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ABSTRACT 
 

To investigate the effects of reducing total salinity and NaCl in the 

injection water on carbonate plugs under real reservoir conditions, a set of three 

coreflooding experiments for each case were performed. The results allowed the 

identification of the effects of low salinity water injection in oil recovery, and 

the influence of some rock mineral dissolution or precipitation in the 

permeability of the porous media. Experiments were performed under reservoir 

conditions, reservoir core plugs and live oil. The experimental apparatus was 

designed to mimic a secondary, tertiary and ultimate stage of the oil production. 

Firstly, the reservoir plugs were cleaned, dried, saturated with formation water 

and flooded with dead oil to obtain the initial saturation of water. Secondly, the 

samples were aged for at least two weeks to restore the wettability of the rock. 

Thirdly, cores were assembled in a hassler core-holder to switch the oil phase, 

from crude oil to live oil present in the rock, and finally, three brines in each 

case with different salinities and different concentrations of NaCl were injected 

in the rock to evaluate its oil recovery in each test. Experiments showed which 

brine would have the best oil recovery in a secondary stage; however, no 

additional oil recovery was obtained by the reduction of the total salinity or 

reduction in NaCl in the injection brine. Values of pressure drop obtained during 

the test by pressure transducers installed in the apparatus showed a decrease in 

some cases with the injection of some reduced brine salinity, leading to think 

that the permeability of the porous media had an increase because of mineral 

dissolution. 

Palavras Chave: Low salinity; NaCl reduction; Total salinity 

reduction. 

 

 

 

 

 

 

 



 

 

RESUMO 

 

Para investigar os efeitos da redução da salinidade total e NaCl na água de 

injeção em carbonatos sob condições reais de reservatório, um conjunto de três 

experimentos de dislocamento forçado para cada caso foi realizado. Os 

resultados permitiram a identificação dos efeitos da injeção de água com baixa 

salinidade na recuperação de óleo ea influência de alguma dissolução ou 

precipitação do mineral na permeabilidade do meio poroso. Os experimentos 

foram realizados sob condições de reservatório, amostras de reservatório e óleo 

vivo. O aparato experimental foi projetado para imitar um estágio secundário, 

terciário e final da produção de petróleo. Primeiramente, as amostras foram 

limpas, secos, saturados com água de formação e inundados com óleo morto 

para obter a saturação inicial da água. Em segundo lugar, as amostras foram 

envelhecidas por pelo menos duas semanas para restaurar a molhabilidade da 

rocha. Em terceiro lugar, os núcleos foram montados em um porta-núcleo 

hassler para trocar a fase oleosa do petróleo morto para o óleo vivo presente na 

rocha e, finalmente, três salmouras em cada caso com diferentes salinidades e 

diferentes concentrações de NaCl foram injetadas na rocha. avaliar sua 

recuperação de óleo em cada teste. Experimentos mostraram qual salmoura teria 

a melhor recuperação de óleo em um estágio secundário; no entanto, nenhuma 

recuperação adicional de óleo foi obtida pela redução da salinidade total ou 

redução de NaCl na salmoura de injeção. Valores de queda de pressão obtidos 

durante o teste por transdutores de pressão instalados no aparelho mostraram 

uma diminuição em alguns casos com a injeção de salinidade de salmoura 

reduzida, levando a pensar que a permeabilidade dos meios porosos teve um 

aumento devido à dissolução mineral. 

 

Palavras chaves: Baixa salinidade; Redução da salinidade total; Redução 

do NaCl. 
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1. INTRODUCCION AND MOTIVATION 

Carbonate reservoirs are valued to hold approximately 60% of the world’s 

oil reserves. (BP, 2016) estimated those reserves in 1707 billion barrels in 2016. 

Carbonate’s formation usually presents common characteristics, such as high 

heterogeneity, low permeability, and oil/neutral wettability which only 30 to 

40% of the oil in place can be recovered by traditional waterflooding 

(CHANDRASEKHAR; SHARMA; MOHANTY, 2016). 

Traditional oil recovery methods engage primary production by reservoir 

pressure depletion followed by secondary production methods. The most 

common secondary method is water flooding which leaves behind a sizeable 

residual oil saturation of 60-70%. The low efficiency of water flooding in 

carbonate reservoirs is because they are characteristically non-water-wet and 

highly heterogeneous in the pore-perm system; these properties are not 

favourable for water flooding method leaving un-swept zones. These properties 

cannot be improved yet; however, a method that could alter the wetting 

properties to a more water-wet state only by altering the ionic composition of the 

injection water can give a significant improvement in oil recovery from many 

formations. 

A large number of enhanced oil recovery (EOR) methods have been 

investigated in carbonates formations for more than 50 years; surfactant-polymer 

injection is one of them. However, extreme reservoir conditions, as well as high 

cost of implementation, limit the use of surfactant-polymer flooding; high 

temperatures and salinities negatively affect polymers; besides, low permeability 

causes mechanical deterioration of the method. The enormous potential that 

shows the injection of calibrating water is due to the facility to apply, and it is a 

relatively cheap method to be implemented as a secondary or tertiary recovery 

method compared to chemical methods for example. Brine composition and 

salinity have been extensively studied for many years; however, research in 

carbonates has not been studied as much as in sandstones, the reason of this is 

that initially it was believed that this method could not be applied in carbonates 

because of their lack of clay contains, (ALSHAIKH; MAHADEVAN, 2016).  

The research work started by University of Stavanger (AUSTAD et al., 

2005) has shown that sulphate ions play an important role in oil recovery from 
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carbonate reservoirs. Because of the adsorption, these ions alter the wettability 

and consequently increase water-wetness. It proposed that injection brine with 

high sulphate, coupled with high temperatures, would give higher recovery by 

spontaneous imbibition. Another study (FATHI; AUSTAD; STRAND, 2011) 

pointed out that not only sulphates and divalent such as Ca2+ and Mg2+ are 

essential, but also the amount of non-active ions (Na+ and Cl-) affect the 

wettability alteration in carbonates. Therefore, selective water ionic composition 

with a specific monovalent to divalent ion content is required for improving the 

wetting properties on carbonates formations, which constitutes complex water 

chemistry compared to sandstones, and thereby requires better tuning and 

flexibility in the water chemistry of injection water, (AYIRALA; YOUSEF; 

ARAMCO, 2014).  

The general schedule for the set of experiments was a group of Pre-Salt 

reservoir cores, live oil and brines at reservoir conditions. Those elements aim 

the potential enhance oil recovery of the brines in the proposed sequences of 

salinity. In this work, two strategies of EOR based on low salinity waterflooding 

will study the effect on oil recovery in both secondary and tertiary mode using 

variations of the concentration of monovalent ions (Na+ and Cl-) and total 

salinity of the injection water at real reservoir conditions.  

1.1. Objectives  

The scope of this study is to evaluate the potential seawater injection into 

carbonate rocks. Moreover, identify the effects of depleting the concentration of 

Na+ and Cl- and reduction of total salinity, which can produce additional oil 

linked to wettability alteration. The study was prepared to obtain a better 

understanding of the low salinity effect on carbonate rock and the mechanism 

behind wettability alteration. Besides, compare the oil recovery obtained at 

reservoir conditions. 

 Analyse the impact on oil recovery by reducing the total salinity in 

carbonates at reservoir condition. 

 Study the effect of depleting sodium chlorine in the oil recovery of 

carbonate reservoirs. 

 Develop an experimental set-up able to work under reservoir conditions. 
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2. BIBLIOGRAPHIC REVIEW 

This chapter presents the main concepts needed to understand the 

technique of advanced oil recovery by injecting water with reduced salinity. 

Concepts such as carbonate reservoirs and their petrophysical characteristic will 

be addressed as well as the principal factors and ions that play an essential role 

in the technique. It will present experimental evidence on the injection of low 

salinity water and reduction of total salinity, in addition, the mechanisms behind 

the increase in oil recovery suggested by researchers.  

2.1. Carbonates 

Carbonates for definition are anionic complexes of (CO3)2- and divalent 

metallic cations such as Ca, Mg, Fe, Mn, Zn, Ba, Sr, and Cu (WAYNE M. AHR, 

2008). Carbonates occur naturally as sediments and reefs in modern tropical and 

temperature oceans, as ancient rocks, and as economically valuable mineral 

deposits. The common carbonates are grouped into families, they are known by 

the crystal systems in which they form. The most common carbonate minerals 

are in the hexagonal system, notably calcite (CaCO3) and dolomite 

(CaMg(CO3)2). Aragonite is typical in the modern oceans, but it is rare in the 

ancient rock record; therefore, it is safe to say that carbonate reservoirs and 

aquifers are composed of calcite and dolomite. Together, those rocks make up 

about 90% of all naturally occurring carbonates. 

Carbonates have attributes that distinguish them from siliciclastic and that 

require different methods of study. Firstly, carbonates from within the basin of 

deposition by a biological, chemical, and detrital process. They do not owe their 

mineralogical composition to weathered, parent rocks and their textures do not 

result from the transport down streams and rivers. Carbonates are primarily 

made up of skeletal remains and other biological constituents. Secondly, 

carbonates depend significantly on biological activity that is a big difference 

between carbonates and siliciclastics. They are composed mainly of biogenic 

constituents, grain size and shape changes as organisms ate them, burrowed, and 

boring organisms extensively modify the stratification of carbonate rock bodies. 

Finally, carbonates are susceptible to rapid and extensive diagenetic change. 
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Minerals that composed the carbonate rock are susceptible to rapid dissolution, 

cementation, recrystallization, and replacement at ambient conditions in a 

variety of diagenetic environments, (LUCIA, 1999; WAYNE M. AHR, 2008). 

Carbonate reservoirs store more than 50% of the known petroleum 

reserves (STRAND; HØGNESEN; AUSTAD, 2006), which can split into three 

rock types: limestones, chalks, and dolomite. On average, the oil recovery in 

these sorts of rocks is low reaching sometimes only the 30% of the original oil in 

place (OOIP) due to the characteristic of carbonate rocks. The principal 

challenges of recovering oil from those rocks are low permeability, natural 

fractures, heterogeneities in rock properties, and low water wetness. 

AUSTAD, 2013; AUSTAD et al., 2005 pointed out that at relevant 

reservoir conditions the carbonate surface is positively charged. The carboxylic 

material in crude oil, as determined by the Acid Number (mgKOH/g), is the 

most critical wetting for carbonate/rock/brine, (CBR)-system. The bond between 

the negatively charged carboxylic group, -COOH-, and the positively charged 

sites on the carbonate surface is stable, and the large molecules will cover the 

carbonate surface. Therefore, the low water wetness in carbonate rocks that 

difficult the oil recovery in those kinds of reservoirs. 

2.2. Wettability 

Wettability can be defined as the solid surface’s preference for one fluid 

over another immiscible fluid in contact with a solid surface; one of the phases is 

usually attracted to the surface more strongly than the other phase. This phase is 

identified as the wetting phase while the other phase is the non-wetting, 

(WILLHITE, 1986). 

The force balance between two immiscible fluids (water and oil) at the 

contact line between them determines wettability of a surface. Figure 1(A) 

illustrates the forces that are present at the contact line are σos, the IFT between 

the solid and the oil phase; σws, the IFT between the solid and the water phase; 

and σow, the IFT between the oil and water phase. In this case, the contact angle 

is measured through the water phase to σow. Figure 1(B) shows water-wet and 

oil-wet systems. 
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Figure 1.Wettability in a water/oil/rock system. (A) Interfacial forces in a 
system with two immiscible fluids. (B) Description of a water-wet and oil-wet 

system, (WILLHITE, 1986) 

The principal measure for wettability is the contact angle 𝜃 in a smooth, 

homogenous surface, at equilibrium, the sum of the forces acting along the 

contact line must be zero, (WILLHITE, 1986). 

 

Figure 2 - Contact angles measured through the aqueous phase, 
(WILLHITE, 1986) 
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In petroleum reservoirs, wettability state affects the distribution, 

orientation and fluid flow in porous media. The classification of the wetting 

properties relates when interpreting contact angles in practice. Figure 2 

illustrates examples of water-wet and oil-wet systems. Water wet systems are 

those with contact angles between 0° to 75°. Oil-wet systems, which have 

contact angles from 105° to 180°. Systems with contact angles between 75° to 

105° are referred to as having intermediate wettability, (JOSÉ ROSA, 

ADALBERTO. DE SOUZA CARVALHO, RENATO. DANIEL XAVIER, 

2006; WAYNE M. AHR, 2008). 

2.2.1. Wettability by crude oil  

Double layer Theory 

All minerals have a specific electrical charge, which would vary 

depending on the purity of the mineral and the fluid surrounding. The pH of the 

fluid that is surrounding the surface plays an essential role in the surface charge 

because of depending on that value the surface would have a specific charge. 

There is a pH value when the surface charge vanishes (point of zero charges), 

this value for calcite (CaCO3) is 9.5, therefore, for all values of pH below the 

surface charge would be positive, (SCHECHTER, 1992). Depending on that 

charge, the surface would attract organic compounds or ions with the opposite 

charge. Thus, the chemical interaction with the crude compounds with the 

electrical charge of the rock could determine the wetness of the rock (THOMAS; 

CLOUSE; LONGO, 1993). Figure 3 shows a sketch double layer for a 

negatively charged surface mineral, analogously for a positively charged surface. 

This theory is used to explain some mechanisms behind wettability alteration in 

carbonates. 
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Figure 3 - Sketch showing the distribution of charge near to a mineral 
surface. Source:(SCHECHTER, 1992) 

Crude Oil Wetting  

It assumed that in water-wet reservoirs conditions, water had initially been 

in the reservoir when the migration of oil occurred. As oil accumulated, water 

was retained by capillary forces in the smallest pore spaces and as films on pore 

surfaces overlain by oil.  Chemical interaction such as adsorption of polar 

compounds from crude oil plays a critical role in determining the wetting 

properties of the reservoir-rock surface (MORROW, 1990). That adsorption 

phenomenon is greater on calcite than quartz because, under comparable 

conditions, calcite has more positive surface charged dragging closer the 

carboxylic fraction of oil altering wetting properties, (MORROW, 1990). 

Wettability alteration has been linked to the adsorption of high-molecular-weight 

colloidal particles known as asphaltenes suspended in oil crude, 

(CHANDRASEKHAR; SHARMA; MOHANTY, 2016). 

The acid number, AN (mgKOH/g) determines the quantity of carboxylic 

material will be present in the oil; moreover, it is the important wetting 

parameter for carbonate systems, (STANDNES; AUSTAD, 2000). Crude oil 

components which contain the carboxyl group, -COOH, are mostly found in the 

heavy end fraction of crude oils (Resin, asphaltene fraction, and naphthenic 
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acids). The affinity between the negatively charged carboxylic group (-COO-) 

and the positively charged sites on carbonate surface is very strong, and large 

molecules will cover the carbonate surface. Figure 4 shows a clear example of 

how the acid number affect the imbibition in Chalks cores saturated with oils of 

different AN. 

 

Figure 4 - Spontaneous imbibition into chalk cores saturated with different 
oils. Source:(STANDNES; AUSTAD, 2000) 

ZHANG; AUSTAD, 2005 also shows the importance of the acid number 

in the wettability on chalks. In this experiment, oils with a different acid number 

(AN) were used, the imbibing curves show a lower oil recovery with the 

increase of AN. On the other hand, the imbibing curves that represent the 

displacement of oil with a lower acid number show a better performance, 

therefore, a lower acid number higher oil recovery. 
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Figure 5 - Typical spontaneous imbibition performance with oils with 
different acid number. Source: (ZHANG; AUSTAD, 2005) 

2.3. Mechanisms for wettability modification by low salinity water in 

carbonates.  

Several studies in the past decade have shown that the composition and the 

salinity of the injection water in conventional waterflooding can enhance the oil 

recovery in carbonate rocks (AUSTAD et al., 2005; TANG; MORROW, 1999).  

The mechanisms that have gained more acceptation in the community are 

rock dissolution (HIORTH; CATHLES; MADLAND, 2010; YOUSEF et al., 

2010, 2011) and multi-ion exchange (AUSTAD, 2013; AUSTAD et al., 2005; 

ZHANG; TWEHEYO; AUSTAD, 2007). Despite the various studies behind the 

oil recovery by the injection of low salinity water, the chemical mechanisms of 

wettability change are not fully understood. 

2.3.1. Dissolution  

Dissolution of carbonates has been well documented in geology 

researches. Injection of brine not in equilibrium with the carbonate can push 

mineral-brine kinetics towards dissolution, which can lead to wettability 

alteration as new rock layer, untouched by oil, is exposed. 
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AUSTAD et al. 2012 found in his experiments that the presence of 

anhydrite (CaSO4) could improve oil recovery by its dissolution. The sulfate in 

the porous medium may be present in its solid form (CaSO4(s), mainly), adsorbed 

onto the carbonate surface (SO4
2-

(ad)) or dissolved in the pore water (SO4
2-

(aq)). 

The dissolution of anhydrite, CaSO4(s), which is the primary source of SO4
2-

(aq) 

would increase oil recovery in a low salinity waterflooding scheme. 

In other study, (HIORTH; CATHLES; MADLAND, 2010) developed a 

thermodynamic model that takes into account the chemical composition of the 

water, the adsorption of the surface and the dissolution/precipitation of minerals 

in order to calculate how different properties of the brines can affect the 

behavior of the electric charge on the rock surface. HIORTH; CATHLES; 

MADLAND, 2010 concluded that incremental oil recovery is not related to 

changes in the rock surface charge. Therefore, they proposed the dissolution 

mechanisms in order to explain their results. 

When the temperature is above 60°C the dissolution of calcite will take 

place, and the enhance imbibition is observed. When anhydrite formation takes 

places, the aqueous phase loses calcium, and calcium has yielded from the rock 

for the solution to remain in equilibrium with calcite. The source of Ca2+ ions 

must be calcite dissolution. If the calcite dissolution takes place where the oil is 

being absorbed, then the oil would be liberated from the rock. 
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Figure 6 - Dissolution of the chalk surface has taken place where the oil 
attached. (HIORTH; CATHLES; MADLAND, 2010) 

Figure 6 illustrates the dissolution mechanism, the image above shows a 

simplified model of the porous media before any dissolution. On the other hand, 

the inferior part of Figure 6 shows that the dissolution of calcite removes oil 

located after the injection of low salinity water. 

YOUSEF et al., 2010 and YOUSEF et al., 2011 performed tests of nuclear 

magnetic resonance (NMR) in composite carbonate rocks before and after low 

salinity waterflooding. They observed that the macropores and micropores 

connection was enhanced. Improving that connectivity can be attributed to 

microscopic dissolution generated by injecting different salinity slugs of 

seawater, or salinity gradient initiated because of initial formation water is not 

easy to replace by subsequent slugs of seawater. Figure 7 shows another 

indication of dissolution of the rock; it was the constant reduction of pressure 

rock throughout the tests. 
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Figure 7 - Pressure drop curve vs pore volumes injected. The dark blue represents 
the pressure drop and the red curve represents the injection rate profile. Source: 

(YOUSEF et al., 2010) 

2.3.2. Multi-ion exchange 

AUSTAD, 2013; AUSTAD et al., 2005 says that initially, the surface rock 

is positively charged due to a pH<9 and high concentration of Ca2+ and possible 

some Mg2+ in the formation water. The concentration of SO4
2- in the formation 

water is too small to consider relevant. As “Low salinity water” is injected into 

the carbonate reservoir, SO4
2- will adsorb onto the positively charged surface 

and lower the positive charge. Due to less electrostatic repulsion, the 

concentration of Ca2+ close to the surface is increased, and Ca2+ can bind to the 

negatively charged carboxylic group and release it from the surface. Both 

concentrations, SO4
2- and Ca2+ at the carbonate surface increases as the 

temperature is increased.  
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Figure 8 - Schematic model of suggested mechanism for the wettability 

alteration induced by seawater. (A) Proposed mechanism when Ca2+ and SO4
2- 

are active at lower. (B) Proposed mechanism when both Ca+2, Mg2+, and SO4
2- 

can interact  at higher temperatures. Source:(ZHANG; TWEHEYO; AUSTAD, 

2007) 

The ion Ca2+ have the capacity of interacting with the carboxylic group 

absorbed on the surface and release it at low and high temperatures, Figure 8 

(A). At low temperatures, the Mg2+ cations are generally more hydrated and thus 

less reactive. On the other hand, at high temperatures, the Mg2+ ions are more 

active and able to substitute the Ca2+. Mg2+ ions replace both the Ca2+ ions and 

the complexes of calcium and carboxylic acids ([-COOCa +]) formed on the 

surface, making the surface of the rock less oil-wet and consequently increasing 

the recovery factor of the reservoir Figure 8 (B), (ZHANG; TWEHEYO; 

AUSTAD, 2007). 

It can be said that the wettability alteration using Mg2+ and SO4
2- is only 

active at high temperatures supports the suggested mechanism. It is unlikely that 

the small and strongly solvated Mg2+ can substitute Ca2+ in a Ca2+–carboxylate 

complex when the temperature is under 90°C as (ZHANG; TWEHEYO; 

AUSTAD, 2007) suggested in Figure 8(A). Moreover, the Ca2+ –carboxylate 

bond is naturally stronger than the Mg2+ – carboxylate bond since Ca2+ is a 

common ion for carbonate rocks, therefore, it is predictable that Mg2+ is a 

weaker potential determining ion towards carbonate surface compare with Ca2+. 
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In the theory of wettability alteration for carbonates, there are two kinds of 

ions. The first ones are the active ions, which play an active role in the 

wettability alteration; the principal ions are sulfate, calcium, and magnesium. On 

the other hand, there are the non-active ions, which does not have an active role 

in the ion exchange process but hinder the ability of the active ions,(AUSTAD et 

al., 2015). Next, it presents some works done in low salinity water injection in 

order to achieve a better understanding of the role of active ion, non-active ions, 

and temperature in the technique. 

Influence of the calcium ion. 

The formation water in carbonate reservoir has a high salinity most of the 

time as well as a high concentration of calcium ion (Ca2+). Due to the high 

concentration of Ca2+ in the formation water, the rock surface tends to be 

positively charged. They believe that the ion Ca2+ is one of the main reasons 

why the wettability of carbonate rock is more likely to oil-wet. Therefore, the 

higher the concentration of Ca2+ in the formation water, the greater the oil-wet 

wettability. 

AL-ATTAR et al., 2013 also ran a test varying the concentration of Ca2+ in 

the injection brine from 664 to 1992 ppm in order to see the influence of the ion 

in the recuperation of oil in the reservoir of Bu Hasa. The Figure 9 illustrates 

curves of oil recovery versus pore volumes injected; it shows that as the 

concentration of calcium increase the final oil recovery decrease. Flooding with 

the original calcium concentration of 332 ppm yielded the highest oil recovery, 

and by increasing the calcium concentration, the oil recovery decreased. 
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Figure 9 - Oil recovery versus pore volumes injected brine at different 
Ca2+ concentrations.  Source: (AL-ATTAR et al., 2013) 

This experiment gives a clear example that high concentrations of calcium 

affect oil recovery in carbonates negatively, even though calcium is one of the 

active ions in the ion exchange theory, (AUSTAD, 2013). 

Influence of the magnesium ion 

ZHANG; TWEHEYO; AUSTAD, 2007 highlighted the importance of 

Mg2+ as a wettability modifier in the presence of SO4
2-. The temperature 

appeared to be of great importance, and the relative efficiency of Ca2+ and Mg2+ 

as wettability modifiers will probably depend on the actual temperature. 
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Figure 10 - Result of a spontaneous imbibition test. Modified seawater 
without Ca2+ and/or Mg2+ was initially used as imbibing fluids, and later on Ca2+ 

or Mg2+ was added with a concentration of seawater concentration. Source: 
(ZHANG; TWEHEYO; AUSTAD, 2007) 

Figure 10 shows the result of the first set of a test by (ZHANG; 

TWEHEYO; AUSTAD, 2007). As it can be seen, when Mg2+ was added in the 

presence of SO4
2- the recuperation of oil is affected positively (aquamarine line). 

In the next set of tests, the concentration of sulphate in the imbibing fluid kept 

constant and similar to seawater, while the concentration of Mg2+ was spiked.  

 

Figure 11 - Result of a spontaneous imbibition when equal amount of Ca2+ 
or Mg2+ was added gradually into imbibing fluids with SO4

2-. Source: (ZHANG; 
TWEHEYO; AUSTAD, 2007) 
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Some improvements regarding oil recovery were observed when adding 

Ca2+ to the imbibing fluid; however, less than 20% of the oil was recovered after 

45 days. Only a minimal amount of oil was recovered after adding Mg2+ to the 

imbibing fluid. At 130°C, the core imbibed with Mg2+ in the brine produce more 

oil than the core imbibed with Ca2+ in the brine. If the imbibing fluid contains 

Mg2+, which is the case for seawater, precipitation of CaSO4 can be avoided, and 

Mg2+ can even act as an additional wettability modifier at high temperatures. 

Finally, they conclude that it is experimentally verified that Mg2+ is also a strong 

potential determining ion towards the chalk surface, which has the potential to 

increase the positive charge density of chalk. Moreover, at high temperatures, 

Mg2+ present in seawater can substitute Ca2+ from the chalk surface, and the 

degree of substitution increase with the temperature. 

Influence of sulphate ion 

Some researchers have seen the vital role that the sulphate ion plays in the 

wettability alteration. (AUSTAD et al., 2005) and his team at the Stavanger 

University worked on cores from Tor formation to understand the principle 

behind the successful injection of seawater into the Ekofisk chalk field in the 

North Sea. In addition, the outstanding performance of the seawater injection 

into the Ekofisk formation is an indication of a specific rock-water interaction, 

which improves the spontaneous displacement of oil. 

They found that the concentration of sulphate ion in the seawater has a 

positive influence on the chalk surface charge. As a result, the injected seawater 

readily imbibes spontaneously into the reservoir matrix and improves the oil 

recovery. In order to have a better understanding of the sulphate ion in the 

alteration of wettability towards more water-wet, some additional tests were 

carried out. Samples from Stevens Klint were taken and saturated with Mixed-

brine (Formation water / Seawater = 1/3) and then flooded with oil until residual 

saturation (AN=1,7 mgKOH/g). The cores were aged for four weeks at 90°C. 

The test was conducted at 70°C. They varied the concentration of sulphate ion 

keeping the salinity constant by adjusting the NaCl-concentration as the Figure 

12 shows. This work demonstrates the critical role of the sulphate ion in the oil 

recovery in those rocks, a higher concentration of the sulphate ion represents a 

higher oil recovery. They propose that the waterfront should be as high as 
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possible in sulphate concentration, in order to avoid a low concentration in the 

waterfront because of the adsorption onto the chalk surface. 

 

Figure 12 - Oil recovery % versus time, effect of sulphate ion on 
spontaneous imbibition. Source: (AUSTAD et al., 2005) 

(AL-ATTAR et al., 2013) also saw the effect of the sulphate ion, although, 

they took different core material to work on. The samples were taken from the 

Bu Hasa field in Abu Dhabi. In order to investigate the effect of the sulphate ion, 

they varied the concentration of sulphate from 11.7 to 70.2 ppm. As a result, the 

increase in the concentration of sulphate in the seawater injected trending to 

intermediate-wetness levels, which end up improving oil recovery. However, an 

optimum sulphate concentration is the responsible for shifting the system’s 

wettability. The Figure 13 summarizes up the results that the obtained varying 

the sulphate ion. 
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Figure 13 - Oil recovery versus pore volumes injected of each brine with 
different concentration of sulphate ion. Source: (AL-ATTAR et al., 2013) 

(STRAND; HØGNESEN; AUSTAD, 2006) also attempt to investigate the 

mechanism for spontaneous imbibition of seawater into preferential oil-wet 

chalk. Concluding that, the potential determining ions towards chalk, Ca2+, and 

SO4
2- are essential in wettability alteration process. The adsorption of SO4

2- onto 

chalk surface facilitates the desorption of negatively charged carboxylic 

materials by changing the surface charge of the chalk which lowers the positive 

charge density of the carbonate rock surface and facilitates some desorption of 

the carboxylic material from the surface, (TWEHEYO; ZHANG; AUSTAD, 

2006). 

Influence of the temperature 

According to (TWEHEYO; ZHANG; AUSTAD, 2006), the temperature 

can play an essential role in the wettability alteration when the ion calcium is 

present, because when they kept the sulphate ion constant and increased the 

concentration of calcium the imbibition process end up in better performance at 

increasing temperature. 
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Figure 14 - Imbibition at 40, 70, 100, 130°C using different calcium, 
sulphate ratio concentration in the initial and imbibing brines. Source: 

(TWEHEYO; ZHANG; AUSTAD, 2006) 

Figure 14 shows how the temperature can affect the oil production 

behaviour. As it can be seen, in this case, 40°C, increasing the concentration of 

calcium in the imbibing fluid by four times does not show any significant change 

on oil recovery. (TWEHEYO; ZHANG; AUSTAD, 2006) explains this 

phenomenon by the affinity of sulphate adsorption and related chemical 

reactions are rather slow at this temperature. However, the two curves were 

separated at higher imbibing temperatures of 70 and 100°C, a higher calcium 

concentration in initial brine and imbibing fluid resulted in an additional 

recovery. Nevertheless, the situation reversed at 130°C; the decrease in recovery 

could be due to precipitation of CaSO4 (s). 

Another work carried out by (ZHANG; AUSTAD, 2006), shows the 

importance of temperature in the efficiency of wettability alteration process in 

the presence of sulphate when the temperature increased. In this work, they did 

spontaneous imbibition test in outcrop chalk from Stevens Klint varying the 

concentration of sulphate, both below and above the seawater concentration and 

temperature. In addition, they used two oil with different acid number (oil 

A=2.07mgKOH/g, and oil B=0.55mgHOH/g). 

Figure 15 illustrates an oil recovery (%OOIP) versus time, for different 

imbibing fluids, the experiment runs during 30 days, and the increment in oil 
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recovery with the concentration of sulphate in the imbibing fluid was relevant. 

The concentration of sulphate varied from zero up to four times the sulphate 

present in the seawater. With a concentration of sulphate spiked four times 

related to seawater, the oil recovery achieved approximately 55% while without 

sulphate present; reached only 14%. Therefore, oil recovery increased massively 

as the concentration of sulphate is spiked. 

 

Figure 15 - Imbibition test at 70°C using Oil B (AN=0.55 mgKOH/g) 
varying the concentration of SO4

2- in the imbibing fluid. Source: (ZHANG; 
AUSTAD, 2006) 

They performed a test with Oil A (AN=2.07 mgKOH/g) at different 

temperatures of 100°C and 130°C. As we can see in Figure 16, the oil recovery 

is slightly inferior compared with the test performed at 70°C due to the higher 

acid number of the Oil A, and it was explained in previous sections the oil 

recovery is affected negatively by the increase of the acid number. It is 

important to notice that the only imbibing fluid, which reached a plateau before 

30 days was the seawater without sulphate and with an oil recovery close to only 

10% of the OOIP. 
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Figure 16 - Imbibition test at 100°C using Oil A (AN=2.07 mgKOH/g) 
varying the concentration of SO4

2- in the imbibing fluid. Source: (ZHANG; 
AUSTAD, 2006) 

On the other hand, in the experiments performed at 130°C, the production 

of oil was much faster reaching the plateau before ten days. Besides, the oil 

recovery was higher at this temperature with 65% of the oil, recovered by the 

water four and two times spiked with sulphate, Figure 17. 

 

Figure 17 - Imbibition test at 130°C using Oil A (AN=2.07 mgKOH/g) 
varying the concentration of SO4

2- in the imbibing fluid. Source: (ZHANG; 
AUSTAD, 2006) 

Based on these results, they conclude that the temperature can affect the 

efficiency of the wettability alteration process in the presence of sulphate 
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positively. Therefore, high temperatures have a favourable effect on the 

wettability alteration. 

Reduction of the total salinity 

AL-ATTAR et al., 2013 worked with samples from Bu Hasa field in Abu 

Dhabi. In this work, they used three different injection waters UER, SIM 

(formation waters), seawater, as well as distilled water; Table 1 illustrates the 

compositions of those brines. In the first set of tests, they wanted to observe, 

which conditions affect the oil recovery by reducing the salinity of the first brine 

(UER). To evaluate the effect of the salinity, they ran tests varying the salinity of 

the formation waters. Firstly, they diluted UER to one-half of its original 

salinity, then to 5,000 ppm and finally to 1,000 ppm; Figure 18 shows the 

results. The lowest oil recovery percentage observed when using distilled water 

showing that it not only reducing the salinity of the water, it has to have an ionic 

composition able to interact with the rock and propitiate the wettability 

alteration.  

On the other hand, the 5,000 ppm performed the best percentage of oil 

recovery. Therefore, they consider that salinity as the optimum salinity. 

Furthermore, it is essential to address that not only the total salinity but also 

having in count the concentration balance between active and non-active ions. 

 

Table 1 - Analysis of the different types of water. Source: AL-ATTAR et al., 
2013 
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Source: (AL-ATTAR et al., 2013) 

 

Figure 18 - Oil recovery % versus pore volumes injected of UER water. 
Source: (AL-ATTAR et al., 2013) 

Secondly, the same set of tests for the SIM water (formation water). As a 

conclusion, they found that the highest oil recovery achieved with the 1,000 ppm 

diluted brine, which indicates that the brine salinity with which the porous 

medium was flooded initially may be related to the salinity at which the 

technique will have higher efficiency. Moreover, the lowest recovery was with 

the original SIM water (Figure 19), pointing out that SIM brine has a higher 

salinity that UER.  
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Figure 19 - Oil recovery % versus pore volumes injected of SIM water. 
Source: (AL-ATTAR et al., 2013) 

Finally, they tested seawater and its dilutions, the only change was that in 

this test they did not have a half diluted water, the results are shown in Figure 

20, a comparable performance and recovering in average 61%, however, the 

dilutions forms of seawater with salinities of 5000 and 1000 ppm reached the 

maximum oil recovery in less time. Therefore, they conclude that there is not a 

significant increase in oil recovery by dilution of seawater but diluted forms 

have a better performance in oil recovery versus porous volumes injected. 

 

Figure 20 - Oil recovery % versus pore volumes injected of SIM water. 
Source: (AL-ATTAR et al., 2013) 

YOUSEF; AL-SALEHSALAH; AL-JAWFI, 2011 present a work with 

laboratory core-flooding studies at reservoir conditions, conducted using 
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composite rock samples from a carbonate reservoir, to investigate the impact of 

salinity and ionic composition on oil recovery. In addition, they report a broad 

range of laboratory studies addressing oil recovery mechanism. In order to 

mobilize the residual oil, a significant reduction in capillary forces is required. 

IFT measurements between oil, and water, as well as rock wettability 

measurements (contact angle), are typically used to measure these interactions. 

ALSHAIKH; MAHADEVAN, 2014 also investigated the variation in IFT with 

the change in the composition of the brine. 

Figure 21 shows different IFT measurements of reservoir live oil with field 

connate water, regular seawater, and then different diluted versions of seawater. 

The general trend is that as the salinity of the injection water decrease, and the 

IFT decrease, (YOUSEF; AL-SALEHSALAH; AL-JAWFI, 2011). 

 

Figure 21 - IFT measurements of reservoir live oil with connate water, 
injection seawater, and different diluted versions of seawater. Measurements 

were conducted at reservoir conditions. Source: (YOUSEF; AL-
SALEHSALAH; AL-JAWFI, 2011) 

Figure 22 shows real images for wettability measurements using connate 

water, seawater, and different salinity slugs of seawater. As we can see, the 

contact angle of the connate water is ~ 90°, which indicate intermediate 

wettability. Regular seawater did not affect the contact angle. They observed a 

reduction of the contact angle with diluted seawater; contact angle goes from 90° 

to 69°. However, the most significant changes in contact angles where with 
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twice diluted seawater (from 90° to 80°), and ten times diluted (from 80° to 69°). 

Almost no alteration with 100 times diluted water, (YOUSEF; AL-

SALEHSALAH; AL-JAWFI, 2011). 

 

Figure 22 - Contact angle measurements of carbonate rock samples with 
reservoir live oil and connate water, injection seawater, and different dilution 

versions of seawater. Measurements conducted at reservoir conditions. Source: 
(YOUSEF; AL-SALEHSALAH; AL-JAWFI, 2011) 

In the core-flood stage, five different salinity slugs of seawater were 

injected, starting with seawater and ending with 100 times diluted. Figure 23 

shows the cumulative oil recovery witch each slug. As we can see, there is an 

increase in oil recovery until the injection of 10 times diluted, from there; there 

is not an additional oil recovery. 
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Figure 23 - Oil recovery curve. The blue curve represents the amount of oil 
produced in terms of original oil in place through all injected salinity slugs of 

seawater. Source: (YOUSEF; AL-SALEHSALAH; AL-JAWFI, 2011) 

AUSTAD et al., 2012 found that the mineralogy of the reservoir rock 

could play an important role. If the reservoir rock has anhydrite, formation water 

or seawater diluted can be used as a fluid in the technic. They ran forced 

displacement tests at 110°C with limestone cores which has a small quantity of 

anhydrite and Stevens Klint cores without anhydrite. In these tests, they injected 

in the two kinds of cores first, formation water (208.940 ppm) and then 

formation water 100 times diluted. In the limestone, it was observed 5% 

additional oil recovery after the injection of the diluted water Figure 24. 
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Figure 24 - Oil recovery % versus pore volumes injected, first formation 
water and then 100 times formation water diluted in Limestone. Source: 

(AUSTAD et al., 2012) 

Even though the formation water has calcium and magnesium ions, it did 

not have sulphate. The effluent shows a small concentration of sulphate ion, 

indicating dissolution of CaSO4 (S) present in the rock Figure 25. 

 

 

Figure 25 - Concentration of SO4
2- in the effluent versus injected pore 

volumes. Source: (AUSTAD et al., 2012) 

The results that they found in the chalks (without anhydrite) were that the 

injection of the diluted water did not add any additional oil, Figure 26. 
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Figure 26 - Oil recovery % versus pore volumes injected, first formation 
water and then 100 times formation water diluted in Chalk. Source: (AUSTAD 

et al., 2012) 

The researchers conclude that if the reservoir rock has anhydrite in its 

mineralogical composition, the use of diluted seawater or formation water could 

be used. 

YOUSEF, A. A., AL-SALEH, S., & AL-JAWFI, 2012 show how the IFT 

changes when the ionic strength decrease, therefore, wettability alteration is 

induced on the rock. In order to prove how the IFT change with the decrease in 

ionic strength (YOUSEF, A. A., AL-SALEH, S., & AL-JAWFI, 2012) carried 

out measurements of the IFT after the injection of seawater and its diluted 

versions (twice diluted, 10 times diluted, 20 times diluted, and 100 times 

diluted). The general trend is that when the ionic strength decreases, the rock 

wettability shifts towards the water-wet state as it seen in Figure 27. 
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Figure 27 - Contact angles measurements of carbonate rock samples with 
reservoir live oil and connate water, field water, and different ionic strength of 

field seawater. Source: (YOUSEF, A. A., AL-SALEH, S., & AL-JAWFI, 2012) 

They also performed another test where the brine just contained common 

ions (Na+, Cl-) in order to investigate the role of multivalent ions in the 

wettability alteration. The result is displayed in Figure 28, showing the 

experiments carried out for twice-diluted water; exhibit the test presenting 

wettability alteration toward the water-wet state. However, more dilution did not 

illustrate a significant alteration in the rock wettability. 

 

Figure 28 - Contact angles measurements of carbonate rock samples with 
reservoir live oil and connate water, and set of brines containing only (Na+, Cl-), 

(YOUSEF, A. A., AL-SALEH, S., & AL-JAWFI, 2012) 
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ZHANG; SARMA, 2012 highlighted the importance of the temperature on 

the recovery of oil in carbonate rock. However, they do not present results 

compared with each other. On the one hand, they flooded with seawater and its 

diluted forms (1/2, 1/10, 1/40 diluted seawater). On the other hand, they flooded 

with formation water as well as its diluted forms (1/4, and 1/100 diluted 

formation water). The results show the effect of reducing the total salinity of the 

injection brine can improve the final recovery. 

 

 

Figure 29 - Cumulative oil recovery and pressure differential curves by 
injecting Seawater at 70 °C. (ZHANG; SARMA, 2012) 

As it can be seen in Figure 29, an increase in the produced oil at each 

change of water salinity, (ZHANG; SARMA, 2012). However, the recovery by 

the 1/40 diluted seawater was just 1.1% of OOIP. In addition, the differential 

pressure was also affected by the change of water salinity, and they do not have 

a concrete explanation. 

Figure 30 shows results of the core-flooding test by injecting formation 

water and its diluted forms. It can be seen an increment in the oil recovery by 

reducing the salinity of the formation water. 
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Figure 30 - Cumulative oil recovery and pressure differential by formation 
water at 120°C. (ZHANG; SARMA, 2012) 

At State University of Campinas (UNICAMP), the research group of 

recuperation by miscible methods (LMMR) have been working on 

understanding the effects of injecting low salinity water into carbonate rocks. 

The last work reported by them is the work done by (ANDRADE, 2017). This 

work used a extreme conditions of temperature (124°C), an injection pressure of 

5000 psi, and dolomite outcrops as a rock model to test the evaluate of reducing 

the total salinity of the injection brine in oil recovery of carbonate rocks. 

To find if there is an additional oil recovery when reduced the total salinity 

(ANDRADE, 2017) performed core-flooding tests varying the injection brine, 

based on seawater. Therefore, in each experiment, they flooded the rock with 

three different brines; the sequence of each test is shown in Figure 31. 

 

Figure 31 – Sequence of the tests performed. Source: (ANDRADE, 2017) 

The experiments performed reducing the total salinity showed strong 

evidence that it could improve oil recovery in dolomite samples. Seawater 

obtained 21.08% of the original oil in place (OOIP) recovered, then, with the 

injection of seawater two times diluted (SW(x2)) 1.65% of OOIP recovered, and 

not only that, with seawater ten times diluted (SW(x10)) obtained one of the best 
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additional oil recovered results with a 3.63%. Figure 32 illustrates the results 

obtained by (ANDRADE, 2017). 

 

Figure 32 - Oil recovery versus porous volume injected, test one. Source: 
(ANDRADE, 2017) 

After the experiments, they conclude that the reduction of total salinity in 

the injection brine could improve the oil recovery as it can be seen in Figure 33. 

However, the total oil recovery in this sort of rocks keeps being low even though 

there is an additional oil recovery. 

 

Figure 33 – Oil recovery versus porous volume injected, test two. Source: 
(ANDRADE, 2017) 

The best results that (ANDRADE, 2017) found were when they injected 

seawater ten times diluted in a secondary stage with an oil recovery of 32% of 

the original oil in place (OOIP) recovered. 
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Figure 34 – Oil recovery versus porous volume injected, test three. Source: 
(ANDRADE, 2017) 

It would have been good if they had obtained a differential pressure drop 

in order to have indications about the mechanism that is acting in the process of 

wettability alteration. However, the work is very conclusive when it says that 

diluting seawater could improve the oil recovery in this kind of rocks. 

Alteration of NaCl concentration 

(FATHI; AUSTAD; STRAND, 2010, 2011, 2012) took the double layer 

model to explain the mechanism regardless of the rock surface when it depletes 

the NaCl concentration in the imbibing fluid. They said that the surface would 

cover by potential determining ions as well as non-potential, as it can be seen in 

Figure 35. 

 

Figure 35 - Diagram of the effect of NaCl. Source: (FATHI; AUSTAD; 
STRAND, 2012) 



51 
 

The double layer works as a surface cover to the contact with the potential 

determining ions (SO4
2-, Ca2+ e Mg2+), this behaviour is unfavourable to the 

technic. (FATHI; AUSTAD; STRAND, 2012) worked to increase the 

understanding of how the concentration of NaCl and dilution of the seawater 

affect the oil recovery throughs spontaneous imbibition process. In order to 

accomplish it, in the first experiment it worked at 100°C and three different 

imbibition fluids, Seawater (SW), Seawater depleted in NaCl (SW0NaCl), and 

seawater spiked four times the relative concentration of NaCl from seawater 

(SW4NaCl). Figure 36 shows the result of this test. 

 

Figure 36 - Spontaneous imbibition into oil saturated oil chalk cores using 
different imbibition fluids: SW, SW0NaCl, and SW4NaCl. Source: (FATHI; 

AUSTAD; STRAND, 2012) 

As it can be seen, the reduction in NaCl improves is liked with the 

incremental oil recovery; proving that high concentrations of NaCl can affect the 

oil recovery in carbonates negatively. Moreover, additional tests where includes 

aiming the effect on diluted seawater (dSW). Figure 37 displays that seawater 

without NaCl has the best performance, while the diluted waters did not. The 

reason for the low recovery they attributed to the decrease in concentration of 

the active ions, which alter the wetting properties. 
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Figure 37 - Spontaneous imbibition into oil saturated chalk cores at 110 °C 
using seawater (SW), and modified seawater: SW0NaCl, dSW10000, 

dSW20000, and formation brine. Source: (FATHI; AUSTAD; STRAND, 2012). 

Summing up, removing NaCl from the composition improves the oil 

recovery factor because the active ions have the room the act as a wettability 

changer. However, diluting seawater to obtain lower salinities brines has a 

negative impact because when they reduce the total salinity, they are also 

reducing the concentration of active ions, therefore, the capacity of the water to 

alter the permeability. Figure 18 shows that by doing that, the recovery factor 

decreases significantly. 

According to (ANDRADE, 2017), NaCl depletion can improve oil 

recovery in dolomite rocks. To prove that, it performed tests under the same 

conditions as previously explained to test the effect of sodium chloride reduction 

in the injection brine on oil recovery of carbonate rocks. 

Evaluating the potential of reducing NaCl in the injection brine on 

recovering additional oil, (ANDRADE, 2017) carried out core-flooding tests 

varying the concentration of NaCl in the water injected. To achieved that, they 

flooded the rock three different brines in order to observe any additional 

recuperation of oil; the sequence of each test is shown in Figure 31.    
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Figure 38 - Sequence of the tests performed (NaCl reduction). Source: 
(ANDRADE, 2017) 

After the experiments, they noticed that the sodium chloride reduction in 

the injection brine could improve the oil recovery as it can be seen in Figure 39, 

which shows an increment in the oil recovery of 2.14% only by reducing in 25% 

the NaCl in the injection brine. 

 

Figure 39 – Oil recovery versus porous volumes injected, effect of NaCl 
reduction. Source: (ANDRADE, 2017) 

In the end, it can be seen that reducing the non-active ions in the injection 

brine can enhance the oil recovery in carbonate rocks, also (ANDRADE, 2017) 

concluded that the injection brine with the best performance is with a reduction 

of 25% in the NaCl. Figure 40 illustrates that this water can recover 34.2% by 

itself, which shows that this concentration of sodium chloride has the best 

performance in this sequence of the test. 
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Figure 40 – Oil recovery versus porous volume injected, effect of NaCl 

reduction. Source: (ANDRADE, 2017) 

3. MATERIALS AND METHODS 

This chapter presents the description of material and methods applied in 

order to mimic the reservoir scenario in a lab environment. This section present 

in a logical order the preparation of the injection brines, live oil, core 

characterization, core preparation, and experimental set-up. Moreover, contain 

the results of oil characterization, and petrophysical properties. 

3.1. Fluid preparation 

3.1.1. Synthetic brines 

Seawater (SW) can have different salinities depending on where is taken. 

Brine used in this work has a salinity of 40.363 part per million (ppm) and a 

component concentration as is shown in Table 2. 

Table 2 - Seawater composition 

Components g/L 
NaCl 23,4721 

CaCl2:2H2O 1,4669 
MgCl2:6H2O 10,5508 

KCl 0,7245 
SrCl2:6H2O 0,0396 

Na2SO4 3,9165 
TDS(mg/L) 34483 
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Synthetic seawater (SW) and its dilutions (SW (x2), SW (x10, SW (x50), SW 

(x100)) were used to perform the core flooding tests, Repsol-Sinopec Brazil 

provided the composition of Seawater. 

In addition, formation water (FW) was provided and mimic initial water in 

the reservoir as well as simulating initial water saturation, similar to the reservoir 

conditions. Composition and concentration of salts that are in the FW are 

summarizing in Table 3. 
Table 3 - Formation water composition 

Component  g/L 
NaCl 206,8191 
KCl 7,5155 

MgCl2:6H2O 15,1986 
SrCl2:6H2O 7,8719 
CaCl2:2H2O 30,9670 

LiCl 0,1580 
BaCl2:2H2O 0,0280 

KBr 1,1027 
Na2SO4 0,0991 

TDS(mg/L) 241491 
 

Preparation of seawater and formation water followed the following steps: 

1. Use a 1000 ml volumetric flask for mixing 800 ml of deionized water 

with the salts, following the top to bottom order. The Sodium sulphate 

(Na2SO4) needs to mix firstly in a different volumetric flask with 100 ml 

of deionized water in order to avoid salt precipitation. 
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Figure 41 - Mixing salts 

2. Once completing the salts dissolution process in both volumetric flasks 

both liquid were mixed with the other solution of salts during 30 

minutes as shown in Figure 41. 

3. Filter the brine solution using a 0.22 micrometres filter and a 

borosilicate filter in a vacuum system to remove the possible presence of 

contaminant particles, as illustrated in Figure 42. 

 

Figure 42 - Brine filtration process 
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4. After the filtration process concluded, an air removal procedure was 

carried out with the brine placed in a Kitassato flask and connected to 

the vacuum pump for 15 minutes, as shown in Figure 43. 

 

Figure 43 - Brine air removal process 

3.1.2. Oil sampling 

The oil used in these tests has come from a Pre-Salt field in Brazil. In 

order to homogenize the oil contained in the gallon where it was received it was 

necessary to heat it up to reservoir temperature and shake it each hour during 8 

hours. 

Then, oil was filtered with a 10µm filter to remove any sand or solids that 

are present in the oil. Figure 44 illustrates a schematic of the filtration set-up. 

 

Figure 44 - Oil filtration set-up 
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This crude oil was used in the saturation and aging stages. After the aging 

process, recombined oil was prepared in order to replace the aging oil before 

running the test. 

3.2. Oil characterization 

There are different techniques for characterizing oil. The technique of 

saturated, aromatic, resins and asphaltenes (SARA) is the most used in the 

characterization of hydrocarbons, consisting of the separation of the oil in four 

fractions. The acid number determination procedures based on ASTM D-664 

while the SARA separation technique on the ASTM D6560-12 and ASTM 2007-

11 standard references. Table 4 illustrates the results of SARA and Acid number 

tests. 

Table 4 - SARA and acid number of dead oil 

SARA results 

Saturated (%) 79,73 

Aromatics (%) 5,35 

Resins (%) 14,27 

Asphaltenes (%) 0,64 

Acid number (mg KOH /g) 0,044 

3.2.1. Density measurement 

The measurement of dead oil density was performed with the help of 

Anton Paar's DMA-4500 Density Meter, shown in Figure 45. The fluid target 

(water or oil) is introduced into a U-shaped borosilicate glass cell, which is set to 

vibrate at a characteristic frequency. This frequency will change depending on 

the density of the fluid. The densimeter will precisely determine this 

characteristic frequency and, by mathematical conversion, the density of the 

fluid can be measured, compared to the frequencies encountered when using two 

standard fluids. 

3.2.2. Viscosity measurement 

Viscosity measurements of dead oil were made in a Viscopro 2000 

Cambridge viscometer, shown in Figure 45. Its operation based on an 
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electromagnetic concept. Two coils move a piston up and down magnetically at 

a constant force. Based on the frequency with which the piston completes the 

round-trip motion the viscosity of the fluid is calculated. The temperature of the 

fluid in the viscometer is continuously measuring with a temperature detector 

located at the base of the chamber. Since the viscosity of a fluid varies 

drastically with temperature, it is essential to know precisely the temperature in 

the measuring cell of the viscometer. 

 

 

Figure 45 - Anton Paar's DMA-4500 Density Meter and Viscopro 2000 
Cambridge viscometer 

3.2.3. Live oil preparation 

In order to mimic the reservoir conditions, it is necessary to reply oil under 

reservoir conditions. It is necessary to know the composition of the gas that is 

associated with the oil produced. The oil company provides the composition of 

the gas (CO2 + C1 – C5) as well as basic crude oil properties such as RGO, °API 

density and viscosity. The composition presented in Table 5 is the composition 

of the gas used to simulate live oil. However, this composition is a simplification 

of the real composition of the fluid in the reservoir. 
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Table 5 - Gas composition 

Component Atmospheric Gas (mol%) 

CO2 12.66 

N2 0.46 

C1 71.9 

C2 7.19 

C3 4.91 

n-C4 2.88 

 
Knowing the RGO it is possible to calculate how much gas is in the crude 

at standard conditions. Then, with the gas composition, it calculated at 

laboratory condition. After knowing the volumes of gas and oil necessary to 

replicate the crude, they place in a single vessel in order to mix, and then, with a 

positive displacement pump, the mixture pressure is raised 500 psi above the 

bubble point pressure. When the reservoir pressure reached, DBR pump settled 

in constant pressure mode in order to keep constant pressure. Finally, the 

mixture will be stirred mechanically while an electrical resistance during 24 

hours heats it up to the reservoir temperature. Table 6 illustrate the oil properties 

at reservoir conditions. 

Table 6 - Oil properties at reservoir conditions 

RGO (
𝑚3𝑠𝑡𝑑𝑚3𝑠𝑡𝑑) 265.13 

Viscosity (cP) 0.79 

Density (g/cm3) 0.72 

3.3. Cores characterization 

The cores used in this work came from a reservoir in Brazil. The cores 

selected should meet three requirements. Firstly, they should be from the wells 

that are close between them than with others, and they are producer and injector, 

respectively. Secondly, cores must not have fractures, preferential flow paths or 

vugs, therefore, they were analysed by taking images in a Computer Tomograph 

scanner in order to select the core plugs with the best characteristics. Finally, the 

porous volume (VP) of the core or pairs selected must have a porous volume 
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greater than 10 cm3 and gas permeability (Kg) similar, the core data is in Table 

7. 

Table 7 - Core properties  

Test Number Pair number Swi (%) VP (cm3) Kg (mD) 

1 Par 1 18 21.14 83.93 

2 Par 5 26 16.93 27.68 

3 Par 2 33 10.43 20.93 

4 Par 4 34 15.13 31.80 

5 Par 6 38 12.10 27.68 

6 Par 7 31 13.41 34.30 

3.3.1. Permeability measurement 

Permeability was also determined in order to classify and select the 

samples for water-flooding experiments. All cores were measure with a 

permeabilimeter Gas Permeameter of Core Laboratories, Inc (Figure 47). The 

equipment obtains the permeability of the rock by injecting nitrogen with a 

constant gas ratio and measuring the differential pressure of the core, then, using 

Darcy’s equation to determinate permeability values.  

In addition, other permeability measurements were made to the rock pair, 

this time with water flowing through the cores, it was applied the same concept 

above described. Using a DBR pump, constant water flow was settled-up, then,   

with a differential pressure transducer was collecting data from the cores and 

with Darcy’s equation calculated the permeability. Figure 46 shows a scheme for 

permeability measurements. 

Figure 46 -  Scheme for permeability measurement 
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3.3.2. Porosity measurement 

Porosity measurements were performed in the core samples after the 

cleaning and drying procedures. These measurements were carried out in order 

to characterize the initial porosity for classification and samples for 

waterflooding experiments. All porosity measures were conducted in Gas 

Porosimeter of Core Laboratories, Inc, (Figure 47) using nitrogen and the 

porosity calculation is based in the Boyle´s law double-cell method that allows 

calculating porous volume. 

 

Figure 47 - Gas Permeameter of Core Laboratories, Inc and Porosimeter of 
Core Laboratories, Inc 

3.3.3. Tomography  

The selection of homogeneous core samples was carried out with a 

medical tomography Siemens model SOMATOM Spirit (Figure 48). The 

procedure consists of scanning cores samples to identify fractures or preferential 

flood channels. Then, according to the result of this screening, the pairs of cores 

were chosen for the next steps. 
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Figure 48 - Siemens Somatom Tomography 

3.4. Core preparation 

3.4.1. Core cleaning  

After each test, the samples were cleaned in order to perform duplicates or 

using other brine schemes. Using a Soxhlet apparatus all cores were adequately 

cleaned, Figure 49. This equipment uses the solvent (acetone) flow in an 

intermittent process. The solvent vapor travels to the condenser, which makes it 

liquid. Thereafter, the condensed solvent moves to the chamber where the 

sample stayed. This chamber will slowly fill with hot solvent, and the 

compounds dissolve in the fluid. When the chamber of the Soxhlet is almost full, 

the solvent returns by siphon effect to the distillation flask along with the 

impurities of the rock. The cycle will repeat until the solvent appears to be clear. 
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Figure 49 - Soxhlet equipment 

3.4.2. Core saturation with formation water 

After petrophysical characterization, pairs of samples settled in a steel cell 

and evacuated for approximately 24 hours to remove the air from the porous 

space of the rock. Then, the cores samples saturated with formation water in a 

vessel at a constant pressure of 2000 psi for more 24 hours. A gauge measures 

the pressure in the hydraulic pump line to keep constant and monitor the 

pressure during the saturation process. Then, each pair was flooded with four 

porous volume of formation water to ensure 100% of water saturation as shown 

in Figure 46. 

3.4.3. Core saturation with oil 

Each pair of core plugs was settled up core-holder with a thermal blanket 

at reservoir temperature. The overburden pressure kept at 1000 psi with a DBR 

pump while the system temperature stabilized. The dead oil in a stainless steel 

vessel at a controlled temperature with the help of a thermal blanket as well. 

Then, dead oil is injected at the rate of 0.1 cm3/min in the core plugs until there 

is no more water production, approximately four porous volumes (PV). The 

water produced after the injection of oil is collected and quantified and with the 

porous volume of the pair could be calculated the irreducible water saturation 
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(Swi); Table 7 presents the values of Swi of each core pair. Figure 50 shows a 

scheme of oil saturation. 

 

Figure 50 - Scheme of oil saturation 

3.4.4. Wettability restoration 

In order to achieve the wettability of the carbonate rock reservoir, an aging 

procedure is required. This procedure aims to obtain the wettability of the core 

material previous contact to drill fluid and cleaning process. The samples, in this 

case, must be aged for a fixed time (minimum time of 14 days) (FATHI; 

AUSTAD; STRAND, 2010) in a reservoir oil container called the aging cell 

Figure 51 under reservoir temperature and atmospheric pressure. 

 

Figure 51 - Aging cell 
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3.5.1. Biphasic separator 

In order to measure oil production at reservoir conditions and avoid the 

separation of gas from oil, it was necessary separator equipment able to work 

under high pressure and temperature. To accomplish it, an upgrade of a previous 

design of Petrobras was done. Figure 53 illustrates the final version of the 

separator; this equipment can work under extreme conditions of pressure and 

temperature (10000 psi and 124°C) allowing the laboratory of miscible method 

(LMMR) to explore new horizons in the recuperation of oil in carbonates. 

 

Figure 53 - Biphasic separator 

3.5.2. Dead volumes 

In order to calculate more accurately the time of production of oil as well 

as the production, the dead volume (oil in the set-up lines that can contribute to 

inaccurate measurements) must be calculated. To achieve it, all lines were filled 

with water then, they were drained in test tubes to measure the volume. 
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Measurements of dead volumes in the lines of oil substitution were not 

necessary because along this stage data collection of volumes was not necessary. 

3.5.3. Oil substitution 

Before the tests, it is necessary to replace the dead oil that was saturating 

the core sample with the recombined oil. Five porous volumes were flooded with 

a DBR pump at a flow rate of 0.2 cm3/min to guarantee the replacement of the 

dead oil. This procedure was carried out under test conditions. 

4. RESULTS AND DISCUSSIONS  

In this chapter presents the results of core-flooding experiments performed 

throughout the master. Results of oil recovery by reduction of total salinity and 

reduction of sodium chloride in the injection brine. Each experiment consists in 

the injection of three different slugs of modified seawater into the reservoir cores 

plugs to compare the performance of each slug in oil recovery. Besides, it 

presents results of ionic chromatography analyses carried out to the effluents 

collected after the injection of modified waters; these results will be available 

only for the last experiment of the series three and the replicates. 

4.1. Total salinity reduction  

Three tests carried out in order to evaluate the effect of reducing the total 

salinity of seawater in oil recovery of carbonate reservoir rocks, three tests 

looking for the best performance and a replicate of the experiment with the best 

performance to verify the results. Figure 54 shows the sequence of the tests 

performed. 

 

Figure 54 - Sequence of tests for total salinity reduction. 
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The first test of the sequence one was designed to study the effect of 

reducing total salinity, starting with seawater (SW) as a secondary mode 

followed by seawater two times diluted (SWx2), and finally, seawater ten times 

diluted (SWx10). Figure 55 illustrates the cumulative oil recovery regarding 

original oil in place (OOIP) and the pressure drop in the core sample for the 

injected brines.  

 

 

Figure 55 - Oil recovery and pressure drop versus pore volume injected, 
first test. 

The oil produced by the injection of seawater was 20.7 % of OOIP; this 

slug represents a secondary oil production. Figure 55 shows that no additional 

oil was produced after the injection of the diluted slugs (SWx2 and SWx10) 

respectively. Therefore, reduction of the total salinity did not show 

improvements in the oil recovery. 

The pressure drop curve shows a couple of interesting facts; the first one is 

the increase in the differential pressure when seawater two times diluted (SWx2) 

is injected; that increase can be associated with precipitation of some salts or 

carbonate minerals in the porous media causing damage in the rock permeability 

and therefore injectivity lost. However, with the injection of seawater ten times 

diluted (SWx10), the permeability rises to slightly higher values of the initial 

permeability; dissolution of the previously precipitated mineral in the porous 

media is a hypothesis that could explain this phenomenon. Figure 56 shows the 
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behaviour of effective water permeability throughout the test. It is important to 

point out that the most accurate value of permeability is where it is partially 

stable. 

 

Figure 56 - Effective water permeability versus porous volumes injected, 
first test. 

The results of oil recovered in this first experiment (20.7% of OOIP) can 

be compared with those obtained by (ANDRADE, 2017). They obtained an oil 

recovery of 21.08% of the OOIP in dolomites by the injection of seawater in a 

secondary stage (Figure 32), those results show repeatability, and it can say that 

the oil recovery by the injection of seawater would be around 20 to 25% of the 

OOIP. On the other hand, our results do not show and additional oil recovery by 

the injection of SWx2 and SWx10, while Figure 32 shows additional oil 

recovered by the injection of diluted forms of seawater (SW(x2), and 

SW(x10)),1.65%, and 3.63%, respectively. This additional oil can be attributed to 

the difference in rock mineralogy, while (ANDRADE, 2017) used dolomite 

rocks, we used real reservoir rock which has more complex mineralogy probably 

affecting with this the performance of the technic. 

The second core-flooding test used seawater two times diluted (SWx2) as 

secondary oil recovery followed by seawater ten times diluted (SWx10) in 

tertiary mode, and fifty times diluted (SWx50) as a ultimate mode, respectively. 

Figure 57 illustrates the cumulative oil recovery regarding OOIP and the 

pressure drop in the core sample for the injected brines. 
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Figure 57 - Oil recovery and pressure drop versus pore volume injected, 
second test. 

The oil produced by the injection of seawater two times diluted was 16.4% 

of OOIP; this slug represents a secondary oil production. Figure 57 shows that 

no additional oil was produced after the injection of the diluted slugs (SWx10 

and SWx50) respectively. Therefore, reduction of the total salinity did not show 

improvements in the oil recovery. In addition, total oil recovery by using SWx2 

in a secondary stage is lower than oil recovery by SW in a secondary stage. It is 

important to point out that the oil recovered by the SWx2 is the lowest, 

coinciding with the behaviour of the pressure drop in the previous experiment 

when the permeability of the porous media was affected negatively.  

The pressure drop curve shows that after started injecting the SWx10 the 

differential pressure started to drop leading to an increase in the permeability; 

SWx50 times shows the same trend than SWx10. The most reliable theory to 

explain this behaviour in the differential pressure is the dissolution of the porous 

media. Figure 58 shows the behaviour of effective water permeability 

throughout the second test. 

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

0

10

20

30

40

50

60

0 2 4 6 8 10 12

D
e

lt
a

 P
 (

p
si

) 

O
O

IP
 (

%
) 

 

VP injected 

OOIP (%) Delta P (psi)

SW x 2 SW x 10 SW x 50 



72 
 

 

Figure 58 - effective water permeability versus porous volumes injected, 
second test. 

The third experiment consisted in the injection of seawater ten times 

diluted (SWx10) as a secondary oil recovery followed by the injection of 

seawater fifty times (SWx50) and hundred times diluted (SWx100) respectively. 

The goal of this experiment is first; evaluate the reduction of total salinity in oil 

recovery as well as the performance of SWx10 in a secondary stage. 

 

Figure 59 - Oil recovery and pressure drop versus pore volume injected, 
third test 
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The oil produced by the injection of seawater ten times diluted was 33.7 % 

of OOIP; this slug represents a secondary oil production. The performance of 

SWx10 is by far the best of the three experiments. The injection of SWx50 

recovered 0.65% at the beginning of the injection; however, we cannot conclude 

that this additional oil recovery is due to the injection of the SWx50 slug. To 

sum up, the total oil recovery in this test was 34.3%, which is a good 

performance, compared with the previous test. Figure 59 illustrates oil recovery 

and differential pressure throughout the test. The pressure drop curve shows a 

decreasing trend when the injection brine diluted ten times or more, indicating 

dissolution of the porous media leading to an increase in the permeability of the 

rock. However, this behaviour is not enough to confirm that this phenomenon is 

occurring. It is necessary to analyse the effluents of the injection brine in order 

to see if there is a variation in the concentration of the ions. In the following 

sections, ionic chromatography results analysis will give us a better 

understanding of what is going on in the porous media due to the fluid-rock 

interaction. 

 

Figure 60 - Oil recovery versus porous volumes injected 
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them. Therefore, can be pointed that the seawater diluted ten times has the best 

results in both works. 

Figure 60 shows the oil recovery in each test, to sum up; SWx10 obtained 

the best oil recovery with 33.75 % of the oil in place. The worst oil recovery was 

with SWx2 in a secondary method, and it matches with the only brine that leads 

to a decrease in the permeability. 

4.2. Sodium chloride reduction  

This section presents the results of NaCl reduction in the injection brine 

(seawater). Figure 61 illustrates the sequences designed to evaluate the effect of 

reducing NaCl in the injection brine in oil recovery of carbonate reservoir rocks. 

 

 

Figure 61 - Sequence of tests for NaCl reduction  

The first test of the sequence two designed to study the effect of reducing 

NaCl, starting with seawater (SW) as a secondary method followed by seawater 

depleted 50% in NaCl (SWx0.5NaCl), and finally, seawater without NaCl 

(SWx0NaCl). Figure 62 illustrates the cumulative oil recovery regarding OOIP 

and the pressure drop in the core sample for the injected brines in the left axis, 

while in the right axis represents the pressure drop in the rock throughout the 

test. 

The oil produced by the injection of seawater was 25.33 % of OOIP; this 

slug represents a secondary oil production. Figure 62 shows that no additional 

oil was produced after the injection of the slugs depleted in NaCl (SWx0.5NaCl 

and SWx0NaCl) respectively. Therefore, NaCl reduction did not show 

improvements in the oil recovery in a third and ultimate stage of production. 
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Comparing this result with the first test of series one, the oil recovered by the 

seawater is comparable in both case, as we can see in Figure 55 and Figure 62. 

 

Figure 62 - Oil recovery and pressure drop versus pore volume injected, 
fourth test 

The pressure drop curve shows a decreasing trend after stared injecting 

brines depleted in NaCl. During this test occurred problems with the collection 

of pressure drop data, however still can see that the curve tends to drop. This 

tendency of the pressure drop curve when water depleted in seawater was 

injected indicates dissolution in the porous media. 

The fifth core-flooding test used seawater 50% depleted in NaCl 

(SWx0.5NaCl) as secondary oil recovery followed by seawater without NaCl 

(SWx0NaCl), and seawater (SW) as an ultimate method, respectively. Figure 63 

illustrates the cumulative oil recovery regarding OOIP in the left axis and the 

pressure drop in the core sample for the injected brines in the right axis. 

The oil produced by the injection of seawater 50% depleted in NaCl was 

35.43% of OOIP; this slug represents a secondary oil production. Figure 63 

shows that no additional oil was produced after the injection of the other slugs 

(SWx0NaCl and SW) respectively. Therefore, this indicates that both, NaCl 

reduction and increase did not show improvements in the oil recovery in the 

tertiary and ultimate stages. The pressure drop curve did not show any relevant 

behaviour referring to dissolution process occurring in the rock, it only shows 

and slight increase when started the injection of seawater. 
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The results of this experiment have an oil production comparable to the 

third test of the series one, where injected SWx10 recovered 33.75% of the 

OOIP. However, in this experiment the behaviour of the pressure drop is entirely 

different, while in the third test of the series one the pressure drop curve tends to 

drop with the injection of diluted seawater indicating dissolution of the porous 

media, in the test five this behaviour is not present, however, the oil recovery is 

very similar. Therefore, this indicates that the principal mechanism acting when 

diluted seawater was injected could be the dissolution of the porous media while 

reducing NaCl concentration the mechanisms could be an ionic exchange. 

 

Figure 63 - Oil recovery and pressure drop versus pore volume injected, 
fifth test 
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recovery regarding OOIP in the left axis and the pressure drop in the core 

sample for the injected brines in the right axis. 
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the injection brine did not show improvements in the oil recovery in the tertiary 

and ultimate stages. 

The behaviour of pressure drop curve in this experiment is similar with the 

curve showed in Figure 7 obtained by (YOUSEF et al., 2010) who conclude that 

dissolution of the porous media occurred when seawater injects diluted seawater. 

 

Figure 64 - Oil recovery and pressure drop versus pore volume injected, 
sixth test 

Even though it was not additional oil recovery after the first water slug 

injection, there is an increase in the oil recovered by the reduction of NaCl in the 

injection brine. Figure 65 illustrates clearly how the oil recovery was affected 

positively by the reduction of NaCl. While the oil recovered by the injection of 

seawater is approximately 25% with seawater, without NaCl is 53%.  

Finally, a replicate of the sixth experiment was performed. The scope of 

this last core-flooding test was to replicate and confirm results of the last 

experiment of the series two, which was the best result obtained along the 

development of this work in a different core plug. Therefore, it was used 

seawater without NaCl (SWx0NaCl) as secondary oil recovery followed by 

seawater with 25% of NaCl (SWx0.25NaCl), and finally, seawater depleted 50% 

in NaCl (SWx0.5NaCl) as an ultimate method, respectively. Figure 66 illustrates 

the cumulative oil recovery regarding OOIP in the left axis and the pressure drop 

in the core sample for the injected brines in the right axis. 
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Figure 65 – Oil recovery versus porous volumes injected 

The oil produced by the injection of seawater depleted entirely in NaCl 

was 59.38% of OOIP; this slug represents a secondary oil production. Figure 66 

shows that no additional oil was produced after the injection of the other slugs 

(SWx0.25NaCl and SWx0.5NaCl) respectively. Therefore, it confirms again that 

increasing NaCl in the injection brine did not show improvements in the oil 

recovery in the tertiary and ultimate stages. 

 

 

Figure 66 - Oil recovery and pressure drop versus pore volume injected, 
seventh test. Replicate of the sixth test, same water sequence with different rock 
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The oil produced by the injection of seawater without NaCl in both 

experiments (six and seven) have a significant production of oil, 53.68%, and 

59.38% respectively (Figure 67). Therefore, it helps to confirm that the injection 

of water that would have the best performance would be SWx0NaCl. The 

behaviour of pressure drop curve in this experiment matched almost perfectly 

with the pressure drop curve of test six as we can see in Figure 67, making think 

that the rocks might be the same formation.  

 

 

Figure 67 - Oil recovery versus porous volumes injected. Comparison 
between test sixth and seven 

4.3. Ionic chromatography  
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example, if they are staying attached to the rock surface, indicating with this, ion 

exchange mechanisms. On the other hand, the concentration of calcium is a 

reliable indicator of dissolution of the porous media if the concentration of this 

ion increase after it went through the rock sample. 

Figure 68 shows the concentration of magnesium throughout the test. The 

graphic does not show any relevant variation in the concentration of the ion. 

Therefore, magnesium is not interacting with the rock, which is coherent with 

(ZHANG; TWEHEYO; AUSTAD, 2007) who observed that at high temperature 

the ion magnesium could substitute Ca2+ from the rock surface and the rate of 

substitution is directly proportionate with the temperature. 

 

 

Figure 68 - Concentration of ion magnesium versus brine injection 

The concentration of calcium in Figure 69 shows an increase in the 

concentration of the calcium ion after the injection of SWx0NaCl, and then it 

starts to decrease when NaCl was added to the injection brine water. This result 

together which the behaviour of pressure drop curve in this experiment (Figure 

64) gave strong indications of rock dissolution; therefore, dissolution mechanism 

is acting when injected SWx0NaCl as well as with other brines.  
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Figure 69 – Concentration of calcium ion versus brine injected  

However, the dissolution of the rock decrease when the concentration of 

sodium and chlorine increase. Figure 70 illustrates how the concentration of 

non-active ions affects the dissolution of the rock negatively, not only they do 

not let the active ions interact with the rock, they interfere with the dissolution of 

the rock. However, the fact that the increase of NaCl in the injection brine do not 

let the rock dissolution occur is more because of the ionic strength increases with 

the added of sodium chloride. Therefore, the brine cannot dissolve the rock. On 

the other hand, brine depleted in NaCl also loses its ionic strength, which could 

help it to rock dissolution. 

 

Figure 70 – Calcium and sodium ion concentration versus injected brine 
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Figure 71 illustrates the concentration of calcium and magnesium ions in 

the injection brine before the test began (SW_base), during the test at the end of 

each slug injected (SWx0NaCl, SWx0.25NaCl, and SWx0.5NaCl), and at the 

end of the test from the biphasic separator (SW_Sep). 

 

Figure 71 – Calcium and magnesium ions present in injection brine during 
the test 

Ionic chromatography analysis made in the effluents of the seventh 

experiment gave some confirmation of the results obtained in the experiment 

sixth. However, some technical problems did not allow the collection of the 

effluent after the injection of the first water (SWx0NaCl). 

Figure 72 shows the concentration of magnesium throughout the seventh 

test. The graphic does not show any relevant variation in the concentration of the 
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congruent and show the same behaviour.  
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Figure 72 - Concentration of ion magnesium versus brine injection. 
Replicate of sixth test. 

The concentration of calcium in Figure 73 shows an increase in the 

concentration of the calcium ion after the injection of SWx.25NaCl, and then it 

starts to decrease when NaCl was added to the injection brine water. This result 

together which the behaviour of pressure drop curve in the experiment seventh 

(Figure 66) gave strong indications of rock dissolution; therefore, dissolution 

mechanism is acting when water depleted in NaCl is injected into the reservoir.  

 

 

Figure 73 - Concentration of calcium ion versus brine injected. Replicate 
of sixth test  
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Figure 74 illustrates the concentration of calcium and magnesium ions in 

the injection brine before the test began (SW_base), after the injection of 

SWx0.25NaCl and SWx0.5NaCl. 

 

Figure 74 - Calcium and magnesium ions present in injection brine during 
the test. Replicate of sixth test  

5. CONCLUSION 

This chapter presents the conclusions obtained by this work after of evaluating the 

potential of injecting seawater and its modifications (reducing total salinity and NaCl) 

into carbonate rocks.   
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this work were harsher as well as the mineralogy of the rocks used had an extreme 

complexity due to they were real reservoir rocks. 

 The ion chromatography analysis shows an increment in the concentration of the 

ion calcium in the effluents, giving a strong indication of rock dissolution by injection 

of seawater depleted in NaCl.  

 It was possible to develop an experimental apparatus that was able to work under 

reservoir conditions with a collection data system under the same conditions. This set-

up will be the base of future researches at reservoir conditions. 
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