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Resumo

Esta tese apresenta uma abordagem multiescala para analisar a falha dinâmica intergranu-

lar em materiais policristalinos 3D. O modelo compreende as escalas meso e atomística usando

o método dos elementos de contorno (BEM) e a dinâmica molecular (MD), respectivamente. Na

mesoescala, é considerada uma estrutura policristalina detalhada, onde grãos apresentam morfo-

logia estocástica, orientações cristalinas aleatórias e defeitos iniciais que são incluídos no modelo

físico. Devido ao caráter heterogêneo, os materiais policristalinos tendem a ser macroscopicamente

isotrópicos quando o número de grãos é abundante. Este fato facilita avaliar a influência dos efei-

tos dinâmicos sobre o comportamento mecânico dos policristais. A ausência de modelos dinâmicos

analíticos para esses materiais estocásticos tem sido um desafio na validação dos resultados numéri-

cos. Portanto, um novo esquema computacional é proposto para mostrar a validade da formulação

elastodinâmica do BEM para estes materiais. As ondas de tensão e de deformação propagam-se

através do policristal, induzindo o material a ser mais suscetível a falhas. A falha intergranular

é governada pela densidade de energia crítica, levando em consideração a dependência da den-

sidade de energia com a estrutura atômica das interfaces de um conjunto de nano-contornos de

grão analisados. Para vincular as escalas, e devido à elevada variação das propriedades mecânicas

com respeito ao tamanho da escala, a metodologia de escalonamento assintótico da tensão de es-

coamento é aplicada como uma aproximação. Assim, os resultados numéricos da falha dinâmica

intergranular são apresentados para várias condições dinâmicas de carga.

Palavras-chave: Multiescala; Falha dinâmica; Densidade de energia; Método dos elementos de

contorno; Dinâmica molecular.



Abstract

This thesis presents a multiscale approach to analyze the dynamic intergranular failure in 3D

polycrystalline materials. The model comprises the meso and atomistic scales using the boundary

element method (BEM) and molecular dynamics (MD), respectively. A detailed polycrystalline

structure is considered in the mesoscale, where stochastic grain morphologies, random crystalline

orientations and initial defects are included in the physical model. Owing to its heterogeneous

character, polycrystal aggregates tend to be macroscopically isotropic when the number of crys-

tal grains is large. This fact facilitates the evaluation of the influence of the dynamic effects on

the mechanical behavior. The absence of analytical dynamic models for these stochastic materials

has been a challenge in validating the numerical results. Therefore, a computational framework is

proposed to show the validation of the elastodynamic BEM formulation for these materials. Stress

and strain waves propagate through the polycrystal, inducing the material to be more susceptible

to fail. The intergranular failure is governed by the critical energy density, taking into account the

energy density dependency on the interface lattice structures of a set of nano-grain boundaries. In

order to connect the scales, and due to the high variation of the mechanical properties with respect

to the scale size, the asymptotic scaling methodology applied to the yield strength is adopted as

an approximation. Finally, numerical results of the dynamic intergranular failure are presented for

various dynamic loads.

Keywords: Multiscale; Dynamic failure; Energy density; Boundary element method; Molecular

dynamics.
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1 Introduction

Many industrial developments and applications used metallic materials in their components,

basically designed to prevent the component failure that could lead to the collapse of the ove-

rall system. Additional to the optimal geometric design, the material behavior takes place on the

configuration in the limits of the imposed environmental and boundary conditions. Important phy-

sical effects can be captured in the material behavior when very small length scales are considered

in the analysis. Strong variations in the geometrical morphology, material properties and defects

are observed when a microscale analysis is taken into account. Therefore, improvements in fai-

lure analyses can be achieved including the microscale behavior through bridging scale transitions.

Furthermore, the atomistic scale can be considered in order to obtain a more realistic failure mode-

ling of the mesoscale.

Microscopically, metallic materials are composed by randomly oriented crystal aggregates.

From the macroscale, each material point is represented by a set of non-periodic polycrystal ag-

gregates. Then, the macroscopic elastic properties are statistically approximated by the assembly

of random morphology grains with their own crystalline orientations. The constitutive model of

each grain can be assumed as an anisotropic elastic medium, where the elastic properties depend

on the lattice structure, e.g. cubic or hexagonal crystals. It is a difficult task to reproduce artifi-

cial polycrystalline structures owing to its random morphology. The mesh generation is a critical

task to adequately model polycristalline materials. Process image reconstruction from experimental

data, Voronoi and Laguerre tessellation meshing and remeshing are, in particular, useful for non-

periodic polycrystalline aggregates. Computational frameworks to build polycrystalline structures

can be found in the literature. The most common is the Voronoi tessellation for artificial structu-

res as Voro++ (RYCROFT, 2009) and Neper (QUEY AND RENVERSADE, 2018). Several schemes

were presented to discretize the Voronoi structure, such as superficial meshes for boundary ele-

ments (GULIZZI ET AL., 2018) and volumetric meshes (FRITZEN ET AL., 2009; BROMMESSON

ET AL., 2016) for the finite element method (FEM). The mechanical response of these anisotropic

materials quantified by the displacement and traction fields is evaluated using the 3D fundamental

solution for general anisotropic materials proposed by Tan et al. (2013). As the displacement field

is represented by double Fourier series, this fundamental solution offers the possibility to evalu-

ate its coefficients once for each crystalline orientation. Hence, it represents an advantage for this

analysis, because with this fundamental solution a database of Fourier coefficients can be generated

for each material, considering a large number different crystalline orientations.
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According to the description of the microscopic material, the BEM benefits from the model of

high stress and strain gradients using the surface discretization of the polycrystalline aggregate. The

mesoscale model considers the interfaces as perfect flat surfaces where the analysis is conducted

applying traction equilibrium and displacement compatibility through the multidomain analysis.

The grain boundaries (GBs) are the transition planes of the two adjacent crystalline orientations,

being an important object of study for intergranular failure analysis. At the macroscale, metallic

materials have the tendency to be isotropic when the number of grains is large. As validation of the

static model, a convergence analysis of the effective macroscopic elastic properties were developed

in this work, and presented in (GALVIS ET AL., 2018a) using the elastostatic BEM formulation ba-

sed on previous studies (FRITZEN ET AL., 2009; BENEDETTI AND ALIABADI, 2013B). Reliable

results were obtained, showing the macroscopic isotropic trend when more grains are contained in

the micro-volume.

The application of dynamic loads with a rapid rate of change over time leads to other physi-

cal considerations, when compared with static or quasi-static models. The high-rate load conditions

turn the mechanical fields dependent of the inertial force, which resists the acceleration induced in

the body. These physical effects under these conditions are the main characteristic of dynamics

problems (CLOUGH AND PENZIEN, 2003). Furthermore, the dynamic deformation due to high-

rate loads should be analyzed. In this case, there is a high strain gradient in a part of the body,

and the remaining parts do not yet experience stresses. Strain and stress waves propagate through

the solid at a specified velocity (MEYERS, 1994). Dynamic loads play an important role in failure

analysis, as the material is more susceptible to failure under impulsive or high-rate strain loads,

which affects the fracture behavior (GROSS AND SEELIG, 2006), it requires a dynamic fracture

mechanics analysis (ALBUQUERQUE ET AL., 2004). In this work, a new computational framework

for the dynamic analysis of 3D hexagonal (hcp) and cubic (bcc/fcc) anisotropic polycrystalline ma-

terials is developed as presented in (GALVIS ET AL., 2018b). The dynamic effects are included by

the dual reciprocity BEM (DRBEM) (KÖGL AND GAUL, 2000A; GAUL ET AL., 2003), using a

small time step of τ = 15 ns. In order to validate the dynamic anisotropic model, in the absence of

analytical solutions for anisotropic media, comparisons with isotropic macroscale dynamic models

are shown, using the effective Young’s modulus. These isotropic models and effective elastic pro-

perties are available in the literature. The accuracy of this model depends on the number of crystal

aggregates, that must be large enough to get an approximation of an isotropic material. Notably,

results were achieved showing the degradation in the numerical response when the simulation time

increases.
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The failure analyses have advanced from conventional fracture mechanics and cohesive mo-

dels. Nowadays, there are several numerical studies of brittle failure intergranular and transgranular

3D polycrystalline materials, through the measurement of the mechanical degradation of the mate-

rial commonly using approaches such as cohesive zone models (CZM) (GULIZZI ET AL., 2018),

quasi-continuum methods (LUTHER AND KÖNKE, 2011) or homogenized atomistic-continuum

techniques (REN AND LI, 2013). This work focuses on the intergranular failure process in a mul-

tiscale atomistic-continuum modeling of GBs. In the atomistic scale, the GB model regards the

transition lattice structure produced by the collapse of two adjoining interior grain lattices. It is

widely known that the atomistic media is governed by the thermodynamic state and the force field.

Moreover, the potential energy serves to identify the more susceptible failure structures. In the in-

terfaces that contain a high quantity of defects, owing to the broken bonds of the transition lattice,

a high potential energy reflects a failure interface zone. The failure is characterized by the critical

energy density atomistically assessed for different modes, using the generalized energy failure cri-

terion proposed by Qu et al. (2016). This criterion offers a straightforward way to evaluated failure

at the microscale, taking into account a certain mixed level of ductile and brittle failure occurring in

the interface. Due to the lack of available data of the critical energy densities for tensile and shear

modes, a MD model of GBs is implemented. Additionally, using this strategy, the failure criterion

is extended to consider the variation in the lattice structures in the interfaces. The nature of metal-

lic materials in its mesoscale, flaws and defects such as intergranular cracks are contained in the

polycrystalline structure. These initial defects act as potential weak zones where the failure could

initiate. While the length scale increases, the magnitude of the failure stress drastically decrease.

Therefore, the bridging approach to obtain the critical energy densities at the mesoscale represents

a challenge that is worth of investigation.

In the analysis through different length scales, mechanical properties of materials vary owing

to their size and rate dependence. It is well known that the yield stress decreases with the specimen

size and increases with the strain rate (BASKES AND PLIMPTON, 2001). This represents a challenge

on multiscale modeling due to the limitations of experimental available data. At the nanoscale, the

yield stress limit occurs mainly for the nucleation of dislocations in the material. Therefore, a larger

size of material can result in a higher chance for nucleating the dislocation, which yields a lower

initial stress (HORSTEMEYER AND BASKES, 1999; GUO ET AL., 2007). Using MD simulations

of single-crystal copper and nickel, Guo et al. (2007) showed that a critical strain-rate exists, below

which the yield stress becomes nearly constant. They also analyzed the length scale dependence,

that also affects the yield strength. Similar to the strain-rate case, when the length of the scale in-

creases the yield stress tends to decrease. All the studies cited developed their results considering
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bulk lattice structures. Another approach presented by Hammami and Kulkarni (2017), used grain

boundary sliding in nanostructures to investigate rate dependence using atomistic simulations. They

obtained similar results of rate dependence of mechanical properties for a tilt GB of aluminum. For

larger scales, the scaling of properties is based on a continuum formulation of the geometrically ne-

cessary dislocations to produce plastic strain; some classical and recognized publications treating

these phenomenons are (GAO ET AL., 1999; BAZANT, 2002). A useful formulation was presented

by (CHEN ET AL., 2005; CHEN ET AL., 2007). They developed the hypersurface that combines

strain-rate and the specimen size effects on material properties, and also showed functions to repre-

sent the size effect that are considered to be used in this work after some assumptions.

This thesis presents a multiscale scheme to analyze the dynamic intergranular failure in 3D

polycrystalline materials. The model comprises the meso and atomistic scales using BEM and

MD, respectively. The dynamic analysis of the polycrystal aggregate considers crack initiation at

the micro-domain. As mentioned, the failure propagates according to the criterion defined by the

critical energy densities at the interfaces. In order to apply the failure criterion in the mesoscale

properly, an asymptotic analysis is adapted to scale the mechanical properies from the nano and

micro scales. The main BEM application is implemented in Fortran 90, parallelized on a distributed

architecture memory using MPI. The atomistic evaluation of the critical energy densities is carried

out from the model of the GB as a bicrystal. This gives a detailed physical description of the

atomistic arrangement at the interface differing from the structure inside of the adjacent grains.

Hence, GB categories given by the coincident-site lattice (CSL) model are employed to construct a

statistical sample of tilt and twist GBs. Figure 1.1 illustrates the multiscale approach.

Mesoscale: BEM

Polycrystal

aggregate
InterfacesNanoscale: MD 

Grain boundaries: CSL

Tilt

Twist

   Scaling

GB plane Layer A

Layer B

Figure 1.1: Multiscale approach.
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An N-body potential must be used to describe the atomic interactions represented by the

force field. Next, the atomistic analysis of failure contemplates annealing and quenching proces-

ses, the bicrystal relaxation and the dynamic evolution of the system under high-rate deforma-

tion boundary conditions. All the atomistic simulations are achieved using the Large-scale Ato-

mic/Molecular Massively Parallel Simulator (LAMMPS) (PLIMPTON, 1995) available in (http:

//lammps.sandia.gov). Thus, the critical energy density is derived from the constitutive re-

lationship between the strain and the Virial stress tensors. Due to the incorporation of the atomistic

behavior, which considers the broken bonds formed in the GBs at the interfaces, the overall multis-

cale approach attempts to model a more realistic integranular failure condition.

1.1 State of the art

In the literature, previous quasi-static and dynamic failure analyses were presented using se-

veral numerical methods and strategies. Quasi-static analyses of brittle failure using the CZM and

BEM can be found in (BENEDETTI AND ALIABADI, 2013A; GULIZZI ET AL., 2015; GULIZZI

ET AL., 2018). These publications have shown intergranular and transgranular crack propagations

by applying conventional cohesive laws obtained directly from the micro-mechanics. In addition,

failure analyses using FEM were presented in (BROMMESSON ET AL., 2016; NGUYEN ET AL.,

2017). Other failure analyses can be cited, such as the damage measure based on an energy cri-

terion under cyclic loading carried out by Beckmann and Hohe (2017) using FEM. Moreover, in-

tergranular failure consdering the stress corrosion were presented by Benedetti et al. (2018) using

quasi-static BEM and CZM. All the mentioned methods consist in mesoscale approaches. Some

multiscale works can be cited, such as the multiscale analysis between the meso and atomistic sca-

les presented by Ren and Li (2013). They developed a 3D atomistic-based process zone model to

describe behavior of polycrystalline solids taking into account the homogenized atomistic binding

energy and atomistic lattice structure using the embedded atom method and dynamic FEM. Bene-

detti and Aliabadi (2015) proposed the macro- and mesoscale anaysis using quasi-static BEM and

CZM, to evaluate the degradation on the elastic properties at the macroscale due to the effect of

flaws occurring in the mesoscale. Talebi et al. (2015) presented a coupling scheme between mo-

lecular dynamics and the extended FEM via the bridging domain method to model 3D cracks and

dislocations at the atomistic level. van Beers et al. (2015) characterized details of the initial struc-

ture and energy of the grain boundaries of polycrystalline materials to develop a multiscale model

coupling the atomistic and continuum descriptions in copper and aluminium using the embedded
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atom method of interatomic potential. Prakash et al. (2016) examined the influence of changes in

grain boundary strength on microstructure dependent crack propagation in polycrystalline tungsten

using the extended FEM. All the mentioned references that applied BEM analysis of intergranular

and transgranular failures were carried out using elastostatic BEM formulation and conventional

CZM, being different to the proposed multiscale modeling of this work.

As part of the elastostatic BEM formulation, the fundamental solution used in this work has

been applied to generally anisotropic solids in ( SHIAH ET AL., 2008; SHIAH ET AL., 2012).

Additionally, a more specific application was presented by Rodríguez et al. (2017) that analyzed

fiber composites. Problems of anisotropic elastodynamics were studied by (KÖGL AND GAUL,

2000A; KÖGL AND GAUL, 2000B; KÖGL AND GAUL, 2003). The authors introduced works tre-

ating 3D anisotropic materials, where 3D piezoelectric materials, the dynamic behavior and free

vibration of anisotropic elastic solids were presented. In these publications a fundamental solution

based on the Radon transform and the DRBEM, as presented by Kögl and Gaul (2000a) and Gaul

et al. (2003) were used. Recently, Rodríguez et al. (2018) presented an analysis of dynamic 3D ani-

sotropic materials. They compared two methods to transform the domain integral into a boundary

integral, the DRBEM and the radial integration method (RIM) (GAO, 2002). The DRBEM showed

to be more efficient than the RIM in terms of computational time, despite the RIM uses a coarser

discretization.

The initial BEM algorithms were based on those developed by Rodríguez et al. (2017). He

implemented the fundamental solution using quadrilateral discontinuous quadratic boundary ele-

ments. In addition, he provided the DRBEM coupled to the Houbolt’s integration method for 3D

analyses. All implementations parallelized in a shared memory architecture with Fortran-OpenMP.

In this thesis, these algorithms were re-implemented for triangular boundary elements with a li-

near interpolation. Moreover, due to the incorporation of a sparse analysis of the general system

of equations. Moreover, the number of degrees of freedom (DOF) were drastically increased about

86% from approximately 35,000 to 250,000 DOF. Additionally, improvements in terms of effi-

ciency were attained using Fortran-MPI parallelization in the most critical sections of the BEM

application.
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1.2 Industrial applications

Multiple industrial applications use metal alloys and ceramics in their components. The au-

tomotive and aerospace industries are developing light alloys such as aluminium silicon (Al–Si)

and aluminium zirconium (Al–Zr) due to their excellent mechanical properties and low weight to

strength ratio. In order to improve these characteristics in metal alloys, grain refinement is usually

used in industry through methodologies such as presented by Djan (2016). The analysis of the struc-

tural integrity and the constitutive behavior of these materials, under severe environment conditions,

is essential to predict the performance in present and future applications. Important physical pro-

perties such as yield strength, Young’s moduli, fracture toughness and thermal conductivity depend

on the material microstructure. The design of optimal structures and microstructures is important

for hardware components in aerospace applications, where there is a necessity to optimize weight

and dimensions to improve the performance (SUNDARARAGHAVAN AND ZABARAS, 2008). Three

research studies on polycrystalline materials that achieved relevance in their pathways to impact

are mentioned.

In manufacturing processes, tipped tools are of great importance. Manufacturing industries

use ceramic cutting tool inserts on large scale but, on the other hand, environmental regulations

are imposed to tool manufacturers. Many of the manufacturing industries have started using poly-

crystalline diamond and polycrystalline cubic boron nitride cutting tools, Fig. 1.2, which are less

harmful to the environment. The automotive and aerospace industries use these materials for gai-

ning precision and better surface finishing (GURAV ET AL., 2015).

Figure 1.2: Polycrystalline cubic boron nitride tool inserts (GURAV ET AL., 2015).

The two major passenger aircraft manufacturers introduced materials with evolutionary im-
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provements. The advanced materials include a number of improved aluminium and titanium alloys

and polymer matrix composites, as well as laminates and lightweight sealants (WILLIAMS AND

STARKE, 2003). Some examples of the aluminium alloys are shown in Fig. 1.3.

300 350 400 450 500 550 600 650 700
0

50

100

150

200

250

Fuselage
777

2524-T3

2524-T3

2524-T351

Lower wing
737/757/767
747-400/777

2324-T39/2224-T3511

Upper wing

757/767/
737-300/400/500

747-400

7150-T651

777
737-700/800

7055-T7751

7150-T7751177

Body stringers

777

Tensile Yield Strength, MPa

F
ra

ct
u
re

 T
o
u
g
h
n
es

s,
 M

P
a 

m
1

/2

 

 

Recent products

Old products

Figure 1.3: Improvements in strength-toughness combinations of some newer aluminium al-
loys (WILLIAMS AND STARKE, 2003).

Improvements in fracture toughness and greater resistance to fatigue crack growth helped in

the elimination of tear straps in a weight-efficient manner (WILLIAMS AND STARKE, 2003).

Composite materials are being used in aircrafts, cars, turbine blades, and other products.

Other materials, like graphene, hold even greater promise and may completely revolutionize in-

dustrial design1. Large-area graphene films, which are necessary for industrial applications, are

typically polycrystalline, composed of single-crystalline grains of varying orientation joined by

grain boundaries (YAZYEV AND CHEN, 2014). Recently, a Chinese company incorporated grains

of graphene in its cell phones to improve conductivity. Flakes of quasicrystals have been molded

into frying pans and metal surgical instruments to increase their durability. Graphene is 200 times

stronger than steel and the thinnest material on earth (1 million times thinner than a human hair).

Lightweight aluminum alloys have now replaced high-strength steel in bumper systems, crash ring

components and intrusion beams. In aircraft engines, super-hard alloys that are resistant to extreme

temperatures can help improve energy conversion and reduce fuel costs2.

1http://www.sandvik.coromant.com/en-us/aboutus/lookingahead/
2http://www.sandvik.coromant.com/en-us/aboutus/lookingahead/articles/Pages/

a-material-revolution.aspx



28

1.3 Motivation

Multiscale modeling has been increased in different scientific fields, owing to the advantage

over the conventional methods that work at a single scale. The computational advances allow to

consider the inclusion of models with a large DOF. The field of material modeling is being be-

nefited. Then, it is possible to analyze additional physical effects present in the material coupling

different space and time scales. An example is the modeling at the mesoscale using continuum me-

chanics formulation, and at the atomistic scale using quasi-continuum or atomistic methods. Phy-

sical atomic and molecular effects, such as the atomic vibration of bonds in a fentoseconds time

scale, the presence of vacancies, nanovoids and microcracks are possible to be considered. The

motivation to research metallic materials at meso and atomistic scales is more specifically defined

as: i) the study of the effects on the failure of polycrystal aggregates due to the high-rate boundary

conditions applied. ii) This type of load produces strain and stress waves traveling through the so-

lid, increasing the sensitivity of polycrystalline structures to failure and propagation crack paths in

the interfaces between grains. iii) The definition of a failure criterion from the atomistic analysis

of the GBs using N-body sophisticated potentials. iv) In terms of implementation, the challenge is

the reduction of the computational time required by this application, especially in the mesoscale

model, through efficient parallelized algorithms implemented on distributed memory architecture.

1.4 Objectives

The main objective of this thesis is the formulation of a new multiscale approach of dynamic

failure in 3D polycrystalline materials using BEM at the mesoscale and MD to model the atomistic

scale at the interfaces. At the mesoscale, the polycrystalline aggregate is generated using Voronoi

tessellation and discretized using triangular boundary elements. As mentioned, each grain is mode-

led as an anisotropic continuum body with stochastic crystalline orientation. The dynamic traction

and displacement fields are evaluated using the DRBEM and the fundamental solution based on

double Fourier series. At the atomistic scale, a large number of tilt-twist periodic GBs for bcc cubic

bi-crystals are analyzed, where the MD simulations are carried out using LAMMPS. The failure

criterion is based on the energy density considering coupled failure modes. Finally, the intergra-

nular failure path propagates in the polycrystalline structure under dynamic boundary conditions.

More specific objectives are listed below.
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∘ Implementation and discretization of 3D polycrystalline structure mesh generator using

Voro++ and Triangle libraries on (C++/C) respectively.

∘ Implementation of the parallelized dynamic BEM formulation composed by the fundamental

solution based on double Fourier series, the DRBEM and the multidomain algorithm on a

distributed memory architecture using MPI-Fortran.

∘ Homogenization and dynamic analyses of 3D polycrystalline materials at the mesoscale.

∘ Implementation of atomistic MD simulations of tilt-twist GBs using LAMMPS to evaluate

the critical energy densities.

∘ Scaling and coupling the generalized energy failure criterion to the polcrystalline aggregate

to analyze the dynamic intergranular failure.

1.5 Contributions

∘ The modeling of 3D polycrystalline materials using elastostatic and elastodynamic BEM

formulations, both applying the fundamental solution based on double Fourier series and the

DRBEM. This implementation is efficient, due to the previous generation of a large Fourier

coefficient database for a specific material.

∘ The analysis of cubic and hexagonal polycrystal aggregates that macroscopically convergent

to isotropic materials, using average homogenization on the grain surfaces. This work led to

the publication: (GALVIS ET AL., 2018a). The novelties of this publication were the use of

the above mentioned formulation, the MPI parallelized and serial computational algorithms,

see sections 2 and 3. Reliable results were obtained, showing the validation of the elastostatic

BEM formulation and implementation, see section 4.1.

∘ The dynamic analysis of cubic and hexagonal polycrystal aggregates. This study was carried

out for step, ramp and harmonic dynamic loads. Using the results of the last work, a statistical

analysis is applied to demonstrate that the dynamic behavior of polycrystalline materials con-

vergent to an approximate dynamic behavior of macroscopic isotropic materials. This work

led to the paper: (GALVIS ET AL., 2018b). The publication presents a new computational

framework to analyze the 3D dynamic behavior of polycrystals. Due to the lack of analytical

models for the dynamic response of anisotropic solids, with the results of this publication it
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was possible to validate the elastodynamic BEM formulation for anisotropic materials, see

section 4.2.

∘ This is a multiscale approach to analyze dynamic intergranular failure in 3D polycrystalline

materials. This is the first time the elastodynamic BEM formulation and the failure criterion

based on the energy density were employed, considering its variation depending on the crys-

talline orientation of the GBs analysed via MD modeling. The bridging approach is carried

out using the asymptotic scaling methodology applied to the mechanical properties such as

the yield strength. Finally, the dynamic intergranular failure at the mesoscale under distinct

boundary conditions is predicted.

This thesis has generated the following publications in international journals:

1 Galvis., A. F., Rodriguez, R. Q., and Sollero, P. (2018). Dynamic analysis of three-
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2 Material modeling

Polycrystalline materials are represented by the aggregate of several crystals or grains with

proper crystalline orientations and planes. At the macroscale, these materials are commonly mode-

led as isotropic bodies due to overall homogenized effects. At the mesoscale, each grain is modeled

as linear elastic anisotropic material as presented in the majority of metallic and ceramic crystal-

line materials. Artificial polycrystalline morphologies are generated and discretized to model the

stochastic constitutive elastic behavior.

2.1 Polycrystalline structure mesh

A random geometrical structure is generated to represent the artificial polycrystalline mate-

rial. Several methods were developed in the literature to achieve this task, widely used for FEM

models. The nature of the BEM discretization requires a surface mesh that is generated following

the scheme presented by Fritzen et al. (2009) and Galvis et al. (2018a). A polycrystalline structure

is shown in Figure 2.1 using Voronoi tessellation.

Figure 2.1: 3D polycrystalline structure.

This artificial structure was generated using the Voro++ library (RYCROFT ET AL.,

2006; RYCROFT, 2007; RYCROFT, 2009) available in http://math.lbl.gov/voro++/

preserving the volumetric proportion between grains. Three-node discontinuous triangular boun-

dary elements are used to discretize the whole structure, in order to avoid shared nodes between

more than two grains and to facilitate the multidomain implementation. As described in (FRITZEN

ET AL., 2009), a 2D triangle mesh generator (SHEWCHUK, 1996), available in https://www.

cs.cmu.edu/~quake/triangle.html is used over the flat faces of the grains. To gua-

rantee the best mesh compatibility in the edges, the procedure established in (BENEDETTI AND
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ALIABADI, 2013b) is implemented with a modest variation, and a hierarchical scheme is used for

discretization. After the generation of the Voronoi tessellation, the edges are split to obtain the con-

tinuity. Due to the fact that faces are discretized independently, all 3D faces are converted into 2D

faces to this end. Each grain is composed of faces that are formed by edges defined for two vertices,

then the average length edge is defined as
Ä

L̄𝑒

ä

. Introducing a discretization density parameter (ρ𝑑),

the current edge length (L𝑒) is split into a number of segments (n𝑠) as indicated by the following

equation

n𝑠 = ρ𝑑

ñ

round

Ç

L𝑒

L̄𝑒

+ 1

åô

, (2.1)

where the round(x) function expresses the rounded values close to x. The maximum triangle area

constraint A𝑚𝑎𝑥 used to enforce the regularity of the mesh is estimated as

A𝑚𝑎𝑥 =
1

2

Ä

L̄𝑒

ä2
, (2.2)

which is the area of an isosceles triangle of sides of
Ä

L̄𝑒

ä

. Using some of the customized output

references in ( SHEWCHUK, 1996; RYCROFT, 2009), the format data are obtained creating some

description matrices Figure 2.2 helps to understand the nomenclature employed in this work.

Interface

Grain A

Grain B

Vertices

Edge

Points

Elements
FaceF

Figure 2.2: Mesh description.

The artificial solid is defined by the description connectivity matrices as e.g., FACES, VER-

TICES, NORMAL_VECTORS and VOLUMES in the first hierarchical level. These matrices are

used as input of the second stage, a C algorithm to discretize all faces by transforming the 3D sur-
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face into a 2D plane and then reversing the transformation. The triangle mesh is carried out using

the command line switches (SHEWCHUK, 1996). Here, the description matrices of the second level

as POINTS and ELEMENTS are generated, Figure 2.2. To avoid numerical errors of compatibi-

lity in the interface discretization stage, the algorithm discretizes one face as being an exact copy

of the other face. Finally, an output file is exported to the main BEM application code with the

minimum necessary connectivity information as e.g., FACES, ELEMENTS, POINTS, E_GRAIN

(elements per grain), NORMAL_VECTORS and VOLUMES. A general scheme of this algorithm

is presented in Figure 2.3, where the different stages are shown.

START

Voro ++
-Box size , andx y zmax max max

- NNumber of grains gr

-Mesh density rd

Input data user

1 output data
st

%i   %s   %a   %t
%p  %l   %n   %v

Costumized output
Rycroft (2009)

Format data

Description matrices

GRAINS
FACES
VERTICES
NORMAL_VECTORS
VOLUMES

A

Output data

A

Intput data

3D to 2D faces

C++ Algorithm

Split 2D surfaces

ns using Equation (1)
Matrices

POINTS
ELEMENTS

Face is an
interface

Triangle mesh:
Interface of grain A

yes

Copy triangle mesh:
from interface of grain A

to interface of grain B

Triangle mesh

no

2D to 3D faces

Export to
mesh data base

END

C

D

BEM code

Mesh plot

B

B

Command line switches
Shewchuk (1996)

-p -q -z -a -Q
Amax using Equation (2)

B

Final matrices

FACES
POINTS
ELEMENTS
E_GRAINS
NORMAL_VECTORS
VOLUMES

C Algorithm

Figure 2.3: Multi-compiler algorithm C++/C of the mesh generator.
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In Figure 2.3, at first stage, a C++ algorithm generates the polycrystalline structure, where

the user sets the box size x𝑚𝑎𝑥, y𝑚𝑎𝑥 and z𝑚𝑎𝑥, number of grains (N𝑔𝑟) and mesh density ρ𝑑. Mesh

results for different discretization levels, according to the parameter ρ𝑑, are given in Figure 2.4. In

the case where ρ𝑑 = 1, the structure has 15,186 elements. In the case where ρ𝑑 = 2, the structure

contains 44,082 elements.

(a) (b)

Figure 2.4: Polycrystalline structure of 100 grains: (a) ρ𝑑 = 1 and (b) ρ𝑑 = 2.

An acceptable compatibility is observable in the edges highlighting the difficulty to avoid all

atypical grains in volume and surface sizes. In Figure 2.5, distribution of elements and volumes is

presented.
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Figure 2.5: Polycrystalline structure of 150 grains using ρ𝑑 = 1: (a) Elements of 100 generated
structures and (b) normalized grain volumes V𝑔𝑟 of one Voronoi tessellation.
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These cases show a trend to a mean value in the distribution for elements over 100 generated

materials and volumes for a specific structure. Due to the large number of interfaces in the physical

model, the matrix of interfaces is also generated in a parallel code, Figure 2.6. It consists in a simple

way to compare the elements in the interfaces by its triangle coordinates.

START

END

Send from

processor 0 to all

Node coordinates Elements

...

MPI_BCAS MPI_SCATERV

ela = ela + 1

elb = elb + 1

Xi = Xi
gra = grb

yes

no

...

Interfacesk

MPI_GATERV

elb = Nel

k

ela = Nel

k
3

3

Process k

yes

no

no

yes

gra

grb

a b

Interfaces

yes

no

2

2

1

1

Figure 2.6: Parallel algorithm of interfaces.
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In Figure 2.6, a and b refers to the number of the specific grain (gr) at the interface. The

terms el𝑖 and X𝑖 are the element and coordinates respectively. This algorithm leads to a drastic

reduction of processing time to compute the matrix of interfaces when a considerable number of

grains compose the polycrystalline aggregate. In order to test the performance of this algorithm, it

is used a 216 grain structure with ρ𝑑 = 2. In total it accounts with 232,046 boundary elements and

202,774 interfaces, results are shown in the following table

Threads Time [s]

1 427.77

8 40.24

16 25.18

32 17.63

64 9.49

128 5.55

Table 2.1: Performance: algorithm of interfaces.

Table 2.1, shows the time reduction when the the number of threads increase. It represents an

advantage for modeling large number of grains with high mesh refinement.

2.2 Constitutive model

Constitutive models of polycrystalline materials at microscale has been studied by many

authors. It can be considered as a collection of grains that compose the aggregate, every grain

is modeled as a linear elastic anisotropic body. From the atomistic scale, the lattice structure de-

fines the anisotropy in the continuum grain model. The constitutive relation of stress-strain fields

are represented by the stiffness tensor C of 36 constants. Elastic constants of the stiffness tensor

are dependent of the lattice structure of the material. Huntington (1958) and Tromans (2011) show

the elastic constants for several materials with cubic and hexagonal systems, respectively. Cubic

systems have three elastic constants in the stiffness tensor, while hexagonal systems have five. The

representation is given by Equation (2.3) using the compact Voigt notation and reference system

coordination.
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, (2.3)

where C66 = (C11 − C12) /2. Random crystalline orientations are assigned to each grain uniformly

distributed over the material based on the scheme given by Fritzen et al. (2009). Figure 2.7 shows

an illustration to better explain this main idea.

[2110] [0110]

[0001]

x

z

y

Figure 2.7: Distribution of crystalline orientation of lattice HCP structure.

Figure 2.7 shows a small sample of the distribution of random crystalline orientation depen-

ding on the lattice structure. A Fully populated stiffness tensor C* is obtained after the coordinate

basis rotation. As suggested by Fritzen et al. (2009), the Euler angles are randomly generated from

a uniform distribution following the (z − x− z) convention. Thus a different stiffness tensor C is

obtained for each crystal orientation.

2.3 Anisotropic fundamental solution

The displacement fundamental solution is considered as the response in x𝑖 direction at the fi-

eld point x owing to the perturbation produced by a unit load in the x𝑗 direction at the source point

x′ in a homogeneous infinite body. The analytical expression of the displacement fundamental solu-
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tion or Green’s function U(x′,x) and its derivatives were first derived by Lifshitz and Rozenzweig

(1947). Several efforts were made to produce an explicit form to evaluate U(x′,x), and an explicit

form to compute the Green’s function was proposed by Ting and Lee (1997). The authors presen-

ted the Green’s function in terms of the Barnett-Lothe tensor (SYNGE, 1957; BARNETT, 1972)

H(θ,φ) as follows:

U(r,θ,φ) =
1

4πr
H(θ,φ) , (2.4)

where, in the solution derived by Lifshitz and Rozenzweig (1947), H(θ,φ) is expressed as a contour

integral around a unit circle as

H(θ,φ) =
1

π

∫ 2𝜋

0
Z−1dψ . (2.5)

In Equation (2.4), r is the distance between the source point x′ located at the origin and

the field point x, and in Equation (2.5), Z−1 is the inverse of Z that depends on the stiffness tensor

C ≡ C𝑖𝑗𝑘𝑙 (TING AND LEE, 1997). The Barnett-Lothe tensor H(θ,φ) depends only on the spherical

angles (θ,φ). For illustrative purposes, the contour integral around a unit circle |n*| on a oblique

plane at field point x is shown in Figure 2.8.

x'

θ

x

y

Figure 2.8: Integration scheme of Barnett-Lothe tensor.
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The unit vector |n*| on the oblique plane, the two mutually orthogonal vectors n and m are

defined as

|n*| = n cosψ +m sinψ

n = (cosφ cos θ, cosφ sin θ,− sinφ)

m = (− sin θ, cos θ,0)



















ψ Arbitrary

0 ≤ θ < 2π

0 ≤ φ ≤ π

. (2.6)

The [n,m,n𝑟] form the right-handed triad, where n𝑟 = x/r and ψ is an arbitrary parameter. A

more explicit way to evaluate the Barnett-Lothe tensor H(θ,φ) is expressed in terms of the Stroh’s

eigenvalues (TING AND LEE, 1997) as

H(θ,φ) =
1

|κ|
4

∑

𝑛=0

q𝑛Γ̂
(𝑛) . (2.7)

Equation (2.7) is presented in detail in Appendix A.1. In the BEM formulation, the first

approximation of displacement fundamental solution was presented by Wilson and Cruse (1978).

They developed a technique to evaluate the anisotropic point load solutions and used a interpolation

to obtain large databases of different anisotropic materials. Some schemes have developed for the

efficient evaluation of the BEM fundamental solution. Shiah et al. (2012) proposed an alternative

and accurate numerical scheme to compute these quantities, also Shiah and Tan (2011) and Tan

et al. (2013) presented an elastic stress analysis using a BEM code. In this work, the evaluation of

the fundamental solution was implemented using the scheme proposed by Tan et al. (2013). Due to

the periodic characteristic of H(θ,φ), a representation in terms of double Fourier series around θ

and φ gives

H𝑢𝑣 (θ,φ) =
𝛼
∑

𝑚=−𝛼

𝛼
∑

𝑛=−𝛼

λ(𝑚,𝑛)
𝑢𝑣 ei(𝑚𝜃+𝑛𝜑) (u,v = 1, 2, 3) , (2.8)

λ(𝑚,𝑛)
𝑢𝑣 =

1

4π2

∫ 𝜋

−𝜋

∫ 𝜋

−𝜋
H𝑢𝑣 (θ,φ)e

−𝑖(𝑚𝜃+𝑛𝜑)dθdφ , (2.9)

where λ(𝑚,𝑛)
𝑢𝑣 are the Fourier coefficients, which can be numerically integrated by, e.g., Gaussian
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quadrature. The k abscissa points, λ(𝑚,𝑛)
𝑢𝑣 , may be re-written as

λ(𝑚,𝑛)
𝑢𝑣 =

1

4

𝑘
∑

𝑝=1

𝑘
∑

𝑞=1

w𝑝w𝑞f
(𝑚,𝑛)
𝑢𝑣 (πξ𝑝,πξ𝑞) , (2.10)

being w and ξ the weights and positions of the Gauss points, respectively, and f (𝑚,𝑛)
𝑢𝑣 (θ,φ) re-

presents the integrand of λ(𝑚,𝑛)
𝑢𝑣 . In short, substituting Equation (2.9) into the Equation (2.4), the

fundamental displacement solution can also be written as

U𝑢𝑣 (r,θ,φ) =
1

4πr

𝛼
∑

𝑚=−𝛼

𝛼
∑

𝑛=−𝛼

λ(𝑚,𝑛)
𝑢𝑣 ei(𝑚𝜃+𝑛𝜑) (u,v = 1, 2, 3) , (2.11)

the α term is an integer number, large enough to yield the desired accuracy. Numerical experiments

reported in (SHIAH ET AL., 2012) have shown that values of k = 64 and α = 16 will be adequate

to evaluate even the most highly anisotropic materials. The fundamental solution U is expressed by

U𝑢𝑣 (r,θ,φ) =
1

2πr











































𝛼
∑

𝑚=1

𝛼
∑

𝑛=1





(R̃(𝑚,𝑛)
𝑢𝑣 cosmθ − Ĩ(𝑚,𝑛)

𝑢𝑣 sinmθ) cosnφ

−(R̂(𝑚,𝑛)
𝑢𝑣 sinmθ − Î(𝑚,𝑛)

𝑢𝑣 cosmθ) sinnφ





+
𝛼
∑

𝑚=1

Ñ

R(0,𝑚)
𝑢𝑣 cosmφ− I(0,𝑚)

𝑢𝑣 sinmφ

+R(𝑚,0)
𝑢𝑣 cosmθ − I(𝑚,0)

𝑢𝑣 sinmθ

é

+
R(0,0)

𝑢𝑣
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. (2.12)

A complete description of Equation (2.12) and its first order derivative U′ are presented in

Appendix A.2. The traction fundamental solution T𝑖𝑗 can be evaluated by

T𝑖𝑗 = (σ𝑖𝑘n𝑘)𝑗 , (2.13)

where σ𝑖𝑘 is the fundamental solution of stresses and n𝑘 is the outward normal vector on the surface

at the field point. Using the generalized Hooke’s law
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(σ𝑖𝑘)𝑗 = C𝑖𝑘𝑚𝑛(U𝑚𝑗,𝑛 + U𝑛𝑗,𝑚)/2 . (2.14)

The most significant advantage of using this Fourier series representation of the Green’s

function and its derivatives is that Fourier series coefficients, λ(𝑚,𝑛)
𝑢𝑣 , are evaluated just one time for a

given material, (TAN ET AL., 2013). Due to the constitutive model of polycrystalline materials, this

application requires the evaluation of the Fourier coefficients for each grain with specific crystalline

orientation. This fact makes necessary the evaluation of the Fourier coefficients in an auxiliary code

implemented in a serial algorithm using Fortran 90. For each crystalline orientation, the evaluation

of these coefficients requires approximately 20 ∼ 23 seconds, the procedure of calculation of λ(𝑚,𝑛)
𝑢𝑣

is shown in Figure 2.9.

START
Input data user

Material Data base

END

yes

no

Orientations: Nori = 1000

Elastic properties C = Cijkl

- Isotropic: E, , G

- fcc : C11 C44 C12

- hcp : C11 C33 C44 C12 C13 C = Cijkl

Euler angles
z-x-z

Transformtion

C*

Computation
(m,n)
uv

i = i + 1

(m,n)
uv

Ouput file

λ

λ

C*

ν

i = Nori

ith file

Figure 2.9: Algorithm: database of Fourier coefficients λ(𝑚,𝑛)
𝑢𝑣 for a specific material.

For this application, a database of 1,000 crystalline orientations (N𝑜𝑟𝑖) is created for each

specific material. Therefore, this implementation offers a more efficient computational effort and

simulation time in the main BEM code.
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3 Elastodynamic BEM formulation

The BEM formulation permits to model high gradients of different mechanical fields only

using the surface information. The surface discretization leads to a reduction in the number of DOF

used in the model. Depending on the application, a fundamental solution is required by the BEM.

In the modeling of isotropic and general anisotropic solids, the displacement fundamental solution

based on double Fourier series proposed by Tan et al. (2013) is implemented. The BEM repre-

sents a useful numerical tool for modeling polycrystalline materials only using the surface grain

boundaries. Thus, in case of different constitutive domains, the multidomain algorithm needs to be

implemented. To model the dynamic effects, the response of the displacement field will be obtained

in the time domain. In order to develop this dynamic analysis, it is necessary the transformation of

the domain integral into a boundary integral applying the DRBEM formulation. Also Dirichlet and

Neumann boundary conditions can be applied to the model.

3.1 Integral formulation

The boundary integral equation expresses the relation of the displacement u𝑖 and traction

t𝑖 on a surface Γ using the known fundamental solution for displacement U𝑖𝑘(x
′,x) and traction

T𝑖𝑘(x
′,x). For homogeneous elastic body, the boundary integral equation considering the body

forces on the domain Ω is given by

c𝑖𝑘(x
′)u𝑖(x

′) +
∫

Γ
T𝑖𝑘(x

′,x)u𝑖(x) dΓ =
∫

Γ
U𝑖𝑘(x

′,x)t𝑖(x) dΓ +
∫

Ω
ρü𝑖U𝑖𝑘(x

′,x) dΩ , (3.1)

where (x′) and (x) are the source and field points respectively, c𝑖𝑘(x′) is δ𝑖𝑘/2 for a smooth sur-

face boundary at source point and ρ is the mass density. For transient analysis, the body forces are

caused by the acceleration field ü𝑖. In the Equation (3.1), the fourth domain integral considers the

terms of the dynamic effects due to its body acceleration. Thus, in order to apply the BEM formu-

lation, it is required the transformation of this domain integral into a boundary or surface integral.

In this work, the DRBEM is implemented to pursue this transformation. Moreover, other numerical

approximation such as the RIM proposed by Gao (2002) can be used to this end. After some nu-
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merical experiments, Rodriguez (2016) made comparisons between DRBEM and RIM. His results

showed that, using a coarse discretization, the RIM offers more accurate results than the DRBEM

using a finer discretization. However, the RIM demands a high computational requirements in its

implementation. The acceleration field of the domain integral in Equation (3.1) can be represented

by

ρü𝑖 =
𝑀
∑

𝑗=1

f 𝑗
𝑚𝑘 (x)α

𝑗
𝑚 , (3.2)

where α𝑗
𝑚 are unknown coefficients and f 𝑗

𝑚𝑘 are M radial functions that have to fulfil the equili-

brium equation, in the D’Alembert sense

C𝑚𝑛𝑟𝑠û𝑟𝑘,𝑛𝑠 = f 𝑗
𝑚𝑘 . (3.3)

The term û𝑟𝑘 is the particular solution to solve Equation (3.3). Substituting Equation (3.2)

into the fourth integral of Equation (3.1) gives

∫

Ω
ρü𝑖U𝑖𝑘dΩ =

𝑀
∑

𝑗=1

α𝑗
𝑛

∫

Ω
U𝑖𝑘f

𝑗
𝑘𝑛dΩ . (3.4)

The reciprocal integral relation can also be obtained between the fundamental solution and

the particular solution as

c𝑖𝑘û
𝑗
𝑘𝑛 +

∫

Γ
T𝑖𝑘û

𝑗
𝑘𝑛dΓ =

∫

Γ
U𝑖𝑘 t̂

𝑗
𝑘𝑛dΓ +

∫

Ω
U𝑖𝑘f

𝑗
𝑘𝑛dΩ , (3.5)

by substituting Equation (3.5) into Equation (3.4) and then into Equation (3.1), the integral equation

results in
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c𝑖𝑘u𝑖 +
∫

Γ
T𝑖𝑘u𝑖dΓ =

∫

Γ
U𝑖𝑘t𝑖dΓ +

𝑀
∑

𝑗=1

α𝑗
𝑛

ß

c𝑖𝑘û
𝑗
𝑘𝑛 −

∫

Γ
U𝑖𝑘 t̂

𝑗
𝑘𝑛dΓ +

∫

Γ
T𝑖𝑘û

𝑗
𝑘𝑛dΓ

™

, (3.6)

where the particular solution û𝑚𝑖𝑛 is a radial function (KÖGL AND GAUL, 2000a) expressed as

û𝑟𝑘 = δ𝑘𝑛(r
2 + r3) , (3.7)

and its derivatives

û𝑟𝑘,𝑙 = δ𝑟𝑘(2r + 3r2)r,𝑙 ,

û𝑟𝑘,𝑙𝑗 = δ𝑟𝑘 ((2 + 3r)δ𝑙𝑗 + 3rr,𝑗r,𝑙) .

(3.8)

The particular solution t̂𝑗𝑟𝑘 can be evaluated using the Equation (3.7) into the Equation (2.14).

3.2 Discretization

The Equation (3.6) must be discretized into surface elements, different type of elements can

be used such as quadrilateral or triangular, each of them can be implemented usually as linear or

quadratic (KANE, 1994). In this work, linear three-node discontinuous triangular boundary ele-

ments are used. The mean reasons to use this type of boundary element are: (i) the facility in the

implementation of the mesh generator described in section 2.1, (ii) linear elements represent a dras-

tic reduction in the DOF and the computational cost required by the numerical integration. Finally,

(iii) discontinuous elements offer advantages in the implementation of the multidomain algorithm.

Due to the nature of this application, there are no nodes shared by more than two grains of the poly-

crystal aggregate. Rewriting the Equation (3.6) the overall polycrystalline materials is represented

by



46

cg𝑖𝑘u𝑖
g +

∫

Γg

T𝑖𝑘u𝑖 dΓ
g =

∫

Γg

U𝑖𝑘t𝑖 dΓ
g

+
𝑀
∑

𝑗=1

α𝑗,g
𝑛

Å

c𝑖𝑘
gû𝑗,g𝑘𝑛 +

∫

Γg

T𝑖𝑘û
𝑗
𝑘𝑛dΓ

g −
∫

Γg

U𝑖𝑘 t̂
𝑗
𝑘𝑛dΓ

g

ã

,

(3.9)

where the superscript g represent the gth grain. The linear three-node discontinuous element is

shown in Figure 3.1, the three nodes are function of the two intrinsic parametric coordinates (η,ξ).

Thus, the position of all nodes in the element is controlled by the parametric distance λ.

(l,l)
(1-2l,l)

1

1 (l,1-2l)

0

h

x

Figure 3.1: Linear three-node discontinuous element.

The surface response is interpolated within an element from the nodal values, using shape

functions h(1) h(2) h(3) corresponding to the nodes 1, 2 and 3 respectively. The interpolated field X

expressed in terms of the known nodal values X(𝑘) are

X(ξ,η) =
3

∑

𝑘=1

h(𝑘)(ξ,η)X(𝑘) . (3.10)

The first derivative of the interpolated field, in terms of the shape functions can be written as

∂X(ξ,η)

∂ξ
=

3
∑

𝑘=1

∂h(𝑘)(ξ,η)

∂ξ
X(𝑘) ,

∂X(ξ,η)

∂η
=

3
∑

𝑘=1

∂h(𝑘)(ξ,η)

∂η
X(𝑘) .

(3.11)

The detailed procedure to obtain the three shape functions and its derivatives in a numerical
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way are exposed in Appendix B.1, also the formulation to evaluate the Jacobian and the normal

vector is shown. Therefore, Equation (3.9) in terms of grains can be discretized into linear three-

node discontinuous triangular elements. Rewriting Equation (3.9) gives

cg𝑖𝑘u𝑖
g +

𝑁g

e
∑

e=1

∫

Γg

e

T𝑖𝑘

Ñ

𝑁e
n

∑

n=1

hnu𝑖
n

é

dΓg

e
=

𝑁g

e
∑

e=1

∫

Γg

e

U𝑖𝑘

Ñ

𝑁e
n

∑

n=1

hnt𝑖
n

é

dΓg

e

+
𝑀
∑

𝑗=1

α𝑗,g
𝑛

Ñ

c𝑖𝑘
gû𝑗,g𝑘𝑛 +

𝑁g

e
∑

e=1

∫

Γg

e

T𝑖𝑘û
𝑗
𝑘𝑛dΓ

g

e
−

𝑁g

e
∑

e=1

∫

Γg

e

U𝑖𝑘 t̂
𝑗
𝑘𝑛dΓ

g

e

é

.

(3.12)

In Equation (3.12), the gth grain is divided by the elements e and the nodes n in the ele-

ment. The integration of the Equation (3.12) is carried out by the numerical Gauss integration, for

triangles following the procedures presented by Kane (1994). Thus, the Equation (3.12) can be

expressed as

cg𝑖𝑘u𝑖
g +

𝑁g

e
∑

e=1

Ñ

𝑁e
n

∑

n=1

∫ 1

0

∫ 1−𝜂

0
T𝑖𝑘h

nJdξdη

é

u𝑖
n =

𝑁g

e
∑

e=1

Ñ

𝑁e
n

∑

n=1

∫ 1

0

∫ 1−𝜂

0
U𝑖𝑘h

nJdξdη

é

t𝑖
n

+
𝑀
∑

𝑗=1

α𝑗,g
𝑛



c𝑖𝑘
gû𝑗,g𝑘𝑛 +

𝑁g

e
∑

e=1

Ñ

𝑁e
n

∑

n=1

∫ 1

0

∫ 1−𝜂

0
T𝑖𝑘h

nJdξdη

é

û𝑗𝑘𝑛

−
𝑁g

e
∑

e=1

Ñ

𝑁e
n

∑

n=1

∫ 1

0

∫ 1−𝜂

0
U𝑖𝑘h

nJdξdη

é

t̂𝑗𝑘𝑛



 ,

(3.13)

where the integration for the traction fundamental solution is defined as

cg𝑖𝑘 +
𝑁g

e
∑

e=1

Ñ

𝑁e
n

∑

n=1

∫ 1

0

∫ 1−𝜂

0
T𝑖𝑘h

nJdξdη

é

= Hg , (3.14)

and the integration of the displacement fundamental solution is

𝑁g

e
∑

e=1

Ñ

𝑁e
n

∑

n=1

∫ 1

0

∫ 1−𝜂

0
U𝑖𝑘h

nJdξdη

é

= Gg . (3.15)
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Rewriting Equation (3.13) in the matrix form for the gth grain

Hgug = Ggug +
𝑀
∑

𝑗=1

α
𝑗,g
Ä

Hgû𝑗,g −Ggt̂𝑗,g
ä

. (3.16)

The summation in Equation (3.16), is over the total number of nodes M of the physical

problem. Then, the final equation in the matrix form for the gth grain is

Hgug = Ggtg +
Ä

HgÛg −GgT̂g
ä

α
g . (3.17)

From Equation (3.2) in its matrix form, the term α can be expressed as

α
g = ρEgüg , (3.18)

where Eg is the inverse of the matrix Fg, the matrix Fg contains all the components of f 𝑗
𝑚𝑘. Subs-

tituting the Equation (3.18) into Equation (3.17)

Hgug = Ggtg + ρ
Ä

HgÛg −GgT̂g
ä

Egüg . (3.19)

In this formulation, the mass matrix can be defined as Mg = ρ
Ä

GgT̂g −HgÛg
ä

Eg, the final

form of Equation (3.19) is

Mgüg +Hgug = Ggtg . (3.20)

At this point, the formulation considers the inertial effects of the body caused by its own

acceleration. Moreover, body forces can be added to the right-hand termed in Equation (3.20). Due

to the large number of Fourier coefficients and the Gauss integration, this section requires a lot of

processing time. A parallelized algorithm is shown in Figure 3.2, where each grain matrices Hg,
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Gg and Mg are computed on a distributed architecture memory using collective communication

routines of MPI.

START

Material Data base

END

Read (m,n) and C*

g = g + 1

gth file uv

Send from

processor 0 to all

Node coordinates Elements

...

MPI_BCAS MPI_SCATERV

sp = sp + 1

fe = fe + 1

Singular integration

Regular integration

se = fe

sp

yes

no

...

Sub-matrices:

Hg,k and G g,k

Assembly:

Hg, G ,
g

MPI_GATERV

fe = Nfe

k

se = Nse
k

1

1

Process k

yes

no

no

3

2

2

g = Ngr

yes

3
no

yes

M
g

Figure 3.2: Parallel algorithm: matrices Hg, Gg and Mg.
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For each grain, all elements and coordinates are distributed to the processors (k), using an

adequate balance load for each processor in order to guarantee an homogeneous processing. Inside

each processor, the integration is carried out between the source points (sp), the source elements

(se) and the field elements (fe). In order to test the performance of this algorithm, it is used a 216

grain structure with ρ𝑑 = 2. For this analysis, it is considered only one grain with 882 boundary

elements, results are shown in the following table

Threads Time [s]

1 3880.01

8 652.46

16 392.01

32 268.69

64 162.21

128 103.73

Table 3.1: Performance: algorithm of matrices.

Table 3.1, shows the time reduction for computing matrices Hg and Gg when the number

of threads increase. It represents an advantage for modeling structures with high mesh refinement.

The matrix Mg requires the inversion of Fg, for that reason it was not included in the performance

analysis.

3.3 Time domain integration

A transient dynamic analysis of 3D polycrystalline materials is proposed. Thus, it is required

the time-domain integration of Equation (3.20). The Houbolt’s algorithm (HOUBOLT, 1950) is an

implicit appropriate method to be used coupled to the DRBEM (DOMINGUEZ, 1993; ALBUQUER-

QUE ET AL., 2002). The time-dependent solution of Equation (3.20) is obtained at every instant

τ +∆τ . Therefore, the acceleration of the body can be expressed as

ü
g

𝜏+∆𝜏 =
1

∆τ 2
Ä

2ug

𝜏+∆𝜏 − 5ug

𝜏 + 4ug

𝜏−∆𝜏 − u
g

𝜏−2∆𝜏

ä

. (3.21)
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The matrix Equation (3.20) at instant τ +∆τ is

Mgü
g

𝜏+∆𝜏 +Hgu
g

𝜏+∆𝜏 = Ggt
g

𝜏+∆𝜏 . (3.22)

The substitution of the Equation (3.21) into Equation (3.22) leads to Equation (3.23), which

is the response at instant τ +∆τ using the information of the last three time steps

ñ

2

∆τ 2
Mg +Hg

ô

u
g

𝜏+∆𝜏 = Ggt
g

𝜏+∆𝜏 +
1

∆τ 2
Mg
Ä

5ug

𝜏 − 4ug

𝜏−∆𝜏 + u
g

𝜏−2∆𝜏

ä

. (3.23)

In Equation (3.23), vectors ug

𝜏+∆𝜏 and t
g

𝜏+∆𝜏 are the displacement and traction fields of the

gth grain in the instant τ + ∆τ , respectively. Due to the nature of the material, the multidomain

formulation of BEM is implemented to a domain divided into grains.

3.4 Multidomain assembly

Polycrystalline aggregates require a multidomain assembly, where the boundary conditions

imposed in the external grains and the displacement compatibility and traction equilibrium must be

applied in the interfaces, as shown in the following equation.

u
𝑗
𝑖 = u𝑖

𝑗 ,

t
𝑗
𝑖 = −t𝑖𝑗 .

(3.24)

where the i and j indices represent the ith and jth grains. Figure 3.3 shows an interface between

two grains, Γ𝑖 and Γ𝑗 relates the grain surfaces, Ω𝑖 and Ω𝑗 are the domains and n̄ represents the

outward normal vector.
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Γi

n

n

Γj

Ω i

Ωj

Figure 3.3: Interfaces.

The multidomain algorithm divides the matrices into blocks. The first correspond to the ele-

ments where the boundary conditions are applied in the external surfaces defines as

Ag =

ñ

2

∆τ 2
Mg +H

g

𝑏𝑐

ô

,

Bg = G
g

𝑏𝑐 .

(3.25)

where Hg

𝑏𝑐 and G
g

𝑏𝑐 are the blocks after the exchange columns when known displacement boundary

conditions are imposed. For the internal elements that belong to the interfaces, the matrix is

Fg =

ñ

2

∆τ 2
Mg +H

g

𝐼

ô

, (3.26)

and

u𝛼 =
1

∆τ 2
(5u𝜏 − 4u𝜏−∆𝜏 + u𝜏−2∆𝜏 ) . (3.27)

For this illustrative case of two grains, Figure 3.3, the final system of equation after the
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application of the boundary conditions is
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,

(3.28)

where A𝑖, B𝑖 and M𝑖 belong to the boundary of the polycrystalline aggregate; A𝑖 and B𝑖 are the

blocks corresponding to H𝑖 and G𝑖 where the load conditions are applied. The blocks F𝑗
𝑖 and G

𝑗
𝑖

are the interfaces between ith and jth grains. Vectors x𝑖 represent all the traction and displacements

unknowns to be evaluated in the elements corresponding to the boundaries and the vectors k𝑏𝑐
𝑖 are

the known boundary conditions applied respectively. In the interfaces, displacement u𝑗
𝑖 and traction

t
𝑗
𝑖 are evaluated. The last three step displacement responses are defined by u𝛼𝑖, where u𝛼𝑗 is for

blocks belonging to the boundaries and u
𝑗
𝛼𝑖 for blocks in the interfaces. A general algorithm to as-

semble the system of equation in multidomain applications can be found in (KANE, 1994; KATSI-

KADELIS, 2002). For this application, the final three block matrices and vectors in Equation (3.28)

are highly sparse due to the incidence between grains. Thus, in order to improve the implementa-

tion in terms of memory and processing cost, it is necessary to treat all operations as sparse. The

final matrix equation is

𝒜x𝜏+∆𝜏 = ℬk𝑏𝑐
𝜏+∆𝜏 +ℳu𝛼 . (3.29)

When elastostatic problems are treated, the mass terms are void and the system becomes

time-independent, or



54
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𝑗































. (3.30)

In this case Fg = H
g

𝑏𝑐 and Bg = G
g

𝑏𝑐. The remaining blocks belong to the elements in the

interfaces. The final general matrix equation for elastostatic problems is

𝒜x = ℬk𝑏𝑐 . (3.31)

In order to solve the large sparse system of equations, a Multifrontal Massively Parallel

Sparse (MUMPS) (AMESTOY ET AL., 2001; AMESTOY ET AL., 2006) direct solver is used. The

code and user’s guide are available in http://mumps.enseeiht.fr/. MUMPS implements

a direct method based on a multifrontal approach, which performs a Gaussian factorization. This

solver is configured for general unsymmetrical real matrices using the out of core option.
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4 Dynamic behavior of polycrystalline materials

The microscale dynamic behavior of 3D polycrystalline materials with different lattice struc-

tures is presented. In addition, this analysis serves as validation of the constitutive modeling and the

BEM formulation presented. The absence of analytical solutions of these stochastic materials has

been a challenge in validating numerical results under dynamic boundary conditions. In the ma-

croscale analysis, these materials present an effective isotropic nature, when the number of crystal

aggregates in the microscale is large. Therefore, the macroscopic effective Young’s and shear mo-

duli are evaluated using the average homogenization technique and compared with reference values.

For this case, examples are presented showing the convergence to isotropic media. A computati-

onal framework is proposed to validate the dynamic behavior of polycrystalline materials, using

the effective macroscopic properties assessed on the available analytical dynamic isotropic models.

Numerical results applying several dynamic loads are presented, including the resonance condition.

Finally, all results are treated through statistical analysis for a large number of simulations.

4.1 Effective macroscopic properties

The random distribution of crystalline orientations and the geometrical morphology in the

polycrystal aggregate are significant in the evaluation of the overall macroscopic isotropic beha-

vior. Average homogenization technique is used to obtain the effective elastic properties of poly-

crystals with cubic and hexagonal lattice systems. Mechanical properties in the analysis of micro-

heterogeneous materials are characterized by the elasticity tensor C. Then, in order to represent the

homogenized effective macroscopic tensor C̄ of such materials (ZOHDI AND WRIGGERS, 2005),

the Hooke’s law relation between the averages fields have to be used. It is given by

⟨σ̄⟩ = C̄ : ⟨ε̄⟩ , (4.1)

where “⟨·⟩” indicates the homogenization of a field, ⟨σ̄⟩ is the homogenized effective Cauchy

stress tensor, ⟨ε̄⟩ represents the effective homogenized strain tensor. The stiffness tensor can take

the form shown in Equation (2.3). Computational procedures have been described in the litera-

ture to evaluate the effective C̄ and apparent Ĉ stiffness tensor of elastic properties (ZOHDI AND
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WRIGGERS, 2005; OSTOJA-STARZEWSKI, 2006; FRITZEN ET AL., 2009; BENEDETTI AND

ALIABADI, 2013B). In the present work, a set of six kinematic boundary conditions as linear

displacements are applied, Figure 4.1.

x y

z

(a) (c)(b)

(d) (e) (f)

Figure 4.1: Kinematic boundary conditions: (a) ε𝑥, (b) ε𝑦, (c) ε𝑧, (d) ε𝑥𝑦, (e) ε𝑦𝑧 and (f) ε𝑥𝑧.

The six tests shown in Figure 4.1, represent one realization in the statistical analysis. The

homogenized stress and strain tensors are evaluated in the surface Γ after the application of the

divergence theorem (HILL, 1963). The expression for the stress field is

⟨σ̂𝑖𝑗⟩ =
1

|Ω|
∫

Ω
σ𝑖𝑗 dΩ =

1

2 |Ω|
∫

Γ
(t𝑖x𝑗 + t𝑗x𝑖) dΓ , (4.2)

and for the strain field gives

⟨ε̂𝑖𝑗⟩ =
1

|Ω|
∫

Ω
ε𝑖𝑗 dΩ =

1

2 |Ω|
∫

Γ
(n𝑖u𝑗 + n𝑗u𝑖) dΓ . (4.3)

where, |Ω| is the volume of the representative volume element (RVE), u𝑖 and t𝑖 are the nodal

response of displacement and traction, respectively. The n𝑖 term is the normal outward vector and
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x𝑖 is the coordinate of the deformed position of the surface Γ. These two homogenized fields are

easily evaluated due to the displacement and traction fields directly obtained from the BEM on the

surface (BENEDETTI AND ALIABADI, 2013b). The apparent stiffness tensor can be evaluated by

⟨σ̂⟩ = Ĉ : ⟨ε̂⟩ . (4.4)

The tensor Ĉ has 36 unknowns, then, the final system of equations composed by the contri-

bution of each boundary condition shown in Figure 4.1 gives 36 equations for each realization. In

polycrystalline materials, the macrodomain effective stiffness C̄ are estimated by a statistical analy-

sis as the mean value of a set of variety number of simulation tests. Two materials are analyzed,

copper (Cu) fcc and zinc (Zn) hcp, the properties of these materials at the microscale are presented

in Table 4.1.

C11 C33 C44 C12 C13

Zn 165 61.8 39.6 31.1 50

Cu 168.4 75.4 121.4

Table 4.1: Anisotropic elastic constants for Zn (TROMANS, 2011) and Cu (HUNTINGTON, 1958)
in [GPa].

Six specimens with 18, 36, 60, 100, 150 and 210 number of grains are considered, each of

them with 100 aggregate structures. Thus, a total of 600 different polycrystals and 1200 virtual

materials are used in the simulations. A random distribution of crystalline orientation is also used

from a database that contains 1000 orientations. The number of DOF for each number of grains of

each RVE is given in Table 4.2.

N𝑔𝑟 18 36 60 100 150 210

N𝐷𝑂𝐹min
12,645 31,662 59,715 108,630 171,684 250,938

N𝐷𝑂𝐹mean
15,666 36,365 67,054 118,317 185,475 269,636

N𝐷𝑂𝐹max
21,735 42,553 79,056 132,777 206,136 298,494

Table 4.2: Number of DOF for different grain numbers.
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Considering a given stiffness tensor of an isotropic materials Ciso, this tensor can be expressed

in the following projection representation

Ciso = λ1P
iso
1 + λ2P

iso
2 , (4.5)

where P𝑖 are the projectors and λ𝑖 represents the elastic eigenvalues. For isotropic materials, the

eigen-projectors (KOWALCZYK-GAJEWSKA AND OSTROWSKA-MACIEJEWSKA, 2009), are given

by

Piso
1 =

1

3
I⊗ I, Piso

2 = I𝑠 −Piso
1 . (4.6)

In Equation (4.6), I is the second-order identity tensor, I𝑠 is the fourth-order symmetric tensor

resulting from I𝑠 = C−1C product and the symbol “ ⊗ ” is the dyadic or tensor product. The

apparent bulk K̂ and shear Ĝ moduli are evaluated by the projection of the apparent stiffness

tensor Ĉ on the space of isotropic elasticity tensor (FRITZEN ET AL., 2009). The most common

representation of a stiffness tensor of a isotropic material is

Ciso = 3KPiso
1 + 2GPiso

2 , (4.7)

the bulk and shear moduli resulting from the projection of an anisotropic tensor onto an isotropic

tensor treated by Fedorov (FEDOROV, 1968), are expressed by

3K̂ = Ĉ ·Piso
1 =

1

3
Ĉ𝑖𝑖𝑘𝑘 , (4.8)

and

2Ĝ =
1

5
Ĉ ·Piso

2 =
1

5

Ç

Ĉ𝑖𝑗𝑖𝑗 −
1

3
Ĉ𝑖𝑖𝑘𝑘

å

, (4.9)
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where for repeated indices the Einstein’s summation convention is used. Effective properties K̄ and

Ḡ can be evaluated likewise using C̄ over all realizations for a specific RVE. The effective values

of Ē and ν̄ are calculated using the following equations

Ē =
9K̄Ḡ

3K̄ + Ḡ
, (4.10)

ν̄ =
3K̄ − 2Ḡ

2(3K̄ + Ḡ)
. (4.11)

Many works in the literature were dedicated to analyze the existence and size of the RVE

(REN AND ZHENG, 2002; GITMAN ET AL., 2007; XU AND CHEN, 2009; SALAHOUELHADJ

AND HADDADI, 2010) in general for heterogeneous materials with computational simulations.

Also using experimentation by digital image correlation (LIU, 2005). The RVE is defined as the

minimum element in the mesoscale, that contains the material microconstituents leading to a pos-

sible representation of the macroscale. This reduces the computational cost of simulations in the

macroscale when heterogeneities are considered. In case of polycrystal materials, an ideal macros-

copic behavior is reached when N𝑔𝑟 → ∞. Geometrical heterogeneities and the random constitu-

tive behavior can caused a dependency in the macroscopic elastic properties, due to the anisotropic

characteristics of the mesoscale. This analysis was pursued by Ren and Zheng (2002), they compa-

red results with their previous work (REN AND ZHENG, 2004) that used periodic grain shapes.

The analyses presented by Voigt (1889) and Reuss (1929), proposed the relation between the

monocrystal elastic constants and the general quasi-isotropic behavior of the polycrystal aggregate.

The homogeneous strain is maintained in the body when the polycrystal is stressed in all directions,

Voigt formulated expressions in terms of the stiffness tensor C𝑉
𝑖𝑗𝑘𝑙. In other study, Reuss proposed

equations where homogeneous stress is maintained while the polycrystal is strained. In that case, the

formulation is based on the compliance elastic constants S𝑅
𝑖𝑗𝑘𝑙. The superscripts V and R refer to the

Voigt and Reuss analyses. Both analyses offer a set of equation to evaluate bulk, shear and Young

moduli, see details in (HILL, 1952; TROMANS, 2011; KUBE, 2016). Hill (1952), established that

a homogenized stiffness tensor lies between the Voigt and Reuss bounds. The author proposed the

following expression
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î

S𝑅
ó−1 ≤ C̄ ≤ C𝑉 , (4.12)

and

¶

K𝑅, E𝑅, G𝑅
©

≤
¶

K̄, Ē, Ḡ
©

≤
¶

K𝑉 , E𝑉 , G𝑉
©

. (4.13)

For comparison purposes, an average between Voigt and Reuss conditions V-R proposed

by Hill (1952) is evaluated and expressed as C𝑉−𝑅, K𝑉−𝑅, E𝑉−𝑅 and G𝑉−𝑅. Additionally, it

is useful the evaluation of the level of anisotropy of materials independently of its lattice structure.

In the literature, there are schemes of comparison the level of anisotropy between different mate-

rials. Zener (1948) defined an anisotropy factor A𝑧 for crystals of cubic symmetry based on the

ratio of extreme values of shear modulus. Kube (2016) in his work and in the references therein

(CHUNG AND BUESSEM, 1967; RANGANATHAN AND OSTOJA-STARZEWSKI, 2008), exposes

a variety of anisotropy factors of materials with different lattices in its review. Kube defined an

anisotropy factor A𝐿 as the The log-Euclidean distance between C𝑉 and C𝑅. This factor offers a

universal measure of anisotropy, applicable to all crystalline materials. The expression of the A𝐿

index is

A𝐿 =
Ä

C𝑉 ,C𝑅
ä

=







ñ

ln

Ç

K𝑉

K𝑅

åô2

+ 5

ñ

ln

Ç

G𝑉

G𝑅

åô2






1/2

, (4.14)

which are valid for any crystal symmetry. Using the material properties shown in Table 4.1, the

values of the A𝐿 parameter for each material are listed in Table 4.3.

A𝐿

Cu 0.695

Zn 0.652

Table 4.3: Absolute measure of anisotropy of Cu and Zn.
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The distance between C𝑉 and C𝑅 yields to zero when the crystal is elastically isotropic. The

parameterA𝐿 will be helpful to compare the final homogenized results. In terms of implementation,

an algorithm is presented in Figure 4.2, the parallelized sections using MPI are also specified.

3D Polycrystalline mesh
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- Boundary elements
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Figure 4.2: Algorithm to evaluate Ē and Ḡ.
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As mentioned, this is a multi-compiler algorithm composed by sections implemented using

C, C++ for meshing, Fortran 90 for BEM analysis and post-processing. The BEM analysis cor-

responds to the root of the algorithm, databases are already generated for mesh and materials in

separated directories, see Figure 2.3 and 2.9. Input parameters, such as the number of realizations

N𝑟, material and Dirichlet boundary conditions u𝑎, must be defined. The counter “i”, in Figure 4.2,

refers to the loop over the number of realization N𝑟, where different polycrystalline structures are

loaded for each realization. The BEM grain matrices Hg and Gg are computed in a parallelized

module, Figure 3.2, for each realization. Furthermore, geometrical description matrices such as

geometrical and physical nodes, integration points in the isoparametric element, subregions and

interfaces are defined. The counter “j” refers to the loop over the six displacement boundary con-

ditions N𝑏𝑐, Figure 4.1. Each boundary condition demands changes in the assembly of the general

matrix system, this is a critical section in the code. Then, an efficient algorithm was developed to

assembly the general matrix in a reduced format for highly sparse matrices.

4.1.1 Effective Young’s and shear moduli results

The Young’s and shear moduli are evaluated in each polycrystal material for a set of number

of grains, using a basic statistical analysis. The apparent and effective values of these quantities

are determined in a similar way as presented Fritzen et al. (2009) for fcc materials. Moreover, hcp

materials are also considered in this analysis.

Here, the apparent Young’s (Ê) and shear (Ĝ) values are evaluated from Equations (4.10)

and (4.11), respectively. The effective Young’s (Ē) and shear (Ḡ) moduli are computed as the

mean value from Ê and Ĝ, respectively. From the statistical theory, a confidence interval for nor-

mal distribution is assumed to guarantee that the interval contains a true value of the unknown

parameter. For normal distributions, the particular probability of 99.7% used is

P (X̄ − 3σ < X < X̄ + 3σ) = 0.997 , (4.15)

where X takes the value of Ê or Ĝ, the term X̄ refers to the mean value and σ is the standard

deviation. Curves of all grain numbers are generated showing the asymptotic trend of the mean

values of Ē and Ḡ for a probability of 99.7% and standard deviation σ(Ê) and σ(Ĝ). Histograms
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of 100 values of apparent σ(Ê) and σ(Ĝ) are compared with the Gaussian probability curve for the

polycrystal cell of 210 grains (FRITZEN ET AL., 2009).

Results of simulations of the apparent Ê and Ĝ values for each configuration of Cu are shown

in Figure 4.3(a,b) and for Zn in Figure 4.3(c,d). The number of grains in the x-axis, the apparent

property in y-axis, the maximum and minimum values and the scatter dispersion using a probability

of 97.5% with 3σ are shown.
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Figure 4.3: Macroscopic properties: (a) Young’s modulus of Cu, (b) shear modulus of Cu, (c)
Young’s modulus of Zn and (d) shear modulus of Zn.

Increasing the number of grains and DOF, the dispersion over the 100 realizations decrease.
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Moreover, the dashed curve obtained by the mean values will take an expected asymptotic ten-

dency. Figure 4.4, shows the comparison between the Ê and Ĝ values, the curves are based on 100

realization values for each case. A Gaussian probability function is also shown when the specimen

contains 210 grains of Cu and Zn.
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Figure 4.4: Histogram and normal distribution: (a) Young’s modulus of Cu, (b) shear modulus of
Cu, (c) Young’s modulus of Zn and (d) shear modulus of Zn. For a 210 grains specimen.

The trend to a mean value of Ê and Ĝ are exposed in the histograms presented in Figure 4.4.

The response from the realizations can be adjusted to a probability curve with the shape of a normal

distribution. Numerical values of mean and deviation of Young’s modulus of both materials in all

aggregate tests are shown in Table 4.4.
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Ē ± 3σ(Ē)

N𝑔𝑟 Cu Zn

18 126.01± 2.693 102.95± 2.317

36 126.40± 1.616 103.24± 1.505

60 126.72± 1.105 103.47± 1.037

100 127.01± 0.839 103.49± 0.691

150 127.08± 0.542 103.58± 0.493

210 127.25± 0.399 103.60± 0.270

Table 4.4: Effective and confidence interval of Young’s modulus in [GPa], based on different num-
bers of grains per aggregate.

Numerical values of mean and deviation of shear modulus of both materials in all aggregate

tests are shown in Table 4.5.

Ḡ± 3σ(Ḡ)

N𝑔𝑟 Cu Zn

18 46.79± 1.066 41.14± 1.428

36 46.97± 0.732 41.29± 0.849

60 47.14± 0.560 41.37± 0.533

100 47.18± 0.380 41.39± 0.291

150 47.23± 0.233 41.44± 0.203

210 47.32± 0.185 41.50± 0.120

Table 4.5: Effective and confidence interval of shear modulus in [GPa], based on different numbers
of grains per aggregate.

Results present a decreasing deviation when the number of grains increase, showing a more

accurate response of the homogenization process to obtain the macroscopic isotropic behavior of

the polycrystal aggregate. The effective stiffness tensor C̄ for Cu after 100 realizations using a 210

grains aggregate in the simulation is
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C̄ = C̄𝑖𝑗𝑘𝑙 =





























201.13 104.33 105.36 −0.28 0.30 0.34
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0.34 −0.62 0.38 −0.48 −0.28 46.41





























GPa , (4.16)

and the effective stiffness tensor for Zn after 100 realizations of 210 grains aggregate in the simu-

lation is

C̄ = C̄𝑖𝑗𝑘𝑙 =





























123.63 41.22 40.76 0.07 0.24 0.11

41.22 126.83 41.16 0.11 −0.09 −0.04

40.76 41.16 122.90 0.06 0.48 −0.06

0.07 0.11 0.06 41.73 −0.13 0.05

0.24 −0.09 0.486 −0.13 40.40 0.18

0.11 −0.04 −0.06 0.05 0.18 41.96





























GPa . (4.17)

Both tensors tend to isotropic behavior, due to the large number of grains used for these

specimens. Resulting in the higher values of components that correspond to an isotropic elastic

tensor.

At first stage, when results of these two materials are compared, it is easy to perceive that all

numerical dispersion values 3σ(Ê) and 3σ(Ĝ) for Zn are less than values of Cu, Tables 4.4 and 4.5,

respectively. According to the values presented in Table 4.3 for Cu and Zn of the anisotropic A𝐿

index, it can be inferred that Cu results more anisotropic than Zn. This fact is observed in the dashed

curves in Figure 4.3.

For validation purposes, the effective elastic constants of both materials shown in Equati-

ons (4.16) and (4.17) for 210 grains and 100 realization, are compared with different values from

the literature in Tables 4.6 and 4.7. In case of Cu, Benedetti and Aliabadi (2013b) present in their
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work the average assembly stiffness Ĉ tensor for 20 grains and 100 realizations. This is not a use-

ful comparison, due to the difference in the grain numbers. Thus, the calculated error in the third

column shown in Table 4.6 is apparently large. Small errors were obtained when compared with

the average V-R bound analysis and the experimental results presented by Beran et al. (1996).

Results Benedetti and Aliabadi (2013b) Beran et al. (1996)

C̄𝑖𝑗𝑘𝑙 210 grains 20 grains Error(%) V-R Error(%) Exp. Error(%)

C̄1111 201.13 205.9 2.31 201.0 0.06 199.0 1.07

C̄2222 201.59 206.4 2.33 202.15 0.27 200.7 0.44

C̄3333 200.56 206.7 2.97 201.95 0.68 200.9 0.16

C̄1212 46.41 51.5 9.88 47.25 1.77 46.42 0.02

C̄1313 47.29 51.3 7.81 47.53 0.50 47.36 0.14

C̄2323 46.92 50.7 7.45 46.42 1.07 47.66 0.54

Table 4.6: Comparison of elastic constants of Cu in [GPa].

Numerical results of Zn were compared with the V-R average analysis presented by Tromans

(2011), showing the independent elastic constants and the respective errors in Table 4.7.

Results Tromans (2011)

C̄𝑖𝑗𝑘𝑙 210 grains V-R Error(%)

C̄1111 123.63 120.59 2.52

C̄2222 126.83 120.59 5.17

C̄3333 122.90 120.59 1.91

C̄1122 41.22 38.67 6.59

C̄1133 40.76 38.67 5.40

C̄2233 41.16 38.67 6.43

C̄1212 41.96 40.96 2.44

C̄1313 40.40 40.96 1.36

C̄2323 41.73 40.96 1.14

Table 4.7: Comparison of elastic constants of Zn in [GPa].
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Now, results of Ē and Ḡ for both materials presented in Tables 4.4 and 4.5 are compared

with different references. A comparison with results reported by Fritzen et al. (2009) for 100 grains

and 200 realizations are shown in Table 4.8. Acceptable results of mean values and deviation were

obtained, despite the difference between the number of grains of the specimens tested. Furthermore,

values given by Kiewel et al. (1996) from Kröner (1977) and V-R analysis are presented for Cu with

its respective errors, showing expected numerical results for mean values, see Table 4.8.

Results Fritzen et al. (2009) Kiewel et al. (1996)

210 grains 100 grains Error(%) V-R Error(%) Kröner Error(%)

Ē 127.25 129.47 1.71 127.35 0.266 129.7 2.07

3σ(Ē) 0.399 0.816

Ḡ 47.32 48.23 1.88 47.4 0.46 48.3 2.31

3σ(Ḡ) 0.185 0.339

Table 4.8: Comparison of Young’s, shear moduli and deviation of Cu in [GPa].

Similar to the last case, results of Zn are also compared with reference values presented by Ki-

ewel et al. (1996) from Kröner (1977) and V-R results in (TROMANS, 2011). For this case, there are

not available deviation values from other numerical results to compared with values in Table 4.4

and 4.5. Again reference values and errors are shown in Table 4.9 for hexagonal Zn polycrystals.

Results Ref. (KIEWEL ET AL., 1996) Ref. (TROMANS, 2011)

210 grains Kröner Error(%) V-R Error(%)

Ē 103.60 104.5 0.86 101.8 1.76

Ḡ 41.50 41.9 0.95 41.0 1.21

Table 4.9: Comparison of Young’s, shear moduli and deviation of Zn in [GPa].

In summary, validations of all results from numerical simulations were presented and com-

pared for two materials with different lattice structures, results in Tables 4.8 and 4.9 show less error

in simulations of Zn than Cu in terms of mean Ē and Ḡ values. This confirms the concept given by

the calculated values of A𝐿 for both materials.
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4.2 Dynamic behavior

The dynamic time dependent responses of displacement u𝜏+∆𝜏 and traction t𝜏+∆𝜏 of poly-

crystalline materials are evaluated. First, for step, ramp, and harmonic dynamic loads, a total of

150 tests are carried out. Therefore, 50 simulations are run for each material using different poly-

crystal aggregates and distribution of the crystalline orientations. Second, a mesh and time step

dependency is analyzed with a total of 90 simulations using Cu and step load. In order to provide

accurate numerical results, the time step is ∆τ = 20 ns for all simulations. The specification of

each test is listed in Table 4.10.

N𝑡𝑖𝑚𝑒𝑠 Simulation time Load

Zn 200 4 µs Harmonic

Cu 100 2 µs Ramp

Fe 85 1.7 µs Step

Table 4.10: Simulations.

The dynamic model is validated evaluating Ē given in Tables 4.4 and 4.5 and rewritten in Ta-

ble 4.11, within the analytical isotropic solutions. In addition to the materials presented in Table 4.1,

bcc iron (Fe) will be also used in the simulations. The three independent elastic constant of Fe are

C11 = 230 GPa, C12 = 135 GPa and C44 = 171 GPa (HUNTINGTON, 1958). The value of the

effective Young’s modulus is 210 GPa, given by Kiewel et al. (1996). This procedure offers an

approximate framework to compare anisotropic dynamic responses to analytical solutions due to

the lack of anisotropic direct analytical models.

Ē ± 3σ(Ē)

Cu 127.25± 0.399

Zn 103.60± 0.270

Table 4.11: Effective Young’s modulus in [GPa] evaluated in a 210 grain specimen.

A cantilever prismatic bar is used for the simulations. The geometrical dimensions and dy-

namic loads are shown in Figure 4.5. In these three cases, the maximum stress (σ𝑜) is 100 MPa
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applied in the y-axis.
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Figure 4.5: (a) Physical model of 180 grains, L = 1 mm and boundary conditions: (b) step, (c)
ramp and (d) harmonic loads.

Figure 4.5 illustrates the fixed surface at y = 0 and the application load surface at y = L with

L = 1mm. The number of DOF and boundary elements of all specimens of 180 grains used in the

simulations are shown in Table 4.12.

Max Mean Min

Elements 27,620 26,120 24,568

DOF 248,580 235,086 221,112

Table 4.12: Elements and DOF of 180 grains polycrystal aggregate.

The implementation algorithm of these simulations starts with the input user parameters as

the number of time steps N𝑡𝑖𝑚𝑒𝑠, the size of time step ∆τ , the applied load in function of the

time σ𝑎(τ), the constraint displacements u𝑎 and the material properties, see Figure 4.6. Basically,

The computation of the Mg matrix is also implemented in a MPI module, where the data load is

distributed from the master process to the remaining process taking care of an adequate balance to

gain computational processing time. Finally, the displacement and traction evaluated in each time

step are stored in a directory to be imported by the post-processing, while the BEM application is

still running.
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Figure 4.6: Algorithm to evaluate dynamic time-dependent u𝑦(t) response.

The general system of equations is computed before the loop of time steps. Matrices 𝒜, ℬ and

ℳ are kept constant. The load σ𝑎 change through the time depending of the type of load. Therefore,

the vector k𝑏𝑐
𝜏+∆𝜏 and u𝛼 have to be updated. The solution of the final system of equations requires

a high computational performance due to the large number of DOF.
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4.2.1 Analytical isotropic models

The dynamic response of a prismatic bar under axial step load σ(t) = σ𝑜 in Figure 4.5(b), is

obtained using the mode-superposition analysis, as shown in detail by Clough and Penzien (2003).

The displacement analytical response is

u(y,t) =
8P𝑜

π2

L

EA

∞
∑
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where P𝑜 is the applied force, E is the Young’s modulus, L andA are the length and cross-sectional

area respectively, y is the position from the point to be analyzed, n is the number of vibration modes

and ω𝑛 is the natural frequency of the nth vibration mode expressed as

ω𝑛 = (2n− 1)
π

2

 

EA

mL2
n = 1,2,... , (4.19)

being m the mass per unit length. Analogously, when a ramp load is applied as σ(t) = σ𝑜t, Fi-

gure 4.5(c), the analytical solution is obtained as

u(y,t) =
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In case of harmonic load applied as σ(t) = σ𝑜 sinωt, where ω is the frequency of the wave,

as shown in Figure 4.5(d), the analytical solution is obtained as

u(y,t) =
2P𝑜
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(4.21)
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As it was shown in Figure 4.4, the effective properties of polycrystalline aggregates converge

to the isotropic constitutive behavior. Accordingly, the dynamic anisotropic model, is validated

by substituting the effective macroscopic Young’s modulus Ē into the Equations (4.18), (4.20)

and (4.21). The values of effective Young’s moduli used for the different materials employed in this

work are presented in Table 4.11.

4.2.2 Dynamic time-dependent results

For each material and boundary condition, 50 simulations were carried out. The same sta-

tistical analysis is used with a Gaussian distribution of confidence interval 3σ corresponding to a

probability of 99.7%. Curves are generated with the mean value of the average displacement ū𝑦 in

the y = L surface and its corresponding 3σ deviation for each current time instant τ +∆τ . The Fe

simulations are shown in Figure 4.7.
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Figure 4.7: Fe under step load. The analytical solution is given in (CLOUGH AND PENZIEN, 2003).

where the u𝑦 displacement illustrates the wave characteristic behavior of this non-damped model

under a dynamic high-rate step load. As expected, the mean values of ū𝑦 are consistent with the
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analytical values. It is observed that, there are solution gradient discontinuities at points A, B, C,

and D in Figure 4.7. At these points, the evaluation of an accurate response using this model is a

difficult task. The simulations of Cu by applying a ramp load are shown in Figure 4.8.
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Figure 4.8: Cu under ramp load. The analytical solution is given by the Equation (4.20).

In the ramp case, a smooth wave travels through the body leading to continuous increments

of the displacement u𝑦. This effect is distinct from the step load case. The curve does not have

gradient discontinuities, being numerically feasible for the model to obtain accurate results with

small deviations. An additional case is presented in Figure 4.9, where the harmonic load is applied.

In this case, the resonance condition is reached when the frequency ω is equal to the first natural

frequency ω1, Equation (4.21). Results of ū𝑦 are consistent with the analytical values. However, a

high deviation 3σ is obtained after 150∆τ (3 µs). The harmonic analytical solution shows abrupt

changes in the u𝑦 direction. In contrast to the step load case, this analytical solution has a continuous

gradient in the entire domain. The resonance condition leads to an incremental unstable behavior.
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Figure 4.9: Zn under harmonic load. The analytical solution is given by the Equation (4.21).

Results are described by absolute errors Er(ū𝑦) and 3σ deviations. It is observed that the

dynamic wave produced by the step load contains sudden changes as shown in Figure 4.7 at points

A, B, C and D. The undetermined derivatives of the analytical function at these points causes ill

conditioning in the BEM matrices. The evaluation of the second derivative of the displacement

ü𝜏+∆𝜏 is enforced by the BEM model at these simulation points. In contrast, the ramp and harmonic

loads produce smooth analytical responses. The absolute error is evaluated by Er(ū𝑦) = |ū𝑦 − u𝑎|,
where ū𝑦 is the numerical average and u𝑎 is the analytical solution.

Comparisons can be made to evaluate the capability of the BEM model under these boundary

conditions considering that each test is performedN𝑡𝑖𝑚𝑒𝑠. All the three cases exhibit a similar trend,

the accuracy of the mean value of displacement ū𝑦 decreases and the deviation 3σ increases over

time. According to the results shown in Figure 4.7, the main differences between the numerical

and analytical models are at the instants at which the solution has gradient discontinuities, as in the

A, B, C, and D points shown in Figure 4.7. Table 4.13 gives the numerical results at these specific

points.
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∆τ 19∆τ (A) 39∆τ (B) 58∆τ (C) 77∆τ (D) 85 ∆τ

Time [µs] 0.02 0.38 0.78 1.16 1.54 1.7

Er(ū𝑦) [µm] 0.013 0.074 0.089 0.1198 0.1187 0.0926

3σ [µm] 0.0024 0.035 0.018 0.023 0.038 0.1195

Table 4.13: Instants of sudden changes of for Fe simulation with step load.

As listed in Table 4.13, the absolute error Er(ū𝑦) increases until point C. Hence, the 3σ

deviation presents an irregular path that increases from the first ∆τ to the point A and from B to D

but decreases in the interval A-B. Therefore, at 85∆τ , as expected, the highest value of deviation is

observed. In the simulation results of Cu, smooth curves of error and deviation follow the expected

forms such as its response Figure 4.8. Initially, the error and deviation are closed until 0.74 µs

(37∆τ ), where Er(ū𝑦) ≈ 0.012 µm and 3σ = 0.02 µm. After this instant, the deviation increases

by almost twice the error value. In the case of the harmonic load in Zn, as shown in Figure 4.9,

the simulation is longer than that of Fe and Cu, as 200∆τ is used. Therefore, the values of error

and deviation are higher at 4 µs. In this case, the analytical solution also contains abrupt changes.

However, this is a differentiable function in its entire domain, and the BEM model can evaluate the

solution more accurately. For illustrative purposes, Table 4.14 gives the maximum and minimum

values of Er(ū𝑦) and 3σ for the three materials in each simulated time interval.

Er(ū𝑦)𝑚𝑎𝑥 Er(ū𝑦)𝑚𝑖𝑛 3σ𝑚𝑎𝑥 3σ𝑚𝑖𝑛

Fe 0.1197 0.00244 0.143 0.002427

Cu 0.0241 0.00013 0.062 0.000041

Zn 0.1471 0.00091 5.547 0.001

Table 4.14: Maximum and minimum values of Er(ū𝑦) and 3σ in [µm].

As mentioned above, the numerical responses become worse as the time increases. An ade-

quate comparison can be made in the same interval time for all the tests. From Table 4.14, the

smoothest solution of the BEM model obtained with the ramp load is more accurate with a maxi-

mum error of 0.0241µm and a maximum deviation of 0.062µm in a time interval of 2µs. The most

difficult approximation is observed with the harmonic load with a maximum error of 0.1471 µm

and a critical deviation of 5.547 µm at 4 µs after 200∆τ . Direct comparisons between the errors
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and deviations are made in the interval time from 0 µs to 1.7 µs equivalent to 85∆τ for these three

cases. The partial error at 1.7µs for the harmonic case is 0.15µs, which is the highest error between

all the cases. The ramp load shows smaller values and slower variations of errors and deviations

compared with the other two boundary conditions.

4.2.3 Mesh and time step dependency

The simulations presented in the subsection 4.2.2, the number of dual reciprocity points

(DRPs) coincides with the number of physical nodes used in the problem. In this work, internal

points are not included in the model. The dynamic BEM formulation is sensitive to the mesh re-

finement and time step. Therefore, it is useful to analyze the changes in numerical response for

different number of boundary elements in the discretization and time step values. It is considered

the 45 grain specimen shown in Figure 4.10, where L = 0.5 mm and a step load is applied with

σ(t) = 100 MPa Figure 4.10(b).

z

x

t [μs]

σ [MPa]

100

0
tf

(b)

σ(t)

y

L

0.1L 

0.1L 

(a)

Figure 4.10: (a) Physical model of 180 grains, L = 0.5 mm and (b) step load.

The mesh dependency, in terms of elements and DRPs is evaluated for three 45 grain speci-

mens generated with different mesh refinement levels, Figure 4.11.
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Figure 4.11: Number of elements: (a) mesh I: 4,775, (b) mesh II: 8,332, and (c) mesh III: 14,922.

The time step dependency is also observed using three different time steps for each mesh Ta-

ble 4.15.

∆τ [ns] Time steps

40 25

30 33

20 50

Table 4.15: Simulation times.

In this case, Cu is used for all the simulations. A set of 10 distributions of crystalline planes

is assigned for each mesh in order to guarantee feasible comparisons with the same constitutive

material. Thus, for each specimen, 10 values of y-displacement at L = 0.5 mm are obtained. The

mean values of y-displacement (ū𝑦) are computed and compared with the analytical solution, Equa-

tion (4.18).
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Figures 4.12, 4.13, and 4.14 present results of ū𝑦 for ∆t = 40ns, ∆t = 30ns, and ∆t = 20ns,

respectively. These tests are developed only to analyze the behavior and convergence. In order to

improve them compared with the exact solution, more samples must be considered for this analysis.
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Figure 4.12: Comparison among y-displacements of meshes I, II, and III with ∆τ = 40 ns.
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Figure 4.13: Comparison among y-displacements of meshes I, II, and III with ∆τ = 30 ns.
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Figure 4.14: Comparison among y-displacements of meshes I, II, and III with ∆τ = 20 ns.

From these tests, the response does not change when the number of elements increases from

4,775 to 3,557 in mesh II and to 10,147 elements in mesh III. The change in time step has a more

significant influence on the response. When the time step decreases Figure 4.14, the ū𝑦 is closer to

the analytical solution than the case when the time step increases Figure 4.12.

4.3 Computational aspects

The computational simulations were carried out on a distributed architecture memory plat-

form using MPI-Fortran. As mentioned before, the main BEM implementation requires some pa-

rallelized sections, such as the evaluation of the matrix of interfaces, the computation of the in-

cidence BEM matrices and the solver of the linear system of equations. All simulations were

executed in the Kahuna cluster from the Center for Computational Engineering and Science

at the University of Campinas (CCES/UNICAMP), for details of the cluster composition, see

http://www.escience.org.br/computing_resources.

In total, 1450 simulations were executed, 1200 for the analysis of the effective macroscopic

properties, and 240 in the dynamic behavior study. The number of the available simultaneous thre-
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ads is 256. In the simulations of the macroscopic properties: i) specimens of 18, 36 and 60 grains

were run using groups of 32 threads with 40GB of memory, each one for a specimen sample, being

possible to run eight samples simultaneously. ii) For specimens with 100 and 150 grains, more me-

mory were required, being necessary to run each sample in a group of 128 threads with 120 GB

of memory each group, where two simultaneous samples are executed at the same time. ii) The

most critical case is the specimen of 210 grains. The samples were executed in a single machine

with high RAM. For these simulations, a 64 threads machine was used, being possible only the

execution of one sample at the same time. For this last case, the time for run one realization (six

boundary conditions) were approximately 6 h 29 min 26 s. The mean time spent by MUMPS to

solve the system of equations according to the DOF given in Table 4.2 were approximately 3893 s.

Finally, the mean time required for computing the 210 the Hg and Gg matrices was around of 899s.

The 240 dynamic behavior simulations were run on a group of 32 threads with 40GB. These

dynamic simulations required a small computational source for 180 grains compared with the si-

mulations of the effective macroscopic properties. The reason is the shape of the long cantilever

bar used, Figure 4.5. The final system of equation for the dynamic behavior simulations is more

sparse than the system for the macroscopic properties. Hence, it was possible to run 8 samples

simultaneously.
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5 Grain boundary model

The failure analysis of GBs in the polycrystal aggregates has been the object of study through

continuum, atomistic or multiscale approaches. The modeling of this failure condition requires a

complex and detailed analysis of GBs that represents the transition region between two grains

with distinct crystalline orientations. In this chapter, the atomistic modeling of GBs is presented

using LAMMPS, where the GBs are analyzed for several configurations. First, the MD formulation

implemented in LAMMPS is described. Then, as a validation, the evaluation of the GB energy as

function of the crystalline orientation angle is presented for bcc materials.

5.1 Molecular dynamics

The atomistic simulations consist in the description of the positions and thermodynamic state

of a system composed by thousand of atoms in a specific instant of time. The system is generally

solved by molecular dynamics, that is a deterministic method to evaluate the positions {x𝑖,...,x𝑁}
and the velocities {v𝑖,...,v𝑁} of the system, where both are known at the initial time t𝑖. In or-

der to evaluate the time evolution and following the descriptions presented in (GRIEBEL ET AL.,

2010; LEIMKUHLER AND MATTHEWS, 2015), the Hamiltonian of the system is expressed as

ℋ = E𝑘 + U . (5.1)

In Equation (5.1), E𝑘 and U are the kinetic and potential energies of the system respecti-

vely. The evolution can be described by the Hamilton’s equation of motion expressed in terms of

generalized coordinates q𝑖 and conjugate momenta p𝑖 given by

q̇𝑖 = ∇pi
ℋ, ṗ𝑖 = −∇xi

ℋ, i = 1,...,N , (5.2)

where the “( ˙ )” denotes the partial derivative with respect to the time. There are distinct mathe-

matical ways to derive the relations shown in Equation (5.2), see (GOLDSTEIN ET AL., 2002).

Generally, it is considered the interactions between atoms as characterized by the gradient of a con-
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servative potential U = U(x1,...,x𝑁), which is not explicitly dependent on the time. If cartesian

coordinates and velocities are used, the Hamiltonian is

ℋ(x𝑖,...,x𝑁 ,p𝑖,...,p𝑁) =
𝑁
∑

𝑖=1

p2
𝑖

2m𝑖

+ U(x1,...,x𝑁) . (5.3)

The momenta is given by p𝑖 = m𝑖v𝑖, where m𝑖 is the atomic mass. From the Equation (5.2)

the Newton’s equation of motion can be derived as

ẋ𝑖 = v̇𝑖, m𝑖ẍ𝑖 = F𝑖, i = 1,...,N , (5.4)

where the forces F𝑖, only depend on the coordinates and are given by F𝑖 = −∇xi
U𝑖(x1,...,x𝑁). The

evolution of the atomistic system is accomplished by solving the differential Newton’s equation

in a discrete time, using integration methods to find the new values of the position and velocity

vectors at t𝑖+1 after one time step δt. Frequently, the atomistic 3D domain of these models is

assumed as a box with dimensions L𝑥, L𝑦 and L𝑧. The periodicity of crystalline materials offers

the advantage to imposed periodic boundary conditions to the system. This allows to compensate

the computational limitations of the numerical simulation. A representation of periodic boundary

conditions is illustrated in Figure 5.1.

x y

z

x y

z

z

x

(a)

(b)

(c)

Figure 5.1: Periodic boundary conditions: (a) cell, (b) super cell and (c) simulation domain.
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The cell shown in Figure 5.1(a), is replicated in its all three dimensions as shown in Fi-

gure 5.1(b). Hence, surface effects are avoided and better interactions between the domain and the

surrounding media are reproduced applying periodic boundary conditions. The atoms that leave the

domain by one site enter by the opposite and also atoms located close to the opposite sites of the

domain interact with each other, Figure 5.1(c). Other types of boundary conditions are described

in (GRIEBEL ET AL., 2010).

5.1.1 Energy minimization

The energy minimization is an important task to reach the structural relaxation and stable

equilibrium of the atomistic system. Commonly, atomic arrangements are generated from its equi-

librium configuration after the fitting process of the interatomic potential. This situation occurs in

case of absence of defects or discontinuities in the domain of the system. Realistic atomic systems

in the nature are not perfect, e.g. the discontinuities and broken bounds presented in the grain boun-

daries of polycrystalline materials. Owing to the dependency of the potential energy on the atomic

positions, the imperfections in the structure configuration can cause specific atomic positions where

the evaluation of the potential energy results in very high values.

In order to find the minimum ground state of the atomistic system, several computational

methods were proposed in the literature to optimize the potential energy function. Methods such

as, the steepest descents, Quick-min, Fast inertial relaxation engine, conjugate gradient, Broyden-

Fletcher-Goldfard-Shanno (L-BFGS) and the global L-BFGS (GL-BFGS). These methods are

force-based optimizers. Sheppard et al. (2008), presents in a review an extensive comparison

between the mentioned methods for finding minimum energy paths. Additionally, more classi-

cal methods can be mentioned to carry out energy minimization such as Newton-Raphson, quasi-

Newton or truncated-Newton methods (BITZEK ET AL., 2006). The most commonly method used

for energy minimization of atomistic systems is the conjugate gradient (CG) using the Polak-Ribièri

formula (POLAK AND RIBIÈRE, 1969; PRESS ET AL., 1992), due to its efficiency to convergence.

Considering that the coordinates r𝑖 of the N atoms in the system are contained in a vector x

of 3N components, as
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x = (r1,r2,...,r𝑁) . (5.5)

The function to be minimize is the potential energy U(x), the most rapidly change in the

function is determined by the gradient. The approximation of the potential function by a Taylor

series around the point P, as the origin of the coordinate system with coordinates x is, written as

U(x) = U(P) +∇U(P) · x+
1

2
x𝑇 ·H(P) · x+ · · · , (5.6)

where H(P) = ∇∇U(P) is the Hessian matrix. If c ≡ U(P) and b ≡ −∇U(P), the Equa-

tion (5.6) takes the following form

U = c− b · x− 1

2
x𝑇 ·H · x . (5.7)

The gradient of the potential function is calculated from Equation (5.7), as

∇U = H · x− b . (5.8)

The minimization implies that the gradient will vanish, being the function goes to an extreme.

The change in the gradient over some direction is δ∇U(x) = H · δx. Now, supposing that the

direction where the function previously moved to a minimum is u and it if is perpendicular to

the gradient, then ∇U(x) · u = 0. The next movement is over some direction v. It indicates

that the change of the gradient is expressed by δ∇U(x) · v = 0. In order to maintain an efficient

minimization, it is required that, for the new direction vector v the gradient of the potential function

remains perpendicular to u, hence u𝑇 · H · v = 0. The vectors u and v that follows the last

properties are conjugate. The CG method initializes the search in the direction of the force, d0 =

F0. Furthermore, two vectors are defined as g0 = d0 and h0 = d0 where h0 is the actual direction.

In order to calculate the new direction in which to move, it is used the equations presented in (PRESS

ET AL., 1992) as follows
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g𝑖+1 = g𝑖 − λ𝑖(H · h𝑖) and h𝑖+1 = g𝑖+1 + γ𝑖h𝑖 , (5.9)

these vectors satisfy the orthogonality and conjugacy conditions

g𝑖 · g𝑗 = 0 h𝑇
𝑖 ·H · h𝑗 = 0 g𝑖 · h𝑗 = 0 for j < i . (5.10)

In the Equation (5.9) the scalars λ𝑖 and γ𝑖 are equal to

λ𝑖 =
g𝑖 · h𝑖

h𝑇
𝑖 ·H · h𝑖

, (5.11)

γ𝑖 =
g𝑖+1 · g𝑖+1

g𝑖 · g𝑖

. (5.12)

For atomistic simulations, it is no recommended to evaluate the Hessian matrix, due to its

N2 order. Therefore, there is a variation of the CG method that works without the evaluation of the

Hessian matrix H. This is, if the potential function U is minimized in the direction of h to some

point x𝑖+1 = r𝑖 + αd𝑖, the new g can be obtained as

g𝑖+1 = −∇U(r𝑖 + αd𝑖) . (5.13)

Hence, the algorithm starts with the initial state r0, U0 = U(r0), F0 = −∇U(r0), g0 = F0

and h0 = F0. Then, the algorithm is defined by the following steps

1 First, the minimization of U(r𝑖 + αF𝑖) is carried out respect to the scalar α, then

U 𝑖+1 = U(r𝑖+1).

2 If U 𝑖+1 − U 𝑖 < error, quit.

3 Calculate F𝑖 = −∇U(r𝑖+1) and U 𝑖 = U(r𝑖+1).
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4 Set g𝑖+1 = F𝑖 and evaluate γ using the Polak Rebière definition

γ =
(g𝑖+1 − g𝑖) · g𝑖+1

g𝑖 · g𝑖

. (5.14)

5 Evaluate h𝑖+1 = g𝑖+1 + γh𝑖 and set F𝑖+1 = h𝑖+1.

6 Return to 1 for the next iteration.

If the minimization is carried out along a set of conjugate directions, the above algorithm will

be very efficient to find a local minimum.

5.1.2 Time integration method

The solution of the Newton’s equation of motion is carried out by discretization of the con-

tinuum problem into a finite number of time steps δt to transform the differential equation into a

system of equations. Thus, the solution consists on the evaluation of the state of the system at the

specific time t𝑛 from the initial condition at t0, through subintervals with the same size up to t𝑁 ,

where n = 1,2..., N . Methods to integrate the differential equation are generally based on finite

differences. An efficient and stable scheme for the time discretization of the Newton’s equation is

the Verlet algorithm (VERLET, 1967) some other methods were also proposed in (TUCKERMAN

AND BERNE, 1992; HUMPHREYS ET AL., 1994).

The integration methods require some characteristics for the analysis of atomistic systems,

such as: i) the accuracy when large time steps δt are used, ii) the computational speed needed to

carry out the integration over the thousand of atoms, iii) the energy conservation that depends on

the reversibility of equation of motion and the constant volume. In MD simulations, the energy

conservation could be affected by the arithmetic operations performed with finite accuracy (typi-

cally in double precision with relative accuracy of the order 10−16). Furthermore, the calculation

of the interatomic forces, which usually ignores interactions beyond a cutoff. Hence, the forces are

not accurate. These problems can affect the energy conservation in MD simulations. An extensive

study of energy conservation was presented by Toxvaerd et al. (2012).

In order to derive the Verlet algorithm, consider the first derivative of the atomic position x𝑖
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of the ith atom respect to the time, expressed in terms of the central difference operator at the grid

point t𝑛 as

ẋ𝑖(t𝑛) =
x𝑖(t𝑛 + δt)− x𝑖(t𝑛 − δt)

2δt
. (5.15)

The Taylor expansion of the right-hand side terms in Equation (5.15) around both instants

t𝑛 + δt and t𝑛 − δt up to the second order gives

x𝑖(t𝑛 + δt) = x𝑖(t𝑛) + δtẋ𝑖(t𝑛) +
1

2
δt2ẍ𝑖(t𝑛) +𝒪(δt3) , (5.16)

x𝑖(t𝑛 − δt) = x𝑖(t𝑛)− δtẋ𝑖(t𝑛) +
1

2
δt2ẍ𝑖(t𝑛)−𝒪(δt3) . (5.17)

By substituting the Equations (5.16) and (5.17) into the Equation (5.15) the order of accuracy

of the discretization is 𝒪(δt2) in the approximation of the first derivative. This approximation

using the central difference operator compared with the forward or backward differences results

in a discretization error of 𝒪(δt). Applying the Equation (5.15) for the first derivative of the terms

x𝑖(t𝑛 + δt) and x𝑖(t𝑛 − δt), the second derivative ẍ around the instant t𝑛 is expressed by

ẍ𝑖(t𝑛) =
x𝑖(t𝑛 + δt)− 2x𝑖(t𝑛) + x𝑖(t𝑛 − δt)

δt2
. (5.18)

A similar analysis can be used for the second derivative ẍ, by the Taylor expansion up to the

third order of both instants t𝑛+δt and t𝑛−δt, then substituting into the Equation (5.18), the order of

accuracy in this case is also 𝒪(δt2), see (GRIEBEL ET AL., 2010). Now, using the Equations (5.18)

and (5.4), the positions at time t𝑛+1 from the positions at time t𝑛 and t𝑛−1 and the forces at time

t𝑛 can be evaluated. Defining x𝑛
𝑖 = x𝑖(t𝑛) and also for v𝑖 and F𝑖, the motion equation in terms of

positions and forces is

m𝑖
1

δt2

Ä

x𝑛+1
𝑖 − 2x𝑛

𝑖 + x𝑛−1
𝑖

ä

= F𝑛
𝑖 , (5.19)
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where, an expression for the positions at time t𝑛+1 is written as

x𝑛+1
𝑖 = 2x𝑛

𝑖 − x𝑛−1
𝑖 +

δt2

m𝑖

F𝑛
𝑖 . (5.20)

The velocity can be evaluated as the derivative of the position at time t𝑛+1 using the Equa-

tion (5.15) as follows

v𝑛
𝑖 =

x𝑛+1
𝑖 − x𝑛−1

𝑖

2δt
. (5.21)

This version of the Verlet method has disadvantages, due to the necessity of the initial x0 and

the first x1 time positions. Furthermore, the possibility of large rounding errors in the addition of

quantities with very different size such as presented in Equation (5.20) because the computation

of the very small quantity δt2 (GRIEBEL ET AL., 2010). There are variants of the original Verlet

method (VERLET, 1967) to reduce the rounding errors, and the requirement of two last time steps

into one. The leapfrog scheme (HOCKNEY, 1970) considers the calculation of the velocities at time

t𝑛 + 1/2 from the velocities at time t𝑛 − 1/2 and the forces at t𝑛, Equation (5.22).

v
𝑛+1/2
𝑖 = v

𝑛−1/2
𝑖 +

δt

2m𝑖

F𝑛
𝑖 . (5.22)

Here, the positions are given at time t + δt Equation (5.23), in terms of the positions at the

current time step t𝑛 and the velocities computed by Equation (5.22).

x𝑛+1
𝑖 = x𝑛

𝑖 + δtv
𝑛+1/2
𝑖 . (5.23)

Applying the last two equations, it is observed the minimization of the presence of rounding

errors compared to the Equation (5.20). This second version of the Verlet method has a disadvantage

to evaluate the kinetic and potential energies at the same time t𝑛. A second variant is the so-called

velocity Verlet method (SWOPE ET AL., 1982). This algorithm eliminates the half-step velocity

problem. Substituting the acceleration field x𝑛
𝑖 = F𝑛

𝑖 /m𝑖 into the Equation (5.16), the following
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equation is obtained

x𝑛+1
𝑖 = x𝑛

𝑖 + δtv𝑛
𝑖 + δt2

F𝑛
𝑖

2m𝑖

. (5.24)

Analogously, the Taylor expansion for the velocity up to the second order is

v𝑛+1
𝑖 = v𝑛

𝑖 + δtv̇𝑛
𝑖 +

1

2
δt2v̈𝑛

𝑖 . (5.25)

Substituting the second derivative of the velocity v̈𝑛
𝑖 by its expression in terms of the forward

differences into the Equation (5.25) yields

v𝑛+1
𝑖 = v𝑛

𝑖 +
1

2

Ä

v̇𝑛
𝑖 + v̇𝑛+1

𝑖

ä

, (5.26)

and then

v𝑛+1
𝑖 = v𝑛

𝑖 +

Ä

F𝑛
𝑖 + F𝑛+1

𝑖

ä

δt

2m𝑖

. (5.27)

The velocity Verlet method uses the half time step as a predictor-corrector step. This is, first

the force field is evaluated at t0 using the reference positions x0
𝑖 , thus the next positions x1

𝑖 are

calculated by Equation (5.24). Now, the velocity for a predictor stage can be computed for a half

time step v
1/2
𝑖 using the following equation

v
𝑛+1/2
𝑖 = v𝑛

𝑖 +
F𝑛

𝑖 δt

2m𝑖

, (5.28)

hence, the new F1
𝑖 force field can be evaluated. Finally, the correction for the velocity in a complete

time step v1
𝑖 is given by
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v𝑛+1
𝑖 = v

𝑛+1/2
𝑖 +

F𝑛+1
𝑖 δt

2m𝑖

. (5.29)

For illustrative purposes, the velocity Verlet algorithm is presented step by step in the next

table

1st F𝑛
𝑖 = −∇xi

U𝑖(x
𝑛
𝑖 )

2nd x𝑛+1
𝑖 = x𝑛

𝑖 + δtv𝑛
𝑖 +

F𝑛
𝑖 δt

2

2m𝑖

3rd v
𝑛+1/2
𝑖 = v𝑛

𝑖 +
F𝑛

𝑖 δt

2m𝑖

4th F𝑛+1
𝑖 = −∇xi

U𝑖(x
𝑛+1
𝑖 )

5th v𝑛+1
𝑖 = v

𝑛+1/2
𝑖 +

F𝑛+1
𝑖 δt

2m𝑖

Table 5.1: Velocity Verlet algorithm.

All three variants for the Verlet algorithm needs almost the same amount of memory 9N.

5.1.3 Interatomic potentials

The atomistic modeling considers the evaluation of the force field in an instant of time in the

system. The force field is characterized by the gradient of a potential energy U(x) that is a function

of the atomic positions. Initially, the potential energy was based only on the interaction between

two atoms called pair potential V (x). Some classical pair potentials can be found in the literature,

such as the Lennard-Jones and Morse or the van der Waals potentials as described in (GRIEBEL

ET AL., 2010). In pair potentials, atomistic bonds are treated independently from each other, which

is an approximation with the advantage of simple expressions. For metallic materials, it is not

recommended to use basic pair potentials to evaluate the force field, owing to the lack of con-

siderations of additional physical effects. Comparisons of simulations based on realistic N-body

potentials with simple pair potentials are presented by Ziegenhain et al. (2009), for the analysis of

nano-identations.
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The most common N-body potentials used for metallic materials are the embedded atom

method (EAM) (DAW AND BASKES, 1983) and the Finnis-Sinclair (FS) (FINNIS AND SIN-

CLAIR, 1984) potentials. These potentials are composed by a repulsive pair potential V (x) and

an attractive function f , that contemplates the surrounding effects at the ith atom. The total poten-

tial energy of the system is expressed as

U =
𝑁−1
∑

𝑖=1

𝑁
∑

𝑗=𝑖+1

V (r𝑖𝑗) +
𝑁
∑

𝑖=1

f(ρ𝑖) , (5.30)

where f is an embedded function and ρ𝑖 is the local electronic charge density at ith atom. Hence, it

is constructed as the summation over its all corresponding neighbor jth atoms, then

ρ𝑖 =
∑

𝑗

φ(r𝑖𝑗) . (5.31)

The form of the embedded function depends on the type of N-body potential. As shown

in Equations (5.30) and (5.31), both V (r𝑖𝑗) and φ(r𝑖𝑗) are dependent on the interatomic distance

r𝑖𝑗 = |r𝑖𝑗| = |r𝑗 − r𝑖|. The electronic density ρ𝑖 is defined as the rigid superposition of the ato-

mic charge densities φ. The energy of the atom at site i is then assumed to be, the same as if it

would be inside of a uniform electron gas of that density. The attractive part of the FS potential

was based on the results of tight-binding theory (FINNIS AND SINCLAIR, 1984), while the EAM

potential regards the Hartree-Fock calculations, this is the reason on the difference of the function

f in each potential. In this work, a bcc Fe material is considered in the analysis using the EAM po-

tential proposed by Mendelev et al. (2003). The functional form of the pair potential part is shown

in Equation (5.32).

V (r) = k
Z2q2𝑒
r

ϕ

Ç

r

r𝑠

å

H(r*1 − r)+

exp(𝐵0+𝐵1𝑟+𝐵2𝑟2+𝐵3𝑟3)H(r − r*1)H(r*2 − r)+
15
∑

𝑘=1

a𝑘(r𝑘 − r)3H(r𝑘 − r)H(r − r*2) ,

(5.32)
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where k is the Coulomb’s constant, Z is the atomic number and q𝑒 is the atomic charge on an

electron. Details of these pair potential functions are explained in (BIERSACK AND ZIEGLER,

1982; ACKLAND ET AL., 1997). The remaining terms r𝑠 and ϕ are

r𝑠 = 0.88534
r𝐵

21/2Z1/3
, (5.33)

and

ϕ(x) = 0.1818 exp(−3.2𝑥) +0.5099 exp(−0.9423𝑥) +

0.2802 exp(−0.4029𝑥) +0.02817 exp(−.2016𝑥)

, (5.34)

being r𝐵 the Bohr radius. This EAM potential uses the form for the density function as shown

in Equation (5.35).

φ(r) =
15
∑

𝑘=1

A𝑘(R𝑘 − 1)3H(R𝑘 − r) . (5.35)

The embedded function takes the form as follows

f(ρ𝑖) = −√
ρ𝑖 + a*ρ2𝑖 . (5.36)

In this case, r1 < r2 < · · · < r15 and R1 < R2 < R3. The cut-off radii for V and φ are r15
andR3 respectively. Furthermore, this potential considers the ion-ion interaction as shown in Equa-

tion (5.32), when r < r*1 for r*1 = 0.95 Å, using the screened-Coulomb potential (BIERSACK AND

ZIEGLER, 1982). For the second interval r*1 < r < r*2, where r*1 = 1.95 an exponential function is

used. Finally, for r > r*2, a cubic spline function is employed. The coefficients a𝑘, r𝑘, A𝑘, R𝑘, B𝑘

and a* are given in the Appendix C.1. As mentioned, the gradient of the potential function gives

the force between two individual atoms. According to the Equation (5.30), the atomistic force can

be computed by
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F𝑖 =
𝑁
∑

𝑗=1,𝑖 ̸=𝑗

®

dV (r𝑖𝑗)

dr
+ [f ′(ρ𝑖) + f ′(ρ𝑗)]

dρ𝑖(r𝑖𝑗)

dr

´

r𝑖𝑗

r2𝑖𝑗
. (5.37)

The resulting force on the ith atom is obtained by the summation over all jth neighbor atoms

inside the cutoff radius defined by the potential. The evaluation of this force regards the effects

of the electronic density between the two atoms. Then, the force on the ith atom depends on the

surrounding atoms. It requires a previous computation of the electronic density for each atom ρ𝑖

and ρ𝑗 . Due to the N-body character of these potentials and according to the radii presented in Ta-

ble C.1.1, the behavior can be plotted in terms of the ratio r/a, where a is the lattice parameter. The

maximum ratio r/a is 2.101 working up to the sixth nearest neighbor atoms. Figure 5.2 presents

the corresponding potential of an ith atom U𝑖 given in eV in terms of the ratio r/a.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
✁5

0

5

10

15

20

25

30

35

40

r/a

U
i
[e
V
]

0.5 1 1.5 2
�1000

0

1000

2000

3000

4000

5000

6000

7000

r/a

U
i
[e
V
]

Figure 5.2: EAM Potential for Fe.

As results from the fitting process (MENDELEV ET AL., 2003), the lattice parameter a is

2.855 Å and the cohesive energy E𝑐 is 4.1341 eV. This energy occurs when the ratio a/r is 1,

that corresponds with the equilibrium state of a perfect structure. The potential energy between

atoms when the ratio a/r is less than the equilibrium lattice distance, is reasonable evaluated by
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the screeaned-Coulomb and exponential potentials shown in Equation (5.32). This fact presents an

advantage when compared to more basic interatomic potentials.

5.1.4 Stress tensor

The evaluation of the macroscopic stress tensor takes into account the conjunct of microsta-

tes, positions x𝑖 and velocities v𝑖, computed by the MD simulation. These microstates are related

to the macroscopic thermodynamic variables such as the temperature and pressure of the physical

problem, evaluated using statistical mechanics. For a system with a large number of atoms, regar-

ding the canonical thermodynamical ensemble (NVT), where the number of atoms N, temperature

T and the volume V remain constant in the system. The global stress tensor S can be established as

S =
1

V

〈

𝑁
∑

𝑖=1

m𝑖v𝑖 ⊗ v𝑖 +W(r)

〉

, (5.38)

where the brackets “⟨...⟩” denote the average of the canonical ensemble (NOSÉ, 1984) to evaluate

the macrostate from the all microstates. In the first term,m𝑖 and v𝑖 are the mass and instant velocity

of the ith atom respectively. Furthermore, the kinetic energy term is derived from the corresponding

thermodynamic average using the state equation (GOLDSTEIN ET AL., 2002). The second term

of the Equation (5.38) is the global Virial tensor, that quantifies the contribution of the forces

acting between atoms. The Virial tensor can be derived from different schemes depending on the

application. For the case of periodic systems, the Virial tensor is related to the change on the volume

V of the atomic super cell, Figure 5.1. This means, from (HÜNENBERGER, 2002; OLIVA AND

HÜNENBERGER, 2002) the Virial can be expressed as

W (r) = −3V
dU

dV
. (5.39)

The Virial depends only on the instantaneous atomistic positions r = r1, ..., r𝑁 and the in-

teraction between them. In this derivation, the interatomic potential represents the contribution to

the pressure or stress tensor. Following the analysis presented by Hummer and Gronbech-Jensen

(1998), the potential energy U does not only depend on the volume. The dependence arises from
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the volume scaling of the particle positions as

dr𝑖
dV

=
r𝑖

3V
,

∂U

∂V
=

∑

𝑖

∂U

∂r𝑖
· ∂r𝑖
∂V

=
1

3V

∑

𝑖

∂U

∂r𝑖
· r𝑖 .

(5.40)

Combining the Equations (5.39) and (5.40), the expression for the stress tensor in terms of

the interatomic force field and velocity is obtained as

S =
1

V

∞

𝑁
∑

𝑖=1

m𝑖v𝑖 ⊗ v𝑖 −
𝑁
∑

𝑖=1

𝑁
∑

𝑗>𝑖

F𝑖𝑗 ⊗ r𝑖𝑗

∫

. (5.41)

Details of how LAMMPS computes the Virial for individual atoms for either pairwise or N-

body potentials, including the effects of periodic boundary conditions is discussed in (THOMPSON

ET AL., 2009).

5.2 Grain boundary energy

Grain boundaries have an important role in the behavior and failure analyses of polycrystal-

line materials, owing to the influence on the physical macroscopic properties of the material. The

importance of the study of the GBs from an atomistic view is to capture the effects on different

GB properties such as segregation, that contemplates the changes of concentration of additional

elements as impurities in the interface. Similar to segregation, the diffusion phenomenon considers

the movement of atoms in the GB (CABANÉ-BROUTY AND BERNARDINI, 1982). Other important

GB processes for motion is the sliding, when the rigid translation of one grain over another paral-

lel to the boundary interface occurs. Furthermore, the GB migration, which is the motion of the

interface in the direction perpendicular to the boundary plane (BALLO, 2001). Phenomena such as

the formability and fracture behavior of polycrystalline materials are influenced by the presence of

second phase precipitation at the grain boundaries (STEELE ET AL., 2007). Several works in the

literature (LI AND REYNOLDS, 1998; BRIANT, 2001) defined that, as the level of precipitation

increases in the GBs, the fracture toughness and formability decrease affecting the overall behavior
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of the material respect to the intergranular fracture. The GBs are formed during the grain growth

and represent the discontinuity from the perfect crystal, being a region separating two grains of

different phase. The orientations of these two grains differ from each other producing the grain

boundary as a transition region, where the periodic character remains with distinct atomic position

compared to the grain interior (LEJCEK, 2010).

5.2.1 GB categories

As mentioned, the mesoscale model a polycrystalline structure is built, where each grain is

considered as a continuous anisotropic body with defined crystalline orientation. This fact leads to

a generation of infinite oriented GBs. Therefore, it is useful to employ the crystallographic des-

cription of the two adjacent grains of the interface. Generally, the grain boundary is modeled as a

bicrystal, Figure 5.3(a). A mixed GB is defined by a specimen containing the crystals A and B with

the random crystalline orientation (h𝐴k𝐴l𝐴) and (h𝐵k𝐵l𝐵) respectively, Figure 5.3(b).
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θA
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φB

Figure 5.3: Bicrystal: (a) description, (b) mixed, (c) tilt and (d) twist GBs.
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The GBs are fully characterized by the grain misorientation ĉ = ⟨hckclc⟩ axis, which is

identical in both grains. Over the ĉ axis, the tilt rotations θ𝐴 and θ𝐵 are defined in the crystals A and

B respectively, Figure 5.3(c). Additionally, the GB is also described by the normal n̂ = [hnknln]

axis, Figure 5.3(b). Over the n̂ axis, the twist rotations ϕ𝐴 and ϕ𝐵 are defined, Figure 5.3(d). All

these variables completed the five DOF needed for the description of the GBs, four of them from

the ĉ and n̂ axes and one given by θ or ϕ. The GBs are classified into, mixed, tilt and twist GBs,

as presented in Figure 5.3(b-d) (LEJCEK, 2010). These three types of GBs can be also divided into

five groups distinguished as follows

Symmetric tilt (STGB) {h𝐴k𝐴l𝐴} = {h𝐵k𝐵l𝐵} ϕ𝐴 = 0 ϕ𝐵 = 0

Asymmetrical tilt (ATGB) {h𝐴k𝐴l𝐴} ≠ {h𝐵k𝐵l𝐵} ϕ𝐴 = 0 ϕ𝐵 = 0

Symmetric twist (STwGB) {h𝐴k𝐴l𝐴} = {h𝐵k𝐵l𝐵} ϕ𝐴 ̸= 0 ϕ𝐵 ̸= 0 ϕ𝐴 = ϕ𝐵

Asymmetrical twist (ATwGB) {h𝐴k𝐴l𝐴} = {h𝐵k𝐵l𝐵} ϕ𝐴 ̸= 0 ϕ𝐵 ̸= 0 ϕ𝐴 ̸= ϕ𝐵

Mixed GB {h𝐴k𝐴l𝐴} ≠ {h𝐵k𝐵l𝐵} ϕ𝐴 ̸= 0 ϕ𝐵 ̸= 0 ϕ𝐴 ̸= ϕ𝐵

Table 5.2: GB categories.

In summary, from Table 5.2, the GBs are completely described implying the existence of a

large number of different GBs. In a general way, the GB can be defined by using the following no-

tation θ[hckclc](hnAknAlnA)/(hnBknBlnB). This representation can be reduced more specifically

by the relationship between the DOF, e.g. tilt GBs will occur with ĉ ⊥ n̂ and in case of twist when

ĉ ‖ n̂. For symmetrical GBs the notation can be simplified as θ[hckclc]{hnknln}.

5.2.2 Coincidence-Site Lattice

The CSL is a geometrical model for the identification of different types of GBs. The GBs

are divided into low-angle and high-angle interfaces. It is considered the low-angle GBs as the

interfaces with a misorientation angle less than 15∘. Several works reported low-angle GBs, such

as Rouvierea et al. (2000) that simulated twist interfaces from 0.5∘ to 12∘. Also Gao and Jin (2017)

used 3.4∘ tilt angle analysis of dislocation in Ni using MD simulations. Additionally, the energy

of the low-angle GBs can be calculated through various analytical techniques as presented in (SHI

ET AL., 1989). For both cases low and high angle GBs, the atomic arrangement of the GB maintains

its different periodic character from the atomic structure inside the grains. Therefore, the GB energy
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is considered higher than the energy in the crystal interior.

The CSL contemplates that the grain boundary energy is low when the coincidence of atomic

positions in both adjacent grains is high, because the number of bonds that are broken across the

boundary is small (FLETCHER, 1971). Other definitions consider that the state of the minimum

energy occurs when the atomistic arrangement is perfect without any discontinuity, the grain boun-

dary energy is low when more atoms coincide with the positions of the perfect crystal than in a

non-coincident state. The number of coincident-sites is determined by the simply superposition of

the two crystals where some atoms will coincide, this process can represent a difficult task. In the

literature, the GBs are identified by the reciprocal value (Σ) of the density of coincidence sites that

is important to characterize the CSL. An extended explanation of how to evaluate the Σ parameter

is presented by Lejcek (2010). At first instance, the Σ values will be higher for low angle GBs.

Owing to the geometrical nature of the CSL model, some situations are observed from this

concept, e.g. for 0∘ misorientation angle, the perfect crystal has all of its atomic positions as coin-

cident. Therefore, in this case the description assumes the value of Σ1 and its corresponding grain

boundary energy is 0 mJ/m2. Another case is referred to the twin grain boundaries, that are con-

sidered as very symmetrical interfaces with low or high angles. In the bcc Fe material, almost 0

mJ/m2 minimum energy occurs for Σ3 when θ = 70.53∘ while a maximum value occurs when

θ = 109.47∘, in this case its GB energy takes an approximated value of 1300 mJ/m2 (TSCHOPP

ET AL., 2012). From the literature, several tilt and twist GB energy analyses can be found for diffe-

rent materials, where the energy is evaluated in terms of the tilt θ or the twist ϕ angles (TSCHOPP

ET AL., 2015; RUNNELS ET AL., 2016).

In the MD simulation of GB energy, the bicrystal model considers periodic boundary condi-

tions. These conditions will allow to simulate the interfaces as an infinite media in all directions.

Depending on the misorientation angle of each grain, the final bicrystal structure must guarantee

the exactly periodicity in the x, y and z axes. In this work, the CSL bicrystal is built using the GBs-

tudio available in https://staff.aist.go.jp/h.ogawa/GBstudio/indexE.html.

This is a software developed by Ogawa (2006) for generating atomic coordinates in periodic GB

models composed by two crystals. Hence, using GBstudio a set of STGB, ATGB, STwGB and

ATwGB can be generated, where the input parameters are the lattice of the crystal structure, the

mentioned five DOF of the bicrystal and the number of rotated unit cells along each axis. An illus-

tration of a generated GB is shown in Figure 5.4. This structure represents an example of a STGB

bicrystal for a cubic bcc Fe.
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Crystal A = 22620
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Figure 5.4: Bicrystal structure of a STGB Σ51{1 1̄ 10} in the ⟨110⟩ direction.

In the STGB Σ51{1 1̄ 10} depicted in Figure 5.4, the new axes of coordinates are x = ⟨110⟩,
y = [11̂0] and z = [1 1̄ 10]. In this GB, the misorientation angles are the same as θ𝐴 = 8.04∘ and

θ𝐵 = 8.04∘. The normal vector of the GB plane is the same as z, n = [1 1̄ 10]. After the application

of the misorientation angles in both crystals, the resulting new unit cell has a modified lattice size to

guarantee the periodicity. In this case, the size of the resulting unit cell is a𝑥 = 4.04 Å, a𝑦 = 2.039

Å and a𝑧 = 0.283 Å. Hence, in the example presented in Figure 5.4 the unit cell is repeated in

each direction as indicated by the following three values N𝑥 = 13, N𝑦 = 3 and N𝑧 = 29 for each

crystal. More details of the STGB Σ51{1 1̄ 10} are presented in Figure 5.5. A section is selected

from the bicrystal, Figure 5.5(a), where the perfect periodicity in the x and y axes is shown. The

final crystalline structure is composed by two layers repeated along the [1̄10] axis, Figure 5.5(b)

and shown in detailed in the Figure 5.5(c) from the standard cubic bcc unit cell of Fe.



101

Layer A

Layer B

θ = 8.04°

Layer A

Layer B

(a)

(b)

(c)

Figure 5.5: Detailed description of the STGB Σ51{1 1̄ 10} bicrystal.

The computational cell must be large enough to prevent interaction between the parallel boun-

daries and other finite-size effects (RITTNER AND SEIDMAN, 1996). In this work, the size of the

bicrystal with dimensions L𝑥, L𝑦 and L𝑧 is considered as suggested by (SANGID ET AL., 2010) as

L𝑥, Ly ≥ 5 nm and L𝑧 ≥ 8 nm. Owing to the periodicity, the structure is repeated and perfectly

matched over the three axes.

In the literature, many studies have been carried out to identify the predominant type of GBs

presented in metals and ceramics. It is known that interfaces with high coincident site density or

low values of Σ are energetically favorable and frequently found in existing materials, commonly

presented in asymmetrical GBs (WOLF, 1991; OGAWA, 2006). Extensive analyses over a large

amount of GBs for different materials were presented by Watanabe et al. (1989). They studied the

type and frequency of GBs in a rapidly solidified and annealed Fe-6.5 mass%Si alloy, high frequen-

cies of low-angle boundaries and coincident boundaries were observed with Σ3, Σ9, Σ11, Σ17 and

Σ19 in the ⟨110⟩ rotation axis. Using the same alloy, some additional studies to control the grain
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character distribution and its effects on the deformation using directional recrystallization were pre-

sented by Zhang et al. (2015). The authors reproduced elongated grain structures, high frequency

of both low angle and low Σ values. An analysis in hot-rolled Fe-6.5 mass%Si was carried out

by Zhang et al. (2018). They investigated the effects of annealing on GBs texture evolution. Their

results were also compatibles with the last two references, the authors obtained a large percentage

of Σ3, Σ9, Σ13 and Σ27. At 800∘C annealing temperature, the mean frequencies of misorientation

angles were for 5∘ and 30∘. In case of 650∘C annealing temperature, the found higher frequencies

were from 0∘ to 30∘. From the conclusions presented by the mentioned works, it is feasible to

considerate a large number of STGB, ATGB, STwGB and ATwGB to statistically characterize a

representative quantity of interfaces presented in a polycrystalline Fe material, in order to derive an

intergranular failure criterion from the atomistic scale to be applied in the mesoscale.

5.2.3 GB Simulations

Molecular dynamic simulations using LAMMPS are carried out to evaluate the GB energy

on Fe of a set of STGBs and STwGBs, for a tilt angle varying from 0∘ to 180∘ and twist angle

varying from 0∘ to 60∘. The GB structures are built with the GBstudio using the lattice parameter

a and according to the mentioned box size requirements. The STGBs and STwGBs structures are

listed in Table C.3.1. As described in the subsection 5.1.3, the EAM (MENDELEV ET AL., 2003)

potential is used for Fe. The input file of the potential is available in the Interatomic Potentials

Repository Project, https://www.ctcms.nist.gov/potentials/.

In the minimization of the GB energy, the system is previously annealed to 800 K and then

quenched to 10 K (SANGID ET AL., 2010). From an initial temperature T𝑖 and using the time step

dt = 0.001ps, the system is stabilized during 1000 time steps at T𝑖 using the NVE ensemble. In this

model, the pressure remains constant at 0bar in the whole thermal process. Thus, the annealing and

quenching procedures begin: i) the temperature is increased to from T𝑖 to 800K, ii) the temperature

is steady at 800 K, iii) the temperature is reduced to 10 K, iv) the temperature is steady at 10 K.

This thermal process is achieved using the NPT ensemble. It allows to control the temperature

and pressure through the integration over time. The NPT is implemented in LAMMPS based on

the isothermal-isobaric ensemble presented by Tuckerman et al. (2006). Each process is simulated

during 10,000 time steps. At this stage, the structure is ready to be relaxed using the conjugant

gradient method. The box is allowed to relax in all directions first, and then only in the normal
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direction to the GB in a second minimization to alleviate any GB pressure. The GB energy γGB

is calculated comparing the final energy obtained by the simulation E𝐵𝑖𝑐𝑟𝑦𝑠𝑡𝑎𝑙 and the energy of a

perfect crystal with the same number of atoms Eperfect as follows

γGB =
E𝐵𝑖𝑐𝑟𝑦𝑠𝑡𝑎𝑙 − Eperfect

2(L𝑥L𝑦)
, (5.42)

where A = L𝑥L𝑦 is the GB area, the factor of two, is because the system contains two interfaces

owing the periodic boundary conditions in the z-axis. The corresponding energy to a perfect crystal

is computed as Eperfect = NE𝑐, where E𝑐 is the cohesive energy and N the total number of atoms

in the system. The completed algorithm is shown in Figure 5.6.

GBstudio

Box size: Lx, Ly Lz

Atomic positions: x, y, z

Initialize Simulation

dt

temp_i

overlap
General Variables

Atomistic Structure

Interatomic PotentialPotential

Delete

Initial State

Centro-symmetry

Potential energy

Temperature/state equation

Struc

Initial Temperature

Temperature: temp_i
Rescale temperature: 1000*dt

NVE

10

800

T (K)

dt10000 20000 30000 40000

P = 0 bar

temp_i
Thermal Process

1st and 2nd Minimizations

GB energy ENDE_c

Save minimized structure

START

Overlapping Atoms

Figure 5.6: Algorithm to evaluate the GB energy using LAMMPS.
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This algorithm represents the LAMMPS script implemented in this work, see Appendix C.2.

The evaluation of the GB energy is quite similar to the methodology used by (TSCHOPP AND

MCDOWELL, 2007A; TSCHOPP AND MCDOWELL, 2007B)3.

In the bicrystal construction, the resulting GB plane is composed by a periodic atomistic

arrangement with distinct crystalline orientation compared with the grain interior. This special ar-

rangement in the interface can produce overlap atomic sites, where the distance between atoms

is less than the equilibrium lattice parameter a. The overlap effect produces very high values of

the potential energy and the interatomic force calculations. Therefore, there are two variables to

be fitted, the initial temperature temp_i and overlap, as shown in the LAMMPS script in the

Appendix C.2. By fitting the overlap parameter, the atomic sites that cause the superposition

effects are deleted. According to the maximum temperature defined in the thermal process and the

lattice parameter a, in Table 5.3 the selected intervals to evaluate the GB energy as function of the

temp_i and overlap are presented.

Variable Interval

temp_i [K] 10 − 650

overlap [Å] 1.5 − 2.70

Table 5.3: Variables to be fitted.

The temperature interval is divided into 10 values and the overlap interval into 8. In total, this

results in 80 simulations for each bicrystal listed in Table C.3.1. Hence, it is considered in this work

to fit the temp_i and overlap, only to the first tilt low angle GB Σ99{1 1̄ 14} with θ = 11.59∘

in the direction ⟨110⟩ and twist low angle Σ91{10 1̄ 9̄} with ϕ = 10.4∘ in the rotation axis ⟨111⟩.
For the tilt case, the structure has 41184 atoms and in case of twist GB 54208 atoms.

The tilt GB results are presented in Figure 5.7. For a small value of overlap, the GB energy

is high in the whole interval of temperatures. Thus, the GB energy is gradually decreasing when

the overlap increase, the minimum GB energy is 942.42 mJ/m2 at a temperature of 142.92 K and

overlap of 2.58 Å.

3https://icme.hpc.msstate.edu/mediawiki/index.php/LAMMPS_Help3
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Figure 5.7: GB energy of the tilt Σ99{1 1̄ 14} in terms the initial temperature and the overlap
parameters.

In case of twist GB, results are presented in Figure 5.8. There is a uniform behavior of high

GB energy values for the whole temperature interval with the overlap between 2 Å and 2.5 Å. The

minimum GB energy is 907.79 mJ/m2, at temperature of 526.92 K and 2.01 Å.
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Figure 5.8: GB energy of the twist Σ91{10 1̄ 9̄} in terms the initial temperature and the overlap
parameters.



106

Using the fitted values, the GB energy is evaluated for a set of STGBs and STwGBs where

the maximum, mean and minimum number of atoms are presented in Table 5.4.

Tilt Twist

Max 61,776 74,256

Mean 43,537 50,055

Min 27,872 31,824

Table 5.4: Number of atoms used to model the STGBs and STwGBs, from the structures presented
in Table C.3.1.

The GB energy given in terms of the tilt angle θ is shown in Figure 5.9, these results are

compared to the values presented by Tschopp et al. (2012) using the same EAM potential. Results

shown to be close to the reference values, especially for misorientation angles greater than 60∘.

Furthermore, two deep values are identified for Σ3(11̄2) and Σ11(33̄2). Additionally, it can be

observed the strongly variation of the GB energy depending on the misorientation angle.
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Figure 5.9: GB energy of STGBs ⟨110⟩ in terms of the tilt angle θ.
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Results for the twist case are shown in Figure 5.9. Comparisons are carried out with the va-

lues given by Wolf (1991) and Runnels et al. (2016). They used different approaches for the analy-

sis, Wolf (1991) used an iterative minimization algorithm at zero temperature with a Johnson-type

pair potential. Runnels et al. (2016) proposed a relaxation method using the EAM and Lennard-

Jones potentials.
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Figure 5.10: GB energy of STwGBs ⟨111⟩ in terms of the twist angle ϕ.

A steadier behavior of the GB energy was obtained compared to the two references in Fi-

gure 5.10. In this case, there are not deep characteristic values, that mean the STwGB structures

contain large defects from the perfect crystal. Even for low values of the reciprocal density Σ3

and Σ7, the CSL fails from its basic definition. The GB energies evaluated from the STwGBs re-

sult in higher values compared with the evaluated from the STGBs. Otherwise, the values of the

misorientation angle of the STwGB show to be more regular than the GB energy for STGB.

The computational simulations were carried using the Kahuna cluster with a group of 192

threads. In total 223 simulations were performed to obtain results from Figures 5.7 to 5.10.



108

6 Multiscale model

This chapter presents the multiscale approach between the meso- and atomistic scales. Af-

ter the GB energy evaluation, the MD algorithms to obtain the stress-strain constitutive tensile

and shear relationships are shown. The multiscale bridging is carried out applying the asymptotic

scaling analysis to calculate the critical energy densities. The failure condition is analyzed using

the generalized energy failure criterion, considering the variation of the lattice structure in each

GB. Finally, under dynamic boundary conditions, intergranular failure paths propagate through the

polycrystalline structure are exposed.

6.1 Critical energy densities

Molecular dynamic simulations using LAMMPS are carried out to evaluate the tensile and

shear failure of the minimized Fe GB structures. The important fact in these simulations is to

capture the variation of the critical tensile E𝑛𝑐 and shear E𝑠𝑐 energy densities depending on the

GB orientations. This atomistic model offers a more realistic behavior of the failure process at the

interfaces, taking into account the brittle and ductile levels of each GB. For this purpose, a set of 101

STGB, ATGB, STwGB and ATwGB is generated varying the reciprocal of the density coincident-

sites from Σ3 to Σ81, see Appendix C.4. The bicrystal contains an initial central crack to get a more

brittle failure and also to reduce the plastic deformation regime. The dimensional specifications are

shown in Figure 6.1, this configuration is similar to the model used by Dingreville et al. (2017) and

in references (YAMAKOV ET AL., 2008; BARROWS ET AL., 2016).
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x x

z

y
Lx

Figure 6.1: Nanoscale specimen for failure simulations.
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where a𝑐 is defined as 0.3L𝑦 and δ𝑎 is equal to 3a, being a the lattice parameter. This is to avoid the

interaction between atoms in the crack surfaces during the energy minimization process. Further-

more,L𝑥/L𝑦 < 1 beingL𝑥 large enough to avoid an interference on the free surface effect produced

by the periodic boundary conditions between the walls at x = 0 and x = L𝑥. In Table 6.1, the statis-

tical information of the number of atoms, dimensional details and the GB energies of the nanoscale

specimens are presented.

Atoms L𝑥 L𝑦 L𝑧 γ𝐺𝐵

Max 2,754,000 74.18 755.09 758.44 3,288.40

Mean 623,367 25.42 541.62 541.43 1,478.62

Min 199,680 10.68 346.91 377.67 781.96

Table 6.1: Details of the nanoscale specimens, GB energy expressed in [mJ/m2] and length values
in [Å].

It can be observed in Table 6.1 that there is a huge variation in the specimen size from 199680

to 2,754,000 atoms. This is due to the minimum size of a unit GB cell defined by the GBstudio

package, that guarantees the perfect periodicity in the x, y and z axes. In addition, the GB energy

γ𝐺𝐵 gives an idea of the defect fluctuation caused by the misorientation. The transition lattice

structure produced in the GBs, makes it necessary to contemplate the shear analysis in both x and y

axes and also in the positive and negative directions. Then, in total, five simulations are developed

for each bicrystal, one for tensile and four for shear loads. In case of shear in the x-direction, the

initial crack is fitted on the x-axis and L𝑥/L𝑦 > 1. Dynamic boundary conditions are applied

through a deformation rate ε̇ applying the following definitions:

z = 0 z = L𝑧

Tensile (n) ε̇𝑧𝑧 −ε̇𝑧𝑧
Shear (xz±) ±ε̇𝑥𝑧 ∓ε̇𝑥𝑧
Shear (yz±) ±ε̇𝑦𝑧 ∓ε̇𝑥𝑧

Table 6.2: Dynamic boundary conditions for tensile and shear tests.

A high deformation rate is applied to the GB after the energy minimization process, where

the structure is stored at a temperature of 10K. First, the initial variables are defined, where the time
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step dt is 0.001ps, the temperature temp is 296K and the deformation rate erate is equal to 0.001

and 0.01 for tensile and shear analyses, respectively. The erate values mean that ε̇𝑧𝑧 = 109/s and

ε̇𝑖 = 1010/s, i = yz, yz are used in these simulations according to Table 6.2. Then, the minimized

GB structure is read from a database. Before the application of the deformation rate, the tempera-

ture is increased from 10K to 296K allowing the box to contract or expand in all directions during

10,000 time steps. This process is achieved applying a Langevin thermostat (SCHNEIDER AND

STOLL, 1978) and the canonical isenthalpic–isobaric (NPH) ensemble (PARRINELLO AND RAH-

MAN, 1981; MARTYNA ET AL., 1994; SHINODA ET AL., 2004)4. This initial part of the algorithm

is common for both tensile and shear loads as illustrated by the flowchart shown in Figure 6.2.

Box size: Lx, Ly Lz

Atomic positions: x, y, zGeneral Variables

Atomistic Structure

Interatomic Potential

From Figure 5.6

END

Minimized structure

erate

Expansion/contraction

temp 3D

Px = 0 bar

Py = 0 bar
Pz = 0 bar

10000*dt

Potential

NPH / langevin

Expansion/contraction
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temp 3D

Px = 0 bar

Py = 0 bar

dt
temp
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NPH / velocity

 Boundary p p p
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 Boundary p s s
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Save data

- Strain 
- Stress 

-dump information 
Positions: x, y, z
Velocities: Vx, Vy, Vz

Forces: Fx, Fy, Fz

Figure 6.2: Algorithms for tensile and shear LAMMPS scripts.

In order to impose the tensile load, the z expansion is applied on the box using the fix deform

command5. Moreover, while the x and y contraction effects result by NPH ensemble, using the pe-

4http://lammps.sandia.gov/doc/fix_nh.html
5http://lammps.sandia.gov/doc/fix_deform.html
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riodic boundary conditions in the three axes. In case of shear deformation, e.g. (yz±), the boundary

conditions must be changed on the y and z axes to non-periodic conditions, the x keeps periodic.

The deformation is imposed using the velocity command6. Notice that, this process is developed

at a constant temperature of 296 K, and it is calculated using the total kinetic energy of the group

of atoms. Hence, the temperature must be computed partially after excluding y-component7. These

procedures are depicted inside the dashed region in Figure 6.2 and the detailed LAMMPS scripts

are presented separately in Appendix C.5.

Results of these MD models are shown in Figure 6.3, for five GB structures under tensile (n)

and shear (yz+) loading cases. Initially, the variation in the constitutive behavior and mechanical

properties such as the yield and ultimate strength of these GBs can be appreciated, expressed by

the Virial stress definition of the macrostate and the applied strain rate.

0 0.05 0.1 0.15 0.2 0.25

0

2

4

6

8

10

12

0 0.05 0.1 0.15

yz

0

1

2

3

4

5

y
z

(a) (b)

Figure 6.3: Stress-strain constitutive behavior for different GB structures: (a) tensile and (b) shear.

In Table 6.3, numerical values of the maximum stress and GB energy γ𝐺𝐵 for each GB are

given for both cases presented in Figure 6.3. In the structures Σ5, Σ9, Σ13 and Σ19 ductile failure

is predominant under shear load. The opposite situation appears for Σ3, where a high deformation

level is required to fail under tensile load. Hence, from the energy point of view, some conclusions

6https://lammps.sandia.gov/doc/velocity.html
7https://lammps.sandia.gov/doc/compute_temp_partial.html
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could be defined. According to the CSL model, the Σ3(110)/(411) structure is closest to a perfect

GB, owing to the high number of coincident sites that means its energy is at the lowest value as

1,160.90 mJ/m2. This concept can fail sometimes, due to the geometrical character of the CSL

model. An explanation can be made analyzing the tilt angle θ, e.g. between the Σ3{1 1̄ 2} and

Σ3{1 1 1} structures, in which the tilt angles are 70.52∘ and 109.5∘ respectively. Despite these

structures having the same number of coincident sites Σ3, the Σ3{1 1 1} GB has more defects with

respect to the perfect structure. Moreover, the Σ3{1 1̄ 2} represents a low energy value according

to the behavior presented in Figure 5.9.

GB structure σ𝑚𝑎𝑥
𝑛 σ+𝑚𝑎𝑥

𝑦𝑧 γ𝐺𝐵

Σ3(1 1 0)/(4 1 1) 10.46 4.90 1,160.90

Σ5(1 1 1)/(5 7 1) 11.13 3.68 1,377.61

Σ9(1 1̄ 0)/(7 7̄ 8) 5.98 4.17 3,163.04

Σ13(2 1 1̄)/(7 2 1̄) 10.93 3.72 1,267.35

Σ19(4 4̄ 5)/(2 2̄ 7) 10.81 4.05 1,381.11

Table 6.3: Critical stress values expressed in [GPa] and GB energy in [mJ/m2].

Considering the last definitions, it is worth noting that the Σ9(1 1̄ 0)/(7 7̄ 8) structure has the

highest GB energy of 3,163.04 mJ/m2. This fact reflects more sensibility to fail specially under

tensile load. Results also show the difference on the stress level between the models as expected.

The nucleation of defects such as dislocations caused by the shear load might cause the slip failure

mechanisms to be more susceptible to fail. A complete analysis of the relationship between tensile

and shear modes in grain boundaries was presented by Paliwal and Cherkaoui (2013). They found

the a drastic increment on the maximum shear stress caused by the application of boundary conditi-

ons defined by 0∘ < θ < 85∘ being θ = arctan (ε̇𝑧𝑧/ε̇𝑦𝑧), contrary to the tensile stress that presents

a slower variation in its magnitude.

Failure instants are presented in Figure 6.4, for tensile from 50 ps to 90 ps and in Figure 6.5

for shear from 50 ps to 110 ps, on the Σ37(2 2̄ 1̄)/(2 2̄ 1) structure with 1417248 atoms. In these

figures, the blue color represents the bcc structures and the red color, the transition lattices in the

interface structures. In the left figures, the 3D model is depicted. The central and right figures show

in detail the separation process.
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(a)

(b)

(c)

(d)

Figure 6.4: Tensile failure of Σ37(2 2̄ 1̄)/(2 2̄ 1) structure: (a) t = 50 ps, σ𝑛 = 9.28GPa, ε𝑛 = 5%;
(b) t = 70 ps, σ𝑛 = 10.26 GPa, ε𝑛 = 7%; (c) t = 80 ps, σ𝑛 = 10.16 GPa, ε𝑛 = 8%; (d) t = 90 ps,
σ𝑛 = 9.39 GPa, ε𝑛 = 9%.
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Figure 6.5: Shear failure of Σ37(2 2̄ 1̄)/(2 2̄ 1) structure: (a) t = 50 ps, σ+
𝑦𝑧 = 3.38GPa, ε+𝑦𝑧 = 5%;

(b) t = 70ps, σ+
𝑦𝑧 = 2.61GPa, ε+𝑦𝑧 = 7%; (c) t = 80ps, σ+

𝑦𝑧 = 1.31GPa, ε+𝑦𝑧 = 9%; (d) t = 110ps,
σ+
𝑦𝑧 = 0.45 GPa, ε+𝑦𝑧 = 11%.
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These results show failure under different modes. Owing to the inclusion of the initial crack, it

can be inferred that the separation of the effective GB area is easy to be captured. As mentioned, the

trend for both models is to fail on the interface GB plane, with the shear stress being approximately

30% of the tensile stress.

The computational simulations were also carried out using the Kahuna cluster with a group

of 192 threads. In total 707 simulations were performed.

6.1.1 Asymptotic scaling

The material behavior presents an increment in its mechanical properties when the scale

length tends to be small, and also in case of imposition of high deformation rate. This effect can be

observed in results shown in Figure 6.3, where the level of the yield strength reaches up to 11 GPa

approximately in the nanoscale under tensile strain. It is evidently much higher than the well-

known strength values in microscopic scales of MPa order. Hence, the scaling effects represent a

challenge in the multiscale modeling where several approximations have been developed to attempt

the scaling of mechanical properties such as yield and rupture limits. Some numerical models were

treated before and can be found in the literature such as (CHEN ET AL., 2005; GUO ET AL.,

2007; CHEN ET AL., 2007). In these investigations, several efforts were presented, in order to find

functions to represent the scaling change in terms of size and deformation rate for pure metals like

copper. More related to the work presented here, Hammami and Kulkarni (2017) showed the rate

dependence of grain boundary sliding via atomistic simulations.

Due to the number of GBs regarded in this approach, and the range of atoms used in their

construction, Table 6.1, it would take a large processing time for simulating both the length and

rate dependencies. Hence, as a first approximation, it is proposed to adopt the asymptotic scaling

analysis presented by Chen et al. (2007) applied for different size length of geometrically similar

structures. They proposed a simple formulation that could represent the size effect on the strength,

based on the asymptotic relationship between the nominal strength and sizes widely exposed before

in (BAZANT, 2002). Then, Equation (6.1) is applied to scale the yield strength between the nominal

parameters, σna and σm, that correspond to the yield stress in the nano and micro scales respectively:
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ñ

1− sin

Ç

π

2

logD − logDna

logDm − logDna

åô
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σo = σm Dm ≤ D

, (6.1)

where σo and D are the nominal strength and size to be found respectively. In this work, the Dna

term is considered as the nanoscale size, in which any smaller size D ≤ Dna produces a constant

strength σo = σna. The opposite effect is considered if Dm ≤ D being Dm the microscale size limit.

Some assumptions have been taken owing to the lack of experimental data from these scales. As

indicated by Bazant (1993), the characteristic dimension Dna can be chosen arbitrarily. Hence, if

the characteristic size of each GB is defined by the average of the GB plane, the Dna term can be

evaluated by the average dimension over all 101 GBs planes as follows

Dna =
1

N𝐺𝐵

𝑁
∑

𝑘=1

Lna,𝑘
𝑥 + Lna,𝑘

𝑦

2
,







Lna

𝑥 = L𝑥 → shear (xz±)mode

Lna

𝑦 = L𝑦 → shear (yz±)mode
. (6.2)

whereN𝐺𝐵 is the number of GBs. As mentioned before, there are two defined specimens according

to the xz± or yz± shear tests, in which L𝑥/L𝑦 < 1 and L𝑥/L𝑦 > 1 are satisfied, respectively. Note

in Equation (6.2) that Dna takes into account the main lengths used in the shear failure. The σna
limit remains constant if D ≤ Dna, according to this hypothesis, it is possible to evaluate σna as

the average of the maximum stress over all GBs, depending on the failure test. In conclusion, the

nanoscale limits (Dna,σna) reflect an approximation of an average material that can represent the

assembly of all nanoscale GBs.

For the definition of the macroscopic limits (Dm,σm), the stress value is taken from the in-

vestigation presented by Sakui and Sakai (1972). The authors studied the effect of strain rate, tem-

perature and grain size on the lower yield stress and flow stress of polycrystalline pure iron. Then,

for a 10.3 µm grain size at 290 K under 100 of deformation rate, they found a lower yield stress of

490MPa. Due to the size length not being reported by the authors, in accordance with the grain size,

the macroscopic length limit is assumed as 100 µm. Ideally, with this value, the microscopic poly-

crystalline structure will contain about 1,000 grains, that is enough to guarantee the convergence

for elastic and mechanical properties.
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Now, the asymptotic limits were defined, the scaling procedure can be applied on the maxi-

mum stress over all previous results of nanoscale failure. Using as a desired transitional scale size

D equal to 1 µm, this value corresponds to the average length of all boundary elements used in the

discretization of the polycrystal aggregate, Figure 2.2. In summary, the required scaling values for

the tensile test are shown in Table 6.4:

Dna σna D Dm σm

0.0529 10.90 1 100 0.490

Table 6.4: Limit scaling values for tensile test, length expressed in [µm] and stress in [GPa].

Thus, the complete set of tensile critical energy density E𝑛𝑐 is presented in Figure 6.6. These

values are obtained from the area under the scaled curve of the stress-strain constitutive relationship.

15

20

25

30

35

40

45

Figure 6.6: Critical tensile E𝑛𝑐 energy density depending on the GB structure.

The maximum critical tensile energy density is 42.11MJ/m3 and the minimum is 16MJ/m3.

From Figure 6.6 it is observed that E𝑛𝑐 lies between these two limits, presenting a scattered beha-

vior. For the shear cases, the only difference is the microscopic stress limit. Defining the shear

stress limit at nanoscale (σnas), being the average over all the maximum shear stress found in the

101 GBs, and the ratio η = σnas/σna expressed by
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. (6.3)

The shear component of the nano and micro scales are σnas and σms
, respectively. Assuming

that the ratio η keeps constant through the scaling, σms
= ησm, where σnas is known from the MD

model. In Table 6.5, the average values used to scale the data from the shear tests are presented,

resulting very similar in the four cases:

Dna σnas D Dm σms
η

(xz)+ 0.0529 3.61 1 100 0.162 0.331

(xz)− 0.0529 3.58 1 100 0.161 0.329

(yz)+ 0.0529 3.60 1 100 0.162 0.330

(yz)− 0.0529 3.60 1 100 0.161 0.330

Table 6.5: Limit scaling values for shear tests, length expressed in [µm] and stress in [GPa].

After the scaling process, results of the shear loading cases are shown in Figures 6.7 and 6.8.

The scattered trend of the energy values caused by the variation of the crystalline orientations of

the GBs from Σ3 to Σ81 can be appreciated.
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Figure 6.7: Critical shear energy densities: (a) E+
𝑥𝑧c and (b) E−

𝑥𝑧c , both depending on the GB struc-
ture.
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Figure 6.8: Critical shear energy densities: (a) E+
𝑦𝑧c and (b) E−

𝑦𝑧c , both depending on the GB struc-
ture.

Some differences between the specific shear modes in both positive and negative direction of

the application load. The maximum shear critical energy found was E−
𝑦𝑧c = 14.21 MJ/m3 and the

minimum limit is E+
𝑥𝑧c = 2.99 MJ/m3. Comparing these energies to the tensile critical energy, an

important fact is captured from these results. The defects caused by the transitional lattice in the

interfaces reflects a preference to fail under the slip condition in the GB plane.

6.2 Intergranular failure

The previous atomistic analyses provide a relevant concept of how the lattice structure can

influence the local and overall failure behavior from an energy point of view. Now, the generalized

energy failure criterion is established using the obtained energy densities. Next, the failure criterion

is incorporated on the mesoscale model, showing the additional implementation included in the

BEM formulation. Finally, the sudden crack propagation in the polycrystal aggregate is shown,

caused by the application of a high-rate ramp load.
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6.2.1 Generalized energy failure criterion

The nanoscopic model revealed how the role of the GBs is important for the failure phenome-

non, that can affect the overall behavior of the microscopic structure. This aspect is relevant for the

intergranular modeling, in which several methods can be used to predict failure in different modes.

In this first multiscale approach between BEM and MD, the generalized energy failure criterion re-

cently found by Qu et al. (2016) is adapted to a three-dimensional analysis. This criterion is based

on the critical energy densities for tensile and shear modes. The critical energy densities act as th-

reshold properties for each specific GB. This criterion becomes a simple way to evaluate damage at

interfaces, if the critical energies are previously known from experiments or numerical simulations.

As mentioned, the MD modeling used in this work offers a great advantage in the evaluation of all

these threshold material properties, including some additional physics aspects.

Based on the classical Rankine criterion, the cleavage failure requires energy to break the

atomic bonds forming new crack surfaces and ideally corresponds to the elasticity limit state or the

well-defined brittle failure. Otherwise, in the Tresca criterion, shear deformation also needs energy

to activate the plastic regime leading to a ductile failure. Therefore, both Rankine and Tresca criteria

might be essentially energy criteria. Hence a simple failure criterion, as shown in Equation (6.4),

were proposed and validated by Qu et al. (2016) in order to predict failure considering the shear

and cleavage mechanisms.

E𝑠

E𝑠𝑐

+
E𝑛

E𝑛𝑐

= 1 . (6.4)

In Equation (6.4), E𝑠𝑐 and E𝑛𝑐 represent the previously defined critical energy densities for

tensile and shear conditions. In Equation (6.4), it is concluded that the failure process takes into

account both modes on the most critical crystalline plane, that in this case correspond to the GB

plane. It can be observed in Figure 6.4 that the failure processes are not perfectly linear. Owing to

the presence of the central crack, while the loading is imposed the material strength is progressively

reduced, this is quantified by the dissipative energy density (E𝑑) (LI, 2001). Furthermore, for some

of the GBs used in this work, plastic regime can appear during the process, being necessary to

evaluate the plastic energy density (E𝑝). Additionally, the quasi-linear behavior from 0 GPa to the

σ𝑚𝑎𝑥 corresponds to the elastic energy density (E𝑒). Considering all these regimes, each energy
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density can be represented by

E = E𝑒 + E𝑝 + E𝑑 =
∫ 𝜀f

ij

0
σ𝑖𝑗 dε𝑖𝑗 . (6.5)

where ε𝑓𝑖𝑗 is the strain field at the instant failure occurs. Hence, the energy densities presented
in Figures 6.6, 6.7, and 6.8 contain the elastic, plastic and dissipative regimes in different proporti-

ons according to the GB structure. Applying Equation (6.4) for each shear case, the following four

failure criteria, Figures 6.9 and 6.10, can be graphically represented.
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Figure 6.9: Energy failure diagram: (a) tensile-shear (xz+) and (b) tensile-shear (xz−).
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Figure 6.10: Energy failure diagram: (a) tensile-shear (yz+) and (b) tensile-shear (yz−).
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Below each failure line in the energy diagrams the Fe should always be safe. Notice that,

some differences can be perceived between the failure lines of the xz or yz cases. Qu et al. (2016)

suggest the definition of the ratio ϕ = E𝑠𝑐/E𝑛𝑐 as a parameter that determines the inherent failure

mechanism of a material. If ϕ > 1, failure is mainly governed by cleavage, indicating that the

material is more brittle than the contrary case ϕ < 1, in which the shear failure is predominant

and more deformation must be applied to reach the failure condition. The ϕ limits obtained in this

model are presented in the following table:

Case ϕ𝑀𝑎𝑥 ϕ𝑀𝑒𝑎𝑛 ϕ𝑀𝑖𝑛

(xz+) 0.600 0.320 0.156

(xz−) 0.625 0.334 0.157

(yz+) 0.554 0.319 0.113

(yz−) 0.554 0.321 0.127

Table 6.6: Limits of ϕ ratio.

According to the previous results, the failure of Fe is dominated by shear condition. This

agrees with some reference values shown in (QU ET AL., 2016), comparing the ratio ϕ, e.g. for

carbon steel (0.55 wt% C) it varies from 0.18 to 0.61. This criterion shows to be useful to predict

failure considering both basic mechanisms. It is worth noting that, for GB structures, it is not neces-

sary to find the most critical crystalline plane, since it is implicitly the same GB plane. Furthermore,

a detailed extension was considered here to include the two shear directions in a 3D analysis.

6.2.2 Mesoscale failure

The final stage of the proposed BEM-MD multiscale approach is illustrated to predict the

intergranular failure of polycrystalline Fe at the mesoscale. The damage level is assessed in the

interfaces of the polycrystal aggregate by the implementation of the energy failure diagrams at every

time and load steps. As mentioned before, this is a continuum model with stochastic crystalline

orientations and grain shapes. Hence, infinite possibilities of transition lattice structures can appear

in the grain boundaries. For this reason, it is a difficult task to identify the exact tilt, twist or mixed

type of misorientation. Then, if a very large sample of atomic GB structures is considered, a more

significant failure interval can be obtained, which could be statistically applied along the structure.
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Reminding the elastic constants of polycrystalline Fe, C11 = 230 GPa, C12 = 135 GPa

and C44 = 171 GPa (HUNTINGTON, 1958) in the reference crystalline orientation. The mesoscale

failure is studied on an artificial 80 grains polycrystalline structure, using the mesh density para-

meter ρ𝑑 equal to 1.5 and 163,800 DOF, Figure 6.11. An adequate mesh refinement is required to

correctly evaluate the distribution of the stress and strain fields, because the energy failure crite-

rion cannot assess the progressive separation process. This structure contains 373 grain boundaries,

being necessary to repeat at least 3 times the 101 failure criteria through the material.

Lz

x y

z

Lx Ly

Figure 6.11: Artificial 80 grains polycrystalline structure, discretized with 18,200 boundary ele-
ments.

According to physical concepts previously exposed for these materials, some parameters must

be established for simulations. As mentioned, the mechanical properties were scaled between nano

to microscale limits up to 100 µm. Then, an adequate intermediate size must be defined for the

polycrystal specimen. In the dynamic BEM formulation, the time step ∆τ is directly related to the

incidence matrices, Equations (3.25), (3.26) and (3.27). Hence, both dimensions and ∆τ are fitted

simultaneously. After several trials, applying a fully constraint condition at z = 0 and a stress-

rate of σ̇𝑧𝑧 at z = L𝑧, the minimum specimen size reached was L𝑥 = 15 µm, L𝑦 = 15 µm and

L𝑧 = 65 µm with ∆τ = 5 ns. Using these dimensions, and the mesh density of 1.5, it gives an

average length size of each boundary element approximately of 1 µm, Figure 6.11, as employed

in the asymptotic scaling approach. The large number of elements used in this model numerically

benefits the reduction of the time step.
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As previously discussed, other important factors that contribute to the increment of yield

strength are the dynamic boundary conditions. In addition, It can be inferred from the specimen

size that the average grain-size will be less than 10 µm. From the literature, very small grain-sized

polycrystalline or nanocrystalline materials exhibit strong mechanical properties and elastic regime

(JANG AND ATZMON, 2003; YOUSSEF ET AL., 2005). This is an advantageous fact, because the

constitutive model only considers elastic deformation. Although this is not a nanocrystalline model

with a yield strength about 5GPa as simulated by Tong et al. (2015), the elastic regime interval can

be assumed high compared to the limit found by Sakui and Sakai (1972) for a 10µm grain-size Fe.

Therefore, in the failure process assessment, the use of small grain-sized can justify the imposition

of higher deformation, reducing the possibilities to violate the crystal plasticity phenomenon.

Damage is measured at each interface through the simulation time. In order to incorporate the

generalized failure criteria shown in Figures 6.9 and 6.10, some additional implementations must

be carried out on the overall algorithm presented in Figure 4.6. First, the stress and strain fields

are calculated with the surface stress formulation widely explained in (KANE, 1994). It computes

these fields directly in the global coordinate system. Next, at each time step, the energy density is

evaluated in each node in the local coordinate system. It could be an ambiguous task, because the

infinite possibilities to transform the system from local to global and backwards. For that reason, at

this stage, it is applied the same (z − x − z) rotation convention that was used for the distribution

of the crystalline orientations. Owing to the non-linear elastic behavior caused by the high stress

rate, it is not feasible to compute the energy density as usual for quasi-static models. Therefore, an

approximation of the storage energy density over time at the kth node is given by

E𝑘
𝑖𝑗(t𝑛+1) =

𝑁c
∑

𝑛=1

E𝑘
𝑖𝑗(t𝑛) + E𝑘

𝑖𝑗 (6.6)

where N𝑐 is the number of time steps, and ij = xz, yz, zz at the local coordinates of each interface.

The E𝑘
𝑖𝑗 term is the current energy assessed by Equation (6.7).

E𝑘
𝑖𝑗 =



















1

2

î

σ𝑘
𝑖𝑗(t𝑛+1) + σ𝑘

𝑖𝑗(t𝑛)
ó î

ε𝑘𝑖𝑗(t𝑛+1)− ε𝑘𝑖𝑗(t𝑛)
ó

if







σ𝑘
𝑖𝑗(t𝑛+1) > σ𝑘

𝑖𝑗(t𝑛)

ε𝑘𝑖𝑗(t𝑛+1) > ε𝑘𝑖𝑗(t𝑛)

E𝑘
𝑖𝑗(t𝑛) if other case

. (6.7)
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If the deformation increases through time at the kth node, it is expected a growth in the

storage energy that can be interpreted as damage accumulation when the failure criterion Equa-

tion (6.4), is applied. For that reason, in order to contemplate the irreversible failure process, if the

material point is not deformed at some instant, the stored energy remains constant with its value

at the last time step. For illustrative purposes, this simulation procedure can be observed in Fi-

gure 6.12.

Input paramters

Input 3D polycrystalline mesh

Discretization

DRBEM matrices

Multidomain BEM

Pre-Processing

General System

x = k
bc
+ uα

uα

k
bc
uα

Solution

Check 

Interfaces

d   1

0   d   1

Initial

Conditions

New crack 

surface

Update
Ouput file

yes

no

New

END

START

Figure 6.12: Failure algorithm.

After the first step solution, all the interfaces must be checked node by node if it is under

traction load, σ𝑧𝑧 > 0. In case of the compressive load σ𝑧𝑧 < 0, it is assumed that E𝑛 = 0MJ/m3.

Then, in that case, failure is caracterized by the slip condition, because E𝑠 > 0. For the shear cases,

it is selected the most critical energy between the x± and y± local axes. In this work, the damage d

of each pair is measured by
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d =
E𝑠

E𝑠𝑐

+
E𝑛

E𝑛𝑐

. (6.8)

where d lies between 0 and 1. When the pair is totally damaged, the general 𝒜, ℬ and ℳ matrices

are updated. Owing to the dynamic formulation requiring the displacement response of the last

three time steps, the new independent nodes will have the same displacement information for the

next time step. Therefore, it is also necessary to update the vector u𝛼. Finally, for the new time and

load steps, the vectors of boundary conditions k𝑏𝑐 and u𝛼 are updated.

Now, an intergranular failure simulation is carried out using the 80 grain polycrystal aggregate

shown in Figure 6.11. In this case, the stress-rate σ̇𝑧𝑧 = 10MPa/ns is imposed at z = L𝑧 and again,

the base z = 0 is fully constrained. This boundary condition is strong enough to induce the dynamic

effects on the specimen with L𝑥 = 15µm, L𝑦 = 15µm and L𝑧 = 65µm dimensions. The specimen

is subjected to a tensile uniform stress at every time step of 5ns. In this failure test, a pre-crack was

initially created. All interfaces within a defined volume were disconnected forming a weak zone to

induce crack propagation, Figure 6.13.

x y

z

Figure 6.13: Initial cracked model.

For different instants of time, the damage evolution can be appreciated in Figure 6.14.
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t = 5 ns t = 95 ns t = 75 ns t = 85 ns 

t = 105 ns t = 115 ns t = 125 ns t = 135 ns 

t = 145 ns t = 155 ns t = 170 ns t = 185 ns 

Damage level

0 0.2 0.60.4 0.8 1

Figure 6.14: Failure propagation and damage evolution.
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Despite the linear interpolation of the boundary elements used in the present formulation, the

damage variation from 0 to 1 with a color distribution from blue to red is represented for each node.

The pre-crack was intentionally located far enough from the boundary, to avoid the influence of the

boundary conditions on the failure behavior. It can be observed in Figure 6.14 that the failure initia-

tes at the pre-cracked borders, e.g. at 75ns. After this time, the failure propagates through the weak

zone produced by the initial crack from 75 ns to 105 ns. The deformation level induces failure in

additional interfaces for the higher loads and times from 125 ns onwards. Furthermore, the failure

criterion established that the failure is more likely to occur under shear loading. This fact was reflec-

ted on the obtained results, where the propagation path takes place on tilted interfaces. The sudden

failure onsets after 60 ns where the homogenized macro-stress is about 600 MPa, Figure 6.15(a).
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Figure 6.15: Macroscopic behavior: (a) constitutive stress-strain relationship and (b) overall defor-
mation as a function of time.

Due to the application of a very high stress-rate, the inertial effects of mass caused that

the elastic regime becomes non-linear. As mentioned, the stress and strain waves progressively

propagate through the structure. At the beginning of the time, only a small percentage at the top of

the bar is experimenting deformation. If the load is rapidly incremented, the strain wave reflection

is not able to comprise the entire specimen length, Figure 6.15(b). The wave propagation can be

easily perceived and the total displacement field is observed as illustrated in Figure 6.16.
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It is worth noting that before 20 ns, the pre-crack is not suffering significant deformation, as

the strain wave has not reached that point in the specimen. After 115ns, specimen separation is more

critical owing to the damage level, and also because the stress-rate is not adaptive as commonly used

in cohesive analyses. As shown in Figures 6.15(a) and (b), the deformation reached at the damage

initiation is 0.3% and the deformation at 185 ns is 0.85%. This deformation interval is high for

considering the elastic regime of metallic materials from a quasi-static point of view. Despite the

lack of other numerical or experimental results for validation, it can be inferred that the imposition

of the stress-rate and length size facilitate the increment of the yield strength, as previously exposed.

Moreover, if a small stress-rate is uniformly imposed, the final deformation at e.g. 185 ns will tend

to decrease, because of the sudden propagation behavior. In Figure 6.17, the failure is shown at the

last simulation time of 185 ns.

 x  y

 z

 z

θz = 0o
 z

θz = 90o
 z

θz = 180o
 z

θz = 270o

Figure 6.17: Different views of failure at 185 ns.

In terms of implementation, the coupling of the failure criterion to the mesoscale does not

represent any additional computational efforts, because the incidence matrices remain constant

along the simulations. Furthermore, the general matrix assembly after each pair separation does not

require a considerable processing time, even being a serial section of the general BEM algorithm.
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7 Conclusions

The analysis of polycrystalline materials with different lattice structures was developed. The

constitutive behavior of aggregates was modeled considering random crystalline orientations. Using

the elastostatic BEM formulation with the fundamental solution based on double Fourier series and

the multidomain algorithm, numerical solutions of displacement and traction fields were calculated.

The morphology accuracy in the discretization process was adequate to avoid singular responses

from the numerical method applied. In addition, regular grain volumes, surfaces and triangular

elements were imposed. A database of materials to be analysed was generated for a set of aggregates

in this work.

The effective elastic properties of aggregates were assessed. While the number of grains in-

creases, the constitutive macroscopic response proved to become more isotropic. Specimens from

18 to 210 grains were evaluated, leading to a considerable reduction in the deviation and mean va-

lues of the elastic properties, reflecting the increment of isotropy level. As validation, comparisons

with analytical, numerical and experimental data previously published in the literature were carried

out, in which results showed good agreement and small error values from 0.02% to 9.88%. In addi-

tion, results were obtained as expected according to the new anisotropy factor used (KUBE, 2016).

The dynamic transient behavior of polycrystalline materials with different lattice structures

was analyzed. In this work, a framework was proposed to validate heterogeneous 3D anisotropic

elastic materials under high-rate dynamic loads. The effective macroscopic elastic properties were

used to achieve this validation framework. Numerical results showed deviations when the time

increased, especially for boundary conditions that produced gradient discontinuities at instants of

time in the response. This dynamic analysis is a general application that provides an initial scheme

for future analyses of anisotropic microscopic heterogeneous materials, which can be validated

using the homogenized scheme presented here. Several dynamic boundary conditions can produce

critical behavior of a solid, such as shown in Figure 4.9 for the harmonic load. This analysis paves

the way for future studies of dynamic failure of elastic materials under collapse conditions with

different heterogeneous microstructures.

Intergranular failure at the mesoscale was assessed under dynamic boundary conditions. The

failure criterion based on the energy densities was generated considering a sample of 101 GBs

using a nanoscale MD model. It evidenced the influence of the crystalline orientation on the cri-
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tical energy densities for shear and tensile modes. Moreover, different brittle and ductile failure

levels could be analyzed from the GB energy concept, because the GBs with higher energies are

directly related to the more ductile nanoscopic specimens. From these results, it was found that in

the GB plane, the shear slip condition in more critical than cleavage causing a more rapid failure

with less stored energy density. The nanoscale mechanical behavior could not be directly coupled

to the microscale model. Then, an asymptotic analysis was employed from models proposed in

the literature. It was assumed that all GB results in the nanoscale can compose an heterogeneous

random material, constituted as the average of the size length and yield strength of each GB. The-

refore, the yield strength was scaled between similar material structures from nano to microscale.

This strategy helped to maintain the scattered character of the GBs to be used in the polycrystal

aggregate. The last stage was the incorporation of the complete failure criterion on the mesoscale

to finally simulate the intergranular failure. Some basic implementations were required and added

to the BEM numerical model. The intergranular failure was predominantly caused by the shear

fields at the interfaces. From these results, it can be concluded that, the inertia effects provoke a

non-linear elastic behavior.

The proposed multiscale approach using BEM and MD demonstrated the capability to eva-

luate intergranular failure taking into account the limits between the elastic and plastic regimes.

If an adequate MD model is implemented, the interface material properties can be found allowing

to include additional physical phenomena in the overall mulsticale model. Therefore, this model

serves to pave the way for further research. In order to improve the overall approach some aspects

are essential, such as:

∘ The inclusion of crystal plasticity and contact analyses in the BEM model. It will be able

to work with high deformations and the evaluation of shear and compressive impact tests in

the mesoscale. In addition, the implementation of thermoelastic BEM analysis, owing to the

strong dependence of the mechanical and anisotropic elastic properties on the temperature.

These material properties need to be computed via the MD model.

∘ The generation of a proper set of functions to scale the mechanical strength from nano to

micro scales. These functions must depend on the GB crystalline orientation. In order to

perform this scaling approach, nanospecimens up to millions of atoms have to be considered.

This model could require a huge amount of computational sources. An alternative option

can be considered if an intermeadiate scale is analyzed between nano and micro using the

dislocation dynamics method.
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Appendix A – Anisotropic fundamental solution

A.1 Barnett–Lothe in terms of Stroh’s eigenvalues

The Bartnett-Lothe tensor, H(θ,φ) in terms of Stroh’s eigenvalues p𝑖, are given by

H(θ,φ) =
1

|κ|
4

∑

𝑛=0

q𝑛Γ̂
(𝑛) , (A.1.1)

where q𝑛 is defined by

q𝑛 =



























−1

2β1β2β3

[
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{

3
∑

𝑡=0

p𝑛𝑡
(p𝑡 − p̄𝑡+1)(p𝑡 − p̄𝑡+2)

}

− δ𝑛2

]

for n = 0,1,2
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2β1β2β3

[

ℜ
{

3
∑
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p𝑛−2
𝑡 p̄𝑡+1p̄𝑡+2

(p𝑡 − p̄𝑡+1)(p𝑡 − p̄𝑡+2)

}]

for n = 3,4

. (A.1.2)

The fourth-order tensor Γ̂(𝑛) is the adjoin of the matrix Γ(p) defined as

Γ̂
(𝑛)
𝑖𝑗 = Γ̃

(𝑛)
(𝑖+1)(𝑗+1)(𝑖+2)(𝑗+2) − Γ̃

(𝑛)
(𝑖+1)(𝑗+2)(𝑖+2)(𝑗+1), (i,j = 1,2,3) , (A.1.3)

Γ(p) = Q+ pV + p2κ , (A.1.4)

where

V = (R+R𝑇 ) , (A.1.5)
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and

Q ≡ Q𝑖𝑘 = C𝑖𝑗𝑘𝑠n𝑗n𝑠, R ≡ R𝑖𝑘 = C𝑖𝑗𝑘𝑠n𝑗m𝑠 . (A.1.6)

The remaining term of Equation (A.1.1), κ is given by

κ ≡ κ𝑖𝑘 = C𝑖𝑗𝑘𝑠m𝑗m𝑠 . (A.1.7)

In Equation (A.1.2), the Stroh’s eigenvalues are the roots of the sextic equation obtained by

the determinant |Γ(p)| = 0, composed by three pairs of complex conjugates, written as

p𝑢 = α𝑣 + iβ𝑣, β𝑣 > 0, (v = 1,2,3) . (A.1.8)

Finally, The tensor Γ̂(𝑛) is expressed in a reduced form after some algebraic manipula-

tion (SHIAH ET AL., 2008) as

Γ̃(4)
𝑝𝑞𝑟𝑠 = κ𝑝𝑞κ𝑟𝑠 ,

Γ̃(3)
𝑝𝑞𝑟𝑠 = V𝑝𝑞κ𝑟𝑠 + κ𝑝𝑞V𝑟𝑠 ,

Γ̃(2)
𝑝𝑞𝑟𝑠 = κ𝑝𝑞Q𝑟𝑠 + κ𝑟𝑠Q𝑝𝑞 + V𝑝𝑞V𝑟𝑠 ,

Γ̃(1)
𝑝𝑞𝑟𝑠 = κ𝑝𝑞Q𝑟𝑠 + κ𝑟𝑠Q𝑝𝑞 ,

Γ̃(0)
𝑝𝑞𝑟𝑠 = Q𝑝𝑞Q𝑟𝑠 .

(A.1.9)

A.2 Displacement fundamental solution and its derivatives

The Bartnett-Lothe tensor, H(θ,φ) can be expressed in terms of double Fourier series in the

spherical coordinate system, it is given by
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H𝑢𝑣 (θ,φ) =
𝛼
∑

𝑚=−𝛼

𝛼
∑

𝑛=−𝛼

λ(𝑚,𝑛)
𝑢𝑣 ei(𝑚𝜃+𝑛𝜑) (u,v = 1, 2, 3) , (A.2.1)

where, α must be large appropriately for the convergence of the series. The unknown Fourier coef-

ficients λ(𝑚,𝑛)
𝑢𝑣 are evaluated by

λ(𝑚,𝑛)
𝑢𝑣 =

1

4π2

∫ 𝜋

−𝜋

∫ 𝜋

−𝜋
H𝑢𝑣 (θ,φ)e

−i(𝑚𝜃+𝑛𝜑)dθdφ . (A.2.2)

In Equation (A.2.2) using the Euler’s formula, λ(𝑚,𝑛)
𝑢𝑣 and λ(−𝑚,−𝑛)

𝑢𝑣 are complex conjugates,

thus

λ(𝑚,𝑛)
𝑢𝑣 = λ̄(−𝑚,−𝑛)

𝑢𝑣 . (A.2.3)

The Fourier coefficients λ(𝑚,𝑛)
𝑢𝑣 can be separated into the real part R(𝑚,𝑛)

𝑢𝑣 and the imaginary

part I(𝑚,𝑛)
𝑢𝑣 as

λ(𝑚,𝑛)
𝑢𝑣 = R(𝑚,𝑛)

𝑢𝑣 + iI(𝑚,𝑛)
𝑢𝑣 . (A.2.4)

Substituting Equation (A.2.3) into Equation (A.2.1) and using the Euler’s formula, gives

H𝑢𝑣 (θ,φ) =
𝛼
∑

𝑚=−𝛼

𝛼
∑

𝑛=−𝛼

h(𝑚,𝑛)
𝑢𝑣 (θ,φ) (u,v = 1, 2, 3) , (A.2.5)

where

h(𝑚,𝑛)
𝑢𝑣 (θ,φ) = R(𝑚,𝑛)

𝑢𝑣 cos (mθ + nφ)− I(𝑚,𝑛)
𝑢𝑣 sin (mθ + nφ) . (A.2.6)
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Using the condition in Equation (A.2.3), the Equation (A.2.5) can be simplified as

H𝑢𝑣 (θ,φ) = 2
𝛼
∑

𝑚=1

{

𝛼
∑

𝑛=1

h(𝑚,𝑛)
𝑢𝑣 (θ,φ) +

−1
∑

𝑚=−𝛼

h(𝑚,𝑛)
𝑢𝑣 (θ,φ)

}

+2
𝛼
∑

𝑛=1

h(0,𝑛)𝑢𝑣 (θ,φ) + 2
𝛼
∑

𝑚=1

h(𝑚,0)
𝑢𝑣 (θ,φ) +R(0,0)

𝑢𝑣 .

(A.2.7)

Substituting Equation (A.2.6) into Equation (A.2.7) and finally into Equation (2.4), the fun-

damental solution U is expressed by

U𝑢𝑣 (r,θ,φ) =
1

2πr































𝛼
∑

𝑚=1

𝛼
∑

𝑛=1





(R̃(𝑚,𝑛)
𝑢𝑣 cosmθ − Ĩ(𝑚,𝑛)

𝑢𝑣 sinmθ) cosnφ

−(R̂(𝑚,𝑛)
𝑢𝑣 sinmθ − Î(𝑚,𝑛)

𝑢𝑣 cosmθ) sinnφ





+
𝛼
∑

𝑚=1

Ñ

R(0,𝑚)
𝑢𝑣 cosmφ− I(0,𝑚)

𝑢𝑣 sinmφ

+R(𝑚,0)
𝑢𝑣 cosmθ − I(𝑚,0)

𝑢𝑣 sinmθ

é

+
R(0,0)

𝑢𝑣

2































. (A.2.8)

The components R̃(𝑚,𝑛)
𝑢𝑣 , R̂(𝑚,𝑛)

𝑢𝑣 , Ĩ(𝑚,𝑛)
𝑢𝑣 and Î(𝑚,𝑛)

𝑢𝑣 are

R̃(𝑚,𝑛)
𝑢𝑣 = R(𝑚,𝑛)

𝑢𝑣 +R(𝑚,−𝑛)
𝑢𝑣 , R̂(𝑚,𝑛)

𝑢𝑣 = R(𝑚,𝑛)
𝑢𝑣 −R(𝑚,−𝑛)

𝑢𝑣 ,

Ĩ(𝑚,𝑛)
𝑢𝑣 = I(𝑚,𝑛)

𝑢𝑣 + I(𝑚,−𝑛)
𝑢𝑣 , Î(𝑚,𝑛)

𝑢𝑣 = I(𝑚,𝑛)
𝑢𝑣 − I(𝑚,−𝑛)

𝑢𝑣 .

(A.2.9)

The first order derivative of the displacement fundamental solution U′ is evaluated using the

chain rule

U′ ≡ U𝑢𝑣,𝑙 =
∂U𝑢𝑣

∂r

∂r

∂x𝑙
+
∂U𝑢𝑣

∂θ

∂θ

∂x𝑙
+
∂U𝑢𝑣

∂φ

∂φ

∂x𝑙
. (A.2.10)

Applying direct partial differentiation of Equation (A.2.1) with respect to the spherical coor-

dinates using the Equation (A.2.10), gives
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U𝑢𝑣,𝑙 (r,θ,φ) =
1

4πr2























































𝛼
∑

𝑚=−𝛼

𝛼
∑

𝑛=−𝛼

λ(𝑚,𝑛)
𝑢𝑣 ei(𝑚𝜃+𝑛𝜑)





− cos θ(sinφ− in cosφ)

−im sin θ/ sinφ





𝛼
∑

𝑚=−𝛼

𝛼
∑

𝑛=−𝛼

λ(𝑚,𝑛)
𝑢𝑣 ei(𝑚𝜃+𝑛𝜑)





− sin θ(sinφ− in cosφ)

+im cos θ/ sinφ





𝛼
∑

𝑚=−𝛼

𝛼
∑

𝑛=−𝛼

λ(𝑚,𝑛)
𝑢𝑣 ei(𝑚𝜃+𝑛𝜑) [−(cosφ+ in sinφ)]























































. (A.2.11)

Following a similar procedure used to obtain the Equation (A.2.8), the expression for the

derivative of the displacement fundamental solution is

U𝑢𝑣,𝑙 =
1

2πr2



























































































































−ω𝑙(θ,φ)













𝛼
∑

𝑚=1

𝛼
∑

𝑛=1

Ç

⌢

Γ
(𝑚,𝑛)

𝑢𝑣 (θ) cosnφ−
⌣

Γ
(𝑚,𝑛)

𝑢𝑣 (θ) sinnφ

å

𝛼
∑

𝑚=1

Å

⌢
γ
(𝑚,𝑛)

𝑢𝑣 (θ)+
⌣
γ
(𝑚,𝑛)

𝑢𝑣 (φ)
ã

+
R(0,0)

𝑢𝑣

2













−ω′
𝑙(θ,φ)













𝛼
∑

𝑚=1

𝛼
∑

𝑛=1

m
Ä

Γ̃(𝑚,𝑛)
𝑢𝑣 (θ) cosnφ− Γ̂(𝑚,𝑛)

𝑢𝑣 (θ) sinnφ
ä

𝛼
∑

𝑚=1

mγ̃𝑚𝑢𝑣(θ)













−ω′′
𝑙 (θ,φ)













𝛼
∑

𝑚=1

𝛼
∑

𝑛=1

n

Ç

⌢

Γ
(𝑚,𝑛)

𝑢𝑣 (θ) sinnφ−
⌢

Γ
(𝑚,𝑛)

𝑢𝑣 (θ) cosnφ

å

𝛼
∑

𝑚=1

mγ̂𝑚𝑢𝑣(φ)







































































































































,

(A.2.12)

where ω𝑙(θ,φ), ω′
𝑙(θ,φ) and ω′′

𝑙 (θ,φ) represent the following spatial differentiations

ω𝑙(θ,φ) = r
∂r

∂x𝑙
=



















sinφ cos θ, (for l = 1)

sinφ cos θ, (for l = 2)

cosφ, (for l = 3)

, (A.2.13)
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ω′
𝑙(θ,φ) = r

∂θ

∂x𝑙
=



















− sin θ/ sinφ, (for l = 1)

cos θ/ sinφ, (for l = 2)

0, (for l = 3)

, (A.2.14)

ω′′
𝑙 (θ,φ) = r

∂φ

∂x𝑙
=



















cosφ cos θ, (for l = 1)

cosφ sin θ, (for l = 2)

− sinφ, (for l = 3)

, (A.2.15)

and

⌢

Γ
(𝑚,𝑛)

𝑢𝑣 (θ) = R̃(𝑚,𝑛)
𝑢𝑣 cosmθ − Ĩ(𝑚,𝑛)

𝑢𝑣 sinmθ ,

⌣

Γ
(𝑚,𝑛)

𝑢𝑣 (θ) = R̂(𝑚,𝑛)
𝑢𝑣 sinmθ + Î(𝑚,𝑛)

𝑢𝑣 cosmθ ,

Γ̃(𝑚,𝑛)
𝑢𝑣 (θ) = R̃(𝑚,𝑛)

𝑢𝑣 sinmθ + Ĩ(𝑚,𝑛)
𝑢𝑣 cosmθ ,

Γ̂(𝑚,𝑛)
𝑢𝑣 (θ) = R̂(𝑚,𝑛)

𝑢𝑣 cosmθ − Î(𝑚,𝑛)
𝑢𝑣 sinmθ ,

⌢
γ
𝑚

𝑢𝑣 (θ) = R(𝑚,0)
𝑢𝑣 cosmθ − I(𝑚,0)

𝑢𝑣 sinmθ ,
⌣
γ
𝑚

𝑢𝑣 (φ) = R(0,𝑚)
𝑢𝑣 cosmφ− I(0,𝑚)

𝑢𝑣 sinmφ ,

γ̃𝑚𝑢𝑣(θ) = R(𝑚,0)
𝑢𝑣 sinmθ + I(𝑚,0)

𝑢𝑣 cosmθ ,

γ̂(𝑚,𝑛)
𝑢𝑣 (θ) = R(0,𝑚)

𝑢𝑣 sinmφ+ I(0,𝑚)
𝑢𝑣 cosmφ .

(A.2.16)

A numerical singularity occurs in the formulation of this fundamental solution in the eva-

luation of its derivative U′. In the special case when the field and source point are both over the

x3-axis at φ = 0 or φ = π for l = 1 and l = 2. This condition occurs because the spherical angle

θ becomes ill-conditioned at these locations. Tan et al. (2013) suggest a scheme to remove this

singularity, imposing a small perturbation for φ, such as φ = 10−6 and θ = 0 for l = 1. In case of

l = 2, it is selected θ = π/2.
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Appendix B – Triangular boundary elements

B.1 Shape functions and its derivatives

The shape functions of the three-node discontinuous elements are evaluated numerically fol-

lowing the procedure shown in (KANE, 1994), where these shape functions are obtained from the

known shape functions of the continuous three-node triangular element Figure B.1.1

(l,l)
(1-2l,l)

1

1 (l,1-2l)

0

h

x
1

1

0

h

x

( )a (  )b

Figure B.1.1: Linear three-node elements: (a) continuous and (b) discontinuous.

The known shape functions of the continuous three-node triangular element expressed by

N (1) = ξ ,

N (2) = η ,

N (3) = 1− ξ − η .

(B.1.1)

The interpolated field X expressed in terms of the known node values X(𝑘) are

X(ξ,η) =
3

∑

𝑘=1

N (𝑘)(ξ,η)X(𝑘) . (B.1.2)

Now, assuming w𝑗 as the interpolated values of the new discontinuous element and forcing
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the Equation (B.1.2)

w𝑗 =
3

∑

𝑘=1

N (𝑘)(ξ,η)X(𝑘) , (B.1.3)

expanding the matrix form



















w1

w2

w3



















=











N (1)(1− 2λ,λ) N (2)(1− 2λ,λ) N (3)(1− 2λ,λ)

N (1)(λ,1− 2λ) N (2)(λ,1− 2λ) N (3)(λ,1− 2λ)

N (1)(λ,λ) N (2)(λ,λ) N (3)(λ,λ)











=



















X(1)

X(2)

X(3)



















, (B.1.4)

or

{w} = [L]{X} . (B.1.5)

The Equation (3.12) can be solved for the values X as

{X} = [L]−1{w} = [G]{w} . (B.1.6)

Substituting Equation (B.1.6) into Equation (B.1.2) the formula for the matrix interpolation

functions for the discontinuous element is obtained

X(ξ,η) =
3

∑

𝑘=1

N (𝑘)(ξ,η)X(𝑘) = [N ]{X} = [N ][G]{w} = [H]{w} , (B.1.7)

where [H] = [h(1)h(2)h(3)]. The derivative of the shape functions respect to the intrinsic coordinates

ξ and η need to be expressed as
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∂x𝑗(ξ,η)

∂ξ
=

3
∑

𝑘=1

∂N (𝑘)(ξ,η)

∂ξ
x
(𝑘)
𝑗 = [N ],𝜉[G]{w𝑗} = [H],𝜉{w𝑗} ,

∂x𝑗(ξ,η)

∂η
=

3
∑

𝑘=1

∂N (𝑘)(ξ,η)

∂η
x
(𝑘)
𝑗 = [N ],𝜂[G]{w𝑗} = [H],𝜂{w𝑗} .

(B.1.8)

The Jacobian and the normal vectors are given by Equation (B.1.9).

J = 0.5
Ä

J2
1 + J2

2 + J2
3

ä0.5
= 0.5 (J𝑘J𝑘)

0.5 , (B.1.9)

where

J1 =
∂x2
∂ξ

∂x3
∂η

− ∂x3
∂ξ

∂x2
∂η

,

J2 =
∂x3
∂ξ

∂x1
∂η

− ∂x1
∂ξ

∂x3
∂η

,

J3 =
∂x1
∂ξ

∂x2
∂η

− ∂x2
∂ξ

∂x1
∂η

.

(B.1.10)

The tems x𝑘 represents the coordinates of the actual element, and the normal vector is ex-

pressed as

n𝑘 = J𝑘J
−1 . (B.1.11)

From the Equation (B.1.2) to Equation (B.1.8) the terms w𝑗 contain the three coordinates of

the nodes of the discontinuous elements, the matrix [G] is the same in Equations (B.1.7) and (B.1.8).

Finally the matrix [L] can be evaluated numerically.
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Appendix C – Atomistic modeling

C.1 EAM potential parameters

In this appendix, all the parameters of the EAM (MENDELEV ET AL., 2003) potential used

in this work are presented in Table C.1.1. The parameters a𝑘 and A𝑘 are expressed in eV/Å𝑘, when

the r𝑘 and R𝑘 coefficients are given in Å units.

Parameter Fe

a1(r1) 195.92322853994 (2.1)

a2(r2) 17.516698453315 (2.2)

a3(r3) 1.4926525164290 (2.3)

a4(r4) 6.4129476125197 (2.4)

a5(r5) -6.8157461860553 (2.5)

a6(r6) 9.6582581963600 (2.6)

a7(r7) -5.3419002764419 (2.7)

a8(r8) 1.7996558048346 (2.8)

a9(r9) -1.4788966636288 (3.0)

a10(r10) 1.8530435283665 (3.3)

a11(r11) -0.64164344859316 (3.7)

a12(r12) 0.24463630025168 (4.2)

a13(r13) -0.057721650527383 (4.7)

a14(r14) 0.023358616514826 (5.3)

a15(r15) -0.0097064921265079 (6.0)

A1(R1) 11.686859407970 (2.4)

A2(R2) -0.014710740098830 (3.2)

A3(R3) 0.47193527075943 (4.2)

Table C.1.1: Parameters for the EAM potential energy functions.

The remaining coefficients of the EAM potential are given in Table C.1.2. Here the B𝑘 terms

are in Å−𝑘 units, while the parameter a* is given in in Å units.
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Parameter Fe

B0 6.4265260576348

B1 1.7900488524286

B2 -4.5108316729807

B3 1.0866199373306

a* -0.00035387096579929

Table C.1.2: The remaining coefficients of the EAM potential.

C.2 Thermal process and energy minimization

In this section, it is presented the LAMMPS script to evaluate the GB energy. The value of

the following variables dt, temp_i, overlap, datfile, Potential, Struc and E_c must

be defined according to the material used in the simulations. In this script, the final minimized

structure is exported in a restart.struct file.

# LAMMPS script File to calculate the Grain Boundary energy of Fe

# ---------- Initialize Simulation -------------------------------------------

units metal

dimension 3

boundary p p p

atom_style atomic

atom_modify map array

# ---------- General Variables -----------------------------------------------

variable dt equal dt

variable tstart equal 800

variable tseed equal temp_i

variable tfinal equal 10

variable tdamp equal 0.2

variable pdamp equal 2

variable seed equal 1234546

variable overl equal overlap

# ---------- Atomistic Structure ---------------------------------------------

read_data datfile
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variable xlen equal lx

variable ylen equal ly

variable zlen equal lz

variable zlen2 equal ${zlen}/2

print "lx: ${xlen}"

print "ly: ${ylen}"

print "lz: ${zlen}"

region upper block 0.000000 ${xlen} 0.000000 ${ylen} &

${zlen2} ${zlen} units box

region lower block 0.000000 ${xlen} 0.000000 ${ylen} &

0.000000 ${zlen2} units box

group upper type 1

group lower type 2

# ---------- Interatomic Potential -------------------------------------------

pair_style eam/fs

pair_coeff * * Potential

neighbor 2.0 bin

neigh_modify delay 10 check yes page 100000000 one 1000000

# ---------- Overlapping Atoms ---------------------

displace_atoms upper move 0 0 0 units lattice

delete_atoms overlap ${overl} lower upper

# ---------- Initial State ---------------------------------------------------

compute csym all centro/atom Struc

compute eng all pe/atom

compute eatoms all reduce sum c_eng

compute T all temp/com

# ---------- Initial Temperature ---------------------------------------------

reset_timestep 0

timestep $dt

thermo 100

thermo_style custom step temp pe lx ly lz press pxx pyy pzz c_eatoms

velocity all create ${tseed} ${seed} dist gaussian

fix NVE all nve

fix 4 all temp/rescale 1 ${tseed} ${tseed} 0.1 1.0
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run 1000

unfix NVE

unfix 4

# ---------- Thermal Process -------------------------------------------------

reset_timestep 0

# --------------- Now Temperature Ramp to desired value, Steady pressure

fix 1 all npt temp ${tseed} $tstart ${tdamp} x 0.0 0.0 ${pdamp} &

y 0.0 0.0 ${pdamp} z 0.0 0.0 ${pdamp}

run 10000

unfix 1

# --------------- Then steady temperature, steady pressure

fix 1 all npt temp ${tstart} ${tstart} ${tdamp} x 0.0 0.0 ${pdamp} &

y 0.0 0.0 ${pdamp} z 0.0 0.0 ${pdamp}

run 10000

unfix 1

# --------------- Then temperature ramp to 10, steady pressure

fix 1 all npt temp ${tstart} ${tfinal} ${tdamp} x 0.0 0.0 ${pdamp} &

y 0.0 0.0 ${pdamp} z 0.0 0.0 ${pdamp}

run 10000

unfix 1

# --------------- Then steady temperature, steady pressure

fix 1 all npt temp ${tfinal} ${tfinal} ${tdamp} x 0.0 0.0 ${pdamp} &

y 0.0 0.0 ${pdamp} z 0.0 0.0 ${pdamp}

run 10000

unfix 1

# ---------- Run the firts Minimization --------------------------------------

min_style cg

minimize 1.0e-25 1.0e-25 100000 1000000

# ---------- Run the second Minimization relaxing ----------------------------

reset_timestep 0

thermo 10

thermo_style custom step temp pe lx ly lz press pxx pyy pzz c_eatoms

fix 4 all box/relax z 0 vmax 0.001

min_style cg

minimize 1e-25 1e-25 100000 1000000

# ---------- Calculate GB Energy ---------------------------------------------

variable minimumenergy equal E_c
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variable esum equal "v_minimumenergy * count(all)"

variable xseng equal "c_eatoms - (v_minimumenergy * count(all))"

variable gbarea equal "lx * ly * 2"

variable gbe equal "(c_eatoms - (v_minimumenergy * count(all)))/v_gbarea"

variable gbemJm2 equal ${gbe}*16021.7733

variable gbernd equal round(${gbemJm2})

print "GB energy is ${gbemJm2} mJ/m^2"

# ---------- Run last minimization and write restart -------------------------

reset_timestep 0

minimize 1e-25 1e-25 100000 1000000

print "All done"

C.3 GB structures for energy validation

A set of STGBs and STwGBs structures was built using the GBstudio software.

Tilt GBs ⟨110⟩ Twist GBs ⟨111⟩

θ angle (∘) Σ value GB plane (n̂) ϕ angle (∘) Σ value (ĉ)

0.0 1 {0 0 1} 0.0 1 {1 1 1̄}
11.53 99 {1 1̄ 14} 10.4 91 {10 1̄ 9̄}
13.44 73 {1 1̄ 12} 11.6 73 {9 1̄ 8̄}
16.09 51 {1 1̄ 10} 13.7 57 {8 1̄ 7̄}
17.9 83 {1 1̄ 9} 15.17 43 {7 1̄ 6̄}
20.04 33 {1 1̄ 8} 17.89 31 {6 1̄ 5̄}
22.8 51 {1 1̄ 7} 21.78 21 {5 1̄ 4̄}
26.52 19 {1 1̄ 6} 24.43 67 {9 2̄ 7̄}
31.6 27 {1 1̄ 5} 27.79 13 {4 1̄ 3̄}
34.9 89 {2 2̄ 9} 30.59 97 {11 3̄ 8̄}
38.94 9 {1 1̄ 4} 32.20 39 {7 2̄ 5̄}
44.0 57 {2 2̄ 7} 33.99 79 {10 3̄ 7̄}
45.97 59 {3 3̄ 10} 38.21 7 {3 1̄ 2̄}
50.5 11 {1 1̄ 3} 42.10 93 {11 4̄ 7̄}

Table C.3.1: Grain boundaries: symmetric ⟨110⟩ tilt and ⟨111⟩ twist.
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Tilt GBs ⟨110⟩ Twist GBs ⟨111⟩

θ angle (∘) Σ value GB plane (n̂) ϕ angle (∘) Σ value (ĉ)

55.87 41 {3 3̄ 8} 43.57 49 {8 3̄ 5̄}
58.99 33 {2 2̄ 5} 46.82 19 {5 2̄ 3̄}
61.01 97 {5 5̄ 12} 50.56 37 {7 3̄ 4̄}
70.52 3 {1 1̄ 2} 52.65 61 {9 4̄ 5̄}
77.9 81 {7 4̄ 4̄} 53.99 91 {11 5̄ 6̄}
80.6 43 {5 3̄ 3̄} 60 3 {2 1̄ 1̄}
82.94 57 {5 5̄ 8}
86.6 17 {3 2̄ 2̄}
89.42 99 {7 7̄ 10}
90.6 99 {7 5 5}
93.37 17 {3 3̄ 4}
97.1 57 {5 4 4}
99.36 43 {5 5̄ 6}
102.1 81 {7 7̄ 8}
109.5 3 {1 1 1}
117.5 67 {7 7̄ 6}
121 33 {5 5̄ 4}
129.5 11 {3 3̄ 2}
134 59 {5 5̄ 3̄}
135.9 57 {7 7̄ 4}
141.1 9 {2 2̄ 1̄}
145.1 89 {9 9̄ 4}
148.4 27 {5 5̄ 2}
153.5 19 {3 3̄ 1̄}
157.1 51 {7 7̄ 2}
162.1 83 {9 9̄ 2}
166.6 73 {6 6̄ 1̄}
168.5 99 {7 7̄ 1̄}
180 1 {0 0 1}

Table C.3.1: Grain boundaries, symmetric ⟨110⟩ tilt and ⟨111⟩ twist. (Continuation).
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C.4 GB structures for failure analysis

A set of STGBs, ATGB, STwGB and ATwGBs structures was built using the GBstudio soft-

ware. In this case, n̂𝐴 and n̂𝐵 represent the GB plane of grains A and B respectively.

Σ value (n̂𝐴)/(n̂𝐵) Σ value (n̂𝐴)/(n̂𝐵)

3 (1 1 0)/(4 1 1) 17 (2 2 1)/(2 2 1)

3 (1 1̄ 1)/(1̄ 1̄ 5) 19 (4 4̄ 5)/(2 2̄ 7)

5 (5 3 1)/(5 3 1̄) 19 (7 7̄ 4)/(5 5̄ 8)

5 (5 4̄ 2)/(5 2̄ 4) 19 (7 8̄ 1)/(1 8̄ 7)

5 (5 6 2)/(5 6 2̄) 19 (9 6 4)/(9 4 6)

5 (5 6̄ 3)/(5 3̄ 6) 19 (1 1 1)/(1 1 1)

5 (1 1 1)/(5 7 1) 21 (5 4̄ 1̄)/(4 5̄ 1)

7 (4 5̄ 1)/(1 5̄ 4) 21 (2 3̄ 1)/(1 3̄ 2)

7 (5 6 3)/(6 5 3) 19 (1 1 1)/(1 1 1)

9 (1 1̄ 2)/(5 5̄ 2̄) 21 (1 1̄ 0)/(5 8̄ 3)

9 (4 5 7)/(1 8 5) 21 (4 5 8)/(4 8 5)

9 (5 5̄ 7̄)/(7 7̄ 1̄) 21 (2 1̄ 3̄)/(2 3̄ 1̄)

9 (1 1̄ 0)/(7 7̄ 8) 21 (3 5̄ 1̄)/(1 5̄ 3)

11 (5 5̄ 7̄)/(7 7̄ 1) 25 (5 6 8)/(5 8 6)

13 (5 6 2)/(6 5 2) 25 (5 1 7)/(1 5 7)

13 (5 7̄ 2)/(2 7̄ 5) 25 (5 4 3)/(4 5 3)

13 (1 1 1)/(1 1 1) 25 (10 7̄ 1)/(1 1̄ 2)

13 (2 2̄ 1)/(1 2̄ 2) 27 (2 2̄ 1)/(4 4̄ 7)

13 (4 3̄ 1̄)/(3 4̄ 1) 27 (1 2̄ 2̄)/(4 8̄ 1̄)

15 (1 1 1̄)/(7 1 5̄) 27 (1 1̄ 0)/(8 7̄ 7)

15 (2 1 1)/(3 4 0) 27 (0 1 1̄)/(1 1 4̄)

15 (5 4̄ 2̄)/(8 6̄ 5) 29 (4 3̄ 2̄)/(3 4̄ 2)

15 (2 2 1)/(5 5 2) 29 (2 2 1)/(2 2 1)

17 (3 2̄ 2̄)/(2 3̄ 2) 29 (0 2 3̄)/(2 0 3̄)

17 (4 3 3)/(3 4 3) 31 (1 1 1)/(1 1 1)

Table C.4.1: Set of GB structures for failure analysis.
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Σ value (n̂𝐴)/(n̂𝐵) Σ value (n̂𝐴)/(n̂𝐵)

31 (2 1 1)/(2 1 1) 51 (2 2̄ 3̄)/(8 8̄ 5̄)

33 (1 1̄ 3)/(5 5̄ 7̄) 51 (4 1̄ 1)/(1 0 1)

33 (2 1 2)/(7 6 6) 53 (1 6̄ 4)/(1̄ 4̄ 6)

35 (1 2 3)/(1 3 2) 55 (1 0 1)/(4 3 5)

35 (9 3̄ 8̄)/(9 8̄ 3̄) 55 (5 5 7)/(5 7 5)

35 (4 5 7)/(4 7 5) 55 (8 1̄ 5̄)/(8 5̄ 1̄)

35 (7 5 6)/(7 6 5) 55 (6 7 0)/(7 6 0)

35 (2 1 1)/(2 1 1) 57 (1 1 0)/(1 1 0)

35 (4 5̄ 7̄)/(5 7̄ 1̄) 59 (1 1 2)/(1 2 1)

35 (6 5̄ 3̄)/(5 6̄ 3) 61 (8 7̄ 3̄)/(7 8̄ 3)

37 (2 2̄ 1̄)/(2 2̄ 1) 61 (6 4̄ 3̄)/(4 6̄ 3)

37 (1 1 1)/(1 1 1) 61 (1 1 1)/(1 1 1)

39 (7 5̄ 2̄)/(5 7̄ 2) 63 (1 1 2)/(2 5 5)

39 (3 4̄ 1)/(1 4̄ 3) 63 (5 7̄ 4)/(4 5̄ 7)

39 (1 1 1)/(1 1 1) 63 (5 4 7)/(5 7 4)

39 (2 3̄ 0)/(2 7̄ 8) 63 (7 5 4̄)/(8 1 5̄)

41 (2 2̄ 1̄)/(2 2̄ 1) 63 (4 2 5)/(2 5 4)

43 (1 1 1)/(1 1 1) 65 (6 5̄ 2̄)/(5 6̄ 2)

43 (6 5 5)/(5 6 5) 65 (2 1 1)/(2 2 1)

45 (7 4 5)/(7 5 4) 67 (9 7̄ 2)/(7 9̄ 2)

45 (2 1̄ 1)/(5 2̄ 5) 67 (1 1 1)/(1 1 1)

45 (5 7̄ 4)/(1 5̄ 8) 67 (7 6 7)/(7 7 6)

45 (1 2̄ 1̄)/(2 7̄ 1) 75 (1 1̄ 2)/(2 1̄ 7̄)

45 (7 5 6)/(5 7 6) 75 (1 2 1̄)/(5 2 5̄)

49 (5 3̄ 8̄)/(5 8̄ 3̄) 81 (8 4̄ 1̄)/(7 4̄ 4)

49 (3 5 8)/(3 8 5)

Table C.4.1: Set of GB structures for failure analysis. (Continuation).
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C.5 GB failure scripts

In this section, it is presented the LAMMPS scripts to evaluate the normal and shear failure

tests. The value of the following variables dt, temp, erate, Potential and struct must

be defined according to the material used in the simulations. The GB structure is read from a

database and new files must be generated, containing the stress and strain values at every time step.

Furthermore, a .dump file for visualization is also exported.

∘ Tensile failure:

# ============================================================================

# LAMMPS script for tensile failure on a Grain Boundarie of Fe

# ---------- General Variables --------------------------------------------

variable dt equal dt # timestep in ps

variable erate equal erate # deform erate each unit time

variable tdump equal 5000 # dump each tdump steps

variable tprint equal 1000 # print each tprint steps

variable thermo equal 100 # compute and print thermodynamic info

variable tinitial equal 10 # final temperature

variable tfinal equal temp # final temperature

variable tdamp equal 0.2

variable pdamp equal 2

variable seed equal round(random(0,999999,$RANDOM))

variable c equal 0.30 # crack size l=c*Ly

# ---------- Structure ----------------------------------------------------

read_restart ../restart.struct # read structure from a directory

variable xlen equal lx

variable ylen equal ly

variable zlen equal lz

variable zlen2 equal ${zlen}/2

print "lx: ${xlen}"

print "ly: ${ylen}"

print "lz: ${zlen}"
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# Crack

region crack block 0.000000 $xlen $yleni $ylenf $zleni $zlenf

group crack region crack

delete_atoms group crack

# Upper and lower crystals

region up block 0.000000 ${xlen} 0.000000 ${ylen} &

${zlen2} ${zlen} units box

region low block 0.000000 ${xlen} 0.000000 ${ylen} &

0.000000 ${zlen2} units box

group up type 1

group low type 2

# ---------- Interatomic Potential ----------------------------------------

pair_style eam/fs

pair_coeff * * Potential

neighbor 2.0 bin

neigh_modify delay 10 check yes page 100000000 one 1000000

# ---------- Define Settings ----------------------------------------------

compute T all temp/com

compute stress all stress/atom NULL virial

reset_timestep 0

timestep $dt

variable pxx equal pxx

variable pyy equal pyy

variable pzz equal pzz

variable xcm equal xcm(all,x)

variable ycm equal xcm(all,y)

variable zcm equal xcm(all,z)

thermo $thermo

thermo_style custom step temp pe ke etotal lx ly lz press pxx pyy pzz

thermo_modify lost warn norm yes

# ---------- To allow the sample to contract during deformation -----------

fix nph all nph x 0.0 0.0 ${pdamp} y 0.0 0.0 ${pdamp} &
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z 0.0 0.0 ${pdamp} fixedpoint ${xcm} ${ycm} ${zcm}

fix langevin all langevin ${tinitial} ${tfinal} ${tdamp} &

${seed} zero yes

run 10000

unfix nph

reset_timestep 0

variable step equal step

variable strain equal v_step*${erate}*${dt}

fix nph all nph x 0.0 0.0 ${pdamp} y 0.0 0.0 ${pdamp} &

fixedpoint ${xcm} ${ycm} $zcm

# ---------- Apply loading ------------------------------------------------

fix DEFORM_FIX all deform 1 z erate ${erate}

run 370000 # total strain of 37%

print "All done"

# ============================================================================



169

∘ Shear failure:

# ============================================================================

# LAMMPS script for shear failure on a Grain Boundarie of Fe

# ---------- General Variables --------------------------------------------

variable dt equal dt # timestep in ps

variable erate equal erate # deform erate each unit time

variable tdump equal 5000 # dump each tdump steps

variable tprint equal 1000 # print each tprint steps

variable thermo equal 100 # compute and print thermodynamic info

variable tinitial equal 10 # final temperature

variable tfinal equal temp # final temperature

variable tdamp equal 0.2

variable pdamp equal 2

variable seed equal round(random(0,999999,$RANDOM))

variable c equal 0.30 # crack size l = c*Ly

# ---------- Structure ----------------------------------------------------

read_restart ../restart.struct # read structure from a directory

variable xlen equal lx

variable ylen equal ly

variable zlen equal lz

variable zlen2 equal ${zlen}/2

variable zlo equal zlo

variable zhi equal zhi

print "lx: ${xlen}"

print "ly: ${ylen}"

print "lz: ${zlen}"

# Crack

region crack block 0.000000 $xlen $yleni $ylenf $zleni $zlenf

group crack region crack

delete_atoms group crack

# Upper and lower crystals

region up block 0.000000 ${xlen} 0.000000 ${ylen} &
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${zlen2} ${zlen} units box

region low block 0.000000 ${xlen} 0.000000 ${ylen} &

0.000000 ${zlen2} units box

group up type 1

group low type 2

# ---------- Interatomic Potential ----------------------------------------

pair_style eam/fs

pair_coeff * * Potential

neighbor 2.0 bin

neigh_modify delay 10 check yes page 100000000 one 1000000

# ---------- Define Settings ----------------------------------------------

compute temp3d all temp/com

compute temp2d all temp/partial 1 0 1

reset_timestep 0

timestep $dt

variable pxx equal pxx

variable pyy equal pyy

variable pzz equal pzz

variable xcm equal xcm(all,x)

variable ycm equal xcm(all,y)

variable zcm equal xcm(all,z)

thermo $thermo

thermo_style custom step temp pe ke etotal lx ly lz press pxx pyy pzz

thermo_modify lost warn norm yes

# ---------- To allow the sample to contract during deformation -----------

fix nph all nph x 0.0 0.0 ${pdamp} y 0.0 0.0 ${pdamp} &

z 0.0 0.0 ${pdamp} fixedpoint ${xcm} ${ycm} ${zcm}

fix langevin all langevin ${tinitial} ${tfinal} ${tdamp} &

${seed} zero yes

fix_modify langevin temp temp3d

run 10000

unfix langevin

unfix nph
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reset_timestep 0

variable step equal step

variable vel equal $ylen*${erate}

variable strain equal v_step*${vel}*${dt}/${ylen}

variable trun equal 0.5*${ylen}/(${vel}*${dt}) # total strain of 50%

fix nph all nph x 0.0 0.0 ${pdamp} y 0.0 0.0 ${pdamp} &

fixedpoint ${xcm} ${ycm} $zcm

# ---------- Apply loading ------------------------------------------------

velocity all ramp vy -${vel} ${vel} z ${zlo} ${zhi} sum yes units box

fix langevin all langevin ${tfinal} ${tfinal} ${tdamp} &

${seed} zero yes

fix_modify langevin temp temp2d

thermo_modify temp temp2d

run ${trun}

print "All done"

# ============================================================================
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