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RESUMO 

 

CERIBELI, Kevin Bachion, Processo Integrado de Gaseificador/Turbina a Gás Usando 

Resíduo Sólido Urbano como Combustível em Forma de Lama; Estudo da Influência do Teor 

de Sólido Seco na Lama na Eficiência Global do Processo, Faculdade de Engenharia 

Mecânica, Universidade Estadual de Campinas, Dissertação de Mestrado, (2018), 73 pp. 

 

O presente trabalho pretende contribuir para os estudos de viabilidade teórica do 

conceito de Gaseificador/Turbina a Gás (FSIG/GT) integrados para geração de energia 

termelétrica aplicada ao caso de Resíduos Sólidos Urbanos (RSU). A lama é injetada por 

bombas comercialmente disponíveis em um secador pressurizado que opera sob a técnica de 

leito fluidizado borbulhante. Esse método evita os problemas comuns de alimentação de 

partículas em ambientes pressurizados. Após a secagem, o RSU é transportado para um 

gaseificador para produzir o gás combustível. O gás é limpo reduzindo-se a concentração e 

tamanhos de partículas para valores aceitáveis para injeção em turbinas a gás. Além disso, 

para atingir baixa concentração de componentes alcalinos, que podem causar erosão e 

corrosão nas lâminas da turbina de gás, a corrente de gás é arrefecida até valores abaixo das 

temperaturas de orvalho desses componentes alcalinos. O resfriamento fornece energia para a 

geração de vapor que impulsiona um ciclo baseado no ciclo Rankine. Em seguida, o gás é 

direcionado para um combustor e a corrente resultante a alta temperatura aciona turbina ou 

turbinas a gás. A exaustão dessas turbinas é usada para operar um ciclo Rankine secundário 

de recuperação de energia. O presente estudo aplica o software matemático (Simulador para 

Leitos Fluidizados e Moventes - CeSFaMB ©) para simular o secador e também o 

gaseificador, enquanto outro software (Simulador de Equipamentos e Processos Industriais - 

IPES ©) para simular processo global de geração de energia. Isso permite verificar o efeito do 

teor de sólidos secos na lama de RSU nas eficiências da 1ª e 2ª Lei da unidade global de 

geração de energia. Os resultados mostram um aumento praticamente linear dessas eficiências 

contra o aumento do teor de sólidos secos na lama. Também indica a possibilidade de 

melhorias substanciais no nível de eficiência global alcançado em trabalhos anteriores, 

atingindo agora valores superiores a 40%. 

 

 

Palavras-chave: Leito Fluidizado, Gaseificação, Resíduo Sólido Urbano 



 

 

 

ABSTRACT 

 

CERIBELI, Kevin Bachion, Fuel-Slurry Integrated Gasifier/Gas Turbine Process Using 

Municipal Solid Waste; Study on the Influence of Dry Solid Concentration in the Slurry on 

the Process Overall Power Efficiency, School of Mechanical Engineering, University of 

Campinas, Master of Science Dissertation, (2018), 73 pp. 

 

The present work intends to contribute to the theoretical feasibility studies of Fuel-

Slurry Integrated Gasifier / Gas Turbine (FSIG / GT) concept for thermoelectric power 

generation applied to the case of Municipal Solid Waste (MSW). The slurry is injected by 

commercially available pumps into a pressurized dryer operating under the bubbling fluidized 

bed technique. Such a method avoids the commonly encountered problems of feeding 

particulates in pressurized environments. After drying, the MSW is carried to a gasifier to 

produce the fuel gas. The gas is cleaned by lowering its particle content and sizes to values 

acceptable for injection in gas turbines. Additionally, to reach low concentration of alkaline 

components, which might cause erosion and corrosion to gas turbine blades, the gas stream is 

cooled to values below the dew point temperatures of those alkaline components. The cooling 

provides energy for steam generation that drives a Rankine-based cycle. Then, the gas is 

directed to a combustor and the exiting hot stream turns gas turbine or turbines. The exhaust 

from those turbines is used to drive a secondary heat recovering Rankine-based cycle. The 

present study applies mathematical software (Comprehensive Simulator for Fluidized and 

Moving Beds - CeSFaMB©) to simulate the dryer as well the gasifier, while another software 

(Industrial Process and Equipment Simulator – IPES©) to simulate the whole power 

generation process. Those allow verifying the effect of dry solid content in the MSW slurry 

on the overall power unit 1st and 2nd Law efficiencies. The results show a practically linear 

increase of those efficiencies against the increase of dry solid content in the slurry. It also 

indicates the possibility of substantial improvements on the level of overall efficiency 

achieved in previous works, reaching now values higher than 40%. 
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1 INTRODUCTION 

 

With the expansion of cities’ population, the problem of Municipal Solid Waste (MSW) 

discard increases. On the other hand, sources of sustainable or renewable power generation 

should be explored. 

The present study analyzes the theoretical feasibility of thermoelectric power generation 

based on pressurized gasifiers consuming MSW as fuel. It is mixed with water to form a 

slurry to be fed into the process. This process has been called Fuel-Slurry Integrated 

Gasification/Gas Turbine (FSIG/GT). The main objective is to verify the influence of the 

water content in the feeding slurry on the process overall efficiency. This might lead to 

information on how to improve the efficiency level arrived in previous studies on FSIG/GT. 

 

 

1.1 BRAZILIAN ENERGY MATRIX 

 

 

Energy matrix encompasses all the available energy to be generated, distributed and 

consumed in a country or region. 

Brazil has one of the most renewable electric energy generation matrix in the 

industrialized world, with 75.5% coming from sources like hydro, biomass, wind, and solar 

power. In 2015, hydroelectric plants were responsible for the generation of 64.0% of the 

electricity of the country and biomass for 8.0%. In contrast, the world average energy matrix 

was composed by 24.1% of renewable sources, dropping to 23.1% in the countries of OCDE 

(Organization for the Cooperation and Economic Development) [1, 2]. 

The benefits of a renewable energy matrix are translated into reduced pollutant 

emissions, as well sustainable growth of energy offer. Data from 2016 shows that Brazil 

released 1.56 Mg of carbon dioxide per ton of oil equivalent (toe), while this indicator was 

2.35 worldwide. In 2013, China and USA were responsible for 43.9% of world emissions, 

with 14.14 Mg CO2/toe. In the same year, the total emissions were accounted in 32.19 Mg 

CO2/toe [1]. 

Figure 1 illustrates the Brazilian electric matrix in 2015. It is noticeable that the 

hydroelectric generation is significantly higher than the other sources. It is also important to 

stress that biomass sources are the second most important. Among the biomass used for 
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purposes of electric power generation, are firewood, sugar cane bagasse, rice peels, black-

liquor and municipal waste [2]. 

 

 

Figure 1. Brazilian electric matrix, corresponding to 2015 

 

Based on researches from the Secretary of Planning and Energy Development, which 

assumes the Brazilian economy growing at 3.2% per year (world average value settled 3.8%), 

the Ministry of Mines and Energy created the Decennial Energy Expansion Plan (PDE). It 

envisages projections for the increase on installed capacity per generation source for the next 

years, and those are presented in Table 1 [3]. 

According to PDE, around R$ 1.4 trillion should be invested in the infrastructure of 

energy generation until 2024, with a 26.7% slice to the segment of electric power production, 

70.6% to oil and natural gas, and 2.6%, to liquid biofuels [3]. Additionally, until 2024, that 

investment plan intends to increase the share of biomass and wind from 8.3% to 8.7%, and 

3.7% to 11.6%, respectively. That is illustrated in Figure 2. 
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Table 1. Evolution of installed capacity per generation source 

 

 

 

Figure 2. Evolution of installed capacity per generation source 

 

Brazilian municipalities, such as São Paulo and Rio de Janeiro, respectively collect 

around 12,500 and 10,000 tons of MSW daily [4]. A fraction of those is recycled, leaving 

around 80% available for power generation. For the sake of an example, considering the Low 

Heating Value (LHV) of 10.17 MJ/kg (dry basis) – which was determined to the city of São 

Paulo elsewhere [5] - the power generation potential of that city can reach near 350 MW. 

 



19 

 

 

2 OBJECTIVE 

 

 

Starting from a previous work [42], the objective of the present study is to investigate 

the influence of dry solid content in the water-MSW slurry on the efficiency of Fuel-Slurry 

Integrated Gasifier/Gas Turbine (FSIG/GT) power generation process consuming that slurry.  

The basic concept of that power generation process is shown in Figure 3.  

 

 

Figure 3. Configuration of the proposed FSIG/GT process  

C = Compressor, CB = Combustor, CD = Condenser, CL = Cleaning system, CY = Cyclones 

and Filters, D = Dryer, DF = Dried fuel, FE = Screw feeding, FS = Fuel-slurry pumping, G 

= Gasifier, GT = Gas turbine, SG = Steam generator, SR = Solid residue, ST = Steam 

turbine, P = Pump, V = Valve or Splitter. 
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According to that, water and wet MSW are mixed in order to form a slurry, which is 

pumped into a pressurized fluidized bed dryer. Since the dryer and gasifier operate at similar 

pressures, the dry fuel can be fed into the gasifier using simple rotary valves combined with 

Archimedes’ screws. The fuel gas extracted from the gasifier is then cooled to temperatures 

below the dew-point of alkaline species, before entering the gas turbine. This operation is 

paramount to avoid alkaline species inside the gas turbine, which would cause erosion and 

corrosion of its blades [6-8]. Additionally, two energy-recovering cycles are coupled to the 

main process, in order to increase the overall efficiency of the entire process. 
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3 LITERATURE SURVEY 

 
 

Application of rational and environmentally sound management of MSW is critical to 

achieve sustainable living conditions. Consequently, proper treatment and use of that residue 

for power generation remains among the most urgent problems of medium to large cities [9]. 

Currently, landfilling is the most common MSW disposing procedure [10]. For instance, 

in 2008, nearly 13 million tons of waste were generated by Canadian households and, from 

that, more than 8.5 million tons were disposed of in landfills or through incineration. The 

remaining 4.4 million tons were diverted for recycling, reuse, or composting. Paper fibers and 

organic materials represent the largest proportion of household material that is recycled and 

composted [11]. 

Although the widespread use of landfilling for waste disposal, it also brings several 

disadvantages. Among them the release of methane to the atmosphere, due to fermentation of 

biodegradable waste. That gas contributes to global warming, not to mention raises the 

potential for fires and explosions. In addition, rain water percolates through the landfill and 

dangerous pollutants might contaminate the underground water. Other impacts include the use 

of land and the retention of carbon in the landfill for long periods, with a fraction returning to 

the atmosphere as carbon dioxide. In addition, finding landfilling areas is progressively 

difficult, forcing increasing expenses in transportation of MSW to those areas [12]. 

On the other hand, open-air incineration brings even greater negative consequences than 

landfilling with the release of harmful pollutants such as NOx, SO2, HCl, fine particulates, 

dioxins, as well as carbon dioxide. Moreover, fly ash and residues from air pollution control 

systems require stabilization and disposal as hazardous waste. Proper combustion in power 

plants can eliminate many of the problems associated to open-air incineration as well allow 

energy recovery. As benefits, the generated power can replace a fraction of the produced by 

burning fossil fuels, thus bringing overall savings in carbon dioxide emissions. Additionally, 

the generated ash may be used as a secondary aggregate and recovered metals can be recycled 

[12]. Moreover, other modern alternatives can be applied to recover energy from MSW, such 

as refuse-derived fuel (RDF) production, mechanical-biological treatment, gasification and 

anaerobic digestion. 

For these reasons, it is necessary to consider alternative municipal solid waste 

management strategies. 
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Unlike landfilling, composting reduces methane production from aerobic degradation of 

organic waste. Additionally, this method brings benefits because composites can be used as 

soil improvers and replace, to some extent, the use of fertilizers and peat, which have negative 

environmental impacts. Besides, composites can sequester carbon, thus increasing the stored 

soil organic matter and improving its fertility as well, allowing for decreases in the frequency 

of irrigation and lowering soil erosion rates. However, despite these advantages, careful 

control of the composting process should be set to avoid bio aerosols [12]. 

Mechanical-biological treatments reduce the volume of waste and therefore the area 

occupied by the landfill per mass of generated MSW and brings advantages as reduction of 

methane from aerobic degradation of treated organic waste in landfills. It also increases the 

recovering of materials for recycling and energy recovery [12]. However, the method still 

leads to most of the above-mentioned problems of landfilling. 

As seen, all above mentioned methods have many negative points. 

Aware of those difficulties, several Canadian municipalities have initiated or already 

developed successful recycling programs to reduce the amount of waste that goes to landfills 

[9]. Recycling, which has significantly increased in Canada, has led to energy saving because, 

usually, less energy is required to manufacture products from recycled feedstock than from 

original mineral or fossil resources. In this process, emissions of greenhouse gases and other 

pollutants are reduced as well. This method also prolongs reserves of finite resources (e.g. 

metal ores), contributing to the sustainable use of resources, and avoids impacts associated 

with extraction of virgin feedstock (e.g. quarrying of ores and sand, and felling of old growth 

forest to produce wood for paper) [12]. 

A headmost scenario can be observed in South Korea. It currently recycles 57% of 

household waste and sends 26% to landfills. The remaining 17% is fed into boilers and the 

generated steam used for heating. From the perspective of sustainable waste management, the 

priority is placed on the reduction of waste generation followed by recycling, both of which 

are highly beneficial in terms of greenhouse gas emissions reduction by saving resources 

otherwise required for manufacturing new products. Nonetheless, some wastes are not 

suitable for recycling and, for the non-recyclable fractions, an energy recovery method 

becomes important because it can reduce the use of fossil fuels. At the same time, it can also 

minimize the environmental and health problems of waste disposal applying the landfill 

alternative [13]. 
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The Brazilian scenario related to MSW management needs urgent improvements. By 

2015, about 60% of the collected MSW was sent to landfills, and almost 30% was conveyed 

to dumps, only the remaining found more appropriate destination, such as recycling [14]. 

Some environmental impacts of the main waste management options are summarized 

elsewhere [12]. 

Historically, several drawbacks were encountered in the development of processes using 

MSW as fuel for power generation. Among them, low efficiencies when compared with 

processes consuming more traditional fuels such as coals. That is mainly due to MSW’s 

relatively high moisture content, low average heating value, and the challenges to comply 

with low pollutant emission standards [9-20]. 

Since the introduction of Coal Integrated Gasification/Gas Turbine (CIG/GT) and its 

biomass equivalent (BIG/GT) processes [21-29], most of their main technical obstacles have 

been overcome. For instance, the removal of tar [30, 32] from the produced gas as well 

lowering particle content and sizes and alkaline species concentrations in the produced gas in 

order to meet acceptable levels for injection into commercial turbines [30-35]. 

However, another important technical barrier, represented by the difficulty of feeding 

solid particulate fuels into pressurized vessels, remains. Usually, that feeding is accomplished 

by cascade or sequential systems, composed of two or more levels of pressurized lock hoppers 

[36, 37]. A scheme of the system is shown in Figure 4. The particulate fuel is fed at the top 

hopper. The pressure increases from a hopper to the following below, and that difference is 

not enough to cause particle densification when passing from one to the other. The last hopper 

drops the solid fuel on an Archimedes screw that feeds the fuel into the pressurized reactor. 

On the other hand, such operations involve high operational costs due to the use of cool inert 

gas to avoid fuel ignition or pyrolysis before it reaches the reactor. Furthermore, the 

mentioned alternative faces operational difficulties when handling fibrous fuels because 

neighboring particles tend to entangle, thus jeopardizing or even blocking the flow of material 

to the valve immediately below.  
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Figure 4. Sequential lock-hopper feeding (Source: Dai, J.; Cui, H.; Grace, J. R. Biomass 

feeding for thermochemical reactors. Progress in Energy and Combustion Science [Online] 

2012, 38 (5), 716-736) 

 

An alternative to circumvent that problem is to inject the fuel as a slurry into the 

pressurized reactor, using commercially available slurry pumps. This method has been applied 

for a long time [21] and greatly simplifies the feeding process and, very likely, decreases the 

capital, operational, and maintenance costs when compared with methods based on cascade 

systems of hoppers. Studies were developed exploring the option but mostly employing 

boilers [21, 38-41], because the vaporization of the fuel original moisture, added to the water 

to prepare the slurry, would consume a considerable part of the energy released from the fuel 

burning. Thus, one-step slurry gasification becomes a low-efficiency option. However, it has 

been shown that drying the slurry before the gasification step, combined with efficient 

energy-recovery system, led to relatively high overall power generation efficiency [42]. The 

present study investigates how the overall power generation efficiency is affected by the 

amount of water added to the feeding MSW. 

Basically, the mentioned gasification process is a partial combustion of the solid 

carbonaceous fuel aiming to convert it to fuel gases [43, 44]. Among the applications of the 
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fuel gas, it is heating and power generation. For the specific application in Fischer-Tropsch 

process, further processing has to be applied in order to achieve synthesis gas (syngas) 

specifications. 

One of the first products of the gasification process was called “town gas” or fuel-gas, 

used mainly in the USA and Europe at the beginning of 19th century, for lighting and heating. 

Coal was the usual fuel. Further improvements on gasification were applied, and during 

World War II gasifiers were fit to vehicles able to consume the produced gas. Fisher-Tropsch 

process was also used to convert coal in useful liquid hydrocarbons. These developments 

continued during the second half of 20th century in countries with sizable coal reserves but 

few oil ones. Finally, by the end of the 20th century, the gasification processes started to be 

used in power generation with the development of the first power generation plants based on 

the Integrated Gasification Combined Cycle (IGCC) [45]. 

There are few alternatives to use the fuel gas from gasification. The first one is to burn it 

in boilers to produce steam. Alternatively, one might use the gas to drive cycles or processes 

aimed directly to power attainment. A third possibility employs plasma technology, where 

high temperature of the plasma arc greatly reduces the polluting or health-hazardous potential 

of substances or compounds in the fuel and the solid residues are produced in the form of a 

vitrified slag [46]. However, that last alternative brings unfavorable economic factors and 

should be used only in very special conditions or cases. 

Historically, various gasifier concepts were developed. Breault, R.W. [45] describes 

some of the most important among those concepts. A brief description of those is presented in 

Table 2.  
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Table 2. Examples of gasifiers developed up to 2010 (Source: Breault, R. W. Gasification 

Processes Old and New: A Basic Review of the Major Technologies. Energies [Online] 2010, 

3, 216-240) 

GASIFIER DESCRIPTION APPLICATION 

GE Energy 
A coal-water slurry fed, oxygen-blown, entrained-flow, 

refractory-lined slagging gasifier 

Up to 2010, there are 
64 plants operating 

and six plants in 
planning. 

ConocoPhillips 
E-Gas 

Originally developed from 1987 through 1995. It is a two-
stage gasifier with 80% of feed to first stage (lower). The 

gasifier is coal-water slurry fed, oxygen-blown, refractory-
lined gasifier with continuous slag removal system and dry 

particulate removal. 

There is one plant 
operating and six 

plants in planning. 

Shell 

Has its roots dating back to 1956 leading to their first 
demonstration facility in 1974. Coal is crushed and dried and 
then fed into the Shell gasifier as a dry feed. The gasifier is an 

oxygen-blown, water-wall gasifier eliminating refractory 
durability issues. 

There are 26 Plants 
operating and 24 

plants in planning. 

Siemens 
Initially developed in 1975 and first demonstrated in 1984. 
The gasifier is a dry feed, oxygen-blown, top fired reactor 

with a water wall screen in the gasifier. 

Up to 2010, there is 
one plant operating 

and one plant in 
planning. 

KBR Transport 
It operates air blown for power generation and oxygen for 

liquid fuels and chemicals. It is a non-slagging gasifier with 
no burners and utilizing a coarse, dry low rank coal feed. 

Presently, there is one 
IGCC in design. 

British Gas 
Lurgi 

Developed during the period from 1958 to 1965. It is a dry 
feed, oxygen-blown, refractory-lined gasifier. 

A demonstration plant 
operated from 1986 to 

1990, and the first 
commercial plant 

operated from 2000 to 
2005. 

Multipurpose 
Gasifier 

An oxygen-blown, down fired, refractory lined gasifier good 
for wide range of feed stocks including petroleum coke and 

coal slurries as well as waste. 

A reference plant has 
been in operation 

since 1968. 
Lurgi Mark IV 

Gasifier 
Has a dry feed system with lock hoppers to provide the 

pressure seal. It is an oxygen blown, dry bottom gasifier. 
There are 8 plants 

operating. 
Mitsubishi 

Heavy 
Industries 
Gasifier 

Based upon the Combustion Engineering air-blown slagging 
gasifier. It has a dry feed system. It is an air blown two-stage 

entrained bed slagging gasifier utilizing membrane water-wall 
construction. 

Up to 2010 there was 
one demonstration 
plant in operation. 

U-Gas 
A fluidized bed gasifier incorporating a dry feed system. It is 

highly efficient in either the air or oxygen blown 
configuration producing a non-slagging/bottom ash. 

Up to 2010 two plants 
were in operation. 

High 
Temperature 

Winkler 
Gasifier 

A fluidized bed gasifier utilizing a dry feed and operating 
either in the oxygen or air-blown modes. It produces a dry 

bottom ash. 

A demonstration plant 
shut down in 1997. 

PRENFLO™ 
Gasifier/Boiler 

A pressurized entrained flow gasifier with steam generation. 
It is an oxygen blown, dry feed, membrane wall gasifier. 

The technology is 
used in world’s largest 
solid-feedstock-based 
IGCC plant in Spain. 
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Besides gasification, combustion and pyrolysis are other two options for the 

thermochemical conversion of MSW. 

Waste-to-Energy (WtE) plants usually apply steam cycles with almost complete 

combustion of that residue. Their sizes are in the range between 35MW (LHV base) and 

90MW. The typical small thermal input size has several effects on the WtE performances due 

to many reasons. Among them the decrease in efficiency because steam turbine performance 

decreases with the size, requires relatively larger air excesses due to unfavorable volume to 

surface ratio in the combustion chamber, and lower auxiliary device performances, since 

those also decrease with equipment sizes [46]. 

Besides that, conservative steam parameters compose another limitation to reach higher 

efficiency values. For the Rankine cycle, efficiency increases for higher steam temperatures. 

However, the heat transfer surfaces of WtE boilers must face severe, high temperature, acidic 

corrosion, caused by both the metal chlorides in the fly ash and the high concentration of 

hydrogen chloride (HCl) in the flue gas. The corrosion rate increases with temperature, hence, 

to limit corrosion, the temperature of the surfaces must be limited. This consideration applies 

both to evaporating and superheating surfaces, thus, setting limits to superheating temperature 

[46]. 

Furthermore, Rankine cycle efficiency is also improved by lowering the pressure at the 

condenser. In traditional WtE plants, air cooled condensers, working under relatively high 

pressure, are often applied. For large installations, larger surfaces of air cooled condensers or 

the use of water cooled condensers may lower the condensing pressure and hence improving 

the efficiency. 

Additionally, for facilities with low processing capacity (100,000 to 150,000 Mg/y), the 

in-plant consumption represents a quite important fraction of the gross power. Depending on 

the plant size the overall fraction of the electrical power for in-plant consumption is 10 to 

15%, which may increase up to 21% when waste pre-treatment consumption is required to 

feed fluidized bed. An alternative to improve the performance is the integration of municipal 

waste incinerator with combined steam gas cycles [46]. 

For both combustion and gasification (with fuel gas consumed in a boiler), it is possible 

to summarize that large scale plants might reach between 30 and 31% net electric efficiency, 

while small/medium size ones, net electric efficiency might achieve from 20 to 24%. Studies 

related to gasification with fuel gas in devices aimed directly to power attainment, such as gas 
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turbines and internal combustion engines, provided efficiencies similar to those of 

conventional plants based on incineration [46]. 

Another line of research for power generation involves pyrolysis. It is a thermal process 

taking place with complete or almost complete absence of oxygen, and using an external 

source to provide the required energy. It produces three output streams: gas, liquid (oil) and 

solid (char). Due to the absence of oxygen, no oxidation occurs, while the feeding organic 

material undergoes a thermal degradation. Pyrolysis application for energy recovery from 

wastes is limited to few specific situations. While a large development of biomass pyrolysis 

was carried out in the last years, pyrolysis of waste is mainly at research and development 

stages [46]. 
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4 MATHEMATICAL MODEL 

 
 

The study used mathematical simulators of both the dryer and gasifier (CeSFaMB©) and 

the gas turbine combined process (IPES©), which are briefly described in subsequent sections. 

Additional information on CeSFaMB© can be found in Appendix 1. 

 

 

4.1 DRYER AND GASIFIER SIMULATION - CESFAMB© 

 

 

The CeSFaMB© (Comprehensive Simulator of Fluidized and Moving Bed equipment) is 

a computational model based on a mathematical model developed for the representation of 

bubbling and circulating fluidized bed equipment, as well as updraft and downdraft moving 

bed and entrained flow equipment. Among these industrial and pilot units, there are furnaces, 

boilers, gasifiers, dryers, and reactors. 

CeSFaMB© model is one-dimensional, but including all relevant phenomena. The 

justification for this approach can be found in the literature [49]. 

The assumption of the first-order model may seem simple, but it must be realized that 

the processes occurring inside bubbling fluidized bed combustion chambers, boilers, or 

gasifiers can involve up to five physical states, dynamics of those phases and iterations among 

them, heat and mass transfers between phases, heat transfer between phases and walls 

(including tubes in case of boilers), generation of finer particles due to attrition among them 

as well due to heterogeneous chemical reactions, as well several other processes. 

Additionally, the model considers about one hundred possible homogeneous and 

heterogeneous chemical reactions, including processes such as pyrolysis, drying of solid fuels, 

and sulfur absorptions in cases of limestone or dolomite are added to the reactor. The 

structure considers 18 gaseous and 14 solid chemical components. Most chemical components 

are present in all physical states. 

The mass and energy balances at each point of the equipment lead to a system of 

nonlinear and highly coupled differential equations. 

Among the most important information provided by the simulation are: 
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 Profiles of concentration and mass flow rate of 18 gas components (Ar, CO2, CO, O2, 

N2 and H2O, H2, CH4, SO2, NO, N2O, NO2, HCN, C2H6, H2S, 

NH3, C2H4, C3H6, C3H3, C6H6, tar) along the bed in the bubble phase and emulsion; 

 Profiles of concentration and mass flow of these species along the freeboard region. 

 Composition, circulation rates and particle size distribution of all solid species in the 

bed. The possible solids are carboniferous, limestone or dolomite (or a mixture of 

both), and inert; 

 Profiles concentration, mass flow and particle size distribution of all the solid species 

along the freeboard region; 

 Gas temperature profiles in the emulsion, bubble gas, carboniferous, limestone or 

dolomite (or a mixture of both), and solids inert along the bed; 

 Gas temperature profiles and solid phases of three possible across 

the freeboard region; 

 All parameters related to fluidization dynamics at each bed point, such as bubble 

sizes and velocities, mass flow through each phase, particle circulation rates, etc. For 

circulating beds, the fluidization parameters are also calculated and reported; 

 Pressure drops on the manifold and bed; 

 Typical engineering parameters such as efficiency, heat losses to the environment, 

external wall temperature profiles, adiabatic flame temperature of the gas produced 

(if any), the compositions of the outlet streams on several different bases, drag and 

elutriation parameters, among other details. 

 

In the case of boilers, the simulation gives detailed profiles of temperature of the wall of 

the tubes in the bed and freeboard region. In cases of circulating beds or if particles collected 

in the cyclone system are totally or partially recycled to the bed, the simulation provides 

various data regarding the operation of the cyclone system, as well as the composition and 

particle size distribution of the bed solids. If tubes (one or several sets) are immersed in the 

bed, the program shows the erosion rate of the tube walls. If intermediate injections are used 

and withdrawals of gas and the bed and/or freeboard region, the effects of these intermediates 

fluxes in the process are computed; 

As input data, the program requires: 

 Parameters required to set the numerical convergence and solution of differential 

equations; 
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 Description of the equipment (equipment type, hydraulic diameter and bed height, 

among other geometry parameters); 

 Distributor description (distributor type, orifice diameter, etc.); 

 Parameters related to the use of cyclones for recycling of particles; 

 In case of boilers, parameters related to tube banks (diameters, pressure of the fluid 

inside the tubes, number of tubes in each bank, etc.); 

 Parameters related to the use of a "cooling jacket" (fluid used, fluid inlet temperature 

in the cooling jacket); 

 Characterization of the gases injected in the distributor, as well as in intermediate 

injections (composition, mass flow, temperature, etc.); 

 Parameters of operation of the equipment (such as internal pressure); 

 Characterization of the solid components injected into the equipment, whether 

carbonaceous materials, limestone / dolomite or inert materials (particle size 

distribution, temperature, mass flow, composition, amount of added water to form 

slurries, etc.). 

 

These and other input data will be properly characterized in subsequent sections. 

 

 

4.2 THERMODYNAMIC PROCESS SIMULATION - IPES© 

 

 

The IPES© (Industrial Plant and Equipment Simulator) is a computational code based 

on a mathematical model developed for simulating thermodynamic processes and equipment. 

The program includes the basic equations related to the mass and energy balances around 

each process equipment, as well as lists all the input and output streams of all the equipment, 

in order to simulate the whole process. Applying the 1st and 2nd laws of thermodynamics, the 

result is a system of equations with number of unknowns equal to the number of equations to 

be solved. 

The program can simulate various equipment, among them: turbines, compressors, 

pumps, nozzles, mixers, splitters, heat exchangers and valves. The data required by the 

program for the simulation include description of each of the equipment (equipment type, 
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input and output currents, efficiency, etc.) and, when imposed or known, the description of 

each stream (mass flow, temperature, pressure, and composition). 

The main data obtained after the simulation include the temperature, pressure, 

composition, saturation pressure, enthalpy, entropy, exergy, specific heat and its integral, 

combustion enthalpy, as well flame temperature of each stream. Additional information are 

efficiency of heat exchangers and process 1st and 2nd law efficiencies. 

The most relevant data for this study will be properly characterized in subsequent 

sections. 
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5 STUDY PARAMETERS 

 
 

The basic main assumptions applied to the present investigation are: 

a) The gasifier and dryer operate as a bubbling fluidized bed equipment, but other 

techniques, such as circulating bed or even entrainment flow, could be applied as 

well. It is believed that such choices would not drastically modify the main 

conclusions of the present work. On the other hand, it should be stressed that 

bubbling bed reactors are less stringent than those other techniques regarding the 

range of feeding particle size and density. Other main advantages of bubbling 

fluidization over other techniques are [47-50]: 

 The bed and freeboard normally operates at relatively low and uniform 

temperatures. This brings savings in materials and insulations. 

 Relatively high response time when variations of temperature or other parameters 

occur, which allows the application of less expensive controlling instrumentation. 

 High residence time inside the bed, which leads to higher fuel conversion. 

 Possibility of adding sulfur absorbents, such as limestone or dolomite, into the 

bed, which allows for savings in effluent gas cleaning. 

 If denser particles than the average, enter a bubbling fluidized beds, they would 

drop to the bottom of the bed and would be removed by proper mechanical means 

without interrupting the equipment operations. This is expected when working 

with diverse materials such as those composing MSW. 

 

b) MSW includes a very wide range of possible materials. The average characteristics 

of such residues also vary with the region and economic conditions of the consuming 

population. The work of Gidarakos et al. [17] was used due to its coherence and 

completeness of data. Those are reproduced in Table 3. 

c) The basic shape of MSW has been set as cylindrical, typical of fibrous materials, 

because a substantial portion of MSW is composed by cardboards, paper, and food 

residues. However, other choices for the basic fuel shape should not significantly 

affect the results presented here. 

d) Likewise biomass, the apparent and real densities of wet MSW have been assumed 

as 720 and 1394 kg/m3, respectively. 
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e) The rate of wet MSW consumption was set at 28.45 kg/s. Such MSW rate might be 

generated by 3 million inhabitant cities, approximately [11]. The dryer operating 

pressure is slightly above 2 MPa. Scaling up or down regarding the MSW feeding 

rate should not compromise the main conclusions arrived here. Nevertheless, the 

present results can be easily scaled up or down and such should not invalidate the 

main conclusions of the present work.  

f) The maximum dry-solid content in a slurry able to be handled by commercial pumps 

have been observed. That value should be around 50% [51]. 

g) As commented, the gas leaving the gasifier should be cleaned to decrease particle 

content and their sizes to values acceptable for injections into commercial gas 

turbines. In addition, the alkaline concentrations in that gas must also be decreased 

for the same aim [30-32]. Ceramic filters might be applied to tar removal and 

temperature drop to 800 K - which is below the dew-points of alkaline components - 

allowing significant decrease in the concentrations of those species in the gas stream 

[33].  

h) The isentropic efficiency of compressors is assumed as 87% for compressors [52]. 

i) The isentropic efficiencies of both, gas and steam turbines are assumed as similar to 

compressors, 87%. 

j) The maximum temperature of streams leaving axial compressors is taken as 950 K 

[53]. 

k) Pumps isentropic efficiency assumed as 95% [54]. 

l) Minimum temperature difference between heat-exchanging streams set as 10 K. 

m) Maximum injection temperature into turbines set at 1700 K. 

n) High-temperature heat exchangers can be used in some particular situations. 

Nonetheless, some precaution as to minimize the regions where those must be 

applied is always advisable to avoid excessive capital and maintenance costs.  [55]. 

o) The average pressure loss in heat exchangers are assumed as 10 kPa. 

 

Modifications on those assumptions might be made in future investigations. Despite 

that, the main results achieved here should not be drastically altered. 

No economic considerations or computations are part of the present work. 

The evaluation of the process studied here requires more detailed descriptions related to 

the consumed fuel and involved equipment. Among the most important information are the 
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dryer and gasifier geometric characteristics, their basic operational parameters, as well as the 

characterization of the consumed fuel. These are presented in the following sections. 

 

Table 3. Main characteristics of the fuel (MSW) consumed by the process 

Physical Characteristics of the Fuel: 
Bulk Density 200 kg/m3 

Apparent Density 720 kg/m3 

True Density 1394 kg/m3 
Sphericity 0.70 
Shape Cylindrical 
Particle average diameter 2 x 10 -3 m 
High heating value (dry basis) 22.30 MJ/kg 

Proximate Analyses (wet basis) 
Moisture 36.72 % 
Volatile 52.64 % 
Fixed Carbon 6.02 % 
Ashes 4.62 % 

Ultimate Analyses (dry basis) 
Carbon (C) 53.00 % 
Hydrogen (H) 7.32 % 
Nitrogen (N) 1.32 % 
Oxygen (O) 30.96 % 
Sulfur (S) 0.10 % 
Ash 7.30 % 

 
 

5.1 DRYER DESCRIPTION 

 
 

 As seen before, the dryer is assumed to be a bubbling fluidized bed. Its distributor 

design includes flutes with holes through which the fluidization gas (stream 28, Fig. 3) is 

injected. 

The dryer has a non-circular cross-sectional geometry, with bed height of 3 m and 

hydraulic diameter of 4 m. The freeboard region is 7 m high, with a hydraulic diameter of 8 

m. The distributor consists of 50,000 flutes with 10 orifices per flute. Each orifice has 3 mm 

of diameter. The internal and external diameters of the flutes are 12.7 and 13.2 mm, 

respectively.  
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Water and wet MSW are mixed to form the slurry, which is pumped 0.5 m above the 

distributor. Many of the above geometric and operational characteristics have been found after 

an optimization, as described ahead. 

 

 

5.2 GASIFIER DESCRIPTION 

 
 

The gasifier has a non-circular cross-sectional geometry. Bed height and hydraulic 

diameter are both 4 m, and freeboard height and hydraulic diameter are respectively 10 and 4 

m. The distributor in this case has the same characteristics of the one used in the dryer. 

The rate of 18 kg/s of dry MSW is fed into the gasifier at 2 m above the distributor.  Air 

is injected through the distributor at 765 K. The operating pressure of the gasifier is 2 MPa. 

To be on the conservative side, the temperature of feeding dry MSW is assumed as 290 K. 

However, that fuel leaves the dryer at higher values, as described below. 

Again, many of the above geometric and operational characteristics have been found 

after an optimization, as described ahead. 

Figure 5 shows a draft of the main components of the reactors of both dryer and 

gasifier. 
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Figure 5. Dryer and Gasifier’s draft 

 
 
5.3 POWER GENERATION PROCESS 

 
 

The process configuration is shown in Figure 3. In the process modeling, pump 17 is 

responsible to pressurize the MSW slurry before injection into the dryer. Since water is the 

fluid added to the wet MSW, it is assumed that it is pumping water. Since the slurry behaves 

as incompressible fluid, that should not impact on the conclusions arrived here. 

 

 

5.4 REMARKS ABOUT EFFICIENCY 

 
 

During the development of the work and presentation of the results, different concepts 

of efficiency were employed, as summarized below: 
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a) Gasifier hot efficiency: Ratio between the rates of combustion and sensible 

enthalpies of gas stream leaving the gasifier computed at the temperature, pressure, 

and composition as found at the exiting point from the equipment and the total rate of 

energy inputted to the equipment; 

b) Gasifier cold efficiency: Ratio between the rate of combustion enthalpy of the dry 

and tar-free gas stream leaving the gasifier computed at 298 K and 101.325 kPa, and 

the total rate of energy inputted to the equipment; 

c) Process 1st Law efficiency: Ratio between the net useful mechanical power output 

and the rate of energy inputted by fuel; 

d) Process 2nd Law efficiency: Ratio between the net useful mechanical power output, 

and the rate of exergy inputted by fuel; 

e) Gasifier exergy efficiency: ratio between the rate of exergy of the produced gas 

leaving the gasifier and the sum of exergy rates of all streams entering the gasifier. 
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6 METHODOLOGY 

 

 

The present work evaluates the relationship between the amount of water added to the 

MSW to form the slurry and the exergy efficiency of the power generation process, which is 

the best indicator for the amount of energy available to perform work. Further details about 

the concepts of exergy and exergy efficiency, as well as their due equation, can be found in 

the literature [44]. For the study, the conditions pre-established in de Souza Santos and 

Ceribeli [42] were used as baseline, and the four steps were followed: gasification 

optimization; process first optimization; dryer optimization and; process second optimization. 

 

 

6.1 GASIFIER OPTIMIZATION 

 
 

The exergy efficiency has been chosen as objective function during the gasifier 

optimization. The gasifier bed diameter and the mass flow of the air injected in it have been 

selected as variables. Other variables - such as bed height and various characteristics of the 

equipment, gasification pressures, fuel particle size distribution - could be included as 

variables as well. However, the selected ones are among the most influential in the 

gasification process. Additionally, each new variable included would multiply the number of 

simulations and bring complications on understanding the effect of each one in the whole 

process. Future works might consider adding variables for the gasifier optimization. 

Since dried fuel enters the gasifier, it can be optimized independently from the dryer 

and process optimizations.  

The gasifier cold efficiency could also be taken as objective function. However, the 

exergy efficiency includes the temperature of exiting gas, and that constitutes an important 

fraction of the energy carried by the produced gas stream, which is used to drive the Rankine 

cycle (Figure 3, equipment 11 to 15). 

Graphs of the gasifier exergy efficiency, cold efficiency and average temperature inside 

the bed were plotted. Also, some of the simulator outputs data and graphics are presented.  
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6.2 PROCESS FIRST OPTIMIZATION 

 

 

With the complete characterization of the gasifier exhaust gas, and using the IPES© 

simulator, it was possible to obtain the characteristics of all the streams involved in the 

process. Having in mind the process shown in Figure 3, the second step was the optimization 

of the whole power generation process. That optimization aimed to the following: 

a) Reduction of mass flow rate of the air stream feeding the combustor (Streams 1 and 

2). Since it is compressed at relatively high pressure, this could lead to energy 

savings; 

b) Reduction of mass flow rate, and whenever possible the temperatures of water 

heading to cooling towers from the energy recovery processes (Streams from 7 to 9 

and 21 to 23). This measure will prevent too much power used by pumps as well 

energy losses to environment.  

c) Reduction of pressure from streams leaving the steam turbines (Streams 11 and 18, 

and consequently 12 and 19). In this way, it will be possible to increase the steam 

turbine power outputs. 

d) Increasing the pressure of streams injected into the steam turbines (Streams 10 and 

17, and consequently 13 and 20). The expected effect is similar as reducing the 

pressure on the exit of the turbines. 

 

 

6.3 DRYER OPTIMIZATION 

 
 

Once the maximum process efficiency (excluding the drying process) was reached, the 

characteristics of Stream 28 were known. That allowed the dryer optimization for each case of 

water content in the feeding slurry. 

Similarly to the procedure used during the gasifier optimization, a network was built 

having the percentage of water in the slurry and dryer diameter as variables. At each instance, 

successive iterations aimed to operate the dryer with the minimum mass flow of gas in order 

to achieve complete drying of the fuel (also using the simulator CeSFaMB©). That would 

minimize the power required by compressor (equipment 10, Figure 3).  
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The dryer diameter must be within a range that allows operations within feasible 

fluidization conditions. Few of the most relevant simulator outputs data and graphics are 

presented. 

 

 

6.4 PROCESS SECOND OPTIMIZATION 

 

 

After each step of dryer optimization, the process was simulated again, with the 

adjustments for the mass flow rate of gas feeding the dryer (using the simulator IPES©). The 

characteristics of all the streams involved in the process are finally presented. 

Moreover, the process was simulated for different dry solid content in the slurry (but for 

a unique dryer internal diameter). For each condition, the value of the exergy efficiency was 

obtained. With the results, a graph was created for a better visualization of the influence of the 

amount of water added to the MSW in the exergy efficiency of the process. 

A simplified diagram of the optimization flowchart is shown in Figure 6. 

 

 

Figure 6. Optimization flowchart  
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7 RESULTS AND DISCUSSION 

 

 

The gasifier optimization progressed by studying the influences of both bed diameter 

and air injection rate in the gasifier efficiency. The results obtained for exergy efficiency, cold 

efficiency and average temperature inside the bed are summarized respectively in Figures 7 to 

9. Lacks of data at few points on those graphs are due to operations that: 

a) Led to slugging-flows, or when the superficial velocities inside the bed are outside 

the bubbling fluidized conditions; 

b) Allowed temperatures surpassing ash-softening limits; 

c) Led to unsteady-state operations. For instance, when too much solid is elutriated or 

leaving the equipment, thus not allowing the bed level to be kept constant. 

d) Provided too low efficiencies. 

 

 

Figure 7. Exergy efficiency against bed diameter and rate of air injected into the gasifier 
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Figure 8. Cold gas efficiency against bed diameter and rate of air injected into the gasifier 

 

 

Figure 9. Average temperature inside bed against bed diameter and rate of air injected into 

the gasifier 

 

The highest gasifier exergy efficiency was achieved for bed diameter of 4.5 m and air 

flow of 15.0 kg/s. The main gasifier output parameters are listed at Table 4. 
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Table 4. Main output parameters from gasifier 

Main Output Parameters Values 

mass flow of gas leaving the equipment (kg/s) 31.83 

mass flow of solids discharged from the bed (kg/s) 0.89 

mass flow of solids reaching the top of freeboard (kg/s) 0.85 

fluidization superficial velocity (bed middle) (m/s) 0.14 

average temperature at the middle of the bed (K) 980.33 

average carbonaceous particle diameter in the bed (mm) 1.25 

average carbonaceous particle diameter at freeboard top (mm) 0.13 

carbon conversion (%) 79.24 

pressure loss at the distributor (kPa) 0.01 

pressure loss in the bed (kPa) 24.31 

rate of energy input by fuel to the equipment (MW) 376.93 

total rate of energy input to the equipment (MW) 384.28 

combustion enthalpy of hot gas (MJ/kg) 10.23 

combustion enthalpy of cold gas (MJ/kg) 9.50 

rate of energy output by hot gasa (MW) 325.71 

rate of energy output by cold gasb (MW) 291.34 

hot efficiency (%) 84.76 

cold efficiency (%) 75.81 

exergy flow brought with the dry fuel (MW) 566.70 

exergy flow brought with the injected gas (MW) 7.37 

total entering exergy flowc (MW) 574.10 

exergy flow leaving with the gas (MW) 321.16 

total exiting exergyd (MW) 322.90 

ratio between total leaving and entering exergy flows (%) 56.24 

ratio between the exergy leaving with the gas and the total entering exergy (%) 55.94 

 
a“Hot gas” refers to the temperature, pressure, and composition as found at the exiting point 

from the gasifier. 
b“Cold gas” refers to the gas properties if at 298 K, 101.325 kPa, dry and 

tar free. 
c
Sum of exergies brought by gases, liquids, or solids injected or fed into the gasifier. 

d
Sum of exergies carried by gases, liquids, or solids leaving the gasifier. 
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Figures 10 and 11 show the temperature profiles of various phases in the gasifier bed 

and freeboard, respectively. The variations of temperatures around the position of 2 m are due 

to the fuel feeding. 

 

 

Figure 10. Temperature profiles at the gasifier bed region 

 

 

Figure 11. Temperature profiles at the gasifier freeboard region 
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Figure 12 shows that no large bubbles are produced, therefore, with no risk of a 

slugging-flow operation, and Figure 13 illustrates the average concentrations of CO, CO2, and 

O2 throughout the gasifier. The sudden gradient changes are due to the fuel feeding. 

Oscillatory behavior of bubbles average velocity before reaching the fuel feeding position is 

mainly due to effects of the software numerical calculation method. Those can be avoided by 

decreasing the numerical convergence tolerance. However, that would lead to much longer 

computational times without significant impacts on the main results reported here. 

 

 

Figure 12. Bubble sizes and raising velocities through the gasifier bed 
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Figure 13. Concentration profiles of CO, CO2, and O2 throughout the gasifier 

 

Figure 14 shows the evolution of other important fuel gases. The surges of fuel gas 

productions, around 2 m above the distributor, are due to the pyrolysis of feeding fuel. 

 

 

Figure 14. Concentration profiles of H2O, H2, and CH4 throughout the gasifier 
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Figure 15 illustrates the release of tar near the MSW feeding position and its destruction 

due to cracking and coking inside the bed. This represents an important characteristic of 

fluidized beds, which avoids the presence of tar in produced gas. Table 5 presents the 

composition of stream obtained by MSW gasification. 

 

 

Figure 15. Concentration profiles of H2S, NH3, and tar throughout the gasifier 

 

Table 5. Composition of the Gas Exiting the Gasifier 

Chemical Species Molar Percentage Chemical Species Molar Percentage 

H2 24.9388 CO 28.3911 

H2O 4.3464 CO2 7.2507 

H2S 0.0306 HCN 0.0376 

NH3 0.9427 CH4 5.9295 

NO 0.0000 C2H4 0.1538 

NO2 0.0000 C2H6 0.1193 

N2 27.7880 C3H6 0.0057 

N2O 0.0000 C3H8 0.0054 

O2 0.0000 C6H6 0.0551 

SO2 0.0053   
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In the case of dryer optimization, the bed diameter and solid content in the MSW slurry 

were taken as variables while the objective was minimizing the fraction of the gas turbine 

exhaust (Stream 28 on Figure 3) diverted to drying the MSW slurry. 

Figure 16 shows the minimum gas flow required for the fuel complete drying as 

function of those two variables. 

 

 

Figure 16. Minimum gas flow rate required for the fuel complete drying against bed diameter 

and Solid Content in the MSW Slurry 

 

The best results for the dryer operation were obtained for a bed internal diameter of 3 m 

and a solid content in the MSW slurry of 49.4% (an additional amount of 22% water - in mass 

fraction). Those results are listed in Table 6. 
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Table 6. Main output parameters from dryer 

Main Output Parameters Values 

mass flow of gas leaving the equipment (kg/s) 66.67 

Concentration of water in the leaving solid (%) 0.00 

fluidization superficial velocity (bed middle) (m/s) 0.68 

mixing index in the bed 1.00 

tar flow at the top of the freeboard (kg/s) 0.00 

pressure loss at the distributor (kPa) 1.53 

pressure loss in the bed (kPa) 2.46 

exergy flow brought with the slurry (MW) 689.70 

exergy flow brought with the injected gas (MW) 33.52 

total entering exergy flowa (MW) 723.20 

exergy flow leaving with the gas (MW) 36.20 

exergy flow leaving with the dry MSW (MW) 423.70 

total exiting exergyb (MW) 459.90 

ratio between leaving and entering exergy flows (%) 63.59 

ratio between the exergy leaving with the gas and the total entering exergy (%) 5.00 

 
a
Sum of exergies brought by gases, liquids, or solids injected or fed into the gasifier. 

b
Sum of 

exergies carried by gases, liquids, or solids leaving the gasifier. 

 

The temperature profiles of various phases throughout the dryer bed and freeboard are 

shown in Figures 17 and 18, respectively. As seen, the temperature of gas leaving the dryer is 

relatively low, thus minimizing the energy losses from the process. This is also shown by the 

relatively low loss of exergy (5%) carried by the gas leaving the dryer. 

 



51 

 

 

 

Figure 17. Temperature profiles at the dryer bed region 

 

 

Figure 18. Temperature profiles at the dryer freeboard region 

 

After achieving each new optimal dryer operational condition, one additional simulation 

of the whole power general process was conducted using IPES©. 

Table 7 lists the mass flows and properties of each stream of the process. Table 8 

appraises information regarding the power input (for pumps and compressors) and output (for 
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steam and gas turbines) of each equipment of the process. Table 9 summarizes the main 

overall results achieved. 

 

Table 7. Description of Conditions at Each Stream of the Proposed Process 

Stream Working 
Fluid 

Mass Flow (kg/s) Temperature (K) Pressure 
(kPa) 

1 Air 210.80 298.00 101.33 
2 Air 210.80 762.30 1990.00 
3 Gas 31.83 806.00 1990.00 
4 Gas 242.63 1699.90 1990.00 
5 Gas 242.63 1045.87 120.00 
6 Gas 242.63 383.85 110.00 
7 Water 364.00 298.00 110.00 
8 Water 364.00 298.00 120.00 
9 Water 364.00 374.18 110.00 
10 Steam 50.00 1028.00 12000.00 
11 Steam 50.00 410.37 120.00 
12 Water 50.00 370.00 110.00 
13 Water 50.00 370.06 12010.00 
14 Gas 194.43 383.81 108.00 
15 Gas 48.20 383.81 108.00 
16 Gas 31.83 985.79 2000.00 
17 Steam 2.90 974.00 12000.00 
18 Steam 2.90 517.02 490.00 
19 Water 2.90 419.76 480.00 
20 Water 2.90 419.82 12010.00 
21 Water 21.00 298.00 110.00 
22 Water 21.00 298.00 120.00 
23 Water 21.00 374.24 110.00 
24 Air 15.00 298.00 110.00 
25 Air 15.00 766.40 2200.00 
26 Slurry 40.64 298.00 110.00 
27 Slurry 40.64 298.01 2200.00 
28 Gas 48.20 930.02 2200.00 
 

a
After cleaning to set alkaline concentration within acceptable levels. 

b
Liquid water. 

c
After 

cleaning to set particle size and content within acceptable levels. 
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Table 8. Power Input and Output of each Equipment of the Process 

Equipment 
# 

Equipment 
Type 

Power 
(Input/Output) 

Power (MW) 

1 Compressor Input 102.72 
3 Gas Turbine Output 207.16 
5 Steam Turbine Output 61.98 
7 Pump Input < 0.01 
8 Pump Input 0.63 
10 Compressor Input 29.76 
12 Steam Turbine Output 2.63 
14 Pump Input 0.04 
15 Pump Input < 0.01 
16 Compressor Input 7.38 
17 Pump Input 0.08 

 

Table 9. Overall Efficiency Data of the Proposed Process 

Parameter Value 

mechanical power inputa (MW) 140.62 

mechanical power outputb (MW) 271.76 

net mechanical power output (MW) 131.15 

efficiency based on 1st Lawc (%) 40.27 

efficiency based on 2nd Lawd (%) 40.09 

 
a
Due to compressors and pumps. 

b
From steam and gas turbines. 

c
Defined as follows: (useful 

mechanical power output)/(rate of energy inputted by fuel). 
d
Defined as follows: (useful 

mechanical power output)/(rate of exergy inputted by fuel). 

  

Finally, Figure 19 shows the process 1st and 2nd Law efficiencies for different values of 

solid content in the MSW slurry, regarding the dryer bed diameter of 3.0 m. 
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Figure 19. Process 1
st
 and 2

nd
 Law efficiencies against solid content in the MSW slurry 

 

As seen, the efficiency increases with the increase of dry solid content in the slurry. 

This result was expected, but limitations on that content should be observed to allow feasible 

operations of commercial slurry pumps. 

The overall efficiency value is relatively high when compared with the present 20% 

level, usually achieved by Rankine cycles in operation at sugar mills. That efficiency value 

was informed by a large boiler manufacturer engineering team [56] even if all steam would be 

diverted to power generation. The efficiency estimated here is also higher than the 33% 

achieved in studies aiming the application of BIG/GT process consuming bagasse [29]. 
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8 CONCLUSIONS 

 
 

The present work studied the influence of water content in MSW-water slurries 

consumed by the FSIG/GT thermoelectric power generation process. The results showed that 

the overall exergy efficiency of the process is inversely proportional to the amount of water 

added to the slurry. The lower limit for that water content is the minimum that would allow a 

slurry to be pumped using commercial equipment [51]. 

Despite of the low heating value of the MSW, it was possible to show that the power 

generation process 1st Law efficiency could reach 40.27%. That value is higher than the 

34.78% obtained in a previous work [42] and well above the 20% level, as informed by a 

large boiler manufacturer engineering team [56] even if all steam would be diverted to power 

generation. The efficiency estimated here is also higher than the 33% achieved in studies 

aiming the application of BIG/GT process consuming bagasse [29]. 

Among many aspects, future works should: 

a) Perform economic studies to assess the financial viability of the proposed alternative;  

b) Evaluate the limits for solids content in the fuel slurry to allow pumping using 

commercially available equipment. That must require experimental investigations;  

c) Revisit many parameters and conditions assumed here. For instance, dryer and 

gasifier operations with higher pressures. The FSIG/GT configuration may be also 

modified. Those would probably lead to increases in the process efficiency. 

d) A review on the assumed parameters would be required. For instance, the maximum 

temperature around 900 K for steam turbine injections has been reported [82-84]. 

Improvements in the Rankine cycles are also possible, as for instance discharging 

from turbines of streams with steam quality near 90% are also possible. Despite 

changing some of the results presented here, it is believed that such would not 

invalidate or deeply change the findings of the work. 
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APPENDIX 1 -  COMPREHENSIVE SIMULATOR OF FLUIDIZED AND 

MOVING BED EQUIPMENT (CESFAMB©) MOST RELEVANT 

EQUATIONS 

 
 

The most important relationships of the model are listed below [49, 57]. 

 Mass balance in the emulsion gas: 

  500.j1        ,     SGSRSR
dz

dF 3

1m
Bj,MGEGBEEj,GEhom,EE,mj,m,SE,het

j,GE 


 (A.1) 

j smaller than 501 refers to gaseous components while equal or above 500 to solid phase 

ones. 

 Mass balance in the bubble phase: 

500j1       ,       SGSR
dz

dF
Bj,MGEGBBj,GBhom,

j,GB   (A.2) 

 Conversion of solids in the bed section: 

1000j501   ,     
F

F
1

j,ID

j,LD
j,D     (A.3) 

where, due to simplification “F”, the mass flow (FLD,j) of component “j” leaving the bed 

is given by an average computed throughout the entire bed, or 

1000j501 ,      dz SRFF
3

1m

z

0z
EE,mj,m,SE,hetj,IDj,LD

D

  
 

  (A.4) 

 Energy balance for the emulsion gas: 





 



)RR(RS
dz

dT
cF m,hSEGE

3
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GEGE    

  



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 GEWDCGETD
E

B
MGBGECGBGE RRRR   (A.5) 

where 





500

1j
j,GEGE FF      (A.6) 
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 Energy balance for the bubble phase: 

 CGBTDhGBGECGBGEQGBB
GB

GBGB RRRRS
dz

dT
cF    (A.7) 

where 





500

1j
j,GBGB FF     (A.8) 

 Energy balances for solid phases in the bed: 

 
E

E
m,hSEGEm,CSEGEm,QSEEE,m

SE
m,SEm,H 1

RRRS
dz

dT
cF



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  3  m  1  ,      RRR
3

1n
n,m,CSESEn,m,RSESEm,RSETD 



 


  (A.9) 

where “m” indicates the solid phase (1 = carbonaceous; 2 = limestone or any sulphur 

absorbent; 3 = inert) present in the bed. 

 Mass balances for the components in the freeboard: 

1000j1        ,     
dz

dV
R)

dz

dA
R(

dz

dF 3

1m

GF
j,GFhom,

m,PF
j,m,SF,het

j,F 


 (A.10) 

 Energy balances for gases in the freeboard: 







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
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RR)RR(

R
dz
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  (A.11) 

where 





500

1j
j,FGF FF     (A.12) 

 Energy balances for the solids in the freeboard: 

 

3  m  1 ,        )R(R

dzdV

dzdV
RRR

dz
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dz

dT
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 (A.13) 

where 
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



comp. mj

j,Fm,SF FF      (A.14) 

 Mass flux of each chemical species “j” between bubbles and emulsion: 

 
B

B
j,GEj,GBjGBEj,MGEGB V

A
xxM~G     (A.15) 

where the mass transfer coefficient is calculated according to the work of Sit and Grace 

[58]. 

 Coefficient of mass transfer between phase formed by particles kind “m” and the 

emulsion gas: 

m

GEG
m,Shm,SEGE d

~D
N


     (A.17) 

where the Sherwood number is calculated according to the work of La Nause [59]. 

 Heat transfer between bubbles and emulsion:  

B

B
GEGBCGBGECGBGE dV

dA
)TT(R     (A.18) 

where the coefficient is taken from the literature [60]. The ratio of bubble area and 

volume is a simple function of the bubble diameter [49]. However, that diameter varies 

throughout the bed according to Horio and Nokada correlations [61]. 

 Heat transfer by convection between the solid particle “m” and the gas in the 

emulsion: 

GE

m,PE
GEm,SEm,CSEGEm,CSEGE dV

dA
)TT(R     (A.19) 

where the method to compute the heat transfer coefficient can be found elsewhere [49].   

 Radiative heat transfer between particles applies the two-flux method, as described 

elsewhere [62-65]. However, the results obtained with that approach does not 

improve too much on the simpler attack assuming grey bodies of the original work 

[50, 66], or: 

 
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4
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
    (A.20) 
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where the view factor between particles “m” and “n” given by their area fractions in the 

mixture of particles. Those values are obtained at each point through the solution of 

differential mass and energy balances plus routines related to fine particles generation (by 

attrition) and entrainment [49, 50]. 

 Heat transfer by convection between particles: 

 
dz/dV

dz/dA
TTfR

m,SE

m,PE
n,PEm,PEnn,m,SESEn,m,CSESE    (A.21) 

where the coefficient has been taken from the work by Delvosalle and Vanderschuren 

[67]. The ratio between the available area and volumes of particles “m” can be obtained from 

[49]: 

S)1)(1(f
d

6

dz

dA
BEm

m

m,PE     (A.22) 

and 

S)1)(1(f
dz

dV
BEm

m,PE      (A.23) 

 Heat transfer by convection between emulsion interstitial gas and tubes (eventually 

present in the bed): 

dz/dV

dz/dA
)TT(R

GE

OTD
WOTDGEEOTDCGETD     (A.24) 

and the equivalent for the gas in the bubbles by 

dz/dV

dz/dA
)TT(R

GB

OTD
WOTDGBBOTDCGBTD    (A.25) 

The heat transfer coefficients are taken from Xavier and Davidson [68]. The available 

volumes of emulsion and bubbles at each slice “dz” of the bed is obtained from the relations 

already described combined with the differential mass and energy balances. 

Properties of gases, liquids, and solids were taken from the literature [69, 70]. 

 Circulation rates of particles in the bed. As seen, the energy balances for solid phases 

in the bed (Eq. A.9) require the computation of overall rate of particles “m” in the 

axial direction (FH,m). The new approach follows the works of Soo [71-73], which 

have been reviewed and adapted to the present model by Costa and de Souza Santos 

[74]. Accordingly, the following system of partial differential equations, representing 

the momentum transfers between the various phases in the bed, is set: 
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g)(u
z

P
0 Gp0z,z,Gpp 




     (A.29) 

and solve after proper boundary conditions [49, 74]. Thus, variables involving radial 

coordinate are introduced. Such an approach is one among the improvements made 

in the previous versions and provided a more reliable and precise simulation results. 

The auxiliary relations in the freeboard are somewhat similar to the ones applied for the 

emulsion phase and are detailed elsewhere [49]. However, the equations related to dynamics 

are very different, and the most important ones are listed below. 

 Entrainment rate [75]: 

)]zz(aexp[)FF(FF DYl,m,Xzz,l,m,Yl,m,Xl,m,Y D
    (A.30) 

 The rate of elutriation is given by [75]: 

 S uU )1(wF l,m,TGl,m,Fml,ml,m,X     (A.31) 

 The entrainment rate at the top of the bed is provided by [75]: 

 
l,mm5.2

G

5.2

zzmf,GG5.05.3
Gzz,B

29
zz,l,m,Y wf

UU
gdS10x07.3F D

DD 


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


  (A.32) 

The particle size distribution found in the bed during steady-state operation is computed 

from the distribution of feeding particles and the combination of the effects of chemical 

reactions, attrition between particles, entrainment and elutriation [49]. 

The following chemical reactions are considered: 
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2CharTar       (R.11) 

23 COCaOCaCO       (R.12) 

422 CaSO2OSO2CaO2     (R.13) 

OHAbsorbentDryAbsorbentWet 2   (R.14) 
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OHCaSSHCaO 22      (R.15) 

OHInertSolidDryInertSolidWet 2   (R.16) 

23 COMgOMgCO       (R.17) 

422 MgSO2OSO2MgO2     (R.18) 

OHMgSSHMgO 22      (R.19) 

222 HCOOHCO      (R.20) 

22 CO2OCO2      (R.21) 

OH2OH2 222      (R.22) 

OH2COO2CH 2224      (R.23) 

OH6CO4O7HC2 22262     (R.24) 

OH6NO4O5NH4 223      (R.25) 

OH2SO2O3SH2 2222      (R.26) 

NO2ON 22       (R.27) 
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OH2CO2O3HC 22242      (R.31) 

OH6CO6O9HC2 22263     (R.32) 

OH4CO3O5HC 22283      (R.33) 

OH6CO12O15HC2 22266     (R.34) 

222 H2ON2CO4O3HCN4     (R.35) 
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224 H3COOHCH      (R.36) 

2242 H4CO2OH2HC      (R.37) 

2262 H5CO2OH2HC      (R.38) 

2263 H6CO3OH3HC      (R.39) 

2283 H7CO3OH3HC      (R.40) 

2266 H9CO6OH6HC      (R.41) 

232 H3NO4NH2NO2      (R.42) 

223 H3ON2NH2NO2      (R.43) 

OH3N4NH2ON3 2232     (R.44) 

OHNOH2NO 222      (R.45) 

OHONHNO2 222      (R.46) 

OHNHON 2222       (R.47) 

22 CONOCONO      (R.48) 

22 COONCONO2      (R.49) 

222 CONCOON      (R.50) 

OHHCNCONH 23      (R.51) 

ON2ON2 222      (R.52) 

NO4OON2 22      (R.53) 

22 NO2ONO2      (R.54) 

The rates of heterogeneous (gas-solid) reactions are computed by two possible models: 

unreacted-core and exposed-core. Both take into account resistances due to mass transfer at 

the gas boundary layer around the reacting solid particle as well combinations of kinetics and 

mass transfer resistances at the reacting nucleus. Additionally, the unreacted-core considers 

the mass transfer resistance imposed by the ash (or already spent material) around the 

unreacted nucleus. However, the exposed-core model assumes that detaches from the nucleus 

leaving the core exposed to reacting gases. Therefore, this last model neglects the mass 

transfer resistance posed by ash layer. The unreacted model is also extended to cases of 

drying and devolatilization, where the spent layer is the dry or char around the drying or 
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pyrolysing nucleus, respectively. The equations to allow computations of heterogeneous 

reaction rates have been deduced elsewhere [49] and are listed below: 
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where the three resistances are given by 
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The ones describing the rate for the exposed-core model are: 




 


3

1k
k,X

eq,j,j

I,p
i

U

~~

d

2
r~     (A.37) 

where the three resistance are given by 
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In all above relations, the Thiele modulus is defined as 
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Equations A.33 to A.41 should be used for spherical or near-spherical particles. 

Equations for other forms such as plates and cylinders (or near those forms) can be found 

elsewhere [49]. The kinetics coefficients for the reactions considered here have been taken 

from the literature [49], while treatments for pyrolysis adapted from publications in the area 

[76-81]. 


