROT cm3/s	FRACAO MOI	C = 22.0 oc	J FASE I	VOLUME litro		CONC. M
C12	28.10/80	10.00			3.0		0.000
PI	ROPRIEDADES D	O GAS		PROPRI	EDADES D	D LI	QUIDO
DIFUSIV cm2/s	. VISC. micropois	DENS. e mol/cn	DI n3 Cr	FUSIV. n2/s	VISC. cP		DENS. g/cm3
0.1292	0.0174	0.133E-	-02 0.:	L44E-04	0.9680		1.0149
		SOLUB. EM mol/l.at	H20 CTE im (mo	. DE EQUIL 51/1)^2			
		0.0692	0.2	2948E-09			
		F	HIDRODINAMÍC	CA			
RAIO BOJ cm	LHA VEL C	. ASC. m/s	T.RESID s	HOLI *	900 	kla	FISICO 1/s

0.3259 11.91 1.2396 1.15 0.160E-02

EXPERIME	NTO 18					
TEMPO min	CC NUM (NC.TOTAL mol/cm3) EXP		DIFERENC	A	
5.0 12.0 20.0 30.0 40.0 60.0 80.0 100.0 120.0 130.0 140.0	0.3083E-0 0.6946E-0 0.1067E-0 0.1406E-0 0.1626E-0 0.1849E-0 0.1931E-0 0.1961E-0 0.1971E-0 0.1974E-0 0.1975E-0	5 0.3224E 5 0.7244E- 4 0.1056E- 4 0.1272E- 4 0.1396E- 4 0.1473E- 4 0.1488E- 4 0.1491E- 4 0.1484E- 4 0.1492E- 4 0.1496E-	- 05 - 05 - 04 - 04 - 04 - 04 - 04 - 04 - 04	-0.1412E- 0.2981E- 0.1126E- 0.1336E- 0.2302E- 0.3759E- 0.4430E- 0.4696E- 0.4872E- 0.4872E- 0.4815E- 0.4790E-	06 06 05 05 05 05 05 05 05 05	
TEMPO C DESVIO 1	OMPUTACIONAL = MEDIO QUADRATI	8.5 min CO = 0.1670E	0-02			
	FASE GASOS	A (T =	21.9 oC)	FASE LI	QUIDA	
GAS	VA2AO/ROT cm3/s	FRACAO MOLAR	SOLVEN	\$TE	VOLUME litro	CONC. M
C1.2	28.10/80	10,00	Н2О		3.0	0.000
P	ROPRIEDADES DO	GAS		PROPRIE	DADES DO	D LIQUIDO
DIFUSIV cm2/s	. VISC. micropoise	DENS. mol/cm3	DIFUSJ cm2/a	:V. 3	VISC. cP	DENS. g/cm3
0.1291	0.0174	0.133E-02	0.1438	:-04	0.9702	1.0150
		SOLUB, EM H2C mol/l.atm) CTE. DE (mol/]	EQUIL		
	and sold for	0.0694	0.2930)E-09		
		HIDF	RODINAMICA			
RAIO BO	LHA VEL.	ASC. 1	RESID	HOLDU	P	kla FISICO
cm	cm	/s	S	ş		1/s
0.3258	11.	91 1	2396	1.15		0.160E-02

EXPERIMENTO	19		
TEMPO min	CONC. NUM (mol	TOTAL ./cm3) EXP	DIFERENCA
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 70.0 80.0 90.0 100.0 110.0 130.0 135.0	0.1694E-04 0.3255E-04 0.4673E-04 0.5956E-04 0.7112E-04 0.8152E-04 0.9087E-04 0.9087E-04 0.1067E-03 0.1135E-03 0.1195E-03 0.1249E-03 0.1414E-03 0.1414E-03 0.1414E-03 0.1456E-03 0.1556E-03 0.1609E-03 0.1619E-03	0.3000E-04 0.5380E-04 0.7200E-04 0.8530E-04 0.9720E-04 0.1070E-03 0.1140E-03 0.1250E-03 0.1250E-03 0.1310E-03 0.1320E-03 0.1320E-03 0.1420E-03 0.1450E-03 0.1480E-03 0.1500E-03 0.1550E-03 0.1560E-03	-0.1306E-04 -0.2125E-04 -0.2527E-04 -0.2574E-04 -0.2574E-04 -0.2548E-04 -0.2313E-04 -0.1975E-04 -0.1826E-04 -0.1452E-04 -0.1149E-04 -0.7090E-05 -0.3944E-05 -0.3969E-05 0.3869E-05 0.4562E-05 0.55928E-05 0.5928E-05
TEMPO COMPI	UTACIONAL =	21.4 min	

DESVIO MEDIO QUADRATICO = 0.3222E-02

	FASE GAS	OSA (T =	24.5 oC) FASE	LIQUIDA	
GAS	VAZAO/ROT cm3/s	FRACAO MOLAR %	SOLVENTE	VOLUME litro	CONC. M
S02	28.45/80	10.00	Н20	2.0	0.000

PRO	PRIEDADES DO (BAS	PROPR	IEDADES DO L	IQUIDO
DIFUSIV. cm2/s	VISC. micropoise	DENS. mol/cm3	DIFUSIV. cm2/s	VISC. cP	DENS. g/cm3
0.1289	0.0173	0.129E-02	0.229E-04	0.9157	1.0130

SOLUB. EM H20	CTE. DE EQUIL
mol/1.atm	mol/l
1.2693	0.1317E-04

		HIDRODINAMICA		
RAIO BOLHA CM	VEL. ASC. cm/s	T.RESID S	HOLDUP %	kla FISICO 1/s
0.3275	11.94	0.8244	1.16	0.204E-02

EXPERIMENT	ro 20							
TEMPO min	CONC.TOTAL NUM (mol/cm3) EXP		EXP	DI FERENCA		A		
5.0 10.0 15.0 20.0 26.0	0.1680E- 0.3230E- 0.4641E- 0.5920E- 0.7293E-	04 0.302 04 0.542 04 0.732 04 0.886 04 0.886	20E-04 20E-04 20E-04 50E-04 50E-03	0 0 0 0	.1340E- .2190E- .2679E- .2940E- .2807E-	04 04 04 04 04		
TEMPO CO DESVIO MI	APUTACIONAL EDIO QUADRAT FASE GASO	= 6.3 mi ICO = 0.48	in 390E-02 F = 24.3	oC)	FASE LT	OUIDA		
GAS (VAZAO/ROT cm3/s	FRACAO MOI %	LAR	SOLVENT	E	VOLUME litro		CONC. M
SO2 2	28.45/80	10.00		Н20		2.0		0.000
PR	OPRIEDADES D	o gas			PROPRIE	DADES DO) LIÇ	QUIDO
DIFUSIV. cm2/s	VISC. micropois	DENS e mol/cr	 n3	DIFUSIV cm2/s		VISC. cP		DENS. g/cm3
0.1287	0.0173	0.130E-	-02	0.228E-	04	0.9197		1.0132
		SOLUB. EM mol/l.at	H2O C	TE. DE mol/	EQUIL 1			
		1.2783		0.1323E	-04			
		1	HIDRODINA	MICA				
RAIO BOLI CM	HA VEL	. ASC. m/s	T.RESI s	D	HOLDU	P	kla	FISICO 1/s

0.3275 11.94 0.8245 1.16 0.204E-02

Programa Elaborado

C.1. Introdução.

Apresenta-se aqui, o programa elaborado em linguagem FORTRAN, bem como, a definição de algumas variáveis e uma sucinta descrição de suas subrotinas. Para um melhor entendimento, o leitor é remetido à Figura 4.2-7 que fornece um fluxograma do programa apresentado. A subrotina D02EBF não aparece na listagem pois é parte integrante da biblioteca NAG (*Numerical Algorithmic Group*).

C.2. Definição de Variáveis.

A	matriz de discretização das derivadas primeiras (método de Colocação Ortogonal)
ALFA	parâmetro que define o polinômio de Jacobi P(N,ALFA,BETA)
В	matriz de discretização das derivadas segundas (método de Colocação Ortogonal)
BETA	parâmetro que define o polinômio de Jacobi P(N,ALFA,BETA)
CA	concentração do gás solúvel na sua forma livre
CA_TOTAL	concentração do gás solúvel nas formas livre e combinada
CAS0	concentração do gás solúvel na interface e no tempo inicial
CEQUIL	constante de equilíbrio
N	número internos de pontos de colocação
CEXP	vetor das concentrações experimentais
CONC	concentração de ácido clorídrico
CONT_MIN	contador de minutos
DAB	difusividade gasosa em N_2
DESVIO	desvio quadrático entre as concentrações numérica e experimental
DESVMED	desvio quadrático médio entre as concentrações numérica e experimental
DIFER	diferença entre as concentrações numérica e experimental
F_ION	força iônica
FLAG	variável sinalizadora de término da execução (FLAG = 'FIM')
GAS	nome do gás solúvel
HENRY	constante de Henry
HW	constante de Henry em água
INTEGRAL	integral do fluxo no tempo de residência
IP	contador de pontos experimentais
IPMAX	número de pontos experimentais lidos
KLA0	coeficiente de transferência de massa físico
N_BOLHAS	número de bolhas geradas na unidade de tempo
NTERESID	número de tempos de residêcias
PA0	pressão inicial da bolha
РТ	pressão total

ROT	posição do flutuador do rotâmetro
SOLUB	solubilidade
1	temperatura em °C
TAB	matriz contendo fluxos e respectivos tempos
TAL	tempo adimensional
TALRESID	tempo de residência adimensional
TETAL	concentração adimensional do gás solúvel na sua forma livre
TETAS	concentração adimensional do gás solúvel na interface
TEXP	vetor dos instantes em que CEXP's foram medidos
TRESID	tempo de residência
VAZAO	vazão de gás
Y	vetor contendo as pressões parciais adimensionais nos pontos de colocação

C.3. Subrotinas Utilizadas.

PROP_GAS	cálculo da densidade e viscosidade da mistura gasosa e da difusividade do gás solúvel em N ₂
PROP_LIQ	cálculo da densidade e viscosidade do solvente e da difusividade dos reagentes e produtos
CALC_VAZAO	cálculo da vazão de gás a partir da posição do flutuador do rotâmetro
HIDRODINAMICA	cálculo dos parâmetros hidrodinâmicos
F_AUM	cálculo do fator de aumento devido à reação química
CALC_DERIV	cálculo das derivadas temporais da pressão parcial adimensional nos pontos de colocação
TABELA	tabelamento de fluxo de massa \times tempo para posterior integração pela regra de Simpson
SIMPS1	integração de uma função tabelada pela 1ª regra de Simpson (Barroso, 1987)
JCOBI	cálculo das raizes e derivadas do polinômio de Jacobi P(N,ALFA,BETA), (Villadsen e Michelsen, 1978)
DFOPR	cálculo das matrizes de discretização (método de Colocação Ortogonal), (Villadsen e Michelsen, 1978)
RADAU	integração por quadratura de Radau e Lobatto, (Villadsen e Michelsen, 1978)
SUCSUB	cálculo do zero de função pelo método das Substituições Sucessivas, (Atikinson, 1989)
D02EBF	integração de um problema de valor inicial pelo método Backward Differentiation Formula, (NAG)
÷

C.4. Listagem do Programa.

```
Universidade Estadual de Campinas
    Faculdade de Engenharia Quimica
    Departamento de Sistemas Quimicos e Informatica
    Este programa simula um processo de absorcao gasosa com reacao
    química numa coluna de borbulhamento sem agitacao mecanica.
A fase gasosa e' sempre uma mistura binaria composta pelo gas
    a ser absorvido e nitrogenio, que atua como gas inerte.
        IMPLICIT REAL*8 (A-H, O-Z)
     PARAMETER (N=5,NT=N+1,NDTAB=5000,IW=500)
            KLAO, N_BOLHAS, INTEGRAL, KS, LNH, LASTX
    REAL*8
             CONT MIN, SISTEMA, STATUS, ROT
    INTEGER
    CHARACTER GAS*3, SOLVENTE*4, NOME*3, ARQSAIDA1*12, ARQSAIDA2*12, FLAG*3
    DIMENSION YG(2),A(NT,NT),B(NT,NT),ROOT(NT),Y(N),TAB(NDTAB,2),
+ DIF1(NT), DIF2(NT),DIF3(NT),V1(NT),
             V2(NT), TEXP(30), CEXP(30), WORK(IW)
    -te
    EXTERNAL GCLORO, CALC_DERIV, D02EJY, TABELA
    COMMON /PRINCIPAL/ PT, TAES, CASO, VOLLQ, SISTEMA, CONC, CEQUIL
COMMON /PROPGAS/ DAB, YG, VISCGAS, DENSGAS
COMMON /PROPLIQ/ DENSLIQ, VISCLIQ, DIF_A, DIF_B
    COMMON /COLOCACAO/ A, B, ROOT, DIF1
COMMON /VAZAO/ VAZAO
    COMMON /CLORO/ CA_TOTAL
    COMMON /Y/ Y
     COMMON /TETAS/ TETAS, TETAL
    COMMON /TAB/ K, TAB, NTRESID
    COMMON / PH/ PH
    COMMON /HIDRO/ RAIO, TALRESID, TRESID, VEL, AREACEL, N_BOLHAS, ALTDISP,
+ KLA0, HOLDUP, VELGAS, AREAESP
    OPEN(UNIT=8, FILE='ENTRADA.DAT', STATUS='OLD')
    OPEN(UNIT=15, FILE='MENSAGEM.DAT', STATUS='OLD')
    OPEN (UNIT=50, FILE='COMPARA.DAT', STATUS='OLD')
     FLAG = 'XXX'
    DO WHILE (FLAG.NE.'FIM')
    CALL DCLOCK@(T1)
**********
****
******
    READ(8,*) NEXP
    READ(8,*)
    READ(8,*) GAS, ROT, YG(2)
    READ(8,*)
    READ(8,*) SOLVENTE, VOLLIQ, CONC
    READ(8,*)
    READ(8,*) PT, T
    READ(8,*)
    READ(8,*) ARQSAIDA1, ARQSAIDA2
READ(8,*)
    DO IP=1,30
      READ(8,*) TEXP(IP), CEXP(IP)
      IPMAX = IP-1
      IF (TEXP(IP).GT.990.0) GO TO 5
    END DO
   5 READ(8,*) FLAG
    OPEN(UNIT=20, FILE=ARQSAIDA1, STATUS='OLD'
    OPEN(UNIT=21, FILE=ARQSAIDA2, STATUS='OLD')
*****
*****
                                       ****
    YG(1) = 1-YG(2)
    PT = PT*1.0132
PAO = PT*YG(2)
    TABS = T + 273.1
乔家兴养张鸿鼎举兴天神寒难法家汉明外来对老师老师老师老师老师老师爷弟来来来来来来来来来来
                                             ****************
```

```
IF (GAS.EQ.'SO2') THEN
    IF (SOLVENTE.EQ. 'H2O') THEN
     SISTEMA = 1
    ELSE IF (SOLVENTE.EQ.'HCl') THEN
     SISTEMA = 2
    ENDIF
   ELSEIF (GAS.EQ.'NH3') THEN
    IF (SOLVENTE.EQ. 'H2O') THEN
     SISTEMA = 3
    ENDIF
   ELSEIF (GAS.EQ.'Cl2') THEN
    IF (SOLVENTE.EQ. 'H2O') THEN
     SISTEMA = 4
    ENDIF
   ENDIE
***********
********************* PROPRIEDADES FISICAS DO GAS *******************************
CALL PROP GAS(GAS)
**********
*****
   CALL PROP_LIQ(SOLVENTE)
********************* VAZAO DE GAS - POSICAO ROTAMETRO **************************
******
   CALL CALC VAZAO(ROT)
************
CALL HIDRODINAMICA
*****************
   ********** CTE. DE EQUIL. E CTE. DE HENRY EM AGUA *****************
*******************
                               ******
   OPEN(UNIT=10, FILE='GAS_2.DAT', STATUS='OLD')
   READ(10,*)
NOME = 'XXX'
   DO WHILE (NOME.NE.GAS)
    READ(10,*) NOME, CC1, CC2, CC3, CC4, DD1, DD2, DD3, DD4
   END DO
   CLOSE(10)
   CEQUIL = DEXP(CC1 + CC2/TABS + CC3*DLOG(TABS) + CC4*TABS)
   IF (SISTEMA.EQ.4) THEN
     CEQUIL = CEQUIL/1D6
   ELSE
     CEQUIL = CEQUIL/1D3
   END IF
   LNH = DD1 + DD2/TABS + DD3*DLOG(TABS) + DD4*TABS
   HW = DEXP(LNH)
HW = HW*1000
ALFA = 1.
   BETA = .5
   CALL JCOBI (NT, N, 0, 1, ALFA, BETA, DIF1, DIF2, DIF3, ROOT)
   DO J=1,NT
    CALL DFOPR(NT, N, 0, 1, J, 1, DIF1, DIF2, DIF3, ROOT, V1)
    CALL DFOPR (NT, N, 0, 1, J, 2, DIF1, DIF2, DIF3, ROOT, V2)
    DO I=1,NT
     A(J,I) = Vl(I)
     B(J,I) = V2(I)
    END DO
   END DO
*******
····
   CALL CLEAR SCREEN®
```

```
\mathbb{C}
       CONDICOES INICIAIS
       TP = 1
       SOMDESV = 0.0
       CA = 0.0
       CA_TOTAL = 0.0
       TEMPO = 0.0
       TETAL = 1.0
       PH = -DLOG10((CONC+DSQRT(CONC**2+4D-14))/2)
       CONC = CONC/1000
       CONT MIN = 1
       NTRESID = 0
     NTRESID = 0
WRITE(*,'(T3,A,I2)')'EXPERIMENTO ', NEXP
WRITE(*,901)
WRITE(*,'(T4,A,T23,A,T49,A)') 'TEMPO',
+ 'CONC.TOTAL ','DIFERENCA'
WRITE(*,'(T5,A,T19,A,T24,A,T34,A)') 'min',
+ 'NUM','(mol/cm3)','EXP'
WRITE(*,901)
WRITE(20,'(T3,A,I2)')'EXPERIMENTO ', NEXP
       WRITE(20,'(T3,A,I2)')'EXPERIMENTO ', NEXP
       WRITE(20,901)
      write(20,'(T4,A,T23,A,T49,A)') 'TEMPO',
+ 'CONC.TOTAL ','DIFERENCA'
      WRITE(20, '(T5, A, T19, A, T24, A, T34, A)') 'min',
       'NUM', '(mol/cm3)', 'EXP'
      WRITE(20,901)
С
        CALL X04AAF(1,5)
С
        CALL X04ABF(1,5)
****** INICIO DO CICLO: CADA CICLO EQUIVALE A UM TEMPO DE RESID. *****
***
Ť
       DO WHILE (TEMPO/60.LT.(TEXP(IPMAX)+10D0))
         NTRESID = NTRESID + 1
         TAL = 0.0
         TETAS = 0.0
         К = 0
         DO I=1,N
           Y(I) = 0.0
         END DO
         CORRECAO DA CTE. DE HENRY DEVIDO AO EFEITO SALINO
С
         IF (SISTEMA.EQ.1) THEN
           KS = -36.7
           F ION = (CEQUIL*CA)**(1./2)
         ELSE IF (SISTEMA.EQ.2) THEN KS = -15.7
            F_{ION} = (CONC + DSQRT(CONC**2 + 4*CEQUIL*CA))/2
         ELSE IF (SISTEMA.EQ.3) THEN
           KS = 48.5
            F ION = (CEQUIL*CA)**(1./2)
         ELSE IF (SISTEMA.EQ.4) THEN
           KS = -23.7
            F ION = (CEQUIL*CA)**(1./3)
         ENDIF
         HENRY = HW*DEXP(2.303*KS*F ION)
         SOLUB = 1/HENRY
         CAS0 = SOLUB*PA0
         TETAL = (CASO - CA)/CASO
         INTEGRACAO UTILIZANDO SUBROTINA DA NAG
C
         TOL = 1.D-8
         IRELAB = 2
         MPED = 0
         IFAIL = 0
         CALL D02EBF(TAL, TALRESID, N, Y, TOL, IRELAB, CALC_DERIV, MPED,
                       D02EJY, TABELA, WORK, IW, IFAIL)
         IF (IFAIL NE.O) THEN
           WRITE(*,*)' ERRO NA INTEGRACAO!!!'
           STOP
         END IF
         INTEGRACAO DO FLUXO x TEMPO POR SIMPSON
C
         CALL SIMPS1(NDTAB, TAB, 0.0D0, TALRESID, K, INTEGRAL)
         ATUALIZACAO DA CONC. TOTAL NA FASE LIQUIDA
C
         FATOR = (1/(1-HOLDUP))*CASO*RAIO**2/DAB
         CA TOTAL = CA_TOTAL + FATOR*INTEGRAL
С
         CONCENTRACAO DE SOLUTO LIVRE (NAO COMBINADO)
```

```
IF (GAS.EQ.'Cl2') THEN
          IF (PH.LT.3.0) THEN
            CALL SUCSUB (GCLORO, CA, 1D-15, 1000,
                       STATUS, CA, ITER, LASTX)
            IF (STATUS.NE.O) THEN
              WRITE(*,*) ' Erro no calculo da conc. de cloro livre '
              STOP
            END IF
            PH = (- DLOG10(CEQUIL*CA) - 9.0)/3
          ELSE
            PH = - DLOG10(CA_TOTAL) - 3.0
          END IF
        ELSE
          PARTE1 = 2*CA TOTAL+CONC+CEQUIL
          PARTE2 = PARTE1**2 - 4* (CA_TOTAL**2+CA_TOTAL*CONC)
          CA = (PARTE1-DSQRT(PARTE2))/2
        END TF
        TEMPO = TEMPO + TRESID
        IMPRESSÃO A CADA MINUTO
С
        IF ((TEMPO/60-CONT MIN).GE.0.0) THEN
          IF (CONT MIN.EQ.1) THEN
            WRITE(21,'(F8.3,3X,E11.4)') 0.0, 0.0
          END IF
          WRITE(21,'(F8.3,3X,E11.4)') TEMPO/60, CA TOTAL
          CONT_MIN = CONT_MIN + 1
        END IF
        IMPRESSÃO NOS TEMPOS DE AMOSTRAGEM
\mathbf{C}
        IF ((TEMPO/60-TEXP(IP)).GE.0.0.AND.IP.LE.IPMAX) THEN
          DIFER = (CA_TOTAL-CEXP(IP))
WRITE(*,'(T4,F5.1,T15,E11.4,T29,E11.4,T48,E11.4)')
          TEXP(IP), CA_TOTAL, CEXP(IP), DIFER
WRITE(20,'(T4,F5.1,T15,E11.4,T29,E11.4,T48,E11.4)')
     ÷
          TEXP(IP), CA_TOTAL, CEXP(IP), DIFER
DESVIO = (CA_TOTAL-CEXP(IP))**2
     4
          SOMDESV = SOMDESV + DIFER
          IP = IP + 1
        END IF
444
                                                                        +++
******
                                          ****
      END DO
******
******************
      DESVMED = DSQRT (DABS (SOMDESV/IPMAX))
      CALL DCLOCK@(T2)
     WRITE(*,901)
WRITE(*,'(T4,A,F5.1,A)') 'TEMPO COMPUTACIONAL = ',
     +(T2-T1)/60,' min'
      WRITE (*, '(T4, A, E11.4, //)') 'DESVIO MEDIO QUADRATICO = ',
     +DESVMED
     WRITE(20,901)
      WRITE(20, '(T4, A, F5.1, A)') 'TEMPO COMPUTACIONAL = ',
     +(T2-T1)/60, min'
     WRITE(20,'(T4,A,E11.4,//)') 'DESVIO MEDIO QUADRATICO = ',
     +DESVMED
     WRITE(20,'(T30,A,I2/)') ' EXPERIMENTO ',NEXP
WRITE(20,'(T15,A,T33,A,F4.1,A,T50,A)') 'FASE GASOSA',
+'(T = ',T,' oC)', 'FASE LIQUIDA'
      WRITE(20,902)
     WRITE(20,'(T4,A,T12,A,T25,A,T43,A,T57,A,T70,A)')
+ 'GAS', 'VAZAO/ROT', 'FRACAO MOLAR', 'SOLVENTE', 'VOLUME', 'CONC.'
WRITE(20,'(T12,A,T29,A,T57,A,T71,A)')
      'cm3/s', '%',
                       'litro', 'M'
      WRITE(20,902)
      WRITE(20, '(T4, A, T12, F5.2, A, I2, T28, F5.2, T45, A, T57, F3.1, T70,
            F5.3,//)')
     +GAS, VAZAO, '/', ROT, YG(2)*100, SOLVENTE, VOLLIQ/1000, CONC*1000
     ÷
      WRITE(20,902)
     WRITE(20,'(T4,A,T18,A,T30,A,T43,A,T59,A,T70,A)')
+ 'DIFUSIV.', 'VISC.', 'DENS.', 'DIFUSIV.',
+ 'VISC.', 'DENS.'
      WRITE(20, '(T5, A, T15, A, T29, A, T44, A, T60, A, T70, A)')
```

```
+'cm2/s', 'micropoise', 'mol/cm3', 'cm2/s', 'cP', 'g/cm3'
     WRITE(20,902)
     WRITE(20, '(T4, F6.4, T17, F6.4, T28, E9.3, T43, E9.3, T58, F6.4, T70,
     +E6.4,//)*)
    +DAB, VISCGAS, DENSGAS, DIF_A, VISCLIQ, DENSLIQ
     WRITE(20,900)
WRITE(20,'(T25,A,T42,A)') 'SOLUB. EM H20', 'CTE. DE EQUIL'
     IF (SISTEMA.EQ.4) THEN
     WRITE(20, '(T25, A, T42, A)') ' mol/l.atm ', ' (mol/l)^2
     ELSE
     WRITE(20,'(T25,A,T42,A)') ' mol/l.atm ', '
                                                    mol/l
                                                              ş
     END IF
     WRITE(20,900)
     WRITE(20,'(T26,F8.4,T42,E11.4,//)') 1/HW*1000, CEQUIL
     WRITE(20, '(T34, A)') 'HIDRODINAMICA'
     WRITE(20,903)
WRITE(20,'(T4,A,T21,A,T37,A,T52,A,T65,A)')
    + 'RAIO BOLHA', 'VEL. ASC.', 'T.RESID', 'HOLDUP',
+ 'kla FISICO'
     WRITE(20,'(T7,A,T23,A,T40,A,T54,A,T69,A)')
     +'cm','cm/s','s','%','1/s'
     WRITE(20,903)
     WRITE(20, '(T5, F6.4, T22, F5.2, T37, F6.4, T53, F4.2, T67, E9.3)')
     +RAIO, VEL, TRESID, HOLDUP*100, KLAO
     CLOSE(20)
     CLOSE(21)
     END DO
     CLOSE(15)
     CLOSE(8)
  900 FORMAT(T22, 35H-----)
  901 FORMAT (59H-----
    +----)
  +----)
  903 FORMAT (76H-----
                              +-----)
     STOP
     END
******************** PROPRIEDADES FISICAS DO GAS ********************************
SUBROUTINE PROP_GAS(GAS)
      IMPLICIT REAL*8 (A-H, O-Z)
      PARAMETER (R=83.13306)
      REAL*8 KTEM, M, MRM, MM, MM4
      INTEGER SISTEMA
      CHARACTER*3 COMP, GAS
      DIMENSION PM(2), PC(2), TC(2), TB(2), VC(2), VB(2), W(2), ZC(2), M(2),
     COMP(2),VD(2),YG(2),SIGMA(2),EK(2)
COMMON /PRINCIPAL/ PT, TABS, CAS0, VOLLIQ, SISTEMA, CONC, CEQUIL
COMMON /PROPGAS/ DAB, YG, VISCGAS, DENSGAS
     4
      COMMON /BLOCO1/ VB
     LEITURA DAS GRANDESAS TERMODINAMICAS
0000000
      PM = Peso Molecular,
                                     a/mol
      PC = Pressao Critica,
                                      bar
      TC = Temperatura Critica,
                                      K
      TB = Temp. normal de ebulicao, K
                                      cm3/mol
      VC = Volume Critico,
С
      VB = Volume Molar Liquido a TB, cm3/mol
С
      W = Fator Acentrico
С
      ZC = Fator de Comp. Critico
С
      M = Momento de Dipolo,
                                      debye
С
     VD = Volume de Difusao
С
     OPEN(UNIT=10, FILE='GAS 1.DAT', STATUS='OLD')
READ(10,*) COMP(1), PM(1), PC(1), TC(1), TB(1), VC(1), VB(1),
+W(1), ZC(1), M(1), VD(1)
COMP(2) = 'XXX'
      DO WHILE (COMP(2).NE.GAS)
       READ(10,*) COMP(2), PM(2), PC(2), TC(2), TB(2), VC(2), VB(2),
W(2), ZC(2), M(2), VD(2)
     END DO
      CLOSE(10)
C
      DIFUSIVIDADE GASOSA EM N2
     Metodo de Fuller et al (empirico)
PMAB = 2*((1/PM(1))+(1/PM(2)))**(-1)
C
        DAB = 0.00143*TABS**1.75/(PT*PMAB**(1./2)*(VD(1)**(1./3)+
       VD(2)**(1./3))**2)
```

```
VISCOSIDADE GASOSA
С
C
      Metodo de Chung et al
      A = 1.16145
      B = 0.14874
      C = 0.52487
      D = 0.77320
      E = 2.16178
      F = 2.43787
      DO I=1,2
        SIGMA(I) = 0.809*VC(I)**(1./3)
        EK(I) = TC(I)/1.2593
      END DO
      SIGMA12 = DSQRT(SIGMA(1) * SIGMA(2))
      SIGMAM3 = YG(1)**2*SIGMA(1)**3 + 2*YG(1)*YG(2)*SIGMA12**3 +
                YG(2)**2*SIGMA(2)**3
     +
      EK12 = DSQRT(EK(1)*EK(2))
      EKM = (YG(1)**2*EK(1)*SIGMA(1)**3 +
            2*YG(1)*YG(2)*EK12*SIGMA12**3 +
     +
            YG(2)**2*EK(2)*SIGMA(2)**3)/SIGMAM3
     \pm
     W12 = (W(1) + W(2))/2
     WM = (YG(1) * 2*W(1) * SIGMA(1) * 3 +
            2*YG(1)*YG(2)*W12*SIGMA12**3 +
     +
           YG(2)**2*W(2)*SIGMA(2)**3)/SIGMAM3
     \pm \cdot
      PM12 = 2*PM(1)*PM(2)/(PM(1)+PM(2))
      PMM = ((YG(1)**2*EK(1)*SIGMA(1)**2*DSQRT(PM(1)) +
             2*YG(1)*YG(2)*EK12*SIGMA12**2*DSQRT(PM12) +
     +
             YG(2)**2*EK(2)*SIGMA(2)**2*DSQRT(PM(2)))
     ÷
     + (EKM*SIGMAM3**(2./3)))**2
MM4 = SIGMAM3*(YG(1)**2*M(1)**4/SIGMA(1)**3 +
            2*((YG(1)*YG(2)*(M(1)*M(2))**2)/SIGMA12**3) +
     4
            YG(2)**2*M(2)**4/SIGMA(2)**3)
      MM = MM4 * (1, /4)
      VCM = SIGMAM3/0.809**3
      TCM = 1.2593*EKM
      MRM = 131.3*MM/DSQRT(VCM*TCM)
      KTEM = TABS/EKM
      OMEG = A*KTEM**(-B)+C*DEXP(-D*KTEM)+E*DEXP(-F*KTEM)
      FCM = 1 - 0.2756*WM + 0.059035*MRM**4
      VISCGAS = 26.69*FCM*DSQRT(PMM*TABS)/(SIGMAM3**(2./3)*OMEG)
      DENSIDADE DA MISTURA GASOSA
С
С
      Gas ideal
      VMIX = R*TABS/PT
      DENSGAS = 1/VMIX
      PMM = YG(1) * PM(1) + YG(2) * PM(2)
      DENSGAS = DENSGAS*PMM
      RETURN
      END
*******
-----
*****************************
      SUBROUTINE PROP_LIQ(LIQUIDO)
      IMPLICIT REAL*8 (A-H,O-Z)
      INTEGER SISTEMA
      CHARACTER*3 LIQUIDO
      COMMON /PRINCIPAL/ PT, TABS, CASO, VOLLIQ, SISTEMA, CONC, CEQUIL
COMMON /PROPLIQ/ DENSLIQ, VISCLIQ, DIF_A, DIF_B
      COMMON /BLOCO1/ VB
      DIMENSION VB(2)
    DENSIDADE DA FASE CONTINUA
C
      ADL = 4.6137
      BDL = 0.26214
      CDL = 647.29
      DDL = 0.23072
      DENSLIQ = ADL / (BDL**(1.0D+0 + (1.0D+0 - (TABS/CDL))**DDL))
      DENSLIQ = DENSLIQ * 0,018015
С
    VISCOSIDADE DA FASE CONTINUA
      AVL = -52.267
      BVL = 3665.2
      CVL = 5.786
      DVL = -5.8463E - 29
      EVL = 10.0
      X = AVL + (BVL/TABS) + CVL + DLOG(TABS) + DVL+(TABS**EVL)
      VISCLIQ = DEXP(X)
      VISCLIQ = VISCLIQ/0.001
```

```
COEFICIENTES DE DIFUSAO FASE LIQUIDA @ 25 oC
С
      IF (SISTEMA.EQ.1) THEN
        DIF_A = 2.316D-5
DIF_B = 1.32*DIF_A
      ELSE \overline{IF} (SISTEMA.EQ.2) THEN
        DIF A = 2.42D-5
DIF B = 1.33D-5
      ELSE IF (SISTEMA.EQ.3) THEN
        DIF_A = 2.50D-5
      DIF_B = 2.86D-5
ELSE IF (SISTEMA.EQ.4) THEN
        DIF_A = 1.55D-5
DIF_B = 1.32*DIF_A
      END IF
    CORRECAO DA DIFUSIFIDADE PARA TEMP. DO EXPERIMENTO
C
      DIF_A = {DIF_A*0.90571/298.0}*TABS/VISCLIQ
DIF_B = (DIF_B*0.90571/298.0)*TABS/VISCLIQ
      RETURN
      END
*******
                                                          ****
***************
      SUBROUTINE CALC VAZAO(ROT)
    SUBROTINA ELABOLRADA PARA O CALCULO DA VAZAO DE GAS ATRAVES
DO ROTAMETRO DE FABRICACAO DA "GILMONT INSTRUMENTS" MODELO
C
C
C
    20187 COM FLUTUADOR DE VIDRO Nº 2 DE 0,125 POLEGADAS DE DIAMETRO (DF)
      IMPLICIT REAL*8 (A-Z)
      INTEGER SISTEMA, ROT
      COMMON /PRINCIPAL/ PT, TABS, CASO, VOLLIQ, SISTEMA, CONC, CEQUIL
COMMON /PROPGAS/ DAB, YG, VISCGAS, DENSGAS
      COMMON /VAZAO/ VAZAO
      DIMENSION YG(2)
      DIAM = 0.125
      PESO = 0.0424
      DF = 2.53
      R = 13.5 + 7./30*(ROT-49)
      VISCGAS = VISCGAS*1D-4
      KR = 1.021/VISCGAS*DSQRT(PESO*(DF-DENSGAS)*DENSGAS/DF)
      ST = KR**2*R**3
      STO = 5 + 0.777 * R
      IF (ST.LT.5) THEN
        CR = 0.0852*DSQRT(ST)
        MO = 4.81 - 0.138 \times R \times 3/1000
        KF = 1 - DENSGAS/DF*(M0*R/100)**2
      ELSE IF ((ST.GE.5).AND.(ST.LE.STO)) THEN
              V = DLOG10(DLOG10(KR) - 0.35 + 1.5*DLOG10(R))
             V0 = DLOG10(0.5*DLOG10(ST0)-0.35)
             N0 = -0.197 + 0.00418 \times R - 0.000155 \times R \times 2
             N1 = 1.065 - 0.0189*R + 0.001375*R**2
            N2 = 0.929 - 0.151*R + 0.004025*R**2
N3 = 0.542 - 0.06185*R
             W0 = N0 + N1*V0 + N2*V0**2 + N3*V0**3
WC = W0 - V0 + V
             WWC = 10 * * WC
             ZC = 10**(WWC +0.1193)
             YC = 10.04 - (1/ZC)
             CR = 10**(YC-10)
             KF = 1
           ELSE
              V = DLOG10(DLOG10(KR) - 0.35 + 1.5*DLOG10(R))
             N0 = -0.197 + 0.00418 \times R - 0.000155 \times R \times 2
             N1 = 1.065 - 0.0189 R + 0.001375 R**2
            N2 = 0.929 - 0.151*R + 0.004025*R**2
N3 = 0.542 - 0.06185*R
             WC = NO + N1*V + N2*V**2 + N3*V**3
             WWC = 10 * * WC
             ZC = 10**(WWC + 0.1193)
             YC = 10.04 - (1/2C)
             CR = 10**(YC-10)
             KF = 1
      END IF
      KQ = 59.8*DIAM*DSQRT(PESO*(DF-DENSGAS)/(DF*DENSGAS))
      VAZAO = CR*KQ*R*(R/100 + 2.0)*KF
      VAZAO = VAZAO/60
      RETURN
      END
```

```
************************* CONDICOES HIDRODINAMICAS *****************************
        ***
                                                         ****
******
       SUBROUTINE HIDRODINAMICA
       IMPLICIT REAL*8 (A-H, O-Z)
       PARAMETER (PI=3.141592653, GRAVID=980.0)
       REAL*8 KLAO, N BOLHAS, LARGCEL
       INTEGER SISTEMA
       DIMENSION YG(2)
       COMMON /PRINCIPAL/ PT, TABS, CASO, VOLLIQ, SISTEMA, CONC, CEQUIL
     COMMON /HIDRO/ RAIO, TALRESID, TRESID, VEL, AREACEL, N_BOLHAS, +ALTDISP, KLA0, HOLDUP, VELGAS, AREAESP
       COMMON /PROPLIQ/ DENSLIQ, VISCLIQ, DIF A, DIF B
COMMON /PROPGAS/ DAB, YG, VISCGAS, DENSGAS
       COMMON /VAZAO/ VAZAO
  DIMENSOES DA CELULA
C
       LARGCEL = 13.7
       COMPCEL = 15.0
       AREACEL = LARGCEL*COMPCEL
       N ORIF = 5
С
    CONVERSÃO DO VOLUME DE litro PARA cm3
       VOLLIQ = VOLLIQ*1000
    RAIO DA BOLHA EM CM:
C
       VZ ORIF = VAZAO/N ORIF
       RAIO = 0.6477*((VZ ORIF**0.4)/GRAVID**0.2)
C
    VOLUME DA BOLHA EM CM3:
       VOL_BOLHA = (4./3)*PI*RAIO**3
\mathbb{C}
    NUMERO DE BOLHAS QUE ALIMENTA O DISTRIBUIDOR POR SEGUNDO
       N BOLHAS = VAZAO/VOL BOLHA
С
    VELOCIDADE DE ASCENSÃO EM CM/S:
       VEL = (2./3)*DSQRT(GRAVID*RAIO)
    VELOCIDADE SUPERFICIAL DO GAS POR ORIFICIO EM CM/S
C
       VELGAS = VZ ORIF/AREACEL
    TEMPO DE RESIDENCIA EM SEGUNDO
C
       TRESID = VOLLIQ/ (AREACEL*VEL-N BOLHAS*VOL BOLHA)
       TALRESID = TRESID*DAB/RAIO**2
    CALCULO DA AREA ESPECIFICA
C
      AREAESP = (4*PI*RAIO**2*N BOLHAS*TRESID)/
                  (VOLLIQ+N_BOLHAS*TRESID*VOL BOLHA)
      .....
    HOLDUP DE GAS
C
       HOLDUP = AREAESP*RAIO/3
    CALCULO DO COEF. FISICO DE TRANSF. DE MASSA
CHO & WAKAO, 1988
С
С
       KLA0 = 1.559*DIF_A**0.5*VELGAS**0.81
       KLAO = N_ORIF*KLÃO
       RETURN
       END
********************* CALCULO DO FATOR DE AUMENTO ********************************
*****
       FUNCTION F AUM(X)
       IMPLICIT REAL*8 (A-H, O-Z)
       PARAMETER (N=5,NT=N+1)
       REAL*8 M, KLO, KLAO, N BOLHAS, KREACAO
       INTEGER SISTEMA
       INTEGER SISTERA
DIMENSION A(NT,NT),B(NT,NT),ROOT(NT),DIF1(NT)
COMMON /PRINCIPAL/ PT, TABS, CAS0, VOLLIQ, SISTEMA, CONC, CEQUIL
COMMON /PROPLIQ/ DENSLIQ, VISCLIQ, DIF_A, DIF_B
COMMON /COLOCACAO/ A, B, ROOT, DIF1
COMMON /HIDRO/ RAIO, TALRESID, TRESID, VEL, AREACEL, N_BOLHAS,
      +ALTDISP, KLAO, HOLDUP, VELGAS, AREAESP
COMMON /TETAS/ TETAS, TETAL
       COMMON / PH/ PH
       IF ((SISTEMA.EQ.1).OR.(SISTEMA.EQ.3)) THEN
AUM = 1+DSQRT(DIF_B/DIF_A)*DSQRT(CEQUIL/CAS0)/
(DSQRT(1-X)+DSQRT(1-TETAL))
      Ŀ.
       ELSE IF (SISTEMA.EQ.2) THEN
         CTE = CEQUIL/CONC
```

```
AUM = DSQRT((1+DIF_B/DIF_A*CTE)*(1+CTE))
     ELSE IF (SISTEMA.EQ.4) THEN
       IF (PH.LT.3.0) THEN
        AUM = 1+DSQRT(DIF B/DIF A)*DSQRT(CEQUIL/CAS0)/
               (DSQRT(1-X)+DSQRT(1-TETAL))
       ELSE
         KREACAO = DEXP(19,06-4900.0/TABS)
         KLO = KLAO/AREAESP
        M = DIF A*KREACAO/KL0**2
         AUM = SQRT(M) / DTANH(SQRT(M))
       END IF
     END IF
     F AUM = AUM
     RETURN
     END
****
                С
   SUBROTINA SIMPS1
С
Ç
   OBJETIVO:
C
      INTEGRACAO DE UMA FUNCAO TABELADA
С
С
   METODO UTILIZADO:
С
       PRIMEIRA REGRA DE SIMPSON
С
С
   USO:
C
C
       CALL SIMPS1 (NMAX, TABELA, X0, XN, N, INTEG)
с
с
   PARAMETROS DE ENTRADA:
            : NUMERO MAXIMO DE PONTOS DECLARADOS
      NMAX
       FUNCAO : FUNCAO A SER INTEGRADA
C
       TABELA : MATRIZ QUE CONTEM A FUNCAO TABELADA
\mathbb{C}
С
       xo
            : LIMITE INFERIOR DA INTEGRAL
\mathbf{C}
       XN
             : LIMITE SUPERIOR DA INTEGRAL
\mathbb{C}
       N
            : NUMERO DE PONTOS DA TABELA
\mathbf{C}
С
   PARAMETROS DE SAIDA:
С
      INTEG : VALOR DA INTEGRAL
С
С
     SUBROUTINE SIMPS1 (NMAX, TABELA, XO, XN, N, INTEG)
С
С
     INTEGER AUX, COEF, I, N, NMAX, N1
     REAL*8 H, INTEG, TABELA(NMAX,2), XN, XO
     N1 = N - 1
     H = (XN-XO)/N1
C
C
   CALCULO DA INTEGRAL
С
     COEF = 2
     AUX = -2
     INTEG = TABELA(1,2) + TABELA(N,2)
     DO I=2,N1
       AUX = -AUX
       COEF = COEF + AUX
       INTEG = INTEG + COEF*TABELA(I,2)
     END DO
     INTEG = INTEG*H/3
     RETURN
     END
*********************
****** RAIZES E DERIVADAS DO POLINOMIO DE JACOBI P(N,ALF,BET) *******
**********
                                                        *****
     SUBROUTINE JCOBI(ND, N, NO, N1, AL, BE, DIF1, DIF2, DIF3, ROOT)
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     DIMENSION DIF1(ND), DIF2(ND), DIF3(ND), ROOT(ND)
     AB=AL+BE
     AD=BE-AL
     AP=BE*AL
     DIF1(1) = (AD/(AB+2)+1)/2
     DIF2(1)=0.
     IF (N .LT. 2) GO TO 15
DO 10 I=2,N
     ZT≖T-1
```

```
Z=AB+2*ZI
      DIF1(I)=(AB*AD/Z/(Z+2)+1)/2
      IF (I .NE. 2)GO TO 11
DIF2(I)=(AB+AP+2I)/Z/Z/(Z+1)
      GO TO 10
   11 Z=Z*Z
      Y=ZI*(AB+ZI)
      Y=Y*(AP+Y)
      DIF2(I) = Y/Z/(Z-1)
   10 CONTINUE
      DETERMINAÇÃO DAS RAIZES PELO METODO DE NEWTON COM
Ċ
C
      SUPRESSÃO DAS RAIZES PREVIAMENTE DETERMINADAS
   15 X=0.
      DO 20 I=1,N
   25 XD=0.
      XN=1.
      XD1=0.
      XN1 \simeq 0.
      DO 30 J=1,N
      XP=(DIF1(J)-X)*XN-DIF2(J)*XD
      XP1 = (DIF1(J) \rightarrow X) * XN1 - DIF2(J) * XD1 - XN
      XD=XN
      XD1=XN1
      XN=XP
   30 XN1=XP1
      ZC=1.
      Z=XN/XN1
      IF (I .EQ. 1) GO TO 21
      DO 22 J=2,I
   22 ZC=ZC-Z/(X-ROOT(J-1))
   21 Z=Z/ZC
      X=X-Z
      IF (DABS(Z) .GT. 1.D-09) GO TO 25
      ROOT(I)=X
     X=X+.0001
   20 CONTINUE
С
     ADICIONA EVENTUAIS PONTOS DE INTERPOLAÇÃO EM X=0 OU X=1
     NT=N+N0+N1
      IF (NO .EQ. 0) GO TO 35
      DO 31 I=1,N
      J=N+1-I
   31 ROOT(J+1)=ROOT(J)
     ROOT(1)=0.
   35 IF (N1 .EQ. 1) ROOT(NT)=1.
C
     CALCULA DERIVADAS DO POLINOMIO
     DO 40 I=1,NT
     X=ROOT(I)
      DIF1(I)=1.
      DIF2(I)=0.
      DIF3(I)=0.
      DO 40 J=1,NT
      IF (J .EQ. I) GO TO 40
      Y=X-ROOT(J)
      DIF3(I) = Y + DIF3(I) + 3 + DIF2(I)
      DIF2(I)=Y*DIF2(I) + 2*DIF1(I)
     DIF1(I)=Y*DIF1(I)
   40 CONTINUE
     RETURN
     END
*****
********
                                               *******
     SUBROUTINE DFOPR (ND,N,N0,N1,I,ID,DIF1,DIF2,DIF3,ROOT,VECT)
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     DIMENSION DIF1(ND), DIF2(ND), DIF3(ND), ROOT(ND), VECT(ND)
     NT=N+NO+N1
     IF (ID .EQ. 3) GO TO 10
     DO 20 J=1,NT
     IF (J .NE. I) GO TO 21
IF (ID .NE. 1) GO TO 5
     VECT(I)=DIF2(I)/DIF1(I)/2
     GO TO 20
     VECT(I)=DIF3(I)/DIF1(I)/3
 5
     GO TO 20
```

```
21 Y=ROOT(I)-ROOT(J)
      VECT(J)=DIF1(I)/DIF1(J)/Y
      IF (ID .EQ. 2) VECT(J)=VECT(J)*(DIF2(I)/DIF1(I)-2/Y)
     CONTINUE
  20
      GO TO 50
  1.0
     Y=0,
      DO 25 J=1,NT
      X=ROOT(J)
      AX=X*(1-X)
      IF (NO .EQ. 0) AX=AX/X/X
IF (N1 .EQ. 0) AX=AX/(1-X)/(1-X)
      VECT(J)=AX/DIF1(J)**2
  25
     Y=Y+VECT(J)
      DO 60 J=1,NT
     VECT(J)=VECT(J)/Y
  60
  50 RETURN
      END
*****
****
                                                     *****
С
     PESOS DAS QUADRATURAS DE RADAU E LOBATTO
С
      ID = 2 : QUADRATURA DE RADAU COM X = 0
      ID = 1 : QUADRATURA DE RADAU COM X = 1
С
С
      ID = 3 : QUADRATURA DE LOBATTO COM AMBOS EXTREMOS
      SUBROUTINE RADAU(ND, N, NO, N1, ID, AL, BE, ROOT, DIF1, VECT)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION ROOT (ND), DIF1 (ND), VECT (ND)
      S=0.
      NT=N+N0+N1
      DO 40 I=1,NT
      X=ROOT(I)
      IF (ID-2) 10,20,30
   10 AX=X
      IF (NO .EQ. 0) AX=1/AX
      GO TO 40
   20 AX=1-X
      IF (N1 .EQ. 0) AX=1/AX
      GO TO 40
   30 AX=1.
   40 VECT(I)=AX/DIF1(I)**2
      IF (ID .NE. 2) VECT(NT)=VECT(NT)/(1+AL)
      IF (ID .GT. 1) VECT(1)=VECT(1)/(1+BE)
      DO 50 I=1,NT
   50 S=S+VECT(I)
      DO 60 I=1,NT
   60 VECT(I)=VECT(I)/S
      RETURN
      END
****
                                    *****
      REAL*8 FUNCTION GINTERF(X)
      IMPLICIT REAL*8 (A-H, O-Z)
      PARAMETER (N=5,NT=N+1)
      REAL*8 KLAO, N BOLHAS, K
    INTEGER SISTEMA
DIMENSION A(NT,NT),B(NT,NT),Y(N),YG(2),ROOT(NT),DIF1(NT)
COMMON /PRINCIPAL/ PT, TABS, CASO, VOLLIQ, SISTEMA, CONC, CEQUIL
COMMON /PROPGAS/ DAB, YG, VISCGAS, DENSGAS
COMMON /COLOCACAO/ A, B, ROOT, DIF1
COMMON /HIDRO/ RAIO, TALRESID, TRESID, VEL, AREACEL, N_BOLHAS,
+ALTDISP, KLAO, HOLDUP, VELGAS, AREAESP
COMMON /YFTAS/ TETROC TITE
      COMMON /TETAS/ TETAS, TETAL
      R = 83.13306
      AUMENTO = F_AUM(X)
      PA0 = PT*YG(2)
      K = KLA0*RAIO*CAS0*R*TABS/(2*AREAESP*DAB*PA0)
      SOMA = 0.0
      DO I=1,N
       SOMA = SOMA + A(NT, I) * Y(I)
      END DO
      GINTERF = (K*AUMENTO*TETAL - SOMA)/(K*AUMENTO+A(NT,NT))
      RETURN
      END
```

```
*****
*****
    REAL*8 FUNCTION GCLORO(X)
    IMPLICIT REAL*8 (A-H, O-Z)
    INTEGER SISTEMA
    COMMON /PRINCIPAL/ PT, TABS, CASO, VOLLIQ, SISTEMA, CONC, CEQUIL
    COMMON /CLORO/ CA TOTAL
    GCLORO = (CA_TOTAL*(CA_TOTAL-X)**2)/(CEQUIL+(CA_TOTAL-X)**2)
    RETURN
    END
С
    EXTRAIDO DO LIVRO 'NUMERICAL METHODS WITH FORTRAN 77 -
    A PRACTICAL INTRODUCTION' DE ATKINSON, L.V. ET AL.
С
С
    SUBROUTINE SUCSUB (G,X0,TOL,MAXITS,
                  STATUS, ROOT, NOOFIT, LASTX)
    INTEGER COUNT, LIMIT, MAXITS, NOOFIT, SOLVED, STATUS
    REAL*8
           G, LASTX, NEWX, OLDX, ROOT, TOL, X0
    PARAMETER (SOLVED=0,LIMIT=1)
    EXTERNAL G
    NEWX≈X0
    DO 10, COUNT=1, MAXITS
      OLDX=NEWX
     NEWX=G(OLDX)
      IF (ABS(NEWX-OLDX).LE.ABS(OLDX)*TOL) THEN
       STATUS=SOLVED
       GO TO 11
     END IF
  10 CONTINUE
    STATUS=LIMIT
  11 IF (STATUS.EQ.SOLVED) THEN
     NOOFIT=COUNT
     ROOT ≏NEWX
    END IF
    IF (STATUS.EQ.LIMIT) THEN
     LASTX=NEWX
    END IF
    RETURN
    END
******
SUBROUTINE CALC_DERIV(TAL,Y,F)
IMPLICIT REAL*8 (A-H,O-Z)
    PARAMETER (N=5,NT=N+1)
    REAL*8 LASTX
    INTEGER STATUS
    DIMENSION A(NT,NT), B(NT,NT), ROOT(NT), Y(N), F(N), DIF1(NT)
    EXTERNAL GINTERF
    COMMON /COLOCACAO/ A, B, ROOT, DIF1
COMMON /TETAS/ TETAS, TETAL
С
    CALCULO DA CONCENTRACAO NA INTERFACE
    IF ((TETAL-TETAS), GE.1.D-7*TETAS) THEN
      CALL SUCSUB (GINTERF, TETAS, 1D-15, 1000, STATUS, TETAS, ITER, LASTX)
      IF (STATUS.NE.O) THEN
       WRITE(*,*) ' Erro no calculo da conc. interfacial '
       STOP
      END IF
    END IF
    CALCULO DAS DERIVADAS TEMPORAIS NOS PTOS DE COLOCACAO
C
    DO J=1.N
     F(J) = 6*A(J,NT)*TETAS + 4*ROOT(J)*B(J,NT)*TETAS
    END DO
    DO J=1,N
     DO I=1,N
       F(J) = F(J) + 6*A(J,I)*Y(I) + 4*ROOT(J)*B(J,I)*Y(I)
     END DO
    END DO
    RETURN
    END
```

```
****
****
      SUBROUTINE TABELA(TAL_IMP,Y)
      IMPLICIT REAL*8 (A-H, O-Z)
      PARAMETER (N=5,NT=N+1,NDTAB=5000)
      REAL*8 KLA, KLAO, N BOLHAS
      INTEGER SISTEMA
    INTEGER SISTEMA

DIMENSION Y(N), TAB(NDTAB, 2), A(NT, NT), B(NT, NT), ROOT(NT),

+ PESO(NT), DIF1(NT), YG(2)

COMMON /HIDRO/ RAIO, TALRESID, TRESID, VEL, AREACEL, N_BOLHAS,

+ALTDISP, KLAO, HOLDUP, VELGAS, AREAESP

COMMON /COLOCACAO/ A, B, ROOT, DIF1

COMMON /TETAS/ TETAS, TETAL
      COMMON / PRINCIPAL/ PT, TABS, CASO, VOLLIQ, SISTEMA, CONC, CEQUIL
      COMMON /TAB/ K, TAB, NTRESID
COMMON /PROPGAS/ DAB, YG, VISCGAS, DENSGAS
С
      CALCULO DO COEF. DE TRANSFERENCIA DE MASSA
      AUMENTO = F AUM(TETAS)
      KLA = KLA0*AUMENTO
      FLUXO = KLA* (TETAL - TETAS)
      TABELAMENTO DO FLUXO MOLAR COM RELACAO AO TEMPO
С
      K = K + 1
      TAB(K,1) = TAL IMP
TAB(K,2) = FLUXO
      PRESSÃO PARCIAL MEDIA NA BOLHA USANDO QUADRATURA DE RADAU E LOBATTO
С
      IF (NTRESID.EQ.1.OR.NTRESID.EQ.1000) THEN
        IF (K.EQ.1) THEN
WRITE(50,*) ' NTRESID = ',NTRESID
        END IF
        CALL RADAU(NT, N, 0, 1, 1, 0.0D0, 0.5D0, ROOT, DIF1, PESO)
        YMED = PESO(NT)*TETAS
        DO I=1,N
          YMED = YMED + PESO(I) * Y(I)
        END DO
        WRITE(50,'(F7.4,2X,E10.5)') TAL_IMP*RAIO**2/DAB,
        PT*YG(2)*(1-YMED)/1.0132
     +
      END IF
С
      INCREMENTO NO TEMPO DE IMPRESSÃO
      TAL_IMP = TAL_IMP + TALRESID/100
      RETURN
      END
           *****
```

Referências Bibliográficas

- Akita, K. e Yoshida, F. "Gas holdup and volumetric mass transfer coefficient in bubble columns" *I&EC Proc. Design Development*, **12**, 01, (1973).
- Allan, J. e Mann, R. "Reactive exothermic gas absorption-improved analytical predictions from a hyperbolic solubility approximation" Chem. Eng. Science, 34, p413-415, (1979).
- Andrade, A.L. "Transferência de calor em bolhas super aquecidas", Tese de Doutorado, Universidade Federal do Rio de Janeiro, (1985).
- Andrade, A.L. "Transferência de calor transiente em processos de borbulhamento", Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, (1972).
- Associação Brasileira de Normas Técnicas, NBR 12979: Determinação da Concentração de Dióxido de Enxofre, pelo método do peróxido de hidrogênio, Rio de Janerio, (1993).
- Astarita, G. Mass Transfer with Checical Reaction, Elsevier Publishing Company, Netherlands, (1967).
- Atikinson, L. V., Harlay, P. J. e Hudson, J. D. Numerical Methods with FORTRAN 7. A Practical Introduction, Addison-Wesley, Wokingham, (1989).
- Bakshi, B., Zhong, H., Jiang, P. e Fan, L.-S. "Analysis of flow in gas-liquid bubble columns using multi-resolution methods" *Inst. Chem. Engrs*, 73, (1995).
- Barroso, L., Barroso, M., Campos, F., Carvalho, M. e Maia, M. Cálculo Numérico (com aplicações), Editora Harbra, São Paulo, (1987).
- Brauer, H. "Unsteady state mass transfer through the interface of spherical particles -I. Physical and mathematical description of the mass-transfer problem" Int. J. Heat Mass Transfer, 21, p445-453, (1978a).
- Brauer, H. "Unsteady state mass transfer through the interface of spherical particles -II. Discussion of results obtained by theoretical methods" *Int. J. Heat Mass Transfer*, **21**, p455-465, (1978b).
- Brian, P. L. T. Hurley, J. F. e Hasseltine, E. H. "Penetration theory for gas absorption accompanied by a second order chemical reaction" *AIChE Journal*, 07, 02, (1961).
- Brian, P. L. T. Vivian, J. E. e Habib, A. G. "The effect of the hydrolysis reaction upon the rate of absorption of chlorine into water" *AIChE Journal*, **08**, 02, (1962).
- Brian, P.L.T., Vivian, J. E. e Piazza, C. "The effect of temperature on the rate of absorption of chlorine into water" Chem. Eng. Science, 21, p551-558, (1966).

- Calderbank, P.H. e Moo-Young, M.B. "The continuous phase heat and mass-transfer properties of dispersions" Chem. Eng. Science, 16, p39-54, (1961).
- Carslaw, H. S. e Jaeger, J. C. Conduction of Heat in Solids, Claredon Press, Oxford, (1959).
- Chandrasekhran e Calderbank, K. "The evaluation of mass transfer product from unsteady-state gas absorption/desorption" Chem. Eng. Science, **35**, p1473-1477, (1980).
- Chang, C. e Rochelle, G. T. "Mass transfer enhanced by equilibrium reactions" Ind. Eng. Chem. Fundam., 21, p379-385, (1982).
- Chang, C. e Rochelle, G. T. "SO2 absorption into aqueous solutions" *AIChE Journal*, **27**, 02, (1981).
- Chang, C. e Rochelle, G. T. "Surface renewal theory for simultaneous mass transfer and equilibrium chemical reaction" *AIChE Journal*, (1980).
- Cho, J. S. e Wakao, N. "Determination of liquid-side and gas-side volumetric mass transfer coefficients in a bubble column" J. Chem. Eng. Japan, 21, 06, (1988).
- Connick, A. E. e Chia, Y. T. "The hydrolysis of chlorine and its variation with temperature" J. Am. Chem. Soc, 81, p1280-1284, (1959).
- Coppock, P. e Meiklejohn, G. "The behaviour of gas bubbles in relation to mass transfer" Trans. Instn. Chem. Engrs., 29, (1951).
- Danckwerts, P. "Gas absorption with instantaneous reaction" Chem. Eng. Science, 23, p1045-1051, (1968).
- Danckwerts, P. V. Gas-Liquid Reactions, McGraw-Hill, (1970).
- Daubert, T. E. e Danner, R. P. Data Compilation Tables of Properties of Pure Componds, New York, (1985).
- Davidson J.F., Clift, R. e Harrison, D. Fluidization, Academic Press Inc., London, (1985).
- Davidson, J. F. e Harrison, D. Fluidised Particles, Cambridge University Press, p53, (1963).
- Davies, J. T. "Interfacial renewal. A discussion of new work on an experimental program to determine the effects of surface renewal on mass transfer rates" Chem. Eng. Progress, 62, 09, (1966).
- DeCoursey, W. "Enhancement factors for gas absorption with reversible reaction" Chem. Eng. Science, 37, 10, p1483-1489, (1982).
- Deindoerfer, F. e Humphrey, A. "Mass transfer from individual gas bubbles" *Fermentation Res. & Engineering*, **53**, 09, (1961).
- Edwards, T. J., Newman, J e Prausnitz, J. M. "Thermodynamics of aqueous solutions containing volatile weak electrolytes" *AIChE Journal*, **21**, 02, (1975).
- Finlayson, B. A. Nonlinear Analysis in Chemical Engineering, McGraw-Hill, USA, (1980).
- Finlayson, B. A. The Method of Weighted Residuals and Variational Principles, Academic Press, New York, (1972).

- Fleischer, C., Becker, S. e Eigenberger, G. "Transient hydrodynamics, mass transfer, and reaction in bubble columns: CO2 absorption into NaOH solutions" *Inst. Chem. Engrs*, **73**, (1995).
- Gestrich. W., Esenwein, H. e Krauss, W. "Liquid-side mass transfer coefficient in bubble layers" Int. Chem. Eng., 18, 01, (1978).
- Greenberg, A. E., Clesceri, L. S. e Eaton, A. D. Standard Methods for Examination of Water and Wastewater, Victor Graphics Inc., Washington-DC, (1992).
- Grund, G., Schumpe, A. e Deckwer, W.-D. "Gas-liquid mass transfer in a bubble column" Chem. Eng. Science, 47, 13/14, p3509-3516, (1992).
- Guedes de Carvalho, J., Rocha, F. A. N., Vasconcelos, M. I. et al. "Mass transfer during bubbling in single and multi-orifice absorbers" Chem. Eng. Science, 41, 08, p1987-1994, (1986).
- Haario, H. e Seidman, T. I. "A modified film model" Chem. Eng. Science, 49, 09, p1477-1479, (1994).
- Hagewiesche, D., Ashour, S., Al-Ghawas, H. e Sandall, O. "Absorption of carbon dioxide into aqueous blends of monoethanolamine and n-methyldiethanolamine" *Chem. Eng. Science*, **50**, 07, p1071-1079, (1995).
- Hermann, C., Dewes, I. e Schump, A. "The estimation of gas solubilities in salt solutions" Chem. Eng. Science, 50, 10, p1673-1675, (1995).
- Hikita, H., Asai, S. e Nose, H. "Absorption of sulfur dioxide into water" AIChE Journal, 24, 01, (1978).
- Hikita, H., Asai, S. Tanigawa, K., Segawa, K. e Kitao, M. "The volumetric liquidphase mass transfer coefficient in bubble columns" *The Chem. Eng. Journal*, 22, p61-69, (1981).
- Hughmark, G. "Holdup and mass transfer in bubble columns" I&EC Proc. Design Development, 06, 02, (1967).
- Ibusuki, T. e Aneja, V.P. "Mass transfer of NH3 into water at environmental concentrations" Chem. Eng. Science, **39**, 07/08, p1143-1155, (1984).
- Keitel, G. e Onken, U. "Errors in the determination of mass transfer in gas-liquid dispersions" Chem. Eng. Science, 36, 12, p1927-1932, (1981).
- Kleinman, L. e Reed, X. "Interphase mass transfer from bubbles, drops, and solid spheres: diffusional transport enhanced by external chemical reaction" *Ind. Eng. Chem. Res.*, 34, p3621-3631, (1995).
- Koide, K. "Design parameters of bubble column reactors with and without solid suspensions" J. Chem. Eng. Japan, 29, 05, (1996).
- Lahiri, R., Yadav, G. e Sharma, M. "Absorption of chlorine in aqueous solutions of sodium hydroxide" Chem. Eng. Science, 38, 07, p1119-1133, (1983).
- Leaist, D. "Diffusion coefficient of aqueous sulfur dioxide at 25°C" J. Chem. Eng. Data, 29, p281-282, (1984).
- Mangartz, K. e Pilhofer, Th. "Interpretation of mass transfer measurements in bubble columns considering dispersion of both phases" *Chem. Eng. Science*, 36, p1069-1077, (1981).

- Mann, R. e Clegg, G. "Gas absorption with an unusual chemical reaction: the chlorination of toluene" *Chem. Eng. Science*, **30**, p97-101, (1975).
- Merchuk, J. C., Bem-Zvi (Yona), S. e Niranjan, K. "Why use bubble-column bioreactors?" *Trends in Biotechnology*, **12**, (1994).
- Motarjemi, M. e Jameson, G. "Mass transfer from very small bubbles-the optimum bubble size for aeration" *Chem. Eng. Science*, **33**, p1415-1433, (1978).
- Ohlweiler, O. A. química Analitica Quantitativa, vol. 2, Livros Téctnicos e Científicos Editora S.A, Rio de Janeiro, (1986).
- Onda, K., Sada, E., Kobayashi, T. e Fujine, M.. "Gas absorption accompanied by complex chemical reactions-IV. Unsteady state" Chem. Eng. Science, 27, p247-255, (1972).
- Onda, K., Sada, E., Kobayashi, T. e Fujine, M. "Gas absorption accompanied by complex chemical reactions-I. Reversible chemical reactions" *Chem. Eng. Science*, 25, p753-760, (1970).
- Ouyoung, P., Chang, H. e Moo-Young, M. "Determination of gas-liquid mass transfer coefficient in a bubble column by an eigenvalue method" *Chem. Eng. Science*, 43, 04, p821-827, (1988).
- Reid, R. C., Prusnitz, J. M. e Poling, B. E. The Properties of Gases and Liquids, McGraw-Hill Inc., New York, (1987).
- Rodemerck, U. e Seidel, A. "Analysis of transient mass transfer measurements in bubble columns" *Chem. Eng. Science*, **46**, 03, p908-912, (1991).
- Secor, R. M. e Beutler, J. A. "Penetration theory for diffusion accompanied by a reversible chemical reaction with generalized kinetics" *AIChE Journal*, **13**, 02, (1967).
- Shah, Y., Godbole, S. e Deckwer, W. "Design parameters estimations for bubbles column reactors" AIChE Journal, 28, 02, (1982).
- Spalding, C. W. "Reaction kinetics in the absorption of chlorine into aqueous media" AIChE Journal, 08, 05, (1962).
- Stragevitch, A. S., "Transferência de calor e massa em processos de borbulhamento", Tese de Doutorado, Universidade Estadual de Campinas, (1996).
- Sun, L. e Levan, M. "Numerical solution of diffusion by the difference method: efficiency improvement by iso-volumetric spatial discretization" *Chem. Eng. Science*, **50**, 01, p163-166, (1995).
- Syaiful, S., Wilhelm, A., Svendsen, H. e Delmas, H. "Upward cocurrent gas-liquid-(solid) contactors: holdup, axial dispersions, gas-liquid mass transfer" Inst. Chem. Engrs, 73, (1995).
- Tamir, A. e Merchuk, J. "Effect of diffusivity on gas-side mass transfer coefficient" Chem. Eng. Science, 33, p1371-1374, (1978).

Treybal, R. E. Mass-Transfer Operation, McGraw-Hil Inc., Singapore, (1981).

Ueyama, K. e Hatanaka, J. "Salt effect on solubility of nonelectrolyte gases and liquids" Chem. Eng. Science, 37, 05, p790-792, (1982).

- Varley, J. "Submerged gas-liquid jets: bubble size prediction" Chem. Eng. Science, 50, 05, p901-905, (1995).
- Versteeg, G., Kuipers, J. Van Beckum, F. e Van Swaaij, W. "Mass transfer with complex reversible chemical reactions-II. Parallel reversible chemical reactions" *Chem. Eng. Science*, 45, 01, p183-197, (1990).
- Villadsen, J. e Michelsen, M. L. Solution of Differential Equation Models by Polynomial Approximation, Prentice-Hall, New Jersey, (1978).
- Vogel, A. A Textbook of Quantitative Inorganic Analysis, Longman Scientific & Technical, England, (1987).
- Vuuren, D. "The transient response of bubble columns" Chem. Eng. Science, 43, 02, p213-220, (1988).
- Wang, J. e Langemann, H. "Unsteady two-film model for mass transfer accompanied by chemical reaction" Chem. Eng. Science, 49, 20, p3457-3463, (1994).
- Whitney, R. P. e Vivian, J. E. "Solubility of chlorine in water" Ind. And Eng. Chemistry, 33, 06, (1941).
- Wilkinson, P. e Dierendonck, L. "A theoretical model for the influence of gas properties and pressure on single-bubble formation at an orifice" *Chem. Eng. Science*, 49, 09, p1429-1438, (1994).
- Winterton, R. H. S. "A simple method of predicting bubble size in bubble column" *Chem. Eng. and Processing*, **33**, p1-5, (1994).
- Yadav, G.K. e Sharma, M.M. "Absorption of chlorine in aqueous solutions of phenols and aromatic sulfonic acids" Chem. Eng. Science, 36, p599-608, (1981).
- Zaritzky, N. e Calvelo, A. "Internal mass transfer coefficient within single bubbles. Theory and experiment" The Can. J. Chem. Eng., 57, (1979).