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Resumo

As informações de subsuperfície extraídas de dados sísmicos de reflexão desempenham um

papel crucial para a exploração e produção de reservatórios de petróleo e gás. Desta forma, técnicas

de imageamento e inversão que fornecem essas informações estão sempre em demanda. Devido à sua

importância, os modelos de velocidade têm sido os principais parâmetros para inversão sísmica. Por

essa razão, o termo construção de modelos de velocidade é bastante popular em sísmica. De fato,

essa terminologia é conhecida como inversões de, não apenas modelos de velocidade, mas também

parâmetros gerais que descrevem os modelos geológicos de interesse. Modelos de velocidade con-

fiáveis são essenciais para métodos de imageamento sísmico, particularmente migração. De fato, os

avanços científicos e tecnológicos em migração estão diretamente relacionados com os avanços corre-

spondentes na construção de modelos de velocidade. O foco principal dessa tese é a construção tomo-

gráfica de modelos de velocidade. Essa tese propõe um novo método de tomografia sísmica, denom-

inado tomografia CRP. Baseado na estereotomografia, com a qual compartilha várias similaridades,

a tomografia CRP tem, contudo, diferenças significantes na quantidade e natureza dos parâmetros

envolvidos no processo de inversão. Ao contrário da estereotomografia, no qual os parâmetros ob-

servados são coletados/extraídos individualmente do dado de entrada, a tomografia CRP faz uso das

seções CRP, extraídas e estimadas do dado de entrada. Mais especificamente, cada seção CRP con-

siste em pares fonte-receptor dentro dos dados de entrada para os quais os raios de reflexão primária

para uma determinada interface têm o mesmo ponto de reflexão comum. Da mesma forma que na

estereotomografia, alguns pontos individuais são de fato coletados na tomografia CRP. Chamados de

pontos de referência CRP, esses pontos são estendidos para as correspondentes seções CRP, extraídas

do dado de entrada por meio de análise de coerência performadas com tempos de trânsito paramétri-

cos adequados. De fato, a tomografia CRP leva o nome de tais tempos de trânsito, também chamados

de tempo de trânsito CRP. Essa tese mostra como a adição de mais informações relacionadas a um

mesmo ponto em profundidade, previamente desconhecido, ajuda na inversão de diferentes tipos de

modelos de velocidade. Todas as informações relacionadas a um mesmo ponto de reflexão comum

são trabalhadas simultaneamente durante a inversão para melhor inverter a localização do respec-

tivo ponto de modelo em profundidade. Testes numéricos que ilustram essa tese sugerem que o uso



conjunto de parâmetros provenientes de seções CRP atua como uma restrição natural incorporada

ao problema tomográfico. As seções CRP permitem que mais partes do modelo de velocidade se-

jam analisados, uma vez que mais pares de raios são traçados e usados, trazendo mais informações

internas para o problema inverso. Resultados encorajadores fornecidos por alguns testes sintéticos

confirmam as boas expectativas. Dessa forma, a tomografia CRP parece ter um bom potencial para se

consolidar como uma confiável técnica para construção de modelos de velocidade.

Palavras Chave: Tomografia sísmica, Otimização não-linear.



Abstract

Subsurface information extracted from seismic reflection data play a crucial role for explo-

ration and production of oil and gas reservoirs. In this way, imaging and inversion techniques that

provide such information are always in demand. Because of their importance, seismic velocities have

been the main parameters for inversion. Because of that, the term velocity model building is very

popular in the seismic literature. In fact, this terminology is referred to the inversion, not only of

velocities, but also other model parameters that describe the geology of interest. Reliable and mean-

ingful velocity models are essential to seismic imaging methods, most particularly migration. In fact,

scientific and technological advances in migration come hand-in-hand with corresponding advances

in velocity model building. The main focus of this thesis is on tomographic velocity model building.

This thesis proposes a new tomography method, named CRP tomography. Based on the stereoto-

mographic method from which it has several similarities, CRP tomography has, however, significant

differences on the number and nature of the parameters involved in the inversion process. As opposed

to stereotomography, for which the observed parameters are individually picked or extracted from the

input data, CRP tomography makes use of parameter gathers, called CRP gathers, picked/estimated

from the input data. More specifically, each CRP gather consists of source-receiver pairs within the

input data for which the primary-reflection rays for a certain interface have the same (common) reflec-

tion point. In the same way as in the stereographic method, a few individual points are actually picked

in CRP tomography. Referred to as reference points, these points are extended to corresponding CRP

gathers extracted from the input data by means of coherence-analysis estimations performed on suit-

ably defined parametric traveltimes. In fact, CRP tomography bears its name from such traveltimes,

also referred to CRP traveltimes. This thesis shows how the addition of more information related to

the same, previously unknown, point in depth, helps to constrain different kind of velocity models.

All information related to each common-reflection-point are considered simultaneously to improve

the localization of the particular related model common-depth-point. Practical tests that illustrates

this thesis show that the use of CRP information acts as a natural constraint that is incorporated to the

tomographic inverse problem. The CRP gathers allow more parts of the velocity model to be covered

because more pairs of rays are traced and used bringing more internal information to the inversion



process. Encouraging results provided by quite a few synthetic-data tests confirms those good expec-

tations. As such, CRP tomography is seen to have a good the potential of being a reliable technique

for velocity model building.

Keywords: Seismic tomography, Non-linear optimization.
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Chapter 1

Introduction

Subsurface information extracted from seismic reflection data play a crucial role for explo-

ration and production of oil and gas reservoirs. In this way, imaging and inversion techniques that

provide such information are always in demand. Because of their importance, seismic velocities have

been main model parameters for inversion. Because of that, the term velocity model building (Jones,

2010) is very popular in the seismic literature. In fact, this terminology is referred to as inversions of,

not only velocities, but also general parameters that describe the geological models of interest.

Reliable and meaningful velocity models are essential to seismic imaging methods such as

migration (Gray et al., 2001). In fact, scientific and technological advances in migration come hand-

in-hand with corresponding advances in velocity model building. The main focus of this thesis is

on tomographic velocity model building. Along similar lines as the ones of the stereotomography

(Billette and Lambaré, 1998; Lambaré, 2008; Billette et al., 2003; Lambaré, 2004) a new method,

denoted common-reflection-point (CRP) tomography is proposed. For completeness, a brief review

of full-wave-inversion (FWI), presently the most ambitious parameter-inversion approach and subject

of active investigation, is provided and its relation to stereotomography emphasized. In this context,

velocity models produced by proposed CRP tomography method are suggested as initial velocity

models for FWI.

Following Billette and Lambaré (1998), seismic tomography methods aim to recover smooth

velocity models that are able to capture the low-frequency, trend-like behavior of velocity wavefield

in the subsurface region illuminated by the seismic data. Referred to as macro or background velocity

models, such velocity wavefields, if accurately inverted, play an essential role in advanced imaging

schemes, such as migration ad FWI. As pointed out in Billette et al. (2003), such "smooth velocity-

model description that allows the use of ray-based prestack depth-imaging tools with an adaptive



1 - Introduction 18

model representation".

Tomographic velocities: Following the literature trend, this thesis makes use of

B-spline interpolation schemes to represent the smooth, macro-velocity models

that are the objective of seismic tomography. As briefly reviewed in Appendix

D, for a user-selected rectangular mesh that covers the depth domain of interest,

the inversion aims to obtain the B-spline interpolation coefficients at all mesh

points. The column vector mvel of such coefficients is one of the key invertibles

of tomography methods.

1.1 Seismic reflection tomography

Seismic tomography is a powerful tool to address velocity-model-building and imaging prob-

lems in a wide variety of situations. The word tomography derives from Ancient Greek word tomos

(τ ȯµoc), meaning slices, pieces or sections and graphō (γρα̇φω) meaning to write, to draw or to

describe. In the present context, seismic tomographic methods are designed to obtain, from user-

selected "pieces" (e.g., events or parameters) of the seismic data, a subsurface velocity model that

"explains" those data pieces in a way that satisfies the user demands. The above, somewhat subjec-

tive assertion requires some clarification. To do that, a first observation is that the formulation of any

actual tomographic problem involves the following elements: (a) a data space, which is a known

user-selected, set of parameters picked or extracted from the input data; (b) a model space, which is

an unknown parameter set that needs to be inverted from the data space and from which the sought-

for macro-velocity model is obtained; (c) a forward-modeling engine assumed to be able to produce

a synthetic version of the data space from a given trial model space and (d) a misfit function that

measures the discrepancy between the synthetic and observed data sets. Based on such elements, a

velocity model that "explains" the data is one that the discrepancy (misfit) between data and synthetic

spaces is acceptable.

As explained in Chapter 2, the tomographic problem is solved by a least squares (LSQR)

iterative approach: Starting from a user-selected initial velocity model, as well as the parameters

of a user-selected set of points of the input data, updated velocity models are sequentially obtained

by Gauss-Newton optimization that minimizes the residuals (misfit) between the the given observed

parameters and simulated ones computed by the forward-modeling engine.

As seen from a vast literature, tomographic methods may involve, not only reflection data,

as considered in this thesis (Billette and Lambaré, 1998; Duveneck and Hubral, 2002; Farra and
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Madariaga, 1988; Sword Jr, 1986), but also transmission (e.g., cross-well tomography (Washbourne

et al., 2002), passive seismics (Zhang et al., 2009)) and refraction (e.g., near-surface statics corrections

(Chang et al., 2002; Zhu et al., 2009)) data. Moreover, tomographic approaches can be applied, not

only in the unstacked time domain (Billette and Lambaré, 1998; Farra and Madariaga, 1988; Sword Jr,

1986), but also in the time- and depth-migrated domains (Kosloff et al., 1996; Stork, 1992; Dell et al.,

2014). Tomographic macro-velocity models consist of either (i) a single smooth-velocity layer or (ii)

a layered-cake structure of a few smooth-velocity layers bonded by piecewise-smooth key reflection

interfaces. In the first case, only the velocity distribution is to be retrieved. In the second case, not

only the velocities within each layer, but also the the interface positions are to be estimated. Because

of their smooth character, such velocity models are amenable to the use of ray formulations (see, e.g.,

Cerveny, 2005; Popov, 2002) for adequate description of the seismic wave propagation involved.

In this thesis, all tomographic methods under consideration are applied to the unmigrated

time domain. Moreover, ray-based solutions of the constant-density acoustic wave equation are as-

sumed to be adequate to explain the seismic events of interest. Finally, the class of admissible velocity

models is assumed to consist of smooth models of macro or background character, these being defined

on a single layer in depth domain.

1.2 Classification of reflection tomography methods

Reflection tomography methods admit a simple classification in terms of their governing

parameters. Such parameters are attached to user-selected (manually or automatically picked) points

of interest in the seismic data. The most important parameter, being present in all methods, is re-

flection traveltime. Additional important parameters are slopes and curvatures, respectively first- and

second-order derivatives of traveltime with respect of source and receiver locations.

(a) Traveltime tomography: These refer to tomographic methods for which the data space con-

sists of reflection traveltimes and positions. Typically, those methods aim to recover the a

macro-velocity model together with the position of key reflector interfaces provided by the

user (Bishop et al., 1985; Sword Jr, 1986; Farra and Madariaga, 1988). A disadvantage of the

traveltime tomography refers to the interpretative character of the picking process, which needs

to be carried out on well identified and interpreted reflection events in the unmigrated domain.

In the case low signal-to-noise ratio is low, this can be a difficult task.



1 - Introduction 20

(b) Slope tomography: These refer to methods for which the data space, in addition to traveltimes

and positions, also consists of traveltime slopes, both picked from the unmigrated seismic data.

For any reflection ray, the traveltime slopes (ray parameters) at the source and receiver locations

provide the departure and arrival directions of that ray at the measurement surface. The theo-

retical and practical importance of such directional information for seismic-imaging purposes

has been recognized for a long time, also with the development of acquisition technology with

direction sensitivity (Rieber, 1936).

It is also important to be mentioned that the required slope picking became possible upon the

introduction of the concept of locally-coherent events, each being defined by the source and re-

ceiver locations, the two-way traveltime and the slope (horizontal slowness vector components

or ray parameters) at the source and receiver. As such, a locally-coherent event does not need to

be associated with an interface in the model, which is now assumed to be represented by means

of a smooth velocity field. Note that, for a locally-coherent event the source and receiver loca-

tions and traveltime are directly obtained from the acquisition geometry. Moreover, slopes are

estimated by means of local slant stacks carried out on common-source and common-receiver

gathers (Sword Jr, 1986; Sword, 1987). As pointed out in Billette and Lambaré (1998), such

procedure turns out to be easier than the ones used in traveltime tomography and applied in the

unstacked domain.

In the framework of this thesis, three slope-tomography methods are described. The first one,

called Controlled Directional Reception (CDR) tomography (Riabinkin, 1957; Sword Jr, 1986;

Sword, 1987), is briefly reviewed here for historical reasons. It pioneered the concept and use

of locally-coherent events. Moreover, CDR has also introduced the use of beta splines (de Boor

et al., 1978) to describe the macro-velocity model at each iteration, so that the inversion is

reduced to the estimation of the spline coefficients only. This important property can be sum-

marized as follows: The model space of CDR consists of the beta-spline coefficients from which

the macro-velocity model is represented.

The CDR is the precursor of the second method, stereotomography, which is the state-of-the-art

of the presently available tomographic methods. For that a dedicated exposition is provided in

Chapter 3. Finally, the third method is CRP tomography, which can be considered an advanced

version of setereotomography. As the main contribution of this thesis, CRP tomography has a

dedicated exposition provided in Chapter 5.

(b.1) Controlled Directional Reception (CDR) tomography: Firstly proposed within the so-

viet geophysicist community (Riabinkin, 1957), the CDR method has been studied and

advanced in the West (Sword Jr (1986); Sword (1987)). As it is usual in tomographic
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methods, CDR method starts with the selection by the user of an initial macro-velocity

model, as well as a collection of samples (source-receiver positions and traveltimes) from

the input prestack data. Moreover, the source-receiver ray parameters that correspond to

all those samples are assumed to be estimated by the previously-indicated procedure.

A brief description of the CDR iteration scheme is now provided. For that, it suffices to

understand how, at any given iteration, the forward-modeling engine and the misfit func-

tion are formulated. From that, an application of a Gauss-Newton, least-squares (LSQR),

basically reviewed in Chapter 2, is used to update that velocity model for the next iteration.

Our description follows closely the CDR review in Billette and Lambaré (1998), from Fig-

ure 1.1 has been adapted. For simplicity, we consider the case of a single parameter vector

of the data space. That vector can be written in terms of its components (xs, xr, ps, pr, tsr),

respectively the locations and ray parameters of the source and receiver and the two-way

traveltime. Under the consideration of the current macro-velocity model, those parameters

allow the construction of the source- and receiver-rays of Figure 1.1. More specifically,

the source (resp. receiver) ray starts from point xs (resp. xr) and direction ps (resp. pr)

and proceeds downward up to the level z, that is defined such that the sum of the one-way

traveltimes along the two rays equals the given two-way traveltime tsr. Note that the level

z is dependent on the actual source and receiver rays. The figure also shows the horizontal

separation lsr between the points where the source and receiver rays hit the horizontal

level z. That separation is referred to as the crossing condition of the source-receiver ray

pair. If the velocity model is correct, the source and receiver rays finish their propagation

at the same point or, in other words, the crossing condition is zero. With such understand-

ing, for the general case of a data space with several parameter vectors, the misfit function

at a given iteration is defined as the sum of the squares of the crossing conditions that of

all vector parameters under consideration.

Despite the fact that CDR tomography introduced a revolutionary approach to seismic

tomography, the method suffers from practical instabilities. As described in Billette and

Lambaré (1998); Lambaré (2008), small errors in slope estimations, which are kept in-

variant during the inversion process, are bound to produce large errors in the forward-

modeling step, especially for laterally varying velocity models. Nevertheless, because of

its importance, improvements of CDR tomography, have been proposed (Biondi, 1992;

Whiting, 1991).

As briefly described below and in more detail in Chapter 3, the most important method

based on CDR is stereotomography Billette and Lambaré (1998); Billette et al. (2003);

Lambaré (2004, 2008).
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Ray crossing condition for CDR Tomography

Figure 1.1: Forward modeling engine and misfit function for CDR tomography. For a data-space
vector (xs, xr, ps, pr, tsr), and the consideration of a current velocity model, the source and receiver
rays defined by locations and ray parameters (xs, ps) and (xr, pr), respectively, propagate downward
until hit the horizontal line for which the sum of the one-way traveltimes of both rays equals the
given two-way traveltime tsr. The horizontal separation between the points where the two rays hit
the level line is referred to the ray-crossing condition, The square of the ray-crossing represents the
contribution of the model-space vector to the CDR misfit function.

(b.2) Stereotomography: Introduced in the late 1990s, stereotomography constitutes a signifi-

cant advance of CDR, trying simultaneously to preserve its good features, while correcting

its difficulties. A full description of stereotomography is provided in Chapter 3. As such,

the focus of the present considerations lies on a more qualitative overview of the stereoto-

mography method, pointing its main differences with respect to its precursor CDR.

An underlying assumption of stereotomography is that, if the velocity model is correct,

then a perfect correspondence should exist between each data-space parameter vector and

a depth-domain, diffraction-point, model-parameter vector in such a way that the data-

space vector would be "explained". Figure 1.2 shows the depth-domain point (x, z), which

is the staring point of two upgoing rays of initial direction angles θs and θr and one-way

traveltimes ts and tr, respectively. Those rays hit, respectively, the measurement line at

the points xs and xr with ray parameters (horizontal projection of the slowness vector)

ps and pr. We now assume that (xs, xr) and (x, z) locate a source-receiver pair and a

diffraction/reflection point, respectively, and also that ps, pr and tsr = ts + tr have been

picked/extracted from the input data. Then the vector-parameter correspondence

dobs = (xs, xr, ps, pr, tsr) ⇐⇒ mray = (x, z, θs, θr, ts, tr) (1.1)

provides the meaning that the model-vector parameter mray explains the data-vector pa-
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rameter dobs.

Figure 1.2: Correspondence between data and model parameters for stereotomography.

For a user-selected initial (incorrect) velocity-model parameter vector mvel
k and a set of

ray-model parameter vectors {mray
k }, the corresponding set of data-vector parameters

(referred to as synthetic-data parameter vectors and denoted {dsyn
k } or simply {dk}) that

would be obtained by ray tracing applied to these initial conditions would encounter dis-

crepancies when compared with given original observed-data parameter vectors. The task

of the stereotomography method would be to iteratively update those model velocity and

parameters until if successful, an acceptable solutions would be achieved.

We now comment on the key features of stereotomography that attempts to overcome

the inversion difficulties of CDR. In accordance with Billette and Lambaré (1998), the

main differences between CDR and stereotomography are highlighted below and further

summarized in Table 1.1.

(a) The observed-data space of stereotomography and CRD consists of a user-selected

set of data-parameter vectors {dobs
k } picked/extracted from the input data.

(b) At each iteration, in addition to the model-velocity vector parameter mvel
k used in

CDR, stereotomography introduces a set of depth-domain ray-model parameter vec-

tors {(mray
k )(n)}.

(c) For each iteration, by means of a ray-based forward-model engine defined by the

model-velocity parameter vector (mvel)(n) and applied to the model-parameter vec-

tor set {m(n)
k } simulates the data-parameter vector set {d(n)

k }. The stereotomographic

misfit function takes into account the discrepancies (or residuals) between the simu-

lated {d
(n)
k } and observed {dobs

k } sets.
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(d) CDR maintains fixed the data-parameter vector set {d(n)
k } ≡ {dobs

k } so that its misfit

functions depends on crossing conditions only. This makes CDR much more suscep-

tible to errors in the picking/extraction data-vector input parameters.

(e) Stereotomography makes use of a relaxed (variable) data parameter-vector set {d(n)
k }

so that all discrepancies with respect to the observed set {d(n)
k } contribute to the

stereotomographic misfit function. That choice leads to significant improvement of

CDR instability difficulties.

n-th iteration
Data space Direction Model space Ray tracing

CDR {dobs
k } (fixed) =⇒ (mvel)(n), {l

(n)
k } (relaxed) Downwards

Stereo {d
(n)
k } (relaxed) ⇐= (mvel)(n), {(mray

k )(n)} (relaxed) Upwards

Table 1.1: CDR: Data-space parameter vectors {d
(n)
k } ≡ {dobs

k } remain fixed and equal to the
picked/extracted parameters; Crossing conditions {l

(n)
k } are relaxed (varies); Forward modeling en-

gine (FME) acts from data space to model space; ray tracing is performed downwards. Stereo: Data-
space parameter vectors {d(n)

k } are relaxed (varies); Ray-model vector-parameter space {(mray
k )(n)}

are relaxed (varies); FME acts from model space to data space; ray tracing is performed upwards. In
both cases, velocity-model space coefficients {(mvel)(n)} are relaxed (varies).

Since it was first presented, many contributions were introduced in stereotomography by

further researches. With respect to picking process, further efforts were made in the sense

of improve the quality and automatization of picking processes. In Lambaré et al. (2004),

an automatic picking process has been proposed and tested. Moreover, the picking process

can also be performed in depth-migrated domain Chauris et al. (2002); Nguyen et al.

(2008) or poststack time migrated domain Lavaud et al. (2004).

Concerning the important task of assisting the stability of the inverse process, e.g., by

suitable refinement of the initial macro-velocity model has been proposed in (Billette

et al., 2003; Le Bégat et al., 2000).

(b.3) Common-Reflection-Point (CRP) tomography: Fully described in Chapter 5 and hav-

ing stereotomography as its source of inspiration, CRP tomography is the main contribu-

tion of the present thesis. For the same previous reasons, the attention here is devoted to

indicate and discuss the main difference between the two approaches.

The name CRP tomography stems from the fact that it relies on recent results on CRP

(also referred to as offset-continuation) seismic processing and imaging, as reported in

Coimbra et al. (2012, 2016b); Santos et al. (1997); Tygel et al. (1998). More specifically,
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our main interest lies on the solution, described in the above literature, of the following

problem (see Figure 1.3):

Let d0 denote a parameter vector defined the components by source-receiver loca-

tions, slopes and two-way traveltime, all of them picked/extracted from an input

data set.

Assuming that d0 pertains to a primary-reflection event, find the corresponding

CRP gather, namely the parameter vectors d that pertain to the same event and

also share the same (unknown) original reflection point.

For convenience, data parameter vectors are, in the following, also called data points. In

the framework of the above formulation, an original point d0, for which a corresponding

CRP gather G(d0) is to be constructed, is called a reference or central point of the gather.

Figure 1.3: CRP primary reflections. Note the change in midpoint position for different CRP reflection
rays.

Figure 1.3 shows the point d = (s, r, as, ah, t) for which its coordinates represent the

source-receiver locations and slopes, as well as two-way traveltime within the CRP gather

G(d0) defined by the central point d0 = (s0, r0, as0 , ah0
, t0). As described in Coimbra

et al. (2016b) and briefly reviewed in Appendix F, the components of d satisfy multi-

parametric, traveltime and slope functions (see equations F.2 to F.7 in half-offset and

midpoint coordinates). The parameters of those functions refer to the central point d0 of

the gather, being estimated by coherence (semblance) analysis directly applied to the input

data.
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After substitution of estimated parameters, those equations estimates the points d within

the CRP gather G(d0) of reference point d0. This estimation is valid for half-offsets that

are close to the one that pertains to the central point d0.

As summarized in Table 1.2, the main difference between stereo and CRP tomographies is

that, instead of individual, independent picked/extracted data points used in stereotomag-

raphy, CRP tomography uses a collection of CRP data gathers. Those gathers provide, at

feasible computation costs, not only a more comprehensive coverage of the subsurface

region under investigation, but also redundancy that is useful to the inversion.

n-th iteration
Data space Direction Model space

Stereo {d
(n)
k } (relaxed) ⇐= (mvel)(n), {(mray

k )(n)} (relaxed)

CRP {G(d
(n)
k )} (relaxed) ⇐= (mvel)(n), {G[(mray

k )(n)]} (relaxed)

Table 1.2: Individual data and ray-model parameter vectors d(n)
k and (mray

k )(n) of stereotomography
are replaced with CRP data and ray-model gathers G(d(n)

k ) and G[(mray
k )(n)]. Such procedure signifi-

cantly increase the coverage and redundancy made available by CRP tomography. In both stereo and
CRP tomography, rays are traced in upward direction. Moreover, in both cases (mvel)(n) represent the
velocity-model space.

Some remarks about CRP tomography picking: In this thesis, an in-depth discussion

on how CRP gathers are actually extracted from the input data, is not of prime concern.

In fact, active research and development on this important topic are being carried out as

dedicated projects of the High-Performance Geophysics Lab. Here, a proof-of-concept

framework is assumed: For illustrative synthetic-data examples for which CRP gathers

are known in advance, the task is to evaluate the actual potential and benefits of CRP

tomography, as compared to state-of-the-art approaches such as stereotomography.

(c) Curvature tomography: This terminology is attached to methods that, in addition to trav-

eltimes, positions and traveltime slopes, also make use of curvature parameters, which are

picked/extracted from the input seismic data. Main examples summarized here are Normal

incidence point (NIP) wave tomography, applied to post-stack data and its analogous method,

Image Incident Point (IIP) tomography, applied to time-migrated input data.

(c.1) NIP tomography: As described in (Duveneck and Hubral, 2002; Duveneck, 2004b), NIP

tomography is conceptually aligned to the zero-offset (ZO) common reflection surface
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(CRS) stacking method (see, e.g, Müller (1999), Faccipieri (2016)). As such, it is based

on a second-order (hyperbolic) formulation of reflection traveltimes in the vicinity of a

ZO reference or central point. Under this formulation, for a target (unknown) reflection

interface, the parameters of interest of the CRS traveltime (simply called CRS parameters)

are those of the primary-reflection, ZO normal ray that connects the (unknown) reflection

point at the target reflector to the central point. In the present 2D situation, those param-

eters are the slope and wave-front curvature at the arrival point of the central (normal)

at the measurement line, as well as the two-way traveltime of that ray. Besides the trav-

eltime that is picked from the ZO (stacked) data, the slope and curvature parameters are

estimated from seismic data by means of coherence analysis.

Although carried out in the ZO (stacked) domain, the inversion process of the NIP tomog-

raphy is very similar to the ones previously described, for example the stereotomography

method.

Figure 1.4: Data and model parameters for NIP tomography.

The data space consists of user-selected points picked/extracted from CRS stack panels,

these being specified by positions, slopes, curvatures and two-way traveltimes. The curva-

ture parameter (the quadratic coefficient of the CRS traveltime with respect to half-offset)

is interpreted as the wave-front curvature of the so-called NIP wave (Duveneck, 2004b)

that starts as a point source at the (unknown) reflection point of the central normal ray

and is measured at the central point. The model space is composed by beta-spline inter-

polation coefficients that define the velocity model, together with a set (of the same seize

as the data space) of depth-domain diffraction points. Two model parameters are attached

to each diffraction point, namely its location and a direction angle. The forward-model

engine for NIP tomography is kinematic and dynamic ray tracing, upon which, the lo-
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cation and direction angle at a diffraction point determines, under the use of the current

velocity model, the one-way upward ray to the measurement line. At the arrival point the

traveltime and wave-front curvature are computed. Applied to each diffraction point an

its attached ray direction, the forward-model engine produces a synthetic data space that

can be compared to the given data space. An illustration of data and model parameters for

NIP wave tomography is shown in Figure 1.4.

With the above ingredients, an LSQR optimization problem is formulated so that the misfit

function, namely the sum of squares of the discrepancies (residuals) between point-arrival

locations, slopes and curvatures of data and synthetic spaces, is minimized. As a final ob-

servation, the locally-event framework is adopted by NIP tomography. Picking locations

are independent of each other and do not need to follow continuous reflection events in the

seismic data. Moreover, picking is simplified by the fact that it is performed on a stacked

section, with better signal-to-noise ratio. NIP tomography has also been extended to 3D

media (see, e.g, Duveneck (2004a)). The easier picking process is a crucial feature for that

purpose.

Remarks: The present thesis has greatly benefited from an in-depth analysis of NIP-

tomography and related literature (Duveneck, 2004a,b,c; Dell et al., 2014; Dümmong

et al., 2008). Valuable insights and understanding were gained from actual 2D imple-

mentations, for which the introduction of the regularization term proposed in Duveneck

(2004b) played a significant role. In fact, such regularization term was the one adopted for

the stereo and CRP tomographic methods, described in Chapters 3 and 5. In this connec-

tion. Pertinent results are reported or commented throughout the text, where a discussion

about the use of a curvature parameter is addressed.

(c.2) Image incidence point (IIP) tomography: As described in Dell et al. (2014), IIP tomog-

raphy has a similar approach to NIP tomography, being applied, however, in the time-

migrated domain.

This represents an advantage to the picking process involved, since time-migrated data

is cleaner and complications such as conflicting dips have been untangled. While NIP

tomography, as applied to post-stack data, has its parameters attached to normal rays, IIP

tomography, as applied to time-migrated data, has its parameters attached to image rays

(see Figure 1.5). We recall that, in the same way that the point where a normal ray hits

a reflector is called normal-incident point (NIP), the point where an image ray hits that

reflector is referred to as the the image incident point (IIP). More information on how IIP

is used on imaging problems can be found in, e.g., Tygel et al. (2012).
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Figure 1.5: Data and model parameters for IIP tomography.

We close this section with Figure 1.6, which provides a pictorial summary of the above-surveyed

tomographic methods.

Figure 1.6: The development of seismic tomography methods has been following both the develop-
ment of computer science and geophysics. The number and type of kinematic wave parameters, used
by the seismic tomography methods, have been changed by the increasing computation capacity and
the development of new multiparametric operators.
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1.3 Numerical stability of tomographic methods

The tomographic problems addressed in this thesis fall into the category of inverse and ill-

posed problems. Loosely speaking, tomographic problems are inverse problems because they aim to

infer (invert) medium parameters (such as propagation velocities) from indirect measurements (such

as the ones acquired by seismic surveys). At the same time, tomographic problems are ill-posed

because the conditions of existence, uniqueness and stability (i.e, smooth dependence on initial con-

ditions) are not all guaranteed to be fulfilled. As stated by Hadamard (1902) and generally accepted

in Mathematics, the above conditions are required to be all satisfied for a well-posed problem. If at

least one of them cannot be guaranteed, the problem is qualified as ill-posed or, more simply, as ill

problems. Under these rather strict and idealized Hadamard’s conditions, the vast majority of cases

of practical interest are ill problems.

To overcome such essential difficulties, methods to tackle inverse and ill problems rely on

two fundamental tools:

(i) Iterative schemes upon which the solution is searched an initial, trial-guess solution, followed

by successive updates, each of them being a solution of an easier and well-posed intermediate

problem.

(ii) External, user-selected regularization terms, not only to guide the inversion to a stable and

meaningful solution, but also to add whatever a prior knowledge and information one might

have on the actual problem to be solved.

Most popular iterative schemes, in particular the ones used in tomographic problems, rely on LSQR

inversion schemes (Billette and Lambaré, 1998; Duveneck, 2004b; Farra and Madariaga, 1988). Such

schemes make use of linear versions of the full non-linear problem, these being sequentially solved

by optimization methods.

The linear sub-problems involved in the iteration process typically belong to the well-studied

class of ill-conditioned matrix systems, for which the presence of even small errors in the matrix

entries may lead to non-acceptable solutions. A classical and practical way to handle ill-conditioned

problems is the introduction of a regularization term in the objective function to improve the stability

of the inverse problem (Van Loan and Golub, 1983; Watkins, 2004). Moreover, suitable choices of

numerical solvers, such as the singular value decomposition (SVD) (Watkins, 2004), can be of good

use.
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Science and art: It is to be remarked that caution must be taken with the im-

pact and influence that a chosen regularization term might have on the inversion

results. In fact, since the regularization term is not a part of the tomographic orig-

inal formulation, one must calibrate the use of such external information, so that

welcome features such as numerical stability and efficiency, do not compromise

the search for meaningful solutions. In fact, to each regularization term, a con-

stant factor is attached so as to control that term’s influence in the inversion. The

selection of a good value of that constant is, perhaps more artistic than scientific.

In this thesis, the regularization term of choice is the one that minimizes the spatial second

derivatives of the velocity function. Designed to impose a smoothness condition on the velocity, this

regularization term coincides with that of NIP tomography, as proposed by Duveneck (2004b). No

regularization term related to a priori information is here considered.

We observe, in passing, that the streotomography in Billette et al. (2003) makes use of a reg-

ularization term to carry a priori information on model-space parameters, together with an additional

term for stability purposes. That latter term is defined as centered finite-difference approximation of

the 2D spatial Laplacian operator. As such it controls the smoothness level of the velocity model.

Additional strategies: Besides the introduction of regularization terms to the objective function,

other strategies to the improvement of tomographic inversion are also available in the literature.

For setereotomography initialization, Billette et al. (2003) proposes constant-velocity screen-

ing procedure to optimize the localization of initial points. Also in stereotomography, Billette and

Lambaré (1998), proposes a velocity-by-parts optimization scheme to assist the inversion. First, a ho-

mogeneous velocity is inverted. Secondly, a best velocity with vertical gradient is obtained. Finally,

the velocity is allowed to vary in all directions. Billette et al. (2003); Le Bégat et al. (2000) propose

a multi-scale optimization that increases the number of interpolation knots that are used to build the

velocity model during the iterations. As the iterations proceed more details on the velocity models are

considered.

Concerning NIP tomography, Duveneck (2004b) proposes a number of possibilities: (a) in-

troduction of additional data that refer to previous knowledge of some parts of the velocity field. The

new data modifies the misfit function during iterations, trying to constrain the velocity models so that

the additional information is better taken tinto account; (b) introduction of an additional regulariza-

tion term that forces the velocity models to locally follow a priori given reflector structures and (c)

Consideration of spatially-varying model smoothness, namely weaker or stronger regularization in
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user-selected parts of the model is allowed. Such strategy has been shown to be useful specially at

the borders of the velocity field, where commonly no sufficient information is available to locally

constrain the model.

CRP coverage and redundancy: In this thesis, we show that the inclusion of CRP gathers ex-

tracted from the input data provides a significant increase in coverage and redundancy to the target

subsurface region of interest to the CRP tomographic purposes. As opposed to stereotomography,

where the model-space diffraction points correspond to individual, isolated data-space points, the

model-space points in CRP tomography are in correspondence to the data-space CRP gathers. The

increased coverage and redundancy provided by data-space gathers instead of isolated points, helps,

not only to better locate the model-space points, but also to better constrain the velocity model to be

inverted. In fact, the additional information provided by CRP gathers is seen diminish the degree of

freedom of the tomographic problem by improving its regularization.

As shown in the subsequent chapters, several tests carried out on a variety of synthetic tests

confirms the good expectations of the proposed CRP tomography.

1.4 Full Waveform Inversion

Primarily aimed to tomographic methods, it may sound strange that this thesis includes a full

chapter on the overall description of full waveform inversion (FWI). This can be justified, however,

under the perspective that FWI can be regarded as a step forward of tomography in the solution of the

seismic model inversion. As this important topic is fully addressed in Chapter 4, we content ourselves

with a brief overview of the FWI approach highlighting the similarities and differences relative to its

tomographic counterparts. These can be summarized as follows:

(a) Similarities: In the same way as tomography, FWI is a highly nonlinear, ill-posed inverse

problem. Also as tomography, FWI is based on single-scattering wave propagation in combina-

tion with perturbation methods to invert medium parameters (most particularly velocities) from

seismic data.

Solutions of both tomography and FWI are obtained through an iterative process that starts with

a user-selected initial velocity model, that model being sequentially perturbed (updated), so as

to converge to an accepted solution. Each iteration is carried out as a linearized least-squares

(LSQR) approach of the residuals between observed and computed traces. The single-scattering
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and perturbation-theory formulations are at the core of of the process, with the medium being

considered as a set of independent diffraction points covering the medium region of interest.

(b) Differences: Concerning scope and purposes, tomography and FWI have significant differ-

ences. On the one hand, under the use of ray-based forward-modeling engines, tomographic

methods have a "modest" design of accepting a velocity-model solution that "honors" a few

kinematic data parameters (e.g., traveltimes, slopes) on a (few) collection of local-event points

(of a few admissible type such as primary reflections and diffractions) picked/extracted from

the input data. On the other hand, under the use of user-selected full-wave forward-model en-

gines, FWI has the "ambitious" design of requiring that a velocity-model solution "honors" the

full content of the input data, namely the variety of local events that are predicted (simulated)

by the considered full-wave equation. More specifically, the FWI misfit function is based on

the residuals (discrepancies) between observed and synthetic data traces, the latter given by

finite-difference solutions of appropriate wave equations.

In FWI, the diffraction points are generally called pixels. Perturbations are computed for ev-

ery pixel, to which a variety of local properties of the medium (e.g., acoustic/elastic, isotrop-

ic/anisotropic) parameters are attached. In this thesis, the focus is on the constant-density acous-

tic wave propagation, for which the scalar acoustic velocity is the single parameter attached to

each pixel. Accordingly, the finite-difference solutions of that acoustic wave equation.

As compared to stereotomography, which has established itself as mainstream seismic imaging

technology, FWI, albeit very attractive, has still a few challenges to overcome. In addition

to mathematically more complicated than tomography, FWI has, most of the time, extreme

demands on computational costs. While in stereotomography iteration updates can be carried

out by efficient second-order Gauss-Newton optimization, such approach is computationally

unfeasible for FWI, being replaced by notably less accurate first-order descent schemes. As a

consequence, FWI is seen to have a crucial dependence on a good model-space initial guess for

successful FWI inversion. As a way to mitigate such difficulties, FWI is usually applied after

other methods, such as, e.g., simplified versions of full FWI (Camargo, 2019) or tomographic

solutions. The use of CRP tomographic velocity as input to FWI is proposed in this thesis.

Introduction of a priori information, such as, e.g., well-data and uncertainty estimations, can

be also quite useful (Virieux et al., 2017).
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1.5 Claerbout’s resolution sketch

As discussed in Claerbout (1985), the interaction between seismic waves and a geological

medium can be grossly divided into two main types: smooth and rough interactions. more explicitly,

(a) Smooth interactions are related to the transmission regime in forward scattering. These inter-

actions are responsible for small variations in wavefront propagation. As such, smooth interactions

change wave propagation directions slightly, due to small variations of geological properties of the

medium; (b) Rough interactions are related to the reflection regime in forward scattering. These inter-

actions are responsible for significant variations in wavefront propagation. As such, rough interactions

significantly changes direction of ray propagation, resulting, for example, in backward scattering.

Figure 1.7: Reliability of information obtained from surface seismic measurements (reproduced from
Claerbout, 1985).

Investigations of these two types of wave/medium interactions resulted in the development of

corresponding two inversion techniques: (a) On the one hand, seismic tomography, based on asymp-

totic approximation of the wave equation, recovers the smoothly varying properties (typically veloci-

ties) of the medium in transmission regime. As such, just slow-phase variations (e.g., traveltimes), are

considered. With respect to the wavenumber domain, seismic tomography is capable to recover low-

wavenumber content of seismic data, generally associated with seismic-processing velocities. (b) On

the other hand, migration techniques, based on Huygens principle, recover rapid variations of medium

properties in the reflection regime, so that fast-phase variations are taken into account. With respect to

the wavenumber domain, migration techniques are better suited to recover high-wavenumber content

generally referred to as reflectivities) of seismic data.

Figure 1.7 reproduces Claerbout’s resolution sketch (Claerbout, 1985, Figure 1.4-4, p. 47),

which illustrates the expected resolution from those two seismic inversion methods. The Figure ex-

hibits the capability of tomography and migration to recover specific ranges of wavenumber content
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in depth direction. Seismic tomography methods are capable to recover the low wavenumber content,

which is related to smooth parts of velocity model, while migration methods are capable to recover

the high wavenumber content, which is related to the geological structures (interfaces) in subsur-

face. Clarbout’s resolution sketch (Figure 1.7) shows the gap of poor wavenumber recovery in the

intermediate domain. Full waveform inversion (FWI) has emerged as an alternative to remedy this

situation.

1.6 Map of the thesis

As this thesis encompass different subjects, with different purposes, the present section was

designed to guide the readers through the text according to their particular interest. The main con-

tribution of this thesis for seismic tomography research is the CRP tomography method, which is

first presented in chapter 5. Further chapters illustrate numerical applications of the new method and

comparisons with stereotomography results are provided. Therefore, the readers familiar with seismic

tomography area and interest just in the new contributions of the thesis can skip the first chapters. For

the readers interested in more details about CRP tomography method, appendices C, D, E and F are

dedicated to explain some important features related to CRP tomography method.

For didactic purposes, a review of the stereotomography method and FWI is provided in

chapters 2, 3 and 4. The stereotomography method, chapter 3, plays an important role for this thesis,

since CRP tomography is based on this traditional tomography method. On the other hand, FWI

method, chapter 4, is also presented in this thesis in order to provide the reader with a broader view of

the velocity model building. Although not being the central theme of this thesis, FWI is, nowadays,

a remarkable important seismic method, and some similarities between seismic tomography methods

and FWI are presented in chapter 2. Also, a numerical test involving both FWI and CRP tomography

is illustrated in chapter 9. Appendix A illustrates an example of curvature tomography, the NIP wave

tomography. Some numerical tests of this method are illustrated in appendix B. NIP wave tomography

is also presented in this thesis in order to provide the reader with a broader view of different seismic

tomography methods.

Following the previous explanation, this thesis is structured as follows:
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Chapter 1 - Introduction

Brief comments about different seismic tomography methods. Classifications, differences

and main features are provided. Natural ill-conditioning of the problem is reported. FWI is also in-

troduced, together with its strong dependence of a good initial velocity model. CRP tomography is

introduced.

Chapter 2 - Brief description of the LSQR inverse problem: The stereotomog-

raphy and FWI cases

This chapter presents a general description of LSQR inverse problem, based on the stereoto-

mography and FWI cases. Despite the different numerical methods used to solve these methods, both

can be formulated as a general LSQR inverse problem.

Chapter 3 - Stereotomography

This chapter will revisit stereotomography method, presenting details about stereotomog-

raphy seismic tomography inverse problem. Data, model and synthetic spaces will be presented in

details, as well as regularization issues and initialization procedure. The iteration process, based on a

Gauss Newton approach, will also be detailed.

Chapter 4 - Full wave form inversion

This chapter will revisit full weveform inversion method. Data, model and synthetic spaces

will be presented in details, as well as regularization issues and strategies to overcome the strong

dependence on good initial velocity models will be adressed. The iteration process, based on the

adjoint state method, will be detailed.

Chapter 5 - CRP tomography

This chapter presents the main contribution of this thesis for seismic tomography research.

It consists in the proposition of a new seismic tomography method, named CRP tomography. Based

on stereotomography method, CRP tomography proposes the addition of common-reflection-point
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information to improve the quality of the inversion process. A complete description of the technique

will be given in this chapter.

Chapter 6 - Synthetic tests for stereotomography

Some synthetic numerical tests will validate stereotomography implementation. Then, more

complex synthetic tests will be discussed and the improvement of the quality of stereotomography

velocity models by providing more and better internal information, that is, more input data parameters

and/or better initial velocity models, will be illustrated and discussed.

Chapter 7 - Synthetic tests for CRP tomography

In this chapter, CRP tomography implementation will be validated in a set of synthetic nu-

merical tests, the same one proposed for stereotomography in previous chapter. Then, more complex

synthetic tests and experiments will show how the addition of common-reflection-point information

helps to constrain the problem, acting as a natural constraint that is incorporated to the tomographic

inverse process, turning CRP tomography method more robust with respect to boundary initial con-

ditions.

Chapter 8 - Futher numerical tests - noisy input data and interfaces

In this chapter, CRP tomography will be tested in synthetic experiments that simulate more

realistic situations. Noisy input data and synthetic interfaces will be introduced in model tests. Stereoto-

mography will also be tested in these experiments for comparison reasons.

Chapter 9 - CRP tomography velocity model as inpur for FWI - A velocity

model building procedure

This chapter illustrates the velocity model building procedure proposed in this thesis, which

consists in the use of CRP tomography velocity model as input for FWI application. The proposed

velocity model building procedure will be validated by Marmousi model test. It will be shown how

CRP tomography velocity model can overcome the strong dependence of FWI method on a good

initial velocity model.
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Chapter 10 - Summary and conclusions

This chapter summarizes the main contribution of this thesis. Some possible further re-

searches will be provided.

Appendix A - NIP wave tomography

This appendix reports one example of curvature tomography, the NIP wave tomography

method. A brief summary of the technique is provided. Data, model and synthetic spaces, as well as

initialization procedure for NIP wave tomography, will be described.

Appendix B - Synthetic tests for NIP wave tomography

NIP wave tomography implementation will be validated in the same set of synthetic numer-

ical tests used to validate stereotomography and CRP tomography methods. A further synthetic test

will be performed and discussions about the use of curvature parameter will be addresed.

Appendix C - Ray-tracing equations for seismic tomography forward modeling

engine

Before presenting the system of differential equations used to perform forward modeling

engine for slope tomography methods, this appendix develop some baisc concepts of kinematic ray-

tracing theory. As NIP wave tomography is addressed and reffered by this thesis, the related system of

dynamic-ray tracing will also be presetend, although concepts of paraxial ray-theory will be omitted.

Appendix D - B-spline interpolation

In this appendix, B-spline basis functions will be defined and main properties of B-spline

interpolation will be summarized. Also, some algorithms to compute B-spline basis functions and

respective velocity model derivatives will be given.
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Appendix E - Regularization matrix for CRP tomography and stereotomogra-

phy

This appendix shows how to compute the regularization matrix proposed in this thesis for

CRP tomography and stereotomography.

Appendix F - Equations of CRP tomography

This appendix describes and discusses the equations needed for CRP tomography validation.

These equations can be used for further development of a picking strategy to build input observed-data

space for CRP tomography method.

Appendix G - Example of CRP tomography implementation

This appendix provides a link to a repository with an example of CRP tomography imple-

mentation.
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Chapter 2

Brief description of the LSQR inverse

problem: The stereotomography and FWI

cases

Seismic tomography (in particular stereotomography) and full waveform inversion (FWI)

are processes designed to invert, from a given seismic data set, a set of geological/geophysical param-

eters that approximately models the depth region illuminated by the data. Most often, acoustic/elastic

parameters, most particularly seismic velocities are the main quantities to be inverted. For that reason

the terminology velocity model building for such processes is very much used in the literature (see,

e.g. Jones, 2010). For the inversion processes addressed here, reflection and diffraction (mainly pri-

mary) waves are the main events of interest within a seismic data. Recorded as particle motions at the

receivers, these waves typically travel large distances within rather complex geological structures. As

a consequence, the detection of the data parameters of interest from the observed reflection/diffraction

events, constitute a very challenging problem.

Data and model spaces: Both stereotomography and FWI formulate the inversion problem as it-

erative procedures. In each case, from a given data space provided, a depth-domain, unknown model

space is to be inverted.

In stereotomography, the data space is made up of a collection of user-selected parameter

vectors picked/extracted from the original or pre-processed seismic data. In FWI, the observed data

space comprises the full original or reprocessed seismic data. In both cases, the data space remains

invariant throughout the whole inversion process, acting as a reference or guide of convergence.
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In stereotomography, the model space is made up of a union of two subsets; the first, referred

to as velocity-model space, consists of the parameters that physically describe the depth region to

be inverted. Such parameters are to be assigned to the knots of a user-selected mesh designed to

provide a discretized representation of the depth model. In the present situation of constant-density

acoustic propagation, that vector reduces to a (positive) scalar, namely the acoustic velocity. The

second subset of the model space is referred to as the ray-model space and contains the parameter

vectors that correspond, in the depth-domain, to the picked/extracted time-domain parameter vectors

that comprise the data space. As explained in Chapter 3, in the present 2D situation, each parameter

vector of the ray-model space has six (unknown) components, namely the two Cartesian coordinates

of a depth point, two direction angles and two traveltimes.

In FWI, the ray-model space set is not present, since the data space comprises all the original

data.

Forward modeling and inversion: The LSQR method assumes a forward-modeling transforma-

tion such that, for any given (trial) model space, a corresponding synthetic space is produced that

represents a version of the data space. Referred to as a forward-modeling engine, that transforma-

tion in stereotomography is ray tracing. In FWI, that engine is a finite-difference solution of a wave

equation. In both cases, the result of the application of the forward-modeling engine to a given model

space is referred to as the synthetic data space that corresponds to that model space.

An important consequence of the forward-modeling engine is that the original (invariant) and

synthetic (model-dependent) data spaces are amenable to comparison. Moreover, the ideal solution

of the inversion problem would be the data space for which the discrepancies between the synthetic

and original data spaces are, under some user-selected crierion, minimized.

As seen below, the discrepancy between the original and synthetic data spaces are quantified

by an LSQR objective function. In this way, our inversion task can be formulated as an optimization

problem, namely to find the model space that minimizes the objective function.

In this thesis, the LSQR formulation and solution of the stereotomography and FWI prob-

lems are reviewed and, along the same strategy, the new CRP tomographic problem is described and

solved. In this context, the basics of LSQR inversion is provided below.



2 - Brief description of the LSQR inverse problem: The stereotomography and FWI cases 42

Figure 2.1: LSQR inverse problems use three main spaces (sets) during iteration process. Observed
data space is one of the inputs for the methods, and their components are collected from seismic
data or estimated by coherence analysis in stack panels. Model space is the set of components which
inverse problem aims to invert. It is initialized by first guess or an specific initialization procedure.
The initial model space is the other main input for the inversion process. During iterative process,
model space is updated, based on local linearized approach to the least square misfit of data and
synthetic spaces. Synthetic space is a set of components of computed quantities that simulate data
components based on current model space. The computation is done by forward modeling step.

2.1 Brief description of the LSQR method

The LSQR method (see, e.g., Tarantola, 1987; Paige and Saunders, 1982) is here reviewed

in the context of the stereotomography and FWI problems. As shown later, LSQR will also be our

choice for describing the new CRP tomography proposed in this thesis.

Formulation: In general, the LSQR inversion method is mathematically formulated by means of

the following ingredients:

(i) A given observed-data space dobs, which consists of an N -dimensional data-parameter (col-

umn) vector

dobs = (dobs1 , ..., dobsN )T , (2.1)

where T denotes the transpose matrix operator. For definiteness, all entries dobsi are assumed

to be real. The components of the data-space parameter vector represent the results of some
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Figure 2.2: Forward modeling for LSQR inverse problems. At each iteration, synthetic space is gen-
erated by the forward modeling process, which is based on the current model space. For seismic
tomography methods, forward modeling uses ray-tracing to build updated synthetic space. For FWI
methods, forward modeling is performed by means of wave propagation. Both are non-linear ap-
proaches.

performed experiment. As such, dobs remains invariant throughout the whole inversion process.

(ii) An unknown model space mmod and a given a priori model space mpri, which consists of an

M -dimensional (column) model-parameter vectors

mmod = (mmod
1 , ...,mmod

M )T ,

mpri = (mpri
1 , ...,mpri

M )T ,

(2.2)

with all components mmod
i and mpri

i also assumed to be real. The model space mmod represents

the (unknown) model that aims to be inverted. The a priori model space mpri represents an

invariant model-parameter vector that accounts for the prior information that the user might

have about the mmod model space. We finally introduce the so-called trial or candidate model

spaces

m = (m1, ...,mM)T , (2.3)

upon which the optimization process that leads to mmod will be performed.

(iii) A forward-model engine which transforms any given model-space candidate m onto a corre-
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sponding synthetic data-space candidate dsyn(m). In symbols,

dsyn(m) = [dsyn1 (m), ..., dsynN (m)]T , (2.4)

in which m = (m1, ...,mM) is an arbitrary trial model space. We note that dsyn(m) represents

a vector function in which the components d
syn
i (m) are real functions. In other words, for a

given trial model space m, the real function dsyni (m) projects the data space dsyn(m) into its

i-th component dsyni (m).

The forward-modeling engine enables one to translate, at least qualitatively, a comparison be-

tween a trial model space m and the unknown, sought-for model space mmod, into the compar-

ison between the corresponding synthetic and observed data spaces dsyn(m) and dobs. In other

words, the "closer" the data spaces dsyn(m) and dobs are, the closer the model spaces m and

mmod are expected to be.

(iv) A LSQR misfit function, which measures the discrepancy between (varying) synthetic and the

(invariant) observed data spaces. Applied to any candidate model space m, the misfit function

is generally given in the form

S(m) = S0(m) + S1(m) + S2(m), (2.5)

where S0(m) is the non-regularized term

S0(m) =
1

2
∆dT (m)W−1

D ∆d(m) (2.6)

and S1(m), S2(m) are, respectively, the so-called Tykhonov and a priori model regularization

terms (see Virieux et al., 2017; Tykhonov and Arsenin, 1977)

S1(m) =
λ1

2
mTRm,

S2(m) =
λ2

2
(δmpri)TW−1

M δmpri.

(2.7)

In the above equations, we have used the notations

∆d(m) = dsyn(m)− dobs and δmpri = m−mpri, (2.8)

with W−1
D and W−1

M are inverse diagonal matrices of dimensions N ×N and M ×M , respec-

tively. Also, S1(m) is referred to as the Tychonov regularization term. The R is an M × M
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matrix and λ1 and λ2 are scalars. All such quantities are provided by the user, being designed

to make the LSQR inversion a more stable and reliable process. Better insight and clarification

of all such parameters will be given below. It is to be observed that the choice of the objective

function that involves a sum of squares of the discrepancies between the observed and synthetic

spaces. As such, it justifies the terminology of an LSQR misfit function.

With the help of the misfit function S of equation (2.6), the sought-for model-space mobs can

be formulated as the solution of the non-linear optimization problem

Find the model space m that minimizes the misfit function S(m).

Parameters of the misfit function: A brief description and meaning of the user-selected parameters

that compose the misfit function is now provided:

(a) The vector mpri, here referred to as an a priori model space, is composed by any previous

knowledge the user may have about some local (or global) parts of the model. In situations

where no previous model knowledge is available, the first scalar parameter is chosen to satisfy

λ2 = 0.

(b) W−1
D and W−1

M are inverses of diagonal covariance matrices which introduce previous informa-

tion the user may have on the confidence or trust that can be expected from the components of

the observed and a priori model spaces, respectively. In the case the data space is composed by

elements measured by different physical dimensions (as it occurs in stereotomography), matrix

W−1
D also performs the task of bringing the numerical values of the data-space components to

comparable sizes.

The larger the value of any diagonal matrix entry, the more the misfit function is constrained

to allow variations on that component. Such behavior can be understood as follows: the larger

the confidence that is attached to a component, the higher is the confidence of the user on that

component.

From the fact that W−

D1 and W−1
M are diagonal matrices, the corresponding covariance matrices

WD and WM are also diagonal. Moreover, the diagonal entries of such covariance matrices are

given by the variance (squared standard deviation) of the corresponding components. Actual

values of such variances are provided by the user as "educated guesses" of the uncertainties

(e.g., due to data quality, geological complexity) attached to those components.
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The variance of a random variable is an indicator of the range that random variable oscillates

around its mean. As such, the variance can be seen as an indicator of the trust one has in

representing the random variable by its mean value. More specifically, a higher or smaller

trust signifies a smaller or higher variance, respectively. As the inverse of a diagonal matrix

is also a diagonal matrix with corresponding reciprocal elements, it turns out that higher or

smaller values of such reciprocals are indicators of higher or smaller trust can be attached to

the diagonal elements of the inverse matrices.

The LSQR problem described just by the misfit between synthetic and data spaces may not

have enough information to constrain the model space. To handle this intrinsic ill-posedness of

LSQR problem, an additional term, of global character and generally referred to as a regular-

ization term, is added to the misfit function to improve numerical stability.

(c) The regularization term, taken as a quadratic operator defined by a constant operator matrix R,

acts on the entire model space and accounts for global features to be imposed to that space.

The matrix R to be applied is selected by the user and varies from one application to another.

A common practice is to consider R as a smoothing operator on the velocity field (see, e.g,

Billette et al. (2003), Duveneck (2004c), Virieux et al. (2017)). This means that a model-space

solution with smoothing properties is to be searched for.

(d) The scalar factors λ1 and λ2 are Tikhonov-type parameters (see, e.g., Tykhonov and Arsenin,

1977) designed to calibrate the influences of the a priori information and the model-space

smoothing imposed in optimization process. In order to provide meaningful model solutions,

the choice of adequate values for λ1 and λ2 is a fundamental and always an open issue. In fact,

actual choices of scalar parameters of ill-posed problems of practical importance generally

require rather significant insight and also computational testing effort. This explains why fully

descriptions are rare in the literature, being hidden as proprietary issues in commercial software.

In this respect, see, e.g., Pratt and Chapman (1992); Billette et al. (2003); Duveneck (2004b).

In this thesis, two examples of regularization terms are considered, one for stereotomography

and another for FWI. In both cases, only the regularization term described by the matrix oper-

ator R is considered. In other words, in both cases we assume that λ2 = 0.



2 - Brief description of the LSQR inverse problem: The stereotomography and FWI cases 47

2.2 Iteration process

As an iterative process, LSQR requires an user-selected initial model space m0, as well as

an iterative scheme {mk}, (k = 1, 2, ...) to progress (and hopefully converge) to the desired solution.

In the present case, (see, e.g., Tarantola, 1984), given the current model space mk, its subsequent

iteration mk+1 is given by

mk+1 = mk − αk∆mk, (2.9)

where αk is a scalar that accounts for the size of the iteration step and ∆mk is the vector of model

update, provided by some specific optimization scheme. The particular choice of that scheme depends

on the available information, as well as computational/implementation issues.

As above indicated, both stereotomography (as well as many other seismic tomography

methods) and FWI are formulated as an inverse LSQR problem. The same occurs with the new CRP

tomography to be later discussed. In all cases, Newton-type iterative schemes are the ones chosen to

numerically solve the optimization problem involved. In stereotomography, it is possible to a second-

order, Gauss-Newton approximation of the Hessian matrix in terms of the Jacobian operator. In FWI,

however, due to so-far unfeasible computational effort, first-order, local-descent optimization is cho-

sen.

A brief review of the the LSQR iteration is provided below. For didactic reasons, the simpler

case of non-reguarized misfit function, as characterized by setting the scalar parameters λ1 = λ2 = 0

in equation 2.6, is considered. The next case, in which such parameters are possibly non-vanishing,

is addressed next.

It is important to observe that the inclusion of regularization terms is crucial in most realistic

inverse problems, such as the ones addressed in this thesis. The reason is that those terms are necessary

to avoid instabilities and guarantee that the process converges to a meaningful solution. Nevertheless,

even with the knowledge that non-regularized misfit functions are rather artificial, their consideration

is still justified for a clearer exposition.

Non-regularized problem: In this situation, we consider that

S(m) = S0(m) =
1

2
∆dTW−1

D ∆d. (2.10)

The application of standard Newton method to the non-regularized misfit function 2.10 leads
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Figure 2.3: Illustration of the LSQR inverse algorithm. Given a current model space, forward model-
ing is performed to build synthetic space. The least square misfit between data and synthetic space is
computed. If the misfit follows under a previous value, a final model space is obtained. Otherwise, a
local linearized approach for LSQR inverse problem is used to generate updates for model space.

to the iteration update ∆mk given by

HS0
(mk)∆mk = −∇S0(mk), (2.11)

in which ∇S0 is the gradient (M-dimensional vector) and HS0
(M×M Hessian matrix) of S, namely

∇S0 =

(

∂S0

∂m1

, ...,
∂S0

∂mM

)T

and HS0
=

(

∂2S0

∂mi∂mj

)M

i,j,=1

, (2.12)

Applying the gradient to the non-regularized misfit function (2.10), leads to the gradient expression

∇S0(mk) = J(mk)
T
W−1

D ∆d(mk). (2.13)

where J(mk) is the Jacobian N ×M matrix operator evaluated at mk, namely

J(mk) =
∂dsyn

∂m

∣

∣

∣

∣

m=mk

=

(

∂dsyni

∂mj

(mk)

)

, i = 1, . . . , N and j = 1, . . . ,M. (2.14)



2 - Brief description of the LSQR inverse problem: The stereotomography and FWI cases 49

In the same way, the Hessian matrix HS0
(mk) is given by

HS0
(mk) = J(mk)

TW−1
D J(mk) +

[

∂JT

∂m
(mk)

]

W−1
D ∆d(mk), (2.15)

where
(

∂JT

∂m

)

ij

=
N
∑

k=1

(

∂JT

∂mi

)

jk

∆dk. (2.16)

Substitution into equation (2.11), Newton’s equation can be written

HS0
(mk)∆mk = −J(mk)

T
W−1

D ∆d(mk). (2.17)

with HS0
given by equation (2.15). In principle, the solutions proposed in stereotomography and

FWI derive both from the Newton equations (2.11) or (2.17). However, as the computation of the

Hessian matrix HS is a difficult task for realistic problems, modifications are required to yield feasible

solutions. This situation is handled differently by tomography and FWI. Tomographic methods make

use of a second-order numerical method in which the Gauss-Newton approximation of the Hessian

matrix is employed. On the other hand, FWI makes use first-order, local descent method, which relies

on gradients only.

Non-regularized Gauss-Newton (Tomography): The relevant expressions are simply obtained by

replacing, typically in Newton’s equations (2.17), the Hessian matrix HS with by its so-called Gauss-

Newton approximation (compare with equation (2.15)

HS0
(mk) ≈ J(mk)

T
W−1

D J(mk). (2.18)

This leads to the Gauss-Newton equation (compare with equation (2.17)),

J(mk)
TW−1

D J(mk)∆mk = −J(mk)
TW−1

D ∆d(mk). (2.19)

The Jacobian matrix J(mk) can be efficiently computed at each iteration by applying parax-

ial ray theory (see, e.g., Cerveny, 2005; Popov, 2002). As a consequence, the Hessian approximation

(2.18) can be readily computed, which turns Gauss-Newton optimization a very attractive procedure

to estimate the model updating step ∆mk.

Equation (2.19) is the Gauss-Newton equation for the original non-linear and non-regularized

optimization problem. However, we can also express that equation as an LSQR solution of a simpler
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matrix equation. To do that, we consider the matrix identities

J(mk)
TW−1

D J(mk) = [J(mk)
TW

−1/2
D ][W

−1/2
D J(mk)]

= [W
−1/2
D J(mk)]

T [W
−1/2
D J(mk)] (2.20)

and

J(mk)
TW−1

D ∆d(mk) = [J(mk)
TW

−1/2
D ][W

−1/2
D ∆d(mk)]

= [J(mk)W
−1/2
D ]T [W

−1/2
D ∆d(mk)], (2.21)

which hold because W−1 (and consequently W−1/2 are positive diagonal matrices). With the help of

the above identities, equation (2.19) can be written as

[J(mk)W
−1/2
D ]T [J(mk)W

−1/2
D ]∆mk = −[J(mk)W

−1/2
D ]T [W

−1/2
D ∆d(mk)]. (2.22)

The above equation can be recognized as the so-called normal equation that relates to the LSQR

solution (see, e.g, Watkins, 2004)) of the matrix equation

[J(mk)W
−

1

2

D ]∆mk = W
−

1

2

D ∆d(mk). (2.23)

The computation of the updates mk as a LSQR solution of equation (2.23) is justified because the

Jacobian matrix J(mk) is an ill-conditioned matrix. In the LSQR approach, the computation of

the product JT (mk)W
−1
D J(mk) is avoided. Furthermore, numerical methods dedicated to solve ill-

conditioned problems of the type (2.23) are available in the literature. Examples include, e.g., singular

value decomposition (SVD) methods (Watkins, 2004; Van Loan and Golub, 1983) and methods based

on a smart use of sparce matrices (Paige and Saunders, 1982).

Non-regularized local descents (FWI): In a number of realistic inversion problems, even the cal-

culation of the Jacobian operator is a difficult task. This is the case of the FWI problem. Therefore,

another simplification in Newton’s equation (2.11) is required in order to make estimation of model

updates ∆mk a feasible process. For this purpose, the most popular, albeit rude, option, is to simply

replace the Hessian HS the M × M identity matrix I. Such replacement leads to the model-update

expression

∆mk = −αk∇S0(mk), (2.24)
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where αk is a positive number that “calibrates" the upgrading step ∆mk. Equation (2.24) characterizes

the so-called local-descent method. In FWI, the gradient ∇S0 is estimated by a continuous approach,

using the adjoint state method (see, e.g, Fichtner et al. (2006)). Under such method, the estimate the

gradient becomes computationally feasible, albeit the local-descent is less accurate than the Gauss-

Newton method. More details about the adjoint state method will be given in Chapter 4 that treats the

FWI problem.

Regularized problem: The results obtained for the previous case of non-regularized tomographic

and FWI problems will now be generalized to the regularized case. Basically, this means of extending

the analysis applied to the non-regularized misfit function S(m) of equation (2.10) to its fully regu-

larized counterpart of equations (2.5)-(2.7). As a consequence, Newton’s equation for the regularized

problem is given by

HS(mk)∆mk = −∇S(mk), (2.25)

or from equation (2.5)

[HS0
(mk) +HS1

(mk)]∆mk = −[∇S0(mk) +∇S1(mk) +∇S2(mk)]. (2.26)

As can be readily seen equation (2.7), we have

S1(mk) = λ1Rmk and ∇S2(mk) = λ2W
−1
M (δmpri)k,

HS1
= λ1R and HS2

(mk) = λ2W
−1
M .

(2.27)

Collecting results, Newton’s regularized solution is given by equation (2.26), together with equa-

tions (2.13), (2.15), (2.13) and (2.27). Explicitly, we have

[HS0
+ λ1R+ λ2W

−1
M ]∆mk = −[∇S0 + λ1Rm+ λ2W

−1
M (δmpri)k]. (2.28)

Regularized Gauss-Newton (Tomography): As in Newton’s non-regularized solution, the corre-

sponding solution for the regularized case is also obtained by replacing the Hessian HS0
with its

Gauss-Newton approximation (2.19). Substitution into equation (2.28 and also making use of equa-
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tion (2.13). we find

[(J(mk)
TW−1J(mk) + λ1R+ λ2W

−1
M ]∆mk

= −[J(mk)
TW−1∆d+ λ1Rm+ λ2W

−1
M (δmpri)k]. (2.29)

As previously shown in the non-regularized case, the Gauss-Newton solution (2.29) also admits a

LSQR solution of simpler matrix equation.

Remind that the particular matrix R to be applied is an user choice. In this thesis, a ma-

trix R that accounts for smoothness velocity model properties will be used for seismic tomography

description. As it will be discussed in next chapter, R is a positive-definite matrix, namely, we have

mTRm > 0 for all m 6= 0. (2.30)

As matrix R is a positive-definite matrix, it admits a so-called Cholesky decomposition of the form

R = (Rtri)TRtri, (2.31)

where Rtri and (Rtri)T are superior and inferior triangular matrices. Moreover, taking into account

the identity (2.20)-(2.21), we can write the Gauss-Newton solution (2.29) in the alternative form

UT
k (U∆mk) = UT

kVk (2.32)

where

Uk =







J(mk)W
−1/2
D

λ1R
tri

λ2W
−1/2
M






and Vk = −







W
−1/2
D ∆d(mk)

λ1R
trimk

λ2W
−1/2
M (δmpri)k)






, (2.33)

The above is recognized as the normal equation related to LSQR matrix equation

Uk∆mk = Vk. (2.34)

Regularized local descent method (FWI): As the model spaces for FWI and seismic tomography

problems are different, another regularization matrix R has to be considered for FWI context. Once

again, the particular matrix R to be applied is an user choice and varies from one application to

another. In this thesis, a regularization matrix based on the referecence Virieux et al. (2017) will be

considered for FWI description and more details will be given in chapter 4.
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Following the discussion of the non-regularized case, the upgrade step for the local descent

method for regulairized FWI is given by (compare with equation (2.24))

∆mk = −αk∇S(mk) = −αk[∇S0(mk) + λ1Rmk + λ2WMδ(mpri)k]. (2.35)

The gradient ∇S0(mk) is computed by the adjoint state method as earlier discussed.

Initial model space: As a last topic of this chapter, we comment on the important issue of the choice

of the initial model space, for which a successful iterative procedure is achieved. The data space and

the initial model space are the main inputs for LSQR seismic inverse problems. Once an initial model

space is given, the subsequent models are iteratively updated using a local linearized optimization

algorithm. For seismic tomography methods, the sensitivity of the initial model is not so dramatic:

simple geometric rules can be applied to generate such models. For FWI, this sensitivity demand is

much higher. In particular, prior information, such as well data, can be essential (Virieux et al., 2017).

Another strategy consists in solving a simplified version of the FWI method is applied to produce an

improved initial model [Camargo (2019)]. In this thesis, we propose to use the space model obtained

from a CRP tomography the initial model for FWI. As the computational effort involved in FWI is

much greater than the one required by tomography, the proposed approach is expected to improve the

FWI implementation.

2.3 Summary and conclusions

The basic concepts and results of the Least Squares (LSQR) inversion have been presented

in the context of their applications to stereotomography and FWI. The same formulation and method-

ology applies to other tomographic approaches, most particularly the new Common-Reflection-Point

(CRP) tomography to be presented in Chapter 5. As seen throughout this thesis, LSQR solutions

will be iteratively constructed, requiring an optimization problem to be solved in each iteration. For

stereotomography and CRP tomography, the second-order, Gauss-Newton is the numerical optimiza-

tion method of choice. For FWI, the first-order descent method is used. Also discussed is the impor-

tant role played user-selected regularization terms to stabilize the iteration process and guide it to a

meaningful solution.

It is to be noted that the update procedure for FWI employs a first-order (local descent)
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Figure 2.4: LSQR inverse problem uses two input spaces: data space and initial model space. Data
space is formed by observed quantities from seismic data. The initial model can be addressed by a
first guess or using some simple rules, based on previous model and/or data information. For FWI
application, the initial model space is a crucial issue for a good LSQR inverse problem.

numerical method, which is less accurate that the second-order (Gauss-Newton) numerical method

used in tomography. As a consequence, much higher dependency on the initial model is to be expected

from FWI as compared to tomography. This justifies our proposal to have a resulting model space

from a tomographic method (in this case the new CRP tomography) as an initial model for FWI.
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Chapter 3

Stereotomography

Based on the general formulation of the LSQR method described in the previous chapter,

the stereographic problem, originally proposed and solved in (Billette and Lambaré, 1998) is here

reviewed and discussed. As such, the case of two-dimensional, isotropic acoustic media with no a

priori model-space information is considered. As discussed in Chapter 2, the misfit function for this

problem is that of equation (2.6), with the scalar parameter λ1 = 0. The matrix parameter W−1
D

accounts for the different units (space location, slope and traveltime) of the stereotomography data

spcace. Illustrative tests on implemented synthetic data are presented and discussed in Chapters 6, 7

and 8.

3.1 Observed-data and model spaces

As a first step of the description of the LSQR solution of the stereographic inverse problem,

the observed-data and model spaces are now introduced.

Observed-data space: The observed-data space of stereotomgraphy, dobs, consists of N parame-

ter vectors dobs
i extracted from locally-coherent (primary reflection/diffraction) events of the given

prestack data set. Such points are arbitrarily selected by the user by manual or automatic picking. In

symbols, we can write

dobs = [dobs
i ]Ni=1 = [(s, r, ps, pr, tsr)

T
i ]

N
i=1. (3.1)
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Omitting the subscript i, and with the help of Figure 3.1, the components refer to a primary reflection

or diffraction ray that starts from a shot location s and arrives at the receiver location r at a planar hor-

izontal seismic line, with slopes (horizontal slowness) ps and pr at source and receiver, respectively,

and total traveltime tsr. The use of information from two different directions justifies the term stereo

of the name of the method.

Figure 3.1: The data-parameter vector (s, r, ps, pr, tsr) corresponds, in the exact (unknown) veloc-
ity model, to primary reflection/diffraction ray that connects the source and receiver to a primary
reflection/diffraction point in depth.

It is to be noted that, while the source and receiver locations s and r, as well as the total

reflection/diffraction traveltime tsr are directly available from the given data set, the slope parameters

ps and pr require some pre-processing to be extracted. Following Billette et al. (2003), the slopes

ps and pr, can, as a possibility, be estimated by means of slant stacks of r-common-receiver and

s-common-shot panels, respectively.

Model space: The M -dimensinal stereographic model space m is composed by the union of two

model-space subsets

m = mvel ∪mray, (3.2)

in which mvel is the Mv-dimensional velocity-model space and mray is the N -dimensional ray-model

space. It is to be noted the dimesionaly relation

M = Mv + 6N. (3.3)
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Velocity-model space: This is the Mv-dimensional space

mvel = [vi]
Mv

i=1 = (v1, ..., vMv
)T , (3.4)

in which its components vi have the task of producing a velocity function v(x, z) that is needed at

each iterated step. Such velocity is defined on the depth region of interest, as specified by an invariant,

generally rectangular mesh provided by the user. That mesh has dimensions of Mvx lines and Mvz

columns, the product of which equals the dimension Mv of mvel. As shown in Figure 3.2, the knots of

that mesh are populated by the components of the mvel. More specifically, the B-spline interpolation

coefficient vij at the (i, j)-knot is given by the k-th component vk of mvel. In symbols,

vij ≡ vk, with k = (i− 1)Mvx + j, (i = 1, ...,Mvx, j − 1, ...Mvz). (3.5)

Figure 3.2: Velocity model construction: On an invariant, user-selected mesh, values of vk are as-
signed and matrix entries vij which are taken as coefficients of a beta-spline representation of the
velocity function. By means of iterative updates, stereotomography aims to invert those coefficients
to an acceptable velocity-model solution.

With the help of the components vij , the velocity v(x, z) is defined in the whole depth domain

as a B-spline interpolation (de Boor et al., 1978)

v(x, z) =
Mvx
∑

i−1

Mvz
∑

j=1

vijβi(x)βj(z), (3.6)

in which βi(x) and βj(z) are one-dimensional cubic B-spines, with vij being the interpolation co-

efficients. A brief explanation about B-spline constructions is given in the Appendix D. For a more

detailed text, the reader can refer to, e.g., de Boor et al. (1978).
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Under the above considerations, it turns out that stereotomographic problem aims to invert

the B-spline coefficients only, and not the entire velocity model, which is automatically given by

equation (3.6). As a consequence, the procedure always produces smooth velocity models. As seen

below, this is a good characteristic, as it allows the forward-modeling engine of stereotomogrphy to

be based on ray-tracing algorithms. Such algorithms require continuous derivatives of the velocity

function, this condition being naturally fulfilled by the beta-splice construction.

Ray-model space: That space is given by

mray = [mray
i ]Ni=1 = [(x, z, θs, θr, ts, tr)i]

N
i=1, (3.7)

in which each six-component parameter vector mray
i corresponds to its counterpart five-component

parameter vector dobs
i in the observed-data space. In symbols, we have a one-to-one correspondence

m
ray
i = (x, z, θs, θr, ts, tr)

T
i ⇐⇒ (s, r, ps, pr, tsr)

T
i = dobse

i (i = 1, ..., N). (3.8)

Adopting a ray-theoretical description of the wave propagation involved and, moreover, assuming

that perfect modeling conditions hold, such correspondence admits a natural interpretation.

As depicted in Figure 3.3, we assume, for simplicity, that the observed data space dobs and,

as a consequence, also the ray model space mray, consist of single vectors. These represented by

parameters (s, r, ps, pr, tsr) and (x, z, θs, θr, ts, tr), respectively. The parameters of mray can be seen

to specify the depth point (x, z), interpreted as a diffraction point, as well as two up-going rays,

both starting from that diffraction point. The first one, referred to the source ray, is defined by the

angle direction θs with the vertical (z-axis) and traveltime ts. The second, referred to as the receiver

ray, has an analogous definition, this time for the θr and tr quantities. Under the situation of perfect

modeling conditions, the source and receiver rays hit the measurement seismic line, respectively

at the points s, with horizontal slowness ps, and r, with horizontal slowness pr, respectively. Such

quantities match the parameters given by the observed-data space. Moreover, in this situation, the

condition ts + tr = tsr, in which the traveltime parameter tsr also belongs to the observed data space,

is satisfied.
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Figure 3.3: Interpretation of vector parameter (x, z, θs, θr, ts, tr) of ray-model space mray: Color map
represents the beta-spline velocity function with coefficients given by velocity-model vector mvel.
The parameters (x, z) locates a diffraction point (x, z), from which two up-going rays are specified
by angle-direction and traveltime parameter pairs (θs, ts) and (θr, tr), respectively. Such rays, referred
to as source and receiver rays, hit the measurement seismic line in such a way that the location and
horizontal slowness pairs (s, ps) and (r, pr) match the parameters given by the observed data space.
Finally, we also have that ts + tr = tsr, namely the traveltime sum of ts and tr matches the observed-
data traveltime parameter tsr.

3.2 Forward-model engine and synthetic-data space

As previously indicated, the forward-modeling engine of stereotomography is ray tracing.

Such engine results from a ray formulation of the wave equation, here considered for 2D acoustic,

isotropic media. For completeness, a brief description of the basics of ray propagation as needed in

this thesis is provided in Appendix C. For more details, the interested reader is referred to classical

literature, e.g., Cerveny (2005) and Popov (2002).

As indicated in Chapter 2, the forward-modeling engine transforms a given model space m

onto a corresponding synthetic data space

dsyn(m) = [dsyn
i (m)]Ni=1, (3.9)

which has the same form as the given (invariant) observed-data space dobs.

The construction of a synthetic data space dsyn(m) for arbitrary model space m = mvel ∪

mray, can be explained along the same lines previously used in the case of perfect modeling con-
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Figure 3.4: Synthetic data model dsyn(m) for arbitrary model space m = mvel ∪ mray: Color map
represents the beta-spline velocity function provided by mvel. Also, (x, z, θs, θr, ts, tr), represents the
single parameter vector of mray. Under the same procedure of Figure 3.3, the diffraction point (x, z),
as well as the up-going source and receiver rays, as defined by the parameters (θs, ts) and (θr, tr),
respectively, are constructed. The endpoint locations and slowness vectors [ssyn(m), psyns (m)] and
[rsyn(m), psynr (m)], as well as the traveltime tsynsr (m) = ts(m) + tr(m) parameterize the synthetic
data vector dsyn(m), Note that, in general, dsyn(m) 6= dobs.

ditions (see Figure 3.4 and related text). As before, the ray-model subset, mray is, for simplicity

assumed to consist of a single vector. This situation is depicted in Figure 3.4, in which the color map

represents the beta-spline velocity function, as determined by mvel. We now let (x, z, θs, θr, ts, tr)

parameterize the single vector of mray. Then the previous procedure produces the diffraction point

(x, z), as well as the up-going source and receiver rays, defined by the direction-angle and traveltime

parameters (θs, ts) and (θr, tr), respectively (see Figure-3.3).

By means of such construction, the synthetic data vector dsyn(m) can be fully parameterized

by the vector (ssyn, rsyn, psyns , psynr , tsynsr ), where (ssyn, psyns ) and (rsyn, psynr ) represent the location and

horizontal slowness at the endpoints of the source and receiver rays, respectively, and tsignsr = ts + tr.

Under the use of the above computations, in the general case of a ray-model subset mray contains N

vectors mray
i , the corresponding synthetic data space dsync(m) can be given as

dsyn(m) = [dsyn
i (m)]Ni=1 = [(s, r, ps, pr, tsr)

syn
i ]Ni=1, with tsynsr = ts + tr, (3.10)

Figure 3.5 provides a pictorial summary of the stereographic data, model and synthetic spaces.
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Figure 3.5: Observed-data, model and synthetic-data spaces: each observed-data vector dobs
i relates to

a corresponding ray-model vector mray

i . By means of a forward-modeling engine, trial model vectors
generates a corresponding synthetic vector dsyn

i . Observed- and synthetic-data vectors have the same
nature and size, allowing their discrepancy by means of misfit function. The stereographic model
space consists of the union of two model-space subsets. The first is the velocity-model space mvel,
which is responsible for the coefficients of the beta-spline representation of the velocity function. The
second is the ray-model space mray which consists of model-parameter vectors that correspond to the
given observed-data vectors.

3.3 Misfit function and regularization

As seen below, classical least-square-root (LSQR) inversion can be applied to solve the stere-

ography inverse problem. In agreement with the discussion provided in Chapter 2, the solution of this

seismic tomographic problem is achieved by means of a Gauss-Newton iterative procedure applied

to a regularized misfit function that measures, for any given trial model space m, the discrepancy

∆d(m) = dsyn(m)− dobs between the synthetic and observed data spaces. As previously discussed

in the context of the LSQR method, the introduction of regularization terms in the misfit function is

of crucial importance in ill-posed inversion problems, such as tomography and FWI. A brief survey

on the available regularization strategies and schemes that can be of use for a practical implementa-

tion of stereotomography is provided in (Billette et al., 2003, see references therein). Such discus-

sion includes both strictly numerical possibilities (such as smart use of damping factors), as well as

physically-oriented approaches (such as smoothing constraints on velocities).

The specific choices of the misfit and regularization functions are now introduced.

Following, e.g., Billette and Lambaré (1998); Lambaré et al. (2004), the misfit function is
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assumed to be

S(m) =
1

2
[∆dT (m)W−1

D ∆d(m) + λmvelTR(v)mvel], (3.11)

where W−1
D is the diagonal matrix that accounts for a priori data information and brings the different

data types to a comparable size.

The misfit function (3.11) follows the general description provided in Chapter 2 (see equa-

tions (2.5)-(2.7)), however with two differences. Firstly, no a priori model information is considered,

i.e., S1(m) = 0. Secondly, the regularization term has the form

S2(m
vel) = λ(mvel)TR(v)mvel (3.12)

meaning that it applies to the velocity-model space mvel only. Matrix R(v) is a constant, positive-

definite matrix of dimension Mv ×Mv. Notation is also simplified by setting λ2 = λ.

As seen below, it is advantageous that the regularization term R(v), which is restricted to the

velocity-model space mvel, is extended to the whole model-space m = mray ∪mvel. This is simply

done by observing that

(mvel)TR(v)mvel = mTRm, (3.13)

where the matrix R = (Rij), (i, j = 1, ...,M ) simply relates to its counterpart matrix R(v) = [R
(v)
ij ],

(i, j = 1, ...,Mv) by

R =

[

011 012

021 R(v)

]

, (3.14)

where the null submatrices 011, 012 and 021 has dimensions 6N × 6N , 6N × Mv and Mv × 6N ,

respectively. In other words, the matrix R is obtained by adding lines and columns to the matrix R(v)

matrix until a full matrix M ×M is obtained. Here, the following ordering was considered for model

vector m

m = [mray,mvel]. (3.15)

Substitution into equation (3.11) leads to the extended misfit function

S(m) =
1

2
[∆dT (m)W−1

D ∆d(m) + λmTRm], (3.16)
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In this thesis, a single regularization function is applied to all problems under investigation.

Such regularization is based on the minimization of second derivatives of the velocity model, being

inspired on the one described in (see, e.g., Duveneck, 2004b) in the context of so-called Normal

Incidence Point (NIP) tomography. If v(x, z) is the B-splice representation that refers to a given

velocity-model space mvel, the regularization function Rv(m
vel) is given by

Rv(m
vel) =

∫

z

∫

x

(

ǫxx

(

∂2v(x, z)

∂x2

)2

+ ǫzz

(

∂2v(x, z)

∂z2

)2

+ ǫvvv
2(x, z)

)

dxdz, (3.17)

in which where ǫxx, ǫzz and ǫvv are user-selected constant positive weights. In order to keep the

purpose of smoothness regularization operator, the parameters are chosen such that ǫxx >> ǫvv and

ǫzz >> ǫvv. However, to turn R(v) a positive definite matrix, the parameter ǫvv has to be positive (see

Appendix E).

It also to be noted that a scalar factor λ is also presented in the regularization term. This

factor "calibrates" the influence of the regulation term, which is external to the actual problem: If

the factor λ is too large, we should expect good convergence, but poor respect to the physics of the

problem. For too small value of λ, one can expect that the physics of the problem is more respected,

but we may find undesired instability. In summary, the choice of λ is a mixture of science of art, in

which hard testing work is required.

Following Duveneck (2004b), the matrix R(v), which is invariant through inversion process,

results from the substitution of the beta-spline representation of the velocity function v(x, z) and its

second derivatives into equation (3.17). The construction of regularization matrix R will be detailed

in Appendix E.

From the above considerations, our regularized misfit function will be given by (compare

with equation (3.11))

S(m) =
1

2
[∆dT (m)W−1

D ∆d(m) + λmTRm]. (3.18)

3.4 Iteration Process

The iteration process for stereotomography follows the formalism of Chapter 2, however

under the consideration of the regularized misfit function (3.11) instead of the original one of equa-
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tions (2.5)-(2.7). More explicitly, that iteration has the same form of equation (2.9), namely

mk+1 = mk − αk∆mk, (3.19)

in which αk is a positive scalar that calibrates the size of the updating step. The update ∆mk, however,

now satisfies (compare with equation (2.29))

[(J(mk)
TW−1J(mk) + λR]∆mk = −[J(mk)

TW−1∆d+ λRm]. (3.20)

Also to be noted is that the analysis of Chapter 2 that leads to equations (2.31)-(2.34)) fully holds. As

a consequence, the update ∆mk can be alternatively obtained as the LSQR solution of the problem

(compare with equation (2.34))

Uk∆mk = Vk. (3.21)

with (compare with equation (2.33))

Uk =

[

J(mk)W
−1/2
D

λRtri

]

and Vk = −

[

W
−1/2
D ∆d(mk)

λRtrimk

]

, (3.22)

in which Rtri satisfies the Cholesky decomposition

R = (Rtri)TRtri, (3.23)

where Rtri and (Rtri)T are superior and inferior triangular matrices.

Remind that the use of equation (3.21) is justified because it avoids matrix operations with

ill-conditioned matrices and due to the numerical methods available in literature. In this thesis, the

equation is solved by the singular value decomposition method (see, e.g, Watkins (2004), Van Loan

and Golub (1983)). SVD is a standard numerical method for ill-conditioned matrix equations, and

provides expression of the generalized inverse of the Jacobian matrix. Unfortunately, for even large

applications, as is the case of real-sized problems, SVD has to be avoided, due to its huge computa-

tional effort. Thereby, other strategies has to be used to compute model improvement vector ∆mk.

The LSQR algorithm proposed in the reference Paige and Saunders (1982) can be used in those sit-

uations. It is based on conjugate gradient solution of the linear system and can appropriately explore

the sparsity of the Jacobian matrix, which turns the method a standard one for real-sized seismic

tomography applications.
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Jacobian matrix: As introduced in Chapter 2 (see equation (2.14)), the Jacobian (or Fréchet-

derivative) matrix J(m), that needs to be computed at each iteration m = mk of the LSQR inversion,

is given by

J(m) =
∂dsyn(m)

∂m
=

(

∂dsyni (m)

∂mj

)

, (3.24)

in which dsyni and mj are, respectively, the i-th and j-th components of the synthetic-data and model

spaces. The calculation of the derivatives can be obtained by the use of paraxial ray theory, the reader

being referred to classical literature (see, e.g., Cerveny, 2005; Popov, 2002) for more details. More

details about the Jacobian matrix for stereotomography are provided in Billette and Lambaré (1998).

As described in the previous sections, the synthetic space dsyn = dsyn(m) is made up

of N parameter vectors d
syn
i = (s, r, ps, pr, tsr)

syn
i , each of them with five components. On the

other hand, the model space m = mvel ∪ mray is composed by Mv model-velocity components,

namely B-spline interpolation coefficients (v1, ..., vm), plus N ray-model parameter vectors mray

i =

(x, z, θs, θr, ts, tr), each of them with six components. Collecting results, we have that the data spaces

dsyn(m) and m spaces have 5N and Mv + 6N components, respectively. As a consequence, the

Jacobian J(m) is a generally rectangular matrix of dimension (5N)× (Mv + 6N).

From the above considerations, the stereographic Jacobian matrix J = J(m) admits the

following representation:
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. (3.25)

In the above equation, all entries of J, as denoted by partial derivatives, are matrices. In this way, J is

represented as a block matrix (for more properties of block matrices, the reader can refer to Watkins

(2004)).

To better understand the block matrices that compose the above Jacobian J, we make the
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following observations:

(a) The synthetic-data space dsyn contains N five-component vectors (s, r, ps, pr, tsr). As a conse-

quence, there are N values of each of those components in the synthetic-data space.

(b) The ray-model space mray contains N six-component parameter vectors (x, z, θs, θr, ts, tr). As

a consequence, there are also N values of each of such components in the ray-model space.

(c) The velocity-model space mvel consists of a single parameter vector (v1, . . . , vMv
) with Mv

components.

As a consequence of (a) and (b), all block matrices which do not have ∂v (i.e., the partial

derivative with respect to v) in the denominator have dimension N × N . As a consequence of (a)

and (c), all block matrices that does have ∂v (i.e., the partial derivative with respect to v) in the

denominator have dimension N ×Mv. A simple inspection on the block-matrix representation of J

shows that it consists of five lines, each of them made up of side-by-side six N ×N and a last one of

dimension N ×Mv. The Jacobian block matrix J has dimension (5N)× (6N +Mv) as it should.

For computational reasons, a feature of great importance is that the Jacobian J is sparse (i.e.,

many of its block-matrix entries are null matrices). One of the reasons is that, in forward modelling

ray tracing is performed in an independent way. In particular, the angle direction of a ray that connects

a diffraction point to a source is independent of the direction angle of the ray that connects that same

point to a receiver. As a consequence, some of the partial derivatives that relate to those independent

rays give rise to null matrices. More specifically, the Jacobian block matrix J turns out to be

J =


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. (3.26)

where 0 denotes null matrices of dimension N ×N .
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Moreover, as the propagation of one particular ray does not depend on the propagation of

any other ray during forward modelling, the derivatives of kinematic parameters between different

rays are null. Hence, all block matrices which do not have ∂v are diagonal matrices. Thus, matrix J

is in fact a sparse matrix and this property can be further explored. However, all block matrices which

does have ∂v are not diagonal matrices, since all the areas of the velocity model by where the ray

trajectory passes, contribute to the ray propagation.

The Jacobian matrix J is also referred, in seismic tomography literature, as Frechet’s matrix

(see, e.g, Billette and Lambaré (1998), Duveneck (2004c)). In this thesis, the name Jacobian will be

used, in order to keep clear the connection of the different methods as a particular case of the generic

LSQR inverse problem described at the beginning of the chapter.

For computational effort proposes, it is advantegeous to compute the Jacobian matrix J dur-

ing the forward modelling process. Therefore, the derivatives can be computed during ray-tracing

step.

3.5 Initial model space for stereotomography

As discussed in the previous sections, the here-considered stereotomography approach re-

quires a user-selected initial model space, which is iteratively updated until an also user-selected

stopping criteria is achieved. In tomographic problems, simple initial velocity models, such as ho-

mogeneous or vertically-varying linear models are popular (see, e.g., Billette and Lambaré, 1998;

Duveneck, 2004b). While this is not a critical point for tomography purposes (including the proposed

CRP tomography), it is seen in the next chapter that FWI has a much stronger dependence on a good

initial velocity to provide meaningful solutions. In Chapter 6, illustrative synthetic-data examples

show that stereotomography is able to provide satisfactory solutions for quite simple initial velocity

models.

The iteration process in tomographic problems such as sterotomagraphy, requires, in ad-

dition to an initial velocity-model space, also an initial ray-model space. We recall that, at each

iteration, the ray-model space consists on N parameter vectors, each of them corresponding to a

counterpart parameter vector of the (invariant) observed-data space provided by the user. As ex-

plained below with the help of Figure 3.6, a top-to-bottom procedure transform each parameter vec-

tor dobs
i = (s, r, ps, pr, tsr)

T of the observed-data space into its corresponding initial model parameter

vector mray
i = (x, z, θs, θr, ts, tr)

T . The procedure assumes that an initial velocity-model space has

been already given. We now recall that the pairs (s, ps) (resp., (r, pr)), as given by the observed-data
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vector parameter, define the ray that starts at the source position s (resp., at the receiver position r)

and proceed downwards with direction provided by the horizontal slowness ps (resp., with direction

provided by the horizontal slowness pr).

Under these considerations, both rays are traced until the same traveltime tsr/2 with tsr, as

given by the observed-data vector parameter, is consumed. As shown in Figure 3.6, the endpoints

of both rays have coordinates (xs, zs) and (xr, zr), respectively. Moreover, at those endpoints, the

direction angles θs and θr with respect to the vertical z-axis are provided by the ray tracing.

Setting (x, z) as the midpoint between the endpoints (xs, zs) and (xr, zr) and also defining

ts = tr = tsr/2, all values that define the initial ray-model parameter vector mray
i , that corresponds

to the given observed-data vector parameter dobs
i , are obtained. In symbols

m
ray
i = (x, z, θs, θr, ts, tr) =

(

xs + xr

2
,
zs + zr

2
, θs, θr,

1

2
tsr,

1

2
tsr

)

. (3.27)

Figure 3.6: Initialization procedure for ray-model parameter vector: a velocity model, constructed
by an arbitrary given initial velocity-model vector parameter is assumed. Also assumed is a
data vector parameter (s, r, ps, pr, tsr) for which the corresponding initial model vector parameter
(x, z, θs, θr, ts, tr) is to be constructed. Under the use of the given initial velocity model, two rays
are downward propagated from source and receiver locations s and r, with directions determined by
the slopes ps and pr, respectively. Those rays are propagated until the endpoints (xs, zs) and (xr, zr)
that are attained for the traveltime ts = tr = tsr/2. Setting (x, z) as the midpoint between (xs, zs)
and (xr, zr) and, at those endpoints, the direction angles θs and θr with respect to the vertical z-axis
provided by the ray tracing as initial model slopes and also defining ts = tr = tsr/2, all values fro
initial ray-model parameter vector are obtained.
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Unfortunately, the initial velocity model is arbitrary. Moreover, it was used at the previous

explained initialization step to compute the initial ray-model components. Despite it is not a crucial

feature for seismic tomography applications, usually, the more similar is the initial velocity with the

true velocity model, the better is the answer of the inversion process. However, it usually requires

some previous knowledge about true velocity model. Despite the fact that the initial velocity model

is an arbitrary one, strategies to invert the model by a crescent order of complexity has already been

used (see, e.g, Billette et al. (2003)). By the use of this strategy, it is possible to invert first a vertical

gradient model, then consider some lateral heterogeneity, etc. This could be viewed as form to provide

increasingly better initial velocity models.

As a final consideration, we note that, in the same way as the choice of the regularization

term, the above-described initialization of the ray-model space is an user option. The initialization

procedure varies in literature from one application to another. As already explained, in most applica-

tions, simple geometric rules are applied to initialize model space. However, a previous optimization

problem derived to build initial ray model space has already been applied in stereotomography appli-

cations (see, e.g, Billette et al. (2003)).

3.6 Further strategies for stereotomography

In this chapter we examined with more detail the formulation and solution of the stereo-

graphic problem. Since its introduction in Billette and Lambaré (1998), stereotomography plays an

important role as a velocity-model building method from seismic-reflection data. Moreover, it is still

a topic of active research devoted to overcome its various inherent challenges. These include, among

others: (a) finding accurate and efficient (most particularly automatic or semi-automatic) algorithms

for picking and parameter estimation of locally coherent events from prestack data; (b) extension to

3D anisotropic media; (c) incorporation of a priori data and model information; (d) optimal choice

of initial models and (e) finding accurate, stable and computationally efficient inversion procedures.

Concerning the forward-modeling engine, an upgrade from a ray-propagation to a wave-equation, is

also to be envisaged.

A discussion on the ongoing advances in these topics is out of the scope of the present thesis,

the interested reader being referred to specific literature (see, e.g., Billette et al., 2003; Duveneck and

Hubral, 2002; Lambaré, 2008, 2004; Chalard et al., 2002; Le Bégat et al., 2000, see more references

therein)
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Chapter 4

Full wave form inversion

Full wave inversion (FWI) is a high-resolution seismic-parameter inversion technique based

on full wave-equation propagation. As such, FWI takes into account a much wider range of seismic

events, as predicted by the full wave equation, than tomographic methods that rely on much more

limited, simpler events, as predicted by asymptotic, ray-propagation formulations.

As opposed to tomography methods, that rely on a (typically small) collection of picked

from locally-coherent events in the input seismic data, FWI encompasses all traces of that data. Ac-

cordingly, the misfit function in FWI accounts for the residuals of all input traces with respect to their

corresponding synthetic ones, generally computed by finite-differences schemes applied to suitable

wave equations. As indicated in Chapter 2, the huge amount of traces encountered in realistic seis-

mic problems, prevents to extend to FWI, the second-order (Gauss-Newton) LSQR inversion that is

employed in tomography.

As a way to overcome such difficulties, implementations of FWI are based on the assump-

tion of so-called single-scattering, perturbation-type wave-propagation modeling (Virieux and Op-

erto, 2009; Virieux et al., 2017). According to that theory, the medium is considered as a set of

diffraction points, at which weak independent interactions occur during propagation. As also outlined

in Chapter 2, under such considerations, FWI is solved by an LSQR iterative inversion scheme, in

which a first-order (local-descent) gradient method is employed.

In FWI literature, such diffraction points are referred to as pixels. That termilogy comes from

the analogy with image processing in which a pixel represents a point of smallest resolution. In FWI,

local properties, e.g., acoustic/elastic, isotropic/anisotropic parameters, are assigned to each pixel.

In this case, the model space consists of multi-component parameter vectors carrying depth local

information about those medium properties. Moreover, forward modeling is carried out by means of
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the wave equation that is appropriate to the propagation involved. Nevertheless, the inversion process

remains the same.

In this thesis, we focus on the acoustic wave propagation, so a single parameter, namely the

scalar acoustic velocity is attached to each pixel. The employed (local-descent) gradient method is in

agreement with the available literature (Gauthier et al., 1986; Pratt et al., 1998; Virieux and Operto,

2009).

4.1 Observed-data and model spaces

As in the previous chapter, we start with the introduction of the observed-data and model

spaces that are used in FWI.

Observed-data space: In FWI, the observed-data space comprises the full original or prestack

seismic data. Denoted dobs, such data consists of the amplitudes assigned at a finite (large) number

of (column-vector) traces dobs
i,j , each of them defined by a source-receiver pair of locations xsi , with

i = 1, ..., Ns, and xrj , with j = 1, ..., Nr, that pertains to the input acquisition geometry. We recall

that 2D acquisition is considered and carried out on a horizontal seismic line. We use Cartesian

coordinates x = (x, z) with the z-axis pointing down, to specify the subsurface region, assumed to

be rectangular and denoted R. The seismic acquisition line conicedes with the x-axis, so that the

coordinates of sources and receiver can be written as xsi = (si, 0) and xrj = (rj, 0), respectively. In

symbols, and omitting the explicit reference to the source-receiver position (si, rj), the observed-data

space we can be expressed as

dobs = [(dobs(xsi ,xrj , t1), . . . , d
obs(xsi ,xrj , tNt

))T ], (i = 1, ...Ns, j − 1, ..., Nr). (4.1)

Model space: In this thesis, the model space mmod is defined, instead of the acoustic velocities, by

their squared slownesses, namely the squared reciprocals of the velocities. Those squared slownesses

are assigned to all knots (pixels) of an invariant mesh that is provided by the user and covers a

rectangular region R of interest. Represented as a single column vector, that mesh can be understood

as a discretized representation of the medium in the region R. Physically, the knots (or pixels) are

assumed as diffraction points of that medium.
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In symbols, the model space mmod can be written as an M -dimension column vector

mmod = (m1,m2, . . . ,mM)T , (4.2)

where mi = 1/v2i is the squared slowness at the i-th pixel and M is the number of pixels of the

velocity model.

It is important to highlight one remarkable difference between the model spaces of stereoto-

mography and FWI. In stereotomography, the model space is the union of a velocity-model and ray-

model spaces, the latter consisting of parameter vectors that are in a one-to-one correspondence to the

picked/extracted parameter vectors that pertain to the observed-data space. In FWI, the observed-data

space comprises the whole seismic data, so that no picking is involved and the model space simply

coincides with the velocity-model space.

4.2 Forward-modeling engine and synthetic-data space

As it is usual in FWI, the forward-modeling engine is given by a finite-difference scheme

applied to the wave-equation, here the acoustic wave equation. that is assumed to model the seismic

propagation. The forward-modeling engine is designed to simulate, for any given velocity-model

space m, the corresponding synthetic-data space dsyn(m) with computed amplitudes assigned to

the same sample positions as the ones that pertain to the observed-data space. More insightful, the

synthetic space can be seen as a simulated version of the observed-data space, namely the one that

would be observed if the velocity model space were represented by the model space m. In analogy

with the notation used for the observed-data space (see equation 4.1), the synthetic-space dsyn(m)

for FWI has the form

dsyn(m) = [(dsyn(m;xsi ,xrj , t1), . . . , d
syn(m;xsi ,xrj , tNt

))T ], (4.3)

with, as before, i = 1, . . . Ns, j = 1, . . . , Nr and t = 1, . . . , Nt.

While assuming discrete sources and receiver pairs (xsi ,xrj), for didactic and interpretation

purposes, it is convenient to formulate the synthetic-data traces in continuous space-time domain

(x, t), with points x in R and 0 ≤ t ≤ T . Accordingly, it is assumed that the discrete model-

space m is replaced by a real function m = m(x), defined on R. In this situation, the notation

dsyn(m;xsi ,xrj , t) will be used.
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With the above understanding, a synthetic-data trace can be written

dsyn(m;xsi ,xrj , t) = usi(m;xrj , t), (4.4)

where usi(m,xrj) is the response of the acoustic medium observed at xrj due to a source point at xsi .

More generally, for any space-time observation point within R × [0, T ], that amplitude satisfies the

so-called forward problem:

Forward problem: For a given source xri and any observation point x, the wavefield usi(m;x, t)

satisfies the satisfies the acoustic wave equation

m(x)
∂2usi

∂t2
(m;x, t)−∆usi(m;x, t) = fsi(x, t),

fsi(x, t) = δ(x− xsi)δ(t).

(4.5)

in which ∆usi(m;x, t) = (∂2usi/∂x
2)(m;x, t) + (∂2Usi)/(∂z

2)(m;x, t) is the Laplacian of

usi(m;x, t) and fsi represents the external point-source located at xsi and excited at time t = 0,

namely

The wave equation (4.5) also satisfies the boundary and initial conditions

usi(x, t) = 0 and n · ∇usi(x, t) = 0 for (x, t) ∈ ∂R× [0, T ],

usi(m,x, 0) =
∂usi

∂t
(m,x, 0) = 0 for x ∈ R,

(4.6)

in which ∂R denotes the boundary of R. The boundary condition guarantees that no reflection

waves from the boundary ∂R returns to the interior of R. The initial (so-called causality) con-

ditions expresses the fact that the system is at rest before the point-source excitation at t = 0.

For actual implementations, the acoustic wave equation (4.5) is general computed by finite-

difference methods, most popular in the literature (Holberg, 1987; Kelly et al., 1976). For more details

on the necessary parameterizations, border schemes, examples of source terms and numerical tests,

the reader is referred to Camargo (2019).
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4.3 Misfit function and regularization

Applied to FWI, the LSQR approach the big picture presented in Chapter 2 and also in the

tomographic case presented in Chapter 3. Some differences, however, that are inherently attached to

FWI, require a special description. The most important one is, due to huge computaion demands, the

use of first-order, local-descent optimization for the model-space update. As such, only the gradient

of the misfit function is required. This is opposed to the second-order, Gauss-Newton optimization,

for which the Hessian of the misfit function is required. Therefore, the main challenge of FWI is

the computation of the gradient of the misfit function in an accurate and efficient way. As widely

reported in the seismic literature (see, e.g., Virieux and Operto, 2009; Virieux et al., 2017; Fichtner

et al., 2006; Camargo, 2019; Maharramov, 2016; Yedlin and van Vorst, 2010), that problem is solved

by the so-called state-adjoint method applied to the acoustic wave equation.

In this thesis, the FWI misfit function S(m), that measures the discrepancy between synthetic

and observed data spaces, has the form

S(m) = S0(m) + S1(m) =
1

2
[∆dT (m)∆d(m) + λmTRm], (4.7)

where R is a constant square matrix and

∆dT (m)∆d(m) =
1

2

Ns
∑

i=1

Nr
∑

j=1

Nt
∑

k=1

[usi(m;xrj , tk)− uobs(xsi ,xrj , tk)]
2. (4.8)

The misfit function S(m) has the form of the general misfit function considered in Chapter 2 (see

equations (2.5)-(2.7) with λ1 = λ and λ2 = 0). The FWI misfit function of equation (4.7) also

coincides with its stereographic counterpart considered in Chapter 3 (see equation (3.18)). Finally,

it is to be noted that the data-covariance matrix, denoted WD in the term S0(m), is now taken as

WD = I, where I is the identity matrix. The reason is that, in addition the assumption that no a priori

data information is considered, all components of the observed-data space have the same physical

(seismic-amplitude) units. As such, there are no need of a covariance matrix to be applied for unit

adjustments. Observe that this was not the case in tomography, as the data-convariance WD was

required to bring the numerical values of the data-space components to comparable sizes. We recall

that the condition λ2 = 0 means that no a priori model information is considered. The case where

such information is taken into account can be seen in Virieux et al. (2017).

From the previous considerations, the non-regularized term S0(m) will be considered in its

continuous space domain, so that the model-space vector m is replaced by the real function m =
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m(x). As such, the non-regularized misfit function will be denoted S0(m), instead of S0(m). In this

case, the synthetic and observed components which will be assumed to for continuous time 0 ≤ t ≤ T

and denoted by dsyn(m;xsi ,xrj , t) and dobs(m;xsi ,xrj , t), respectively. It is also to be noted that the

regularization term of the misfit function remains discretely defined by the model-space vector m.

In view of the above reasoning, the non-regularized misfit term S0(m), as well as its gradient

∇S0(m), will be understood as discretized versions of corresponding continuous counterparts S0(m)

and (dS0/dm)(m), for which actual expressions are to be provided. It is to mentioned that, as reported

in Maharramov (2016), a discretized version of the gradient ∇S0(m) can be directly obtained.

Expression of ∇S0: As indicated above, the gradient ∇S0(m) is assumed as a discretized version

of the scalar derivative function (dS0/dm)(m) defined for a continuous model-space function m =

m(x) and, moreover all traces are assumed to be defined for continuous time 0 ≤ t ≤ T . Inspection

of equations (4.8) enables one to express S0(m)

S0(m) =
Ns
∑

i=1

Nr
∑

j=1

(S0)ij(m),

(S0)ij(m) =
1

2

∫ T

0

dt[usi(m;xrj , t)− uobs(xsi ,xrj , t)]
2.

(4.9)

Accordingly, the expression for (dS0/dm)(m) can be given by

dS0

dm
(m) =

Ns
∑

i=1

Nr
∑

j=1

d(S0)ij
dm

(m),

d(S0)ij
dm

(m) =

∫ T

0

dt[usi(m;xrj , t)− uobs(xsi ,xrj , t)]
dusi

dm
(m,xrj , t)].

(4.10)

Our task reduces, then to find an expression for [d(S0)ij/dm](m). That expression is obtained by the

application of the state-adjoint method. For that, the solution of the so-called adjoint problem of the

original problem (4.5)-(4.6), as formulated below, is needed:
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Adjoint problem: For a given source-receiver pair (xsi ,xrj), the adjoint wavefield uadj
si,rj

(x, t)

satisfies the acoustic wave equation (compare with equations (4.5))

m(x)
∂2uadj

si,rj

∂t2
(m;x, t)−∆uadj

si,rj
(m;x, t) = Fsi,rj(m;x, t),

Fm;si,rj(m;x, t) = δ(x− xrj)[usi(xrj , t)− dobs(xsi ,xrj , t)].

(4.11)

with boundary and initial conditions (compare with equations (4.6))

uadj
si,rj

(x, t) = 0 and n · ∇uadj
si,rj

(x, t) = 0 for (x, t) ∈ ∂R× [0, T ],

uadj
si,rj

(m,x, 0) =
∂uadj

si,rj

∂t
(m,x, 0) = 0 for x ∈ R.

(4.12)

With the help of the solutions usi(m;x, t) and uadj
si,rj

(m;x, t) of the forward and adjoint problems (4.5)-

(4.6) and (4.11)-(4.12), the sought-for derivative (dS0/dm)(m) can be written as (see, e.g, Camargo

(2019))
(dS0)ij
dm

(m) =

∫

R

dxKij(m;x, t), (4.13)

where

Kij(m;x, t) =

∫ T

0

dtuadj
si,rj

(m;x, T − t)
∂2usi

∂t2
(m;x, t). (4.14)

Referred in the literature as the Fréchet derivative or sensitive kernels, the quantity Kij(m;x, t) can

be interpreted as a zero-lag correlation between the forward-propagated wavefield usi(m;x, t) and

a filtered (second-order derivative) backward-propagated wavefield uadj
si,rj

(m;x, T − t). As such, it

has the same structure of Claerbout’s reflection condition for (Claerbout, 1971) as used in several

migration schemes.

Expression of ∇S1: As discussed in Chapter 2, the introduction of a regularization term in inverse

problems such as tomography and FWI is essential to turn the inversion process more robust and

provides consistent results. The choice of a regularization term is a particular option made by the user

and varies from one application to another. In this thesis, we use the Tychonov regularization term

given by (Virieux et al., 2017; Camargo, 2019)

S1(m) =
λ

2
[(Bxm)T (Bxm) + (Bzm)T (Bzm)] =

λ

2
mTRm, (4.15)
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so that

R = BT
xB+BT

z Bz. (4.16)

Here, Bx and Bz are real matrices operators that accounts for first-order spatial derivatives with

respect to x and z directions, respectively.

From equation (4.15), we readily have that

∇S1(m) = λRm. (4.17)

For more details about Tychonov regularizion term, the intereseted reader is reffered to

Virieux et al. (2017).

4.4 Iteration Process

In FWI, the second-order Gauss-Newton optimization usually employed in tomography has

the serious drawback of requiring, at each iteration step, the unfeasible computation of Fréchet deriva-

tives. In response to that, first-order, local-descent (such as conjugate-gradient) methods, albeit less

accurate, offer an adequate alternative (Plessix, 2006). As based only on the gradient of the misfit

function, such methods do not require Fréchet derivatives.

Local-descent methods are based on the fact that the (negative) gradient vector ∇S of the

misfit function points to its maximum-descent direction. Based on this mathematical fact, the model-

update iteration step is taken as

mk+1 = mk +∆mk = mk − αk∇S(mk), (4.18)

where αk is a positive scalar parameter that controls the step size. In principle, the parameter αk can

be arbitrarily chosen by the user, some popular choices being available (Nocedal and Wright, 2006).

4.5 Initial model space for FWI

FWI has the ambitious objective of high-resolution parameter inversion in complex geologi-

cal media. As such, it faces rather challenging problems, both in the adequate formulation of modeling
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and inversion approaches, as well as in their accurate and efficient implementation. Present compu-

tation technology prevents the application to FWI of well-established second-order, Gauss-Newton

schemes commonly used in tomographic problems. As a consequence, first-order locally descent

schemes, remains, albeit less accurate, a computationally feasible alternative.

The above drawbacks impose, as crucial trade-off, the demand of an optimally chosen ini-

tial model to guarantee the convergence of FWI to a meaningful solution. As such, methodologies

that help to find best-possible FWI initial-models are always in demand. As a recent example, a two-

phase a scheme for initial-model construction dor 2D acoustic FWI is proposed in Camargo (2019).

In the first phase, FWI is formulated as a constrained nonlinear problem by means of the augmented

Lagrangian method. A first version of the initial velocity model is parametrized as a linear combi-

nation of specific basis functions, e.g., constant vertical gradient, horizontal interfaces, radial basis

functions, among others. To assist the inversion process, information extracted from well-log data

are, if available, applied. In second phase, the obtained first-phase, velocity-model is used as input

for another, this time box-constrained, FWI problem. That problem is solved by the spectral gradient

project (SPG), proposed in Birgin et al. (2000). In summary, the strategy uses a first-phase scheme

to guide the initial model into a region near an attractive basin, while a second-phase scheme is ap-

plied to improve the model resolution. Different strategies, e.g., based on velocity analysis (Biondi

and Almomin, 2013) and imaging techniques (Biondi and Almomin, 2013), Symes (2008)) provide

additional examples.

In this thesis, as an attempt to overcome strong dependence of initial velocity model we

consider the following strategy: first, a seismic tomography method is performed. Next, the output

tomographic velocity model is then used as input for the FWI inversion. The less computational

effort of seismic tomography, as well as the more robust initial-model dependence in the tomography

methods is a justification of the above strategy. As an additional bonus, seismic tomography methods

are prone to recover low-frequency content of the medium, which is an important issue for FWI. The

proposed two-step strategy makes use of the new CRP tomography described in the next chapter.

4.6 Summary and conclusions

In this chapter, the basics of the FWI method have been described. Although in its first stages,

FWI represents a significant step forward in seismic imaging, providing additional or complementary

information to migration.
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An excellent review and comprehensive literature on the present achievements, as well as

future goals of FWI is provided in Virieux et al. (2017). FWI is a topic of active research, with a

number of hard challenges to overcome: As an iterative inverse-problem technique, FWI requires

to solve, at each iteration step, a forward-modeling and optimization problems, both applied to data

sets as large as the original pre-stack seismic volume. Because of the huge computational effort in-

volved, today’s applications mostly consider 2D acoustic isotropic (instead of 3D elastic anisotropic)

wave equation as forward-modeling and, moreover, first-order locally descent (instead of second-

order Gauss-Newton) optimization schemes. As a consequence of such limitations, meaningful FWI

results much depends on an optimal choice of an initial-model. In this respect, the present thesis pro-

poses the use of a previously-obtained tomographic velocity model as the initial model for FWI. In

particular, the new CRP tomography described in the next chapter will be applied to this endeavor.
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Chapter 5

CRP tomography

A new seismic tomography method will be proposed in this chapter, it is named Common-

Reflection-Point (CRP) tomography. The new method is based on the knowledge acquired in the theo-

retic studies and practical implementation of stereomography (see Chapters 2 and 3), as well as other

tomography methods such as the Normal-Incidence-Point (NIP) wave tomography (see Appendices

A and B). In fact, most of the features of the CRP tomography can be found in the above-mentioned

cases, mainly stereotomography, its main source of inspiration.

An important difference between CRP tomography and stereotomography resides on the

number and nature of the points that are picked in both methods and compose the data space. Of

course, such picked data points heavily impact on the corresponding points in the model space. As

opposed to stereotomography, for which the data space consists of independent, picked points, the

data space for CRP tomography is composed by CRP families, wich are related to the so-called CRP

gathers. More specifically, each CRP gather consists of all source-receiver pairs within the input

data for which the primary-reflection rays for a certain interface have the same (common) reflection

point. For clarity of exposition, that point is called CRP reference point or CRP central point of

the given CRP gather. For each CRP gather (a collection of parameter vectors), a CRP data family

(a (big) parameter vector) is generated to composed the CRP tomography data space, where the

traveltime information is taken, not individually, but simple as the sum of all reflection traveltimes

that pertain to source-receiver pairs of that gather. This transformation will be further justified for

computational/operational reasons.

As described in Coimbra et al. (2016a,b), CRP gathers can be extracted from the input data

by means of multi-parameter coherence (semblance) analysis applied to so-called offset-continuation

(also referred to as CRP traveltimes). In fact, the CRP tomography bears its name from such trav-
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eltimes. Such extraction can be briefly summarized as follows. First of all, the procedure is carried

out for all data samples under the assumption that each one is a candidate CRP reference point. This

means that each sample is assumed to pertain to a (non-identified) primary-reflection event. For each

given sample, a corresponding CRP traveltime is constructed that depends on a number of parameters

to be estimated from the input data. As previously indicated, estimation of theses parameters is carried

out by conventional multi-parametric coherence (semblance) analysis. The parameters allow for the

localization of the CRP gather that corresponds to the candidate sample. The performed coherence

analysis also provides the criteria upon which the sample candidate can actually be recognized as a

CRP reference point. By means of the estimated parameters, the reflection times that correspond to

the source-receiver pairs within the CRP gather can be obtained. In the process, also the slope infor-

mation are estimated by a coherence approach (Coimbra et al., 2016b)). As a result of the procedure,

the trace locations, two-way traveltime and slopes within a CRP gather are estimated. It is to be noted

that just a single picking of a CRP reference point is necessary to obtain all the information of its

corresponding CRP gather. In turns out that CRP tomography is able to enhance internal information

with a minimum of pickings.

As seen below, the CRP gathers allow for a much more comprehensive and effective cov-

erage of the depth domain under investigation. In fact, each CRP reference point incorporates to the

inversion process the residuals (i.e., discrepancies between the observed and synthetic data samples)

that refer to all source-receiver pairs within the CRP gather specified by that reference point. All the

information collected from this CRP gather is treated simultaneously to improve the respective model

parameters. This obviously enhances the quality of internal information provided to the inversion. For

each CRP reference point, the corresponding CRP gather allows that more parts of the velocity model

to be analyzed, when compared to other tomographic methods. Furthermore, practical tests described

later indicates that the use of CRP gathers can act as a natural constraint that is incorporated to the

tomographic inverse problem.

One of the possible disadvantages of the proposed CRP tomography concerns the involved

computational effort. It is easy to realize that, the bigger the data-space size, the bigger is the size

of the Jacobian matrix that needs to be computed. Moreover, at each iteration, from each model

point in depth, more pairs of rays have to be traced to the surface. To overcome such drawbacks,

some modifications of the conventional stereotomography approach has been implemented. Firstly,

no traveltime parameters are used in the model space, all rays being propagated until measurement

surface (seismic line) is reached. This avoids the computation of model traveltime derivatives and

also decreases the number of columns in the Jacobian matrix. Secondly, following the use of CRP

families, as the traveltime information is taken, not individually, but simple as the sum of all reflection

traveltimes that pertain to source-receiver pairs of that gather, the size of Jacobian matrix is further
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decreased, namely number of lines of the matrix is reduced. At first view, this approach does not

seem to be a good choice because, in principle, less information is conveyed to the tomographic

inversion process. Nevertheless, the experiments showed that good results has been achieved. Finally,

he computational effort of ray propagation, together with the simultaneous computation of derivatives

to compute Jacobian matrix can be minimized by the use of an efficient parallel implementation.

For comparison reasons, the regularization term in CRP tomography is the same as the one

proposed for stereotomogaphy in Chapter 3. It is to be recalled that this regularization term accounts

for the minimization of second derivatives of velocity model. As seen in the illustrative tests provided

in next chapters, such regularization works well in constraining the iterative process to achieve an

acceptable solution. Furthermore, numerical tests suggest that it will can be constrained with less

dependence, of the still necessary external regularization, mainly when unfavorable boundary initial

conditions are presented.

The exposition of the CRP tomography provided below follows the general lines and keeps

the main characteristics as the ones found in the description of stereotomography (Chapter 3). Nev-

ertheless, the important roles of CRP gathers and data families, which represent the heart of the new

method, are very much highlighted.

5.1 Observed-data and model spaces

In this section, the observed-data and model spaces of CRP tomography are introduced.

These spaces characterizes a remarkable difference between the proposed CRP tomography and

stereotomography. As it will be explained, the introduction of CRP gathers turns both CRP tomog-

raphy observed-data and model spaces bigger than the related stereotomography spaces. Moreover,

CRP tomography observed-data and model spaces are bigger without the need of more number of

pickings.

Observed data space As a starting point, we remark that, in the same way as in stereotomography,

observed-data parameter vectors of CRP tomography refer to primary-reflection events

Dobs
ref = (s, r, ps, pr, tsr)

T
ref , (5.1)

with stereotomographic components of source-receiver locations (s, r), ray parameters (ps, pr) and

two-way traveltime (tsr) (see Figure 3.1). Therefore, each data parameter vector Dobs
ref refers to a
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reflection or diffraction ray that starts from a shot localization s and arrives at the receiver localization

r. Moreover, this ray propagation has slopes (horizontal slowness) ps and pr at the source and receiver,

respectively. Denote tsr as the traveltime of this propagation.

Subscript ref in Equation 5.1 denotes that these parameters are related to a CRP reference

point. In CRP tomography context, each picking is related to a CRP reference point. To simplify

notation, the subscript ref will be replaced by f1, where the letter f is reffered to the word family and

the number 1 indicates that it is a reference observed-data vector parameter. In symbols, Dobs
ref = Dobs

f1 .

The use of the term family will be become clear below.

As a new important feature, Figure 5.1 shows that CRP tomography attaches, to each refer-

ence observed-data vector parameter Dobs
f1 a corresponding CRP gather

G(Dobs
f1 ) = {Dobs

fi }
Nf

i=1, (5.2)

which is a collection Nf observed parameter vectors Dobs
fi

Dobs
fi = (s, r, ps, pr, tsr)

T
fi, (5.3)

where each Dobs
fi is extracted from the input data, such that each of them pertains to the same primary-

reflection event and, moreover, shares the same (common) reflection point as the original reference

observed-data parameter vector Dobs
f1 . See Figure 5.1.

Note that, in fact, each CRP gather is a collection of observed-data vector parameters.

G(Dobs
f1 ) = {(s, r, ps, pr, tsr)

T
fi}

Nf

i=1. (5.4)

For each CRP gather, a CRP data family is generated to composed the CRP tomography

data space, where the traveltime information is taken, not individually, but simple as the sum of

all reflection traveltimes that pertain to source-receiver pairs of that gather. By this transformation,

each CRP gather G(Dobs
f1 ), that can be interpreted as a collection of vector parameters, gives rise

to a respective CRP data family dobs
f , which can be interpreted as a (big) vector of observed-data

parameters.

dobs
f = [tf , (s, r, ps, pr)

T
fi]

Nf

i=1, (5.5)
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where

tf =

Nf
∑

i=1

(tsr)fi. (5.6)

The use of a single travelime parameter for each CRP family (namely the sum of all two-way

traveltimes that pertain to the CRP gather) is justified by reduction of computational costs of the CRP

tomographic process. Indeed, such choice reduces the size of the Jacobian matrix, as will be further

discussed. As shown later, satisfactory results provided by our numerical tests show that this is a valid

procedure.

The following relation reinforce the one-to-one correspondence between CRP gathers and

families:

G(Dobs
f1 ) = {(s, r, ps, pr, tsr)

T
fi}

Nf

i=1 ↔ [tf , (s, r, ps, pr)
T
fi]

Nf

i=1 = dobs
f . (5.7)

Observed data space dobs for CRP tomography is the union of CRP families dobs
f . The num-

ber of families equals the number of pickings performed in seismic data. Note that, each family is

related to one specific CRP reference point. In symbols, we can write:

dobs = [dobs
f ]Nf=1., (5.8)

Remarks: It is now instructive to make a few remarks on the above-introduced concepts:

(i) For a CRP gather/family, the common reflection point acts like a diffraction point.

(ii) Any source-receiver pair of a CRP gather defines the whole gather. This means that, in principle,

a single picking is enough to determine the gather. The chosen point that defines the gather is

called reference or central point of the CRP gather.

(iii) As a consequence of (ii), we can understand the observed-data space as defined by a collec-

tion of CRP reference points, each of them giving rise to a corresponding data family dobs
f .

The CRP parameters extracted/estimated from a reference point determines the corresponding

family. The details of how those parameters are extracted/estimated of such parameters and the

corresponding CRP is obtained from them will be given bellow.

(iv) The number Nf of data-parameter vectors within the CRP gather is, in principle, arbitrary,

being, of course, limited by the availability in the input data. However, for reasons of simplicity
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of notation and without loss of generality, in this thesis, it is assumed that this number is the

same for all gathers, namely Nf = N̄ for f = 1, . . . , N .

(v) As a final observation, note that, if N̄ = 1, the observed-space of CRP tomography is reduced to

the observed-space of stereotomography. As will be noted until the end of this chapter, stereoto-

mography is a particular case of CRP tomography.

Figure 5.1: CRP family dobs
f with three source-receiver pairs. All primary-reflection rays to a single

(unknown) reflector share the same (common) reflection point. In the figure, (s, r, ps, pr)j represent
the source-receiver location and ray parameters of the j-th ray and tf is the sum of all two-way
traveltimes tj = tsj + trj along the three rays.

Determination of data-parameter vectors of a CRP gather: Even not being considered in this

work, the problem of actual extraction of CRP gathers from the input data is of much practical rele-

vance. As such, a few words are now devoted to this issue.

As reviewed in Appendix F, that procedure is based on recent results on offset-continuation

(or CRP) seismic imaging as provided in Coimbra et al. (2016b). Of particular relevance to our pur-

poses is the establishment of two parametric expressions. For a given CRP reference point, the first

expression predicts the primary-reflections traveltimes of source-receiver pairs within a CRP gather.

The second expression estimates the location of the source-receiver pairs that pertain to that CRP

gather and, moreover, the ray parameters of the primary-reflection rays at those source and receiver

points. In order not to disturb the present exposition, the mathematical description and discussions of

all expressions relevant to CRP tomography are postponed to Appendix F.
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As it is natural in the present context, the above-considered traveltime expression and corre-

sponding parameters are called CRP traveltime and CRP parameters, respectively. The CRP param-

eters (two for 2D seismic data) are estimated by coherence (semblance) analysis performed on the

input data in the vicinity of the CRP reference point.

In this thesis, all tests on CRP tomography were carried out on synthetic model tests, with

tomographic data space being obtained under the use of dynamic ray-tracing performed on true ve-

locity model test. Under these circumstances, no picking procedure were performed, the data space

being directly given from the synthetic model.

Such rather theoretical testing choices are justified by our main objective of providing an

introductory investigation and also proof-of-concept to the newly proposed CRP tomography. In this

way, our main motivation is to show its potential, at least in favorable synthetic conditions. It is our

hope that the here-obtained motivates its use to more realistic and practical situations.

Model Space: Following the same approach of stereotomography, CRP tomography model space

m is the union of two model-space subsets. In symbols:

m = mvel ∪mray, (5.9)

where mvel it the velocity-model space and mray is the ray-model space.

Velocity-model space: The velocity-model space mvel of CRP tomography remains the same of the

one presented before for stereotomography. Therefore, mvel is composed by M scalar components

vi, which accounts for B-spline interpolation coefficients. In symbols:

mvel = (v1, . . . , vM)T . (5.10)

The velocity model needed at each iteration is produced on a depth region of interest, where

an invariant mesh is provided by the user, with Mvx lines and Mvz columns. The product MvxMvz

equals the scalar M , which stands for the number of knots of interpolation. Each interpolation coef-

ficient vi is related to a particular knot of the mesh.

A B-spline interpolation scheme is applied to build, at each iteration, the current velocity

model. Once the interpolation scheme of CRP tomography remains the same of stereotomographic

problem, CRP tomography aims to invert the B-spline coeffcients only, and not the entire velocity

model, which is automatically given by:
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v(x, z) =
Mvx
∑

i=1

Mvz
∑

j=1

vijβi(x)βj(z), (5.11)

where βi and βj are B-spline basis functions (see Appendix D) and vij corresponds to the k-th com-

ponent vk of velocity-model space mvel by the following rule:

k = (i− 1)Mvx + j, (i = 1, . . . ,Mvx j = 1, . . . ,Mvz). (5.12)

As a consequence, the procedure always produces smooth velocity models, which allows the

forward-modeling engine of CRP tomography to be based on ray-tracing algorithms. Such algorithms

require continuous derivatives of the velocity function, this condition being naturally fulfilled by the

beta-splice construction.

A brief explanation about B-spline constructions is given in Appendix D. For a more detailed

text, the reader can refer to, e.g., de Boor et al. (1978).

Ray-model space: The ray-model space for CRP tomography is different from the one presented

for stereotomography, carrying the changes made in observed-data space. Ray-model space for CRP

tomography, mray, consists of N model family vectors mray
f , where N is the same real scalar from

CRP observed-data space. In symbols:

mray = [mray
f ]Nf=1, (5.13)

where each m
ray
f is given by:

m
ray
f = [(x, z)Tf , (θs, θr)

T
fi]

Nf

i=1, (5.14)

where, for each f , Nf is the same real scalar from the related CRP data family. The Cartesian coor-

dinates (x, z) locate a model diffraction point in depth, and, for each i, θs and θr specify two model

angle directions with respect to the vertical. Moreover, given an arbitrary velocity model space mvel,

each subscript i defines a pair of up-going rays that starts from a model diffraction point (x, z) in

depth, each of the rays with initial slopes given by θs and θr. Therefore, each ray-model family m
ray
f

defines a set of Nf pairs of model up-going rays that starts from the same model diffraction point in

depth, each of these rays with a different starting angle.

Each ray-model family m
ray
f corresponds to its counterpart observed-data family dobs

f in the
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observed-data space. In symbols:

m
ray
f ↔ dobs

f . (5.15)

From the above relation, given a family f , there is just one data traveltime parameter tf

and one related model position in depth (x, z)f . Moreover, given a specific family f , each model

parameter sample (θs, θr)fi of the model family m
ray
f corresponds to its counterpart data observed

parameter sample (s, r, ps, ps)fi in the respective data family dobs
f of observed-data space. In symbols:

(θs, θr)fi ↔ (s, r, ps, ps)
obs
fi . (5.16)

Adopting a ray-theoretical description of the wave propagation involved and, moreover, that

perfect modeling conditions hold, such correspondence admits a natural interpretation. Therefore,

under the situation of perfect modeling conditions, given an arbitrary family f an also an arbitrary

pair of rays of this family (each i specifies one pair of rays), the two up-going rays, starting from the

cartesian coordinates (x, z)f with initial slopes given by (θs, θr)fi hit the measurement surface at the

respective source and receiver points (s, r)fi, with ray parameters (ps, pr)fi. Such quantities match

the respective parameters given by the observed data space. Under perfect modeling conditions, this

property holds for all pairs of rays of the family and, moreover, it holds for all families. Furthermore,

the sum of two-way traveltimes demanded by each pair of rays of the specific family match data total

traveltime tf . Figure 5.2 illustrates this hypothetical situation.

Note that, in contrast to stereotomography, no traveltime components are considered in CRP

tomography model space. The reason is that, instead of the stereographic approach of assigning trav-

eltime parameters for source and receiver ray tracing, in CRP tomography those rays are propagated

until the seismic line is reached. To avoid numerical problems due to possible caustics and/or turning

rays caused by strong-velocity variations, a threshold time is introduced to handle such situations. The

no use of model traveltime parameter reduce the computational effort demanded by CRP tomography,

once the Jacobian matrix is reduced, as will be further detailed.

Finally, except for the no use of model traveltime parameter, if Nf = 1 for f = 1, . . . , N ,

ray-model space of CRP tomography is reduced to the ray-model space of stereotomography.
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Figure 5.2: Interpretation of model family vector mray
f = [(x, z)Tf , (θs, θr)

T
fi]

Nf

i=1 of ray-model space.
Color map represents the exact velocity model. The Cartesian parameters (x, z) locates a common
diffraction model point for the family, from which a family of pairs of two up-going rays, where the
i-th pair is specified by the pair of model angle directions (θs, θr)i. Such rays hit the measurement
seismic line in such way that the respective location and horizontal slowness pairs (s, ps) and (r, pr)
match the parameters given by the observed space. Finally, the sum of two-way traveltimes demanded
by each pair of ray match the data total family traveltime tf .

5.2 Forward-model engine and synthetic data space

The forward-model engine transforms a given model space m onto a corresponding synthetic

data space dsyn(m). As CRP tomography is a particular type of ray tomography, forward-model

engine of CRP tomography relies on a ray formulation of wave equation. In the present thesis, the

wave equation accounts for 2D constant-density acoustic wave equation.

Synthetic space dsyn(m) has the same form as the given and invariant observed-data space

dobs, which allows comparisons between these spaces by the misfit function. Therefore, given an

arbitrary current model space m, CRP synthetic space is also composed by N synthetic family vectors

d
syn
f (m) of (computed) kinematic parameters. In symbols:

dsyn(m) = [dsyn
f (m)]Nf=1, (5.17)

where each d
syn
f (m) is given by:
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d
syn
f (m) = [tsynf , (s, r, ps, pr)

syn
fi ]

Nf

i=1. (5.18)

Each synthetic family d
syn
f corresponds to its counterpart data family dobs

f in the observed-

data space. Moreover, given a family f , each synthetic parameter sample (s, r, ps, pr)
syn
fi corresponds

to its counterpart data parameter sample (s, r, ps, pr)
obs
fi in the respective family of observed-data

space. In symbols:

d
syn
f ↔ dobs

f , (5.19)

(s, r, ps, pr)
syn
fi ↔ (s, r, ps, pr)

obs
fi . (5.20)

Remind that each data family dobs
f its related to its counterpart model family m

ray
f in the

ray-model space. Therefore, there is also a correspondence between synthetic families and model

families. A pictorial description of the above correspondence is shown in Figure 5.3.

Given an arbitrary current model space m, the construction of a synthetic data space dsyn

for CRP tomography can be explained in a similar way of the construction of the analogues space of

stereotomography. The changes on the explanation basically consist on the existence of families. Each

ray-model family m
ray
f of current ray-model space provides, together with current velocity-model

space mvel, initial conditions for kinematic ray-tracing of Nf pairs of up-going rays. These pairs of

rays are propagated from the current model common-depth-point, with different starting angles given

by the model slope parameters of current ray-model family. The positions that each of these pairs

(each pair is denoted by the subscript i) of rays emerge at surface line, ssynfi for the source-ray and

rsynfi for the receiver-ray, and the respective horizontal slowness at these positions, (ps)
syn
fi and (pr)

syn
fi ,

respectively, are computed and compose the synthetic parameter vector (s, r, ps, pr)
syn
fi . This scheme

is repeated for all pairs of rays of the family, where i = 1, . . . , Nf . The synthetic total traveltime tsynf

of each family is given by the sum of the two-way traveltime tsynsrfi
of each of the pairs of up-going

rays of the respective family:

tsynf =

Nf
∑

i=1

(tsynsr )fi. (5.21)

The above procedure is repeated for all families. A illustration of the forward modeling step

for CRP tomography is given in Figure 5.4.
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Figure 5.3: Observed-data, model and synthetic spaces. Each observed-data family vector dobs
f re-

lates to a corresponding ray-model family vector mray
f . By means of forward-modeling engine, trial

model vectors generates a corresponding synthetic family vector dsyn
f . Family vectors are denoted

by the blue sets in the figure. Moreover, each observed-data sample (sobs, robs, pobss , pobsr ), denoted by
black dots of data space in the figure, relates to a corresponding ray-model sample (θs, θr), denoted by
black dots of model space in the figure, which is also related to a corresponding synthetic-data sample
(ssyn, rsyn, psyns , psynr ), denoted by black dots in synthetic space. Moreover, each observed-data family
has one observed total family traveltime tobsf , while each synthetic family has one corresponding total
traveltime tsynf and each ray-model family has one model depth point (x, z). Finally, CRP tomog-
raphy model space consists of the union of two model-space subsets. The first is the the ray-model
space mray and its parameter vectors were already explained. The second is the velocity-model space
mvel, which is responsible for the coefficients of the B-spline representation of the velocity function.
Velocity model space is denoted by the red set in the figure. The red dots denotes the interpolation
coefficients.

5.3 CRP Misfit function and regularization

CRP tomography is a seismic inverse problem formulated as a non-linear LSQR optimiza-

tion problem. Therefore, CRP tomography is a particular case of the general LSQR inverse problem

described in chapter two. Moreover, CRP tomography makes use of a Gauss-Newton iterative pro-

cedure to solve a linearized optimization problem related to the original non-linear inverse problem

at each iteration. As already mentioned, this is a classical approach to seismic tomography methods,

as is the case of stereotomography and other seismic tomography methods (see, e.g, Duveneck and

Hubral (2002), Iversen et al. (2012)), Sword (1987)). A regularization term is considered to improve
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Figure 5.4: Synthetic family vector d
syn
f (m) = [tsynf , (s, r, ps, pr)

syn
fi ]

Nf

i=1 for an arbitrary given
model space m. Color map represents B-spline velocity produced by velocity-model space mvel.
Synthetic-data samples [tf , (s, r, ps, pr)]syn are obtained by ray tracing applied to ray-model samples
[(x, z), (θs, θr)]

ray. Parameters refer to rays from a same (common) reflection model point (x, z) (re-
flector not shown) to the seismic line. Black dots indicate the location and ray parameters, (s, ps)syn

and (r, pr)
syn, of the source and receiver points where the rays hit the seismic line. The two-way

traveltime tsyn is the sum of one one-way traveltimes tsyns and tsynr along those rays. Also shown
are observed-data parameters (s, r, ps, pr)obs (blue stars and upside-down triangles). Due to incorrect
model parameters, observed- and synthetic-data vector parameters do not match.

the natural instability of tomographic problem. As the same regularization term presented in stereoto-

mography chapter will be used for CRP tomography description, most of the features related to misfit

function and further iteration process of CRP tomography resembles the ones presented previously

in this thesis. The great difference relies on the Jacobian matrix, which suffered some relative size

reduction due to the new data, synthetic and model spaces descriptions for CRP tomography.

CRP misfit function: Given a current model space m, CRP tomography misfit function measures

the discrepancy between synthetic dsyn(m) and observed-data spaces dobs by the L2 norm:

S(m) =
1

2
[∆dT (m)W−1

D ∆d(m) + λmTRm], (5.22)
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where:

∆d(m) = dsyn(m)− dobs. (5.23)

As indicated in Chapter 2, W−1
d is a diagonal matrix that accounts for a priori data infor-

mation. However, as the misfit function of CRP tomography measures discrepancy between different

types of data components, W−1
d also brings these different types of data components to a comparable

size.

The quadratic expression λmTRm denotes the regularization term applied to model space.

It is the same one proposed in chapter 3 for stereotomography, inspired by the reference Duveneck

(2004b). Therefore, the regularization term accounts, mainly, for the minimization of the second

derivatives of the velocity model. Recalling:

mTRm =

∫

z

∫

x

(

ǫxx

(

∂2v(x, z)

∂x2

)2

+ ǫzz

(

∂2v(x, z)

∂z2

)2

+ ǫvvv
2(x, z)

)

dxdz, (5.24)

in which, v(x, z) is the B-Spline representation of the velocity filed given by the current model space,

and ǫxx, ǫzz and ǫvv are user-selected constant positive weights that calibrate the regularization term.

Usually, ǫxx >> ǫvv and ǫzz >> ǫvv.

As the same regularization approach already explained for stereotomography is used for

CRP tomography, R is the same invariant regularization matrix proposed in chapter three and de-

scribed in details in Appendix E. Finally, λ is the important scalar that calibrates the influence of the

regularization term, which is external to the actual seismic tomographic problem.

It is important to highlight that the above CRP misfit function could be presented in other

formats, being this format a first approach to this new tomographic problem. For instance, CRP misfit

function could be formulated with a priori model information or other types of regularization terms

applied to the hole current model space. Also, more than one regularization term could be considered,

as it is common in other tomographic methods applications.

5.4 Iteration Process

CRP tomography is iteratively solved by a Gauss-Newton approach. Therefore, under this

numerical approach, at each iteration, the method searches for approximate solutions of the original
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non-linear problem. By the Gauss-Newton approach to solve the LSQR inversion problem as an

iterative process, CRP tomography requires a user-selected initial model space m0, as well as an

iterative scheme {mk}, (k = 1, 2, ...) to progress to the desired solution. Given the current model

space mk, its subsequent iteration mk+1 is given by:

mk+1 = mk − αk∆mk, (5.25)

in which αk is a positive scalar that calibrates the size of the updating step.

The update vector ∆mk, is obtained at each iteration by the Gauss-Newton solution of the

optimization problem. Therefore, update vector ∆mk satisfies the following matrix equation:

[(J(mk)
TW−1J(mk) + λR]∆mk = −[J(mk)

TW−1∆d+ λRm], (5.26)

where J is the CRP Jacobian matrix.

As it was explained in Chapter 2, the previous linear system can be seen as normal equations

related to an associate matrix equation. Therefore, the solution of the above equation can be obtained

as the least squares solution of following matrix equation:

Uk∆mk = Vk. (5.27)

where matrices Uk and Vk are defined in an analogues way of the respective matrices of chapter

three (see equatios 3.22), but now in CRP tomography context:

Uk =

[

J(mk)W
−1/2
D

λRtri

]

and Vk = −

[

W
−1/2
D ∆d(mk)

Rtrimk

]

, (5.28)

in which Rtri satisfies the Cholesky decomposition

R = (Rtri)TRtri, (5.29)

where Rtri and (Rtri)T are superior and inferior triangular matrices.

In practice, the system of equations (5.26) is not solved, and the model improvement vector

∆mk is given by the least squares solution of the associated matrix equation (5.27). The reasons for

the previous approach rely both on the ill-conditioning of the problem and on the sparsity of the CRP

Jacobian matrix. Moreover, once CRP tomography usually demands a more number of rays to be

traced at each iteration, which is a direct result of the use of CRP gathers/families, in CRP tomogra-
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phy applications, Jacobian matrix can become huge. Therefore, the inverse of such matrix has to be

numerically avoided. Also, numerical calculations of J(mk)
TW−1J(mk) and J(mk)

TW−1∆d can

result in numerical inaccuracies. Thereby, numerical methods as SVD (singular value decomposition)

(see, e.g, Watkins (2004)) can be used to directly solve matrix Equation (5.27), and return ∆mk as the

least square solution of this matrix equation. SVD is a standard numerical method for ill-conditioned

matrix equations, and provides expression of the generalized inverse of the Jacobian matrix. Unfortu-

natly, for even large applications, as is the case of real-sized problems, SVD has to be avoided, due to

the demanded computational effort of the method. Thereby, other strategies has to be used to derive

the model improvement vector ∆mk. The LSQR algorithm proposed by Paige and Saunders (1982)

could be used in those situations. It is based on conjugate gradient solution of the linear system and

can appropriately explore the sparsity of the Jacobian matrix, which can turn the method a standard

one for real-sized seismic CRP tomography applications. In this thesis, SVD method was applied to

all numerical tests to derive Gauss-Newton solutions for CRP tomography at each iteration.

In the next section, an analysis of the Jacobian matrix of CRP tomography is provided.

Moreover, the proposed modifications to reduce its size will be detailed.

5.5 CRP Jacobian matrix

One of the possible disadvantages of the proposed CRP tomography is the need of more com-

putational effort in comparison with other standard tomography methods, as is the case of stereoto-

mography. The computational effort is a direct result of the greater number of rays to be traced at

each iteration of forward modeling step. However, the computational effort of ray-tracing step is a

problem that can be easily solved nowadays by the use of an efficient parallel implementation, as the

ray propagation of one specific ray is independent of any other ray during forward modeling step.

However, the more is the number of rays used during inverse problem, the bigger is the resulting Ja-

cobian matrix of the method. As a consequence, the linear system to be solved at each iteration of the

inverse process makes use of a considerably bigger Jacobian matrix. Moreover, the numerical solu-

tion of the ill-conditioned linear system can not be amenable to efficient parallel implementation. To

partially handle these problems, some modifications in traditional stereotomography approach were

implemented to CRP tomography in order to decrease the size of Jacobian. The modifications are

described bellow:

• No traveltimes are considered in model space. At each iteration, all rays are upwards propagated

until the surface (horizontal seismic line) is reached. This avoids the computation of traveltime
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derivatives with respect to model parameters, so that the number of columns of Jacobian matrix

decreases. Possible problems of locally strong velocity variations, such as caustic regions or

turning rays that do not reach the surface, are controlled by imposing threshold traveltime limits

for allowed ray propagation.

• Individual two-way traveltimes of all primary-reflection rays that pertain to a same CRP data

gather (i.e., related to a same reference point) will be replaced by their total sum in related data

family vector. As such, further reductions on the Jacobian-madrix sises are achieved. This time,

the number of lines of the matrix is reduced.

At first glimpse, that latter choice, seems counter intuitive, since it conveys less information

to the inversion process. As shown later, all our illustrative experiments seemed not to be affected.

Moreover, the choice of total two-way traveltime as the single traveltime parameter of the CRP data

gather can be seen as a reduction of the degree of freedom of the unstable inverse problem, which

could help the constrain of the model. The CRP Jacobian matrix will be described bellow taking these

modifications.

Description of CRP Jacobian as a block matrix: As described in the previous sections, synthetic

space for CRP tomography dsyn = dsyn(m) is made up of N families, each of them composed by

Nf parameter vectors (s, r, ps, pr)fi, and a total traveltime tf for each family. On the other hand,

the model space m = mvel ∪mray is composed by M model-velocity components, namely B-spline

interpolation coefficients (v1, ..., vm), and N ray-model families, each of them composed by Nf model

parameter vectors (θs, θr)fi and a model depth position of the family (x, z)f . Therefore, we have that

the synthetic space dsyn, model space m and Jacobian matrix J have the following dimensions:

• Dimension of CRP synthetic space:
∑N

f=1(4Nf + 1),

• Dimension of CRP model space: M +
∑N

f=1(2Nf + 2).

• Dimension of CRP Jacobian matrix: [
∑N

f=1(4Nf + 1)]× [M +
∑N

f=1(2Nf + 2)].

From the above considerations, the CRP tomography Jacobian matrix J = J(m) admits the
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following representation:

J =
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In the above equation, all entries of J, as denoted by partial derivatives, are matrices. In this way, J is

represented as a block matrix. More details about each block matrix will be given bellow.

For computational reasons, a feature of great importance is that the CRP Jacobian J is sparse

(i.e., many of its block-matrix entries are null matrices). One of the reasons is that forward modeling

ray tracing is performed in an independent way. In particular, the angle direction of a ray that connects

a diffraction point to a source is independent of the direction angle of the ray that connects that same

point to a receiver. As a consequence, some of the partial derivatives that relate to those independent

rays give rise to null matrices. More specifically, the CRP Jacobian block matrix J turns out to be:

J =
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To better understand the block matrices the following observations can be made:

(a) Synthetic-data space dsyn contains
∑N

f=1 Nf four-component vectors (s, r, ps, pr)syn. As a con-

sequence, there are
∑N

f=1 Nf values of each of those components in synthetic-data space.
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(b) Synthetic-data space dsyn contains N traveltime parameters tsyn.

(c) Ray-model space mray contains
∑N

f=1 Nf two-component parameter vectors (θs, θr). As a con-

sequence, there are
∑N

f=1 Nf values of each of such components in ray-model space.

(d) Ray-model space mray contains N two-component parameter vectors of the type (x, z). As a

consequence, there are N values of each of such components in ray-model space.

(e) Velocity-model space mvel consists of a single parameter vector (v1, . . . , vM) with M compo-

nents.

Therefore, by the above observations, the matrices denoted by
∂ps

syn

∂θs
,
∂pr

syn

∂θr
,
∂ssyn

∂θs
,
∂rsyn

∂θr
and 0, are matrices of dimension (

∑N
f=1 Nf )×(

∑N
f=1 Nf ). In the particular case where Nf is equal for

all families, that is, Nf = N̄ for f = 1, . . . , N , then the size of these matrices become NN̄×NN̄ . On

the other hand, following the above observations, the matrices denoted by
∂ps

syn

∂x
,
∂ps

syn

∂z
,
∂pr

syn

∂x
,

∂pr
syn

∂z
,
∂ssyn

∂x
,
∂ssyn

∂x
,
∂rsyn

∂x
and

∂rsyn

∂z
, are matrices of dimension (

∑n
f=1 Nf )×N . In the previous

mentioned particular case, the size of these matrices are NN̄ × N . However, due to the use of the

family total two-way traveltime, the matrices denoted by
∂tsyn

∂x
and

∂tsyn

∂z
are matrices of dimension

N ×N , while the matrices denoted by
∂tsyn

∂θs
and

∂tsyn

∂θr
, are matrices of dimension N × (

∑N
f=1 Nf )

where, again, in the particular case, the size of these matrices become N ×NN̄ . The matrix denoted

by
∂tsyn

∂v
has dimension N×M . Finally, all other block matrices that does have ∂v in the denominator

(i.e., the partial derivative with respect to v) have dimension
∑N

f=1 Nf × M , and NN̄ × M in the

particular case. Therefore, the Jacobian block matrix J has dimension [
∑N

f=1(4Nf + 1)] × [M +
∑N

f=1(2Nf +2)] as it should. In the special case where Nf = N̄ for f = 1, . . . , N , the CRP Jacobian

matrix J has dimension [N(4N̄ + 1)]× [M +N(2N̄ + 2)].

Comparisons between Jacobian matrix of CRP tomography and stereotomography: Note the

importance of the proposed modifications in the reduction of the size of CRP Jacobian matrix in

comparison with the traditional approach of stereotomography. If all two-way traveltimes of each

source receiver pair would be taken into account, that is, instead of of being a union of family vectors,

data space would be composed by the union of CRP gathers, then the dimension of CRP synthetic

space would be
∑N

f=1 5Nf , while if traveltimes would be kept in model space description, as it is

done in stereotomography, then the dimension of CRP model space would be M +
∑N

f=1(4Nf + 2).

Compare with the dimensions previously given. As a consequente, CRP Jacobian matrix would be of



5 - CRP tomography 99

dimension [
∑N

f=1 5Nf ]× [M+
∑N

f=1(4Nf+2)]. Therefore, this modifications reduced the dimension

of Jacobian matrix by (
∑N

f=1(Nf − 1)) lines and (
∑N

f=1 2Nf ) columns.

It is important to highlight that the use of CRP gathers/families, at the core of CRP to-

mography method, also helps the decrease of the size of Jacobian matrix. To illustrate this benefit,

consider the following hypothetical situation where the same elements of CRP data space would be

collected and used for stereotomography method, which does not consider the concepts and use of

CRP gathers/families. Therefore, any data sample (s, r, ps, pr, tsr)i would be related to one specific

model depth-point-position (x, z)i. Thus, the model space in this situation would be composed by

2
∑N

f=1 Nf coordinates of model depth positions. The introduction of CRP gathers/families turned

possible the reduction of this amount to just 2N components. This approach reduced, once again, the

number of lines in CRP tomography Jacobian matrix. This time, a reduction of 2
∑N

f=1(Nf − 1) lines

was possible. Also, the use of a total family traveltime was just possible because of the use of CRP

families.

Finally, to finish the comparison, consider the following hypothetical situation: if an observed-

data space is given and composed by pre-stack two-way traveltimes, and pairs of positions and slopes

collected in input seismic data by some arbitrary technique, where common-reflection-point informa-

tion is also available, one could be choose between the stereotomography and CRP tomography to in-

vert the related model. To turn the comparison easier, consider that Nf , the number of kinematic sam-

ples of each (possible) family, is the same for all families, that is Nf = N̄ for f = 1, . . . , N . Consider

that N of these families were given. In stereotomography, the common-reflection-point information is

ignored, and at each iteration, a linear system would have do be solved taking into account a Jacobian

matrix of dimension [5NN̄ ] × [M + 6NN̄ ], as discussed in chapter 3. On the other hand, if CRP

tomography is chosen, the Jacobian matrix is reduced to dimension [N(4N̄+1)]× [M+N(2N̄+2)],

which stands for a considerable smaller matrix. Moreover, it is done providing more and better inter-

nal information to the tomographic problem.

The good results and further increase of the stability provided by this approach for CRP to-

mographic inverse problem will be illustrated in next chapters, where also a comparison with stereoto-

mography results will be provided.

Computational aspects: At each CRP tomography iteration, Jacobian matrix J is computed ele-

ment by element by a discrete approach. Hence, paraxial ray theory is applied and computed, during

forward-modeling step, to provide first order estimations of ray paths perturbations with respect to

initial conditions. Ray paths account for synthetic space, while initial conditions are given by the el-

ements of model space. Therefore, paraxial ray theory provides a way to compute the demanded first
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order partial derivatives of the elements of the synthetic space by the elements of the current model

space, which stands for the elements of Jacobian matrix. The calculation of the demanded derivatives

by the use of paraxial ray theory can be adressed in classical literature (see, e.g, Cerveny (2005),

Popov (2002)). As the derivatives are computed iteratively by each ray path, which is independent of

any other ray path, the derivatives used to build each element of the Jacobian matrix for CRP tomog-

raphy is computed by the same expressions used to build Jacobian matrix for stereotomography or

any other ray slope tomography method.

Good sparsity features of Jacobian matrix J comes because of the independence of different

ray propagations. Thus, as the propagation of a particular ray does not depends of the propagation of

any other ray during forward modeling step, the derivatives of kinematic parameters between different

rays are null. Also, the derivatives with respect to velocity coefficients are different of zero just at

coefficients related to regions of the velocity model by where the ray trajectory passes. Therefore, all

submatrices of the block matrix J presents strong sparsity properties. Moreover, all block matrices

which do not have ∂v or ∂tsyn are diagonal matrices. Thus, matrix J is a sparse matrix and this

property can be further explored by an appropriate numerical algorithm.

In all numerical experiments of this thesis, Nf = N̄ was set for all families, where N̄ varies

between performed experiments. However, this was made in order to turn the implementation and

further analysis easier. Despite the fact that this first implementation of CRP tomography consider

this special case, there is no theoretical problem in set different values of Nf for each family.

5.6 Aspects of stability, regularization and initial model depen-

dence

All tomographic methods developed so far has one unwanted feature: they are all ill-posed

optimization problems. In other words, seismic tomography methods may not have a solution or,

if it has, it might not be unique. The linear system performed by each iteration, as a result of the

linearization of the non-linear optmization problem (see, e.g, Billette and Lambaré (1998), Duveneck

(2004b), Farra and Madariaga (1988)), belongs to the class of ill-condicioned linear systems (see,

e.g,Van Loan and Golub (1983)). Ill-condicioned linear systems results in poor quality of the provided

answer in the presence of errors at the matrix, even when the errors are small (see, e.g, Watkins

(2004)). A classical and practical way to handle this problem is the introduction of a regularization

term in the objective function to improve the stability of the inverse problem, as it was proposed
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so far for the seismic inverse problems in this thesis. Also, a suitible choise of algorithm, as singular

value decomposition (see, e.g, Watkins (2004)), also known as SVD, or other related method (see, e.g,

Paige and Saunders (1982)), is needed to solve the ill-condicioned linear system. As the regularization

term is not a part of the tomographic original formulation, it adds external information to the inverse

problem. While it brings more stability, the solution passes to be guided by external features.

CRP tomography method was derived based on previous implementation and further numer-

ical tests of two other seismic tomography methods: stereotomography and NIP wave tomography.

Stereotomography was explained in chapter three, while NIP wave tomography is presented in Ap-

pendix A. Both of the methods, as is the case of all other tomography methods, are strongly depen-

dent of external regularization to constrain the model. In other words, no enough internal information

is available to recover true model space. The tests that will illustrate next chapter will show how

stereotomography improves the ability to constrain different kinds of velocity models by the addition

and improvement of the quality of internal information. There, the internal information is represented

by the increase of observed-data space, provided as input to the inversion process, and better ini-

tial velocity models. This approach turned stereotomography less dependent of the particular choice

of initial regularization parameter. Therefore, is like some part of the necessary regularization was

provided by more internal information. This strategy prevents the expensive search of an optimum

regularization parameter. Furthermore, it is never known if just by changing the level of external reg-

ularization, it is possible to really constrain the model. However, the numerical tests of next chapters

use observed-data spaces generated direct by dynamic-ray tracing. Therefore, it was an easy task to

generate more quantity of input data information, since no picking process was necessary. Picking

processes is an expensive and hard task, mainly when a lower signal-to-noisy data is treated. On the

other hand, when just synthetic models are handled, as it will be the case of next chapters, it is also an

easy task the improvement of the quality of initial velocity models. When the velocity model is not

previously known, this can become a difficult task.

CRP tomography goes one step further in the difficult task of treat the natural instability

of seismic tomography problem. Although it is still a unstable problem that needs an external reg-

ularization to provide reasonable solutions to inverse problem, numerical tests that will illustrated

next chapters suggest that CRP tomography can enhance the regularization and stability of the in-

verse problem by providing more and better internal information. This is done by considering the

important extra feature, so far not used in tomographic approaches, the use of a common-reflection-

point information. Consequently, at each iteration, CRP tomography uses the information provided

by many different pairs of rays, not only one, starting from the same model-depth-position. All the re-

lated information generated by this set of pairs of rays is compared to the related observed quantities.

This family of data information is treated simultaneously to improve model space. Also, note that, by



5 - CRP tomography 102

the use of a family of ray pairs propagated to the surface from each common model depth point, it

is possible to evaluate the model by many different directions. It obviously enhances the quality of

internal information provided to inverse process. Moreover, from each of model depth position, more

parts of the velocity model can be analysed, when compared to other tomographic methods. It will be

shown, by means of numerical tests in next chapters, how these features can decrease the necessity

of providing a big data input observed data space or better initial velocity models. Moreover, at least

in some synthetic tests performed, CRP tomography could become less sensitive to variations in the

scalar parameter λ that regulates the level of external regularization, which can suggest that part of

the necessary regularization came from the use of more internal information, the common-reflection-

point information.

The above properties will be illustrated in next chapters by means of comparisons between

the results provided by different seismic tomography methods on synthetic numerical tests.

5.7 Further strategies for CRP tomography

Strategies to assist the inverse process: As it is done in some others tomographic methods, more

then one regularization could be applied to proposed CRP tomography in order to improve even

more the stability features and help to constrain different kind of models. Therefore, all different

types of regularizations that have already been applied for NIP wave tomography, stereotomography

and other seismic tomography methods, could be adapted CRP tomography. Thus, regularizations

related to previous knowledge about some parts of velocity model or even interface structures, which

is suggested for NIP wave tomography in Duveneck (2004b), or numerical regularization applied

to all components of model space, which is suggested for stereotomography in Billette and Lambaré

(1998), could be applied at the new method. Also, the different kind of strategies to assist the inversion

model as multiscale optimization or initial localization and slopes optimization (see, e.g, Billette et al.

(2003)), could be used. As it will be shown in next chapters, CRP tomography provided reasonable

results during the task of invert different kind of synthetic velocity models just by the presence of one

regularization term. However, in further researches, where more complex models can be proposed,

these strategies can be incorporated for CRP tomography.

Decrease of the regularization parameter: An heuristic algorithm can be used in order to decrease

the value of the regularization weight parameter λ during the inverse process. Decrease the weight
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regularization parameter λ along the iterations can lead to improved solution stability and can accel-

erate the convergence of the inversion method (see, e.g, Nemeth et al. (1997), Williamson (1990)).

At tomographic context, it can works as a search of long-wavelength features at the early iterations,

while more details are pursue at the last iterations. This decrease can be performed by uncounted dif-

ferent ways. In this thesis, a simple heuristic will be used to execute this task. The proposed heuristic

is given by:

λk+1 =

√

S(mk)

S(mk−1)
λk, for k > 1, (5.32)

where S(mk) is the value of objective function, equation (5.22), at k-th iteration.

The heuristic will be applied to all numerical tests of this thesis. This also include the tests

with other seismic tomography methods, as stereotomography and NIP wave tomography methods.

Note that, by the previous heuristic, the regularization parameter is not invariant over the

inverse process. However, it still has to be initialized and the hard task of choose a good initial

regularization parameters still is a remarkable problem for tomographic proposes.

5.8 Initial model space for CRP tomography

Following the same characteristics of other seismic tomography methods, an initial veloc-

ity model is not a remarkable critical point for CRP tomography. In fact, illustrative synthetic-data

examples in next chapters will show that CRP tomography could provide satisfactory solutions for

quite simple, usually homogeneous ones, initial velocity models. However, given an arbitrary initial

(simple) velocity model, CRP tomography requires, in addition to an initial velocity-model space,

also an initial ray-model space mray. A rule to initialize CRP ray model space mray will be given in

this section.

A simple geometric procedure was derived to set initial values for the components of ray

model space mray for CRP tomography. It can be seen as a generalization of the initialization step,

also proposed in this thesis, for stereotomography.

Firstly, recall that, at each iteration, the ray-model space consists on N families of model

parameters, each of them corresponding to a counterpart family of data parameters of the (invariant)

observed-data space provided by the user. Each of the N families in model space is composed by

Nf model parameter vectors of the type (θs, θr)fi, with i = 1, . . . , Nf , plus a common-model-depth



5 - CRP tomography 104

position (x, z)f . These quantities have to be initialized. The counterpart family in observed-data space

is composed by Nf parameter vectors of the type (s, r, ps, pr)fi, plus a total family traveltime tf .

Assume that an initial velocity-model space mvel has been given. With the help of Figure 5.5, a

top-to-bottom procedure transform each observed-data parameter vector (s, r, ps, pr)fi, together with

the related total traveltime tf , from the observed-data space, into its corresponding initial model

parameter vector (θs, θr)fi together with the related common-model-depth position (x, z)f . For now

on, the procedure is very similar to the one proposed in chapter 3 for stereotomography.

Recall that the pairs (s, ps)fi (resp., (r, pr)fi), as given by the observed-data vector param-

eter, define the ray that starts at the source position (s)fi (resp., at the receiver position (r)fi) and

proceed downwards with direction provided by the horizontal slowness (ps)fi (resp., with direction

provided by the horizontal slowness (pr)fi). Under these considerations, both rays are traced until

the same traveltime tf/(2Nf ) is consumed. As shown in Figure 5.5, the endpoints of both rays have

coordinates ((xs)i, (zs)i) and ((xr)i, (zr)i), respectively. Moreover, at those endpoints, the direction

angles (θs)i and (θr)i with respect to the vertical z-axis are provided by ray tracing. Set (xi, zi) as the

midpoint between the endpoints ((xs)i, (zs)i) and ((xr)i, (zr)i). Repeat the following procedure for

each sample of the family.

From the above procedure, Nf direction angles (θs)i and (θr)i are obtained, as well as Nf

depth positions (xi, zi). Setting (x, z) as the midpoint of all depth positions (xi, zi), all values that

define the initial ray-model parameters for the family are obtained. In symbols:

m
ray
f =

(

(x, z)f , [(θs, θr)fi]
Nf

i=1

)

=

(

∑Nf

i=1(xs + xr)i
2Nf

,

∑Nf

i=1(zs + zr)i
2Nf

, [(θs, θr)i]
Nf

i=1

)

. (5.33)

The above procedure is repeated for every family, which completes the ray-model space

initialization step.

It is important to highlight that an arbitrary initial velocity model space was used at the

previous explained initialization step to compute the initial ray-model components. Despite it is not

a crucial feature for seismic tomography applications, usually, the more similar is the initial velocity

with the true velocity model, the better is the answer of the inversion process. However, it usually

requires some previous knowledge about true velocity model.

Despite the fact that the initial velocity model is an arbitrary one, strategies to invert the

model by a crescent order of complexity, which was metioned in chapter three for stereotomography,

could also be applied for CRP tomography applications, although it was not considered in this thesis.
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Figure 5.5: Initialization procedure for ray-model parameter vector. A initial velocity model, con-
structed by an arbitrary given initial velocity-model vector parameter is assumed. Also assumed is
a observed vector parameter of dobs

f , composed by a total family traveltime tf and Nf samples of
(si, ri, psi, pri) data parameters (i = 1, . . . , Nf ), for which the corresponding initial ray-model vec-
tor paramter mray

f , composed by a model depth position (x, z) and Nf samples of (θsi, θri) model
parameters, is to be constructed. Under the use of the given initial velocity model, each of the Nf

data samples defines two rays that are downward propagated from respective source and receiver lo-
cations si and ri (top image), with directions determined by the slopes psi and pri respectively. Those
rays are propagated until the endpoints (xsi, zsi) and (xri, zri) that are attained for the traveltimes
ts = tr = tf/(2Nf ). Take (xi, zi) as the midpoint between (xsi, zsi) and (xri, zri). Setting (x, z)
as the midpoint between all (xi, zi) (bottom image, where an arbitrary Nf = 4 was assumed for
illustration purposes), all values that define the initial ray-model parameter mray

f are obtained.
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In this sense, one could firstly invert a vertical gradient model, then consider some lateral heterogene-

ity, etc. This could be viewed as form to provide increasingly better initial velocity models.

Furthermore, the same optimization problems, executed before stereotomography applica-

tions in some references (see, e.g, Billette et al. (2003)), derived to find same kind of optimum set of

initial model depth positions and slopes, could be adapted for CRP tomography method. However, as

it represents a great help in the difficult task of constrain more complex models, it will be not applied

in this thesis. As has been repeatedly mentioned during this text, one of the objectives of the thesis

is to analyse the ability of the different seismic tomography methods to constrain proposed synthetic

models. The use of these kind of strategies, or other types of extra regularization, would turn this

analysis unfair.

5.9 A Pseudocode for CRP Tomography

During the development of this phd thesis, CRP tomography was fully implemented. All fea-

tures of the inversion method were derived from actual implementations. That included all schemes

employed for ray tracing, B-spline interpolations, mathematical methods to solve ill-conditioned lin-

ear systems, initialization procedure and regularization. None previous software was used. The same

was done to other seismic tomography methods, as stereotomography and NIP wave tomography.

Building all those schemes from scratch was of paramount importance to fully understand the rele-

vant aspects of the tomographic inverse process, as well as to spot possible points where advances

could be made.

The implementation of CRP tomography method (as well as the other seismic tomography

methods implemented) followed what were exposed until now and can be summarized by the follow-

ing pseudocode, organized by steps.

1. Observed-data space is constructed by means of a picking procedure in seismic data. The use

of a CRP stacking procedure was suggested in this thesis to build the desired observed space.

For synthetic numerical problems, observed-data space can be computed by means of direct ray

tracing on true velocity model.

2. Initial parameters of the inversion process are set: number and positions of interpolation ve-

locity knots, values for initial regularization parameters terms, data covariance matrix W−1
d ,

etc.
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3. Ray-model space is initialized by the proposed initialization procedure. An initial velocity

model is arbitrarily chosen by setting values to the interpolation coefficients.

4. Forward modeling step, which stands for ray-tracing system, is performed to compute the com-

ponents of simulated space. The boundary initial conditions are given by current model space.

5. In order to reduce computational effort, first order partial derivatives of components of synthetic

space with respect to the components of current model space are numerically computed during

dynamic-ray tracing. Jacobian matrix is constructed.

6. The regularized matrix equation (5.27) is solved in order to compute improvements for the

model data space. An appropriate numerical method is applied. In this thesis, SVD method was

used.

7. A vector of model update is generated by step 6. An arbitrary scalar path (usually 1 at first try)

is chosen and multiplied to the vector of model update to generate a candidate for new model

space. If under the use of the candidate for new model space the misfit function is decreased,

then the iteration is finished. Model space is updated and the candidate for new model space

becomes current model space. Regularization weight parameter is decreased by the proposed

heuristic and the algorithm returns to step 4.

8. If under the use of the candidate for new model space the misfit function is not decreased,

reduced scalar paths for model update are tested and further evaluations are done until the

misfit function is decreased. If if happens, the iteration is finished, model space is updated,

regularization weight parameter is decreased and the algorithm returns to step 4.

9. If no decreases could be detected during all of the reduced scalar path performed for model

update in previous item, the algorithm is stopped.

The algorithm can also be stopped if a maximum number of iterations is reached or if the

objective function falls bellow an specific inferior limit value.
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Chapter 6

Synthetic tests for stereotomography

6.1 Validation Tests

Stereotomography method was fully implemented during phd period. All features of the

inversion method were derived from actual implementations. In order to validate the implementation,

some validation tests were performed. The following tests will be shown next. All the validation tests

use observed-data space composed by kinematic parameters calculated direct by dynamic-ray tracing

on proposed velocity model tests. Thus, despite of numerical errors and theory approximations, data

set is composed by perfect accurate components. All simulations apply just one regularization term,

the miminization of second derivatives of velocity model explained in this thesis (see Chapter 3 and

Appendix E). The same initial tests were used to validate NIP wave tomography implementation. The

results obtained by NIP wave tomography are illustrated in Appendix B. Some comparisons between

the results obtained by both methods will be addressed in this chapter. In next chapter, this same set

of validation tests will be used to validate CRP tomography implementation.

The chosen tests encompass a variety of different kind of continuous velocity variations. All

of them were built analytically by means of simple math expressions. In all validation tests, a squared

grid of 2km×2km was considered. Velocity models were constructed by B-spline interpolation, with

knots uniformly distributed through the model. The knots were spaced by a constant distance of

0.4km, both in vertical and horizontal directions.

Validation tests are composed by the following velocity models. They will be illustrated in

next figures, together with stereotomography provided results.
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1. Model with trigonometric variation in vertical direction.

2. Model with linear variation in vertical direction.

3. Model with quadratic variation in vertical direction.

4. Model with linear variation in horizontal direction.

5. Model with linear variation in horizontal direction and quadratic variation in vertical direction.

For validation testes, input spaces and initial parameters were set as follows:

Input observed-data space: To generate observed-data space, 49 depth positions were uniformly

distributed through model tests (data depth positions will be illustrated in next figures). These po-

sitions are displayed in next figures. They play the role of the localizations of primary reflection or

diffraction events for these synthetic experiment. From these positions, two rays were propagated to

surface direction, with initial double aperture, with respect to vertical direction, of 30°. In surface line,

the kinematic parameters of emergence positions, slopes and traveltime were computed, providing the

49 samples that compose the observed-data space. This, the components of observed-data space was

computed directly by ray-tracing performed at the true velocity model. Therefore, despite numeri-

cal errors and theoretical approximations, observed-data space is composed by perfect accurate data

components.

The uniform distribution of data positions in depth guarantees that all regions of the velocity

model are covered by information in observed-data space. This procedure will be repeated along all

synthetic tests of this chapter. In next chapters, this configuration will be dropped.

Note that 49 is not an elevate number of data positions in respect with the size of the velocity

model and the amount often used in synthetic validation tests to construct data-observed space. Since

observed-data space is computed directly by dynamic-ray tracing, more rays could be easily taken into

account, which would result in a bigger observed-data space. The objective is to test the performance

of the methods under a not elevate number of input data information, which turns comparisons easier

between the different seismic tomography methods.

Initial model space: Initial velocity model space for all validations tests were set as a homogeneous

initial velocity of 1km/s, except for fourth validation test (model with linear variation in horizontal

direction), where a homogeneous initial velocity of 1.5km/s was applied. Initial velocity model re-

sembles true velocity model just at surface. Interpolation velocity knots were uniformly distributed
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through the model, with vertical and horizontal spacing of 0.4km. Ray-model space was initialized

with the proposed initialization procedure for stereotomography described previously in this thesis

(see Chapter 3). The initialization procedure returned, based on the 49 observed-data samples, the 49

initial ray-model samples, each of them composed by one depth model position, two model slopes

and two model traveltimes. Each model sample is related to the respective sample of observed-data

space. Initial model depth positions for each validation test will be illustrated by following figures.

Initial regularization weight parameter: In terms of initial parametrization, only the initial weight

parameter for regularization term varies through the tests. This was necessary due the different types

of velocity variations. For those where the velocity varies in a non-linear way, a smaller parameter

was used. Some previous search was made in order to find reasonable initial values for initial regu-

larization weight parameter. The parameter decreases thought iterations by the previously proposed

heuristic (see Chapter 5).

Data a-priori matrix: Following Billette and Lambaré (1998), the precision of slopes, traveltime

and shot/receiver positions was set as 2.10−5s/m−1, 0.004s and 1m, respectively. These values are

used to construct the diagonal a-priori data-covariance matrix W. These values were kept the same

for all over the stereotomography synthetic tests of this thesis. Therefore, these values will be omitted

in other synthetic tests descriptions.

Stereotomography validation test results: The small number of data components, plus a initial ve-

locity that does not resemble true velocity models, challenges the method in constrain the model tests.

Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 and 6.10 illustrate the results provided by stereotomog-

raphy method on validation tests. Firstly, the results obtained by stereotomography on validation tests

are noted satisfactory, which contributes to validate stereotomography implementation. Secondly, the

results provided by stereotomography in validation tests are slightly better than those obtained by

NIP wave tomography (see Appendix B). For almost all tests performed, relative difference between

inverted velocity model (final velocity model) and true velocity model falls under 1%. The figures

that illustrate slices of velocity models present almost perfect inverted slices. Also, when compared

with NIP wave tomography results, note the better results obtained by stereotomography when later-

ally heterogeneous velocity models are presented. Therefore, stereotomography seems to be a more

promising technique to handle this type of heterogeneity.
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Figure 6.1: First validation test: model with trigonometric variation in vertical direction. (a) True
velocity model for first validation test. (b) Vertical slices of initial (red) and true (blue) velocity
models. Slices were taken at the middle of the models. (c) Data positions. Observed-data space is
composed by kinematic parameters computed by a series of dynamic-ray tracing starting at these
positions. (d) Initial positions of ray-model space returned by initialization process. Note that initial
positions are concentrated at the upper part of model, because initial velocity model is slower than
true velocity model.
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Figure 6.2: Stereotomography final result for first validation test. (a) Inverted velocity model. (b)
Vertical slices of inverted (red) and true (blues) velocity models. Slices were taken at the middle of
the models. (c) Inverted model (red) positions and true data (blue) positions. (d) Percentage difference
between inverted and true velocity models.
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Figure 6.3: Second validation test: model with linear variation in vertical direction. (a) True velocity
model test. (b) Vertical slices of initial (red) and true (blue) velocity models. Vertical slices were
taken at the middle of the models. (c) Data positions. Observed-data space is composed by kinematic
parameters computed by a series of dynamic-ray tracing starting at these positions. (d) Initial positions
of ray-model space returned by initialization process. Initial positions are concentrated at the upper
part of model, because initial velocity model is slower than true velocity model.
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Figure 6.4: Second validation test: model with linear variation in vertical direction. (a) Inverted ve-
locity model. (b) Vertical slices of inverted (red) and true (blue) velocity models. Vertical slices were
taken at the middle of the models. (c) Final model (red) positions and true (blue) data positions. (d)
Percentage difference between inverted and true velocity models.
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Figure 6.5: Third validation test: model with quadratic variation in vertical direction. (a) True velocity
model test. (b) Vertical slices of initial (red) and true (blue) velocity models. Vertical slices were
taken at the middle of the models. (c) Data positions. Observed-data space is composed by kinematic
parameters computed by a series of dynamic-ray tracing starting at these positions. (d) Initial positions
of ray-model space returned by initialization process.
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Figure 6.6: Third validation test: model with quadratic variation in vertical direction. (a) Inverted
velocity model. (b) Vertical slices of inverted (red) and true (blue) velocity models. Vertical slices
were taken at the middle of the models. (c) Final model (red) positions and true (blue) data positions.
(d) Percentage difference between inverted and true velocity models.



6 - Synthetic tests for stereotomography 117

0 1 2

0

1

2 1.5

1.6

1.7

1.8

1.9

2

V
e

lo
c
it
y
 (

k
m

/s
)

0 0.5 1 1.5 2
1.4

1.6

1.8

2

(a) (b)

0 1 2

0

1

2

0 1 2

0

1

2

(c) (d)

Figure 6.7: Fourth validation test: model with linear variation in horizontal direction. (a) True velocity
model test. (b) Hotizontal slices of initial (red) and true (blue) velocity models. Slices were taken at
the middle of the models. (c) Data positions. Observed-data space is composed by kinematic param-
eters computed by a series of dynamic-ray tracing starting at these positions. (d) Initial positions of
ray-model space returned by initialization process.
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Figure 6.8: Fourth validation test: model with linear variation in horizontal direction. (a) Inverted
velocity model. (b) Horizontal slices of inverted (red) and true (blue) velocity models. Slices were
taken at the middle of the models. (c) Final model (red) positions and true (blue) data positions. (d)
Percentage difference between inverted and true velocity models.
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Figure 6.9: Fifth validation test: model with linear variation in horizontal direction and quadritic
variation in vertical direction. Data positions are the same from previous validation tests. (a) True
velocity model test. (b) Vertical slices of initial (red) and true (blue) velocity models. Slices were
taken at the middle of the models. (c) Hotizontal slices of initial (red) and true (blue) velocity models.
Slices were taken at the middle of the models. (d) Initial positions returned by initialization process.
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Figure 6.10: Fifth validation test: model with linear variation in horizontal direction and quadritic
variation in vertical direction. Data positions are the same from previous validation tests. (a) Inverted
velocity model. (b) Vertical slices of inverted (red) and true (blue) velocity models. Slices were taken
at the middle of the models. (c) Horizontal slices of inverted (red) and true (blue) velocity models.
Slices were taken at the middle of the models. (d) Final model (red) positions and true (blue) data
positions.
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6.2 The Three-layer Test

This section is dedicated to test the performance of stereotomography method to invert a

three-layer model. In crescent order of depth, the layers present homogeneous velocity of 1km/s,

2km/s and 3km/s, respectively. Because rays will be traced through the model to generate observed-

data space, smoothness properties are required. Thus, it is, in fact, a three-layer model without discon-

tinuity at interfaces. Figure 6.11 illustrates the proposed model. The velocity model was constructed

by means of B-spline interpolation, in a grid of dimension 2km×2km. Interpolation knots were uni-

formly distributed with vertical and horizontal spacing of 0.2km. B-spline functions of third order

were applied, which assures the derivatives demanded both by dynamic-ray tracing, as well as com-

putations of the derivatives for Jacobian matrix.
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Figure 6.11: (a) Three-layer velocity model. (b) Vertical slice of the velocity model. The slice was
taken at the middle of the model. Note that the second layer is smaller than the others.

Despite the fact of the model consists just by three layers, it is not a trivial test. Some reasons

reinforce this point of view. Firstly, there are two abrupt variations of velocity in a small grid. Even

after the smoothness of these velocity variations due to B-spline interpolation proporties, these abrupt

velocity variations are an extra challenge to the inversion process. Moreover, the velocity model varies

through 1km/s to 3km/s in less then 2km at vertical direction. However, the biggest challenge is that

the second layer is considerably small. The test is designed to find out if stereotomography will be

able to detect this small layer or not. In Appendix B, NIP wave tomography was tested by this same

three-layer test, with similar boundary and initial conditions. There, NIP wave tomography failed to
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precisely detect the presence of this small layer. The interest reader can consult the Appendix B for

more details about the results obtained by NIP wave tomography on this test.

However, this velocity model offers another problem: since it presents strong oscillations at

vertical direction, in this particular case, the regularization term plays against the inversion problem,

once it guides inverse process to smoothness solutions. Thus, a small value of regularization parameter

λ will be applied and the method will have the task to constrain the model in the presence of small

values of the necessary regularization.

The proposed three-layer smooth velocity model was illustrated in Figure 6.11, where also a

vertical slice of the velocity model was exhibited. The vertical slice illustrates the abrupt variation of

the velocity model in the small grid. Note that the second layer is smaller than the others.

For stereotomography three-layer test, input data, model spaces and initial parameters were

set as follows:

Input observed-data space: To generate observed-data space, 100 positions in depth were uni-

formly displayed thought the model (see Figure 6.12). These positions play the role of the localiza-

tions of primary reflection/diffraction events for this synthetic experiment. From these positions, two

rays were propagated to surface line with initial double aperture, whith respect to horizontal direc-

tion, of 30°. In surface line, the kinematic parameters of emergence positions, slopes and traveltime

were computed, providing 100 samples that compose the observed-data space. Computed directly by

ray-tracing performed at the three-layer velocity model test, despite numerical errors and theoretical

approximations, observed-data space is composed, therefore, by perfect accurate data components.

The uniform distribution guarantees, once again, that all regions of the velocity model are covered by

informations in observed-data space. In order to compare with NIP wave tomography result, the data

positions are the same of first test performed for NIP wave tomography (see Appendix B).

Initial model space: Initial velocity model is a homogeneous velocity model of 1km/s, which

equals the velocity of first layer. Through inverse process iterations, velocity models are build under

the same number and position of knots used to build the three-layer velocity model test. Therefore,

with respect to interpolation limitations, three-layer model test can be reconstructed thought inverse

process. Ray-model space was initialized with the proposed initialization procedure for stereotomog-

raphy in this thesis (see Chapter 3). Therefore, the initialization procedure returned 100 initial ray-

model samples, each of them composed by one depth-model position, two mode slopes and two

model traveltimes. Each model sample is related to the respective sample of observed-data space.

Initial model depth positions returned by initialization step under the initial homogeneous velocity
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model of 1km/s are illustrated in Figure 6.12.
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Figure 6.12: Three-layer test. (a) Data positions. Observed-data space is composed by kinematic
parameters computed by a series of dynamic-ray tracing starting at these positions. (b) Initial model
positions returned by initialization procedure, under the initial constant velocity model of 1km/s.

Initial regularization weight parameter: A previous search was made in order to find a good

initial value for regularization parameter. Due to the observations made at the presentation of this

test, a small initial regularization parameter value had to be set in order to handle with the trade-off

between smoothness, which is a feature searched by the regularization term, and invert the abrupt

velocity oscillations of true velocity model. For this test, λ was set in order to, at first iteration,

the relation between the regularization term with respect to the objective function would be 4.10−6.

Moreover, ǫzz = 10−3, ǫxx = 1 and ǫvv = 10−4 were set to calibrate the regularization term.

Figure 6.13 illustrates the final model proposed by stereotomography. It is easy to note that

the inverted model of stereotomography is superior of the one proposed by NIP wave tomography

in Appendix B. Velocity oscillations are not presented inside layers, the second layer was detected

and velocity was reasonably inverted. Just at regions very close to bottom area, where almost no

information is available, the stereotomography inverted velocity model deviates from true velocity

model. Therefore, except at regions near the bottom area, the relative difference between true and

inverted velocity model fall under 2%. Model depth positions were also well repositioned, which

reinforces the good quality of the inverted model. Other challenge presented by this test, to set a

good trade-off between regularization and provide a velocity model near the true velocity model, was

overcomed by stereotomography. Differently of curvature tomography methods, stereotomography



6 - Synthetic tests for stereotomography 124

is not too dependent of a strong smoothness of velocity model in order to compute curvatures and,

moreover, Jacobian components related to this kinematic parameter. Therefore, small regularization

parameter could be set, without decreasing the quality of final model solution. In Appendix B, an

even greater number of input observed-data information (a bigger data space) was given to NIP wave

tomography. Even though, the result presented by stereotomography is still better.
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Figure 6.13: Three-Layer Test. (a) Stereotomography inverted velocity model. (b) Vertical slices of
inverted (red), true (blue) and initial (yellow) velocity models. Slices were taken at the middle of the
models. (c) Inverted model positions (red) and true data positions (blue). (d) Percentage difference
between inverted and true velocity models.

Despite the fact that the provided stereotomography solution was good, it is important to

highlight that it still presents a strong dependence on the right choice for initial regularization param-

eter λ. To almost fit true velocity model, a small initial parameter λ was set. However, if the parameter
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choice would be even smaller, the inverted model proposed by stereotomography would lose the good

features previously presented, and became more meaningless. On the other hand, higher values for

regularization parameter turn the model too smooth, which it is not a characteristic of true velocity

model. Figure 6.14 illustrates these situations, and reinforce the strong dependence of good solutions

by a good initial choice for regularization parameter.
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Figure 6.14: Three-Layer Test. (a) Vertical slices of stereotomography inverted (red), true (blue) and
initial (yellow) velocity models under a smaller initial regularization parameter. Note the presence of
oscillations in first layer region. (b) Vertical slices of stereotomography inverted (red), true (blue) and
initial (yellow) velocity models under a stronger regularization. Note that the inverted velocity model
doesn’t recognize the presence of second layer.

In order to keep the investigation about the ability of stereotomography to invert the pro-

posed three-layer model, one more difficult will be proposed: a reduced number of observed-data

components will be given as input to inverse process. Therefore, in this new test, observed data space

will be generated by just 49 positions in depth (see Figure 6.15). Other features of the test will be kept

the same. From each of the 49 data positions, two rays are propagated to surface with initial double

aperture, with respect to vertical direction, of 30°. In surface line, demanded kinematic parameters

are computed, providing 49 data samples that compose observed-data space. Initial velocity model is

the same of previous test, as well as other features as initial regularization parameter.

Although slightly worse, the result remains considerably good, as it is shown by Figure 6.17.

This is a great achievement for stereotomography. By this result, the method showed its ability to

constrain the model by an even smaller number of input data information. However, if just 36 samples

of data information are provided (once again, generated by 36 uniformly distributed positions in

depth, Figure 6.16, from where a pair of rays are traced to compute the kinematic parameters at
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Figure 6.15: Three-Layer Test with 49 data samples. (a) Data depth positions. (b) Initial model depth
positions.
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Figure 6.16: Three-Layer Test with 36 data samples. (a) Data depth positions. (b) Initial model depth
positions.
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Figure 6.17: Three-Layer Test with 49 data samples. (a) Stereotomography inverted velocity model.
(b) Vertical slices of inverted (red) and true (blue) velocity models. Slices were taken at the middle of
the models. (c) Final model depth positions (red) and true data depth positions (blue). (d) Percentage
difference between inverted and true velocity models.
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surface line), the velocity model couldn’t be reasonably inverted. The method does not identify the

presence of the second layer. This time, no enough information is available to constrain the model.

Once again, initial velocity model was kept the same, as well as initial regularization parameters.

Figure (6.18) illustrates this limit case, where the small number of input data information does not

allow a good performance of stereotomography in inverting the proposed model test. However, note

that, even in this situation, model depth positions were reasonably inverted.

0 1 2

0

1

2 1

1.5

2

2.5

3

V
e
lo

c
it
y
 (

k
m

/s
)

0 0.5 1 1.5 2

1

1.5

2

2.5

3

(a) (b)

0 1 2

0

1

2

0 1 2

0

1

2 2

4

6

8

10

12

R
e
la

ti
v
e
 D

if
fe

re
n
c
e
 (

%
)

(c) (d)

Figure 6.18: Three-layer test with 36 data samples. (a) Stereotomography nverted velocity model. (b)
Vertical slices of inverted (red) and true (blue) velocity models. Slices were taken at the middle of the
models. (c) Inverted model depth positions (red) and true data depth positions (blue). (d) Percentage
difference between inverted and true velocity models.
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6.3 Laterally Heterogeneous Model Test

In this section, stereotomography method will be tested on a synthetic laterally heteroge-

neous model. In fact, the method has already been tested in laterally heterogeneous models during

validation tests. However, the model that will be used in this section presents a kind of higher level of

heterogeneity, both in vertical and horizontal directions. It is described in a grid of 3km×4km, which

is a bigger grid than the ones used in previous tests.

The main objective of this section is to analyse how stereotomography method can constrain

a more complex velocity model by improving the quality and quantity of both input-data information

and initial velocity model, which represent internal information for tomography problem. Thus, dif-

ferently of what has been made in previous sections, the focus won’t be at the level of regularization.

The proposed laterally heterogeneous model is illustrated in Figure 6.19. Velocity model

presents high levels of heterogeneity in both directions. Note the presence of a region of higher

velocity at the bottom of the model. Models that presents this type of characteristics are famous to

be difficult to be inverted by tomography methods (see, e.g, Billette and Lambaré (1998), Neckludov

et al. (2006)).
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Figure 6.19: Laterally heterogeneous model test. Velocity model presents heterogeneity in both di-
rections. Note the presence of a region of high velocity at the bottom of the model.

To build the proposed velocity model test, B-spline interpolation was applied. To this issue,

interpolation knots were spaced with an horizontal distance of 0.4km and a vertical distance of 0.3km

through the grid. Therefore, the model illustrated in Figure 6.19 presents the necessary smoothness
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to perform ray-tracing. Also, with respect to interpolation issues, the model test can be perfectly

recovered, since the same number of interpolation knots, positioned at the same places, will be used

by the inverse process to construct stereotomography velocity models. A homogeneous initial velocity

model, Figure 6.20, will be used used in a first test.
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Figure 6.20: Initial homogeneous velocity model used for stereotomography first try on lateral het-
eregenous test.

For this test, input data and model spaces and initial parameters were set as follows:

Input observed-data space: To generate observed-data space, 121 positions in depth were dis-

played thought the model (see Figure 6.21). These positions play the role of the hypothetical localiza-

tions of primary reflection/diffraction events for this synthetic experiment. From these positions, two

rays were propagated to surface line, with initial double aperture, with respect to vertical direction, of

30°. In surface line, kinematic parameters of emergence positions, slopes and traveltime were com-

puted, providing 121 data samples that compose the observed-data space. Despite numerical errors

and theorical approximations, observed-data space is composed by perfect accurate data.

Initial model space: At first try, initial velocity model is a homogeneous velocity model of 1.5km/s.

The initial velocity model is illustrated by Figure 6.20. Through stereotomography inverse process,

velocity models are constructed under the same number and positions of knots used to build the true

velocity model test. Ray-model space was initialized with the proposed initialization procedure for

stereotomography in this thesis (see Chapter 3), which returned 121 ray-model samples, each of them

composed by one depth-model position, two model slopes and two model traveltimes. Each model
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sample is related to the respective sample of observed-data space. Figure 6.21 exhibits initial model

positions returned by the initialization step under the initial homogeneous velocity model of 1.5km/s.
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Figure 6.21: Laterally heterogeneous model test. (a) Data depth positions used to generate observed-
data space components by means of ray-tracing. (b) Initial model positions returned by initialization
step under the initial homogeneous velocity model of 1.5km/s.

The solution proposed by stereotomography will be presented by subsequent attempts. Each

subsequent attempt (try) will be performed considering improvements in initial velocity model or

increasing the size of input observed-data space. The objective is to show how the quality of stereoto-

mography final velocity model can be increased by providing better and more initial/input informa-

tion.

First try - Discussion about initial regularization parameter and two initial tests: By the use of

the parametrization and initial boundary conditions mentioned before, two model solutions proposed

by stereotomography are exhibited in Figure 6.22. Obviously, none of the proposed final velocity

models resemble the true velocity model. The top figure represents stereotomography inverted veloc-

ity model obtained under an initial weight regularization parameter λ set in order to put the relation

between regularization term, with respect to original stereotomography objective function, to a value

of 10−2 at the first iteration. The middle figure represents the inverted velocity model obtained under

an initial weight regularization parameter λ set in order to put the relation between regularization

term, with respect to original stereotomography objective function, to a value of 10−4 at the first it-

eration. Note the effect of the regularization parameter on the main aspects of the velocity model.

The more regularized one presents almost a linear vertical variation, since the minimization of sec-

ond derivatives does not allow higher velocity variations. The less regularized one is not constrained

neither by the information provided from observed-data space, nor by the regularization term.
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Figure 6.22: Laterally heterogeneous model test - First try. Top: Stereotomography inverted velocity
model with higher level of initial regularization. Middle: Stereotomography inverted velocity model
with lower level of initial regularization. Bottom: laterally heterogeneous model test.
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So far, what has been done in all previous tests to derive a reasonable final velocity model

solution is to find some kind of an optimum value for initial regularization parameter λ that helps to

constrain the model. Besides the fact that it is an expensive task, since a lot of tomographic inverse

process have to be performed, it is a way to constrain the model by means of external information.

In this section, it will be analysed how the proposed model test can be constrained by providing

more and better internal information, keeping the level of initial regularization invariant. The more

and better internal information account for improving both the quality of initial velocity model and

the amount of input data components given to the inverse process. The case of the less regularized

velocity model of Figure 6.22 (middle figure) will be adopted. So far, it is only a meaningless velocity

model. Keeping the initial level of regularization constant, it will be shown how improvements of the

quality of the inverted velocity model is possible by means of better internal information.

Second try: The second try consists in chaging initial velocity model. The initial regularization

level applied is the same one used in less regularized case in first try (see Figure 6.22). Previously, the

initial velocity model used in first try was a homogeneous velocity model of 1.5km/s. This velocity

does not resembles at all the true velocity model. Therefore, a better initial velocity model will be

provided now to stereotomography second try. This new initial velocity model consists in a velocity

model described by a linear variation in vertical direction. It starts from 1.5km/s at surface line and

linearly increases until 2.5km/s at the bottom line. The new initial velocity model, as well as the new

initial model depth positions returned by initialization step, are illustrated in Figure 6.23. Note how

the initial model positions are better localized because of the use of a better initial velocity model.
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Figure 6.23: Laterally Heterogeneous Model - Second Try. (a) New initial velocity model described
by a constant vertical variation in vertical direction. (b) Initial positions provided by initialization step
under the use of new initial velocity model.
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With the introduction of a better initial velocity model, stereotomography method returned

the final velocity model illustrated in Figure 6.24. True laterally heterogeneous velocity model test

was displayed again to turn comparisons easier. The quality improvement when compared to previous

solution presented in first try is notable. Outside the bottom area, most of the relative errors fall under

2%. Also, until 2km in depth, all inverted model positions (Figure 6.25) are quite correct. Only at

most deepest areas, errors are evident. It is an expected feature, due to the less number of information

available in this area.

It is remarkable how the solution has changed, from a meaningless velocity model, to a

reasonably good one, just by the introduction of a better velocity model. However, more can be done

in order to improve the quality of stereotomography result if more input-data information is provided.

This will be done in the following third try.

Third try: The third try consists in increasing the number of input-data information provided to the

inverse process. In other words, a bigger data space will be provided. In first and second try, 121 data

samples were provided as input for inverse process. However, this number can be considered small,

due to the complexity and size of the true model test. In third try, 256 data samples will be provided.

Once again, they are generated by ray-propagation of rays starting at 256 data depth positions, with

initial double aperture, with respect to vertical direction, of 30°. The new data positions, as well as new

initial model positions, are illustrated in Figure 6.26. Due to the correspondence between observed

data samples and model data samples, initial model positions almost cover all areas of velocity model.

This is an important feature for tomographic inversion aspects. The same initial velocity model of

second try was be used (Figure 6.23).

Stereotomography final velocity model for third try is illustrated in Figure 6.27. The inverted

velocity model was noted improved by the use of a bigger input-data space. Now, just two regions

at the bottom area presents relative errors bigger than 2%. Between these two regions, one of them

is situated in the border of bottom area, where practically no input data information is available. The

other region is the high velocity area, which is a classical problem to tomographic inverse problems,

mainly when it is localized near the bottom of the model. Except by these two regions, almost all

contour velocity lines are similar between true and inverted velocity models. Furthermore, inverted

final model depth positions (Figure 6.28) are quite good.

The present laterally heterogeneous model test showed how it is possible to significantly

increase the quality of stereotomography inverted model by providing more and better input informa-

tion and initial conditions to the problem. The initial level for regularization term was kept initially

constant for all of the tries performed. With this strategy, it was possible to improve the proposed
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Figure 6.24: Laterally heterogeneous model test - Second try. Top: Inverted velocity model. Middle:
True velocity model test. Bottom: Percentage difference between inverted and true velocity models.
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Figure 6.25: Laterally heterogeneous model test - Second try. Inverted model positions (red) and true
data positions (blue).
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Figure 6.26: Laterally Heterogeneous Model - Third Try. (a) Data positions. (b) Initial positions pro-
vided by initialization step under the use of initial velocity model of second try (Figure 6.23). Initial
model depth positions cover almost all areas of the velocity model.
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Figure 6.27: Laterally heterogeneous model test - Third try. Top: Inverted velocity model. Middle:
True velocity model test. Bottom: Percentage difference between inverted and true velocity models.
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Figure 6.28: Laterally heterogeneous model test - Third try. Inverted model positions (red) and true
data positions (blue).

stereotomography inverted velocity model, from a meaningless velocity model (first try), to a very

good proposed solution (third try). It is possible to say that providing more number of input data

samples and also a better initial velocity model, worked as a internal regularization to the problem,

in the sense that it brought stability to the inverse process. The first initial inverted model, which was

meaningless, resulting of an unstable inverse process, could be transformed into a very good model

solution. In this case, more internal information were provided, which turned the task of constrain

the model easier. Similar strategy will be applied in next section. However, it will be done in a more

famous synthetic data set.

6.4 Soft Marmousi Test

The 2D Marmousi model have been widely used to test different velocity model building

techniques. The difficulties arise from a high complex model structure. For seismic tomography

methods of this thesis and ray propagation purposes, Marmousi model is an intractable model. In

this section, the approach used in Billette et al. (2003) will be followed, and a smooth version of the

original Marmousi model will be considered. The smooth version of Marmousi model, namely soft

Marmousi, is illustrated in Figure 6.29. As it was done in previous section, stereotomography method

will be applied in subsequent tries, always improving some aspect related to quantity or quality of

initial data and or initial model information given to stereotomography inverse problem. Once again,

it will be clear how these features may be used to constrain the proposed model.
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Figure 6.29: Soft Marmousi model.

For the first try, input data and model spaces and initial parameters were set as follows:

Input observed-data space: To generate observed-data space, at first try, 208 data depth positions

were displayed through soft Marmousi model (see Figure 6.31). From each of these positions, a pair of

rays were traced to surface line, with initial double aperture, with respect to vertical direction, of 40°.

kinematic parameters of position, traveltime and slopes were computed at surface line. Therefore, 208

data samples were provided to observed-data space. Despite the fact that they were generated directly

by ray-tracing, which results in perfect accurate data information, it can be consider a small number

of input data. For comparisons, in Billette et al. (2003), more then three thousands data samples were

applied. However, there, these samples were picked and estimated in slant stack panels.

Initial model space: Differently of what was done in last section, at first try, no homogeneous

initial velocity model will be provided, in order to avoid the illustration of a first non-regularized

try, where commonly meaningless velocity model is generated by tomographic inverse process. At

first try, an initial velocity model described by a linear velocity variation in vertical direction will be

used. Initial velocity model is illustrated by Figure 6.30. It starts from 1.5km/s at surface line and

grows until the value of 3km/s at bottom line. Through iterations, velocity models will be constructed

by B-spline interpolation with knots distributed with vertical spacement of 0.4km and horizontal

spacement of 0.5km. Differently of last tests, true velocity model, the soft Marmousi model, was not

constructed by means of B-spline interpolation. It was generated by a smoothing average operator

applied to original Marmousi model (see Chapter 9 for more details). Therefore, it is not previously

known if B-spline interpolation is capable to perfectly construct soft Marmousi velocity model. Thus,
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Figure 6.30: Soft Marmousi test - First try. Initial velocity model.

another difficult is presented to stereotomography inverse process. Initial ray-model components were

generated by the initialization procedure proposed in this thesis in chapter 3, returning 208 initial ray-

model samples, each of them composed by one initial model depth position, two model slopes and

two model traveltimes. Initial model-depth positions provided by initialization step under the use of

the proposed initial velocity model are illustrated in Figure 6.31.

Initial regularization weight parameter: For this test, λ was set in order to, at first iteration,

the relation between the regularization term with respect to the objective function would be 5.10−5.

Moreover, ǫzz = 10−2, ǫxx = 1 and ǫvv = 10−4 were set to calibrate regularization term. This values

will be the same for all the tries performed for stereotomography soft Marmousi test.

First try results: The results obtained by first try are illustrated in Figure 6.32. As it can be noted,

it is not a bad result at all. Even considering the small number of input data provided to first try, the

shallower half of the model, except for some details, already exhibits the main characteristics of the

true model, the soft Marmousi. The deeper half of the model demands some adjusts to reasonably

describe the true velocity model. Final model depth positions are illustrated in Figure 6.33.

Second try: The second try consists in improving the number of data samples provided to the

method. Now, 357 data positions are displayed through the model, from where a pair of rays will be

traced from each of these points to surface line. At surface line, the kinematic parameters of positions,

slopes and traveltime are computed, providing 357 data samples. Note, again, that this number of

samples is still a considerable small number of input data, since it is still approximately 10% of the
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Figure 6.31: Soft Marmousi test - First try. Top: Data positions. Bottom: Initial model positions re-
turned by initialization step under initial velocity model of Figure 6.30.

amount applied in Billette et al. (2003). Other aspects of first try are kept the same. The distribution

of new data positions, and consequent new initial model positions, are illustrated in Figure 6.34.

Second try results: The results obtained by second try are exhibited in Figure 6.35. The improve-

ments on the quality of stereotomography final model are easily noted. Providing more input data to

the inverse problem turned possible a better resolution of the deeper half of the model. Note how most

of the model depth positions were correctly inverted (Figure 6.36). Once again, it could be showed

how providing more and better input information acts as a kind of internal regularization, assisting

the inverse problem to constrain the model. The second try already exhibits an inverted model of

good quality. For comparisons, it recovered more details of true velocity model then those reported in

Billette et al. (2003), even with the considerably smaller number of data provided. However, here the



6 - Synthetic tests for stereotomography 142

0 1 2 3 4 5 6 7 8

0

1

2

3

4 1.5

2

2.5

3

3.5

4

V
e

lo
c
it
y
 (

k
m

/s
)

0 1 2 3 4 5 6 7 8

0

1

2

3

4 1.5

2

2.5

3

3.5

4

V
e

lo
c
it
y
 (

k
m

/s
)

0 1 2 3 4 5 6 7 8

0

1

2

3

4

4

6

8

10

12

14

R
e

la
ti
v
e

 D
if
fe

re
n

c
e

 (
%

)

Figure 6.32: Soft Marmousi test - First try. Top: Inverted velocity model. Middle: True velocity model
test - Soft Marmousi. Bottom: Percentage difference between inverted and true velocity models.
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Figure 6.33: Soft Marmousi test - First try. Inverted model positions (red) and true data positions
(blue).

input data was perfectly accurate and related to depth positions (primary reflection/diffraction events)

almost uniformly distribution through the model, which helps, a lot, the inverse process. To recover

more details of the model, the present result of second try could be used, for instance, as an input

for full waveform inversion method. This strategy will be done in chapter 9, but CRP tomography

velocity model will be provided as input for FWI.

The last result could be continuously slightly improved with the introduction of more data

points or even better velocity initial models. However, the objective of this section has already been

showed. Other strategy to provide even better velocity models is the search of the optimum value of

initial regularization parameter, keeping constant the other features of inverse problem. Therefore,

it is probable that, keeping the same features applied to performed tests, a better solution could be

found by searching an optimum value of initial regularization parameter. Remind that, as the all

tomographic methods are naturally unstable, this parameter plays a fundamental role in the inverse

process. However, the process of searching an optimum value to initial regularization parameter is

another optimization problem, which is not the focus of this thesis. Furthermore, the search of a

good initial value for initial regularization parameter is too expensive, since it could accounts for

many tomographic inverse process. Thus, this thesis focus in another strategy to assit the constrain

of the models by providing a kind of “internal" regularization to tomographic inverse process. This

could be done, as has been showed, by improving both quality and quantity of initial information

given to the inverse process. In next chapter, a new slope tomographic method will be proposed,

which enhance the regularization of the problem by using more and better internal information, the

common-reflection-point information.
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Figure 6.34: Soft Marmousi Test - Second Try. Top: Data positions. Bottom: Initial model positions
returned by initialization step under the use the same initial velocity model of first try (Figure 6.30).
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Figure 6.35: Soft Marmousi test - Second try. Top: Inverted velocity model. Middle: True velocity
model test - Soft Marmousi. Bottom: Percentage difference between inverted and true velocity mod-
els.
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Figure 6.36: Soft Marmousi test - Second try. Inverted model positions (red) and true data positions
(blue).
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Chapter 7

Synthetic tests for CRP tomography

7.1 Validation Tests

CRP tomography, the main contribution of this thesis for seismic tomography research, was

fully implemented during phd period. All features of the inversion method were derived from actual

implementations. That included all schemes employed for ray tracing, B-spline interpolations, math-

ematical methods to solve ill-conditioned linear systems, initialization procedure and regularization.

In order to test CRP tomography implementation, the method was tested by the same set of validation

tests used to validate stereotomography and NIP wave tomography implementations. As CRP tomog-

raphy is a brand new method, these tests works, also, as a first validation set of tests for the technique.

In order to be a promising method, it has, at least, to solve the simple problems already solved by

other standard methods.

Being the same tests applied to validate previous implementations, the following velocity

model tests will be used to validate CRP tomography:

1. Model with trigonometric variation in vertical direction.

2. Model with linear variation in vertical direction.

3. Model with quadratic variation in vertical direction.

4. Model with linear variation in horizontal direction.

5. Model with linear variation in horizontal direction and quadratic variation in vertical direction.
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In order to be fair and compare results provided by all tomographic methods, the same

parametrization used in previous chapter for stereotomography validation tests will be kept. There-

fore, for CRP tomography validation tests, input data and model spaces and initial parameters were

set as follows:

Input observed-data space: To generate data space, 49 positions (common-depth points) were uni-

formly distributed in depth through the model. These positions are exactly the same used for stereoto-

mography validation tests. These positions play the role of hypothetical localization of primary reflec-

tion or diffraction events for these synthetic experiments. Therefore, for comparison reasons, these

tests simulate the results that would be obtained by both tomography methods under the same num-

ber of pickings. From theses positions, five pairs of rays were propagated to surface directions, with

double aperture, with respect to vertical direction, varying from 10° to 40°. In further tests, more

pairs of rays will be propagated from each data common-depth-point. In surface line, the kinematic

parameters of emergence positions, slopes and traveltimes were computed. All traveltimes computed

by rays starting from the same common-depth-position were summed. Therefore, data space is com-

posed by 49 families (gathers), each of them with one data total traveltime and five samples composed

by two data positions and two data slopes parameters. As the components of data space were com-

puted directly by ray-tracing performed at the true velocity model test, despite numerical errors and

theoretical approximations, observed-data space is composed by perfect accurate data components.

Moreover, the uniform distribution of positions in depth guarantees that all regions of the velocity

model are covered by informations in observed-data space.

Initial model space: All initial velocity model spaces for validation tests were set as a homoge-

neous velocity model of 1km/s. The exception is, once again, the initial velocity model of fourth

validation test, where an initial homogeneous velocity model of 1.5km/s was considered. The B-

spline interpolation knots were uniformly distributed through the model, with vertical and horizontal

spacing of 0.4km. Its is exactly the same parametrization applied to build the true velocity model

tests. Ray-model space was initialized with the proposed initialization procedure for CRP tomogra-

phy (see Chapter 5). Therefore, the initialization procedure returned 49 samples of model families,

each of them composed by an initial model position in depth and five pairs of initial model slopes.

Initial regularization weight parameter: The initial regularization weight parameter varies through

the tests. This was necessary due the different types of velocity variations. For those where the veloc-

ity varies in a non-linear way, a smaller parameter was used. Again, some previous search was made

in order to find reasonable initial values for initial regularization parameter. The parameter decreases
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through iterations by the previously proposed heuristic in chapter 5. The same heuristic was applied

to stereotomography tests.

Data a-priori matrix: For CRP tomography validation tests, a similar data a-priori matrix W de-

scribed for stereotomography validation test was applied. Therefore, both tests were performed con-

sidering the same values of precisions for the different types of data kinematic parameters of CRP

tomography. The interest reader can go back to chapter 6 for more details about these chosen values.

As these values will be kept the same for all over the tests performed in this thesis, discussions about

data-a-priori matrix will be omitted.

CRP tomography validation tests: The results obtained by CRP tomography are illustrated by

Figures 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 and 7.10. The results exhibited are quite good. In

fact, at almost all tests, the relative errors fall under 1%. Also, the vertical and horizontal slices of

the CRP tomography inverted model almost fitted true velocity model tests. In the most challenger

validation test, the one with quadratic variation in vertical direction and linear variation in horizontal

direction, the final model provided by CRP tomography is slightly better then the one obtained by

stereotomography. It is important to remind that initial velocity models used in all tests were simple

constant velocity models. Also, just a few data common-depth-points, with just 5 pairs of rays related

to each point, were used to generate input observed-data space. Results could be even better if at least

one of these conditions was improved.

By the results exhibited, the implementation of CRP tomography method was approved by

proposed validation tests. In next sections, other synthetic tests that have already been presented in

this thesis will be proposed for new CRP tomography method.
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Figure 7.1: First validation test: model with trigonometric variation in vertical direction. (a) True
velocity model for first validation test. (b) Vertical slices of initial (red) and true (blue) velocity
models. Slices were taken at the middle of the models. (c) Data positions. Observed-data space is
composed by kinematic parameters computed by a series of dynamic-ray tracing starting at these
positions. (d) Initial model positions of ray-model space returned by initialization process.
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Figure 7.2: CRP tomography final result for first validation test. (a) Inverted velocity model. (b)
Vertical slices of inverted (red) and true (blues) velocity models. Slices were taken at the middle of
the models. (c) Inverted model (red) positions and true data (blue) positions. (d) Percentage difference
between inverted and true velocity models.
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Figure 7.3: Second validation test: model with linear variation in vertical direction. (a) True velocity
model test. (b) Vertical slices of initial (red) and true (blue) velocity models. Vertical slices were
taken at the middle of the models. (c) Data positions. Observed-data space is composed by kinematic
parameters computed by a series of dynamic-ray tracing starting at these positions. (d) Initial positions
of ray-model space returned by initialization process. Initial positions are concentrated at the upper
part of model, because initial velocity model is slower than true velocity model.
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Figure 7.4: CRP tomography results for second validation test. (a) Inverted velocity model. (b) Verti-
cal slices of inverted (red) and true (blue) velocity models. Vertical slices were taken at the middle of
the models. (c) Final model (red) positions and true (blue) data positions. (d) Percentage difference
between inverted and true velocity models.
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Figure 7.5: Third validation test: model with quadratic variation in vertical direction. (a) True velocity
model test. (b) Vertical slices of initial (red) and true (blue) velocity models. Vertical slices were
taken at the middle of the models. (c) Data positions. Observed-data space is composed by kinematic
parameters computed by a series of dynamic-ray tracing starting at these positions. (d) Initial positions
of ray-model space returned by initialization process.
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Figure 7.6: CRP tomography final result for third validation test. (a) Inverted velocity model. (b)
Vertical slices of inverted (red) and true (blue) velocity models. Vertical slices were taken at the
middle of the models. (c) Final model (red) positions and true (blue) data positions. (d) Percentage
difference between inverted and true velocity models.
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Figure 7.7: Fourth validation test: model with linear variation in horizontal direction. (a) True velocity
model test. (b) Hotizontal slices of initial (red) and true (blue) velocity models. Slices were taken at
the middle of the models. (c) Data positions. Observed-data space is composed by kinematic param-
eters computed by a series of dynamic-ray tracing starting at these positions. (d) Initial positions of
ray-model space returned by initialization process.



7 - Synthetic tests for CRP tomography 157

0 1 2

0

1

2 1.5

1.6

1.7

1.8

1.9

2

V
e

lo
c
it
y
 (

k
m

/s
)

0 0.5 1 1.5 2
1.4

1.6

1.8

2

(a) (b)

0 1 2

0

1

2

0 1 2

0

1

2

2

4

6

8

10

R
e
la

ti
v
e
 D

if
fe

re
n
c
e
 (

%
)

(c) (d)

Figure 7.8: CRP tomography final result for fourth validation test. (a) Inverted velocity model. (b)
Horizontal slices of inverted (red) and true (blue) velocity models. Slices were taken at the middle of
the models. (c) Final model (red) positions and true (blue) data positions. (d) Percentage difference
between inverted and true velocity models.
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Figure 7.9: Fifth validation test: model with linear variation in horizontal direction and quadritic
variation in vertical direction. Data positions are the same from previous validation tests. (a) True
velocity model test. (b) Vertical slices of initial (red) and true (blue) velocity models. Slices were
taken at the middle of the models. (c) Hotizontal slices of initial (red) and true (blue) velocity models.
Slices were taken at the middle of the models. (d) Initial positions returned by initialization process.



7 - Synthetic tests for CRP tomography 159

0 1 2

0

1

2 1

1.5

2

2.5

V
e

lo
c
it
y
 (

k
m

/s
)

0 0.5 1 1.5 2

1

1.5

2

2.5

(a) (b)

0 0.5 1 1.5 2

1

1.5

2

2.5

0 1 2

0

1

2

(c) (d)

Figure 7.10: CRP tomography final result for fifth validation test. Data positions are the same from
previous validation tests. (a) Inverted velocity model. (b) Vertical slices of inverted (red) and true
(blue) velocity models. Slices were taken at the middle of the models. (c) Horizontal slices of inverted
(red) and true (blue) velocity models. Slices were taken at the middle of the models. (d) Final model
(red) positions and true (blue) data positions.
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7.2 Laterally Heterogeneous Model Test

Laterally heterogeneous model test has already been proposed in this thesis in last chapter,

where stereotomography method was applied. The proposed laterally heterogeneous velocity model is

presented again in Figure 7.11. Note, again, that velocity model presents high levels of heterogeneity

in both directions. Also, the model presents a region of higher velocity at the bottom of the model,

which represents a traditional challenge for tomographic models.
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Figure 7.11: Laterally heterogeneous model test. Velocity model presents heterogeneity in both di-
rections. Note the presence of a region of high velocity at the bottom of the model.

In last chapter, in order to show how it is possible to constrain the model by improving quality

and quantity of internal information, different tries of stereotomography inversions were done. In

first stereotomography try, input observed-data space was generated by 121 data positions distributed

through true velocity model test. From these positions, rays were traced to surface line in order to

compute the data samples of kinematic parameters. An initial homogeneous velocity model was used.

The result provided by stereotomography in this first try was meaningless and couldn’t be considered

reasonable at all. Then, in a second try, a better initial velocity model was proposed. The new initial

velocity model was described by a vertical linear gradient, which represented an improvement of

the quality of initial boundary conditions. After this modification, the quality of stereotomography

inverted velocity model was improved, in comparison with the previous one, and recovered many

features of true velocity model test. However, the deepest half of the model sill presented considerable

errors. So, in a third try, the number of data positions used to generate observed-data space was

improved. Therefore, 256 data samples were provided to inverse process, more than the double of the



7 - Synthetic tests for CRP tomography 161

amount used for first and second tries. The inverted velocity model generated by stereotomography at

this third try was remarkably good. Almost all errors were concentrated in regions near bottom line.

Furthermore, almost all relative errors were below 2%. The exception, again, was due to the deepest

part of the model. The reader can go back to Chapter 6 for more details about stereotomography test

on this model.

The same laterally heterogeneous model test will be proposed again, in this chapter, to test

CRP tomography method. Since comparisons will be done, the same parametrization will be used.

However, differently of what was done for stereotomography, where three inversions were performed

(three tries) in order to reach a satisfactory inverted model, just one try of CRP tomography will be

presented. It will be done because CRP tomography was capable to provide a reasonable final velocity

model using the same parametrization and conditions used at very first try of stereotomography.

There, with 121 data positions and an initial homogeneous velocity model, stereotomography returned

a final velocity model that did not resemble at all the true velocity model test. Following, it will be

shown that these conditions were sufficient to CRP tomography method to constrain the proposed

laterally heterogeneous model.

For CRP tomography test, input data and model spaces and initial parameters were set as

follows:

Input observed-data space: To generate observed-data space, 121 positions (common-depth points)

were distributed in depth through the model test (see Figure 7.13). These positions are exactly the

same ones used for stereotomography test at first try. Therefore, for comparison reasons, this ex-

periment simulate the results that would be obtained by both tomography methods under the same

number of pickings. From theses positions, eight pairs of rays were propagated to surface directions,

with initial double aperture, with respect to vertical direction, varying from 8° to 40°. In surface line,

the kinematic parameters of emergence positions, slopes and traveltimes were computed. All trav-

eltimes computed by rays starting from the same common-depth-position were summed. Therefore,

data space is composed by 121 families, each of them with one data total traveltime and eight samples

composed by two data emergence positions and two data slope parameters.

Initial model space: A homogeneous velocity model of 1.5km/s was used as initial velocity model,

exactly the same one used before for stereotomography first try. The B-spline interpolation knots were

distributed through the model with vertical spacing of 0.3km and horizontal spacing of 0.4km. Its is

exactly the same parametrization applied to build the true velocity model for the test. Therefore, in

respect with B-spline interpolation issues, the model test can be perfectly recovered. Ray-model space
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was initialized with the proposed CRP tomography initialization procedure proposed (see Chapter 5).

Therefore, the initialization procedure returned 121 model families, each of them composed by one

initial model position in depth and eight pairs of initial model slopes. Initial model depth positions

returned by CRP tomography initialization procedure, under initial homogeneous velocity model of

Figure 7.12, are displayed in Figure 7.13.
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Figure 7.12: Initial homogeneous velocity model for CRP tomography laterally heterogeneous test.
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Figure 7.13: Laterally heterogeneous model test. (a) Data depth positions used to generate observed-
data space components by means of ray-tracing. (b) Initial model positions returned by initialization
step under the initial homogeneous velocity model of 1.5km/s.

Initial regularization weight parameter: The same level of initial regularization used for stereoto-

mography test will be used for CRP tomography test. Therefore, initial regularization parameter λ was
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set in order to put the relation between regularization term, with respect to CRP tomography objective

function, to a value of 10−4 at the first iteration.

CRP tomography results: The results obtained by CRP tomography method, under the previous

boundary and initial conditions, are illustrated in Figure 7.14. The CRP tomography inverted velocity

model is very similar to the true laterally heterogeneous velocity model test. Differences occur just

in regions very near the bottom area. Until 2.5km in depth, relative errors fall under 2%. Note how

the velocity contour lines are similar between inverted and true velocity models. Even at the regions

near the bottom line of the model, presented errors are smaller than those presented by third try of

stereotomography, where more data samples (more “pickings") and a better initial velocity model

were applied. Also, as illustrated by Figure 7.15, model depth positions were correctly inverted, ex-

cept by errors, again, at the deepest positions.

It is remarkable how CRP tomography method returned a quite good final velocity model

under the same conditions where stereotomography provided a final velocity model with no similari-

ties at all with true velocity model test. At least in the present context of the proposed synthetic test,

CRP tomography seems to be less dependent of the particular choice of initial velocity model and to

number of data positions (which corresponds to pickings for synthetic tests).

It is important to highlight that the result presented by stereotomography in last chapter

could be slightly improved if an optimum value of initial regularization parameter was searched and

further applied. By this same strategy, the resulted presented by CRP tomography method could

also be improved. However, the search of an optimum value to initial regularization parameter is

not an objective of this thesis. It is still an open area of research. Here, the focus is on the ability

of tomography methods in constrain different velocity models without the use of excellent initial

conditions or regularization terms. More specifically, the ability of the different tomographic methods

in return reasonable final velocity models, without a strong dependence of the specific choice of initial

velocity, initial value for regularization parameter and, also, the number of data samples provided as

input.

One possible argument that could be used, in order to justify the better solution provided

by CRP tomography when compared to stereotomography solution, is that CRP tomography method

makes use of more number of rays during tomographic inverse process. In fact, as eight data samples

of pairs of positions and slopes were considered for each common-depth-point, sixteen rays were

traced from each of model positions at each iteration. On the other hand, in stereotomography, just

two rays were traced from each model depth position. Therefore, even after the introduction of more

data positions in third try of laterally heterogeneous test for steretomography, more rays were used
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Figure 7.14: Laterally heterogeneous model test - CRP tomography final result. Top: Inverted velocity
model. Middle: True velocity model test. Bottom: Percentage difference between inverted and true
velocity models.
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Figure 7.15: Laterally heterogeneous model test - CRP tomography. Inverted model positions (red)
and true data positions (blue).

by CRP tomography method at each iteration of inverse process. Thus, more internal information

was available in order to constrain the model. This is a true fact. However, there is a more important

feature than the number of rays used at each iteration: the common-reflection-point information. The

next experiment will show that common-reflection-point information plays a fundamental role in the

ability of constrain the model, mainly when adverse conditions are provided.

7.3 The Three-point Test

The test to be performed in this section is very simple. True velocity model is the same

velocity model used in the second validation test, which is illustrated, once again, in Figure 7.16.

Thus, a velocity with linear variation in vertical direction. The velocity starts with 1km/s at surface

line and grows until 2km/s at bottom line. The grid has dimension 2km×2km. To generate the model,

knots were uniformly distributed with constant spacing of 0.4km in both directions. As it was done

during validation tests, a initial velocity model of 1km/s will be used. However, a great difference

appears with respect to the number and localization of data positions: just three data positions will

be used to generate kinematic parameters for input observed-data space. This is the analogues, for

synthetic tests, of just three pickings performed to build observed-data space. Furthermore, the three

positions in depth will be located near the bottom area of the model, at 1.8km in vertical direction.

The use of just three data positions justifies the name of the present test. In Figure 7.16, these data

positions are displayed.
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Figure 7.16: Three-point test. (a) True velocity model test described by linear variation in vertical
direction. (b) Data positions for three-point test. The three data points of the test are located at 1.8km
in vertical direction.

Both stereotomography and CRP tomography methods will be tested under these conditions.

First, CRP tomography test will be described.

The Three-point test by CRP tomography

CRP tomography method was applied at the, a priori, difficult task of invert the model based

on informations provided by just three points, located at just the same depth level. The parametriza-

tions of the test are:

Input data-observed space: To generate data space, 3 data positions were displayed near the bot-

tom line of the model, as illustrated by Figure 7.16. From each of these positions, 50 pairs of rays

were traced to surface line. These rays were propagated with initial double aperture, with respect to

vertical direction, varying from 4.5° to 45° for the center point, and varying from 4.5° to 22.5° for the

data positions near the border of the model. In surface line, the kinematic parameters of emergence

positions, slopes and traveltimes were computed. All traveltimes related of rays starting from the

same data common-depth-position were summed. Therefore, data space is composed by just 3 data

families, each of them with a data total traveltime and 50 samples composed by two data emergence

positions and two data slope parameters. Note that this observed space simulates a situation where

just three picks were performed in seismic data.
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Initial model space: A constant velocity of 1km/s was used as initial velocity model. Interpolation

knots were placed at same positions applied to build the true velocity model test. Ray-model space

was initialized with the proposed initialization procedure for CRP tomography, returning 3 initial

model families, each of them composed by one initial model position in depth and 50 pairs of initial

model slopes. CRP tomography initial model depth positions, returned by initialization procedure

under a constant initial velocity of 1km/s, are illustrated in Figure 7.17 (c).

Initial regularization weight parameter: Initial regularization parameter λ was set in order to put

the relation between regularization term, by original CRP tomography objective function, to a value

of 10−3 at the first iteration. The parameters to calibrate regularization term were set to the following

values: ǫxx = ǫzz = 1, and ǫvv = 10−4.

CRP tomography results: Under the previous boundary and initial conditions, the results proposed

by CRP tomography are illustrated by Figure 7.17. Since the challenge represented by the use of only

three points can’t be left aside, the objective of this test is not to produce a very similar inverted veloc-

ity model, with respect to true velocity model, as it was done during validation tests. Therefore, just

the ability of CRP tomography method in reasonably recover the vertical velocity variation is pretty

remarkable. Note that, under these unfavorable conditions, the method also inverted good model po-

sitions for all three model common-depth-points. Obviously, as it was already shown at validations

tests section, by the improvement of initial conditions and number of input data samples, the result of

the method can be improved.

The Three-point test by Stereotomography

The results obtained by stereotomography method, using the same parametrization described

before for CRP tomography method, will be now exhibited. As stereotomography method perform

just two ray tracing from each data point in depth (stereotomography does not use common-reflection-

point information), observed space for stereotomography has only three samples of one two-way trav-

eltime information, plus pairs of surface positions and slopes. This situation illustrates the analogues

for stereotomography of the case where just three picks are performed. Under these conditions, ob-

served data space for stereotomography method is significantly smaller. This last feature turns the

challenge of invert the proposed model, under unfavorable conditions, even harder for stereotomog-

raphy method.



7 - Synthetic tests for CRP tomography 168

0 1 2

0

1

2 1

1.2

1.4

1.6

1.8

2

V
e

lo
c
it
y
 (

k
m

/s
)

0 0.5 1 1.5 2

1

1.5

2

(a) (b)

0 1 2

0

1

2

0 1 2

0

1

2

(c)

Figure 7.17: CRP tomography result for three-point test. (a) Inverted velocity model. (b) Vertical
slices of inverted (red) and true (blue) velocity models. (c) Initial model (red) and true (blue) data
positions. (d) Inverted model (red) and true data (blue) positions.
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Input data-observed space: To generate stereotomography data space, the same 3 data positions

used for CRP tomography test were displayed through the model. From each of these positions, one

pair of rays were traced to surface line. The rays were propagated with initial initial double aperture,

with respect to vertical direction, of 22.5°, for positions near the border of the model, and 45° for the

center point. In surface line, the kinematic parameters of emergence positions, slopes and traveltimes

were computed. Therefore, data space is composed by just 3 data samples, each of them composed

by two data emergence positions, two data slopes and one data traveltime parameter.

Initial model space: The same initial velocity model from last test was used, that is, a constant

initial velocity model of 1km/s. Ray-model space was initialized with the proposed initialization

procedure for stereotomography, returning 3 model samples, each of them composed by one initial

model position in depth and one pair of initial model slopes.

Initial regularization weight parameter: Due to the small computational effort to run this particu-

lar stereotomography test, the method were executed by many different values of initial regularization

parameter. Since just a very small input observed data space was used, this approach consisted in try

to constrain the model by the use of more external regularization. However, in none of the performed

tests, the method converged to a reasonable solution. The figures for stereotomography case in this

section illustrate the result obtained with the same level of regularization applied to CRP tomography

test.

Stereotomography results: The results obtained by stereotomography, under the previous condi-

tions for the three points test, are illustrated in Figure 7.18. Firstly, it is important to highlight that

the method didn’t converge at all. In other words, it didn’t stop because a very small value of ob-

jective function was reached. In fact, the method was stopped at early iterations because it couldn’t

find improved model spaces that could decrease the value of stereotomography objective function.

Therefore, no enough information were available in order to allow stereotomography to search for

improvements for model space. Here, just one result is exhibited. The illustrated result does not re-

semble any aspect of true velocity model. An inversion of the direction of vertical velocity variation

was returned by the method. Thus, inverted velocity is bigger near the surface acquisition. Despite

this huge difference, the positions were returned not too distant from true data positions. Under the

use of greater initial regularization parameter, the velocity became with higher values, near a constant

velocity, but still presenting the inversion of the direction of vertical velocity variation. For smaller

initial regularization parameters, this aspect of the final velocity model becames more highlighted,

that is, the inversion of the direction of vertical velocity variation became even bigger.
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Figure 7.18: One example of stereotomography inversion for the three points test. (a) Inverted velocity
model. (b) Vertical slices of inverted (red) and true (blue) velocity models. (c) Initial model (red) and
true (blue) data positions. (d) Inverted model (red) and true data (blue) positions.
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The Three-point test by Stereotomography with 300 rays - 150 redundant data positions

This new test is designed to answer the question that emerged in last section: the better

results provided by CRP tomography was just because of the more number of rays applied during

iteration process, or the common-depth-point information is a crucial information to improve the task

of constrain the model?

To answer the previous question, in the particular context of the present three-point test,

a new approach will be used for stereotomography method. The new approach consists in using

the same number of rays applied during three-point test performed by CRP tomography method.

Therefore, at each of the data positions of previous test, 50 redundant data positions are placed. From

each of the these redundant data positions, a pair of rays will be traced to surface direction in order

to build input-observed data space. Thus, 300 rays are considered by this new approach, the same

number of rays applied in CRP tomography test. Therefore, input data space will be composed by

150 samples of two-way traveltime and pairs of emergence positions and slopes. These pair of rays

starts the propagations with the same angles used to generate input observed data space for CRP

tomography test. Note that, under this situation, the rays used to build input data space for both

methos are the same. However, one big difference remains between these tests, the stereotomography

method does not use common-reflection-point information. Therefore, while in CRP tomography

method, information provided by one hundred ray propagations are used simultaneously to provide

improvements to the model common-depth-point, in stereotomography, 150 independent different

model depth points are considered. Remind the correspondence between data and model samples.

Despite the fact that, to generate observed-data space, they are placed at the same three positions in

depth (50 data depth points for each localization), trough iterations of the method, each of these 150

related model depth points changes their localization just by the information provided by one specific

pair of rays. Therefore, 150 model depth points are distributed in 3 localizations just at the generation

of input observed-data space. Through the inverse processes, they are located through 150 different

locations. It does not happen in CRP tomography where just three points are considered during the

role inverse process. For stereotomography, it is not known that the input data information belongs to

just three points in depth. They are treated as independent information.

The parametrization for this new stereotomography test is summarized as follows:

Input data-observed space: To generate observed-data space, 50 redundant data positions were

placed at each of the same three data localizations of the previous test. From each of these data posi-

tions (there are 150 of them), one pair of rays were traced to surface line. The rays were propagated

with initial initial double aperture, with respect to vertical direction, analogues to the ones applied
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for CRP tomography test. It was made in order to use exactly the same set of rays used for CRP

tomography test to generate input observed-data space. In surface line, the kinematic parameters of

emergence positions, slopes and traveltimes were computed. Therefore, data space is composed by

150 data samples, each of them composed by two data emergence positions, two data slopes and one

data traveltime parameter.

Initial model space: The same constant initial velocity model of 1km/s was used for this test.

Ray-model space was initialized with the proposed initialization procedure for stereotomography,

returning 150 model samples, each of them composed by one initial model position in depth, one pair

of initial model slopes and one pair of model traveltimes.

Initial regularization weight parameter: This test was executed by many different values of initial

regularization parameter. However, in none of the executed tests, the method returned a reasonable

solution. The figures for stereotomography case in this section illustrate the result obtained with the

same level of regularization applied to CRP tomography test.

Stereotomography results with 300 rays: Firstly, remind that, during validation tests, stereoto-

mography presented a good result for this velocity model test by the use of 49 data positions. This

new test proposes 150 data depth positions, which is a much higher value. However, at the present

test, the information provided by this 150 data positions are redundant. Therefore, the challenge pre-

sented by this test is much harder than the challenge presented by previous validation test. The result

provided by stereotomography, using this new approach, is illustrated in Figure 7.19. Even after the

addition of more samples for input observed-data space, the method did not converge. Once more,

the algorithm stopped not because a very small value for optimization function was found. It stopped

because it couldn’t find improvements for model space. Again, no enough information were available

for the method in order to allow the inverse process to recover original model informations. Note

that, even under a bigger (redundant) observed-data space, stereotomography returned a final velocity

model with the same inversion of the direction of vertical velocity variation presented previously. For

stereotomography, the addition of these new input data information did not represented a remarkable

contribution as, for this method, only redundant information was added.

Summary and conclusions: By the particular context of the present three-point test, the better

results provided by CRP tomography method is not only attributed to the more number of rays. In fact,

the common-reflection-point information is a crucial information to better constrain the model when
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Figure 7.19: One example of stereotomography inversion for the three-point test using 300 rays. (a)
Inverted velocity model. (b) Vertical slices of inverted (red) and true (blue) velocity models. (c) Initial
model (red) and true (blue) data positions. Note that, as stereotomography does not use common-
reflection-point information, the 150 model positions were initialized at different localizations. (d)
Inverted model (red) and true (blue) data positions.
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unfavorable conditions are presented. As the same rays were used to generate data space for both

methods, what turned possible, for CRP tomography method, to generate reasonable final velocity

models, was exactly the common-reflection-point information. For stereotomography, the use of more

rays didn’t help the inverse problem because, for the method, just redundant informations were added.

However, what is redundant for stereotomography, is a fundamental source of new information for

CRP tomography. This brought new information to the inverse process, which turned possible the

constrain of the model. Furthermore, it can be seen as a decrease of the liberty degree for the inverse

process, which is a very good feature to unstable inverse problems.

7.4 Soft Marmousi Test

In this section, the same smooth version of Marmousi model (Figure 7.20), the soft mar-

mousi, that was previously used in last chapter for stereotomography method, will be used to test

CRP tomography.
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Figure 7.20: Soft Marmousi model.

In last chapter, the stereotomography inversion of soft marmousi model was made by subse-

quent tries. There, just two tries were sufficient. At first try, an initial velocity model described by a

linear velocity variation in vertical direction was used. Also, at first try, just 208 data depth positions

were distributed through the velocity model in order to generate input kinematic parameters for data

space by means of direct ray tracing. Remind that this was considered a very small number of input

data information. Under that specific parametrization, stereotomography returned a velocity model
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where some differences appeared at the deeper half of the model. At second try, an improvement

was done at the number of data depth positions, which accounts for a bigger data space. In that case,

357 data depth positions were used to generate observed-data space. Under the same initial velocity

model, stereotomography provided a good final velocity model, with small differences just in regions

near the bottom of model or border regions, where a small number of information was available.

To test the ability of CRP tomography method to constrain soft Marmousi model under not

too favorable conditions, the same number and localization of data depth positions, used at first try

of stereomography test, will be used for CRP tomography test. In the context of CRP tomography,

each depth point is a common-depth-point for a family of rays. At this test, for each common-depth-

point, eight pairs of rays will be used to generated input data space. Hence, for the CRP tomography

test, in comparison with previous stereotomography test, more number of rays will be traced, at each

iteration, in order to generate simulated kinematic parameters. However, as it has been discussed in

last experiment, it seems that the important information added by CRP tomography is the common-

reflection-point information. However, one more challenge will be proposed to CRP tomography test.

Differently of what was done in stereotomography test for soft Marmousi model, a homogeneous

velocity model will be used as initial velocity model for CRP tomography test. The proposed initial

homogeneous velocity model is illustrated in Figure 7.21.
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Figure 7.21: Soft Marmousi test - First try. Initial velocity model for CRP tomography test.

In order to allow further comparisons, the same parametrization (except initial velocity

model) used in last chapter for stereotomography first try will be kept. They are summarized as

follows:
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Input observed-data space: To generate observed-data space, 208 data depth positions were dis-

played through soft Marmousi model (see Figure 7.22). They were placed at the same positions used

for first try of stereotomography soft Marmousi test. From each of these positions, eight pairs of rays

were traced through the model and the kinematic parameters of emergence positions, traveltime and

slopes were computed at surface line. These rays were propagated with initial double aperture, with

respect to vertical direction, varying from 4.5° to 45°. All traveltimes related with rays starting from

the same data common-depth-position were summed. Therefore, data space is composed 208 data

families, each of them with one data total traveltime and 8 samples composed by two data emergence

positions and two data slope parameters.

Initial model space: Differently of what was done at first try of stereotomography soft Marmousi

test, where an initial velocity model described by a vertical constant gradient was used, for CRP to-

mography test, a worse initial velocity model will be applied. It accounts for a homogeneous velocity

model of 1.5km/s of Figure 7.21. Therefore, CRP tomography will be tested under more unfavorable

boundary initial conditions. The interpolation knots were distributed with vertical spacing of 0.4km

and horizontal spacing of 0.5km, the same configuration of previous stereotomography test. Remind

that, at this particular test, the soft Marmousi velocity model was not generated by means of B-spline

interpolation at these set of knots. Therefore, it is not previously known if this kind of interpolation,

used to build velocity models through CRP tomography iterations, is capable to perfectly construct

the true velocity model test. Finally, ray-model space was initialized with the proposed initialization

procedure for CRP tomography, returning 208 model families, each of them composed by one initial

model position in depth and 8 pairs of initial model slopes. The initial model depth positions, derived

by CRP tomography initialization procedure under the initial homogeneous velocity model of Fig-

ure 7.21, are illustrated in Figure 7.22 together with data positions. Note that, because of the use of

the proposed homogeneous velocity model, the initial model depth positions are concentrated just at

the shallower part of the model, which represents another challenge for CRP tomograpy method.

Initial regularization weight parameter: Initial regularization parameter λ was set in order to

keep the same level of regularization used for stereotomography soft Marmousi test. Therefore, at

first iteration, the relation between the regularization term with respect to the objective function was

set as 5.10−5. Moreover, ǫzz = 10−2, ǫxx = 1 and ǫvv = 10−4 were set to calibrate regularization

term.

CRP tomography results: Under the initial conditions and parametrizations previously described,

CRP tomography returned the final model illustrated by Figure 7.23. Under the proposed number
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Figure 7.22: Soft Marmousi test - CRP tomography. Top: Data positions. Bottom: Initial model posi-
tions returned by initialization step. Note that initial model positions are concentrated at the shallower
part, due to use of the proposed initial homogeneous velocity model of Figure 7.21.
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of input data positions and a constant initial velocity model, CRP tomography method provided a

reasonably good final velocity model. Until 3km in depth, the inverted velocity model is similar with

the true velocity model. Among this area, almost all relative errors fall under 2.5%. Note how the

velocity contour lines of this part of the model are almost identical to the soft Marmousi model test.

Some differences appear just in regions near the bottom line of the velocity model. Furthermore, as

illustrated by Figure 7.24, almost all final model common-depth-positions were repositioned very

close to the right data positions, even under a poor initial localization of these points at first iteration.

For comparison reasons, CRP tomography method could return a satisfactory result under

more unfavorable boundary conditions than the ones proposed for stereomography first try, since,

for CRP tomography, a homogeneous initial velocity model was used. Remind that, to improve the

quality of stereotomography result, a bigger data space was provided for second try. Here, once again,

it seems that the use of common-reflection-point information played an importante role to the inverse

process, assisting the constrain of the proposed model.

It is important to highlight the smoothest aspect presented by CRP tomography inverted

model. The same initial level of regularization was used by both stereotomography and CRP tomog-

raphy tests. However, the inverted model presented by CRP tomography is smoother then the one

presented by the first try of stereotomography test (the comparison is fairer with this test, since the

same number of data depth points was used) and even with relation to the second try, where a bigger

data space was given to stereotomography. CRP tomography method uses more internal information

then other tomography methods, since it makes use of the common-reflection-point information. The

addition of this information to the inverse problem, somehow, decreases some level of freedom of the

naturally unstable tomographic problem. Also, based on the results provided so far, it can turn the

method less dependent of the particular choice of initial conditions, presenting more ability in con-

strain different kinds of velocity models under unfavorable conditions. Between these conditions, is

the important particular choice of initial regularization parameter. All tomography methods are very

dependent of a good choice for initial regularization parameter, mainly when unfavorable conditions

are presented, as poor initial velocity models or small number of input data information. Therefore, a

right choice for initial regularization parameter is a fundamental key to tomographic inverse process.

In this experiment, the same level of (external) regularization was applied to both methods, but CRP

tomography result appears to be more “regularized". It happened not just in the present test, but also

at the laterally heterogeneous model test (see previous sections). Next section will investigate how

the use of common-reflection-point information can turn the inverse process slightly less dependent

of the particular choice for initial regularization paramter. The investigation will be based on a very

simple numerical test.
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Figure 7.23: Soft Maroumousi test - CRP tomography result. Top: Inverted velocity model. Middle:
True velocity model test - Soft Marmousi. Bottom: Percentage difference between inverted and true
velocity models.
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Figure 7.24: Soft Maroumousi test - CRP tomography result. Inverted model positions (red) and true
data positions (blue).

7.5 A practical experiment about sensitivity with respect to ini-

tial regularization parameter

In this section, another kind of experiment will be illustrated using, again, the simple veloc-

ity model test described by a linear variation at vertical direction, very similar to the one used before

in second validation test and for three-point test. In laterally heterogeneous model and soft marmousi

tests, an arbitrary (although reasonable) choice of a value for the initial regularization parameter

was made. Then, this value was kept unchanged through all the tests. For example, for stereotomog-

raphy tests, these models were inverted by subsequent tries, which consisted in improving initial

velocity model conditions or the number of input data provided to the method. Then, the same first

parametrization, which included the value for the initial regularization parameter, was used for CRP

tomography test. The result of those tests, both by stereotomography and CRP tomography, could be

improved by searching and optimum value for initial regularization parameter. Therefore, the inverted

models exhibited in this theses are not the best possible ones for all tomography methods. However,

as the search of an optimum value for initial regularization parameter consists in another optimization

problem, it is not the focus of this thesis. Furthermore, it consists in a computational expensive task,

and can be seen as a kind of external help to assist seismic tomography inverse problem.

Here, a simple experiment will show how the tomography methods can be sensitive to the

particular choice of initial regularization parameter. For this reason, the same experiment will be ex-

ecuted for many values of different initial regularization parameter, while all other parametrizations

and conditions will be kept constant. Therefore, this approach can be seen, somehow, as an “orthog-
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Figure 7.25: (a) True velocity model test. (b) Initial velocity model for the experiment.

onal" experiment with respect to the previous ones. Finally, the quality of inverted velocity models

obtained by each of these many values of initial regularization parameter, measured by the residual

difference between inverted and true velocity models by a chosen norm, will be exhibited.

At the present section, results obtained by stereotomography and CRP tomography method

will be compared. The objective is to investigate how the use of the common-reflection-point infor-

mation allows a larger range of initial regularization parameter to be chosen, without turn the inverted

model a meaningless one. Also, to illustrate the effect of using more number of rays during inverse

process, but without the use of commmon-reflection-point information, stereotomography will also

be performed with more number of input data samples (more number of data positions).

To perform the proposed experiment, as many tests have to be processed, a very simple test

was formulated. As it was already mentioned, it consists, again, in the problem of inverting a velocity

model with linear vertical velocity variation. The velocity model grows linearly from 1km/s, at surface

line, to 2.2km/s at bottom line. An initial constant velocity model of 1km/s will be used during all

tests. Velocity model test and initial velocity models for the present exeperiment are illustrated by

Figure7.25. Velocity models of Figure7.25 were construct using B-spline interpolation with knots

uniformly distributed through the model, with both vertical and horizontal spacing of 0.4km.

This time, in a grid of dimension 2km×2km, 16 data depth positions were used to gener-

ate input data space. These 16 data depth positions were uniformly distributed trough the model.

Thus, differently of what was done at three-point test, these points do not form a redundant set of

data information source. Thus, reasonable solutions can be obtained by both methods. As it will be

showed, it depends on the particular choice for initial regularization parameter. The experiment in-
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volving stereotomography with more data depth points will be executed with 36 data depth positions

uniformly distributed through the grid. Data positions are illustrated by Figure 7.26.

Observed data space: To generate the samples of data space, in stereotomography, two rays were

propagated from each of the 16 data depth points to surface line, with double initial aperture, with

respect to vertical direction, of 30°. For CRP tomography method, ten pairs of rays were propagated

from each of these points to surface line, with initial double aperture, with respect to vertical di-

rection, varying from 5° to 45°. Finally, for the experiment involving stereotomography with more

data depth points, 36 data depth positions uniformly distributed through the grid. Thus, based on the

uniformly distribution of data positions, in fact, new input information was provided to stereotomog-

raphy method. Again, to build observed-data space, two rays were propagated from each of these 36

data depth positions to surface line, with initial double aperture, with respect to vertical direction, of

30°. At surface line, the kinematic parameters demanded for each of the methods were computed.

Initial model space: An initial homogeneous velocity model of 1km/s was used for all tests (see

Figure7.25). Ray-model space was initialized by the proposed initialization procedure of each of the

techniques. Figure 7.26 illustrates data positions and respective initial model positions returned by

the initialization step, under the initial constant velocity model of 1km/s.

Initial regularization weight parameter: It is the parameter to be investigated by this test. There-

fore, both techniques will execute a series of tests, each of them with a different value for initial

regularization weight parameter.

Discussion about experiment results

The results obtained by this experiment can be summarized by the graphic in Figure 7.27.

The graphic illustrates the quality of the inverted velocity model with respect to the initial amount

of regularization term for all the three approaches mentioned before. To measure the quality of the

inverted velocity model, the vertical axis exhibits a quantity related to the Frobenius norm (see, e.g,

Watkins (2004)) of the difference between the matrices which represents inverted and true velocity

models. To turn these results more comparable, the vertical axis was normalized. Then, the minimum

value reached by this norm through all experiments of all methods (in this case, it was reached by

CRP tomography method), was set equal to one. Then, all other values of the graphic accounts for the

reason of the norm of the difference of velocity models with respect to this minimum. In other words,
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Figure 7.26: (a) Data positions used to build input data space for CRP tomography tests. (b) Model ini-
tial positions for CRP tomography tests. (c) Data positions used to build input data space for stereoto-
mography tests with 16 data positions. (d) Model initial positions for stereotomography tests with 16
data positions. (e) Data positions used to build input data space for stereotomography tests with 36
data positions. (f) Model initial positions for stereotomography tests with 36 data positions.
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vertical axis exhibits how bigger is the Frobenius norm of the difference between inverted and true

velocity models, with respect to the minimum value reached. The idea is to show how the solution

becomes better or worse varying the particular choice of initial regularization parameter.
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Figure 7.27: Normalized Frobenius norm of the difference between inverted velocity model and true
velocity model with respect to the initial level of regularization. Each of the three curves is related to
the results provided by one specific method: Red - CRP tomography, blue - stereotomography with
16 data positions, yellow - stereotomography with 36 data positions. The horizontal axis is in log10
scale. This axis shows the relation between the sizes of the regularization term R by the original
tomographic objective function (S −R) at the first iteration. Then, the value of −3 indicates that this
relation amounts 0.001 or, in other words, indicates that, at first iteration, the regularization term R
represents 0.1% of the original objective function (S −R).

The horizontal axis of the graphic is displayed in log10 scale. It indicates the log10 of the

relation
R

(S −R)
, where R is the value of the regularization operator at first iteration and S is the

value of the objective function for the specific tomography method at first iteration. Therefore, S−R

corresponds to what could be called original tomographic objective function. In other words, the value

of the objective function that would be computed without the presence of the necessary regularization

term. This was the way found to turn the regularizations comparable between different methods and

approaches. Furthermore, it allows a better evaluation of the graphic, since it is possible to identify

how much of relative regularization is necessary for each approach to constrain the proposed model.

For example, the value of −3, at horizontal axis, indicates that the regularization term R initiates the

inverse process with a value that amounts 0.1% of the original objective function (S −R).

Figure 7.27 indicates, for this particular experiment, that CRP tomography method can be a
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slightly more robust technique with respect to the particular choice of initial regularization parameter.

Note how the quality of the CRP tomography final velocity model still presents reasonable values

while the initial regularization term becomes smaller. Furthermore, for most of initial regularizatinon

term values, CRP tomography method inverted models with better quality, here measured as a Frobe-

nius norm of the matrix which represents the difference betwenn inverted and true velocity models.

The same experiment was made using norm 2 of the difference between these matrices, and the main

features of the graphic did not change. This graphic is not exhibited here.

Note how tomography methods are sensible to the particular choice for initial level of reg-

ularization. For higher levels of initial regularization term, the quality of the inverted velocity model

is usually not good. Under these levels for initial regularization tem, the optimization function is

dominated by the regularization term and, therefore, inverse tomographic process is left aside. On

the other hand, small levels of initial regularization term turns the inverse process too unstable and,

hence, meaningless solutions are provided. If the graphic of Figure 7.27 would be extended to con-

sider even more smaller values for initial regularization, also CRP tomography would return meaning-

less velocity models. However, the important feature illustrated by the previous graphic is that CRP

tomography allows, for this experiment, a larger range of values for initial regularization parameter,

keeping reasonable quality for inverted velocity model. Although is possible to generate good solu-

tions with stereotomography, the choice of initial value for regularization parameter becomes more

restrict. Other aspect that has to be highlighted is that, even if stereotomography is processed with

more input data samples (36 for this experiment), CRP tomography method still presents better so-

lutions for this particular test and, which is more important for this experiment, more robustness in

respect with the choice of initial value for regularization parameter.

Some examples of the performed tests

To illustrate the results of the previous graphic of Figure 7.27 by examples, two results

obtained by CRP tomography and stereotomography performed with 16 and 36 data depth points will

be exhibited.

If some seismic tomography experiment has to be performed, an initial choice for initial

regularization parameter has to be made. However, before the execution of practical experiments and,

moreover, if it is a huge experiment, the search for reasonable initial regularization parameter can be

too expensive. Moreover, if the true model is unknown, the measure of good quality for the inverted

model is harder to be made. Therefore, suppose that is the case of the present experiment and an

arbitrary choice for initial regularization parameter has to be made to run the experiment. For this
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task, suppose that an initial amount of initial regularization was made in order to put the relation
R

(S −R)
= 0.0001 at first iteration. In the graphic of Figure 7.27, it would correspond to the horizon-

tal coordinate of −4. Then, by a direct analysis of the previous graphic, just CRP tomography method

and, maybe, stereotomography test with 36 data depth points, would return reasonable solutions. In

fact, this is what happened. The results obtained by these methods, under this choice of initial amount

for regularization term, are illustrated in Figures 7.28, 7.29 and 7.30. Note how the result provided by

CRP tomography method is quite good, even by the use of a not so good (for this case) initial value

for the regularization parameter. The result presented by stereotomography with the same number of

depth data positions is notably meaningless, which is a consequence of the small value applied for ini-

tial regularization parameter. However, the method repositioned model depth positions in reasonable

positions and the objective function was in fact decreased. In situations where the true velocity model

is not previously known, it is not a great feature, since it would indicate a possible good velocity

model, which is obviously not the case. On the other hand, the result obtained by stereotomography

test with 36 data depth positions is better and quite reasonable. However, the inverted velocity model

exhibits more oscillations than the one provided by CRP tomography. In this simple test, CRP tomog-

raphy technique could play the role of input more internal regularization to the problem, with the use

of common-reflection-point information. Also, more rays are applied in this method. Here, the use

of more number of data depth positions allowed stereotomography to return an acceptable solution.

However, if the choice of the initial regularization parameter would be slightly smaller, then even this

approach wouldn’t provide reasonable solutions, as the Graphic 7.27 indicates.

Now, suppose that an initial choice of regularization parameter was made in order to put

the relation
R

(S −R)
= 0.003 at first iteration. In the graphic of Figure 7.27, it would correspond,

approximately, to the horizontal coordinate of −2.5. By a direct analysis of the graphic 7.27, in this

case all methods are able to return reasonable solutions. With this particular value, it seems that, when

36 depth positions are considered, stereotomography can return as good solutions as CRP tomogra-

phy. The results obtained by the methods, under these choice for initial regularization parameter, are

illustrated by Figures 7.31, 7.32 and 7.33. Note that all proposed solutions are reasonable, which can

be noted by the figures illustrating the vertical slices of the models.

Final remarks about the experiment

This experiment was formulated with unfavorable conditions on purpose. Here, the unfavor-

able conditions are represented by the considerably small number of input samples for data space. If a

more conditioned experiment was considered, the differences between the methods could not be so ev-
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Figure 7.28: (a) Final velocity model proposed by CRP tomography under an initial regularization
parameter that accounts for horizontal component of −4 at the Graphic 7.27. (b) Vertical slices of
inverted (red) and true (blu) velocity models. The slices were taken at the middle of the models.
(c) Inverted model positions (red) and true data positions (blue). (d) Percentage difference between
inverted and true velocity models.
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Figure 7.29: (a) Final velocity model proposed by stereotomography, with 16 data depth posi-
tions, under an initial regularization parameter that accounts for horizontal component of −4 at the
Graphic 7.27. (b) Vertical slices of inverted (red) and true (blue) velocity models. The slices were
taken at the middle of the models. (c) Inverted model positions (red) and true data positions (blue).
(d) Percentage difference between inverted and true velocity models.
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Figure 7.30: (a) Final velocity model proposed by stereotomography, with 36 data depth posi-
tions, under an initial regularization parameter that accounts for horizontal component of −4 at the
Graphic 7.27. (b) Vertical slices of inverted (red) and true (blue) velocity models. The slices were
taken at the middle of the models. (c) Inverted model positions (red) and true data positions (blue).
(d) Percentage difference between inverted and true velocity models.
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Figure 7.31: (a) Final velocity model proposed by CRP tomography under an initial regularization
parameter that accounts for horizontal component of, approximately, −2.5 at the Graphic 7.27. (b)
Vertical slices of inverted (red) and true (blue) velocity models. The slices were taken at the middle of
the models. (c) Inverted model positions (red) and true data positions (blue). (d) Percentage difference
between inverted and true velocity models.
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Figure 7.32: (a) Final velocity model proposed by stereotomography, with 16 data depth positions,
under an initial regularization parameter that accounts for horizontal component of approximately,
−2.5 at the Graphic 7.27. (b) Vertical slices of inverted (red) and true (blue) velocity models. The
slices were taken at the middle of the models. (c) Inverted model positions (red) and true (blue) data
positions. (d) Percentage difference between inverted and true velocity models.
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Figure 7.33: (a) Final velocity model proposed by stereotomography, with 36 data depth positions,
under an initial regularization parameter that accounts for horizontal component of approximately,
−2.5 at the Graphic 7.27. (b) Vertical slices of inverted (red) and true (blue) velocity models. The
slices were taken at the middle of the models. (c) Inverted model positions (red) and true (blue) data
positions. (d) Percentage difference between inverted and true velocity models.
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ident. The use of a small input data space turned the tomographic problem more dependent of external

regularization. It is an important feature, since the analysis of dependence and sensitivity with respect

to the regularization term is the main objective of this experiment. Here, CRP tomography was the

most robust method in respect with these features. This new seismic tomography technique consid-

ers more internal information, the common-reflection-point information, which, somehow, decreases

some level of natural instability of the inverse problem. For this same reason, the tests performed by

CRP tomography on this thesis could be done with a relative small number of input data samples

under small values for initial regularization parameter.

However, this experiment can’t be viewed as a standard case that represents all possible ex-

periments. In fact, the unique valley presented by the graphic of Figure 7.27 related to this simple

experiment, is not a standard case. Generally, more than one valley, which corresponds to local min-

imum with respect to the variation of the initial regularization parameter, are presented. Also, the

curve that represents CRP tomography will not be, always, the best for all values of the regularization

parameters. As this experiment is very simple, the pattern of the graphic kept constant through the

decrease of the level of regularization term. However, oscillations may occur in more complex exper-

iments. Moreover, oscillations generally occur. Then, at more complex experiments, for some values

for initial level of regularization term, stereotomography can presents better quality on the inverted

velocity model solution than the respective CRP inverted velocity model under the same conditions.

However, what have been noted so far, during to the different tests performed, is that CRP tomogra-

phy is less sensitive to the particular choice of initial regularization parameter, which explain the tests

already described in this thesis.

Similarities with previous synthetic tests - Laterally Heterogeneous and Soft Marmousi cases:

Now, the results obtained during the tests of laterally heterogeneous and soft Marmousi models can be

viewed in a more general way. There, an optimization search for the initial value for regularization pa-

rameter was not made. An arbitrary amount of the initial value for the relation between regularization

term and original tomography optimization function was chosen. Then, all the tests were executed

without any change in the value of the initial regularization parameter. There, for that specific values

for initial level of regularization, CRP tomography method returned reasonable final model solutions,

while stereotomography couldn’t do the same. In the previous graphic context, for that chosen level

of initial regularization, the curve related to sterotomography would be above the curve related to the

CRP tomography method. Then, bigger data space was provided to stereotomography and the respec-

tive result was improved. In the context of the previous graphic, the curve related to the addition of

more data positions is under the curve related with less data positions. Thus, for that case, as both

CRP tomography and stereotomography with more data positions presented very good solutions, the
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curves that would represent both approaches would be closer to each other.

7.6 The Three-layer Test

Inspired by the discussion of last section, CRP tomography will be tested by the three-layer

test. Three-layer model test is displayed in the Figure 7.34, among with a vertical slice of the velocity

model.
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Figure 7.34: (a) Three-layer velocity model test. (b) Vertical slice of the velocity model. The slice
was taken at the middle of the model. Note that the second layer is smaller than the others. Note also
the abrupt velocity variation in vertical direction.

Three-layer test was very important for the present research, since it was decisive to the

choice of not incorporate curvature parameter in CRP tomography method (see the discussion in

Appendix B). In respect with the results presented by stereotomography on the three-layer test, first

the method inverted this model test by the use of data samples provided by one hundred input data

depth positions. Then, the method was challenged to invert the model test with subsequent decrease

of the number of data depth positions. Thus, the method inverted the model test successfully with 49

data depth positions but, by the use of just 36 data positions, the method failed in detect the presence

of the second layer, the smallest of them. Would CRP tomography be capable to reasonably invert the

model from three-layer test by the use of input data samples provided by just the same 36 data depth

positions?
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Before answer the previous question, CRP tomography method was challenged to, at least,

repeat the performance of stereotomography and provide good final velocity model solutions by the

use of input data space generated by 49 data depth positions uniformly distributed through the model.

In order to allow comparisons between the results of both methods, the same parametrization were

applied. They are summarized as follows:

Input observed-data space: To generate observed-data space, 49 data depth positions were uni-

formly displayed through three-layer model (see Figure 7.35). These positions are exactly the same

ones used before in stereotomography test with 49 data positions in Chapter 6. From each of these

positions, ten pairs of rays were traced through the model and the kinematic parameters of emergence

positions, traveltime and slopes were computed at surface line. These rays were propagated with ini-

tial double aperture, with respect to vertical direction, varying from 5° to 30°. All traveltimes related

of rays starting from the same common-depth-position were summed. Therefore, data space is com-

posed 49 data families, each of them with a total data traveltime and ten samples composed by two

data emergence positions and two data slope parameters.

Initial model space: An homogeneous initial velocity model of 1km/s will be used, which is the

same initial velocity model applied to stereotomography test. The B-spline interpolation knots, used

to build both three-layer model test and velocity models iteratively constructed by CRP tomography

inverse process, were distributed at the same positions of stereotomography test. Ray-model space

was initialized with the proposed initialization procedure for CRP tomography, returning 49 model

families, each of them composed by one initial model position in depth and ten pairs of initial model

slopes. Initial model depth positions are illustrated by Figure 7.35.

Initial regularization weight parameter: Following what was done in stereotomography test, a

previous search was made in order to find a good initial value for regularization parameter λ. Due

to this previous search, λ was set in order to, at first iteration, the relation between the regularization

term with respect to the objective function would be 3.10−6. To calibrate regularization term, the same

values used for stereotomography test were applied: ǫzz = 10−3, ǫxx = 1 and ǫvv = 10−4.

CRP tomography results with 49 data positions: The results provided by CRP tomography for

three-layer model test are illustrated by Figure 7.36. Firstly, remind that the main challenges offered

by this test are the abrupt velocity variation in vertical direction and the existence of a small second

layer. Also, as the true velocity model presents strong vertical variations, the regularization applied
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Figure 7.35: (a) Data positions for the test with 49 data points. (b) Respective initial model positions
returned by CRP tomography initialization procedure under the initial homogeneous velocity model
of 1km/s.

plays against the inversion process. In this case, the challenge is to set a good trade-off between

regularization and invert a model velocity near the true velocity. As illustrated by Figure 7.36, CRP

tomography succeeded in the task of provide a good final velocity model by the presence of just 49

data positions. Note that CRP tomography could identify the existence of a small layer at the middle

of model and also provided good estimates for the velocity values of the different layers. Also, model

depth positions were repositioned very close to the true data positions.

CRP tomography results with 36 data positions: Now, the question formulated at the beginning

of this section will be answered. Despite the good performance exhibited in inverting three-layer test

with just 49 data positions, CRP tomography method failed in the task of provide a good inverted

velocity model when just 36 data positions, uniformly distributed through the model, are provided.

The results will not be presented here, but they are very similar to the results presented by stereoto-

mography with this same parametrization (see Chapter 6). Therefore, under just 36 data positions, the

method no more is capable to identify the second layer, the smallest of them. For both methods, many

initial regularization parameters were tested, without any success case. Remind that, as this model

represents a trade-off between the smoothness proposed by the regularization term and the strong

velocity variations presented by the three-layer velocity model, this test is particularly very sensible

to the choice of initial regularization parameter.
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Figure 7.36: Three-layer test - CRP tomography results with 49 data points. (a) Inverted velocity
model proposed by CRP tomography. (b) Vertical slices of inverted (red), true (blue) and initial (yel-
low) velocity models. Slices were taken at the middle of the models. (c) Inverted model positions (red)
and true data positions (blue). (d) Percentage difference between inverted and true velocity models.
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Figure 7.37: Three-layer test with 36 data positions distributed mainly through vertical direction. (a)
True data positions. (b) Model initial positions returned by CRP tomography initialization process.

Another distribution of data positions: For this particular model, where the velocity presents

strong variations in vertical direction at some specific partis of the model, the use of common-depth-

position, and further use of more number of rays, did not help to constrain the model, as it did in

three-point test (and other synthetic tests already reported in this thesis). There, the true velocity

model was described by a linear variations of the velocity. Then, to recognize the pattern of the linear

velocity variation, just 3 data points in depth were necessary. However, to recognize the “jumps" in

vertical direction presented by three-layer model test, a refined distribution of data depth positions is

necessary. In fact, it is possible to invert three-layer test with just 36 data depth positions. However,

the positions can’t be uniformly distributed through the model. To recognize all the “jumps", the

important information is the existence of sources of information (data depth positions) distributed

in the most dense way through vertical direction. Therefore, if the previous parametrization is kept

and data positions are distributed mainly in vertical direction, as it is illustrated by Figure 7.37, CRP

tomography is capable to provide good final velocity model for three-layer test.

The results provided by CRP tomography under this new distribution of the 36 data positions

are illustrated by Figure 7.38. Note that, in some aspects, it is an even better result than the previous

one with 49 data points, due to the most dense distribution of data depth positions through vertical

direction, which is the important information demanded by this test.

The good result under this new parametrization is not an exclusivity of CRP tomography

method. If the same strategy of redistribution of data depth positions is done for stereotomography,

the method also provides good final velocity model solution. A considerable drawback of this strategy
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Figure 7.38: Three-layer test with 36 data positions distributed mainly through vertical direction. (a)
CRP tomography final velocity model. (b) Vertical slices of inverted (red), true (blue) and initial
(yellow) velocity models. Slices were taken at the middle of the models. (c) Inverted model positions
(red) and true data positions (blue). (d) Percentage difference between inverted and true velocity
models.
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is that it couldn’t be reproduced in real applications. While in the present synthetic test, it’s possible

to choose data depth locations, in real applications, it’s generally not possible at all.

7.7 Second Laterally Heterogeneous Model Test

Before finishing the chapter, one last test will be exhibited. It is named second laterally

heterogeneous test, due to the presence of noted lateral velocity variations through all over the velocity

model, while the term second is beacause of the previous test (with a different model) performed in

section 7.3. This model is illustrated in Figure 7.39. The fact that these variations are presented in

a small grid of dimension 2km×2km, turns the velocity heterogeneity more noted. Even near the

surface line, velocity lateral heterogeneity is presented. Other challenge proposed by this test is that

the direction of velocity variation slightly changes through the model. It can be noted by the velocity

contours. At surface, velocity lateral heterogeneity presents different direction than those presented

at regions near the bottom line. Another difficulty presented by this model test is that it was not

constructed by means of direct B-spline interpolation. Thus, it is not previously known if this model

could be perfectly reconstructed by the interpolation rule used by CRP tomography method.
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Figure 7.39: Second laterally heterogeneous velocity model test. Note the presence of lateral velocity
variations through all over the model.

In order to turn the inverse process even more challenger, an initial constant velocity model

of 1.5km/s, Figure 7.40, was considered. As the proposed true velocity model presents strong lat-
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eral variation even at surface line, the initial velocity model does not resemble true velocity in any

aspect. Despite the bigger challenge, the use of a constant velocity model has the objective of keep-

ing the evaluation of the capability of CRP tomography to constrain different kinds of models under

unfavorable conditions.
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Figure 7.40: Initial homogeneous velocity model for CRP tomography second laterally heterogeneous
model test. The proposed initial velocity model does not resemble true velocity in any aspect.

The parametrization used for this last test is summarized as follows:

Input observed-data space: To generate observed-data space, 196 data depth positions were uni-

formly displayed through the model (see Figure 7.41). From each of these positions, six pairs of rays

were traced through the model and the kinematic parameters of emergence positions, traveltime and

slopes were computed at surface line. The rays were propagated with initial double aperture, with

respect to vertical direction, varying from 8° to 40°. All traveltimes related with rays starting from

the same data common-depth-position were summed. Therefore, data space is composed 196 data

families, each of them with a total data traveltime and six samples composed by two data emergence

positions and two data slope parameters.

Initial model space: The homogeneous velocity model of Figure 7.40 was applied as initial velocity

model. During the iterative inverse process, velocity model are constructed using B-spline interpola-

tion with knots uniformly distributed through the model, with both horizontal and vertical spacing of
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0.2km. Ray-model space was initialized with the proposed initialization procedure for CRP tomogra-

phy, returning 196 model families, each of them composed by one initial model position in depth and

six pairs of initial model slopes. Initial model positions are displayed in Figure 7.41. Note that, be-

cause of the use of a lower constant initial velocity model, the initial model positions are concentrated

most at the shallower half of the model, which is not a good initial condition.

Initial regularization weight parameter: Initial regularization parameter λ was set in order to, at

first iteration, the relation between the regularization term with respect to the objective function was

equal to 8.10−4. To calibrate regularization term, the following values were considered: ǫzz = 4.10−3,

ǫxx = 8.10−3 and ǫvv = 10−4. Note the use of a smaller value for ǫxx, in comparison with previous

tests, due to the presence of remarkable lateral heterogeneity.

CRP tomography results: The final model proposed by CRP tomography, under the previously

mentioned conditions, is illustrated by Figure 7.42. Taking into account that the proposed second

laterally heterogeneous model test is not a simple model test, due to the heterogeneities presented

through all over the model and, reinforced by the use of a initial constant velocity model, the results

proposed by CRP tomography are reasonably good. Until 1.5km in depth, where more information are

covered by input data space, relative errors fall under 3% (see Figure 7.43). At regions near the bottom

line, relative errors around 5% appear. Despite the corners of the model, where almost no information

is available, the relative errors at bottom region are concentrated in just one region. Note how the

velocity contour line of the velocity model, except at bottom area, have been well reconstructed

by CRP tomography. Model depth positions were also well repositioned by CRP tomography, as

illustrated by Figure 7.44.

A velocity model building procedure: Following previous synthetic tests, CRP tomography was

capable, once again, to reasonably invert the proposed model test by the presence of a simple initial

velocity model. On a more general picture of the role process to reach a final velocity model, these

inverted models can be used as input, for example, for full waveform methods (FWI), in order to

recover more details (high-frequence content) about the velocity model. While FWI is very dependent

of a good initial velocity model, CRP tomography has been shown to be a robust technique with

respect to initial velocity models. Therefore, a very simple velocity model can be firstly used as input

to the process. Then, the smooth final velocity model provided by CRP tomography can be used as

input for FWI application, providing a more detailed high resolution final velocity model, which gives

rise to a velocity model building procedure. This role process will be illustrated in chapter 9. First, in
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Figure 7.41: Second laterally heterogeneous model test. Top: Data positions in depth used to generate
ibserved-data space by means of direct ray-tracing. Bottom: Initial model positions returned by CRP
tomography initialization procedure under an initial homogeneous velocity model of 1.5km/s. Note
that, because of the use of a lower constant initial velocity model, the initial model positions are
concentrated most at the shallower half of the model.
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Figure 7.42: Second laterally heterogeneous model test. (a) CRP tomography inverted velocity model.
(b) Second laterally heterogeneous velocity model test.
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Figure 7.43: Second laterally heterogeneous model test. Percentage difference between inverted and
true velocity models.
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Figure 7.44: Second laterally heterogeneous model test. Percentage difference between inverted and
true velocity models. Inverted model positions (red) and true data positions (blue).
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chapter 8, CRP tomography will be tested on even more challenging synthetic tests, by the presence

of noisy input data and data depth positions not uniformly distributed through the model.
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Chapter 8

Further numerical tests - noisy input data

and interfaces

The objective of this chapter is to test the proposed CRP tomography method on synthetic

experiments that simulate more realistic situations. In previous chapter, CRP tomography method was

tested on synthetic tests with error-free input data parameters. Moreover, the data positions, which

accounts for the source of data information in depth, were generally distributed uniformly through

the true velocity model. This uniform distribution guarantees that almost all parts of the true velocity

model were covered by input information on input data space.

None of the previous assumptions hold for real applications. In fact, as data space would be

composed by kinematic parameters extract from seismic data by a picking procedure, input data space

would not be an error-free set. Moreover, the pickings are usually performed along reflection events

on seismic data, which also turns the uniform distribution of data positions a non-realistic assumption.

As this thesis does not aim to research and construct a picking procedure to build data space

for CRP tomography, data space will be, once again, generated by direct ray-tracing on true velocity

model. However, in this chapter, noisy data will be added to computed data parameters and will be

provided as input for CRP tomography. Moreover, in this chapter, data positions will not be uniformly

distributed through the model. Data positions will be placed along synthetic interfaces.

The modifications proposed for the tests of this chapter are summarized as follows:

Noisy input data space: In further real situations where CRP tomography can be applied, data

space would be derived from a picking procedure on seismic data. Moreover, some kinematic param-
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eters would not be directly extracted from prestack seismic gathers. This is the case of input slope

parameters, estimated by coherence analysis along traveltime equations on seismic data. Therefore,

in further real situations, data space will be composed by not perfect accurate input kinematic param-

eters.

Uncertainty in data traveltime and position paramaters are dominated by picking errors. On

the other hand, uncertainty in data slope parameters are dominated by coherence analysis, limitations

of estimation procedure and, moreover, on the noise level in prestack data. Therefore, the relative

expected magnitude for errors in data slope parameters is bigger than the expected errors in traveltime

and position parameters.

In this chapter, the robustness and stability of proposed CRP tomography method with re-

spect to noisy input data will be studied by means of practical experiments. For this propose, random

noise will be added to data space built by direct ray-tracing. To turn the experiment more realistic, a

noise of relative bigger magnitude will be added to input slope parameter.

Data positions placed along synthetic interfaces: In future real applications of CRP tomography

method, each sample of data space will be related to a specific picking performed on seismic data.

Usually, pickings are performed just on reflection events of seismic data. On the other hand, in this

thesis, synthetic input data space is generated by direct ray tracing on true velocity model. Thus,

data positions are placed in depth on true velocity model from where rays are traced until surface

line, where kinematic parameters are computed and used to compose input data space. Note that, in

the synthetic experiments that illustrate this thesis, data positions in depth play the role of picking

locations on seismic data.

Almost all synthetic tests performed so far in this thesis for CRP tomography method were

executed under a uniform distribution of data positions. This fact obviously assist the tomographic

inversion process. Although is not a realistic assumption, this assumption is usually applied to test

tomography methods on synthetic experiments (see, e.g, Billette and Lambaré (1998), Duveneck

(2004b)).

In this chapter, a different approach for data position distribution will be applied. Synthetic

interfaces will be proposed together with the model tests. Data positions will be placed just on these

interfaces. Therefore, the synthetic interfaces will play the role of locations where reflection events

occur in depth. Hence, data locations will not be uniformly distributed, being placed just along the

proposed interfaces. Moreover, to build input data space, rays will be traced from these data positions

with initial slopes given by a double aperture with respect to the normal vector of these interfaces.

In all tests executed so far, these rays were traced with double aperture with respect to the vertical
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direction.

In next sections, two velocity models with synthetic interfaces will be used to test CRP

tomography method under non-uniform data distribution and input noisy data. Stereotomography

will also be performed for comparison reasons.

8.1 First Synthetic Experiment

The first synthetic experiment consists in a velocity model with a region of high velocity

localized at the middle of the model. Figure 8.1 exhibits the proposed velocity model.

0 1 2 3 4 5 6

0

1

2

3

4

5
1.5

2

2.5

3

3.5

V
e
lo

c
it
y
 [
k
m

/s
]

Figure 8.1: Velocity model for first experiment. The model presents a region of high velocity at the
middle of the model

The velocity model is placed on a grid of 5km×6km. At the shallow half of the model,

until the region of high velocity is reached, velocity presents a crescent velocity variation mainly on

vertical direction. At the deeper half, the velocity decreases from the region of high velocity until the

bottom line. At the middle of the model, lateral heterogeneity is presented, due to the presence of the

high velocity region. The region of high velocity at the middle of the model presents a remarkable

challenge for seismic tomography applications (see, e.g, Neckludov et al. (2006)).
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Both CRP tomography and stereotomography will be tested on this model. Firstly, numer-

ical tests will be performed with perfect accurate data space. The objective is to first investigate the

performance of both methods on a noise-free test. However, the first test will carry one of the pre-

vious proposed challenges: data positions will be distributed along synthetic interfaces. Further, a

second test will be performed under the presence of noisy input data, where the robustness of CRP

tomography in respect with no perfect accurate data will be investigated.

Synthetic interfaces: To perform the first test with data positions distributed along synthetic inter-

faces, some interfaces were proposed to the model. The synthetic interfaces are illustrated by Fig-

ure 8.2. Note that synthetic interfaces follow the velocity variations. Data positions are distributed

along these proposed structures. For this experiment, 198 data positions were considered. The distri-

bution of data positions along synthetic interfaces is illustrated in Figure 8.3.
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Figure 8.2: Velocity model with synthetic interfaces for first experiment.

Note that, under the premise of placing data positions just along synthetic interfaces, the

region of high velocity at the middle of the model is not covered by data points. Moreover, this high

velocity region represents the major challenge of this experiment. Therefore, this experiment will test

if CRP tomography and stereotomography methods can recover this region under these conditions.

First, stereotomography will be tested.
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Figure 8.3: Data positions (red circles) for first experiment.

Stereotomography case

The following parametrization was applied for stereotomography test:

Input data space: To generate data space, from each of the 198 data positions of Figure 8.3, one

pair of rays was traced until surface line with initial slopes given by a double aperture with respect to

the normal vector of the respective interface. The initial double aperture varies through the different

data positions and interfaces. Figure 8.4 illustrates the ray paths used to build input data space for

stereotomography test. At surface line, kinematic parameters of positions, slopes and traveltimes

were computed to compose data space. Therefore, data space is composed by 198 samples of two

positions, two slope parameters, and one two-way traveltime parameter. At this first test, no noise

was added to data parameters.

Initial model space: The initial velocity model was arbitrarily chosen to be a homogeneous velocity

model of 1.45km/s. Therefore, initial velocity model does not resembles at all the true velocity model.

Remind that, from the results of previous tests of this thesis, this fact turns the stereotomography test

even harder. For interpolation purposes, knots were displayed uniformly through the model, with

horizontal and vertical spacing of 0.2km. Ray-model space was initialized by the proposed initializa-

tion procedure for stereotomography, returning 198 initial model samples, each of them composed
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Figure 8.4: Ray paths used to build input data space for stereotomography test. Rays were traced with
initial double aperture with respect to the normal vector of the respective interface.

by one initial model position, one pair of initial model slopes and one pair one model traveltimes.

Initial model positions returned by the proposed initialization procedure for stereotomography, under

the constant velocity model of 1.45km/s, are illustrated by Figure 8.5. Compare with the true data

positions in Figure 8.3.

Initial regularization weight parameter: To perform this test, a previous search was made in order

to find a reasonable initial regularization parameter. Therefore, this test was performed many times,

with different values of initial regularization parameter. For relative high initial values for regulariza-

tion parameter, the objective function, to be minimized, did not reach a final reasonable (small) value.

Therefore, the initial value of regularization parameter was subsequently decreased until the objective

function fell below an acceptable value. For even smaller values of initial regularization parameter,

the final value of objective function increases again and the method starts to return non-regularized

velocity models. For this test, between all values tested for the parameter, the initial regularization

parameter for which the final objective function reached the minimum value was chosen. Thus, initial

regularization parameter λ was set in order to, at first iteration, the relation between the regulariza-

tion term with respect to the objective function, would be 10−7. To calibrate regularization term, the

following values were considered: ǫxx = ǫzz = 1 and ǫvv = 10−4.
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Figure 8.5: Initial model for stereotomography test. A homogeneous velocity model of 1.45km/s was
applied. White asterisks denote model initial positions.

Final model proposed by stereotomography: Under the previously mentioned conditions, the fi-

nal model proposed by stereotomography is illustrated in Figure 8.6. The method couldn’t invert

correctly the region below the high velocity area of the model. In fact, the high velocity area at the

middle of the model represents the division between good and bad results provided by the method.

Note that, above the high velocity area, stereotomography was capable to recover both true velocity

and model positions. However, bellow this region, both velocity and model positions were affected

by the presence of high velocity area. Figure 8.7 illustrates inverted model positions by stereotomog-

raphy. Figure 8.8 exhibits relative errors of inverted velocity model by stereotomography.

The performed test by stereotomography resembles the results presented in Neckludov et al.

(2006). There, stereotomography was also tested with a velocity model with a high velocity area at the

middle of the model. Regions above this high velocity area were reasonably inverted, while regions

bellow this area were affected by the presence of high velocity area, returning meaningless velocity

values. There, a method named residual stereotomographic inversion, which was performed using, as

input, the final model of stereotomography method, was proposed to increase the quality of the result.

For more details, the interest reader can consult the reference Neckludov et al. (2006). In this thesis,

we will show how CRP tomography can improve the previous results under the same parametrization.



8 - Further numerical tests - noisy input data and interfaces 214

0 1 2 3 4 5 6

0

1

2

3

4

5
1.5

2

2.5

3

3.5

V
e
lo

c
it
y
 [
k
m

/s
]

0 1 2 3 4 5 6

0

1

2

3

4

5
1.5

2

2.5

3

3.5

V
e
lo

c
it
y
 [
k
m

/s
]

Figure 8.6: Final velocity model of stereotomography test (top image). True velocity model for first
experiment (bottom image). Stereotomography couldn’t invert correctly the high velocity region pre-
sented in true velocity model.
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Figure 8.7: Final model depth positions returned by stereotomography. Red circles denote data posi-
tions, while white asterisk denote model positions. Model positions were not correctly repositioned
below high velocity region.
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Figure 8.8: Relative errors of stereotomography inverted velocity model. Relative errors of great
magnitude are presented at the deepest half of the model.
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Figure 8.9: Ray paths used to build input data space for CRP tomography test. Note the significantly
more number of rays used to build CRP tomography input data space.

CRP tomography - noise-free case

As previously mentioned, CRP tomography will be tested under the same parametrization

applied for stereotomography test. In CRP tomography context, the parametrization applied was:

Input data space: To generate data space, from each of the 198 data positions of Figure 8.3, ten

pairs of rays were traced until surface line. Each pair was propagated with different initial double

apertures with respect to the normal vector of the respective interface. The initial double aperture

varies through the different data positions and interfaces. Figure 8.9 illustrates the paths of the rays

used to build input data space for CRP tomography test. Note the significantly higher number of rays

considered by CRP tomography test (compare with the respective Figure 8.4 of stereotomography

test). The more number of rays accounts for a bigger input data space in synthetic context, keeping

the same the number of data positions. In a real context, a bigger input data space would be provided

by the same number of performed pickings. At surface line, kinematic parameters of positions, slopes

and traveltimes were computed to compose data space. Therefore, data space is composed by 198

families, each of them composed by a total family traveltime, plus ten pairs of positions and slope

parameters.
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Figure 8.10: Initial velocity model and initial model depth positions for CRP tomography test. A
homogeneous velocity model of 1.45km/s was applied. White asterisks denote initial model positions.

Initial model space: The same initial homogeneous velocity model of 1.45km/s was used as input

for CRP tomography case. Also, the same mesh of knots for B-spline interpolation applied to stereoto-

mography test was used. Ray-model space was initialized by the proposed initialization procedure for

CRP tomography, returning 198 model families, each of them composed by one initial model depth

position, plus ten pairs of initial model slopes. Initial model positions for CRP tomography noise-free

case are illustrated by Figure 8.10.

Initial regularization weight parameter: To perform CRP tomography test, the same procedure

used to find a good initial value for regularization parameter for stereotomography test was applied.

As a result of such procedure, initial regularization parameter λ was set in order to, at first iteration, the

relation between the regularization term with respect to the objective function, would be 4.10−8. Note

that CRP tomography allowed a relative smaller level than stereotomography for initial regularization.

The parameters to calibrate regularization term were kept the same: ǫxx = ǫzz = 1 and ǫvv = 10−4.

Final model proposed by CRP tomography - noise-free case: The result provided by CRP tomog-

raphy under the previous parametrization is illustrated by Figure 8.11. Note how CRP tomography

could recover good informations about almost all parts of the model. Obviously, the presence of a
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high velocity area at the middle of the model is still a problem for tomographic approaches. In CRP

tomography context, the presence of the high velocity area at the middle of the model resulted in a

final model that couldn’t perfectly localize this area, which can also be a limitation of the applied

interpolation mesh. However, differently of the result provided by stereotomography method, CRP

tomography identified the existence of a high velocity area at the middle of the model and placed it

approximately near the true position. The shallow half of the model was almost perfectly recovered.

Also, the decreasing of velocity model in the deeper half of the model could be identified. Figure 8.13

exhibits the relative errors of CRP inverted velocity model. Errors are concentrated in regions where

almost no information are available in input data space. Moreover, as is illustrated by Figure 8.12,

model depth positions could be repositioned very close to the true data positions. Except for the deep-

est interface, final model positions were placed along the synthetic interfaces, which is a remarkable

result provided by CRP tomography. Figure 8.14 exhibits the evolution of both velocity and model

depth positions proposed by CRP tomography method through iterations.

CRP tomography - noisy input data space

Due to the good results provided by CRP tomography on previous test, another challenge

will be proposed for CRP tomography method: random noise will be added to input data parameters.

The objective is to investigate the robustness of the method in respect with inaccurate input data. The

parametrization of the previous test will be kept the same and just the data space will be changed. The

random noise applied to input data space obeys the following rule:

Noisy-input data space: A discussion about the different sources of input data errors for positions,

traveltimes and slopes has already been made in this chapter. In this test, a random error provided

by uniform distribution will be applied to each of these data parameters. Although the assumption

of a uniform random noise is not physically justified, it can be used to study the robustness of the

proposed new method in respect with errors in input data space. As already explained, in practical

real context, the main source of data errors for CRP tomography is the slope parameter. Therefore,

for input slope parameters, a relative higher noise value will be added in comparison with other input

kinematic parameters. The level of random noise to be added at each input kinematic parameter will

be the following:

• Time: a random value of the interval [−5.10−3s, 5.10−3s] will be added to each traveltime input

parameter.
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Figure 8.11: Final velocity model of CRP tomography test (top image). True velocity model for first
experiment (bottom image). CRP tomography identified the existence of a high velocity area the
middle part of the model and recovered good informations about almost all parts of the model.
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Figure 8.12: Final model depth positions returned by CRP tomography. Red circles denote data po-
sitions, while white asterisk denote model positions. Except for the deepest interfaces, model depth
positions were repositioned over the synthetic interfaces.

• Position: a random value of the interval [−5m, 5m] will be added to each position input pa-

rameter.

• Slope: a random value of the interval [−3.10−5s/m, 3.10−5s/m] will be added to each slope

(slowness vector) input parameter. The boundary values of this interval account for approxi-

mately 5% for the inverse of the velocity at surface line.

Final model proposed by CRP tomography - noisy input data case: The CRP tomography final

result for this noisy input data experiment is illustrated by Figure 8.15. The presence of noise in input

data space has not significantly affected the quality of the tomographic final model. The same good

features presented by noise-free result remain at the present test. Except for regions near the bottom

line of the model, the inverted velocity model resembles the true velocity model, as it can be noted

by Figure 8.16, which illustrates the relative errors of velocity model. Note also the good quality of

inverted model positions in Figure 8.17, most of them repositioned over the synthetic interfaces.

By the results illustrated by the Figures 8.15, 8.16 and 8.17, it is possible to say that CRP to-

mography method demonstrated to be, at this particular synthetic test, a robust technique with respect
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Figure 8.13: Relative errors of CRP tomography inverted velocity model. Errors are concentrated
in regions where almost no information are available in input data space. Interpolation limitations
contribute to relative errors near the high velocity area.

to the proposed uniformly distributed random noise. To keep the investigation about the robustness of

CRP tomography method in respect with noisy input data space, another test will be performed. This

time, the level of noisy will be increased by the following level of random noise:

• Time: a random value of the interval [−10−2s, 10−2s] will be added to each traveltime input

parameter.

• Position: a random value of the interval [−10m, 10m] will be added to each position input

parameter.

• Slope: a random value of the interval [−7.10−5s/m, 7.10−5s/m] will be added to each slope

(slowness vector) input parameter. The boundary values of this interval account for approxi-

mately 10% for the inverse of the velocity at surface line.

The solution provided by CRP tomography under the increased level of noise in input data

space is summarized by Figures 8.18, 8.19 and 8.20. As expected, with increased level of noise in in-

put data space, the quality of inverted CRP tomography velocity model has been a little more affected.

However, once again, the main features and qualities presented before remain at the proposed final
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(e) (f)

Figure 8.14: Evolution of CRP tomography model through iterations. (a) Initial model. (b) Current
model at iteration 3. (c) Current model at iteration 6. (d) Current model at iteration 9. (e) Final CRP
tomography model - iteration 14. (f) True velocity model and data positions.
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Figure 8.15: Final velocity model of CRP tomography noisy input test. The good features presented
by noise-free result remain at the noisy input test.
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Figure 8.16: Relative errors of CRP tomography inverted model for noisy input test. Once again,
errors, are concentrated in regions where almost no information are available in input data space.
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Figure 8.17: Final model depth positions returned by CRP tomography for noisy input test. Red circles
denote data positions, while white asterisk denote model positions. Model depth positions were well
repositioned over synthetic interfaces, except for deepest ones.

model. Hence, even at the presence of a higher level of noise, CRP tomography could approximately

localize, at the middle of proposed model, the high velocity area. Moreover, CRP tomography could

still identify the decrease of velocity below the high velocity area. Inverted model depth positions

were also repositioned, except for the deepest structures, along the synthetic structures. Finally, note

that the corners of model concentrates the major errors of inverted CRP tomography velocity model.

However, these regions are not covered by informations in input data space.

8.2 Second Synthetic Experiment

The second experiment of this chapter will be performed following the same steps of pre-

vious experiment. Therefore, the velocity model for second experiment will be used to test both

stereotomography and CRP tomography. Following the main objectives of this chapter, synthetic in-

terfaces will be proposed for the model, where data positions will be placed. A noisy-input data

space will be provided in order to investigate the robustness of CRP tomography in respect with

non-accurate input parameters for this test.



8 - Further numerical tests - noisy input data and interfaces 225

0 1 2 3 4 5 6

0

1

2

3

4

5
1.5

2

2.5

3

3.5

V
e
lo

c
it
y
 [
k
m

/s
]

Figure 8.18: Final velocity model of CRP tomography for the test with increased level of noise. Most
of the good features presented by noise-free result still remain under the increased level of noise in
input data space.
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Figure 8.19: Relative errors of CRP tomography inverted model for the test with increased level of
noise. Note the presence of higher relative errors near the bottom line of the model.
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Figure 8.20: Final model depth positions returned by CRP tomography for the test with increased
level of noise. Red circles denote data positions, while white asterisk denote model positions. Model
depth positions were slightly worse repositioned.

Figure 8.21, exhibits the proposed velocity model for the present experiment. The model

has dimension 4km×5km and was not generated by B-spline interpolation, which represents another

challenge for tomographic inversion problem. Figure 8.22 exhibits the velocity model with synthetic

interfaces proposed for the second experiment.

In previous experiment, the main challenge was represented by the complex velocity model,

due to the presence of a high velocity region at the middle of the model. For this second experi-

ment, the velocity model does not represent a remarkable big challenge. Although it is not a simple

model, because of the presence of lateral velocity variations, the velocity model does not present

complex velocity variations as the high velocity area of previous experiment. However, the synthetic

interfaces for this experiment are considerably more complex than the ones proposed for previous

experiment. The more complex configuration represents the biggest challenge of this experiment for

both tomography methods, mainly in respect with the correct repositioning of model depth positions

along the proposed interfaces. Once again, data positions will be placed over these interfaces, from

where pair(s) of rays will be traced to surface line in order to compute kinematic parameters to build

input data space. Random noise will be added to these computed parameters. For this experiment, 242

data positions will be used. Figure 8.23 illustrates the data positions over the proposed interfaces.
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Figure 8.21: Velocity model for second experiment.

Stereotomography case

Stereotomography will be performed with a noise-free input data space. The following

parametrizations were applied for this test:

Input data space: To generate data space, from each of the 242 data positions of Figure 8.23, a

pair of rays were traced until surface line with initial slopes given by a double aperture with respect to

the normal vector of the respective interface. The initial double aperture varies through the different

data positions and interfaces. Figure 8.24 illustrates the rays paths used to build input data space for

stereotomography test. At surface line, kinematic parameters of positions, slopes and traveltimes were

computed to compose data space. Therefore, data space is composed by 242 samples of two positions,

two slope parameters and one two-way traveltime parameter. No noise was added to data parameters.

Initial model space: The initial velocity model was arbitrarily chosen to be a homogeneous veloc-

ity model of 1.5km/s. For interpolation purposes, knots were displayed with vertical spacing of 0.4km

and horizontal spacing of 0.5km. Ray-model space was initialized by the proposed initialization pro-

cedure for stereotomography, returning 242 initial model samples, each of them composed by one

initial model position, one pair of initial model slopes and one pair of model traveltime parameters.

Initial model positions for stereotomography case at the present second experiment are illustrated by
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Figure 8.22: Velocity model for second experiment with synthetic interfaces. The proposed interfaces
are more complex then the ones of previous experiment.
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Figure 8.23: Data positions (red circles) for second experiment.
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Figure 8.24: Ray paths used to build input data space for stereotomography test for second experiment.
Rays were traced with initial double aperture with respect to the normal vector of the respective
interface.

Figure 8.25. Model initial positions were derived by stereotomography initialization step under the

proposed initial homogeneous velocity model. Note how the model initial positions are concentrated

in the shallower half of the model due to the proposed homogeneous initial velocity model. Compare

with the true data positions of Figure 8.23.

Initial regularization weight parameter: To perform this test, a previous search was made in

order to find a reasonable initial regularization parameter following the same procedure used for

stereotomography case at first experiment. Thus, initial regularization parameter λ was set in order

to, at first iteration, the relation between the regularization term with respect to the objective function,

would be 9.10−5. To calibrate regularization term, the following values were considered: ǫxx = 0.5,

ǫzz = 0.02 and ǫvv = 10−4.

Stereotomography final model: Under the above parametrizations, the final model proposed by

stereotomography is illustrated in Figure 8.26. Also, Figure 8.27 exhibits the relative error of stereoto-

mography velocity model with respect to the true velocity model. Note that the main features of the

velocity model were recovered by stereotomography. For example, the crescent variation of velocity

model on vertical variation is presented on inverted velocity model. However, note that some of the
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Figure 8.25: Initial model for stereotomography test for second experiment. Model initial positions
are concentrated in the shallower half of the model due to the proposed homogeneous initial velocity
model.

lateral variation is not presented on final velocity model proposed by stereotomography. For example,

compare the inverted velocity value on the synthetic layer situated between 2.4km and 3.1 in depth.

However, the main objective of this experiment, due to the simple velocity model but slightly

complex interfaces, is to test the correct repositioning of model depth positions on true data positions.

Figure 8.28 exhibits final model depth positions returned by stereotomography. Once again, the main

features of inverted positions were satisfactorily recovered. For example, note that most of the model

positions were replaced along the proposed structures. However, some of the model depth positions

were not perfectly repositioned to the respective true data positions.

CRP tomography - noise-free case

CRP tomography will be first tested at this experiment receiving, as input, a perfect accurate

data space. The parametrization used before for stereotomography method will be kept the same. The

main objective is to investigate how the use of common-reflection-point information can improve

inverted model depth positions.
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Figure 8.26: Final velocity model of stereotomography test for second experiment (top image). True
velocity model for second experiment (bottom image). Interfaces were displayed together with the
velocity models.
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Figure 8.27: Relative errors of stereotomography inverted velocity model of second experiment.

Input data space: To generate data space, from each of the 242 data positions of Figure 8.23, seven

pairs of rays were traced until surface line. Each pair was propagated with different initial double

aperture with respect to the normal vector of the respective interface. The initial double aperture varies

through the different data positions and interfaces. Figure 8.29 illustrate the ray paths used to build

input data space for CRP tomography test. Note the significantly more number of rays considered by

CRP tomography test when compared to stereotomography case. The more number of rays accounts

for more number of input data information in respect with each data position. As it will be showed, this

is a crucial feature to improve the quality of the inverted model. At surface line, kinematic parameters

of positions, slopes and traveltimes were computed to compose data space. Therefore, data space

is composed by 242 data gathers, each of them composed by a total traveltime, plus seven pairs of

positions and slope parameters.

Initial model space: The same initial homogeneous velocity model of 1.5km/s will be used as input

for CRP tomography case. Also, the same mesh of knots for B-spline interpolation applied to stereoto-

mography test will be used. Ray-model space was initialized by the proposed initialization procedure

for CRP tomography, returning 242 model gathers, each of them composed by one initial model depth

position, plus seven pairs of initial model slopes. Initial model positions, for CRP tomography noise-

free case, returned by initialization step, are illustrated by Figure 8.30. CRP tomography model initial

positions are concentrated in the shallower half of the model due to the proposed homogeneous initial
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Figure 8.28: Final model depth positions returned by stereotomography for second experiment. Red
circles denote data positions, while white asterisks denote model positions.

velocity model.

Initial regularization weight parameter: CRP tomography test will be performed using the same

level of initial regularization parameter used for stereotomography. Therefore, initial regularization

parameter λ was set in order to, at first iteration, the relation between the regularization term with

respect to the objective function, would be 9.10−5. The parameters to calibrate regularization term

were: ǫxx = 0.5 ǫzz = 0.02 and ǫvv = 10−4.

CRP tomography final model for noise-free case: The result provided by CRP tomography for

second experiment is illustrated by Figure 8.31. In respect with the inverted velocity model, CRP

tomography kept the same good features presented by stereotomography case. However, note how

CRP tomography was able to better recover the velocity of the layer situated between 2.4km and

3.1km in depth. Moreover, relative errors illustrated by Figure 8.32 are smaller than the ones presented

by stereotomography test.

With respect to the main objective of this experiment, CRP tomography notably improved the

quality of inverted model depth positions. As it can be seen in Figure 8.33, model depth positions were

repositioned almost perfectly over data positions. Compare with the inverted model depth positions
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Figure 8.29: Ray paths used to build input data space for CRP tomography test for second experiment.
Note the significantly more number of rays considered by CRP tomography test when compared to
stereotomography case.
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Figure 8.30: Initial model for CRP tomography test for second experiment. Model initial positions
are concentrated in the shallower half of the model due to the proposed homogeneous initial velocity
model.
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Figure 8.31: Final velocity model of CRP tomography test for second experiment (top image). True
velocity model for second experiment (bottom image). Interfaces were displayed together with the
velocity models.
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Figure 8.32: Relative errors of CRP tomography inverted velocity model of second experiment.

provided by stereotomography in Figure 8.28. This experiment exemplifies how the use of common-

reflection-point information can be used to improve the quality of tomographic final model positions.

CRP tomography - noisy input data space

CRP tomography will be tested for this experiment, once again, under a noisy-input data

space. The objective is to evaluate the robustness of the method, mainly the quality of inverted model

depth positions, in respect with inaccurate input data parameters. Parametrization of previous test

will be kept the same. Just data space will be changed by random noise (under a uniform distribution)

applied to all data kinematic parameters by the following rule:

• Time: a random value of the interval [−10−2s, 10−2s] will be added to each traveltime input

parameter.

• Position: a random value of the interval [−7.5m, 7.5m] will be added to each position input

parameter.

• Slope: a random value of the interval [−5.10−5s/m, 5.10−5s/m] will be added to each slope

(slowness vector) input parameter. The boundary values of this interval account for approxi-

mately 7.5% for the inverse of the velocity at surface line.



8 - Further numerical tests - noisy input data and interfaces 237

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

1.5

2

2.5

3

3.5

4

V
e
lo

c
it
y
 [
k
m

/s
]

Figure 8.33: Final model depth positions returned by CRP tomography for second experiment. Red
circles denote data positions, while white asterisks denote model positions. Almost all model depth
positions were repositioned on correct data positions.

The previous random noise obeys an uniform distribution, and represents an intermediate

level of random noise when compared to the level of noise applied for both two tests of first experi-

ment.

CRP tomography final model - noisy input data case: CRP tomography proposed result for

noisy-input data experiment is illustrated by Figure 8.34. The presence of noise in input data space has

slightly affected the quality of tomographic final model, as illustrated by Figure 8.35. Under the pres-

ence of noisy input data space, mainly at the regions near the bottom line, inverted model positions

couldn’t be repositioned over the exact data depth position. However, they were still repositioned over

the synthetic interfaces and, most of them, very close to the true data positions. Figure 8.36 illustrates

the final model depth positions.
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Figure 8.34: Final velocity model of CRP tomography noisy input test for second experiment (top im-
age). True velocity model for second experiment (bottom image). Interfaces were displayed together
with the velocity models.
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Figure 8.35: Relative errors of CRP tomography inverted velocity model for noisy input test of second
experiment. Relative errors are greater than the ones presented by the noise-free test.
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Figure 8.36: Final model depth positions returned by CRP tomography for noisy input test of second
experiment. Red circles denote data positions, while white asterisks denote model positions. Despite
the region near the bottom line, model depth points were repositioned very close to the respective true
data positions.
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Chapter 9

CRP tomography velocity model as input for

FWI - A velocity model building procedure

This chapter illustrates the velocity model building procedure proposed in this thesis. This

procedure consists of the use of CRP tomography velocity model as input for FWI application. The

proposed velocity model building procedure will be further tested in a synthetic experiment.

Given a region of interest in depth, the proposed velocity model building procedure can be

summarized as follows:

• (a) An arbitrary (simple) velocity model is chosen as initial velocity model for the velocity

model building procedure. This velocity model is used as input for CRP tomography method.

• (b) CRP tomograpy data input components are collected/picked in input siesmic data and in-

put parameters are specified. CRP tomography is performed under the chosen user-selected

parametrization, picked input data components and the initial velocity model of item (a). In this

thesis, the procedure of collect data input components is synthetically done by direct computa-

tion of such kinematic parameters by means of ray-tracing.

• (c) Under the input sets and parametrizations given by itens (a) and (b), a final (smooth) CRP

tomography velocity model is obtained.

• (d) CRP tomography final velocity model is used as input for FWI application. As input data,

FWI uses the role set of traces of input seismic data. In this thesis, these traces are directly

computed by means of wave propagation.
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• (e) Under the input sets given by item (d), a final FWI velocity model is obtained, providing a

high resolution final velocity model for the region of interest in depth.

The velocity model building procedure described above is summarized by the flowchart of

Figure 9.1.

Figure 9.1: Flowchart of the proposed velocity model building procedure of this thesis.

The previous procedure was designed to overcome the crucial dependence on a good model-

space initial guess for successful FWI inversion. Moreover, FWI has, most of the time, extreme de-

mands on computational costs, wich turns the use of a good initial velocity model even more impor-

tant to avoid too many applications of FWI method. On the other hand, CRP tomography iteration

updates can be carried out by efficient computational implementation. Furthermore, CRP tomography

can satisfactorily recover low-frequence content of the velocity field of the region of interest in depth,

which is an important information required for good initial velocity models for FWI (see, e.g, Virieux

et al. (2017)). As discussed in chapter 4, once the problem of initial velocity model dependence is

overcomed, FWI can provide high resolution velocity models, recovering most of the high-frequence

content of the velocity field of the region of interest in depth. Based on the results obtained so far in

numerical tests reported in this thesis, CRP tomography is able to provide good final smooth veloc-

ity models by the use of very simple initial velocity models. Therefore, our proposed velocity model

building procedure can starts with a simple initial velocity model and finishes the procedure providing

a reasonable high resolution velocity model.

Here, it will be exemplified how CRP tomography final velocity model can overcome such

crucial FWI dependence on initial velocity models, that is, it can be used as a good velocity model-

space initial guess for successful FWI inversion. The example test will be carried out in a synthetic ex-

periment using Marmousi velocity model, starting with a very simple, homogeneous velocity model.

The use of a simple velocity model is important to reinforce the robustness of the proposed velocity

model building procedure, being independent of any previous information about true velocity field in

depth.
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9.1 Velocity model building procedure application - Marmousi

model

This section will illustrate one example of the proposed velocity model building procedure

by means of a synthetic experiment. Marmousi model (Figure 9.2) was chosen as the velocity model

to be tested by the proposed procedure. Before describe the experiment steps and obtained results,

some brief comments about the FWI implementation used by the present experiment will be provided

below.

FWI method to be performed uses the main features and details described in chapter 4.

However, different of what was done for all seismic tomography methods presented in this thesis,

FWI method was not implemented during the present research. Therefore, in order to illustrated the

proposed velocity model building procedure, the present experiment uses one example of FWI imple-

mentation in the user role. The development and coding of all FWI algorithmic used in this experiment

have been carried out in house at the High-Performance Geophysics (HPG) Laboratory at the Center

for Petroleum studies (CEPETRO) at the University of Campinas (UNICAMP). The development was

mainly inspired by reference Camargo (2019). For more details about the quasi-Newton optimization

scheme applied, together with the step length Armijo’s rule, the interest reader is reffered to Camargo

(2019).

To perform the present experiment, it was considered the idealized situation of an ocean-

bottom-node (OBN) seismic acquisition performed on the Marmousi velocity model subsurface il-

lustrated in Figure 9.2. We suppose that the sea bottom is planar at depth z = 500m and the water

velocity is 1.5km/s. Under such conditions, input observed data space for FWI, that is, synthetic seis-

mic data traces, will be direct computed by means of wave propagation using finite-difference method

(FMD). For more details about FMD, the interest reader can consult Camargo (2019).

FWI input observed-data space: To generate data space for FWI, shot records that correspond to

321 surface point sources and 601 receivers at a planar sea bottom surface located at 500m depth were

considered. Figure 9.2 exhibits both the proposed planar sea bottom, where receivers were positioned,

and surface line, where sources were placed. The shot records were simulated as the solutions of the

acoustic wave equation (see chapter 4). A shot separation of 25m and a receiver separation of 10m was

considered. Note that, with this acquisition parametrization, 8km of surface line is covered by point

sources, with 25m of separation between them. Figure 9.2 exhibits the first and last sources of the line.

On the other hand, receivers cover an extension of 6km of the proposed planar sea bottom, placed at
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Figure 9.2: Marmousi velocity model. Colormap corresponds to velocity measured in km/s. Both the
proposed planar sea bottom, where receivers were positioned, and surface line, where sources were
placed, are illustrated. Just the first and last source/receiver are displayed. The red rectangle marks
the region of interest for the present experiment. It takes into account border aspects for seismic
inverse problems implementations and focuses the results on the region with more amount of data
information.

the middle of the proposed sea bottom surface, with 10m of separation between them. Figure 9.2

also illustrates this distribution, showing the first and last receiver positions. Finally, the point sources

were given by a Ricker wavelet with peak frequence of 20Hz. The FDM parameters considered were

∆x = ∆z = 10m, ∆t = 1ms and a maximum record T = 3s. Under this configuration, FWI

observed-data space is composed by 192921 observed seismic data traces.

The red rectangle of Figure 9.2 marks the region of interest for the present experiment. It

takes into account border aspects for seismic inverse problems implementations. The region outside

the red rectangle is the region with the least amount of input information. Therefore, the focus will be

on the region inside the red rectangle. Note that it is delimited, in x-direction, by the source positions

in surface line.

FWI initial model space: Following the proposed velocity model building procedure, CRP tomog-

raphy velocity model will be proposed as initial velocity model for FWI experiment. Thus, before

FWI method, CRP tomography will be performed in the present Marmousi test. Due to the complex

velocity variation of Marmousi model in both directions, the velocity model of Figure 9.2 is unfeasible

for ray-tracing purposes. Therefore, input data-observed kinematic parameters for CRP tomography
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will be computed on a smooth version of Marmousi velocity model of Figure 9.2. The smooth version

of Marmousi model (soft Marmousi) is displayed in Figure 9.3, where the red rectangle, sea bottom

and surface lines were kept for comparison reasons. This smooth velocity model is very similar to the

soft Marmousi velocity model presented in chapters 6 and 7. It was obtained by applying smoothing

filter, i.e., a central moving average applied in eighty one points for each side to the original Marmousi

velocity model of Figure 9.2.

Figure 9.3: Smooth version of Marmousi velocity model of Figure 9.2. It was obtained by applying a
central moving average applied in eighty one points for each side to the original Marmousi velocity
model. This smooth version of Marmousi velocity model is used to construct input observede-data
space for CRP tomography method, due to the fact that Marmousi model is unfeasible for ray-tracing
purposes.

From now on, in order to perform CRP tomography step of the proposed velocity model

building procedure, CRP tomography will be performed using a similar approach already used before

in this thesis during soft marmousi test in chapter 7. Therefore, CRP tomography will be performed

using, as input data space, kinematic wave parameters computed by ray-tracing performed in soft

marmousi velocity model of Figure 9.3. A very simple initial homogeneous velocity model of 1.5km/s

will be given as input velocity-model space for CRP tomography application. The parametrization

used for CRP tomography test is summarized as follows:

CRP tomography input observed-data space: To generate observed-data space, 540 data depth

positions were uniformly displayed through the red rectangle of soft Marmousi model of Figure 9.3.

From each of these positions, ten pairs of rays were traced through the model and the kinematic



9 - CRP tomography velocity model as input for FWI - A velocity model building procedure 245

parameters of position, traveltime and slopes were computed at surface line. The rays were propagated

with initial double aperture, with respect to vertical direction, varying from 5° to 40°. All traveltimes

related with rays starting from the same data common-depth-position were summed. Therefore, data

space is composed 540 families, each of them with a data total traveltime and ten samples composed

by two data positions and two data slope parameters.

CRP tomography initial model space: A homogeneous velocity model of 1.5km/s was used as

initial velocity-model space for CRP tomography. Therefore, CRP tomography was performed with

no a priori knowledges about true velocity model. The interpolation knots were distributed through

interpolaiton grid, with vertical and horizontal spacing of 0.5km. Finally, inital CRP ray-model space

was initialized with the proposed initialization procedure of chapter 5, returning 540 gathers of model

samples, each of them composed by one initial model position in depth and ten pairs of initial model

slopes.

Initial regularization weight parameter: Initial regularization parameter λ was set in order to

keep the same level of regularization used for soft marmousi test in chapter 7. Therefore, at first

iteration, the relation between the regularization term in respect to the objective function was set as

5.10−5. Also, ǫzz = 10−2 , ǫxx = 1 and ǫvv = 10−4 were set to calibrate regularization term.

CRP tomography velocity model: Under the initial conditions and parametrizations previously

described, CRP tomography final velocity model is illustrated by Figure 9.4. As can be noted, CRP

tomography method could provide a good smooth velocity model for Marmousi model. Note how the

inverted velocity model is much similar to the soft marmousi velocity model in almost all regions of

the model. Compare with Figure 9.3. As expected, CRP tomography final velocity model is a smooth

model, without high-frequence content. To recover high-frequence content, CRP tomography final

velocity model illustrated by Figure 9.4 will be used as input for FWI method.

FWI application: Now, in order to finish the illustration of the proposed velocity model build-

ing procedure, CRP tomography final velocity model of Figure 9.4 will be used as initial velocity

model for FWI. As it is known, FWI is dependent of a good initial velocity model that contains low-

frequence information about the velicty field of the region of interest in depth (see, e.g, Virieux et al.

(2017)). Here, it will be shown how CRP tomography velocity model can be used to overcome this

dependence. Through FWI inverse process, the same numerical scheme of finite-difference consid-

ered to construct input FWI observed-data space is used to iteratively generate synthetic traces under
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Figure 9.4: CRP tomography final velocity model for the present experiment. An initial homogeneous
velocity model of 1.5km/s was used as input for the method. Note how the inverted velocity model is
much similar to the soft marmousi velocity model in almost all regions of the model. Compare with
Figure 9.3. This model is used as initial velocity model for FWI application.

current model conditions. A maximum of 200 iterations was adopted as a stop criteria.

FWI final result: Figure 9.5 illustrates FWI final velocity model for the present experiment. Note

that the final solution presents the proposed desired features, that is, given a initial velocity model

with good content of low-frequence about the velocity model of the region of interest in depth, FWI

method could recover high-frequence content and generate a high resolution final velocity model. The

present result validades our proposed velocity model building procedure in Marmousi experiment

context and, consequently, the use of CRP tomography velocity model as input for FWI.

Under CRP tomography velocity provided as initial velocity model for FWI method, FWI

could iteratively recovered most of the high frequence content of marmousi velocity model. Note

how it was possible, by the present velocity model building procedure, to derive a quite good final

velocity model for Marmousi test by using, as initial velocity model guess for the role procedure, a

very simple (homogeneous) velocity model. Moreover, no initial previous velocity model knowledge

was used in all steps of our present synthetic test. Once CRP tomography has been shown, so far, to

be a robust technique with respect to the choice of initial velocity models, this procedure can also

be robust to this particular choice, allowing the use of arbitrary simple initial velocity models for the

proposed velocity model building procedure.
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Figure 9.5: Top: Final velocity model proposed by FWI under the use of CRP tomography velocity
as input for FWI inverse process. Two hundred iterarions were performed. Bottom: true Marmousi
velocity model for comparison reasons. Under CRP tomography velocity provided as initial velocity
model for FWI method, FWI could iteratively recover most of the high frequence content of Marmousi
velocity model.
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9.2 Velocity model building procedure without CRP tomography

step

To illustrate the strong dependence of FWI on a good initial velocity model and reinforce

the important role played by CRP tomography in the proposed velocity model building procedure, the

present Marmousi experiment was performed, once again, without the CRP tomography step. In other

words, the initial homogenous velocity model used as initial velocity model for CRP tomography

step will be provided as initial velocity model for FWI. Therefore the intermediate step of CRP

tomography will not be considered, and the initial homogeneous velocity model of the role velocity

model building procedure will be direct used as an initial guess for FWI.

The velocity model building procedure without the intermediate CRP tomography step is

illustrated by the flowchart of Figure 9.6.

Figure 9.6: Flowchart of the velocity model building procedure without CRP tomography step.

Figure 9.7 illustrates FWI final velocity model of this experiment. Note that FWI could not

recover a reasonable velocity model under the use of an initial homogenous velocity model. As the

initial velocity model does not contain the necessary low-frequence content about the velocity model

of interest, FWI couldn’t recover the high-frequence information and further generate a good high

resolution velocity model. This experiment exemplifies the strong dependence of FWI on a good

initial velocity model and justifies the importance of CRP tomography (or any other type of seismic

tomography method) as an intermediate step of the proposed velocity model procedure.
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Figure 9.7: Final velocity model proposed by FWI under the use of a homogeneous velocity model
of 1.5km/s as input for FWI inverse process. Under this simple initial velocity model, FWI could not
invert a reasonable final velocity model. This experiment exemplifies the strong dependence of FWI
on a good initial velocity model that contains low-frequence content about the velocity model of the
region of interest.

9.3 Other strategies to generate initial velocity model for FWI

Other strategies and procedures have been researched so far to overcome the strong depen-

cence of FWI on a good initial velocity model. Next paragraph will mention some of this strategies,

mainly the two-phase FWI approach proposed by Camargo (2019).

Two-phase FWI approach and other strategies: The use of a good initial velocity model is, in

fact, very important for FWI applications. Camargo (2019) discusses similar FWI tests using very

simple initial velocity models, where no reasonable velocity final is obtained. Here, CRP tomography

velocity model could overcome this depencence on a good initial velocity model for succesful FWI

inversion. In Camargo (2019), the difficulty of deriving reasonable initial velocity model for FWI is

mitigated with FWI applied after the application of preliminary simplified versions of full FWI. This

is called two-phase FWI approach. In the first phase, FWI is formulated as a constrained nonlinear

problem by means of the augmented Lagrangian method. A first version of the initial velocity model

is parametrized as a linear combination of specific basis functions, e.g., constant vertical gradient,

horizontal interfaces, radial basis functions, among others. To assist the inversion process, informa-

tion extracted from well-log data are, if available, applied. In second phase, the obtained first-phase,
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velocity-model is used as input for another, this time box-constrained, FWI problem. That problem is

solved by the spectral gradient project (SPG), proposed in Birgin et al. (2000). In summary, the strat-

egy uses a first-phase scheme to guide the initial model into a region near an attractive basin, while a

second-phase scheme is applied to improve the model resolution. Introduction of a priori information,

such as, e.g., well-data and uncertainty estimations, can be also quite useful (see, e.g, Virieux et al.

(2017)). Other examples of procedures derived to provide good initial velocity models for FWI can

also be addressed in references Biondi and Almomin (2013) and Symes (2008).
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Chapter 10

Summary and conclusions

In this thesis, a new seismic tomography method was proposed. Named common-relfection-

point (CRP) tomography, this new method relies on recent results on CRP (also referred to as offset-

continuation) seismic processing and imaging. CRP tomography has stereotomography as its mains

source of inspiration and can be considere an advanced version of stereotomography. Both methods

are designed for unstacked domain and can be classified as slope tomography methods. However, in-

dependent data points of stereotomography were replaced with CRP data gathers in new CRP tomog-

raphy method. In fact, it represents the main difference between stereotomography and CRP tomogra-

phy. Therefore, instead of individual, independent picked/extracted data points used in stereotomag-

raphy, CRP tomography uses a collection of CRP data gathers. More specifically, each CRP gather

consists of all source-receiver pairs within the input data for which the primary-reflection rays for a

certain interface have the same (common) reflection point. Those gathers provide, at feasible compu-

tation costs, not only a more comprehensive coverage of the subsurface region under investigation, but

also redundancy that is useful to the inversion process. Moreover, when compared to individual data

points of stereotomography, the inclusion of CRP gathers does not increase the number of necessary

picks to be collected in seismic data.

The present research assumed a proof-of-concept framework: for illustrative synthetic-data

examples for which CRP gathers are known in advance, the task is to evaluate the actual potential and

benefits of CRP tomography, as compared to state-of-the-art approaches such as stereotomography.

An in-depth discussion on how CRP gathers are actually extracted from the input data, was not of

prime concern, although an explanation about how this process can be carried out was provided in

Appendix F. Following its proof-of-concept framework, all synthetic-data examples in this thesis were

carried by means of ray tracing performed on given velocity models.
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In Chapters 6 and 7, several tests carried out on a variety of synthetic tests confirmed the good

expectations of the proposed CRP tomography. In comparison with stereotomography results, CRP

tomography was capable to better invert synthetic velocity models by the use of a smaller number of

data points and/or worse initial velocity models. The need of a smaller number of data points (gathers)

has shown to be a good feature of CRP tomography method, since it depends to a smaller number of

picks to be performed. At least in the set of synthetic tests illustrating this thesis, CRP tomography

was seen to be quite robust with respect to initial velocity models, which is a quite attractive feature.

In the same way, robustness with respect to variations of initial regularization parameter was also

shown by CRP tomography.

In Chapter 8, further synthetic tests with included interfaces and noisy data have also shown

a good performance of the CRP tomography. Those tests illustrated how the introduction of CRP

gathers could improve the inversion quality, not only of the velocity models, but also the positioning

of model depth points. In particular, almost all depth points on synthetic interfaces were brough to

correct positions, even in the presence of noisy input data. In fact, CRP tomography was the only

method to be capable to satisfactorily invert the more complex model test with a high velocity region

in the middle of the model.

In Chapter 9, a final velocity model of CRP tomography applied to the Marmousi, was tested

as input for an FWI experiment. There, the CRP-tomographic velocity model was able to overcome

the recognized FWI initial-velocity dependence to achieve a successful inversion.

As a final remark, we observe that the CRP tomography method has been greatly bene-

fited from an in-depth analysis of NIP wave tomography and related literature. Valuable insights

and understanding were gained from actual 2D implementations, in particular the adoption of the

originally-proposed NIP-tomography regularization term.

Last but not least, all tomographic methods reported in this thesis, e.g, stereotomography,

NIP wave tomography and CRP tomography were fully implemented during the present research. All

features of the inversion method were derived from actual implementations. That included all schemes

employed for ray tracing, B-spline interpolations, mathematical methods to solve ill-conditioned lin-

ear systems, initialization procedure and regularization. Building all those schemes from scratch was

of paramount importance to fully understand the relevant aspects of the tomographic inverse process,

as well as to spot possible points where advances could be made.
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10.1 Future research

The present thesis represents a first report on the CRP tomography method. Here, the method

was presented for the very first time and tested over a set of synthetic model tests. As a first presenta-

tion, the method was conceived for two dimensional isotropic space and synthetic tests were carried

out under a proof-of-concept framework. Several researches have to be made in order to continue

the development of the new proposed seismic tomography method, both in theoretical and practical

aspects. Some of the possible future researches in CRP tomography are listed below:

On the theoretical side:

• Extend CRP tomography method to three dimensional space.

• Extend and validate CRP tomography to elastic isotropic and anisotropic media.

• Develop efficient procedures for picking, as well as corresponding CRP-gather estimations.

On the practical side:

• Efficient computational implementation of CRP tomography method and its proposed exten-

sions.

• Subject CRP-tomography to real-data application.
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Appendix A

NIP wave tomography

This appendix will provide a brief summary about NIP wave tomography method. It is not

the objective of this appendix a full detailed description of the method, as it was done in Chapter 3

for stereotomography and Chapter 5 for CRP tomography method. Therefore, justa data, model and

synthetic spaces, as well as initialization procedure for NIP wave tomography will be described.

Since iterative process is very similar to the ones presented before for stereotomography and CRP

tomography in this thesis, just some comments will be provided. For a more detailed explanation, the

interested reader can consult the main reference Duveneck (2004b).

A.1 Introduction

Normal incidence point wave tomography, or simply NIP wave tomography, is a curvature

tomography method in the zero-offset domain. The name NIP comes from the name of the point in

subsurface where a point source is positioned to generate the hypothetical NIP wavefront (see, e.g,

Hubral (1983)). NIP wave tomography aims to invert smooth velocities models, as well as positions

and slopes in depth, that might be used, for example, as an initial velocity model for depth migration

or FWI. For this purpose, the method uses information of kinematic wavefield parameters estimated

by means of common reflection surface (CRS) stacking procedure (see, e.g, Faccipieri (2016), Mann

(2002), Müller (1999)) as input for the tomographic inversion processes. The kinematic wavefield

parameters are: normal ray traveltime, horizontal slowness vector, second spatial traveltime deriva-

tives (related to the curvature of hyphotetical NIP wavefront) and the zero-offset position. All the

information are related to the normal ray of NIP wavefront at the surface acquisition and estimated
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by CRS parameters. Given an arbitrary set of model positions and slopes in subsurface, plus an ar-

bitrary velocity model, these input kinematic wavefield parameters can be synthetically computed by

dynamic-ray tracing (see Appendix C). The misfit between synthetic computed and observed kine-

matic parameters are used as the objective function to invert the desired velocity model, as well as

model depth positions and slopes.

Two of the remarkable innovations of NIP wave tomography method, when firstly presented

in early 2000s, were: the use of kinematic parameters related to curvature of hyphotetical NIP wave-

front and the extraction of input parameters in CRS stack panels. Thus, NIP wave tomography de-

pends on wavefield attributes resulting from the application of CRS stacking operator and, therefore,

it is based on a hyperbolic second-order traveltime approximation. If traveltimes of reflection events

in seismic data are reasonably well described by hyperbolic second-order approximations, the infor-

mation contained in the kinematic wavefield attributes can be used for the determination of a laterally

heterogeneous velocity model for depth imaging. The approximation details are outside the scopus

of this work and, therefore, will not be discussed here. The interested reader can consult Duveneck

(2004c) and Müller (1999) for more details on this subject. Also, one of the great contributions of

the method, the picking process in CRS panels, which has better signal-to-noise resolution, will not

be discussed in this thesis, since all the synthetic tests were performed without the necessity of pick-

ing process, once input parameters were direct computed by dynamic-ray-tracing. All tests were per-

formed in 2D media by the use of regularization term given by the minimization of second derivatives

of the velocity model, which was inspired by reference Duveneck (2004b).

In this appendix, only NIP wave tomography for 2D media will be described. For formula-

tions of NIP wave tomography in 3D media, the reader can consult Duveneck (2004a). We assume that

the kinematic wavefield attributes, associated with hypothetical NIP waves, can be reliably extracted

from CRS stacking operator. These parameters will be used to formulate a tomographic inversion

method for the determination of smooth velocity models in depth. For more details about CRS stack-

ing process, extraction and estimation of the kinematic wavefield parameters in coherence panels,

smart search strategies, as well as the physical interpretation of those parameters, the reader may con-

sult the references Duveneck (2004b), Faccipieri (2016)], Mann (2002), Müller (1999), Schleicher

et al. (1993) and Ursin (1982). Here, just the CRS stacking operator and further brief comments will

be presented.
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A.2 Observed-data and model spaces

NIP wave tomography is a curvature tomography method described as a LSQR seismic in-

verse problem. Here, the general formulation of the LSQR method will be revised for NIP wave

tomography context. As a first step, observed-data and model spaces will be introduced.

Observed-data space: The domain of NIP wave tomography input kinematic parameters differs

from stereotomography and CRP tomography methods. NIP wave tomography uses information ex-

tracted from poststack seismic gathers by means of CRS stack panels. CRS stacking process gener-

ates simulated zero-offset sections by means of a multiparametric traveltime (see, e.g, Mann (2002),

Müller (1999)). It takes into account arbitrary configurations of source-receiver pairs at the vicinity

of a specific given central zero-offset point (t0, ξ0). Thus, CRS stacknig considers traces refered to

an area around a central point in depth. The multiparametric traveltime is a second order approxi-

mation around a central point of the seismic data. In 2D media, CRS stacking operator represents a

hyperbolic surface composed by three parameters. CRS operator can be described as follows (see,

e.g, Schleicher et al. (1993)):

t2(x, h) = (t0 + 2px∆ξ)2 + 2t0(MN∆ξ2 +MNIPh
2), (A.1)

where ξ and h are, respectively, the midpoint and offset coordinates. Distance of the central midpoint

is given by ∆ξ = ξ − ξ0. The three parameters that rules the operator are px, MNIP and MN . The

parameters px and MN can be interpreted as the first and second horizontal spatial traveltime deriva-

tives related to an hypothetical wavefront at ξ0, due to an exploding reflector element placed at the

normal-incidence point (NIP) of the zero-offset ray on the reflector. Rays that compose this wave are

called normal rays and the hypothetical wave is called normal wave. The parameter MNIP can be

interpreted as the second horizontal traveltime derivative related to a hypothetical wavefront at ξ0,

due to a point source placed at the NIP point on the reflector. The associated hypothetical wave is the

so called NIP wave.

If v0 is the velocity near the surface acquisition in position ξ0, and the structures at subsurface

are invariant in the perpendicular direction of acquisition line (2.5D case, see, e.g, Bleistein (1986)),

the kinematic parameters px and MNIP can be related with the emergence angle α and curvature kNIP

of the hypothetical NIP wavefront. The relationship between these parameters are the following (see,

e.g, Duveneck (2004b)):
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(A.2)

By the previous equation, parameter MNIP is, in fact, direct related to the curvature of NIP

wavefront. For this reason, in this text, this parameter will be treated as a parameter related to the

curvature of NIP wavefront at position ξ0 in surface acquisition. Relate MNIP to the curvature of

the hypothetical NIP wavefront requires the validity of NIP wave theorem (see, e.g, Chernyak and

Gritsenko (1979), Hubral (1983)). From this theorem, to second order in offset direction, common

midpoint (CMP) reflection traveltimes and traveltimes along rays passing through the NIP of the

zero-offset ray are identical.

For a data driven description of CRS stacking operator A.1, the reader can consult the refer-

ence Faccipieri (2016). Here, CRS stacking operator described by physical parameters was exhibited

in order to briefly illustrate the extraction of kinematic parameters by CRS stacking process.

The observed-data space of NIP wave tomography, dobs, is composed by N kinematic pa-

rameter vectors dobsi extracted from locally-coherent events of the poststack seismic data. Such points

are selected by the user by a picking process. In symbols:

dobs = [dobs
i ]Ni=1 = [(ξ, px, t,MNIP )

T
i ]

N
i=1. (A.3)

All parameters refer to NIP rays kinematic parameters. Each subscript i is reffered to one

specific NIP ray. Therefore, each ray starts propagation at a diffraction location in subsurface and

reaches surface line at emergence position ξ with slope (horizontal slowness) px, curvature kNIP ,

which is related to MNIP (see equation A.2), and t is the propagation traveltime. See Figure A.1.

Model space: NIP wave tomography model space m is the union of two model-space subsets:

m = mvel ∪mray, (A.4)

where mvel is the velocity-model space and mray is the ray-model space.

The description of NIP wave tomography model space by the union of two model subsets

follows the same approach used for stereotomography and CRP tomography. In fact, velocity-model
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Figure A.1: Data parameter (ξ, px, t,MNIP ) corresponds, in the exact (unkown) velocity model, to
primary diffraction ray that connects the midpoint in zero-offset domain to a primary diffraction point
(x, z) in depth.

space mvel is exactly the same velocity-model subset explained before in this thesis for stereoto-

mography, chapter 3, and CRP tomography, chapter 5. Therefore, in this appendix, only NIP wave

tomography ray-model space mray will be described. For velocity-model space description, the reader

can go back to chapters 3 or 5.

Ray-model space: NIP wave tomography ray-model space, mray, is composed by N kinematic

parameter vectors mray
i . In symbols:

mray = [mray
i ]Ni=1 = [(x, z, θ)Ti ]

N
i=1, (A.5)

Each three-component parameter vector mray
i corresponds to its counterpart four-component

parameter vector dobs
i in observed data-space. In symbols, we have a one-to-one correspondence:

m
ray
i = (x, z, θ)Ti ↔ (ξ, px, t,MNIP )

T
i = dobs

i . (A.6)

Assuming that perfect velocity modeling conditions hold, a natural interpretation of this

correspondence can be provided (see Figure A.2). The components of mray
i specify a model depth

position (x, z) (diffraction point), as well as one up-going ray starting from the diffraction point with

initial model slope θ. Under perfect modeling conditions, this ray hits the measurement seismic line at
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point ξ, whith horizontal slowness px and related curvature that matches the second order parameter

MNIP . Also, total traveltime of this ray path amounts t.

Figure A.2: Under perfect modeling conditions, the parameters (x, z) locates a diffraction point from
which one up-going ray is specified by model slope θ. Such ray hits the measurement seismic line in
such a way that the location, horizontal slowness, curvature and traveltime (ξ, px,MNIP , t) matches
the parameters given by the observed space. Color map represents the exact velocity model.

A.3 Forward-model engine

Forward-modeling engine of NIP wave tomography is dynamic-ray tracing. A brief descrip-

tion of dynamic ray-tracing needed for NIP wave tomography forward-modeling is provided in Ap-

pendix C. For more details about dynamic-ray tracing and paraxial ray-theroy, the interested reader is

reffered, once again, to classical literature, e.g, (Cerveny, 2005) and (Popov, 2002).

The forward-modeling engine transforms a given model space m onto a corresponding syn-

thetic data space dsyn, which has the same form as the given (invariant) observed data space dobs.

Therefore, synthetic space is composed by N four-component kinematic parameter vectors dsyn
i . In

symbols:

dsyn = [dsyn
i ]Ni=1 = [(ξ, px, t,MNIP )

syn
i ]Ni=1. (A.7)
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The construction of a synthetic data space dsyn(m) for arbitrary model space m = mvel ∪

mray is illustrated in Figure A.3 and can be explained along the same lines previously used in the

case of perfect modeling conditions (Figure A.2). Assuming an arbitrary velocity-model space mvel,

let (x, z, θ)i parameterize the single vector mray
i of mray. Then the previous procedure produces the

model diffraction point (x, z), as well one up-going ray defined by the model-angle θ. By means

of dynamic-ray propagation, the related synthetic data vector dsyn
i (m) is fully parameterized by the

vector (ξsyn, psynx ,M syn
NIP , t

syn)i, where (ξsyn, psynx ) represents the location and horizontal slowness at

the endpoints of the ray, M syn
NIP is related to the associated curvature (see Equation A.2) and tsyn is

the traveltime of the ray path.

Figure A.3: Synthetic data space dsyn(m) for arbitrary model space m = mvel ∪ mray. Color map
represents the beta-spline velocity function provided by mvel. Also, (x, z, θ) represents a single model
parameter mray

i vector of mray. Under the same procedure of Figure A.2, model diffraction point
(x, z) together with the model slope θ, define one up-going ray. The endpoint location at measument
surface plus slowness vector, curvature and traveltime measured at the same endpoint, parameterize
the related synthetic data vector d

syn
i from dsyn. Note that, without perfect modeling conditions,

dsyn 6= dobs.

Note that each synthetic parameter vector dsyn
i (m) corresponds to is counterpart ray-model

parameter vector mray
i , which coresponds to its counterpart observed-data parameter vector dobs. In

symbols:

dobs
i ↔ m

ray
i ↔ d

syn
i . (A.8)
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A.4 Misfit function and iteration process

Following the same approach of stereotomography and CRP tomogrpahy, classical least-

square-root (LSQR) inversion is applied to solve the NIP wave tomography inverse problem. More-

over, the proposed numerical method to solve LSQR inversion is, once again, a Gauss-Newton itera-

tive procedure applied to a regularized misfit function that measures, for any given trial model space

m, the discrepancy ∆d(m) = dsyn(m)− dobs between the synthetic and observed data spaces.

As this approach was repeatedly explained and addressed throughout this thesis (see chapters

2, 3 and 5), here, just the NIP wave tomography misfit function will be exhibited. Further iterative

steps to numerically solve the optimization problem by Gauss-Newton approach will be omitted.

However, this steps are analogues to the ones presented in previous chapters. For more details of this

steps in the context of NIP wave tomography, the reader is reffered to standard referece Duveneck

(2004b).

Misfit function: Given a current model space m, NIP wave tomography misfit function is given by:

S(m) =
1

2
[∆dT (m)W−1

D ∆d(m) + λmvelTR(v)mvel], (A.9)

where W−1
D is the diagonal matrix that accounts for a priori data information and brings the differ-

ent data types to a comparable size and the expression λmvelTR(v)mvel denotes the regularization

term applied to current velocity-model space mvel. In this thesis, the same regularization term ap-

plied to stereotomography and CRP tomography will be used to NIP wave tomography. Therefore,

the minimization term of misfit function A.9 accounts, mainly, for the minimization of second or-

der derivatives of current velocity model. This term was already explained in previous chapters for

stereotomography and CRP tomography context. The interested reader can go back to chapters 3 and

5 for more details about this regularization operator. Also, the construction of regularization matrix

R is detailed in Appendix E.

Iteration process: By the Gauus-Newton approach to solve the problem given by the minimization

of misfit function A.9, an user-selected initial model space m0 is required. Then, an iterative scheme

{mk}, (k = 1, 2, . . .) is carried out to progress to the desired solution. Given a current model space

mk, its subsequent iteration mk+1 is given by:
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mk+1 = mk − αk∆mk, (A.10)

where αk is scalar that calibrates the size of the updating step and ∆mk is the Gauss-Newton solution

of the optimization problem for iteration k. For more details about how to iteratively generate ∆mk

for seismic tomography problems, the reader can go back to previous chapters.

NIP wave tomography regularization aspects: The regularization term used in this thesis for

all seismic tomography applications was, in fact, inspired by its use for NIP wave tomography in

Duveneck (2004b). There, this term was proposed to search, between all possible solutions of the

ill-posed inverse tomographic problem, the one with smoothness properties. However, to handle with

the natural numerical instability of NIP wave tomography, there, the method was implemented using

more than one regularization term. To assit numerical stability of the problem, in Duveneck (2004b),

NIP wave tomogrpahy was applied with one additional regularization term that takes into account

previously knowledge about some regions of the correct velocity model. The misfit between these

previous information and the velocity model generated by NIP wave tomography is added to the

objective function and is computed at each iteration. This strategy tries to guide the solution to a

velocity model similar to the correct one, at least in regions where previous information are provided.

Other type of regularization employed at some tests of NIP wave tomography in the same reference

is the reflector structure regularization. This another term forces the velocity model to locally follow

the reflector structure by minimizing the norm of the velocity gradient in the plane perpendicular

to the normal ray at each considered data point in the subsurface. This came from the assumption

that velocity variations should mainly occur in direction perpendicular to reflectors. However, the

orientations of the reflectors are usually unknown. To suppress this fact, the slopes current model

space are used at each iteration as a local approximation of the reflector structure. Also, NIP wave

tomography has already been tested with a spatially variable model smoothness regularization. This

strategy allows the velocity model to be less regularized in some specific parts of the model, while

keeping the other parts with strong regularization. This spatially variable smoothness has been shown

to be useful specially at the borders of the velocity field, where commonly no sufficient information

is available to locally constrain the model. However, all these other types of regularization are used

together with the minimization of velocity derivatives, which is the unique proposed regularization

term of this thesis. As one of the objectives of this thesis is to study the ability of different kinds

of tomography mothods to constrain different types of synthetic velocity models mainly by internal

information (regularization term can be viewd as a type of external information) provided by the

method, this task would be deteriorated with a lot of different kinds of regularization terms. For
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this reason, only the regularization term related to the minimization of second derivatives of the

velocity model was applied to all tomographic tests. Therefore, in this thesis, NIP wave tomography,

as well as all seismic tomography methods of this thesis, is proposed and tested by the use of just one

regularization term.

A.5 Initial model space for NIP wave tomography

The model initialization procedure to be described here is based on the initialization proce-

dure proposed by Duveneck (2004b) for NIP wave tomography. Following the initialization procedure

proposed in this thesis for stereotomography and CRP tomography, the model initialization step for

NIP wave tomography is very simple.

The procedure assumes that an arbitrary initial velocity-model space mvel has already been

provided by the user. Each pair (ξ, px)i of observed data space defines a ray that starts at the midpoint

position ξ0 and proceed downward with direction provided by the horizontal slowness px. Under

these considerations, the ray is traced downward through arbitrary initial velocity-model until the

data traveltime t is consumed. Let (x, z)i be the endpoint of the ray propagation. Moreover, at this

endpoint, let θi be the angle with respect to the vertical direction. Therefore, all values that define the

initial ray-model parameter vector mray
i that corresponds to the given observed-data vector parameter

dobs
i are obtained. The process is repeated to all i = 1, . . . , N , where N is the number of observed-

data vector parameters in observed-data space. Note that data parameter MNIP is not used for this

initialization procedure.

Following initialization procedures of stereotomography and CRP tomography, the initial

velocity model is arbitrarily chosen. Moreover, it was used at the previous initialization step to com-

pute the initial ray-model components. Despite it is not a crucial feature for seismic tomography

applications, usually, the more similar is the initial velocity with the true velocity model, the better

is the answer of the inversion process. However, it usually requires some previous knowledge about

true velocity model. Usually, very simple inital velocity models are chosen to initialize NIP wave

tomography method (see, e.g, Duveneck and Hubral (2002), Duveneck (2004c)). In this thesis, the

same approach will be followed for all NIP wave tomography synthetic tests in Appendix B.
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Figure A.4: Initialization procedure for ray-model parameter vector: a velocity model, constructed by
an arbitrary given initial velocity-model vector parameter is assumed. Given an observed data sample
(ξ, px,MNIP , t), the corresponding initial model vector parameter (x, z, θ) is to be constructed. Under
the use of the given initial velocity model, one ray is downward propagated from midpoint location
ξ, with direction determined by px. This ray is propagated until the endpoint (x, z) is attained for the
data traveltime t. Also, θ is defined as the angle of the ray path with respect to vertical direction at
endpoint (x, z).
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Appendix B

Synthetic tests for NIP wave tomography

NIP wave tomography was chosen to illustrate an example of curvature tomography method

for this thesis. Following what was done for stereotomography and CRP tomography methods, NIP

wave tomography was fully implemented during the phd research period. Some synthetic tests, anal-

ogous to the tests illustrated in this thesis for stereotomography and CRP tomography methods, were

performed in order to compare the obtained results between curvature and slope tomography meth-

ods. The results of these comparative tests were important for the development of CRP tomography

method as a slope tomography technique. Some of these synthetic tests for NIP wave tomography

will be illustrated at this appendix, where a discussion regarding the use of curvature parameter will

be made.

B.1 Validation Tests

In order to validate NIP wave tomography implementation, the method was tested by the

same set of validation tests used to validate both stereotomography and CRP tomography implemen-

tations. Being the same set of validation tests, the following velocity models were used to validate

NIP wave tomography implementation:

1. Model with trigonometric variation in vertical direction.

2. Model with linear variation in vertical direction.

3. Model with quadratic variation in vertical direction.
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4. Model with linear variation in horizontal direction.

5. Model with linear variation in horizontal direction and quadratic variation in vertical direction.

The previous set of velocity model tests, all of them constructed by simple mathematical

expressions, encompass different kinds of continuous velocity variations. These velocity model tests

will be illustrated in following figures, together with NIP wave tomography respective result.

In order to be fair and compare results provided by all tomographic methods, the same

parametrization used before for stereotomography and CRP tomography validation tests will be kept.

Therefore, a square grid of 2km×2km was used to build velocity models, which are constructed by B-

spline interpolation with knots uniformly distributed through the grid. Interpolation knots are spaced

by a constant distance of 0.4km, both in vertical and horizontal directions.

For NIP wave tomography validation tests, input data and model spaces and initial parame-

ters were set as follows:

Input observed-data space: To generate data information set, 49 data positions were uniformly

distributed in depth through the model. Data depth positions will be illustrated by following figures.

These data positions are exactly the same ones used for stereotomography and CRP tomography

validation tests. Data positions play the role of hypothetical localization of diffraction events (local-

ization of the point source for hyphotical NIP wave) for these synthetic experiments. Therefore, for

comparison reasons, these tests simulate the results that would be obtained by both seismic tomogra-

phy methods under the same number of pickings. From each of these positions, one ray is propagated

parallel to vertical axis to surface direction. In surface line, the kinematic parameters of emergence

positions, slopes, curvature and traveltimes were computed. Therefore, data space is composed by 49

data observed samples, each of them composed by one traveltime, one emergence position, one slow-

ness vector (horizontal component) and one parameter related to the curvature (see Appendix A) of

NIP wavefront. As the components of data space were computed directly by ray-tracing performed at

the true velocity model, despite numerical errors and theoretical approximations, observed-data space

is composed by perfect accurate data components. Moreover, the uniform distribution of positions in

depth guarantees that all regions of the velocity model are covered by informations in observed-data

space.

Initial model space: In order to allow comparisons between the previous results obtained by stereoto-

mography and CRP tomography, the same parametrizations were used for NIP wave tomography val-

idations tests. Thus, all initial velocity model spaces for validation tests were set as a homogeneous
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velocity model of 1km/s. The exception is the fourth validation test, the one with linear variation in

horizontal direction, where an initial homogeneous velocity model of 1.5km/s was applied. B-spline

interpolation knots were uniformly distributed through the model, with vertical and horizontal spac-

ing of 0.4km. Its is exactly the same distribution used to build true velocity models for the tests.

Ray-model space was initialized with the proposed initialization procedure proposed NIP wave to-

mography in this thesis. Therefore, the initialization procedure returned 49 ray-model samples, each

of them composed by one initial model position in depth and one initial model slope. Initial model

positions will be illustrated by following figures.

Initial regularization weight parameter: Following what was done for stereotomography and

CRP tomography tests, initial regularization weight parameter varies through the tests. This was nec-

essary due the different types of velocity variations. For those where the velocity varies in a non-linear

way, a smaller parameter was used. Some previous search was made in order to find reasonable ini-

tial values for regularization parameter. The parameter decreases through iterations by the previously

proposed heuristic (see chapter 5).

Comments about NIP wave tomography validation tests: The results obtained by NIP wave

tomography are illustrated by Figures B.1, B.2, B.3, B.4, B.5, B.6, B.7, B.8, B.9 and B.10. The

good results provided by the NIP wave tomography method are clear. Except by the last test, relative

difference errors between inverted and true velocity models fall below 1% almost for all regions of

the velocity grid. Moreover, the (small) errors are concentrated near the bottom line of the grid, which

is the region with least amount of available information. The last test, the one with quadratic variation

in vertical direction and linear variation in horizontal direction, is a little more challenging, once

concentrates variations of different degrees in both directions. Also, this is the only test where initial

velocity model equals true velocity model at just one position of the grid, the origin position (x, z) =

(0, 0). Even though, the velocity model inverted by NIP wave tomography is very good. Errors follow

under 2% almost for all regions of the velocity grid. Near the bottom of the model, the discrepancy

is more evident, but it still represents a small error. The result would be even better by the use of a

better initial velocity model or more number of input data samples. Hence, NIP wave tomography

implementation was able to handle with continuous velocity variations of different types and was

successfully applied when faced with lateral heterogeneous velocity models. Therefore, by this set of

validation tests, NIP wave tomography implementation was succeded. However, when compared to

the results proposed by stereotomography and CRP tomography at the same set of validation tests,

the results presented by NIP wave tomography are slightly worse.
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Figure B.1: First validation test: model with trigonometric variation in vertical direction. (a) True
velocity model for first validation test. (b) Vertical slices of initial (red) and true (blue) velocity
models. Slices were taken at the middle of the models. (c) Data positions. Observed-data space is
composed by kinematic parameters computed by a series of dynamic-ray tracing starting at these
positions. (d) Initial model positions returned by initialization process.
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Figure B.2: NIP wave tomography final result for first validation test. (a) Inverted velocity model. (b)
Vertical slices of inverted (red) and true (blues) velocity models. Slices were taken at the middle of
the models. (c) Inverted model (red) positions and true data (blue) positions. (d) Percentage difference
between inverted and true velocity models.
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Figure B.3: Second validation test: model with linear variation in vertical direction. (a) True velocity
model test. (b) Vertical slices of initial (red) and true (blue) velocity models. Vertical slices were
taken at the middle of the models. (c) Data positions. Observed-data space is composed by kinematic
parameters computed by a series of dynamic-ray tracing starting at these positions. (d) Initial model
positions returned by initialization process.



B - Synthetic tests for NIP wave tomography 277

0 1 2

0

1

2 1

1.2

1.4

1.6

1.8

2

V
e

lo
c
it
y
 (

k
m

/s
)

0 0.5 1 1.5 2

1

1.5

2

(a) (b)

0 1 2

0

1

2

0 1 2

0

1

2

2

4

6

8

10

R
e
la

ti
v
e
 D

if
fe

re
n
c
e
 (

%
)

(c) (d)

Figure B.4: NIP wave tomography results for second validation test. (a) Inverted velocity model.
(b) Vertical slices of inverted (red) and true (blue) velocity models. Vertical slices were taken at the
middle of the models. (c) Final model (red) positions and true (blue) data positions. (d) Percentage
difference between inverted and true velocity models.
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Figure B.5: Third validation test: model with quadratic variation in vertical direction. (a) True velocity
model test. (b) Vertical slices of initial (red) and true (blue) velocity models. Vertical slices were
taken at the middle of the models. (c) Data positions. Observed-data space is composed by kinematic
parameters computed by a series of dynamic-ray tracing starting at these positions. (d) Initial model
positions returned by initialization process.
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Figure B.6: NIP wave tomography final result for third validation test. (a) Inverted velocity model.
(b) Vertical slices of inverted (red) and true (blue) velocity models. Vertical slices were taken at the
middle of the models. (c) Final model (red) positions and true (blue) data positions. (d) Percentage
difference between inverted and true velocity models.
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Figure B.7: Fourth validation test: model with linear variation in horizontal direction. (a) True veloc-
ity model test. (b) Hotizontal slices of initial (red) and true (blue) velocity models. Slices were taken
at the middle of the models. (c) Data positions. Observed-data space is composed by kinematic pa-
rameters computed by a series of dynamic-ray tracing starting at these positions. (d) Initial positions
of returned by initialization process.
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Figure B.8: NIP wave tomography final result for fourth validation test. (a) Inverted velocity model.
(b) Horizontal slices of inverted (red) and true (blue) velocity models. Slices were taken at the middle
of the models. (c) Final model (red) positions and true (blue) data positions. (d) Percentage difference
between inverted and true velocity models.
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Figure B.9: Fifth validation test: model with linear variation in horizontal direction and quadritic
variation in vertical direction. Data positions are the same from previous validation tests. (a) True
velocity model test. (b) Vertical slices of initial (red) and true (blue) velocity models. Slices were
taken at the middle of the models. (c) Hotizontal slices of initial (red) and true (blue) velocity models.
Slices were taken at the middle of the models. (d) Initial model positions returned by initialization
process.
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Figure B.10: NIP wave tomography final result for fifth validation test. Data positions are the same
from previous validation tests. (a) Inverted velocity model. (b) Vertical slices of inverted (red) and
true (blue) velocity models. Slices were taken at the middle of the models. (c) Horizontal slices of
inverted (red) and true (blue) velocity models. Slices were taken at the middle of the models. (d) Final
model (red) positions and true (blue) data positions.
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B.2 The Three-layer Test

This section is dedicated to test the performance of NIP wave tomography on three-layer

model test. This test was also executed for both stereotomography and CRP tomography methods.

There, both methods provided good final velocity models by the use of a reduced amount of data

positions (see chapters 6 and 7). This is a very important test for the present research, since it was de-

cisive to the choice of not incorporate curvature parameters in CRP tomography. The results provided

by NIP wave tomography in this test will support this choice.

Three-layer velocity model test is displayed in Figure B.11, together with a vertical slice of

the velocity model.
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Figure B.11: (a) Three-layer velocity model test. (b) Vertical slice of the velocity model. The slice
was taken at the middle of the model. Note that the second layer is smaller than the others. Note also
the abrupt velocity variation in vertical direction.

In crescent order of depth, the layers present velocities of 1km/s, 2km/s and 3km/s. Because

rays will be traced through the model to generate observed-data space, smoothness properties are

required. Thus, it is, in fact, a three-layer model without discontinuity at interfaces. The velocity

model was built by means of B-spline interpolation, in a grid of dimension 2km×2km. Interpolation

knots were uniformly distributed with vertical and horizontal spacing of 0.2km. B-spline interpolation

procedure assures the existence of derivatives demanded both by dynamic-ray tracing, as well as

computations of the derivatives for Jacobian matrix.

Remind that the main challenges offered by this test is the abrupt velocity variations in ver-

tical direction, plus the existence of a small second layer at the middle of the model. Also, as the true
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velocity model presents strong vertical variations, the regularization term plays against the inversion

process. In this case, the challenge is to set a good trade-off between regularization and inversion

of a final velocity model that resembles true velocity model. However, for curvature tomographies,

another challenge is presented. In order to compute Jacobian matrix, to allow a reasonable estima-

tion of derivatives with respect to curvature parameters, the velocity model must have third continuos

derivatives (see, e.g, Duveneck (2004b)). Therefore, the previous mentioned trade-off between regu-

larization and inversion of a final velocity model that resembles true velocity model, is even harder

for curvature tomographies, as it will be illustrated by the following NIP wave tomography results on

this test.

First, NIP wave tomography will be tested on three-layer test using one hundred data po-

sitions. This set of data positions is the same one used for stereotomography in chapter 6. The

parametrizations for the test are summarized as follows:

Input observed-data space: To generate input data space, 100 data positions were uniformly dis-

tributed in depth through the model (see Figure B.12). These positions are exactly the same ones

used for stereotomography in Chapter 6. These positions play the role of hypothetical localization of

diffraction events (localization of the point source for hyphotical NIP wave) for this synthetic experi-

ment. From each of these positions, one ray is propagated parallel to vertical axis to surface direction.

In surface line, kinematic parameters of emergence positions, slopes, curvature and traveltimes were

computed. Therefore, data space is composed by 100 data samples, each of them composed by one

traveltime, one emergence position, one slowness vector (horizontal component) and one parameter

related to the curvature (see Appendix A) of NIP wavefront. As the components of data space were

computed directly by ray-tracing performed at the true velocity model, despite numerical errors and

theoretical approximations, observed-data space is composed by perfect accurate data components.

Moreover, the uniform distribution of positions in depth guarantees that all regions of the velocity

model are covered by informations in observed-data space.

Initial model space: Initial velocity model space was set as a homogeneous velocity model of

1km/s, the same one used for respective stereotomography and CRP tomography tests. B-spline inter-

polation knots were distributed at the same positions of stereotomography and CRP tomography tests,

which is also the same distribution applied to build true velocity model test, the three-layer velocity

model of Figure B.11. Ray-model space was initialized with the proposed initialization procedure for

NIP wave tomography (Appendix A). Therefore, the initialization procedure returned 100 ray-model

samples, each of them composed by one initial model position in depth and one initial model slope.

Initial model depth positions are illustrated by Figure B.12.
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Figure B.12: Three-layer test. (a) Data positions. (b) Initial model positions returned by initialization
process under the initial constant velocity model of 1km/s.

Initial regularization weight parameter: Following what was done in stereotomography and CRP

tomography tests, a previous search was made in order to find a good initial value for regularization

parameter λ. Due to this previous search, λ was set in order to, at first iteration, the relation between

the regularization term with respect to the objective function was to equal to 10−7. To calibrate regu-

larization term, the same values used for stereotomography and CRP tomography tests were kept the

same: ǫxx = 1, ǫzz = 10−3 and ǫvv = 10−4.

NIP wave tomography results: Under the previous parametrization, NIP wave tomography final

results are illustrated by Figure B.13. Although it did not perfectly recover the value of velocity

model arround the region of main interest, the second layer, NIP wave tomography could detect the

existence of a small layer at the region around 1km in vertical direction. However, a consequence of

not recover the exact velocity value for this region was the propagation of the error through the last

layer. Furthermore, as a small regularization had to be used, some small velocity oscillations appeared

in regions near the seismic line. Neverthless, the mainframe features of the model were inverted

by NIP wave tomography: there are three layers of crescent velocities, the second is the smallest

one and, except at regions near the bottom line, final model depth positions were considerably well

repositioned. However, some details were not recovered, or recovered with some mistakes. Note that

the region near the second layer concentrates the major part of relative error in Figure B.13. These

errors are not presented in stereotomography and CRP tomography tests, even when a smaller number

of data positions was used.
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A question that might be addressed is: what happens if the regularization parameter is in-

creased? The answer is given by Figure B.14, where an initial regularization term, in order to set the

relation between regularization term with respect to NIP wave tomography misfit function to a value

of 105 at the first iteration, was applied.

Figure B.14 shows that increasing initial regularization parameter results in a decrease of the

velocity oscillations presented by the final velocity model, which is an expected issue. However, a

strong regularization, which corresponds to a strong demand for smoothness features, did not allow

the velocity model to recover the two “jumps" presented in true velocity model. This regularized

inverted model is obviously worse than the previously presented one. Here, the regularization was

“too strong".

On the other hand, decreasing the initial regularization parameter also deteriorates the quality

of NIP wave tomography final velocity model, since the oscillations in velocity model become even

bigger. Therefore, changing the value of initial regularization parameter, does not seems to be a good

way to provide better solutions for NIP wave tomography three-layer test.

Another question that can be addressed is: what happens if the number of data samples given

to the problem is increased? In order to investigate this feature, 225 data positions were uniformly

distributed through true velocity model test to generate a bigger data space for NIP wave tomography

test. The 225 data positions and respective initial model depth positions returned by NIP wave tomog-

raphy initialization procedure are illustrated by Figure B.15. This test keeps the same parametrization

and features of the first test performed.

NIP wave tomography results with 225 data samples: The final model proposed by NIP wave

tomography under these conditions is illustrated in Figure B.16. A slightly better inverted velocity

model was achieved. This was expected, once more information were initially given as input to the

tomographic inversion problem. Note that the solution also presents some kind of improvement of

the regularization. For example, the velocity oscillations near the seismic line are not presented at the

present final velocity model. In this case, a higher number of input data samples, which corresponds

to more internal information, helps to constrain the model. Thus, some kind of internal regularization

was provided by the bigger data space. A better initial velocity model would do the same.

Despite the improvements in the final velocity model and inverted model depth positions, a

perfect recover of second layer velocity still is a challenge to be solved for NIP wave tomography.

The last test succeeded in grow the velocity value until the exact value of second layer velocity.

However, a perfect recovering of velocity value was not possible during all the extension of second

layer. The consequence, again, is the propagation of the error to the third layer. Nevertheless, the
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solution provided by NIP wave tomography, after the introduction of more data samples, is noted

better, both for model depth positions and velocity model.

To improve even more the solution, further tests could be done: provide even more input

data samples, a better initial velocity model or considering other kind of regularization terms to help

the constrain of the model. For example, in Duveneck (2004b), NIP wave tomography is applied with

a regularization that assists the velocity model to follow reflector structures. However, the study of

more types of regularization terms is not in the scopus of this thesis.

Final remarks for three-layer test: Three-layer test was also performed by slope tomography

methods as stereotomography and CRP tomography in this thesis. It has been shown that, with the

same parametrization applied here, slope tomogrpahy methods were able to provide a better final

velocity model to this problem. Slope tomography techniques do not take into account curvature pa-

rameters in data and sythetic spaces. The use of curvature parameters requires extra smoothness of

velocity model because continuous third derivatives of velocity models are required to compute re-

lated components for Jacobian matrix. Although this requirement was complied by the three-layer

test, the use of curvature is more dependent of smoothness of the model than other kinematic pa-

rameters. In fact, this feature turns the abrupt velocity variations in vertical direction of three-layer

model test, plus the existence of a small layer a the middle of the model, a bigger challenge when

curvature parameters are taken into account. This was a very important test for the research addressed

by this thesis, since it was decisive to the choice of not incorporate curvature informations in CRP

tomography method.
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Figure B.13: Three-layer test - NIP wave tomography results with 100 data points. (a) Inverted ve-
locity model. (b) Vertical slices of inverted (red), true (blue) and initial (yellow) velocity models.
Slices were taken at the middle of the models. (c) Inverted model positions (red) and true data posi-
tions (blue). (d) Percentage difference between inverted and true velocity models. Note that the region
around the second layer concentrates the major part of relative errors.
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Figure B.14: NIP wave tomography result for three-layer test with 100 data points and an increased
level of regularization. Vertical slices of inverted (red), true (blue) and initial (yellow) velocity models
are illustrated. Slices were taken at the middle of the model.
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Figure B.15: Three-layer test with 225 data samples. (a) Data positions. (b) Initial model positions
returned by NIP wave tomography initialization procedure.
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Figure B.16: Three-layer test - NIP wave tomography results with with 225 data samples. (a) Inverted
velocity model. (b) Vertical slices of inverted (red), true (blue) and initial (yellow) velocity mod-
els. Slices were taken at the middle of the models. (c) Inverted model positions (red) and true data
positions (blue). (d) Percentage difference between inverted and true velocity models.
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Appendix C

Ray-tracing equations for seismic

tomography forward modeling engine

To compute kinematic parameters for seismic tomography synthetic space, forward mod-

eling engine is applied to each iteration of inverse process. For all seismic tomography methods

described in this thesis, forward modeling engine accounts for a ray-tracing system. For slope tomog-

raphy methods, as it is the case of CRP tomography and stereotomography, kinematic ray-tracing is

performed in order to generate kinematic parameters as traveltime, positions and slopes. On the other

hand, for curvature tomography methods, as it is the case of NIP wave tomography, dynamic-ray trac-

ing has to be applied in order to provide, also, curvature parameters. Current model space provides

the necessary boundary initial conditions to perform ray-tracing.

In this appendix, the focus will be at two-dimensional kinematic ray-tracing theory. There-

fore, all the equations derived can be used both for CRP tomography and stereotomography meth-

ods. Before presenting the system of differential equations used to perform forward modeling engine

for slope tomography methods, this appendix will develop some basic concepts of kinematic ray-

tracing theory. As NIP wave tomography is addressed and reffered by this thesis, the related system

of dynamic-ray tracing will also be presetend, although concepts of paraxial ray-theory will be omit-

ted. As it is not the objective of this appendix to provide a detailed development of ray-theory, the

interested reader can consult the classical references Cerveny (2005) and Popov (2002) for a complete

development of ray-theory.

Kinematic ray-tracing system: The system of differential equations for CRP tomography and

stereotomography forward modeling engine is derived from the eikonal equation, which is an asymp-
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totic approximation of wave equation solution (see, e.g, Bleistein et al. (2013)). The eikonal equation

is given by:

||∇t||2 =
1

v2(x, z)
, (C.1)

where, in two dimensions, ∇t =

(

∂t

∂x
,
∂t

∂z

)

and v(x, z) is the velicty field.

To solve the eikonal equation, consider that the ray propagates along a smooth curve parametrized

by real parameter s as:











x = x(s),

z = z(s).

(C.2)

Denote x′ =
dx

ds
, and z′ =

dz

ds
. For the Lagrangian L = L(x′, z′, x, z), the slowness compo-

nents px and pz of the slowness vector p are defined by:















px =
∂L

∂x′
,

pz =
∂L

∂z′
.

(C.3)

Thus, the Hamiltonian function H = H(x, z, pz, pz) is set as:

H(x, z, pz, pz) = pxx
′ + pzz

′ − L(x′, z′, x, z). (C.4)

By Fermat’s principal, given a start point (x(s1), z(s1)), and a final point (x(s2), z(s2)) in

space, the ray propagates, between these two points, along the curve (x(s), z(s)) where the following

integral T reaches a minimum:

T =

∫ s2

s1

L(x′, z′, x, z)ds. (C.5)

Applying first variations techniques (see, e.g, Popov (2002)) to the previous integral, Euler’s

equations in Hamiltonian form are:
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

















x′ =
∂H

∂px
,

z′ =
∂H

∂pz
,



















p′x = −
∂H

∂x
,

p′z = −
∂H

∂z
,

(C.6)

where p′x =
px
s

and p′z =
pz
s

.

The solutions of Euler’s equations describe curves known as characteristics curves which,

in this particular case, are rays.

Finally, for the point source case, the Hamiltonian can be written as (see, e.g, Duveneck

(2004b), Popov (2002)):

H(x, z, px, pz) =
v(x, z)

2

(

||∇t(x, z)||2 −
1

v2(x, z)

)

= 0, (C.7)

with (px, pz) = ∇t.

Thus, the rays trajectories can be described by the following system of differential equations,

given by the characteristics equations:



















∂x

∂s
= vpx,

∂z

∂s
= vpz,



















∂px
∂s

= −
1

v2
∂v

∂x
,

∂pz
∂s

= −
1

v2
∂v

∂z
.

(C.8)

Follows direct by eikonal equation:

{

∂t

∂s
=

1

v
, (C.9)

In three dimension case, surfaces defined by a constant t in eikonal equation are called

wavefronts.

Computation of synthetic kinematic parameters: Equations C.8 and C.9 form the system os

differential equations necessary to perform forward modeling engine for CRP tomography method

and also stereotomography. For this purpose, initial boundary conditions are given by current model

space. Thus, current velocity model (velocity-model space) and initial model depth positions and

slopes (ray-model space) are available at each iteration, which is sufficient to numerically solve the
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system of equations by some appropriate method. Traditionally, standard Runge-Kutta methods (see,

e.g, Dormand and Prince (1980), Press et al. (1988)) are applied to provide numerical solutions for

the system of differential equations.

Dynamic ray-tracing system for curvature tomography - basic concepts: For curvature tomog-

raphy methods, as it is the case of NIP wave tomography, to complete the full computation of synthetic

components, it is necessary to derive a way to compute values of curvature of the associated wave-

front. This task can be done by paraxial ray theory and the use of ray coordinates system (see, e.g,

Cerveny (2005), Popov (2002)). The development of the desired system of differential equations de-

mands application of a considerably more number of accounts, and even approximations, than it is

necessary for kinematic ray-tracing system. Thus, as curvature information is not used by the main

tomography methods of this thesis, here the system of differential equations will simply be described.

Again, the interest reader can consult reference Popov (2002) for a complete development of the

demanded equations from paraxial ray-theory.

In a three dimension media, the family of rays corresponding to a certain specified wave may

be parameterized by two scalar parameters γ1 and γ2 (see, e.g, Popov (2002)). For instance, in the

case of a point source, these parameters can be the angles of the spherical polar coordinate system.

In two dimension media, only one parameter is necessary. These coordinates, plus eikonal term, form

what is called ray coordinates.

On the other hand, ray centered coordinates is a system of coordinates composed by two

orthogonal unit vectors which, at any point of the trajectory described by the specific ray, belong to

the plane orthogonal to this ray. Thus, with respect to cartesian coordinates, at any point of the ray

trajectory, the unit vectors of the system change their directions. In two dimension media, this system

is composed, at a specific point of the ray trajectory, by a unit vector p parallel to the trajectory,

and other unit vector q orthogonal to the trajectory. This system is of fundamental importance to the

devselopment of paraxial ray theory and, more generally, ray perturbation theory (see, e.g, Farra and

Madariaga (1987)).

One of the purposes of dynamic ray tracing is to determine partial derivatives of the central

ray coordinates with respect to ray centered coordinates. In two dimensions, taking γ1 as the ray co-

ordinate parameter and p and q the scalar coordinates of directions p and q respectively, the interested

variables, in the context of compute curvatures, are Q =
∂q

∂γ1
and P =

∂p

∂γ1
. After some develop-

ments and approximations (see, e.g, Cerveny (2005), Popov (2002)), paraxial ray theory proposes the

following system of differential equations to compute these variables:
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





















∂Q

∂s
= vs(0, 0)P

∂P

∂s
= −

1

vs(0, 0)

∂2v

∂q2
|q=0Q,

(C.10)

where s is a real variable parameter that determines the point of the central ray (q = p = 0) trajectory

and vs(0, 0) denotes the velocity at the specific point s where the derivatives are taken. As the interest

case for NIP wave tomography is the normal ray of the hypothetical NIP wavefront, the boundary

conditions of point source has to be used (see, e.g, Popov (2002)):

P0 =
1

v0
, Q0 = 0. (C.11)

Considering wave fronts in a vicinity of central ray, it’s possible to show, with some approx-

imations, that (see, e.g, Popov (2002)):

ks =
1

Rs

= vs(0, 0)
P

Q
, (C.12)

where ks and Rs denotes the curvature and radius of curvature, respectively, of the wave front on the

central ray at the specific point s of the central ray trajectory.

Computation of synthetic dynamic parameters: Equations C.10 and C.12, together with initial

condition C.11, are sufficient to compute curvature parameters for curvature tomography forward

modeling engine. Once again, standard Runge-Kutte methods can be applied to provide numerical

solutions for the system of differential equations. The other kinematic paramters also used by curva-

ture tomography methods, as positions, slopes and traveltimes, are computed by the same equations

derived before for slope tomography methods.

Before finish the appendix, it is important to mention that the system of differential equa-

tions C.10 is a consequence of a set of premisses and approximations that might not be correct in

most of the cases. Also, curvature information is the one that is extracted with less reliability from

seismic data by CRS stack panels (see, e.g, Faccipieri (2016)). Additionally, the validity of NIP wave

theorem (see, e.g, Chernyak and Gritsenko (1979), Hubral (1983)) is required. Then, there is a price

to be paid when curvature parameter is used by any tomography method.
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Appendix D

B-spline interpolation

Tomographic velocity models have already been described in chapter 3, for stereotomogra-

phy, and chapter 5, for CRP tomography method. There, brief explanations about velocity models

constructed by means of B-spline interpolation were given. In this appendix, B-spline basis functions

will be defined and main properties of B-spline interpolation will be summarized. Also, some algo-

rithms to compute B-spline basis functions and respective velocity model derivatives will be given.

The interested reader can consult the reference de Boor et al. (1978) for more details about B-spline

interpolation.

Firstly introduced in slope tomographies by CDR tomography (see, e.g, Sword Jr (1986),

Sword (1987)), all slope tomograpies illustrated by the present thesis uses a velocity model described

by a B-spline interpolation scheme. This interpolation processes allows a local control of the velocity

model by a reduced number of real coefficients, which stands for a remarkable great property for

tomographic iterative process. Moreover, B-spline basis functions, which are invariant over the iter-

ative process, can be constructed by a simple recurisve algorithm. Alos, as it will be showed in this

appendix, being generated by B-spline interpolation, tomographic velocity models carry smoothness

properties, providing the necessary continuos derivatives to perform ray-traing system in forward

modeling step. Furthermore, the demanded derivatives of velocity model for forward modeling step

can be easily computed due to B-spline interpolation description. All these properties will be summa-

rized below. First, a definition of B-spline basis function will be provided.

B-spline basis function: Given an arbitrary integer degree m ≥ 0 and an also arbitrary one-

dimensional crescent knot sequence (x1, . . . , xk+2), with k ≥ m, a set of (k + 1 − m) B-spline

basis functions {β
(m)
[x1,...,xm+2]

, . . . , β
(m)
[xk−m+1,...,xk+2]

} are defined on this knot sequence. Each of these
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B-spline basis functions is a spline function of degree m defined on a (xi, . . . , xi+m+1) knot sequence

by the recursive algorithm of equations D.1 and D.2, with i = 1, . . . , k + 1 − m. They are spline

functions of degree m of minimum lenght, being non-zero only within the respective knot sequence.

B-spline basis functions form a basis for the space of spline functions of degree m defined by its

values on the given sequence of knots.

A recursive algorithm in m can be used to construct each of the B-spline basis defined by

the (xi, . . . , xi+m+1) knot sequence (see, e.g, de Boor et al. (1978)):

β
(m)
[xi,...,xi+m+1]

(x) =
x− xi

xi+m − xi

β
(m−1)
[xi,...,xi+m](x) +

xi+m+1 − x

xi+m+1 − xi+1

β
(m−1)
[xi+1,...,xi+m+1]

(x), (D.1)

where, for m = 0:

β
(0)
[xi,xi+1]

(x) =







1 for x ∈ [xi, xi+1),

0 otherwise
(D.2)

Properties of B-spline basis functions: The main properties of B-pline basis functions are listed

bellow. For more properties and proofs of the following statements, the reader can constult refer-

ence de Boor et al. (1978):

1. B-spline basis functions of degree m are spline functions of degree m.

2. B-spline basis functions of degree m have continuos derivatives of degree m− 1, m > 0.

3. β
(m)
[xi,...,xi+m+1]

(x) = 0 for x /∈ (xi, xi+m+1).

4. β
(m)
[xi,...,xi+m+1]

(x) ∈ (0, 1] for x ∈ (xi, xi+m+1).

5.
∑

∞

i=−∞
β
(m)
[xi,...,xi+m+1]

(x) =
∑j

i=j−m β
(m)
[xi,...,xi+m+1]

(x) = 1 for x ∈ [xi, xi+m+1].

6.
d

dx
β
(m)
[xi,...,xi+m+1]

(x) = m

(

1

xi+m − xi

β
(m)
[xi,...,xi+m+1]

(x)−
1

x1+m+1 − xi+1

β
(m)
[xi,...,xi+m+1]

(x)

)

, m >

0.

Previous properties state some facts already mentioned as that B-spline basis functions are

spline functions of degree m (property one) of minimum length (property 3). However, the last prop-

erties is of fundamental importance for an implementation point of view, since it states a simple re-

cursive algorithm to evaluate derivatives of B-spline basis functions. These derivatives are demanded
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both for ray-tracing system (forward modeling step) (see Appendix C) and computation of regular-

ization matrix (see Appendix E).

Construction of two-dimension velocity models by B-spline interpolation: For our present the-

sis, tomography methods are restricted to two dimension space. Therefore, two-dimension velocity

models are required. Hence, two sequence of knots have to be settled, one in horizontal direction

and other in vertical direction. The cartesian product of these sequences defines the mesh where the

velocity model will be constructed. Hence, consider a set of crescent spatial knots (x1, . . . , xMvx
) in

the horizontal direction and a set of crescent spatical knots (z1, . . . , zMvz
) in the vertical direction

(here, it is assumed that z axis points downward). For tomography applications, cubic B-splines basis

functions (degree 3) were considered, which assures continuous derivatives required for tomographic

inverse problem. Therefore, each B-spline basis function for horizontal direction βi(x) (remind that

B-spline basis functions are one-dimensional real functions) is defined at a sequence of 5 crescent

knots (xi, . . . , xi+4), while each B-spline basis function for vertical direction βj(z) is defined at a

sequence of 5 crescent knots (zj, . . . , zj+4). To allow the relation of one interpolation coefficient fo

each knot of the interpolation grid (mesh), two border knots will be added to each sequence of knots.

Therefore, consider (xi−1, x0, x1, . . . , xMvx
, xMvx+1, xMvx+2) as the expanded set of crescent spatial

knots for horizontal direction with border knots and (zi−1, z0, z1, . . . , zMvz
, zMvz+1, xMvz+1) as the

expanded set of crescent spatial knots for vertical direction.

Under the above sets of spatial knots, given a set of real coefficients {vij}, for i = 1, . . . ,Mvx

and j = 1, . . . ,Mvz, the velocity model is described by following linear combination of B-spline basis

functions defined by the proposed grid of interpolation:

v(x, z) =
Mvz
∑

j=1

Mvx
∑

i=1

vijβi(x)βj(z). (D.3)

Following the previous paragraphs, at the interval defined by the given knot sequences, B-

spline basis functions form a basis for the space of spline functions of degree m. Therefore, on that

specific knot sequence, every spline function of degree m can be written as a linear combination of

the respective B-spline basis functions. On the other hand, every linear combination of these B-spline

basis functions generates a spline function of degree m defined at the respective interval. Therefore,

velocity models constructed by means of linear combination of B-spline basis functions are, in fact,

spline velocity models of degree m, which assures the important smoothness properties related to any

spline functions (see, e.g, de Boor et al. (1978)).
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Computation of velocity model derivatives: Tomographic inversion problems as stereotomogra-

phy, CRP tomography and NIP wave tomography, require frequent evaluations of derivatives of the

velocity model as, for example, during dynamic-ray propagation or construction of regularization ma-

trix. The use of B-spline interpolation scheme to build the velocity model also allows a faster way to

evaluate these derivatives. Since B-spline basis functions of degree m are basis for spline functions

of degree m at the same knot sequence, the n-th derivative of the model velocity v(x, z) in respect to

x coordinate is given by:

∂nv(x, z)

∂xn
=

Mvz
∑

j=1

Mvx
∑

i=1

vij
dnβi(x)

dxn
βj(z). (D.4)

The derivatives with respect to z coordinate and mixed derivatives follow directly. Remind

that B-spline basis functions are invariant through the inverse process. Therefore, together with the

construction of B-spline basis functions, their (invariant) derivatives can be computed at the beginning

of the iterative process. Equation D.4 and respective equations with respect to z direction or higher

order derivatives are used to update velocity model derivative at subsequent iterations. An algorithm

for the computation of B-spline basis functions derivatives was already described by property 6 above.

Number of interpolation knots: The number of interpolation knots is an arbitrary choice made by

the user at the beginning of the tomograpic method. The choice of the number of knots, as well as

their localization, is important to the inversion problem. It depends on many aspects like the degree of

smoothness desired for the velocity model or the number of parameters desired to be invert. The more

is the number of coefficients, more is the capability of the model velocity to recover small details of

true velocity model. On the other hand, the more is the number of coefficients, more computational

effort will be demanded.
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Appendix E

Regularization matrix for CRP tomography

and stereotomography

The regularization term used in this thesis for seismic tomography applications measures a

weighted sum of three integrals, two related to squared second order derivatives of the velocity model

with respect to the two cartesian directions, and the other related to squared velocity. In terms:

Rv(m
vel) =

∫

z

∫

x

(

ǫxx

(

∂2v(x, z)

∂x2

)2

+ ǫzz

(

∂2v(x, z)

∂z2

)2

+ ǫvvv
2(x, z)

)

dxdz. (E.1)

In chapters three and five, we stated that this regularization term could be written as a matrix

expression, by the use of a regularization matrix R(v). In terms:

R(v)(mvel) = mvelTR(v)mvel, (E.2)

where mvel is the model vector of current B-spline interpolation coefficients. The B-spline coefficients

vij at the (i, j)-knot of interpolation is given by the w-th component vw of the velocity model vector

mvel, in which:

w = (i− 1)Mvz + j for i = 1, . . . ,Mvx and j = 1, . . . ,Mvz. (E.3)

In this appendix, we will show how to construct the regularization matrix R(v).
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Using B-spline interpolation properties, the integral over the squared second order derivative

of velocity model with respect to x-coordinate can be computed as follows:

∫

z

∫

x

(

∂2v(x, z)

∂x2

)2

dxdz =

∫

z

∫

x

(

Mvx
∑

i=1

Mvz
∑

j=1

vij
∂2βi(x)

∂x2
βj(z)

Mvx
∑

k=1

Mvz
∑

l=1

vkl
∂2βk(x)

∂x2
βl(z)

)

dxdz

(E.4)

=
Mvx
∑

i=1

Mvz
∑

j=1

Mvx
∑

k=1

Mvz
∑

l=1

vijvkl

∫

x

∂2βi(x)

∂x2

∂2βk(x)

∂x2
dx

∫

z

βj(z)βl(z)dz (E.5)

=
Mvx
∑

i=1

Mvz
∑

j=1

Mvx
∑

k=1

Mvz
∑

l=1

vijvklR
x
ikR

vz
jl , (E.6)

where Rx
ik and Rvz

jl are real components of matrices Rx and Rvz, both with dimension MvxMvz ×

MvxMvz, as follows:

[Rx]ik = Rx
ik =

∫

x

∂2βi(x)

∂x2

∂2βk(x)

∂x2
dx, (E.7)

[Rvz]jl = Rvz
jl =

∫

z

βj(z)βl(z)dz. (E.8)

Now, consider the matrix Rxx of dimension MvxMvz × MvxMvz, where which element

Rxx
[(i−1)Mvz+j,(k−1)Mvz+l] is given by:

Rxx
[(i−1)Mvz+j,(k−1)Mvz+l] = Rx

ikR
vz
jl . (E.9)

Hence, equation E.6 can be rewritten as:

∫

z

∫

x

(

∂2v(x, z)

∂x2

)2

dxdz =
Mvx
∑

i=1

Mvz
∑

j=1

Mvx
∑

k=1

Mvz
∑

l=1

vijvklR
x
ikR

vz
jl (E.10)

=
MvxMvz
∑

r=1

MvxMvz
∑

s=1

vvelr vvels Rxx
rs = mvelTRxxmvel. (E.11)

Following the same steps, the integral over the squared second order derivative of velocity

model with respect to the z-coordinate can be computed as follows:
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∫

z

∫

x

(

∂2v(x, z)

∂z2

)2

dxdz =

∫

z

∫

x

(

Mvx
∑

i=1

Mvz
∑

j=1

vij
∂2βj(x)

∂z2
βi(x)

Mvx
∑

k=1

Mvz
∑

l=1

vkl
∂2βl(x)

∂z2
βk(x)

)

dxdz

(E.12)

=
Mvx
∑

i=1

Mvz
∑

j=1

Mvx
∑

k=1

Mvz
∑

l=1

vijvkl

∫

z

∂2βj(z)

∂z2
∂2βl(z)

∂z2
dz

∫

x

βi(x)βk(x)dx (E.13)

=
Mvx
∑

i=1

Mvz
∑

j=1

Mvx
∑

k=1

Mvz
∑

l=1

vijvklR
z
jlR

vx
ik , (E.14)

where Rz
jl and Rvx

ik are real components of matrices Rz and Rvx, both with dimension MvxMvz ×

MvxMvz, as follows:

[Rz]jl = Rz
jl =

∫

z

∂2βj(z)

∂z2
∂2βl(z)

∂z2
dz, (E.15)

[Rvx]ik = Rvx
ik =

∫

x

βi(x)βk(x)dx. (E.16)

Therefore, consider the matrix Rzz of dimension MvxMvz ×MvxMvz, where which element

Rzz
[(i−1)Mvz+j,(k−1)Mvz+l] is given by:

Rzz
[(i−1)Mvz+j,(k−1)Mvz+l] = Rz

jlR
vx
ik . (E.17)

Equation E.14 can be rewritten as:

∫

z

∫

x

(

∂2v(x, z)

∂z2

)2

dxdz =
Mvx
∑

i=1

Mvz
∑

j=1

Mvx
∑

k=1

Mvz
∑

l=1

vijvklR
z
jlR

vx
ik (E.18)

=
MvxMvz
∑

r=1

MvxMvz
∑

s=1

vvelr vvels Rzz
rs (E.19)

= mvelTRzzmvel. (E.20)

Furthermore, note that the integral of the squared velocity model can be computed by:
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∫

z

∫

x

v2(x, z)dxdz =

∫

z

∫

x

(

Mvz
∑

i=1

Mvx
∑

j=1

vijβi(x)βj(z)
Mvz
∑

k=1

Mvx
∑

l=1

vklβk(x)βl(z)

)

dxdz (E.21)

=
Mvz
∑

i=1

Mvx
∑

j=1

Mvz
∑

k=1

Mvx
∑

l=1

vijvkl

∫

x

βi(x)βk(x)dx

∫

z

βj(z)βl(z)dz (E.22)

=
Mvz
∑

i=1

Mvx
∑

j=1

Mvz
∑

k=1

Mvx
∑

l=1

vijvklR
vx
ikR

vz
jl . (E.23)

Considere the matrix Rvv of dimension MvxMvz×MvxMvz where which element Rvv
[(i−1)Mvz+j,(k−1)Mvz+l]

is given by:

Rvv
[(i−1)Mvz+j,(k−1)Mvz+l] = Rvx

ikR
vz
jl . (E.24)

Therefore:

∫

z

∫

x

v2(x, z)dxdz =
Mvz
∑

i=1

Mvx
∑

j=1

Mvz
∑

k=1

Mvx
∑

l=1

vijvklR
vx
ikR

vz
jl . (E.25)

=
MvxMvz
∑

r=1

MvxMvz
∑

s=1

vvelr vvels Rvv
rs (E.26)

= mvelTRvvmvel. (E.27)

Whith the help of matrices Rxx, Rzz and Rvv, regularization term E.1 can be rewritten as:

Rv(m
vel) =

∫

z

∫

x

(

ǫxx

(

∂2v(x, z)

∂x2

)2

+ ǫzz

(

∂2v(x, z)

∂z2

)2

+ ǫvvv
2(x, z)

)

dxdz (E.28)

= mvelT (ǫxxR
xx + ǫzzR

zz + ǫvvR
vv)mvel, (E.29)

= mvelTR(v)mvel, (E.30)

where the regularization matrix R(v) of equation E.2 is given by a weighted sum of the matrices Rxx,

Rzz and Rvv:



E - Regularization matrix for CRP tomography and stereotomography 305

R(v) = ǫxxR
xx + ǫzzR

zz + ǫvvR
vv. (E.31)

In order to keep the propose of smoothness regularization operator, the weight parameters

are chosen such that ǫxx >> ǫvv and ǫzz >> ǫvv. However, to turn R(v) a positive definite matrix, the

parameter ǫvv has to be positive.
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Appendix F

Equations of CRP tomography

In the following, the equations needed for CRP tomography are described and briefly dis-

cussed. Those equations are, in principle, valid for a homogeneous (constant-velocity) 2D acous-

tic medium. In a locally-event framework, these equations are viewed as parametric expressions, in

which those parameters are independently inverted for individually picked input-data points. As such,

those parameters vary from point to point.

Here, local events of interest are primary reflections or diffractions. Each local event is spec-

ified by a data point, called the reference or central point, together with a set of neighboring points

that belong to that event. Typically the central point of a local event is user selected (e.g., picked). A

set of associated parameters of the central point are also supposed to be picked or extracted from the

input data.

Apertures of a local event: In the following, all expressions under consideration refer to a target

local event, being defined by the parameters its central point. Such expressions are designed to ap-

proximate the traveltime and associate parameters that pertain to that local event in the neighborhood

of the central point. As such, those expressions are expected to be valid only in adequately small

coordinate apertures relative to those of the central point. It is to observed that such apertures are, in

general, empirically specified by the user.

Primary-reflection traveltimes from a same reflector: For a fixed (unknown) reflector, we con-

sider the relationship of primary-reflection traveltimes for different source-receiver pairs. Referring

to Figure F.1, we consider, under midpoint and half-offset coordinates, the correspondence
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(ξ0, h0, t0) ⇐⇒ (ξ, h, t), (F.1)

in which the reference data vector (ξ0, h0, t0) consists of the midpoint and half-offset coordinates

(ξ0, h0) of the (reference) source-receiver pair and t0 the (reference) two-way traveltime of the pri-

mary reflection ray of an unknown depth reflector. The data vector (ξ, h, t) of a neighboring reflection

ray defines a reflection ray of the same reflector.

Figure F.1: Illustration of data vectors of reference ray and neighboring reflection ray of the same
reflector.

Note that the (unknown) reflection points on the reflector of the two rays are, in general,

different. Following Santos et al. (1997), we have the relation

t2(ξ, h; ξ0, h0, t0) =
4h2

V 2
0

+
4h2t2n0

u2(ξ, h; ξ0, h0)
,

tn0
=

√

t20 −
4h2

0

V 2
0

,

(F.2)
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and
u(ξ, h; ξ0, h0) =

√

(h+ h0)2 − (ξ − ξ0)2 + s
√

(h− h0)2 − (ξ − ξ0)2,

s = sgn(h2 − h2
0) =

{

−1 (h2 < h2
0),

+1 (h2 > h2
0).

(F.3)

Figure F.2: Point P = (s, r.as, ar, t) within the CRP gather G(P0) attached to a central point P0 =
(s0, r0.as0 , ar0 , t0). Ray parameters (as, ar) and (as0 , ar0) are not shown.

It is also instructive to observe that the traveltime slopes in midpoint and half-offset direc-

tions aξ = (∂t/∂ξ)(ξ, h) and ah = (∂t/∂h)(ξ, h) are not independent. In fact, this is a consequence

of Snell’s law. Please note that aξ refer to the slope of the common-offset (CO) traveltime defined for

offset h and evaluated at midpoint ξ. On the other hand, ah represents the slope of common-midpoint

(CMP) defined for offset ξ and evaluated at half-offset h. As shown in (Coimbra et al., 2016b, equa-

tion B-5 with different notation), we have that

ah =
2ht(4− a2ξV

2
0 )

V 2
0 t

2 + 4h2 +
√

16h4 + 4h2t2V 2
0 (a

2
ξV

2
0 − 2) + t4V 4

0

, (F.4)
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CRP gather: In the case the primary-reflection rays defined by (ξ0, h0, t0) and (ξ, h, t) share the

same (unknown) reflection point, it turns out (Coimbra et al., 2016b, equation A-10 with different

notation) that the following midpoint relation ξ = ξ(h) holds:

ξ(h)− ξ0 =
2Υ0(h

2 − h2
0)

√

Υ2
0Γ

2 + 2t4n0
+ 2
√

t8n0
+Υ2

0t
4
n0
Γ2 + 16Υ4

0h
2
0h

2

,

Γ = 2
√

h2 + h2
0 and Υ0 = t0aξ0 .

(F.5)

CRP traveltime: Having obtained the coordinates (ξ(h), h) of all source-receiver pairs that per-

tain to the CRP gather defined by the central data-point (ξ0, h0, t0), the CRP traveltime tCRP (h) =

tCRP (h; ξ0, h0, t0) is simply given by equation F.2 under the substitution of ξ(h) as provided by equa-

tion F.5. We find

t2CRP (h) = t(ξ(h), h) =
4h2

V 2
0

+
4h2t2n0

u2(ξ(h), h; ξ0, h0)
(F.6)

CRP slopes: As shown in (Coimbra et al., 2016b, equation 22 with a different notation), within a

CRP gather, slopes aξ at a point (ξ, h, t) relates to the slope aξ in the vicinity of the reference point

(ξ0, h0, t0) by the expression

aξ = aξ0

(

t2nt0
t2n0

t

)

. (F.7)

CRP parameter relations: As a consequence of equations F.2 to F.7, for a point (ξ(h), h, t) within

a CRP defined by its reference point (ξ0, h0, t0) and with half-offset h close to h0, we have the full-

parameter correspondence

P0 = (ξ0, h0, aξ0 , ah0
, t0) ⇐⇒ P = (ξ(h), h, aξ, ah, t), (F.8)

For the present purposes, an important consequence of this result is that, stereotomographic indepen-

dent picked/extracted from the input data are replaced, in CRP tomography, by corresponding CRP

gathers. As such, CRP tomography can benefit from a far greater coverage and redundancy.
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Source-receiver coordinates: The above equations, all of them expressed in midpoint and half-

offset coordinates (ξ, h), can be recast in source-receiver coordinates (s, r). For that we use the coor-

dinate transformation

ξ = (r + s)/2, h = (r − s)/2, (F.9)

from which

aξ =
dt

dξ
=

dt

dr

dr

dξ
+

dt

ds

ds

dξ
= ar + as,

ah =
dt

dh
=

dt

dr

dr

dh
+

dt

ds

ds

dh
= ar − as,

(F.10)

with analogous transformations for (ξ0, h0) and (aξ0 , ah0
). Substitution into all the above equations

provide equivalent ones in source-receiver coordinates.
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Appendix G

Example of CRP tomography

implementation

In the following link, the reader can find some examples of CRP tomography implementation

used to perform some of the numerical tests that illustrate this thesis:

https://github.com/hpg-cepetro/ignacio_g_phd_crp_tomography
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