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Abstract

In this work we propose the development of a three-dimensional Navier-Stokes solver

for analysis of turbulent reacting Ćows in complex geometries. Concepts of Porosity Dis-

tributed Resistance were coupled with Computational Fluid Dynamics (CFD) techniques

and the Gilbert-Johnson-Keerthi distance algorithm was applied to describe geometrical

models as porous media. The solver was based on an initial two dimensional compress-

ible Euler solver and has been improved until becomes a three-dimensional solver capable

to compute the Navier-Stokes equations. The numerical modelling was conducted within

the framework of traditional Reynolds-Averaged Navier Stokes (RANS) approach and the

turbulence closure model was addressed via Boussinesq formulation. The solver was cus-

tomized to a speciĄc class of turbulent reacting Ćow by modelling combustion process

as gas explosion. The approach was demonstrated to handle complex geometries within

feasible computational time. Numerical Ąndings for simulation of non-reacting Ćows and

reacting Ćows present the main features of the Ćuid Ćow and good agreement with exper-

imental data was observed.

Keywords: Gas Explosion; Porosity Distributed Resistance; Computational Fluid Dy-

namics; Gilbert-Johnson-Keerthi algorithm.



Resumo

Este trabalho tem como objetivo o desenvolvimento de um solver tridimensional de Navier-

Stokes para análise de escoamentos turbulentos reativos em geometrias complexas. Os

conceitos de Resistência Distribuída por Porosidade foram acoplados às técnicas de Flui-

dodinâmica Computacional (CFD) e o algoritmo de distância de Gilbert-Johnson-Keerthi

foi aplicado para descrever modelos geométricos como meios porosos. O programa com-

putacional foi desenvolvido com base em um solver Euler compressível e bidimensional

e foi melhorado até se tornar um solver tridimensional capaz de resolver as equações de

Navier-Stokes. A modelagem numérica foi conduzida dentro da abordagem tradicional de

Reynolds-Averaged Navier Stokes (RANS) e o modelo de fechamento de turbulência foi

abordado através da formulação de Boussinesq. O solver desenvolvido foi customizado

para uma classe especíĄca de escoamentos turbulentos reativos, modelando o processo

de combustão como uma explosão de gás. Foi demonstrado que esta abordagem é capaz

de manipular geometrias complexas dentro de um tempo computacional viável. Resul-

tados numéricos para simulação de escoamento não-reativos e reativos apresentaram as

principais características previstas para o escoamento de Ćuidos e foi observado uma boa

concordância com dados experimentais disponíveis na literatura.

Palavras-chaves: Explosão de gases; Resistência Distribuída por Porosidade; Fluidodi-

nâmica Computacional; Algoritimo de Gilbert-Johnson-Keerthi.
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1 Introduction

Accidents involving Ąre and explosions represent a considerable hazard in in-

dustrial plants, particularly in oil and gas industry due to the presence of installations

with congested areas and large quantities of Ćammable materials. Therefore, gas explosion

might constitute a potential hazard for drilling, production and processing activities.

The release of Ćammable substances is the Ąrst step in the accidental chain

of events. The next step is the generation and ignition of Ćammable clouds, resulting in

explosions, which may in turn cause damage to the process plant (and in adjacent process

areas), Ąnancial and human losses (ECKHOFF, 2005).

The prevention of gas explosion and the mitigation of its effects are crucial to

ensure safety. The gas explosion hazard assessment can be very helpful to improve the

design of the existing or new installations and characterise the extent of the hazard.

Making realistic predictions of the effects of an accidental explosion is a dif-

Ącult task due to the complexity of the physical and chemical processes involved. There

are limitations to experimental data available and full-scale experimental tests are often

impracticable or prohibitively expensive (CANT, 2007). Thus, theoretical modelling and

simulation have been employed to assess gas explosion hazards.

The numerical simulation using Computational Fluid Dynamics (CFD) is con-

sidered the best available approach when modelling gas explosion. The main strategy of

CFD is to replace a continuous domain by a discrete computational domain using a grid

where the differential equations that govern the Ćow are solved by using a numerical

method.

In this context, the Ąnite volume method (FVM) is the most popular numerical

method for modelling of Ćuid Ćow transport problems as gas explosion. Following the FVM

procedure, the computational domain of a given problem is discretised in a mesh of Ąnite

volumes where the conservation equations are solved.

Although the conventional Ąnite volume method is well established and allows

prediction of complex Ćows, a great deal of engineering problems requires a customised

numerical technique. Thus, different approaches have been developed over the recent

years to improve FVM formulation and bridge the gap between physical phenomena and

numerical methods. In gas explosion analysis, as in a wide range of transport process, the

geometrical model ranges from small length scales (a few inches) to large length scales.

Such condition poses an additional challenge once details of the geometry are required for

proper solution of the problem. In these cases, the mesh procedure requires a very Ąne
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1.1 General Goal

The present work aimsat to developing a three-dimensional Navier-Stokes

solver for prediction of gas explosion in complex geometries by using the Gilbert - Johnson

- Keerthi distance algorithm to parametrize complex geometries as porous media.

1.2 Specific Goals

The speciĄc goals of this work are:

∙ Create an initial three-dimensional Euler solver and verify how the Ćux over the

boundaries of the computational cells are predicted by the method proposed in the

framework of this research;

∙ Apply the solver to calculate Ćow Ąelds by using parametrised geometries by the

GJK algorithm;

∙ Couple the viscous effects and the extra resistance and turbulence models with the

amended Ćuxes in the FVM formulation;

∙ Evaluate the Damkhöler hypothesis for reacting Ćows under the inĆuence of GJK

parametrisation;

∙ Verify the code implementation and validate the proposed model against a set of

experimental data for cold and reacting Ćows.

1.3 This Doctor Thesis

The thesis is organised as follows:

In Chapter 1 a brief introduction is presented highlighting the motivations and

the aim of this study.

The literature review is covered along the thesis, in Chapters 2 and 3.

Chapter 2 includes the main phenomena associated with gas explosion and the

factors that inĆuence its behaviour. The models that are used for gas explosion analysis

are also discussed here.

Chapter 3 presents the governing equations that must be solved to describe

the combustion process. The turbulence and combustion models applied in this work are

also introduced.
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In Chapter 4 the structure of the developed solver is discussed. The geometry

and the mesh discretisation process as well as the solver architecture are fully explored in

this part of the document.

Chapter 5 shows the numerical results using the developed solver. The code

was initially tested for simulation of non-reacting Ćows. A sensitive analysis of the main

simulation parameters is also presented.

Chapter 6 covers the simulation Ąndings for turbulent reacting Ćows. It ad-

dresses different case studies.

Conclusions and future work are drawn in Chapter 7.
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2 Gas Explosion

An explosion comprises a sudden increase in volume associated with an increase

in temperature and pressure (ECKHOFF, 2005). During the explosion, large quantities

of energy are released, causing considerable damage.

Due to highly destructive power of a gas explosion, the risk analysis from such

accident is of paramount importance as far as process safety is concerned.

The physical description of the explosion phenomena and its mathematical

modelling is presented in this chapter.

2.1 Combustion and Explosion

Combustion is deĄned as a reaction process in which a fuel is oxidized (usually

by air) and involves heat release and often light emission. The products from a complete

combustion of a hydrocarbon fuel are mainly water (vapour) and carbon dioxide.

Concerning gas explosion modelling, combustion is often treated as a single

step irreversible chemical reaction with Ąnite reaction rate (HJERTAGER, 1989). Ac-

cording to this concept, the reaction scheme may be written as:

1kg fuel + s kg oxigen ⊃ (1+s) kg products

where s is the stoichiometric oxygen requirement to burn 1 kg of fuel.

The combustion process between air and a gaseous fuel can occur in two dif-

ferent ways: non-premixed and premixed combustion. In the Ąrst case, fuel and oxygen

are mixed during the combustion process. It occurs in many industrial systems, for safety

reasons. Non-premixed combustion is applied for example in furnaces, diesel engines or

gas turbines.

The second case comprises the situation where fuel and air are premixed and

the fuel concentration must be within the Ćammability limits. Such mixing should be com-

pleted until the molecular level before combustion takes place. In premixed combustion

the fuel burnes faster when compared with non-premixed process.

In accidental gas explosion, the gas cloud is formed from the mixture between

air and the gas released. If such mixture is within the Ćammability limits, it can ig-

nite yielding an explosion. Hence, the phenomenon is frequently modelled based on the
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concepts of premixed combustion. In the current research, the same approach has been

adopted.

2.1.1 Gas Explosion Phenomenon

During the gas explosion, a strong positive feedback mechanism occurs. The

Ćame is accelerated and when the Ćammable mixture of fuel and air is burning, the

temperature increases and the gases expand. As consequence, the unburned gas is pushed

ahead of the Ćame and a turbulent Ćow Ąeld is generated. The turbulence enhances

the mixing and the reaction rate is increased. The combustion process is therefore also

enhanced and a higher speed Ćow is produced, a higher turbulent Ąeld is generated and

the process repeats.

The consequences of the gas explosion depends on a number of factors, such

as maximum pressure, duration of shock wave, interaction with structures, etc. These

factors, in turn, depend on a number of variables (LEA; LEDIN, 2002):

∙ The gas cloud characteristics: type of fuel, fuel concentration, and gas cloud size;

∙ The ignition point: location and strength of the ignition source;

∙ The geometrical characteristics of the process area: number, size, shape and location

of obstacles;

∙ The degree of conĄnement.

The last parameter (the degree of conĄnement) has been used to classify the

gas explosions as conĄned, partially conĄned, and unconĄned explosions.

2.1.1.1 ConĄned Gas Explosions

ConĄned explosions are also known as internal explosions. Explosions within

tanks, process equipment, pipes, in closed rooms and in underground installations are

classiĄed as conĄned. An important characteristic of this kind of explosion is that even if

the Ćame speed is slow, the overpressure can be high and the consequences can be severe.

2.1.1.2 Partly ConĄned Explosions

Partly conĄned gas explosions occurs in installations that are partly opened,

such as compression rooms and explosion modules. The building walls will conĄne the

explosions and the pressure can be relieved through the open areas (as vents and Ćexible

walls).
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2.1.1.3 UnconĄned Gas Explosions

The explosions that occur in open areas, such as large process plants, are

understood as unconĄned. Generally, this type of explosion produces small overpressure.

However, partly conĄned and obstructed local areas may be present in process plants and

in these cases high pressures can occur. Another important consideration is that even

if the area is unconĄned, there have been evidence that a detonation mode may occur

yielding high overpressure values.

2.1.1.4 DeĆagration and Detonation

The overpressure generated by the combustion wave depends on how fast the

Ćame propagates and how the pressure can expand away from the gas cloud. When a cloud

is ignited the Ćame can propagate in two different manners: deĆagration and detonation

(BJERKETVEDT et al., 1997).

The deĆagration occurs when the combustion wave propagates at subsonic

velocity relative to unburned gas ahead of the Ćame. It is the most common mode of

Ćame propagation in accidental gas explosions.

The detonation is deĄned as a combustion wave propagating at sonic velocity

relative to the unburned gas. It can also be described as a shock wave immediately followed

by a Ćame (BJERKETVEDT et al., 1997). The overpressure generated by a detonation

is much higher than a deĆagration.

2.1.2 Combustion modelling for gas explosion

2.1.2.1 Premixed Flames

The most important behaviour characteristic of premixed Ćames is the "propa-

gation". A premixed Ćame moves spontaneously in a normal direction to itself to consume

the available reactant mixture. This is in contrast to a non-premixed Ćame which remain

attached to the stoichiometric surface between fuel and oxidizer and cannot propagate

(CANT; MASTORAKOS, 2008).

The rate of propagation in premixed Ćames quantiĄes the rate at which the

Ćame can process reactants into products and the rate of heat release. According to this

parameter, premixed Ćames can be classiĄed as laminar or turbulent.

2.1.2.2 Laminar Premixed Flames

In laminar premixed Ćames, the propagation rate is speciĄed in terms of the

velocity of advance of the Ćame relative to reactants, also known as "laminar burning ve-
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locity" 𝑢L (CANT; MASTORAKOS, 2008). Considering a planar, unstretched, adiabatic

laminar Ćame, 𝑢L depends on only the thermochemistry of reactant mixture:

𝑢L = 𝑢L (p, 𝑇R, 𝑌1, 𝑌2, ..., 𝑌N)

where p is the pressure, 𝑇R is the reactant temperature and 𝑌η is the mass fraction of

the chemical species.

A laminar Ćame presents the following main features:

∙ The preheat zone - where the temperature of reactants is raised by heat conducted

forwards from the reaction zone.

∙ The reaction zone - where most of chemical reaction occurs. This is a very thin zone

and the reaction rates are fast due to the high temperature and the presence of

many reactive radical species.

∙ The equilibrium zone - where most heat release occurs. The temperature is high

and chemical equilibrium is achieved.

Different theoretical approaches can be used for laminar Ćames, specially to un-

derstand their structure and the instabilities that can be developed on its front (POINSOT;

VEYNANTE, 2005). However, in most studies, laminar premixed Ćames are applied in

turbulent combustion modelling as the elementary step of turbulent Ćames. Considering

numerical techniques, computing laminar premixed Ćames is the Ąrst step towards more

complex conĄgurations.

2.1.2.3 Turbulent premixed Ćames

When the turbulent Ćow enters a Ćame front, the laminar Ćame is replaced by

a regime where turbulence and combustion interact. Eddies of different length scales act

to wrinkle the planar Ćame surface, leading to the increasing of the Ćame surface area

and hence to faster propagation. Some eddies may perturb the local internal structure

of the Ćame and cause changes within the reactive-difusive balance that sustains the

propagation. This may lead to a reduced local burning rate and slower propagation. In

some cases, the turbulence may be strong enough to cause local extinction of the Ćame.

As described for laminar premixed Ćames, a turbulent burning velocity can

be deĄned for turbulent premixed Ćames. Here, the turbulent burning velocity comprises

the velocity of advance of the turbulent Ćame relative to the reactants, in the normal

direction to itself and towards to reactants. The turbulent burning velocity is not a purely

thermochemical quantity and it depends on the turbulence properties as the turbulence

velocity Ćuctuation magnitude and length scale.
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2.1.2.4 Dimensionless numbers in Turbulent Premixed Flames and Regimes Diagram

In different Ćuid Ćow analysis, it is often helpful to describe Ćow features in

terms of dimensionaless numbers. To characterise turbulent premixed Ćames, a set of three

main dimensionaless numbers are applied. Such numbers are listed as follow:

∙ Turbulent Reynolds number

The Turbulent Reynolds number describes the ratio between the convective

Ćux of momentum and the diffusive Ćux of momentum, and is obtained by:

𝑅𝑒t =
𝑢𝐿turb

Ü
(2.1)

where 𝑢 is the Ćame propagation velocity, 𝐿turb is the integral turbulent length scale and

Ü is the kinematic viscosity (difusivity of momentum)

∙ Damköhler number

The Damköhler number describes the ratio between the turbulence large-eddy

turn-over time-scale and the chemical time-scale representative of the laminar Ćame, so:

𝐷𝑎 =
𝐿turb𝑢L

ÓL𝑢
(2.2)

where ÓL is the laminar Ćame thickness.

∙ Karlovitz number

The Karlovitz number describes the ratio between the laminar-Ćame chemical

time-scale and the time scale of turbulent straining. Mathematically, Ka can be obtained

by relation 1/𝐷𝑎, or:

𝐾𝑎 =
ÓL𝑢

𝑢LÚT

(2.3)

where ÚT is the Taylor micro-scale 1.

Turbulent premixed Ćames behave on different ways depending on turbulence

intensity and length scale, chemical properties of reactants and products and the intensity
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thickness becomes greater than a unity, which indicates that local Ćame extinction can

occur.

2.1.3 Turbulent premixed Ćames modelling

2.1.3.1 Eddy Break-Up Model (EBU)

The Eddy Break-Up model (EBU) is one of the simplest and widely-used

models for mean turbulent reaction rate in turbulent premixed Ćames. The model is

based on the assumption that the chemistry is fast compared to the rate of turbulent

transport, so the mean reaction rate is controlled by the rate at which the turbulence can

bring fresh reactants into contact to hot products.

Combustion models based on EBU concepts are very simple to implement and

are useful to represent Ćame behaviour for the particular cases of fast-chemistry limit of

turbulent premixed Ćames.

2.1.3.2 Flamelet Model

In some turbulent premixed Ćames, the chemical reaction rate cannot be con-

sidered inĄnitely fast. To some extent, for the Ćames which are not severely disturbed by

the turbulence, the local structure of the Ćame at each point of the Ćame front is supposed

to be similar to a laminar Ćamelet.

The Ćamelet approach is based on the description of the turbulent Ćame as a

collection of laminar Ćame elements embedded in a turbulent Ćow and interacting with

it. In the Ćamelet theory, the laminar Ćamelet consists in a thin and wrinkled reaction

surface in which the combustion chemistry, as well as the heat release and mass transfer,

takes place (CANT; MASTORAKOS, 2008). This interface propagates just like a strained

and curved laminar Ćame.

The Ćamelet modelling has become well accepted for premixed Ćames and it

has proved successful in many different applications.

2.2 Models to describe the gas explosion phenomena

The correct modelling of explosion involves the relevant parameters such as

geometrical design and physical effects. Based on these characteristics, the available mod-

els to describe gas explosions behaviour are empirical and phenomenological models and

numerical models using Computational Fluid Dynamics (CFD).
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2.2.1 Empirical and Phenomenological models

The empirical and phenomenological models are concentrated on describing

the major physical effects as much as possible, while the geometry is simpliĄed. Such

approaches require low computational effort and enable the analysis of different explosion

scenarios in a short time.

Empirical models comprise the simplest class of models for gas explosion. They

are based on correlations obtained by experimental results and includes venting guidelines,

TNT equivalence model, TNO model, multi-energy and Congestion Assessment (CA)

model.

The the TNT and TNO models are the most traditional empirical models

for gas explosion analysis (WANG et al., 2017) (KUHL et al., 1994) (GUO et al., 2016)

(PITBLADO et al., 2014). In TNT model the combustion energy is assumed to convert

into an equivalent charge weight of TNT (2,4,6-trinitrotoluene) while TNO model assumes

that all combustion energy present in the Ćammable part of a gas cloud contributes to

explosion.

Even though, both TNT and TNO, as other empirical models, are easy to

apply and give quickly initial responses, they are very conservative methods. They always

assume that a detonation shock wave occurs when a gas explosion at the stoichiometry

condition happens which gives low accurate results. Furthermore, using these empirical

methods, some essential parameters must be selected by experience.

Phenomenological models are simpliĄed physical models which attempt to de-

scribe the main physical process of an explosion based on idealized geometry and empirical

correlation. The most representative tools for this class of models are CHICÉ and SCOPE

(PARK; LEE, 2009). Phenomenological models give reasonable results with simple geo-

metrical structures but are not useful for complex geometries.

2.2.2 CFD models

Computational Fluid Dynamic (CFD) models are based on the fundamental

differential formulations that govern the explosion process. By using the Finite Volume

Method, these equations are integrated over control volumes surrounding the relevant grid

points in both space and time.

The numerical analysis using CFD is capable to account the geometrical details

which are not possible when applying empirical or phenomenological models. The CFD

solutions contain a great amount of information about the Ćow Ąeld (pressure, velocity,

speciĄc mass, etc...) which enables the understanding of its behaviour. However, the results

must be analysed with care. Some errors can be generated during the numerical solution

and the model will have low representation compared with the real problem (VERSTEEG;
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MALALASEKERA, 2007).

2.2.2.1 CFD Codes for Gas Explosion

Due to the complexity of gas explosion, the CFD codes available for modelling

such phenomena rely heavily on sub-models for the representation of small-scale objects,

coupled with relatively simple numerical schemes for solution of the governing equations.

Lea e Ledin (2002) point out some CFD codes for gas explosion analysis. Such codes are

listed below:

∙ EXSIM

The EXSIM (EXplosion SIMulator) is a semi-implicit, Ąnite volume code that uses

a structured Cartesian grid. PDR (Porosity / Distributed Resistance) is used for

modelling the small-scale geometries. The Ąrst and second order upwind schemes

are applied to discretize the governing equations. The set of algebraic equations is

solved using the TDMA (tri-diagonal matrix algorithm) method and the pressure

correction method is used to correct the velocity components, pressure, and den-

sity, and guarantee mass conservation in the subsequent time step. Turbulence is

modelled via the 𝑘⊗ 𝜀 model and combustion is considered to take place in a single

step mechanism (SAETER, 1998). The EXSIM code can be found into the 𝐾𝐹𝑋 c÷

CFD package, a ComputIT program (ComputIT).

∙ FLACS

FLACS (FLame ACceleration Simulator) code has been developed by CMR-GEXCOM.

It is a Ąnite volume code based on a structured Cartesian grid. The PDR approach

is also used to model sub-grid scale obstacles. The turbulence is modelled by the

𝑘⊗ 𝜀. The discretization of the governing equations follows a upwind/central differ-

encing scheme (second order accurate) and the combustion model treats the Ćame

as a collection of Ćamelets (ARNTZEN, 1998).

∙ AUTOREAGAS

AutoReaGas is a three-dimensional Ąnite volume code is also based on a structured

Cartesian grid and that uses the PDR concepts to model small-scales geometries.

The Ąrst order accurate Power Law scheme is used to discretize the governing equa-

tions and SIMPLE algorithm is implemented for pressure correction. The turbulence

is modelled via the standard two equation 𝑘 ⊗ 𝜀. The combustion model assumes

that the combustion reaction takes place as a single step process. Euler equations

are solved for blast wave propagation (BERG et al., 1994).

∙ COBRA
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COBRA belongs to a class of advanced CFD explosion codes that uses unstructured

grids and adaptive mesh algorithms. The code apply an explicit or implicit, second

order accurate, Ąnite volume integration scheme. The grid is unstructured and may

be reĄned automatically locally within the Ćow. The PDR approach is used for

modelling small-scale obstacles. Turbulence is modelled also using a 𝑘⊗𝜀 turbulence

model.

∙ NEWT and MCNEWT-PDR

NEWT is also an unstructured adaptive mesh, three dimensional, Ąnite volume code.

A second-order accurate discretization scheme is used for the convective Ćuxes and a

fourth-stage Runge-Kutta time integration approach is used for the time dependent

calculations. The NEWT code uses a variant of the 𝑘 ⊗ 𝜀 turbulence model where

the near wall damping function is dependent on the turbulence Reynolds number

(WATTERSON et al., 1998). The combustion is modelled using the eddy break-

up model or a laminar Ćamelet model. The original NEWT solver was developed

at the Engineering Department of the Cambridge University for turbo-machinery

applications. The code has been improved over the years to include the PDR method

to account for the resistance of small scales objects in gas explosion simulations

(VIANNA; CANT, 2010).

Some of codes described above have been improved over the years while others

have become obsolete. The available CFD codes for gas explosion analysis comprise com-

mercial tools and most of them use the PDR concepts to assess the geometry. Even though

the PDR modelling considerably reduces the computational costs in CFD simulation of

gas explosion, there is no available literature concerning how to obtain the porosity values

for a mesh calculation. In this work a new technique is presented to obtain a porous mesh

for CFD calculations based on the Gilbert-Johnson-Keerthi distance algorithm.
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3 RANS Numerical Modelling for Turbulent

Premixed Combustion

In CFD, to solve any physical problem, the Ąrst step is to know well the

phenomena and the system under study. It will allow the development of a mathematical

model and to choose the best numerical tool. In mathematical modelling, it is important

to include the identiĄcation of the system variables and their applications as well as the

conditions of the study.

The equations that govern the Ćow are obtained applying the principle of

conservation to the main quantities, such as mass, momentum and energy. Considering

the Reynolds-Averaged Navier Stokes (RANS) approach, the equations that govern the

Ćow are computed for mean quantities by averaging the instantaneous balance equations.

This averaging procedure introduces unclosed quantities that have to be accounted by

using additional models as well as for turbulence and combustion.

The modiĄed governing equations and the dedicated developed models are

described in this chapter. Particular attention is paied to the various source terms and

the closure of the combustion reaction rate in the equation for the conservation of a scalar,

namely progress variable.

This chapter presents the numerical formulation applied to handle the com-

bustion process as gas explosion.

3.1 Mass and momentum equations

3.1.1 The mass conservation equation

The mass conservation in the differential form is shown below. The equation

is also known as the Continuity equation:

𝜕𝜌

𝜕𝑡
+∇ ≤ (𝜌 u) = 0 (3.1)

The Ąrst term in the left hand side represents the rate of change of Ćuid density

with time. For Ćows in steady state this term is equal to zero. The second term is the

divergence term. It indicates the rate of change of the speciĄc mass with respect to the

spacial coordinates.
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3.1.2 The momentum conservation equation

The momentum equation, expressed by Equation 3.2, originates from the ap-

plication of NewtonŠs second law of motion to an element of Ćuid. It includes the principle

of angular momentum and represents the variation of momentum as function of resultant

forces acting on the Ćuid.

𝜕

𝜕𝑡
(𝜌 u) +∇ ≤ (𝜌 u u) = 𝜌𝑔 ⊗∇𝑃 + [∇á ] (3.2)

Equation 3.2 can be applied to all directions of Ćuid Ćow as long as an equation

for the stress tensor is provided. Such equation that relates the stress tensor with the rate

of Ćuid deformation is called a constitutive equation.

The Ąrst term in the left represents the rate of increase of momentum while the

second takes into account the rate of momentum addition by convection and molecular

transport.

The terms in the right represent the body force and pressure gradient, respec-

tively. The last term in Equation 3.2 is a second order tensor that computes the viscous

effects.

Similarly to Continuity Equation, the equation of motion can be simpliĄed

according to some Ćow features:

∙ The Navier-Stokes Equations applied to a Newtonian Ćuid and incompressible Ćow

can be written as:

𝜕

𝜕𝑡
(𝜌 u) + u ≤ (∇𝜌 u) = 𝜌𝑔 ⊗∇𝑃 + Û∇2 u (3.3)

∙ For an inviscid Ćow, the viscous effects could be negligible (Û = 0), giving the "Euler

Equation":

𝜕

𝜕𝑡
(𝜌 u) + u ≤ (∇𝜌 u) = 𝜌𝑔 ⊗∇𝑃 (3.4)

3.2 Elementary Description of turbulence

Because turbulence Ćuctuations increase the combustion reaction rate by en-

hancing the mixture between fuel and air, the turbulence plays an important role on gas

explosion process.

Turbulence can be deĄned as an irregular motion of Ćuid Ćow in which the

various quantities show a random variation with time and space coordinates, so that

statistically distinct average values can be discerned (WILCOX et al., 1993).
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Kundu e Cohen (2002) mention some characteristics of turbulent Ćows:

∙ Irregularity - The Ćow is irregular, random and chaotic and consists a spectrum of

different scales (eddy sizes). The largest eddies are of the order of the Ćow geometry

and the smallest eddies are given by viscous forces.

∙ Large Reynolds Number - Turbulence occurs at high values of Reynolds number,

when inertial forces become more important than the viscous forces.

∙ Effective transport - In turbulent Ćows, the Ćuid particles are fast mixed while they

are moving through the Ćow. As consequence, the transport and Ćuid mixture is

much more effective compared with laminar Ćow.

∙ Three dimensional - Turbulent Ćow is always three-dimensional. The motion of

Ćuid particles occurs due to Ćuctuations in position and time in a three dimensional

velocity Ąeld.

∙ Dissipation - Turbulent Ćow is dissipative, which means that kinetic energy in small-

est eddies are transformed in internal energy. The kinetic energy is transferred

through different sizes of eddies from the largest to the smallest. The process of

energy transfer is called energy cascade process.

∙ Continuum - The turbulent Ćow can be treat as continuum, even though the smallest

turbulent scales in the Ćow are larger than the molecular scale.

The available methods to solve the turbulence and calculate the quantities of

interest are classiĄed into two main groups.

In the Ąrst group, it can be found the models capable to completely solve math-

ematically the transport equations and, consequently, the turbulence. The main method

used in these models are the Direct Numerical Simulation (DNS).

In DNS, the equations are directly solved for all length and time scales of Ćuid

Ćow. This method can capture all relevant phenomena without approximation or simpli-

Ącation, including the smallest scales. DNS can be considered the best way to solve the

turbulence, but because all length-scales and time-scales are solved, DNS is computation-

ally expensive. As the computational cost increases with Reynolds number (♠ 𝑅𝑒3), DNS

is restricted to Ćows with low to moderate Re.

Other turbulence models as Reynolds Averaged Navier-Stokes (RANS) and

Large Eddy Simulation (LES) are not able to capture all phenomena that are involved at

the the Ćuid Ćow. They are used to solve the transport equations for a mean velocity Ćow

Ąeld and require less computational effort than DNS.
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Following the example shown in Figure 3, mathematically, the instantaneous

value for any quantity can be expressed as the sum of the average values and their re-

spective Ćuctuations:

ã = ã + ã′ (3.5)

where ã is the value of the variable in a speciĄc time, ã is its average time and ã′ is the

turbulent Ćuctuation in an instant.

To illustrate the inĆuence of turbulence Ćuctuations on the mean Ćow, the

instantaneous equation for any quantity ã of interest is considered:

𝜕(𝜌ã)
𝜕𝑡

+∇ ≤ (𝜌𝑢ã) = ∇ ≤ (Γφ∇ã) + 𝑆φ (3.6)

where Γφ is the diffusion coefficient and 𝑆φ is the source term.

Considering the Reynolds averaged approach, the quantity ã can be expressed

as a mean value ã̄ and its Ćuctuating component ã′ , so ã = ã̄ + ã′. Starting from an

instantaneous balance (Equation 3.6):

𝜕(𝜌ã)
𝜕𝑡

+∇ ≤ (𝜌𝑢ã)⊃
𝜕(𝜌ã)

𝜕𝑡
+∇ ≤ (𝜌�̄�ã̄ + 𝜌′𝑢′ã′) (3.7)

Here, the unclosed quantity 𝜌′𝑢′ã′ represents the turbulent Ćux of the property

ã and need to be modelled.

Following the averaging procedure, the momentum equation (Equation 3.2)

for the mean velocity component is modiĄed:

𝜕

𝜕𝑡
(𝜌u) +∇ ≤ (𝜌uu) = 𝜌𝑔 ⊗∇𝑃 + [∇(á ⊗ 𝜌 u′ u′)] (3.8)

In Equation 3.8, á is the Newton stress for the mean Ćow. The additional term

due to the Ćuctuations, 𝜌 u′ u′ is identiĄed as an additional stress due to turbulence called

Reynolds Stress. Therefore to handle this term turbulence models are applied.

The RANS turbulence models are divided into two main classes: the eddy

viscosity models and Reynolds stresses models.

Eddy viscosity models consider that turbulence consists a small eddies which

are continuously forming and dissipating. They also assume that Reynolds stresses are

proportional to mean velocity gradients.
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In Reynolds stresses turbulent models, all components of Reynolds stress tensor

and the dissipation rate are presented in transport equations. Such equations are solved

for the individual stress components. Here, the most common models are:

The correct choice of the most appropriate turbulence model is crucial to a

successful modelling and CFD simulation of a real problem as turbulent and reactive Ćow.

3.3.1 Eddy Viscosity turbulence models

The eddy viscosity turbulence models are based on Boussinesq assumption

(WILCOX et al., 1993) which makes an analogy between the Newton stress and the

Reynolds stress.

According to the NewtonŠs law of viscosity, the viscous stress are proportional

to the strain rate:

á = Û∇u (3.9)

Following the same idea, according to the Boussinessq assumption, the Reynolds

Stress are proportional to the mean strain rate:

𝜌 u′ u′ = Ût∇ū (3.10)

where Ût is deĄned as turbulent or eddy viscosity.

The Boussinesq formulation needs a relationship to express the Reynolds tensor

from the mean velocity gradient, and other quantities as the turbulent kinetic energy 𝑘

, to achieve the closure of the mean equations. Therefore, a linear constitutive equation

was deĄned:

𝑅 = ⊗2Üt𝑆 (3.11)

where Üt is the turbulent kinematic viscosity; R is the anisiotropic tensor, and S is the

strain rate tensor.

The strain rate tensor 𝑆 computes the mean velocity gradient:

𝑆 =
1
2
∇ū (3.12)
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The anisiotropc tensor 𝑅 accounts for the turbulent kinetic energy 𝑘. Consider-

ing Cartesian co-ordinates so that the velocity vector u has x-component 𝑢, y-component

𝑣 and z-component 𝑤, the value of 𝑘 can be obtained through:

𝑘 =
1
2

(𝑢2 + 𝑣2 + 𝑤2) (3.13)

so,

𝑅 = u′ u′ ⊗
2
3

𝑘𝐼 (3.14)

here, 𝐼 is the unit tensor.

The main Eddy Viscosity turbulence models are:

∙ Zero-Equation or algebraic model;

∙ One-Equation models;

∙ Two-Equation models: 𝑘-𝜀, RNG 𝑘-𝜀 and 𝑘-æ.

As the name suggests, the algebraic model describe the stresses by means of

simple algebraic formulae for Ût as a function of the spatial position, while the One-

Equation models solve one turbulent transport equation, usually the turbulent kinetic

energy.

The two-equation turbulence models comprises a complete turbulence ap-

proach based on the Boussinesq assumption. They have been widely used to simulate

the turbulent Ćows in different engineering applications. These models have two indepen-

dent transport equations, one for turbulent kinetic energy, and the other for turbulent

dissipation rate (for the 𝑘-𝜀 model) or speciĄc dissipation rate (for the 𝑘-æ model).

A brieĆy explanation of the 𝑘-æ model is presented below. Dedicated section,

with more details, is given to the 𝑘-𝜀 model, once it is adopted in this work.

3.3.1.1 The 𝑘-æ turbulence model

The standard 𝑘-æ turbulence model was introduced by Wilcox (1988). The

model formulation is given by:

Ût =
𝜌𝑘

æ
(3.15)
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𝜕

𝜕𝑡
(𝜌 𝑘) +∇ ≤ (𝜌 u 𝑘) = ∇ ≤

∏︀
∐︁ Ût

àk

∇𝑘

⎞
⎠ + 2Ût 𝐸i,j 𝐸i,j ⊗ 𝐶µ𝜌𝑘æ (3.16)

𝜕

𝜕𝑡
(𝜌 æ) +∇ ≤ (𝜌 u æ) = ∇ ≤

∏︀
∐︁ Ût

àω

∇æ

⎞
⎠ + 2Ût 𝐸i,j 𝐸i,j

Ð𝜌

Ût

⊗ Ñ𝜌æ2 (3.17)

where àk, 𝐶µ, Ð, and Ñ are the model constants.

The main advantage of the 𝑘 ⊗ æ model is the near wall treatment. However,

the model has a potential to overprediction of eddy viscosity in large normal-strain Ćow

regions. The model has been improved during the years to account for a better approach

away from the surface (MENTER, 1994).

3.3.2 The 𝑘-𝜀 turbulence model

The 𝑘-𝜀 model is considered the industry standard model and has proven to be

stable and numerically robust. For general purpose simulations, this model offers a good

compromise of accuracy and robustness. The main drawbacks in 𝑘-𝜀 turbulence model

includes low accuracy for unconĄned Ćows and weak shear layers (for wakes and mixing

layers) (VERSTEEG; MALALASEKERA, 2007).

The 𝑘-𝜀 turbulence model was developed based on the mechanisms that af-

fect the turbulent kinetic energy (LAUNDER; SPALDING, 1983). The two independent

transport equations applied in this model computes the turbulent kinetic energy 𝑘 and

the turbulence dissipation rate 𝜀. The terms 𝑘 and 𝜀 are used to deĄne the velocity scale

𝜗 and length scale 𝑙 for large scale turbulence representation:

𝜗 = 𝑘1/2 (3.18)

𝑙 =
𝑘3/2

𝜀
(3.19)

deĄned

Based on the velocity scale 𝜗 and length scale 𝑙 deĄned by Equations 3.18 and

3.19, the turbulent eddy viscosity can be speciĄed:

Ût = 𝐶µ𝜌
𝑘2

𝜀
(3.20)

where 𝐶µ is a constant of the model.
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The values of 𝑘 and 𝜀 can be obtained from differential transport equations as

follows:

𝜕

𝜕𝑡
(𝜌 𝑘) +∇ ≤ (𝜌 u 𝑘) = ∇ ≤

∏︀
∐︁ Ût

àk

∇𝑘

⎞
⎠ + 2Ût 𝐸i,j 𝐸i,j ⊗ 𝜌 𝜀 (3.21)

𝜕

𝜕𝑡
(𝜌 𝜀) +∇ ≤ (𝜌 u 𝜀) = ∇ ≤

∏︀
∐︁Ût

àε

∇𝜀

⎞
⎠ +

𝜀

𝑘
(𝐶1ε 2Ût 𝐸i,j 𝐸i,j ⊗ 𝐶2ε 𝜌 𝜀) (3.22)

where 𝐶1ε, 𝐶2ε, àk and àk are constants. Ût 𝐸i,j 𝐸i,j represent the turbulence production

due to viscous forces and 𝜌𝜀 is the viscous dissipation.

Considering Equations 3.20 - 3.22, it is observed that the 𝑘-𝜀 model presents

Ąve adjustable parameters. For the standard model, they assume the values listed in Table

1.

Table 1 Ű Constant values for the standard 𝑘-𝜀 turbulence model (LAUNDER; SPALD-
ING, 1983).

Constant Value
𝐶µ 0.09
𝐶1ε 1.44
𝐶2ε 1.92
àε 1.00
àk 1.30

In the current research, the wrinkling of the Ćame area is due to the turbulent

velocity Ćuctuations. The turbulence model is coupled to the rate of reaction via Equation

3.48. The Ćuctuating part of the velocity is calculated using the kinetic turbulent energy

𝑘.

3.3.2.1 Turbulence close to walls

Due to the presence of the boundary layer near the walls, 𝑘 and 𝜀 assumes a

speciĄc behaviour in this region. The approach to describe the quantities depends on the

Reynolds number.

At high Reynolds number, the standard 𝑘 ⊗ 𝜀 model uses the "log-law" ve-

locity behaviour and considers that the rate of turbulence production equals the rate of

dissipation. Therefore wall functions are deĄned:

𝑢+ =
𝑈

𝑢τ

=
1
Ù

ln(𝐸𝑦p
+) (3.23)
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𝑘 =
𝑢τ

2

√︁
𝐶µ

(3.24)

𝜀 =
𝑢τ

3

Ù𝑦
(3.25)

where Ù is the Von KarmanŠs constant, taken as 0.41; and E is the wall roughness

parameter E = 9.8.

At low Reynolds number, the log-law is not valid and 𝑘 ⊗ 𝜀 model must be

modiĄed (VERSTEEG; MALALASEKERA, 2007) to couple the effect of low Reynolds

number into the model equations. Therefore, Equations 3.20 to 3.22 become:

Ût = 𝐶µ𝜌𝑓µ
𝑘2

𝜀
(3.26)

𝜕

𝜕𝑡
(𝜌 𝑘) +∇ ≤ (𝜌 u 𝑘) = ∇ ≤

∏︀
∐︁

∏︀
∐︁Û +

Ût

àk

⎞
⎠∇𝑘

⎞
⎠ + 2Ût 𝐸i,j 𝐸i,j ⊗ 𝜌 𝜀 (3.27)

𝜕

𝜕𝑡
(𝜌 𝜀) +∇ ≤ (𝜌 u 𝜀) = ∇ ≤

∏︀
∐︁

∏︀
∐︁Û +

Ût

àε

⎞
⎠∇𝜀

⎞
⎠ +

𝜀

𝑘
(𝐶1ε 𝑓1 2Ût 𝐸i,j 𝐸i,j ⊗ 𝐶2ε 𝑓2 𝜌 𝜀) (3.28)

Here, 𝑓µ, 𝑓1 and 𝑓2 are wall damping functions modelled according to Lam e

Bremhorst (1981):

𝑓µ = 1⊗ exp(⊗0.0165𝑅𝑒t)
2
⎤

1 +
20.5
𝑅𝑒t

⎣
(3.29)

𝑓1 =
⎤

1 +
0.05
𝑓µ

⎣3

(3.30)

𝑓2 = 1⊗ exp(⊗𝑅𝑒t
2) (3.31)

The same line of reasoning applied to low Reynolds Ćows at regions near the

wall is suggested in the current work for the initial phase of burning in the reacting Ćow.

As it will be discussed next, the initial phase of the kernel formation of the

reaction zone is modelled balancing the contribution from laminar Ćow and turbulent

Ćow up to a pre-stablished ratio between inertial effects and viscous forces. Equation

3.53 allows for a smooth transition where the damp function 𝑓µ has been inspired in the

formulation discussed above.
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3.4 Favre averaging

When using Reynols Averaged approach, the unclosed quantity 𝜌′𝑢′ã′ present

in the left hand side of Equation 3.7 can act as a source term of ã for the mean Ćow Ąeld

and consequently the average quantity may not be conserved in a steady Ćow (POINSOT;

VEYNANTE, 2005). Specially for Ćows with signiĄcant density variation, such a condition

is difficult and also awkard to handle in CFD. To solve this problem, the concept of Favre

averages can be used instead Reynolds averages.

The Favre averages comprise mass-weighted averages (FAVRE, 1969), so each

quantity ã is density-weighted before averaging:

ã̃ =
𝜌ã

𝜌
(3.32)

and the Ćuctuation from Favre average is given as: ã′′ = ã⊗ ã̃

The main advantage of using Favre averages is that the terms contain correla-

tions with density Ćuctuations, thus leading to a simpliĄcation of the averaged equations

(CANT; MASTORAKOS, 2008).

Considering the Favre average concept, the mean balance equation for mass

conservation becomes:

𝜕𝜌

𝜕𝑡
+∇ ≤ (𝜌 ũ) = 0 (3.33)

Starting from the complete Navier-Stokes equation (Eq. 3.2), the averaged

balance equation for momentum conservation is given as:

𝜕

𝜕𝑡
(𝜌 ũ) +∇ ≤ (𝜌 ũ ũ) = 𝜌𝑔 ⊗∇𝑃 + [∇(á̄ ⊗ 𝜌 ũ′′ u′′)] (3.34)

3.5 Numerical Combustion Modeling

As previously discussed in Section 2.1.2, for most explosion simulations the

combustion process is modelled as a single step reaction. The Flamelet model stands out

in this approach by considering that reactions take place in a thin and wrinkled surface

separating the unburned reactants from the fully burned products.
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3.5.1 Turbulent premixed combustion modelling by Bray-Moss-Libby

Considering the classical Ćamelet approach developed by Bray et al. (1985), a

reaction progress variable "c" is assigned zero value in the unburned reactants region and

a value of unity in the fully burned products stabilisation zone. Thus:

𝑐 =
(𝑌F ⊗ 𝑌F R)
(𝑌F P ⊗ 𝑌F R)

(3.35)

where 𝑌F is the fuel mass fraction and the subscripts R and P refer to reactants and

products, respectively.

The transport equation for the Favre-average reaction progress variable is given

as:

𝜕

𝜕𝑡
𝜌̃︀𝑐 +∇ ≤ (𝜌̃︀ũ︀𝑐) = ∇ ≤

∏︀
∐︁

∏︀
∐︁Û + Ût

àc

⎞
⎠∇̃︀𝑐

⎞
⎠ + ǣ (3.36)

In Equation 3.36 above, the summ Û + Ût denotes the effective viscosity and

àc is the turbulent Schmidt number for the reaction progress variable. The last term ǣ

describes the mean reaction rate source term.

Similarly, for the mixture fraction (air and fuel), the transport equation for

the mixture fraction ̃︀𝐹 is expressed as:

𝜕

𝜕𝑡
𝜌 ̃︀𝐹 +∇ ≤ (𝜌̃︀u ̃︀𝐹 ) = ∇ ≤

∏︀
∐︁

∏︀
∐︁Û + Ût

àf

⎞
⎠∇ ̃︀𝐹

⎞
⎠ (3.37)

Here, àf is the turbulent Schmidt number for the mixture fraction. Both àc

and àf are assumed to have a value equal to 0.7.

3.5.1.1 Thermodynamics and Equation of State

Following the BML formulation, the main thermodynamic variables must be

coupled to the reaction progress variable. Because in explosion phenomena the Mach num-

ber may not be always considered to be low, such link can not be done under assumptions

of constant enthalpy. Hence, an additional transport equation must be included to take

into account the total energy �̃� (CANT; BRAY, 1989):

𝜕

𝜕𝑡
𝜌�̃� +∇ ≤ 𝜌𝑢

∏︀
∐︁�̃� +

𝑃

𝜌

⎞
⎠ = ∇ ≤

∏︀
∐︁

∏︀
∐︁Û + Ût

àE

⎞
⎠∇

∏︀
∐︁�̃� +

𝑃

𝜌

⎞
⎠

⎞
⎠ +∇uá̄ (3.38)

where the total energy �̃� is deĄned as:
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�̃� = 𝑒 +
1
2

�̃�2 + 𝑘 (3.39)

in which 𝑒 is the internal energy, so that:

𝑒 =
∫︁ ̃︀T

T0

𝐶v𝑑𝑇 + 𝐻(𝑌F R(1⊗ ̃︀𝑐) + 𝑌F P ̃︀𝑐) (3.40)

where T is the temperature, 𝐶v is the constant volume speciĄc heat capacity and H is

the energy of combustion.

The pressure 𝑃 is obtained from a equation of state of ideal gas, valid for small

changes in molar mass:

𝑃 =
𝜌𝑅 ̃︀𝑇
�̄�M

(3.41)

Here, R is the universal gas constant, ̃︀𝑇 is the Frave mean temperature and

�̄�M is the mean molar mass. The Frave mean temperature and the mean molar mass can

be obtained by Equations 3.42 and 3.43 bellow, respectively:

̃︀𝑇 =
𝑒

𝐶V P

+ 𝑇R(1⊗ ̃︀𝑐)

∏︀
∐︁1⊗

𝐶V R

𝐶V P

⎞
⎠⊗

𝐻

𝐶V P

[(1⊗ ̃︀𝑐)𝑌F R + ̃︀𝑐𝑌F P ] (3.42)

�̄�M =
𝑊R(1⊗ ̃︀𝑐) + 𝑊P ̃︀𝑐(1 + á̄)

1 + á̄ ̃︀𝑐
(3.43)

In Equations 3.38 and 3.43 á is the heat release parameter, deĄned as:

á̄ =

∏︀
∐︁𝜌R

𝜌P

⎞
⎠⊗ 1 (3.44)

3.5.1.2 Reaction rate modelling

To close the set of equations in the turbulent premixed combustion modelling

it is necessary to deĄne the reaction rate source term ǣ present in Equation 3.36.

The Bray-Moss-Libby Ćamelet model requires the speciĄcation of a probability

density function to model the reaction rate. The formulation considers that during the

turbulent reaction phase, the mean reaction rate in a probe location is deĄned as follow:

ǣ = 𝜌R𝑢L

∑︁
(3.45)
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Here, 𝜌R is the density of the reactants, 𝑢L is the laminar Ćame speed and
∑︀

is the Ćame surface area per unit of volume. This last variable is obtained by considering

that the passage of laminar Ćamelets in a speciĄc point is a stochastic process (CANT;

BRAY, 1989):

∑︁
=

𝑔̃︀𝑐(1⊗ ̃︀𝑐)

♣̂︀ày♣̂︀𝐿y

(3.46)

In Equation 3.46 above, 𝑔 is a constant and ♣̂︀ày♣ the orientation factor, both

evaluated from experimental data, therefore 𝑔 ♠ 1.5 and ♣̂︀ày♣ ♠ 0.5. ̂︀𝐿y is the integral

length scale of wrinkling and is linked with the laminar Ćamelet length scale:

̂︀𝐿y = 𝑐L𝑙L𝑓

∏︀
∐︁ 𝑢′

𝑢L

⎞
⎠ (3.47)

where the constant 𝑐L ♠ 1.0 and 𝑙L = (Ü/𝑢L).

The function 𝑓 in Equation 3.47 is obtained based on experimental observa-

tions. The factor
∑︀

increases with 𝑢′/𝑢L up to a maximum value and tends to decrease

when the reaction rate is reduced by Ćame stretch (CANT; BRAY, 1989), so:

𝑓

∏︀
∐︁ 𝑢′

𝑢L

⎞
⎠ =

⎦ 1
1 + cw1

(u′/uL)

∏︀
∐︁1⊗ 𝑒𝑥𝑝

⎦
⊗1

1 + 𝑐w2(𝑢′/𝑢L)

⎢⎣⎢⊗1

(3.48)

The function 𝑓 is used to obtain the Ćame length scale, based on the fact that

such parameter is deĄned in response to perturbations from the turbulent velocity Ąeld.

Such function is calibrated from experimental data and the values of constants 𝐶w1 and

𝐶w2 are taken as 1.5 and 4.0, respectively.

The laminar Ćame speed 𝑢L is obtained by empirical correlation(ABU-ORF,

1996), which eliminates the need of Ćamelet libraries:

𝑢L = 𝑎Φb𝑒𝑥𝑝[⊗𝑐(Φ⊗ 𝑑)2]
⎤

𝑇R

𝑇0

⎣α⎤
𝑃

𝑃0

⎣β

(3.49)

Here, Φ is the equivalence ratio (between the mass of fuel and air within the

Ćammability limits) and a, b, c, d, Ð and Ñ are fuel dependent constants. Table 2 presents

the values of such constants for methane and propane.

3.5.2 Initial phase laminar combustion

As addressed in Chapter 2, the overall behaviour of combustion phenomena

during an explosion is based on the turbulent mechanisms. However, it is important to



Chapter 3. RANS Numerical Modelling for Turbulent Premixed Combustion 50

Table 2 Ű Constant values for the laminar Ćame speed correlation (ABU-ORF, 1996).

fuel a b c d Ð Ñ
Methane 0.6097 -2.554 7.3105 1.2303 2.0 -0.42
Propane 0.4243 0.7345 4.5003 0.9813 1.77 -0.25

understand that an initial burn phase is present at the beginning of the process. Once

ignition has occurred, the Ćame develops initially at the laminar speed. As the kernel

grows, the laminar Ćames instabilities cause the Ćame to wrinkled and accelerate until

the turbulent combustion is set. Therefore, to model the explosion phenomena, a special

treatment must be given to this initial phase.

Birkby et al. (2000) propose a numerical approach to represent the initial

laminar Ćame behaviour. The Ćame burns at laminar speed by scaling the sum of the

reaction rates in each node and it is equal to the total reaction rate of a laminar Ćame

with the same total surface area. Therefore, Equation 3.45 becomes:

ǣlam = 𝜌R𝑢L𝐴flame (3.50)

The Ćame surface area (𝐴flame) is obtained on a geometrical basis for spherical

Ćames, until the Ćame reaches an obstacle and distorted. This geometrical relation to

obtain the Ćame area for a given volume of a sphere (ARNTZEN, 1998) is given by:

𝐴flame = Þ1/3(6𝑉 )2/3 (3.51)

In Equation 3.51 the area of the Ćame is calculated by identifying all cells

contain the progress variable 𝑐 = 0.5 contour.

The reaction rate for each node is calculated in the same way for the standard

turbulent combustion model, since the proportion to the total laminar burning rate is

calculated for each node. In this case, the source term in equation 3.36 is given as:

ǣ = 𝜌R𝑢L𝐶𝐴f 𝑙𝑎𝑚𝑒
𝑐(1⊗ 𝑐)

∑︀
nodes 𝑐(1⊗ 𝑐)𝑉

(3.52)

where C is a fuel dependent constant.

Another method has been proposed by Vianna e Cant (2014) in order for the

transition from laminar to turbulent combustion. The model assumes that such transition
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occurs when the turbulent Reynolds number is equal to a predeĄne value (𝑅𝑒 =≡ 500).

By using this model, the reaction rate source term (equation 3.36) is calculated as follows:

ǣ = 𝑓µæturb + (1⊗ 𝑓µ)ælam (3.53)

where æturb is the original source term of BML model given in equation 3.45 and ælam is

the laminar source term proposed by Arntzen (1998) (Equation 3.52).

In this case the area of the Ćame is given as:

𝐴flame = Þ4/9(𝑉 )2/3 (3.54)

and 𝑓µ = max(0; 1⊗ exp(⊗0, 008(𝑅𝑒turb ⊗𝑅𝑒500))), as previously discussed.

3.6 The Porosity Distributed Resistance Method (PDR)

The concept of Porosity Distributed Resistance (PDR) was introduced by

Patankar e Spalding (1974) to handle multi obstacles Ćows. Initially, the method was

implemented in heat exchanger geometries and was progressively applied for complex

geometries.

The main idea of PDR is to consider the small scales objects that are not solved

by the computational mesh as a porous media. This medium would offer a resistance to

the Ćuid Ćow (SAVILL; SOLBERG, 1994). This technique allows the use of a much coarser

computational mesh than the one required to resolve the Ąne scales of the geometry, which

in turn permits the use of a less detailed speciĄcation of the geometry.

The PDR model has been used in several different models to assess gas ex-

plosion in complex geometries (HJERTAGER et al., 1992), (VIANNA; CANT, 2010),

(SAVILL; SOLBERG, 1994) and (FOTHERGILL et al., 2003).

3.6.1 PDR Formulation

In PDR formulation, the presence of small scales objects modiĄes the governing

equations. Due to the presence of obstructions in the computational cell, only part of the

total volume is available to the Ćow. Moreover, the small objects offer additional resistance

to Ćow and also turbulence production (HJERTAGER et al., 1992).
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conservation equation. Thus, the terms of equations that contain area and volume are

amended by a new variable, namely Ñ.

Furthermore, the presence of obstacles that are not solved by the mesh cause

an additional resistance to the Ćow and also the production of turbulence that must be

accounted for.

3.6.2.1 Additional resistance to the Ćow

The resistance that unresolved obstacles offer to the mean Ćow is modelled as

a frictional resistance (SHA; LAUNDER, 1979):

𝑅j = ⊗𝑓j𝐴w
1
2

𝜌𝑈j
2 (3.57)

Here 𝐴w is the wetted area per unit volume: 𝐴w = 𝐴j(Ñ⊗1 ⊗ 1.0)2. The friction

factor 𝑓j depends on different parameters such as velocity, porosity value, characteristic

length or hydraulic diameter, shape and orientation.

Patankar e Spalding (1974) present two different models to calculate the fric-

tion factor based on the Ćow orientation to an obstacle. For Ćows parallel to an obstacle

𝑓j is calculated through Equation 3.58 while for normal Ćows 𝑓j is given by Equation 3.59

𝑓j = 0.048𝑅𝑒D
⊗0.2 (3.58)

𝑓j = 0.23 +
0.11

⎦⎤
3 P

D

⎣0.5

⊗ 1
⎢1.08 𝑅𝑒D

⊗0.15 (3.59)

In both equations, 𝑅𝑒D is the Reynolds number based on the hydraulic diam-

eter. In Equation 3.59 the term 𝐷 represents the diameter of an obstacle and 𝑃 the space

between the obstacles.

As consequence of this additional resistance to the Ćow, the momentum equa-

tion is modiĄed. Hence, Equation 3.2 becomes:

𝜕

𝜕𝑡
(Ñv𝜌 u) + u ≤ ∇(Ñi𝜌 u) = Ñv𝜌𝑔 ⊗ Ñv∇𝑃 + [Ñi∇ ≤ á ] + Ñi𝑅 (3.60)

3.6.2.2 Turbulence production due to resistance

The presence of a porous media also represents an additional source of turbu-

lence Ćuctuations. Sha e Launder (1979) have proposed two models in order to describe

this additional turbulence production.
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The Ąrst model takes into account the turbulence production due to the pres-

ence of shear layers on the sides of the unresolved obstacles. The modiĄed formulation,

suggested by Vianna e Cant (2010) and given by:

𝑆k1 = 𝐶SÛtÑv[(𝑈 ⊗ 𝑈S)2 + (𝑉 ⊗ 𝑉S)2 + (𝑊 ⊗𝑊S)2]𝐴w
2 (3.61)

where 𝑈S, 𝑉S and 𝑊S represents the slip velocities and are taken to be a fraction of the

values at cell faces was used in the current research.

In the second model, the turbulence production due to the wakes of the unre-

solved obstacles is calculated:

𝑆k2 = 𝐶B𝜌𝑈j
3𝐴w (3.62)

The constants 𝐶S and 𝐶B present in Equations 3.61 and 3.62 are adjustable

parameters (𝐶B = 𝐶S/2).

The additional production terms described here 𝑆k1 and 𝑆k2 are introduced in

the 𝑘⊗ 𝜀 turbulence model by increasing the turbulence production term. Equations 3.27

and 3.28 become:

𝜕

𝜕𝑡
(𝜌 𝑘) +∇ ≤ (𝜌 u 𝑘) = ∇ ≤

∏︀
∐︁

∏︀
∐︁Û +

Ût

àk

⎞
⎠∇𝑘

⎞
⎠ + 𝑆T ⊗ 𝜌 𝜀 (3.63)

𝜕

𝜕𝑡
(𝜌 𝜀) +∇ ≤ (𝜌 u 𝜀) = ∇ ≤

∏︀
∐︁

∏︀
∐︁Û +

Ût

àε

⎞
⎠∇𝜀

⎞
⎠ +

𝜀

𝑘
(𝐶1ε 𝑓1 𝑆T ⊗ 𝐶2ε 𝑓2 𝜌 𝜀) (3.64)

where 𝑆T represents the source of turbulence production and is given by

𝑆T = 2Ût𝐸i,j𝐸i,j + 𝑆k1 + 𝑆k2
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4 Porosity Flow Solver (PFS)

In gas explosion, as well as in almost all real problems, the solution of the

differential equations that represent the Ćuid dynamics is not straightforward, even when

using numerical techniques.

SpeciĄcally for the momentum conservation, the presence of the non-linear

terms in the Navier-Stokes equations greatly increases the complexity of the numerical

solution.

The strategy adopted in this work relied on a bi-dimensional solver where the

Euler equation is used to solve the momentum conservation as basis for the development of

the three-dimensional Navier-Stokes. The initial code, called Euler Solver, is customised to

solve compressible Ćows in sonic and supersonic Ćow regimes (GONÇALVES; VIANNA,

2014).

The Euler Solver was improved step by step until the complete three-dimensional

Navier-Stokes solver for gas explosion in complex geometries was engineered. For the sake

of clarity, the 3D Navier-Stokes is named PFS (Porosity Flow Solver) and this abbrevia-

ture will be used along the remaining of this thesis.

The four main steps considered were:

∙ First, a three-dimensional Euler code was developed based on the existing 2D Euler

Solver. Since there is no need for calculation of the viscous term, the implementation

of the Euler solver is easier than the implementation of the complete Navier-Stokes

equations. It can also serve as the framework for future development of the detona-

tion module of the code.

∙ In the second part, the PDR (Porosity Distributed Resistance) was included in the

code to represent the geometry under study.

∙ Step three embedded the development of the three-dimensional Navier-Stokes code.

The viscous effects were included into the momentum equation so that the complete

Navier-Stokes equations were solved. In this step, the turbulence model was also

implemented;

∙ In the fourth and last part, the combustion modelling was coupled with the porosity

concept and was coded into the framework of the 3D Navier-Stokes program. The

Ćamelet concept was used at this step.
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As result of the process listed above, the three-dimensional CFD code was

developed. The main features of the code and details of the architecture are discussed in

this chapter. More information about the code routines and the link between them are

found in Apendix .

4.1 Structure of PFS

The CFD codes generally present four main elements: the geometry generator,

the pre-processor (mesh and set up), the solver, and the post-processor. This section

outlines the various aspects of the development of the computational tool.

4.1.1 Geometry

Although the utilisation of PDR techniques are focused on the small scales of a

geometry that is not resolved by the computational mesh, the current research investigates

how the full geometry can be parametrised using the collision algorithm for convex sets.

The initial step of the simulation using PFS comprises the conversion of the

geometry in a porous media. The area and volume porosities are calculated as described in

Section 3.6. The porosity calculation is performed by the supporting code, namely PrePro

PFS. The porosity code was developed to check the collision between two convex sets.

In this particular case, the computational mesh was assumed to be a convex set and the

Cartesian coordinates of the geometrical model was model as a second set (MOREIRA et

al., 2015). Stereolithography CAD Ąles in "stl" format can be read in PrePro PFS that

uses the Gilbert-Johnson-Keerthi Distance algorithm (GJK algorithm) to parametrise the

geometry as porous media.

The outputs of this process are data Ąles containing values for the areas and

volumes porosities. It also provides the parameters used to build the porous mesh (di-

mensions of the computational domain and size of the cells) (MOREIRA et al., 2015).

4.1.1.1 Fundamentals of the GJK Algorithm

The Gilbert-Johnson-Keerthi Distance algorithm (GJK algorithm) is a method

for obtaining the minimum distance between two convex objects based on the concept

of the Minkowski difference ((GILBERT; FOO, 1989), (GILBERT et al., 1988)). The

algorithm can also be used to check for collision between two convex objects.

Given two sets 𝐴, 𝐵 in 𝑅n of position vectors in the Euclidean space, the

Minkowski addition is formed by adding every vector in A to every vector in B (Equation
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4.1).

𝐴 + 𝐵 = ¶𝑎 + 𝑏 ♣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵♢ (4.1)

Similarly, the Minkowski difference is formed by subtracting ever vector in B

from every vector in A (Equation 4.2).

𝐴⊗𝐵 = ¶𝑎⊗ 𝑏 ♣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵♢ (4.2)

In Minkowski difference, if the two sets are colliding, the resulting difference

will contain the zero vector.

The main advantages of the GJK algorithm is the computational velocity and

stability. There are many techniques that make possible to further increase the efficiency

of the algorithm (ERICSON, 2004), (BERGEN, 1999). The algorithm also relies on a

support function that makes possible to check for collisions between any kind of discrete

and analytical objects, in any kind of format.

One important idea of the GJK algorithm is to try to interactively build a

polytope, polygon (2D) or polyhedron (3D), on the Minkowski difference that encapsulates

the origin. This polygon or polyhedron can be deĄned as a simplex. The simplex is build

using a support function, that returns a point on shape that is furthest in a direction

𝐷. Using the furthest point in one direction is important because it creates the simplex

with the largest area (or volume) and increases the chance of the algorithm to converge

quickly. The furthest point in a direction of the Minkowski difference of two sets of vectors

𝑃 and 𝑄 is the maximum of the dot product of the direction and the Minkowski difference

(Equation 4.3).

support = max((𝑃 ⊗𝑄) ≤𝐷)

= ¶max((𝑝⊗ 𝑞) ≤𝐷) ♣ 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄♢

= ¶max(𝑝 ≤𝐷 ⊗ 𝑞 ≤𝐷) ♣ 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄♢

= ¶max(𝑝 ≤𝐷)⊗max(𝑞 ≤ (⊗𝐷)) ♣ 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄♢

= support(𝑃, 𝐷)⊗ support(𝑄,⊗𝐷)

(4.3)

To initialise the algorithm, the supported function is set up using a random

direction and its result is added to the simplex. After that, the negative vector is used as

initial direction vector for the main loop. The main loop of the function performs three

actions. First it adds a new vector 𝐴 to the simplex by calling the support function using

the direction vector 𝐷. Then, it checks if this new vector 𝐴 is in the same direction as

the direction vector 𝐷. If it is not, then the algorithm tries to get to a point as far as
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possible in the direction 𝐷 but could not get pass the origin. This means that there are

no points past the origin, otherwise the simplex will never be able to build a polytope

that encapsulates the origin. If the check return true, then the point 𝐴 is added to the

the simplex 𝑆 and the function Nearest is called.

The last step of the main loop is the Nearest function. This function Ąrst

checks if the origin is inside the polytope. If this is true, then the function returns true

and the algorithm ends. If this is false, it may removes old points of the simplex 𝑆 that

are no longer required and a new direction 𝐷 to search for. This function is build based

on the dimension (2D or 3D) of the problem. Algorithm 4.1 is a resumed explanation of

the GJK algorithm.

Algorithm 4.1 GJK Algorithm
Require: 𝑃 = list of points of solid 1
Require: 𝑄 = list of points of solid 2
Require: 𝐷0 = initial search direction

function GJK(𝑃, 𝑄, 𝐷0)
Initialize: 𝐴⊂ Support(𝑝, 𝐷0)⊗ Support(𝑞,⊗𝐷0)
Initialize: 𝑆 ⊂ ¶𝐴♢ ◁ 𝑆 is the simplex list
Initialize: 𝑉 ⊂ ⊗𝐴
loop

𝐴 = Support(𝑝, 𝐷)⊗ Support(𝑞,⊗𝐷)
if dot(𝐴, 𝐷) < 0 then

return False
end if
𝑆 ⊂ 𝐴
𝑆, 𝐷, 𝑐𝑜𝑙 := Nearest(𝑆)
if 𝑐𝑜𝑙 then

return True
end if

end loop
end function
function Support(X,D)

return max(𝑋, 𝐷)
end function

4.1.1.2 Porosity Mesh Calculation

The parametrised geometry can be obtained using the GJK algorithm to check

for a collision between a mesh element and each geometric object. This process is described

in Figure 5 and is conducted in three main steps. In the Ąrst step a geometric object is

placed into a domain; on step 2 a structured mesh is created over the domain; and in

the last step 3 the GJK technique is used to calculate the porosity of the mesh. In this

approach, every element fully occupied by a solid has a value of 0.0, while every empty

element has a value of 1.0. If an element of the mesh is half full the value of 0.5 is assigned



Chapter 4. Porosity Flow Solver (PFS) 59

for the local porosity of the computational cell.

Figure 5 Ű Steps of porosity mesh calculation.
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∙ Porosity Volume

The porosity volume is obtained applying the 3D GJK algorithm and the

procedure described above. As the method uses a structured mesh, each computational

element will be a hexahedron (cube). Algorithm 4.2 below describes the process.

Algorithm 4.2 Volume Porosity Algorithm
Require: 𝑆 = list of solids in the geometry
Require: 𝑁 = list of elements of the mesh
Require: 𝑃 = list of porosity values

Initialize: 𝑃 ⊂ 1
for all 𝑠 ∈ 𝑆 do

for all 𝑛 ∈ 𝑁 do
𝑃 (𝑛) := 𝑃 (𝑛)⊗ collision3D(𝑛, 𝑠) ◁ collision returns 1.0 or 0.0

end for
end for

∙ Porosity Area

The values of porosity area are obtained by "slicingŤ each geometric solid on

the required plane. A trivial slicing method, described by Gregori Neri Volpato e Silva

(2014) is used. As a structured mesh is used, the values of porosity area are calculated

on the faces of the hexahedrons. Algorithm 4.3 describes the process for calculation of

porosity area over x direction.

Algorithm 4.3 Area Porosity Algorithm (x direction)
Require: 𝑆 = list of solids in the geometry
Require: 𝑁x = list of elements of the mesh in the x direction
Require: 𝑃x = list of area porosity values in the x direction

Initialize: 𝑃x ⊂ 1
for all 𝑠 ∈ 𝑆 do

for all 𝑛x ∈ 𝑁x do
𝑠x := slice(𝑠, 𝑛x)

◁ slice the solid 𝑠 at the (𝑥, 0, 0) coordinate of 𝑛 on the 𝑥 direction
◁ slice the solid 𝑠 at the (𝑥, 0, 0) coordinate of 𝑛x on the 𝑥 direction

𝑃x(𝑛) := 𝑃x(𝑛)⊗ collision2D(𝑛x, 𝑠x, 1) ◁ collision returns 1.0 or 0.0
end for

end for

∙ Recursion

Because the GJK algorithm can only return true or false, a recursive division

approach is applied to obtain reĄned porosity values. An example of this procedure is

presented in Figure 6 where two mesh elements are shown near a solid obstacle. In na
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Ąrst step the GJK algorithm identiĄes that the solid object is in contact with the bottom

element but is not in contact with the top element, so the top element is immediately

assigned a porosity value of 1.0 while recursion starts at the bottom element. On the next

step, the bottom element is divided into 𝑘 sub-elements and each sub-element is checked

with the GJK algorithm again. To obtain the Ąnal porosity value each sub-element is

subtracted from the main element according to its value. If it is not in contact, the value

is zero. If it is in contact, the value is 1
kn .

Figure 6 Ű Porosity recursion.

The reĄned porosity volumes are obtained breaking every mesh element (cube)

in 8 equal elements, while the reĄned porosity areas are obtained dividing each face of

the mesh (square) into 4 equal faces. The new collision function is described by algorithm

4.4, with 𝑘 = 8 for the 3D problem and 𝑘 = 4 for the 2D problem.

Algorithm 4.4 Collision Recursion
1: function collision(𝑛, 𝑠, 𝑖𝑛𝑡) ◁ int is the number of the interaction
2: 𝑐𝑜𝑙 := GJK(𝑛, 𝑠) ◁ GJK return true or false for collision
3: if col = true then
4: if int ⊘ intmax then
5: 𝑀 := divide(𝑛, 𝑘) ◁ divide 𝑛 into 𝑘 sub-elements
6: ◁ 𝑀 = list of sub-elements
7: sum := 0
8: for all 𝑚 ∈𝑀 do
9: sum := sum + collision(𝑚, 𝑠, 𝑖𝑛𝑡 + 1)

10: end for
11: return sum/𝑘
12: else
13: return 1
14: end if
15: else
16: return 0
17: end if
18: end function

∙ Results for Porosity mesh calculation
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Figure 7 shows the developed porosity method applied to a simpliĄed oil plat-

form STL model. The model is composed of 26 convex objects (cylinders, spheres and

hexahedrons), mesh size is 100x100x64 (617463 cells). Using a FORTRAN OMP code,

with 8 cores, the simulation took around 10 seconds to complete (MOREIRA et al.,

2015).

(a) (b)

(c) (d)

Figure 7 Ű Porosity applied to a simple oil platform model: (a) the STL geometry; (b)
Platform geometry and mesh; (c) Platform porosity volume; (d) Platform
porosity area (in X direction). Results are post-processed using Paraview.

4.1.2 Preprocessing

In PFS code, all the partial differential equations are integrated over a control

volume, following the Finite Volume Method (FVM).

The Finite Volume Method is a spatial discretization technique for partial

differential equations. By using this method, the approximate equations are obtained by

integration of the governing equation in its conservative form. This discretization process

gives rise to a linear system of algebraic equations for the variables that can be numerically

solved (MALISKA, 2004). The FVM is in common use for discretizing computational Ćuid

dynamics equations once the resulting of the process is similar to perform a balance of

the property over a discrete control volume.

4.1.2.1 Variable Storage

In Ąnite volume method the control volumes can be deĄned in two different

ways: cell-centred and cell-vertex. In the cell centred approach the element mesh is used as

a control volume and the computational nodes are considered as the centre of this control
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The terms in Equation 4.9 represents the unsteady on the left hand side and

the convection, diffusion and source terms on the right hand side, respectively.

As previously described, when the PDR method is applied, the transport equa-

tions are modiĄed to take into account the porosity values of volume and areas for each

computational cell. Hence, Equation 4.9 above becomes:

∫︁

V

𝜕(𝜌ã)
𝜕𝑡

ÑV 𝑑𝑉 = ⊗
∫︁

S
(𝜌𝑢jã)Ñj𝑑𝑆j +

∫︁

S
Γφ

𝜕ã

𝜕𝑥j

Ñj𝑑𝑆j +
∫︁

V
𝑆φÑV 𝑑𝑉 (4.10)

where Ñ is the assigned cell porosity.

4.2.1.1 The Unsteady Term

The unsteady term in the left hand side of the Equation 4.10 is discretised

considering the value at node shared by the eight computational cells surrounding it. The

central approximation is used as described in Section 4.1.3.

4.2.1.2 The Convection Term

For the convection term, the variables are assumed to have a piece-wise linear

variation over the cell faces between the vertices. The Ćux sum for a given cell is computed

as:

𝜕(𝜌𝑢iã)
𝜕𝑥j

=
6∑︁

nf=1

(𝜌𝑢iã𝐴i) (4.11)

4.2.1.3 The Diffusion Term

The derivative terms in the viscous stresses are piece-wise constant over the

cell and are computed by simple application of the Gauss divergence theorem:

⎤
𝜕ã

𝜕𝑥j

⎣
=

1
𝑉 𝑂𝐿

6∑︁

nf=1

ãΔ𝐴xj (4.12)

where 𝑛𝑓 indicates the face number of the control volume.

In Equation 4.12, the sum over the volume include the six (6) faces that belongs

the hexahedral computational cell.



Chapter 4. Porosity Flow Solver (PFS) 69

Using all the cells surrounding a speciĄc node as control volume, the viscous

stress terms at such node can be evaluated:

𝜕

𝜕𝑥j

⎤
Û

⎤
𝜕ã

𝜕𝑥j

⎣⎣
=

1
𝑉 𝑂𝐿

8∑︁

nc=1

Û
⎤

𝜕ã

𝜕𝑥j

⎣
Δ𝐴xj (4.13)

Here, 𝑛𝑐 represents the number of cells surrounding a node. Once the domain

is discretised in hexahedral cells with cell vertex storage variable, in three dimensions,

each node will receive the contribution of the eight surrounding cells (as vizualized in

Figure 13).

4.2.1.4 The Source Term

The source term is different for each variable in individual conservation equa-

tion and it depends on what is being transported.

Numerically, for the momentum conservation, the source term represents the

effect of pressure gradient. In case of the energy equation, it includes contributions due

to pressure work, viscous dissipation and chemical source term.

4.2.1.5 The Complete Discretised Conservation Equation

Considering the discretisation of each term of the Equation 4.10, the discretised

generic equation solved in PFS is:

Δ(𝜌ãÑV 𝑉 )
Δ𝑡

= ⊗
6∑︁

nf=1

(𝜌𝑢iãÑi𝐴i) +
6∑︁

nf=1

∏︀
∐︁𝜌ΓφÑi𝐴i

𝜕ã

𝜕𝑥j

⎞
⎠ + 𝑆φÑV 𝑉 (4.14)

4.2.2 The time Advancement

The discretised equations are time-marched using a fourth order Runge-Kutta

algorithm with residual smoothing as suggested by Jameson e Baker (1987). The variable

of interest is updated by:

𝑓 0
φ = 𝑓n

φ

𝑓 1
φ = 𝑓 0

φ + Ð1Δ𝑡𝑓φv
0

𝑓 2
φ = 𝑓 0

φ + Ð2Δ𝑡𝑓φv
1

𝑓 3
φ = 𝑓 0

φ + Ð3Δ𝑡𝑓φv
2

𝑓 4
φ = 𝑓 0

φ + Ð4Δ𝑡𝑓φv
3

𝑓n+1
φ = 𝑓 4

φ
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The values of 𝑓n
φ and 𝑓n

φ + 1 corresponding to the values at the beginning and

the end of the 𝑛th time step, while 𝑓φv represents the net Ćuxes of the variable in a time

step. The coefficients of the scheme are: Ð1 = 1/4; Ð2 = 1/3; Ð3 = 1/2 and Ð4 = 1.

4.2.2.1 Time Step

The PFS code runs in the unsteady form so a constant time step is applied.

The time step is calculated based on the size of smallest computational cell and its value

can be modiĄed in accordance with the Courant number.

Δ𝑡 = 𝐶𝐹𝐿×
Δ𝑥

2× 𝑠𝑠
(4.15)

Here, Δ𝑡 is the time step, Δ𝑥 is the smallest size of the computational grid,

and 𝑠𝑠 is the local sound speed. 𝑠𝑠 is calculated based on the properties of the Ćuid

(caloriĄc capacity and speciĄc heats).

4.2.2.2 Iterative Convergence

As PFS runs in unsteady form, for steady problems, the code solve the un-

steady form of the governing equations and "march" the solution in time until the solution

converges to a steady solution.

In steady state, the value of a speciĄc variable ãn tends to be similar to the

value calculated at the previous time step, ãn⊗1, and the errors tend to zero. Hence, the

iteration process continues until the measure of the difference between ãn⊗1 and ãn is

"small enough ". Such difference known as residual is calculated in each grid point for

each variable of interest as:

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =

√︁∑︀N
i=1 (ãi

n ⊗ ãi
n⊗1)

2

∑︀N
i=1 ãi

n (4.16)

4.2.3 ArtiĄcial Viscosity/Dissipation

The concept of artiĄcial dissipation or artiĄcial viscosity is introduced in nu-

merical simulations to remove the oscillations around discontinuities in central differencing

schemes. This additional term simulates the effects of the physical viscosity by introducing

an error that is proportional to the second order derivatives of the variables.

In PFS, the artiĄcial viscosity is applied to the variables after each time-step.

The additional term is obtained by: 𝑆𝐹 ×Δ2ã, where 𝑆𝐹 represents a smooth factor that

is proportional to the time step and the CFL number.
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4.3 Boundary Conditions

∙ Inflow

At the inlet, the total pressure, temperature, turbulent kinetic energy and

dissipation and velocity are speciĄed. The derivative of the static pressure in the stream-

wise is set to zero.

∙ Outflow

At the outĆow boundary the static pressure is speciĄed and the other variables

are extrapolated from interior points.

∙ Solid Surfaces

Solid surfaces are set to have zero normal Ćuxes of mass, momentum and

energy. The turbulent kinetic energy and the normal gradient of dissipation rate are also

imposed to be zero on the surfaces.

∙ Porosity Regions

At the porosity regions the variables are modelled as solid surfaces (with zero

normal gradient). SpeciĄcally for turbulence, the equations of 𝑘 ⊗ 𝜀 model are modelled

considering the approach of low Reynolds number described in Section 3.3.2.1.

4.3.1 Initial Condition

For the initial condition values of static pressure (P), density (𝜌) and temper-

ature (T) are set in the computational domain. The pressure and temperature are set as

reference values equal to 105 Pa and 300 K, respectively, while the gas density is set ac-

cording to the fuel that is used in the simulation. The velocity Ąeld is obtained according

to a speciĄed pressure gradient.

4.3.1.1 Ignition

The ignition starts by initialising a predeĄned ignition region (or point) where

the fraction of the products is set (the progressive variable is equal to 1). The presence of

products increases the temperature and decreases the density and hence a Ćow is induced

in front of the Ćame and the combustion process is initialised. The initial Ćame speed and

combustion process is handled by the laminar combustion model as explained in Section

3.5.2.
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4.4 Set up and solver parameters

The "set up" comprises the pre-processor step where both, the physical and

mathematical modelling are speciĄed for the simulation. In the developed code, the "set

up" is introduced by a text Ąle that contains some thermodynamics properties of the Ćuid,

Ćow conditions and solver parameters. Table 3 displays these main inputs.

Table 3 Ű Main set up features for PFS simulations.

Parameter Condition
Fluid Type 0 or 1: Set zero to set air or 1 to set other Ćuid.
𝐶p, Ò and Û Fluid properties

𝑃ref and 𝑇ref
Reference Pressure and temperature, normally set as 100
kPa and 300K, respectively.

𝑃down Pressure speciĄed at the outlet boundary.
𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦 Prescribed velocity speciĄed at the inlet boundary

CFL, SF and Residual
Values of CFL number, Smooth Factor and convergence
criteria are speciĄed here.

NSTEP and DUMP
Maximum number of iterations and number of iterations
to dump a result

NS 0 or 1: Set 1 to solve the viscous term.
COMB 0 or 1: Set 1 to solve a combustion Ćow.
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5 Case Studies for non-reacting flows

As described in Chapter 4, the Porosity Flow Solver has emerged from the

bi-dimensional Euler solver and it was improved step by step until becoming a three-

dimensional Navier-Stokes code customised for gas explosion modelling. It turns out,

however, that Ćuid mechanics must be correctly modelled to be able to handle reacting

Ćows.

This Chapter presents the results obtained for various Ćows in the absence of

chemical reactions.

The simulations were performed using the 3D Euler solver considering both

a standard geometry and a parametrised geometry as porous media. The chapter also

comprises detailed analysis of the main parameters concerning the discretised equations.

Particular attention is given to the smooth factor that is responsible for smoothing out

the wiggles generated by the central difference scheme.

Prior to starting the comparison with experimental data for cold Ćows, nu-

merical Ąndings for a Ćow over bluff body were compared with simulations conducted by

ANSYS-CFX. The point here was to verify if the implementation of the Ąnite volume

method and the associated models were properly implemented.

In the second part of the tests, simulations of turbulent Ćows were conducted

for different parametrised geometry by solving the Navier-Stokes equations coupled with

the 𝑘 ⊗ 𝜀 turbulence model and the results were compared with experimental data.

5.1 Verification Procedure

5.1.1 3D Euler simulations

Since the initial 2D Euler solver was tested for different conditions of compress-

ible Ćow and high Mach number and came out with satisfactory results (GONÇALVES;

VIANNA, 2014), the same tests were performed with the 3D solver.

The 3D duct geometry with a stricture in the centre was considered bounded

by upper and lower solid walls. The size of the channel was set as 10m × 3.0m × 3.0m

in x, y and z directions, respectively, and it was divided into computational cells with

0.15m of length. Initially, a subsonic air Ćow with 35 m/s was set from left to right in x

direction. Figure 14 shows the computational mesh and the simulation results.

Analysis of Figure 14 (b) shows that the Mach number (ratio between the local

velocity and the local sound speed) is less than one, which corresponds to the simulation
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able to the Ćow. The computational cells coloured between dark blue and red present

intermediated porosity values (0.0 < Ñv < 1.0).

The air Ćow with inlet velocity of 160 m/s was evaluated. The inĆow boundary

conditions was set on the left boundary 𝑥. The outlet boundary condition, with pressure

gradient equal to zero, was considered at the right boundary x. The other boundaries of

the computational domain were set as wall, where zero normal Ćuxes of mass, momentum

and energy are imposed. This strategy to set the boundary conditions was also applied

to all simulations using the PFS code. Table 4 presents the values of solver parameters

applied in this simulation and the results are shown in Figure 17.

Table 4 Ű Solver parameters used in the simulation of a Ćow over a parametrized squared
geometry by using the 3D Euler solver.

Parameter Value
Fluid 0 (air)

Inlet Velocity 160 m/s
CFL 0.01

Smooth Factor 0.05
Convergence Criterion 10⊗4

Figure 17 shows that the velocity proĄle is similar to what is expected for

a Ćuid Ćow over an object. The velocity increases where the area of Ćow decreases. By

considering the PDR model, Figure 17 (a) shows that there is no Ćow in the computational

domain region set with porosity values equal to zero (dark blue square in Figure 16 (c) ).

It is also veriĄed that the presence of the box blocks the Ćow and produces a re-circulation

zone (17 (b)) . The stagnation zone is observed in front of the cube.

Once the code was able to solve the Euler equation in a three-dimensional

porous mesh for Ćow around a squared box, a series of tests were performed to verify the

inĆuence of the simulation parameters in the results.

5.1.3 Simulation Parameters Analysis

In Chapter 4, the structure of PFS code was introduced. It was reported that

the code runs under the unsteady condition and the time-step is obtained by the relation

between mesh size and velocity, being adjustable by CFL number. It was also pointed

out that an additional artiĄcial viscosity must be included to reduce the numerical oscil-

lations provided by the central difference scheme. Thus, a series of tests were performed

to evaluate the inĆuence of these parameters on the numerical solution.

The cubic parametrised geometry shown in Figure 16 was used here with the

same Ćuid Ćow condition (air Ćow with 160 m/s). In all tests, the velocity proĄle was
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Figure 23 Ű Time mean velocity proĄle at the centreline downstream of the rectangular
box.

5.2 Analysis of turbulent flows in simplified geometries

Once the code was veriĄed and able to solve the set of Navier-Stokes equations

coupled with the 𝑘⊗𝜀 turbulence model, traditional cases of turbulent Ćows were simulated

based on literature review.

5.2.1 Flow over a backward facing step

In many engineering applications it is necessary to understand the physics of

the phenomenon of separation and reattachment of turbulent Ćow. Such a phenomenon

can be analysed in a simple way through the study of turbulent Ćow over a backward-

facing. To evaluate how the PFS code reproduces the separation and reattachment of a

turbulent Ćow, a turbulent Ćow over a step was considered.

Based on an experimental study (KIM et al., 1980) and a numerical simulation

(YOO et al., 1989), a Ćuid Ćow at Reynolds number equal to 44,000 was simulated over a

step with 10 mm of height (H) and 40 mm of length. The computational domain used in

this case comprises a rectangular box with 340 mm in x direction, 3 mm in z direction and

10 mm in y direction. Air Ćow with velocity of 70m/s (𝑈∞) was imposed at the entrance

of the computational domain. Figure 24 shows the schematic representation of such study.

The solver parameters can be found in Table 5.

Initially the simulation was conducted considering three different meshes: the

Ąrst one with hexahedral cells measuring 1.5 mm of length, the second mesh with cells

length of 1.0mm and the third one with cells of 0.5 mm of length. Figure 25 shows the

mean velocity proĄle in the region downstream of the cylinder at a distance x/H equal

to 7. The values were taken along a vertical line. Mesh 01 represents the mesh with

computational cells with 1.5 mm of length (the coarse mesh), while Mesh 02 represents
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Figure 30 Ű Time mean velocity proĄle along the centreline of a square cylinder for three
different sizes of mesh. Mesh 01 is the coarse mesh (computational cells size
equal to 1.5mm); Mesh 02 is the intermediary mesh (computational cells size
equal to 1.0mm) and Mesh 03 is the reĄned mesh (computational cells size
equal to 0.5 mm).

shows the result of the simulation. The velocity proĄle is similar to what is expected for

a turbulent Ćow over a rectangular cylinder. The velocity increases where the area of the

Ćuid Ćow decreases. By considering the PDR model, there is no Ćow in the computational

domain region set with porosity values equal to zero. The presence of the squared cylinder

blocks the Ćuid Ćow and produces a re-circulation zone. A resistance region is observed

in front of the rectangular cylinder.

Figure 32 shows the comparison between the PFS simulation results by using

the intermediary mesh (MESH 02) and experimental data provided by two different au-

thors: Lyn et al. (1995) and Durao et al. (1988). Both works have investigated turbulent

Ćows over rectangular cylinder, but Lyn et al. (1995) used a Reynolds number equal to

22,000 in the experiments, while for Durao et al. (1988) experiment the Reynolds num-

ber was equal to 14,000. The non-dimensional velocity and turbulence intensity proĄles

provided by PFS simulation are similar to the experimental data.

Concerning the non-dimensional velocity present in Figure 32 (a), the PFS

results are close to both experimental data in the region near the cylinder, but is slightly

different from Lyn et al. (1995) experimental data as the Ćow moves away from the

cylinder. The turbulence intensity is visualized in Figure 32 (b). Here, the turbulence

intensity provided by PFS is a little different from the experimental data especially in the
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(a) (b)

(c) (d)

Figure 43 Ű Comparison of the simulation of a turbulent cross-Ćow in a staggered tube
bundle by the developed PFS tool and ANSYS-CFX. Velocity proĄles were
taken at four different regions of the domain: x/D = 1.25 (a); x/D = 3.35
(b); x/D = 5.45 (c); and x/D = 7.55 (d).

5.3.2 Flow in an offshore module

The second investigation of Ćow in complex geometry comprises the ventilation

analysis in an idealized offshore module. The geometric model used here can be visualized

in Figure 44 (a) and comprises an oil platform with size of 32× 28 m and composed of 80

convex objects. The stereolithography model was converted in a porous hexahedral mesh

by the application of the GJK algorithm. The computational domain size was 91×76×19

m and three different mesh sizes were initially considered: with cells of 0.60 m (215,000

cells); 0.30 m (1,782,246 cells) and 0.20 m (5,987,280 cells). Figure 44 (b) shows the

volume porosity obtained for each computational cell by using the mesh size of 0.30 m.

This mesh size was chosen based on a previous mesh test.

By considering the porous model presented in Figure 44 (b), a Ćuid Ćow of air

at was simulated using the developed PFS tool. At the an air entrance at 70 m/s was

considered, while the opposite side was set as outĆow boundary (speciĄed static pressure

and the other variables extrapolated from interior nodes). All the other boundaries of the

computational domain were set as solid surface as well as the contours of the geometric
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A quantitative analysis was performed considering both PFS and CFX simu-

lations. Velocity proĄles were taken in different regions of the process area. The regions

were deĄned by considering 5 monitor lines into the process area. Each line was addressed

with 100 monitor points that covers the y direction from the beggining until the end of

the computational domain. The lines were positioned based on the origin of the platform

deck (Ćoor) in the coordinate x and z equal to (0,0), therefore: Monitor Line 01 - x = 10

m and z = 3 m; Monitor Line 02 - x = 10 m and z = 5 m; Monitor Line 03 - x = 16 m

and z = 3 m Monitor Line 04 - x = 21 m and z = 1 m; Monitor Line 05 - x = 21 m and

z = 5 m.

Figure 46 presents the comparison between PFS and CFX simulation results.

For all considered regions, the velocity proĄle given by the PFS is very similar to the

proĄle provided by CFX simulation, so the developed tool is also capable to capture the

turbulent Ćow behaviour in complex geometries in a real scale.
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(a) (b)

(c) (d)

(d)

Figure 46 Ű Comparison of the simulation of air Ćow in a offshore module provided by
the developed PFS tool and ANSYS-CFX. Velocity proĄles were taken at Ąve
different regions of the process area. Monitor Line 01 (a); Monitor Line 02
(b); Monitor Line 03 (c); Monitor Line 04 (d); Monitor Line 05 (e).
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Figure 51 Ű Comparison between numerical simulations using a turbulent combustion
modelling and a combustion model with an initial laminar phase.

The reaction rate modelling provided by the Bray-Moss-Libby (BML) com-

bustion model, used in this work, presents different adjustable parameters, as shown by

equations 3.46 - 3.48. The variable 𝑐L stands up among them since it directly affects the

reaction rate. Bray et al. (1985) pointed out that the variable 𝑐L must be increased to

bring down the reaction rate. In this part of the study, a sensitive test was conducted to

evaluate the response of developed solver for explosion simulations when different values

are applied to the variable 𝑐L: 1.0; 2.5 and 5.0. The result of such analysis is shown in

Figure 52.

Figure 52 Ű Analysis of the inĆuence of adjustble variable 𝑐L of BML reaction rate model
on Ćame propagation.

When increasing the value of 𝑐L, the Ćame advance into the chamber becomes

slow, which indicates that this variable affects the Ćame propagation velocity. It also
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As observed in the experiment (Figure 57 (a)), the Ćame front achieves the Ąrst obstacle

with an incomplete consumption of the fuel mixture in the upstream region of the chamber

and then it is separated into two opposite Ćame fronts. The Ćame advances through

downstream the object as a jet behaviour and tends to curl at the centreline of the

chamber. The same sequential behaviour is veriĄed for the following two obstacles. In

the numerical simulation, the Ćame front impinging onto the Ąrst obstacle at the time

equal to 23 ms, while experimental data indicates that such interaction occurs 28 ms after

ignition. Such a difference between numerical Ąnds and experimental observations for the

Ćame position with time tends to reduce as the Ćame goes through the chamber. Figure

58 shows the comparison between numerical results and experimental data (PATEL et al.,

2002) for time evolution of the Ćame location inside the chamber. The Ćame location was

obtained by considering the maximum axial distance of the Ćame front from the ignition

point.

Figure 58 Ű Comparison between numerical simulation and experimental data for the
Ćame location inside the chamber.

Figure 58 shows that, at the Ąrst 20 milliseconds after ignition, the Ćame

propagates slowly into the chamber and the numerical Ąndings agree with experimental

data. In the second propagation stage, the Ćame tip reaches the Ąrst obstacle and as

observed in Figure 57 the numerical simulation early predicts this arrival (within almost

23 seconds). In the last propagation phase, the Ćame interacts with obstacles and it

is accelerated. A slop is observed on the curves. Here, it is veriĄed that the numerical

simulation provides a slower Ćame propagation compared with experimental data.

The Ćame speed proĄle provided by numerical results was also compared with

experimental data and is presented in Figure 59. The present simulation is able to capture
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the overall Ćame speed behaviour presented in the experimental test although, quantita-

tively, there is a lack of agreement between the trend curves.

Figure 59 Ű Experimental data and corresponding numerical predictions for the Ćame
speed proĄle along the axial distance from the ignition point.

As described for turbulent combustion process, the reaction rate is increased

by turbulence effects, which is enhanced by the presence of obstacles in a Ćuid Ćow.

Thus, when the Ćame front reaches an obstacle, its velocity is increased and then tends

to decrease. This trend is repeated in each chamber obstacle as visualized in Figure 59.

Numerical simulation provides greater values of Ćame speed than the experimental data

at the beginning of ignition. The intensity tends to decrease as the Ćame moves through

the other obstacles.

The analysis conĄrms the Ćame advancement trend discussed above, wherein

the Ćame tip interacts with the Ąrst chamber obstacle earlier on the numerical simulations

than in the experimental observations. For both numerical and experimental results, the

Ćame arrives at last obstacles at similar time. This behaviour can be explained by the

fact that the porosity distributed model applied in this work to describe the geometrical

obstacles may not produce enough turbulent kinetic energy, so the turbulence effect on

the Ćame speed is not observed in numerical Ąndings as well as in experimental data.

The last quantitative analysis of this study comprises the veriĄcation of the

overpressure generated during the explosion. Figure 60 shows the pressure time history

at the bottom end of the chamber for both RANS simulation and experimental data.

Numerical data were obtained by considering the mean pressure Ąeld in a deĄned region

at the end of chamber domain. It is possible to observe that the numerical model predicts
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the dominant peak pressure as observed in experimental test. The maximum overpressure

was 27% lower than experimental data, which can be due by the presence of a sealing

membrane that was not considered in numerical simulations. However, for both experi-

mental and numerical results, the pressure peak was found at around 38 ms after ignition

starts which occurs when the Ćame tip reaches the third obstacle.

Figure 60 Ű Time pressure history at the bottom end of the chamber - comparison between
numerical results and experimental data.

Figure 61 shows the dimensionless 𝐷𝑎𝑚𝑘𝑜𝑙𝑒𝑟 and Karlovitz numbers at the

Ćame front region. In the presented images, the contour lines were obtained for values of

reaction progress variable "c" ranging from 0.2 to 1.0. It is possible to observe that the

values of Ka at the Ćame front are close to unity, which is in accordance with the Bourghi

diagram (Figure 2) when Ćamelet modelling is applied to combustion problems.













118

7 Conclusions and Future Work

7.1 Conclusions

The combination of Gilbert - Johson - Keerti distance algorithm and the Ąnite

volume method was proposed for parametrisation of complex geometries. Regions of the

computational domain where obstacles were located, were assigned zero porosity while

free zones of the computational domain were assigned unity porosity. Any other region of

the computational domain was treated as intermediate porosity following the procedure

that checks for collisions between the computational mesh and each primitive solid of

the geometrical model. The developed method was applied to describe conventional CAD

geometrical models.

Initially, a three-dimensional Euler solver was developed based on the initial

two-dimensional Euler solver. Flows over a bump were investigated and it was veriĄed

the Ćux calculations over the boundaries and computational cells. The numerical Ąndings

in this stage were consistent to the literature description for the solution of compressible

Ćows.

In the next step, the developed three-dimensional Euler solver was applied to

calculate Ćow Ąelds using parametrised geometries by the GJK algorithm. Flows over a

buff body were analyzed and it was veriĄed that the Ćow moves away from parametrised

geometries in a similar manner to the conventional geometries, which indicates that the

proposed parametrisation method can be used to represent geometries in Ćuid Ćow studies.

Some tests were conducted to verify the code implementation. The main sim-

ulation parameters (mesh size, smooth factor and CFL number) were investigated. Their

inĆuence in the numerical convergence and in the Ćow solution proved to be consistent

with what is expected when considering the solver features. A comparison was also per-

formed between the developed solver and an established commercial CFD code.

The modelling approach used at the 𝑘⊗𝜀 turbulence model was applied in the

third part of this work to account for the viscous effects and extra turbulence generation

in parametrised geometries. Dedicated turbulent Ćows over buff bodies were investigated.

The numerical Ąndings were in accordance with experimental data for the velocity Ąeld.

As far as the turbulent kinetic energy and the Ćuctuating velocity go, the

approach has been able to reproduce the overall trend. However, numerical Ąndings tend

to over-predict the experimental results for Ćow over a step. For the Ćow over cylindrical

obstacles the results are under predicted when compared with experimental data.
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Comparison of the turbulent features of the current work with other numer-

ical results where RANS approach and 𝑘 ⊗ 𝜖 turbulence model has been applied show

similar behaviour. Considering that the velocity Ąeld is in accordance with the current

understanding of Ćuid Ćow and that the numerical results agree with the experimental

data, it is likely that the lack of agreement between the numerical results for the Ćuctu-

ating velocity and experimental data is due to limitations of the 𝑘 ⊗ 𝜖 formulation. The

presence of circulating Ćow at the wake of obstacles poses an additional challenge when

two-equations models concerning the turbulent kinetic energy and the rate of dissipation

of the turbulent kinetic energy are considered.

Regarding the simulation of reacting Ćows, the analysis of three different cases

of turbulent combustion process has shown that the developed method is capable of

describing the Ćame structure and its propagation behaviour within the framework of

traditional laminar Ćamelet model.

As expected for the turbulent combustion process, overpressure peaks were

captured by the numerical simulations. The results calculated by the developed solver

tends to underpredict the maximum pressure values (≡ 20%) achieved in experimental

tests.

A slight lack of agreement was observed between numerical Ąndings and exper-

imental data when analysing the Ćame speed. The presented method tends to predict a

faster Ćame propagation for unobstructed Ćows and a slower propagation when the Ćame

interacts with an obstacle. These trends may indicate the necessity of improvement on

turbulence model, once the combustion reaction rate mainly depends on the turbulent

Ąeld.

The Damkhöler hypothesis for reacting Ćows were veriĄed under the inĆuence

of GJK parametrisation. For all considering combustion simulations, the Damkhöler (Da)

number was greater than a unity, which indicates that the chemistry is very fast com-

pared to Ćuid mechanical scales. Therefore, the combustion process occurs in the laminar

Ćamelet regime, assumed as basis for the combustion modelling in this work.

7.2 Future Work

The combination of the Ąnite volume method and the Gilbert - Johson - Keerti

distance algorithm for parametrisation of geometries in numerical simulations provides

satisfactory results. Findings have shown that a promising approach has emerged, how-

ever, further work is necessary to improve the developed solver.

Implementation of a high order numerical method, such as eno or weno scheme,

can be used to provide a better solution of the governing equations. The use of a high
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order method will replace the application of artiĄcial viscosity, an adjustable factor that

reduces the oscillations generated by the central difference scheme.

Besides that, a better turbulence approach is required to improve the predic-

tions of turbulence generated by the porous mesh.

The reaction rate in the BML combustion model (BRAY et al., 1985), used in

this work, depends on the empirical correlation 𝑓

∏︀
∐︁ u′

uL

⎞
⎠ (Equation 3.48) to compute the in-

tegral length scale of the Ćame wrinkling. Therefore, as in any empirical function, different

adjustable parameters are applied here. As future work, it is suggested the replacement

of such an empirical correlation to reduce the necessity of adjustable parameters in the

BML combustion model. A possible solution was already proposed by Matos (2014), who

pointed out that the integral length scale of wrinkling can be computed based on the

turbulence dissipation rate (𝜀). The model was successfully implemented in a spreadsheet

for explosion calculations in a large-scale chamber with a vent.

The developed approach works well for all selected cases of non-reacting and

reacting turbulent Ćows. However, in this research, only simple and small scales geometries

were deeper investigated. It is proposed to evaluate the solver performance for a large range

of length scales, as in a real process plant. Another suggestion comprises the analysis of

different cases of turbulent reacting Ćows, since only the combustion process was addressed

here.

At least, it would be interesting to compare the numerical Ąndings of the

developed solver with an establish CFD tool for gas explosion, as FLACS, for example.

Since FLACS uses the Porosity Distributed Resistance model to represent a geometry

under study, the comparison could provide a consistent analysis of the implementation of

turbulence and combustion models considered in this work.
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Appendix A

This Appendix A presents the logical sequence and relationship among the

different subroutines making up the Porosity Flow Solver PFS as illustrated in Figure 67.

Data Acquisition

The "Data Acquisition" comprises the first step when running PFS code. In this

step the code will read the "set up" file and the PrePro output files: "mesh.parameters" and

"porosity". Three different subroutines are included here: "read data", "read parameters"

and "read porosity"

Read Data

The subroutine "Read Data" reads data from the input set up file. The set up

file is named "Ćow" and contains the flow conditions and the simulation parameters as

shown in table 3.

Read Parameters

The "Read Parameters" subroutine reads the mesh parameters from the PrePro

output file identified by the case name with the extension ".parameters.dat". This is a text

file containing the mesh parameters are as follows:

∙ x, y, z: overall index size of the computational domain.

∙ gapx, gapy, gapz: size of the computational cells.

∙ xtrans, ytrans, ztrans: computational domain offset based on the origin of the

coordinate system.

∙ DNI, DNJ, DNK: number of computational cells in each direction.

∙ NI, NJ, NK: number of grid points in each direction.

∙ numcell: total number of computational cells.





Read Porosity

The subroutine "Read Porosity" reads the porosity files from PrePro. These

are also text files and they contain the porosity values attached to each computational

cell when running PrePro. The files are identified by the case name with the extensions

".porosity.asc", ".porosity.areaX.asc", ".porosity.areaY.asc" and ".porosity.areaZ.asc". The

contents of these files are the volume porosity, the area porosity in "x" direction, the area

porosity in "y" direction and the area porosity in "z" direction, respectively.

Check Grid

In the subroutine "Check Grid" the computational grid is rebuild based on the

mesh parameters given by the "parameters" file. The computational cells are defined as

well as it is identified the connectivities between nodes, edges, faces and neighbor cells.

The cells face areas and volumes are also computed here.

Once the computational cells are defined, the porosity values are attached to

each one based on the content of the porosity files.

Inguess

The subroutine "Inguess" provides initial values for the main flow variables in

all grid. These variables are defined based on the fluid properties and flow features given

by the set up "flow" input file.

The main variable defined here are as follows:

∙ P: initial pressure of the system, taken as the reference pressure 𝑃ref .

∙ RO: initial fluid density, obtained by using isentropic correlations.

∙ E: initial fluid internal energy.

∙ Vx, Vy, Vz: velocity components in each direction. By default, the values of Vy and

Vz are taken to zero, while Vx is calculated based on the pressure field (difference

between 𝑃ref and 𝑃down)

∙ TK, TE: values of turbulent kinetic energy (TK) and eddy dissipation (TE) are

set in accordance with suggested by (ARNTZEN, 1998).

∙ FF, PV: values of fuel fraction (FF) and reaction progress variable (PV). The value

of FF is set according to the fuel type, based on its molecular weight, while PV is

set to be zero.



It is important to underline here that, as the Favre average is used in the

developed code, the variables E, Vx, Vy, Vz, TK, TE, FF and PV are weighted by the

fluid density, so their values are multiplied by "RO".

Once the main variables are defined, the secondary variables are obtained by

using the subroutine "Set Others".

Set Others

The "Set Others" routine calculates the secondary flow variables (temperature,

static pressure and the stagnation enthalpy) from the primary ones at every grid point.

This routine assumes two different types: "Set Others Cold" and "Set Others

Hot". The first one is used for cold flow simulation (without combustion), while the second

one is used for hot flow simulation (with combustion). The choice of which subroutine

will be applied depending on the "Fluid Type" specified at the set up file.

For cold flow simulation, the "Fluid Type" in the set up file must be zero.

Thus the subroutine "Set Others Cold" takes the air properties and solves the traditional

equations for compressible flows.

For combustion simulation, the "Fluid Type" in the set up file must be an

integer non-zero number: one (1) or two (2). The number (1) must be set when using

methane in the combustion simulation, while the number (2) indicates that propane will

be used. In this configuration, the "Set Others Hot" subroutine is used and solves the

equations given in section 3.5.1.1 to obtain the secondary variables.

Set Time Step

This routine calculates the Time Step ∆𝑡 for the simulation based on the

minimum mesh size and the CFL number (as shown in equation 4.15).

Solver

In the "Solver" routine the iteration process is performed. It comprises the main

loop and the sequence of subroutines that are assembled in order to solve the discretized

differential equations. The "Solver" routine returns the final flow solution to the main

program.

Turbulence

The subroutine "Turbulence" is performed when setting "1" to the "NS" term

in the set up file. It calculates the viscous stress and adds it to the diffusion terms of the



conservation equations. The turbulence kinetic energy and eddy dissipation source terms

are also computed here.

Combustion

The subroutine "Turbulence" is performed when setting "1" to the "COMB"

term in the set up file. Therefore, the combustion model equations (given in section

3.5.1.2) are computed. The reaction rate progress variable and fuel fraction source terms

are also obtained here.

Flux Mass/Energy

The convective fluxes of mass and energy are computed here, into the subrou-

tine "𝑓𝑙𝑢𝑥⊗𝑚𝑎⊗ 𝑒𝑛𝑒𝑟𝑔𝑦".

Wall BC

The wall boundary conditions are set up by performing two subroutines: "𝑤𝑎𝑙𝑙⊗

𝑏𝑐" and "𝑤𝑎𝑙𝑙 ⊗ 𝑏𝑐 ⊗ 𝑝𝑜𝑟". In both cases a solid surface (with zero normal fluxes) is im-

posed, as explained in section 4.3. However, in the first case this condition is applied at

the computational domain boundaries set as wall, while in the second case, the condition

is defined at the computational cells attached with porosity values equal to zero.

It is important to underline here that two different index can be attached when

performing the wall routines: "1" and "2". The index "1" is used in the first application of

the subroutines, just after the computation of mass and energy convective fluxes, so the

wall condition is defined for the variables RO, E, FF and PV. The index "2" is used in

the second application of the subroutines, after the computation of momentum convective

fluxes, so the wall condition is defined for the variables VX, VY, VZ, TK and TE.

Spread Prop

The subroutine "Spread Prop" calculates the changes in the variable "PROP"

(RO, E, FF, PV, VX, VY, VZ, TK and TE) based on the time step.

Update / Smooth

The subroutine "Update" distributes the changes in each variable to the grid

nodes.

The subroutine "Smooth" adds artificial viscosity to each variable based on the

value of Smooth Factor (SF) given in the set up file.



Flux Momentum

The convective fluxes of momentum, turbulent kinetic energy and eddy dis-

sipation are computed here, into the subroutine "𝑓𝑙𝑢𝑥 ⊗𝑚𝑜𝑛". This routine is preceded

by the subroutine "𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒" which calculates the resistance that unresolved obstacles

offer to a mean flow.

In / Out BC

The inflow and outflow boundary conditions are specified in the subroutine

"𝑎𝑝𝑝𝑙𝑦 ⊗ 𝑏𝑐". The values of the variables are defined according to the section 4.3. This

routine also presents an additional function "𝑛𝑜𝑟𝑚𝑎𝑙 ⊗ 𝑣" that removes the normal com-

ponents of velocity at the wall boundaries.

Check Convergence

The subroutine "𝑐ℎ𝑒𝑐𝑘⊗𝑐𝑜𝑛𝑣" checks the changes in all primary variables over

the last 5 (five) steps. The convergence criteria defined by the user at the set up input file

is compared with the variables changes and a residual is calculated as shown in equation

4.16.

Output

The "𝑜𝑢𝑡𝑝𝑢𝑡" routine writes the flow solution in a ".vtk for use by the Kitware

Paraview Program. The frequency of writing flow solution is defined by the user at the

"DUMP" term of the input set up file.

Figure 68 presents a summary of the subroutines in the developed code and

the main link between them.



Figure 68 – Routines of the developed code and the main link between them.
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