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Abstract

The viola caipira is a type of Brazilian guitar widely used in popular music. It consists of

ten metallic strings arranged in five pairs, tuned in unison or octave. The thesis work focuses

on the analysis of the specificities of musical sounds produced by this instrument, which has

been little studied in the literature.

The analysis of the motions of plucked strings using a high speed camera shows the

existence of sympathetic vibrations, which results in a sound halo, constituting an important

perceptive feature. These measurements also reveal the existence of shocks between strings,

which lead to very clearly audible consequences. The modal analysis of the body vibrations,

carried out by a scanning laser vibrometer and an automatic impact hammer reveals some

differences and similarities with the classical guitar. Bridges mobilities are also measured using

the wire-breaking method, which is simple to use and inexpensive since it does not require the

use of a force sensor. Combined with a high-resolution modal analysis (ESPRIT method), these

measurements enable to determine the modal shapes at the string/body coupling points and

thus to characterize the instrument.

A physical modelling, based on a modal approach, is carried out for sound synthesis

purposes. It takes into account the strings motions with two orthogonal polarizations, the

couplings with the body and the collisions between strings. This model is called a hybrid model

because it combines an analytical approach to describe the vibrations of strings and experimental

data describing the body. Simulations in the time domain reveal the main characteristics of the

viola caipira.

Keywords: Viola caipira; Musical acoustics; Physical modelling; String/string collision;

Sympathetic vibration.



Resumo

A viola caipira é um tipo de viola brasileira amplamente utilizada na música popular. Ela

é composta de dez cordas metálicas dispostas em cinco pares, afinadas em uníssono ou oitava.

Este trabalho de tese concentra-se na análise das especificidades dos sons musicais produzidos

por este instrumento pouco estudado na literatura.

A análise dos sons de viola caipira mostra a presença de vibrações simpáticas de cordas,

o que resulta em um halo de som, constituindo uma característica perceptiva importante.

Os movimentos de cordas dedilhadas são estudados usando uma câmera de alta velocidade,

revelando a existência de choques entre cordas que levam a efeitos claramente audíveis. A

análise modal das vibrações do corpo realizada por um vibrômetro à laser de varredura e um

martelo de impacto automático permite identificar algumas diferenças em relação ao violão

clássico. As mobilidades do cavalete também são medidas usando o método do fio quebrante,

que é simples de usar e de baixo custo, uma vez que não requer o uso de um sensor de força.

Combinadas com uma análise modal de alta resolução (método ESPRIT), tais medidas permitem

determinar as formas modais nos pontos de acoplamento entre corda/corpo e assim caracterizar

o instrumento.

Uma modelagem física baseada em uma abordagem modal híbrida é realizada para fins

de síntese sonora. Tal modelagem considera os movimentos das cordas em duas polarizações,

os acoplamentos com o corpo e as colisões entre cordas. Este modelo é chamado de modelo

híbrido porque combina uma abordagem analítica para descrever as vibrações de cordas e

parâmetros experimentais que descrevem o corpo. Um conjunto de simulações no domínio do

tempo revelam as principais características da viola caipira.

Palavras-chave: Viola caipira; Acústica musical; Modelagem física; Colisões corda/corda;

Vibração simpática.



Résumé

La viola caipira est un type de guitare brésilienne largement utilisée dans la musique

populaire. Elle comprend dix cordes métalliques organisées en cinq paires, accordées à l’unisson

ou à l’octave. Le travail de thèse porte sur l’analyse des spécificités des sons musicaux produits

par cet instrument, peu étudié dans la littérature.

L’analyse des mouvements des cordes pincées au moyen d’une caméra rapide montre

l’importance des vibrations par sympathie qui donnent lieu à un halo sonore, constituant une

signature perceptive importante. Ces mesures révèlent également l’existence de chocs entre

cordes, qui ont des conséquences très clairement audibles. L’analyse desmouvements vibratoires

de la caisse, menée par des moyens classiques (marteau et vibromètre laser à balayage) révèle

une structure modale différente de la guitare classique. Les mobilités vibratoires au chevalet

sont par ailleurs mesurées au moyen de la méthode du fil brisé, simple de mise en oeuvre et

peu couteuse dans la mesure où elle évite l’utilisation d?un capteur d’effort. Associée à une

analyse modale haute résolution (méthode ESPRIT), ces mesures permettent de déterminer les

déformées modales aux points de couplage corde/caisse et donc de caractériser l’instrument.

Unemodélisation physique, basées une approchemodale, est réalisée à des fins de synthèse

sonore. Elle prend en compte les mouvements des cordes selon 2 polarisations, les couplages

avec la caisse ainsi que les collisions entre cordes. Ce modèle est qualifié de modèle hybride

car il combine une approche analytique pour décrire les vibrations des cordes et des données

expérimentales décrivant la caisse. Les simulations dans le domaine temporel rendent compte

des principales caractéristiques identifiées de la viola caipira.

Mots-clés: Viola caipira; Acoustique musicale; Modélisation physique; Collision entre cordes;

Vibration sympathique .
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❈❤❛♣t❡r ✶

■♥tr♦❞✉❝t✐♦♥

1.1 Context

Several types of violas are played in numerous cultural manifestations throughout the

Brazilian territory. Such chordophones, which we can call in a general way of Brazilian violas,

have variant characteristics and are related to musical practices of specific regions. The Brazilian

violas differ mainly in the shape of the resonance box, number and arrangement of the strings,

composition materials and tuning type. This research is focused on the type of Brazilian viola

known as viola caipira, which permeates various genres of traditional and modern Brazilian

music, and whose practice extends across all regions of Brazil, being considered one of the

Brazilian cultural symbols. Unlike other string instruments such as guitars and violins, the viola

caipira is a little explored instrument from the perspective of musical acoustics. This thesis

proposes the characterization of this instrument in vibrational and acoustical terms with the

objective of identifying its specificities.

The correlation between the structural characteristics of a musical instrument and the

subjective evaluation of its sound attributes is an issue investigated for at least five decades, and

whose understanding has advanced under contributions from different scientific domains such

as the acoustics, mechanics, signal processing, computation and psychology. In this context,

two types of methodological approaches complement each other: the objective, which proposes

to study the relationship between the instrument and the sound produced through physical

parameters; and the perceptive, which analyses the sound produced by the instrument from

the sensory experience of the individual - musician and/or listener - based on fundamentals

and methods of contemporary psychology. In this Ph.D. work, the study of the viola caipira

is limited to physical characterization of the instrument involving different methods such as

vibration and sound pressure measurements, investigation of string motion using high speed

camera, physical modelling for sound synthesis purposes and numerical modelling using the

finite element method.

The sound produced by string instruments like the viola capira is the result of the
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interaction between several subsystems: the mechanisms of excitation associated with the

musician (e.g., finger, nail, pick or plectrum), strings, instrument body and finally, the listener

in the room where the instrument is played. When the musician applies a gesture on the

instrument, force transients are exerted on one or more strings, which in turn resonate freely

and transfer to the body of the instrument most of the energy that is converted into radiated

sound. Therefore, the interaction between the strings and instrument body, which naturally

depends on the physical characteristics of these two subsystems, is an important aspect in the

production of sound. In this sense, a set of methods known as physical modelling uses physical

equations to describe the vibrational behaviour of the string/body system usually through

coupled partial differential equations containing information on material properties, geometry

and boundary conditions. Given the input parameters describing the distribution of one or more

excitation forces and/or initial conditions along the strings, a physical model consists in solving

the motion equations numerically by using appropriated approximations methods. The output

of the model can be selected at a point, for example, the string displacement at the excitation

point or the radiated pressure at a specific point in front of the body. The development of sound

synthesis methods based on physical models has grown significantly in the last three decades,

mainly due to the advent of technology and consequent improvement in the processing capacity

of computers. In this context, this thesis proposes a physical model for sound synthesis able to

reproduce the sound specificities of the viola caipira.

Within the scope of musical acoustics, physical models for sound synthesis are also

tools of great interest for musical composition and performance, and building of musical

instruments. Such models can provide high-quality synthesizers for musicians or even reveal

new possibilities of sounds and ways of playing a given instrument. The luthier (French word

to designate maker of stringed instruments such as violins and guitars), for example, can use

simulations to design or even conceive an instrument according to desired effects so that the

building process can be optimized. In this way, it is worth highlighting the importance of

complementary dialogue between musical acoustics researchers, musicians and luthiers: despite

being guided by different biases, they can exchange demands, questions and understandings.

This thesis permeates the context of the musical instruments making. It is a collaboration with

the PAFI project, Plateforme d’Aide à la Facture Instrumentale1, held in the Acoustics Laboratory

of the University of Maine (Le Mans, France), which aims at developing adapted tools for

luthiers, whether small or large-scale production.

1Music Instrument Making Support Platform
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1.2 Thesis objectives

• To investigate experimentally the vibrational and acoustical behaviour of the viola

caipira in order to identify its specificities. Why does the viola caipira have such

a particular timbre? Which phenomena are relevant in the instrument’s sound

production? These are the main questions to be answered at this stage.

• To present a physical model for sound synthesis able to reproduce the sound

specificities of the viola caipira.

1.3 Thesis organization

This thesis consists of five chapters and its organization is presented as follows:

• Chapter 1 - In the rest of this chapter the viola caipira is briefly described in

organological, historical and socio-cultural terms.

• Chapter 2 - A bibliography review is presented where different aspects on the

functioning of plucked string instruments are approached. Previous works on the

viola caipira as well as finite difference schemes used in musical sound synthesis

are also briefly reviewed.

• Chapter 3 - An experimental study of the viola caipira using different methods

is presented. First, a high-speed camera is used to analyse a typical pluck of

the instrument. Viola caipira sounds are recorded and an analysis is carried out

in terms of energy decay curves and spectrograms. Vibrational analyses of the

instrument body are performed including a modal analysis of the soundboard and

an operating deflection shape (ODS) analysis using an automatic impact hammer

and a laser vibrometer. Finally, the mode shape components at the string/body

coupling points of a viola caipira are extracted using a high resolution modal
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analysis of mobility measurements obtained with a novel technique named “Roving

Wire-Breaking Technique”. This latter part is presented as article entitled “The

Roving Wire-Breaking Technique: a low cost mobility measurement procedure for

string musical instruments”, submitted to the Applied Acoustics Journal in October

2017.

• Chapter 4 - The chapter is structured around the article entitled "Collisions in

double string plucked instruments: physical modelling and sound synthesis of the

viola caipira", submitted to the Journal of Sound and Vibration in November 2017. In

this paper is presented a modal-based model comprising 10 strings with non-planar

motions coupled with the body. A finite difference scheme is used to generate a set

of viola caipira sounds. The sound characteristics identified experimentally are

reproduced and discussed.

• Chapter 5 - The chapter presents the general conclusions of the thesis and

perspectives for future works.

1.4 What is a viola caipira?

1.4.1 General description

Figure 1.1a shows a typical viola caipira, which is a Brazilian plucked string instrument

having, in general, a smaller body with a narrower waist than those of classical guitars2. As

shown in Figure 1.1b, it usually has ten metal strings3❀4 arranged in five courses of two strings

with the thinnest string (string 6) located in the middle. The first two courses have identical

strings tuned in unison while the other three have strings with different diameters tuned in

2The term "classical guitar" is used in this text to designate the modern classical guitar (see, for example,
reference (WRIGHT, 1996), page 7).

3Originally, the violas caipiras had strings made with animal guts or vegetable fibers.
4Although not so common, there are violas caipiras with 12 strings arranged in 3 doublets and 2 triplets, 7

strings arranged in 1 triplet and 4 simple strings as well as 5 simple strings so that the strings divided in five
courses is a strong characteristic of the instrument.
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an octave. Strings of the same course are usually played together using the fingernails but a

plectrum can be also attached to the thumb. The instrument as we know it today has normally

from 17 to 19 frets.

The viola caipira is played in all regions of Brazil but is typical of the South Central region,

more specifically the states of São Paulo, southern Minas Gerais, southern Goiás, southeast

Mato Grosso do Sul and the Federal District. There is not a single standard of viola caipira

since variants of shapes, tuning types, materials and arrangement of strings are commonly

encountered in different regions of the country. Although different woods are used in the

making of the instrument, the most usual species are Picea engelmannii (Engelmann Spruce)

and Picea rubens (Red Spruce) on the top and Dalbergia latifolia (Indian Rosewood) on the

sides and back. Figure 1.2 shows, for example, four violas caipiras with different shapes of

resonance box made with different materials. As variant as the features of the instrument, are

the nomenclatures to designate it. Depending on the region and context the instrument is also

called viola cabocla, viola sertaneja, viola de pinho, viola de dez cordas, viola de arame, viola

cantadeira, viola chorosa, viola de folia, viola nordestina, viola de feira, etc. In this work, the term

"viola caipira" is used since it is the most popular.

In spite of the considerable differences between the varieties of violas caipiras, a typical

style of the instrument can be identified as the most widespread and played in the Brazilian

territory. Figure 1.1a shows an example of such style. The instrument body shape is similar to

those of classical guitars although with a smaller size and slightly narrower waist. The wood

species as well as the thicknesses of the soundboard, back plate and sides follow the same

patterns used for classical guitars. The traditional fan-bracing style6 is also widely used to

support and reinforce internally the soundboard and back plate of the instrument. Figure 1.3

shows the names given to the main components of the viola caipira. Note that they are the

same of those of classical guitars.

A little more than a century ago, the structural resemblance between the violas caipira

5Image retrieved from <http://www.rozini.com.br/default.asp?area=02&cat=5&Produto=87>.
6Wright (WRIGHT, 1996) highlights that "many of the standard features of the modern classical guitar (its

larger size and fan arrangement of struts) are attributed to Antonio de Torres, although it is true to say that
such features were not invented by him. These design features evolved during the early 19th century when
the instrument underwent its period of accelerated evolution. Torres started his work at the end of this period,
absorbing some of the ideas of earlier luthiers, and through a combination of skilled designs and his association
with influential players such as Tarrega, popularised his guitars."
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(a): Example of a viola caipira commercialized in large scale in Brazil.5

(b): Usual arrangement and numbering of the viola caipira strings.

Figure 1.1: (a) Viola caipira Rozini brand, Ponteio Profissional model; (b) From string 1 to 10, the
commom designation is: prima, contra-prima, requinta, contra-requinta, turina, contraturina, toeira,
contra-toeira, canotilho and contra-canotilho. The first two courses have identical strings tuned in
unison while the other three have strings with different diameters tuned in an octave. Strings 5, 7
and 9 are composed of a metal core covered in wound metal (wound strings) and strings 1, 2, 3, 4,
6, 8 and 10 are composed of a single metal wire (flat strings).
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Figure 1.3:Main components of the viola caipira (adapted from (CORRÊA, 2014)).

1.4.2 Tuning types

Unlike the classical guitar, which has a consolidated specific tuning 8, the viola caipira

may be played in various tuning types. Vilela (VILELA, 2010) points out that from the nine

Portuguese tunings that went to Brazil, many others were developed, and that it is estimated

that there are approximately twenty ways to tune the viola in Brazil. Some of these tunings

are rarely used, while the others are widespread in different regions. While several are used

in the same region, there are other regions with a predominance of a certain tuning. Several

researchers (CORRÊA, 2000; ARAÚJO, 1964; AZEVEDO, 1943; LIMA, 1964) catalogued many

tuning types throughout the Brazilian territory. All these tuning types were compiled by

Pedro ((PEDRO, 2013), page 151).

Although there are numerous tuning types for the viola caipira, the most commonly

used ones, especially in the Central South region of Brazil, are the Cebolão D, Cebolão E, Rio

8Classical guitar standard tuning defines the string pitches as E, A, D, G, B, and E, from lowest (low E2) to
highest (high E4).
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Table 1.1: The most popular viola caipira tuning types and respective notes, fundamental
frequencies, lowest notes and highest notes considering an instrument with 19 frets and❆✹ ❂ ✹✹✵

Hz.

Tuning types
Cebolão E Cebolão D Rio Abaixo Natural

String No. Note Freq. [Hz] Note Freq. [Hz] Note Freq. [Hz] Note Freq. [Hz]
1 E4 329.63 D4 293.67 D4 293.67 E4 329.63
2 E4 329.63 D4 293.67 D4 293.67 E4 329.63
3 B3 246.94 A3 220.00 B3 246.94 B3 246.94
4 B3 246.94 A3 220.00 B3 246.94 B3 246.94
5 G#3 207.65 F#3 185.00 G3 196.00 G3 196.00
6 G#4 415.30 F#4 369.99 G4 392.00 G4 392.00
7 E3 164.81 D3 146.80 D3 146.80 D3 146.80
8 E4 329.63 D4 293.70 D4 293.70 D4 293.70
9 B2 123.47 A2 110.00 G2 98.00 A2 110.00
10 B3 246.94 A3 220.00 G3 196.00 A3 220.00

Lowest note B2 123.47 A2 110.00 A2 110 G2 98.00
Highest note D#6 1244.51 C#6 1108.73 C#6 1108.73 D6 1174.66

Abaixo and Natural, whose notes, respective fundamental frequencies and frequency ranges

(lowest and highest notes) are shown in Table 1.1. The string diameters vary according to the

tuning type. In order to establish a reference, Corrêa ((CORRÊA, 2000), page 42) recommends

the string diameters for a set of tuning types. More details about string physical properties are

given in Chapter 3, Table 1.1.

It is also important to note from Table 1.1 that, for a given tuning type, several strings have

fundamental frequencies or octaves in common, which makes such strings more susceptible to

vibrate sympathetically.

1.4.3 The origin of the viola caipira

The purpose of this part is to briefly present some relevant aspects about the origin

of the viola caipira, which is obviously related to many other cultural and social aspects of

certain regions of Brazil. Since the scope of this thesis lies much more in the musical acoustics

perspective, this subsection presents a short synthesis based on some of the numerous

works about the instrument in the context of humanities and social sciences (CORRÊA,

2000; CORRÊA, 2014; VILELA, 2010; VILELA, 2013; PEDRO, 2013; DIAS, 2012; PINTO, 2008;
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OLIVEIRA, 2000). For a thorough investigation on the history of the viola caipira, the reader is

invited to refer to (VILELA, 2010), whose some passages are quoted here.

The Brazilian violas, including the viola caipira, originated from the Portuguese violas.

In convergence with such assertion, Pinto (PINTO, 2008) lists several researchers who share

the same point of view: Sardinha (SARDINHA; GUERRA, 2001), Oliveira (OLIVEIRA, 2000),

Andrade (ANDRADE, 1989), Araújo (ARAÚJO, 1964), Cascudo (CASCUDO, 1954), Lima(LIMA,

1964), Corrêa (CORRÊA, 2014), Martins (MARTINS, 2004), Vilela (VILELA, 2013). On the origin

of the Brazilian violas, Vilela summarizes:

Viola9 (Brazilian five-course guitar) is an instrument that was brought to Brazil by

the first people, pioneers and Jesuits. It was used as a tool for the cathequesis. This

instrument was transformed correspondently with the new land?s development at

the hands of bandeirantes (pathfinders), tropeiros (responsible for the transport of

goods on donkeys) and popular singers. Along with the configuration of the popular

culture in Brazil, viola became the speaker of the people of some regions, such as the

south-east. (VILELA, 2010)

The Portuguese violas, in turn, have their distant origins in the oud, whose origin dates

back to the Fertile Crescent10 at least 5000 years ago. When the Arabs arrived in the Iberian

Peninsula in the year 722, the plucked string instruments existing in the Peninsula were the

Celtic harps and the Greek-Roman cithara (OLIVEIRA, 2000). The oud11 was the first plucked

string instrument with a neck in which the tunes could be changed, to reach Europe (VILELA,

2010).

Another distant ancestor of the Portuguese violas, but not as distant as the oud, are the

Latin guitars, instruments of Arabic-Persian origin that arrived around the thirteenth century in

the Iberian peninsula and underwent many transformations and hybridizations until prefigure

9The author uses here the term "viola" to refer to a sparse group of numerous plucked Brazilian violas, including
the viola caipira.

10The modern-day countries with significant territory within the Fertile Crescent are Iraq, Syria, Lebanon,
Cyprus, Jordan, Israel, the State of Palestine, Egypt, as well as the southeastern fringe of Turkey and the western
fringes of Iran.

11Also known as the Arabic lute.
12Images (a) and (b) were retrieved from <http://collectionsdumusee.philharmoniedeparis.fr/0158896-luth-

ud.aspx> and ❁ ❤tt♣s ✿ ❂❂❡♥✿✇✐❦✐♣❡❞✐❛✿♦r❣❂✇✐❦✐❂●✉✐t❛rr❛▲❛t✐♥❛ ❃, respectively.
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(a) (b)

(c)

Figure 1.4: 12Precursors of the viola caipira. (a) A typical oud; (b) Medieval painting of Latin
guitar and Morisca guitar from the thirteenth century; (c) A typical viola braguesa (extracted from
(OLIVEIRA, 2000)).
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the violas quinhetistas, which are considered somehow the first prototypes of Portuguese violas

(OLIVEIRA, 2000). Therefore, the presence of Arabs and their instruments, more specifically

ouds and Latin guitars, in the Iberian Peninsula, led to the origin and proliferation of the violas

in different regions of Portugal. Vilela highlights that each Portuguese region created its own

viola:

Viola braguesa (from Braga) in the North; viola amarantina (from Amarante) or

two-hearted viola in the Northeast; viola beiroa (from Beira) in the central region;

down below, near Lisbon, viola toeira; and further down the South, in Alentejo, viola

campaniça. They varied in size, shape and number of strings, but in most cases had a

common feature: five courses of strings. (VILELA, 2010)

According to Corrêa (CORRÊA, 2014), there is an important material reference

documenting the presence of the five-course viola in Portugal in the sixteenth century. It

is an instrument built by Belchior Dias in Lisbon in 1581. This viola is exposed in the Royal

College of Music in London and its features are similar to those of the Brazilian violas as we

know them today.

With the migration to Brazil, the Portuguese viola kept its shape, but with some variations,

while was disseminated through the vast Brazilian territory. However, the violists, also

transplanted with the instrument, mixed and germinated, renamed it with several names.

In addition, they invented traditions, represented by the creation of different genres and the

re-elaboration of other musical elements (DIAS, 2012).

1.4.4 The instrument in the caipira tradition and Brazilian recent music

It is believed that the caipira music was structured as we know it today between the

eighteenth and twentieth centuries, but its roots are founded in more remote times, in the

beginning of the colonization of Brazil (VILELA, 2013). The violas13 accompany the Brazilian

cultural traditions since the Portuguese settlers, bringing their cordophones, arrived in the

13Here we can consider the numerous types of ancient and modern violas, whether from Portugal or Brazil,
including the viola caipira.
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territory that would become Brazil. These instruments were initially used by the Jesuits in the

catechesis of the indigenous peoples and remained for a long time linked to religious practices.

It is safe to say that the viola became the viola caipira as it was consecrated, over

the centuries, as a symbol of the music practised by rural people who inhabited several

settlements in the South Central region of Brazil from the seventeenth century. The people

from these settlements, which we can freely call "the first caipiras", were formed, in general,

by miscegenation of Portuguese settlers and Indians. Candido (CANDIDO, 1975) explains that

these people became "more caipira" as they lost their Portuguese cultural traits and absorbed

traits from aboriginal primitive cultures. Figure 1.5 reproduces the O Violeiro14, a famous work

of the Brazilian Realist painter Almeida Júnior, dated 1899, in which two typical caipiras are

depicted, while one of them plays a viola caipira.

Nowadays, the meaning of the term "caipira people" (or just "capira") is quite complex and

involves diverse social, cultural and anthropological aspects that will not be discussed in the

scope of this thesis. In addition, any attempt to translate this term into other languages could be

imprecise and exclusive. In this text, therefore, the terms "caipira" as well as "viola caipira" will

be maintained in Portuguese language. It can be stated in a simplistic way, however, that the

caipira people are concentrated nowadays in rural or urban areas, mainly in the Center-South

region of Brazil. They have cultural traits inherited from the "first caipiras" and traits from

the Brazilian urban culture, combining in a continuous and complex way. Many authors have

studied different aspects of the caipira people. The interested reader may refer to (CANDIDO,

1975; VILELA, 2013), for example.

14"The Violist" in english.
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Figure 1.6: Violists in the dance of São Gonçalo, in São Francisco city (Minas Gerais State), in
2000. (extracted from (CORRÊA, 2014) 15)

Countless violists contributed and have contributed to the development caipira music

as we know it today16. To name a few, names like Tião Carreiro, Helena Meirelles, Gedeão da

Viola, Zé Coco do Riachão, Índio Cachoeira, Zé Mulato, Bambico, Zézinho da Viola, Antonio

Madureira will remain forever in the memory of Brazilian music. Taubkin (TAUBKIN; NERY,

2008) provides a list of hundreds of violists currently active in Brazil and numerous viola

manufacturers.

Although the viola caipira is most often associated to the caipiramusic, it has been present

in many others Brazilian music genres, especially since the mid-1970s . As Vilela (VILELA, 2010)

points out, important players such as Renato Andrade, Almir Sater, Tavinho Moura, Roberto

Corrêa, Paulo Freire, Ivan Vilela, Fernando Deghi, among others, merged in their works the

universes of the caipira music and spheres of erudite music, Brazilian popular and instrumental

music (MPB) and jazz, each one in different manners, intensities and using different influences.

On the musical plurality of the viola caipira and the ways that the instrument has recently

taken, Vilela also writes:

15This photo was taken by Andréa Borghi.
16For interested readers, the following links are recommended:

❤tt♣s ✿ ❂❂✇✇✇✿②♦✉t✉❜❡✿❝♦♠❂✇❛t❝❤❄✈ ❂ ✼❝❡❝r❧s♥②s (by Almir Sater)
❤tt♣s ✿ ❂❂✇✇✇✿②♦✉t✉❜❡✿❝♦♠❂✇❛t❝❤❄✈ ❂�❦❯❨▼❚❑①♥✹❣ (by Tião Carreiro and Pardinho)
❤tt♣s ✿ ❂❂✇✇✇✿②♦✉t✉❜❡✿❝♦♠❂✇❛t❝❤❄✈ ❂ ♥t❙�♣❖♠✉❩❙❊ (by Lucas Reis and Thácio)
❤tt♣s ✿ ❂❂✇✇✇✿②♦✉t✉❜❡✿❝♦♠❂✇❛t❝❤❄✈ ❂ ❦❝②▼✐✽♠❤❋❊❣ (by Helena Meirelles)
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There are many violists who played their music all over Brazil. From traditional

violists to recording violists, from concert performers like Renato Andrade to the

new generations that have emerged since the 1980s. Musicians who merged with the

traditional way of playing various elements of their musical backgrounds, namely

classical, Brazilian instrumental, folklore, Brazilian Popular Music (MPB), jazz,

regional, rock and other trends that have emerged in the musical market in recent

decades. Currently, young people from different parts of the country have been playing

the viola, leading this instrument to be used in other musical segments in which the

viola had never been considered. (VILELA, 2010)



37

❈❤❛♣t❡r ✷

❙t❛t❡ ♦❢ t❤❡ ❛rt

The study of the physical functioning of a stringed instrument is an essential prerequisite

for any proposal of developing sound synthesis models. Regardless of the differences in sound

or appearance between plucked or bowed instruments, the principle of sound production of

all chordophones are substantially the same. Since the acoustic energy radiated by isolated

strings is too weak to be perceived, they are coupled to a radiating element, a role played by

the soundboard. It is possible to systematize the functioning of the instrument by means of a

so-called functional diagram such as that of Figure 2.1.

Figure 2.1: Simplified functional scheme of stringed instruments.

This diagram shows two distinct subsystems which constitute the instrument: the strings

and the body. The strings play the role of a resonant system since they are the ones that impose

the pitch of the note due to the periodic or pseudo-periodic effort that they exert on the bridge.

The body is the radiating element since it ensures sufficient acoustic energy for the instrument

to be heard.

In the Sachs-Hornbostel organological classification system (HORNBOSTEL; SACHS,

1914), the viola caipira belongs to the lute family, that is to say, musical stringed instruments

composed of a soundboard parallel to the strings plane, a resonance box and strings coupled to

the bridge and neck extremity. The neck is used to adjust, by means of the fingers, the length

of the strings and consequently the pitch of the note played. Being the viola caipira the focus

of this work, the state of the art which follows describes the current knowledge of the various

mechanisms involved in the sound production of plucked stringed instruments, in general.
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2.1 The motion of isolated strings

The vibrating string problem has been studied since a long time. In 1746,

D’Alembert (D’ALEMBERT, 1747) stated the one-dimensional wave equation whose solution

describes the motion of an ideal string vibrating in a single plane. Ten years later, Euler stated

the three-dimensional wave equation and proposed a technique for its solution (SPEISER;

WILLIAMS, 2008). The subsequent models are more complex as more physical phenomena are

taken into account.

Ideal plucked strings

Let us assume an ideal string of length ▲, fixed at both extremities, mass per unit length ✖,

subject to a constant axial tension ❚ . For a small amplitude motion, the string transverse

displacement ②✭①❀t✮, at position ① and time t, is governed by the one-dimensional wave

equation:

✶

❝✷
❅✷②✭①❀t✮

❅t✷
❂

❅✷②✭①❀t✮

❅①✷
❀ (2.1)

where

❝❂

s
❚

✖
(2.2)

is the velocity of transverse waves xin the string. Since both string extremities are fixed, ②✭✵❀t✮ ❂

✵, ②✭▲❀t✮ ❂ ✵ and the solution of Equation 2.1 can be written as the modal superposition:

②✭①❀t✮ ❂
✶❳
♥❂✶

❛♥ s✐♥

✥
♥
✙①

▲

✦
❝♦s

✥
♥
❝t

▲

✦
❀ (2.3)

where ❛♥ is the amplitude of the ♥t❤ string mode shape.

Considering a null external force field, a simplified pluck can be described in terms of

initial conditions by imposing a triangular shape to the string at the instant of release. Thus, at

t❂ ✵, the string has null velocity and transverse displacement ❤ at the excitation position ①✵ so

that its transverse displacement at any point ① can be obtained by Fourier series approximation:
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②✭①❀t✮ ❂
✶❳
♥❂✶

✷❤

✙✷♥✷❳✵✭✶�❳✵✮
s✐♥✭♥✙❳✵✮s✐♥✭♥✙❳✮❝♦s

✥
♥
❝✙t

▲

✦
❀ (2.4)

where❳✵ ❂ ①✵❂▲ and❳ ❂ ①❂▲ are the positions normalized by ▲, the string vibrating length.

It is worth remembering that this equation is valid for an ideal pluck. In practice, the initial

deformation of the string is more complex than a simple triangle. However, several important

points can already be noted from Equation 2.4 as follows:

• Assuming ❤ is weak enough to remain linear, the amplitude of vibration increases

as ❤ is large, so that the excitation amplitude is an important parameter.

• The maximum vibration is reached for an excitation point ①✵ ❂ ▲❂✷, i.e., at the

center of the string.

• The amplitude of the partials globally decreases in ✶
♥✷
.

• The excitation and observation positions lead to "filtering" effects of the overtones.

Concerning the last point above, for certain values of ❳ or ❳✵, the terms s✐♥✭♥✙❳✵✮

and s✐♥✭♥✙❳✮ do not contribute the ♥t❤ partial and its multiples. For example, if ❳✵ ❂ ✶❂✷

(excitation at the center of the string), we have s✐♥✭♥✙❳✵✮ ❂ s✐♥
✒
♥✙
✷

✓
. This term vanishes for

every even ♥ and is equal to 1 for every odd ♥. The contributions of the partials of even orders

are null because the string is excited at a position corresponding to a node. It is also observed

an overall decrease of the amplitudes of partials proportional to ✶
♥✷
, which is modulated by a

"filtering" effect due to the excitation and observation positions.

Effect of bending stiffness: inharmonicity

In the ideal string model considered above, the spectrum resulting from a pluck is always

composed by harmonic components, whose frequencies are multiples of the fundamental

frequency (see, for example, (ELIE, 2012), page 16). In practice, the string has a certain stiffness

which tends to bring it back to its resting state. The string motion, in this case, is described by

including a stiffness term to the wave equation 2.1 so that

✶

❝✷
❅✷②✭①❀t✮

❅t✷
❂
❅✷②✭①❀t✮

❅①✷
� ❇

❚

❅✹②✭①❀t✮

❅①✹
❀ (2.5)
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where B is the string bending stiffness. The result is an inharmonicity peculiar to freely

oscillating strings, which means that the overtone frequencies are not exactly equal to multiples

of the fundamental frequency. According to Fletcher (FLETCHER, 1964), the frequency ❢♥ of

the ♥t❤ overtone with respect to the fundamental frequency ❢✵ writes

❢♥ ❂ ♥❢✵

q
✶✰❇✵♥✷❀ (2.6)

where ❇✵ is the inharmonicity factor. It depends on the mechanical and string geometrical

parameters (VALETTE; CUESTA, 1993):

❇✵ ❂
✙✸❊❞✹

✻✹❚▲✷
❀ (2.7)

where ❞ is the string diameter and ❊ the Young’s modulus of its material.

Inharmonicity has often been studied in the cases of guitars and pianos, where tuning

problems are common (RASCH; HEETVELT, 1985; SCHUCK; YOUNG, 1943). Inharmonicity

factors of different guitar strings were measured experimentally by David (DAVID, 1999) and

Järveläinen and Karjalainen (JÄRVELÄINEN; KARJALAINEN, 2006), while for different piano

strings they were measured by Fletcher (FLETCHER, 1964), Lieber (LIEBER, 1975) and Fletcher

et al. (FLETCHER; ROSSING, 2012). Elie ((ELIE, 2012), page 18) regrouped and compared all

those values. The inharmonicity factors of the guitar strings are generally lower than those of

the piano strings.

From a perceptual point of view, Järveläinen et al. have studied our ability to discriminate

an inharmonic sound from a perfectly harmonic sound (JÄRVELÄINEN; KARJALAINEN, 2006;

JÄRVELÄINEN et al., 2001). From their studies, it was found that exists a threshold value of ❇✵

whose sound is perceived as inharmonic. Below this threshold, inharmonicity is not detectable.

This threshold value is frequency-dependent since inharmonicity is perceived more easily at

low frequencies than at high frequencies.

Considering the inharmonicity is important for a realistic synthesis. In addition, the

inharmonicity factor ❇✵ depends mainly on the intrinsic parameters of the string, so it is not

accessible to a luthier. The mechanical properties of the body, however, can slightly modify the

inharmonicity (GOUGH, 1981; VALETTE; CUESTA, 1993). It is within this framework that the

luthier can intervene.
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Damping mechanisms intrinsic to the string

When a string is excited, it is damped over time so that its movement is not perpetual.

This phenomenon is due to the transfer of energy from the string to an external system. In the

case of stringed instruments, part of the energy of the string is transmitted to the soundboard

through the bridge so that the soundboard can radiate. This dissipative mechanism can be

called "damping mechanism by coupling". There are also dissipative mechanisms peculiar to

the string, which can be called "intrinsic damping mechanisms". The total damping of the string

is then given by the sum of the terms of intrinsic mechanisms and the term due to the coupling

with body. Valette and Cuesta (VALETTE; CUESTA, 1993) provide a complete review of the

damping mechanisms intrinsic to an isolated string. A summary is given below.

The air viscosity

Considering the string as a cylinder oscillating at a certain frequency in a viscous fluid,

a mechanical resistance leads to energy losses. The expression to calculate the mechanical

resistance due to the air viscosity is given by Stokes (STOKES, 1851):

❘✵ ❂ ✷✙✗❛✐r✰✷✙❞
q
✙✗❛✐r✚❛✐r❢❀ (2.8)

where ✗❛✐r and ✚❛✐r are the air dynamic viscosity and density, respectively. The contribution of

the air viscosity to the ♥t❤ string mode is given by the ◗-factor(VALETTE; CUESTA, 1993):

◗�✶
♥❀❛✐r ❂

❘✵

✷✙✖

✶

❢♥
✿ (2.9)

The visco and thermoelasticity

The visco and thermoelastic losses are generally represented by the addition of their

respective loss angles, ✍❱ ❊ and ✍❚❊ , to the Young’s modulus written in the complex form:

⑦❊ ❂ ❊✭✶✰ ✐✍❱ ❚ ✮❀ (2.10)

where ✍❱ ❚ ❂ ✍❱ ❊ ✰ ✍❚❊ . For metal, the loss angles are generally considered as constant.

The ◗-factor associated to the ♥t❤ mode due to the visco and thermoelastic losses is given

by(VALETTE; CUESTA, 1993):
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◗♥❀❱ ❚ ❂
✹✙✷❊■

❚ ✷❝
✭✍❱ ❊✰ ✍❚❊✮❢

✷
♥✿ (2.11)

The dry friction in wound strings

In wound strings another dissipation mechanism should be taking into account due to

the dry friction between two successive turns of wire. This mechanism is modelled by the

addition of a loss angle ✍❲ in the term of string tension, which is written in the complex form

⑦❚ ❂ ❚ ✭✶✰ ✐✍❲ ✮ (2.12)

so that the the ◗-factor associated to the ♥t❤ mode is given by ◗�✶❲ ❂ ✍❲ .

The dislocation phenomenon

In order to consider the damping mechanism due to the dislocation phenomenon in the

string material (WATZKY, 1992), Cuesta (CUESTA, 1990) incorporates the term ◗�✶❞✐s❧✿ to the

string total damping. Note that this term is frequency-independent over the audio frequency

range.

String damping models

Valette and Cuesta (VALETTE; CUESTA, 1993) propose a damping model for an isolated

string taking into account the above-presented damping mechanisms. The total expression for

the modal ◗-factor of an isolated string is then given by

◗�✶♥ ❂◗�✶♥❀❛✐r✰◗♥❀❱ ❚ ✰◗�✶❞✐s❧✿❀ (2.13)

where the the terms in the right-hand side are respectively related to the air viscosity, visco and

thermoelastic and dislocation losses. For wound strings, the term◗�✶❲ is added to Equation 2.13.

The identification of all the parameters of a damping model is long and tedious. A

more pragmatic approach has been proposed by Woodhouse in (WOODHOUSE, 2004b). The

determination of the loss factor ✑♥ ❂◗♥❂✷, associated to the ♥t❤ string mode is given by:

✑♥ ❂
❚ ✭✑❋ ✰✑❆❂✦♥✮✰❇✑❇✭♥✙❂▲✮

✷

❚ ✰❇✭♥✙❂▲✮✷
❀ (2.14)
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where ✑❆, ✑❇ and ✑❋ are terms associated respectively to the losses due to the air viscosity,

bending stiffness and either friction between string turns, in wound strings, or inter-molecular

effects, in flat strings. Concerning the nature of such approach, Woodhouse summarizes:

This approach should be understood as a combination of physically-based modelling

and curve fitting, since the physical mechanisms are not understood in sufficient detail

to provide a fully convincing predictive model. ((WOODHOUSE, 2004b), page 956)

2.2 String/body coupling

The effects of strings/bridge coupling on the string dynamics have been studied by

several authors. Focusing on the violin family instruments, Raman (RAMAN, 1918) and

Schelleng (SCHELLENG, 1963) investigated the coupling between string and body resonances

and found that the resonant response of a string is significantly perturbed when it is strongly

coupled to the main body resonance, which produces the well-known wolf-note (refer

to (BENADE, 1990), Chapter 25, for a detailed discussion). In addition, Gough (GOUGH,

1981) developed an analytic two-polarization model able to predict interactions between

sympathetically tuned strings through the bridge motion.

The bridge motion also affects the motion of the string by inducing degeneracy breaking

of the two transverse polarisations, which leads to beating tones and two-stage decay

rates in the sound produced. These phenomena result from the bridge action in the two

polarizations (WEINREICH, 1977).

Several works attempted tomodel and investigate the effects of themultiple-strings/bridge

coupling in pianos (WEINREICH, 1977; CAPLETON, 2004; CHABASSIER; JOLY, 2010), whose

strings are organized in pairs or triplets; sitars (BENADE; MESSENGER, 1982; MANDAL; WAHI,

2015; SIDDIQ, 2012) and tanpuras (BRIDGES; WALSTIJN, 2015; MANDAL; WAHI, 2015), Indian

musical instruments where strings/bridge contact is quite peculiar (RAMAN, 1921), Portuguese

guitars (DEBUT et al., 2016) and harps (CARROU et al., 2009; CARROU et al., 2005; GAUTIER;

DAUCHEZ, 2004; ORR, 2013).
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In order to model string/body interactions, Woodhouse (WOODHOUSE, 2004a) proposed

two approaches for the pluck response synthesis of classical guitars: one is carried out

in the frequency domain using transfer functions and other uses modal superposition of

string/body coupled modes. Although completely different, these approaches start from the

same information: input body admittance measured or simulated at the bridge and string

properties. Both methods are briefly described below. Finally, the effects on the string vibration

due to the coupling with the body are reviewed.

2.2.1 String/body coupling using transfer functions

This method allows to compute the string velocity resulting from a pluck based on the

fact that at the coupling point, the string and bridge velocities are identical and the total force

exerted is the sum of the forces applied to the two separate subsystems. Thus, it follows the

relation

❨ �✶
❝♦✉♣✿ ❂ ❨ �✶

str✐♥❣✰❨ �✶
❜r✐❞❣❡❀ (2.15)

where ❨❝♦✉♣✿, ❨str✐♥❣ and ❨❜r✐❞❣❡ represent respectively the coupled system admittance, the

string admittance and the bridge admittance at the string/body coupling point. The bridge

admittance ❨❜r✐❞❣❡ is easily accessible by measurement since it is defined in the frequency

domain as the ratio between the velocity response ❱ ✭✦✮ and the force ❋ ✭✦✮ applied at the same

point. The string admittance is however more difficult to measure, so its analytic expression

is derived from the string properties. The velocity response ●❂ ❴②✭①♣✮
❋ ✭▲✮ , given at the plucking

point ①❂ ①♣ due to a force applied at the string/body coupling point ①❂ ▲ is then computed

by multiplying ❨❝♦✉♣✿ the dimensionless transfer function

❍ ❂
②✭▲✮

✖②✭①✮
❀ (2.16)

where ②✭▲✮ and ✖②✭①✮ are respectively the displacement applied at ①❂▲ and the corresponding

displacement at ① ❂ ①♣. An analytical expression for ❍ is given by (WOODHOUSE, 2004a).

Making use of the reciprocity principle, one may obtain
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❦t❤ body mode. The use of the "constraint mode" makes the string/body coupling possible since

both string and body have identical displacements at the coupling point so that ❛✵✭t✮ ❂ ②❜✭▲❀t✮.

Thus, the string displacement at a generic position ① writes

②✭①❀t✮ ❂
◆s❳
♥❂✶

s✐♥
✒
♥✙①

▲

✓
❛♥✭t✮✰✣s✵✭①✮

◆❜❳
❦❂✶

❜❦✭t✮✣
❜
❦✭▲✮✿ (2.20)

The governing equations of the coupled system is then formulated as a set of◆ ❂◆s✰◆❜

secondary-order ordinary differential equations

M⑧q✭t✮✰C ❴q✭t✮✰Kq✭t✮ ❂ f✭t✮❀ (2.21)

where q✭t✮ ❂ ✭❛✶✭t✮❀ ✿ ✿ ✿ ❀❛◆s✭t✮❀ ❜✶✭t✮❀ ✿ ✿ ✿ ❀ ❜◆❜
✭t✮✮❚ is the vector containing string and body

modal displacements;M, C and K are respectively the mass, damping and stiffness matrices;

and f is the column vector containing the modal forces. The vector q✭t✮ is the only unknown

of the problem. Recasting the system of equations 2.21 into the first-order form, the modes of

the string/body coupled system are computed and superposed to construct the string response

to a given excitation. For further details the reader is invited to refer to (WOODHOUSE, 2004a).

2.2.3 Coupling effects on the string modes

When the string end at ①❂ ▲ is coupled to a moving structure like the guitar body, the

latter perturbs the movement of the string, and in particular its wave number. This perturbation

can be satisfactorily described as the addition of a small term ✍♥✜ ✶ to the wave number

of the isolated string (VALETTE; CUESTA, 1993). By making use of the continuity condition

between string and bridge, more specifically, imposing the equality of the admittances ❨str✐♥❣

and ❨❜r✐❞❣❡ at the coupling point ①❂ ▲, Paté et al (PATÉ et al., 2014)1, inspired by Valette and

Cuesta (VALETTE; CUESTA, 1993), show that the modal frequencies and modal Q-factors of the

isolated string are perturbed by the imaginary part (susceptance) and real part (conductance)

of ❨❜r✐❞❣❡, respectively, so that

1In this work, Paté et al study the solid body electric guitar, where the string/body coupling occurs mainly via
the fingerboard so that ❨❜r✐❞❣❡ is neglected and the fingerboard admittance is included.
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❢♥ ❂
❥❝

✷▲

✷
✹✶✰ ♥✷✙✷

▲✷
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✷❚
✰
❩❝

♥✙
❂✭❨❜r✐❞❣❡✭▲❀❢♥✮✮

✸
✺ (2.22)

and

◗
�✶
♥ ❂◗�✶♥ ✰

❝✷✖

✙▲
❁✭❨❜r✐❞❣❡✭▲❀❢♥✮✮ ✶

❢♥
❀ (2.23)

where ❢♥ and ◗♥ are the modal frequencies and the modal Q-factors of the string coupled to

the body and ❩❝ ❂
♣
✖❚ is the characteristic impedance of the string.

It is expected, therefore, that the imaginary part of the bridge admittance affects the

modal frequencies of the string and consequently its inharmonicity (GOUGH, 1981). However,

measured imaginary parts of the admittances on the electric (PATÉ et al., 2014) and acoustical

(ELIE, 2012) guitars never lead to a frequency shift larger than 1Hz.

The total Q-factor associated to the damping of the ♥t❤ overtone is the sum of two terms:

a term intrinsic to the string, given by Equation 2.13, which includes all energy dissipation

mechanisms (visco-elastic losses, visco-thermal, internal frictions, etc.), and a term relative

to the coupling with the instrument body, given by the second term in the right-hand side of

Equation 2.23. This relationship reveals the compromise that the luthier has to face: a high

level of bridge admittance ensures a certain sound power but reduces the duration of sound.

Moreover, since the bridge admittance varies with frequency, the damping due to the coupling

may considerably vary from note to note.

In scientific terms, the art of the luthier consists, not exclusively, of adjusting the duration

and intensity of sound by modifying the level of bridge admittance. To ensure a certain

homogeneity in terms of sound duration along the instrument frequency range, this adjustment

sometimes is made locally. In this sense, this work focuses more on the damping mechanism

by coupling since it is somehow controllable by the luthier, while the other terms are solely

dependent on the intrinsic characteristics of the string.

In order to include all above-presented damping mechanisms to the string motion, i. e.,

coupling and string-intrinsic effects, Valette and Cuesta (VALETTE; CUESTA, 1993) took the

damping of each "inharmonic" overtone ❢♥ into account by introducing "corrected" modal

Q-factors in the general solutions of the string equation 2.3:
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✙❢♥

◗♥
t
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2.3 Vibroacoustical behavior of the body

Experimental modal analysis

Since the soundboard acts as a radiating element (cf. Figure 2.1) in the sound production

of guitar-like instruments, its vibratory behaviour is determinant on the sound resulting from

a note played by the musician. Thus, numerous studies deal with the vibratory properties of

the soundboard, coupled or not with the rest of the entire guitar.

The shapes of the first guitar modes shown in Figure 2.4 reveal that the main vibrating

region of the instrument resonance box is located on the lower bout of the soundboard, under

the rosette, being the upper bout region very little mobile. In general the frequencies of these

first modes vary little from one guitar to another due to the small variation in the instrument

geometry.

Figure 2.3: Example of frequency response function measured at the bridge of a classical guitar.
The characteristic frequencies are indicated with their usual symbols. Extracted from (ELIE, 2012).
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Jansson (JANSSON, 1971) was the first to publish images of guitar mode shapes, which

were obtained by means of hologram interferometry. Firth (FIRTH, 1977) then applied the

Chladni technique to determine the nodal lines of the 8 first soundboard modes and 9

first back plate modes. In order to classify and specify the origin of some of these modes,

specific names have been assigned according to the nomenclature adopted by him (FIRTH, 1977):

• The first mode, denoted by ❆✵, is also called the "air cavity mode" and corresponds

to the predominant motion of the mass of air inside the instrument cavity coupled

to the moving walls of the resonance box (soundboard, back plate and sides). For

classical guitars, in general, the frequency ❢❆✵ is systematically located at around

90-100 Hz (CHRISTENSEN; VISTISEN, 1980).

• The first soundboard mode, denoted by ❚✶, is associated to considerable motion

of the soundboard coupled to the air cavity motion. Its frequency ❢❚✶ is located at

around 190-220 Hz for most classical guitars (CHRISTENSEN; VISTISEN, 1980).

It is worth mentioning that other instruments have similar characteristics, in particular

the concert (CARROU et al., 2007) and Gothic harp (DALTROP et al., 2012), which also feature

modes ❆✵ and ❚✶, but in different frequency ranges.

Another characteristic frequency is the Helmholtz frequency, commonly denoted by ❢❤.

It is "purely" associated to the motion of the air cavity without coupling to the instrument

structure. In guitars, it appears as an antiresonance in the frequency response functionmeasured

at the bridge of the instrument, as shown in Figure 2.3. The first peak, at around 75 Hz, just

before the❆✵ mode, is a "global mode", corresponding to an overall bending motion of the whole

structure of the instrument. There is very little documentation on this mode; Jansson (JANSSON,

1983) refers to a "bending motion of the complete guitar", while Meyer (MEYER, 1983) classify

it as a "secondary resonance". Figure 2.4 shows the first three mode shapes obtained by Hill

and Richardson (HILL et al., 2004) for a classical guitar using holographic interferometry.

Simple guitar models with few degrees of freedom

In order to understand in a simple way the role of the low-frequencies in the guitar sound

production, some authors have proposed discrete models to study the coupling between the
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stiffness of the air in the cavity so that the the following relation is given:

❢✷
♣ ✰❢✷

❤ ❂ ❢✷
❆✵
✰❢✷

❚✶✿ (2.25)

This model has the advantage of allowing an estimation of characteristic parameters of

the guitar from the simple measurement of the frequency response on the soundboard. Indeed,

the values of ❢❆✵ , ❢❚✶ and ❢❤ can be extracted directly from the frequency response curve of

the instrument (see, for example, Figure 2.3). It is then possible to calculate the frequency ❢♣

from Equation 2.25. However, in terms of frequency range, this model is very limited since it

only describes the behaviour of the first two modes of the instrument.

A natural extension of this model is to add a third degree of freedom, constituted by

an additional mass representing the back plate of the guitar. This model was proposed by

Christensen (CHRISTENSEN, 1982) and experimentally validated by Rossing et al. (ROSSING et

al., 1985), and later extended byWright (WRIGHT, 1996), who coupled strings to the instrument

body using the theory presented by Gough (GOUGH, 1981). The frequencies ❢❆✵ , ❢❚✶ , ❢❞, ❢❤

and ❢❜ are then linked together by the relation

❢✷
♣ ✰❢✷

❤✰❢✷
❜ ❂ ❢✷

❆✵
✰❢✷

❚✶✰❢✷
❞ ❀ (2.26)

where ❢❞ is the frequency of the mode associated to the motion of the back plate coupled with

the whole structure and air cavity, and ❢❜ is the second antiresonance, located between ❢❚✶

and ❢❚✷ .

Popp (POPP, 2012) recently proposed a 4-DOF model, which includes the sides. The

modifications of the boundary conditions imposed by the way that the musician hold the

instrument can thus be taken as input parameters of the model.

Soundboard radiation

The study of the guitar radiation begins with Lai and Burgess (LAI; BURGESS, 1990),

published in 1990. The authors use the same method employed by Suzuki (SUZUKI, 1986) for

piano soundboards to obtain the radiation efficiency of different acoustic guitars. The method

consists of exciting the guitar at its bridge using a shaker and measuring the accelerance at the

driving point and the sound intensity in the near field. The former measurement is obtained by
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waveguides (KARJALAINEN et al., 1998; III, 1993) or modal synthesis (ADRIEN; RODET, 1985;

ADRIEN, 1991; MORRISON; ADRIEN, 1993), one of the main advantages of the finite difference

method is its versatility, since it can be applied to different systems, including those strongly

non-linear. On the other hand, computational cost and problems of numerical instability are

points that deserve special attention when such a method is employed.(BILBAO, 2009)

In 1969, Ruiz (RUIZ, 1970), followed by others (HILLER; RUIZ, 1971a; HILLER; RUIZ,

1971b; BOUTILLON, 1988; BACON; BOWSHER, 1978), pioneered the application of finite

differences schemes to solve PDEs and consequently obtain synthesized musical sounds. These

works marked a first important stage in the development of the string instruments synthesis,

despite the computers at that time did not have the required processing power to properly

run the involved calculations. About 20 years later, Chaigne et al. (CHAIGNE et al., 1990) use

a central finite difference schemes, which are described in detail in his previous work with

Guyard (GUYARD; CHAIGNE, 1988), to discretize string motion equations taking into account

string characteristics (material, tension and geometry), boundary conditions (impedances at

the bridge and stopping finger) and excitation mechanisms (finger pluck, hammer strike, etc).

They obtained close agreement between numerically simulated and measured guitar sounds.

In a subsequent work, Chaigne and Askenfelt (CHAIGNE; ASKENFELT, 1994a; CHAIGNE;

ASKENFELT, 1994b) use a similar numerical approach to obtain synthesized piano sounds with

a "high degree of realism". In comparison with previous related studies, their physical model,

as they themselves describe in the paper, "is entirely based on finite difference approximations

of the continuous equations for the transverse vibrations of a damped stiff string struck by a

non-linear hammer". Giordano and Jiang (GIORDANO; JIANG, 2004) considerably extended

this model by dealing with a complete model composed of three submodels: string and hammer

interactions and their respective motions, soundboard vibrations and sound production by the

vibrating soundboard.

Finite difference methods have been used in numerous different approaches to synthesize

the sound of various instruments. By way of example, several works and respective

addressed instruments can be listed, such as xylophone (CHAIGNE; DOUTAUT, 1997),

kettledrums (RHAOUTI et al., 1999), snare drum (BILBAO, 2012; TORIN; NEWTON, 2014),

timpani (JOLY et al., 1999), cymbal and gong (DUCCESCHI; TOUZÉ, 2015), harp (ORR, 2013),

tanpura (WALSTIJN et al., 2016; WALSTIJN; CHATZIIOANNOU, 2014), guitar (CHAIGNE,

1992; BILBAO; TORIN, 2015; BILBAO et al., 2015), electric bass (ISSANCHOU et al., 2017;
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ISSANCHOU et al., 2018), Portuguese guitar (DEBUT et al., 2016) and violin (DEMOUCRON,

2008; DESVAGES; BILBAO, 2014; DESVAGES; BILBAO, 2015; DESVAGES; BILBAO, 2016). In

addition, Portnoff (PORTNOFF, 1973) contributed significantly to the context of vocal tract

and speech synthesis. Finally, we cannot fail to mention the Bilbao’s book (BILBAO, 2009), in

which is presented a thorough study of finite difference schemes applied to various objects in

the musical acoustics context including strings, beams, plates, as well as coupled objects such

as prepared strings, coupled beams, string-plate coupling and transverse-longitudinal coupling

in strings.

2.5 Previous works on the viola caipira

As previously mentioned, the viola caipira is an instrument little explored from the

musical acoustics perspective. The literature review performed for this research revealed that

the only work addressing the viola caipira in this field is the master dissertation (PAIVA,

2013) written by this author in 2012, which resulted in the publication of two conference

papers (PAIVA; SANTOS, 2013; PAIVA; SANTOS, 2012). The following is a brief summary of

the results obtained in these works.

In (PAIVA, 2013) is presented a set of finite element analyses of three models of the viola

caipira resonance box without strings and neck. These models have geometries with different

detail levels: the first model adopts approximate dimensions of a real viola caipira and neglects

the internal reinforcements (struts, ribs, bars, etc); the second model is an extension of the

first model with internal reinforcements; the third model is rigorously designed according to

the dimensions of a real viola caipira, including internal reinforcements. Three types of modal

analysis are performed for each model. Acoustical modes associated to the air cavity inside the

resonance box as well as the structural ones are determined in terms of natural frequencies

and mode shapes. Structure and air cavity are then coupled and vibroacoustical modes are

determined. Experimental mode shapes and natural frequencies are obtained using the Chladni

technique so that the simulated results are finally validated.

It is observed that the inclusion of internal reinforcements leads to significant increase of

the natural frequencies (from 23% to 43%) and considerable change of the mode shapes, mainly
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2.6 Summary

A bibliography review has been presented, where different pertinent aspects were

approached:

• Description of the motion of ideal and stiff strings uncoupled from the body;

• String/body coupling methods and effects of such coupling on the string motion;

• Experimental methods used to characterize vibration and radiation of guitars;

• Finite difference schemes used for the sound synthesis of musical instruments;

• Previous works on the viola caipira.
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❈❤❛♣t❡r ✸

❊①♣❡r✐♠❡♥t❛❧ st✉❞② ♦❢ t❤❡ ✈✐♦❧❛ ❝❛✐♣✐r❛

The viola caipira has a particular timbre. The objective of this chapter is to identify

experimentally sound and vibrational specificities of the instrument. Experimental tests are

performed on a single instrument (Rozini brand, Ponteio Profissional model) tuned in Rio Abaixo

(see Table 1.1). Although the viola caipira exists in a variety of types, the instrument studied

in this chapter is representative since it has five double courses of strings, which is the most

common configuration, and a very typical resonance box shape. This experimental study is

divided in the following parts:

• Analysis of the string motion using a high speed camera;

• Analysis of a set of sounds resulting from instrument plucks;

• Vibrational analysis of the instrument body.

3.1 Analysis of the string motion using a high speed camera

Experimental setup

Figure 3.1: Experimental setup for motion analysis of the viola caipira strings using a high speed
camera.

In order to analyse the motion of strings during and after a typical pluck, an experimental
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synthesis presented in Chapter 4.

Collisions between strings

Figures 3.2c to 3.2e show that the strings collided successively three times after the second

pluck, within an interval of 3 ms. This phenomenon of string/string collisions is a remarkable

specificity of the vibrational behaviour of strings in the viola caipira and undoubtedly has a

strong influence on the instrument sound. This issue will be addressed more specifically in

Chapter 4 by means of physics-based sound syntheses.

Not shown here, many other plucks have been recorded. Different plucking conditions

were used and different strings were excited. It was found qualitatively that the occurrence of

string/string collisions varies from pair to pair and depends on the string spacing, excitation

force and plucking direction. Collisions were observed only in cases where pairs 3, 4 and 5

were plucked in a direction predominantly parallel to the soundboard by applying moderate

force. Since the tensions on the strings of pairs 1 and 2 are relative higher, the amplitude of

vibration of those strings is smaller considering that the same excitation force is applied. Thus,

to induce collisions in pairs 1 and 2, a higher plucking force is required. Even though in a

qualitative way, such observations give us reasonable results to conclude that the existence

of string/string collisions is associated to characteristics intrinsic to the instrument (string

tensions), parameters controlled by the musician (direction and force of the pluck) and and

parameters adjusted by the instrument maker (adjustment of string spacing).

It is worth suggesting that string/string collisions may also occur in plucked instruments

where strings are arranged and played by pairs such as mandolins, twelve-string guitars and

Portuguese guitars. To the knowledge of the author, such phenomenon is not reported in the

literature yet.

3.2 Sound analysis

The experimental work presented in this section consisted in recording the sound resulting

from two configurations of the instrument: first a single string was excited while all the others
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were completely damped so they were prevented from vibrating by sympathy; the same string

was then excited under the same conditions, but all the others strings were left free to vibrate.

Time-frequency and energy analyses of the recorded sounds were obtained.

Experimental setup

The experiment was performed in the laboratory environment where noise interference

from secondary sources was minimized. Measurements were performed using the following

protocol. The viola caipira is supported in a fixed position using a guitar stand. The instrument

is hung by the head and its body is fixed with modelling clay at the two contact points between

its back plate and the stand feet. A microphone (PCB 378B02) is positioned 12 cm from the

soundboard pointing towards the sound hole. A 56 ✖m copper wire is used to excite the string.

The wire is placed around the string 1 (D4, 293.67 Hz), at 8 cm from the bridge, and then

is pulled aside in the direction normal to the soundboard until it breaks abruptly. The wire

excitation allows controllable and repeatable plucks since its breaking force is expected to be

quasi-invariable (for more details on the wire technique, the reader is invited to refer to the

article presented in the end of this chapter). When necessary, strings are completely damped

by using foam and cloth without contact with the soundboard. Signal acquisition is performed

using National Instrument I/O interface running at 44.1 kHz.

Double decay rate, string sympathetic resonances and beating

The analysis of the sound decay is done by means of the so-called energy decay curve

(EDC), which is computed by the backward integration (SCHROEDER, 1965):

❊❉❈✭t✮ ❂
❩ ❚

t
s✷✭✜ ✮❞✜❀ (3.1)

where s(t) is the analysed signal and T its total length.
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Figure 3.3: Sound energy decay curves obtained when the string 1 (D4, 293.67 Hz) is plucked by
means of a copper wire in the direction normal to the soundboard. Two configurations are used:
all the other strings are completely damped (black curve) or left free to vibrate (gray curve).

The complexity of the energy decay is explained mainly by the coupling between

polarizations of a given string and by the coupling between different strings through the

bridge motion. Figures 3.3 and 3.4 illustrate the effects of these different couplings when the

string 1 (D4, 293.67 Hz) is plucked. Three effects are identified as follows.

Double decay rate

Two phases can be defined during the sound energy decay:

• Attack phase, associated to the immediate sound during which the decay is faster.

In this phase, the decay is mainly explained by the coupling of the string with the

flexural motion (out-of-plane motion) of the soundboard. This coupling is relative

strong and gives rise to a pumping energy mechanism by the soundboard. For the

string, this corresponds to a mechanism of damping.

• Sustain phase, associated to the aftersound during which the decay is slower. In this

phase, the decay is explained by the coupling of the string with the soundboard

in-plane motion.

This mechanism of double decay rate is clearly visible in Figure 3.3, which shows the sound

energy decay curves obtained when the string 1 (D4, 293.67 Hz) is plucked with all the other

strings being completely damped (black curve) or free to vibrate (gray curve). The fact of

isolating the string limits the couplings at the origin of the decay so that the aftersound is
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simplified.

String sympathetic resonances

Figure 3.3 shows a higher aftersound level when the 10 strings of the instrument are

free. Couplings between strings through the bridge lead to string sympathetic resonances,

which contribute to the aftersound that would come from the isolated string. This aftersound

augmentation due to the strings coupling is perceived as a "halo of sound" (CARROU et al.,

2009), which is a characteristic of the instrument.

Beating

The string modes associated to the two polarizations are slightly perturbed by the

bridge motion so that they have very close frequencies (GOUGH, 1981). These small frequency

differences between string components can lead to beating tones, which are perceived with

periodic variations in volume. This phenomenon may appear on one or more partials of the

same string, which is visible on the spectrogram of Figure 3.4a, or even on a more complex

interaction between partials of two or more strings as shown in the spectrogram of Figure 3.4b.
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(b): Ten free strings.

Figure 3.4: Sound spectrograms obtained when the string 1 (D4, 293.67 Hz) is plucked in the
direction normal to the soundboard using two different configurations: (a) all the other strings
are completely damped (associated to the black energy decay curve in Figure 3.3); (b) all the other
strings are left free to vibrate (associated to the gray energy decay curve in Figure 3.3).
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(a) (b)

Figure 3.5: Setup used for the experimental modal analysis of the viola caipira soundboard.

3.3 Vibrational analysis of the body

After identifying in the previous section some specificities of the sound of the viola

caipira, searching for vibrational specificities of the instrument is the aim of this section. Do the

vibrational modes of the viola caipira have particularities which make different the instrument

from the classical guitar or other guitars?

3.3.1 Modal analysis of the soundboard

In order to investigate the dynamical behaviour of the viola caipira soundboard, which is

assumed a linear mechanical system, an experimental modal analysis was performed to obtain

natural frequencies, modal damping factors and respective mode shapes.

Experimental setup

The roving hammer technique was used to excite the instrument at 118 points along the

soundboard using a miniature impact hammer to provide a broad-band excitation (PCB 086E80,

sensitivity 20.06 mV.N). Acceleration responses resulting from the hammer excitations were

collected by a lightweight accelerometer with a mass of 2 g (PCB 352C23, sensitivity 0.523
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♠❱❂✭♠✿s✷✮) fixed on the bridge and mounted on a thin wax layer, as shown in Figure 3.5b.

LMS Scadas was used to record the acceleration and force data for further analysis. A guitar

stand was used to hang the instrument by the head, as shown in Figure 3.5a. The strings were

completely damped with a light cloth so that their tensions on the body instrument were kept.

Typical result for the inertance transfer function
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Figure 3.6:Modulus of a typical inertance transfer function measured at the bridge of the viola
caipira. Excitation and response points are shown in Figure 3.5b.

The inertance transfer functions were calculated between all excitation points and

the fixed acceleration response point. Figure 3.6 shows typical variations of the modulus

of the inertance measured at the bridge of the viola caipira. This plot have numerous modal

contributions leading to a complicated pattern. At low frequencies (below about 1500 Hz) the

system is characterized by relatively isolated modes that can be easily extracted using classical

Fourier based modal identification techniques. In the mid and high-frequency ranges, the modal

overlap is too large to allow robust modal identification since modal contributions are no longer

individually observable.

Mobility transfer function and mean mobility
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Mobility transfer function

Mean mobility

Figure 3.7: Overall representation of the mobility measured at the bridge of the viola caipira

By integrating the inertance curve shown in Figure 3.6, one may obtain its associated

mobility transfer function. Figure 3.7 shows an overall description of such mobility. The so-

called mean mobility (also called characteristic admittance (SKUDRZYK, 1980)) is calculated

from 1500 Hz. It consists in computing the mean value of the mobility, in dB, included in a

sliding window of a certain span, this latter moving from a sample to the next. Thus, the mean

mobility ●❈❞❇ writes

●❈❞❇✭❢❝✮ ❂
✶

✁❢

❩ ❢✷

❢✶
❨❞❇❞❢❀ (3.2)

where✁❢ ❂ ❢✷�❢✶, ❢❝ ❂
❢✶✰❢✷
✷ , ❢✶ and ❢✷ being respectively the lower and upper frequency

bounds of the sliding window. This quantity has been found useful to characterize and compare

stringed instruments (ELIE et al., 2012; ELIE et al., 2014) since it allows a description of vibratory

responses in the mid and high-frequency ranges, where the modal overlap is too large. The viola

caipira soundboard, like classical guitar soundboards have been shown to plate-like systems:

their mean mobilities are nearly independent on the frequency. This property is the one of a

plate, whose equivalent parameters can be computed (cf. (ELIE et al., 2012)).

Modal identification

To extract the modal parameters from the 118 obtained inertance transfer functions, a

modal identification procedure using the PolyMAXmethod (PEETERS et al., 2004) implemented

into LMS Test.lab software was carried and 36 modes were extracted between 0 and 1500 Hz,

leading to the synthesized inertance curve shown in Figure 3.8.
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Figure 3.9 shows the natural frequencies and respective damping ratios of the 36

soundboard modes identified between 0 and 1500 Hz. The values of damping ratios are of the

order of few percent (0.15-2.1✪), which is a usual range in the context of guitar-like instruments

(ELIE et al., 2012).

Figure 3.10 shows that the four first modes of the viola caipira soundboard resemble

those of the classical guitar (see for example (HILL et al., 2004) for a thorough description)

with frequencies moderately higher since the resonance box of the measured instrument is

smaller. In this work mode shapes are labelled according to the convention used in (WRIGHT,

1996). ❚ ✭✶❀✶✮✶ mode, also denoted ❆✵, is characterized by the motion of the lower bout of the

soundboard and mainly by a significant acoustic motion of the air piston in the sound hole,

which is not measured here. The ❚ ✭✶❀✶✮✷ mode arises due to the coupling of the soundboard

with the air cavity and is often referred to the "fundamental soundboard mode". ❚ ✭✶❀✶✮✶ and

❚ ✭✶❀✶✮✷ modes have similar shapes. Higher order modes such as T(2,1) and T(3,1) have nodal

lines separating vibrational lobes.
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Figure 3.8: Measured (gray line) and synthesized (black line) inertance transfer functions of the
viola caipira. Corresponding excitation and response points are shown in Figure 3.5b.
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Figure 3.9: 36 natural frequencies and respective damping ratios obtained from the modal analysis
of theviola caipira soundboard.

(a): ❚ ✭✶❀✶✮✶, 133.8 Hz (b): ❚ ✭✶❀✶✮✷, 261.7 Hz (c): T(2,1), 351.8 Hz (d): T(3,1), 752.9 Hz

Figure 3.10: Examples of mode shapes and respective natural frequencies obtained for the viola
caipira soundboard. Mode shapes are labelled according to the convention used in (WRIGHT,
1996).

3.3.2 Operating deflection shape analysis

The standard method for determining the modes of a structure consists of measuring a

large number (usually several tens) of transfer functions and performing a modal fit as has

been done in the previous paragraph. An alternative to this technique is to use a scanning laser

vibrometer. This tool automatically allows to collect a very large number (several thousand)

of transfer functions and, without performing a modal fit, one can observe the vibrational

levels at a given frequency. In this case, therefore, the obtained of the vibration pattern of the

structure is an operating deflection shape (ODS). When the modal overlap is small, an operating

deflection shape at a given resonance peak can be interpreted as a mode shape.
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Figure 3.11: Setup composed by an automatic impact hammer and a laser scanning vibrometer
used for measuring the vibration response on the front of the viola caipira.

Experimental setup

In this experiment, optical measurements allowing non-contact data acquisition were

performed to analyse the vibrational behaviour and obtain the ODSs of the front of the viola

caipira. A vibration mapping of the instrument soundboard and neck was obtained by using a

Polytech PSV-500 laser scanning vibrometer and an automatic hammer Maul-Theet vImpact-

60, as shown in Figure 3.11. As in the experimental modal analysis of the soundboard, the

instrument was suspended using a guitar stand and strings were completed damped. Impulse

excitations over a broad frequency band were provided by the automatic hammer at a fixed

position at the bridge. A set of time-domain response signals at 1000 points was measured

normal to the soundboard using the scanning vibrometer, which was positioned about 1.5 m

distant from the instrument. By means of the PSV software linked to the vibrometer, an FFT

analysis was performed and mobility curves up to 5000 Hz were obtained for the multiple

measurements.

Typical results for ODSs

ODSs b, c, d and f in Figure 3.13 correspond respectively to modes ❚ ✭✶❀✶✮✶, ❚ ✭✶❀✶✮✷, T(2,1),

T(3,1) in Figure 3.10, which allows to confirm that the ODS analysis gives results close to those
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Figure 3.12: Typical mobility transfer function measured at the viola caipira bridge using laser
scanning vibrometer.

obtained with the classical modal analysis. Some minor differences are however visible mainly

between corresponding frequencies. Small variations in the instrument tuning, hygrometry of

the enviroment, instrument boundary conditions and the perturbation due to the mass of the

accelerometer used in the modal analysis may explain such differences.

3.3.3 Mobility variation along the bridge saddle

The most of string energy vibration converted into radiated sound is transferred to the

body through the bridge at the coupling points along the saddle. This energy exchange can be

studied by mobility measurements at the bridge, which quantify the conversion of string force

into bridge velocity. Mobilities at the 10 coupling points are measured in this subsection . In

practice, measurements were performed at the vicinity of the string/saddle contact points, as

shown in Figure 3.14a, because the obtained signal-to-noise ratio was much better.
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curves at points 1 and 2). The differences between some mobilities are explained by the fact

that mode shapes vary along the saddle. In particular, some mode shapes have nodal regions at

the saddle and may not contribute to certain mobilities (see for example mode shape T(2,1) at

point 5).

Figure 3.15 summarizes the set of mobilities measured along the saddle as a function of

the string attachment points and frequency. In this figure the values of fundamental frequencies

of certain notes are added, which gives information about the energy exchange between strings

and body. At a given frequency, the higher the mobility is, more quickly the energy is radiated

by the body so that the sound produced is relatively powerful with a short duration. According

to Figure 3.15 this may occur, for example, when the notes C4 and C4 are played in strings 3, 4,

5 and 10. Conversely, smaller mobility leads to a slower energy flow resulting in a less powerful

sound with a longer duration, which may occur when G4 is played in string 4, for example.

Figure 3.15: Mapping of mobility along the bridge saddle obtained from the interpolation of
mobilities measured at the 10 points shown in Figure 3.14a. Mobilities are obtained in the frequency
range between 80 Hz and 1000 Hz on which fundamental frequencies of notes from frets 0 to 12
are indicated for each string considering the Rio Abaixo tuning type.
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3.3.4 Cross term of the bridge inertance matrix: coupling between horizontal and

vertical motions

(a) (b)

Figure 3.16: Setup for measuring direct (a) and cross (b) inertance transfer functions at the bridge
of the viola caipira.

Forces and acceleration responses at the bridge have in-plane and out-of-plane

components. The 2D-inertance matrix is a quantity describing the coupling between these

components. The cross term of the 2D-inertance matrix expresses the coupling between

horizontal and vertical motions in the bridge. Cross and direct terms, defined respectively by

❍③②✭✦✮ ❂ ❛③✭✦✮❂❋②✭✦✮ and❍③③✭✦✮ ❂ ❛③✭✦✮❂❋③✭✦✮, are measured in the directions shown in

Figure 3.16. The variations of the inertances with the frequency are shown in Figure 3.17. It is

clear that the cross term of the inertance matrix is lower than the direct term, which shows that

the coupling between polarization induced by the motion of the bridge exists but is moderate.
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Figure 3.17: Typical results for cross and direct inertance transfer functions measured at the
bridge of the viola caipira.
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3.3.5 Mobility measurements and modal analysis at the bridge of a viola caipira

using the Roving Wire-Breaking Technique

This subsection is presented as an article entitled “The Roving Wire-Breaking Technique:

a low cost mobility measurement procedure for string musical instruments”, submitted to

the Applied Acoustics Journal in October 2017. In that article, the mode shape components

at the bridge of a viola caipira are estimated using a high resolution modal analysis of

mobility measurements obtained by means of a novel technique named “Roving Wire-Breaking

Technique”.
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The Roving Wire-Breaking Technique: a low cost mobility

measurement procedure for string musical instruments

✶❀✷G. O. Paiva, ✶F. Ablitzer, ✶F. Gautier and ✷J. M. C. dos Santos

✶Université du Maine, LAUM, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France

✷University of Campinas, UNICAMP-FEM-DMC, Rua Mendeleyev, 200, CEP 13083-970 Campinas, SP,

Brazil

Abstract

Bridge mobilities are usually used to characterize the couplings between the strings and the

body of plucked or bowed string instruments. Such transfer functions are classically measured

using impact hammer technique. An alternative method called wire-breaking method (also

known as step relaxation method), introduced initially for the excitation of large structures

is investigated in this paper. The method has been recently adapted to string instruments:

it consists in placing a thin copper wire around the string in a position very close to the

bridge saddle and pulling aside in the direction of interest until the wire breaks abruptly

imparting a step function force to the driving point. When carried out with damped strings,

the acceleration of the bridge measured with a miniature sensor provides a good estimation of

transfer mobilities. The limits of the technique in terms of repeatability and signal-to-noise

ratio are investigated making use of comparisons with results obtained by the classical impact

hammer method. It is finally shown that the bridge admittances measured using the “Roving

Wire-Breaking Technique” may be used to identify mode shapes components at the bridge

using a high resolution modal analysis. Since no force sensor is needed to measure mobility,

the technique is low cost and can be used in the instrument maker workshop for instrument

modal characterization.
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1.1 Introduction

The sound produced by string musical instruments is the result of interactions of several

subsystems: the excitation mechanism, the strings, the instrument body, the air and the listener.

In the acoustical guitars and violins, the most of the energy that will be converted into radiated

sound is transferred to the body through the bridge. The energy flow from each string depends

primarily on how strongly it is coupled to the body: the stronger the coupling, the quicker the

energy is transferred to the body. The bridge mobility (or admittance), defined as the ratio in the

frequency domain between velocity and force, is an indicator of the string/body coupling. For

plucked string instruments the mobility governs the compromise between duration and power.

For bowed string instruments, the mobility is one of the key factors determining playability.

When considering velocity and force in the out-of-plane and in-plane directions, the mobility

takes the form of a 2-D matrix whose diagonal terms describe the degree of coupling with

the body in each direction considered separately and whose cross terms describe the coupling

between the two string polarizations.

Mobility measurements are typically made to characterize and compare string

instruments (ELIE et al., 2012; ELIE et al., 2014; WOODHOUSE; LANGLEY, 2012; ELIE, 2012;

WOODHOUSE, 2004b; ELIE et al., 2013; LAMBOURG; CHAIGNE, 1993; BISSINGER, 2008).

Mobilities measured at the bridge of string instruments can be also used to feed several sound

synthesis models for plucked (WOODHOUSE, 2004a; DEBUT et al., 2016) and bowed (INÁCIO

et al., 2008; DEMOUCRON, 2008) string instruments based on the modal description of strings

and body separately. In such hybrid methods, modal parameters of the body are obtained from

experimental data while string modal parameters are defined from analytical models.

This work is directly linked to the development of a tool for instrument makers (PAFI,

Plateforme d’aide à la facture instrumentale, available at http://pafi.univ-lemans.fr/) which aims

at supporting the maker decisions when building or adjusting musical instruments. This tool

consists of online post-processing packages, including hybrid sound synthesis, a low cost bridge

mobility measurement system and a musical instrument database (ELIE et al., 2012; ELIE et al.,

2014; ELIE et al., 2013; GAUTIER et al., 2009). As a consequence, there is a need to develop a low

cost methodology for measuring body modal parameters (frequencies, damping coefficients

and mode shapes components at the coupling points).
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The main goal of this paper is to investigate the capability of the wire breaking

technique to play this role. Such technique is not widely used and consists in exciting the

instrument body by placing a thin copper around a string very close to the bridge and pulling

it until it breaks. The limitations of this low cost technique in terms of signal-to–noise

ratio and repeatability are pointed out. The paper is organized as follows: in the rest of

the current section a bibliography review on the wire excitation technique is presented,

followed by the statement of the problem of using the classical hammer method for measuring

mobilities at the bridge of string instruments. Section 3.3.5 presents the principle of the

wire-breaking method and the experimental setup used for the measurements presented in

this paper. In Section 3.3.5, the limitations of the wire-breaking method are investigated by

making comparisons with results obtained by the hammer method. A calibration method for

mobility measurement is proposed in Section 3.3.5. Finally, in Section 3.3.5, the "Roving Wire-

Breaking Technique" is used to identify mode shapes at the bridge from mobility measurements.

1.1.1 Bibliography review

The wire-breaking method is based on the analysis of the response of a structure to a step

force. Also known in other fields as “step relaxation method", this method has been investigated

in the dynamic characterization of some engineering systems such as wind turbines (LAUFFER

et al., 1988; OSGOOD, 2001), bridges (MARECOS et al., 1969; DOUGLAS, 1976; OHLSSON, 1986)

and launch vehicles (DEITERS et al., 1994), where mechanical excitations for modal testing

are not so easy to produce (see Figure 1.18). In the musical acoustics context, such technique

has been introduced by Woodhouse (WOODHOUSE, 2004b) in two different applications.

Firstly, it was used for obtaining controlled pluck responses on classical guitars: the wire

provides at the pluck position a repeatable excitation in terms of level of stress, in the direction

of interest. The acoustic and vibration responses were recorded using a microphone and

accelerometer, respectively, allowing comparisons with synthesized sounds. Secondly, the

method was employed to measure mobility curves at the bridge of a classical guitar, which

allowed to feed sound synthesis models. Calibrated mobilities were obtained by comparison

with measurements obtained with impact hammer and vibrometer laser previously calibrated.

In (BANK; KARJALAINEN, 2010), a guitar sound synthesis has been obtained from a passive

admittance modelling whose parameters were extracted from admittance curves measured
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at the bridge using the wire-breaking technique. In (ZHANG; WOODHOUSE, 2014), mobility

measurements on cellos using a copper wire were carried out with a pickup system mounted

on the bridge to collect the input force signals at the string notches. The measurements were

compared with hammer excitation and normal bowing: nothing fundamentally different was

observed between those methods. The wire technique was also used in (TURCKHEIM et al.,

2010) for measuring the bridge impulse response on violins with completely damped strings:

the string excited at the bowing position leads the breaking wire to impart an impulse that

runs along the string and hits the bridge. In (FRÉOUR et al., 2015), the wire excitation allowed

a controllable pluck at different string positions: the recorded sounds using a microphone were

submitted to a high resolution modal analysis and the modal contributions of string and body

on different guitar sounds were identified. Finally, in (PATÉ et al., 2014), a copper wire has been

used to pluck a rigidly anchored string. Optical sensors were used to measure the resulting

signals from which modal parameters were extracted via a high resolution method and used to

feed the string damping model proposed in (VALETTE; CUESTA, 1993).

(a) (b)

Figure 1.18: Schematic illustrating applications of the step relaxation method to excite (a) a
bridge (OHLSSON, 1986) and (b) a launch vehicle (DEITERS et al., 1994).

1.1.2 Statement of the problem

For a linear system, the mobility transfer function ❨✐❥✭✦✮ is defined in the frequency

domain as the ratio between the velocity response ❱✐✭✦✮ at degree of freedom ✐ due to the force

❋❥✭✦✮ applied at the degree of freedom ❥,

❨✐❥✭✦✮ ❂
❱✐✭✦✮

❋❥✭✦✮
❀ (1.3)

where ✦ is the angular frequency.
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For bowed and plucked string instruments, the mobility measured at the bridge quantifies

the conversion of string force into bridge velocity. Both string forces and bridge velocities are

assumed to be composed by two orthogonal components, parallel and perpendicular to the

soundboard, corresponding respectively to ② and ③ directions as shown in Figure 1.19, so that

✷
✻✹ ❱②✭✦✮

❱③✭✦✮

✸
✼✺❂ Y

✷
✻✹ ❋②✭✦✮

❋③✭✦✮

✸
✼✺ ❀ (1.4)

where Y is the ✷✂✷ mobility matrix defined as

Y❂

✷
✻✹ ❨②②✭✦✮ ❨②③✭✦✮

❨③②✭✦✮ ❨③③✭✦✮

✸
✼✺ ✿ (1.5)

The description above neglects both string and bridge longitudinal motions since the parallel

and perpendicular components are much higher. It is also assumed that no torque is exerted

on the body when forces are applied to the driving points, so that the component in the ①

direction is ignored (cf. (BOUTILLON, 1988)).

(a) (b)

Figure 1.19: Setups used for mobility measurements at the bridge of string instruments using (a)
the hammer technique and (b) the wire technique.

Mobility matrices measured at the string/bridge contact points of string instruments

are usually used to feed models for sound synthesis (LAMBOURG; CHAIGNE, 1993; BANK;

KARJALAINEN, 2010; WOODHOUSE, 2004a). The classical method used for measuring

these transfer functions is based on the so-called hammer method: an impulse force

is imparted at the point in the direction of interest by means of a miniature impact

hammer and the resulting acceleration is measured by a laser vibrometer or a lightweight
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accelerometer mounted on the bridge. Figure 1.19a depicts a typical experimental setup

used for measuring mobilities at the bridge of classical guitars using hammer and accelerometer.

1.2 The wire-breaking method

Although the wire technique can be used for different types of excitation (see

Subsection 3.3.5), this paper focuses on the use of this technique for mobility measurement at

the bridge of string instruments. In the rest of this paper, therefore, wire-breaking method

refers to the method that uses a thin copper wire to excite the points where the strings make

contact with the bridge. The wire is placed around the string in a position as close as possible to

the saddle and then is pulled aside in the direction of interest until it breaks abruptly imparting

a step function force to the excitation point. The measurement of the bridge response without

the effect of string motion is feasible when the strings are completely damped. Under those

conditions, the acceleration response to the wire excitation measured with a miniature sensor

mounted on the bridge provides a good estimation of bridge mobilities without using any force

sensor.

1.2.1 Equivalence between v-impulse response and a-step response

Let us consider a system described by N degrees of freedom, a mass matrixM, a damping

matrix C, a stiffness matrix K, a displacement◆✂✶ vector x(t), excited by a force◆✂✶ vector

f(t). The Laplace transform of the motion equation

M⑧x✭t✮✰C ❴x✭t✮✰Kx✭t✮ ❂ f✭t✮ (1.6)

leads to

❳✭s✮ ❂ ❬s✷M⑧x✰sC✰K❪�✶f✭s✮✰ ❬s✷M✰sC✰K❪�✶✭✭sM✰C✮✮x✭✵✮✰M ❴x✭✵✮✮✿ (1.7)
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The Laplace transform of the velocity vector resulting from a Dirac excitation applied at one

single degree of freedom f✍✭t✮ ❂ ❬✵ ✁ ✁ ✁✵ ✍✭t✮ ✵ ✁ ✁ ✁✵❪T is given by

▲❢ ❴x✭t✮❣❂ s❬s✷M✰sC✰K❪�✶❬✵ ✁ ✁ ✁✵ ✶ ✵ ✁ ✁ ✁✵❪T✿ (1.8)

The excitation force resulting from the wire break at one degree of freedom can be

represented as a step function, fH✭t✮ ❂ ❬✵ ✁ ✁ ✁✵ ❢✵✭❍✭t✮� ✶✮ ✵ ✁ ✁ ✁✵❪T, where ❍✭t✮ is the

Heaviside function and ❢✵ is the wire force amplitude. The Laplace transform of the acceleration

resulting from fH✭t✮ is written as

▲❢⑧x✭t✮❣❂ s❬s✷M✰sC✰K❪�✶❬✵ ✁ ✁ ✁✵ ❢✵ ✵ ✁ ✁ ✁✵❪T✿ (1.9)

The right-hand sides of Equations 1.8 and 1.9 are equal if the wire force ❢✵ is unitary. As a

consequence, the velocity resulting from a Dirac excitation is equivalent to the acceleration

response resulting from a unitary step excitation. Thus, the mobility of the system can be

obtained from the Fourier transform of the acceleration response resulting from a step force

excitation, divided by the wire force as follows:

❨ ✭✦✮ ❂
❆✭✦✮

❢✵
✿ (1.10)

1.2.2 Experimental setup

All the measurements reported in this paper were performed in the same laboratory

environment. The results presented in Section 3.3.5 regard to measurements performed on

a classical guitar. The instruments were placed in fixed positions using a guitar stand. The

instruments were hung by the head and fixed on two of the stand feet using modelling clay

so that the contact between the stand and the body only occurred at two points. Before any

measurement, the strings were tuned to their usual static tensions. All the measurements were

carried out with damped strings.

Formeasurements using the hammermethod, the force signal was provided by aminiature

impact hammer PCB Piezotronics 086E80 whose head was mounted on a flexible beam clamped
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at its extremity. Such setup is a convenient way to control precisely the impact location and

to avoid multiple hits. The impact was exerted on the saddle, as close as possible to the point

where the E-string makes contact, as shown in Figure 1.19a.

For measurements using the wire-breaking method, the step force excitation was provided

by a thin copper wire with a diameter of 0.1 mm placed around the E-string in a position very

close to the saddle (see Figure 1.19b). For both hammer and wire-breaking methods, acceleration

signals were collected by a lightweight accelerometer PCB Piezotronics 352C23 (mass 0.2 g)

mounted on the bridge, close to the excitation point.

1.3 Results and discussion

1.3.1 Mobilities obtained with the hammer and wire-breaking methods

Typical mobility measurements at the bridge of banjos, Brazilian guitars, classical guitars

and violins obtained by the hammer method are compared in Figure 1.20, which highlights the

difference of profiles of those four instruments. All the mobilities are characterized by numerous

resonances, which induce variations around the averaged value over the useful frequency range.

The mean mobility and the modal density are important features of the instrument soundbox

(ELIE, 2012). Since the soundboard of the banjo is a membrane, its mobility is the highest

up to 1500 Hz. On the other hand, the violin mobility is amplified in the vicinity of 2500 Hz,

presenting the highest values: this feature is often referred to as the bridge hill (BISSINGER,

2008; DURUP; JANSSON, 2005; WOODHOUSE, 2005). The guitar soundboards (classical and

Brazilian) have been shown to behave as plate-like systems: their mean mobilities and the

modal densities are nearly independent on the frequency. This property is the one of a plate,

whose equivalent parameters can be computed (cf. (ELIE, 2012)).

Figure 1.21 shows the comparison between calibrated and uncalibrated mobilities, from 0

to 2000 Hz, obtained with the hammer and wire-breaking methods, respectively. Figure 1.22

shows the same measurements in a frequency range from 2000 Hz to 7000 Hz. In general, both

curves present similar patterns except for the difference in level, which is about 10 dB in the

overall frequency range. These discrepancies are expected since the measurements obtained
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Figure 1.20: (a) Experimental setups and (b) respective mobility curves measured using the
hammer method at the bridge of different instruments: i) banjo (blue line), ii) viola caipira

(magenta line), iii) classical guitar (green line), viola caipira (magenta line), iv) violin (red line).
The dB scale reference is 1 m.s�✶.N�✶. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)



85

by the wire method are not calibrated, i.e. the factor ❢✵ is not taken into account. It is also

observed that, at frequencies higher than 4000 Hz, the hammer method leads to noisier results,

revealing another advantage of using the wire-breaking method in such frequency range. The

results presented in Figures 1.21 and 1.22 show that the determination of the factor ❢✵ is crucial

to validate mobility measurements obtained with the wire-breaking method.
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Figure 1.21: Mobility curves, from 0 to 2000 Hz, measured using the hammer (black line) and
wire-breaking (blue line) methods. The dB scale reference is 1 m.s�✶.N�✶ (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Figure 1.22: Mobility curves, from 2000 Hz to 7000 Hz, measured using the hammer (black line)
and wire-breaking (blue line) methods. The dB scale reference is 1 m.s�✶.N�✶. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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1.3.2 Repeatability of the wire-breaking method

In order to assess the repeatability of the wire-breaking method, five mobility curves

were measured under the same measurement conditions and compared in Figure 1.23. It can be

observed that all the curves have substantially the same profile, which confirms the satisfactory

repeatability of the method. Since the breaking force ❢✵ is expected to be invariable for samples

from the same reel and the choice of the excitation angles are controllable, the method allows

reproducible measurements in different environments, by manipulation of different operators.
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Figure 1.23: Five mobility curves measured under the same conditions using the wire-breaking
method. The dB scale reference is 1 m.s�✶.N�✶. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

1.3.3 Influence of the wire diameter

The wire thickness is directly related to the magnitude of the wire breaking force ❢✵

so that the choice of the wire diameter is determinant in the reliability of the measurements.

Thicker wires may provide an excitation force ❢✵ enough to move the instrument body while

the wire is pulled aside, which leads to distorted measurements. Conversely, thinner wires may

provide a low signal to noise ratio resulting in unreliable measurements. Figure 1.24 shows

a comparison between mobility curves measured using wires of three different diameters.

Although measurements using the 150 ✖m wire have shown to be the most satisfactory in

terms of signal-to-noise ratio, the provided excitation force was too high so that the guitar

moved from the support. On the other hand, as can be shown in the same figure, the 56 ✖m
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wire provided the noisier results. The 100 ✖m wire is, therefore, a good choice since it provides

a good signal-to-noise ratio and a suitable force for the measured instrument.
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Figure 1.24:Mobility curves measured at the bridge of a classical guitar using wires of 3 different
diameters: 56 ✖m (green line), 100 ✖m (blue line) and 150 ✖m (red line) . The green and blue
curves are offset on the y-axis so that the comparison between the curves is feasible. The dB scale
reference is 1 m.s�✶.N�✶. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

1.4 Calibration of the wire-breaking method

Wire measurements require only one acceleration sensor for measuring mobilities on the

bridge of the instruments. As a consequence, the breaking force ❢✵ has to be determined in a

preliminary phase in order to compute calibrated mobilities.

1.4.1 Measuring the wire-breaking force

Figure 1.25 shows the experimental setup used for measuring the wire-breaking force.

The measurements consist in threading the wire through a rigid holder attached to the head

of an impact hammer PCB Piezotronics 086C03, while the opposite hammer end is clamped

onto a flat surface. In this way, the magnitude of the force measured by the hammer while the

wire is pulled until it breaks is equivalent to the force exerted on the string. The value of ❢✵,

therefore, is given by the maximum magnitude of the force curve measured in function of time,

named the wire-breaking force curve.
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Figure 1.25: Experimental setup used for measuring the wire-breaking force: the wire is attached
to a fixed force sensor and pulled until it breaks.

Figure 1.26a shows a typical wire-breaking force curve. For the sake of better visualization

the signal of the measured force was inverted. At first, an upward force region is observed,

which corresponds to the time interval that the wire is stretched. Then, the wire breaks and

the measured force falls abruptly since no tension is exerted by the wire.

Finally, the measured force features a damped oscillatory behavior that fades out

progressively. Figure 1.26b shows the comparison between 10 measures of the wire-breaking

force curves obtained under the same conditions. Although all the curves have similar profiles,

small differences can be observed, which can be due to slight variations of the gesture made by

the operator while pulling the wire. Since the factor ❢✵ is given by the maximum magnitude

of the wire-breaking force curves, a value of ❢✵ ❂ ✭✹✿✸✷✝✵✿✶✹✮ ◆ is obtained as indicated in

Figure 1.26b. Noting that the wire-breaking setup consists of two strands that equally share the

pulling load, the maximum force withstood by the strand that breaks is ❢✵❂✷, which corresponds

to a stress of 275 MPa. This value is in line with typical ultimate tensile strength reported for

enamelled copper wire (HOEKSTRA, 1938).
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Figure 1.26: (a) Typical measure (b) and ten measures of the breaking force curve of a 100 ✖m
wire. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Figure 1.27 allows to compare the bridge mobilities measured with the hammer method

and the wire-breaking method after calibration via the procedure described above. It can be

observed a satisfactory agreement between both curves, which indicates that the experimental

procedure used for measuring the wire-breaking force curves provides a suitable calibration

for the wire-breaking method.
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Figure 1.27: Mobility curves measured using the hammer method (black line) and the wire-
breaking method (blue line) after calibration. The dB scale reference is 1 m.s�✶.N�✶. (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

1.5 Application: Roving Wire-Breaking Technique

1.5.1 High resolution modal analysis

Since impact hammer measurements can be replaced by breaking wire measurements,

can a modal analysis procedure be performed on these measurements with sufficient precision?

To address this issue, a “Roving Wire-Breaking Technique" is defined and is carried out on a

Brazilian guitar, the viola caipira, which is composed of 5 pairs of strings (see Figure 1.28). The

aim is to determine the body modal parameters, i.e frequencies, damping coefficients and mode

shapes components at the 5 coupling points (denoted 1 to 5) in both directions (out-of-plane

direction denoted z and in plane direction y).
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Figure 1.28: Scheme used for estimation of mode shapes at the bridge of the viola caipira using the
wire-breakingmethod. Collocated mobility is measured at point 0 (in red), where the accelerometer
is fixed; the wire is . Points 1 to 5 (in yellow) are excited using the wire technique in the ③ and
② directions. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

At the bridge of a string instrument, it is common that the accelerometer cannot be placed

exactly on one of the coupling points. To circumvert this difficulty, a reference point denoted ✵

is selected in such a way that a collocated measurement at this point is possible. Responses

resulting from the wire-breaking excitation are measured by a miniature accelerometer located

at point 0. By roving the wire between the 6 measurement locations (5 coupling points + 1

reference point) and by orienting the wire in both directions ③ and ②, a set of 12 responses

can be measured. Dividing by the calibration factor ❢✵, 12 impulse responses ②✐❥✭t✮ can be

obtained, where subscript ✐ denotes the response degree of freedom (chosen here as ✐❂ ✵③)

and subscript ❥ denotes the excitation degree of freedom. For example ②✵③❀✶② is the impulse

response measured at point 0 in the direction ③ resulting from a wire break at point 1 and in

the direction ②. The modal analysis is performed in two steps.

• The first step concerns the identification of modal frequencies and damping

coefficients using the high resolution technique ESPRIT described in (EGE et al.,

2009; ELIE et al., 2014). This technique is based on the time-domain representation

of the signal s✭t✮ as a sum of complex exponentials, whose discrete representation

s❬♥❪ is written as:

s❬♥❪ ❂
✷❑❳
❦❂✶

❛❦❡
�☛✵

❦♥❡❥✭✷✙❢
✵

❦♥✰✬❦✮ ❂
✷❑❳
❦❂✶

❜❦✭③❦✮
♥❀ (1.11)

where the ❑ modes are characterized by their dimensionless modal frequencies

❢ ✵❦, and their damping factors ☛✵, and are associated to amplitudes ❛❦ and phases

✬❦. The identification procedure consists in estimating the poles ③❦ ❂ ❡�☛
✵

❦✰❥✷✙❢
✵

❦
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from which a collection of modal frequencies and modal damping coefficients can

be obtained from

❢❦ ❂
❛r❣✭③❦✮

✷✙
❋s and ✘❦ ❂

�❋s ❧♥ ❥③❦❥
✷✙❢❦

(1.12)

where ❋s is the sampling frequency. The pole identification is performed using the

ESPRIT algorithm, which is based on the decomposition of the input vector space

onto two orthogonal subspaces, namely the signal and noise subspaces (BADEAU

et al., 2006).

• The second step consists in estimating the modeling order and the mode shape

components based on a fit in the frequency domain. For this purpose, the mobility

❨✐❥✭✦✮ is computed as the Fourier Transform of the response ②✐❥✭t✮. The modal

model of ❨✐❥✭✦✮ is written as:

❨✐❥✭✦✮ ❂
❑❳
❦❂✶

❆❦❍❦✭✦✮ (1.13)

with

❍❦✭✦✮ ❂
❥✦

✦✷❦�✦✷✰ ❥✷✘❦✦❦✦
and ❆❦ ❂✟✐❦✟❥❦❀ (1.14)

where ✟❥❦ and ✟❥❦ are the ✐th and ❥th components of the ❦th mode shape (mass

normalized). The amplitudes ❆❦ such that the modal sum of Eq. (1.13) best fits the

measured mobility can be found by solving a least squares problem. Two aspects

must be considered to properly perform this least squares estimation. Firstly, it

should be noted that the amplitudes ❆❦ are real, whereas❍❦✭✦✮ is complex-valued.

Secondly, in the particular case of the collocated mobility ❨✵③❀✵③✭✦✮, the amplitudes

❆❦ ❂ ✣✵③❀❦✣✵③❀❦ are positive. To satisfy these two constraints, the estimation of

amplitudes is first performed on the collocated mobility using a non-negative least

squares (NNLS) procedure. The problem is expressed as

min
x

❦ Cx�d ❦✷✷ with the constraint ①❦ ✕ ✵ ✽❦❀ (1.15)

where x ❂
✔
❆✶ ✿ ✿ ✿ ❆❦ ✿ ✿ ✿ ❆❑

✕T
is the vector of unknown modal amplitudes,
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C ❂

✷
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❘❡✭❍✶✭❢max✮✮ ❘❡✭❍❦✭❢max✮✮ ❘❡✭❍❑✭❢max✮✮
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(1.16)

is a ✷◆freq✂❑ matrix whose columns form a basis of unitary modal responses and

d ❂

✷
✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✹

❘❡✭❍✵③❀✵③✭❢min✮✮
...

❘❡✭❍✵③❀✵③✭❢max✮✮

■♠✭❍✵③❀✵③✭❢min✮✮
...

■♠✭❍✵③❀✵③❢max✮✮

✸
✼✼✼✼✼✼✼✼✼✼✼✼✼✼✼✼✼✼✺

(1.17)

is a ✷◆freq✂✶ vector containing the measured mobility. The splitting of the unitary

modal responses ❍❦✭✦✮ and the measured mobility ❍✵③❀✵③✭✦✮ into their real and

imaginary parts is necessary to enforce that the estimated amplitude ❆❦ are real. A

characteristic of the NNLS procedure is that the solution x consists of two subsets,

one containing only strictly positive values and the other containing only zeros.

Consequently, the procedure intrinsically provides a model order selection, since

it does not use all poles identified by ESPRIT to fit the measured response. In the

present application of the method, 47 modes were retained out of 165 candidate

modes. Once the modal amplitudes of the collocated mobility have been estimated,

those of the cross mobilities can be obtained by solving a standard least squares

problem, which has the same form as Eq. (1.15) without the non-negative constraint.

The identification of modal amplitudes for each cross-mobility measurement allows

to determine the ③- and ②-components of mode shapes at the different coupling

points ✟❥❀❦ ❂ ❆❥❀❦❂✟✵③❀❦ (❥ ❂ ✶③❀✶②❀✷③❀✷②✿✿✿).

Figure 1.29a compares the collocated mobility ❍✵③✵③ reconstructed from the NNLS

solution to the measured mobility. A good fit is obtained in the frequency band of interest.

The cross mobility ❍✵③❀✵② reconstructed from the standard least squares solution using the
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same modes is compared to the measured mobility in Figure 1.29b. The signal-to-noise ratio of

this measurement is lower due to the smaller amplitude of the soundboard vibrations in the

②-direction. However, the reconstructed mobility overall well follows the measured mobility.
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Figure 1.29: Modulus of (a) the direct mobility ❍✵③✵③ and (b) the cross mobility ❍✵③✵② at the
reference point 0. Black curve: measurement using the wire-breaking method. This curve is shaded
below ❢min ❂ ✺✵ Hz and above ❢max ❂ ✸✵✵✵ Hz to highlight the frequency range considered for
modal amplitudes estimation. Magenta curve: reconstruction using 47 real modes obtained by the
ESPRIT/NNLS procedure.(For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

1.5.2 Synthesis of the mobility matrix

An example of reconstruction of the full mobility matrix at one coupling point is shown

in Figure 1.30. Note that a matrix concerns degrees of freedom whose physical access is difficult

or impossible. Since the mobility matrix provide a full characterization of the instrument body

at the coupling point, such a data is a useful input data for sound synthesis tools based on
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hybrid techniques.
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Figure 1.30: Modulus the mobility matrix terms at coupling point 1 reconstructed using the
modal parameters identified by the method. Black continuous line: direct out-of-plane mobility
❍✶③✶③ , black dashed line: direct in-plane mobility ❍✶②✶② , gray continuous line: cross mobility
❍✶③✶② . The dots on the out-of-plane mobility indicates the modes identified by the method and
used for the mobility synthesis. The mode shapes of modes pointed out by their number are
shown in Figure 1.31a.

.

1.5.3 Identification of mode shapes

Figure 1.31a shows a selection of identified mode shapes at the bridge in the out-of-plane

direction. Operating deflection shapes (ODS) of the instrument body at peak frequencies close

to these modes are shown in Figure 1.31b for comparison purpose. These ODS were obtained by

exciting the bridge with an automatic impact hammer (Maul-Theet vImpact-60) and measuring

the resulting velocity at numerous locations using a scanning laser vibrometer (Polytech PSV-

500). The first mode shape identified by the procedure corresponds to a rigid-body mode of

the instrument (see ODS a). Modes shape 3 and 7 are those of the A0 and T1 modes, which are

the lowest modes significantly contributing to sound radiation of a guitar. They correspond

to coupled motion of the top plate (see ODS b and c) and air piston in the soundhole through

the stiffness of the air cavity. The resulting motion at the bridge involves in-phase, piston-like

motion of the 10 coupling points. Mode 10 corresponds to the T2 mode, which is related to a top

plate mode shape with a single longitudinal nodal line crossing bridge (see ODS d). As a result,
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it is the first mode where out-of-phase motion between coupling points occurs, namely between

the treble and bass sides of the bridge. Although this may come as a surprise, piston-like motion

of the bridge again occurs at some higher modal frequencies (e.g. modes 18 and 19). This can be

understood when considering the related ODS (see ODS f and g), where the top plate exhibits

more complex modal patterns but the bridge is not crossed by any nodal line. In contrast, mode

21 involves more rapid spatial variations of amplitude along the bridge, which is constrained to

follow a motion of top plate involving more closely spaced longitudinal nodal lines (see ODS h).

The knowledge of these relative amplitudes and phase relationships for the different modes can

be useful in a model to account more accurately for sympathetic vibration between all strings.

(a):Mode shapes at the bridge saddle.

(b): Global operating deflection shapes.

Figure 1.31: (a) Mobility curve synthesized using estimated modal parameters; (b) examples of
mode shapes at the bridge saddle and (c) corresponding operating deflection shapes of the viola
caipira body.
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1.6 Conclusion

This paper has investigated the capability of the wire-breaking method to accurately

obtain the mobilities transfer functions at the bridge of a string instruments. Since no force

sensor is required, this methodology is a low cost and well-adapted procedure for measurements

in the environment of instrument maker workshop. The method was shown to be repeatable

and provided results in reasonable agreement with the classical hammer method. A calibration

method for mobilities obtained from wire-breaking measurement was proposed and validated.

Finally, a modal analysis of the mobility curves measured at the bridge using the “Roving

Wire-Breaking Technique” allowed the estimation of natural frequencies, damping factors and

mode shapes at the string/bridge coupling points using a high resolution modal analysis. Such

results can be used to feed sound synthesis models.



98

3.4 Summary

An experimental study of the viola caipira has been presented in this chapter where

different aspects were approached:

• The high speed camera analysis also revealed existence of collisions between strings

located in the same pair;

• The analysis of the sound resulting from the viola caipira pluck when all the strings

are free to vibrate revealed the existence of string sympathetic resonances, which

are perceived as a sound halo, constituting an important sound feature of the

instrument;

• The modal analysis of the viola caipira soundboard carried out by the classical

hammer method revealed some differences and similarities with the classical guitar:

the first four modes of the viola caipira soundboard resemble those of the classical

guitar while frequencies are moderately higher since the resonance box of the

instrument is relatively smaller. In addition, the viola caipira soundboard, like

classical guitar soundboards have been shown to resemble plate-like systems since

their mean mobilities are nearly independent on the frequency;

• Measurements using a scanning laser vibrometer and an automatic impact hammer

have been performed to obtain the ODSs of the front of the viola caipira. At a set of

resonance peaks the obtained ODSs gives results close to those obtained with the

classical modal analysis using impact hammer and accelerometer;

• Bridges mobilities have been measured using the wire-breaking method, which

is simple to use and inexpensive since it does not require the use of a force

sensor. Combined with a high-resolution modal analysis (ESPRIT method), these

measurements enabled to determine the modal shapes at the string/body coupling

points and thus to characterize the instrument.
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❈❤❛♣t❡r ✹

P❤②s✐❝❛❧ ♠♦❞❡❧❧✐♥❣ ❛♥❞ s♦✉♥❞ s②♥t❤❡s✐s ♦❢ t❤❡ ✈✐♦❧❛

❝❛✐♣✐r❛✳

The experimental study presented in Chapter 3 revealed that the interaction between

the viola caipira strings may occur in two different ways: through the motion of the bridge,

whereby all the strings are coupled, and through successive collisions of strings located in the

same pair. This chapter aims at presenting a physical modelling for sound synthesis of the

viola caipira able to reproduce both phenomena, which, undoubtedly, contribute to the sound

particularity of the instrument.

The text below is structured around the article entitled "Collisions in double string plucked

instruments: physical modelling and sound synthesis of the viola caipira", submitted to the Journal

of Sound and Vibration in November 2017. In that article is presented a modal-based model

comprising ten strings with non-planar motions coupled with the body. The model includes

string/string collisions and combines an analytical approach to describe the vibrations of strings

and experimental data describing the body. Simulations in the time domain reveal the main

sound characteristics of the viola caipira.

In order to further explore the sound synthesis model developed in the article,

complementary simulations are presented in Complement I.
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Abstract

The viola caipira is a folk guitar widely used in traditional and modern Brazilian music. It

consists, in general, of 10 metallic strings arranged in five pairs, tuned in unison or octave,

with the thinnest string located in the middle. An experimental study of the viola caipira pluck

by means of a high speed camera reveals some specificities of the instrument. It is found that

the instrument is characterized by a double pluck excitation since the two strings of a given

pair are plucked successively and rapidly. Collisions between strings arranged in the same pair

are identified. A hybrid model, based on a modal approach, is carried out for sound synthesis

purposes. It includes 10 strings with non-planar motions coupled with the body and collisions

between strings. A finite difference scheme is used to compute the coupling forces at each

time-step, which permits a set of sound simulations. The effects of string/string collisions on the

viola caipira sounds are identified and discussed. It is found that the model reproduces the main

vibroacoustic features of the viola caipira, among which the sympathetic string resonances and

the string/string collisions observed in the video analysis.
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4.1 Introduction

Collisions are strongly non-linear phenomena present in various mechanisms of musical

instruments. Such phenomena are closely related to the timbre characteristics of many

instruments and can occur in two general ways: at a well-defined instant and specific location,

as in the hammer/string interaction in pianos, or continuously in time and spatially distributed,

as in the bridge/string interaction in typical Indian instruments like the tampura and sitar.

Numerous authors have addressed different types of collisions in string instruments

modelling. Such works may be gathered in different groups according to the objects involved:

fret/string (BILBAO; TORIN, 2015; EVANGELISTA, 2011; EVANGELISTA; ECKERHOLM, 2010;

ISSANCHOU et al., 2017; ISSANCHOU et al., 2018), bridge/string (BRIDGES; WALSTIJN,

2015; MANDAL; WAHI, 2015; VYASARAYANI et al., 2009; WALSTIJN; BRIDGES, 2016),

hammer/string (CHAIGNE, 1992; CHAIGNE; ASKENFELT, 1994a; BILBAO et al., 2015;

BOUTILLON, 1988; SUZUKI, 1987). Many works adopt physical models and employ numerical

schemes to discretize and solve partial differential equations describing the string motion. Some

models rely on finite differences schemes in space and time (HILLER; RUIZ, 1971a; CHAIGNE,

1992; BILBAO, 2005; BILBAO et al., 2015; BRIDGES; WALSTIJN, 2015), while others employ

modal representations of strings (INÁCIO et al., 2008; DEBUT et al., 2016; TRÉVISAN, 2016;

DEMOUCRON, 2008; WOODHOUSE, 2004a). There are also works that combine modal and non-

modal representations using different methodologies (ISSANCHOU et al., 2017; ISSANCHOU et

al., 2018; ORR, 2013; WALSTIJN; BRIDGES, 2016). Standard time stepping methods of solution

consist in decreasing the step until the simulation achieves convergence with the desired

precision. In this case, the choice of a very small time step to calculate accurately non-linear

collision forces may lead to high computation times. Alternatively, several authors (BILBAO,

2005; BILBAO et al., 2015; BRIDGES; WALSTIJN, 2015; ISSANCHOU et al., 2017; ISSANCHOU

et al., 2018; WALSTIJN; BRIDGES, 2016) have used energy-based methods, which enables by

means of energy conservation frameworks suitable stability

Although numerous types of collision have been investigated in previous works,

string/string collisions, to our knowledge, are not reported yet in the literature. Apparently,

this is an unexplored subject that can be of considerable interest for the sound synthesis field.

String/string collisions are evidently dependent on the spacing between strings and therefore
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are expected to occur specially in plucked instruments with double strings like lutes, mandolins,

Portuguese guitars, viola caipira, etc. On the other hand, it is reasonable to expect that collisions

between strings might not occur, or occur less frequently, in instruments where the string

spacings are relatively large, like classical guitars.

This paper aims at evidencing experimentally and modelling collision phenomena in

double strings of a typical Brazilian guitar known as viola caipira (see Figure 4.1). A physical

model for sound synthesis able to reproduce such collision phenomena is presented and a set of

time domain simulations is obtained. Such model uses a modal-based approach and includes 10

strings with non-planar motions coupled with the body. Analytical expressions of mode shapes,

natural frequencies and damping factors are used to obtain the modal basis of each string while

body modal parameters are extracted from mobility measured at the instrument bridge. In

order to compute string time responses to an excitation force, a finite difference scheme is used

to discretize and integrate numerically string and body modal equations in time. By imposing

displacement continuity at the points where strings and body are connected, an expression

to calculate the set of unknown coupling forces at each instant is derived, which allows the

computation of string responses. This strategy of solution has been previously adopted for the

violin (DEMOUCRON, 2008) and piano (TRÉVISAN, 2016).

The method is applied for the sound synthesis of viola caipira. The main vibroacoustic

phenomena occurring in the instrument such as string/string collisions, string sympathetic

vibrations and beating tones are discussed and reproduced by means of a fully coupled model

including non-planar vibrations of 10 strings coupled to the body through the bridge.

Figure 4.1: String arrangement in the viola caipira: five courses of double strings. From right to
left, the strings are numbered from 1 to 10 and pairs from 1 to 5.
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The viola caipira is originally played in numerous cultural manifestations associated to

ludic-religious practices in the Central South region of Brazil. The instrument is closely related

with the musical genres called caipira and sertanejo, and in the recent decades has significantly

interacted with other genres of the classical and popular modern musics. The viola caipira has,

in general, 10 metal strings arranged in five courses of double strings and the thinnest string

(string 6 referred in Figure 4.1) is located in the middle. The first two courses have identical

strings tuned in unison, while the other three have strings with different diameters tuned in

an octave. Strings 5, 7 and 9 are composed of a metal core covered in wound metal (wound

strings), while the others are composed of a single metal wire (flat strings). The body shape is

similar to those of classical guitars although with a smaller size and slightly narrower waist.

It is estimated that there are approximately twenty ways to tune the instrument (VILELA,

2010). Some of these tunings are rarely used, while others are widespread in different regions

of Brazil.

This paper is organized as follows: in Section 2 is presented an experimental study

of the viola caipira pluck using a high speed camera. A collision model used to calculate

impact forces between strings is described in Section 4.3. In Section 4.4, a modal-based model

of the fully coupled system including 10 strings with non-planar motions interacting with

the instrument body is presented. The determination of the model parameters and a set of

simulations reproducing physical aspects of the viola caipira are finally obtained and discussed

in Section 4.5.

4.2 Experimental observations

The objective of this section is to identify experimentally string/string collisions in the

viola caipira by means of a high speed camera. Experimental tests are performed on a single

instrument (Rozini brand, Ponteio Profissional model).
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4.2.1 High speed camera setup

In order to analyse the motion of strings during and after a pluck, an experimental

observation was carried out using a high speed camera Photron, model FASTCAM SA-X2,

which provided an imaging performance of 1024 ✂ 768 pixels of resolution at the recording

rate of 5000 frames per second. To facilitate the observation of the strings motions, the guitar

was placed horizontally on a flat surface with its back plate in contact with a piece of foam, as

shown in Figure 4.2. A mirror attached to a stand was also positioned next to the instrument to

capture images from a different angle than that captured directly by the camera. The fourth pair

(strings 7 and 8) was then plucked in the downward direction of strings using the thumbnail.

Figure 4.2: Experimental setup for motion analysis of the viola caipira strings using a high speed
camera.

4.2.2 Identification of string/string collisions

As shown in the series of snapshots in Figures 4.3a and 4.3b, strings 8 and 7 are plucked

successively and rapidly, within a time interval ✁t♣❧✉❝❦ ❂ 14 ms for the presented measure.

This single measure of the ✁t♣❧✉❝❦ allow us to understand the phenomenon and provides a

realistic value to initialize the algorithm for sound synthesis presented in Section 4.4. However,

it is worth highlighting that the value of✁t♣❧✉❝❦ may be affected directly by factors such as the

spacing between strings, string diameters, instrument tuning and pluck direction. Figures 4.3c

to 4.3e show that the strings collided successively three times, but not only, after the string 7 is
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4.3 String/string collisions modelling

The experimental results presented in Section 4.2 revealed the occurrence of string/string

collisions in the viola caipira and such phenomena are expected to play a relevant role on the

sound produced. To investigate numerically this issue, a string/string collision model is first

described in this section.

A. Kinematics of two colliding strings

Based on the above-presented experimental observations, it is assumed that collisions

occur only between strings located in the same pair. For the sake of simplicity, a single pair of

strings is considered in the formulation below (strings 1 and 2). Let us consider two co-planar

cross-sections with radii r✶ and r✷, as depicted in Figure 4.4a, whose coordinates (❨ ✶✭①❀t✮,

❩✶✭①❀t✮) and (❨ ✷✭①❀t✮, ❩✷✭①❀t✮) are given by

❨ ✭s✮✭①❀t✮ ❂ ②
✭s✮
❝ ✰②✭s✮✭①❀t✮ and ❩✭s✮✭①❀t✮ ❂ ③

✭s✮
❝ ✰③✭s✮✭①❀t✮❀ (4.1)

with s❂ ✶❀✷. Note that for a the for given string s at rest, the coordinate of a generic cross-

section is given by ✭②
✭s✮
❝ ❀③

✭s✮
❝ ✮. This problem is similar to those of two-ball collisions (see for

example (GHARIB; HURMUZLU, 2012)). As shown in Figure 4.4a, the distance between the

centroids of the cross-sections writes

r✭①❀t✮ ❂
q
✭❨ ✷✭①❀t✮�❨ ✶✭①❀t✮✮✷✰✭❩✷✭①❀t✮�❩✶✭①❀t✮✮✷ (4.2)

and the angle ✌✭①❀t✮ is given by

✌✭①❀t✮ ❂ ❛r❝t❛♥

✥
❩✷✭①❀t✮�❩✶✭①❀t✮

❨ ✷✭①❀t✮�❨ ✶✭①❀t✮

✦
✿ (4.3)

B. Collision model

Impact is defined as the interaction between two colliding bodies throughout a short-time

collision event, during which large resultant pairs of action-reaction forces act in opposite

directions over the contact area of the colliding bodies (BRACH, 2007; STRONGE, 2004). Such
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frictionless contact between the cross-sections occurs. The non-linearmodel for elastic collisions

proposed by Hunt and Crossley (CROSSLEY, 1975) is used. It incorporates a hysterical damping

term to the classical Hertz model (HERTZ, 1896). The energy loss during the impact occurs

through heat dissipation caused by internal damping mechanisms intrinsic to the colliding

body materials. Since body deformation is assumed to occur in the elastic range of material

properties, the body shape remains undeformed after the contact period. The vectors of impact

forces Fimp1✭①❀t✮ and Fimp2✭①❀t✮ are opposite with identical magnitudes given by

☞☞☞Fimp✭s✮✭①❀t✮
☞☞☞❂❑❝✍

♣✭①❀t✮✰✕❞✍
♣✭①❀t✮ ❴✍✭①❀t✮❀ (4.4)

where ✍✭①❀t✮ ❂ ♠❛①
♥
✵❀r✭①❀t✮� ✭r✶✰r✷✮

♦
, with s❂ ✶❀✷, where❑❝ is the contact stiffness, ♣

is the compliance exponent, ✕❞ is the damping coefficient, ❴✍✭①❀t✮ is the indentation velocity.

The ② and ③ components of the impact force vector Fimp1y✭①❀t✮ are computed as follows:

❋ ✐♠♣✶② ❂�
☞☞☞Fimp1✭①❀t✮

☞☞☞❝♦s✭✌✭①❀t✮✮ (4.5)

and

❋ ✐♠♣✶③ ❂�
☞☞☞Fimp1✭①❀t✮

☞☞☞s✐♥✭✌✭①❀t✮✮✿ (4.6)

The y and z components of Fimp2✭①❀t✮ are then given by ❋ ✐♠♣✷② ❂ �❋ ✐♠♣✶② and ❋ ✐♠♣✷③ ❂

�❋ ✐♠♣✶③ . Since the impact forces are calculated along the entire string length, a distribution

of impact forces, given in ◆❂♠, is considered in Section 4.4.

4.4 Fully coupled system modelling

Let us consider a set of 10 stiff strings coupled to the body. For a given string s, a small-

amplitude vibration is assumed and the following properties are assigned: length ▲✭s✮, mass per

unit length ✖✭s✮, tension ❚ ✭s✮ and bending stiffness ❇✭s✮. The string is simply supported at one

end located at ①✭s✮ ❂✵, and attached to the body through the bridge so that it is allowed to move

at the other end located at ①
✭s✮
❝ ❂ ▲✭s✮. Body and string displacements are set to be identical
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at ①
✭s✮
❝ ❂ ▲✭s✮ in such a way that both structures are coupled. The string transverse motion is

expressed as the sum of the components ②✭s✮✭①❀t✮ and ③✭s✮✭①❀t✮, oriented normal and parallel to

the soundboard plane, respectively (see Figure 4.5). Accordingly, the transverse body motion at

the st❤ string coupling point p
✭s✮
c ❂ ✭①

✭s✮
❝ ❀②

✭s✮
❝ ❀③

✭s✮
❝ ✮ is described by the components ②❜✭p

✭s✮
c ❀t✮

and ③❜✭p
✭s✮
c ❀t✮. Axial and torsional string motions are neglected since they are ineffective in

exciting the instrument body. Geometrical non-linearities intrinsic to the strings are also

neglected.

Figure 4.5: Scheme representing the decomposition of string and body non-planar transverse
motions into components normal and parallel to the soundboard.

4.4.1 Modal formulation

A. String kinematics

For a given string s, the displacement in each of the two orthogonal polarizations is

described as the sum of ◆✭s✮ modes associated to the string with simply supported ends to

which an interface mode is added, whose shape

✣
✭s✮
✵ ✭①✮ ❂

✒
①

▲✭s✮

✓
(4.7)

corresponds to the static response of the string when it is simply supported at ①✭s✮ ❂ ✵ and

loaded at the end attached to the body, ①
✭s✮
❝ ❂ ▲✭s✮. Accordingly, the transverse displacements
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②✭s✮✭①❀t✮ and ③✭s✮✭①❀t✮ write

②✭s✮✭①❀t✮ ❂ ❛
✭s✮②
✵ ✭t✮✣

✭s✮
✵ ✭①✮✰

◆✭s✮❳
❥❂✶

❛
✭s✮②
❥ ✭t✮✣

✭s✮②
❥ ✭①✮ (4.8)

and

③✭s✮✭①❀t✮ ❂ ❛
✭s✮③
✵ ✭t✮✣

✭s✮
✵ ✭①✮✰

◆✭s✮❳
❥❂✶

❛
✭s✮③
❥ ✭t✮✣

✭s✮③
❥ ✭①✮❀ (4.9)

where ✣
✭s✮②
❥ ✭①✮ and ✣

✭s✮③
❥ ✭①✮ are the ❥t❤ mode shapes in both string polarizations, ❛

✭s✮②
❥ ✭t✮

and ❛
✭s✮③
❥ ✭t✮ are the corresponding modal amplitudes, and ❛

✭s✮②
✵ ✭t✮ and ❛

✭s✮③
✵ ✭t✮ are the modal

amplitudes associated to the interface mode ✣
✭s✮
✵ ✭①✮. The mode shapes associated to the string

with both simply supported ends are given by

✣
✭s✮②
❥ ✭①✮ ❂ ✣

✭s✮③
❥ ✭①✮ ❂ s✐♥

✒
❥✙①

▲✭s✮

✓
✿ (4.10)

The ❥t❤ modal angular frequency taking into account the string inharmonicity is given by

✦
✭s✮
❥ ❂ ✙❥❝✭s✮

▲✭s✮

s
✶✰ ❥✷

✒
❇✭s✮✙✷

❚ ✭s✮✭▲✭s✮✮✷

✓
, where ❝✭s✮ ❂

r
❚ ✭s✮

✖✭s✮ is the wave velocity of the ideal string.

For further formulation, it is convenient to define the generic vector of string mode shapes

✣✣✣✭s✮✭✇✮✭①✮ ❂
✒
✣
✭s✮✭✇✮
✵ ✭①✮❀✣

✭s✮✭✇✮
✶ ✭①✮❀ ✿ ✿ ✿ ❀✣

✭s✮✭✇✮
◆✭s✮

✭①✮
✓
❀ (4.11)

where s❂ ✶❀ ✿ ✿ ✿ ❀✶✵ and ✇ stands for ② or ③.

B. Body kinematics

Accordingly, the body transverse displacements at the st❤ string/body coupling point

p
✭s✮
c , in both polarizations, are described as the sum of ◆❜ body modes:

②❜✭p
✭s✮
c ❀t✮ ❂

◆❜❳
❦❂✶

❜❦✭t✮✣
❜②
❦ ✭p

✭s✮
c ✮ (4.12)

and

③❜✭p
✭s✮
c ❀t✮ ❂

◆❜❳
❦❂✶

❜❦✭t✮✣
❜③
❦ ✭p

✭s✮
c ✮❀ (4.13)
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where ✣❜②❦ ✭p
✭s✮
c ✮ and ✣❜③❦ ✭p

✭s✮
c ✮ are the ❦t❤ body mode shapes at p

✭s✮
c in both polarizations, and

❜❦✭t✮ is the corresponding modal amplitude. It is also convenient to define the generic vector

of body mode shapes

✣✣✣❜✭✇✮✭p
✭s✮
c ✮ ❂

✒
✣
❜✭✇✮
✶ ✭p

✭s✮
c ✮❀ ✿ ✿ ✿ ❀✣

❜✭✇✮
◆❜

✭p
✭s✮
c ✮

✓
❀ (4.14)

where s❂ ✶❀ ✿ ✿ ✿ ❀✶✵❀ and ✇ stand for ② or ③.

C. String dynamics

Within a modal framework, the motion equations of the 10 strings for a forced response

can be formulated as a set of
P✶✵

s❂✶ ✷✭◆✭s✮✰✶✮ secondary-order ordinary differential equations

(ODEs) and written in the following matrix form:

✷
✻✻✻✻✹
M1 (0)

. . .

(0) M10

✸
✼✼✼✼✺

⑤ ④③ ⑥
Ms

✷
✻✻✻✻✹
⑧a1✭t✮
...

⑧a10✭t✮

✸
✼✼✼✼✺

⑤ ④③ ⑥
⑧a✭t✮

✰

✷
✻✻✻✻✹
C1 (0)

. . .

(0) C10

✸
✼✼✼✼✺

⑤ ④③ ⑥
Cs

✷
✻✻✻✻✹
❴a1✭t✮
...

❴a10✭t✮

✸
✼✼✼✼✺

⑤ ④③ ⑥
❴a✭t✮

✰ ✿ ✿ ✿

✿ ✿ ✿✰

✷
✻✻✻✻✹
K1 (0)

. . .

(0) K10

✸
✼✼✼✼✺

⑤ ④③ ⑥
Ks

✷
✻✻✻✻✹
a1✭t✮
...

a10✭t✮

✸
✼✼✼✼✺

⑤ ④③ ⑥
a✭t✮

❂

✷
✻✻✻✻✹
f 1✭t✮
...

f 10✭t✮

✸
✼✼✼✼✺

⑤ ④③ ⑥
f s✭t✮

❀

(4.15)

where Ms, Cs and Ks are respectively the modal mass, modal damping and modal stiffness

matrices. The partitioned column vectors a and f s represent the modal coordinates and the

associated modal forces of the 10 strings in the two polarizations. For a given string s, the

corresponding subvectors setting up a and f s are respectively given by

a✭s✮✭t✮ ❂
✒
❛
✭s✮②
✵ ✭t✮❀ ✿ ✿ ✿ ❀❛

✭s✮②
◆✭s✮

❀❛
✭s✮③
✵ ✭t✮❀ ✿ ✿ ✿ ❀❛

✭s✮③
◆✭s✮

✭t✮
✓❚

(4.16)

and

f ✭s✮✭t✮ ❂
✒
❢
✭s✮②
✵ ✭t✮❀ ✿ ✿ ✿ ❀❢

✭s✮②
◆✭s✮

❀❢
✭s✮③
✵ ✭t✮❀ ✿ ✿ ✿ ❀❢

✭s✮③
◆✭s✮

✭t✮
✓❚

✿ (4.17)

All the matrices in Equation 4.15 are block diagonal matrices set up by submatrices containing
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the string modal properties of each string. For a given string s (s❂ ✶❀ ✿ ✿ ✿ ❀✶✵),

M✭s✮ ❂

✷
✻✹M✭s✮② 0

0 M✭s✮③

✸
✼✺ ❀ C✭s✮ ❂

✷
✻✹C✭s✮② 0

0 C✭s✮③

✸
✼✺ and K✭s✮ ❂

✷
✻✹K✭s✮② 0

0 K✭s✮③

✸
✼✺ (4.18)

where, for ✇ ❂ ②❀③,

M✭s✮✭✇✮ ❂

✷
✻✻✻✻✻✻✻✻✻✻✻✻✹

✖✭s✮▲✭s✮

✸
▲✭s✮✖✭s✮

✶✙
▲✭s✮✖✭s✮

✷✙ ✁ ✁ ✁ ▲✭s✮✖✭s✮

◆✭s✮✙

▲✭s✮✖✭s✮

✶✙
✖✭s✮▲✭s✮

✷ (0)

▲✭s✮✖✭s✮

✷✙
✖✭s✮▲✭s✮

✷
... (0)

. . .

▲✭s✮✖✭s✮

◆✭s✮✙
✖✭s✮▲✭s✮

✷

✸
✼✼✼✼✼✼✼✼✼✼✼✼✺
❀ (4.19)

K✭s✮✭✇✮ ❂ ❞✐❛❣

✵
❅❚ ✭s✮

▲✭s✮
❀
❚ ✭s✮✙✷

✷▲✭s✮
✰

❇✭s✮✙✹

✷✭▲✭s✮✮✸
❀ ✁ ✁ ✁ ❀

◆✷
✭s✮❚

✭s✮✙✷

✷▲✭s✮
✰
◆✹

✭s✮❇
✭s✮✙✹

✷✭▲✭s✮✮✸

✶
❆ ❀ (4.20)

and

C✭s✮✭✇✮ ❂ ❞✐❛❣

✵
❇❅✵❀ ✙

q
❚ ✭s✮✖✭s✮

✷◗
✭s✮
✶

❀ ✁ ✁ ✁ ❀✙
q
❚ ✭s✮✖✭s✮

✷◗
✭s✮
◆✭s✮

✶
❈❆ ❀ (4.21)

where ◗
✭s✮
❥ is the Q-factor associated to the ❥t❤ string mode. In 4.7, the computation ofM✭s✮

and K✭s✮ is presented in details. A simplified way to include a viscous damping model consists

in assuming the damping matrix is diagonal for both strings and body. This assumption has

no real physical background but is consistent with the assumption that the structure is lightly

damped (see for example (GÉRADIN; RIXEN, 2014), Chapter 3). The string damping model

used to calculate ◗
✭s✮
❥ is described in 4.8.

Let us consider that the external physical forces acting on a given string s are:

• The excitation force Fe✭s✮✭t✮ ❂ ✭❋ ❡✭s✮②❀❋ ❡✭s✮③✮ at the point ①
✭s✮
❡ , applied in an

angle ✒✭s✮ from the positive ②-axis so that ❋ ❡✭s✮② ❂
☞☞☞Fe✭s✮✭t✮

☞☞☞❝♦s✒✭s✮ and ❋ ❡✭s✮③ ❂☞☞☞Fe✭s✮✭t✮
☞☞☞s✐♥✒✭s✮;

• The coupling force Fc✭s✮✭t✮ ❂ ✭❋ ❝✭s✮②❀❋ ❝✭s✮③✮ at the point ①
✭s✮
❝ resulting from the

string/body interaction;

• The distributed impact forces acting on the string given by Fimp✭s✮✭①❀t✮ ❂
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✭❋ ✐♠♣✭s✮②✭①❀t✮❀❋ ✐♠♣✭s✮③✭①❀t✮✮.

The distribution of external forcesF✭s✮✭①❀t✮❂ ✭❋ ✭s✮②✭①❀t✮❀❋ ✭s✮③✭①❀t✮✮ acting on the string

then writes

F✭s✮✭①❀t✮ ❂ Fe✭s✮✭t✮✍✭①�①
✭s✮
❡ ✮✰Fc✭s✮✭t✮✍✭①�①

✭s✮
❝ ✮✰Fimp✭s✮✭①❀t✮ (4.22)

so that the string forces associated to the ❥t❤ mode (❥ ❂ ✵❀ ✿ ✿ ✿ ❀◆✭s✮), in both polarizations, are

then calculated by projecting the components of F✭s✮✭①❀t✮ on the corresponding string mode

shapes:

❢
✭s✮②
❥ ✭t✮ ❂

❩ ▲✭s✮

✵
❋ ✭s✮②✭①❀t✮✣

✭s✮②
❥ ✭①✮❞① and ❢

✭s✮③
❥ ✭t✮ ❂

❩ ▲✭s✮

✵
❋ ✭s✮③✭①❀t✮✣

✭s✮③
❥ ✭①✮❞①✿ (4.23)

The string is discretized into a set of ▼✭s✮ points using a space step ✁① so that ▼✭s✮ ❂

▲✭s✮

✁① . This approach allows to compute separately collision forces at each point ①♥ ❂ ♥✁①

(♥❂ ✶❀ ✿ ✿ ✿ ❀▼✭s✮) in case of string/string contact by using Equation 4.4. An approximation of

Equation 4.17 can be finally obtained:

f s ❂ ✭✟✟✟s
e✮
❚ Fe� ✭✟✟✟s

c✮
❚ Fc✰

✏
✟✟✟s

imp

✑❚
Fimp✁①❀ (4.24)

where
Fc ❂

✏
❋ ❝✶②❀❋ ❝✶③❀ ✿ ✿ ✿ ❀❋ ❝✶✵②❀❋ ❝✶✵③

✑❚
❀ (4.25)

Fe ❂
✏
❋ ❡✶②❀❋ ❡✶③❀ ✿ ✿ ✿ ❀❋ ❡✶✵②❀❋ ❡✶✵③

✑❚
❀ (4.26)

and

Fimp ❂
✏
❋ ✐♠♣✶②❀❋ ✐♠♣✶③❀ ✿ ✿ ✿ ❀❋ ✐♠♣✶✵②❀❋ ✐♠♣✶✵③

✑❚
✿ (4.27)

Matrices ✟✟✟s
e, ✟✟✟

s
c and ✟✟✟

s
imp are described in 4.9.

E. Body dynamics

Similarly to the strings, the equations describing the body motion are also written within

a modal framework and formulated in the matrix form as the set of ◆❜ secondary-order ODEs



114

Mb⑧b✭t✮✰Cb ❴b✭t✮✰Kbb✭t✮ ❂ f b✭t✮❀ (4.28)

where Mb, Cb and Kb are respectively the mass, damping and stiffness modal matrices, which

are given by

Mb ❂ ❞✐❛❣
✏
♠❜

✶❀ ✿ ✿ ✿ ❀♠
❜
◆❜

✑
❀ (4.29)

Cb ❂ ❞✐❛❣
✏
✷♠❜

✶✦
❜
✶✏

❜
✶❀ ✿ ✿ ✿ ❀✷♠

❜
◆❜
✦❜
◆❜
✏❜◆❜

✑
(4.30)

and

Kb ❂ ❞✐❛❣
✏
♠❜

✶✭✦
❜
✶✮

✷❀ ✿ ✿ ✿ ❀♠❜
◆❜
✭✦❜

◆❜
✮✷
✑
❀ (4.31)

where ♠❜
❦, ✏

❜
❦ and ✦❜

❦ (❦ ❂ ✶❀ ✿ ✿ ✿ ❀◆❜) are respectively the mass, damping ratio and angular

frequency associated to the ❦t❤ body mode. The column vectors b and f b represent respectively

the modal coordinates and the associated modal forces of the body given by

b✭t✮ ❂ ✭❜✶✭t✮❀ ✿ ✿ ✿ ❀ ❜◆❜
✭t✮✮❚ (4.32)

and

f b✭t✮ ❂
✏
❢ ❜✶✭t✮❀ ✿ ✿ ✿ ❀❢

❜
◆❜
✭t✮

✑❚
✿ (4.33)

The distribution of external forces acting at a generic point p ❂ ✭①❀②❀③✮ on the body is

given by Fb✭p❀t✮ ❂ ✭❋ ❜②✭p❀t✮❀❋ ❜③✭p❀t✮✮, with p ✷ ✡, where ✡ represents the structural body

domain. Assuming a continuous representation of the body structure, the modal force associated

to the ❦t❤ body mode is given by the modal projection

❢ ❜❦✭t✮ ❂
❩
✡
❋ ❜②✭p❀t✮✣

❜②
❦ ✭p✮❞s✰

❩
✡
❋ ❜③✭p❀t✮✣❜③❦ ✭p✮❞s❀ (4.34)

Let us consider that Fb✭p❀t✮ is only composed of the set of forces resulting from strings/body

interactions at the coupling points p
✭s✮
c , with s❂ ✶❀ ✿ ✿ ✿ ❀✶✵. According to the action and reaction

principle, the forces exerted by the strings on the body are equal in magnitude and opposite in

direction to the forces exerted by the body on the strings so that
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❋ ❜②✭p❀t✮ ❂
✶✵❳
s❂✶

❋ ❝✭s✮②✭t✮✍✷✭p�p
✭s✮
c ✮ and ❋ ❜③✭p❀t✮ ❂

✶✵❳
s❂✶

❋ ❝✭s✮③✭t✮✍✷✭p�p
✭s✮
c ✮✿ (4.35)

Equation 4.33 then are rewritten as the sum of contributions from the coupling forces at the 10

string/body attachment points as follows

f b ❂
✏
✟✟✟b

c

✑❚
Fc❀ (4.36)

where

✟✟✟b
c ❂

✷
✻✻✻✻✻✻✻✻✻✻✻✹

✣✣✣❜②✭♣✶❝✮

✣✣✣❜③✭♣✶❝✮
...

✣✣✣❜②✭♣✶✵❝ ✮

✣✣✣❜③✭♣✶✵❝ ✮

✸
✼✼✼✼✼✼✼✼✼✼✼✺
✿ (4.37)

4.5 Numerical simulations

4.5.1 Finite differences scheme

The first step to solve equations 4.15 and 4.28 numerically is to discretize them in time

domain. Let us consider the time series✇✐ (✇ stand for ❛, ❜, ❋ ❝, ❋ ❡ and ❋ ✐♠♣), which represents

an approximation to ✇✭t✐✮, where t✐ ❂ ✐✁t, for the time step ✐, so that ✁t ❂ t✐✰✶� t✐. The

sampling frequency ❢s is the number of samples per second in the synthesized signal and is

given by ❢s ❂
✶
✁t .

A. Recurrence equations

Approximations of the first and second derivatives in Equations 4.15 and 4.28 are obtained

using centred finite differences and recurrence equations associated to strings and body modal

displacements are written as follows:
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a✐✰✶ ❂A☛☛☛�GsFc✐ ❀ (4.38)

b✐✰✶ ❂ B☞☞☞�GbFc✐ ❀ (4.39)

where A, ☛☛☛, Gs, B, ☞☞☞ and Gb are as given in Table 4.3 in 4.9.

B. Coupling forces computation

To obtain an expression to compute the vector Fc✐ , whose components are unknown, the

displacement continuity at the st❤ string/body coupling point (s❂ ✶❀ ✿ ✿ ✿ ❀✶✵) is imposed at t✐✰✶:

③✭s✮✭①
✭s✮
❝ ❀t✐✰✶✮ ❂ ③❜✭♣

✭s✮
❝ ❀t✐✰✶✮ ❂✮✣✣✣✭s✮✭①

✭s✮
❝ ✮a

✭s✮
✐✰✶ ❂✣✣✣b✭♣

✭s✮
❝ ✮b✐✰✶✿ (4.40)

Substituting Equations 4.38 and 4.39 into Equation 4.40, one may obtain

Fc✐ ❂
✔
Gs✰Gb

✕
�✶ ✔

✭✟✟✟s
cA☛☛☛✮�

✏
✟✟✟b

cB☞☞☞
✑✕
✿ (4.41)

Once the coupling forces are computed using Equation 4.41, one may compute the string

modal displacements a✐✰✶ from Equation 4.38. The string responses in physical coordinates are

finally computed by modal superposition.

4.5.2 Model parameters

A. String parameters

The Rio Abaixo (“Downriver" in English) tuning is used in experiments and simulations.

This is a very popular tuning type widespread in many regions of Brazil. Table 4.1 shows

the open string notes, respective fundamental frequencies, mass per unit length, and position

coordinates of each string/body coupling point in the ①② plane. Strings have the same length,

▲✭s✮ ❂ 0.585 m, and bending stiffnesses are given by ❇✭s✮ ❂❊✭s✮■✭s✮. For the sake of simplicity,

all the strings are assumed parallel: usually the spacing between the viola caipira strings at the
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nut and saddle are not the same and may vary from 2.5 mm to 3.5 mm. Strings of the same pair

are spaced at 3.5 mm from each other. Modal frequencies of each string are calculated up to 5000

Hz and inharmonicity effects are taken into account. The usual value of Young’s modulus of the

steel, ❊✭s✮ ❂ 2 ✂✶✵✶✶ Pa, is selected for all strings. String modal Q-factors are computed from

Equation 4.21. Usual values for standard temperature and pressure conditions for the following

parameters are selected: ✚❛✐r ❂ 1.2 kg.m�✸ and ✑❛✐r ❂ ✶✿✽✂ ✶✵�✺ kg.m�✶✿s�✶. Following

Valette (VALETTE; CUESTA, 1993), the value for the sum of viscoelastic and thermoelastic loss

angles is ✍✈❡❂t❡ ❂ ✶✂✶✵�✸. Finally, the value corresponding to losses due to the dislocation

phenomenon is ◗❞✐s❧✿ ❂ ✺✺✵✵, as obtained in (PATÉ et al., 2014).

Table 4.1: Open string note considering Rio Abaixo tuning, fundamental frequency, diameter,
linear density, diameter, modal truncation order and string/body coupling point coordinates for
the 10 strings.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5
String number 1 3 5 7 9

2 4 6 8 10
Note D4 B3 G3 D3 G2

D4 B3 G4 D4 G3

❢
✭s✮
✵ [Hz] 293.67 246.94 196.00 146.80 98.00

293.67 246.94 392.00 293.70 196.00
❞✭s✮ [mm] 0.28 0.30 0.51 0.64 0.91

0.28 0.30 0.23 0.30 0.38
✖✭s✮ [✶✵�✹ kg/m] 5.27 5.93 1.41 1.88 4.35

5.27 5.93 3.78 7.16 3.8
❚ ✭s✮ [N] 61.57 49.12 73.94 55.49 57.39

61.57 49.12 79.3 84.52 55.72
◆✭s✮ 16 19 25 33 50

16 19 12 16 25

p
✭s✮
c [mm] (585, 0, 0) (585, 12.0, 0) (585,24.0, 0) (585, 36.0, 0) (585, 48.0, 0)

(585, 3.5, 0) (585, 15.5, 0) (585, 27.5, 0) (585, 39.5, 0) (585, 51.5, 0)

B. Body parameters: Modal analysis at the bridge

Figure 4.6: Scheme for body modal parameters estimation at 5 string/body coupling points at
the bridge saddle using the roving hammer technique.

In order to feed the synthesis model above-presented, the following body modal
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parameters are required: natural frequencies, modal masses, modal damping ratios and modal

shapes in the ② and ③ directions at the string/body coupling points. These parameters are

extracted from inertance transfer functions measured at the bridge using the roving hammer

technique. Figure 4.6 illustrates the scheme used for such measurements. Double strings are

assumed to be coupled with the body at a single point located at the bridge saddle so that five

string/body coupling points (points 1 to 5) are considered for the fully coupled system. From

the scheme shown in Figure 4.6, one may define the inertance functions

❍❥❀✇✭✦✮ ❂
❆✵❀③✭✦✮

❋❥❀✇✭✦✮
❀ (4.42)

where ❆✵❀③ is the acceleration response measured at the point 0 due to the force ❋❥❀✭✇✮ applied

at the point ❥ in the direction ✇ (❥ ❂ ✵❀✶❀ ✿ ✿ ✿ ❀✺, and ✇ ❂ ②❀③). Since it is not possible to excite

coupling points 2, 3 and 4 in the y direction using the hammer, the following assumptions are

made: ❍✷❀②✭✦✮ ❂❍✶❀②✭✦✮, ❍✸❀②✭✦✮ ❂❍✶❀②✭✦✮ and ❍✹❀②✭✦✮ ❂❍✺❀②✭✦✮.

The excitation forces are provided by a miniature impact hammer PCB Piezotronics

086E80 at points 0 to 5 in the z direction and points 0, 1 and 5 in the y direction; acceleration

signals are collected by a lightweight accelerometer PCB Piezotronics 352C23 (0.2 g) mounted

on the bridge, fixed at the point 0 shown in Figure 4.6. Nine inertance transfer functions are

obtained from measurements and the other three are obtained from the assumptions described

above. Modal parameters are finally estimated using the Polymax method (PEETERS et al.,

2004) by means of a Multiple-Input, Single-Output (MISO) analysis, which led to 20 body modes

between 0 Hz and 1000 Hz.

C. Computational parameters

The plucking point is located at 8.5 cm from the bridge, i.e. at approximately 1/7th of the

total string length. A simplified excitation model is used: the force applied to a given string s is

a linear ramp whose maximum amplitude is ❋
✭s✮
✵ . The excitation starts at the initial instant t

✭s✮
✐

and ends at the release instant t
✭s✮
r so that the excitation force magnitude writes

☞☞☞Fe✭s✮✭t✮
☞☞☞ ❂ ❋

✭s✮
✵

✭t
✭s✮
r � t

✭s✮
✐ ✮

✭t� t
✭s✮
✐ ✮✭❍✭t� t

✭s✮
✐ ✮�❍✭t� t

✭s✮
r ✮✮ (4.43)

For the simulations presented in this paper ❋
✭s✮
✵ ❂ ✸ N and t

✭s✮
r � t

✭s✮
✐ ❂ ✽ ms. Such a force



119

corresponds to a rapid realistic gesture of high amplitude. Impact model parameters are chosen

as shown in Table 4.2. Strings are discretized using a ✁① ❂ ✶ mm. The sampling frequency

value ❢s is selected from the convergence tests presented in Subsection 4.5.3.

Table 4.2: Impact model parameters

✕❞ ❬◆✿s❂♠
♣✰✷❪ ❑❝ ❬◆❂♠

♣✰✶❪ p

✶✵✽ ✶✵✾ 1.5

4.5.3 Convergence study

To ensure accurate computations and minimize numerical errors, a small enough ✁t

(or a high enough ❢s) is required for numerical solution. In addition, collision phenomena are

strongly non-linear in such a way that the time-step must be significantly increased to obtain

accurate results. In order to opt for a convenient time-step, an analysis on the convergence

of simulated results with regard to the choice of different values of time-step is presented.

The analysis is done separately for the cases with and without string/string collisions and

ignoring the coupling with the body for simplicity. For each case, two-string model simulations

are performed using the same initial conditions with four different sampling frequencies, and

comparisons are shown in Figure 4.7. As shown in Figure 4.7a, simulated results without

collisions completely converges from ❢s ❂ 220.5 kHz, while results with collisions completely

converge from ❢s❂ 441.0 kHz, as shown Figure 4.7b. Based on these tests and in order to balance

calculation time and accuracy, the chosen sampling frequency values for further simulations in

this paper will be ❢s ❂ 220.5 kHz for cases without collisions, and ❢s ❂ 441.0 kHz for cases

with collisions.

4.5.4 Results: organization of collisions in space and time

The organization of collisions in space and time is investigated by considering a pair of

strings with simply supported boundary conditions, i.e. without any coupling with the bridge.

Figure 4.8 shows a sequence of snapshots of two colliding strings in the ①② plane. After being
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Figure 4.7: Tests of convergence: influence of the sampling frequency ❢s. Two-string model with
strings 7 and 8. Only string 7 (D3) is plucked, parallel to the soundboard plane. Zoomed numerical
displacement of string 7 in the ②-polarization, at the plucking point, for four sampling frequencies,
(a) with collision (b) and without collisions.
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Figure 4.8: Two-string model with colliding strings 7 and 8. Only string 7 (D3) is plucked, parallel
to the soundboard plane. Snapshots of the time evolution of the strings in the ①② plane.
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released at t❂ ✽✿✵ ms, the excited string behaves as a typical plucked string. A first contact

between the plucked string and the string at rest is occurring at t❂ ✶✷✿✶ ms. The two strings

remain in contact during a short period of time (from t ❂ ✶✷✿✶ ms to t ❂ ✶✷✿✹ ms). During

this contact phase, the interaction point is moving in the ① direction. The two strings finally

separate after t❂ ✶✷✿✹ ms.

The phenomenon of moving contact point is also shown in Figure 4.9a, which is a

space-time diagram representing the occurrence of collisions: each black point in this diagram

corresponds to a contact point between the two strings. The space-time diagram reveals that

the moving contact point phenomenon is repeated several times, with ever shorter durations

involving ever smaller portions of the string. It also reveals that collisions occur only in the

immediate transient phase just after the pluck, between 12.5 ms and 71.6 ms for the studied

case. Two “gaps” are also observed in the third contact phase (see Fig. 4.9b). These gaps can be

explained by the fact that the collided string, which is initially at rest, starts vibrating after

the first collision. The following contact phases (the third one being the first of them) may

therefore be disturbed by short temporary contact losses.
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Figure 4.9: (a) Space-time diagram representing the occurrence of collisions between strings 7
and 8. Only string 7 (D3) is plucked, parallel to the soundboard plane. (b) Zoom of the rectangle
depicted in (a).
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4.5.5 Collisions effects on the sound

In order to identify the effects of string/string collisions on sound, a simulation is

performed on the same pair of strings by adding the coupling with the body. Three different

effects can be distinguished.

Buzzing effect and spectral enrichment

The repeated collisions in the early transient phase induce a clearly perceptible buzzing

effect. This permits to conclude that such buzzing effect constitutes an important sound feature

of the viola caipira. In the frequency domain, such effect induces a spectral enrichment, clearly

visible in Figure 4.10.

Redistribution mechanism of the spectral components

Figure 4.10 shows the comparison between two spectrograms of the bridge velocity at

the same point, resulting from identical pluck conditions but with or without considering

string/string collisions. In both spectrograms, string and body spectral components are clearly

distinguishable: contributions due to the stringmodes coupledwith the body are quasi-harmonic

with longer duration and contributions due to the body modes are inharmonic with shorter

duration. The string being excited approximately at 1/7th of its total length, partials multiples

of 7 are weak without considering collisions (see Fig. 4.10a). This is not the case anymore

when collisions are considered (see Fig. 4.10b). As a conclusion, the comb filtering effect related

to the plucking position is canceled due to the collisions. The collisions provide an energy

redistribution mechanism which concerns all spectral components since the collision point is

moving.

Polarization conversion mechanism

Collisions also induce polarization changes. To highlight this effect, simulations are

performed on the same pair of strings without considering the coupling with the body.

Figure 4.11 shows the displacements in the ② and ③ directions, resulting from a pluck either

applied in the in-plane direction (Figure 4.11a) or with a small plucking angle ✒ ❂ ✺✍ relative to

the ② direction (Figure 4.11b). In the first case, the vibration remains in its initial polarization.
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Figure 4.10: Two-string model with strings 7 and 8. Only string 7 (D3) is plucked, parallel to the
soundboard plane. Spectrograms of the velocity at the string/body coupling point 7, drawn in dB
using 90 dB dynamic, without (a) and with (b) string/string collisions.

In the second case, the collisions produce a clear polarization conversion mechanism. Note that

from the displacement time-histories in Figures 4.11a and 4.11b, and from orbital trajectories in

Figure 4.12, represented on a short time window around two collision instants, it is clear that

the plucking angle plays an important role in the polarization change. Note that in the tested

configuration, the diameters of the two colliding strings are different (see Table 4.1).
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Figure 4.11: Two-string model considering strings 7 and 8 with completely rigid string/body
coupling. Displacement time-history of string 7 (D3) when it is plucked (a) parallel to the
soundboard and (b) at ✺✍ from the negative ②-axis, in the anti-clockwise.
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Figure 4.12: Orbital trajectories in the ②③ plane at the time indicated of strings 7 (D3) and 8 (D4),
represented respectively in blue and orange, at 14 cm from the nut.Two-string model considering
strings 7 (D3) and 8 (D4) is used and string 7 is plucked at ✺✍ from the negative ②-axis, in the
anti-clockwise.

4.5.6 Fully coupled system simulations

The combined effects of the bridge coupling and the collisions are studied in this section.

Simulations on a 10-string fully coupled model are performed for three configurations : by

considering rigid extremities (Figure 4.13a), by considering the string/bridge coupling with the

bridge (Figure 4.13b), by considering both bridge coupling and collisions (Figure 4.13c). In the

three cases, only string 7 is plucked parallel to the soundboard and the strings responses are

computed in the ② and ③ directions, represented by red and blue curves, respectively.

In Figure 4.13a, the excitation phase is indicated by the shaded area. It is seen that at the

end of this phase the plucking force induces a small oscillation in string motion just before the

string is released. It is also seen that the only motion is the one of the excited string since no

bridge coupling and no collisions are considered.

Comparing the time-history shown in Figures 4.13a and 4.13b reveals no significant

discrepancy between the two motions in the excitation phase (indicated by the shaded area):

the effect of the bridge coupling on the excited string motion is not observed in this excitation

phase. In Figure 4.13b, motions of string 8 (D4), which is initially at rest, are observed in the ②

and ③ directions. They correspond to sympathetic motions, induced by the bridge coupling. A
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Comparing the time-history shown in Figures 4.13b and 4.13c reveals that the effect

of the collisions arises in a very abrupt way. The very first periods of oscillations following

the excitation phase are strongly affected and polarization changes occur just after the first

collision. It shows the high efficiency of this polarization conversion mechanism. In contrast

with this abrupt mechanism, the conversion mechanism coming from the bridge coupling effect

arises in a relatively long time scale.
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Figure 4.14: Displacement time-histories for the 10 strings, at 8.5 cm from the bridge, in the ②
and ③ directions, represented by red and blue curves, respectively, when the string 7 is plucked
parallel to the soundboard plane. (a) Model with collisions; (b) model without collisions.

Figure 4.14 shows the effect of the bridge motion and collisions over a long-term duration

(i.e. aftersound). Sympathetic effects, induced in a combined way by the bridge coupling and

string/string collisions are observed. They are responsible for beating phenomena observed on

some strings (see for example G3-G4, B3-B3) which constitute another remarkable feature of

the viola caipira. It is shown that even if the collisions are arising only in the early transient

phase, its effect concerns the aftersound of all strings and not only the strings pair where the

collisions occurred.
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4.6 Conclusion

In an attempt to identify the specific features of the viola caipira, an experimental analysis

of the instrument response to a pluck has been performed using a high speed camera. The

analysis reveals that the instrument is characterized by a double pluck excitation since the

strings of a given pair are plucked successively and rapidly. Collisions between strings located

in the same pair are also revealed. To our knowledge, such collision phenomenon has not been

yet reported in the literature.

To investigate more precisely how the collisions affect the string motions, a physical

model based on a modal approach is developed for sound synthesis purposes. The model

includes 10 strings with non-planar motions coupled with the body and considers collisions

between strings. Strings are described analytically whereas modal characteristics of the body

are obtained experimentally from mobility measurements. Strings and body are coupled by

displacement compatibility at the connection points and a finite difference scheme is used to

compute the coupling forces at each time-step, which permits a set of sound simulations.

Besides, the collision effects on the instrument sound are also identified as follows: (i)

spectral enrichment and buzzing effect in the early transient phase; (ii) energy redistribution

between string components; (iii) string polarization changes. The model is able to reproduce

the important vibroacoustic features of the viola caipira, among which the sympathetic string

resonances and the string/string collisions. Such phenomena constitute the main acoustic

signatures of the instrument.
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4.7 Appendix A: Computation of mass and stiffness matrices of strings

The mass and stiffness matrices of strings are determined by using energy considerations.

For a given string s, the kinematic energy ❊
✭s✮✭✇✮
❦✐♥✿ associated to the motion in the direction ✇

(✇ stands for ② and ③) is given in terms of the modal amplitudes as follows (see for example

(GÉRADIN; RIXEN, 2014), Chapter 5):

❊
✭s✮✭✇✮
❦✐♥✿ ❂�✦✷✶

✷

◆✭s✮❳
❥❂✵

◆✭s✮❳
❧❂✵

♠
✭s✮
❥❧ ❛

✭s✮✭✇✮
❥ ❛

✭s✮✭✇✮
❧ ❀ (4.44)

where

♠
✭s✮
❥❧ ❂ ✖✭s✮

❩ ▲✭s✮

✵
✣
✭s✮✭✇✮
❥ ✣

✭s✮✭✇✮
❧ ❞① (4.45)

is the entry in ❥t❤ row and ❧t❤ column of the submatrixM✭s✮✭✇✮. Note thatM✭s✮✭✇✮ has non-null

elements along its first row and column because the interface and simply supported modes,

whose shapes are respectively ✣
✭s✮
✵ ✭①✮ ❂

✏
①

▲✭s✮

✑
and ✣

✭s✮
❥ ✭①✮ ❂ s✐♥

✏
❥✙①
▲✭s✮

✑
are not orthogonal

with respect to the mass. Accordingly, for a given string s and polarization ✇, the potential

energy is given by

❊
✭s✮✭✇✮
♣♦t✿ ❂

✶

✷

◆✭s✮❳
❥❂✵

◆✭s✮❳
❧❂✵

❦
✭s✮
❥❧ ❛

✭s✮✭✇✮
❥ ❛

✭s✮✭✇✮
❧ ❀ (4.46)

where

❦
✭s✮
❥❧ ❂ ❚ ✭s✮

❩ ▲✭s✮

✵

❅✣
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❥

❅①
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✭s✮✭✇✮
❥

❅①
❞①✰❇✭s✮

❩ ▲✭s✮

✵

❅✷✣
✭s✮✭✇✮
❥

❅①✷
❅✷✣

✭s✮✭✇✮
❥

❅①✷
❞① (4.47)

is the entry in ❥t❤ row and ❧t❤ column of the submatrix K✭s✮✭✇✮.

4.8 Appendix B: String damping model

The string modal Q-factors in Equation 4.21 are computed following the model presented

in (VALETTE; CUESTA, 1993) and recently adopted in (PATÉ et al., 2014; ISSANCHOU et al.,
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2018). For mode ❥ of a given string s, the Q-factor expression is modelled as:

✭◗
✭s✮
❥ ✮�✶ ❂ ✭◗

✭s✮
❥❀❛✐r✮

�✶✰✭◗
✭s✮
❥❀✈❡❂t❡✮

�✶✰✭◗
✭s✮
❞✐s❧✿✮

�✶ (4.48)

where the first and second terms in the right-hand side are related to the air viscosity and

visco and thermoelastic losses. The third term, ✭◗
✭s✮
❞✐s❧✿✮

�✶ ❂ ✍❞✐s❧✿, is due to the dislocation

phenomenon, which is assumed constant over the audio frequency range (CUESTA, 1990). The

contribution due to the air viscosity writes:

◗
✭s✮
❥❀❛✐r ❂

❘✭s✮

✖✭s✮

✶

✦
✭s✮
❥

❀ (4.49)

where❘✭s✮ ❂ ✷✙✑❛✐r✰✷✙❞✭s✮✭
✑❛✐r✚❛✐r✦

✭s✮
❥

✷ ✮✶❂✷ with ✚❛✐r density of the air and ✑❛✐r the dynamic

viscosity coefficient. Contributions due to visco and termoelastic losses are given by:

◗
✭s✮
❥❀✈❡❂t❡ ❂

❊✭s✮■✭s✮

✭❚ ✭s✮✮✷❝✭s✮
✭✍✈❡❂t❡✮✭✦

✭s✮
❥ ✮✷❀ (4.50)

where ✍✈❡❂t❡ ❂ ✍✈❡✰ ✍t❡, with ✍✈❡ and ✍t❡ the visco and termoelastic loss angles, respectively,

❊✭s✮ is the Young’s modulus and ■✭s✮ ❂ ✙✭❞✭s✮❂✷✮✹

✹ is moment of inertia of the string.

4.9 Appendix C: Coefficients for computation of string/body coupling forces

Table 4.3 gives the expressions to calculate the coefficients of Equation 4.41, used to obtain

the string/body coupling forces at each time-step. Note that for the cases where string/string

collisions are considered, the coefficients in red are included in the computation of the matrices

A and ☛☛☛.

Finally, the matrices ✟✟✟s
e, ✟✟✟

s
c and ✟✟✟

s
imp are given as follows:
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Table 4.3: Coefficients of Equation 4.41 for computation of the string/body coupling forces.

String coefficients
Without collision With collision

A❂
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A1 A2 A3

✏
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❡❡❡
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Body coefficients
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✷✁t

★�✶

✟✟✟s
e ❂

✷
✻✻✻✻✻✻✻✻✻✻✻✹

✣✣✣✶②✭①✶❡✮

✣✣✣✶③✭①✶❡✮ (0)
. . .

(0) ✣✣✣✶✵②✭①✶✵❡ ✮

✣✣✣✶✵③✭①✶✵❡ ✮

✸
✼✼✼✼✼✼✼✼✼✼✼✺
❀ (4.51)
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✟✟✟s
c ❂

✷
✻✻✻✻✻✻✻✻✻✻✻✹

✣✣✣✶②✭①✶
❝✮

✣✣✣✶③✭①✶
❝✮ (0)

. . .

(0) ✣✣✣✶✵②✭①✶✵
❝ ✮

✣✣✣✶✵③✭①✶✵
❝ ✮

✸
✼✼✼✼✼✼✼✼✼✼✼✺

(4.52)

and

✟✟✟s
imp ❂

✷
✻✻✻✻✻✻✻✻✻✻✻✹

✟✟✟
1②
✐♠♣

✟✟✟1③
✐♠♣ (0)

. . .

(0) ✟✟✟
10②
✐♠♣

✟✟✟10③
✐♠♣

✸
✼✼✼✼✼✼✼✼✼✼✼✺
❀ (4.53)

where

✟✟✟
✭s✮✭✇✮
imp ❂

✷
✻✻✻✻✹
✣✣✣✭s✮✭✇✮✭①✶✮

. . .

✣✣✣✭s✮✭✇✮✭①▼✭s✮✮

✸
✼✼✼✼✺ ❀ (4.54)

with ✣✣✣✭s✮✭✇✮✭①♥✮ the mode shape of the st❤ string in the polarization ✇ at the ♥t❤ point

(♥❂ ✶❀ ✿ ✿ ✿ ❀▼✭s✮).
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Complements

4.10 Complement I: Double pluck synthesis

In order to further explore the sound synthesis model developed in this chapter,

complementary simulations are presented below. As observed experimentally in Section 4.2,

the viola caipira is characterized by a double pluck since the strings of a given pair are plucked

rapidly and successively in a short time interval denoted by ✁t♣❧✉❝❦ ❂ t✷♥❞r � t✶str , where t✷♥❞r

and t✶str are the instants at which the second and first plucked strings of a given pair are

released, respectively. The main goal of this complement is to illustrate the influence of such

double pluck conditions on the sound produced. The ✹t❤ string pair (s❂ ✼❀✽) is considered for

the simulations presented below. Strings 8 (D4) and 7 (D3) are plucked successively and the

following excitation parameters are varied:

• Pluck positions ①
✭s✮
❡ ;

• Maximum excitation force amplitudes ❋
✭s✮
✵ and pluck interval ✁t♣❧✉❝❦ ❂ t✽r� t✼r.

4.10.1 Variation of the pluck position

Strings 8 (D4) and 7 (D3) are plucked at the same position with three variations of the

pluck positions are selected: 14.5 cm, 8.5 cm and 2.5 cm from the bridge. The other pluck

parameters are constant as shown in Table 4.4.

Table 4.4: Double pluck parameters. Strings 8 and 7 are plucked successively.

❋ ✽
✵ [N] ❋ ✼

✵ [N] t✽✐ [ms] t✽r [ms] t✼✐ [ms] t✼r [ms] ✁t♣❧✉❝❦ [ms]
3 3 1 6 14 20 14

Figures 4.15a, 4.15c and 4.15e show the space-time diagrams representing the occurrence

of collisions along the strings’ lengths where the vertical red dashed lines depict the release

instant of the second plucked string (string 7). Figures 4.15b, 4.15d and 4.15f show the respective

spectrograms of the bridge velocity at the string/body coupling 7 calculated in the first 900 ms.
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The influence of the pluck position on the sound produced can be clearly observed from

the results comparison. Collisions do not occur when the strings are plucked 2.5 cm from the

bridge since their vibration amplitudes are relatively smaller. On the other hand, when the

strings are excited in positions farther from the bridge, their vibration amplitudes are relatively

higher, leading to successive collisions. In addition, the spatial distribution of collisions increases

significantly when the string is excited at 14.5 cm from the bridge. As consequence, different

patterns of energy redistribution due to the string/string collisions are seen in Figures 4.15d

and 4.15f.

4.10.2 Variation of the maximum excitation force amplitudes ❋
✭s✮
✵ and pluck

interval✁t♣❧✉❝❦

Strings 8 (D4) and 7 (D3) are plucked using three variations of gestures increasingly abrupt

as follows: ❋
✭s✮
✵ ❂ 2.8 N and✁t♣❧✉❝❦ ❂ 16 ms, ❋

✭s✮
✵ ❂ 3.2 N and✁t♣❧✉❝❦ ❂ 12 ms, ❋

✭s✮
✵ ❂ 3.4 N

and✁t♣❧✉❝❦ ❂ 10 ms. The pluck parameters shown in Table 4.5 are kept constant.

Table 4.5: Double pluck parameters. Strings 8 and 7 are plucked successively.

①
✭s✮
❡ [m] t✽✐ [ms] t✼✐ [ms]
0.5 1 14

In order to illustrate the influence of the gesture on the sound produced, an analysis

similar to that presented in Subsection ?? is performed: Figures 4.16a, 4.16c and 4.16e show the

space-time diagrams representing the occurrence of collisions along the strings’ lengths where

the vertical red dashed lines depict the release instant of the second plucked string (string 7).

Figures 4.16b, 4.16d and 4.16f show the respective spectrograms of the bridge velocity at the

string/body coupling 7 calculated in the first 900 ms.

From the results comparison, it is clearly visible that the gesture variation leads to

significant changes of the collisions time-space distribution and, consequently, different sounds

are produced. The repeated collisions in the early transient phase induce a clearly perceptible

buzzing effect, which can be seen as the enlargement of the spectral rays during the collision

events. Note that such enlargement is more accentuated in Figure 4.16d, when the strings are

plucked using ❋
✭s✮
✵ ❂ ✸✿✷ N and ✁t♣❧✉❝❦ ❂ ✶✷ ms.
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(d): Pluck at 8.5 cm from the bridge.
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(f): Pluck at 2.5 cm from the bridge.

Figure 4.15: Double pluck simulations when pluck positions are varied: strings 8 (D4) and 7 (D3)
are plucked successively. Space-time diagrams representing the occurrence of collisions when
strings are plucked at (a) 14.5 cm (c) 8.5 cm and (e) 2.5 cm from the bridge; (b), (d) and (f) respective
spectrograms of the bridge velocity at the coupling point 7.
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(d):✁t♣❧✉❝❦ ❂ ✶✷ ms, ❋
✭s✮
✵ ❂ ✸✿✷ N.
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(f):✁t♣❧✉❝❦ ❂ ✶✵ ms, ❋
✭s✮
✵ ❂ ✸✿✹ N.

Figure 4.16: Double pluck simulations when ❋
✭s✮
✵ and ✁t♣❧✉❝❦ are varied: strings 8 (D4) and 7

(D3) are plucked successively. Space-time diagrams representing the occurrence of collisions when

strings are plucked using (a) ❋
✭s✮
✵ ❂ 2.8 N and✁t♣❧✉❝❦ ❂ 16 ms, (c) ❋

✭s✮
✵ ❂ 3.2 N and✁t♣❧✉❝❦ ❂ 12

ms, and (e) ❋
✭s✮
✵ ❂ 3.4 N and✁t♣❧✉❝❦ ❂ 10 ms; (b), (d) and (f) respective spectrograms of the bridge

velocity at the coupling point 7.
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❈❤❛♣t❡r ✺

●❡♥❡r❛❧ ❝♦♥❝❧✉s✐♦♥s ❛♥❞ ♣❡rs♣❡❝t✐✈❡s

The viola caipira is a guitar played in various genres of traditional and modern Brazilian

music, and whose practice extends across all regions of Brazil, being considered one of the

Brazilian cultural symbols. Variants of the instrument with different resonance box shapes,

tuning types, materials and arrangement of strings are commonly encountered in different

regions of the country. In spite of the considerable differences between the varieties of violas

caipiras, a very representative configuration of the instrument has been investigate in this

thesis. It has five courses of double metallic strings: the first two courses have identical strings

tuned in unison while the other three have strings with different diameters tuned in an octave,

which makes the instrument strings more susceptible to vibrate sympathetically.

Unlike other string instruments such as classical guitars and violins, the viola caipira is a

little explored instrument from the perspective of musical acoustics. To the author’s knowledge,

this thesis work is the first attempt in the literature to characterize the instrument in vibrational

and acoustical terms with the objective of identifying its specificities. Such investigation has

been limited to the physical characterization of the instrument involving different methods

such as vibration and sound pressure measurements, investigation of string motion using high

speed camera, physical modelling for sound synthesis purposes and numerical modelling using

the finite element method.

In an attempt to identify the specific features of the viola caipira, an experimental study

of the instrument using different methods has been presented as follows:

• An experimental analysis of the instrument response to a pluck has been performed

using a high speed camera. The analysis reveals that the instrument is characterized

by a double pluck excitation since the strings of a given pair are plucked successively

and rapidly. Collisions between strings located in the same pair are also revealed.

Such collision phenomenon has not been reported in the literature before.

• An analysis of viola caipira sounds has been performed using time-frequency

representations and energy decay curves. It has been identified the existence of

string sympathetic resonances and beating phenomena when a single string is
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plucked and all the other strings are free to vibrate. This phenomenon is perceived as

a sound halo, which constitutes an important sound characteristic of the instrument.

• Amodal analysis of the viola caipira soundboard carried out by the classical hammer

method has revealed some differences and similarities with the classical guitar: the

first four modes of the viola caipira soundboard resemble those of the classical guitar

while frequencies are moderately higher, which is due to its smaller resonance box.

In addition, the viola caipira soundboard, like classical guitar soundboards have

been shown to plate-like systems since their meanmobilities are nearly independent

on the frequency. Measurements using a scanning laser vibrometer combined with

an automatic impact hammer have been performed to obtain the ODSs of the front

of the viola caipira. At a set of resonance peaks the obtained ODSs give results

close to those obtained with the classical modal analysis using impact hammer and

accelerometer.

• It has been investigated the capability of the wire-breaking method to accurately

obtain the mobilities transfer functions at the bridge of string instruments. Since no

force sensor is required, this methodology is a low cost and well-adapted procedure

for measurements in the environment of instrument maker workshop. The method

was shown to be repeatable and provided results in reasonable agreement with

the classical hammer method. A calibration method for mobilities obtained from

wire-breaking measurement was proposed and validated. Finally, a modal analysis

of the mobility curves measured at the viola caipira bridge using the “Roving Wire-

Breaking Technique” allowed the estimation of natural frequencies, damping factors

and mode shapes at the string/bridge coupling points using a high resolution modal

analysis (ESPRIT method). Such results can be used to feed sound synthesis models.

In order to investigate more precisely how the collisions affect the string motions, a

physical model based on a modal approach has been developed for sound synthesis purposes.

The model includes 10 strings with non-planar motions coupled with the body and considers

collisions between strings. Strings are described analytically whereas modal characteristics

of the body are obtained experimentally from mobility measurements. Strings and body are

coupled by displacement compatibility at the connection points and a finite difference scheme

is used to compute the coupling forces at each time-step, which permits to calculate a set of

string responses to a given excitation.
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Effects of string/string collisions on the viola caipira sound have been identified as follows:

• The repeated collisions in the early transient phase induce a clearly perceptible

buzzing effect. This permits to conclude that such buzzing effect constitutes an

important sound feature of the viola caipira. It has been observed that, in the

frequency domain, such effect induces a spectral enrichment.

• The comb filtering effect related to the plucking position is canceled due to

the collisions. The collisions between strings lead to an energy redistribution

mechanism which concerns all spectral components since the collision points move

along the string.

• Collisions can also induce polarization changes: the very first periods of oscillations

following the excitation phase are strongly affected and polarization changes

occur just after the first collision since a small plucking angle relative to the

soundboard plane is applied. No polarization changes occur for an excitation parallel

to the soundboard, which permits to conclude that the plucking angle plays an

important role in such phenomenon. It has been observed that the conversion

mechanism coming from the bridge coupling effect arises in a relatively long time

scale compared to the abrupt polarization changes that may occur due to the

collisions between strings.

Finally, the proposed synthesis model is also able to reproduce string sympathetic

resonances, which is another main feature of the viola caipira sound. It has been observed

that such sympathetic effects are induced in a combined way by the bridge coupling and

string/string collisions. They are responsible for beating phenomena observed on some strings.

One possible application of synthesis models, and in particular hybrid models, is to

understand the influence of different physical phenomena on the sound perceived. Identifying

the audible and non-audible elements helps to judge the degree of precision that should be given

to a model. We have endeavoured to do this in terms of taking into account the phenomena of

sympathetic coupling and collisions, which are clearly important. It would be interesting to take

into account the geometrical non-linearities induced by the large-amplitude vibrations of the

strings that take place in the early transient phase. Besides, the inclusion of a sound radiation

model to compute the pressure-field resulting from the instrument pluck is also suggested. And,
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finally, an accurate determination of the string damping parameters and impact parameters

can allow the experimental validation of the model, which would improve the realism of the

synthesized sounds.
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❆♣♣❡♥❞✐① ❆

❈♦♠♣❛r✐s♦♥s ❜❡t✇❡❡♥ s♦✉♥❞ s②♥t❤❡s✐s ♠❡t❤♦❞s

This complement compares the results obtained with the sound synthesis method

proposed in this thesis, here called the “coupling force computation method" (CFC method)

with the results obtained with another modal-based method presented in (WOODHOUSE,

2004a), here called the “coupled modes computation method" (CMC method), which is briefly

described in Chapter 2, Subsection 2.2.2. Although their differences, these methods start from

the same information: input body admittance measured at the bridge and string properties.

Body modal parameters are extracted from such admittance measurements and analytical

expressions of mode shapes, natural frequencies and damping factors are used to obtain the

string modal basis. In order to clarify their differences, the main ideas behind both methods

can be summarized as follows:

• CMC method (WOODHOUSE, 2004a): it consists in computing the string/body

coupled modes using a first-order formulation, which allows to obtain string

responses by modal superposition;

• CFC method: it does not deal with the computation of string/body coupled modes.

Uncoupled strings and body are described separately in term of modal equations

and connected by means of a coupling force term, which is external and unknown.

The coupling force is finally computed using a finite difference scheme.

Figure A.1 shows the comparison of simulations obtained with the two methods fed by

the same body and string parameters, as presented in Section 4.5.2. Only one string (string 1,

D4) with planar motion in the ③ direction is considered. The string is plucked parallel to the

soundboard. and the excitation point is located at 8.5 cm from the bridge. The same excitation

model adopted for simulations in Chapter 4 is used. It can be seen from Figure A.1 that both

methods lead to close results.
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FigureA.1:Comparison of results obtained with the CMC and the CFCmethods. One-polarization
model of a single string. Zoomed displacement of string 1 (D4) plucked at 8.5 cm from the bridge,
normal to the soundboard plane.
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❆♣♣❡♥❞✐① ❇

■♥✢✉❡♥❝❡ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ str✐♥❣ ❛♥❞ ❜♦❞② ♠♦❞❡s ♦♥

t❤❡ str✐♥❣ r❡s♣♦♥s❡

This complement aims to briefly investigate the influence of the number of string and

body modes on the simulated results obtained with the synthesis method proposed in this

chapter. String and body modal parameters are obtained using the same procedures as described

in Section 4.5.2. The same string and plucking conditions of the previous complement are used.

B.1 Number of string modes

The number of body modes is first set equal to 36 (0 Hz - 1500 Hz) while the

maximum frequency for the string harmonics, denoted by ❢❤♠❛①, is set to four different values:

❢❤♠❛① ❂ 2000 Hz, 4000 Hz, 10000 Hz and 20000 Hz. Figure B.1 shows the comparison of the

zoomed displacements obtained for the different values of ❢❤♠❛①. Results for ❢❤♠❛① ❂ 10000 Hz

(black line) and ❢❤♠❛① ❂ 20000 Hz (red line) are clearly identical for the selected time interval,

while for ❢❤♠❛① ❂ 4000 Hz (green line) a small difference is observed. For ❢❤♠❛① ❂ 2000 Hz

(blue line) the difference is considerable compared to the other curves in this time interval.

Figure B.2 compares the spectra associated to the four values of ❢❤♠❛①, taking into

account the first 300 ms of the respective simulated displacements referred above. The spectra

for ❢❤♠❛① ❂ 10000 Hz and ❢❤♠❛① ❂ 20000 Hz (Figures B.2a and B.2b) present identical profiles.

These two spectra in comparison with that of ❢❤♠❛① ❂ 4000 Hz (Figure B.2c) have a quite small

difference of level from 4000 Hz, as highlighted with a dashed circle in Figure B.2c. Although a

perception analysis is not made here, such differences might be in general inaudible. On the

other hand the spectrum for ❢❤♠❛① ❂ 2000 Hz is significantly different from the others, mainly

between 2000 Hz and 4000 Hz, as expected.
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Figure B.1: Comparison of simulated displacements obtained using four different values of
maximum frequency ❢❤♠❛① (2000 Hz, 4000 Hz, 10000 Hz and 20000 Hz) for the string harmonics.
One-polarization model of a single string is considered. Zoomed displacement of string 1 (D4)
plucked at 8.5 cm from the bridge, normal to the soundboard plane.
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Figure B.2: Comparison of spectra obtained using four different values of maximum frequency
❢❤♠❛① (2000 Hz, 4000 Hz, 10000 Hz and 20000 Hz) for the string harmonics. One-polarization
model of a single string is considered. Zoomed displacement of string 1 (D4) plucked at 8.5 cm
from the bridge, normal to the soundboard plane.
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B.2 Number of body modes

In order to analyse the influence of the number of body modes, denoted by ◆❜, the

maximum frequency for the string harmonics is fixed at ❢❤♠❛① ❂ 10000 Hz, and simulations

are performed for ◆❜ ❂ 6, 20 and 36, including respectively modes between 0 Hz and 500 Hz, 0

Hz and 1000 Hz, and 0 Hz and 1500 Hz. As can be seen in Figures B.3a and B.3b, the number of

body modes strongly influences the string decay since more damping is added as ◆❜ increases,

leading to a shorter decay. The contribution of the body modes for each case can be seen in

the spectra shown in Figure B.3c, B.3d and B.3e. The body contributions are characterized by

inharmonic peaks and in general are less significant than the string contributions represented

by the quasi-harmonic peaks. The main spectral differences of the green curve (◆❜= 20) in

comparison to the blue one (◆❜= 6) are indicated by the arrows in Figure B.3d, as well as the

main difference of the red curve (◆❜= 36) in comparison to the green one (◆❜= 20), indicated

in Figure B.3e.

B.3 Conclusion

The analyses above-presented allow us to justify the choices made for simulations in

Section 4.5: ◆❜ ❂ 20, including body modes from 0 Hz to 1000 Hz, and ❢❤♠❛① ❂ 5000 Hz,

which leads to the numbers of string modes ◆✭s✮ selected and presented in Table 4.1. These

choices were also based on the computational time analysis for different combinations of the

parameters ◆❜ and ❢❤♠❛①. It is also important to emphasize that “informal" perceptual tests

including a small group of musicians supported the choice of the parameters.
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Figure B.3: Comparison of time-histories and spectra obtained using three different numbers of
body modes. One-polarization model of a single string is considered. Comparison of (a) global and
(b) zoomed displacement time-histories; spectra obtained from the first 300 ms of displacement
for (c) ◆❜ ❂ 6 (0 Hz-500 Hz), (d) ◆❜ ❂ 20 (0 Hz-1000 Hz) and (e) ◆❜ ❂ 36 (0 Hz - 1500 Hz). String
1 (D4) is plucked at 8.5 cm from the bridge, normal to the soundboard plane.
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❆♣♣❡♥❞✐① ❈

❱✐❜r♦❛❝♦✉st✐❝ ✜♥✐t❡ ❡❧❡♠❡♥t ♠♦❞❡❧❧✐♥❣ ♦❢ ❛ ✈✐♦❧❛

❝❛✐♣✐r❛ r❡s♦♥❛♥❝❡ ❜♦①

This appendix contains the paper “Modelling Fluid-Structure Interaction in a Brazilian

Guitar Resonance Box", published in the proceeding of the ✷✷♥❞ International Congress of

Mechanical Engineering (COBEM 2013) in Brazil. A vibroacoustic finite element model of

the viola caipira resonance box including the air cavity is presented. Natural frequencies and

mode shapes are calculated by means of a numerical modal analysis and compared with with

experimental results.
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❆♣♣❡♥❞✐① ❉

◆✉♠❡r✐❝❛❧ ❛♥❞ ❡①♣❡r✐♠❡♥t❛❧ ♠♦❞❛❧ ❛♥❛❧②s❡s ♦❢ ❛

✈✐♦❧❛ ❝❛✐♣✐r❛ ❝♦♠♣❧❡t❡ ❜♦❞②

This appendix contains the paper “Modal Analysis of a Brazilian Guitar Body", published

in the proceeding of the International Symposium on Musical Acoustics (ISMA 2014), held

in Le Mans (France). It is presented a finite element model of the complete body of the viola

caipira without strings. Natural frequencies and mode shapes are computed by means of a

numerical modal analysis and compared with results obtained experimentally.





The Brazilian guitar is a countryside musical instrument and presents different characteristics that vary 

regionally by configuring as a sparse group of string musical instruments. Basically, the instrument diversity 

comes from different geometries of resonance box, shapes of sound hole, types of wood, different tunings, and 

number and arrangement of strings. This paper intends to present the numerical and experimental modal analysis 

of a Brazilian guitar, without strings, in a free boundary condition. The modal analysis technique is applied in 

the determination of the natural frequencies and the corresponding mode shapes. The main dimensions of an 

actual Brazilian guitar body are used to build the computational model geometry. The numerical modal analysis 

uses finite element method (FEM) to determine the dynamic behavior of the vibroacoustic system, which is 

composed by the structural and acoustic systems coupled. The experimental modal analysis is carried out in an 

actual Brazilian guitar body, where the structural modal parameters (frequency and mode shape) are extracted 

and used to update the numerical model. Finally, numerical and experimental results are compared and 

discussed.  

1 Introduction 

The relationship between measurable physical 

properties of a musical instrument and the subjective 

evaluation of their sound quality and performance is an 

important subject of musical acoustics research. Therefore, 

analytical and numerical methods have been employed to 

predict and describe accurately the vibroacoustic behavior 

of complex systems like plucked string instruments [1-4]. 

With the advent of technology and consequent 

improvement of the computational processing, numerical 

models have been used to simulate complex systems and to 

calculate modal parameters (natural frequency, damping 

rate and mode shape), which have substantial effect over 

the tone and sound power desired for a musical instrument 

[5]. Hence, simulation tools seem to be valuable for the 

musical instrument design. In general, the luthier, a 

craftsman who makes or repairs lutes and other string 

instruments, do not have this facility. In the building 

process it is required to deal with different types of wood, 

with well-defined characteristics, which makes impractical 

this type of investigation.  

Experimental tests and numerical simulations by Finite 

Element Method (FEM) have been previously applied to 

obtain modal parameters for the classical guitar [1, 2, 6-10]. 

However, very few have been founded for others types of 

guitar [2, 4, 11]. In a previous paper [12], the authors 

presented an application for a numerical modal analysis of a 

Brazilian guitar resonance box. 

This paper presents a numerical and experimental modal 

analysis of a Brazilian guitar, without strings, in a free 

boundary condition. The main dimensions of an actual 

Brazilian guitar body are used to build the computational 

model geometry. The numerical modal analysis uses 

ANSYS-FEM to determine the dynamic behavior of the 

vibroacoustic system, which includes the structural (wood 

components) and acoustic (fluid inside guitar box + sound 

hole) systems coupled. The experimental modal analysis is 

carried out in an actual Brazilian guitar body, where the 

structural modal parameters are extracted by Polymax 

method and used to update the numerical model. Finally, 

numerical and experimental results are compared and 

discussed. 

2 The Brazilian Guitar 

Par excellence, the Brazilian guitar is a countryside 

musical instrument. It presents different characteristics that 

differ regionally, by configuring as a sparse group of string 

musical instruments. Basically, the instrument diversity 

comes from different geometries of resonance box, shapes 

of soundhole, types of wood, different tunings, and number 

and arrangement of strings. However, this diversity regards 

to different Brazilian cultural expressions in which this 

musical instrument is seen as a ritualistic tool. Thus, the 

expression "Brazilian Guitar" is capable to qualify the 

instrument in all its variations. According to Corrêa [13], 

there are six great groups of this instrument: viola caipira 

(or viola cabocla), viola de cocho, viola de buriti, viola 

machete, viola nordestina and viola de fandango. This 

paper is focused on viola caipira, which is the most known 

and played in all regions of Brazil, particularly in the 

Southeast and Midwest regions. The viola caipira is 

derived from the Portuguese guitar, which arrived in Brazil 

through the Portuguese settlers from different regions and 

has passed to be used by the Jesuits in the Indian catechesis 

[14].  

Generally, the viola caipira has 10 strings combined at 

five pairs. Two pairs are tuned in a sharp note on the same 

fundamental frequency, i.e., the same note at the same 

height (unison), while the remaining pairs are tuned to the 

same note, but with a difference of one octave in the height 

(rate 2:1). The main external parts of a viola caipira are 

similar to a classic guitar, as shown in Fig. 1a.  

Figure 1: Main external parts of a Brazilian guitar. 

The resonance box is composed by top plate 

(soundboard), back plate, sides and internal structures. 

These parts enclose the acoustic cavity, which 

communicates with the external air through the sound hole. 

The strings are attached to the soundboard through the 

bridge. Inside the resonance box (Figure 2) there are also 

fixtures and reinforcements, so as to soundboard harmonic 

braces; sound hole plates; braces; lining; neck and tail 

blocks. 

Different types of wood are used for the soundboard. In 

general, luthiers and manufacturers use German Spruce 

(Picea alpestris), Pau-Marfim (Balfourodendron 

riedelianum) and Sitka Spruce (Picea sitchensis). There are 

countless types of wood used for the back plate and sides. 

Common options include Pau Ferro (Machaerium 

scleroxylon), Imbuia (Ocotea porosa), Brazilian Mahogany 

(Swietenia macrophylla), Cedar (Cedrus), Brazilian 







Table 4 - First 8 natural frequencies and mode shapes obtained with the numerical updated model and the experimental 

measurements. 
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