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Resumo

Neste trabalho, apresenta-se um novo método aplicado na modelagem de rotores.

Uma vez que o processo de modelagem matemática é essencial em aplicações de engen-

haria, a contribuição deste trabalho é providenciar uma abordagem alternativa para o

estudo de máquinas rotativas, considerando reduzido número de graus de liberdade essen-

ciais à representação da dinâmica destas. Estas máquinas são majoritariamente compostas

por eixos, modelados como vigas, impulsores ou pás, modelados como discos rígidos, e

mancais, modelados como um sistema mola-amortecedor. O método, denominado Método

do Segmento Contínuo (MSC ou CSM em inglês), pode ser aplicado em sistemas com um

número arbitrário de eixos segmentados, discos e mancais. O modelo do eixo considera a

flexão e a deformação por cisalhamento, porém ignora os movimentos axiais e torcionais.

Os discos são modelados com massas rígidas, e podem ter geometrias assimétricas. Os

mancais são molas e amortecedores lineares com coeficientes equivalentes de rigidez e

amortecimento que podem ser isotrópicos ou anisotrópicos. Por meio do MSC, soluções

analíticas fechadas podem ser obtidas para rotores com geometrias segmentadas. Isso

é feito, primeiramente, resolvendo o problema de auto-valor do sistema, onde obtém-se

as auto-funções e os auto-valores, que representam os modos de vibrar e as frequências

naturais, respectivamente. Com as auto-funções, a análise modal pode ser aplicada para

discretizar as equações de movimento levando a equações diferenciais desacopladas para

as coordenadas modais. O número de equações é igual ao número de modos de vibrar

necessários para se obter a resposta, que pode ser pequeno dependendo do intervalo de ro-

tação estudado. O MSC é avaliado comparando seus resultados ao amplamente conhecido

e consolidado Método dos Elementos Finitos (MEF ou FEM em inglês), este bem estab-

elecido e aplicado em dinâmica de rotores. Os resultados das frequências naturais, formas

modais e resposta forçada são comparados, mostrando-se a eficácia do MSC em modelar

uma grande variedade de rotores e estabelecendo-o como uma ferramenta alternativa para

o estudo de máquinas rotativas.

Palavras Chaves: rotores com mancais, dinâmica de rotores, análise modal, rotores

multissegmentados, estudo numérico.



Abstract

In this work, a new method for the modeling of rotor systems is presented. Since

process of mathematical modeling is essential in engineering applications, the contribution

of this work is to provide an alternative approach to study rotating machines, taking

into account reduced number of degrees of freedom, essentials to represent the system

dynamics. These machines are composed for the most part of shafts, modeled as beams,

impellers or blades, modeled as rigid disks and bearings, being these represented as a

spring-damper system. The method, named Continuous Segment Method (CSM), can

be applied to systems with an arbitrary number of segmented shafts, disks and bearings.

The shaft model considers bending and shear deformation but neglects torsional and axial

motions. The disks are modeled as rigid masses, and can have asymmetric geometries. The

bearings are linear springs and dampers with equivalent dynamic coefficients that can be

isotropic or anisotropic. By means of the CSM, closed-form solutions of rotor systems with

stepped geometries can be obtained. This is done by first solving the eigenvalue problem

of the system and obtaining the eigenfunctions and eigenvalues, that represent the mode

shapes and natural frequencies, respectively. With the eigenfunctions, modal analysis

can be applied to discretize the equations of motion leading to uncoupled differential

equations for the modal coordinates. The number of equations equals the number of

modes of vibration needed for the response, which can be a small number depending

on the rotational speed range studied. The CSM is evaluated by comparing its results

with the Finite Element Method (FEM), which is a very well established method and

it is commonly used in rotordynamics. The results of natural frequencies, mode shapes

and forced response are compared, showing the effectiveness of the CSM to model a

great variety of rotor systems and establishing it as an alternative tool to study rotating

machines.

Keywords: rotor-bearing systems; rotordynamics; modal analysis; multi-stepped rotor;

numerical study.
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Ī(x) Distributed area moment of inertia

J̄d(x) Distributed diametral moment of inertia

J̄p(x) Distributed polar moment of inertia

k̄ij(x) Distributed bearing stiffness

χ(t) Indentation on contact

δd(x) Dirac’s delta function

δi, εi Mode shape parameters

δij Kronecker delta

θ̇(t) Whirl speed

κ Shear correction factor

λ Eigenvalue

µm Maximum friction coefficient



Ω Rotating speed

ω Natural frequency (imaginary part of eigenvalue)

φ(x), η(x) Eigenfunctions

ρ Density of the rotor

σ Damping parameter (real part of eigenvalue)

ξi Local coordinate of segment i

b Contact location along the rotor

ch Contact damping

E Young Modulus

f(x, t) Distributed external force function

Fc(t) Contact force

Ft(t) Tangential force

G Shear Modulus

H(x) Heaviside unit step function

kh Contact stiffness

Ki Complex normalizing constant of mode i

L Length of the rotor

q(t) Modal coordinates

R Shaft radius

T Kinetic Energy

u(x, t), ψ(x, t) Displacement and bending angle fields

V Potential Energy

vrel(t) Relative velocity on contact point

Wnc Work of non-conservative forces

Matrices and Vectors



[A], [B] Matrices of boundary conditions

[c] Distributed damping and/or gyroscopic matrix

[Hi] Transfer matrix between segments i and i+ 1

[hi] Matrix of continuity conditions

[K] Stiffness matrix in state-space

[k] Distributed stiffness matrix

[L] Matrix of Laplace transform coefficients

[M ] Mass matrix in state-space

[m] Distributed mass matrix

{Φ̂(s)} Vector of Laplace transform

{Φi(x)} Vector of eigenfunctions

{W (x, t)} Distributed state vector

{w(x, t)} Distributed vector of displacements and slope

{X(ξi)} Vector of local eigenfunctions

Operations

(′) Spatial derivative (see text for variable)

(˙) Time derivative (d/dt)

(˜) Adjoint parameter

(∗) Complex conjugate

[·] Matrix

[·]H Conjugate transpose of matrix

[·]T Transpose of matrix

〈·〉 Internal product

{·} Vector



Summary

Resumo 6

Abstract 7

List of Figures 8

List of Tables 10

Nomenclature 11

1 Introduction 16

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Manuscript outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Literature review 19

2.1 Concepts of mechanical vibrations . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Overview on rotordynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Nonlinear phenomena in rotordynamics . . . . . . . . . . . . . . . . 24

2.3 Modeling of multi-stepped rotor systems . . . . . . . . . . . . . . . . . . . 25

3 Modeling of isotropic rotor systems 28

3.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Eigenfunctions and eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Modeling of rotor systems on anisotropic bearings 44

4.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Eigenfunctions and eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Modeling of asymmetric rotor systems 59



5.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Eigenfunctions and eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Rotor-stator rubbing 75

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Contact force model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Results and discussion 79

7.1 Uniform rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.1.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Asymmetric rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2.1 Uniformly asymmetric rotor . . . . . . . . . . . . . . . . . . . . . . 87

7.2.2 General asymmetric rotor . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.3 Asymmetric rotor with disk and bearings . . . . . . . . . . . . . . . 92

7.3 Multi-stepped rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4 Rubbing response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.5 Additional comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Conclusions 102

8.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

References 104

Appendix A – Functions for isotropic rotors 114

Appendix B – Functions for anisotropic rotors 116

Appendix C – Functions for asymmetric rotors 118





1 INTRODUCTION 17

system. With the eigenfunctions, one can then apply modal analysis to arrive at uncoupled

differential equations for the modal coordinates, which can be solved to obtain the response

of the continuous system. Figure 1 illustrates the approaches taken in the continuous

model in comparison to a model based on the FEM. As mentioned above, in the continuous

model one starts with the equations of motion, in this case partial differential equations,

and applies the separation of variables to obtain the eigenfunctions and eigenvalues. This

first step is the main disadvantage of the continuous approach, since it can be done

only for systems with simple geometry that can be modeled by beams or plates. In the

FEM model, the equations of motion, traditionally transformed in the weak form, are

discretized using shape functions. These are comparison functions, and only satisfy the

geometric boundary conditions of the system. The domain is divided into elements, where

one obtains local mass, stiffness, damping, and gyroscopic matrices. These matrices can

be assembled to represent the entire system, which is now a discrete system instead of

a continuous one. The assembled matrices give the global equations of motion, that can

be reduced by means of modal analysis or Guyan static reduction, for example, before

performing the solution. From the above discussion, the main distinction between the

continuous model and FEM model is in the discretization of the continuous system. The

discretization done in the FEM facilitates the introduction of complex geometries.

In this work, a method is introduced that uses the continuous approach to model

multi-stepped rotor systems with multiple bearings and disks. The method, named Con-

tinuous Segment Method (CSM), extends the continuous approach to more complex ge-

ometry systems. By means of the CSM, eigenfunctions of rotors with multiple segments

can be obtained, allowing the obtention of critical speeds, mode shapes and unbalance

response. The system is still required to have segments with constant cross-sections, but

the CSM can be applied to rotor systems with anisotropic bearings, asymmetric rigid

disks and multiple segments.

1.1 Objectives

This work presents a new method, namely the CSM, to model multi-stepped rotor

systems with several disks and bearings. The method is valid for a wide range of systems

such as with isotropic and anisotropic bearings and with asymmetric disks and shafts. By

means of the CSM, exact solutions can be obtained for rotors with segments of constant

cross-section. By means of numerical simulations, the CSM is evaluated by comparing

its results with the ones given by the FEM, showing the effectiveness of the method in

modeling rotor systems of several kind.

The results that will be presented are: Campbell diagrams to compare the natural

frequencies for different rotational speeds, logarithmic decrements to compare the damping
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and the possible unstable regimes given by the methods, and the response of the system

due to mass unbalance. These parameters are the basis in the design of any rotating

machine, and thus required by any method intended to study such systems.

1.2 Manuscript outline

The present manuscript is divided into different chapters: in Chapter 2 a brief

literature review is presented, where some concepts necessary for the understanding of the

method are presented as well as the discussion of previous works. Chapter 3 introduces

the CSM to isotropic rotors. The expansion to anisotropic and asymmetric rotors are

presented in Chapters 4 and 5, respectively. These chapters present in depth how to

obtain the eigenfunctions from the equations of motion and how to apply the modal

analysis. Chapter 6 presents an overview of rotor-stator rubbing, a major phenomenon in

rotordynamics, and a contact model that will be used to study the outcomes of the CSM

to nonlinear applications. Chapter 7 shows several results obtained with the proposed

method and the comparisons with the FEM. The work then ends with some final remarks

in Chapter 8.
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2 Literature review

This chapter presents a general review on major topics of concern regarding the

present work. The aim is to present some background for the upcoming chapters, as well

as review important contributions in the literature that are relevant to this work. For the

sake of brevity, the topics are discussed in a shallow way, but references are indicated if

further information is needed.

Section 2.1 presents some major methods and ideas used for the development of the

Continuous Segment Method (CSM). These methods are commonly used in mechanical

vibration analysis. The application of these in rotor systems are presented in Sec. 2.2,

where some definitions used throughout this work are established. A review on related

works is presented in Sec. 2.3; starting from the modeling of multi-stepped beams to the

applications of rotor-bearing systems.

2.1 Concepts of mechanical vibrations

Vibrations are defined as oscillatory movements due to external actions on a sys-

tem, and may or may not persist indefinitely through exchange of energy by different

means and mechanisms. A classic example is the swing of a pendulum. Mechanical vi-

brations is a subdiscipline that is concerned in the oscillations of mechanical systems such

as beams, plates, shafts, and other type of structures. The forms of energy that are of

most interest in mechanical vibrations are kinetic and potential energy. Some important

elements of mechanical systems are inertia, stiffness and damping, which dictates in many

ways how such systems will vibrate. These properties allows the exchange between ki-

netic energy in the motion of inertia elements into potential energy, which is stored in

stiffness elements. Damping elements are mainly responsible in dissipate energy, com-

monly through heat. The study of mechanical vibration is mainly concerned in how these

elements affect the behavior of systems. There are many great books that present this

topic, among these are presented in Rao (2004, 2007), Balachandran and Magrab (2008),

Inman (2008), Meirovitch (1975) and Hartog (1985).

In the study of mechanical vibrations, the systems are divided in two categories:

discrete and continuous systems. In the first kind, also known as lumped parameter

systems, the coordinates needed to describe their motion, namely their Degree of Freedom

(DOF), is finite. This approach is valid when a system has a dimension with much greater

importance then others, or when it posses large concentrated properties. Continuous

systems, also known as distributed parameter systems, have an infinite number of DOFs.

Due to the limited solutions available for such systems, they are commonly discretized

into finite systems (MEIROVITCH, 1980). An example of a discrete system is the already
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mentioned pendulum, which is modeled as a concentrated mass (inertia element) attached

to a massless string and acted upon gravity (stiffness element). In case the dynamics of

the string becomes important, such as when the concentrated mass is not large enough,

the system is most adequately modeled as a continuous system, where the string now has

distributed inertia and stiffness.

The analysis of vibratory systems is mostly concerned on how a system — pos-

sessing mass, stiffness and damping — will react by the action of an external force. To

achieve this, analysts rely on mathematical models that best describes the physical sys-

tem at hand. The conception of the models starts with assumptions, such as the use of

discrete or continuous models, that lead to equations of motion describing mathematically

the vibrating system. These equations can then be solved to obtain the responses, and

a careful analysis of the results is performed. Depending on the assumptions used, the

models are distinguished in various ways. A common distinction is linear and nonlinear

models. In the former kind, the principle of superposition applies, and the solutions are

possible in most cases. In nonlinear systems, however, the solutions are not possible in

the majority of cases, and the responses are obtained only approximately or by numerical

procedures (NAYFEH; PAI, 2008).

2.1.1 Eigenvalue problem

Two concepts that will be constantly discussed in this work are eigenvalues and

eigenfunctions. These terms are borrowed from pure mathematics, and in vibration anal-

ysis mainly represent natural frequencies and mode shapes of systems, which, in turn, are

obtained from an eigenvalue or characteristic-value problem (RAO, 2007). The solutions

of these problems are unique, and depends on the mass, stiffness and damping properties

of the vibrating system. The eigenvalue problem is obtained directly from the equations

of motion that govern the system’s dynamics. Consider a discrete system with a mass

matrix [m] and stiffness matrix [k] governed by the following equation,

[m]{ẅ(t)}+ [k]{w(t)} = {f(t)} (2.1)

being t time, {w(t)} the vector of displacements, {f(t)} the vector of external forces and

the dots denote a derivative with respect to time t. Throughout this work, a term in

brackets [·] means a matrix and a term in braces {·} means a vector. The eigenvalue

problem associated with the above equation is,

(

[k]− λ2[m]
)

{X} = 0 (2.2)
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where {X} is the eigenvector. The above equation is obtained assuming {f(t)} = 0 and

{w(t)} = {X}eλt in Eq. (2.1). In order to Eq. (2.2) to have non-trivial solutions, the

determinant of the coefficient matrix must be zero, which leads to,

det
(

[k]− λ2[m]
)

= 0 (2.3)

where det denotes the determinant. This determinant leads to a polynomial equation,

known as the characteristic equation, which roots give the eigenvalues λ. After λ is

obtained, the corresponding eigenvector is obtained from Eq. (2.2) by substituting the

value of λ. This discussion is very basic and the reader is referred to Rao (2007) or

Meirovitch (1998) for a more in depth approach.

In case of continuous systems, instead of obtaining eigenvectors, one obtains eigen-

functions (RAO, 2007). The process is somewhat similar as above. Consider a one di-

mensional beam based on the Euler-Bernoulli theory, which has the following equation of

motion,

[m]ẅ(x, t) + [k]w(x, t) = f(x, t) (2.4)

which has the same form as Eq. (2.1), but now the displacement w = w(x, t) is a displace-

ment field and it is also dependent on the space variable x ∈ [0, L]; being L the length of

the beam. The matrices [m] and [k] are now 1× 1 matrices given as,

[m] = m̄(x), [k] =
∂2

∂x2

(

EĪ(x)
∂2

∂x2

)

being m̄(x) and EĪ(x) the distributed mass and stiffness, respectively. Although the form

of Eqs. (2.1) and (2.4) are similar, the latter is now a partial differential equation. The

eigenvalue problem of Eq. (2.4) is obtained by letting f(x, t) = 0 and w(x, t) = φ(x)eλt,

leading to,
[

∂2

∂x2

(

EĪ(x)
∂2

∂x2

)

− λ2m̄(x)

]

φ(x) = 0 (2.5)

note that the problem now is a differential equation, which solution gives the eigenfunc-

tions φ(x) and eigenvalues λ. To solve this differential equation, one needs additional

equations that specify the boundary conditions at both ends, that can be written as

(MEIROVITCH, 1998),

Biw(x, t)

∣

∣

∣

∣

x=0,L

, for i = 1, 2 (2.6)

where Bi are differential operators. Equations (2.4) and (2.6) are denoted as a boundary-

value problem. The method presented in this work, namely the Continuous Segment

Method (CSM), basically provides a mean to solve an eigenvalue problem such as the one

given by Eq. (2.5), but for rotor systems. The eigenvalues are obtained after solving the

differential equation and applying the boundary conditions. The characteristic equations
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are now of transcendental kind instead of polynomial, which posses a infinite number

of roots or zeros. The reader is referred to Rao (2007) and Magrab (2012) for more

information on vibration of continuous systems.

The method used to arrive at Eq. (2.5) is known as separation of variables (STRAUSS,

2007). In this way, the displacement field w(x, t) was separated as a product of two func-

tions, namely φ(x) and eλt, which are functions of only the space variable x or the time

variable t. If one is able to solve the differential equations given in (2.5), then the solution

is labeled exact. However, there are many cases where this is not possible, and one needs

to rely on approximate solutions such as Rayleigh-Ritz-based methods (MEIROVITCH;

KWAK, 1991). In such cases, the function φ(x) is obtained from a simplified problem or

is simply assumed as having some form. Meirovitch (1980) provides several approximate

methods for discrete and continuous vibrating systems.

2.1.2 Modal analysis

There are many methods to obtain the response of discrete and continuous systems

under external forcing. A well known method is the modal analysis, where the displace-

ments are written as a linear combination of the normal modes of the system (EWINS,

2000). These normal modes, also known as modes of vibration, are obtained from the

eigenvalue problem, and represent the relative amplitudes of the system. By means of

modal analysis, the equations of motion, that can be coupled and have an arbitrary num-

ber, can be transformed to uncoupled differential equations for the modal coordinates.

This uncoupling is possible due to the orthogonality property of the eigenfunctions (or

eigenvectors for discrete systems).

Consider the beam equation shown in Eq. (2.4). To apply modal analysis, suppos-

ing that the eigenfunctions φ(x) are already at hand, one first assumes,

w(x, t) =
∞
∑

i=1

φi(x)qi(t) (2.7)

being qi the modal coordinates and φi the ith eigenfunction. Substituting Eq. (2.7) into

(2.4), leads to
∞
∑

i=1

{

[m]φi(x)q̈i(t) + [k]φi(x)qi(t)
}

= f(x, t) (2.8)

The eigenfunctions φi, which are assumed to be normalized, have the following orthogo-

nality properties,
∫ L

0

φj[m]φi = δij,

∫ L

0

φj[k]φi = λ2δij, (2.9)

where δij is the Kronecker delta. These conditions are obtained from Eq. (2.5). Now,
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multiplying Eq. (2.8) by φj, integrating from x = 0 to x = L, and taking into account the

orthogonality conditions, one arrives at,

q̈i(t) + λ2i qi(t) =

∫ L

0

φi(x)f(x, t)dx, i = 1, 2, ... (2.10)

which is infinite second order differential equations for the modal coordinates qi. It is

important to note the importance of the orthogonality condition to uncouple Eq. (2.8).

Also, note that the external force is weighted by the eigenfunction of mode i.

In case the system posses damping or gyroscopic effect, the orthogonality condi-

tions above are not valid, and one needs to treat the system in state-space (MEIROVITCH,

1980). This approach will be first shown in Chapter 3 and the subsequent chapters, where

modal analysis is applied to a much more complex continuous systems. Nonetheless, the

ideas outlined above are very important for the analysis of these kind of systems.

2.2 Overview on rotordynamics

Rotordynamics is mainly concerned in the study of rotating machines. These ma-

chines consist essentially of rotating parts, such as shafts, bladed disks, impellers, and so

on; and stationary parts, like bearings housings, seals and foundations. Some examples of

rotating machines are steam turbines, compressors, pumps, internal combustion engines,

electric motors and generators. The unique interaction between the different parts in

the machine gives rise to a number of phenomena that are not seen in other structures.

Besides the interactions between rotors and stators, the fluid media often present between

these components adds even more complexity and dynamic richness for these kind of ma-

chines. Some books devoted exclusively to the study of rotordynamics are Gasch et al.

(1975), Lee (1993), Childs (1993), Krämer (1993), Lalanne e Ferraris (1998), Muszynska

(2005), Vance et al. (2010), Genta (2007), Ishida and Yamamoto (2012), Friswell et al.

(2010) and Tiwari (2017).

The modeling of rotors started in the mid 1800s, and many authors consider the

paper by Rankine (1869) to be the first paper published on the topic, where the concept

of critical speed was already established. However, Rankine wrongly predicted that this

speed was impossible to reach. Notwithstanding, because of this prediction many early

rotating machines were "forbidden" to run pass the critical speed. According to Vance et

al. (2010), DeLaval proved in the late 1890s that the supercritical operation was possible.

Shortly after that, Jeffcott (1919) introduced the Jeffcott rotor, which was able to rep-

resent a great deal of phenomenon seen in rotating machines, as Krämer (1993), Gasch

et al. (1975), Genta (2007) and Lalanne e Ferraris (1998) show. As the machines started

to rotate at ever faster speeds, engineers faced several kinds of instabilities, such as whirl
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instability due to fluid related phenomena and due to rotating internal damping of the

shaft. The understanding and prevention of such instabilities proved to be very important

for the correct functioning of rotating machines.

In order to adequately predict the phenomena seen in real machines, more suitable

mathematical models were needed. The rotordynamics models can be divided into two

groups: rigid and flexible rotors. In the first kind, the rotor is considered as a rigid

body; thus it hypothetically does not suffer deformation of any kind. Rigid rotors can

model effectively rotating machines that operate at low speeds or have a shaft much stiffer

than the supporting bearings. In case the shaft whirl becomes important, one needs to

apply flexible rotor models that account for the shaft distributed inertia and stiffness,

leading to a continuous vibrating system. The equations of motion of these systems are

partial differential equations, which required a discretization procedure. The two main

approaches developed for that matter were the transfer matrix method (TMM) (LUND,

1974; HSIEH et al., 2006; LEE; LEE, 2018; CHEN et al., 2020) and the finite element

method (FEM) (NELSON; MCVAUGH, 1976; KU, 1998).

2.2.1 Nonlinear phenomena in rotordynamics

The inherent complexity of rotating machines and the interaction between its dif-

ferent parts give rise to a number of nonlinear phenomena. Although linear rotordynamics

models provide great insights in the functioning of the machines, they may predict wrong

behaviors in many situations and are thus not suitable when some kind of nonlinearity

is at play. Common sources of nonlinearities are fluid-related phenomena (CASTRO et

al., 2008; MENDES; CAVALCA, 2014; RIEMANN et al., 2013) and rubbing between

rotating and stationary parts (JACQUET-RICHARDET et al., 2013; VARANIS et al.,

2018; WANG et al., 2020; ALBER; MARKERT, 2014). In case the shaft presents large

deformations, one needs to account the stiffening effect in the modeling of them, as shown

by Ishida et al. (1996) and Shad et al. (2011). More information on nonlinear rotordy-

namics can be found in the papers by Ishida (1994), Shaw and Balachandran (2008) and

Prabith and Krishna (2020).

Giving the importance of nonlinear phenomena, that in some cases can lead to the

complete failure of the machines, the introduction of them in the mathematical modeling

is very important. For this reason, this work also introduces the use of the CSM to

study the rubbing phenomenon. A review of rotor to stator rub is presented in Chapter 6,

where the nonlinear model used is also introduced. The idea is to present the application of

nonlinear phenomena using the present method and apply to multi-stepped rotor systems.



2 LITERATURE REVIEW 25

2.3 Modeling of multi-stepped rotor systems

Flexible rotors are commonly modeled as beams, since the bending effect is gen-

erally more prevalent than other effects. Hence, it is worth reviewing some models of

multi-stepped beams, as they can be applied to rotors with some adaptations. Researchers

have long been interested in beams with stepped sections, as they can be used to model

a great deal of structures and machine parts. Some early works by Taleb and Suppiger

(1961), Klein (1974), Levinson (1976) and Jang and Bert (1989a, 1989b) show examples

of solutions of single-stepped beams. Koplow et al. (2006) and Jaworski and Dowel (2008)

present experimental results of multi-stepped beams. The latter study compared results

from several different models, including 1-D beams, 2-D shells and 3-D solids with experi-

mental results; showing that 1-D beams can give good results provided the stepping cross

section is not excessively high.

The expansion from single-stepped beams to multi-stepped was performed by sev-

eral authors. Vaz and Junior (2016) presented a systematic method to model multi-

stepped beam with variable cross-sections and material properties by means of the Euler-

Bernoulli beam theory. Farghaly and El-Sayed (2016) and Torabi et al. (2013) presented

approaches to model multi-stepped beams using Timoshenko beams with multiple at-

tachments. These works mostly consider the undamped beams. Sorrentino et al. (2003)

presented an approach were the damping, which can be viscous, hysteretic and even frac-

tional, is included in the eigenvalue problem. The general steps used in these works are:

(i) solve the eigenvalue problem for a single uniform segment, (ii) apply the continuity

conditions to relate the mode shapes of the different segments and (iii) apply the bound-

ary conditions to obtain the eigenvalues. It is worth metioning that condition (ii) requires

that the segments have a collinear neutral axis. In case this assumption is not valid, such

as when large manufacture errors are present, the coupling between bending and axial

modes need to be taken into account, as discussed by Ju et al. (1994).

A different approach to model multi-stepped beams is to use receptances methods

based on time transformations by means of Laplace or Fourier transforms. This idea is

used in the Spectral Element Method (SEM) (LEE, 2009), where the Fourier transform

is used to obtain the results in the frequency domain. The application of this method for

multi-stepped beams consist in assembling a global dynamic matrix, similar to the FEM.

Lin and Ng (2017) used an approach by impedance matrices to obtain the solution of

multi-span beams with attachments using the Euler-Beronoulli beam theory. A similar

approach is given by Chen et al. (2020), where a TMM is established for multi-stepped

beams with concentrated masses and springs using the Timoshenko beam theory. Some

additional works that are worth mentioning utilize approximate methods in the modeling

of stepped beams, such as the differential quadrature method, Wang (2013), and composite

element model, Lu et al. (2009).
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The modeling of rotor systems can be done positioning 1-D beams in the two

orthogonal directions. These directions, however, are coupled due to the gyroscopic

effects and, in some cases, the bearings. The gyroscopic effect makes the application

of modal analysis a bit more challenging, as the eigenvalue problem is non-self-adjoint

(MEIROVITCH, 1980). The eigenfunctions obtained from this kind of problems are not

orthogonal, requiring the use of adjoint quantities. Lee (1991), Sawicki and Genta (2001)

and Genta (1992) provided important insights into the modal analysis applied to discrete

rotor systems. These systems are commonly obtained through the discretization by the

FEM. The expansion of the modal analysis for continuous rotors were presented by Lee

and Jei (1988) for symmetric rotors on anisotropic supports and by Jei and Lee (1992b)

for asymmetric rotors. Eshleman and Eubanks (1967, 1969) presented the solution of

continuous rotors considering several effects such as shear deformation, rotary inertia,

disk diameter and driving torque.

Multi-stepped rotors can be approached in a similar way as beams, using the con-

ditions (i)-(iii) discussed above. In spite of this, the number of works devoted to the mod-

eling of rotors is more scarce than for beams. Jun and Kim (1999) presented the modeling

of multi-stepped rotors considering rotary inertia, shear deformation and driving torque.

More recently, Torabi et al. (2017), Afshari and Rahaghi (2018), and Afshari et al. (2020),

showed similar methods in the modeling of multi-stepped rotors using the Timoshenko

theory with multiple disks and bearings and with axial force. Szolc (2000) presented

the modeling of rotor systems with nonlinear bearings and coupled lateral-torsional vi-

brations. Chasalevris and Papadopoulos (2010, 2014) studied nonlinear whirling due to

oil-film bearing using a method similar to component modal analysis.

Similarly to what was done in beams, the modeling of rotors in the frequency

domain was also studied by many authors. Fang and Yang (1998) and Hong and Park

(1999) presented similar approaches where the Laplace transform is used to solve the

eigenvalue problem of the multi-stepped rotor. This allows the construction of local

dynamic stiffness matrices, that can be assembled to represent the multi-stepped rotor in a

process similar to the SEM (LEE, 2009). Since the response in such methods are obtained

first in the frequency domain, the application of nonlinear forces becomes challenging;

although it is still possible. Özcsahin et al. (2014) utilized the receptances of the rotor

to account for multi-stepped cross-sections, disks and bearings. Exact dynamic elements

were obtained by Hong and Park (2001), which can be used to establish finite elements

for rotor systems.

The method presented here has similar features to previous works, most notably

Özcsahin et al. (2014) and Torabi et al. (2017). However, while these works did not con-

sidered damping in their modeling, the CSM includes general non-proportional damping

and gyroscopic effect. The main difference to the CSM to previous works is the use of
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the complex notation, which facilitates the analysis of rotating machines. In addition to

this, the present method is also valid for multi-stepped rotors on anisotropic bearings and

with asymmetric shafts.
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The shaft is modeled as a beam in the two orthogonal directions. The equations of motion

of the system can be obtained through the Extended Hamilton Principle (EHP), which is

a variational method commonly used in continuous systems and can be stated as (RAO,

2007; NAYFEH; PAI, 2008),

δ

∫ t2

t1

(

T − V +Wnc

)

= 0 (3.1)

where δ(·) denotes the virtual displacement, T is the kinetic energy, V is the potential

energy and Wnc the virtual work of the non-conservative forces. The kinetic energy of the

system, considering only terms up to second order, can be written as,

T =
1

2

∫ L

0

m̄(x)

[

(

∂uy
∂t

)2

+

(

∂uz
∂t

)2
]

dx+
1

2

∫ L

0

J̄d(x)

[

(

∂ψy

∂t

)2

+

(

∂ψz

∂t

)2
]

dx

+

∫ L

0

J̄p(x)

(

Ω + ψy

∂ψz

∂t

)2

dx (3.2)

being m̄(x) the mass per unit length; J̄d(x) and J̄p(x) the diametral and polar mass

moment of inertia per unit length and Ω the shaft rotating speed. Note that the functional

dependency (x, t) of the displacements and bending angles were omitted for the ease of

notation. The contribution of the disks are included in the distributed properties as shown

in Eq. (3.14). The last term in Eq. (3.2) is due to the gyroscopic effect, and its form may

be different depending on the angles used to describe the rotation of the shaft in 3-D

space. However, the form of the final equations of motion will be the same regardless the

angles used, at least for terms up to second order, as shown by Raffa and Vatta (1999).

The potential energy consist of the contribution of the shaft and the bearings V = Vs+Vb;

the potential energy of the shaft can be obtained as,

Vs =
1

2

∫ L

0

EĪ(x)

[

(

∂ψy

∂x

)2

+

(

∂ψz

∂x

)2
]

dx+
1

2

∫ L

0

κGĀ(x)

(

∂uy
∂x

− ψz

)2

dx

+
1

2

∫ L

0

κGĀ(x)

(

∂uz
∂x

+ ψy

)2

dx (3.3)

being the first term due to bending and the last two terms due to shear deformation. The

contribution of the bearings is written as,

Vb =
1

2

∫ L

0

(

k̄m(x)u
2
y + k̄m(x)u

2
z + k̄t(x)ψ

2
y + k̄t(x)ψ

2
z

)

dx (3.4)

The bearings are modeled as concentrated isotropic springs and dampers, with transverse

(k̄m and c̄m) and torsional (k̄t and c̄t) coefficients. The work of the non conservative forces
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is given as,

Wnc =
1

2

∫ L

0

[

c̄m(x)

(

∂uy
∂t

)2

+ c̄m(x)

(

∂uz
∂t

)2

+ c̄t(x)

(

∂ψy

∂t

)2

+ c̄t(x)

(

∂ψz

∂t

)2
]

dx

+

∫ L

0

(fyuy + fzuz) dx (3.5)

where fy = fy(x, t) and fz = fz(x, t) are the distributed force components. The equations

of motion can be obtained by substituting Eqs. (3.2)-(3.5) into the EHP shown in Eq. (3.1),

which gives (for a derivation the reader is referred to Tiwari (2017), chapter 10),

m̄(x)
∂2uy
∂t2

+
∂

∂x

[

κGĀ(x)

(

ψz −
∂uy
∂x

)]

+ k̄m(x)uy + c̄m(x)
∂uy
∂t

= fy(x, t) (3.6)

m̄(x)
∂2uz
∂t2

− ∂

∂x

[

κGĀ(x)

(

ψy +
∂uz
∂x

)]

+ k̄m(x)uz + c̄m(x)
∂uz
∂t

= fz(x, t) (3.7)

J̄d(x)
∂2ψy

∂t2
+ ΩJ̄p(x)

∂ψz

∂t
− ∂

∂x

[

EĪ(x)
∂ψy

∂x

]

+ κGĀ(x)

[

ψy +
∂uz
∂x

]

− k̄t(x)ψy − c̄t(x)
∂ψy

∂t
= 0 (3.8)

J̄d(x)
∂2ψz

∂t2
− ΩJ̄p(x)

∂ψy

∂t
− ∂

∂x

[

EĪ(x)
∂ψz

∂x

]

+ κGĀ(x)

[

ψz −
∂uy
∂x

]

− k̄t(x)ψz − c̄t(x)
∂ψz

∂t
= 0 (3.9)

By introducing the complex displacements,

u = uy + juz (3.10)

ψ = ψz − jψy (3.11)

with j =
√
−1, Eqs. (3.6)-(3.9) can be rewritten in the complex form as,

m̄(x)
∂2u

∂t2
+

∂

∂x

[

κGĀ(x)

(

ψ − ∂u

∂x

)]

+ k̄m(x)u+ c̄m(x)
∂u

∂t
= f(x, t) (3.12)
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J̄d(x)
∂2ψ

∂t2
− jΩJ̄p(x)

∂ψ

∂t
− ∂

∂x

[

EĪ(x)
∂ψ

∂x

]

+ κGĀ(x)

[

ψ − ∂u

∂x

]

− k̄t(x)ψ − c̄t(x)
∂ψ

∂t
= 0 (3.13)

being f(x, t) = fy(x, t) + jfz(x, t). The functions of the rotor’s properties represent a

model where the parameters of the shaft are distributed in a step-wise manner and the

disks and bearings are concentrated at their location points. The following functions are

assumed,

Ā(x) =
n
∑

i=1

AiHi(x), Ī(x) =
n
∑

i=1

IiHi(x), m̄(x) =
n
∑

i=1

ρAiHi(x) +
P
∑

j=1

M jδd(x− xja)

J̄d(x) =
n
∑

i=1

ρAir
2
iHi(x) +

P
∑

j=1

J j
dδd(x− xja), J̄p(x) =

n
∑

i=1

2ρAir
2
iHi(x) +

P
∑

j=1

J j
pδd(x− xja)

(3.14)

where δd is the Dirac’s delta function, r2i = Ii/Ai is the radius of gyration and xja are the

coordinates of the disks. Note that the rigid disks are encoded in the distributed masses

and moments of inertia through the use of δd. The function Hi is given as,

Hi(x) = H(x− xi)−H(x− xi+1) for i = 1, 2, ..., n (3.15)

beingH the Heaviside unit step function and xi the coordinates of the nodes or boundaries

between segments. The functions k̄m, c̄m, k̄t and c̄t are given as,

k̄m(x) =

Q
∑

l=1

klmδd(x− xlb), c̄m(x) =

Q
∑

l=1

clmδd(x− xlb)

k̄t(x) =

Q
∑

l=1

kltδd(x− xlb), c̄t(x) =

Q
∑

l=1

cltδd(x− xlb) (3.16)

being xlb the coordinates of the bearings and k and c the stiffness and damping coefficients,

respectively. In case cross coupled effects must be added, the coefficients can be assumed

as k = kd + jkc and c = cd + jcc, where the subscripts d and c denote the direct and cross

coupled coefficients, respectively. Also, the effect of internal damping can be included by

considering the Young’s modulus in the formulation as E = E(1 + jΩci), being ci the

internal damping coefficient. The boundary conditions, which are also given by the EHP,

can be stated as,
[

EĪ(x)
∂ψ(x, t)

∂x
δψ(x, t)

]

x=0,L

= 0 (3.17)
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[

κGĀ(x)

(

ψ(x, t)− ∂u(x, t)

∂x

)

δu(x, t)

]

x=0,L

= 0 (3.18)

Equations (3.12), (3.13), (3.17) and (3.18) denote the boundary-value problem of the rotor

system. Close-form solutions of such problems are possible only for a few particular cases;

for example, when the boundary conditions are not complicated and the distribution of

mass and stiffness is constant. For the particular system presented, one can obtain exact

solutions by means of separation of variables, since each segment has constant cross-

section, the shaft is homogeneous and the boundary conditions are simple. However, one

should note that the present approach can be applied to rotors with non-uniform cross-

section or other complicating property; but then the solutions would be approximate

rather than exact. By means of the modal expansion or assumed modes method, the

displacement and slope fields can be written as,

u(x, t) =
∞
∑

i=1

[φF
i (x)q

F
i (t) + φB

i (x)q
B
i (t)] ≈

N
∑

i=1

[φF
i (x)q

F
i (t) + φB

i (x)q
B
i (t)] (3.19)

ψ(x, t) =
∞
∑

i=1

[ηFi (x)q
F
i (t) + ηBi (x)q

B
i (t)] ≈

N
∑

i=1

[ηFi (x)q
F
i (t) + ηBi (x)q

B
i (t)] (3.20)

being φi(x) and ηi(x) the eigenfunctions, qi(t) the modal coordinates, N the number

of modes used, and F and B denote the forward and backward modes, respectively.

What makes the approach exact (at least for the system shown in Fig. 2) is that the

eigenfunctions φi(x) and ηi(x) are obtained directly from the equations of motion (3.12)

and (3.13) through separation of variables. They also satisfy the boundary conditions

shown in Eqs. (3.17) and (3.18).

3.2 Eigenfunctions and eigenvalues

The free vibration of the system can be obtained as,

m̄(x)
∂2u

∂t2
+

∂

∂x

[

κGĀ(x)

(

ψ − ∂u

∂x

)]

+ k̄m(x)u+ c̄m(x)
∂u

∂t
= 0 (3.21)

J̄d(x)
∂2ψ

∂t2
− jΩJ̄p(x)

∂ψ

∂t
− ∂

∂x

[

EĪ(x)
∂ψ

∂x

]

+ κGĀ(x)

[

ψ − ∂u

∂x

]

− k̄t(x)ψ − c̄t(x)
∂ψ

∂t
= 0 (3.22)

The solutions are assumed as u = φ(x)q(t) = φ(x)eλt and ψ = η(x)q(t) = η(x)eλt, being
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disk, respectively; and ′ = d/dξi. Note that the local problem given by Eqs. (3.25) and

(3.26) now has constant coefficients, and it is thus solvable. Here one should note that

the problem could be reduced to only one equation by solving for η′i(ξi) in Eq. (3.25);

this, however, would lead to a complicated equation for φi with multiple derivatives of δd.

Therefore, it is advisable to solve both equations simultaneously, since the final result will

be the same. After applying the Laplace Transform to the spatial variable ξi in Eqs. (3.25)

and (3.26), one may have,

λ2ρAiφ̂i(s) + κGAi [sη̂i(s)− ηi(0)]− κGAi

[

s2φ̂i(s)− φ′

i(0)− sφi(0)
]

+ λ2Mkφi(ak)e
−sak +

(

klm + λclm
)

φi(bl)e
−sbl = 0 (3.27)

(

λ2 − 2jλΩ
)

ρAir
2
i η̂i(s)−EIi

[

s2η̂i(s)− η′i(0)− sηi(0)
]

+κGAiη̂i(s)−κGAi

[

sφ̂i(s)− φi(0)
]

+
(

λ2Jk
d − jλΩJk

p

)

ηi(ak)e
−sak −

(

klt + λclt
)

ηi(bl)e
−sbl = 0 (3.28)

where φ̂i(s) and η̂i(s) are the Laplace transform of φi(ξi) and ηi(ξi), respectively. The

above equations can be written in matrix form as,

[L]{Φ̂(s)} = {b} (3.29)

being,

[L] =

[

ρAiλ
2 − κGAis

2 κGAis

−κGAis (λ2 − 2jλΩ) ρAir
2
i − EIis

2 + κGAi

]

(3.30)

{Φ̂(s)} =
{

φ̂i(s) η̂i(s)
}T

(3.31)

{b} =











κGAi[ηi(0)−φ′

i(0)−sφ(0)]−λ2Mkφi(ak)e
−sak

−(klm+λclm)φi(bl)e
−sbl

−κGAiφi(0)−EIi[η′i(0)+sηi(0)]−(λ2Jk
d
−jλΩJk

p )ηi(ak)e−sak

+(klt+λclt)ηi(bl)e−sbl











(3.32)

Equation (3.29) can be solved for φ̂i(s) and η̂i(s) by multiplying both sides by [L]−1.

Recall that the inverse of a matrix can be written as [L]−1 = adj([L])/det([L]), where adj

denotes the adjoint matrix and det the determinant. The determinant of the matrix [L]

will give the mode shape parameters of segment i through the solution of the following

polynomial equation,

s4 +

(

ρAir
2
i

EIi

(

2jλΩ− λ2
)

− ρAiλ
2

κGAi

)

s2 +
ρAiλ

2
i

EIi

(

1− ρr2i
κG

(

2jλΩ− λ2
)

)

= 0 (3.33)

This equation has two roots for s2, being one positive and other negative. Denoting these
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roots as δ2i and −ε2i , one may have,

δ2i = −ai
2
+

√

a2i
4

− bi (3.34)

ε2i =
ai
2
+

√

a2i
4

− bi (3.35)

with

ai =
ρAir

2
i

EIi

(

2jλΩ− λ2
)

− ρAiλ
2

κGAi

(3.36)

bi =
ρAiλ

2
i

EIi

(

1− ρr2i
κG

(

2jλΩ− λ2
)

)

(3.37)

Using the roots given above, one can write det([L]) = (s2 − δ2i )(s
2 + ε2i ), and apply the

inverse Laplace transform in Eq. (3.29). By performing this, one arrives at,

φi(ξi) = ηi(0)f1(ξi) + η′i(0)f2(ξi) + φi(0)f3(ξi) + φ′

i(0)f4(ξi)

+
[

pak1 (ξi)φi(ak)+h
ak
1 (ξi)ηi(ak)

]

H(x−ak)+
[

pbl1 (ξi)φi(bl) + hbl1 (ξi)ηi(bl)
]

H(x−bl) (3.38)

ηi(ξi) = ηi(0)g1(ξi) + η′i(0)g2(ξi) + φi(0)g3(ξi) + φ′

i(0)g4(ξi)

+
[

pak2 (ξi)φi(ak)+h
ak
2 (ξi)ηi(ak)

]

H(x−ak)+
[

pbl2 (ξi)φi(bl)+h
bl
2 (ξi)ηi(bl)

]

H(x− bl) (3.39)

the functions fi, gi (i = 1, 2, 3, 4), pmj and hmj (j = 1, 2 and m = ak, bl) are shown in

Appendix A. Here one notes that the bearings and disks appear as Heaviside functions in

the mode shapes together with the functions p and h. This allows them to be positioned

anywhere along segment i.

Equations (3.38) and (3.39) have nine unknowns, namely, ηi(0), η′i(0), φi(0), φ′

i(0),

λ, ηi(ak), ηi(bk), φi(ak) and φi(bk). The first five unknowns, ηi(0), η′i(0), φi(0), φ′

i(0) and

λ; are obtained from the boundary conditions combined with the continuity conditions.

The remaining four can be obtained directly from Eqs. (3.38) and (3.39) by the continuity

of the functions φi and ηi at ξi = ak and ξi = bl. However, if the bearing and disk are

considered to be in the same segment i, one needs to assume ak < bl or ak > bl. In

order to avoid these assumptions, and to simplify the form of the local mode shapes, it is

simpler to assume that each segment has only a bearing or a disk. Then one of the terms

in brackets in Eqs. (3.38) and (3.39) vanish. Consider that the segment i has only a disk,

then the function φi evaluated at ξi = ak is obtained as,

φi(ak) = ηi(0)f1(ak) + η′i(0)f2(ak) + φi(0)f3(ak) + φ′

i(0)f4(ak)

+
[

✘
✘
✘

✘✘✿
0

pak1 (ak)φi(ak) +✘
✘
✘
✘✘✿

0
hak1 (ak)ηi(ak)

]

= ηi(0)f1(ak) + η′i(0)f2(ak) + φi(0)f3(ak) + φ′

i(0)f4(ak)
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Thus, by doing the same procedure for ηi(ak), and substitute the result back in Eq. (3.38)

and (3.39), one has,

φi(ξi) = ηi(0)C1i(ξi) + η′i(0)C2i(ξi) + φi(0)C3i(ξi) + φ′

i(0)C4i(ξi) = [Ci(ξi)]{Xi(0)} (3.40)

ηi(ξi) = ηi(0)D1i(ξi)+ η
′

i(0)D2i(ξi)+φi(0)D3i(ξi)+φ
′

i(0)D4i(ξi) = [Di(ξi)]{Xi(0)} (3.41)

being
{

Cji(ξi) = fj(ξi) + [fj(ak)p
ak
1 (ξi) + gj(ak)h

ak
1 (ξi)]H(ξi − ak)

Dji(ξi) = gj(ξi) + [fj(ak)p
ak
2 (ξi) + gj(ak)h

ak
2 (ξi)]H(ξi − ak)

(3.42)

for j = 1, 2, 3, 4; k = 1, 2, ..., P

[Ci(ξ)] = [C1i(ξ) C2i(ξ) · · · C4i(ξ)], [Di(ξ)] = [D1i(ξ) D2i(ξ) · · · D4i(ξ)], (3.43)

{Xi(ξi)} = {η1i(ξi) η′i(ξi) φi(ξi) φ
′

i(ξi)}T (3.44)

In case segment i has a bearing instead of a disk, one changes pak1 to pbl1 , pak2 to pbl2 , and

so on. Note that if the segment i has no disk or bearing, Cji = fj and Dji = gj, for

j = 1, 2, 3, 4. The form presented in Eqs. (3.40) and (3.41) will be valid for all segments

i = 1, 2, ..., n, being the specific form of [Ci(ξi)] and [Di(ξi)] dependent if the segment has

a disk or bearing.

The continuity conditions, that relate the mode shapes of the different segments,

are the continuity of the displacement, slope, bending moment and shear force, which can

be written as,























ηi+1(0) = ηi(Li)

EIi+1η
′

i+1(0) = EIiη
′

i(Li)

φi+1(0) = φi(Li)

κGAi+1

(

ηi+1(0)− φ′

i+1(0)
)

= κGAi

(

ηi(Li)− φ′

i(Li)
)

(3.45)

or, equivalently, in matrix form as,























ηi+1(0)

η′i+1(0)

φi+1(0)

φ′

i+1(0)























=













1 0 0 0

0 βi 0 0

0 0 1 0

1− αi 0 0 αi



































ηi(Li)

η′i(Li)

φi(Li)

φ′

i(Li)























= [hi]{Xi(Li)} (3.46)

being βi = Ii/Ii+1 and αi = Ai/Ai+1. By using the form given in Eqs. (3.40) and (3.41),

the relation between {Xi+1(0)} and {Xi(0)} is found to be,

{Xi+1(0)} = [hi]
[

[Di(L)] [D′

i(L)] [Ci(L)] [C ′

i(L)]
]T

{Xi(0)} = [Hi]{Xi(0)} (3.47)
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Here it is worth mentioning that the disks and bearings are encoded into the matrices

[Ci(ξi)] and [Di(ξi)] by means of the functions p and h and the Heaviside function, as shown

in Eq. (3.42). They can be placed anywhere along segment i, including the boundaries

ξi = 0, Li, by setting the local coordinates ai or bi. A different approach could have

been taken where the disks and bearings are set only at the boundaries between the

segments, and thus not included in the matrices [Ci(ξi)] and [Di(ξi)]. In this case, they

would appear in the matrices [hi] in the boundary between segment i and i + 1, as the

continuity condition of the shear force and bending moment would be affected. Consider,

for example, that in the boundary between segments i and i + 1 there is a lth bearing;

then the continuity of the shear force is now given as,

κGAi+1

(

ηi+1(0)− φ′

i+1(0)
)

=
(

klm + λclm
)

φi(Li) + κGAi

(

ηi(Li)− φ′

i(Li)
)

from this condition, the matrix [hi] need to be modified as follows,

[hi] =













1 0 0 0

0 βi 0 0

0 0 1 0

1− αi 0 −(klm+λclm)
κGAi+1

αi













Similar results can be obtained if the boundary has disks. One should note that the result

of including the disks in the matrices [Ci(ξi)] and [Di(ξi)] or in [hi] are equivalent, and

the final eigenfunctions and eigenvalues are the same no matter the approach taken.

The problem now consist in finding the constants {Xi(0)}, for each segment i =

1, 2, ..., n, as well as the eigenvalue λ. This can be done by using the continuity condition,

Equation (3.47), for each segment up to segment n. By this procedure, only the constants

of segment 1 will be left; two of these are eliminated by the boundary conditions specified

at the boundary x = 0. The remaining constants are obtained from the resulting system

of equations obtained from the boundary conditions specified x = L, and the determinant

of the coefficient matrix from this system of equations then gives the eigenvalues λ. By

following the first approach, the system of equations can be obtained as,

[A]
(

[Hn−1]× [Hn−2]×· · · × [H2]
)

[B]{X} = [G(λ)]{X} = 0 (3.48)

where the matrices [A] and [B] and the vector {X} depend upon the conditions specified

at x = 0, L. The matrices [A] and [B] are just slight variations of the matrices [Hi] that

account for the specified boundary conditions. The steps needed to obtain these matrices

are presented in the following. Consider the case where both ends are free; then the
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boundary conditions can be stated as,

{

η′1(0) = η′n(Ln) = 0

κGA1

(

η1(0)− φ1(0)
)

= κGAn

(

ηn(Ln)− φn(Ln)
)

= 0
(3.49)

The eigenfunctions of segment n, using Eqs (3.40), (3.41) and (3.47), can be written as,

φn(ξn) = [Cn(ξn)]{Xn(0)} = [Cn(ξn)]
(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)}

ηn(ξn) = [Dn(ξn)]{Xn(0)} = [Dn(ξn)]
(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)}

Using the boundary conditions and the form of φn(ξn) and ηn(ξn) presented above, one

obtains the following equation,

[

[D′

n(Ln)]

[Dn(Ln)]− [C ′

n(Ln)]

]

(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)} = 0

where one can identify the first matrix as being [A]. Now, to obtain the form of [B] and

{X}, the matrix [H1] and the vector {X1(0)} need to be modified. From the boundary

conditions shown in Eq. (3.49) one has η′1(0) = 0 and η1(0) = φ1(0); thus, the following

modifications are needed,

[H1]{X1(0)} = [H1]























η1(0)

η′1(0)

φ1(0)

φ′

1(0)























= [H1]























φ′

1(0)

0

φ1(0)

φ′

1(0)























= [H1]













0 1

0 0

1 0

0 1













{

φ1(0)

φ′

1(0)

}

= [B]{X}

by substituting the above in the previous equation, one obtains the system of equation

presented in Eq. (3.48). From the above steps, one can easily obtain the form of [A],

[B] and {X} for different boundary conditions. In addition to the classical boundary

conditions, namely, free, clamped and simply-supported; one can also set the bearings

or disks at the boundaries, provided they are located at the segments 1 or n and the

coordinates a or b are set accordingly.

The characteristic equation is obtained from the determinant of the coefficient

matrix [G(λ)] in Eq. (3.48), which must be zero for non-trivial solutions to exist. The

eigenvalues will have the form

λki = σk
i ± jωk

i for i = 1, 2, ..., N ; k = F,B (3.50)

where ωk
i are the damped natural frequencies, σk

i are the damping parameters and F and

B denote the forward and backward modes, respectively. Due to the complex notation, the
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forward natural frequencies will be positive +jωF
i and the backward natural frequencies

negative −jωB
i for i = 1, 2, ..., N . This differs if the real notation is used, where the

complex conjugate of the eigenfunctions and eigenvalues need to be given so that the

response becomes real (LEE, 1991). The use of complex notation, at least for isotropic

rotors, has also the advantage that the number of equations in the eigenvalue problem is

diminished by half due to the axisymmetry.

The mode shape of the entire system is obtained by the combination of the mode

shapes of each segment. By using this systematic procedure, a rotor system with any

number of stepped cross-section can be modeled. The mode shapes and the slope for the

entire system is given as a continuous step-wise function, thus

φ(x) =























φ1(x) for x1 < x < x2

φ2(x) for x2 < x < x3
...

φn(x) for xn < x < xn+1

(3.51)

η(x) =























η1(x) for x1 < x < x2

η2(x) for x2 < x < x3
...

ηn(x) for xn < x < xn+1

(3.52)

3.3 Modal analysis

Now that the eigenfunctions are at hand, it is possible to use modal analysis to

discretize the partial differential equations and obtain the differential equations for the

modal coordinates. Firstly, the equations of motion given by Eqs. (3.12) and (3.13) are

rewritten as,

[m]{ẅ(x, t)}+ [c]{ẇ(x, t)}+ [k]{w(x, t)} = {g(x, t)} (3.53)

where

[m] =

[

m̄(x) 0

0 J̄d(x)

]

, [c] =

[

c̄m(x) 0

0 −jΩJ̄p(x)− c̄t(x)

]

[k] =

[

− ∂
∂x

(

κGĀ(x) ∂
∂x

)

+ k̄m(x)
∂
∂x

(

κGĀ(x)
)

−κGĀ(x) ∂
∂x

− ∂
∂x

(

EĪ(x) ∂
∂x

)

+ κGĀ(x)− k̄t(x)

]

(3.54)

{w(x, t)} = {u(x, t) ψ(x, t)}T (3.55)

{g(x, t)} = {f(x, t) 0}T (3.56)

being T the transpose and the dots time differentiation. The form of the equations of

motion shown in Eq. (3.53) is similar to what is seen to discrete vibrating systems, but
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it describes an infinite degree of freedom system. This form is very general, since the

matrices [m], [c] and [k] can be adapted to any vibrating continuous system. Due to the

damping and the gyroscopic effect, encoded in the matrix [c], Eq. (3.53) has to be put in

a state-space form to apply the modal analysis method, which yields,

[M ]{Ẇ (x, t)} = [K]{W (x, t)}+ {F (x, t)} (3.57)

being,

{W (x, t)} =
{

{ẇ(x, t)} {w(x, t)}
}T

(3.58)

{F (x, t)} =
{

0 0 {g(x, t)}
}T

=
{

0 0 f(x, t) 0
}T

(3.59)

[M ] =

[

[0]2×2 [m]

[m] [c]

]

(3.60)

[K] =

[

[m] [0]2×2

[0]2×2 −[k]

]

(3.61)

where [0]2×2 its a 2× 2 matrix of zeros. The matrices [M ] and [K] are complex operator

matrices, and the nature of these operators gives information about the eigenfunctions

needed to solve the eigenvalue problem. Two important properties of these operators is

self-adjointness and positive-definiteness. The adjoint of an operator [D] can be obtained

for any test function {v(x)} = {v1(x) v2(x) · · ·}T (MEIROVITCH, 1980) as,

〈 [D]{v(x)}, {v(x)} 〉 = 〈 {v(x)}, [D̃]{v(x)} 〉 (3.62)

where [D̃] is the adjoint operator of [D]. If the operator is self-adjoint, one has [D̃] = [D]

(RAO, 2007). In case where [D̃] 6= [D], the operator [D] is said to be non-self-adjoint. In

addition, 〈·〉 is the internal product, which, for two complex vectors {a} = {a1(x), a2(x)}T
and {b} = {b1(x), b2(x)}T , with x ∈ [0, L] is defined as

〈 {a}, {b} 〉 :=
∫ L

0

a1(x)b
∗

1(x)dx+

∫ L

0

a2(x)b
∗

2(x)dx (3.63)

being ∗ the complex conjugate. The positive-definiteness of an operator [D] is found for

an arbitrary test function {v(x)}, from

〈 [D]{v(x)}, {v(x)} 〉 ≥ 0 (3.64)

the operator [D] is said to be positive if the above condition is satisfied, and positive

definite if the term on the left-hand side is zero only if {v(x)} is zero. In the present

case, one can show, through the conditions (3.62) and (3.64), that the operators [M ] and
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[K] in Eq. (3.57) are both positive-definite, and the former is non-self-adjoint while the

latter self-adjoint. A non-self-adjoint continuous system is analogous to a non-symmetric

matrix in a discrete system, and the eigenfunctions obtained from such problems are not

orthogonal (MEIROVITCH, 1975). To decouple the equations in discrete systems one

needs to use the left eigenvectors of the non-symmetric matrix. The analogous way to

proceed in the continuous case is to use of the adjoint eigenfunctions, which are obtained

from the adjoint eigenvalue problem. Consider the state vector {W (x, t)} to be expanded

as,

{W (x, t)} =
∞
∑

i=0

{Φi(x)}qi(t) (3.65)

where,

{Φi(x)} =
{

λiφi(x) λiηi(x) φi(x) ηi(x)
}T

(3.66)

The solution of the homogeneous part of Eq. (3.57) can be found substituting {W (x, t)}
from (3.65) and assuming qi = eλit, which leads to,

λi[M ]{Φi(x)} = [K]{Φi(x)} for i = 1, 2, ... (3.67)

one can prove that the eigenvalue problem shown in Eq. (3.67) is the same as the one

given by Eqs. (3.23) and (3.24) in the preceding section. The adjoint eigenvalue problem

is obtained as,

λ∗i [M̃ ]{Φ̃i(x)} = [K̃]{Φ̃i(x)} for i = 1, 2, ... (3.68)

being [M̃ ], [K̃] and {Φ̃i(x)} the adjoint quantities of [M ], [K] and {Φi(x)}, respectively.

In the present case, one can show that [M̃ ] = [M ]H and [K̃] = [K]H , being H the complex

conjugate transpose, also known as hermitian transpose. The vector {Φ̃i(x)} is given as,

{Φ̃i(x)} =
{

λ∗i φ̃i(x) λ∗i η̃i(x) φ̃i(x) η̃i(x)
}T

(3.69)

being φ̃(x) and η̃(x) the adjoint eigenfunctions of φ(x) and η(x), respectively. The func-

tions {Φi(x)} and {Φ̃j(x)} are biorthogonal and can be normalized so as to satisfy the

following relations (LEE, 1993; MEIROVITCH, 1980),

〈 [M ]{Φi(x)}, {Φ̃j(x)} 〉 = δij (3.70a)

〈 [K]{Φi(x)}, {Φ̃j(x)} 〉 = λiδij (3.70b)

where δij is the Kronecker delta, which is one if i = j and zero if i 6= j. After substituting

{W (x, t)} given by Eq. (3.65) in the state-space equation of motion (3.57), taking the

internal product in both sides by {Φ̃i(x)}, and taking into account the orthogonality
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conditions, one may have,

q̇i(t) = λiqi(t) +

∫ L

0

φ̃∗

i (x)f(x, t)dx for i = 1, 2, ... (3.71)

Equation (3.71) consist of infinite first order complex modal equations, which are in reality

truncated at N modes. In this case, each mode has a forward and backward case, each

with a unique equation. After solving for the modal coordinates, the physical displacement

and slope are obtained by,

u(x, t) =
∞
∑

i=0

φi(x)qi(t) (3.72)

ψ(x, t) =
∞
∑

i=0

ηi(x)qi(t) (3.73)

The y and z components of the displacements and slopes are simply the real and imaginary

parts of u(x, t) and ψ(x, t), respectively.

Since {Φi(x)} and {Φ̃∗

i (x)} are the result of the same eigenvalue problem, as noted

by taking the complex conjugate transpose of Eq. (3.67) and comparing it with Eq. (3.68),

they are the same within a constant, that is (LEE, 1993),

{Φi(x)} =
1

Ki

{Φ̃∗

i (x)} (3.74)

being Ki a complex normalizing constant, that is obtained from Eqs. (3.70a) or (3.70b).

The expansion of these equations are given as, respectively,

(λi + λj)

∫ L

0

[

m̄(x)φi(x)φ̃
∗

j(x) + J̄d(x)ηi(x)η̃
∗

j (x)
]

dx− jΩ

∫ L

0

J̄d(x)ηi(x)η̃
∗

j (x)dx

+

∫ L

0

c̄m(x)φi(x)φ̃
∗

j(x)dx+

∫ L

0

c̄t(x)ηi(x)η̃
∗

j (x)dx = δij (3.75)

λiλj

∫ L

0

[

m̄(x)φi(x)ψ
∗

j (x) + J̄d(x)ηi(x)η̃
∗

j (x)
]

dx+

∫ L

0

κGĀ(x)

[

ηi(x)−
dφi(x)

dx

]

dφ̃∗

j(x)

dx
dx

−
∫ L

0

EĪ(x)
dηi(x)

dx

dη̃∗j (x)

dx
dx+

∫ L

0

κGĀ(x)

[

dφi(x)

dx
− ηi(x)

]

η̃∗j (x)dx

−
∫ L

0

k̄m(x)φi(x)φ̃
∗

j(x)dx−
∫ L

0

k̄t(x)ηi(x)η̃
∗

j (x)dx = λiδij (3.76)

Equation (3.75) or (3.76), together with the relation given by Equation (3.74), can be used

to obtain the normalizing constant Ki for each mode. Since the properties of the shaft



3 MODELING OF ISOTROPIC ROTOR SYSTEMS 43

are given in a step-wise manner, the integrals in Eqs. (3.75) and (3.76) can be evaluated

for each segment individually and then summing the results.

The initial conditions for the modal coordinates can be obtained by multiplying

Equation (3.65) by [M ], taking the product 〈·〉 in both sides by {Φ̃j(x)}, and use the

orthogonality condition. Considering the initial conditions as u(x, 0) = u0(x), u̇(x, 0) =

u̇0(x), ψ(x, 0) = ψ0(x), ψ̇(x, 0) = ψ̇0(x), one may have,

qi(0) = 〈 [M ]{W (x, 0)}, {Φ̃i(x)} 〉 =
∫ L

0

[

λim̄(x)u0(x)+ m̄(x)u̇0(x)+ c̄m(x)u0(x)
]

φ̃∗

i (x)dx

+

∫ L

0

[

λiJ̄d(x)ψ0(x) + J̄d(x)ψ̇0(x)− jΩJ̄p(x)ψ0(x) + c̄t(x)ψ0(x)
]

η̃∗i (x)dx (3.77)

It is noted that the initial conditions of the modal coordinates depend on the displacements

and the linear and angular momentum of the rotor, as well as the damping on the bearings.

The CSM is now completely established for isotropic rotor systems. The analysis

starts by setting the dimensions of the shaft and the division of it into segments. Each

segment must have a constant-cross section and either a disk or bearing. If one has a

bearing and a disk at the same location, it is possible to set them in different segments

and then position them in the boundaries of the segments. It’s important to note that

the way the shaft is divided does not affect the final result, since the approach is exact, as

far as the model shown in Fig. 2. Thus increasing or decreasing the number of segments

does not affect the results. With the eigenvalues and the eigenfunctions at hand, the

response is obtained solving the differential equations for the modal coordinates given by

Eq. (3.71), which can be in close-form depending on the external force f(x, t) considered.

Note that for each mode there is a forward and backward case, where the former has

positive frequency and the latter negative. The displacement and bending angle at any

position along the shaft is then given by Eqs. (3.72) and (3.73).

As a final remark, one should note that the CSM gives a solution to a very general

vibrating system, that is subjected to the gyroscopic effect and non-proportional damping,

as well as posses multiple bearings and rigid disks. The difference between the CSM and

other methods used to solve continuous systems is that the former is exact in nature. For

example, the domain is not discretized in the CSM, but the boundary-value problem is

solved in its entire form, using eigenfunctions obtained from the equations of motion. The

next chapter expands the CSM even more to also account for anisotropic bearings.
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4 Modeling of rotor systems on anisotropic bearings

In the previous chapter the modeling and analysis of isotropic rotor systems by the

proposed method was presented. Since most rotors in real applications have some kind

of asymmetry, this chapter presents the CSM applied to rotors with anisotropic bearings.

The model of the shaft is still considered axisymmetric, that is, it has the same moments

of inertia in the two orthogonal directions. But, due to the anisotropy of the bearings,

the whole system is not axisymmetric and the use of complex notation no longer reduces

the problem as in the isotropic case. However, the use of complex coordinates is still very

useful as it will be shown, and it provides important insights into the effects of anisotropy

in the response.

Different from isotropic systems, when anisotropy is present the direction of the

displacement is no longer collinear with the applied force (GENTA, 2007). Thus, a syn-

chronous force such as unbalance will excite not only the forward modes but also the back-

ward ones. The effect of this is that now one finds additional critical speeds corresponding

to the backward whirl frequencies, where the rotor whirls in a backward direction, or even

the so called "mixed-modes" where some parts of the shafts whirls in forward directions

and other parts in backward direction (MUSZYNSKA, 2005). Also, the whirl orbit will

be an ellipse rather than a circle, with a major and a minor axis.

The division of this chapter is similar to the previous one: Section 4.1 presents the

equations of motion that govern the rotor system, where the anisotropy consideration is

clearly stated. The eigenfunctions and eigenvalues are obtained in Sec. 4.2 in a similar

fashion as before, but with major differences due to the anisotropic bearings. The chapter

finalizes with the modal analysis in Sec. 4.3, to obtain the response of the system.

4.1 Equations of motion

The rotor system dealt with in this chapter is the same as the one illustrated in

Fig. 2. As a quick recall, the shaft is divided into n segments with lengths Li, cross-section

areas Ai and area moments of inertia Ii. The number of disks and bearings is P and Q,

positioned along a segment i by the local coordinates ai and bi. Each segment has a local

coordinate ξi ∈ [0, Li] that is used to describe the local mode shape. The displacements

and bending angles in the y and z directions are denoted as uy(x, t), uz(x, t), ψy(x, t) and

ψz(x, t), respectively, with the directions shown in Fig. 2. The equations of motion can

be derived in the exact same way, using the EHP, but with the addition of the anisotropic
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bearings, which gives the following,

m̄(x)
∂2uy
∂t2

+
∂

∂x

[

κGĀ(x)

(

ψz −
∂uy
∂x

)]

+ k̄yy(x)uy + c̄yy(x)
∂uy
∂t

(4.1)

k̄yz(x)uz + c̄yz(x)
∂uz
∂t

= fy(x, t) (4.2)

m̄(x)
∂2uz
∂t2

− ∂

∂x

[

κGĀ(x)

(

ψy +
∂uz
∂x

)]

+ k̄zz(x)uz + c̄zz(x)
∂uz
∂t

(4.3)

+k̄zy(x)uy + c̄zy(x)
∂uy
∂t

= fz(x, t) (4.4)

J̄d(x)
∂2ψy

∂t2
+ ΩJ̄p(x)

∂ψz

∂t
− ∂

∂x

[

EĪ(x)
∂ψy

∂x

]

+ κGĀ(x)

[

ψy +
∂uz
∂x

]

−k̄t(x)ψy − c̄t(x)
∂ψy

∂t
= 0 (4.5)

J̄d(x)
∂2ψz

∂t2
− ΩJ̄p(x)

∂ψy

∂t
− ∂

∂x

[

EĪ(x)
∂ψz

∂x

]

+ κGĀ(x)

[

ψz −
∂uy
∂x

]

−k̄t(x)ψz − c̄t(x)
∂ψz

∂t
= 0 (4.6)

Recall that m̄(x) is the mass per unit length; J̄d(x) and J̄p(x) are the diametral and polar

mass moment of inertia per unit length; Ω is the shaft rotating speed; and fy(x, t) and

fz(x, t) are the distributed force components. The properties of the shaft are given in a

step-wise manner as shown in Eq. (3.14) and repeated here in the following,

Ā(x) =
n
∑

i=1

AiHi(x), Ī(x) =
n
∑

i=1

IiHi(x), m̄(x) =
n
∑

i=1

ρAiHi(x) +
P
∑

j=1

M jδd(x− xja)

J̄d(x) =
n
∑

i=1

ρAir
2
iHi(x) +

P
∑

j=1

J j
dδd(x− xja), J̄p(x) =

n
∑

i=1

2ρAir
2
iHi(x) +

P
∑

j=1

J j
pδd(x− xja)

(3.14 repeated)

The bearings have now direct distributed coefficients k̄yy, k̄zz, c̄yy and c̄zz as well as cross-

coupled coefficients k̄yz, k̄zy, c̄yz and c̄zy. Figure 4 illustrates the bearing model, which

can represent a great variety of bearings (CHILDS, 1993). The torsional coefficients are

still considered isotropic with distributed coefficients k̄t and c̄t. Its possible to write the

above equations in complex form using Eqs. (3.10) and (3.11), which gives,

m̄(x)
∂2u

∂t2
+

∂

∂x

[

κGĀ(x)

(

ψ − ∂u

∂x

)]

+ k̄f (x)u+ c̄f (x)
∂u

∂t

+ k̄b(x)u
∗ + c̄b(x)

∂u∗

∂t
= f(x, t) (4.7)
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The boundary conditions remain the same as stated in Eqs. (3.17) and (3.18).

Similarly to the isotropic case, the boundary-value problem is solved by means of the

modal expansion method, which states

u(x, t) =
∞
∑

i=1

[φF
1i(x)q

F
i (t) + φB

1i(x)q
B
i (t)] ≈

N
∑

i=1

[φF
1i(x)q

F
i (t) + φB

1i(x)q
B
i (t)] (4.10)

ψ(x, t) =
∞
∑

i=1

[ηF1i(x)q
F
i (t) + ηB1i(x)q

B
i (t)] ≈

N
∑

i=1

[ηF1i(x)q
F
i (t) + ηB1i(x)q

B
1i(t)] (4.11)

where φ1i(x) and η1i(x) are the eigenfunctions of mode i. The subscript 1 denotes that

the functions are evaluated with the rotation at the specified direction. This is explained

in the next section.

4.2 Eigenfunctions and eigenvalues

The free vibration of the multi-stepped rotor is obtained as,

m̄(x)
∂2u

∂t2
+
∂

∂x

[

κGĀ(x)

(

ψ − ∂u

∂x

)]

+ k̄f (x)u+ c̄f (x)
∂u

∂t
+ k̄b(x)u

∗+ c̄b(x)
∂u∗

∂t
= 0 (4.12)

J̄d(x)
∂2ψ

∂t2
− jΩJ̄p(x)

∂ψ

∂t
− ∂

∂x

[

EĪ(x)
∂ψ

∂x

]

+ κGĀ(x)

[

ψ − ∂u

∂x

]

− k̄t(x)ψ − c̄t(x)
∂ψ

∂t
= 0 (4.13)

Assuming a solution on the form,

u(x, t) = φ1(x)e
λt + φ∗

2(x)e
λ∗t (4.14a)

ψ(x, t) = η1(x)e
λt + η∗2(x)e

λ∗t (4.14b)

being λ the eigenvalues and ∗ denotes the complex conjugate. By substituting the solutions

in the equations and gathering the terms with eλt and eλ
∗t, one may have,

λ2m̄(x)φ1(x) +
d

dx

[

κGĀ(x)

(

η1(x)−
dφ1(x)

dx

)]

+
[

k̄f (x) + λc̄f (x)
]

φ1(x)

+
[

k̄b(x) + λc̄b(x)
]

φ2(x) = 0 (4.15a)

λ2m̄(x)φ2(x) +
d

dx

[

κGĀ(x)

(

η2(x)−
dφ2(x)

dx

)]

+
[

k̄∗f (x) + λc̄∗f (x)
]

φ2(x)

+
[

k̄∗b (x) + λc̄∗b(x)
]

φ1(x) = 0 (4.15b)
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λ2J̄d(x)η1(x)− jλΩJ̄p(x)η1(x)−
d

dx

[

EĪ(x)
dη1(x)

dx

]

+ κGĀ(x)

(

η1(x)−
dφ1(x)

dx

)

−
[

k̄t(x) + λc̄t(x)
]

η1(x) = 0 (4.15c)

λ2J̄d(x)η2(x) + jλΩJ̄p(x)η2(x)−
d

dx

[

EĪ(x)
dη2(x)

dx

]

+ κGĀ(x)

(

η2(x)−
dφ2(x)

dx

)

−
[

k̄t(x) + λc̄t(x)
]

η2(x) = 0 (4.15d)

By analyzing the above equations, one may note that they are not complex conjugate

equations due to the anisotropic bearings coefficients k̄b(x) and c̄b(x). One may also note

that the rotor rotates at the specified direction for the functions φ1 and η1, and at the

opposite direction for φ2 and η2. Thus, the overall mode shape of the rotor will be non-

planar and non-circular. Since the equations for the functions φ1 and η1 are coupled with

the ones of φ2 and η2, they must be solved simultaneously; thus increasing by twofold the

number of equations needed to be solved when compared to the isotropic case presented

in Chapter 3. It is worth mentioning that when the rotor becomes isotropic, one has

k̄b(x) = c̄b(x) = 0, and the equations for φ1 and η1 become complex conjugate of φ2 and

η2; and thus one only needs to solve one of them.

As shown in the previous chapter for the isotropic rotor, the eigenvalue problem

can be solved by dividing the domain and solving individually for each segment i. This

gives the local mode shapes, and the global mode shape will be a combination of the

latter. For an arbitrary segment i located at xi < x < xi+1 with eigenfunctions φ1i(ξi),

φ2i(ξi), η1i(ξi) and η2i(ξi), being ξi ∈ [0, Li] the local coordinate of the segment. The

segment is considered to have a lth bearing and a kth rigid disk. The local eigenvalue

problem can be obtained as,

λ2
(

ρAi +Mkδd(ξi − ak)
)

φ1i(ξi) + κGAi

(

η′1i(ξi)− φ′′

1i(ξi)
)

+
(

klf + λclf
)

φ1i(ξi)δd(ξi − bl)

+
(

klb + λclb
)

φ2i(ξi)δd(ξi − bl) = 0 (4.16a)

λ2
(

ρAi +Mkδd(ξi − ak)
)

φ2i(ξi) + κGAi

(

η′2i(ξi)− φ′′

2i(ξi)
)

+
(

kl∗f + λcl∗f
)

φ2i(ξi)δd(ξi − bl)

+
(

kl∗b + λcl∗b
)

φ2i(ξi)δd(ξi − bl) = 0 (4.16b)

λ2
(

ρAir
2
i + Jk

d δd(ξi − ak)
)

η1i(ξi)− jλΩ
(

2ρAir
2
i + Jk

p δd(ξi − ak)
)

η1i(ξi)− EIiη
′′

1i(ξi)

+κGAi

(

η1i(ξi)− φ′

1i(ξi)
)

−
(

klt + λclt
)

η1i(ξi)δd(ξi − bl) = 0 (4.16c)

λ2
(

ρAir
2
i + Jk

d δd(ξi − ak)
)

η2i(ξi) + jλΩ
(

2ρAir
2
i + Jk

p δd(ξi − ak)
)

η2i(ξi)− EIiη
′′

2i(ξi)

+κGAi

(

η2i(ξi)− φ′

2i(ξi)
)

−
(

klt + λclt
)

η2i(ξi)δd(ξi − bl) = 0 (4.16d)
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where ′ = d/dξi. The above equations can be solved by means of the Laplace transform,

which yields

λ2ρAiφ̂1i(s) + κGAi

[

sη̂1i(s)− η1i(0)
]

− κGAi

[

s2φ̂1i(s)− φ′

1i(0)− sφ1i(0)
]

+λ2Mkφ1i(ak)e
−sak +

(

(

klf + λclf
)

φ1i(bl) +
(

klb + λclb
)

φ2i(bl)
)

e−sbl = 0 (4.17a)

λ2ρAiφ̂2i(s) + κGAi

[

sη̂2i(s)− η2i(0)
]

− κGAi

[

s2φ̂2i(s)− φ′

2i(0)− sφ2i(0)
]

+λ2Mkφ2i(ak)e
−sak +

(

(

kl∗f + λcl∗f
)

φ2i(bl) +
(

kl∗b + λcl∗b
)

φ1i(bl)
)

e−sbl = 0 (4.17b)

(

λ2 − 2jλΩ
)

ρAir
2
i η̂1i(s)− EIi

[

s2η̂1i(s)− η′1i(0)− sη1i(0)
]

− κGAi

[

sφ̂1i(s)− φ1i(0)
]

+κGAiη̂1i(s) +
(

λ2Jk
d − jλΩJk

p

)

η1i(ak)e
−sak +

(

klt + λclt
)

η1i(bl)e
−sbl = 0 (4.17c)

(

λ2 + 2jλΩ
)

ρAir
2
i η̂2i(s)− EIi

[

s2η̂2i(s)− η′2i(0)− sη2i(0)
]

− κGAi

[

sφ̂2i(s)− φ2i(0)
]

+κGAiη̂2i(s) +
(

λ2Jk
d + jλΩJk

p

)

η2i(ak)e
−sak +

(

klt + λclt
)

η2i(bl)e
−sbl = 0 (4.17d)

where φ̂1i(s), φ̂2i(s), η̂1i(s) and η̂2i(s) are the Laplace transform of φ1i(ξi), φ2i(ξi), η1i(ξi)

and ηi(ξi), respectively. The equations in the s domain can be written in matrix form as,

[L]{Φ̂(s)} = {b} (4.18)

where the terms are now given as,

[L] =

[

[L1] [0]4×4

[0]4×4 [L2]

]

, [L1] =

[

ρAiλ
2 − κGAis

2 κGAis

−κGAis (λ2 − 2jλΩ) ρAir
2
i − EIis

2 + κGAi

]

,

[L2] =

[

ρAiλ
2 − κGAis

2 κGAis

−κGAis (λ2 + 2jλΩ) ρAir
2
i − EIis

2 + κGAi

]

(4.19)

{Φ̂(s)} =
{

φ̂1i(s) η̂1i(s) φ̂2i(s) η̂2i(s)
}T

(4.20)
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













































































κGAi[ηi(0)−φ′

i(0)−sφ(0)]−λ2Mkφi(ak)e
−sak

−

(

(klf+λcl
f)φ1i(bl)+(klb+λcl

b)φ2i(bl)

)

e−sbl

−κGAiφi(0)−EIi[η′i(0)+sηi(0)]−(λ2Jk
d
−jλΩJk

p )ηi(ak)e−sak

+(klt+λclt)ηi(bl)e−sbl

κGAi[ηi(0)−φ′

i(0)−sφ(0)]−λ2Mkφi(ak)e
−sak

−

(

(kl∗f +λcl∗
f )φ2i(bl)+(kl∗b +λcl∗

b )φ1i(bl)

)

e−sbl

−κGAiφi(0)−EIi[η′i(0)+sηi(0)]−(λ2Jk
d
+jλΩJk

p )ηi(ak)e−sak

+(klt+λclt)ηi(bl)e−sbl















































































(4.21)

Note that the problem in the s domain, Equation (4.18), now have twice the size as in

the isotropic case, but the equations are uncoupled. Here it is important to point out

that this would not be the case if cartesian coordinates were used, where the matrix [L]

would be a full block matrix. The approach to obtain the functions in the space domain

is similar to the isotropic case, and the mode shape parameters are obtained from the

determinants det([L1]) and det([L2]), which leads to, respectively,

s4 +

(

ρAir
2
i

EIi

(

2jλΩ− λ2
)

− ρAiλ
2

κGAi

)

s2 +
ρAiλ

2
i

EIi

(

1− ρr2i
κG

(

2jλΩ− λ2
)

)

= 0 (4.22)

s4 +

(

−ρAir
2
i

EIi

(

2jλΩ + λ2
)

− ρAiλ
2

κGAi

)

s2 +
ρAiλ

2
i

EIi

(

1 +
ρr2i
κG

(

2jλΩ + λ2
)

)

= 0 (4.23)

The roots of the first equation are δ21i and −ε21i, while for the second one they are δ22i and

−ε22i. These roots have the same form as shown in Eqs. (3.34) and (3.35). However, note

that for δ22i and −ε22i the rotation is reversed; thus one should apply Ω → −Ω. Using the

fact that det([L1]) = (s2 − δ21i)(s
2 + ε21i) and det([L2]) = (s2 − δ22i)(s

2 + ε22i), the inverse

Laplace transform can be applied in Eq. (4.18), leading to,

φ1i(ξi) = η1i(0)f1(ξi) + η′1i(0)f2(ξi) + φ1i(0)f3(ξi) + φ′

1i(0)f4(ξi)

+
[

pak1 (ξi)φ1i(ak) + hak1 (ξi)η1i(ak)
]

H(x− ak)

+
[

pbl1f (ξi)φ1i(bl) + pbl1b(ξi)φ2i(bl) + hbl1 (ξi)η1i(bl)
]

H(x− bl)

(4.24)

η1i(ξi) = η1i(0)g1(ξi) + η′1i(0)g2(ξi) + φ1i(0)g3(ξi) + φ′

1i(0)g4(ξi)

+
[

pak2 (ξi)φ1i(ak) + hak2 (ξi)η1i(ak)
]

H(x− ak)

+
[

pbl2f (ξi)φ1i(bl) + pbl2b(ξi)φ2i(bl) + hbl2 (ξi)η1i(bl)
]

H(x− bl)

(4.25)

φ2i(ξi) = η2i(0)f5(ξi) + η′2i(0)f6(ξi) + φ2i(0)f7(ξi) + φ′

2i(0)f8(ξi)

+
[

pak3 (ξi)φ2i(ak) + hak3 (ξi)η2i(ak)
]

H(x− ak)

+
[

pbl3f (ξi)φ2i(bl) + pbl3b(ξi)φ1i(bl) + hbl3 (ξi)η2i(bl)
]

H(x− bl)

(4.26)
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η2i(ξi) = η2i(0)g5(ξi) + η′2i(0)g6(ξi) + φ2i(0)g7(ξi) + φ′

2i(0)g8(ξi)

+
[

pak4 (ξi)φ2i(ak) + hak4 (ξi)η3i(ak)
]

H(x− ak)

+
[

pbl4f (ξi)φ2i(bl) + pbl4b(ξi)φ1i(bl) + hbl4 (ξi)η2i(bl)
]

H(x− bl)

(4.27)

the functions f , g, p and h above are shown in Appendix B. They are actually very similar

to the isotropic case, with the exception of additional functions due to φ2i and η2i. As

mentioned earlier, the functions φ1i and η1i rotate at the specified direction +Ω, while φ2i

and η2i rotate in the opposite direction −Ω. This means that one only needs to obtain

the functions f1 through f4 and g1 through g4, since f5 through f8 and g5 through g8 will

be the same expression but with the reversed rotation direction.

The unknowns in Equations (4.24)-(4.27) are obtained from the boundary condi-

tions together with the continuity conditions. The terms η1i(ak), η1i(bl), φ1i(ak), φ1i(bl),

η2i(ak), η2i(bl), φ2i(ak) and φ2i(bl) can be obtained directly from Equations (4.24)-(4.27)

by the continuity of the functions φ1i, η1i, φ2i and η2i at the coordinates ξi = ak and

ξi = bl. The procedure needed to obtain these term was shown in Sec. 3.2, and is simply

the evaluation of the functions at the coordinates ak or bl, and the process is simplified

if one considers the segment to have only a disk or a bearing. By performing the evalu-

ations indicated by η1i(ak), η1i(bl) and so on, and substituting back in Eqs. (4.24)-(4.27)

one arrives at,

φ1i(ξi) = [Ci(ξ)]{Xi(0)} (4.28)

η1i(ξi) = [Di(ξ)]{Xi(0)} (4.29)

φ2i(ξi) = [Ei(ξ)]{Xi(0)} (4.30)

η2i(ξi) = [Fi(ξ)]{Xi(0)} (4.31)

where,

[Ci(ξ)] = [C1i(ξ) C2i(ξ) · · · C8i(ξ)], [Di(ξ)] = [D1i(ξ) D2i(ξ) · · · D8i(ξ)], (4.32a)

[Ei(ξ)] = [E1i(ξ) E2i(ξ) · · · E8i(ξ)], [Fi(ξ)] = [F1i(ξ) F2i(ξ) · · · F8i(ξ)], (4.32b)

{Xi(ξi)} = {η1i(ξi) η′1i(ξi) φ1i(ξi) φ
′

1i(ξi) η2i(ξi) η
′

2i(ξi) φ2i(ξi) φ
′

2i(ξi)}T (4.32c)

The functions Cji, Dji, Eji and Fji (j = 1, 2, ..., 8) depend if segment i has a disk or a

bearing. If segment i has a disk, the terms C1i through C4i and D1i through D4i have the

same expression shown in Eq. (3.42) for the isotropic case, and the terms C5i through C8i

and D5i through D8i will be zero. Also, the terms Fji and Eji will be the same as Cji and

Dji, for j = 1, 2, ..., 8, but with the rotation reversed, that is, Ω → −Ω. In case segment
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i has a bearing, one has,

{

Cij(ξi) = fj(ξi) +
[

fj(bl)p
bl
1f (ξi) + gj(bl)h

bl
1 (ξi)

]

H(ξi − bl) for j = 1, 2, 3, 4;

Cij(ξi) = fj(bl)p
bl
1b(ξi)H(ξi − bl) for j = 5, 6, 7, 8;

(4.33)

{

Dij(ξi) = gj(ξi) +
[

fj(bl)p
bl
2f (ξi) + gj(bl)h

bl
2 (ξi)

]

H(ξi − bl) for j = 1, 2, 3, 4;

Dij(ξi) = fj(bl)p
bl
2b(ξi)H(ξi − bl) for j = 5, 6, 7, 8;

(4.34)

{

Eij(ξi) = fj(ξi) +
[

fj(bl)p
bl
3f (ξi) + gj(bl)h

bl
3 (ξi)

]

H(ξi − bl) for j = 1, 2, 3, 4;

Eij(ξi) = fj(bl)p
bl
3b(ξi)H(ξi − bl) for j = 5, 6, 7, 8;

(4.35)

{

Fij(ξi) = fj(ξi) +
[

fj(bl)p
bl
4f (ξi) + gj(bl)h

bl
4 (ξi)

]

H(ξi − bl) for j = 1, 2, 3, 4;

Fij(ξi) = fj(bl)p
bl
4b(ξi)H(ξi − bl) for j = 5, 6, 7, 8;

(4.36)

Although the functions above appear complicated, they are distinguished only by the

terms pbljf , p
bl
jb and hblj , for j = 1, 2, 3, 4. In case the bearings are isotropic, the functions

pbljb vanish, and the terms Cji and Dji become exactly as in the isotropic case, while Fji

and Eji are equal to the latter but with Ω → −Ω. In the anisotropic case, however, the

terms Fji and Eji are not the same as Cji and Dji with the rotation reversed, but they

are proportional by a complex constant. This constant is found solving the eigenvalue

problem.

The eigenvalue problem now consist in finding the constants {Xi(0)}, for each

segment i = 1, 2, ..., n, as well as the eigenvalue λ. Since the vector of constants has

now eight components, one needs additional continuity conditions than the ones shown

in Eq. (3.45). Since the conditions are isotropic, they will be exactly the same for both

functions with subscript 1 and 2. Therefore, one can write,

{Xi+1(0)} =

[

[hi] [0]4×4

[0]4×4 [hi]

]

{Xi(Li)} = [H1i]{Xi(Li)} (4.37)

where [hi] was defined in Eq. (3.46) and [0]4×4 is a 4 × 4 matrix of zeros. Now, one can

use Eqs. (4.28)-(4.31), and relate the constants {Xi+1(0)} and {Xi(0)}, that is,

{Xi+1(0)} = [H1i]
[

[Di(L)] [D′

i(L)] · · · [F ′

i (L)]
]T

{Xi(0)} = [Hi]{Xi(0)} (4.38)

where [Hi] is now a 8× 8 matrix. With Eq. (4.38), the eigenvalue problem can be solved

in a similar way as in the isotropic case. By applying the continuity conditions from

segment 1 up to n, the following equation is obtained,

[A]
(

[Hn−1]× [Hn−2]×· · · × [H2]
)

[B]{X} = [G(λ)]{X} = 0 (4.39)
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which has the same form as Eq. (3.48), but now the matrices have double the size. The

way to obtain the matrices [A] and [B] is similar to the isotropic case. Consider again the

free-free boundary conditions, which, from the isotropic rotor shown in Eq. (3.49), can be

written for the anisotropic case as,















η′11(0) = η′21(0) = η′1n(Ln) = η′2n(Ln) = 0

κGA1

(

η11(0)− φ11(0)
)

= κGA1

(

η21(0)− φ21(0)
)

= 0

κGAn

(

η1n(Ln)− φ1n(Ln)
)

= κGAn

(

η2n(Ln)− φ2n(Ln)
)

= 0

(4.40)

Using Eq. (4.38), the functions for segment n can be written as,

φ1n(ξn) = [Cn(ξn)]{Xn(0)} = [Cn(ξn)]
(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)}

η1n(ξn) = [Dn(ξn)]{Xn(0)} = [Dn(ξn)]
(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)}

φ2n(ξn) = [En(ξn)]{Xn(0)} = [En(ξn)]
(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)}

η2n(ξn) = [Fn(ξn)]{Xn(0)} = [Fn(ξn)]
(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)}

By applying the boundary conditions for segment n, one may have,













[D′

n(Ln)]

[Dn(Ln)]− [C ′

n(Ln)]

[F ′

n(Ln)]

[Fn(Ln)]− [E ′

n(Ln)]













(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)} = 0

where the first matrix on the left-hand side correspond to [A] when the boundary at x = L

is free. To apply the boundary condition at x = 0, the terms [H1] and {X1(0)} must be

modified. Similar to the isotropic case, this can be done as,

[H1]{X1(0)} = [H1]































































η11(0)

η′11(0)

φ11(0)

φ′

11(0)

η21(0)

η′21(0)

φ21(0)

φ′

21(0)































































= [H1]































































φ′

11(0)

0

φ11(0)

φ′

11(0)

φ′

21(0)

0

φ21(0)

φ′

21(0)































































= [H1]

































0 1 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

0 0 1 0

0 0 0 1























































φ11(0)

φ′

11(0)

φ21(0)

φ′

21(0)























= [B]{X}

Substituting the above expression in the previous one, Equation (4.39) is obtained. From

the steps above, the application of other boundary conditions is straightforward. Here,

it is worth mentioning that the bearings and disks are encoded in the matrices [Ci(ξi)],
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[Di(ξi)], [Ei(ξi)] and [Fi(ξi)], for an arbitrary segment i. They can be placed anywhere

along the segment, including at the boundaries ξi = 0, Li, by setting the local coordinates

ai or bi as such. Thus, if segment 1 or n has a disk or bearing, it can be placed at the

boundary. This in effect changes the boundary conditions, and it is equivalent to imposing

the disk and bearings in the matrices [A] and [B], while removing them from the matrices

[Ci(ξi)], [Di(ξi)], [Ei(ξi)] and [Fi(ξi)]. Both approaches are equivalent and they both give

the same outcome.

The characteristic equation is obtained from the determinant of the coefficient

matrix [G(λ)] in Equation (4.39), which must be zero for non-trivial solutions. The

eigenvalues will have the form

λki = σk
i ± jωk

i for i = 1, 2, ..., N ; k = F,B (4.41)

where ωk
i are the damped natural frequencies, σk

i are the damping parameters and F and

B denote the forward and backward modes, respectively. Due to the anisotropy of the

bearings, the backward and forward modes will have a positive +jωk
i and negative −jωk

i

component, with k = F,B. This is different from the isotropic case, where the use of the

complex notation leads to forward modes having only positive frequency and backward

modes only negative ones. The reason for that is because in the isotropic case the functions

φ2i and η2i do not contribute to the response as explained by Lee and Jei (1988). In fact,

when the bearings are isotropic, the equations to obtain φ2i and η2i becomes decoupled

from the ones leading to φ1i and η1i. Thus only one of these must be solved.

After obtaining the eigenvalues, the constants {X} for mode i can be obtained

by substituting λi in Eq. (4.39). This gives the ratio between the modal constants of

segment 1, leaving an arbitrary constant that is obtained from the orthogonality conditions

(MEIROVITCH, 1975). Thus the amplitudes of the eigenfunctions are not defined, but

solely their shape. In case damping is considered, not only the shape, but the phase

of the eigenfunctions is also arbitrary (ADHIKARI et al., 2007; GARVEY et al., 1998).

Moreover, the global mode shape of the system is obtained as a combination of the mode

shapes of each segment. The global function will thus be a piece-wise continuous function,

which can be written as,

φ1(x) =























φ11(x) for x1 < x < x2

φ12(x) for x2 < x < x3
...

φ1n(x) for xn < x < xn+1

(4.42)

and the same form is true for φ2(x), η1(x) and η2(x). Since the system is anisotropic, the

mode shapes in the horizontal φy and vertical φz directions will be different, and they can
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be obtained from (LEE; JEI, 1988),

φk
y(x) = φk

1(x) + φk
2(x), φk

z(x) = j
(

φk
1(x)− φk

2(x)
)

for k = F,B (4.43)

and a similar form is true for ηy(x) and ηz(x), using η1(x) and η2(x).

4.3 Modal analysis

With the eigenfunctions at hand, the modal analysis method can be used to dis-

cretize the partial differential equations given by Eqs. (4.7) and (4.8). Due to the

anisotropic bearings of the system, the complex conjugate of the differential equations

need to be used for the application of the modal analysis. Moreover, the equations of

motion and its complex conjugate can be written as,

[m]

{

{ẅ(x, t)}
{ẅ∗(x, t)}

}

+ [c]

{

{ẇ(x, t)}
{ẇ∗(x, t)}

}

+ [k]

{

{w(x, t)}
{w∗(x, t)}

}

=

{

{g(x, t)}
{g∗(x, t)}

}

(4.44)

where,

[m] =













m̄(x) 0 0 0

0 J̄d(x) 0 0

0 0 m̄(x) 0

0 0 0 J̄d(x)













(4.45)

[c] =

[

[c1] [c2]

[c∗2] [c∗1]

]

, [c1] =

[

c̄f (x) 0

0 −jΩJ̄p(x)− c̄t(x)

]

, [c2] =

[

c̄b(x) 0

0 0

]

(4.46)

[k] =

[

[k1] [k2]

[k∗2] [k∗1]

]

, [k1] =

[

− ∂
∂x

(

κGĀ(x) ∂
∂x

)

+ k̄f (x)
∂
∂x

(

κGĀ(x)
)

−κGĀ(x) ∂
∂x

− ∂
∂x

(

EĪ(x) ∂
∂x

)

+ κGĀ(x)− k̄t(x)

]

[k2] =

[

k̄b(x) 0

0 0

]

(4.47)

being {w(x, t)} and {g(x, t)} defined in Eqs. (3.55) and (3.56), respectively. Here one can

clearly see that the equations of motion for {w(x, t)} and {w∗(x, t)} get coupled due to the

bearing coefficients c̄b(x) and k̄b(x); and, therefore, they must be solved simultaneously. In

the isotropic case, one only needs to solve one of them, since the equations are decoupled.

Next, Equation (4.44) is written in the state space form, which gives,

[M ]{Ẇ (x, t)} = [K]{W (x, t)}+ {F (x, t)} (4.48)

where,

{W (x, t)} =
{

{ẇ(x, t)} {ẇ∗(x, t)} {w(x, t)} {w∗(x, t)}
}T

(4.49)
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{F (x, t)} =
{

0 0 0 0 {g(x, t)} {g∗(x, t)}
}T

(4.50)

and the matrices [M ] and [K] have the same form as shown in Eqs. (3.60) and (3.61), but

with the matrices [m], [c] and [k] given above. In the same way shown for the isotropic

case, one can show that the operator matrices [M ] and [K] are positive-definite, and

the former is non-self-adjoint and the latter self-adjoint. This property arises due to the

gyroscopic effect and the anisotropic bearings. In order to decouple the equations of non-

self-adjoint systems, one also needs to solve the adjoint eigenvalue problem to obtain the

adjoint eigenfunctions, since the eigenfunctions of the regular problem are not orthogonal.

Similar to the isotropic case, the state vector is expanded as,

{W (x, t)} =
∞
∑

i=0

{Φi(x)}qi(t) (4.51)

where the mode shapes are now given by,

{Φi(x)} =
{

λiφ1i(x) λiη1i(x) λiφ2i(x) λiη2i(x) φ1i(x) η1i(x) φ2i(x) η2i(x)
}T

(4.52)

The eigenvalue problem related to Eq. (4.48) and its adjoint are given as,

λi[M ]{Φi(x)} = [K]{Φi(x)} for i = 1, 2, ... (4.53)

λ∗i [M̃ ]{Φ̃i(x)} = [K̃]{Φ̃i(x)} for i = 1, 2, ... (4.54)

where one can prove that the eigenvalue problem shown in Eq. (4.53) is the same as

the one given by Eqs. (4.15a)-(4.15d). Similar to the isotropic case, the adjoints of the

operators are [M̃ ] = [M ]H and [K̃] = [K]H , being H the complex conjugate transpose,

also known as hermitian transpose. The adjoint mode shapes are now given as,

{Φ̃i(x)} =
{

λ∗i φ̃1i(x) λ∗i η̃1i(x) λ∗i φ̃2i(x) λ∗i η̃2i(x) φ̃1i(x) η̃1i(x) φ̃2i(x) η̃2i(x)
}T

(4.55)

where φ̃1i(x) is the adjoint of φ1i(x), η̃1i(x) is the adjoint of η1i(x), and so on. Recall that

the vectors {Φi(x)} and {Φ̃j(x)} are biorthogonal and satisfy the conditions shown in

Eqs. (3.70a) and (3.70b). After substituting {W (x, t)} given by (4.51) in the state-space

equation of motion, Equation (4.48), taking the internal product in both sides by {Φ̃i(x)},
and taking into account the orthogonality conditions, one may have,

q̇i(t) = λiqi(t) +

∫ L

0

φ̃∗

1i(x)f(x, t)dx+

∫ L

0

φ̃∗

2i(x)f
∗(x, t)dx for i = 1, 2, ... (4.56)

Equation (4.56) consist of infinite first order complex modal equations, which are in reality

truncated at N modes. In this case, each mode has a forward and backward case with
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positive and negative frequency, each with a unique equation. Hence, for 4N modes, there

isN forward modes with positive natural frequency +jωF
i , N forward modes with negative

natural frequency −jωF
i , N backward modes with positive natural frequency +jωB

i and

N backward modes with negative natural frequency −jωB
i , where i = 1, 2, ...N . In every

case one has |ωF
i | > |ωB

i |, which can be used to distinguish between forward and backward

frequencies for mode i. The physical displacement and slopes are obtained from Eq. (4.51),

which gives,

u(x, t) =
∞
∑

i=0

φ1i(x)qi(t) (4.57)

ψ(x, t) =
∞
∑

i=0

η1i(x)qi(t) (4.58)

and the horizontal and vertical components are simply the real and imaginary parts of

u(x, t) and ψ(x, t), respectively.

Here one can note that for anisotropic rotors, the complex conjugate of the exter-

nal force also needs to be taken into account. For a synchronous unbalance excitation,

which is the most common external source of excitation in rotors, Equation (4.56) shows

that an excitation rotating in the opposite direction also affects the response, and thus it

excites the backward modes. This is a well known result of rotors on anisotropic bear-

ings, and leads the response to have backward critical speeds. As mentioned earlier, for

isotropic bearings the functions φ2(x) and η2(x) do not affect the result, and thus the

term containing f ∗(x, t) vanish in Eq. (4.56); thus leading to the isotropic equation given

by Eq. (3.71).

The vectors {Φi(x)} and {Φ̃∗

i (x)} are the result of the same eigenvalue problem,

and thus they are the same within a constant; therefore, one can write (LEE, 1993),

{Φi(x)} =
1

Ki

{Φ̃∗

i (x)} (4.59)

where again Ki is a complex normalizing constant and it is obtained from Eqs. (3.70a)

or (3.70b). These equations will not be expanded here due to their length, but one gets

a similar form as shown in the isotropic case by Eqs (3.75) and (3.76), with additional

terms due the the ansiotropic bearings.

The response due to initial conditions can be obtained by multiplying Equation

(4.51) by [M ] and taking the internal product with {Φ̃j(x)} in both sides, which leads to,

qi(0) = 〈 [M ]{W (x, 0)}, {Φ̃i(x)} 〉 (4.60)

where the orthogonality property (3.70a) was used.

The modal analysis presented here is more suitable for rotor systems than the
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cartesian or physical approach, since the interpretation of the responses as rotating com-

plex vectors can be applied. The solution of Equation (4.56) for each mode i will be a

combination of two co- and counter-rotating complex vectors representing the forward

and backward modes. In addition, the present approach does not limit the bearings to

be orthotropic (where the cross-coupled bearing coefficients are the same, i.e. kyz = kzy)

as the approach presented by Lee and Jei (1988), since the bearing coefficients, which

are encoded in the functions k̄f (x), k̄b(x), c̄f (x) and c̄b(x), can be arbitrary. This allows

the modeling of oil-film bearings, which are one of the most common bearings used in

rotating machines and have generally different direct and cross-coupled coefficients.

This chapter presented the CSM applied to rotors on anisotropic bearings. The

form of the bearings can be very general, and the approach is not limited to orthotropic

cases. With the modal analysis, the response of a multi-stepped anisotropic rotor is

possible in close form, depending on the external force f(x, t) considered. The next step

is shown in Chapter 5, and deals with rotors with asymmetric shafts and disks.
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where uy1 = uy1(x, t), uz1 = uz1(x, t), ψy1 = ψy1(x, t) and ψz1 = ψz1(x, t) are the displace-

ments and bending angles in the rotating coordinate system y1z1. To obtain the equations

of motion in the rotating frame, the EHP presented in Eq. (3.1) can be used, with the

terms written in the rotating frame. The kinetic energy can be written in the rotating

frame as (RAFFA; VATTA, 2001; KANG et al., 1992),

T =
1

2

∫ L

0

m̄(x)

[

(

∂uy1
∂t

− Ωuz1

)2

+

(

∂uz1
∂t

+ Ωuy1

)2
]

dx

+
1

2

∫ L

0

J̄1(x)

[

(

∂ψy1

∂t
− Ωψz1

)2

+

(

∂ψz1

∂t
+ Ωψy1

)2
]

dx+
1

2

∫ L

0

J̄p(x)Ω
2dx

+
1

2

∫ L

0

J̄2(x)

[

(

∂ψy1

∂t
− Ωψz1

)2

−
(

∂ψz1

∂t
+ Ωψy1

)2
]

dx

+

∫ L

0

J̄p(x)Ω

[

∂ψz1

∂t
ψy1 − ψz1

∂ψy1

∂t
− Ω(ψ2

z1
+ ψ2

y1
)

]

dx (5.2)

where m̄(x) is the mass per unit length, J̄1(x) = 1/2(J̄y(x) + J̄z(x)) is the mean moment

of inertia, J̄2(x) = 1/2(J̄z(x) − J̄y(x)) the deviatoric moment of inertia and J̄p(x) =

J̄y(x) + J̄z(x) the polar moment of inertia; all of these properties are given per unit

length. As before, the disks are encoded in these distributed properties, as shown in

Eq. (5.12). The potential energy of the shaft is given as,

Vs =
1

2

∫ L

0

E

[

Īy(x)

(

∂ψy1

∂x

)2

+ Īz(x)

(

∂ψz1

∂x

)2
]

dx+
1

2

∫ L

0

κGĀ(x)

(

∂uy1
∂x

− ψz1

)2

dx

+
1

2

∫ L

0

κGĀ(x)

(

∂uz1
∂x

+ ψy1

)2

dx (5.3)

and the contribution of the bearings in the potential energy can be obtained from Eq. (3.4)

and (5.1), which gives,

Vb =
1

2

∫ L

0

(

k̄m(x)u
2
y1
+ k̄m(x)u

2
z1
+ k̄t(x)ψ

2
y1
+ k̄t(x)ψ

2
z1

)

dx (5.4)

The total potential energy is V = Vs+Vb. The bearing coefficients are the same as shown

in Eq. (3.16). The work of the non-conservative forces in the rotating frame is,

Wnc =
1

2

∫ L

0

[

c̄m

(

∂uy1
∂t

− Ωuz1

)2

+ c̄m

(

∂uz1
∂t

+ Ωuy1

)2
]

dx

+
1

2

∫ L

0

[

c̄t

(

∂ψy1

∂t
+ Ωψz1

)2

+ c̄t

(

∂ψz1

∂t
− Ωψy1

)2
]

dx

+

∫ L

0

(fy1uy1 + fz1uz1) dx (5.5)
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where fy1 and fz1 are the components of the distributed force in the rotating frame. The

equations of motion can be obtained by substituting Eqs. (5.2)-(5.5) into the EHP, leading

to,

m̄(x)
∂2uy1
∂t2

+ 2Ωm̄(x)
∂uz1
∂t

− m̄(x)Ω2uy1 +
∂

∂x

[

κGĀ(x)

(

ψz1 −
∂uy1
∂x

)]

+
(

k̄m(x) + Ωc̄m(x)
)

uy1 + c̄m(x)
∂uy1
∂t

= fy1(x, t) (5.6)

m̄(x)
∂2uz1
∂t2

− 2Ωm̄(x)
∂uy1
∂t

− m̄(x)Ω2uz1 −
∂

∂x

[

κGĀ(x)

(

ψy1 +
∂uz1
∂x

)]

+
(

k̄m(x)− Ωc̄m(x)
)

uz1 − c̄m(x)
∂uz1
∂t

= fz1(x, t) (5.7)

J̄y(x)
∂2ψy1

∂t2
+ J̄y(x)Ω

2ψy1 −
∂

∂x

[

EĪy(x)
∂ψy1

∂x

]

+ κGĀ(x)

[

ψy1 +
∂uz1
∂x

]

−
(

k̄t(x) + Ωc̄t(x)
)

ψy1 − c̄t(x)
∂ψy1

∂t
= 0 (5.8)

J̄z(x)
∂2ψz1

∂t2
+ J̄z(x)Ω

2ψz1 −
∂

∂x

[

EĪz(x)
∂ψz1

∂x

]

+ κGĀ(x)

[

ψz1 −
∂uy1
∂x

]

−
(

k̄t(x)− Ωc̄t(x)
)

ψz1 − c̄t(x)
∂ψz1

∂t
= 0 (5.9)

Note that the gyroscopic effect now couples the equations of the displacements instead of

the bending angles. Equations (5.6)-(5.9) can be transformed in complex form using the

relations given by Eqs. (3.10) and (3.11), which leads to,

m̄(x)
∂2u

∂t2
+ 2jΩm̄(x)

∂u

∂t
− m̄(x)Ω2u+

∂

∂x

[

κGĀ(x)

(

ψ − ∂u

∂x

)]

+
(

k̄m(x) + jΩc̄m(x)
)

u+ c̄m(x)
∂u

∂t
= f(x, t) (5.10)

J̄1(x)
∂2ψ

∂t2
+ J̄1(x)Ω

2ψ − ∂

∂x

[

EĪ1(x)
∂ψ

∂x

]

+ J̄2(x)
∂2ψ∗

∂t2
− ∂

∂x

[

EĪ2(x)
∂ψ∗

∂x

]

+κGĀ(x)

[

ψ − ∂u

∂x

]

−
(

k̄t(x) + jΩc̄t(x)
)

ψ − c̄t(x)
∂ψ

∂t
= 0 (5.11)

where ∗ is the complex conjugate, Ī1(x) = 1/2(Īy(x) + Īz(x)) is the mean area moments

of inertia and Ī2(x) = 1/2(Īz(x) − Īy(x)) the deviatoric area moment of inertia. The
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following functions are assumed for the distributed properties,

Ā(x) =
n
∑

i=1

AiHi(x), Ī1(x) =
n
∑

i=1

I1iHi(x), Ī2(x) =
n
∑

i=1

I2iHi(x)

m̄(x) =
n
∑

i=1

ρAiHi(x) +
P
∑

j=1

M jδd(x− xja), J̄1(x) =
n
∑

i=1

ρI1iHi(x) +
P
∑

j=1

J j
1δd(x− xja)

J̄2(x) =
n
∑

i=1

ρI2iHi(x) +
P
∑

j=1

J j
2δd(x− xja) (5.12)

being J j
1 = 1/2(J j

z + J j
y) and J j

2 = 1/2(J j
z − J j

y); δd the Dirac’s delta function and xja

the coordinates of the disks. The function Hi(x) is shown in Eq. (3.15). The boundary

conditions can be stated in complex form as,

[(

EĪ1(x)
∂ψ(x, t)

∂x
+ EĪ2(x)

∂ψ∗(x, t)

∂x

)

δψ(x, t)

]

x=0,L

= 0 (5.13)

[

κGĀ(x)

(

ψ(x, t)− ∂u(x, t)

∂x

)

δu(x, t)

]

x=0,L

= 0 (5.14)

Equations (5.10), (5.11), (5.13) and (5.14) denote the boundary-value problem of the

asymmetric rotor system. This problem can be solved in a similar way as shown in

the isotropic and anisotropic rotor. First, one needs to find the eigenfunctions through

separation of variables, which is done in Section 5.2, then the modal analysis is applied

to obtain the responses, as shown in Section 5.3.

5.2 Eigenfunctions and eigenvalues

The free vibration of the asymmetric rotor can be obtained as,

m̄(x)
∂2u

∂t2
+ 2jΩm̄(x)

∂u

∂t
− m̄(x)Ω2u+

∂

∂x

[

κGĀ(x)

(

ψ − ∂u

∂x

)]

+
(

k̄m(x) + jΩc̄m(x)
)

u+ c̄m(x)
∂u

∂t
= 0 (5.15)

J̄1(x)
∂2ψ

∂t2
+ J̄1(x)Ω

2ψ − ∂

∂x

[

EĪ1(x)
∂ψ

∂x

]

+ J̄2(x)
∂2ψ∗

∂t2
− ∂

∂x

[

EĪ2(x)
∂ψ∗

∂x

]

+κGĀ(x)

[

ψ − ∂u

∂x

]

−
(

k̄t(x) + jΩc̄t(x)
)

ψ − c̄t(x)
∂ψ

∂t
= 0 (5.16)

Similar to the anisotropic rotor, the solutions are assumed as,

u(x, t) = φ1(x)e
λt + φ∗

2(x)e
λ∗t (5.17a)
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ψ(x, t) = η1(x)e
λt + η∗2(x)e

λ∗t (5.17b)

Upon substituting these solutions in the free equations of motion, and gathering the terms

containing eλt and eλ
∗t, one may have,

m̄(x)
(

λ2 − Ω2 + 2jΩλ
)

φ1(x) +
d

dx

[

κGĀ(x)

(

η1(x)−
dφ1(x)

dx

)]

+
[

k̄m(x) + (λ+ jΩ)c̄m(x)
]

φ1(x) = 0 (5.18a)

m̄(x)
(

λ2 − Ω2 − 2jΩλ
)

φ2(x) +
d

dx

[

κGĀ(x)

(

η2(x)−
dφ2(x)

dx

)]

+
[

k̄m(x) + (λ− jΩ)c̄m(x)
]

φ2(x) = 0 (5.18b)

J̄1(x)
(

λ2 + Ω2
)

η1(x)−
d

dx

[

EĪ1(x)
dη1(x)

dx

]

+ κGĀ(x)

(

η1(x)−
dφ1(x)

dx

)

+J̄2(x)
(

λ2 + Ω2
)

η2(x)−
d

dx

[

EĪ2(x)
dη2(x)

dx

]

−
[

k̄t(x) + (λ+ jΩ)c̄t(x)
]

η1(x) = 0 (5.18c)

J̄2(x)
(

λ2 + Ω2
)

η2(x)−
d

dx

[

EĪ2(x)
dη2(x)

dx

]

+ κGĀ(x)

(

η2(x)−
dφ2(x)

dx

)

+J̄1(x)
(

λ2 + Ω2
)

η1(x)−
d

dx

[

EĪ1(x)
dη1(x)

dx

]

−
[

k̄t(x) + (λ− jΩ)c̄t(x)
]

η2(x) = 0 (5.18d)

The above equations are not complex conjugate due to the deviatoric moments of inertia.

Also, similar to the anisotropic rotor, the rotation is at the specified direction for the

functions φ1 and η1, and at the opposite direction for φ2 and η2. Therefore, one should

expect the mode shapes to be non-planar and the orbits non-circular.

As the reader is familiarized by now, the eigenfunctions are obtained by solving

the eigenvalue problem for each segment of constant cross-section individually. Then the

global eigenfunctions are obtained as a combination of those, as illustrated in Fig. 3.

Consider an arbitrary segment i located at xi < x < xi+1 with eigenfunctions φ1i(ξi),

φ2i(ξi), η1i(ξi) and η2i(ξi), being ξi ∈ [0, Li] the local coordinate of the segment. The

segment is considered to have a lth bearing and a kth rigid disk. The local eigenvalue

problem can be obtained as,

(

ρAi +Mkδd(ξi − ak)
)(

λ+ jΩ
)2

φ1i(ξi) + κGAi

(

η′1i(ξi)− φ′′

1i(ξi)
)

+
[

klm + (λ+ jΩ)clm
]

φ1i(ξi)δd(ξi − bl) = 0 (5.19a)

(

ρAi +Mkδd(ξi − ak)
)(

λ− jΩ
)2

φ2i(ξi) + κGAi

(

η′2i(ξi)− φ′′

2i(ξi)
)

+
[

klm + (λ− jΩ)clm
]

φ2i(ξi)δd(ξi − bl) = 0 (5.19b)
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(

ρI1i + Jk
1 δd(ξi − ak)

)

(

λ2 + Ω2
)

η1i(ξi)− EI1iη
′′

1i(ξi) + κGAi

(

η1i(ξi)− φ′

1i(ξi)
)

(

ρI2i + Jk
2 δd(ξi − ak)

)

(

λ2 + Ω2
)

η2i(ξi)− EI2iη
′′

2i(ξi)−
[

klt + (λ+ jΩ)clt
]

η1i(ξi)δd(ξi − bl) = 0

(5.19c)

(

ρI2i + Jk
2 δd(ξi − ak)

)

(

λ2 + Ω2
)

η2i(ξi)− EI2iη
′′

2i(ξi) + κGAi

(

η2i(ξi)− φ′

2i(ξi)
)

(

ρI1i + Jk
1 δd(ξi − ak)

)

(

λ2 + Ω2
)

η1i(ξi)− EI1iη
′′

1i(ξi)−
[

klt + (λ− jΩ)clt
]

η2i(ξi)δd(ξi − bl) = 0

(5.19d)

Just as in the previous chapters, the local eigenvalue problem above can be solved by

means of the Laplace transform, which gives,

(λ+ jΩ)2 ρAiφ̂1i(s) + κGAi

[

sη̂1i(s)− η1i(0)
]

− κGAi

[

s2φ̂1i(s)− φ′

1i(0)− sφ1i(0)
]

+(λ+ jΩ)2Mkφ1i(ak)e
−sak +

(

klm + (λ+ jΩ)clm
)

φ1i(bl)e
−sbl = 0 (5.20a)

(λ− jΩ)2 ρAiφ̂2i(s) + κGAi

[

sη̂2i(s)− η2i(0)
]

− κGAi

[

s2φ̂2i(s)− φ′

2i(0)− sφ2i(0)
]

+(λ− jΩ)2Mkφ2i(ak)e
−sak +

(

klm + (λ− jΩ)clm
)

φ2i(bl)e
−sbl = 0 (5.20b)

(

λ2 + Ω2
)

ρI1iη̂1i(s)− EI2i
[

s2η̂1i(s)− η′1i(0)− sη1i(0)
]

− κGAi

[

sφ̂1i(s)− φ1i(0)
]

+κGAiη̂1i(s) +
(

λ2 + Ω2
)

ρI2iη̂2i(s)− EI1i
[

s2η̂2i(s)− η′2i(0)− sη2i(0)
]

+
(

Jk
1 η1i(ak) + Jk

2 η2i(ak)
) (

λ2 + Ω2
)

e−sak +
(

klt + (λ+ jΩ)clt
)

η1i(bl)e
−sbl = 0 (5.20c)

(

λ2 + Ω2
)

ρI2iη̂2i(s)− EI2i
[

s2η̂2i(s)− η′2i(0)− sη2i(0)
]

− κGAi

[

sφ̂2i(s)− φ2i(0)
]

+κGAiη̂2i(s) +
(

λ2 + Ω2
)

ρI1iη̂1i(s)− EI1i
[

s2η̂1i(s)− η′1i(0)− sη1i(0)
]

+
(

Jk
1 η1i(ak) + Jk

2 η2i(ak)
) (

λ2 + Ω2
)

e−sak +
(

klt + (λ− jΩ)clt
)

η2i(bl)e
−sbl = 0 (5.20d)

where φ̂1i(s), φ̂2i(s), η̂1i(s) and η̂2i(s) are the Laplace transform of φ1i(ξi), φ2i(ξi), η1i(ξi)

and η2i(ξi), respectively. The above equations can be written in matrix form as,

[L]{Φ̂(s)} = {b} (5.21)

where the terms are now given as,

[L] =

[

[L1] [L3]

[L3] [L2]

]

, [L1] =

[

ρAi(λ+ jΩ)2 − κGAis
2 κGAis

−κGAis ρI1i (λ
2 + Ω2)− EI1is

2 + κGAi

]

,

[L2] =

[

ρAi(λ− jΩ)2 − κGAis
2 κGAis

−κGAis ρI1i (λ
2 + Ω2)− EI1is

2 + κGAi

]
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[L3] =

[

0 0

0 ρI2i (λ
2 + Ω2)− EI2is

2

]

(5.22)

{Φ̂(s)} =
{

φ̂1i(s) η̂1i(s) φ̂2i(s) η̂2i(s)
}T

(5.23)

The vector {b} can be obtained from Eqs. (5.20) and its omitted here due to its excessive

length. The procedure to obtain the functions in the space domain is now considerably

more complicated than the previous cases. First, the matrix [L] is now a full block matrix

due the the deviatoric term I2i. Then the solution of φ̂1i(s) and η̂1i(s) are no longer

decoupled with φ̂2i(s) and η̂2i(s) as in the anisotropic case shown in Eq. (4.18). This

means that one needs to find the determinant of [L] in its full form, which leads to the

following polynomial,

as8 + bs6 + cs4 + ds2 + e = 0 (5.24)

where,

a = 1− γ2i , b = (a1 + a2)
(

1− γ2i
)

, c = b1 + b2 + a1a2 − γ2i (b3 + b4 + a1a2)

d = a1b2 + a2b1 − γ2i (a1b4 + a2b3), e = b1b2 − γ2i b3b4 (5.25)

with,

a1,2 = − ρ

κG
(λ± jΩ)2 − ρ

E

(

λ2 + Ω2
)

(5.26)

b1,2 =

(

ρ2

κGE

(

λ2 + Ω2
)

+
ρAi

EI1i

)

(λ± jΩ)2 , b3,4 =
ρ2

κGE

(

λ2 + Ω2
)

(λ± jΩ)2 (5.27)

being γi = I2i/I1i. The polynomial given by Eq. (5.24) is of fourth order on s2. Although

there is close form solutions for quartic polynomials (See Abramowitz et al. (1988) for

example), their expressions are so complicated that it its advisable to solve them numeri-

cally. Similar to the anisotropic rotor, the polynomial of Eq. (5.24) will have two positive

solutions, denoted δ21i and δ22i, and two negative solutions, denoted −ε21i and −ε22i. There-

fore, one can write det([L1]) = (s2 − δ21i)(s
2 + ε21i)(s

2 − δ22i)(s
2 + ε22i) and the application

of the inverse Laplace becomes possible. After solving for φ̂1i(s), φ̂2i(s), η̂1i(s) and η̂2i(s)

in Eq. (5.21), and applying the inverse Laplace transformation, one may have

φ1i(ξi) = η1i(0)f1(ξi) + η′1i(0)f2(ξi) + φ1i(0)f3(ξi) + φ′

1i(0)f4(ξi)

+η2i(0)f5(ξi) + η′2i(0)f6(ξi) + φ2i(0)f7(ξi) + φ′

2i(0)f8(ξi)

+
[

pbl1f (ξi)φ1i(bl) + hbl1f (ξi)η1i(bl) + pbl1b(ξi)φ2i(bl) + hbl1b(ξi)η2i(bl)
]

H(x− bl)

+
[

pak1f (ξi)φ1i(ak) + hak1f (ξi)η1i(ak) + pak1b (ξi)φ2i(ak) + hak1b (ξi)η2i(ak)
]

H(x− ak)

(5.28)
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η1i(ξi) = η1i(0)g1(ξi) + η′1i(0)g2(ξi) +· · ·+ φ′

2i(0)g8(ξi)

+
[

pbl2f (ξi)φ1i(bl) + hbl2f (ξi)η1i(bl) + pbl2b(ξi)φ2i(bl) + hbl2b(ξi)η2i(bl)
]

H(x− bl)

+
[

pak2f (ξi)φ1i(ak) + hak2f (ξi)η1i(ak) + pak2b (ξi)φ2i(ak) + hak2b (ξi)η2i(ak)
]

H(x− ak)

(5.29)

φ2i(ξi) = η1i(0)f9(ξi) + η′1i(0)f10(ξi) +· · ·+ φ′

2i(0)f16(ξi)

+
[

pbl3f (ξi)φ1i(bl) + hbl3f (ξi)η1i(bl) + pbl3b(ξi)φ2i(bl) + hbl3b(ξi)η2i(bl)
]

H(x− bl)

+
[

pak3f (ξi)φ1i(ak) + hak3f (ξi)η1i(ak) + pak3b (ξi)φ2i(ak) + hak3b (ξi)η2i(ak)
]

H(x− ak)

(5.30)

η2i(ξi) = η1i(0)g9(ξi) + η′1i(0)g10(ξi) +· · ·+ φ′

2i(0)g16(ξi)

+
[

pbl4f (ξi)φ1i(bl) + hbl4f (ξi)η1i(bl) + pbl4b(ξi)φ2i(bl) + hbl4b(ξi)η2i(bl)
]

H(x− bl)

+
[

pak4f (ξi)φ1i(ak) + hak4f (ξi)η1i(ak) + pak4b (ξi)φ2i(ak) + hak4b (ξi)η2i(ak)
]

H(x− ak)

(5.31)

the functions f , g, p and h above are shown in Appendix C. The introduction of the

asymmetry of the shaft require additional functions to describe the local mode shapes.

However, similar to the anisotropic rotor, one only needs to obtain the functions f1 through

f8 and g1 through g8, since f9 through f16 and g9 through g16 will have the exact same

form, but with Ω interchanged with −Ω (see Appendix C for a better clarification).

The number of unknowns in Eqs. (5.28)-(5.31) is eight; the same as in the anisotropic

case. The terms η1i(ak), η1i(bl), φ1i(ak), φ1i(bl), η2i(ak), η2i(bl), φ2i(ak) and φ2i(bl) can be

obtained directly from Equations (5.28)-(5.31) by the continuity of the functions φ1i, η1i,

φ2i and η2i at the coordinates ξi = ak and ξi = bl. As explained in previous chapters, this

means evaluating the functions at these points. After performing such evaluations, the

standard form of the eigenfunctions for segment i will be,

φ1i(ξi) = [Ci(ξ)]{Xi(0)} (5.32)

η1i(ξi) = [Di(ξ)]{Xi(0)} (5.33)

φ2i(ξi) = [Ei(ξ)]{Xi(0)} (5.34)

η2i(ξi) = [Fi(ξ)]{Xi(0)} (5.35)

being the terms above the same as defined in Eq. (4.32). The specific form of the functions

Cji, Dji, Eji and Fji (j = 1, 2, ..., 8) depend if segment i has a disk or a bearing. For

segment i with a kth disk, they have the general form,

{

Cji(ξi) = fj(ξi) +
[

fj(ak)p
ak
1f (ξi) + gj(ak)h

ak
1f (ξi)

]

H(ξi − ak)

+ [fj+4(ak)p
ak
1b (ξi) + gj+4(ak)h

ak
1b (ξi)]H(ξi − ak)

for j = 1, 2, 3, 4 (5.36a)

{

Cji(ξi) = fj(ξi) +
[

fj(ak)p
ak
1f (ξi) + gj(ak)h

ak
1f (ξi)

]

H(ξi − ak)

+ [fj−4(ak)p
ak
1b (ξi) + gj−4(ak)h

ak
1b (ξi)]H(ξi − ak)

for j = 5, 6, 7, 8 (5.36b)
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{

Dji(ξi) = gj(ξi) +
[

fj(ak)p
ak
2f (ξi) + gj(ak)h

ak
2f (ξi)

]

H(ξi − ak)

+ [fj+4(ak)p
ak
2b (ξi) + gj+4(ak)h

ak
2b (ξi)]H(ξi − ak)

for j = 1, 2, 3, 4 (5.36c)

{

Dji(ξi) = gj(ξi) +
[

fj(ak)p
ak
2f (ξi) + gj(ak)h

ak
2f (ξi)

]

H(ξi − ak)

+ [fj−4(ak)p
ak
2b (ξi) + gj−4(ak)h

ak
2b (ξi)]H(ξi − ak)

for j = 5, 6, 7, 8 (5.36d)

{

Eij(ξi) = C−

ij+4(ξi) for j = 1, 2, 3, 4

Eij(ξi) = C−

ij−4(ξi) for j = 5, 6, 7, 8
(5.36e)

{

Fij(ξi) = D−

ij+4(ξi) for j = 1, 2, 3, 4

Fij(ξi) = D−

ij−4(ξi) for j = 5, 6, 7, 8
(5.36f)

where − means Ω interchanged with −Ω. In case the segment is symmetric, the functions

pak1b and hak1b vanish. If segment i has a lth bearing, one simply changes pak1f to pbl1f , h
ak
1f to

hbl1f , and so on.

The next step now is to find the continuity conditions that relate the constants

of two neighbor segments, namely {Xi+1(0)} and {Xi(0)}. The continuity conditions are

a bit different than the isotropic case shown in Eq. (3.45) due to the asymmetry. The

conditions of displacement, slope and shear force will be unchanged, but the bending

moment continuity is given as,

{

EI1i+1η
′

1i+1(0) + EI2i+1η
′

2i+1(0) = EI1iη
′

1i(Li) + EI2iη
′

2i(Li)

EI1i+1η
′

2i+1(0) + EI2i+1η
′

1i+1(0) = EI2iη
′

1i(Li) + EI1iη
′

2i(Li)
(5.37)

these equations are obtained from the complex bending moment condition and assuming

the solutions shown in Eq. (5.17). After some algebraic manipulations, Equation (5.37)

can be written as,

{

η′1i+1(0)

η′2i+1(0)

}

=
βi

1− γ2i

[

(1− γiγi+1) (γi+1 − γi)

(γi+1 − γi) (1− γiγi+1)

]{

η′1i(Li)

η′2i(Li)

}

(5.38)

where βi = I1i/I1i+1 and γi = I2i/I1i. Note that the relation shown in Eq. (5.38) accounts

the asymmetry in both segments. If both segments are symmetric, one has γi = γi+1 = 0,

and the Eq. (5.38) becomes exactly that of the symmetric rotor. Also, it is possible that

segment i is symmetric, γi = 0, and segment i+ 1 is asymmetric, γi+1 6= 0, or vice-versa.

Moreover, the relation between {Xi+1(0)} and {Xi(Li)} is given as,

{Xi+1(0)} =

[

[h1i] [h2i]

[h2i] [h1i]

]

{Xi(Li)} = [H1i]{Xi(Li)} (5.39)



5 MODELING OF ASYMMETRIC ROTOR SYSTEMS 69

being,

[h1i] =













1 0 0 0

0 βi(1−γiγi+1)

(1−γ2
i )

0 0

0 0 1 0

1− αi 0 0 αi













, [h2i] =













0 0 0 0

0 βi(γi+1−γi)

(1−γ2
i )

0 0

0 0 0 0

0 0 0 0













(5.40)

Note that in the symmetric case [h1i] = [hi] and [h2i] = 0, with [hi] defined in Eq. (3.46).

The terms {Xi+1(0)} and {Xi(0)} can now be related using the relations shown in

Eq. (5.32)-(5.35), leading to,

{Xi+1(0)} = [H1i]
[

[Di(L)] [D′

i(L)] · · · [F ′

i (L)]
]T

{Xi(0)} = [Hi]{Xi(0)} (5.41)

which has the same form as the anisotropic rotor. With the continuity condition above,

one can relate the terms of all segments i = 1, 2, ..., n, and solve the eigenvalue problem.

By using the conditions given in Eq. (5.41) for every segment, and applying the boundary

conditions, one arrives at the now familiar equation,

[A]
(

[Hn−1]× [Hn−2]×· · · × [H2]
)

[B]{X} = [G(λ)]{X} = 0 (5.42)

that has the same form as the previous cases (isotropic and anisotropic rotor). The

boundary condition terms, [A], [B] and {X}, are obtained in the same way as before. The

procedure for the case when both boundaries are free are now presented as an example.

The boundary conditions when both ends are free are given as,



























κGA1

(

η11(0)− φ11(0)
)

= κGA1

(

η21(0)− φ21(0)
)

= 0

κGAn

(

η1n(Ln)− φ1n(Ln)
)

= κGAn

(

η2n(Ln)− φ2n(Ln)
)

= 0

EI11η
′

11(0) + EI21η
′

21(0) = EI1nη
′

1n(Ln) + EI2nη
′

2n(Ln) = 0

EI21η
′

11(0) + EI11η
′

21(0) = EI2nη
′

1n(Ln) + EI1nη
′

2n(Ln) = 0

(5.43)

The last two equations can be written compactly as,

[

1 γ1

γ1 1

]{

η′11(0)

η′21(0)

}

=

{

0

0

}

,

[

1 γn

γn 1

]{

η′1n(Ln)

η′2n(Ln)

}

=

{

0

0

}

,

One can readily note that these equations have only the trivial solutions η′11(0) = η′21(0) =

0 and η′1n(0) = η′2n(0) = 0, since, as can be easily checked, the determinant of the

coefficient matrix is not zero. Recall that, by means of Eq. (5.41), the functions for the
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nth segment can be written as,

φ1n(ξn) = [Cn(ξn)]{Xn(0)} = [Cn(ξn)]
(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)}

η1n(ξn) = [Dn(ξn)]{Xn(0)} = [Dn(ξn)]
(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)}

φ2n(ξn) = [En(ξn)]{Xn(0)} = [En(ξn)]
(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)}

η2n(ξn) = [Fn(ξn)]{Xn(0)} = [Fn(ξn)]
(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)}

By applying the boundary conditions for segment n, and using the fact that η′1n(0) =

η′2n(0) = 0, one may have,













[D′

n(Ln)]

[Dn(Ln)]− [C ′

n(Ln)]

[F ′

n(Ln)]

[Fn(Ln)]− [E ′

n(Ln)]













(

[Hn−1]× [Hn−2]×· · · × [H1]
)

{X1(0)} = 0

where the first matrix in the left-hand side correspond to the matrix [A] for the case where

the boundary is free at x = L. The terms [B] and {X} are obtained modifying [H1] and

{X1(0)}. Recall that the boundary conditions state that η′11(0) = η′21(0) = 0, thus one

may have,

[H1]{X1(0)} = [H1]































































η11(0)

η′11(0)

φ11(0)

φ′

11(0)

η21(0)

η′21(0)

φ21(0)

φ′

21(0)































































= [H1]































































φ′

11(0)

0

φ11(0)

φ′

11(0)

φ′

21(0)

0

φ21(0)

φ′

21(0)































































= [H1]

































0 1 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

0 0 1 0

0 0 0 1























































φ11(0)

φ′

11(0)

φ21(0)

φ′

21(0)























= [B]{X}

which is the same procedure performed in the anisotropic rotor. With this result, Equa-

tion (5.42) is obtained. Any other combination of boundary conditions can be obtained

following the same steps outlined above.

The characteristic equation is obtained from the determinant of the coefficient

matrix [G(λ)] in Eq. (5.42), which must be zero for non-trivial solutions. The eigenvalues

will have the form

λki = σk
i ± jωk

i for i = 1, 2, ..., N ; k = F,B (5.44)
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where ωk
i are the damped natural frequencies, σk

i are the damping parameters and F and B

denote the forward and backward modes, respectively. In the asymmetric case, the forward

and backward modes both have positive and negative frequencies, just as in the anisotropic

rotor. After obtaining the eigenvalues, the constants {X} for mode i can be obtained by

substituting λi in Eq. (5.42). This gives the ratio between the modal constants of segment

1, leaving an arbitrary constant that is obtained from the orthogonality conditions. The

global function will thus be a piece-wise continuous function, which can be written as,

φ1(x) =























φ11(x) for x1 < x < x2

φ12(x) for x2 < x < x3
...

φ1n(x) for xn < x < xn+1

(5.45)

and the same form is true for φ2(x), η1(x) and η2(x). As in the anisotropic case, the

horizontal φy and vertical φz mode shapes of the asymmetric rotor are distinct, and they

can be obtained in a similar way as (JEI; LEE, 1992b),

φk
y(x) = φk

1(x) + φk
2(x), φk

z(x) = j
(

φk
1(x)− φk

2(x)
)

for k = F,B (5.46)

This form is also true for ηy(x) and ηz(x), using η1(x) and η2(x). As noted by Jei and

Lee (1992b), the undamped mode shapes are real and planar when the boundary condi-

tions are isotropic. In case one has a bearing or an asymmetric disk at the boundary, the

mode shapes will become complex and non-planar.

5.3 Modal analysis

In the previous section, the eigenfunctions were obtained by means of separation of

variables. These functions can now be used to solve the equations of motion, Eqs. (5.10)

and (5.11), by means of modal analysis. The approach for the asymmetric rotor is very

similar to the rotor on anisotropic bearings presented in Chapter 4. First, the equations

of motion, and their complex conjugate, are rewritten as,

[m]

{

{ẅ(x, t)}
{ẅ∗(x, t)}

}

+ [c]

{

{ẇ(x, t)}
{ẇ∗(x, t)}

}

+ [k]

{

{w(x, t)}
{w∗(x, t)}

}

=

{

{g(x, t)}
{g∗(x, t)}

}

(5.47)

where,

[m] =













m̄(x) 0 0 0

0 J̄1(x) 0 J̄2(x)

0 0 m̄(x) 0

0 J̄2(x) 0 J̄1(x)













(5.48)
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[c] =

[

[c1] [0]2×2

[0]2×2 [c∗1]

]

, [c1] =

[

c̄m(x) + 2jΩm̄(x) 0

0 −c̄t(x)

]

(5.49)

[k] =

[

[k1] [k2]

[k∗2] [k∗1]

]

,

[k1] =













− ∂
∂x

(

κGĀ(x) ∂
∂x

)

− m̄(x)Ω2 ∂
∂x

(

κGĀ(x)
)

+k̄m(x) + jΩc̄m(x)

−κGĀ(x) ∂
∂x

− ∂
∂x

(

EĪ1(x)
∂
∂x

)

+ κGĀ(x)− J̄1(x)Ω
2

−k̄t(x)− jΩc̄t(x)













,

[k2] =

[

0 0

0 − ∂
∂x

(

EĪ2(x)
∂
∂x

)

]

(5.50)

being {w(x, t)} and {g(x, t)} defined in Eqs. (3.55) and (3.56), respectively. The equations

for {w(x, t)} and {w∗(x, t)} are now coupled due to the asymmetry in the inertia and

stiffness of the shaft, given by the functions J̄2(x) and EĪ2(x). For J̄2(x) = EĪ2(x) = 0,

the equations becomes decoupled and the problem becomes the same as the isotropic case,

but in the rotating reference frame. Next, Equation (5.47) is written in the state space

form, which gives,

[M ]{Ẇ (x, t)} = [K]{W (x, t)}+ {F (x, t)} (5.51)

where,

{W (x, t)} =
{

{ẇ(x, t)} {ẇ∗(x, t)} {w(x, t)} {w∗(x, t)}
}T

(5.52)

{F (x, t)} =
{

0 0 0 0 {g(x, t)} {g∗(x, t)}
}T

(5.53)

and the matrices [M ] and [K] have the same form as shown in Eqs. (3.60) and (3.61),

with the matrices [m], [c] and [k] being corrected as above. In the asymmetric rotor, both

operator matrices [M ] and [K] are non-self-adjoint and positive definite (see Sec. 3.3 for

how to demonstrate that). The same procedure presented in the isotropic and anisotropic

cases can be taken, where one solves the adjoint eigenvalue problem in addition to the

regular problem. As usual, the state vector is expanded as,

{W (x, t)} =
∞
∑

i=0

{Φi(x)}qi(t) (5.54)

where the mode shapes are similar to the anisotropic case, that is,

{Φi(x)} =
{

λiφ1i(x) λiη1i(x) λiφ2i(x) λiη2i(x) φ1i(x) η1i(x) φ2i(x) η2i(x)
}T

(5.55)



5 MODELING OF ASYMMETRIC ROTOR SYSTEMS 73

The eigenvalue problem related to Eq. (5.47) and its adjoint are given as,

λi[M ]{Φi(x)} = [K]{Φi(x)} for i = 1, 2, ... (5.56)

λ∗i [M̃ ]{Φ̃i(x)} = [K̃]{Φ̃i(x)} for i = 1, 2, ... (5.57)

where one can prove that the eigenvalue problem shown in Eq. (5.56) is the same as the

one given by Eqs. (5.18a)-(5.18d). The adjoints of the operators are [M̃ ] = [M ]H and

[K̃] = [K]H , being H the complex conjugate transpose. The vector {Φ̃i(x)} is given as,

{Φ̃i(x)} =
{

λ∗i φ̃1i(x) λ∗i η̃1i(x) λ∗i φ̃2i(x) λ∗i η̃2i(x) φ̃1i(x) η̃1i(x) φ̃2i(x) η̃2i(x)
}T

(5.58)

where φ̃1i(x) is the adjoint of φ1i(x), η̃1i(x) is the adjoint of η1i(x), and so on. As mentioned

in the previous chapters, the vectors {Φi(x)} and {Φ̃j(x)} are biorthogonal and satisfy

the conditions shown in Eqs. (3.70a) and (3.70b). After substituting {W (x, t)} given by

Eq. (5.54) in the state-space equation of motion, Equation (5.51), taking the internal

product in both sides by {Φ̃i(x)}, and taking into account the orthogonality conditions,

one may have,

q̇i(t) = λiqi(t) +

∫ L

0

φ̃∗

1i(x)f(x, t)dx+

∫ L

0

φ̃∗

2i(x)f
∗(x, t)dx for i = 1, 2, ... (5.59)

which is very similar to the result of the anisotropic rotor. Equation (5.59) consist of

infinite first order complex modal equations, which are in reality truncated at N modes.

In this case, each mode has a forward and backward case with positive and negative

frequency, each with a unique equation. As noted in the anisotropic rotor, for 4N modes,

there is N forward modes with positive natural frequency +jωF
i , N forward modes with

negative natural frequency −jωF
i , N backward modes with positive natural frequency

+jωB
i and N backward modes with negative natural frequency −jωB

i , where i = 1, 2, ...N .

The physical displacement and slopes are obtained from Equation (5.54), which gives,

u(x, t) =
∞
∑

i=0

φ1i(x)qi(t) (5.60)

ψ(x, t) =
∞
∑

i=0

η1i(x)qi(t) (5.61)

The same comments made in Sec. 4.3 can be applied to Eq. (5.59). However, the asym-

metric rotor has some particular phenomenon such as the instability between the forward

and backward critical speeds and the gravity critical speed (LEE, 1993). Also, the initial

conditions can be obtained using Eq. (4.60).

As in the isotropic and ansiotropic cases, the vectors {Φi(x)} and {Φ̃∗

i (x)} are the
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result of the same eigenvalue problem, and they satisfy the relation

{Φi(x)} =
1

Ki

{Φ̃∗

i (x)} (5.62)

where again Ki is a complex normalizing constant and it is obtained from Equations

(3.70a) or (3.70b). These equations will not be expanded here due to their length, but

one gets a similar form as shown in the isotropic case by Eqs (3.75) and (3.76), with

additional terms due to the asymmetry of the shaft.

With the asymmetric rotor, the applicability of the CSM to the most known types

of rotors are all covered. The case when the rotor is asymmetric and the bearings are

anisotropic was not covered, since the eigenvalue problem becomes unsolvable by means

of the methods used in this work.
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6 Rotor-stator rubbing

This chapter present some background on the rubbing phenomenon in rotating

machinery. The idea is to apply a model based on the CSM to study nonlinear applica-

tions. Section 6.1 presents a overview on the phenomenon in rotating machinery, while

the nonlinear model of the contact force is presented in Sec. 6.2.

6.1 Overview

A special phenomenon seen recurrently in rotating machines is the rubbing between

rotor and stator. Since the gap between rotating and stationary parts tend to decrease,

mainly due to efficiency and power needs, this phenomenon becomes more and more

inevitable and thus a understating of its effect on the overall dynamics of the machine is

vital. This is specially true for turbomachines (JACQUET-RICHARDET et al., 2013).

Also, the effect of rotor-stator contact affects greatly oil drilling applications (JANSEN,

1991; CHEN et al., 2019) as well as auxiliary bearings for magnetically levitated rotors

(FONSECA et al., 2017; CHIBA et al., 2005; SUN, 2006).

The complexity of rubbing arises due to the several physical phenomena involved,

such as friction, physical contacts, and stiffness changes (MUSZYNSKA, 2005). Depend-

ing on these parameters, the system can posses different dynamic characteristics that can

be divided as: forward annular rub (FWAR), forward partial rub (FWPR) and backward

whirl (JACQUET-RICHARDET et al., 2013). In the FWAR, the rotor whirls in continu-

ous contact with the stator at a synchronous speed. This behavior is very common when

friction at the contact interface is low. However, due to the continuous contact, the rub

may generate considerable heat, leading to thermal bow, also known as the Newkirk effect

(DIMAROGONAS, 1974). Some effects of the FWAR can be avoided by increasing the

friction between the rotor and stator. On the other hand, this friction increase may lead

the rotor to a bouncing state, or FWPR, which is characterized by discontinuous contacts

along the whirling motion of the rotor. Depending on different parameters, this motion

can lead to steady-state or transient motions. The FWPR is known to posses rich dy-

namics characteristics that range from periodic to chaotic (EHRICH, 1991; GOLDMAN;

MUSZYNSKA, 1994). For this reason, many researches devoted their work in identifying

regions of periodic solutions and routes to chaos (AZEEZ; VAKAKIS, 1999; POPPRATH;

ECKER, 2007; VARNEY; GREEN, 2015), which is usually done by means of bifurcation

diagrams, Poincaré sections and Lyapunov exponents (see Strogatz (2018) for an intro-

duction on nonlinear systems). In addition, the FWPR motion rises different harmonics

in the frequency spectrum such as multiple harmonics (2X, 3X,..), semi-harmonics (X/2,

3X/2,...) and third harmonics (X/3, 2X/3) (EHRICH, 1988; CHU; LU, 2005).
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A distinct phenomenon that can appear in rotor-stator rub is the asynchronous

partial contacts, where the rotor whirls in FWPR with frequencies unrelated to the rotat-

ing speed. According to Shaw et al. (2016), this phenomenon is due to internal resonance

and can occur at multiple drive speeds even with no friction. The authors went further to

experimentally study this phenomenon in a recent paper by Crespo et al. (2020), giving

convincing evidence for their assumptions. The motions due to asynchronous bouncing

appear to have quasi-periodic characteristics in a fixed-frame of reference but they may

turn into periodic in a rotating frame (COLE; KEOGH, 2003). The asynchronous motion

appears to occur because of transient energy that gets amplified due to internal resonance,

as shown by Zilli et al. (2015), where a transient analysis showed that this phenomenon

may be avoided with low acceleration rates.

The rubbing motion can turn into self-excited motion once the rotors starts to

whirling in the backward direction, which can lead to very dangerous situations, including

the complete failure of the machines as reported by Rosenblum (1995). Following the

definitions from Childs and Bhattacharya (2007), the backward motion during rubbing can

be divided as: dry-friction whirl (DWL) and dry-friction whip (DWP). In the former, the

rotor rolls-without-slipping around the stator, whereas in the latter the motion occurs with

continuous slipping between the rotor and stator. Both of these motions are characterized

by their nonsynchronous nature, and the DWP is noted to be more violent. Several works

focused on detecting the rotor frequency where DWP occurs (BLACK, 1968; CRANDALL,

1990; BARTHA, 2000; YU et al., 2002). Wilkes et al. (2010) and Wang et al. (2020)

present numerical and experimental results for multi-mode systems, where different whip

and whirl frequencies can be found. Despite the DWP phenomenon being seen extensively

in test rigs, it is not seen much in practice on turbomachines. Bhattacharya and Childs

(2009) suggested that this may be because real machines have enough cross coupled

stiffness and damping to hinder DWP. Similar results were obtained by Shang et al.

(2010). Moreover, the boundaries between different rubbing motions is the main topic in

Jiang et al. (2010), Jiang (2009) and Jiang and Ulbrich (2005).

Given the importance of rotor-stator rub in rotating machinery, adequate models

to represent this phenomenon are essential in the understanding of its effects on the

machines. The simple 2-DOF Jeffcott rotor model seems to represent most of the rubbing

characteristics described above, and it is the most used approach used by researchers in the

analysis of rubbing (ALBER; MARKERT, 2014). As for the stator, some works consider

a massless ring (CHIPATO et al., 2019; YU et al., 2000; JIANG; ULBRICH, 2000), others

model the stator as a S-DOF system with stiffness and damping (POPPRATH; ECKER,

2007; CHILDS; BHATTACHARYA, 2007; JIANG et al., 2010). Despite the fact that the

Jeffcott model presents several characteristics seen in real rotor machines, its use is mainly

towards giving insights into the rubbing phenomenon, and its results are often not used in
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the design of machines. Some researchers tried to overcome this issue and presented more

detailed models using the FEM to model both the rotor and stator (WILKES et al., 2010;

BEHZAD et al., 2013; BEHZAD; ALVANDI, 2018; ROQUES et al., 2010; MOKHTAR

et al., 2018; AGRAPART et al., 2019). In this work, the CSM is proposed to model the

rotor system and study the rubbing phenomenon.

In some cases, the use of FEM method results in a very large system of differential

equations, which requires a great deal of computational time. This encouraged researchers

to look for methods to reduce the order of the equations (WAGNER et al., 2010; MAR-

TIN et al., 2020). Some of the most used methods for these reductions on rotor systems

are Guyan Reduction (GUYAN, 1965; STEPHENSON; ROUCH, 1993), Modal analy-

sis (CHATELET et al., 2002; KHULIEF; MOHIUDDIN, 1997) and Component Mode

Synthesis (CHATELET et al., 2002; GLASGOW; NELSON, 1980).

6.2 Contact force model

The rubbing model consist in how the contact between the rotor and the stator

is modeled. The common approach is to consider the indentation as a nonlinear spring-

damping system. In this model, the contact force is zero initially after contact, and

increases proportionally to the deformation and relative velocity of the bodies (VARANIS

et al., 2019; VARANIS et al., 2017). The force considered is based on the model by Hunt

e Crossley (1975), which is given as,

Fc(χ, χ̇) = khχ
m + chχ

nχ̇p (6.1)

being χ and χ̇ the indentation and its rate of change, kh the stiffness coefficient; and

ch the damping coefficient. The exponents are assumed as n = p = 1 and m = 1. The

model given by Eq. (6.1) is more suitable to model the contact between elastic bodies than

the commonly used linear spring-dashpot model, as the force at the end of the contact

is zero (PUST; PETERKA, 2003). The indentation χ is the normal deformation in the

rotor-stator contact, and is given as,

χ(t) = |u(b, t)| − dc =
√

uy(b, t)2 + uz(b, t)2 − dc (6.2)

where u is the complex displacement field, b is the rubbing location and dc the initial

gap between the rotor and the stator. The rate of change is obtained by applying the

derivative, thus,

χ̇(t) = |u̇(b, t)| = uy(b, t)u̇y(b, t) + uz(b, t)u̇z(b, t)

|u(b, t)| (6.3)
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In order to model the rubbing, a model for the tangential force must also be given. The

commonly used Coulomb model is assumed here, where the tangential force is proportional

to the normal contact force, that is,

Ft = µ(vrel)Fc (6.4)

being µ the friction coefficient and it is a function of the relative velocity at the contact

point vrel. The sign of the tangential velocity must be taken into account, since the

tangential force is always against the direction of movement. In this work the function

µ(vrel) is assumed as (CHIPATO et al., 2019),

µ = µ(vrel) = µm tanh(vrel/v0) (6.5)

where v0 is a curve-fitting parameter and µm is the maximum friction coefficient. It is

worth mentioning that the tanh(·) function, with a sufficient small v0, approximates the

function sign(·), and it is less computationally expensive. The relative velocity can be

obtained as,

vrel(t) = θ̇(t)|u(b, t)|+ ΩR (6.6)

where R is the rotor’s radius and θ̇ is the whirl speed, which is given as

θ̇(t) =
d

dt

[

tan−1

(

uz(b, t)

uy(b, t)

)]

=
uy(b, t)u̇z(b, t)− uz(b, t)u̇y(b, t)

|u(b, t)|2 (6.7)

The complex form of the contact forces are expressed as,

fcont(x, t) = −Θ[Fc(t)+ jFt(t)]e
jθδd(x− b) = −Θ[1+ jµ(vrel)]Fc(t)

u(b, t)

|u(b, t)|δd(x− b) (6.8)

where Θ ensures that the force is only positive when there is contact and it is defined as,

Θ =

{

1 for |u(b, t)| ≥ dc

0 for |u(b, t)| < dc
(6.9)

Equation (6.8) can be applied in the equations of motion to study the rubbing effect.
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Table 1: Parameters used for the uniform rotor.
Parameter Symbol Value
Shaft length L 600 mm
Segment length l 200 mm
Shaft diameter d 24 mm
Density of the material ρ 7850 kg/m3

Young’s modulus E 200 GPa
Poisson’s ratio ν 0.3
Shear modulus G 76.92 GPa
Shear factor κ 0.8864
Disk length hd 15 mm
Disk external diameter D 150 mm
Disk location a 0 mm

Bearing locations
b1 0 mm
b2 200 mm

Unbalance moment mue 0.0213 kg·m

Table 2: Bearing parameters for the uniform rotor.
Case Direct coefficients Cross-coupled coefficients

Case 1 (Isotropic)
kyy = 106 N/m, kzz = kyy kyz = kzy = 0 N/m
cyy = 102 N/m, czz = cyy cyz = czy = 0 N/m

Case 2 (Isotropic)
kyy = 106 N/m, kzz = kyy kyz = 4.2× 104 N/m, kzy = −kzy
cyy = 102 N/m, czz = cyy cyz = czy = 0 N/m

Case 3 (Anisotropic)
kyy = 106 N/m, kzz = 0.8kyy kyz = kzy = 0 N/m
cyy = 102 N/m, czz = cyy cyz = czy = 0 N/m

In order to evaluate the present method, a model based on the FEM was also

established with the same dimensions and with a mesh containing 24 finite elements. The

mesh is shown in Fig. 7b. The elements considered were standard Timoshenko beams

with gyroscopic effect; the matrices obtained after the discretization can be consulted

in Friswell et al. (2010) or Tiwari (2017). In addition, the bearings were placed at the

boundary nodes, and the rigid disk at node 9, which corresponds to the position set in

the model based on the CSM.

Two types of bearings were considered: isotropic and anisotropic. The values of the

stiffness and damping coefficients used are listed in Table 2. The analysis was separated

in three cases: in cases 1 and 2 the bearings are isotropic and represent the cases with and

without the cross-coupled coefficients in the stiffness, respectively. In case 3 the bearings

are anisotropic.

7.1.1 Case 1

In case 1 the stiffness of the bearings are kyy = kzz = k = 106 N/m and kzy = kyz =

0, while the damping is cyy = czz = c = 102 Ns/m. Figure 8 shows the Campbell diagram
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Figure 10: Unbalance responses for case 1 at: (a) disk, (b) bearing 1 and (c) bearing 2.
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Figure 11: Global unbalance responses for Ω = 104 rpm: (a) CSM and (b) FEM.

in the modal equations and a closed form solution is easily obtained. To establish the

number of modes to be used in the CSM, and thus the number of equations to be solved,

the response was obtained considering N = 1 to N = 5 modes. This showed that three

modes (that is three forward and three backward) were enough for good results. In the

FEM, one needs to apply the force at the corresponding degrees of freedom of the disk.

Figure 10 shows the steady-state amplitudes from Ω = 103 rpm to Ω = 2 × 104 rpm at

three different points along the rotor: at the unbalance location, which is where the disk

is located; at bearing 1, which is the bearing at x = 0; and at bearing 2, that is the

bearing at x = L. The amplitudes given by both methods were very close, and the main

difference appeared mainly at the anti-resonance at the bearing 1, as Fig. 10b shows.

This difference occurs because the bearings were placed exactly at the boundary nodes
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Figure 14: Horizontal and vertical forward mode shapes for case 3 with Ω = 2000 rpm:
(a) first and (b) second mode shape
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Figure 15: Unbalance responses for case 3 at: (a) disk, (b) bearing 1 and (c) bearing 2.

both methods are presented in Fig. 15. Comparing these results with the isotropic rotor,

Figure 10, one can note that the vertical and horizontal displacements are different and

additional critical speeds can be seen, which correspond to the backward critical speeds.

The agreement between the CSM and FEM was very good; the responses were mostly

different at bearing 1 near 10000 rpm, just as in case 1. The orbits of the rotor at this

speed are shown in Fig. 16 in the same three locations. The orbits are in great agreement

in most of the speed range, except at bearing 1 near the second backward critical speed,

around 13000 rpm. The difference in the responses at bearing 1 may be due to the

different modeling approaches of the CSM and FEM, as indicated in Fig. 15b, mainly in

the y direction (without weight effect), causing a delay in the backward/forward transition

rotation speed between the models. In this case, FEM appears slightly more conservative
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Figure 17 shows the orbits between the critical speeds. It is well known that a

rotor on anisotropic supports present a transition from forward to backward whirl between

the first two critical speeds (KRÄMER, 1993). The orbits on Fig. 17 illustrate the exact

moments when this transition occurs. As the results points out, the CSM and FEM where

very close in this analysis.

7.2 Asymmetric rotor

For the asymmetric rotor, the same rotor system depicted in Fig. 7 was considered,

with the properties listed in Table 1. However, the moments of inertia of the shafts were

distinct in the two orthogonal directions, thus the model presented in Chapter 5 was used.

Similarly to the previous example, a FEM-based model was also established to evaluate

the CSM for asymmetric rotors. The matrices for asymmetric rotors using FEM can be

consulted in Friswell et al. (2010), Kang et al. (1992) or Jei and Lee (1988).

In this study three cases are considered. In the first case, the rotor is uniformly

asymmetric, that is, the shaft has the same asymmetry along its length. The second case

considers a general asymmetric rotor, where the three segments have different asymmetry

in the moments of inertia. In both these cases the disks and bearings are not considered,

and the shaft is simply supported. The disk and bearings are taken into account in the

last case, where one has an asymmetric disk and shaft on isotropic bearings.

7.2.1 Uniformly asymmetric rotor

In the first case, the asymmetry of the rotor was considered the same for all

three segments. The cross-section area was A = 3.9815 cm2, and the moments of inertia

considered were Iy = 2 × 10−4 and Iz = 3/5Iy, which gives an asymmetry ratio of γ =

I2/I1 = 0.25. The remaining parameters are the same as listed in Table 1. Figure 18 shows

the Campbell diagram in the rotating and stationary frame obtained using the CSM and

FEM. Since the models are in the rotating frame, the line ω = Ω is on the x axis. The

natural frequencies for mode i in the stationary frame can be obtained as ωS
i = ωR

i ± Ω,

where S denotes stationary and R rotating frame. This transformation essentially rotates

the diagram in the rotating frame, giving the results shown in Fig. 18b. Also, note that by

performing the transformation ωS
i = ωR

i ±Ω additional speeds appear from the negative y

axis, which in reality correspond to the same mode of vibration i but with inverted speed

(-Ω). The reader is referred to Jei and Lee (1992b) for more information.

The shaded area in the diagram of Fig. 18 represents the unstable range, which

is between the first, ω1, and second, ω2, critical speeds. From Fig. 18, the agreement

between the CSM and FEM can be clearly observed. The first and second forward mode
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Figure 22: Second horizontal and vertical mode shapes for the general asymmetric rotor
at Ω = 1000 rpm: (a) second forward and (b) second backward.
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Figure 23: Third horizontal and vertical mode shapes for the general asymmetric rotor
at Ω = 1000 rpm: (a) third forward and (b) third backward.

critical speeds as the first one, since the natural frequencies do not become zero in the

rotating frame nor cross the line ω = Ω in the stationary frame. In addition to this, while

in the uniformly asymmetric rotor the natural frequencies crossed each other, in this case

they somewhat "repel" each other avoiding an intersection. This phenomenon is seen

often in asymmetric rotors and it is known as curve veering (CRANDALL; YEH, 1989;

JEI; LEE, 1992a).

The first three forward and backward mode shapes are shown in Figs. 21-23. Due
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Figure 26: Unbalance response of the asymmetric rotor with disks and bearings at the
disk.

7.2.3 Asymmetric rotor with disk and bearings

So far the rotor was considered simply-supported and with no disk. In this case,

the disk and the elasticity of the bearings are also considered. The shaft has the same

properties as in the uniformly asymmetric rotor: A1 = A2 = A3 = 3.9815 cm2, Iy1 = Iy2 =

Iy3 = 1.6286 cm4and Iz1 = Iz2 = Iz3 = 3/5Iy. The bearings are identical and isotropic

with stiffness of k = 106 N/m and with no damping. The disk is asymmetric with mass

M = 2.0275 kg, and mass moment of inertia of Jy = 0.003 kg·m2 and Jz = 3/5Jy. The

principal axis of the disk are considered to be aligned to that of the shaft, as discussed in

Chapter 5.

Figure 24 shows the Campbell diagram of the asymmetric rotor with disk and

bearings. Two unstable regions can be detected, as shown by the shaded areas. In the

second unstable region, one has a combination of two unstable modes. Also, this diagram

shows a combination of natural frequencies crossing and repelling each other, which was

different from the previous cases. The CSM and FEM differ a little in their results, but the

overall behavior of the natural frequencies was similar. Figure 25 shows the forward mode

shapes. Due to the asymmetry, the horizontal and vertical mode shapes are different. The

agreement was very good between the both methods for the mode shapes.

The unbalance response of the system at the disk location is shown in Fig. 26.

The unbalance moment was set to mue = 0.0213 kg·m and it was introduced at the disk.

The effect of gravity was neglected. Also, the phase of the unbalance, which makes a lot

of difference in the asymmetric rotor, was set to θ = 45◦ and two modes (two forward

and two backward) were used. Also, damping was introduced with a coefficient of c = 102

Ns/m. As one can note from the response, two peaks occur corresponding to two critical
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Figure 27: First horizontal and vertical forward mode shapes for the asymmetric rotor
with disks and bearings at the critical speeds: (a) Ω = 3459 rpm and (b) Ω = 4131 rpm.
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Figure 28: First horizontal and vertical backward mode shapes for the asymmetric rotor
with disks and bearings at the critical speeds: (a) Ω = 3459 rpm and (b) Ω = 4131 rpm.

speeds, 3459 rpm and 4131 rpm. The response between these two speeds are unstable,

as shown in Fig. 24, thus these solutions are not achievable and the response amplitude

grows exponentially. This could be avoided by increasing the damping coefficient, making

the rotor stable in all operating speeds.

Figures 27 and 28 shows the first and second mode shapes at the critical speeds.

The first mode shapes suffers little difference between the two speeds, while for the second

mode shape one can see a great difference. It is noted that for higher speeds the mode
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Table 4: Disks and bearings dimensions.
Parameter Symbol Value (mm)

Disk 1
Position a1 300.5
Diameter D1 550
Length h1 351

Disk 2
Position a2 406
Diameter D2 350
Length h2 244

Disk 3
Position a3 122
Diameter D3 400
Length h3 244

Disk 4
Position a4 122
Diameter D4 450
Length h4 244

Bearing 1 Position b1 263
Bearing 2 Position b2 197.5

model is based directly on the FEM mesh. Segment 1 has a length of L1 = 461 mm

and models elements from 1 to 8 in the mesh, and the diameter adopted was the mean

diameters of these elements, giving d1 = 170 mm. Segments 2, 3, 4 and 5 represent

elements from 9 to 12, 13 to 15, 16 to 17 and 18 to 20, respectively. The dimensions of

the segments are the same as in the mesh, namely, d2 = d4 = d5 = 248 mm, d3 = 300 mm,

L2 = 476 mm, L3 = 528 mm, L4 = 244 mm, L5 = 439.9 mm. Segment 6 has a length

of L6 = 351.1 mm and a diameter of d6 = 222 mm, which was obtained as the mean

diameter of elements from 21 to 26. The bearings and disks are located at the same

coordinates as in the FEM mesh; the local coordinates are shown in Tab. 4. It is noted

that, since simplifications has been adopted in the CSM model (utilizing mean diameters

for instance), the results will no longer be exactly the same.

Figure 30 shows the Campbell diagram and logarithmic decrement obtained with

the CSM and FEM. The anisotropy of the system is clearly seen, as the backward and

forward natural frequencies are different even at zero rotational speed. The behavior of the

natural frequencies given by both methods are not identical as in the previous examples,

since the system is more complex now, but one can conclude that they are fairly similar.

An interesting outcome is the third forward natural frequencies. Both CSM and FEM

showed a curve veering similar to that seen in the asymmetric rotor. As for the logarithmic

decrement, one notes that the CSM predicts in general higher damping than the FEM,

but the behavior for different rotational speeds are similar nonetheless, since the errors

do not increase with the speed. The first and second undamped forward mode shapes

are presented in Fig. 31. As seen in previous cases, the anisotropy causes the horizontal

and vertical mode shapes to be different. The mode shapes given by the CSM and FEM

were not identical, but one notes great similarities. The amplitudes differed the most in

segment 1 in the CSM or elements 1 to 8 in the FEM, due to the approach assumed for
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Figure 32: Unbalance responses for the multi-stepped rotor at: (a) unbalance location,
(b) bearing 1 and (c) bearing 2.
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Figure 33: Multi-stepped rotor orbit at Ω = 104 rpm (a) unbalance location, (b) bearing
1 and (c) bearing 2; and at Ω = 5000 rpm (d) unbalance location, (e) bearing 1 and (f)
bearing 2.

vertical amplitudes are different, and the orbit is an ellipse. As one can note from the

results, the amplitudes predicted by both methods were satisfactory close. Since the
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critical speeds were not the same, the peaks in the amplitudes occur at different rotational

speeds. The major differences in the amplitudes predicted were at bearing 1, where the

FEM model predicted higher amplitudes in general. Figure 33 shows the orbits at the

same measurement points for Ω = 104 rpm and Ω = 5000 rpm. The differences in the

response can be attributed to the equivalent diameters adopted in the CSM method,

which become more relevant at higher speeds due to inertia effects.

7.4 Rubbing response

This section presents a rubbing analysis, for the purpose of evaluating the CSM

for nonlinear studies in rotordynamics using the impact model presented in Chapter 6. In

that matter, the same system used in the first example, depicted in Fig. 7, is used. The

dimensions are the same as shown in Tab. 1. The bearings are considered isotropic with

coefficients kyy = kzz = k = 106 N/m, cyy = czz = c = 50 Ns/m, kyz = kzy = cyz = czy = 0.

The impact is considered to occur on the disk rather than on the shaft. When the impact

is on the disk, less modes of vibration can be used since the lumped mass of the disk in

general dominates the dynamics of the rotor system. This is done in order to simplify

the analysis, as in real rotating machines rubbing can occur at any point of the rotor.

The impact stiffness that it is used in the contact model is considered ten times the

bearing stiffness, thus kh = 107 N/m, and the impact damping is not considered. To

define the stator clearance, a rotor’s radius to clearance ratio of R/dc = 120 was defined,

giving dc = 0.1 mm. Such radius to clearance ratio are common in real turbomachines

(BHATTACHARYA; CHILDS, 2009). The speed is fixed at 60 % the first critical speed

of the system, giving Ω = 6443.1 rpm, and the unbalance moment is mue = 0.111 kg·mm.

The parameters are also listed in Tab. 5.

In order to evaluate the CSM, a FEM based model was also established with 9

standard beam elements considering rotary inertia and shear deformation. The same

dimensions, material properties and impact model were used in the FEM model. The

rubbing responses were obtained by means of the integrator ode45 of the software Matlab.

For the CSM model, three modes (three forward and three backward) were used in the

discretization of the equations of motion, while in the FEM model, all degrees of freedom

Table 5: Parameters used for the rubbing analysis.
Parameter Symbol Value
Impact stiffness kh 107 N/m
Impact damping ch 0 Ns/m2

Rotational speed Ω 6443.1 rpm
Radial clearance dc 0.1 mm
Unbalance moment mue 0.111 kg·mm
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Figure 35: Rotor orbits for 100 cycles: (a) µm = 0.05, (b) µm = 0.1 and (c) µm = 0.11.
The black dashed line represent the radial clearance.
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Figure 36: Rotor orbits for the first 10 cycles: (a) µm = 0.05, (b) µm = 0.1 and (c) µm =
0.11. The black dashed line represent the radial clearance.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Horizontal displacement (mm)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

V
e
rt

ic
a
l 
d
is

p
la

c
e
m

e
n
t 
(m

m
)

(a)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Horizontal displacement (mm)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

V
e
rt

ic
a
l 
d
is

p
la

c
e
m

e
n
t 
(m

m
)

(b)

-30 -20 -10 0 10 20 30

Horizontal displacement (mm)

-30

-20

-10

0

10

20

30

V
e
rt

ic
a
l 
d
is

p
la

c
e
m

e
n
t 
(m

m
)

(c)

Figure 37: Rotor orbits for the last 10 cycles: (a) µm = 0.05, (b) µm = 0.1 and (c) µm =
0.11. The black dashed line represent the radial clearance.
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were: 186.8 s, 194.5 s and 251.6 s. It is worth noting that no reduction in the FEM

equations were performed, thus leading to a large number of equations when compared

with the CSM.

7.5 Additional comments

This chapter presented different applications of the CSM, which in every case

were evaluated by comparing the results with the ones given by the FEM. The CSM

provides exact solutions for rotors with stepped cross-sections, and it can be applied to

a wide variety of systems, from isotropic to asymmetric rotors. Before reaching to some

conclusions, it is worth mentioning some aspects of the numerical solutions. Firstly, the

eigenvalue problem of the CSM consist of a transcendental equation, which is considerable

more difficult to solve than the problem for the FEM, a polynomial equation. These

equations have to be solved for a great number of rotational speeds to obtain the Campbell

diagrams. In this regard, the FEM proves much faster than the CSM, specially in the

asymmetric rotor, which, due to the size of the functions, showed a very slow solution.

However, the Campbell diagram comparison was quite necessary to qualify the CSM

accuracy and representativeness. The main application of CSM lays on applying reduced

models to nonlinear analysis, uncertainties quantification and controller design for rotating

machines. Meanwhile, since the results given by the CSM are exact, provided the segments

have constant cross-sections, they can be used to evaluate different FEM procedures,

comparing different elements sizes and different shape functions. In case one needs higher

modes of vibration, for example to perform acoustic analysis, the CSM can be a better

choice, since the discretization needed in the FEM would require a highly dense mesh.
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8 Conclusions

This work aimed at presenting a method for the mathematical modeling of rotor

systems with several segments, disks and bearings. Since the understanding and prediction

of faults of the machines are highly dependent on models, ever accurate representations

of them are always required in engineering applications. In this manner, the contribution

of the present work is to offer an additional tool for designers and engineers to study

rotating machines.

The main idea of the method, named Continuous Segment Method (CSM), is to

use eigenfunctions, obtained directly from the partial differential equations that govern

the system, written in complex form. The bending and shear deformation are taken into

account in the model, but axial and torsional motions are neglected. The method is valid

for rotor systems with several segments with constant cross-sections each and with any

number of disks and bearings. By means of the CSM, the critical speeds, mode shapes

and forced response can be obtained for very general rotor systems, including rotors with

anisotropic bearings and asymmetric shafts.

The CSM allows one to solve the eigenvalue problem of the system by dividing the

domain into subdomains or segments. Each segment is a beam with uniform cross-section

with disks and bearings. The approach followed is to solve the local eigenvalue problems

to obtain the local eigenfunctions, and then use continuity conditions to arrive at the

global functions and the eigenvalues. With the eigenfunctions of the system at hand,

modal analysis is applied to discretize the equations leading to uncoupled differential

equations for the modal coordinates. The number of equations needed to be solved equals

the number of modes required for the analysis. The solutions of the CSM are exact for

rotors with stepped cross-sections, rigid disks and linear bearings.

The evaluation of the proposed model was done by means of numerical simulations,

where the results were compared to the well known Finite Element Method (FEM). The

results consisted of Campbell diagrams, logarithmic decrement and unbalance response

for three rotor systems with different configurations. For the rotor systems with simpler

geometries, the natural frequencies and mode shapes were closely coincident both CSM

and FEM. When considering a more complex rotor discrete discrepancies can be observed,

but the CSM proves to be a good alternative to model a wide range rotor systems, from

isotropic rotors to rotors with asymmetric shafts and disks. In addition to that, the CSM

can be used as a model reduction technique as it shows consistent results for a large range

of rotational speeds; since most techniques present problems at high speeds, this is can

be great advantage.
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8.1 Future works

This section briefly mentions the improvements that can be done to the proposed

method. Despite the wide applicability of the CSM, it is still limited to rotors with

stepped geometries, homogeneous shafts, linear bearings and rigid disks. The method

can be further expanded by considering segments with varying cross-sections or material

property. Although it is not possible to solve the problems for shafts with arbitrary shapes,

there are solutions for shafts with cross-sections varying linearly or exponentially as shown

by Magrab (2012). The solutions of the local segment with varying cross-section can then

be related to the remaining segments of the rotor system through the same continuity

conditions presented for the CSM.

Elastic disks, or even blades modeled as beams, can also be incorporated in the

equations of motion to generalize the CSM. In this case, the shaft model would need

to account the axial and torsional movement, since the motion of the blades in general

couples with the axial and torsional motion of the shaft. The approach presented by Lee

and Chun (1998) can be combined with the CSM for rotors with stepped cross-sections

and elastic disks.

Additionally, since real rotating machinery exhibits some kind of nonlinear be-

havior, the CSM can be expanded to account for nonlinearities of the shaft, in case of

large deformations, or bearings. For that matter, the Nonlinear Normal Modes (NNMs)

approach can be used (VAKAKIS, 1997; LEGRAND et al., 2004). To the author’s knowl-

edge, no works has been done regarding nonlinear multi-stepped rotor systems.
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Appendix A – Functions for isotropic rotors

For an arbitrary segment i along the rotor with a kth disk and lth bearing,

f1(ξi) =

(

ρAir
2
i

EIi

(

λ2 − 2jλΩ
)

+
κGAi

EIi

)

L0(ξi) (A.1)

f2(ξi) = L1(ξi) (A.2)

f3(ξi) = L3(ξi)−
(

ρAir
2
i

EIi
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λ2 − 2jλΩ
)

)

L1(ξi) (A.3)
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ρAir
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i
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EIi
− ρλ2

κG
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L1(ξi) + L3(ξi) (A.5)

g2(ξi) = L2(ξi)−
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ρλ2
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ρλ2
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where,

L0(ξi) = L−1

[

1

(s2 − δ2i )(s
2 + ε2i )

]

=
ε sinh(δiξ)− δ sin(εξi)

δε (δ2 + ε2)
(A.17)
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Gc
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ε sinh(δi(ξ − c))− δ sin(ε(ξi − c))
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being L−1 the Inverse Laplace Transform and c is either ak or bl. It is worth noting

that the operation L−1 in Equations (A.21)-(A.23) also gives the Heaviside step function

H(ξi − c) (c = ak, bl), which is not shown here but considered in Equations (3.38)-(3.39).
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Appendix B – Functions for anisotropic rotors

For an arbitrary segment i along the rotor with a kth disk and lth bearing, the

functions f1, f2, f3, f4, g1, g2, g3 and g4 are the same as in the isotropic case, and are

shown in Eqs. (A.1)-(A.8). The remaining functions are obtained as,

fj(ξi) = f−

j−4(ξi) for j = 5, 6, 7, 8 (B.1)

gj(ξi) = g−j−4(ξi) for j = 5, 6, 7, 8 (B.2)

where − means interchanging Ω to −Ω, that is, reversing the rotation direction. Note

that one also need to interchange the parameters δ1i and ε1i to δ2i and ε2i. The functions

pak1 , pak2 , hak1 and hak2 are the same as in the isotropic case, given by Eqs. (A.9)-(A.12). In

addition, one has,

pakj (ξi) = pak,−j−2 (ξi) for j = 3, 4 (B.3)

hakj (ξi) = hak,−j−2 (ξi) for j = 3, 4 (B.4)

The same is true for hbl2 . The functions, pbljf , p
bl
jf , p

bl
jb and pbljb, for j = 1, 2, 3, 4, are given

as,
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Gbl,−
2 (ξi)−

(

ρAir
2
i

EIi

(

λ2 + 2jλΩ
)

+
κGAi

EIi

)

Gbl,−
0 (ξi)

]

(B.11)

pbl4b(ξi) = −
(

kl∗f + λcl∗f
EIi

)

Gbl,−
1 (ξi) (B.12)

where care should be taken to interchange δ1i and ε1i to δ2i and ε2i in the functions G−.

Here one can clearly see that in case klb = clb = 0, the functions of the bearings becomes

the same as in the isotropic case shown in Eq. (A.13) and (A.14). Moreover, the addition
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of anisotropic bearings have not such a great influence in the functions, and thus they can

easily be applied computationally together with the isotropic case.
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Appendix C – Functions for asymmetric rotors

Consider a segment i with a kth disk and lth bearing. Since presenting the full

form of the functions in Eqs. (5.28)-(5.31) would not be of great help due to their length;

it is instead presented here the way to obtain them. From Eq. (5.21), one may have,

{Φ̂(s)} = [L]−1{b} =
adj([L])

det([L])
{b} =

1

det([L])
{b′} (C.1)

where {b′} = adj([L]){b}, adj(·) means the adjoint matrix and det(·) means the deter-

minant. As shown in Sec. 5.2, one has det([L]) = (s2 − δ21i)(s
2 + ε21i)(s

2 − δ22i)(s
2 + ε22i),

being δ21i, δ
2
2i, ε

2
1i and ε22i the roots of the polynomial. To arrive at the functions f , g, p

and h, one needs to isolate the corresponding variables in the vector {b′}. For example,

to obtain f1(ξi), one needs to gather the terms multiplying η1i(0) in the first row of {b′}
and apply the inverse Laplace transform. In the case of f1(ξi), one may have,

f1(ξi) = L−1

[

C1s
6 + C2s

4 + C3s
2 + C4

(s2 − δ21i)(s
2 + ε21i)(s

2 − δ22i)(s
2 + ε22i)

]

(C.2)

where Cj are constants with the shaft properties. The above transformation is easily

obtained through partial fractions and tabulated transforms (MAGRAB, 2012). The

transforms needed for the other functions are similar, and the procedure can be made

easier through the help of a symbolic math software.

Note that after obtaining the functions f1(ξi) through f8(ξi) from the first row of

{b′}, the functions f9(ξi) through f16(ξi), which are given by the third row of {b′}, will

have the same form but with Ω, δ1i and ε1i interchanged with −Ω, δ2i and ε2i. This is

also true for the functions gj(ξi). As for the disks and bearing functions, one needs to

obtain pc1f , p
c
2f , h

c
1f , h

c
2f , p

c
1b, p

c
2b, h

c
1b and hc2b, being c = ak for disk and c = bl for bearing.

The remaining functions, namely pc3f , p
c
4f , h

c
3f , h

c
4f and so on, will have the same form

but with the rotation reversed and the mode shape parameters changed.

The final form of the functions in the asymmetric case will not be much different

than the ones presented in Appendix A for the isotropic case; they will only have more

terms and be much lengthier.
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