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Resumo

Nesta tese, estruturas elásticas periódicas unidimensionais e bidimensionais são modeladas
usando o método de elementos finitos das ondas (WFE), a fim de calcular bandas de frequências
proibidas e respostas forçadas harmônicas para avaliar a atenuação de vibração estrutural. Bandas
proibidas ou "band gaps", são faixas de frequência onde as ondas não podem se propagar. Band gaps
ocorrem devido a estruturas que exibem alterações periódicas em sua geometria ou propriedade
conhecidas como Cristais Fonônicos (PCs) ou a adição de ressonadores locais chamadas de Meta-
materiais Elásticos (EMs). Tais sistemas mecânicos foram estudados por vários pesquisadores nes-
tas duas ultimas décadas e suas aplicações estruturais variam de barras a placas ou até estruturas
tridimensionais. Uma contribuição deste trabalho consiste na modelagem de PCs e EMs para estru-
turas do tipo barra usando o WFE, bem como evidenciar a possibilidade da sua aplicação usando
pacotes comerciais de elementos finitos. Nestes casos, os PCs são estruturas mecânicas periódicas
cujo período é composto por elementos finitos de barra com propriedades do material ou geome-
trias contendo diferenças significativas. Os EMs são também estruturas periódicas onde o período
é composto por elementos finitos de barra contendo um ou mais ressonadores locais mecânicos
fixados periodicamente. Exemplos simulados por WFE são verificados com aqueles obtidos pe-
los métodos de elementos finitos (FE) convencional e do elemento espectral (SE), bem como são
validados com os dados experimentais obtidos em uma barra de PC real. Outra contribuição é a
modelagem por WFE de PCs usando estruturas do tipo pórtico e placa plana com período na forma
triangular. Exemplos simulados de ambos modelos são verificados pelo método do FE. Também,
EMs de estruturas tipo placa plana são modelados com ressonadores locais contínuos (CLR) us-
ando o WFE. Um CLR é um modelo tridimensional de ressonador local. Resultados numéricos de
um modelo de placa plana com CLRs periódicos sujeita à flexão são verificados pelo método do
FE. Os dados experimentais obtidos em um ME de placa plana real, construído por manufatura
aditiva, validam os resultados numéricos obtidos por WFE. A modelagem de PCs usando elemen-
tos finitos de barra de alta ordem formulados por WFE é apresentada. Resultados simulados por
WFE com modelos de barra de alta ordem são verificados com os do SE e validados com os dados
experimentais de uma barra de PC real.

Palavras-chave: guias de ondas, propagação de ondas, cristais fonônicos, metamateriais, método
dos elementos finitos.



Abstract

In this thesis, one-dimensional and two-dimensional periodic elastic structures are modeled
using the finite element wave method (WFE), in order to calculate prohibited frequency bands and
forced harmonic responses to assess the attenuation of structural vibration. Prohibited bands or
band gaps are frequency bands where the waves cannot propagate. Band gaps occur due to struc-
tures that exhibit periodic changes in their geometry or properties known as Phonic Crystals (PCs)
or the addition of local resonators called Elastic Metamaterials (EMs). Such mechanical systems
have been studied by several researchers in the past two decades and their structural applications
vary from rods to plates or even three-dimensional structures. A contribution of this work consists
of the modeling of PCs and EMs for rod-type structures using WFE, as well as highlighting the
possibility of its application using commercial finite element packages. In these cases, the PCs
are periodic mechanical structures whose period is composed of finite rod elements with material
properties or geometries containing significant differences. EMs are also periodic structures where
the period is composed of finite rod elements containing one or more local mechanical resonators
fixed periodically. Examples simulated by WFE are verified with those obtained by the conven-
tional finite element (FE) and spectral element (SE) methods, as well as being validated with the
experimental data obtained in a real PC rod. Another contribution is the WFE modeling of PCs us-
ing frame and plain plate structures with a triangular shape. Simulated examples of both models are
verified by FE method. In addition, EMs of flat plate structures are modeled with continuous local
resonators (CLR) using WFE. A CLR is a three-dimensional model of a local resonator. Numerical
results of a flat plate model with periodic CLRs subject to bending are verified by FE method. The
experimental data obtained in a real flat plate EM, built by additive manufacturing, validate the nu-
merical results obtained by WFE. It also presents the modeling of PCs using high-order finite rod
elements formulated by WFE. Results simulated by WFE with high order rod models are verified
with those of the SE and validated with the experimental data of a real PC rod.

Keywords: waveguide, wave propagations, phononic crystals, metamaterials, finite element method.
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1 INTRODUCTION

1.1 Motivation

Vibrations in structures can be described in terms of wave propagation in engineering prob-
lems. Normally, this approach is used at mid and high frequencies, when the wavelength is small
compared to the size of the structure. The following can be cited among its many applications: free
and forced vibrations, non-destructive testing, vibration transmission through of the structures and
acoustic problems. For simple cases the problem is easy to solve once the characteristics of wave
propagation are known. With the objective of better utilization and the application of many tech-
niques in science and industry, it is of great importance to understand the wave propagation theory.
This study of rods, beams, frames, plates and shells allows non-destructive testing in many cases.
Furthermore, acoustic problems, such as noise and resonance, can be detected and processed as a
technique for monitoring structural integrity.

The propagation of waves in mechanical systems was initiated in the seventeenth century
from Newton’s work (Newton (1687) apud Brillouin (1946)), in which he assumed that the speed
of sound in the air would be similar to the elastic waves in a lattice of point masses connected to
springs (Fig. 1.1) for one-dimensional propagation. The reason to use this type of model was be-
cause at that time, continuous structures had been considered insoluble problems. From this point
onwards, a series of researches started working with this theory. However, only with the contribu-
tion of Floquet (1883), which proposed analytical solutions to differential equations with periodic
coefficients, the study around of one-dimensional periodic structures was extended to continuum
models. In 1928, this study of wave propagation was extended to the 3D spatial periodicity case
by Bloch (1928). Studies of the wave behavior in periodic structures were conducted by Brillouin
(1946), in which the zone theory for 3D wavenumber presently known as Brillouin zones were
proposed.

Figure. 1.1: Newton’s one-dimensional lattice.
Source: Brillouin (1946)
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The engineering studies of periodic structures using wave propagation began to spread in
the mid-70s with Mead’s works (Mead, 1970, 1973, 1974, 1975). The effect of wave propagations
in engineering periodic structures known as "propagation constant" are currently studied by many
researchers who use this concept together with the Bloch-Bloch’s theorem. This increases the num-
ber of possibilities of finding new methods and types of structures. In recent decades, new methods
have been developed that use the same basic concepts of periodicity together with approximated
solution as a way of reducing computational cost and to solving complex engineering models that
can neither be solved analytically nor numerically using traditional methods (Mace et al., 2005;
Mencik and Ichchou, 2005; Duhamel et al., 2006; Mace and Maconi, 2008; Waki et al., 2009a).
One of them is the Wave Finite Element (WFE) method, which consists of modeling a small slice
of elastic waveguide by the Finite Element (FE) Method, where applying the periodicity condition
with Floquet-Bloch’s theorem, it is possible to obtain the transfer matrix eigenproblem. The solu-
tion provides the attenuation constant and wave-modes, from which wavenumbers, wave motion
amplitudes and Frequency Response Functions (FRFs) are obtained. The method has been applied
in various types of finite element models, such as beams, thin plates, cylindrical shells, including
wiht different material properties, couplings and mediums. Some of these periodic elastic structures
are known as phononic materials like the Phononic Cristals (PCs) and Metamaterials.

In the last decade, applied research on PCs and metamaterials has been abundant. However,
some fundamental assessments from the engineering point of view, such as model simulation (an-
alytical, numerical and hybrid) and experimental approaches developed for conventional materials
and structures, need to be employed to understand and explore metamaterial systems (HUSSEIN et

al., 2014). One of the most attractive characteristic of acoustic and elastic metamaterials is their
wave filtering behavior. This provides some frequency ranges known as band gaps or forbidden
bands where the waves cannot propagate. Band gaps are generated on spatial periodicity of the
impedance mismatch domains which produce the Bragg scattering effect. Also, Locally Resonant
(LR) mechanism (LIU et al., 2000) provide band gaps at sub-wavelength, which are well below the
Bragg scattering band gaps.

In this thesis, we are searching development and application of a numerical approach to the
wave propagation in periodic structures. In particular, we are interested in elastic structures with
changes in material and geometry or with attached resonators that occur periodically along their
length and width, known as Phononic Crystals and Metamaterials.
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1.2 Literature review

The study around periodic structures has increased over the last two decades, as shown by
Silva (2015). This section presents some research of periodic structures and their applications to
metamaterials and Phononic Crystals.

1.2.1 Periodic structure

Recently, some researchers have improved the study of one-dimensional wave propagation
in structures. Mencik and Ichchou (2005) introduced the Finite Element (FE) method in the study
of wave propagation in which a propagative approach was formulated based on a finite element
model. This improved the wave property study, expanding to complex guided structures. However,
this was possible only due to the work of Zhong and Williams (1995) which proposed a new formu-
lation to solve the eigenvalue problem. It is an eigenproblem wherein the main parameters are the
displacement instead of displacement/force and then, reduction of the problem of the inversion of
ill-conditioned matrices. Duhamel et al. (2006) as one of the precursor to the Wave Finite Element
(WFE) method demonstrated its efficacy from of forced response for a finite beam and plate-strip
by using the Dynamic Stiffness Matrix (DSM) method with propagation matrices. The method has
been applied in various types of finite element models. The solution provides the wavenumber and
corresponding wave-modes of a structure slice, from which a dispersion diagram and frequency re-
sponse functions (FRFs) of a whole structure are obtained. An issue of wave propagation in guided
elastodynamic structures filled with acoustic fluid is proposed in which many simplified analytical
models are incorporated (MENCIK AND ICHCHOU, 2006). This demonstrated that WFE is not low
frequency limited (SILVA, 2015). The WFE was extended to wave propagation in two-dimensional
structures by Mace and Maconi (2008), who analyzed numerical examples of thin isotropic and
orthotropic plates.

In 2007, some applications of the WFE method to the free and forced vibrations of one-
dimensional waveguides were studied in complicated structures (WAKI, 2007). These applications
included free wave propagation in a plate strip with free edges, a ring and a cylindrical strip, where
complicated phenomena such as curve veering, non-zero cut-on phenomena and bifurcations were
observed as results of wave coupling in the wave domain. Complex structures of unknown wave
characteristics were studied by WFE (ICHCHOU et al., 2009). As a result, reflections and transmis-
sion waves inside of these structures could be investigated. But, the WFE method by DSM approach
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has numerical difficulties, despite being easy to apply. If all the wave modes are included instead,
the calculated result breaks down. This is because of the poor numerical conditioning associated
with highest order wave modes, which are the very rapidly decaying waves. These complications
were discussed by Waki et al. (2009b) and same methods to avoid or remove them were described.

Nascimento (2009) implemented a new formulation which used the DSM that combine the
WFE method proposed by Mace et al. (2005) with the analytical natural forces obtain from move-
ment equations (DOYLE, 1997), that were called the Wave Spectral Element Method (WSEM).
These applications were made for Timoshenko and curved beams, Levy plates and high order rod
models (Mindlin-Herrmann rod model) and were validated with the SEM and WFE methods. Later,
other research was conducted that included the study of the high order rod model of Mindlin-
McNiven (NOBREGA, 2015), which was validated using a new finite element for the high order rod
model.

In 2010, the WFE method with DSM approach was used to obtain the response for the
waveguide to a convected harmonic pressure (CHP) via inverse Fourier transform (RENNO AND

MACE, 2010). On the other hand, the forced response of an elastic structure was computed by
the WFE method using Neumann-to-Dirichlet problems involving single as well as coupled struc-
tures (MENCIK, 2010). This approach improved the convergence of the WFE method when multi-
layered systems were specifically dealt with, creating a different form of the wave-based boundary
conditions that is quite stable and easy to solve. Mencik (2011) introduced a study which included
coupled elastic systems at junctions with uncertain eigenfrequencies in the WFE method by using
model reduction. He improved the selection method of the wave modes of the junction. In this
case, the mode selection can be performed in a single pre-processing step, in which it is not neces-
sary to select the modes empirically. In this case, the wave propagation is still one-dimensional of
each elastic system. Only in 2011, a response to a CHP for the two-dimensional (2D) waveguide
was computed, where the forced response of an infinite 2D homogeneous medium was obtained
(RENNO AND MACE, 2011).

Ichchou et al. (2011) introduced, for the first time, the stochastic finite element method
(SFEM) to compute the wave propagation in random periodic media, in which he combines the
uncertainty treatments with the WFE technique. This approach is called stochastic wave finite ele-
ment (SWFE). Further research in structures with a random parameter was made after this, which
included variability of coupling loss factors (BEN SOUF et al., 2013b) and energy propagation in
random viscoelastic media (BEN SOUF et al., 2013a). Later, this method was computed for a sec-
ond order perturbation (BOUCHOUCHA et al., 2017) and extended to 1D and 2D forms (SINGH et
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al., 2020).

A study of a hybrid finite element/wave method was made with the aim to compute the reflec-
tion and transmission coefficients of joins in the coupling of waveguides (Renno and Mace, 2013,
2014). Other research was performed in this same direction. In this case, a wave finite element-
based formulation for flat shells was presented by Mencik (2013), wherein the coupling of these
structures was computed using an assembly of the wave amplitudes. Besides, the forced response
was computed from a model reduction strategy, in which a norm-wise error analysis was proposed
for any waveguide to reduce the wave basis (MENCIK, 2012).

Lee (2009) proposed several of research that use the periodicity effect to obtain analytical
solution of elastic standard structures (rod, beam, truss, etc.). This approach is known as the Spec-
tral Element Method (SEM). This technique was combined with FEM, which resulted in a semi-
analytical method called WSEM (NASCIMENTO, 2009). But this method was still restricted to
simple structures, such that for modeling complex structures it required cumbersome analytical
formulations. However, this problem was circumvented by Silva et al. (2013), who build spectral
finite elements from a finite element model of a slice of a structural waveguide with an arbitrary
cross section and, potentially, of arbitrary order. This approach was called the Wave Spectral Finite
Element Method (WSFEM).

A new advanced technique to compute forced response using the WFE was created, which
circumvented numerical issues like ill-conditioning and instability (MENCIK, 2014). However, al-
though the WFE was computed for a finite element model to complex geometries, it was still
restricted to symmetric models. This was broken down when a generalized eigenproblem based on
the 𝑆+𝑆−1 transformation was proposed, in which periodic structures with arbitrary-shaped slices
could be computed by WFE (MENCIK AND DUHAMEL, 2015).

Many applications of one-dimensional propagation with the WFE approach were studied in
recent years. For instance, the following can be cited: acoustic radiation of axisymmetric fluid-filled
pipes (BHUDDI et al., 2015); a 2D frame structure under plane stresses and a 3D aircraft fuselage
involving stiffened cylindrical shells, in which some another approaches were developed, ie. the Re-
ceptance Matrix (RM) (SILVA et al., 2015); periodic structures with local perturbations (MENCIK

AND DUHAMEL, 2016); a strategy to compute the dynamic flexibility modes of structures with
cyclic symmetry (MENCIK, 2017); rotating periodic structures, which include asymmetric wave
propagation due to the gyroscopic effect (BELI et al., 2018).
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But there are also advances in the research of models with two-dimensional periodicity,
such as: the wave finite element application to prediction of noise transmission and radiation in
infinite panels, where fluid-structure interaction was modeled in two-dimensional media (YANG

et al., 2017); and a hybrid FE/WFE approach to compute the wave transmission through two-
dimensional structures, in which a coupling was made between two plates using a join modeled by
WFE and FE methods, respectively (MITROU et al., 2017).

1.2.2 Metamaterial

A theoretical and experimental study of longitudinal wave propagation in a rod structure
including periodic local resonators was presented by Wang et al. (2006). They showed that both
results produce an asymmetric band gap attenuation which is influenced by local resonator stiffness
and mass ratios. Nevertheless, this work was centered on the band gaps conception and its property
to attenuate vibration, without exploring the band gap formation mechanisms fully. Later, analytical
models of resonant structures were provided to understand these band gap mechanisms formation
(XIAO et al., 2011), wherein the formulations were derived based on the transfer matrix method. It
was demonstrated, for instance, that there are asymmetric/symmetric attenuation behaviors within
a resonance gap.In addition, it has been proven that, with the inclusion of the resonator system,
they cause not only the resonance gap, but also the Bragg effect.

More recently, a theoretical and numerical study of a locally resonant elastic metamaterial
rod system with periodic multi-degree-of-freedom (M-DOF) resonators was presented by Xiao et

al. (2012a). The band gap behavior and vibration attenuation performance was analyzed in a more
systematic way. A new metamaterial rod model, based on a combination of the spectral element
method and Floquet-Bloch’s theorem was proposed, which will be called here the Wave Spectral
Element Method (WSEM) (XIAO et al., 2012a). They provided explicit expressions to predict band
edge frequencies, demonstrated that both Bragg- and resonance-type band gaps co-exist in metama-
terial rods and that multiple resonance band gaps can be achieved using M-DOF Local Resonators.
These authors had also applied WSEM for band gap investigation in flexural metamaterial beams
with local resonators (XIAO et al., 2013). An analytical model of plate metamaterals was also pre-
sented that increased the sound absorption, in this case the study was about coupled vibroacoustic
modeling of acoustic metamaterials (CHEN et al., 2014). Still studying the mechanisms for the for-
mation of the band gap, Colombi et al. (2014) showed that it is possible to concentrate energy on a
specific point of the structure by creating a defect in the periodic distribution of the resonators sys-
tem. Its was still concluded, that independent of a random or regular arrangement of the resonators,
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the metamaterial shows large bandgaps.

Khajehtourian and Hussein (2014) presented a study of wave dispersion in a nonlinear elas-
tic metamaterial rod system with periodically attached local resonators. The type of nonlinearity
considered is large elastic deformation. The metamaterial rod model is based on a combination
of the standard transfer matrix method and Floquet-Bloch’s theorem. The results demonstrate that
nonlinearities on metamaterial rods can affect band gap position, width, and its type (Bragg scatter-
ing or local resonance). They showed that large deformation alone may induce a pair of Bragg- and
resonance-type band gaps to merge in to one hybrid and form a combined wide band gap. They also
showed that as the wave amplitude increases, the effect of the nonlinearity on the metamaterial rod
system is no longer negligible and the error incurred by assuming linear elastic wave propagation
theory increases quickly.

Casadei and Bertoldi (2014) presented a study of a beam metamaterial wherein the resonators
are represented by airfoil-shaped attached at a beam by means of a linear and torsional spring. An
analytical and numerical study was conducted on the influence of fluid speed on the band gaps.
Dispersion characteristics of the fluid-coupled waveguide were computed by the transfer matrix
method where the aerodynamic coupling in system was considered.

Another kind of metamaterial, called metaconcrete was proposed by Mitchell et al. (2014),
in which sand and gravel aggregates of standard concrete would be replaced with spherical inclu-
sions consisting of a heavy metal core coated with a soft outer layer. These type of structures are
able to scatter the energy from localized oscillatory motions, which causes a reduction of the stress
in the mortar phase, enhancing its ability to sustain the applied dynamic actions without damage.
Research that was also based in inclusions to generate band gaps due to local resonance was intro-
duced by Torrent et al. (2014). In this case, the resonance was caused by arrangements of scatterers
attached to a thin elastic plate. This metamaterial was modeled based on the multiple scattering
theory.

In 2015, an elastic metamaterial plate was composed in which the resonators were represented
bu two-degree of freedom mass-string systems modeled as Multi-stopband with the aim to represent
vibration absorbers (PENG et al., 2015). Besides the study of resonance with M-DOFs, the effect
that the resonators geometric form implies in the band gab behavior and how this influences its
tuning characteristics was investigated (WANG et al., 2015). The acoustic behaviors of these models
was studied by considering defect inclusions.
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An acoustic duct metamaterial was developed analytically and validated with the finite el-
ement method (FAROOQUI et al., 2016b). The sound attenuation was produced by use of locally
resonant periodic aluminum patches. In this case the aluminum patches represented the Helmholtz
resonator that create frequency stop bands at the low frequency zone. An experimental validating
was made from the transmission spectra of resonant aluminum patches flush-mounted to acoustic
duct walls (FAROOQUI et al., 2016a).

There is research that developed elastic metamaterial plates with the aim to create the cloak
effect (LEE AND KIM, 2016). Metamaterial cloaking has the capability to control incident waves
that are guided around them without being affected by the object itself, which torn this struc-
ture invisible or insensible. An other interesting application for metamaterials was made by (QI et

al., 2016), by creating a planar acoustic metamaterial with the objective of studying the acoustic
energy harvesting. This was made by introduction of a piezoelectric material in a structure position
where the acoustic energy is concentrated, for instance, in a metamaterial defect position.

The WFE method was used to compute wave propagation in elastic metamaterials for the
first time by Silva et al. (2016). The aim of this study was to use the WFE for passive vibration
control. Two numerical examples were presented: an one-dimensional structure with resonators
spaced periodically along its length; and a 3D fuselage-like structure with an array of local res-
onators attached periodically. After, other research was presented using the same approach for a
different application (NÓBREGA AND DOS SANTOS, 2019). In this case the resonator was modeled
using many DOFs, which was called Continuous Local Resonator (CLR). A 3D wave propagation
modeled by WFE using the metamaterial concept was developed by Poggetto et al. (2019).The
local resonance effect was explored in several applications in plate during this period (Wang et al.,
2016a; Titovich et al., 2016; Wang et al., 2016b; Liu et al., 2018; Miranda et al., 2019), which
include analytical, numerical and experimental analyses.

The uncertain material construction it has also been used to compute wave propagation in
elastic metamaterial structure. Duranteau et al. (2016) used a subwavelength dipolar resonance
to obtain random acoustic waves. After, a beam was computed by wave finite element method
to obtain uncertain behavior from random parameter (MACHADO et al., 2016). Beli et al. (2019)
analyzed the variability in 3D printed metamaterial beams, ie., he evaluated the variation in atten-
uation in metamaterial beams due to 3D printing, which was motivated by the differences between
numerical and experimental measurements.
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1.2.3 Phononic cristals

Recently, some researchers studied the effect in structures when periodic inclusions are added
(XIAO et al., 2012b), these is a change in geometry (NOBREGA et al., 2016) or material (XIANG

AND SHI, 2009), or even by material inclusions (SUN AND WU, 2007). Also known as Phononic
Crystals or metamaterials, this kind of structure has a "wave filtering" property, thus waves can-
not propagate freely through the periodic structures within some frequency ranges, which are also
called band gaps (XIAO et al., 2012a). In (SILVA et al., 2011a), an analytical spectral element for
periodic rods was modeled with the aim to see this band gap effect on the audio frequency range.
The existence of the band gaps in the dynamic responses were demonstrated with experimental
and numerical tests. This trait of Phononic Crystals is sometimes created by inclusions or material
characteristics that have a smaller wavelength when compared to its base material or geometry.
Xiang et al. (2012) demonstrated that it is possible to apply the Phononic Crystal characteristics to
create a vibration isolator using periodic foundations. By using a one-dimensional periodic mate-
rial, a foundation composed of rubber and reinforced concrete was capable of creating band gaps
in the same critical band frequencies of the civil structure. In the work of Zhang et al. (2013) the
Transfer Matrix (TM) method and Bloch theorem are used to investigate PC Euler beams on a
two-parameter foundation. They show that a PC Euler beam on this kind of foundation has better
vibration isolation characteristics, when compared with the homogeneous Euler beam.

The band gap phenomenon was shown in many models of structures, like rods, beams, plates,
etc., ie., a study of a silicon PC plate, where the inclusion was composed of air (MOHAMMADI et

al., 2008). PCs are structures that can be modeled by using alternated material or transversal sec-
tions along its length (MIRANDA et al., 2019). Hussein et al. (2014) presented a historical approach
to the evolution of research on these new types of materials. This review showed elastic configura-
tions ranging from trusses and ribbed shells to phononic crystals and metamaterials. PC rods and
Beams are also modeled to control wave propagation in elastic structures piezoelectric material
(Ponge et al., 2016; Croënne et al., 2016). The advance in use of these electric devices is because
the material itself can be changed depending on necessity without any structural adjustment. Tak-
ing into account these characteristics, a structural system can be easily adjusted to filter critical
frequencies band.

The local resonance is also used to enlarge the band frequency affected by the band gap of
a PC plate as observed in Assouar and Oudich (2012). In this case, the inclusions are composed
of two different material. PC structures can be constructed for material inclusions, but they can be
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made also, from material extraction (LUCKLUM et al., 2012), where the scatter is represented by
geometric variation. The scattering effect can be also represented by a junction of some of these
structural characteristics, for instance, Assouar et al. (2014) made a hybrid elastic PC plate that
has both inclusions and holes arranged along its length. He built a plate with pillars and holes with
scattering function to create stop bands with a significant widening and lowering of the acoustic
band gap.

A lot of other researches was made over these years, which include from everything sim-
ple design with analytical (HVATOV AND SOROKIN, 2015) and numerical applications (SHU et

al., 2016), to complex projects such as topological guiding analysis of wave propagations (GUO et

al., 2017). A review of Phononic Crystals and Metamaterials was made which include a historical
evolution of the behavior presented of this kind of structures up until the present day (WANG et

al., 2020). A prospection of future promising study from of this emerging field was presented.
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1.3 Objectives

The main objective of this thesis is to explore new formulations to model structural phononic
crystal and elastic metamaterials based on the Wave Finite Element method. The specific objectives
of this thesis are listed as follows:

∘ To numerically and experimentally evaluate the elementary rod model of conventional finite
element to modeling PCs and MEs using WFE;

∘ To demonstrate the applicability of commercial FE software to calculate structural PCs and
EMs using WFE;

∘ To investigate the bandgap in couping flat PC plates with a triangular shape in order to eval-
uate two levels of Bragg scattering band gaps;

∘ To compute the WFE method using continuous local resonators (CLRs) designed as a mass-
spring system in elastic structures;

∘ To analyze flexural band gaps in EM plates with CLR in comparison with experimental tests;

∘ To analyze the effect of band gaps on PC rods with higher order models.
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1.4 Outline of the thesis

In Chapter 2, the wave finite element (WFE) is presented for 1D, 2D and 3D structures with
wave propagation in one direction. The eigenproblem is provided for symmetric and asymmet-
ric structures. The formulation of waveguides coupling to two consecutive plates is extended to
several consecutively coupled plates by using the scattering matrix. Finally, a new formulation is
obtained for the case that we have periodic couplings, which may make it possible to reduce the
computational cost and to obtain the dispersion diagram.

In this thesis, both Bragg and local resonance band gaps to achieve multiband and broad-
band vibration in rods are explored. Parametric influence on the bandgap behavior, as well as the
bandgap formation mechanisms, are examined. Two examples illustrating its efficiency and ac-
curacy to model an elastic metamaterial rod unit-cell using a 1D simple rod and a 3D solid finite
element are demonstrated and the results present good approximation to the experimental data (No-
brega et al., 2016; Nobrega and Dos Santos, 2015). These research are addressed in Chapters 3 and
4.

A investigate of wave propagation along periodic structures made of several PC beams ar-
ranged in a triangular shaped pattern. Each of these beams was itself made of a periodic distribu-
tion of different material strips. This creates two levels of periodic variations. Two-scale band gaps
are created, one due to the variation of the angle and the other due to the material change. This
research is addressed in Chapter 5, where the same study is made with flat plates. Results observed
in the FRFs show that band gap occur due to change of material, but the biggest effect appears with
the change of direction of the waveguide that is made by rotating the wave modes (NOBREGA et

al., 2018).

Is still shown, an elastic metamaterial reinforced-plate modeling by WFE and conventional
FE methods. Continuous local resonators (CLR) are designed as a mass-spring system constructed
using a solid cubical block (mass) connected by four very small beams (springs) to the plate
stiffener-beams. In order to attenuate the plate excitation responses, the CLRs are designed to
be tuned at the second plate natural frequency. Then, the CLR’s first natural frequency is tuned
approximately equal to that. The reinforced-plate metamaterial behavior is analyzed using the dis-
persion diagram and forced responses (FRFs). The forced response calculated by WFE is verified
using the conventional FE method. Results show that band gaps occur in more than one mode and
the corresponding responses at these modes are attenuated (NOBREGA AND DOS SANTOS, 2019).
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This research is addressed in Chapter 6.

Another example plate with CLR was printed on 3D printer with UV curing technology.
Numerical results are obtained by a model of the FE methods and PWE method of this plate. The
results are validated with the experimental data (MIRANDA et al., 2019). After this, an analysis
of FRF and dispersion diagram is computed by the WFE method and results are discussed and
compared with the FE method and experimental data, Chapter 7.

In Chapter 8, a study of a higher order rod is made, where the dispersion diagram and FRFs
are computed by WFE method and the results are compared with the STM method. Analysis of
three high order mode is made: Love’s rod, with only one mode; Mindlin-Herrmann’s rod, with
two modes; and Mindlin-McNiven’s rod, with three modes.

In Chapter 9, general conclusions regarding this thesis are drawn. Then, original contributions
of this study are highlighted in a list of the publications that resulted during progress of the thesis.
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2 WAVE FINITE ELEMENT METHOD

The method is presented here for the analysis of wave propagation in elastic structures. In this
method the mass and stiffness matrices of a small slice of the structure modeled by the conventional
finite element method is used for the application of periodicity conditions in the propagation of
a harmonic perturbation across the structure. The periodicity conditions result in an eigenvalue
/ vector problem whose formulation produces the equations of force-displacement relations of the
structure. The method has been used for free and forced vibration analysis (DUHAMEL et al., 2006)
with applications to uni and bidimensional models (Mace and Maconi, 2008; Mencik, 2008).

2.1 Finite element and transfer matrix

The WFE method consists to model a slice (Fig. 2.1(b)) of the periodic structure (Fig. 2.1(a))
by FE method and find the dynamic stiffness matrix, using the equilibrium equation given as,

Figure. 2.1: Model of a periodic structure: (a) plate; (b) slice

(K− 𝜔2M)u = F or Du = F, (2.1)

where, K and M are the stiffness and mass matrix, u is the displacement vector, F is the external
force vector, and 𝜔 is the circular frequency. The dynamic stiffness matrix ( D) can be partitioned
as: ⎡⎢⎣ D𝑖𝑖 D𝑖𝑙 D𝑖𝑟

D𝑙𝑖 D𝑙𝑙 D𝑙𝑟

D𝑟𝑖 D𝑟𝑙 D𝑟𝑟

⎤⎥⎦
⎧⎪⎨⎪⎩

u𝑖

u𝑙

u𝑟

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
F𝑖

F𝑙

F𝑟

⎫⎪⎬⎪⎭ , (2.2)
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where 𝑙, 𝑖 and 𝑟 represents the left, internal and right degrees-of-freedom (DOF), respectively. To
computing the WFE method is necessary to obtain a relationship between the left and right sides
of the slice. This relation is performed by the transfer matrix. Because of this, it is necessary to
condense the internal DOFs of the dynamic stiffness matrix. Considering F𝑖 = 0 in the Eq.(2.2),
the internal displacement can be obtained by:

u𝑖 = D−1
𝑖𝑖 (D𝑖𝑙u𝑙 + D𝑖𝑟u𝑟). (2.3)

Substituting Eq. (2.3) into Eq. (2.2) the condensed dynamic stiffness matrix is obtained as,[︃
D𝑙𝑙 D𝑙𝑟

D𝑟𝑙 D𝑟𝑟

]︃{︃
u𝑙

u𝑟

}︃
=

{︃
F𝑙

F𝑟

}︃
, (2.4)

where, D𝑙𝑙 = D𝑙𝑙 − D𝑙𝑖D
−1
𝑖𝑖 D𝑖𝑙, D𝑟𝑙 = D𝑟𝑙 − D𝑟𝑖D

−1
𝑖𝑖 D𝑖𝑙, D𝑙𝑟 = D𝑙𝑟 − D𝑙𝑖D

−1
𝑖𝑖 D𝑖𝑟, D𝑟𝑟 =

D𝑟𝑟 −D𝑟𝑖D
−1
𝑖𝑖 D𝑖𝑟.

Equation (2.4) can be transformed in a transfer matrix formulation by creating a state vector
q = {u F}𝑇 , and applying this in the Eq. (2.4) to obtain,{︃

u𝑟

−F𝑟

}︃
⏟  ⏞  

q𝑟

=

[︃
−D−1

𝑙𝑟 D𝑙𝑙 −D−1
𝑙𝑟

D𝑟𝑙 −D𝑟𝑟D
−1
𝑙𝑟 D𝑙𝑙 −D𝑟𝑟D

−1
𝑙𝑟

]︃
⏟  ⏞  

T

{︃
u𝑙

F𝑙

}︃
⏟  ⏞  

q𝑙

. (2.5)

2.2 Floquet-Bloch’s theorem and eigenvalue problem

Applying the Floquet-Bloch’s theorem for a 𝑚 slice and considering consecutive slices, dis-
placement continuity condition, and the force balance (Mead, 1973):{︃

u
(𝑚)
𝑟

−F
(𝑚)
𝑟

}︃
=

[︃
𝜇𝑞 0

0 𝜇𝐹

]︃{︃
u
(𝑚)
𝑙

F
(𝑚)
𝑙

}︃
or q𝑟 = 𝜇q𝑙, (2.6)

the Eq. (2.5) becomes an eigenproblem given by,

T

{︃
u
(𝑚)
𝑙

F
(𝑚)
𝑙

}︃
= 𝜇

{︃
u
(𝑚)
𝑙

F
(𝑚)
𝑙

}︃
or Tq𝑙 = 𝜇q𝑙, (2.7)
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where 𝜇 = 𝑒−𝑖k𝐿 are the eigenvalues, 𝛼 = −𝑖k𝐿 is the attenuation constant given as function of
the wavenumber k, 𝐿 the slice length and 𝑖 the imaginary unit. To avoid ill-conditioning likely to
occur in matrix D−1

𝑙𝑟 for symmetric structures, the Eq. (2.7) can be rewritten in a representation by
displacement vector alone (ZHONG AND WILLIAMS, 1995), where F𝑙 = {−D𝑙𝑙u𝑙 −D𝑙𝑟u𝑟} and
F𝑟 = {−D𝑟𝑙u𝑙 −D𝑟𝑟u𝑟}, then the Eq. (2.6) be came:

𝜇

[︃
I𝑛 0

−D𝑙𝑙 −D𝑙𝑟

]︃
⏟  ⏞  

L

{︃
u𝑙

u𝑟

}︃
⏟  ⏞  

w

=

[︃
0 I𝑛

D𝑟𝑙 D𝑟𝑟

]︃
⏟  ⏞  

N

{︃
u𝑙

u𝑟

}︃
⏟  ⏞  

w

(2.8)

where I𝑛 is the identity matrix of rank 𝑛 and w is the displacement vector associated to the slice. It
can also be shown that 𝜇 and Lw = Φ are eigenvalues and eigenvectors of Eq. (2.7), respectively.
The wave that traveling to the right and left directions are represented by |𝜇𝑗| ≤ 1 and |𝜇𝑗| ≥ 1

eigenvalues respectively with the corespondent Φ𝑗 , where 𝑗 = 1,2, . . . ,𝑛. In matrix form, the wave
shapes are:

Φ =

[︃
Φ𝑢 Φ⋆

𝑢

Φ𝐹 Φ⋆
𝐹

]︃
, 𝜇 =

[︃
𝜇 0

0 𝜇⋆

]︃
(2.9)

where Φ𝑢 and Φ𝐹 are related to the displacement/rotation and force components respectively with
𝑛 order. And the symbol ⋆ represent the wave modes that traveling in the left direction related to
modes.

If the structure is not symmetric, then it may be used the so-called S + S−1 transformation
(MENCIK AND DUHAMEL, 2016), (PATEL, 1993), which keep the symplectic structure of the prob-
lem by a generalized eigenproblem where the wave that out going from right to left are 𝜇⋆𝑗 . This
new problem is given by:

(︀
(Ń JĹ 𝑇 + Ĺ JŃ 𝑇 ) − 𝜆𝑗Ĺ JĹ 𝑇

)︀
zj = 0 (2.10)

where

Ĺ =

[︃
0 I𝑛

−D𝑙𝑟 0

]︃
, Ń =

[︃
Drl 0

−(D𝑙𝑙 + D𝑟𝑟) −I𝑛

]︃
,

(Ń JĹ 𝑇 + Ĺ JŃ 𝑇 ) =

[︃
D𝑟𝑙 −D𝑙𝑟 D𝑙𝑙 + D𝑟𝑟

−(D𝑙𝑙 + D𝑟𝑟) D𝑟𝑙 −D𝑙𝑟

]︃
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and

Ĺ JĹ 𝑇 = Ń JŃ 𝑇 =

[︃
0 −D𝑟𝑙

D𝑙𝑟 0

]︃
with J =

[︃
0 I𝑛

−I𝑛 0

]︃

Knowing that 𝜆𝑗 = 𝜇𝑗 + 1/𝜇𝑗 is possible find the wave parameters 𝜇𝑗 and 1/𝜇𝑗 by solving
the quadratic equation 𝑥2 − 𝜆𝑗𝑥 + 1. Its respective wave shapes can be found from the eigenvalue
z𝑗 of the Eq. 2.10 as follows:

Φ𝑗 =

[︃
I𝑛 0

D𝑟𝑟 I𝑛

]︃
ẃ𝑗 with ẃ𝑗 = J(Ĺ 𝑇 − 𝜇⋆𝑗Ń

𝑇 )z𝑗

and

Φ⋆
𝑗 =

[︃
I𝑛 0

D𝑟𝑟 I𝑛

]︃
ẃ ⋆

𝑗 with ẃ ⋆
𝑗 = J(Ĺ 𝑇 − 𝜇𝑗Ń

𝑇 )z𝑗

The wave mode are computed for a great number of frequencies 𝜔𝑚. The problem is to
identify between all the defined modes in a frequency 𝜔𝑚+1 which correspond the mode 𝑖 defined
in the previous frequency 𝜔𝑚 (Fig. 2.2(a)). Then, sufficiently small ∆𝜔 wave mode 𝑗 defined at
angular frequency 𝜔 + ∆𝜔 is such that:

⎮⎮⎮⎮ Φ𝑖(𝜔)𝐻Φ𝑖(𝜔 + ∆𝜔)

‖Φ𝑖(𝜔)‖‖Φ𝑖(𝜔 + ∆𝜔)‖

⎮⎮⎮⎮ = 𝑚𝑎𝑥

{︂⎮⎮⎮⎮ Φ𝑖(𝜔)𝐻Φ𝑗(𝜔 + ∆𝜔)

‖Φ𝑖(𝜔)‖‖Φ𝑗(𝜔 + ∆𝜔)‖

⎮⎮⎮⎮}︂ . (2.11)

This is the Modal Assurance Criterion - MAC (ALLEMANG, 2003). It is used to estimate
a correlation between the wave shapes, where 𝑗 is the mode of frequency 𝜔 + ∆𝜔 with higher
correlation with the mode 𝑖 of the frequency 𝜔. In the figure 2.2 is shown the dispersion curves
organized (Fig.2.2(b)) and unorganized (Fig. 2.2(a)) modes of a slice with ten Kirchhoff-Love plate
element according to the figure 2.3.

2.3 Wave expansion

The state vectors q(𝑚) for a finite structure can be expressed as (SILVA et al., 2014):

q(𝑚) =
𝑛∑︁
𝑗=1

(Φ𝑗𝑄
(𝑚+1)
𝑗 + Φ⋆

𝑗𝑄
⋆
𝑗
(𝑚+1)) =

𝑛∑︁
𝑗

(Φ𝑗𝜇𝑗𝑄
𝑚
𝑗 + Φ⋆

𝑗𝜇
⋆
𝑗𝑄

⋆
𝑗
𝑚), (2.12)
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(a) Unorganized mode
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(b) Organized mode

Figure. 2.2: Dispersion curve of a slice with 10 Kirchhoff-Love plate element.

Figure. 2.3: Slice with 10 Kirchhoff-Love plate element.

with 𝑚 = 1,2,3,...,𝑁,𝑁 + 1, where 𝑁 is the slice number, 𝑘𝑗 is the wavenumber. Q(𝑚+1)
𝑗 and

Q
(𝑚)
𝑗 are the wave vector amplitudes at the interface 𝑚+ 1 and 𝑚, respectively (Fig. 2.4). Defining

the amplitude vectors Q = Q(1) and Q⋆ = Q⋆ (𝑁+1) at the extremities of a structure, as illustrated
in Figure 2.5, the Eq. (2.12) may be rewritten as follows:

q
(𝑚)
𝑙 = Φ𝜇𝑚−1Q + Φ⋆𝜇𝑁+1−𝑚Q⋆, 𝑚 = 1 . . . 𝑁 + 1. (2.13)

One way to solve the Eq. (2.13) is by finding the wave amplitudes (Q,Q⋆) in the boundary through
the Neumann and Dirichlet conditions at the left and right side of the structure. Consider that have
a force on the left (F0) and a displacement/rotation (u0) on the right sides of the structure, the Eq.
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Figure. 2.4: Example of a two consecutive slices.

Figure. 2.5: Example of a plate containing 12 slices where Q = Q(1) and Q⋆ = Q⋆ (𝑁+1).
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(2.13) be comes:

ΦF Q + Φ⋆
F 𝜇

𝑁 Q⋆ = −F0, (2.14)

Φq 𝜇
𝑁 Q + Φ⋆

q Q
⋆ = u0. (2.15)

The computation of Q and Q⋆ follows from the inversion of the resulting matrix system[︃
ΦF Φ⋆

F𝜇
𝑁

Φu 𝜇
𝑁 Φ⋆

u

]︃[︃
Q

Q⋆

]︃
=

[︃
−F0

u0

]︃
, (2.16)

However, the inversion of the matrix in the Eq. (2.16) may suffer with singularity problem.
This can be observed both in the ratios between the diagonal components 𝜇𝑁 and in the divisions
between the components of modes Φu and ΦF, that can have value extremely big. This problem is
solved by rewriting the Eq. (2.16) as follows:[︃

I𝑛 Φ−1
F Φ⋆

F𝜇
𝑁

Φ⋆−1
u Φu 𝜇

𝑁 I𝑛

]︃[︃
Q

Q⋆

]︃
=

[︃
−Φ−1

F F0

Φ⋆−1
u u0

]︃
, (2.17)

Then, by the solution of Eq. 2.17, the amplitude ratios of the waves are obtained which can
be replaced in Eq. 2.13 to find the displacement and forces.
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3 METAMATERIAL ROD WITH ATTACHED RESONATORS USING
MULTI-DEGREES-OF-FREEDOM

This Chapter is based in the reference Nobrega et al. (2016) and Nobrega and Dos Santos
(2015). The bandgap determination of periodic system is formulated using analytical (Wave Spec-
tral Element - WSE) and numerical (Wave Finite Element - WFE) methods. They are computation-
ally implemented, evaluated and compared with results from the literature and between methods.
It is also explored both Bragg and local resonance band gaps to achieve multiband and broadband
vibration in rods. Parametric influence on the bandgap behavior, as well as the bandgap formation
mechanisms are examined. In addition, a bandgap sensitivity analysis is computed.

3.1 Metamaterial cell model

Find the dynamic stiffness matrix (DSM) of a EM rod is an intrinsic condition for WFE
method (Cap. 2). It is possible by considering a locally resonant elastic metamaterial rod system
with infinite cells with periodic externally attached identical M-DOFs resonators (Fig. 3.1) with 𝐿
length. Where a mass-spring system in series represent the M-DOFs resonators with 𝑁 degrees-
freedom. This can be represented by the equilibrium equation of the resonator given by :

⎛⎜⎜⎜⎝
[︃
𝑘1 k𝑙𝑟

k𝑟𝑙 k𝑟𝑟

]︃
⏟  ⏞  

K

−𝜔2

[︃
𝑚0 0

0 m𝑟𝑟

]︃
⏟  ⏞  

M

⎞⎟⎟⎟⎠
{︃
𝑢0

u𝑟

}︃
⏟  ⏞  

u

=

{︃
𝐹0

F𝑟

}︃
⏟  ⏞  

F

or Du = F (3.1)

Figure. 3.1: EM rod with𝑁𝐶 consecutive cells. Each cell have a resonator with N degrees-freedom.

where D = K − 𝜔2M, the index 𝑙 and 𝑟 represent left and right sides of resonators, 𝑚0,
𝑞0 and 𝐹0 are the mass, displacement and force, respectively of the attachment point between the
resonator and the rod cell. This approach was initially proposed Xiao et al. (2012b) from the Wave
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Spectral Element Method (WSEM). The submatrices and subvectors of the Eq. (3.1) are given by:

k𝑟𝑙 = k𝑇𝑙𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−k1

0

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, k𝑟𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑘1 + 𝑘 + 2 −𝑘2 0 . . . 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3 . . .
...

0 −𝑘3
. . . . . . 0

...
... . . . 𝑘𝑁−1 + 𝑘𝑁 −𝑘𝑁

0 0 . . . −𝑘𝑁 𝑘𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

m𝑟𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑚1 0 0 . . . 0

0 𝑚2 0 . . . 0

0 0
. . . . . .

...
...

... . . . 𝑚𝑁−1 0

0 0 . . . 0 𝑚𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, u𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑢1

𝑢2
...

𝑢𝑁−1

𝑢𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and F𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐹1

𝐹2

...
𝐹𝑁−1

𝐹𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Once that, no exist external force in resonator (F𝑟 = 0), the Eq. (3.1) can be rewritten as
𝐹0 = 𝐷0𝑢0, where 𝐷0 = 𝑘1 − k𝑙𝑟(k𝑟𝑟 − 𝜔2m𝑟𝑟)−1k𝑟𝑙 is the resonator dynamics stiffness at the
attachment point. This approach can be use for both method, WSEM and for the proposed method,
the WFEM.

The equilibrium equation for a finite rod slice is similar to Eq. (3.1). But, its Dynamic Stiff-
ness Matrix (DSM) is given by D𝑟𝑜𝑑 = K𝑟𝑜𝑑 − 𝜔2M𝑟𝑜𝑑, where K𝑟𝑜𝑑 and M𝑟𝑜𝑑 are obtained from
a analytical or numeric rod model. For the analytic case presented by Xiao et al. (2013), the DSM
developed from of the Spectral Element Method (SEM) is given by the equation 3.2 (LEE, 2009),
which is proposed as reference method.

D𝑒
𝑆𝑙𝑖𝑐𝑒𝑠𝑒𝑚 = 𝐸𝐴𝛽

[︃
cot(𝛽𝐿) − csc(𝛽𝐿)

− csc(𝛽𝐿) cot(𝛽𝐿)

]︃
, (3.2)

The numerical case is formulated here as a new way to compute metatmaterial rods, in which
the DSM is developed from of the Finite Element Method (FEM). In this case, the DSM is given by
dynamic stiffness element matrices represented by D𝑒

𝑆𝑙𝑖𝑐𝑒𝑓𝑒𝑚 = K𝑒
𝑆𝑙𝑖𝑐𝑒𝑓𝑒𝑚 − 𝜔2M𝑒

𝑆𝑙𝑖𝑐𝑒𝑓𝑒𝑚, where

K𝑒
𝑆𝑙𝑖𝑐𝑒𝑓𝑒𝑚 =

𝐸𝑆

𝐿

[︃
1 −1

−1 1

]︃
, M𝑒

𝑆𝑙𝑖𝑐𝑒𝑓𝑒𝑚 =
𝜌𝑆𝐿

6

[︃
2 1

1 2

]︃
(3.3)
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are FEM stiffness and mass element matrix, respectively. The dynamic stiffness global matrix is
given by, D𝑆𝑙𝑖𝑐𝑒𝑓𝑒𝑚 = K𝑆𝑙𝑖𝑐𝑒𝑓𝑒𝑚 − 𝜔2M𝑆𝑙𝑖𝑐𝑒𝑓𝑒𝑚, where K𝑆𝑙𝑖𝑐𝑒𝑓𝑒𝑚 and M𝑆𝑙𝑖𝑐𝑒𝑓𝑒𝑚 are the stiffness
and mass global matrix, respectively, which are an assembly of as many stiffness and mass element
matrices as required to obtain convergence.

This 𝐷𝑆𝑙𝑖𝑐𝑒𝑓𝑒𝑚 matrix can be partitioned as in Eq. 2.2 and by coupling the local resonator
with the finite rod, results:

[︃
𝐷𝑙𝑙 +𝐷0 D𝑙𝑟

D𝑟𝑙 D𝑟𝑟

]︃
⏟  ⏞  

𝐷𝑆

{︃
𝑢𝑙

u

}︃
=

{︃
𝐹𝑙

F

}︃
(3.4)

where 𝐷𝑆 is the dynamic stiffness matrix of the elastic metamaterial Slice. As result, the
WFE method is used to obtain the wavenumber and wave modes from of this matrix.

3.2 Numerical Verification

Examples with single (S-DOF) and multi (M-DOF) degree-of-freedom attached local res-
onators are modeled in an elastic system of rod. They are organized in three examples as shown in
Tab. 3.2 and Its geometry and property are in Tab. 3.1. In the results, the WFE and WSE methods
are compared. More details are in the Nobrega et al. (2016) and Nobrega and Dos Santos (2015).

Table. 3.1: Elastic metamaterial rod geometric parameters and material properties.

Geometry/Property Value
Unit-cell length (𝐿) 0.05 m
Cross section area (𝑆) 50 × 10−6 m2

Number of unit-cells (𝑁𝑐) 8
Young’s modulus (𝐸) 1.5 × 1010 Pa
Mass density (𝜌) 1200 kg/m3

Structural damping (𝜂) 0.02

In the simulated examples, an equivalent mass 𝑚0 = 0.016 is included at the attachment
point of the local resonator, which represent the mass of stiffness local. Besides, it is included a
structural hysteretic damping (𝜂) as a complex Young’s modulus, 𝐸𝑐 = 𝐸[1 + 𝑖𝜂].

Fig. 3.2 shows vibration transmittance for the EM rod model of S-DOF local resonator tuned
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Table. 3.2: Three examples of attached local resonator with different parameters.

Resonator Stiffness [N/m] Mass [kg] N. Freq. [Hz]
Example DOF’s 𝑘1 𝑘2 𝑚1 𝑚2 𝑓1 𝑓2

1 Single 5.120 × 106 - 0.0476 - 1650 -
2 Single 2.302 × 107 - 0.0476 - 3500 -
3 Two 1.079 × 107 2.555 × 106 0.0298 0.0178 1650 3500

in 1650 Hz. Where it is possible to see a good agreement between WFE (red line) and WSE (blue
line) methods when comparing Its vibration transmittance results (Example 1). It is possible due to
use of 50 internal DOFs per FE cell in order to obtain the nearest result to the WSEM. As expected,
the bandgap appear around of the natural frequency tuned at the local resonator. Of course, the
biggest attenuation occur exactly in resonance frequency of the resonator. In addition, the bandgap
width increase when the resonance frequency is tuned in higher frequencies, as can be see in the
figure 3.3 (Example 2). Where the width frequency for local resonator at 3500 Hz goes from just
over 1 kHz to over 3 kHz using the same mass resonator.

Using M-DOFs local resonators it is possible to obtain multiples band gaps. The Fig. 3.4
shows a vibration transmittance which has two band gaps, one around of 1650 𝐻𝑧 and other one in
3500 Hz. This occur due to the local resonator with 2-DOFs, where the natural frequencies (𝑓1 and
𝑓2) are the same as the examples 1 and 2. It is possible see that the band gaps occur in close to the
examples 1 and 2. However, the band gaps width are less than the S-DOfs ones. This occur because
M-DOF local resonator have the same mass, i.e. the sum of each mass ofthe example 3 is equal to
the mass of S-DOF in examples 1 and 2, e.g. 𝑚1 + 𝑚2 = 0.0476 kg. For all simulated examples
the comparative results prove that the WFE method can be used as a good approximated solution
for the metamaterial models.

Figures 3.5, 3.6 and 3.7 shows the point receptance FRF’s band gaps for the S-DOF example
with the resonator tuned in 𝑓1 = 1650𝐻𝑧, S-DOF example with the resonator tuned in 𝑓2 =

3500𝐻𝑧 and for the 2-DOFs example with the resonator tuned in 𝑓1 = 1650𝐻𝑧 and 𝑓2 = 3500𝐻𝑧.
Figure 3.8 shows that effect of WFEM approximation as the frequency range increases and the
requirements of at least 10 cell/wavelength is violated. In these cases the inclusion of internal
points in the cell and /or the use of a FEM element with high order interpolation function will
minimize this divergences.
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Figure. 3.2: Vibration transmittance showing a bandgap at 𝑓1 = 1650 Hz of metameterial rod
calculated by WSE and WFE methods.

Figure. 3.3: Vibration transmittance showing a bandgap at 𝑓2 = 3500 Hz of metameterial rod
calculated by WSE and WFE methods.
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Figure. 3.4: Vibration transmittance showing band gaps at 𝑓1 = 1650 Hz and 𝑓2 = 3500 Hz of
metameterial rod calculated by WSE and WFE methods.

Figure. 3.5: Point receptance FRF band gaps with S-DOF example with 𝑓1 = 1650 Hz.

3.3 Bandgap sensitivity analysis

Know the behavior of band gaps due to parameters variations can be interesting for practical
applications. Its sensitivity can be seen by means position, width and attenuation performance in
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Figure. 3.6: Point receptance FRF bandgap with S-DOF example with 𝑓1 = 3500 Hz.

Figure. 3.7: Point receptance FRF band gaps with 2-DOF’s with 𝑓1 = 1650 Hz and 𝑓2 = 3500 Hz.

the band gaps. In general, the attenuation constant is used to represent this behavior, which may be
described by ℜ(𝜇) = 𝑓(𝐸,𝐴,𝜌,𝐿,𝜔,𝑚0,𝑘1,𝑚1,𝑘2,𝑚2, . . .). As focus of this work is how the WFE
method can describe band gaps, It will be followed Xiao et al. (2013), which the sensitivity analysis
of the attenuation constant is related with local resonator stiffness and the frequency, ℜ(𝜇) =

𝑓(𝜔,𝑘1). This representation is called Attenuation Constant Surface-ACS (XIAO et al., 2011).
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Figure. 3.8: Point receptance FRF bandgap with S-DOF with 𝑓2 = 3500 Hz zoomed between 6.5-10
kHz.

Figure 3.9 displays a comparison between four ACS’s to the elastic metamaterial rod with
S-DOF resonator calculated by: a) SEM; b) WFEM with 1 internal dof; c) WFEM with 5 internal
dof’s; and d) WFEM with 50 internal dof’s. At each plan-form ACS the hot color region (red)
represents the bandgap range with nonzero attenuation constants. To the SEM results (Figure 3.9(a))
there are three band gaps in the frequency range considered. As reported by (XIAO et al., 2013)
the bandgap with the maximum attenuation constant is the locally resonance bandgap, while the
others are Bragg-scattering band gaps. When the locally resonance bandgap and the nearest Bragg
bandgap merge, the attenuation constant becoming zero (bandgap coupling phenomenon) (XIAO

et al., 2011). Figure 3.9(b) shows that WFEM results with a single internal dof fails to converge
to the SEM results. By increasing internal DOF’s to five the WFEM results (Figure 3.9(c)) seems
to be improved. However, a more careful verification shows that the bandgap coupling points do
not coinciding with the corresponding ones of the SEM results. By including a relatively high
number (fifth) of internal DOF’s (Figure 3.9(d)) the difference between WFEM and SEM results
are minimized and a better convergence is reached.
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(a) (b)

(c) (d)

Figure. 3.9: Attenuation Constant Surface-ACS of elastic metamaterial rod cell with S-DOF res-
onator calculated by: a) SEM and b) WFEM with 1 internal dof’s; c) WFEM with 5 internal dof’s;
d) WFEM with 50 internal dof’s. 𝐾1 = 𝑘1/(𝐸𝐴/𝐿) and Ω = (𝐿𝜔/𝜋)/

√︀
𝜌/𝐸.

3.4 Conclusion

Elastic metamaterials rod with M-DOF locally resonators was presented, which the wave
propagation was studied in terms of attenuation constants, vibration transmittance and FRF. This
rod was modeled as a periodic structure from of a hybrid method, witch is combination of FEM and
wave propagation known as the Wave Finite Element Method. The validation of this methodology
was confirmed by a comparison with the analytical method, the Spectral Element Method. Three
simulated examples with WFEM elastic metamaterial rod system consisting of a uniform rod with
periodically attached S-DOF and 2-DOF’s resonators were evaluated. For all results, the WFEM
presented good agreement in comparison with the SEM. It was performed as sensitivity analysis,
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the Attenuation Constant Surface-ACS (XIAO et al., 2011), where a constant attenuation varies de-
pending on the resonator stiffness and the frequency. The ACS WFEM results calculated increased
the converge to the SEM results when high number of internal DOFs were added. Finally, it can be
conclude that the WFEM method presents a good performance to calculate elastic metamaterials
rod provided that the used finite element be a satisfactory interpolation functions and the number
of DOFs respect the wave propagation limit of 10 cells/wavelength.
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4 EXPERIMENTAL VALIDATION OF PC ROD MODEL

A real elastic PC waveguide was used to perform an experimental test (NOBREGA et

al., 2016). The PC waveguide was designed to be an assembly of parts including two resonator
and a waveguide portion (Fig. 4.1(a)). It was originally developed to be used in another research
project (LI AND BRIK, (in French) as a metamaterial beam-like (flexural waves) and shaft-like
(torsional waves) structures with spatial periodic distribution and local resonators (Fig. 4.1(b)).

(a) (b)

Figure. 4.1: Design of PC waveguide: (a) waveguide assembly; (b) local resonator dimensions and
physical aspect.

For this work it was configured as a rod-like (longitudinal waves) structure, which maintains
the spatial periodic distribution, but the local resonators becomes inactive since they are not sen-
sitive to longitudinal movements. Then, the experimental evaluation presented here is relate only
to Bragg-type band gap formation in a PC rod. Therefore, the spatial periodic distribution was as-
sumed as an empty cavity in the rod and this region was modeled as cross section area change. Fig.
4.2 shows the views for the original metamaterial unit-cell with local resonators for beam/shaft and
with the simplification to be used with the rod spatial periodic distribution (PC rod).

4.1 Numerical results

The PC rod was built by bonding 10 equal parts of prismatic rod (0.24 x 0.08 x 0.02 m) with
male and female conic ends. Each part includes two local resonator separated by 0.0979 m and
they were fabricated in a 3D printer. The final assembly of PC rod includes also two extra rod parts
at the ends without cross section variation. The actual PC rod geometric parameters and material
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Figure. 4.2: Unit-cell model for the metamaterial: (a) with local resonator for beam/shaft structure;
(b) with rod spatial periodic distribution.

properties are summarized in Table 4.1.

Table. 4.1: Actual metamaterial rod geometric parameters and material properties.

Geometry/Property Value
Unit-cell length (𝐿) 0.12 m
Periodic part length (𝐿𝑝) 2.41 m
Total length (𝐿𝑡) 2.88 m
Cross section area (𝑆 = 𝑏× ℎ) 0.080 x 0.020 m2

Cross section area at cavity (𝑆𝑟 = 𝑏× ℎ𝑐) 0.080 x 0.012 m2

Number of unit-cells (𝑁𝑐) 20
Young’s modulus* (𝐸) 2.495 x 109 Pa
Mass density* (𝜌) 1.3 x 103 kg/m3

Structural damping (𝜂) 0.02
*manufacturing nominal value.

Fig. 4.3 shows the experimental setup with the details of impact hammer and accelerom-
eters positions. This figure also shows a typical measured inertance FRF including the ordinary
coherence function. It must be emphasized an interesting behavior of the measured inertance FRF,
which presents an oscillatory behavior before the band gap indicating low damping, while after the
band gap the curve becomes smooth indicating a high damping behavior. Fig. 4.4 shows the dis-
persion curves calculated with the numerical methods (WSEM, WFEM, WFEM-ANSYS, WFEM-
ANSYS-3D) where it can be identified the Bragg limit (𝛽 = 𝜋/𝐿 = 26.18), and the band gap
position and width for this PC rod.

In order to increase the flexibility of WFEM to solve complex engineering models, a hybrid
approach using WFEM and a FEM commercial software is proposed. It consists of coupling WFEM
with the commercial finite element analysis software ANSYS (Mechanical APDL Release 14.5) to
calculate elastic PC rods. The PC rod unit-cell is modeled with ANSYS using an appropriated
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Figure. 4.3: Rod measurement setup and a typical measured inertance FRF (blue line) and corre-
sponding ordinary coherence function (green line).
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Figure. 4.4: Dispersion curves calculated by WSEM, WFEM, WFEM-ANSYS and WFEM-
ANSYS-3D.

element type from its element library. Then, using a MATLAB code, the dynamic stiffness matrix
is calculated and periodicity conditions are applied to obtain the receptance FRFs. Two examples of
PC rod unit-cell modeling are performed: one called WFEM-ANSYS using a simple 1D element
rod (LINK180), and other called WFEM-ANSYS-3D using a more complex 3D solid element
(SOLID185). Fig. 4.5(a) shows the PC rod unit-cell modeled with ANSYS 1D element rod with 2
nodes and 1 DOF/node. The rod unit-cell was discretized with 40 internal elements, which means
41 nodes and DOFs. Fig. 4.5(b) shows the PC rod unit-cell modeled with ANSYS 3D solid element
with 8 nodes and 3 DOFs/node. The rod unit-cell was discretized with 25 internal elements, which
means 200 nodes and 600 DOFs.
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(a) (b)

Figure. 4.5: PC rod unit-cell modeled with ANSYS: (a) 1D rod element in which the geometry
change is represented by only a variation area; and (b) 3D solid element is used to model a real
slice where the geometry change is a hollow hole in slice.

For the first evaluation the simulated receptance FRFs calculated by WSEM, WFEM,
WFEM-ANSYS and WFEM-ANSYS-3D using material properties of Table 4.1 are compared with
the experimental FRFs. Fig. 4.6 illustrates that the FRF calculated by numerical methods (WSEM,
WFEM and WFEM-ANSYS, WFEM-ANSYS-3D) present good agreement among them, but there
are some mismatch and different behaviors related with its corresponding experimental FRFs. Be-
fore band gap positions, all numerical FRFs present the same oscillatory behaviors as its corre-
sponding experimental FRF. At the band gap position, all simulated FRFs present similar width as
the experimental, but they are shifted to the left of experimental band gap position. After band gap
positions, all simulated FRFs return to the oscillatory behaviors, in total disagree with the smooth
behavior of corresponding experimental FRFs.

This oscillatory response (low damping) before band gap position followed by a smooth
response (high damping) after band gap position is a characteristic behavior of the elastic meta-
material rod, which is not very well captured by the numerical models presented here. For the
WFEM-ANSYS-3D model the receptance FRF shows another band gap around 9.0 kHz, not in-
cluded in the others numerical models. It comes from the greater number of wave-modes include
in the 3D model as compared with the others 1D models, associated with the uncertainty of the
values of material properties (Young modulus and mass density) specified by the plastic manu-
facturer, which is not guaranteed in the addictive manufacturing process used to make the actual
metamaterial rod.

In order to reduce the mismatch between experimental and simulated FRFs a try-and-error
model updating procedure was performed. By varying material property parameters 𝐸 and 𝜌 the
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Figure. 4.6: Simulated FRFs calculated by WSEM, WFEM, WFEM-ANSYS, WFEM-ANSYS-3D
with material properties of Table 4.1 and experimental FRFs of transfer receptance.

shift between simulated and experimental band gap position was reduced until the band gaps are
almost coincident. These results were founded using the combination of Young’s modulus 𝐸 =
3.2 x 109 Pa and mass density 𝜌 = 1,180 kg/m3. Fig. 4.7 shows the simulated FRFs (WSEM,
WFEM, WFEM-ANSYS, WFEM-ANSYS-3D) obtained with updated parameters and the experi-
mental FRF.

Although the model updating process brings the simulated and experimental FRFs more close
for the band gaps, still have different behaviors between experimental and simulated FRFs after the
band gaps. A model updating varying the parameter structural damping 𝜂 was performed without
success. Considering that the behavior before and after band gap are strongly different, actually
contradictory, an updating process for the whole frequency band of analysis will be not possible.
Then, a selective model updating varying 𝜂 was applied for two frequency band: DC-5.7 kHz and
5.7-10 kHz. Using a try-and-error updating process the best curve fitting for the FRFs was obtained
with the structural damping 𝜂 = 0.015 to DC-5.7 kHz and 𝜂 = 0.05 to 5.7-10 kHz. Fig. 4.8 shows
the comparison between simulated (WSEM, WFEM, WFEM-ANSYS, WFEM-ANSYS-3D) using
updating structural damping and experimental results for the measured FRF. It can be seen that
all numerical FRFs after the band gap change their behavior from oscillatory to smooth as the
experimental ones, however still remains significant differences in amplitudes.
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Figure. 4.7: Simulated FRFs (SEM, WSEM, WFEM, WFEM-ANSYS, WFEM-ANSYS-3D) using
updating material property parameters and experimental FRFs of transfer receptance.
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Figure. 4.8: Simulated FRFs calculated by WSEM, WFEM, WFEM-ANSYS, WFEM-ANSYS-3D
with updating material property parameters and experimental FRFs of transfer receptance.

4.2 Conclusion

Band gap in PC rod was presented from of numerical methodology called wave finite element
method (WFEM). Based on a combination of FEM and Floquet-Bloch’s theorem, the WFEM was
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proposed as an engineering tool to calculate these type of structures.The use of WFE for the cal-
culation of periodic structures was demonstrated through the inclusion of models by commercial
FEM packages, which through the use of commercial finite element software (ANSYS Mechani-
cal APDL Release 14.5) allowed the inclusion of models with complex geometry or PC unit cell
non -uniform. This approach extends the WFEM application to model complex PC systems. How-
ever, WFE inherits the same approximation problems from the finite element model, where the
greater the frequency range, the greater the numerical error. An interesting behavior of PC rod was
observed in the experimental test results in relation to the damping variation, where it is low for vi-
bration response before band gap and high for this response after band gap. Finally, it was presents a
comparison between WSEM, WFEM and WFEM/ANSYS methods from of dispersion curves of a
PC cell and its FRFs was compared with the experimental FRFs obtained from a real PC rod. It was
shown that it is possible to obtain a good agreement between the numerical and experimental re-
sults, both for the presented method (WSEM) and for those proposed (WFEM, WFEM / ANSYS),
where it was possible to locate the position and width of the band gap close to the experimental.
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5 THE INFLUENCE ON THE WAVE PROPAGATION PROPERTIES BY
COUPLING OF WAVEGUIDES IN PC STRUCTURES

In this Chapter, a brief approach to waveguide coupling using wave modes Φ and autovalue 𝜇
obtained by WFE is made. The objective here is to calculate the WFE for a substructure and make
several consecutive couplings of it to obtain a formulation for periodic couplings. Finally, to apply
this approach in PC structures.

5.1 Waveguides coupling

Within the PC structure, several structures of different materials are connected in a periodic
way, and coupling conditions apply at the interfaces between two consecutive structures. According
to Eq. (2.13), for any structure (𝑖) composed of 𝑁𝑖 substructures having 𝑛𝑖 DOFs on each left/right
boundary, the state vector at the 𝑚𝑡ℎ substructure is now given by the following expression:

u
(𝑚)
𝑙,𝑖 = Φ𝑖𝜇

𝑚−1
𝑖 Q𝑖 + Φ⋆

𝑖 𝜇
𝑁𝑖+1−𝑚
𝑖 Q⋆

𝑖 , (5.1)

with again Q𝑖 = Q
(1)
𝑖 and Q⋆

𝑖 = Q
⋆ (𝑁𝑖+1)
𝑖 (as illustrated in Figure 5.1).

Figure. 5.1: Coupling of two consecutive strips.
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At the interface between two consecutive structures (𝑖) and (𝑖+ 1) where an external excita-
tion F𝑒𝑥 may apply, the coupling conditions are written:

q
(𝑁𝑖+1)
𝑖 = q

(1)
𝑖+1 (5.2)

F
(𝑁𝑖+1)
𝐿,𝑖 + F𝑒𝑥 = F

(1)
𝐿,𝑖+1, (5.3)

that is, in matrix form,

Φq,𝑖𝜇
𝑁𝑖 Q𝑖 + Φ⋆

q,𝑖Q
⋆
𝑖 = Φq,𝑖+1Q𝑖+1 + Φ⋆

q,𝑖+1 𝜇
𝑁𝑖+1

𝑖+1 Q⋆
𝑖+1 (5.4)

−ΦF,𝑖𝜇
𝑁𝑖 Q𝑖 −Φ⋆

F,𝑖Q
⋆
𝑖 + F𝑒𝑥 = −ΦF,𝑖+1Q𝑖+1 −Φ⋆

F,𝑖+1 𝜇
𝑁𝑖+1

𝑖+1 Q⋆
𝑖+1. (5.5)

Taking into account that in our case 𝑛𝑖 = 𝑛𝑖+1 = 𝑛 (the case 𝑛𝑖 ̸= 𝑛𝑖+1 may be considered by
using Lagrange multipliers, as developed for instance in Mencik (2013)), the above equations may
be simplified into the following matrix system:

A

[︃
Q⋆
𝑖

Q𝑖+1

]︃
= B

[︃
𝜇𝑁𝑖
𝑖 Q𝑖

𝜇
𝑁𝑖+1

𝑖+1 Q⋆
𝑖+1

]︃
+

[︃
0

−(ΦF 𝑖+1)
−1F𝑒𝑥

]︃
where (5.6)

A =

[︃
I𝑛 −(Φ⋆

q,𝑖)
−1Φq,𝑖+1

−(ΦF,𝑖+1)
−1Φ⋆

F,𝑖 I𝑛

]︃
B =

[︃
−(Φ⋆

q,𝑖)
−1Φq,𝑖 (Φ⋆

q,𝑖)
−1Φ⋆

q,𝑖+1

(ΦF,𝑖+1)
−1ΦF,𝑖 −(ΦF,𝑖+1)

−1Φ⋆
F,𝑖+1

]︃
.

As in (MENCIK, 2013) the latter matrix system may be finally put in the following form:[︃
Q⋆
𝑖

Q𝑖+1

]︃
= C

[︃
𝜇𝑁𝑖
𝑖 Q𝑖

𝜇
𝑁𝑖+1

𝑖+1 Q⋆
𝑖+1

]︃
+ F with (5.7)

C =

[︃
C⋆
𝑖,𝑖 C⋆

𝑖,𝑖+1

C𝑖+1,𝑖 C𝑖+1,𝑖+1

]︃
= A−1B and F =

[︃
F⋆𝑖
F𝑖+1

]︃
= A−1

[︃
0

−(ΦF,𝑖+1)
−1F𝑒𝑥

]︃
,

where C is the scattering matrix. In the equation 5.7, C𝑖,𝑖 and C𝑖+1,𝑖+1 are square matrices of size
𝑛×𝑛 that express the reflection coefficients of the wave modes of the structures respectively (𝑖) and
(𝑖 + 1) at the interface. The 𝑛 × 𝑛 matrices C⋆

𝑖,𝑖+1 and C𝑖+1,𝑖 contain the transmission coefficients
between the wave modes of the two structures at the interface. Finally, the vector F takes into
account possible excitation sources at the interface.

For 𝑝 structures connected to each other, a complete matrix system may be built by applying
Eq. (5.7) at all the interfaces between structures (𝑖) and (𝑖 + 1) for 𝑖 = 1 . . . 𝑝 − 1, and boundary
conditions at the left end of structure (1) and the right end of structure (𝑝). As an example, if the
same Newmann / Dirichlet boundary conditions as in the previous section apply, Eqs. (2.14) and
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(2.15) become

Q1 + (ΦF,1)
−1Φ⋆

F,1𝜇
𝑁1
1 Q⋆

1 = −(ΦF,1)
−1F0, (5.8)

(Φ⋆
q,𝑝)

−1Φq,𝑝𝜇
𝑁𝑝
𝑝 Q𝑝 + Q⋆

𝑝 = (Φ⋆
q,𝑝)

−1 q0. (5.9)

In the latter case, the computation of the unknown wave amplitudes for the set of 𝑝 structures
follows from the inversion of the final system

Ψ𝒬 = ℱ where 𝒬 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1

Q⋆
1
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Q⋆
2

...
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𝑝
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, ℱ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(ΦF,1)
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F𝑝

(Φ⋆
q,𝑝)

−1 q0
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, and (5.10)

Ψ =
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...
...

...
... . . . ...

...
0 0 0 0 . . . In −C𝑝,𝑝𝜇

𝑁𝑝
𝑝

0 0 0 0 . . .(Φ⋆
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−1Φq,𝑝𝜇
𝑁𝑝
𝑝 In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The displacements/rotations and forces at any location of any structure are then computed from Eq.
(5.1).

The same kind of formulation applies when modifying the orientation of a structure by intro-
ducing a 𝜃 angle between the structure and horizontal direction (Fig. 5.2), but in this case, the wave
modes matrices are multiplied by rotation matrices ℒ𝑖 depending on 𝜃 as ℒ𝑖Φ𝑖 and ℒ𝑖Φ⋆

𝑖 .

5.2 Investigating simple designs of periodic structures frame and their influence
on the wave propagation properties

This section focuses on that topic by exploring the wave propagation along simple periodic
structures made of straight beam elements - which incorporate bending and longitudinal motions -
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Figure. 5.2: Coupling of p consecutive strips with change direction 𝜃 of the wave propagation.

which are connected together at a certain angle ("triangle" shaped patterns). A parametric analysis
is proposed to analyze the influence of the coupling angle. Emphasis is placed on the physical
understanding of the wave mode conversion phenomenon which results in the occurrence of band
gaps for several types of wave modes. The computation of the wave modes and forced response
is achieved with the wave finite element (WFE) method. It provides an efficient numerical means
to compute the response of periodic structures. It can be of finite length and subject to arbitrary
kinds of boundary conditions in low- and mid-frequency range. A parametric analysis is proposed
to highlight the influence of the topology patterns, and boundary conditions on the attenuation of
the vibration levels of PC structures (band gap effects). The accuracy and efficiency of the proposed
approach are discussed through numerical comparisons with the finite element (FE) method. In this
section it is proposed to analyze wave propagation in a structure generated by coupling waveguides
(frames) which alternate material propriety (steel and aluminum) and space direction to form a PC
frame. Figure 5.3 shows a PC frame scheme including perspective and projection views (front, top
and right).

5.2.1 Numerical results

Fourth cases are studied with a frame element. Case 1 consists of a straight line frame with
only one material. Case 2 the waveguides frame are coupled in triangle form with 𝜃 = 45 degrees.
Case 3, straight line frame are coupled with two alternate materials. Case 4, the frame are coupled
in triangle form (𝜃 = 45) with two alternate materials. For all cases the forced response is calculate
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Figure. 5.3: PC frame with 18 waveguide including direction angle (𝜃) and alternating materials:
steel (gray) and aluminum (blue).

using WFE and FE and the results are compared. The material properties are: 𝐸𝑠𝑡𝑒𝑒𝑙 = 210𝑒9 Pa,
𝜌𝑠𝑡𝑒𝑒𝑙 = 7800 kg/m3, 𝐸𝑎𝑙 = 700𝑒9, 𝜌𝑠𝑡𝑒𝑒𝑙 = 2700 kg/m3, 𝜈 = 0.3, 𝜂 = 0.005. Slice dimensions are:
length (𝐿 = 0.001 m), height (ℎ = 0.001 m), and width (𝑏 = 0.001 m). Each sub-frame are made
with 24 slices for WFE method and 24 elements for FE method. The results are calculated with 6
and 18 sub-frames coupled each other for both methods with clamped-free boundary conditions.
The structure is excited in the free end with a unit force in ”𝑦” direction.

Figure 5.4 shows displacement response for Case 1 and 2 calculated by WFE and FE methods.
The results are convergent and it can seen that for the Case 1 (Fig. 5.4(a)) the structure behaved
as a rod due to direction of the excitation force along the frame length. For the Case 2 a different
behavior is obtained due to the angle periodic discontinuity.

It can be observed in figure 5.4(b) where is shown that to a angle 𝜃 = 45 it have a behavior of
beam but with some special differences that can see better on the transmittance response, fig. 5.4(c).
This behavior occur due to change of wave propagation direction on the structure. This effect cause
something like bandpap phenomenon. When we coupling behavior of phononic crystals (fig. 5.5(a)
and 5.5(b)) to the periodic wave propagation direction we have a reduction of the band width of the
bandgap. But appear other band gaps as can be seen in the figures 5.6(a) and 5.6(b). If to increase
the size of the structure keeping the same configuration is possible to see the increase of the band
gaps, figures 5.7(a) and 5.7(b).
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Figure. 5.4: Case 1 and 2 displacement response by: WFE (red) and FE (blue).
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Figure. 5.5: Case 3 displacement response by: WFE (red) and FE (blue).
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Figure. 5.6: Case 4 displacement response by: WFE (red) and FE (blue)
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Figure. 5.7: Case 4 displacement response with 18 waveguides by: WFE (red) and FE (blue).

5.3 investigating simple designs of phononic crystal plates and their influence on
the wave propagation properties

This section is referenced in Nobrega et al. (2018). The intend is to investigate the wave
propagation along periodic structures consisting of several PC flat plates arranged through a trian-
gular shaped pattern, each rectangular plate being itself made of a periodic distribution of different
material strips. In such structures involving two levels of periodic variations (related respectively
to the variation of material properties in each plate, and to the angle variation between the plates),
two-scale band gaps are expected to occur on different frequency bands. At a first level, band gaps
are produced by the Bragg scattering effect when wavelengths of traveling waves become of the
same order of magnitude than the width of a material strip. At a second level, wider attenuation
zones might be achieved for appropriate angles between two PC flat plates, exploiting in particular
the conversion mode phenomenon linked to the change of orientation between the plates. The aim
of this is to study the influence of the coupling angle between the PC flat plates and of the peri-
odicity pattern in each plate on the dispersion curves of the propagating modes and the frequency
response functions (FRFs) of structures composed of a finite number of PC flat plates. The WFE
method constitutes an efficient tool to perform this analysis.

5.3.1 Results for Flat plates

Numerical experiments are performed for various PC structures made up of an assembly of 6
plates arranged along a triangular pattern. Each plate is composed of an alternation of 3 strips (either
two steel strips and one aluminum strip, or two aluminum strip and one steel strip), as depicted in
Figure 5.8. The dimensions (specified in Table 5.1) and meshing properties of the different strips
are chosen similar, each strip being composed of 12 identical substructures of width 𝑑 = 0.05 in the
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Figure. 5.8: PC structure composed of 18 alternate strips made of steel (grey color) and aluminum
(blue color).

direction of propagation (𝑦 for 𝜃 = 0∘). The mesh of each substructure contains 1 shell element in
the direction of propagation and 10 elements in the 𝑥−direction. The differences between the strips
are linked to the properties of the chosen materials, which are also detailed in Table 5.1; for both
materials, a damping is considered through a loss factor 𝜂 = 0.005. The influence of the coupling
angle between the plates on the responses of the PC structures is investigated by making the angle
𝜃 (between the first plate direction and the horizontal axis) varying from 0∘ to 60∘ with a step of
15∘.

Material and geometrical properties of the strips Steel Aluminum
𝐸 [𝑃𝑎] 2109 709

𝜌 [𝑘𝑔/𝑚3] 7800 2700
𝜂 0.005 0.005
𝜈 0.3 0.3

ℎ [𝑚] 0.001 0.001
𝐿𝑥 [𝑚] 0.5 0.5
𝐿𝑦 [𝑚] 0.6 0.6

Table. 5.1: Strip configurations.
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The 18 strips involved in the PC structure are supposed simply supported along their longitu-
dinal edges. The whole PC structure is free on its left end (𝑦 = 0) and clamped on its right extremity
(𝑦 = 𝑦𝑒𝑛𝑑 which depends on the 𝜃 value). A punctual harmonic excitation is applied at the node
of coordinates (0.05,0,0) located on the free end, with a magnitude of 1𝑁 in the 𝑧 direction. The
frequency range considered in this study is [0; 100] Hz with a frequency step of 0.2 Hz.

For comparison purposes, the case of a structure composed of a single material (chosen as
steel) is also presented, for the same angle configurations (𝜃 = 0∘ to 𝜃 = 45∘ by 15∘).

The frequency responses of the structures are computed using the WFE formulations de-
scribed in the Chapter 2, and compared to the reference solution obtained with the classic FE
method. In the following, two quantities are considered to analyze the results obtained in the differ-
ent configurations: the displacement in the 𝑧−direction at the forcing position (node of coordinates
(0.05,0,0) on the left end), and the transmittance, defined as the ratio of the reaction force in the
𝑧−direction at the node of coordinates (0.05,𝑦𝑒𝑛𝑑,0) located on the right end to the excitation force.

The results obtained for the steel structure with 𝜃 = 0∘ are first presented in Figure 5.9
(displacement). A good agreement can be found in Figure 5.9 between the WFE results (solid line
in blue color) and the FEM results (dotted line in red color), throughout the frequency range, with
error levels far below 1%. In terms of computational times, the elapsed time obtained in Matlab for
the WFE method is 607s, while the FE computation requires 2𝑒4s. The gain of computational time
in this case reaches here about 97%, hence highlighting the efficiency of the proposed approach.
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Figure. 5.9: Displacement of the steel structure with 𝜃 = 0∘ obtained from the WFE method (solid
blue line) and the FE method (dotted red line)
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The transmittance levels are affected in accordance with the prior observations on the vibra-
tion levels. A bandgap effect is created as soon as a nonzero 𝜃 angle is introduced (Fig. 5.10); the
efficiency of the band gaps may be improved by increasing the value of the 𝜃 angle, the lowest lev-
els of transmittance being in both cases obtained for 𝜃 = 60∘. The presence of alternate steel and
aluminum strips affects locally the transmittance levels as compared to purely steel PC structure
by lowering the transmittance levels at some frequencies (Fig. 5.11), for instance between 30 and
40Hz, or around 68Hz. Choosing materials with even larger discrepancies in their properties could
therefore enable to increase the bandgap effects within multi-material PC structures.
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Figure. 5.10: Transmittances of the steel structure with angles 𝜃 of 0∘, 15∘, 30∘, 45∘ and 60∘ obtained
from the WFE method
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Figure. 5.11: Transmittances of the structure with alternate steel and aluminum strips and angles 𝜃
of 0∘, 15∘, 30∘, 45∘ and 60∘ obtained from the WFE method
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5.4 Conclusion

In this chapter, two level PC structures composed of multi-material plates arranged along
a triangular pattern have been investigated using the WFE method. The developed approach has
proved efficient, in terms of accuracy and computational time, to compute the frequency responses
of such structures as compared to the classic FE method. The numerical experiments carried out
have shown that the triangular shape of the PC structure favors the expected band gap effect, which
is all the more efficient when the structure is sharp, i.e. for small angle values between the plates or
even in frames. The use of alternate steel / aluminum strips on each substructure (plate and frame) is
seen to modify locally the vibration and transmittance levels in limited frequency ranges. Choosing
materials with more discrepant properties could therefore enable to improve the efficiency of the
band gaps in desired frequency regions.
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6 METAMATERIAL PLATE USING CONTINUOUS LOCAL RES-
ONATOR

In this section is referenced in Nobrega and Dos Santos (2019). It is shown an elastic meta-
material reinforced-plate modeling by WFE and conventional FE methods. Continuous local res-
onators (CLR) are designed as a mass-spring system constructed using a solid cubical block (mass)
connected by four very small beams (springs) to the plate stiffener-beams (Figure 6.1). In order to
attenuate the plate excitation responses, the CLRs are designed to be tuning at the second plate nat-
ural frequency. Then, the CLR’s first natural frequency is tuned approximately equal to that. The
reinforced-plate metamaterial behavior are analyzed using the dispersion diagram and forced re-
sponses (FRFs). The forced response calculated by WFE is verified using conventional FE method.
The results shows that band gaps occur in more than one mode and the corresponding responses at
these modes are attenuated. It is presented a some results of this publication.

Figure. 6.1: Plate model.

6.1 Metamaterial and Continuous Local Resonator

Basically in this case, the metamaterial consists of a structure composed by divided in identi-
cal 18 identical and symmetric unit-cells arranged as an array of 3 x 6 cells (Fig. 6.1). Each unit-cell
consists of a plate surrounded by stiffener-beams with a Continuous local resonator (CLR) inside.
The CLR is a local resonator made with a solid cubical block (mass) connected by four small beams
(springs) to the stiffener-beams. The cell was modeled with the first natural frequency tuned to the
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second natural frequency of the reinforced-plate, in order to create a bandgap on this frequency.
A numerical modal analyses of the CLR was performed with commercial software ANSYS con-
sidering the solid cubical block with the four small beams free and the stiffeners-beams and plate
fixed. The results shows that the six first natural frequencies in a frequency band DC up to 2000 Hz
are 778, 1209, 1209, 1454, 1454, 1846 with the corresponding mode shapes flexural-z, torsional-x,
torsional-y, longitudinal-x, longitudinal-y, torsional-z (Fig. 6.2).

(a) Mode 1: 778 Hz (b) Mode 2: 1209 Hz (c) Mode 3: 1209 Hz

(d) Mode 4: 1454 Hz (e) Mode 5: 1454 Hz (f) Mode 6: 1846 Hz

Figure. 6.2: Cell modal analysis: the fist six modes.

6.2 Numerical Results

In this section the force response by WFE method is verified by conventional FE method and
dispersion curves of a metamaterial reinforced-plate slice are calculated. The slice (Fig. 6.3(b)) was
modeled by commercial software ANSYS using 2610 element type solid (SOLID185). Geometric
parameters and material property are shown in Table 6.1. The plate was exited free-free in the
direction 𝑧 in position 𝑦 = 0 with a load 𝐹 = 1 𝑁 per node.

Figure 6.4 shows a comparison between two plates with six slices of three cells, but one with
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Table. 6.1: Simulated metamaterial plate geometric parameters and material properties.

Geometry/Property Value
Cell length[𝑚] 37 × 10−3

Plate thickness [𝑚] 1 × 10−3

Stiffener beam cross section base [𝑚] 3 × 10−3

Stiffener beam cross section height [𝑚] 13.5 × 10−3

Resonator beam cross section base [𝑚] 1 × 10−3

Resonator beam cross section height [𝑚] 0.5 × 10−3

Resonator beam length [𝑚] 9 × 10−3

Resonator mass side (cube) [𝑚] 7 × 10−3

Young’s modulus (E) [𝑃𝑎] 0.72 × 109

Mass density (𝜌) [𝑘𝑔/𝑚3] 700
Structural damping (𝜂) 0.02

resonators (Fig. 6.3(a)) and the other without resonators (Fig. 6.3(b)). As expected, the result for
the plate with resonators split the second natural frequency (close to 700 Hz) in the plate without
resonators in two others, and creates a bandgap with a significant amplitude attenuation at the band
frequency between of approximately 600Hz and 900 Hz. However, this caused a bandgap in the
interest band making a shift in the natural frequency of the structure. Moreover, the transmittance
of plate with resonators caused a bandgap in the same frequencies of the natural frequencies of
the cell as can seen more precisely in the comparison of figure (6.2(a)) to figure (6.4) where the
difference is 2 Hz. Due to the fact that resonators were made of many DOFs, others band gaps was
created around of 1,200 Hz and 1,450 Hz, which mate with the others frequencies in the modal
analysis of the cell (Fig. 6.2(b), 6.2(c), 6.2(d) and 6.2(e)).

The dispersion curves were computed to a slice without and with resonators, Fig. (6.5) and
(6.6), respectively. This results show the six first plate modes. It is possible to see that the slice
with resonator caused a band gaps around of each natural frequencies of cell (computed by modal
analysis (Fig. 6.2)). It can seen that occur in several wave modes. Probability, this was caused
because of the influence of resonators that created a coupling band gaps, where many modes have
gap in the similar band of frequency.
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(a) (b)

Figure. 6.3: Plate with six slices with (a) and without (b) resonators.
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Figure. 6.4: Comparison of WFE for plates with resonators (blue sold line ) and without (red dashed
line) resonators.

6.3 Conclusion

Elastic metamaterial plates were investigated. A WFE method was proposed as engineering
tool to calculate these elastic metamaterial plates with continuous local resonators. The vibration
analysis was computed as well. Further, the results of proposed method (WFE) and FE (by ANSYS)
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Figure. 6.5: Dispersion curves of the six first wave modes of slice: without resonators.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

−1

0

1

2

3

Frequency [Hz]

ℑ
(k

L
) 

   
   

   
   

   
   

 ℜ
(k

L
) 

   
   

 

Figure. 6.6: Dispersion curves of the six first wave modes of slice: with resonators.

agree well. The comparison of plate with and without resonators shown that we can tune resonators
to have band gaps in undesirable resonance frequencies. Furthermore, we shown that band gaps
occur in the same frequency of the cell modes. Finally, the dispersion curves of a plate slice were
shown and many modes had the similar frequency-band gap.
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7 FLEXURAL WAVE BAND GAPS IN A ELASTIC METAMATERIAL
PLATE WITH CONTINUOUS LOCAL RESONATOR

By using a real EM plate (Fig. 7.1) an experimental test is performed. An EM plate with
square lattice is manufactured with a polymer (Vero White Plus) in a 3D printer with UV curing
technology. Simulated results with finite element method (FEM), i.e. frequency response function
(FRF), and with PWE method, i.e. band structure, are compared to the experimental data. Some
different behaviors and mismatches between simulated and experimental results are found. These
differences are reduced after a trial-and-error model updating by varying material property param-
eters (Young’s modulus and mass density). The bandgap position and width can be localized from
experimental, FE method and PWE formulations results, which are close each other. The details
can be seen in Miranda et al. (2019). After this, new results was obtained, which include the WFE
method with intention to compare FRF results and obtain the dispersion diagram. Furthermore, new
results of numerical and experimental data were presented in this section using another excitation
point.

Figure. 7.1: EM plate model.

7.1 Modal analysis of EM plate

This analysis consists in a plate composed by 80 identical and symmetric unit-cells arranged
as an array of 8 x 10 cells (Fig. 7.1). Each unit-cell consists of a plate with attached Continuous
Local Resonator (CLR). The CLR is a local resonator made with a solid cubical block (mass) con-
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nected by small beam (like spring) to the stiffener-beam. The cell is modeled with the first natural
frequency tuned at 915 𝐻𝑧, in order to create a bandgap around of this frequency. A numerical
modal analysis of the CLR is performed with commercial software ANSYS with 993 DOFs us-
ing free mesh with the SOLID187 element. All displacement are fixed in the node included in all
edges.. The results shows that the three first natural frequencies in a frequency band DC up to 2000
Hz are 915 𝐻𝑧, 917 𝐻𝑧, 1075 𝐻𝑧 with the corresponding mode shapes torsional-x, torsional-y,
torsional-z (Fig. 7.2).

(a) Mode 1: 915 Hz (b) Mode 2: 917 Hz

(c) Mode 3: 1075 Hz

Figure. 7.2: Modal analysis of EM plate cell with one attached local resonator.

In this second modal analysis, the EM plate (Fig. 7.1) is modeled free-free to obtain the
vibration modes in order to see which band frequency the resonator have more influence on the
plate behavior. As expected, it is possible to see in Fig. 7.3(a) that the plate is vibrating together
with resonators, but the plate almost stop when it is vibe close to the resonants frequencies of cells
(Fig. 7.3(b) and 7.3(c)) and start to vibe after these frequencies (Fig. 7.3(d)).
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(a) 202 Hz (b) 845 Hz

(c) 1080 Hz (d) 1093 Hz
Figure. 7.3: Modal analysis of EM plate with 10 slices contain 8 cells with one attached local
resonator each.

7.2 Harmonic analysis

In this section the force response by WFE method is verified by conventional FE method and
dispersion curves of a metamaterial slice are calculated. The slice (Fig. 7.1) is modeled by com-
mercial software ANSYS using 2479 nodes with solid element (SOLID187). Geometric parameters
and material property are shown in Table 7.1. The plate was excited free-free in the direction 𝑧 in
the middle position (48𝑒−3𝑚, 0, 0) with a punctual load 𝐹 = 1 𝑁 . The material properties were
obtain by means trial-and-error model updating.

The experiment results was obtain by means impact test as observed in the measurement
setup in the figure 7.4(a). This also show a ordinary coherence function, which demonstrate that
the results are consistent. The Table 7.2 contain the informations of the measurement instruments
that were used in the experimental setup.
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Table. 7.1: Geometric parameters and material properties of EM plate.

Geometry/Property Value
Cell length[𝑚] 12𝑥10−3

Plate thickness [𝑚] 2.8𝑥10−3

Resonator beam cross section base [𝑚] 1𝑥10−3

Resonator beam cross section height [𝑚] 1𝑥10−3

Resonator beam length [𝑚] 2𝑥10−3

Resonator mass side (cube) [𝑚] 3.8𝑥10−3

Young’s modulus (E) [𝑃𝑎] 0.86𝑥109

Mass density (𝜌) [𝑘𝑔/𝑚3] 600
Structural damping (𝜂) 0.02

(a)

0 500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

C
o

h
e

re
n

c
e

 

 

(b)

Figure. 7.4: a - Experiment setup: EM plate exited with a Impact hammer in the middle of the left
side and measured in the middle of the right side. b - Coherence of the experiment.

Table. 7.2: Measurement instruments.

Instrument Manufacturer and model Sensitivity Measure range
Impact hammer PCB 86E80 22.5 mV/N 222.0 N (peak)
Accelerometer Kistler 8614A500M1 3.46 mV/g 0-25 kHz ±5%
Data acquisition LMS SCR05 - -

The figure 7.5 shows FRF’s comparisons between the results of WFE method with FEM and
experimental testing. The WFE and FEM have a good agreement each other. It is possible see yet,
that the experiment results shows a slight agreement with the modal analysis. In both numerical
results, the width and position of the bandgap are coincident. The gap position is very close to the
two first modes of the cell modal analysis. However, the same can not be said in relationship to
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the experimental data. In this case, the result of the CLR do not create a gap, but the resonance
frequencies around of local resonances (Fig. 7.2) are reduced. When it is made a comparison of
this results with the modal analysis of the EM plate (Fig. 7.3), where in 845 𝐻𝑧 and 1080 𝐻𝑧

(Fig. 7.3(b) and 7.3(c)) the attached local resonators vibe almost alone. However, this study is not
concluded doe to the bandgap appear clearly in the experiment. A comparison with a bare plate
might need necessary to turn more clear the bandgap attenuation.
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Figure. 7.5: FRFs Comparison of WFE, FE methods with experimental results. The bandgap is
highlight.

The figure 7.6 shows a dispersion diagram with the seven first wave modes of a plate slice
7.1, where blue lines are real part of the wavenumber 𝑘(𝜔)𝐿 and red lines are the imaginary part
ones. As highlighted in this figure, the bandgap appear in the same position as pointed in FRF
of WFE and FEM. As commented in the last section (Chapter 6), the bandgap occur in all of the
wave modes. This means that it is appear independent of the excitation type, which is different of
local resonator with concentrated mass. Where Its bandgap depends of the DOFs attached local
resonator.

7.3 Conclusion

A metamaterial plate was performed by Wave Finite Element method wherein the FRF and
dispersion diagram were computed. As a objective to verifier the results, numerical and experimen-
tal tests were computed. In numerical comparison, modal analysis and displacement were obtained
from of commercial FEM packets (ANSYS). The numerical results had a good agreement and the
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Figure. 7.6: Dispersion diagram the EM plate slice showing band gaps due to local resonance and
coupling models.

band gap due to CLR appear clearly for both results. In experimental tests, it was obtained a dis-
placement in FRF form. By comparing of the numerical and experimental tests, it was observed
a slight agreement with the modal analysis and the numerical displacement. However, it was not
possible to see the width and position of the band gap and more experiments with this metamaterial
plate need to be made.
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8 HIGHER ORDER ROD PHONONIC CRYSTAL

It is proposed formulations to calculate band gaps using Spectral Transfer Matrix (STM)
and Wave Finite Element (WFE) methods from of Higher order Phononic Crystal (PC) with four
cells as Fig. 8.1 . An usual transfer matrix is formulated from of a space-state vector that set the
second-order ODE of a higher order rod in a first-order system analytically. Love (one wave mode),
Mindlin-Herrmann (two wave modes) and Mindlin-McNiven (three wave modes) are high order rod
theories presented in this work. Which besides of to use the WFE method, the Bloch-Floquet theo-
rem to periodic rod structures is applied in the STM method to find dispersion diagrams and forced
responses from Bragg wavenumbers and corresponding wave modes. The WFE method results are
compared with STM method one and their numerical examples are validated with experimental
data.

Figure. 8.1: Unit-cell PC rod scheme (steel-polyacetal-steel).

8.1 High Order Rod Models

High order rod models are mathematical formulations developed with greater complexity
than the elementary rod model. The reason to use these models is due to the simplifications assumed
when calculating the kinematics of deformation in the elementary rod model, where the Poisson
effect associated with transverse deformations is neglected. At medium and high frequency bands,
such simplifications are harmful and may lead to imprecise results. This section presents three
high-order rod models formulated using energy equations, in order to obtain the transfer matrices
required by WFE and STM to solve periodic structures and phononic crystal rods. For comparative
purposes, it will also briefly present the formulation for the elementary rod model.
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8.1.1 Elementary rod

The elementary rod model considers constant axial deformation along the cross section while
disregard the transversal deformation due to Poisson’s effect. Figure 8.2 shows a scheme of a two
node 1D rod element with a constant cross-sectional area 𝐴, a length 𝐿 = 2𝑎 and a reference
system positioned in the middle of the element. By using a non-dimensional coordinate 𝜉 = 𝑥/𝑎 in

Figure. 8.2: 1D rod element and loads.

Fig. 8.2, the axial displacement can be written in matrix form as:

𝑢 = [𝑁1(𝜉) 𝑁2(𝜉)]

{︃
𝑢1

𝑢2

}︃
= N(𝜉)u, (8.1)

where 𝑁𝑗(𝜉) = 1
2
(1+ 𝜉𝑗𝜉) and 𝜉𝑗 are the coordinates of nodes 𝑗. The 𝑢𝑗 is the axial displacement at

node 𝑗. From of the strain and kinetic energies, (PETYT, 2010) it is obtained the mass and stiffness
matrices of the elementary rod for a single element (Fig. 8.2), witch are given as:

K
(𝑒)
𝐸 =

𝐸𝐴

2𝑎

[︃
1 −1

−1 1

]︃

M
(𝑒)
𝐸 =

𝜌𝐴𝑎

3

[︃
2 1

1 2

]︃ (8.2)

where 𝐸 is the Young’s modulus, 𝜌 is mass density and 𝐴 is the cross section area.

8.2 Love’s rod

Like the elementary rod model, the Love’s rod model has only one wave mode. However, it
includes the transversal strain (contraction) due to the Poisson effect, caused by longitudinal strain
of the structure (LOVE, 1927). This effect is included in the formulation as a transverse velocity of
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strain in the kinetic energy calculation.

Consider the same two-node rod finite element scheme shown in Fig. 8.2, but now with a
circular cross section of radius 𝑟. Its transverse strain is related to the axial strain by 𝜀𝑡 = −𝜈𝜀, so
the transverse velocity can be written as (LOVE, 1927),

�̇�𝑡 = 𝑟�̇�𝑡 = −𝜈𝑟�̇� = −𝜈𝑟𝜕�̇�
𝜕𝑥
, (8.3)

where �̇� e �̇�𝑡 are the longitudinal and transversal velocities, respectively, and 𝜈 is Poisson’s rate. By
using the kinetic energy of Love’s rod, the mass matrix stay:

M
(𝑒)
𝐿 =

𝜌𝐴𝑎

3

[︃
2 1

1 2

]︃
+
𝜌𝜈2𝐽

2𝑎

[︃
1 −1

−1 1

]︃
, (8.4)

where 𝐽 is the polar moment of inertia. The stiffness FE rod element matrix is the same as the one
obtained with the rod elementary theory, i.e., K(𝑒)

𝐿 = K
(𝑒)
𝐸 .

8.3 Mindlin-Herrmann’s rod

The Mindlin-Herrmann rod theory, or the two wave modes approach, consists of adding the
shear strain due to transversal displacement into Love’s model. For the WFE approach, consider
the two-node 2D rod element scheme shown in Fig. 8.3 with a circular cross section and reference
system (𝑥,𝑦) positioned in the middle of the element.

Figure. 8.3: 2D rod finite element model.

A simple strain field conformable with the axial motion is given by (MINDLIN AND HER-
RMANN, 1950):

�̄�(𝑥, 𝑦) ≈ 𝑢(𝑥), 𝑣(𝑥, 𝑦) ≈ 𝜓(𝑥)𝑦, (8.5)
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where these displacement equations consider lateral displacements, but ignore the distribution of
axial displacement in the cross section. Taking Eq. (8.5) to obtain the stresses and strains, and then
substituting it into the strain energy, it is possible to find the stiffness FE rod element matrix for
Mindlin-Herrmann’s rod theory:

K
(𝑒)
𝑀𝐻 =

[︃
Ku

1
2
Ka

1
2
Ka

𝑇 K𝜓

]︃
, (8.6)

where these stiffness sub-matrices are given as:

Ku = (2𝜇+ 𝜆)
𝐴

2𝑎

[︃
1 −1

−1 1

]︃
Ka = 𝜆𝐴

[︃
−1 −1

1 1

]︃
,

K𝜓 = (2𝜇+ 𝜆)
𝐴𝑎

3

[︃
2 1

1 2

]︃
+
𝜇𝐼

2𝑎

[︃
1 −1

−1 1

]︃
(8.7)

where 𝜆 = 𝜈𝐸/(1 + 𝜈)(1 − 2𝜈) and 𝜇 = 𝐸/2(1 + 𝜈) are Lamé’s parameters.

Similarly, from of the kinetic energy, the mass FE rod element matrix for Mindlin-Herrmann’s
rod theory is obtained as:

M
(𝑒)
𝑀𝐻 =

[︃
Mu 0

0 M𝜓

]︃
, (8.8)

where the mass sub-matrices are given as:

Mu =
𝜌𝐴𝑎

3

[︃
2 1

1 2

]︃
, M𝜓 =

𝐶2𝜌𝐼𝑎

3

[︃
2 1

1 2

]︃
. (8.9)

8.4 Mindlin-McNiven’s rod

This approach modifies Mindlin-Herrmann’s rod theory, by adding a parabolic term that
varies along the rod cross section into the longitudinal displacement.

Figure 8.3 shows a two nodes rod element scheme, where the deformations are expanded
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in a Taylor series and an additional term is maintained at each expansion to obtain approximate
displacements (DOYLE, 1997),

�̄�(𝑥,𝑦) ≈ 𝑢(𝑥) + 𝜑(𝑥)ℎ(1 − 12𝑦2/ℎ2), 𝑣(𝑥,𝑦) ≈ 𝜓(𝑥)𝑦, (8.10)

Using Eq. (8.10) to obtain the stresses and strains, and then substituting into the strain energy, the
stiffness FE rod element matrix for Mindlin-McNiven’s rod theory is obtained as:

K
(𝑒)
𝑀𝑁 =

⎡⎢⎣ Ku
1
2
Ka 0

1
2
Ka

𝑇 K𝜓
1
2
Kb

0 1
2
Kb

𝑇 K𝜑

⎤⎥⎦ . (8.11)

Similarly, the mass element matrix can be obtained as,

M
(𝑒)
𝑀𝑁 =

⎡⎢⎣Mu 0 0

0 M𝜓 0

0 0 M𝜑

⎤⎥⎦ . (8.12)

The K𝜑, K𝑏 and M𝜑 of Eqs. 8.11 and 8.12 are given as:

K𝜑 =
(2𝜇+ 𝜆)𝐴

2𝑎

4ℎ2

5

[︃
1 −1

−1 1

]︃
+

242𝜇𝐼𝑎

3ℎ2

[︃
2 1

1 2

]︃

K𝑏 =
−48𝜇𝐼

2ℎ

[︃
−1 −1

1 1

]︃
(8.13)

M𝜑 =
4𝜌𝐴ℎ2𝑎

15

[︃
2 1

1 2

]︃
.

8.5 Numerical and Experimental Results

To verify the performance and efficiency of the three high order rod models (Love, Mindlin-
Herrmann, Mindlin-McNiven) using the WFE and STM to calculate band gaps and forced re-
sponses in periodic structures and phononic crystal rods, numerical simulations and an experimen-
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tal test were executed.

Figure 8.4 shows a picture of the unit-cell PC rod arrangement made with steel and polyac-
etal. The PC rod sample (Fig. 8.4) was originally developed in the Vibroacoustic Laboratory (LVA)

Figure. 8.4: Unit-cell PC rod scheme (steel-polyacetal-steel).

at UNICAMP to analyze and verify a PC rod model based on the elementary rod theory (SILVA

et al.; GOLDSTEIN et al., 2011b; 2011) and another PC beam model based on the Euler-Bernoulli
theory (MIRANDA JR. AND SANTOS, 2017). The original design was focused manly on verifying
the capacity of these theories to predict band gaps. The PC rod unit-cell material properties and
geometry used in the numerical predictions are presented in Tables 8.1 and 8.2, respectively. The
material properties of steel and polyacetal (Tab. 8.1) are nominal values extracted from engineer-
ing books and manufacturer catalogues (ASHBY; MAT, 2011; 2019). For the simulated numerical
models the material properties of steel and polyacetal are updated (by try-and-error) in order to
improve the adjustment between numerical and experimental curves. The dimensions in Tab. 8.2
were obtained by measurements of the PC rod parts (steel and polyacetal) using a digital caliper.

Table. 8.1: PC rod unit-cell nominal material property.

Property Steel Polyacetal
Elastic Modulus [GPa] 207 2.81
Density[kg/m3] 7850 1580
Poisson’s ratio 0.30 0.43
Loss factor 0.01 0.02

Table. 8.2: PC rod unit-cell geometry.

Phononic crystal Cylindrical Rod
Parameter Steel Polyacetal
Diameter [mm] 18.75 18.75
Length [mm] 29.40 40.90

The PC rod is built with cylindrical rods of steel and polyacetal made in a machine shop,
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and then the parts are bonded with cyanoacrylate glue. The arrangement of unit-cell PC rod is
Steel-Polyacetal-Steel and the whole structure is made with 𝑁 = 4 unit-cells.

A free-free boundary condition was used for the experimental measurement of forced re-
sponses. Figure 8.5 shows the measurement setup (top) and the dimensions of the experimental PC
rod (bottom). Figure 8.5 (top) shows the PC rod structure supported by foam, excited on the left end
by an impulsive force hammer and the acceleration response measurement is obtained on the right
end. For each hammer impact the inertance FRF and the ordinary coherence between output signal
(acceleration) and input signal (force) are obtained in the Data Acquisition system at the frequency
band of DC-20 kHz with 25 Hz frequency discretization (sample rate = 20480 Hz ). Then Data
Acquisition software makes the average with the next signal acquisition and the process is repeated
until 15 averages are reached. Measurement instruments used in the experimental setup are listed
in Table 8.3.

Figure. 8.5: Measurement setup (top) and PC rod dimensions (bottom).
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Table. 8.3: Measurement instruments.

Instrument Manufacturer and model Sensitivity Measure range
Impact hammer PCB 86E80 22.5 mV/N 222.0 N (peak)
Accelerometer Kistler 8614A500M1 3.46 mV/g 0-25 kHz ±5%
Data acquisition LMS SCR05 - -

8.5.1 Numerical verification

Verification of WFE and STM methods was done with a numerical homogeneous periodic
rod structure (PS-NH) made of polyacetal, with 𝑁 = 5 cylindrical unit-cells of 25 mm diameter by
30 mm length. The PS-NH is evaluated using the elementary (EL), One mode or Love (LO), Two
modes or Mindlin-Herrmann (M-H) and Three modes or Mindlin-McNiven (M-N) rod theories
implemented in the WFE and STM methods. The PS-NH rod unit-cell is modeled using 03 STM
rod elements of two nodes, while by WFE it is modeled using 75 two node FE rod elements.
Dispersion diagrams and the inertance frequency response functions (FRF), with force excitation
at one end and acceleration response at the opposite end, are calculated for the frequency band
𝑓𝑏 = [1.0𝐻𝑧 − 100.0𝑘𝐻𝑧] with 25.0𝐻𝑧 frequency discretization as shown in Fig. 8.6.

Figure 8.6(a) shows the dispersion diagram and inertance FRF for the PS-NH calculated with
the Elementary model (one mode) using WFE and STM. The results calculated by WFE are in
good agreement with that of STM. The dispersion diagram presents a typical rod periodic structure
result. The real part of dimensionless Bloch wavenumber (ℜ{𝑘𝐿𝑐} = 0 ∼ 𝜋) is a "zig-zag" of
straight lines between zero and the Bragg limit (𝜋), while the imaginary part is zero (ℑ{𝑘𝐿𝑐} = 0).
These results characterize a purely propagating wave mode. Also, the inertance FRF presents an
expected result, with 16 peaks at the natural frequencies of the rod and a small attenuation along
the analyzed frequency band due to material internal damping, which is included in the models
as a complex loss factor. Similar results are observed for the one mode or Love’s model (Fig.
8.6(b)). Although results calculated by both methods (WFE and STM) are in good agreement,
some small changes where observed when compared to EL model. The dispersion diagram reveals
an increase in the number of "zig-zags" of ℜ{𝑘𝐿𝑐} at the same frequency band used by the EL
model. Likewise, there are twice the number of natural frequency peaks (32 peaks) in the Inertance
FRF. These changes seem to be due to the inclusion of lateral strain in Love’s model, which allows
for it to take into account the displacement of an indirect transversal DOF related to lateral strain.
Figure 8.6(c) shows the dispersion diagram and inertance FRF results for the two-mode or Mindlin-
Herrmann’s model. Results calculated by WFE and STM are in agreement. As expected, two wave
modes appear in the dispersion diagram, where mode 1 (blue line) has similar behavior to EL and
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Figure. 8.6: Dispersion diagrams and Inertance FRFs for PS-NH obtained by STM (solid line) and
WFE (dotted line) for rod models: a) Elementary (E); b) Love (L); c) Mindlin-Herrmann (M-H); d)
Mindlin-McNiven (M-N); and corresponding Bloch wave modes: Mode 1 (−); Mode 2 ( −); and
Mode 3 (−).

LO models, in which only ℜ{𝑘𝐿𝑐} ≠ 0, while mode 2 (red line) is quite different. At 𝑘𝐿𝑐 = 0

mode 2 presents a cut-off frequency (𝜔𝑐 =
√︀

(2𝜇+ 𝜆)𝐴𝜌𝐼𝐶2) (DOYLE, 1997), below which mode
2 is purely evanescent (ℜ{𝑘𝐿𝑐} = 0 and ℑ{𝑘𝐿𝑐} ̸= 0), and above which it is purely propagating
(ℜ{𝑘𝐿𝑐} ≠ 0 and ℑ{𝑘𝐿𝑐} = 0). Since 𝜔𝑐 is inversely proportional to the rod cross-section height
or radius, slender rods present a high cut-off frequency. For the M-H model of PS-NH the cut-off
frequency 𝜔𝑐 = 58.11 kHz. The cut-off frequency also modifies the inertance FRF by increasing
the mode 2 attenuation in a frequency band just before 𝜔𝑐. Figure 8.6(d) shows the dispersion
diagram and inertance FRF for the three modes or Mindlin-McNiven model. Results are similar to
the M-H model with the inclusion of mode 3. Results for mode 3 are very close to that of mode
2, and there are two cut-off frequencies, given by 𝜔𝑐1 =

√︀
5𝜇𝐴/𝜌𝐼 and 𝜔𝑐2 =

√︀
(2𝜇+ 𝜆)𝐴/𝜌𝐼𝐶

(DOYLE, 1997). In this case 𝜔𝑐1 = 46.5 kHz and 𝜔𝑐2 = 68 kHz. The attenuation effect due to the
cut-off frequencies also appears in the M-N model inertance FRF.
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8.5.2 Experimental validation

To validate high-order rod models using the WFE method, experimental tests have been car-
ried out and the results are compared. The figure 8.7 shows the experimental FRF (top) and the
corresponding ordinary coherence (bottom) measured on the PC rod shown in the figure 8.5. The
FRF of experimental inertance of the PC rod exhibits a broadband attenuation (4.5-18 kHz), which
corresponds to the Bragg numeric band interval. Within the bandgap region there are noise effects
and a peak in the 8 to 10 kHz range. As expected, the corresponding coherence curve falls, indicat-
ing a loss of linearity in the bandgap region. The noise comes from the limit of the dynamic range
of the accelerometer. The peak appears to be related to the beam mode generated in the excitation
of the PC rod, due to errors of conformity and concentricity of the glue between the cylindrical
parts of the PC rod due to the assembly process.
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Figure. 8.7: Experimental data of the PC rod: inertance FRFs (top) and its coherence (bottom)

Numerical inertance FRFs are computed with the nominal material properties (MP) (Tab. 8.1)
using WFE rod models (EL, LO, MH, MN) and its results were compared with the experimental
FRF inertance (Fig. 8.8).

The numerical inertance FRFs calculated with the EL and LO models by the WFE combine
between DC and 14.0 kHz. However, as the frequency increases, a shift between the curves ap-
pears, which was expected based on the differences in the formulations of the models. Numerical
FRFs (EL and LO) are shifted to lower frequencies compared to the experimental one (Exp). The
figure 8.8 shows that the numerical FRFs of the M-H and M-N models combine in the DC-14.0 kHz
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Figure. 8.8: PC rod Inertance FRFs experimental and numerical calculated with nominal material
properties by WFE with EL, LO, M-H and M-N models.

frequency range, but disagree as the frequency increases. Comparing numerical (M-H and M-N)
and experimental (Exp) FRFs, M-H and M-N are shifted to higher frequencies, as related to Exp.
Based on these results (Fig. 8.8), it can note that all numerical curves are relatively close to the
experimental data. Therefore, it is possible to infer that, using a simple model update procedure
(trial and error), it is possible to obtain a good fit between the numerical and experimental curves.
Considering that the material properties are important sources of uncertainties in the numerical/-
analytical models, a try-and-error model update process was applied, where the model parameters
(𝐸, 𝜌 and 𝜈) are varied, one at a time, to obtain a FRF inertance curve that best fits the experimental
one. The process is repeated until a reasonable fit between the curves is achieved and the updated
material properties are recorded.

For the first update model, the Elementary and Love’s models calculated by WFE were used
and the best fit between the FRFs of experimental and numerical inertance was found using the
material property values shown in Table 8.4.

Table. 8.4: First Updating - MP of PC rod unit-cell.

Property Steel Polyacetal
Elastic Modulus [GPa] 190 3.3
Density[kg/m3] 7800 1410
Poisson’s ratio 0.30 0.43

In the figure 8.9 the results obtained through WFE for the EL, LO, M-H and M-N models are
compared with the experimental data (Exp). The EL and LO models converge in the DC-14 kHz
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Figure. 8.9: PC rod Inertance FRFs experimental and numerical with 1st material properties updat-
ing by WFE with EL, LO, M-H, M-N models.

frequency range, whereas as the frequency increases these results start to diverge. When comparing
these results with the experimental data, a better approximation for the LO model is observed.
The same behavior is noticed when comparing the M-H and N-M models, where there is a good
agreement between these models in the DC-14kHz frequency band, but soon after that band, the
results start to diverge. It can be seen that the numerical results calculated by M-H and M-N are
shifted to higher frequencies compared to the numerical results, in such a way that the last peak
of the numerical result cannot be observed in the analyzed frequency band. Accordingly, a good
approximation of the numerical curves (models M-H and M-N) with the experimental ones cannot
be observed. Therefore, for this configuration of properties (Tab. 8.4) the low order models (EL and
LO) present a good approximation for thin rod PC. This statement was also observed in Love’s rod
theory (DOYLE, 1997).

A new update of models properties was carried out in order to approximate models results of
two and three modes (M-H and M-N) to the experimental results. In this analysis, it was possible to
obtain better numerical results maintaining almost all the values in the table 8.4 except for the elas-
ticity module, in which a reduction of 25.75 % was made from the current value, leaving 𝐸𝑝𝑜𝑙𝑦 =

2.45 GPa.

The numerical results for this second parametric update are shown in the figure ref fig: high-
FRF, where it is possible to observe an inverse behavior of the previous one. That is, the higher-
order PC rod models (M-H and M-N) are closer to that of the experiment than the lower-order
models (EL and LO).
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Figure. 8.10: PC rod Inertance FRFs experimental and numerical calculated with 2nd updating
material properties by WFE with EL, LO, M-H, M-N models.

Observing the results of the 1st and 2nd update of the parameters, it is possible to see that, for
both models, it was possible to obtain a good agreement by varying only the elasticity module: E =
3.3 GPa for the EL and LO models; and E = 2.45 GPa for models M-H and M-N). This was due to
the differences in mathematical approximations of the models, where for the EL and LO models the
PC rod becomes more rigid (models with only one degree of freedom). Whereas the highest order
models (M-H and M-N) have two degrees of freedom, and therefore are more accurate at higher
frequencies ref doyle1995.

In the observation of the numerical results of the dispersion diagram and the FRF of experi-
mental inertance, it is possible to clearly see the predominant region of the band gap in relation to
the two updates of the material properties (Fig. 8.11). In the figure 8.11(a) the first update is shown,
in which the best approximation is for the EL and LO models. While the 8.11(b) figure shows the
second update, where the best result compared to the experimental one occurs for the M-H and
M-N models. In this case, the width of the band gap is observed in the dispersion diagram when
the wave propagation mode becomes completely evanescent (highlighted area). This observation is
confirmed by the attenuation that this behavior causes in the FRF of experimental inertance.
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(a)

(b)

Figure. 8.11: PC rod experimental inertance FRF (bottom) and numerical dispersion diagram (top)
calculated with EL (−); LO ( −−); M-H (−); M-N (−.−) models by WFE using: (a) 1st and
(b) 2nd model updating material properties.

8.6 Conclusion

Phononic Crystals were formulated using high order rod models (Love, Mindlin-Herrmann
and Mindlin-McNiven) from of Wave Finite Element method. This formulations were numeri-
cally verified with the Spectral Transfer Matrix (STM) method wherein its dispersion diagrams and
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forced responses of a homogeneous high order rod were compared. All numerical results has a good
agreement in this comparison. In order to obtain the validation of PC rod results, a real structure
was built, in which experimental tests were performed. In the comparison of experimental data to
numerical results, it was observed that the nominal parameters of the real PC rod used to compute
numerical result do not agree well. However, some updating parameters were performer with aim to
approximate the experimental data with numerical tests. The challenge was choose a correct value
parameter that agree for both high order models, because the lower-order models (Elementar and
Love) do not agree with the higher-order (Mindlin-Herrmann and Mindlin-McNiven). Than, two
model updating were made: a updating directed to lower-order models, in which the experimental
data present a good agreement with numerical tests; and a updating in which the experimental data
and numerical results agree well for higher-order models. As expected, for both updating, the com-
parisons has a good agreement. The dispersion diagrams result computed for both updating had
the same behavior. In relationship to the Phononic Crystal analysis, It was possible to the band gap
region with great clarity and it was possible to see such effect both in the inertance FRF and in the
dispersion diagram. With this presented results, a great potential for higher-order rod models by
WFE method was shown, in which the calculation of wave propagation and vibration problems of
PC rod structures allowing an efficient and precise analysis.
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9 CONCLUSION

A numerical method called Finite Wave Element (WFE), which makes a combination of the
FEM and Floquet-Bloch theorem, has been proposed as an engineering tool to calculate elastic
metamaterials and Phononic Crystals. This can create band gaps due to local resonance and Bragg
scattering.

Elastic structures of metamaterial rods with periodic spatial distribution and local M-DOF
resonators were presented with the aim of creating band gaps. This type of structure was modeled
using the WFE method and its verification was made using the Spectral Elements Method (WSEM).
Its efficiency in terms of precision in modeling EM rods has been demonstrated. The EM rods with
attached S-DOF and 2-DOF resonators were evaluated using the WFE method. A good approximate
solution for EM rod systems was obtained from a comparison of the WFE method with the WSEM.
An important feature of the WFE method used was the commercial FEM (software ANSYS ),
which allows modeling complex geometry or non-uniform structures. Experimental results were
performed with the objective of obtaining a real validation of the modeling of EM rods using the
WFE method. In the comparison between the results, the methods presented (WSEM) and applied
(WFE and WFE with ANSYS) were able to obtain a good agreement with the experimental results
and also find the position and width of the band gap.

The WFE method was considered and implemented to calculate the wave modes in homoge-
neous and PC frames. The convergence of the WFE and FE methods was observed. The coupling
of the wave modes was shown in straight line frames, as well as in the periodic change of the wave
propagation direction. It was demonstrated that the topology of the patterns in the wave propagation
properties positively influences the formation of the band gap. The increase in the number of band
gap is one of them. After that, the structures of the PC plates arranged along a triangular pattern
are modeled using the WFE method. Two types of periodicity were analyzed, the first due to the
change in the material and the other due to the variation in the angle between the waveguides. The
numerical results are compared with the classic FE method and its efficiency was analyzed in terms
of accuracy and computational time. To make these comparisons, the frequency responses of the
PC plate structures are computed. These periodicities create effects of band gaps that can be seen
in the transmittance vibration. However, even for small angles of triangular shape, the band’s at-
tenuation effect is more efficient than alternating the material with similar properties, such as steel
and aluminum.
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The WFE method was proposed to calculate EM reinforced plates with CLR structures, where
the vibration analysis was investigated from the modal transmittance analysis. The results were
validated with the commercial method of FE (ANSYS ). The effect of band gaps was used at un-
desirable resonance frequencies by means of tuned resonators, as demonstrated in the comparison
of plates with and without a resonator. In a modal analysis of a cell it was possible to obtain its
corresponding vibration modes and it was shown that the modes appear at the same frequency as
the band gap. In addition, the plate dispersion diagram cuts the gap effect in all observed wave
modes.

An experimental analysis was performed with a real thin EM plate with resonators in a square
network. The modal analysis and the forced response were calculated using the FE method. It was
demonstrated that the WFE and FE methods had a good agreement with each other. The experi-
mental results show a good agreement regarding the band width attenuated in comparison with the
numerical results.

Wave propagation and dynamic behavior of periodic structures and phononic crystals with
high-order rod models (Elementary, Love, Mindlin-Herrmann and Mindlin-McNiven) are formu-
lated by the Wave Finite Element (WFE) method and compared with the spectral transfer matrix
(STM). The results for all models calculated by WFE and STM are in agreement. Experimental
tests were performed to validate the numerical model of high-order PC rod by WFE. The band
gap region in the dispersion diagrams, calculated with the WFE PC rod model, is compared to
the attenuation region in the FRF experimental inertance and the results indicate the same region.
The formulations, analyzes and results presented show the potential of high-order rod models by
the WFE method to calculate wave propagation and vibration problems, allowing an efficient and
accurate analysis of periodic structures and Phononic Crystals.

Future works

In the following, new studies are being developed about phononic materials and their influ-
ence on the wave propagation properties in elastic structures. Two of this topics appear as future
prospects for continuation of the research developed in this thesis are listed.

∘ Scattering Matrix Coupling: In this study, a transfer matrix is formulated by the scattering
matrix with objective of to obtain a relation of the left and right wave amplitudes between
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a considerable number of coupling structures. Consequently, we will may extract the forced
response more fast than the others method and the wave properties.

∘ Two Dimensional Wave Finite Element applied to metamaterials and Phononic Crys-
tals. In this proposal, will be studied the WFE method for two dimension in elastic structures.
For this, will be used the Floquet-Bloch’s theorem in two periodic directions to condense the
periodic structure for a cell. The challenge will to find the appropriated method to solve the
eigenvalue problem.
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