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Resumo

O trem de poténcia € um sistema complexo, uma vez que envolve a interacdo entre compo-
nentes tais como o motor, a embreagem, a transmissao e as rodas. Diversos fendmenos de ruido,
vibracdo e sua severidade (NVH) podem surgir durante o seu funcionamento (judder, clonk, shuf-
fle, rattle, etc.). O squeal de embreagens ¢ um fendmeno relativamente novo desse sistema e ele
surge como um ruido de tom dnico, especialmente em situagdes de partida na fase de modulacdo
da embreagem.

Componentes tais como as molas cushion, membrana e de retrocesso foram modeladas a fim
de permitir a criacdo de diferentes projetos e combinacdes em termos de posi¢ao e propriedades
fisicas. Um mecanismo de estabilizacdo para a placa de pressdo foi testado numericamente para
servir como uma alternativa para o sistema quando ndo existem possibilidades de modificacdes nos
seus parametros.

Discos de embreagens reais contém imperfei¢cdes devido a utilizacdo, tolerancias da manu-
fatura, etc. Para levar esses fatos em consideracio, um elemento rotativo de rigidez/amortecimento
viscoso com atrito foi criado para representar as molas cushion e suportar distribui¢des arbitrarias
ao longo do perimetro do disco, permitindo que cada elemento tenha suas proprias caracteristicas.
A suposi¢do de amortecimento viscoso introduziu termos relacionados a velocidade de rotacdo do
disco de embreagem na matriz de rigidez. Simulagdes com pequenos erros de posicionamento nas
molas cushion geraram acoplamento entre a vibracdo axial da placa de pressao e seus deslocamen-
tos angulares.

A mola membrana foi modelada como uma alavanca, permitindo a introdu¢do de medigdes.
Isso foi importante para identificar regides de rigidez negativa e positiva, explicando sua interacao
com uma curva de cushion real. As molas de retrocesso foram modeladas, resultando numa
representacao matricial na qual foi possivel gerar termos de rigidez positiva fora da diagonal prin-
cipal.

Finalmente, o mecanismo de estabilizacdo para o sistema consistiu de outro disco conectado
a placa de pressdo. Quando as propriedades do dispositivo foram ajustadas apropriadamente, ele
foi efetivo em uma situacdo de veering. Nessa condicdo, as coordenadas de ambos os discos foram
combinadas nas formas modais, causando movimentos de wobbling fora de fase que resultaram em

dissipacdo de energia nos elementos de conexao.

Palavras Chave: squeal de embreagens, trem de poténcia, NVH
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Abstract

The powertrain is a complex system, once that it involves the interaction between compo-
nents such as the engine, the clutch, the transmission and the wheels. Several noise, vibration and
harshness (NVH) phenomena may appear during its operation (judder, clonk, shuffle, rattle, etc.).
Clutch squeal is a relatively new phenomenon of this system and it appears as a single tone noise,
especially on a drive-off condition on the modulation phase of the clutch.

Components such as the cushion, diaphragm and leaf springs were modelled to allow the
creation of different designs and combinations in terms of position or physical properties. A stabi-
lization device for the pressure plate was numerically tested to serve as an alternative to the system
when there are no practical possibilities of modifications on its parameters.

Real clutch discs contain imperfections due to usage, manufacturing tolerances, etc. To take
these facts into consideration, a rotating stiffness/viscous damper element with friction was created
to represent the cushion springs and support arbitrary distributions along the perimeter of the disc,
allowing each element to have its own characteristics. The assumption of viscous damping intro-
duced terms related to the clutch disc rotating speed on the stiffness matrix. Simulations with small
position errors on the cushion spring generated coupling between the pressure plate axial vibration
and its angular displacements.

The diaphragm spring was modelled as a lever, allowing the introduction of measurements. It
was important to identify regions of negative and positive stiffness, explaining its interaction with
a real cushion curve. The leaf springs were modelled, which resulted on a matrix representation
where it was possible to generate positive stiffness terms out of its main diagonal.

Finally, the stabilization device for the system consisted of another disc connected to the
pressure plate. When the device properties were properly adjusted, it was affective in a situation of
veering. In this condition, the coordinates of both discs were combined on the mode shapes, causing

out of phase wobbling motions, that resulted on energy dissipation on the connection elements.

Keywords: clutch squeal, powertrain, NVH
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1 Introduction

The powertrain or driveline is a complex system, involving the interaction of different compo-
nents (engine, gearbox, tires, etc.) during its operation. Each one of them has its particular features,
(technical names, working principles, design possibilities, manufacturing tolerances, etc.). Com-
bine these variables and put this large set into proper operation is a very difficult task, once that
problems may emerge only on the last stages of design. Even worse, they can happen after the
customer has already acquired the product. Clutch squeal is a relatively new subject of study on the
area, once that the first scientific publication found (Wickramarachi et al., 2005) dates back only

10 years from the date of conclusion of this thesis.

1.1 Clutch squeal/Eek technical description

The phenomenon can have different names depending on the manufacturer or country. From
the start, it is important to inform that part of the works refer to “Eek™ ( Wickramarachi et al.
(2005), Freitag et al. (2010), Drozdetskaya et al. (2011), Fidlin et al. (2011)) while some specifty
the term “clutch squeal” ( Hervé er al. (2008b), Hervé et al. (2008a), and Hervé et al. (2009)).
This thesis will attain to the last term due to the fact that this is the terminology used by the known
circle of contacts from the industry.

A squeal occurrence during a drive-off is presented on Fig. 1.1 during the phase of modu-
lation of the clutch disc. There is a very high relative rotating speed between the engine flywheel
and the transmission. The phenomenon can be noticed as a frequency component of 280 Hz (Fig.
1.1(b)), measured by an accelerometer inside the gearbox. The squeal event in this case lasted for
2.4s. (Kinkaid et al., 2003) stated that literature agree on brake squeals on a distinct frequencies
for the same brake system. As far as the practical knowledge of the author goes, little deviations
happened on the occurrence of clutch squeals, in this case, approximately between 278-281 Hz.
From the mentions of clutch squeal found in literature (Chapter 3), experimental data is scarce
(Wickramarachi et al., 2005).

Table 1.1 contains the frequency ranges clearly determined by the papers. Based on this,
it is possible to observe that they are much lower than the ones reported for brake squeal (above
1000 Hz according to Kinkaid et al. (2003)). Besides that, Hervé et al. (2009) mentioned on
the introduction of their work that clutch squeal frequencies could be higher than 1000 kHz. A

wider range of occurrence from 250 to 500 Hz could be related to the fact that there is no further



description of the vehicles, for example, if they were lightweight or heavy duty ones.
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Figure 1.1: Rotating speeds on a squeal occurrence (Fig.
during the event (Fig. 1.1(b)) for a passenger car.
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Table 1.1: Clutch squeal/eek frequency reange found in literature.
Frequency [Hz] 250 300 350 400 450 500
Wickramarachi et al. (2005)

Freitag et al. (2010)

Drozdetskaya et al. (2011)

Fidlin et al. (2011)

This thesis e

Figure 1.2 contains the cumulative sum of clutch squeal events obtained from a real vehicular

test. Here occurs a threshold for the squealing events, meaning that it is necessary to change some
system parameters from their original post manufacturing stage up to a “state” where the instability

can take place.
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o o o o
T T

Total clutch squeal events
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T
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Figure 1.2: Experimental occurrence of clutch squeal events for a passenger car.

1.2 Clutch squeal in relation to other powertrain Noise, Vibration and Harshness (NVH)

phenomena

Figure 1.3 shows a scheme organizing the main powertrain Noise, Vibration and Harshness
(NVH) phenomena. Some phenomena occur when the transmission is either in idle, when the
vehicle is still with engine on, or with engaged gear, in a situation of torque transmission to the
wheels. The clutch facings may be sliding in relation to the pressure plate/flywheel. By such
distinction, phenomena with a fully coupled clutch can be modelled as pure torsional vibration

problems:



e shuffle and clunk/clonk ( Krenz (1985), Crowther et al. (2005), Menday et al. (1999), Simion-
atto (2011))

e creeping

e gear rattle ( Singh et al. (1989), Wang et al. (2001), Kim and Singh (2001), Brancati et al.
(2005), Miyasato (2011), Simionatto (2015))

e clap and start/stop

The occurrence of NVH phenomena are related to both system and operational conditions.
With this idea, a vehicle susceptible to some phenomenon must be excited by the proper input.
Some events are found during drive-off, like judder ( Albers and Herbst (1998), Centea et al.
(2001), Perestrelo (2013)) while others are found with stable loads (creeping, rattle). The genera-
tion of torque pulses may result on clonk/clunk or clap. Natural frequencies of the powertrain may
be excited either by rotating speed orders (rattle) or torque pulses (shuffle).

The final distinction is made on the annoying subjective aspects for the driver or passengers.
Some are most critical in terms of vehicle oscillations (judder,shuffle) while others are basically
related to the noise generated by impacts on the gears. But they are not only acoustic problems,
once that they are all generated by some vibration behaviour.

By this whole classification, one can define clutch squeal from Fig. 1.3 as “a phenomenon
that happens with a combination of engaged gear+sliding clutch on a drive-off situation, resulting

in a single tone noise for the driver”.

1.3 Thesis objective

This thesis has the following objectives:

1. Explore the differences between two hypotheses for the representation the pressure plate and

cushion springs, adopting relative motion and viscous damping dissipation.

2. Create a rotating stiffness/viscous damper element with friction that supports arbitrary dis-
tributions along the perimeter of the pressure plate. Verify the behaviour of the system with

errors on the cushion spring.

3. Give realistic features to the model and develop possibilities for squeal mitigation, providing
a theoretical basis for the use of the leaf springs and the creation of a mechanical device for

the stabilization of the pressure plate.



Drive-off -—I
gear Pulse
Load EEE
Coupled stable | [[Grecping_]
Powertrain o
NVH — Rotating speed orders _
Load
Idle Coupled Rotating speed _
Process for occurrence: What can be annoyingfor the driver/passengers:
] Gearboxcondition I single tone noise
I Clutch condition I Vchicle vibrations
] Excitation procedure [ Noise from impacts on the gears

Figure 1.3: Powertrain phenomenon description.

1.4 Thesis outline

Figure 1.4 presents the knowledge areas. The chapters are grouped in terms of background,

theoretical development, element possibilities and application.

1.4.1 Background

Chapter 2 contains the basic principles of the clutch system technology. The necessary tech-
nical terms and working principles are provided to give a better comprehension of the literature.
Chapter 3 describes the papers on the matter available up to the date of conclusion of this thesis,
grouping them based on common characteristics, and pointing the differences. The analysis on

Section 3.4 will result on the model with the following hypotheses, that impact the rest of the work:



Chapter 1 Background
|
Chapter 2
|
Chapter4 —— Chapter3
Hypothesis 1 Hypothesis 2
Cardan Rotating speed
Coordinates on global
coordinates
Theoretical :j
Chapter 5 Chapter 7
development
Chapter 6
Element | Chapter 8 |
Chapter 9 possibilities
Chapter 10
Application Chapter 11

Chapter 12

Figure 1.4: Thesis organization.

e Hypothesis 1: Model using Cardan coordinates (Chapters 5, 6, and 9).

e Hypothesis 2: Model adopting the rotating speed on global coordinates (Chapters 7, 8 10, 11,
and 12).

Chapter 4 presents results from the modal analysis of a real clutch system in order to under-
stand the structural behaviour of the system. It supports the assumption of a rigid pressure plate

during a squealing event (Fig. 1.1) on Chapters 5 and 7.

1.4.2 Theoretical development

Real clutch discs contain imperfections due to usage, manufacturing tolerances, etc. To take
these facts into consideration, a rotating stiffness/viscous damper element with friction (Fig. 1.5)
was created to represent the cushion springs and support arbitrary distributions along the perimeter

of the disc, allowing each element to have its own characteristics. Chapters 5 (Hypothesis 1) and



7 (Hypothesis 2) contain the formulation steps taken to obtain the contact element compatible with
hypotheses 1 and 2. They were calculated under the assumption of constant contact radius, with
parameters that enable the creation of different configurations for the cushion. Viscous damping
was considered, differently from the approach from the literature, that took into account structural
damping without a deep physical bound to the system ( Fidlin (2006) and Fidlin et al. (2011)).

Each element is represented on Sections 5.5 (Hypothesis 1) and 7.4 (Hypothesis 2) in a lin-
earized form by a combination of matrices, relating the stiffness, damping, and friction efforts. This
assumption is helpful for their numerical implementation. With a more general form, this element
is able to include errors and variations on the parameters in a very practical way on the models. The
studies will focus on the element on Cardan coordinates, once that it resulted on constant modal
properties in a situation of fixed elements (Section 9.1.2). The assumption of movement on the
viscous damper element brought a new set of efforts to the model, that are discussed separately on
Sections 5.3, 5.4 (Hypothesis 1), and 7.3 (Hypothesis 2). They are responsible for the introduction
of terms on the global stiffness matrix related to damping and the rotating speed of the element on
Sections 5.5.2 (Hypothesis 1) and 7.4.2 (Hypothesis 2).

1.4.3 Element possibilities

The element matrices from Sections 5.5 (Hypothesis 1) and 7.4 (Hypothesis 2) are gradually
included on a symmetric distributed model on Chapters 6 (Hypothesis 1) and 8 (Hypothesis 2),
providing results for the comparison of the model obtained on Cardan coordinates and the one
derived with the rotating speed on global coordinates. Section 6.1 has a physical interpretation to
the wobbling modes associated with squeal in a didactic manner. The models considering the effect
of movement on the viscous damper element are provided on Sections 6.4 (Hypothesis 1) and 8.4
(Hypothesis 2).

All the previous effort leads to Chapter 9, were the full potential of the element is discussed.
Simulations will be performed to study the effect of a small error on the position of one element
on the global behaviour of the system. The cushion variability or heterogeneity, emerge from the
natural manufacturing tolerances or usage. Those errors are responsible for the modification of the
mode shapes, specially coupling the pressure plate wobbling angles with the axial movement of the

plate.



1.4.4 Application and mitigation

The formulation developed on Chapters 5,6,7, 7, 10, 9, 11, and 12 serve for the purpose of
combination and analysis of different elements as presented in Fig. 1.5. They are “building blocks”

for the computational implementation of clutch squeal models.

Diap:ragm spring Stabilization device for
(Chapter 10) ~|  the pressure plate
(Chapter 12)
| éﬁ L 1
) ) Pressure plate
& Chapter 5,7
Leaf springs/straps e )
(Chapter 11)

Rotating stiffness/viscous
damper element with friction
(Chapters 5,6,7,8,9)

Figure 1.5: Elements representation.

With the theoretical development and the possibilities of the element established, the works
start a phase of application, bringing technical aspects in order to give more realistic features to the
model. The formulation chosen was the one assuming the rotating speed on global coordinates due
to the reduced influence of the rotating speed (Chapter 8).

Chapter 10 (Fig. 1.5) introduces a lever model for the diaphragm spring, assuming that it is
operating after the point of deformation of the clutch cover. The real clutch system involves the
interaction of the diaphragm spring with the cushion curve. More realistic models will only be
obtaining matching the operating points of both elements. Real measurements of the characteristic
function of those elements are included on the model.

Chapter 11 (Fig. 1.5) presents a formulation for the leaf springs or straps. Those elements
are not included on the models from literature and they represent an important characteristic: a
real possibility of reduction on influence of the frictional skew symmetric terms from the system.
Simulations will be performed in order to find the best configurations for instability mitigation.

Another attempt for the stabilization of the pressure plate is provided on Chapter 12 (Fig. 1.5)
by the use of device. It is an alternative idea for the inclusion of damping on the cushion springs.
It will mitigate instability under the occurrence of veering on the mode shapes ( Liu (2002) and
Perkins and Mote Jr (1986)).



2 Clutch system introduction

This chapter will give a very short introduction on the clutch. As any other automotive com-
ponent, there are several technical aspects and constructive types to discuss. It will attain to its most
basic principles and characteristic curves to give basic technical knowledge necessary to understand
the terminology on the literature review (Chapter 3) and to provide the physical association for the
models on this thesis. References for a deeper research are Micknass (1993), Drexl (1999), and
Shaver and Shaver (1997).

2.1 Working principles

The whole system is presented in Fig. 2.1 in a condition of torque transmission. The flywheel
is bolted to the crankshaft and it moves due to the moments from the crank mechanism of each

cylinder of the engine. The clutch cover is attached to the flywheel, rotating together with it.

1 - Flywheel 9 - Concentric Slave Cylinder{CSC)
@ 2 - Crankshaft 10 - Master cylinder

3 - Clutch disc 11 - Clutch pedal

4 - Pressure Plate 12 - Fluid reservoir

5 — Clutch Cover 13 - Hydraulic pipe

6 — Fulcrum ring 14 - Rolling bearing

7 - Diaphragm Spring 16 - Transmission bell housing

8 - Inputshaft

Figure 2.1: Clutch system during torque transmission (Fig. 2.1) (Adapted from Lerestrelo (2013)).



A very important element named diaphragm spring is responsible to apply the compression
effort necessary to guarantee torque transmission in terms of friction. It acts like a lever where its
outer radius is in contact with the pressure plate. At the other end, there are the spring fingers that
slide against a ball bearing.

Figure 2.2(a) depicts the fulcrum ring that is attached to the cover by rivets. Those elements
are used as an articulation point for the diaphragm spring when load is applied on its fingers (Fig.
2.2(b)).

Fulcrumring

Diaphragm
spring

(a) (b)

Figure 2.2: Internal (Fig. 2.2(a)) and external (Fig. 2.2(b)) views of the clutch cover.

Basically, torque is transmitted from the clutch to the gearbox inputshaft by a splined con-
nection. Access to this system is very difficult once that all these components are enclosed by the
bell housing. Experimental investigations are made even difficult due to the fact that most of the
elements are rotating, creating real big problems for the usage of wired sensors, like accelerometers.

If the driver needs to interrupt torque transmission, effort is applied on the clutch pedal (Fig.
2.3). For this vehicle, the master cylinder is responsible for its conversion to hydraulic pressure
that reaches the Concentric Slave Cylinder (CSC) that increase the releasing forces on the bearing,
that acts on the diaphragm spring, ceasing the normal load. Then, the leaf springs or straps (not

displayed on Fig. 2.3) are responsible to separate the pressure plate from the clutch.
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Fluid reservoir

Torque interruption

Rolling
bearing

Clutch pedal

Figure 2.3: Clutch system during torque interruption (Adapted from Lerestrelo (2013)).

2.2 Cushion curve characteristics

The cushion springs are positioned between the friction facings (flywheel and pressure plate
side), as presented in Fig 2.4(a). The total curve of cushion (Fig. 2.4(b)) results basically from the
combined characteristics of facings, rivets and cushion springs. Looking for the new disc function,
an initial stage combines low values of normal load with low stiffness condition, being favourable
for torque modulation. The slope increases more significantly near the nominal load, achieved
when there is full torque transmission from the flywheel to the inputshaft without slip.

After several couplings, the cushion curve is degraded. On the same picture, the point of
maximum load is now shifted to a lower value of displacement. Besides the material removal due
to wear on the facings, Sfarni ef al. (2011) provided a complementary comment by explaining the
embedding phenomenon. The cushion springs gradually deforms the facings, resulting in an “aged
profile” Fig. 2.4(b). The most important point here is that it is not related to wear. The cushion

spring is the physical entity related to the friction element modelled on Sections 5.2 and 7.2.
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1 - Facing on pressure plate side 7 — Predamper spring
2 — Cushion spring 8 — Bushing
3 — Facing on flywheel side 9 — Hub disc
4 = Driving plate 10 = Main damper spring
5 — Retainer plate 11 - Belleville spring
6 —Hub 12 — Annular spring
(a)
6000 — New disc
Aged disc
50007 | = = =Nominal load
Z,
8 3000
2
2000¢
10001
0

0 02 04 06 08 1
Displacement [mm]
(b)

Figure 2.4: Clutch disc main elements (Fig. 2.4(a)) and cushion curve (Fig. 2.4(b)) for a passenger
car.
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3 Review on the minimal models for clutch squeal/Eek

Brake noise/vibration has been widely studied since the early decades of the twentieth century
and has produced many literature reviews ( Crolla and Lang (1991), Papinniemi et al. (2002),
Kinkaid et al. (2003)). Authors have gone into the analysis of more specific aspects of the theme,
such as numerical analysis (Ouyang et al., 2005), minimal models (von Wagner et al., 2007) and
comfort (Cantoni et al., 2009). For other systems, the interaction between railway wheel and noise
also produced several studies, reviewed by Thompson and Jones (2000).

In the past 10 years a significant number of publications about clutch squeal/eek have ap-
peared (Section 1.1). Section 3.2 shows that the literature on the matter covers at least six different
lumped models directly dedicated for clutch squeal/eek up to the date of publication of this the-
sis( Wickramarachi er al. (2005), Fidlin (2006), Hervé et al. (2008b), Hervé et al. (2009), Fidlin
etal. (2011) and Senatore et al. (2013)).

There are drastic simplifications on in comparison to the real system. From the technical
point of view, there is still a lot of work to determine exactly what the phenomenon is. Maybe,
on the future, with more cases and investigation, clutch squeal can be more certainly categorized
just like brake squeal (Kinkaid ez al., 2003). By now, there are four distinct research directions for

squeal/eek:
1. Pressure plate bending modes (Wickramarachi et al., 2005)
2. Rigid body motion ( Fidlin (2006), Hervé et al. (2008b) and Hervé et al. (2009))
3. Inputshaft influence ( Fidlin ef al. (2011) and Freitag et al. (2010))
4. Powertrain mode shapes (Senatore ef al., 2013)

von Wagner et al. (2007) is included on this review, besides that it was conceived for brake
squeal, once that some of its features had a great impact on the following clutch squeal works.
Fidlin et al. (2011) reported a friction related damping phenomenon that was credited to Hochlenert
(2006). Similar terms involving this characteristic occur in several publications ( von Wagner et al.
(2007), Hervé et al. (2009) and Fidlin et al. (2011)).

The discussion on Section 3.2 will be focused on both theoretical and technical aspects.
Related reports are described in Section 3.3. Section 3.4 will organize the models in terms of simi-
larities points. This chapter ends with a discussion over the pending questions or some possibilities

of innovation based on this literature.
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3.1 A comment on the limitations for the usage of a Finite Element with friction

Ouyang et al. (2005) on his review about numerical study of brake squeal have traced the
usage of a linear frictional spring element back to Liles (1989). Equation 3.1 contains the formu-
lation provided by Soom et al. (2003). The element gives the normal forces (/N7 and N,) and the

tangential efforts (77 and 75) between nodes 1 and 2 on directions z and y.

N1 kn 0 —kn 0 U
NQ _kn 0 kn 0 Y2
T —pk, 0 pk, O To

Massi et al. (2007) introduced Eq. 3.1 on Ansys using an element named MATRIX27. Soom
et al. (2003) explains that the linearized contact stiffness k,, is often calculated based on the ratio
between the pressure and the roughness of the surfaces (average asperity heights). It is, in general,
a very high value, found above 10° N/m on Massi et al. (2007) and Soom et al. (2003). Section
3.2 shows many examples of a friction damping effect that cannot be reproduced by this approach
( von Wagner et al. (2007), Hervé et al. (2009) and Fidlin et al. (2011)).

3.2 Clutch squeal/eek theoretical models chronology

In this section, the literature is organized based on the date of publication and each paper is

described in detail.

3.2.1 Wickramarachi et al. (2005)

Wickramarachi et al. (2005) published the first academic paper mentioning “eek noise”. Near
the engagement of a dry friction clutch the sound spectrum , measurements indicated a frequency
nearby 500 Hz related to the wobbling modes of the disc, where it vibrated as a rigid component.
A multiple of this frequency coincided with the first bending modes of the plate, contributing to
the noise. For this purpose, the authors have created a mixed representation taking into account
both wobbling and bending. The pressure plate structure was distributed within four lumped mass
elements, connected by the plate stiffness. The equations of motion on Wickramarachi et al. (2005)
did not include the gyroscopic effect on the formulation. Wickramarachi et al. (2005) based his

analysis on the eigenvalues of this system. Conclusions were obtained by the verification of the
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effect of some parameter on their real part. The results from the simulations indicated that a thinner
pressure plate could reduce instability and a reduction on the friction coefficient could stabilize the
system. The structural stiffness was the most influential parameter to avoid coupling on the mode

shapes.

3.2.2 Fidlin (2006)

Fidlin (2006) created a wobbling model for a clutch disc on his book on nonlinear dynamics.
There was a consideration of a disc over an elastic support. The gyroscopic effects are not included
on the model. Unlike many works from the literature review, contact occurred on the very thin
friction ring distributed along the outer radius of the disc. Damping coefficients are included on
the system matrix after the formulation is finished, without a physical assumption. Fidlin (2006)

concluded that the system without damping on the elastic layer would always be unstable.

3.2.3 von Wagner et al. (2007)

Following a comment from Cantoni et al. (2009), the work from von Wagner et al. (2007)
resulted in a model very close to a real brake system , where two contact elements represents the
braking pads, maintaining fixed positions in relation to the rotating disc. The authors included
Cardan coordinates on the formulation. The new feature that makes this model part of this review
is the existence of friction damping terms that depend on the inverse of the rotating speed of the
disc. This friction induced damping ( (Hochlenert, 2006) as reported on Fidlin et al. (2011)) causes
a threshold on the stability. von Wagner et al. (2007) made a simulation where the real part of an
unstable eigenvalue crossed the imaginary plane from a positive value (indicating instability or

brake squeal, in this case) to negative one (stable behaviour).

3.2.4 Hervé et al. (2008b) and Hervé et al. (2009)

The same model was used as basis for Hervé er al. (2008b) and Hervé et al. (2009). The
authors clearly explain on the beginning of one of the works that this is a “phenomenological
model” (Hervé et al.,2008b). Hervé et al. (2008b) did not present the necessary steps to obtain the
equations of motion, but it presented a model using a different coordinate system in comparison to
von Wagner et al. (2007), once that there are different combinations of the inertial moments inside

the matrices of mass, damping and stiffness. This thesis obtained the same inertial terms adopting
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the rotating speed on global coordinates. Such procedure will be shown on Section 7.1 and the
matrices will be presented in Section 7.1.3, with additional terms that depend on the acceleration,
that where certainly cancelled due to the consideration of a constant rotating speed. Hervé et al.
(2008b) included the signal of the relative speed between the flywheel and the disc on the skew
symmetric terms of the stiffness matrix.

The authors worked with the structure of the system matrices using non dimensional terms,
concluding that an increase on the total amount of damping could enhance the stability region for
this system. If it is not equally distributed between the degrees of freedom, the stability region may
present abrupt transitions.

Those damping distributions are obtained only by changes on external elements. Hervé et al.
(2008b) and Hervé et al. (2009) deals with equally distributed parameters on the contact, because
the skew symmetric terms of those matrices are equal.

Hervé et al. (2008a) created a mathematical tool for the identification of limit cycles that was
used on Hervé et al. (2009), that expanded the findings from Hervé et al. (2008b) to include nonlin-
ear effects. They concluded that an increase on the circulatory action (related to friction moments
based on the stiffness forces) resulted in both increase of amplitude and frequency in relation to the
linear case. The “iso-damping distribution” was not the best configuration for amplitude reduction

in situations of nonlinear vibration.

3.2.5 Freitag et al. (2010) and Fidlin ef al. (2011)

A new factor was introduced by Freitag et al. (2010), who explained that eek happened due
to a mode shape of the system inputshaft+clutch disc (Fig. 3.1(a)). This picture resembles the
configuration of clutch set of a passenger car (Fig. 2.1). Previous works directly refer to or could
be associated to modification on the cushion spring( Wickramarachi et al. (2005), Fidlin (2006),
Hervé et al. (2008b) and Hervé et al. (2009)).

Freitag et al. (2010) pointed on the influence of the tilting stiffness of the disc (Fig. 3.1(a)).
In terms of product development, the radial stiffness of the disc had been modified to decouple it
from the inputshaft motion. The radial motion of a friction disc was studied on Fidlin and Stamm
(2009), where the authors identified a self-centering phenomenon at lower speeds and coupling
between torsional and radial mode shapes on a phenomenological model.

It is essential to settle a major difference between the clutch systems on heavy duty vehicles
to the one on passenger cars. On the first case, there is an extra bearing to allow an extended

inputshaft, presented in Fig. 3.1(b). This shaft is sustained in two points inside the clutch bell
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housing: one that sustains the shaft inside the transmission and other positioned on the flywheel.

Even so, these vehicles may also present clutch squeal.

Tilting stiffness
Hub clutch disc

Inputshaft
bearing

(a) Tilting and radial stiffness according to Freitag (b) Clutch system with a guided input-
et al. (2010). shaft (Adapted from Lerestrelo (2013)).

Figure 3.1: Ekk relation with the inputshaft from Freitag ez al. (2010) (Fig. 3.1(a)) and a inputshaft
with an extra bearing (Fig. 3.1(b))

Fidlin et al. (2011) concluded that the friction coefficient did not change the stability of an
undamped system and a longer rod stabilized the disc. Without structural damping, the system
stabilizes only through friction damping (Hochlenert, 2006). On the phenomenological model,
they concluded that for each friction value there was a certain damping threshold that stabilizes the

system. The authors found a linear relation between both parameters.

3.2.6 Senatore ef al. (2013)

Senatore et al. (2013) expanded the representation including a pressure plate on a 5 degree-
of-freedom driveline model with a dual mass flywheel ( Albers (1994)). Unlike the previous works
that separated part of the system and created a minimum phenomenological model, this paper brings
a systemic approach for the study. Drozdetskaya et al. (2011) reported measurements of torsional
vibrations on the transmission speed during an eek event. The pressure plate was modelled in order
to investigate the coupling between torsional movements and the wobbling motions of the plate.

Axial vibration of this element was also taken into account, but with the assumption of a equally
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distributed cushion spring, this movement was not coupled with other movements of the plate. The
pure axial motion was found within “169 Hz-750 Hz” (Senatore et al., 2013). Senatore et al. (2013)
concluded after linearization, the pressure plate motion was decoupled from the torsional degrees
of freedom. Even so, torsional vibrating modes could happen on the eek/clutch squeal frequency

range.

3.3 Related reports

Powertrain literature provide other occurrences of vibrating/noise phenomena that are not
directly related to clutch squeal/eek. They are important to widen the practical knowledge or to
create distinctions with other situations. By now, the works from Sections 3.3.1 and 3.3.2 are

treated as having no relation with the ones from Section 3.2.

3.3.1 Kushwabha et al. (2002)

Kushwaha et al. (2002) published a paper about a phenomenon named “whoop”. According
to the authors, movements of the engine flywheel happen due to the explosions on the cylinders.
As consequence of that, combined with the flexibility on the crankshaft, a natural frequency of the
clutch system is excited during the operation of the clutch pedal. As a result, there is a combination
of vibration and noise near the engaging phase of the clutch. None of the works from Section 3.2

reported an engine influence on the phenomenon.

3.3.2 Bearing squeal: Kirchner ef al. (2005)

Kirchner et al. (2005) reported another condition named as “cold start squeal”. According
to them, such phenomenon happened on very low temperatures (below 5° C) and just in a situa-
tion where the clutch was not engaged during the engine start. The spectrum of this phenomenon
involved at least 18 frequencies ranging from 2800-3200 Hz. The authors discovered that the
phenomena excited mode shapes of the diaphragm spring (Fig. 2.2(b)). Due to manufacturing tol-
erances each local finger mode happens in a slightly different frequency from each other, resulting

in very distinct but close modes.
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3.4 Model comparisons and the most urgent pending questions

By thinking on the description of Chapter 2 it is possible to verify that the works from Section
3.2 are based on huge simplifications on the clutch system elements. For example, the diaphragm
spring is not detailed or mentioned in some cases, the leaf springs, the engine, etc. Clutch squeal
is on a very early developing stage, with each model representing a new characteristic that is found
to be relevant on the matter.

Table 3.1 presents the organization and a new denomination of each work, referred to as
W;. Then, all the works are compared on Table 3.2. A common characteristic in this section
is the assumption of a constant friction coefficient. Apart from Wickramarachi et al. (2005), all
other works took into account rigid body movement, even in situations with the inclusion of the
inputshaft dynamics Fidlin et al. (2011).

Table 3.1: Authors of clutch squeal related works.

Work Authors
W1 Wickramarachi et al. (2005)
W2 Fidlin (2006)
W3 von Wagner et al. (2007)
W4 Hervé et al. (2008b)
W5 Hervé et al. (2009)
W6 Fidlin et al. (2011)
W7 Senatore et al. (2013)

Table 3.2: Comparison between clutch squeal works. Authorship is given by Table 3.1.
W1 W2 W3 W4 W5 W6 W7

Flexible pressure plate v
Rigid body wobbling v
Gyroscopic effect
Rotating speed on Cardan coordinates
Rotating speed on global coordinates
Constant friction coefficient VR
Inputshaft influence
Friction damping terms
Nonlinear effects
Powertrain modelling
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Chapter 4 presents the results of modal analysis of a clutch system to show that the frequency
detected on Fig. 1.1(b) is not related to bending modes of the pressure plate, that could be a source
for the problem according to Wickramarachi et al. (2005).

From Table 3.2 it is possible to see that two distinct coordinates have been used to model the
pressure plate. The true meaning of this occurrence is that there are two different representations
for the same real system ( Hervé et al. (2008b) and Hervé et al. (2009) vs. Fidlin et al. (2011)
and Senatore et al. (2013)). This thesis will bring these two representations to a common set of pa-
rameters (rotating speeds, geometric relations, etc.) and physical disposition (assuming the friction
contact between the clutch disc and pressure plate). Each conditions will be considered as a spe-
cific hypothesis for the generation of the model. The element on Cardan coordinates (”Hypothesis
1”) is developed on Chapter 5, while the one considering the rotating speed on global coordinates
("Hypothesis 2”) is presented on Chapter 7.

All works report a strong influence of the elastic/friction contact on the phenomenon. In
other words, the cushion spring is crucial to the phenomenon and a detailed description of this
region must be made. Besides Hervé et al. (2008b), Hervé et al. (2009) and Fidlin et al. (2011)
there is no assumption on the relative displacement between the elements. Here this characteristic is
explicitly included by a relative position angle. Such formulations are presented on both hypothesis
on Sections 5.2.4 and 7.2.2. A comparison on their behaviour can be traced looking at the models
with symmetric distribution of elements on Chapters 6 and 8.

The friction damping terms, which depend on the inverse of the relative angular speeds, will
be discussed since its principle, the unitary tangential relative speed (Sections 5.2.5 and 7.2.3). A
better understating of such behaviour is provided through the real configuration of the tangential
speeds near coupling are found on Appendix A.l and A.2. The limitations from the error on the
unitary norm and direction can be consulted Appendix B.1 and B.2. Such discussions are not
provided in detail on the literature.

Fidlin (2006) and Fidlin ef al. (2011) included energy dissipation on the model using struc-
tural damping, after the equations of motion were obtained. Hervé et al. (2008b) also uses this
term to refer to damping. This thesis explicitly includes a rotating viscous damping element on the
formulation, allowing relative movement between the pressure plate and the clutch disc. The phys-
ical interpretation for the efforts and moments produced by the moving viscous damper is given on
Sections 5.4 and 7.3.

A consequence from the element matrices (Sections 5.5 and 7.4) is the possibility for the
creation of different element dispositions in relation to the pressure plate. Non symmetrical distri-
bution involving position error on one element or unbalanced stiffness according to the coordinates

are presented on Chapter 9.
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From this whole literature there are still room for two possible technical approaches for at-

tenuation:

e Chapter 11: thinking on other elements of the clutch system, the leaf springs may be used to

stabilize this system.

e Chapter 12: a device for pressure plate stabilization is proposed to apply an external damping

to the system.
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4 Experimental modal analysis of the clutch system

The clutch system is composed by structural components, like the pressure plate and the
cover (Chapter 2). The determination of the frequencies of the first non-rigid mode shape is impor-
tant to rule out or not flexibility of the elements on the clutch squeal frequency range (Fig. 1.2).
The analysis from this chapter is also created to emphasize that there is no relation between the
squealing frequency and the excitation of mode shapes of components assumed as separate bodies.

Iterations between the elements define the modal properties of the system.
4.1 Configurations tested

In this work, combinations between the components were gradually done, from the simplest
(pressure plate only) to the more complex one (flywheel + cover + clutch disc). The conditions

tested are shown in Fig. 4.1 and described as follows:

e Configuration P (Fig. 4.1(a)) resulted on the analysis of the pressure plate alone;

e Configuration C (clutch cover)(Fig. 4.1(b)) is used to study the interaction between the

pressure plate , straps and the diaphragm spring;

e Configuration FCP+ (Fig. 4.1(d)) was obtained when the clutch cover is bolted to the fly-

wheel;

e Configuration FCP- (Fig. 4.1(c)) was created removing the pressure plate from the previous

case;

e Configuration FCPD (flywheel + clutch cover + cutch disc ) (Fig. 4.1(e)) is a condition closer
to the original system. It is important to point out that the inputshaft, release system and the

connection between the flywheel and the crankshaft were not taken into account;

Figure 4.2 contains the Frequency Response Function (FRF) sums for the experiments. Fo-
cusing only on the first amplitude peak, it is possible to see that configuration P presented greater
levels of vibration around 900 Hz. Such results indicate that the pressure plate is a rigid body on
the squealing frequency range for this specific vehicle, found nearby 280 Hz on Fig. 1.2.

Configuration C results on a visualization of peaks nearby 500 Hz. If the pressure plate is
removed and the cover is bolted to the flywheel (FCP-), the first peak occurs between 550 and 600
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Hz. The system without clutch disc (FCP+) present increased amplitudes for frequencies close to
400 Hz. Finally, the inclusion of the clutch disc (FCPD) causes the appearance of a reduced peak

nearby 200 Hz.
These experiments were not able to introduce the effect of rotation on the system and the

influence of different positions of the cushion curve (Fig. 2.4(b)). It serves as an introduction for

the rigid body modelling of the pressure plate throughout this work.
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Figure 4.1: Configurations tested for modal analysis (Adapted from Lerestrelo (2013)).

1 0 T T T T T T T T T T

Y

0 100 200 300 400 500 600 700 800 900 1000 1100
Frequency [Hz]

FRF sum [g/N]

Figure 4.2: Frequency Fesponse Function (FRF) sum for different experiments from Fig. 4.1.
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5 Hipothesis 1: Model using Cardan coordinates

As it was discussed in Chapter 3, the models from von Wagner et al. (2007), Fidlin et al.
(2011), and Senatore et al. (2013) used Cardan coordinates to model the interaction disc/friction
element. The model based on this hypothesis present results based on the influence of the spin
speed during operation. This system is commonly seen in rotordynamic models ( Childs (1993)
and Muszynska (2010)).

A rotating spring/ damper element is derived in Section 5.2 to interact with a disc modelled in
Section 5.1, making it possible to create different configurations. This possibility will be explored
on Chapter 9. The physical interpretation of the moving damper element is shown in Sections 5.3
and 5.4. The moments and forces developed in this chapter will give origin to the stiffness and
damping element matrices that will be discussed in Sections 5.5.1 and 5.5.3. The user can adopt
them to create different designs by choosing the desired properties. The element matrices will be

presented on Section 5.5.
5.1 Pressure plate model

Section 5.1.1 present the rotation matrices for Cardan coordinates. The angular speeds and
accelerations are found on Section 5.1.2. The inertia matrices from Section 5.1.3 are studied in

terms their eigenvalues characteristics.
5.1.1 Rotation matrices

The transformation matrices, speeds and accelerations for these coordinates are provided on
Schiehlen and Eberhard (1986). Angle « (Fig. 5.1(b)) originates a rotation matrix for x axis [R,]”
to transform a vector i from the coordinate system xyz (Fig. 5.1(a)) to x1y; 21, represented as ;7

(Eq. 5.1). The inverse transformation is calculated by Eq. 5.2.

1 0 0
F=[R)" F= 10 cosa sinal (5.1)
0 —sina cosa



A rotation given by [ (Fig. 5.1(c)) moves the representation from 1y, 21 to xoy222 (Eq. 5.3)

for y axis, while the inverse transformation is given by Eq. 5.4.

cosf 0 —sinf

J=[Rg] =10 1 0 |, (5.3)
sinf 0 cosp
7= [Rﬂ] o (5.4)

Finally, the angle v (Fig. 5.1(d)) is used to provide a rotation around the z axis from x5y 29
to x3y323 according to Eq. 5.5. The inverse relation is shown in Eq. 5.6.

cosy siny 0

37 = [RV}TQFZ —siny cosy 0] o7 (5.5)
0 0 1
oF = [R,] 57 (5.6)

As a result, the transformation matrix [R,s,] is used to transfer a vector ;7 from the coordi-
nate system z3ysz3 to a representation on xyz (Eq. 5.7). It results from the successive rotations
combining the Egs. 5.1, 5.3 and 5.5.

cos 3 cosy — cos Bsin~y sin 3
[Rapy] = | sinasinBcosy+ cosasiny —sinasinBsiny + cosacosy —sinacosf3 5.7
—cosasin fcosy+sinasiny  cosasin §siny 4 sin o cosy cos a.cos 3
of = [Ra][Rs] [Rv] g = [Raﬁ'y] sT” (5.8)

5.1.2 Angular speeds and accelerations

The full expression of the angular speeds (Eq. 5.9) and accelerations (Eq. 5.10) are necessary

for the equations of motion describing the wobbling movement of the disc.

cosfBcosy siny 0| [« qWg
30 = | —cosfBsiny cosy 0| {8y = 3Wy (5.9)
sin 3 0 1 0 qWy
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(a) (b)

() (d)

Figure 5.1: Rotations assumed on the model.

( -

cosffcosy siny Of [« —sinffcosy —cosfsiny .
347: —cosfsiny cosy 0| B¢ +a| sinfsiny —cosfcosy {ﬁ}+
sin 3 0 1‘ \\ﬁ cos 3 0 (5.10)
COs 7y 3Wy
+ B4 —siny p =< 40,
0 3wz J
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5.1.3 Inertia components and modal properties

The linearization of Eq. 5.11 (based on Ginsberg (1998)) results on Eq. 5.12, considering
T
{p}T = {a g } . The mass [M] and the gyroscopic [G] matrices (represented on Egs. 5.13 and

5.14) still depend on +, generating non-diagonal terms of inertia.

Loy — (Lyy — 1,,) qwy sw, =0
3‘ (Zyy ) 3wy 3 5.11)
Ly 3wy — Loz — Iig) 3w 3wz = 0
(M]{p} + [G] {p} = {0} (5.12)
ICECC ]$$ 1
M) = co.sv sin 7y (5.13)
—1Iyysinvy I, cos~y
| —siny (Lyy — Ly + 1., cosY (Lpy — Iy + 1.
G] =4 7 ( vy ) ‘ 7 ( vy ) (5.14)
—cosy (—Lpy + 1y + 1.,) —siny (=L + Iy, + 1..)

Assuming I, = I,,, = I it is possible to remove the influence of v by multiplying Eq. 5.12
by a matrix [7'] (Eqs. 5.15 and 5.16).

—si in~y| 10
TIM] = 1 [c?s’y sm’y] [ cois’y Sy I [ ] (5.15)
siny cosvy —siny cos7y 01
_ . _ . 7 0 1
[T] [G] AL c?sv sin vy Sin 7y co§7 — 41, (5.16)
siny  cosvy —cosy —sinvy -1 0

Looking in Eq. 5.17 it is possible to conclude that the modal properties on the system are not

influenced by the angular rotation ~y. The characteristic polynomial of this system is given by Eq.

R I

N[N+ (F1L.)°] =0 (5.18)

A pair of null eigenvalues \;, A\] = 0 are calculated, meaning that this system is semi def-
|1

inite. Another pair is Ao, \j = +J < ), characterizing a stable oscillating response. In the
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case of a disc shown in Fig. 5.2(a), which will be used for many models in this whole work, the
inertia moments are given by Eq 5.19 and 5.20, where R;,, and R,,; are its inner and outer radius,

respectively. The mass is represented by m while its thickness is given by 2h.

Low =Ly =1 = % (3 (R2, + R%,) + 4h?] (5.19)
2 2
L.=m (@) (5.20)

Form = 2kg, h =0.01 m, R;;, = 0.075 m and R,,; = 0.1 m, values close to a real pressure
plate. Unless it is not clearly stated on the text, these properties will remain as standard throughout
this work. Figure 5.2(b) contains a Campbell diagram showing the natural frequency close to the

second order, whose approximation is presented in Eq. 5.21.

. Izz . 6 .
wn =1l =1 e ~ ]2 (5.21)
34 —)
2 2
< Rm + Rout
100 ‘ ‘ —9X
== Natural frequency 7
- - —Orders P
g L7
IR % ,
,: g‘ e g 2X
1 E 60r - - 1
Inner S -7
radius =] -
Quter (Rin) g 401 e g
radius \ w 7 /,///1)(
(Ruui) | /// ,/////
~ il ‘ 20t e T
7 ‘ IZh /// //////’
25" ! T -, 7~ / L L .
= o Mass center - OO 500 1000 1500 2000
restriction Rotation [rpm]
(@) (b)

Figure 5.2: Annular disc (Fig. 5.2(a) ) and Campbell diagram of the system from Eq. 5.17 (Fig.
5.2(b)).
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5.2 Modelling a rotating spring/viscous damper element with friction

It is important to state that such elements are found on the clutch squeal related literature
( von Wagner et al. (2007), Hervé et al. (2008b), Hervé et al. (2009)) but they are derived for
constant positions and properties, with restricted possibilities for the creation of different designs.

The most important contribution of this chapter for clutch squeal simulation is a formula-
tion that allows relative movement between disc and contact element (Section 5.2.4). The angular
relative position and speed is explicit on the equations and will have special impact on the damp-
ing matrices shown in Section 5.5. Modifications on stiffness can be implemented as well as the
changes of geometry (angular distribution, radius distance, etc.). The formulation assumes a vis-
cous damping element working in parallel with the elastic spring on the contact. It will allow the
dynamic model an energy dissipation theory other than structural damping ( Fidlin (2006), Fidlin
etal (2011)).

The normal force will be calculated on Section 5.2.7 with a procedure presented by von
Wagner et al. (2007). The distribution of the friction forces according to the plate movement
happens in Section 5.2.8. Limitations of this formulation will be provided on Appendix B.1.

The discussion on Section 5.2.8 over the friction force will be very useful to understand the
skew symmetric terms on the system matrices (Section 6.1) and to explain the stable or unstable

motion on Sections 6.1.1 and 6.1.2.
5.2.1 Basic relations

Figure 5.3(a) shows a simplified clutch system without the CSC (Fig. 2.1). The engine and
the flywheel rotate at a constant speed , while the clutch disc has the same speed as the inputshaft
(9). Based on this representation, the model from Fig. 5.3(b) is created.

On Fig.5.3(b) the point O describes the origin of the global coordinate system, while G stands
for the mass center of the disc. The spring is attached to the surface rotating at speed w,, while
frictional contact exists at point (). P is located above the contact point (), which is separated by
a distance h. A force F) is applied on the mass centre of the pressure plate to guarantee a static
displacement z..

The rotating spring element (Fig. 5.3(b)) depends on the following parameters:

e k;: element stiffness

e ¢;: element damping
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R;: radius distance

1;: relative angle used to describe the position of the ith element
ze: static displacement

h: distance between the mass center and the contact point Q

oWd = {O 0 Q}T: rotating speed of the inputshaft and clutch disc (Fig. 5.3(a))

i local friction coefficient, representing a punctual facing interaction with the pressure plate

Inputshaft

Pressure
plate

Clutch
disc

Flywheel
>y

(a) Simplified clutch system adapted from Lerestrelo
(2013).

(b) Rotating element parameters.

Figure 5.3: Real clutch system and model.
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5.2.2 Element effort and the constant contact position assumption

This element can be physically related to an elastic curve such as the cushion measurement,
described on Sec. 2.2. Figure 5.4 shows that, for the nonlinear curve, the load N, occurs for the
displacement z.. In this situation, k; represents a linearized stiffness around point z, in a first order
approximation. This approach allows studying load and stiffness separately from each other. For
the linear case, there is Ny = k;z.. The notation for static load on the works from the literature on
Section 3.2 was maintained. On the following chapters, it will be possible to change the formulation
from the linear case to the linearized version, by a substitution of the term k;z. by the load ;. This
observation remains valid for the element matrices of Sections 5.5 and 7.4 and up to the end of this

work.

Force [N]
Nonlinear
Linear
Nog = i
Z, Displacement[mm]

Figure 5.4: Comparison between a linear a nonlinear stiffness curves.

Figure 5.5(a) shows a representation of a cushion spring. It may look like the letter “Z” or
“S”, depending on the design (Micknass, 1993). It is important to note that it results from a curved
metal plate. Its upper part is riveted to the facing on the pressure plate side, while the lower part is
connected to the flywheel facing by the same procedure. The cushion spring for the contact on the
pressure plate is assumed as a composition of two stiffness elements (Fig. 5.5(b)). The vertical load
discussed on the previous section is given by the parameter k;. The spatially oriented horizontal
stiffness ks supports the other element, acting both coordinate  and y. As consequence of this
configuration, the same constant position vector ;7¢¢ (Section 5.2.3) in relation to the centre of
gravity GG can be obtained when there is pressure plate motion (Fig. 5.5(c)). This assumption will

have a strong impact on the normal force calculation on Section 5.2.7.
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1 Pressure plate

Cushion
spring

acing

Flywheel

c oF

(a) Representation of a cushion spring.

(c) Element position after motion of the plate.

Figure 5.5: Considerations on the position of the friction element.

5.2.3 Elastic and damping forces

As a direct consequence of the coordinate system, Section 5.2.3 will show that the fric-
tion/damping efforts will be related to the displacements of the pressure plate v and the relative
displacement . There is the position vector ;7o (Eq. 5.22). The spring and damper only provide
effort on the vertical direction. The displacement 4rcq. (Eq. 5.23) of the contact point () in relation

to the mass centre of the pressure plate is given by the following expression:

T
sTag = {R,- cos; R;sin; —h} (5.22)

r = (—cosasin cosy + sinasiny) R; cos ¥;+
ora. = ( ) (5.23)

+ (cos asin B siny + sin acosy) R; sinv; — h cos a cos 3

The total displacement on contact (Eq. 5.24) is obtained by adding a negative displacement

oToc. of point G in relation to the system origin. A static equilibrium point is defined by z., which
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is used to introduce a compression pre load to the spring. This parameter is important to make sure

that the contact is never lost between pressure plate and friction element.

0To0. = oroc, +oraq, = — (2 + z¢) + (—cos arsin 3 cosy + sin arsin y) R; cos 1)+ (5.24)
+ (cos asin fsiny + sin acos y) R; sinv; — h cos acos 3 .
The displacement on z axis is used to calculate the spring (Oﬁki):
oFr = ki [=h — groo. | k = oFr.k (5.25)
The damping effort is calculated by Eq. 5.26 by the differentiation of Eq. 5.24:
oFe = ¢i [~ ooa ] k = oFek (5.26)

5.2.4 Relative motion between the element and pressure plate

The relative motion will define the position the rotating element in relation to the coordinate
system attached to the pressure plate. The friction element/clutch disc rotating speed 54 (Eq. 5.27)

is calculated on the coordinate system z3ysz3:

0 — cos asin 3 cosy + sin asin 7y
3Wq = [Ram]T 0p=0{ cosasin B siny + sin « cos y (5.27)
0 cos a cos 3

The angle v); describes the relative position between element and plate. Looking from the
coordinate system x3ys3z23 it is possible to see that when the pressure plate speed is greater than the
friction disc speed (¢ > 6 on Fig. 5.6(a)), ¢; increase clockwise from its initial location (¢)y = 0°).

In this case, tangential relative speed (3‘2 ) follows the pressure plate rotation, while the friction

rel

force 313” points on the opposite direction. On the other hand, if ¥ < 0 (Fig. 5.6(b)) the derivative

v; follows the counterclockwise direction, being calculated as Eq. 5.28:

= — (4 — swaz) = — ("y — 0 cos a cos ﬁ) (5.28)

Integrating Eq. 5.28 it is possible to calculate v;(¢) (Eq. 5.29). The initial position angle v,
is very important to define the location of the i-th element in relation to the others. If the surfaces
are slipping, all elements are displaced by —~(t) + 64(t).
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t t
Pi(t) = — / A dt +/ 0 cos a cos B dt = by, — () + O4(t) (5.29)
0 0

y >0
Y3

y <06
VE!

3FfT'i

',\ \t.b;
J

/

SVt'reIi

X3

(a) Relative displacement for v > 6 (b) Relative displacement for 4 < 6

Figure 5.6: Relative motion between the disc and element.

5.2.5 Approximation of the tangential speed at contact point

The speed of the pressure plate at the contact point 3‘7Q (Fig. 5.7) is calculated as Eq. 5.30:

3‘7Q = 3‘7(; + 3‘7@@ (5.30)

The vertical speed of its center of gravity 317(; (Fig. 5.7) is calculated on the system z3ysz3:

0 — cos asin 3 cosy + sin asin y
3‘7G = [Rup,|" 0 = (—£%){ cosasinfsiny + sin a cos vy (5.31)
0T oG cos v cos f3

The relative speed between points GG and () is calculated in Eq. 5.32. The angular speed of

the pressure plate (;& ) was previously calculated on Eq. 5.9:
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3Vaq = 36 X 3Taq
& (hcos fsiny — sin fR; sinv);) — h cos 7B — 4R; sin;
= & (hcos fcosy + sin BR; cos ;) + hsian+‘yRi cos ;
R; [d cos 3 (cosysin ; + siny cos 1);) + 3 (sin 7 sin ; — cos 7 cos wz)]

(5.32)

Y
om
J-(z+ze)
, el .
[h ©
Q) L
- H
k; G
Oy
>0

Figure 5.7: Distance between rotating basis and disc.

The tangential speed of the pressure plate jtw takes into account components on the plane

T3Ys:
3VQZ 3VGT, 3VGQ,c
3Vt5up = 3VQy = 3VGy + 3VGQy (533)
0 0 0

Looking at Fig. 5.7 the distance between the disc and the rotating basis without axial move-
ment is shown as L. This distance is dynamically defined as H = L — (z — z.) and the vector

between the point O, and the contact point () is given by Eq. 5.34.

R; cos; — cos asin 3 cosy + sin acsin 7y
3T0,0 = 5T0,6 + 35Tco = § Risin; p + H < cosasin fsinvy + sin a cos (5.34)
—h cos a cos 3
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The speed of the inferior disc on the contact point is calculated as Eq. 5.35. The tangential
speed of the friction element (Eq. 5.36) takes into account only components on the x3ys plane. It

is important to note that this speed does not depend on H.

3‘7mf = 304 X 570,0 (5.35)

3Ving, — [h (cos asin Bsiny + sin avcosy) + R; sin ); cos « cos ]
3Vt = § 3Ving, ¢ = 0§ h(—cosasinfcosy + sinasiny) + R; cos 1); cos «cos 3

0 0
(5.36)

The tangential relative speed 3\7,5 between the contact element/pressure plate is given by

rel

Eq. 5.37. Its position in relation to the disc is shown in Figs. 5.9(a) and 5.9(b).

3vtrel = 3Vtsup - 3Vtinf

— cos asin 5 cosy + sin asin «y h cos Bsiny — sin BR; sin ¢;

= (—2){ cosasinfBsiny +sinacosy p + & hcos3cosy + sin SR; cos; ¢ +

0 0
—hcos~y —sin; (5.37)
+ B4 hsiny p+ ("y—@cosacosﬁ) cos; o+
0 0
— (cos asin B siny + sin a cos )
—60h — cos asin 3 cos 7y + sin o sin 7y
0

T

The expression of 3X7t depends on the variable array £ = {a a BB z} . It can be

rel

linearized using the Jacobian matrix [.J(£p)] evaluated at an specific point £y (Eq. 5.38). Imposing
T
€0 = {O 0 00 O} , the Jacobian no longer depends on z (Eq. 5.39). It will be important for

the approximation of the unitary vector on the direction of 3‘7%[.

. folo, &, B, B, 2) ) .
Vi =1 fola,a, 8,8,2) p = f() = f(&) + [J(5)] (- ) (5.38)
fZ(a7d’6’/B7Z)
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[0f. Of, Of: Ofs Of.]
da 04 08 0B 0F
J(E)] = ofy 9fy Ofy 9fy Ofy
7 1 0a o4 08 op 0%
of. Of. of. Of. Of.

da 94 08 0p 0% | (5.39)

€= ¢&p

Oh cosy hsinvy Oh siny —hcosy O
= | —Ohsiny hcosy 6hcosy hsiny 0
0 0 0 0 0

The linearization of the tangential speed is given by Eq. 5.40 and it is influenced by the disc

angles « and [ and by its derivatives (&« and B):

- (7 - «9) siny; + h (dsin7 - Bcosv) + 0h (Bsiny 4 acos~)
3‘7%1 = ("y — 6) cosy; + h (o’z cosy + fsin 7) +0h (Bcosy — asiny) (5.40)
0

In a next step, an approximation on the norm of Eq. 5.40 is made considering that the terms

which depend on h and h? are negligible:

‘3‘7} ~ {R?("Y - 9)2}1/2 =R,

y A 9‘( (5.41)

With these simplification step, the normal vector on the direction of the relative tangential
speed (;7) is obtained in Eq. 5.42. Terms that depend on the inverse of ‘7 — 0‘ on Cardan co-
ordinates appear on Fidlin ef al. (2011), von Wagner et al. (2007) and Senatore et al. (2013).
There are limitations of this approach, and they will be discussed on Appendices A.1 and B.1. The
components 5, and 51, are described in Eqs. 5.43 and 5.44. Section 5.5 will present stiffness and

damping terms related to them.

1% 3¥a
g =2 =y, (5.42)
3Vtrel O
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(dsinv—ﬁcosv) + )Q—h

— (fsiny + acosy) (5.43)
v—ﬂ

gVg = —Sign ("y — 0) sin ¢; + W

JVy = Sign (7 — 9) cos; + ﬁ (d cosy + Bsin7> - ’9—hQ (Bcosy —asiny) (5.44)

y—0 Y-
5.2.6 Friction force

The friction force on Cardan coordinates gﬁ #r; (BQ. 5.45) is obtained with direction opposed
to the tangential relative speed (Fig. 5.6). Its moments are calculated on Eq. 5.46. The results on

the other system are the same.

3Va 3Va sFpr,,
0 0 0
—ph 3N v,
sMyr, = sTaq X 3Ffr, = ph s N gv, (5.46)

psNR; (31, sine); — v, cos ;)
5.2.7 Normal force calculation

The normal contact force on the disc is given as Eq. 5.47 and it is represented on Fig. 5.8.

The force OF: represent a static force that holds the element on a specific position.

sNi=4¢ 0 (5.47)

3N
von Wagner et al. (2007) took into consideration that it is necessary to solve a system of
equations to obtain the normal force of this system. All efforts involved on the contact, friction,
damping and stiffness forces must be moved to the global system. The force Oﬁs comes from the

supporting stiffness presented in Section 5.2.2 (Fig. 5.5). Then equilibrium on the vertical direction
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Figure 5.8: Diagram for normal force calculation.

on the element must be taken into account (Eq. 5.48):

—olNi, = oF pri, +oF ki, +oFec, =0 (5.48)

Equation 5.48 lead to Eq. 5.49 presenting the actual amplitude of the normal force. The
nonlinear expression depends on function f; (Eq. 5.50), that can be approximated by Eq. 5.51.

3Ni =/ (OFkiz + oFcz-z) (5.49)

fi = {cosacosf — p[(— cos asin B cosy + sinasiny) sv,+ (5.50)

+ (cosasin Bsiny + sinacos ) yv,]} !

f1 714 psign(y — 0) [—sinysin¢; + cosy cos ;] o (5.51)

+ psign(¥ — 6) [cosysin; + siny cos Y]

The normal force on Eq. 5.52 contains the original stiffness and damping forces, but new

parameters are the friction related terms:

sNi ~ o Fr + oFe + phizesign(¥y — 0) [— siny sin s + cos y cos ] a+

: (5.52)
+ pkizesign(y — 0) [cosy sin; + siny cos ;] 5

Equation 5.45 imposes that the friction force always remains on the plane x3y3. But it can be
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represented on global coordinates as o F'yr, , o' fr,, and oF g, on Figs. 5.9(a) and 5.9(b). In both
pictures, o F'¢,, occurs on a vertical direction and an equilibrium assumption allows the resolution

of this problem, making necessary the step on Eq. 5.48.

(a) Angles imposed as o > 0 and 5 > 0. (b) Angles imposed as « < 0 and 5 < 0.

Figure 5.9: Friction force components in an element positioned at ¢); = 45°

The element linearized matrices on Section 5.5 are obtained from the normal contact force
(Eq. 5.53):

JMy, = sFag X 3N (5.53)
5.2.8 Friction distribution and its relation with plate movement

To assure contact, it is necessary that ;N; > 0 (positive normal force) for all situations (Eq.
5.54). The preload is constant as 3 N .,,,s, = k;z. which is always positive. A variable normal force
can be either positive or negative (3/V,q,, > 0 or 3N, < 0) resulting from the motion of the

surface above an elastic/damped support.

3Nz' = 3Nconsi + 3Nvari (554)
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If the pressure plate does not vibrate, the normal force is uniform as it can be seen in Fig. 5.10
(2e = 0.001 m in this example). Hence, the friction force has the same magnitude in every position.
To understand the effect of motion on the distribution of friction forces, a series of examples were
created assuming rotation on the pressure plate only, while the element remained still (¥ > 0
and § = 0). In this representation, only the constant friction vector (313 Freons;) 18 Opposed to the
relative speed, while the variable portion (3ﬁ froar,) €an be interpreted as a vector which possesses
the same line of action as the relative speed, but it changes direction according to 3NV ,,,,. Figure

5.10 presents 5NV 4., = 0.
3Ff7'1 = _Iu’ 3N3ﬁ = _ILL (3Ncon5i + 3N’UCLT‘¢) 3ﬁ = 3Ff7‘consi + 3Ff7‘vari (5'55)

4 =1000 rpm ¢ =0 rpm o = 0° 5 = 0°

— Relative speed t T T T T T T f
— Friction force X

Normal force l l l l l l l l
h\ /

Figure 5.10: Friction forces under uniform normal load distribution.

Figure 5.11(a) illustrates the case when the variable normal force is positive, and there is
compression of the element around the static position. The variable friction force has the same
direction as 3ﬁ Freons;» TesUlting in an increased total friction force 3ﬁ #r;- In the other hand, if the
variable normal force is negative (Figure 5.11(b)), it means that the total normal force is reduced
from its mean value. As consequence of that, the total friction force decreases in terms of magnitude

and this condition can be represented by a variable friction force opposed to the constant vector.
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It is important to emphasize here that 313 #r, never changes its direction due to the preload on the
spring but it can vary along the disc due to the wobbling movement. The variable friction forces
(3ﬁ Froar, @0 3N yqr,) are purely theoretical, but they will be very helpful on the comprehension of

the physical effects caused by effort fluctuations.

3Neons; > 0 and 3Nyar; >0 sNeons; > 0 and sVpar, <0
3Ff’-‘"consi 3Ff’*’va1’i 3Ff?’vari 3Ff”con51-
SVrrelt- 3Ffrt. 3Vtr"eli. 3Ff'ri-

(a) (b)

Figure 5.11: Friction forces for two different conditions of ; V.

Figure 5.12(a) contains an scheme for the distribution of the variable friction force when
a > 0°and 8 = 0°. All elements positioned with coordinates y3 > 0 are found with ;N ., <
0 (decreased normal force). The variable friction vectors point in opposition to 3ﬁ Freons; (F18.
5.12(b)), which result in a lower friction 3]3 fr;- For x3 = 0, there is no variable force once that no
displacements occur around the static position.

If o < 0° and 8 = 0°, an inversion on the variable force distribution takes place com-
pared to the previous case (Figure 5.12(c)). Here, elements located at y3 > 0 are found with an
increased normal force (5N, > 0) and the variable friction follows the direction of 3ﬁ Freons; (Fig-
ure 5.12(d)). Elements positioned assuming y3 < 0 present 3ﬁ froar, OPpOsed to the total friction
force, which is lower than 3]*: Freons; (Figure 5.12(d)).

Angular displacements on [ affect the force distribution along the x axis. For § > 0° and
o = 0° the compression force is increased from its static value (3V,q,, > 0) for 3 > 0 (Figure
5.13(a)). As consequence of that, the disc sector for x3 > 0 presents an increase on the total friction
force (Figure 5.13(b)). If x3 < 0, it occurs a decrease on 3ﬁ #r, once that the variable friction force
is opposed to the constant portion. Figures 5.13(c) and 5.13(d) display the variable and total friction

forces in a situation where < 0° and o = 0°.
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Figure 5.12: Friction forces on the disc for changes on «
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5.3 A phenomenological example for a moving viscous damper

This section presents damping efforts that only happen if a viscous damper element moves in
relation to a surface that changes its profile. Figure 5.14 shows a viscous damper element moving
with a constant speed v. One of its extremities, marked as (), follows a hypothetical infinite track
that can be inclined according to the angle . The positions ¢, and ¢, define the position of this

element according to the inertial frame positioned at O.

Track

Figure 5.14: Moving viscous element.

The vertical and horizontal position are related by Eq. 5.56:

tand = & ¢y = gz tand (5.56)

T

Taking the derivative of the vertical position (Eq. 5.56) in relation to time:

dg, dg, d(tand)
Zy AT o0 s bk Sl
a a Mg
dq, -
= d;qt tané + qy0sec? § (5.57)

== tand 4 ¢,0(1 + tan?§) = vtand + ¢,0(1 + tan® )

For any instant of time, the damping effort at the point () is given by Eq. 5.58:

- dg, \ -
Fop=—¢ | 5.58
@ ¢ (dt)j ( )
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At q, = g, = 0 the previous equation can be approximated by Eq. 5.59.

ﬁQ = —c;vtan 5}' ~ —civéj (5.59)

The situation from Eq. 5.59 is represented on Fig. 5.15(a). In this case, a viscous damper
element may produce a vertical effort that depends on the slope of the track (6) and its moving
speed (v). The previous example illustrate the case where ¢, = 0 and ¢,, # 0.

Figure 5.15(a) also shows that the element apply a negative effort on the track and works
under traction. If the movement happens on the opposite direction (v < 0) (Fig. 5.15(b)), there

will be a positive effort on the track, but it would operate under compression.

Track I Track

c

t 0
vV ¥
Gi E‘L‘Ci

cv cvt

v v%

(a) (b)

Figure 5.15: Moving viscous element for v > 0 (Fig. 5.15(a)) and v < 0 (Fig. 5.15(b)).

5.4 Efforts for a moving viscous damper and their relation with the element matrices

The previous example can be the initial spark for the comprehension of the behaviour of the
rotating damper element. But on this case, the track will be substituted by a constant radius track
on a wobbling disc. For illustrative purposes, pressure plate is fixed (% = 0 and v = 0) and only

the clutch rotates (9 2 0). Friction is not included on this example (u = 0).
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5.4.1 Damper efforts for o # 0° and § = (°

Based on the equation for vertical displacement on the contact point () (Eq. 5.24), the ex-
pressions can be simplified for a constant angle o (&« = 0, 5 = 0° and B =0), resulting in Egs.
5.60 and 5.61. The damping force is calculated by Eq. 5.62.

oToq, = sinaR;siny; —h (5.60)

oT0Q, = sina (7 + @Z)Z> R; cos; = sina (7 -+ 0) R; cos; = 0 sin aR; cos; (5.61)

oﬁcz- = —q [Ofon] k= —cié sin aR; cos @Dilg (5.62)

A crucial fact is that, even in case of 7 # 0, the expression of Eq. 5.61 depends only on
the rotating speed of the clutch disc 6. Tt will happen again on Eq. 5.64. It indicates a physical
behaviour that will be detailed on Section 5.4.3.

The vertical displacement (Eq. 5.60) and speed (Eq. 5.61) are presented in Fig. 5.16(a).
By looking at the shape of (7o, it is possible to stablish analogous behaviour with Figs. 5.15(a)
and 5.15(b) remembering that on this case movement occurs in relation to a sinusoidal track. The
explanation involves positions named as ()1, (02, )3 and ()4 indicated in Figs. 5.16(a), 5.16(b) and
on the realistic system on Fig. 5.17(a).

If the element moves on a region with z; > 0 (—270° < v; < 90°), the situation is analogous
to Fig. 5.15(a), and the viscous damper moves on a track with increasing height. During this
condition there is a negative damping effort (Fig. 5.16(b)) that reaches a peak at point ), (¢; = 0°),
located on the middle of this path.

A transition the previous behaviour occur on )5 (v; = 90° on Fig. 5.17(a)) with a maximum
vertical position (Fig. 5.16(a)), but with no force (Fig. 5.16(b)). Then, Oﬁci changes its direction
for positions where x; < 0 (90° < 1); < —270°), on a case analogous to Fig. 5.15(b), due
to a decreasing height in relation to the rotating direction. A maximum damping force happens
on (Y3 (¢»; = 0°), but on a different direction compared to (). Another transition happens at
Q4(1); = 270°), where the track profile changes to an increasing behaviour.

The damping force for the rotating element in different positions is shown in Fig. 5.17(a),
adopting h = 0 and o > 0°. A positive total torque OM ¢, could happen considering that there was a

single damper element in every position of Fig. 5.17(a) . For a situation with o < 0 (Fig. 5.17(b)),
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this hypothetical torque would be on the opposite direction.
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Figure 5.16: Vertical displacement and speed on Fig. 5.18(a) for « > 0°. The damping force
appears on Fig. 5.18(b). Data: R; = 0.08m, ¢ = 1Ns/m, ¢; = 1rad/s and o = 5°.

(a) (b)

Figure 5.17: Damping forces in different positions for o« > 0° (Fig. 5.17(a)) and o < 0° (Fig.
5.17(b)).
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5.4.2 Damper efforts for « = 0° and 5 # (°

The following examples will be made under similar assumptions from the previous case but
considering on o = 0° on Eqgs. 5.24 , resulting on Eq. 5.63 and 5.64. The damping force in this
case is calculated by Eq. 5.65.

oroq, = —sin fR;cos; — h (5.63)

oTog, = sinf3 (ﬁ + ¢z) R;siny; = sin 3 <7 — ¥+ 6’) R;siny; = 0 sin BR; siny; (5.64)

Oﬁci = —¢ [Ofon] k= —cié sin S R; sin wilg (5.65)

The approach done for the previous case (Section 5.4.1) was repeated here. Displacements,
speeds and damping forces with 3 = 5° are shown in Figs. 5.18(a) and 5.18(b), respectively. In this
situation, the region comprehending the points ()1, ()2 and Q)3 (0° < v; < 180°) presents negative
damping forces (Fig. 5.18(b)), with increasing amplitudes. This region is similar to the example
from Fig. 5.15(a).

For (180° < 1); < 360°) the forces are positive, with a maximum value at (). The vertical
position is gradually decreased in a similar way to Fig. 5.15(b). Combining the forces on both
sides of the plate, paying attention to the directions of forces on points (); and ()y, it is possible to
observe that the hypothetical torque OM e, 18 negative for § > 0°. Figure 5.19(b) shows that OM .
is positive if § < 0°.

5.4.3 Related element matrices and the damping force for < # 0

Moments due to rotation of the damper element were related to angular displacements, so
they resulted on the stiffness matrix contribution K], on Eq. 5.73. Just like the friction moments,
this effect may result on skew symmetric terms on the equations of motion. Matrix [Ky |, (Eq. 5.74)
represents friction forces related to the influence of the moving damper on the normal force.

The damping moments for static displacements for « or 3 were displayed on Figs. 5.17 and
5.19. The conditions can be organized on Table 5.1. The point to discuss here is that displacements
on « resulted on moments on y axis with the same signal. Besides that, angular changes on (3

resulted on OM . With opposed signal on x axis. Such results remind the Figs. 6.2 and 6.3, where
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Figure 5.18: Vertical displacement and speed on Fig. 5.18(a) for § > 0°. The damping force
appears on Fig. 5.18(b). Data: R; = 0.08m, ¢ = 1Ns/m, ¢; = 1lrad/s and § = 5°.

(a) (b)

Figure 5.19: Damping forces in different positions for 5 > 0° (Fig. 5.19(a)) and 8 < 0° (Fig.
5.19(b)).

the friction moments also presented similar characteristics in relation to the angles.
Figure 5.20 illustrates the case of a grounded element, where the height / between the contact
point () and the centre of gravity GG remains constant no matter the inclination angle « or rotating

speed of the disc (7). It means that, damping moments similar to the ones presented on Sections
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Table 5.1: Damping moments for 4 = 0 and § # 0 on Cardan coordinates.

Fixed angles a=0° g =0°
Static angular displacements (> 0° /<0° a>0° a<0°
oM., - + 0 0
oM., 0 0 + -

5.4.1 and 5.4.2 are not affected by the spin speed of the disc on Cardan coordinates. This is the
main reason behind the fact that matrices [K;v], (Eq. 5.73) and [Ky], (Eq. 5.74) from Section
5.5 depend only on 0. The impact of this effect on the system equations and behaviour will be

presented at Sections 6.3 and 6.4.

Figure 5.20: Viscous damper fixed on the ground (Fig. 5.20) with the rotating speed on Cardan
coordinates.

5.5 Element matrices

The element on Fig. 5.3(b) will influence the system in terms of stiffness , damping and
friction terms from the combination of moments from the normal (Eqgs. 5.53) and friction ( Eq.
5.46) forces in Eq. 5.66:

3MIi - 3MN1',; +3MfTix
3Myi = SMNz'I + 3Mf7'iz

(5.66)

The full expression of the angular speeds (Eq. 5.9) and accelerations (Eq. 5.10) are necessary

for the equations of motion describing the wobbling movement of the pressure plate (Eq. 5.67),

52



calculated using the torque contribution of the ith element. The expression on the vertical direction
is written on the global reference frame. Auxiliary angles derivatives, such as the relative angle (
1@- ) need to be included.

4
Loy 3wo — (Iyy L. 3wy3wz E , s Mo,
Ly sy — (L2 — Lpa) 3w 3wa = E :3 i

n

mfoa, = Z (oNiz +0anz) - F.

i=1

1@ = — (7—9008@0056)

(5.67)

\

Linearizing the Egs. 5.67, a new representation of the system is obtained for {p} = {a B Z}T
(Eq. 5.68). It presents a mass ([M]) and gyroscopic (|G]) matrices shown in Eqs. 5.11. The con-
tribution of the ith element is inserted as an stiffness [K;] and damping [C;] matrix. The constant
friction forces and moments originate a excitation vector { f;} (Eq. 5.80). The constant axial force
for the static displacement is represented by { F'} = {0 0 —F, }T. This approach is very helpful

once that a complex eigenvalue analysis can lead to a verification of the stability of this system.
a1+ (643060 ) 614 I - X ) s
i=1

5.5.1 Element stiffness components

The matrices for the rotating speed on Cardan coordinates depend on ~ and ;. The relative
movement between the pressure plate and spring/damper element generate a stiffness matrix that
can be formed from the combination of 6 different matrices (Eq. 5.69), each one having an char-
acteristic feature. In order to simulate a linearized version, it is possible to substitute Ny = k;z.
(Section 5.2.2). For all following matrices (Egs. 5.70, 5.71, 5.72, 5.73, 5.75, 5.77, 5.78, and 5.79)
the trigonometric functions are represented by sg = sin~y, cg = cos~y, sp = sin;, cp = cosY;
and s2p = sin(2¢);).

[Ki] = [Kil; + [Kir]; + [ Kl + [Kv]; + [Kv]; + [Kvil; (5.69)

Matrix [K/], (Eq. 5.70) represents the effect of the contact stiffness itself, existing even on
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the frictionless case. The normal force containing friction related terms (Eq. 5.48) results friction
stiffness terms depending on i in [Kp;]; (Eq. 5.71). The difference from von Wagner ez al. (2007)
and Senatore et al. (2013) is the absence of the stiffness due to the normal load Ny = k;z., due to

the constant radius assumption made on Section 5.2.2.

59.(R?/2).82p + cg.R2.sp*  —cg.(R?/2).82p + sg.R?.sp* —R;.sp
(K1), = ki | —sg.R2.cp* — cg.(R?/2).82p cg.R?.cp? — sg.(R?/2).s2p  R;.cp (5.70)
—sg.R;.cp — cg.R;.sp cg.R;.cp — sg.R;.sp 1

—59.(1/2).82p + cg.cp® ¢g.(1/2).82p + sg.cp* 0
[Kr1); = pPhkize | —sg.sp> 4+ (1/2).cq.s2p cg.sp* + (1/2).59.52p 0 (5.71)
0 0 0

In undamped systems, friction force is included by matrix [K;;], (Eq. 5.72). It is influenced
by the relative speed between the element and the pressure plate and by the term h, which is half
of the height of the plate.

h.(—sg.R;.cp® — cg.(R;/2).52p) h.(cg.R;.cp® — 5g.(R;/2).s2p) h.cp
(K111, = pkisign(y — 0) | h.(—sg.(Ri/2).52p — cg.R;.sp?)  h.(cg.(Ri/2).s2p — sg.Ri.sp?) h.sp| (5.72)
0 0 0

5.5.2 Characteristics for Cardan coordinates

The relative movement assumption (Section 5.2.1) results in frictionless damped systems an
influence of cié on a stiffness matrix [K;y|, (Eq. 5.73). Here is a major difference in relation to
the literature (Chapter 3). Damped systems will change their stiffness according to the clutch disc
rotating speed 0. This additional influence is included in case of friction on [Kv|, (Eq. 5.74). This
is part of the innovation of this work, once that it does not appear on the formulations from von
Wagner et al. (2007), Fidlin et al. (2011) or Senatore et al. (2013).

cg.(R?/2).s2p — sg.R?.sp*  sg.(R?/2).s2p + cg.R?.sp* 0
[Kv], = cif | —cg.R2.cp® + sg.(R2/2).s2p —sg.R2.cp® — cg.(R2/2).52p 0 (5.73)
—cg.R;.cp+ sg.R;.sp —sg.R;.cp — cg.R;.sp 0

54



59.(R;/2).52p — cg.R;.cp®> —cg.(R;/2).82p — 5g.R;.cp®> 0
[Kv], = pheibsign(y — 0) | sg.R;.sp? — cg.(R;/2).82p —cg.R;.sp* — sg.(R;/2).s2p 0 (5.74)
0 0 0

Matrix [Ky |, contains the effect of the static equilibrium (Eq. 5.75). If the clutch disc is
rotating (§ # 0) this matrix contains circulatory terms that are influenced by the inverse of the
relative speed. It is a direct consequence of the approximation on the unitary vector of the tangent

relative speed (Eq. 5.42). Similar terms occur on the work from Fidlin et al. (2011).

. |—sg cg O
h2k; 2.0
[Kyil, =2 | g —sg 0 (5.75)
1y — 0
0 0 0

5.5.3 Element damping components

The element damping matrix [C;] (5.76) is composed by a pure damping matrix [C}]; (Eq.
5.77) and a friction related one [C;], (Eq. 5.78). The matrix [Cy;;]; (Eq. 5.79) depends on the
inverse o the relative speed v — 6 and represents the friction damping effect. Similar terms occur
on von Wagner et al. (2007), Senatore et al. (2013) and Fidlin et al. (2011).

[Ci] = [C1l); + [Cr1l; + [Crrrl (5.76)
sg.(R?/2).s2p + cg.R?.sp*>  —cg.(R?/2).s2p + sg.R?.sp> —R;.sp

=¢; |—sg.R:.cp? — cq.(R?/2).s2p cg.R?.cp* — sg.(R?/2).s2p  Rj.cp (5.77)
—sg.R;.cp — cg.R;.sp cg.R;.cp — sg.R;.sp 1

[C1]

h.(—sg.R;.cp® — cg.(R;/2).s2p) h.(cg.R;.cp? — sg.(R;/2).s2p) h.cp
(C11); = peisign(y — 0) | h.(—sg.(R;/2).s2p — cg.Ri.sp®)  h.(cg.(Ri/2).52p — 5g.R;.sp®) h.sp (5.78)

0 0 0
cg sg 0
h2kize
Cri1l; = M— —sg cg 0 (5.79)
Ri|y — 0|
0 0 O
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5.5.4 Excitation vector

The excitation vector { f;} (Eq. 5.80) takes into account terms that depend on k;z.:

kize R; sin; — phk;ze cos ;sign(¥ — 6)
{f:} = { —k;zeR; cos; — phk;z. sin;sign(y — 0) (5.80)

_kz Ze
5.5.5 Very important remarks on the stability study of this system

It is important to stablish here that the system presented on Eq. 5.68 which uses the element
matrices is a linear time-varying system. The relative position angle v); and the pressure plate
rotation y will result on changes on the inner structure of every element matrix. Future works
will involve the application of the Floquet Theory ( Nayfeh and Balachandran (2008), Bittanti
and Colaneri (2008)) to fully determine its stability regions. By now, this thesis will analyse the

eigenvalues of the linear system, assuming 7/; and -y as instantaneous angles.
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6 Hipothesis 1: Wobbling modes and characteristics of systems with
equal and symmetrically distributed elements

This chapter is intended to be the point of introduction for the wobbling movements of the
pressure plate under the assumption of Cardan coordinates. Fidlin (2006) provided an explanation
for the excitation of the phenomena in terms of frictional moments. Here, the distinction made
on Section 5.2.8 between constant/variable friction will be used to show how their moments may
excite the pressure plate on Sections 6.1.1 and 6.1.2.

The influence of the rotating speed, cushion stiffness, relative speed and viscous damping
will be gradually added to the system. It will provide the comprehension of the importance of each
matrix deduced in Section 5.5. The properties of systems with equal and symmetrically distributed
elements will serve as basis for the differences found with more complex cushion configurations

describe on Chapter 9 in case of positioning errors.
6.1 Rotating speed influence

Figure 6.1 shows a model of a pressure plate supported by four spring elements. If the

element are equal,the frictional moments, indicated by the pairs M fr M fr M fr
consg1 consgo consy

and M fr cancel each other.
CONSy2

ﬁf Tcons,, Mf Teons,,
— \“
ﬂMf Teons,, /
hL\ —
\' e
F’_ S v
f Tcons,, }v f/ ﬁ ‘K
— ‘\\ f Tcons,
freons,, — -

Figure 6.1: Constant moments under uniform normal load distribution.
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For equally spaced elements (1,0 = 0°, 90°, 180° and 270°) and imposing v = 0, wobbling
can be studied apart from the axial motion, as expressed in Eq. 6.1. It results from the contribution
of matrices [K|, (Eq. 5.70), [K;], (Eq. 5.71) and [K;]; (Eq. 5.72). Here, each component have
the same stiffness (k), radial position R and friction coefficient . . The friction damping terms from
Eq. 5.79 will be neglected at this point, with the consideration that the relative speed field remains
always tangent to the disc, in permanent slip and far from the coupling condition (Appendix A.1).

The gyroscopic matrix in this situation depends only on 7,..

L. 0 0] (& 0 I. 0] (a
0 I, 0| Bp+7|-L. 0 0|3+
0 0 m] |z 0 0 0]z
(6.1)
2R?* + 2u*z.h  2uRhsign(d) 0| [« 0
+k | —2uRhsign(y) 2R%+2u%z.h 0| S Bp =40
0 0 4] |z 0

The variable friction forces (explained on Section 5.2.8) are introduced inside the equations
of motion as skew symmetric terms. They express its interaction with the wobbling angles. The
comprehension of how they are interact with the pressure plate to result in Eq. 6.1 is given by the
analysis of the displacement on each angle separately. On the following examples, the disc rotating
speed is assumed as y > 0.

Positive « causes an inversion of ﬁfrm on the element positioned at 1)y = 90° due to the
decrease on the normal force (Fig. 6.2(a)). As a result, both forces induce a positive friction

moment on the disc on y3 (Eq. 6.2).

M
{Mfrvarx } — { 0 ] } (6.2)
Froary ) 1o, £0.5=0 2uRhsign(y)a

In a similar way of thinking, Figure 6.2(b) shows that a negative rotation in « results in

friction forces producing negative moment on y3 axis.
For 5 > 0 there is an inversion on the variable friction force on vy = 180° (Fig. 6.3(a)).

Consequently, negative friction torque is applied on x3 axis (Eq. 6.3).

{% f} _ {—2ﬂRhsign(7)ﬁ} 63
frvary 0

a=0,8#0
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Figure 6.3(b) represents that 5 < 0 results in friction forces producing positive torque on x3
axis.

It is important to emphasize here that, in al cases (Figs. 6.2(a), 6.2(b), 6.3(a) and 6.3(b)) the
constant friction moments cancel each other just like the case described in Fig. 6.1.

4 =1000 rpm # =0 rpm o = 0.3° 5 = 0°
Y3

< b

Constant Friction T
—Variable Friction l i\
~— Total Friction

“ Normal Force i

(a)

4 =1000 rpm & = 0 rpm o = -0.3° § = 0° F%
Ya

e

Constant Friction \

— Variable Friction l
— Total Friction

* Normal Force l

(b)

Figure 6.2: Variable friction force distribution for « > 0 and oo < 0 (4 > 0 and 0= 0).

59



4 =1000 rpm 8 =0 rpm o = 0° 5 = 0.3°
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Constant Friction |
——\ariable Friction k A
— Total Friction
Normal Force
-
(b)

Figure 6.3: Variable friction force distribution for 5 > 0 and 5 < 0 (4 > 0 and 6 = 0).

Figure 6.4(a) contains the variation of the modal properties for different rotating speeds
adopting m = 2 kg, R = 0.0875 m, z. = 0.00Im, x = 0.3 and h = 0.01 m. A total stiffness of
3 x 10 N/m is distributed on the 4 spring elements. Both frequencies present similar values for
very low rotating speed (185 Hz for a || = 1 rpm). As speed is augmented, the natural frequency
related to the unstable mode increases up to 220.9 Hz at || = 2000 rpm. On the other hand, the
stable mode presents a natural frequency of 154.8 Hz at || = 2000 rpm.
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The increasing rate of the natural frequency of the unstable mode was found to be 0.019
Hz/rpm at 2000 rpm (Fig. 6.4(b)). For the stable mode, this derivative was calculated as -0.013
Hz/rpm at 2000 rpm. These results will be important later on Section 8.1. Figure 6.4(c) shows the

real part of the eigenvalues, emphasizing that instability occurs due to a positive real part found

near 20.
240 ‘ 002
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—— Unstable 2 o015
~ 220r :
T T 01l
2 2
qc) 200+ E 0.005
= 5 o
e >
= 180y 2 _0.005
5 g — Stable
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Z 160t =
5 -0.015}
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-20
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()
Figure 6.4: Natural frequencies of the system in Eq. 6.1.
The free response of the system is calculated by the combination of its modes as shown in Eq.

6.4. Variables d; and d; form complex conjugate pairs of numbers that account for the contribution

of each vibration mode.

t X Xy X Xy )
a(t) =d 3" L ;! Mt 4 dy g 7 M2t 4 a3 eAat (6.4)
B(t) Xo1 Xo1 Xoao Xoo
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A specific mode response is shown in Eq. 6.5, by setting to zero the contributions d; d; of
other modes. It is necessary to manipulate the real (Re({X;})) and imaginary part (Im({X;})) of

the eigenvector as well as the complex components of d;. The eigenvalue is written as \; = 0;,+jw;:

{x(t)} = di {X;} N+ a7 (X7} N
= [Re(ds) + j Im(d)] [Re({X,}) + j Im({X;})] el T Js)l
+ [Re(d;) — j Im(d;)] [Re({X}) — j Im({X;})] e —J=)! (6.5)
= 2¢7" {[Re(d;) Re({X;}) — Im(d;) Im({X;})] cos it +
— [Re(d;) Im({X;}) + Im(d;) Re({X;})] sin it}

6.1.1 Stable motion - Backward wobbling for 5 > 0 and 6 = 0

Complex eigenvectors where obtained for different rotating speeds. The results were rep-
resented based on the eigenvector associated to eigenvalues with positive imaginary part ( \; =
o + Jjwi).

With 4 > 0, there is Xy = j (Fig. 6.5(b)), while X;; = 1 in all situations (Figs. 6.5(a)). It
means that on the stable mode shape [ presents a phase shift of 90° in relation to a (Eq. 6.6).

X 1 1
B S 7\ ¢, fory >0 (6.6)
Xo1 J eXp (] 5)

Substituting Eq. 6.6 on Eq. 6.5 it is possible to obtain the free response of the stable mode in
Eq. 6.7. By choosing Re(d;) = 0 the expression is simplified to Eq. 6.8. Equation 6.9 represents
the angular wobbling speeds calculated from the differentiation of Eq. 6.8.

AW\ _ oot e ! —Im 0 oS w;
{ﬁu)}_% {R(dl){o} I (dl){l}] o o
Re(d;) {(1)} + Im(d;) {é}] sinwit}

alt) | _ —9%i 1 sin w;t
{ﬁ(t)} - tmn(ch) {Sin (it + 900)} (6.8)
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Figure 6.5: Complex stable mode shape for v > 0 and 9 = 0. Eigenvalue with positive imaginary
part ( \; = o; + jw;).

alt)| oit | ) sinwt ) —coswit
{ﬁ(t)} =2¢7" Im(d,) [ 7i {cos w,-t} M { sin w;t }] (69)

Decaying responses of the system in terms of displacement and speed are shown in Figs.
6.6(a) and 6.6(b), respectively, for a natural frequency of 169.2 Hz.

15 ‘ ‘ ‘ ‘ ‘ 30

—a

20f — 5]

—_

Displacement [°]
o

Angular speed [rad/s]
o

-0.5 -10}
-1 -20
-15 : : : : : -30 : : : : :
0 0.01 0.02 0.03 0.04 0.05 0 001 0.02 0.03 0.04 0.05
Time [s] Time [s]

(a) (b)

Figure 6.6: Displacement free response after 10 complete periods (Fig. 6.6(a)) and angular speeds
(Fig. 6.6(b)) for d; = 0.015, ¥ = 1000 rpm and 6 = 0.

Besides the mathematical notation previously presented in Eq. 6.6, it is necessary to give a
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physical explanation for the stability of this mode shape. Combining the variable friction estab-
lished in Egs. 6.2 and 6.3 the system is excited by the friction related torque provided by Eq. 6.10.
This moment can be normalized if it is divided by 2pRh. The result can be explicitly written in Eq.

6.11 by substituting the expression of displacements (Eq. 6.8).

M —
frvarac = 2uRhsi 3 { 6(t)} (610)
{Mfrvary } g Szgn(/)/) a(t)

M B .
fToars _ PO ot gy d T (6.11)
Mf?"@ary normalized Oé(t) - WZt

Figure 6.7(a) presents the angular speed & with M Froars’ while Fig. 6.7(b) shows the relation
in time between (3 and M Froary” It is possible to see that the friction moments are always opposed
to the motion of the disc. The variable component of the friction force introduced in Section 5.2.8

expresses the role of friction on this system. It is the reason why amplitudes decrease with time.

50 T = °% 50 ———————————0.0458
i —
=" froar, | —Mfrar,
3 £ 3 Z,
& = 3 2
g m g :
3 53 g
5] =] o
0 10 = 0 0 L
7 3 @ 3
5 N 5 2
= < 5 =
2 g =) %
<< S < s
% 001 002 003 004 005 % % 001 002 003 004 005 048
Time [S] Time [S]

(a) (b)

Figure 6.7: Angular speeds and variable friction in x and y directions (Figs. 6.7(a) and 6.7(b)) for
d; = 0.017, 4 = 1000 rpm and 6 = 0.

One period of motion is depicted in terms of angular displacements and friction forces in
Figs. 6.8(a) and 6.8(b), respectively. They are totally related once that every instant labelled as
a, b, c,... iis represented as wobbling condition of the pressure plate in Fig. 6.9. For a observer
situated on the global reference frame xyz, the axis z3 seem to move against the direction given by

the rotating speed - as presented in Figs. 6.9(a), 6.9(c), 6.9(e) , 6.9(g) and 6.9(i). In analogy to the
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field of rotordyamics ( Muszynska (2010), Childs (1993) and Genta (2007)), this pattern could be
interpreted as a backward wobbling. The friction force distribution in these cases was presented in
detail in Figs. 6.2 and 6.3 once that only one friction moment component is acting on the system.

Intermediary states are presented by Figs. 6.9(b), 6.9(d), 6.9(f) and 6.9(h) where the friction
forces configurations are represented right bellow each one of them. As it is possible to visualize
in Figs. 6.8(a) and 6.8(b), these are conditions where both M FTvars and M Froary are acting on the
disc simultaneously.

From Fig. 6.9(a) to 6.9(c) the disc moves from @ = 0° to & < 0 and from 8 < 0 to
B = 0. Meanwhile, Fig. 6.9(b) shows that the variable friction forces generate moments such that
M Froa, = 0 and M FTar, < 0. In sequence, the disc changes its position from Fig. 6.9(c) to
another state where « = 0 and # > 0. During this process, Figure 6.9(d) presents M Froar, < 0
and M Froar, < 0.

Between Fig. 6.9(e) to 6.9(g) the disc moves from o« = 0 to o > 0 and from 3 > 0to 8 = 0,
while the friction moments are oriented as M Froar < 0and M FToar, > (. Finally, the disc returns
to its initial position from Fig. 6.9(e) to 6.9(1). The coordinate « decreases from o« > 0 to o« = 0
while M Froar, is positive (Fig. 6.9(d)). Angle § becomes negative while M Froar, 1S positive.
During the whole period, the variable friction forces always produced torque in opposition to the

movement.
1.5p ‘ ‘ ‘ 0.03y ‘
i b d f h T 0.027a b ¢ d e f g h
= Z
g L o ,
= 0.5 3 0.01
S 8
e 0 s 0
< @
a N
@ -0.5 © —0.01 i
(@) — g — " frvar,
-1t 2 -0.02f y
—p = —A[frvary
-1.54 : : : -0.03" : ; !
50 2 4 6 0 030 2 4 6
Time [s] %107 Time [s] x 107

(a) (b)

Figure 6.8: Stable free response viewed in detail in Fig. 6.8(a) and normalized moments (Fig.
6.8(b)) (d; = 0.017, 7 = 1000 rpm and 6§ = 0).
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6.1.2 Unstable motion - Forward wobbling with 4 > 0 and 6=0

Looking on Figs. 6.10(a) and 6.10(b) it is possible to see that the unstable mode is expressed
by Eq. 6.12, where [ presents a phase shift of -90° in relation to a.

X 1 1
Pl={ " 1= T\ §,fory >0 (6.12)
Xoo —J exXp <—]—>

2
1 [—Re(X
1 e(X,,)
—Imag(X,,)
0.5¢ ] 0.5 =
0 0
-0.5¢ _Re(X12) -0.5
4l _Imag(X12) | 1
0 500 1000 1500 2000 0 500 1000 1500 2000

Disc rotating speed [rpm]

Disc rotating speed [rpm]
(a) Mode element X5

(b) Mode element X5

Figure 6.10: Complex unstable mode shape for ¥ > 0 and 6 = 0. Eigenvalue with positive
imaginary part ( \; = 0; + jw;).

Substituting Eq. 6.12 on 6.5 the free response of the unstable mode is calculated (Eq. 6.13).
This expression is simplified to Eq. 6.14 using Re(d;) = 0.

{aa)} _ it {
B(t) 0 (6.13)
Re(ds) {(1)} — Im(ds) {(1)}] sinwit}

olt) _ 9.0t sin w;t
{ﬁ(t)}_ e (d2>{sin(wit_900)} (6.14)

Figure 6.11(a) presents the increasing displacement response of the system while Fig. 6.11(b)
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shows its angular speeds according to Eq. 6.15:

— si it it
inw }_wi {@w H 615
cos w;t sin w;t

Displacement [°]

Angular speed [rad/s]

0 001 002 003 004 0 001 002 003 004
Time [s] Time [s]

(a) (b)

Figure 6.11: Displacement free response after 10 complete periods (Fig. 6.11(a)) and angular
speeds (Fig. 6.11(b)) for d; = 0.017, ¥ = 1000 rpm and 6 = 0.

The normalized friction force is shown in Eq. 6.16 following the same procedure done in the
previous section. The results from Figs. 6.12(a) and 6.12(b) reveals that the friction moments act in

favour of motion, once that M fr acts in phase with & as well as the torque M fr according
varx vary

to (3. This is the physical explanation behind the instability indicated by the positive real part of the

M o _ .
frvara = BlH) = 2¢0il Im(d;) C?S @it (6.16)
Mfrvary normalized Oé(t) et

Like the previous case, the points indicated as a,b,... i on Fig. 6.13(a) are represented physi-

eigenvalue.

cally in Fig. 6.9. The complete time period is lower than the one presented in Fig. 6.8(a) once that
the unstable mode has a greater natural frequency of 201.9 Hz.

The sequence shown in Figs. 6.14a, 6.14c, 6.14e, 6.14g and 6.141 represent that the axis 23
seems to move according to the sense of the angular speed 7. Details of the friction distribution in
these cases are found on Figs. 6.2 and 6.3.

In Fig. 6.14a the disc is a position where a = 0 and 8 > 0. During the motion to Fig. 6.14b
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Figure 6.12: Angular speeds and variable friction in x and y directions (Figs. 6.12(a) and 6.12(b))
for d; = 0.01;, ¥ = 1000 rpm and ¢ = 0.

(. = 0 and 8 = 0) the variable friction forces generate M Froar < 0and M FToar, < 0, that act in
favour of the movement. The same occurs when the disc moves from Fig. 6.14c to 6.14e (o« = 0
and $ < 0). Figure 6.14d presents M Froar, = 0 and M Froar, < 0. The body performs a positive
rotation around axis x3 simultaneously with a negative rotation on axis ys.

From Fig. 6.14e to Fig. 6.14g (o < 0 and 8 = 0) the disc presents positive rotations on both
axis with M Froar, > (0and M Froar, > ( (Fig. 6.14f). It is returning to the original position when
it goes from Fig. 6.14g to Fig. 6.14i (8 > 0 and o = 0). The friction forces are arranged such
that M/ Froar, < 0 and M FToar, >0.
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Figure 6.13: Unstable free response viewed in detail in Fig. 6.13(a) and normalized moments (Fig.
6.13(b)) (d; = 0.017, ¥ = 1000 rpm and 6 = 0).
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6.2 Stiffness and relative speed influence

The friction damping effect was included in Eq. 6.1 using [C};;], (Eq. 5.79). The equations
of motion are presented in Eq. 6.17. The friction damping terms are included as the matrix terms
c11 = ¢ (Eq. 6.18). The matrix [Ky/] ; (Eq. 5.75) introduces new skew symmetric terms that
depend on the inverse of | — 6] on (Eq. 6.19).

L. 0 0] (a 0 I, 0 cn 0 0 é
0 I, 0|Bp+|7|-L. 0 0[+|0 cpn 0 B g+
0 0 m| |2 0 0 0 0 0 0 :
(6.17)
2R? + 212z, h k1o 0] ([« 0
+k —]{321 2R2+2M226h 0 B == 0
0 0 4] 2 0
puh?kz,
C11 = Co9 = 4— (618)
Ry — 0|
: h2kz0
ki = ko = 2uk Rhsign(s — §) + 427157 (6.19)

Ry - 0|

Figure 6.15 contains the natural frequencies if the total cushion stiffness is increase from 1
to 107 N/m. The rotating speeds were adopted as i = 2000 rpm and 6 =0 rpm. Such results
are similar to the ones obtained by Senatore et al. (2013). The forward wobbling mode presents
the greatest values even for low stiffness. Section 5.1.3 presented that this system is semi definite,
with a zero frequency. As a result from that, the backward wobbling mode starts with extremely
low frequencies (Fig. 6.15(b)) that grows up to figures from the forward mode. The axial mode
is also strongly influenced by this parameter. The real part of the forward mode increases with
this stiffness, specially after 10* N/m. The axial mode is stable and conservative, once that friction
damping occurs only for angular degrees-of-freedom.

Figs. 6.15(d) and 6.15(e) contains the results keeping the pressure plate speed as < = 2000
rpm and varying the clutch disc rotating speed between 0 rpm < 0 < 1990 rpm and 2010 rpm <
6 < 4000 rpm. Natural frequencies are not affected by the clutch disc speed, as presented in Fig.
6.15(d). In this case, the axial mode shape have an intermediate value between the backward and

forward wobbling modes.
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Figure 6.15: Natural frequencies according to cushion stiffness in linear (Fig. 6.15(a)) and log-
arithmic (Fig. 6.15(b)) scales. Figure 6.15(c) contains the real part of the eigenvalues. Natural
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The relative speed (7 — 0) affects the stability. On the verge of coupling, no matter the
condition, both wobbling modes have negative real parts on its eigenvalues. This is the consequence
from the friction damping effect (von Wagner et al., 2007). The skew symmetric stiffness terms
multiplied by 6 on Eq. 6.19 become greater when |y — 9] — 0 with 0 # 0, which could increase
the variable friction terms. In this case, the damping from Eq. 6.18 prevails. There are limitations
on the range of usage of this element, that are found in Appendix B.1. For v — 0 > 0, the forward
mode is unstable, but if the relative displacement changes its signal, it is stabilized, while the
backward mode presents positive real parts on its eigenvalues. Hervé et al. (2008b) produced such
results by changing the signal of the circulatory action (Section 3.2.4). Once again, the axial mode

is not affected by the relative speed.
6.3 System with viscous damping effects

To create the model from Eq. 6.20 damper and stiffness elements were equally distributed
around the perimeter of the disc (1/;o = 0°, 90°, 180° and 270°). This condition is theoretical, with
the assumption of ;4 = 0 on Eq. 6.17. The skew symmetric terms 20cR? on the stiffness matrix
are contributions from [Ky |, (Eq. 5.73), which are related to the moving viscous damper element

(Section 5.4). Section 6.4 will present a combination with friction.

I 0 0] (a 0 L. O] 2R 0 0 &
07 0|<Bp+]|5|-L. 0 0|+] 0 2R* 0 B+
00 m| |z 0 0 0 0 0 dc 3
SNt R (6.20)
2kR2  2¢R%0 0 a 0
+ | =2¢R% 2kR?2 0| <87 =<0
0 0 4k_ z 0)

Figure 6.16 presents the natural frequencies with ¢ =5 Ns/m and a total cushion stiffness of
3 x 10 N/m. The disc has a rotating speed of & = 2000 rpm. In this situation, the frequency of the
forward wobbling mode occurs above 60 Hz, while the axial and backward modes presented very

low frequencies.
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Figure 6.16: Eigenvalue real parts (Fig. 6.16(b)) and natural frequencies (Fig. 6.16(a)) for a system
with viscous damping without friction for ¢ = 5 Ns/m and a total cushion stiffness of 3 x 10? N/m.

The observation of the real part of those eigenvalues (Fig. 6.16(b)) lead to the following

observations:

e For vy — 0 < 0, the rotating speed of the elements () is greater than the one on the pressure
plate (7). With v — 0 < —2000 rpm, the forward wobbling motion is unstable, while the

backward and axial motions remain stable.
e With —2000 rppm < 4 — 6 < 2000 rpm the system is stable.

e When(O < 7 — 6 < 2000 rpm the rotating speed of the elements is lower than the one on the

pressure plate but on the same direction.

e With 4 — 0 > 2000 rpm the backward motion is unstable. This condition is theoretical, be-
cause it is necessary to assume an inversion on the direction of rotation of the damper/stiffness

elements when < = 2000 rpm.

The damping factors ((; = — Re(\;)/|\:|) are presented in Fig. 6.3 in terms of percentage. It
is possible to observe that modifications on 9 changes the damping factor for the backward mode
when 4 — § becomes closer to 2000 rpm. The axial motion presents a constant characteristics. The
forward wobbling have very low levels of |(;|, indicating that the unstable response will have a slow

increase rate.
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Figure 6.17: Eigenvalue damping factors for a system with viscous damping without friction for c
=5 Ns/m and a total cushion stiffness of 3 x 10> N/m.

The damping efforts due to the movement of the viscous damper elements on Eq. 6.20 are
given by Mmm, (Eq. 6.21):

M, = {Mm} — —2cR29'{ BlH) } (6.21)
M0, —a(t)

The time response for the backward/forward motions can be obtained as Eq. 6.5. For d; =
0.001, v = 2000 rpm and 6 = 6000 rpm , the backward response is presented by Fig. 6.18. The
torque components M, .., and M, are opposed to the wobbling speeds ¢ and 3 on Figs. 6.18(a)

and 6.18(b), respectively. On the other hand, such torques act in favour of the forward motion on
Figs. 6.19(a) and 6.19(b).
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Figure 6.18: Backward wobbling motion (Figs 6.18(a) and 6.18(b)) Parameters considered as 7 =
2000 rpm and 6 = 6000 rppm (c = 5 Ns/m and a total cushion stiffness of 3 x 10? N/m).
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Figure 6.19: F(_)rward wobbling motion (Figs. 6.19(a) 6.19(b)). Parameters considered as v =
2000 rpm and 6 = 6000 rpm (c = 5 Ns/m and a total cushion stiffness of 3 x 10? N/m).

The sequence on Fig. 6.20 results from the combination of configurations obtained on Section
5.4 (Figs. 5.17 and 5.19). The forward wobbling is excited by the vertical damping forces (indicated

as F,,), that result on M,,,,, and M,y,,,,. In every condition, such efforts act in favour for the next

position.
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Figure 6.20: Damping efforts for unstable motion due to the moving viscous damper element on

Cardan coordinates (5 # 0 and 6 # 0).
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6.4 System with viscous damping and friction

Viscous damping was included in Eq. 6.17 resulting in Eq. 6.22. Matrices [C], (Eq. 5.77)
and [C7],; (Eq. 5.78) are responsible for new terms on c1; = c92 (Eq. 6.23) and ¢12 = c21 (Eq. 6.24).
Matrix [Ky |, (Eq. 5.74) result in a new term involving the clutch disc rotating speed 0, damping
and friction on k11 = koo (Eq. 6.25). The terms from [Ky], (Eq. 5.73) appear on ko = ko (Eq.
6.26), as presented on Eq. 6.20. Friction coefficient of ;x = 0.3 is considered.

I 0 0 & 0 L. 0 cii ci2 O a
01 0|<Bp+|5|-L. 0 0|+ |—co e O B+
0 0 m Z 0 0 0 0 0 4c Z
) (6.22)
ki ki O o 0
+ —]{721 ]{722 O ﬁ - 0
0 0 4k| |z 0
ph?kz, 9
C11 = C92 — 4 : + 2cR (623)
[y — 0]
C12 = o1 = 2ucRhsign(¥ — 9) (6.24)
ki = koy = 2kR? 4 21k z.h — Quhcésign(ﬁ - 9) (6.25)
: h2kz.0 :
ks = ko1 = 2ukRhsign(% — §) + 4% + 2cR%) (6.26)
/y —

Depending on the values involved on the friction contact the effect from the moving viscous
damping can prevail on this system. For example, Figures 6.21(a) and 6.21(b) present the natural
frequencies and eigenvalue real parts with ¢ = 5 Ns/m and a total cushion stiffness of k.ysnion =
3 x 102 N/m. Those results are practically the same as the ones from Fig. 6.16.

If the cushion stiffness is increased to 3 x 10% N/m with ¢ = 5 Ns/m, the natural frequencies
and real parts (Figs. 6.21(c) and 6.21(d)) are very similar to the case on the previous section (Fig.
6.2).

Increasing the damping to ¢ = 30 Ns/m, all eigenvalues are found with negative real parts

(Fig. 6.21(f)), but unaltered in terms of frequency (Fig. 6.21(e)). The damping influence for
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stabilization was tested by Hervé et al. (2008b). Figure 6.21(f) shows that, greater values of
viscous damping allow the influence of the clutch disc rotating speed ( 0) on the real parts of the
eigenvalues. It is caused by the terms related to the moving viscous elements introduced on Egs.
6.25 and 6.26.

The simulations on Figs. 6.21 indicate two different mechanisms for self excitation on this

model:

1. a combination of viscous damping with very low levels of cushion stiffness or friction re-
sulted on instability of the plate, due to the forces produced by the movement of the damper
element. The physical explanation for the efforts were presented on Sections 5.4.1, 5.4.2 and
6.3. An important point is that this is not related to friction, but to the shape of the elements

and the assumption of rotation on the element.

2. low damping in comparison to the stiffness resulted on wobbling motions, excited by friction
related moments. This case was carefully detailed on Section 6.1 and documented in all the

works from Chapter 3.

There are no traceable works on the physical model of energy dissipation on the interaction
between the cushion springs and the facings. The assumption of viscous damping was arbitrary on
this thesis, but it includes a representation energy dissipation on the model with physical meaning.
With another arbitrary assumption of proportional damping, the dependence on the rotating speed
of the disc 0 disappears. Even so, this is a theoretical advance on the subject, once that such
phenomena was not documented on the clutch squeal literature and cannot be reproduced by any

of the models from Chapter 3.
6.5 Chapter summary

The observations from this chapter are separated into different physical domains:
6.5.1 Rotating speeds

The system modelled on Cardan coordinates presented the following characteristics (7 # 0
and 0 = 0):

e The natural frequency of the unstable mode was greater and increased with the rotating speed.

It was represented as a forward wobbling mode.
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e The stable mode presented a backward motion, with a natural frequency that decreased with

the rotating speed .
6.5.2 Relative speed

The relative speed resulted on the following conditions on the simulations:

e Friction damping stabilized both models near coupling conditions, according to the findings

from von Wagner et al. (2007).
e The axial mode remained stable for all situations

e Due to the modification on the direction o friction moments, the forward mode was unstable
for v — 0 > 0. Such relations were first proposed by Hervé et al. (2008b). The backward

mode became unstable for ¥ — 0 < 0.
6.5.3 Stiffness

From the previous simulations it was possible to verify that, for low stiffness:

e On Cardan coordinates, low values of cushion stiffness influenced the backward wobbling

and the axial modes.
For high cushion stiffness, the following behaviour was observed:

e On Cardan coordinates, the forward/backward/axial mode frequencies increased but remained

distant from each other.

e Greater values of stiffness increased the real part from the eigenvalue for the forward mode.
6.5.4 Viscous damping

e Viscous damping introduced instability for low levels of cushion stiffness. The rotating speed

of the disc 6 altered the behaviour of the real parts of the eigenvalues.
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7 Hipothesis 2: Model considering the rotating speed on global coor-
dinates

By choosing this representation, the model present results based on the influence of the pre-
cession speed during operation. Although Hervé ef al. (2008b) and Hervé et al. (2009) did not
specify in detail the procedures to obtain the equations of motion, the author found similar inertia
matrices adopting the rotating speed on global coordinates.

First, Section 7.1 presents the rigid body formulation of the pressure plate for Hypothesis 2.
The necessary steps to obtain the stiffness/viscous damper element with friction are provided on
Section 5.2, followed by the efforts due to the movement of the viscous damper element (Section

7.3). Finally, the element matrices are described on Section 7.4.
7.1 Pressure plate model

The proper sequence of rotations using the matrices presented on Section 7.1.1 result on the
angular speed and accelerations on Section 7.1.2. Hervé et al. (2008b) and Hervé et al. (2009)
used a similar formulation, but here it will be shown on Section 7.1.3 that this system is not only
influenced by the rotating speed as presented on Section 5.1.3 (Hypothesis 1) but also by the angular

acceleration.
7.1.1 Rotation matrices

Angle v (Fig. 7.1(b)) originates a rotation matrix for 2’ axis [RW}T to transform a vector 07j

from the coordinate system z'y’z’ (Fig. 7.1(a)) to | y] 2], represented as 177 (Eq. 7.1). The inverse

transformation is calculated by Eq. 7.2.
=R o (7.1)
o’ = [R,] 77 (7.2)

A rotation given by /3 (Fig. 7.1(c)) moves the representation from x|y} 2] to x4y, z5 (Eq. 7.3),

while the inverse transformation is given by Eq. 7.4.
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o1 = [Rg]" 77 (7.3)

7 = [Rg] o7 (7.4)

Finally, the angle v (Fig. 7.1(d)) is used to provide a rotation around the x’ axis from x/,y}2}

to x4y, 2% according to Eq. 7.5. The inverse relation is shown in Eq. 7.6.

—

o7 = [Ro)T o1 (7.5)

o7 = [Rg)] 41 (7.6)

As aresult, a vector can be expressed on global coordinates using Eq. 7.7. The matrix [R,]

is shown in Eq. 7.8.

o = [By][Rs][Ral 57 = [Ryga] 57 (7.7)

cosfcosy —cosasiny +sinasinfcosy  sinasinvy + cos asin fcosy
[Ryga] = |cosBsiny cosacosy+sinasinBsiny —sinacos 3 + cosasin §siny (7.8)

—sin 8 sin « cos 3 cos o cos 3
7.1.2 Angular speeds and accelerations

The full expression of the angular speeds (Eq. 7.9) and accelerations (Eq. 7.10) are necessary

for the equations of motion describing the wobbling movement of the pressure plate.

10 —sin B & W
3@ =10 cosa sinacosB| QB =4 Wy (7.9)
0 —sina cosacosf 0 3W
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1 0 —sin a 0
Y] . s .
W =10 cosa sinacosf B¢+ | cosacosf
0 —sina cosacosfB| | —sinacos 8
0 3ww/
—af {sina p = 4 3wy
CoS v 3W

N
i

©)

—sinacos 8

—cosasinf3

—cos 3

(d)

Figure 7.1: Rotations assumed on the model keeping the rotating speed on global coordinates.
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7.1.3 Inertia components and modal properties

The body modelled in these coordinates presents more inertia effects than the previous one

(Eq. 5.12). The coordinates are considered as {p}T = {a ﬁ}T. Equation 7.11 shows a mass
matrix [M] (Eq. 7.12) and a gyroscopic one [G] (Eq. 7.13), that depends on all inertia moments
Iy, Iy and L. It also has the contribution of matrix [H; ()] (Eq. 7.14), which includes terms
that depend on + on the stiffness matrix. Even the disc acceleration have influence on its behaviour,
expressed through the term [Hy ()] (Eq. 7.15). It occurs that I,/,r = I, < I, for the disc
(Eq. 5.19 and 5.20) so matrix [Hs(¥)] is skew symmetric but its non diagonal terms have opposite

signals compared to the ones found on [G] (Eq. 7.13). The term [H2(%)] is not found on Hervé
et al. (2008b) or Hervé et al. (2009).

[M]{p} + [G]{p} + ([H1()] + [H2(9)]) {p} = {0} (7.11)
[M] = [I’”O“” ij/] (7.12)

H(3)] = 57 [1 ;Iy/y/ » E ]W)] (7.14)
[Hy(3)] =4 [ ij/ _Igz] (7.15)

The modal properties of the system are found by Eq. 7.16 assuming [,/,» = I, = I and
an eigenvalue )\;. The numerical examples will use the data from Section 5.1.3. Non trivial solu-
tions are obtained imposing a determinant different from zero, which results on the characteristic

polynomial shown in Eq. 7.17.

AN (21 — Liy) + 51 IN2 442 (L — 1) Xy 0 ‘

[IN + 42 (Lo = D]” 4+ A (21 = L) #4117 = 0 717

Equation 7.17 can be separated into Eqgs. 7.18 and 7.19:
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[z’z’ . —. Iz’z’ .. ._
A3+M< - —2)]+ 72( 7 —1>—w =0 (7.18)

. Iz’z’ . -. [Z/Z/ . .-
)\?—M( . —2>g+ 72( ; —1)+w ~0 (7.19)

The solutions from Eq. 7.18 are given by Eq. 7.20. They depend on A (Eq. 7.21), a
complex parameter where the rotating speed affects its real part and acceleration has influence on
the imaginary portion.

;Y Iz’z’ . \/Z
e —2|jE— 7.2
(@) - o
_[// 2 . ]// 4 .
A:_”'YQ('Z;) +4;>'/j:’A‘€J¢: ;y4 (%) —1—16*}2 em (7.21)

The phase angle from Eq. 7.21 may assume different values according to the rotating speed

and acceleration:
o /2 < ¢ <m,ify#0andd # 0 (Fig. 7.2(a)).
e o =m/2,if ¥ = 0and 4 # 0 (Fig. 7.2(b)).

e ¢ =m,if 4y # 0and 4 = 0 (Fig. 7.2(c)).

Im Im Irp
Nt E
'\_ > Re > Re 4+— > Re
A
(@A) ¥#0andy #0 (b) y=0and ¥ #0 (c)¥#0andvy =0

Figure 7.2: Parameter A (Eq. 7.21) for different conditions of acceleration and rotating speeds.

Applying the same procedure done to Eq. 7.18 in Eq. 7.19 and combining the results, a pair
of stable (Eq. 7.22) and unstable (Eq. 7.23) eigenvalues are obtained.
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VIA
AL, A = — | |cos(

2

o |-
N————
H
[
——

% lz _ f] _ VAT (?)} (7.22)

Ao, A = 2] s (%) 4 {% {2 - [} L VAL (?)} (7.23)

7.1.4 Stability for ¥ = 0 and 7 # 0

If the disc is at constant rotating speed, A is a real number (Fig. 7.2(c)), resulting in two
pairs of pure imaginary eigenvalues (Eqs. 7.24 and 7.25). The non accelerated system presents an

oscillatory behaviour.

YT [//_ A
Al,/\}‘:ij{z g L) | VIA ’} (7.24)

2 |°T T | T2
. y [ ]z’z’- A
AQ,A;:iJ{% 2- = ——V|2|} (7.25)

One of the natural frequencies match the first order (Eq. 7.27) while the other can be found
quite close to this value (Eq. 7.26). They can be visualized in Fig. 7.1.4.

. ]Z/Z/
om =l = X = 1] (52 - 1) 7.26
e = el = ] = I .27

7.1.5 Stability for ¥ = 0 and ¥ # 0

In this case, the eigenvalues are presented at Eq. 7.29 and 7.28 for 0 < 4 < 2000 rad/s>.
The purely accelerated system is unstable. An important event is that now they both have the same
natural frequency, indicated by Eq. 7.30 and plotted in Fig. 7.4(a). In this situation, the eigenvalues
keep their characteristics over the whole acceleration range ( Fig. 7.4(b)).

e |
i, A = —V2W| (—1%7) (7.28)
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Figure 7.3: Natural frequencies for v = 0.
2}7|

Ao, Ay = Y0 (1) (7.29)

Wny = Wny, = V A (7.30)

The condition with & # 0 and 7 = 0 is very specific, happening on the verge of movement
(t = 0 s) or when the disc is changing its rotating speed direction from v > 0 to v < 0 or the other
way round. It is helpful to indicate asymptotic behavior when 7 — 0 and 7 # 0.

8 w w w 40

Natural frequency [Hz]
N
Eigenvalue real part

. . . _4 . . .
0 500 1000 1500 2000 0 500 1000 1500 2000
Disc acceleration [rad/sz] Disc acceleration [rad/sz]

(a) (b)

Figure 7.4: Natural frequencies (Fig. 7.4(a)) and eigenvalue real part (Fig. 7.4(b)) for 4 = 0.
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7.1.6 Stability for 7 # 0 and 7 # 0

For this general case, Equation 7.31 shows that the unstable mode has a natural frequency
greater than the stable one due to the negative signal that follows the term that is multiplied by * in
Eq. 7.32:

wny = [Ao] = || =

N | —

1/2

1 sin (g) } (7.31)
1/2

] sin (%) } (7.32)

Fig. 7.5(a) presents the natural frequencies for an acceleration of 2000 rad/s?>. For lower

. Iz’z’ 2 . ]z’z’

L1 o [ Lo 2 L.
wm=|A1|=|A1|=§{|A|+72[ 7 —2] ARV l2— 7

speeds, the influence of acceleration prevails (Section 7.1.5) and the absolute value of the eigenval-
ues occur nearby /% (Eq. 7.30). As speed increases, the frequency w,,, (Eq. 7.31) occurs near the
first order (Section 7.1.4). Figure 7.5(b) shows that the positive part of eigenvalue )\, is greater for

lower rotating speeds. Increase + reduces the instability level of this system.

35 ‘ ‘ ‘ 40
1x
30¢
N =
L. o5l g 20f
= 25 Q
[3y)
& 20/ o
o 2 0
[0 =
£ 15} g
© c
2 10 .-
— o -201
z V1A
S5p 1
0 : : : -40 : : :
0 500 1000 1500 2000 0 500 1000 1500 2000
Disc rotating speed [rpm] Disc rotating speed [rpm]

(a) (b)

Figure 7.5: Natural frequencies (Fig. 7.5(a)) and eigenvalue real parts (Fig. 7.5(b)) for 4 = 2000

rad/s?.
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7.2 Modelling a rotating spring/viscous damper element with friction

The same sequence presented in Section 5.2 is followed to deduce the rotating element. Here
the coordinate system shown in Section 7.1 will be used. First, the elastic and damping forces are
defined on Section 7.2.1. Then, the relative motion between the element and the pressure plate
is calculated on Section 7.2.2. The tangential relative speed and its approximated expression is

deduced is on Section 7.2.3. Friction and normal forces are discussed on Section 7.2.4.

7.2.1 Elastic and damping forces

- T
On coordinates z45y5 25, there is the position vector ;17¢o = {RZ- cost; R;sini; —h} ,

assuming the constant contact radius from Section 5.2.2. The procedure for the determination of
contact forces is the same as the one as the case in Cardan coordinates. The total displacement
o7 0, (Eq. 7.33) is obtained by adding a negative displacement (7’ of point G in relation to the
system origin. The stiffness and damping efforts are given by Eqgs. 7.33 and 7.34, respectively.

! ! /
0"0Q, = oroa. T o cQ,

(7.33)

= — (24 2.) —sin fR; cos; + sina cos BR; sin; — h cos acos B
oF" = ki[=h — ot opr . k = o F'i (7.34)
oﬁ,cz' =G [_ 07;,OP’Z] k= [)F/ci]; (7.35)

7.2.2 Relative motion between the element and pressure plate

The friction element/clutch disc rotating speed is calculated on the coordinate system x%y5 25

as Eq. 7.36:

0 —sin 3
2w = [Rysa]T {0 p =6 sinacos B (7.36)
0 cos o cos [

The rotating speed component of the disc (Eq. 7.37) comes from Eq. 7.9 presented on Section
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aWy = 7y cosycos B — Bsina (7.37)

Following the methodology from Section 5.2.4, Equation 7.38 shows that in this case the

relative angular speed depends on the wobbling speed 3 as well as on 4 and 0:
i = — (3wz/ — 3w:iz) =— [(7 — 9) cos v cos 3 — Bsin oz] (7.38)
7.2.3 Approximation of the tangential speed at contact point

With the simplification step similar to the one found in Section 5.2.5, the relative tangential

speed 3‘7’,5 is given by Eq. 7.39:

rel

— (% — 0) (ah + R;sina;) — hf3

=3Vt — 3Vy &8 (5 = 0) (Ricosy; — Bh) + cth (7.39)
0

-

sVt

rel

The normal vector on the direction of the relative tangential speed (7/) is approximated by Eq.
7.40. Similar terms are noted on the equations of motion on Hervé et al. (2009). It is important to
note that terms that depend on the inverse of |y — 9| multiply only the wobbling angular speeds ¢
and 3. The same unitary vector calculated for Cardan coordinates (Eq. 5.42) also presented such
terms involving the wobbling angles o and 3. These characteristics result in lower error in terms

of wobbling angles near coupling on Appendices A.2 and B.2.

( h ) : h3 )
—siny; — —a | sign(y — 0) — —————
. 3‘7,1& l ( ]:LFKZ |’}/h—9|Rl 3V/:L"
‘BV/trez ( (05 R, B gn(y ) 5 — 6| R, 0
\ O Vs
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7.2.4 Normal and friction force calculation

The normal force of the element is given by Eq. 7.41 and its position in relation to the friction
force 3ﬁ’ #r. (Bq. 7.42) was presented in Fig. 5.8. With an equilibrium condition solved (Section
5.2.7 based on von Wagner et al. (2007)), an approximation of the amplitude of the normal force

is given by Eq. 7.43.

0
N =40 (7.41)
3 Vi
oF . = — i 4N 31/ (7.42)
o N'i = o F'i. + o F' e, + phizesign(y — 9) (cos ;o + sin v 5) (7.43)

The moments of the friction and normal forces are given by Eqs. 7.44 and 7.45:

M gy, = g7 X 4 F' o, (7.44)
SMN, = g7 g X 5N'; (7.45)
7.3 Efforts for a moving viscous damper and their relation with the element matrices

Beside the differences on the stability of the pure inertial system on Section 7.1.3, the as-
sumption of the rotating speed on global coordinates will present another aspect for the moments
assuming a rotating disc. As it will be presented in Sections 7.3.1 and 7.3.2, this approach results

on damping forces with 4 £ 0 or § # 0.
7.3.1 Damping efforts for o # 0° and g = 0°

With o # 0° and § = 0°, Egs. 7.33 and its derivative result on Eqs. 7.46 and 7.47. The
vertical effort in this situation depends on * and 0 (Eq. 7.48). For 4 = 0, they are exactly the same
as Egs. 5.60 and 5.61.
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o 0@, =sinaR;siny; — h (7.46)
Of’on = sin aR; cos y; = (8 — %) sin aR; cos ¥, (7.47)

oF'e; = —ci [g0q.] k = ci( — 0) sinaR; cos ¢k (7.48)

The angle v positioned on global coordinates represents the movement of precession. Fig.
7.6 have a sequence of conditions with v = 0°, 45° and 90° for a static displacement o > 0. Back
on Fig. 5.20, the angular rotation did not change the height on the damper contact. On this case, the
precession movement allows the pressure plate to rotate with an constant inclination o for every
rotating angle ~. Point () present positive damping forces once that between Figs. 7.6(a),7.6(b)
and 7.6(c) the distance [ is decreasing its height. This situation is similar to Fig. 5.15(b).

5y x y=ase X y=00°
() (b) (©

Figure 7.6: Damping forces for v = 0°, 45° and 90° (Figs. 7.6(a), 7.6(b) and 7.6(c)) with o« > 0 .

7.3.2 Damping efforts for 5 £ 0° and o = 0°

The vertical displacement and speed on the contact becomes Eqs. 7.49 and 7.50 for 5 # 0°
and a = 0°. With ¥ = 0, Egs. 5.63 and 7.50 are the same as Eqgs. 5.63 and 5.64. The damping
effort on this situation si represented by Eq. 7.51.

o0, = —sin fR; cos); — h (7.49)
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07;/OQZ — sin BR; sin ;1); = (8 — %) sin fR; sin ; (7.50)

oF'e = —¢; 00, k = c:i(7 — 0) sin SR, sin v,k (7.51)

A precession movement with 3 > 0 is presented in Fig. 7.7 for v = 0°, 45° and 90°. Point
(01 present negative damping forces once that between Figs. 7.7(a),7.7(b) and 7.7(c) the distance [
is increasing its height. This situation is similar to Fig. 5.15(a).

I'=Z'
1

(a) (b) ()

Figure 7.7: Damping forces for v = 0°, 45° and 90° (Figs. 7.7(a), 7.7(b) and 7.7(c)) with 5 > 0 .

7.3.3 Related element matrices

The matrix [K},], (Eq. 7.58) depends on the relative speed 1;, once that this coordinate
system allow the models to replicates the movement for 6 # 0 (Sections 5.4.1 and 5.4.2) and 4 # 0
(Sections 7.3.1 and 7.3.2). In case of friction on the contact, [K7,|. (Eq. 7.59) includes the effect

from this additional normal force.
7.4 Element matrices

Just like the previous case (Section 5.5), the expressions of the angular speeds (Eq. 5.9)
and accelerations (Eq. 5.10) are necessary for the equations of motion describing the wobbling
movement of the pressure plate (Eq. 7.52), calculated using the torque contribution of the ith

element. Auxiliary angles derivatives, are also included. Just1
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(

n
]x’az’ sWy! — (]y’y’ — ]Z’z’> gWyr gWyr = E 3Mar’i

] / /3(,0 / (]Z’z’ — Ix’x’)ng’ wa/ = 3M
e Z—: (7.52)

n

m(ﬂ:/OGz/ - Z (ON/i + 3F/fm-z) — Fy

i=1

\1@' = — (Wl — 3wa,) = — [(7 - 9) cosy cos 3 — Bsina]
The equations of motion of this system are described by Eq. 7.53.The mass [M] and gy-

roscopic matrices ([G] and [H;(%)]) were developed on Section 7.1.3. With the assumption of
constant rotating speed, the inertial term [H ()] (Eq. 7.15) is not included on the formulations.
The element matrices ([K7],[C?] ) and effort arrays { f;} will be presented on Sections 7.4.1, 7.4.3,
and 7.4.3.

[M]{p'}+< +ZC’){p}+<H1 Z ){p} Z{f}+{F} (7.53)

7.4.1 Element stiffness components

The matrices for the rotating speed on global coordinates depend only on ;. The relative
movement between the pressure plate and spring/damper element generate a stiffness matrix that
can be formed from the combination of 6 different matrices (Eq. 7.54), each one having an char-

acteristic feature. In order to simulate a linearized version, it is possible to substitute Ny = k;z,
(Section 5.2.2).

(K] = [K3); + (K + (Kl + (Kl + Y]+ [ (7.54)

Matrices [K7j], (Eq. 7.55), [K7;]; (Eq. 7.56) and [K7;;], (Eq. 7.57) can be obtained by
imposing v = 0° on Egs. 5.70, 5.71 and 5.72 from the case using Cardan coordinates.

R? sin® ¢, —(R?/2)sin(21;) —R;sinq;
(K7, = ki |—(R?/2)sin(2¢;)  (R%/2)cos®v;  R;cosi; (7.55)
—R; sin; R; cos 1
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cos? 1; (1/2) sin(2¢y;) 0
[K},];, = 1Phkize [ (1/2)sin(2¢;)  sin¢ 0 (7.56)
0 0 0

—k1h<Rl/2) Sln(2¢l) klth COS2 wz kzh COSs wl
(K0, = psign(y — 0) | —khRisin®;  kh(R;/2) sin(2¢;)  k;hsin (7.57)
0 0 0

7.4.2 Characteristics for the rotating speed on the global reference system

In Section 5.5.2, the damping related contributions on the stiffness matrices (Eqs. 5.73 and
5.74) were related to the friction element rotating speed 6. One greater difference obtained for this
case is presented on [K7,], (Eq. 7.58) and [K},], (Eq. 7.59) that depend on the relative speed ¢/
only. Such terms does not occur on the literature ( Hervé et al. (2008b), Hervé et al. (2009)) and
they are consequence on the initial assumption of relative movement between the friction element

and the pressure plate.

(R?/2) sin(2¢) R?sin® ¢ 0
[Ki), = et | —R2cos®vy;  —(R2/2)sin(2y;) O (7.58)
—R; cos ¢, —R; sin; 0
—R; cos ¢ —(R:/2)sin(2¢;) 0
(K], = pheabisign(y — 0) | —(R;/2)sin(2¢;)  —R;sin®y; 0 (7.59)
0 0 0

A specific term is represented by [K7,;]. (Eq. 7.60), where the friction force cause a stiffness
contribution that depends on the ratio h?/R;. For its equivalent counterpart on Cardan coordinates
(Eq. 5.75), such terms would not influence the system if the clutch disc does not rotate 0 = 0.

Here, the skew symmetric terms provided by Eq. 7.60 are unavoidable if 1 # 0.

-1
0
0

2

/ h VT
Kyl = (ﬁ) kizesign(y — 0)

o = O

0
0 (7.60)
0
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7.4.3 Element damping components

The element damping matrix [C}] (7.61) is composed by a pure damping matrix [C}], (Eq.
7.62) and a friction related one [C7;], (Eq. 7.63). The matrix [C};;], (Eq. 7.64) depends on the
inverse o the relative speed v — 6 and represents the friction damping effect. Similar terms occur
on Hervé et al. (2009). These matrices can be obtained from Eqs. 5.77, 5.78 and 5.79 with the

imposition of v = 0°.

[Cz/] = [C}]z + [C}I]z‘ + [C}IIL‘ (7.61)
R?sin? 4 —(R?/2)sin(24);) —R; sin 1,
Cll; = ¢ —(R?/Z) sin(2¢;)  (R?/2) cos® v R; cos; (7.62)
_Rz sin 1/11 Rz COS lpl 1
—(R;/2) sin(2¢) R; cos? oS 1;
[C11); = ciphsign(¥ —0) | —R;sin®¢;  (R;/2)sin(2¢;) sin; (7.63)
0 0 0
12 1 00
Cruli=L2"" 0 1 0 (7.64)
Ri|7 — 0 00 0

7.4.4 Excitation vector

The excitation vector { f;} takes into account terms that depend on k; z. (Eq. 7.65). It is equal

to the the results given on Eq. 5.80.

kize Ri sin; — phk;z. cos sign(y — 0)
{f1} =< —kizeR; cos s — phk;z, sin;sign(y — 9) (7.65)

—k'l Ze
7.4.5 Very important remarks on the stability study of this system

The element matrices from Section 7.4 depend on the relative position angle ;. The com-

ments from Section 5.5.5 are also valid for this case.
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8 Hipothesis 2: Wobbling modes and characteristics of systems with
equal and symmetrically distributed elements

The element matrices from Section 7.2 (Hypothesis 2) are gradually included on the model
in order to verify the influence of rotating speed (Section 8.1), cushion stiffness and relative speed

(Section 8.2). Finally, the viscous damping influence is provided by Sections 8.3 and 8.4.
8.1 Rotating speed influence

Initially, the element matrices K], (Eq. 7.55), [K7;], (Eq. 7.56) and [K7;;], (Eq. 7.57) from
Section 7.4.1 were applied , removing the influence of the friction damping terms. Combining
elements for v, = 0°, 90°, 180° and 270° results on the model from Eq. 8.1. The elements
inside the stiffness matrix are given by k1, (Eq. 8.2) and k15 (Eq. 8.3), respectively. An important
characteristic on this approach is the existence of inertia terms that depending on the rotating speed
in ki1 ( V(IZ/Z/ — I)). These formulation is practically the one found on Hervé et al. (2008b)

adding the terms with £?, changing the physical disposition of the elements.

I 0 O o' 0 —2I+1,, 0 o k11 kis O «
0 I 0|XBp+~|21—1. 0 0| {Bp+ |—kia ko 0|Bp=<K0p (81
0 0 m z 0 0 0 z 0 0 4k z
kin = (2R* 4 2u2zh)k + 4% (L — 1) (8.2)
kiz = [2ukRh — 4p(h*/ R)kz.] sign(¥) (8.3)

An example is tested with the same data from the model in cardan coordinates (Section 6.1)
(m=2kg, R=0.0875m, £t =03, h=0.0l mand k =3 X 106/4 N/m) and + ranges from 1 to
8000 rpm. Looking at Fig. 8.1(a) it is possible to see that the frequencies do not increase as a
line like the model on cardan coordinates (Fig. 6.4(a)). The stable and unstable modes present
natural frequencies really close to each other that change like a polynomial curve, reaching 234.4
and 232.2 Hz at 8000 rpm, respectively. At 1 rpm, both frequencies are closer to 192.2 Hz.

The numerical derivatives from the curves on Fig. 8.1(a) are presented on Fig. 8.1(b). It
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is possible to see that, at 8000 rpm, both eigenvalues have a maximum positive increase rate that
is lower than 0.02 Hz/rpm. The representation obtained on Cardan coordinates (Section 6.1) had

similar increasing rates at 2000 rpm (Fig. 6.4(b)).

240 ‘ —
——Unstable £
— Stable £
E 230+ %
> g
£ 220} g
> &
2 >
"(_é 210r §
>
E g
200¢ 30 — Unstable | |
3 = Stable
3]
190 : : : < 5 : ‘ :
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Disc rotating speed [rpm] Disc rotating speed [rpm]
(a) (b)
20F 1
10r
g
s 0
[0
o
10t — Unstable | |
B — Stable
-20k
0 2000 4000 6000 8000
Disc rotating speed [rpm]

©
Figure 8.1: Natural frequencies according to the rotating speed (¥ > 0 and 0 = 0).

An important conclusion that comes from the results from Fig. 8.1:

e the model becomes less sensitive to modifications on the pressure plate rotating speed if it
is assumed on the global reference system. Thinking on the real measurements from Fig.
1.1, it is possible to note a constant frequency in relation to variations of the engine rotating
speed. It is still very early in terms of research to take this step without taking into account
all possible nonlinear effects and deep structural analysis, but the rotating speed on global

coordinates seems to be more suited for this condition. It is not possible to locate any clear
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comment on that in Hervé et al. (2008b), Hervé er al. (2008a) and Hervé et al. (2009). As
consequence of these considerations, the formulation on Chapters 10, 11, and 12 will be done

using it.

The real part of the eigenvalues changed with speed, as presented in Fig. 8.1(c). The unstable
case had a real value close to 20 while the stable one presented values nearby -20 at 1 rpm. With

higher rotating speeds, the absolute value from the real part of the eigenvalues reached 17 at 8000
rpm.

8.1.1 Unstable motion - Forward wobbling with v > 0 and 0=0

The unstable motion is represented by Eq. 8.4, is the same as the one on Eq. 6.12. Likewise
the previous case, unstable motion can be described by Fig. 6.14. The wobbling characteristics

were not affected by the coordinate system.

X 1 1 .
nL_ b= 7\ ¢,fory >0and =0 (8.4)
o L

8.1.2 Stable motion - Backward wobbling for ¥ > 0 and 0 = 0

The stable mode shape found on this coordinate system is written as in Eq. 8.5. Looking
at Section 6.1.1, it is the same as Eq. 6.6. The stable wobbling motion still apparently moves

backwards in relation to the rotating speed. This motion is still physically described by 6.9.

X12 1 1 . )
= = m\ p.fory>0and =0 (8.5)
R e

8.2 Stiffness and relative speed influence

The model from Eq. 8.6 is obtained from Eq. 8.1 with the inclusion of friction damping,
given by matrix [C';;], (Eq. 7.64). The skew symmetric terms are a little bit different from the
previous case (Eq. 8.7). The terms c¢1; = c92 (Eq. 8.8) have the same dependence on the relative

speed from Eq. 6.18.
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I 0 0] (a 0 2l + 1y 0 ci 0 0 &
0 I 0B+ |4|2I-1sy 0 0| +]0 ¢ 0 B+
0 0 m] |2 0 0 0 0 0 0 %
(8.6)
(2R2 + QMQZeh)k‘ + "}/Q(IZ/Z/ - I) k12 0 (67 0
+ k12 (2R? + 2p22h)k +32(Iyy —I) 0B =10
0 0 4k| | = 0
kio = [2ukRh — 4p(h?/R)kz.] sign(¥) (8.7)
h%kz,
C11 = Cg2 = ,U— (88)
Rly — 0|

The foward/backward wobbling frequencies are close to each other (Fig. 8.2(a)). On this
approach, only the axial mode is affected by low stiffness values (Fig. 8.2(b)). Higher cushion
stiffness (approximately above 10* N/m) caused all natural frequencies to get closer to each other.
The graphic on logarithmic scale indicates that the axial mode frequency follows the wobbling
modes (Fig. 8.2(b)). Once again, greater values of stiffness resulted on increase of the real part of
the forward eigenvalue on Fig. 8.3(a). The formulation on Eq. 8.6 is very similar to the one found
on Hervé et al. (2009).

400 ‘ ‘ ‘ 10
Axial
350 | == Backward
_ = Forward o /
i 3001 i 10" 1
& 2501 )
C C
g S . o
g 2001 g 10
® 1501 s
2 3 Axial
2 100} 2 107} —— Backward | 1
= Forward
50
—4
0 ‘ : ; 10 ; ; ;
10° 10° 10" 10° 10° 10° 10° 10°
Stiffness [N/m] Stiffness [N/m]
(a) (b)

Figure 8.2: Natural frequencies according to cushion stiffness in linear (Fig. 8.2(a)) and logarithmic
(Fig. 8.2(b)) scales.
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Figure 8.3: The real part of the eigenvalues.

Figure 8.4(a) shows that all eigenvalues are closer for 7 = 2000 rpm and they are not affected

by the relative angular speed. The model with rotating speeds on global coordinates, is stabilized

by friction damping (Fig. 8.4(b)). Modification on the stability also occurs due to the signal of
relative speed (Hervé et al., 2008b).
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Figure 8.4: Natural frequencies (Fig. 8.4(a)) and real parts (Fig. 8.4(b)) in relation to the relative
speed considering a total cushion stiffness of 3 x 10 N/m.
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8.3 System with viscous damping effects

The model from Eq. 8.9 is obtained considering 1 = 0 on Eq. 8.6 with additional terms
related to equally distributed viscous damping elements, using matrices K7/ ], (Eq. 7.58) and [C7],
(Eq. 7.62).

I 0 0] (a 0 4 (L. —2I) 0 2R> 0 0 a
01 0[Bp+||=%U.—20 0 0|+ 0 2R? 0 B+
00 m| |z 0 0 0 0 4c F
2kR2 +42(L — 1) 2cR%) 0] (o 0
+ —2cR%) 2kR? + 4Ly —1) 0B =10
0 0 ak| | = 0

(8.9)

The moving damping effort on this case (Eq. 8.10) depends on ¢ = —% + 0. If ¢ > 0, the
moment M., have signals equal to Eq. 6.21. In a situation of instability, this effort excites the

forward wobbling mode, as represented by Fig. 6.20.

o M\ [0 f B0
Mmov—{M, }— 2eR%1]sig (w){_a(t)}— QRW’{_Q@} (8.10)

movy

On the other hand, if ¢» < 0 the orientation of those efforts is changed (Eq. 8.11). This
is a specific characteristic for hypothesis 2, where the movement of the inclined plate creates the

damping efforts (Section 7.3).

7 Mr/nov ; ﬁ@)
VL = Y — 2cR? A1
mov { Mlnovy} cR7 1| {_a (t)} (8.11)

8.4 System with viscous damping and friction

Equation 8.12 is obtained from the previous system (Eq. 8.6) using matrices [C], and [C7;],
(Egs. 7.62 and 7.63). The matrices [K7}|, and [K7,|, (Eqgs. 7.58 and 7.59) introduced terms related
to ) = —y + 6 on Egs. 8.13 and 8.14.
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I 0 O v 0 —2I+1., O ci1 ci2 O &
0 I 0|Bp+|7|20-1L 0 0| +|—co1 c22 O By +
00 m| |z 0 0 0 0 0 de :
(8.12)
kll k12 O « O
+ | —ki2 koo O B = {0}
0 0 4k| |z
ki = kag = (2R* + 2122 W)k + A2 (Lo — I) — 2uhcpsign(y — 0) (8.13)
Fip = 11 [2kRh — 4(h*/R)kz.] sign( — 0) + 2¢R*y (8.14)
TP (8.15)
Cl1 = Cop = &—(—— & .
Rl — 0|
C12 = Co1 = 2pcRhsign(y — «9) (8.16)

Figures 8.5(a) and 8.5(b) presents simulations varying —2000 rpm < 0 < 6000 rpm with
4 = 2000 rpm with results similar to the case on Cardan coordinates (Section 6.3). For the total
cushion stiffness off 3 x 102 N/m and ¢ = 5 Ns/m, the natural frequencies remained close, as
presented in Fig. 8.5(a). The forward mode is unstable for v — 0 < —2000 rpm (Fig. 8.5(b)).

Under hypothesis 2, it is possible to induce instabilities by modifications on the rotating
speed of the pressure plate (—2000 rpm < 4 < 6000 rpm), maintaining 0 = 2000 rpm. With lower
stiffness, the natural frequencies (Fig. 8.5(c)) were affected by rotation. There is a similar profile
to the inertial system from Section 7.1.4 presented on Fig. 7.1.4. The rotating speed on global
coordinates allowed the generation of moments related to the movement of the plate in relation to
the element (Section 7.3). The real part of the eigenvalue related to the forward mode was greater
fory — 60 < 0 () > 0).

With a total cushion stiffness off 3 x 10° N/m and ¢ = 30 Ns/m, Figure 8.5(e) shows that the
natural frequencies are not significantly affected by the relative speed (y — 6). On the other hand,
the real part of the eigenvalues indicate stability (Fig. 8.5(f)) and they are affected by the terms that
depend on ¥ on Eqgs. 8.14 and 8.15. It depends on the relation between ~ and 0.
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8.5 Chapter summary
The observations from this chapter are separated into different physical domains:
8.5.1 Rotating speeds

In this chapter it was possible to observe for the model keeping the rotating speed on global
coordinates (7 # 0 and 6 = 0):

e the natural frequencies are closer, but the one from the stable mode was greater than the value

found for the unstable case.
¢ natural frequencies increase with the pressure plate rotating speed in a polynomial form.
e models obtained using these coordinates are less sensitive to the pressure plate rotating speed.

e the wobbling movements are the same as the ones obtained in Cardan coordinates.
8.5.2 Relative speed

The relative speed resulted on the following conditions on the simulations:

Friction damping stabilized the model near coupling conditions, according to the findings

from von Wagner et al. (2007).

The axial mode remained stable for all situations.

Due to the modification on the direction o friction moments, the forward mode was unstable

for 4 — 6 > 0. Such relations were first proposed by Hervé et al. (2008b).

The backward mode became unstable for v — 6 < 0.

8.5.3 Stiffness

From the previous simulations, it was possible to verify that, for low stiffness, only the axial
mode frequency was modified.

For high cushion stiffness, the following behaviour was observed:
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e All frequencies became very close to each other.

e Greater values of stiffness increased the real part from the eigenvalue for the forward mode.

8.5.4 Viscous damping

e Due to the consideration of viscous damping and relative movement between the pressure
plate/element, the model with the rotating speed on global coordinates presented instability
according to the relation between the engine and clutch disc rotating speeds in situation of

low values of cushion stiffness.
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9 Cushion heterogeneity

All the literature on clutch squeal takes into account symmetrically distributed friction el-
ements, with equal physical properties for the contact (Chapter 3). The element matrices from
Sections 5.5 and 7.4 were created with the intention of allowing more complex distributions in

terms of position, stiffness, damping and friction coefficient. Those differences may emerge from:

e manufacturing problems or characteristics from production.
e uneven wear on the surfaces or more complex tribological interactions on the contact.

e intentional modifications made in order to generate prototypes.

Senatore et al. (2013) modelled the pressure plate with equally distributed elements, resulting
on an axial movement decoupled from the wobbling motion. This chapter will show that even small
changes on the position of the contact element may result in important modifications on the system
behaviour. When the total stiffness is not balanced in relation to the axis, there is coupling between
angular displacements and axial motion. Based on the conclusions from these simulations, Section
9.2 will be more specific focusing on the situations with proportional error on the total stiffness

values without coupling with the vertical motions.
9.1 Position error simulations

Figure 9.1(a) represents a pressure plate with equally space elements (19 = 0°1)9 =
90°,130 = 180° and 149 = 270°). A schematic of a deviation of 5° ( 159 = 95°) on the posi-
tion of element 2 is displayed on Fig. 9.1(b).

The element from Section 5.2 modelled on Cardan coordinates presents inertia matrices de-
pending on v (Eq. 5.12) and element matrices depending on ~ and ¢/ (Section 5.5). It offers two

possibilities for modifications on the displacement:

e Fixed element () = 0): Figure 9.2(a) shows that it is possible to change both angles, consid-
ering v; = ;0 — 7y, where 1), is the initial position of the element, which stays on the same

place in relation to the global reference frame.

e Moving element @ # 0): Figure 9.2(b) presents the assumption of modification with v; =
i + A = ;g — v + 6. The position of the pressure plate () as well as the one from the

disc (#) are necessary on this case.
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Figure 9.1: Upper view for equally distributed elements (Fig. 9.1(a)). An error of 5° in element 2
(Fig. 9.1(b))
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Figure 9.2: Movement assuming a fixed (Fig. 9.2(a)), and moving element (Fig. 9.2(b)).
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The element with the rotating speed on global coordinates (Section 7.2) only allows simula-
tions assuming moving elements, once that its matrices are written in terms of the relative angle 1);
(Section 7.4).

The simulations were done assuming a pressure plate with m = 2kg, h = 0.0lm, R;, =
0.075 m and R,,; = 0.Im. When not clearly explained, standard properties were assumed as
k =3 x 105/4 N/m, 4 = 2000 rpm, v = 0.3, R = 0.0875m, and 2, = 0.001m..

9.1.1 Mode shapes for a symmetric distribution

T
The vector { X;} = {X i Xo X 31-} represents the i-th mode shape for coordinates {p} =

{a 6] z} . All the results presents eigenvectors for eigenvalues with positive imaginary part (
Ai = 0; + Jj@i).

For equally distributed elements (Fig. 9.2), the increase on the position v,y did not produce
changes on amplitude or phase on those mode shapes (Figs. 9.3). All models from Chapters 6 and
8 presented this characteristic.

Adopting a unitary norm and referencing the phase on the first degree of freedom, Equation
9.1 (Figs. 9.3(a) and 9.3(b)) represents a backward mode (Section 6.1.1):

X1 0.7071 0.7071£0°
Xo1 0 =< 0.70715 p = < 0.7071290° 9.1)
Xs31 0 0

Equation 9.2 (Figs. 9.3(c) and 9.3(d)) is related to a pure axial movement with | X3,| = 1:

X12
Xog ¢ =
X2

(9.2)

= o O

Equation 9.3 (Fig. 9.3(e) and 9.3(f)) can be interpreted as forward wobbling (Section 6.1.2):

X3 0.7071 0.7071£0°
Xo3 p =< —0.70715 » = { 0.7071£ — 90° (9.3)
X33 0 0
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Mode 1 — symmetric distribution

Mode 1 — symmetric distribution
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Figure 9.3: Absolute values (Figs. 9.3(a), 9.3(c) and 9.3(e)) and phase angles (Figs. 9.3(b), 9.3(d)

and 9.3(f)) for the case from Fig. 9.1(a).
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9.1.

2 Mode shapes with a position error and fixed elements

For the fixed element (Fig. 9.1(a)), all properties remained constant with Ay = —~ (Figs.

9.4,9.5, and 9.6). The main difference that emerged from the error of 5° was the combination of the

wobbling movements with axial vibrations.

Mode 1 is written in Eq. 9.4 (Fig. 9.4(a) and 9.4(b)). On the previous simulation, this mode

shape represented a pure backward wobbling mode (Eq. 9.1). The phase of X5; in relation to

X711 is no longer 90°, changing to £ X5, = 98.5083°. The vertical coordinate X3; present a small

amplitude.
X1 0.7131 0.7131£0°
Xo1 0 = ¢ —0.1037 + 0.6933: p = < 0.7010£98.5083° (9.4)
X1 —0.0012 + 0.00412 0.00432105.8402°
Mode 1 - fixed element Mode 1 - fixed element
\ \ 180 w w w
1 L
o 05 S0y
E =
g 0 i o
F &
QO —
< _0.5(—IX,,| o0l <Xy
— X, — <Xy
A —1Xg,| f X1
‘ : : -180 ‘ : :
0 90 180 270 360 0 90 180 270 360
Angular diplacement [°] Angular diplacement [°]

() (b)

Figure 9.4: Mode 1 assuming a fixed element (Figs. 9.4(a) and 9.4(b)).

Mode 2 is written in Eq. 9.5 (Fig. 9.5(a) and 9.5(b)). It still presents high values of vertical

vibration | X35| = 0.5695. Iis the one with the most representative contribution of angular vibration,
with | X 5| = 0.8189.

X9 0.8189 0.8189£0°
Xoo ¢ = ¢ 0.0216 — 0.0679¢ p = ¢ 0.0713£ — 72.3273° 9.5)
X3 0.0141 — 0.5693¢ 0.56954 — 88.5793°
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Figure 9.5: Mode 2 assuming a fixed element (Figs. 9.5(a) and 9.5(b)).

Mode 3 is written in Eq. 9.6 (Fig. 9.6(a) and 9.6(b)). The angles X35 and X3 still contain
similarities of amplitude and phase with the forward wobbling from Eq. 9.3. There is a small

contribution of vertical motion, indicated by | X33 = 0.0036.
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Figure 9.6: Mode 3 assuming a fixed element (Figs. 9.6(a) and 9.6(b)).
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In this case, the former pure vertical vibrating mode (Eq. 9.5) was modified with the inclusion
of greater amount of angular displacements. The former pure wobbling modes (Egs. 9.4 and 9.5)
had smaller contribution of axial vibration. The most important verification is that, for position
errors, the properties for symmetrically distributed or fixed elements can be done for one position

only.
9.1.3 Mode shapes with a position error and moving elements

For these simulations, the rotating speeds were considered as v = 2000 rpm and 6 = 1000
rpm. The eigenvalues were calculated for a complete turn of the pressure plate 0 < v < 360° in
Figs. 9.8, 9.9 and 9.11. Due to the fact that the rotating speed of the clutch disc is half the value
found for the plate, for equal initial conditions, there is v = 26. In this case, all elements are
equally moved according to ¢; = ;0 + A, where —180° < A < 0. Physically, all elements are
shifted from an initial disposition (Fig. 9.7(a)) to another distribution in relation to the plate x3ys
(Fig. 9.7(b)). The placement error on element 2 moves from positions with y3 > 0 to y3 < 0. From

the theoretical perspective, there is |Avy| # |7].

Y3

(a) (b)
Figure 9.7: Initial (Fig. 9.7(a)) and final dispositions (Fig. 9.7(b)) .

The results from Figs. 9.8, 9.9, and 9.11 are all displayed according to the pressure plate
angle v. They all share a common behaviour of mode shapes varying according to the relative
position between the plate and the elements.

Mode 1 preserves characteristics of a wobbling movement, once that | X;;| and | Xy;| present
the highest amplitudes (Fig. 9.8(a)) and the phase angle of the second degree-of-freedom (£ X5;)
remain close to 90°. If v < 180°, « greater amplitudes than 3 (| X11| > |Xs1]). For 180° <
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v < 360°, the previous relation is changed to |X5| < |Xj;1|. The vertical contribution is low

| X31| = 0.008544, but there are strong variations on its phase nearby v = 165° (Fig. 9.8(b)).

Mode 1 — moving element Mode 1 — moving element
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Figure 9.8: Mode 1 assuming a moving element (Figs. 9.8(a) and 9.8(b)).

The second mode shape still have the greater values for axial vibration (| X3»| on Fig. 9.9(a)).
There is a peak value for | X5| with | Xa2| =~ 0 at v = 0°. This condition is changed to very high
values of | Xos| combined with | X5| &~ 0 at v = 180°. The phases from Fig. 9.9(b) do not indicate
wobbling motions, once that Z.X;5 is closer to 0° for 0° < v < 180°. Figure 9.10 shows a sequence
combining axial motion with angular movement in this situation. In phase or out of phase angles do
not produce the aspect of wobbling, resulting in a pressure plate that seems to move up and down

swinging its sides.
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Figure 9.9: Mode 2 assuming a moving element (Figs. 9.9(a) and 9.9(b)).
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a) b) c-) d)

Figure 9.10: Combination of an axial vibration with an angular displacement that does not produce
wobbling.

The amplitudes of the third mode from Fig. 9.11(a) are very similar to the case on Fig. 9.8(a).
Both | X3| and | X3/ are very high, but | X;3| > | Xa3| for 0 < 7 < 180° and | X;3| < | Xa3| within
180 < v < 360°. The phase angle still indicates a forward wobbling movement (£ X93 ~ —90°
on Fig. 9.11(b)). The vertical movement has an small contribution but, just link the case on Fig.

9.8(b), it presents abrupt changes on its phase.
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Figure 9.11: Mode 3 assuming a moving element (Figs. 9.11(a) and 9.11(b)).

The element with the rotating speed on global coordinates produces only the aspect of Figs.
9.8, 9.9 and 9.11 on the mode shapes once that it allows only simulations based on moving ele-
ments. Due to the regularity on the modal properties with errors, the following studies will focus

on the study of heterogeneity on the model on Cardan coordinates with fixed elements.
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9.1.4 Eigenvalue characteristics for symmetric, fixed and moving elements

The eigenvalue characteristics for modes 1, 2, and 3 are represented in Figs. 9.12, and 9.13

for the conditions from Sections 9.1.1, 9.1.2, and 9.1.3. In all cases, the eigenvalues remained with

constant properties along the simulations. Natural frequencies from modes 1 and 2 were lower in

case of position error, with fixed or moving elements (Figs. 9.12(a) and 9.12(c)). The only situation

were the errors increased the frequency occurred for mode 3 (Fig. 9.13(a)), with characteristics of

a forward wobbling mode. The real parts of the eigenvalues were gently reduced in case of position

error. The moving element produced the lowest values due to a reduction on the difference ¥ — 6,

which increases a little the effect of friction damping (Section 6.2) on this system.
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Figure 9.12: Natural frequencies (Fig. 9.12(a) and 9.12(c)) and eigenvalue real parts (Fig. 9.12(b)

and 9.12(d)) for mode 1 and 2, adopting the conditions of symmetric distribution, fixed and moving

elements.
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Figure 9.13: Natural frequency (Fig. 9.13(a)) and eigenvalue real parts (Fig. 9.13(b)) for mode 3,

adopting the conditions of symmetric distribution, fixed and moving elements.

9.1.5 Position error level and the coupling with vertical motions

This simulation takes into account position errors on the second element according to 1), =
199 + Atp. The initial location is chosen as 159 = 90° (Fig. 9.2(a)) and the error is varied within
—30° < Ay < 30°. Figure 9.14(a) shows that the first natural frequency decreases for greater
errors, while the third value increases with Aw. The eigenvalues real parts present more significant

differences for greater |Av)|.
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Figure 9.14: Natural frequencies and eigenvalue real parts (Figs. 9.14(a) and 9.14(b)) for different
levels of error on element 2.
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If Ay = 0°, the second mode presents a purely axial vibration (Fig. 9.15). When |A)] is
increased, the contribution from | X3,| diminishes, followed by an enhanced contribution from «
(| Xi2|). There is a smaller contribution from § (] Xs3]). During the simulation, conditions with
A1) # 0 created an unbalanced distribution of stiffness on the system, coupling all coordinates.

The wobbling motions indicate higher amplitudes with greater errors (Fig. 9.16). Mode 1
(Fig. 9.16(a)) presented | X1;| < |Xs1|, while mode 3 (Fig. 9.16(b)) had the opposite behaviour

(| Xa3| > | X13)).
Mode 2
1 , , ‘ , ,
0.8} i
\ / — Xyl
—_X,l
[0) 22
- 0.6 i
2 X5,
g
£ o4t
\
0.2 <
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—%0 -20 -10 0 10 20
Position error on element 2 [°]

Figure 9.15: Second mode amplitude according to the position error on element 2.
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Figure 9.16: Mode amplitudes (Figs. 9.16(a) and 9.16(b)) according to the position error on ele-

ment 2

118



9.2 Symmetric distributions according to axial motion with asymmetrical stiffness accord-
ing to angular displacements

Figure 9.17 presents a spacial view of the element distribution from Fig. 9.1(a), that were
assumed as fixed on Cardan coordinates, that produced constant properties with heterogeneity on
Section 9.1.2. Elements 1 and 3 are positioned along the x axis, while the pair 2 and 4 remain on
opposite sides along the y axis. Now, it is possible to distribute the total cushion stiffness keysnion
between them assuming proportional changes. But on all modifications the relation k;y + ko + k3 +
k4 = Kkeyshion 18 maintained. For any distributions considering k; = k3 and ky = k4 the mass of the
plate is balanced on the vertical direction, without the coupling verified on Section 9.1.5. The only

source of energy dissipation is friction damping. The rotating speed was chosen as 7 = 2000rpm.

Figure 9.17: Element distribution in a situation for the simulation of unbalanced properties.

9.2.1 Unbalanced stiffness distribution without damping

Considering that ky = k3 = 0.275kcyshion and ko = ky = 0.225kqysnion, it 1S possible to
achieve a proportion of k; + k3 = 0.55kcysnion and ko + ky = 0.45kyshion. In other words, 55% of

the total stiffness is concentrated for angular displacements on 3 and 45% for «.
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T
The vector { X;} = {X 1 Xoi Xgi} represents the i-th mode shape for coordinates {p} =

{a B z}T. All the results presents eigenvectors with unitary norm for eigenvalues with positive
imaginary part ( \; = 0; + jw;).

In all cases, the natural frequencies increased with k. snion (Fig. 9.18(a)) with the mode
1 with higher frequencies and mode 2 with intermediate values. The real part of eigenvalue 3
augmented with greater stiffness values (Fig. 9.18(b)). This characteristic is similar to the one

found on Section 6.2.
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Figure 9.18: Eigenvalues natural frequency (Fig. 9.18(a)) and real parts (Fig. 9.18(b)) for the
unbalanced cushion case.

When the total cushion stiffness is varied within 100 < keyshion < 107N /m, the first mode on
Fig. 9.19(a) presents greater amplitudes on « (| X1;1]) in relation to 5 (| Xs;]). For stiffness values
below 10*N/m, these values are found as | X;;| ~ 0.74 and | Xy | ~ 0.67 (Eq. 9.7). For these
cases, the phase £ X5 = 90.19° (Fig. 9.19(b)), indicating a backward wobbling.

X1 0.7416 0.7416£0°
X1 p = ¢ —0.0023 4+ 0.67095 p = < 0.6709£90.1974° » , for keyshion < 104N/m 9.7)
X31 0 0

For higher values of stiffness, there is a situation where | X1;| increases up to 0.86 and | Xy |
decreases to 0.5 for 10"N/m (Eq. 9.8). There is an almost imperceptible phase modification on

this region.
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X1 0.8661 0.8661£0°

X1 p = 1 0.0362 + 0.49857 p = ¢ 0.4998285.8517° p , for kcyshion = 107N/m (9.8)
X31 0 0
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Figure 9.19: Mode 1 for the unbalanced cushion case (Figs. 9.19(a) and 9.19(b)), assuming k; +
ks = 0.55kcyshion and ko + kg = 0.45kcyshion-

On mode 3 (Fig. 9.20(a)), the angular movement on both coordinates remained very similar
in case of low stiffness values, as presented on Eq. 9.9 with | X;;| = | X1;| = 0.707. But, differently
from the previous case (Fig. 9.19), there is an increase on the amplitudes of | X5, | in relation to | X1,
for very high values of cushion stiffness. Equation 9.10 presents | X;3| = 0.539 and | X53| = 0.8423
for keyshion = 10" N/m. This forward wobbling mode (Fig. 9.20(b)) presented higher vibration on
B, which is the coordinate with greater stiffness ( k; + k3 = 0.55kcusnion)-

Xi3 0.7071 0.7071£0°
Xog p = ¢ —0.70715 p = < 0.7071£ — 89.9° » , for keyshion < 104N/m (9.9)
X33 0 0
Xis 0.5390 0.539£0°
Xz ¢ = ¢ 0.0760 — 0.83885 p = ¢ 0.8423/ — 84.8234° » , for keyshion = 107N/m (9.10)
X33 0 0

The axial mode remained unchanged for these tests (Fig. 9.21), meaning that these propor-
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tional changes did not couple the angles with the vertical vibration.
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Figure 9.20: Mode 3 for the unbalanced cushion case (Figs. 9.20(a) and 9.20(b)), assuming k; +
k3 = 0-55kcu5hion and k2 + k4 = 0-45kcushi(m-
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Figure 9.21: Mode 2 for the unbalanced cushion case (Figs. 9.20(a) and 9.20(b)), assuming k; +
k3 = 0'55kcushion and k2 + k4 = 0‘45kcushion-

The previous case can be inverted with ks = ky = 0.275kyshion and k1 = ks = 0.225kcyshion-
Now there is more stiffness for movements on « than or 3. The results on Fig. 9.22 are the opposite
to the ones on Figs. 9.19 and 9.20. The backward wobbling on Fig. 9.22(a) have greater values of
| X21| for high keyshion. The forward movement have greater values on | X1| (Fig. 9.22(b)).
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Figure 9.22: Amplitude on mode 1 and 3 for ky + k3 = 0.45kcushion and ko + kg = 0.55kcushion
(Figs. 9.22(a) and 9.22(b)).

When the ratio (k1 + k3)/kcusnion 1 increased, it means that the contribution of ky + k4 are
decreased for k1 + ko + k3 + k4 = Kcyshion- Figure 9.23(a) shows that (ki + k3) /keushion < 0.5, there
is more stiffness for angular displacements on «, reducing |X1;| on Fig. 9.23(a) and an increment
on | X;3| on Fig. 9.23(b). Amplitudes on (3 (| X22| on Fig. 9.23(a) and | X 3| on Fig. 9.23(b)) follow
the opposite relations. For situations when the proportion is no longer equal between the element
pairs ((k1 + k3)/keushion # 0.5), there is an increase on the natural frequency of mode 3 (Fig.

9.24(a)) that is followed by a decrease on its real part (Fig. 9.23(b)).
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Figure 9.23: Amplitudes for modes 1 and 2 (Figs. 9.23(a) and 9.23(b)) for k.yshion = 10"N/m.
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Figure 9.24: Amplitudes for modes 1,2,and 3 (Figs. 9.24(a) and 9.24(b)) for keyshion = 10"N/m.

9.3 Chapter summary

From Section 9.1, the model on Cardan coordinates allows modifications on ~ and v;, while
the representation with the rotating speed on global coordinates worked on ;. The following

conditions were verified:

e The simulations with the position errors (for moving and fixed elements) created coupling
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between the angular displacements with the axial vibration.
Moving elements resulted on modifications o the mode shapes at each position of the plate.

Symmetric distributions or irregularities considering fixed elements possessed constant prop-

erties during the simulations.

In all cases, the eigenvalues of the system remained with constant properties according to the

pressure plate angle.

The relative amplitudes between the angular displacements were increased in situations of

position error.
From Section 9.2.1, it was possible to observe that:

With low values of cushion stiffness, the mode with characteristics of a backward wobbling
mode presented greater differences of amplitude between coordinates « and 5. The forward

wobbling mode presented very close amplitudes on those coordinates.

In both cases, the difference between amplitudes increased significantly for high stiffness

values.

The forward wobbling mode presented larger amplitudes for coordinates with a more signif-

icant stiffness amount.
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10 Diaphragm spring: physical representation and the inclusion of
real measurements in the model

The diaphragm spring applies normal load to the pressure plate and has specific nonlinear
stiffness characteristics. A lever model for the diaphragm spring is made on Section 10.1. It as-
sumes that there is no deflection on the elements on the clutch cover (Shaver and Shaver, 1997).
The literature does not give support for a model that could assume arbitrary distributions of prop-
erties of the diaphragm spring (Chapter 3). Numerical simulations including real curves from a
passenger car with manual transmission will be presented in Section 10.4 for new (Section 10.4.1)

and worn (Section 10.4.1) clutch discs.
10.1 Diaphragm spring lever model

The diaphragm spring from Figs. 2.1 and 2.3 will be simplified to a lever pinned at point
O, Fig. 10.1, that represents the articulation point at the rivets in Fig. 10.1. The distances
b; and a; will define the displacement/effort ratios. The constant moment M/, is included once
that it applies a constant load to the pressure plate during torque transmission at a certain static
position z.. Such condition is presented by Kimmig (1998). The stiffness k,,, and damping c,,
will be linearized parameters related to the stiffness and damping of the diaphragm spring. The

contact force representing the bearing effort on the fingers will be £, (Figs. 10.1 and 10.1), that is

Fr
l
'

I
Pressure plate R dpi

considered as the release load.

i

Figure 10.1: Side view of the diaphragm spring lever model (Fig. 10.1).
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Figure 10.2: Diaphragm spring (Fig. 10.1).

The contact point S is located above the centre of gravity of the plate (G), by a distance d
(Fig. 10.1). The position vector (Eq. 10.1) is obtained by the angle 6,4, and radius R4, (Fig. 10.3).

- T
3r'as = {dei cos Ogp, Rap, sin Ogy, di} (10.1)

Pressure plate

Figure 10.3: Upper view of the contact point .S.

In global coordinates, this position is written as Eq. 10.2:

o as = [Rygal 37 Gs (10.2)

The total displacement in relation to the origin ( Eq. 10.3) is obtained by assuming a variable
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displacement z on the vertical direction. A static position is given by z..

or0s. = Or’c;sz —(z42) = —Rgp, sin 8 cos Ogp, + Rap, sin acos B sin Ogy,, + d; cos accos f— 2 — z
(10.3)

The total displacement in relation to the initial position of .S is calculated as in Eq. 10.4:

AOTIOSZ - dl - OT/OSZ (10.4)

The previous deformation resulted on a rotation 6,,, around the point O,,,, a Fig. 10.4. This
picture leads to the deduction of the deformation on the fingers of the spring A 7, on Eq. 10.5.
A OT/OSZ - or}z

sinf,,, = = (10.5)
bz‘ a;

It is necessary to perform a balance of moments around point O,,, (Eq. 10.6) in order to
obtain the force at the contact point Fj, that is presented in Eq. 10.7. The element moments are
calculated by Eq. 10.8:

—Fgsb; cos0,,, + M,,, — Fr.acos Oy, — €Oy — k0, =0 (10.6)

i Mml a; kml . Cm; 7
OFé' = — { bl — Fr‘i (b—l) — AOTIOSZ |:b—2:| — AOT./OSZ |:b_2:| } k (107)
M = o Fs X 475 (10.8)

10.2 Element matrices

The element matrices result from Eq. 10.8. Equation 10.9 contains the influence of the
stiffness k,,,. The static efforts (contributions related to M,,, and F},) appear on Eq. 10.10. It is
important to note that, in both case, an increase on the geometric parameter b results in a reduction

on the total stiffness provided by the element.

k Rgpz Sin2 edpi _<R?lpz/2) sin (29dp1) —R; sin edpi
[Kap,] = [ [;;Z} —(R3,,/2) sin (204y,) —R7,, cos® Ogp, Ry, cos Oap, (10.9)
Z _dei sin edpi dei COS edpi 1
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Agros, [ & ----------- ! ----------------------------------
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t -

C?nfg?nf + k‘mf g‘mf

; |
Ky 1= d []Vé_m_F <Z_>} [gl zl E] (10.10)

The damping matrix [Cy,,] (Eq. 10.11) contains a similar structure to [K4,,] (Eq. 10.9).

Greater values of b; also resulted on reduction of damping. Equation 10.12 is an excitation vector.

c R?lpz sin2 gdpi - (Rflpl/Q) sin (20dp1) —dei sin Hdpi
[Cap,] = (%) —(RZ,,/2) sin (204y,) —Rj,, cos® Ogp, Rap, €08 Oy, (10.11)
’ — Ry, sin Ogp, Ry, cos Ogp, 1

( Mmdl a; . )
_ [ b; —F, (b_z)] R; sin 04y,

M, d; z.
{Fap} = 4 { b.l - I, (Z—)} R; cos Oy,

Mmdz Z a;
- —F. | =
[ bi ”(bi)}
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An important point here is that the operation done on Eq. 10.7 creates equivalent vertical
stiffness/damping elements at the connection point S (Figs. 10.4). Equivalent terms kgp,, cqp, and
F,, from Eq. 10.13 could be replaced on Egs. 10.9, 10.10, 10.11 and 10.12.

( k.
kap, = —5+
7 b2

o

Cdp; = 2 (10.13)
M, a;

F,="_F (=

= (5

The previous approach allows distinct ways to represent the diaphragm spring:

1. Create simulations using theoretical quantities for the physical parameters on Fig. 10.1.

2. Introduce realistic measurements on the model, handling with equivalent vertical quantities

(Eq. 10.13). This approach will be presented in Section 10.4.

3. Create distributions of the lever element according to 6, .

10.3 Relations between the cushion, clamp load and release effort

Figure 10.5 contains the force balance on the system on a static condition. When the driver
wants to separate the clutch from the flywheel, an effort £, is applied on the diaphragm spring
fingers. Two forces act in order to separate the pressure plate from the flywheel, one contribution
from the cushion springs F.,snion, and another from the leaf springs Fj.,; (studied in more detail in
Chapter 11). They both result on the contact force Fls, which is in equilibrium with the diaphragm
spring moment M, and the release force.

Rigorously, there is Fs = Feyshion + Fleay (Kimmig, 1998). But considering that the leaf
springs have a minor contribution in relation to the cushion, it is possible to approximate the pre-
vious expression as F; =~ F. snion. Such relation is indicated on Shaver and Shaver (1997). The
normal force is defined by Fi,sni0n and was presented in Section 2.2. The clamp load curve (Fig.
10.7(a)) represents the maximum load that could be applied by the diaphragm spring. It is mea-
sured without the influence of F...qs.. But in any situation, the clamp load gives a measure of an

approximation of the diaphragm stiffness (Fig. 10.7(b)).
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‘ Flywheel

Figure 10.5: Force contributions on the system.
10.3.1 Clamp load

The clamp load curve is the total force that the diaphragm spring applies to the pressure plate.
It is represented by the forces Fs when F,; = 0 on Fig. 10.5. Figure 10.6 contains a schematic
view of the instrumentation of the test bench used for the clutch cover. At the bottom, the total
force on the pressure plate Fls is also monitored by clamp load sensor. The reference for a positive

pressure plate position is indicated on Fig. 10.6.

eeeeeeeeeee
ssssss

ssssss

Figure 10.6: Clamp and release load experimental setup (Adapted from Lerestrelo (2013)).

Due to the hysteresis, the clamp load curve for a passenger car with manual transmission is

represented on Fig. 10.7(a) with the following features:
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e The upper curve is obtained for increasing pressure plate positions.
e The lower curve is measured if the position is reduced.

e The numerical mean value will be applied in Sections 10.4.1 and 10.4.2.

Figure 10.7(b) presents the derivative of Fig. 10.7(a) resulting on the necessary values for the
stiffness kg4p, (Eq. 10.13). Its contribution is not negligible to a model, once that the values found
are greater than 10° N/m. Figure 10.7(a) provide a clear view of regions with positive and negative
stiffness.
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Figure 10.7: Clamp load curve with indication of the path for pressure plate position in-
crease/decrease (Fig. 10.7(a)). Its derivative is represented on Fig. 10.7(b).
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10.4 Numerical simulations

Having the previous explanations in mind, simulations were performed considering a new
and a worn clutch disc (Sections 10.4.1 and 10.4.2), on the model from Section 8 with the cushion
curves from Chapter 2. The pressure plate was assumed with a cylindrical shape (m = 1.5kg, h =
0.01m, R, = 0.075m and R,,; = 0.1m). The contact radius was considered as R; = 0.0875m.

10.4.1 New clutch disc

Figure 10.8(a) presents the clamp and cushion curves on the same graphic. The reference for
displacement for the cushion curve was inverted in relation to Fig. 2.4(b). Point F,,., indicates
a fully coupled condition, where the cushion springs balance the effort of the plate. The pressure
plate position according to the reference on Fig. 10.6 is shown on the abscissa. Point F),,, is
the reference for the clamp load measurement. When the driver needs to decouple the clutch, the
displacement is moved to the right, as indicated on the picture. In this situation, the pressure plate
can be separated from the clutch disc. The normal force on the plate is given by the value of the
cushion function (£, on Eq. 10.13). Considering the clutch cover ratio, the difference between
those curves is related to the release effort F;. .

In this condition, the diaphragm spring works on a region of negative stiffness ranging be-
tween —1.2 x 10° and —0.8 x 10° N/m that gradually increases according to the position of the
pressure plate (Fig. 10.8(b)). Between 0 and 0.2 mm , high values of cushion stiffness (above
5 x 10% N/m) are found.

It is possible to look at the natural frequencies on Fig. 10.8(c) and see that they follow
the cushion profile. Near coupling condition, the natural frequencies of the stable and unstable
wobbling modes as well as the axial movement of the plate start above 400 Hz. At approximately
0.1 mm, they reach values nearby 300 Hz, which is very close to the value found for real events
(Fig. 1.1).

The real part of the unstable eigenvalue was augmented for greater levels of friction (Fig.
10.8(d)) as indicated by Wickramarachi et al. (2005). Its greatest values occurred closer to the

position of F},c,,.
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Figure 10.8: Clamp load and cushion curve on for a new clutch disc (Fig. 10.8(a)). Stiffness values

(Fig. 10.8(b)), natural frequencies (Fig. 10.8(c)) and eigenvalue real parts (Fig. 10.8(d)) for a new
clutch disc.

10.4.2 Worn clutch disc

When the clutch is worn, the thickness of the organic facings is reduced. The embedding
phenomenon (Sfarni ef al., 2011) can change the cushion curve if the spring causes internal defor-
mations on the facings. As a direct consequence from that, the equilibrium condition is shifted to
the point F,..,- in Fig. 10.9(a). The load value is practically the same as the one found for £,
(Fig. 10.8(a)). In this case, the cushion profile is modified to be the worn disc version from Fig.
2.4(b). For positive displacements from the equilibrium value, Fig. 10.9(a) presents that a positive

slope on the clamp load, indicating positive stiffness for the diaphragm spring operating under these
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conditions.

The derivative of the clamp and cushion curves is shown in Fig. 10.9(b). The diaphragm
spring have a positive stiffness between 0.5 and 2 x 10° N/m that decreases for greater position
from the equilibrium point. The cushion spring have stiffness above 0.5 x 107 N/m up to the
position -1.5 mm. In comparison to the previous case (Fig. 10.8(c)), higher natural frequencies
are computed under these circumstances. Values nearby 300 Hz occur only after at -1.4 mm, at
least 0.3 mm far from the initial position. The unstable mode real part increased with the friction

coefficient (Wickramarachi et al., 2005), like the previous case, with peak on low displacement

values.
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Figure 10.9: Clamp load and cushion curve on for a worn clutch disc (Fig. 10.9(a)). Stiffness
values (Fig. 10.9(b)), natural frequencies (Fig. 10.9(c)) and eigenvalue real parts (Fig. 10.9(d)) for
a worn clutch disc.
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10.5 Chapter summary

A lever model for the diaphragm spring was presented in Section 10.1. Besides that, it was
shown that clamp load and cushion measurements can be included to the simulations. This was
intended to be helpful for designers, creating a bridge between the formulations on the previous
chapters with the technical field. A realistic model needs to fulfil the points of the new and worn
clutch disc.

By looking at the key conditions for the clutch its was possible to observe that the diaphragm
spring may have regions with negative (new disc) or positive (worn disc) stiffness. Besides that,
the greatest factor that determines the behaviour of the natural frequencies of this system was the

cushion spring.
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11 Considerations on the leaf spring representation

In this chapter, the leaf springs are modelled, taking into account its position in relation to
the clutch cover/pressure plate system. It will be possible to observe that, due to its action on
both wobbling coordinates, it can be effective to turn a skew symmetric stiffness matrix into an
asymmetric form. This action will have a greater impact on the system stability.

This idea has not occurred on the clutch literature (Chapter 3) but Hoffmann et al. (2002)
studied a minimal model for brake squeal where it was possible to modify its stability with the
modification of the angles of inclined springs attached to a mass positioned over a moving belt with
frictional contact. But here it will be explained that the inclined element representing the straps/leaf
spring will allow modification on stiffness, distance from the centre of gravity, and preload. This

approach tends to stabilize this system without the use of damping.
11.1 Leaf spring (strap) description

A leaf spring(s) or strap(s) from a passenger car clutch system are presented in Fig. 11.2. It
does not have an know helical spring characterization, but it is responsible to separate the pressure
plate from the clutch disc when the torque transmission is interrupted. In this work, it is assumed
as a composition of an axial stiffness element (k,,) with a tangential one (k;,). Figure 11.2 depicts
the points where the strap is connected to the clutch cover. The extremities of this element are fixed
through rivets, one on the pressure plate (points E1, E2 and E3) and the other on the housing (points
CV1, CV2 and CV3).

11.2 An inclined stiffness element subjected to wobbling

Figures 11.3(a) and 11.3(b) represent the movement of the pressure plate in relation to the
clutch housing. During operation, both elements have the same rotating speed . There is no
relative angular motion between them. The tangential stiffness %; is attached to the pressure plate
at point F;, while it is fixed on the housing at the point C'V; (Fig. 11.3(a) ). This configuration is
directly based on the real system (Fig. 11.2). The position of point £; in relation to the centre of
gravity of the plate GG is given by angle 6, and radius R; (Fig. 11.3(a)) and the distance from the
centre of gravity [ (Fig. 11.3(b)). Due to the previous assumption of relative motion, the rotating

angles v do not cause deformation on the stiffness element, once that this angular motion happens
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in both the pressure plate and housing simultaneously.

Upper

view Leaf spring

axial stiffness

Side Dm_ ——— $ k,
]

- _I/l/'_ _ Leaf spring
tangetial stiffness
ke

Figure 11.1: Leaf spring interpretation.

Figure 11.2: Position of the straps in relation to the pressure plate and clutch cover.

The position of attachment on the pressure plate is given by Eq. 11.1. This work considers

the stiffness element in a position bellow the pressure plate (Fig. 11.3(b)). These model is suited

for a pressure plate modelled on the coordinate system from Section 7.1.
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= T
Br'GEiz{Ricosem Risind,. —z} (11.1)

The tangential efforts will be calculated on the coordinate system zy;21. Comparing Figs.
7.1(b) and 7.1(a), this approach will avoid unnecessary calculations involving the angle . In global

coordinates, this position vector is given by:

17:;GE1' = [Rﬁ][Ra] 37:;GE1' (11.2)

Adopting a vertical translation, the position of the point F; in relation to the origin O is given
by Eq. 11.3:

— - - T —
\T'oE, = 1"oc + 7 cE, = {0 0 —z— ze} +47GE; (11.3)

The deformation on the element is calculated by Eq. 11.4:

o T =
Alr’oEiz{Ricosen Risin,, —z} + o, (11.4)

To move the representation from xy}z] to the system x4y424 (Fig. 11.3(a)) it is necessary

the use of a rotation matrix determined by angle p;, and the transformations given by Eqs. 11.5 and
11.6.

cosp; sinp; 0
= [Rei]T r"=|—sinp; cosp; 0O 17“7 (11.5)
0 0 1

cosp; —sinp; 0
=R, 47:; = |sinp; cosp; O 47:; (11.6)
0 0 1

The deformation A 17"7 og, 1s transformed as presented on Eq. 11.7. The element effort is
shown in Eq. 11.8 where £, is the tangential stiffness and F}., is a preload of the spring opposed

to the rotating speed 7.
A 47”0 Ei,

A4TT;OE1' = [Réz]TA lﬁOEi = A4T,0Eiy (11.7)

/
A TOE,.
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Figure 11.3: Leaf spring modelled on upper (Fig. 11.3(a)) and side (Fig. 11.3(b)) views.
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0
JFlo = —Fe, + KA 47"’0Eiy (11.8)
0
The element effort is moved to the global coordinates (Eq. 11.9), which results on forces | F;,

and  F;, on the plane xy. Then, they are written on the system attached to the body (Eq. 11.10):

lFtac
Fl =R F =B (11.9)
0
3ﬁ/ti = [Ra]T[RB]T 1ﬁ/ti (1110)

The element matrices are calculated from moments around the centre off gravity on Eq.
11.11:

My, = P am X 4 F,, (11.11)
11.3 Inclined stiffness matrices

The matrix [K,], from Eq. 11.12 has the effect of the spring static load that is defined by

both position and orientation angles (¢,, and p;).

—cos p;sinfl,, —sinp;sinf,, 0
K], = Fe,R; | cosp;cosf,. — sinp;cosf, 0 (11.12)
0 0 0

Matrix [Kj,,]. (Eq. 11.13) has the effect of the tangential stiffness k;,. It is important to
note here that it depends on the square of the distance [ (Fig. 11.3(b)), meaning that the farther the
element is positioned from the centre of gravity, the greater the inner elements off this matrix will
be. If sin (2p;) # 0, the element is able to produce torque for movements on both « and 3. This

contribution of stiffness does not depend on the element position 6,.,.

cos? p; (1/2)sin(2p;) 0
(K, = ki, % | (1/2) sin(2p;) sin? p; 0 (11.13)
0 0 0
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11.4 Using the stiffness matrix ([/;,,],)

Equation 11.14 presents the total contribution of a set of 3 inclined elements with same stiff-
ness (k;) and distance [. Function f;,,, fs,, and f,, are written in terms of trigonometric relations
Eq. 11.15. Shift angles Ap,, and Ap, allow the creation of elements in directions based on a

common reference p.

3 f811 (pv ApS) f512 (P, Aps) 0
(K] = Z (K], = kil fsis (0 Aps)  foy (P, Aps) O (11.14)
=1 0 0 0

fsin = cos?(p) 4 cos®(p + Apy, ) + cos?(p + A,,)

fozs = sin®(p) + sin®(p + Apy, ) + sin’(p + Aps,) (11.15)
fors = (%) sin(2p) + <%) sin [2(p + Aps, )] + (%) sin [2(p + Aps, )]

11.4.1 Elements with the same direction (Ap;, = Ap,, = 0)

If all elements are arranged on with the same orientation angle, Equation 11.15 becomes Eq.
11.16. The elements on the main diagonal (fs,, and f;,,) will be positive values, while the element
fs,, 18 a sinusoidal function that can result on negative values. For p = 45° the expression given by

fs1, reaches a maximum value (Fig. 11.4(a)). In this case, fs,, = fsy, = fs15-

fs1, = 3cos?(p)
oz = 3sin*(p) (11.16)

3\ .
f512 = (5) SlIl<2p)
Combining the model from Chapter 8.1 with Eqgs. 11.14 and 11.16 results on Eq. 11.17. The

only source of damping in this case are the friction related terms (c;; = c92 on Eq. 11.18).

I 0 Oé i C11 ’}/(—2[ -+ Iz’z’) O( I kll k’lg (0% _ 0 (1117)
0 I B 7(21—1z'z') C22 B —ko1 koo B 0
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puh?kz,
R|y — 0|

When all stiffness are have the same direction, the terms ki, and ky; out from the main

(11.18)

C11 = Co2 =

diagonal (Eqs. 11.19 and 11.20) are different. The terms on the main diagonal (k1; and k92) may
be different if p # 45° (Egs. 11.21 and 11.22).

3
k2 = [2ukRh — 2u(h®/ R)kz.] sign(§) + (kil)? <§> sin(2p) (11.19)
3
koy = [2ukRh — 2p(h* | R)kz.] sign(¥) — (kil)? (5) sin(2p) (11.20)
ki = (2R? + 202z h)k + 4 (L — ) + 3(kil)? cos®(p) (11.21)
Koy = (2R + 2p22.h)k 4 A2 (L — I) + 3(kyl)? sin?(p) (11.22)
Apsl = Aps2 =0°
3 ‘ .-
25 ¢'
l' E
4
2 _f
'l' S11
1.5 AN []a et
’ 22
’ _f
1 R S, E1
4
4
05 '¢'
% 45 90
p[°] 3

() (b)

Figure 11.4: Element functions for Ap,, = Ap,, = 0° (Fig. 11.4(a)). Physical distribution with
p = 45° on Fig. 11.4(b).

The simulations were done assuming a pressure plate with m = 2kg, h = 0.0lm, R;, =
0.075m and R,,; = 0.1m. The cushion parameters were assumed as k = 3 x 10° /4 N/m, v = 0.3,
R = 0.0875m and 2z, = 0.001lm. A constant rotating speeds (7 = 2000 rpm and 0=0 rpm) were
adopted on the model.
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Figure 11.6(a) presents the unstable mode natural frequency that is found nearby 195-197
Hz. Due to the asymmetric stiffness terms, this characteristics for the stable mode may achieve
very high values, up to 10* Hz with k, = 1010N/m (Fig. 11.6(b)). Figures 11.6(c) (eigenvalue real
part) and 11.6(d) (real part signal) shows a transition on stability of this system. They present the

following trend:

e if the element is positioned very close to the centre of gravity (I = 0), k; must be greater than
10 N/m.

e increase the absolute value of [ requires a lower tangential stiffness for stability

e Equation 11.14 depends on [? and, as a direct consequence from that, all results in Fig. 11.6
are mirrored in relation to [ = Om. Physically, there is no difference if the tangential stiffness

is positioned bellow or above the centre of gravity of the pressure plate.
e the real part of the stable eigenvalue is increased (Fig. 11.6(e)) but it is always negative (Fig.

11.6(1)).

11.4.2 Elements with symmetric orientation (Ap,, = 120° and Ap,, = 240°)

A symmetric orientation of the elements is achieved with Ap,, = 120° and Ap,, = 240°
(Fig. 11.5(a)). For this configuration, Equation 11.23 presents that the skew symmetric terms are
zero fs,, = 0. The elements on the main diagonal are constant (f;,, = fs,, = 3/2), independent

from the reference angle p (Fig. 11.5(b)).
fe, = cos?(p) + cos?(p + 120°) 4 cos?(p + 240°) = 3/2

fony = sin?(p) + sin?(p + 120°) + sin?(p + 240°) = 3/2 (11.23)

for = (%) sin(2p) + (%) sin [2(p + 120°)] + (%) sin [2(p +240°)] =0
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Figure 11.5: Symmetric orientation for p = 0° (Fig. 11.5(a)). Element functions for Ap,, = 120°
and Ap,, = 240° (Fig. 11.5(b)).

As consequence from Eq. 11.23, the elements on the main diagonal from Eq. 11.17 are equal.
The terms k15 and ko; are only related to friction efforts (Eq. 11.25).

kin = koo = (2R* + 2p%z.h)k + 4* (L — ) + (g) (kid)? (11.24)

ka1 = k1o = [2ukRh — 2u(h*/R)kz.] sign(%) (11.25)

The system data was the same from Section 11.4.1. A consequence from the symmetry on
the matrices (Eqgs. 11.24 and 11.25) is that the natural frequencies of the modes behave in a similar
manner (Figs. 11.7(a) and 11.7(b)). They both increase with the element stiffness. In this case,
the real part from Fig. 11.7(c) requires greater values of k; compared to the previous case (Fig.
11.6(c)). Stability is achieved only for very high values off stiffness, above 10° N/m (Fig. 11.7(d)).
The real part of the stable eigenvalue becomes closer to zero with such amount of stiffness (Fig.

11.7(e)). This example leads to important verifications:

e amodification on the orientation must be carefully taken once that it can lead to very different

stability conditions.

e without the non-diagonal terms (k12 = ko; = 0) the tangential stiffness involved could be

prohibitive in terms of materials and design for a lightly damped system.
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Figure 11.6: Results for Ap;, = Ap,, = 0° and p = 45°. Natural frequencies (Figs. 11.6(a)
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11.6(c) and 11.6(e)) and their signals (Figs. 11.6(d) and
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11.5  Using the preload matrix ([X,],)

The combination of three inclined elements lead to the following contribution in terms ac-
counting a common preload F, and radius R, (Eq. 11.26). Equation 11.27 presents the trigono-
metric functions fp,,, fp.» fpi, and f,,, choosing a symmetrical distribution in relation to the disc
(0, =0, 120 and 240° on Eq. 11.12). Angles Ap,, and Apy, are used to define the orientation of
those elements (Eq. 11.14) .

3 fpn fp12
(K] = Y [Kyli = F.Ro | frs fome O (11.26)
=1 0 0 0

(
fp1, = —cos p;sin0° — cos(p + Aps, ) sin 120° — cos(p + Aps, ) sin 240°

Jpan = sin pi cos 0° 4 sin(p + Aps, ) cos 120° + sin(p + Aps, ) cos 240° (11.27)

fp1, = —sinp;sin 0° — sin(p + Aps, ) sin 120° — sin(p + Aps, ) sin 240°

| fp2r = — 08 pjcos0° — cos(p + Aps, ) cos 120° — cos(p + Aps, ) cos 240°

Figure 11.8(a) shows the functions from Eq. 11.27 with equal orientation angles Aps, =

Aps, = 0°. Based on the previous picture, such configuration lead to the following conclusions:

e there is no effect of preload f,,, = fpo = fpio = fpo = 0°

e the designer can only make modifications on the stiffness (Section 11.4.1)

A very different condition is presented by Eq. 11.8(a), where a symmetric orientation is used
(Aps, = 120° and Aps, = 240°). It results on a skew symmetric matrix. Figure 11.8(b) shows
the trigonometric functions from Eq. 11.27 for different orientation references (p). The terms out
from the main diagonal are greater for p = 0° (| f,,,| = |fp,,| = 1.5) while f,,,, = f,,, = 0. This
orientation case allows modifications on preload and stiffness (Section 11.4.2) and is physically

represented by Fig. 11.5(a).

sin — COS 0
srRr, |07 P
[KSII] = 2

cosp sinp 0 (11.28)
0 0 0
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Figure 11.8: Element functions for Ap,, = Ap,, = 0° (Fig. 11.8(a)) and Ap,, = 120° and
Aps, = 240° (Fig. 11.8(b))

The inclusion Eq. 11.28 on the system from Eq. 11.17 results in k1; = ks on the main
diagonal (Eq. 11.29) and k9; = k15 (Eq. 11.30).

FeRs
kll = k22 = (2R2 + 2/.L2Zeh)k -+ ".)/Z(IZ/Z/ — I) —+ (g) (ktl)Q + 3 2R s p (1129)

IR

ko1 = k1o = [2ukRh — 2u(h*/R)kz.] sign(¥) — cos p (11.30)

The system data was the same from Section 11.4.1. The element distance was chosen as
[ = 0.1 m. The total tangential stiffness was varied between 10* < k, < 10! N/m while the
preload was tested within —8000 < F, < 8000 N.

Up to p = 45° (Fig. 11.10(a)), the real parts from the eigenvalues (Figs. 11.9(a) and 11.9(b))
indicate that negative values of F, does ot affect the stability of this system. For a positive value of
F,, there is a threshold where the stability between the stable/unstable modes are interchanged.

Such transition is shifted for p = 45° (Fig. 11.10(b)) , where an increase on the positive
preload resulted on a reduction of the total stiffness needed for stability (Figs. 11.9(c) and 11.9(d)).

Adopting p = 90° (Fig. 11.10(c)), there is no influence of preload, only high values of
tangential stiffness affected the stability (Figs. 11.9(e) and 11.9(f)).
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Figure 11.10: Element configurations with symmetric orientation (A, = 120° and A,, = 240°

).

11.6 Chapter summary

The leaf springs or straps were modelled on Section 11.2. It resulted in two matrices (Section
11.3) one representing the influence of the tangential stiffness (Eq. 11.12) and another account the
spring preload (Eq. 11.13). All results are tied to the assumption that energy dissipation occurs

only due to friction damping on the system.

e a greater distance from the centre of gravity required lower stiffness values for stabilization

e Elements with equal orientation angles required lower values of stiffness to achieve stability.

The element matrices presented non-diagonal elements. Preload had no effect on this case.

e Symmetric oriented elements eliminated the non-diagonal terms of Eq. 11.12, resulting on
very high stiffness values for stabilization. Preload could be used on this case, but with no

significant effect on stability.
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12 A device for pressure plate stabilization

This part of the work presents a device that was conceived to introduce damping to the pres-
sure plate. It follows the initial idea from Tondl (1975), who linked an auxiliary mass to a self
excited system through a spring and viscous elements. Such idea has not been tried yet on the
literature (Chapter 3).

Section 12.1 contains the deduction of the connection elements. The device will be assumed
to be another disc with annular shape. Their formulation was made to allow different distributions
on the interface between the pressure plate and the device mass.

A numerical example will be tested on Section 12.3, showing that the stability range of this
system is achieved on the condition of curve veering ( Liu (2002) and Perkins and Mote Jr (1986)).
There are in phase and out of phase wobbling movements on that will be discussed on Sections
12.3.4 and 12.3.4.

12.1 Stabilization device formulation

Figure 12.1(a) shows the pressure plate and device mass/inertia with centres of gravity G and
G4, respectively. The spring/damper element is placed between points S and T, with a linear stiff-
ness and viscous damping coefficients k4, and c4,. The parameter R; describes the radial distance
while the angle ¢4, is used to place the element. Equation 12.1 has the parameter d that indicates
a position above the point G and while in Eq. 12.2 the variable a indicates a distance bellow the

point G.

. T
37”GT={Ricosgdi R; cos eg, d} (12.1)

. T
3T aus = {Ri coseq, Ricosey, —a} (12.2)

The device may move according to two wobbling angles (0,,0,), with an additional vertical
movement indicated by z, (Fig. 12.1(b)). The pressure plate have similar degrees of freedom «,
and z. The coordinate system is detailed on Section 7.1.3, where the constant angular speed * is
maintained on the global reference frame.

The vertical displacement of the pressure plate at point 7" is given by Eq. 12.3 taking into
account only angular movement. The complete expression (Eq. 12.4) requires the additional terms
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: : /o
from axial motion 7o :

OT/GTZ = —sin fR; cosey, + sinacos BR; siney, + d cos avcos (12.3)

oor. = oToa. torer. = —(2—2) —sin BR; cos eq, +sin a cos BR; sinegy, +d cosacos f (12.4)

Vibration
absorber
Yd
Pressure -
plate 4Ld
\ ki o

(b)

Figure 12.1: Geometric relations of the stabilization device (Fig. 12.1(a)). Spacial position of the
device and wobbling angles (Fig. 12.1(b)).
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The displacement on the device attachment point S (Eq. 12.6) is obtained by the combination

of OT’Gd s, (Eq. 12.5) and the axial displacement ro,q,,

/ . . .
oGS, = —sin 0, R; cos g, + sin 0, cos 0, R; sine4, — a cos 0 cos 0, (12.5)

’ 0 / o : ) : .l _
o"0uS. = oT04Ga. ToTGus. = —Za—sin0,R; coseg,+sin 0, cos 0, R; sineq,—a cos 0, cos 0, (12.6)

The stiffness effort on the pressure plate (Eq. 12.7) is calculated using the total deformation

between points S and 7' (Egs. 12.8 and 12.9), considering A jrop > A 15,5 -

OF/kiplate = —kdi A OT/OTZ - A Orbdsz k (127)
Agror, = gror, —d (12.8)
A Fous. = gTous. Ta (12.9)

The effort acting on the plate F’ L on the frame x4y52} is obtained as in Eq. 12.10. The

3 Iplate

moments are calculated on Eq. 12.11. Considering 3ﬁ’ k. — _ [ L. »the stiffness moments
ldevice 3 Tplate
on the device are calculated by Eq. 12.11.
—sin 8
Fy. = [Rsa)" ﬁ'k = ﬁ/h sin o cos 3 (12.10)
3 Tplate 0 Iplate 0 Tplate
cos acos 3
My =rar x F'p (12.11)
3 tplate 3 Tplate
Vil I nl 7 I
3M ldevice - 371 GdS % 3F Labsorber o 3r GdS x |: 3F kiplat€:| (12.12)

12.1.1 Connection matrices

A linearization on the torques from Eqs. 12.11 and 12.12 makes it possible to obtain the

connection matrix [K,,] (Eq. 12.13). The matrix [P(e4,, R4,)], gives the stiffness state accord-
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ing to the element angular position (g4,) and radius (R;). It is arranged for a state space p =
{a Bz 0, 0, zd}T, where the upper positions refer to the motions of the pressure plate
while the lower portion contains the degrees of freedom of the device. If a similar procedure from
Section 12.1 is done to the damping forces and the dissipative part of the connection ([Cy,,);) is
determined as Eq. 12.14. This connection will be responsible to introduce an external damping to

the pressure plate.

Ry sin? ey, —(R3,/2)sin (2¢4,) —Rq, siney,
- (Rfli /2)sin (2e4,) Ri cos? e, Ry, coseg,
— Ry sineg, Ry cosey. 1
K ; :kdi P edﬂRdi :kdi ! ' ! !
Heonl; A ) —Ri sin? g4, (R?li /2)sin (2e4,) Ry, sineg,
(R?li /2)sin (2e4,) —Rfli cos? g4, —Rg, coseg,
Ry, sineg, —Rg, cos g, -1
(12.13)
—-RZ sin ey, (R?ii /2)sin (2e4,) Ry, sineg,
(Ri /2)sin (2e4,) —Rfli cos? g4, —Rg, cos eg,
Ry, sineg, —Ryg, cosey, -1
Ri sin? g4, _(R?li /2)sin (2e4,) —Rg, sineg,
_(R?li /2)sin (2e4;) R?lz- cos? g4, Ry, coseyg,
—Ry, siney, Ry, cosegy, 1 i
[Ceon); = ca; [P(a, Ri)] (12.14)

12.2 System matrices

The whole system comprehending the pressure plate and the device is written in Eq. 12.15.
This formulation allows the creation of a wider range of possibilities in terms of connection ele-
ments distribution, as well as different configurations off the rotating friction elements from Section
7.4.

[M]sys {5} + ([Glays + [Clays) {B} + ((H(N]sys + [Klsys) {p} = {F} e +{F e (12.15)

The elements from the matrices [M],,s (Eq. 12.16), [Gsys (Eq. 12.17) and [H],,s (Eq. 12.18)

result from the composition of the following elements:
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e mass matrices ([M],ate and [M]gevice) based on Eq. 7.12. The total mass of the plate and

device are defined as myp;qte and Mgeyice In Eq. 12.16, respectively.

e gyroscopic matrices ([G]piate and [G]gevice) based on Eq. 7.13.

o inertial stiffness matrices [H1 ()] 4., and [H1 ()] gepic are based on Eq. 7.14.
_ . -

M

[ ]plate 0 [0]3>(3

00 ate
M1,y = Hirtat ; (12.16)
M, .
[O]SXB [ ]demce 0

00 Mdevice

[G] ’
plate 0 [0]3X3
[G]sys = . ’ 0 (1217)
G .
[O]3X3 [ ]demce 0
_ 00 0 ]
[Hl(ﬁ/)]plate 0 [0]3><3
_ 00 o (12.18)
[H1 ()] gews X
[O]SXS 1 device
_ 0 0 J

The damping matrix [C]s,s (Eq. 12.19) is obtained by the combination of the device con-
nection matrices [Ceo,|; (Eq. 12.14) with the rotating friction elements [C;] (Eq. 7.61). The same
procedure has to be done for the stiffness component [K|,,s (Eq. 12.20). A external effort array
[Fsys (Eq. 12.21) takes into account all individual effort arrays { f;} from Eq. 7.65.

[Clays = ; [Clon], + ; [0[](’;{33 Ezij (12.19)
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[K]sys = i [Keon); + [g(l] gi””’] (12.20)
[Flsys = ; Uit (12.21)

12.3 An applied numerical example

Equation 12.15 was simulated choosing a pressure plate with m,,.c = 2kg, h = 0.01lm,
R;, = 0.075m and R,,; = 0.1m. The contact radius was considered as R; = 0.0875m. The
total cushion stiffness (Kqushion) Was tested from 10* to 108 N/m and it was divided between 4
equally distributed friction elements using the model from Section 8.2. A common constant friction
coefficient of 0.3 and a static displacement of 0.001 m were adopted.

Four connecting elements were placed between the pressure plate and the device, positioned
by €4, = 0°, 90°, 180° and 270° with R,;, = 0.0812m. Damping and stiffness of each element
were set as ¢g, = 25Ns/m and kg, = 1.75 x 10°N/m. The geometry of this device was a hollow
cylinder with an inner and outer radius of 0.075 m and 0.0875 m, respectively. It has a total mass
of 0.4 kg and a distance of 2 mm between its centre of gravity and the contact surfaces. A common

constant rotating speed of 1800 rpm was adopted.
12.3.1 Natural frequencies, curve veering and stability range

As the cushion stiffness was increased, the natural frequencies of this system evolved as Fig.
12.2. Their values found for 10*N/m and 10*N/m are detailed in Table 12.1. From these data, it is
possible to verify two distinct groups of mode shapes. Modes 1, 2 and 3 start at frequencies bellow
32 Hz and they reach maximum values nearby 212 Hz. Another group, of modes 4, 5 and 6 start at
higher frequencies and increasing up to 1100 Hz.

From the literature, some definitions on curve veering can be found:

e Liu (2002): “Mode localization and eigenvalue curve veering are the phenomena of rapid

and even violent changes in dynamic modes.”.

e Perkins and Mote Jr (1986):“An important characteristic of curve veering is that the eigen-

functions associated with the eigenvalues on each locus before veering are interchanged
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during veering in a rapid but continuous way.

Figure 12.2 presents such phenomenon, once that the curves from modes 1, 2 and 3 get
really close to mode 4,5 and 6 within the region delimited by a “Stability range”. Apart from this
situation, the frequencies from those groups are very different. Their associate mode shapes were
carefully tracked using the Modal Assurance Criterion (Allemang, 2003) and their characteristics

will be explained on Section 12.3.2

10
E 3 ——Mode 1
=107 7 |=——Mode 2
% ——Mode 3
= Mode 4
8 I ——Mode 5
5 Mode 6
3 10° Stability range
= Stability range
1
10 L L L
10* 10° 10° 10’ 10°

Total cushion stiffness [N/m]

Figure 12.2: Natural frequencies for the example on Section 12.3.

Table 12.1: Mode shapes and the variation on its natural frequencies.

Mode | Initial frequency [Hz] Final frequency [Hz]
1 10.2714 209.8114
2 31.2808 211.3844
3 31.7184 211.3953
4 228.8469 1113.193
5 228.9418 1113.9022
6 230.6833 1129.3153

The real part of the eigenvalues are displayed on Fig. 12.3. The stability rage was defined
on the interval were all real parts were negative. The numerical simulation gave such results for
cushion stiffness between 2.4 x 10° and 1.2 x 107 N/m. For low stiffness values, mode 2 presented
the greater real part. Out from the upper limits of this curve, mode 4 had an increasing real part. It

is possible to conclude that:
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e Within the stability range, the device modified the system to allow energy dissipation, avoid-

ing the self excitation of the pressure plate.

The modal damping on Fig. 12.4 show an increasing behaviour for modes 1, 2, 3 and a de-
creasing tendency for modes 4, 5 and 6. For both groups, maximum damping ratios occurred nearby

10 % for this group of parameters. Negative modal damping represents an unstable condition.

100
501 1
£ ——Mode 1
Q 0 1 | =—=Mode 2
g = Mode 3
o Mode 4
o _enl |
= 50 \ —— Mode 5
z ) Mode 6
S -100} f Stability range
[ Stability range
-150
_200 1 1 1
10* 10° 10° 10’ 10°

Total cushion stiffness [N/m]

Figure 12.3: Real part of eigenvalues for the example on Section 12.3.
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g 6- ——Mode 3
8 Mode 4
= —Mode 5
5 4 Mode 6
% Stability range
e 2r Stability range
0
-2 4 5 0 7 8
10 10 0 10 10

Total cushion stiffness [N/m]

Figure 12.4: Damping factors for the example on Section 12.3.
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12.3.2 Axial mode shapes

For the sake of clarification, all modes considered from Figs. 12.5 and 12.7 the angle « as
reference for phase. Mode 1 (Figs. 12.5(a) and 12.5(b)) corresponds to an axial movement with
lower natural frequency (Fig. 12.2). For high values of cushion stiffness (k.usnion), the device
presents greater levels of vibration. In all cases , the pressure plate and the device have an in phase
axial motion (Fig. 12.5(b)).

Mode 6 is a high frequency axial mode (Fig. 12.2). Even for low levels of cushion stiffness,
for this case there is opposition of phase between z and z; (Fig. 12.5(d)). On the other hand, if
Ecushion 18 too high, above the stability region found on the previous section, only the pressure plate
vibrates at high frequencies (Fig. 12.5(c)).

Mode 1 - Amplitude Mode 1 - Phase [°]
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=3 1 =3 5 1
° 210 -90
o 1 . [i] 1
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Figure 12.5: Axial mode shapes.
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An important phenomenon occurs here and in all following situations. On the stability range
(between 2.4 x 10° and 1.2 x 107 N/m for this case) both pressure plate (z) and device (z4) vibrate
on the same mode shape (Fig. 12.5(a) and 12.5(c)). A sequence of vibration on the stability range
is detailed on Fig. 12.6. Out from this condition, vibration seems to be localized on one element
only. This and the following results fit on the veering definition from Perkins and Mote Jr (1986).

The stability range occurs on the transition of behaviour of these mode shapes.

r,
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LY~ g} " 03 =
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,__Ifq{ f l.j e v ; ‘_,;- # l}‘ ey . __‘_A,,;g 4 5'} Wy Ay

3, 3, T 3

% L f t

& & £ y

P D Gl D
e ;} 5:* T T 3# ;r;_, T e {JI_E '1-_?, Ty , T b 4w,
(@) (b)

Figure 12.6: Axial modes 1 and 6 for a total cushion stiffness of 6 x 10% N/m.

12.3.3 In phase wobbling motion

Modes 2 and 3 occur with lower natural frequencies (Fig. 12.2). Based on Figs. 12.7(a) and
12.7(c), it is possible to observe wobbling on the pressure plate and on the device due to the non-
zero amplitudes on «, 3, 0, and 6,,. On the transition (or stability range), there is a combination of
movements of both elements. For high stiffness values, only the device vibrate (Figs. 12.7(a) and
12.7(c)).

For mode 2 (Fig. 12.7(b)), the phase relation between « and [ is practically the same one
found for 6, and 6,. Even for mode 3 (Fig. 12.7(d)) similar phase characteristics happen among
these pairs. On important conclusion from this is that the pressure plate and the device perform
together a forward or a backward wobbling (in phase motion). Vibration on the stability range
is detailed on Fig. 12.8 (keyshion = 6 x 10° N/m). Mode 2 is represented as a forward wobbling,
while mode 3 is a backward motion. Figure 12.8 agrees with the results on Fig. 12.7(a) and 12.7(c),
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Figure 12.7: Lower frequency wobbling modes.
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Figure 12.8: Wobbling modes 2 and 3 for a total cushion stiffness of 6 x 10° N/m.
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presenting greater amplitudes on the device.

12.3.4 Out of phase wobbling motion

For stiffness bellow the stability range, Figures 12.9(a) and 12.10(a) shows that only the
device presents wobbling. For high levels of cushion stiffness, there is motion on the pressure plate.
Figures 12.9(b) and 12.10(b) presents a phase angle close to 180° between « and 6, indicating
movement in opposition of phase. As a result, on the stability range, the following behaviour
happen (Fig. 12.11):

e Mode 4: Figure 12.11(a) presents an out of phase forward wobbling motion between the

pressure plate and device.

e Mode 5: Figure 12.11(b) presents an out of phase backward wobbling motion between the
pressure plate and device.

Thinking on the constructive aspects from Fig. 12.1(b) it is possible to think that during out
of phase wobbling the efforts on the connecting elements are greater. This is a strong mechanism

for the working principle of this device.
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Figure 12.9: High frequency wobbling modes.
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Figure 12.10: High frequency wobbling modes.
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Figure 12.11: Wobbling modes 4 and 5 for a total cushion stiffness of 6 x 10% N/m.

12.3.5 Time domain response of the system

Equations 12.22 and 12.23 represent the displacement and speed of the system under the
conditions on Section 12.3 in case of free vibration. They take into account the contribution of the
six modes presented in Sections 12.3.2, 12.3.3 and 12.3.4.

{p(t)} =S (d (X N (X ) (12.22)

=1

167



(didi {Xi} ™+ diA; { X} e (12.23)

6
—1

{p(} =

Choosing t = 0 s, Equation 12.24 contains the relation between the initial conditions {p(0)}

2

and {p(0)} with the complex constants arranged on a array {d} on Eq. 12.25 (Meirovitch, 2010).

This system of equations can be solved for any desired initial state, resulting on specific values of

{d}.

{{17(0)}}:[{&} X X {Xg}]{d} (122
PO} ) NG M (X X {XG)

T
@y ={a a . do dg} (12.25)

Figure 12.12 highlights specific stiffness values on the eigenvalue real part previously shown
in Fig. 12.3. The lower and upper limits of the stability range are indicated by stiffness kjower imit
and Kypper 1imit» respectively. The parameter kg5 stand for eigenvalues with negative real part.

The parameter kpe0,, Was calculated as the mean value between the minimum stiffness con-
sidered (10* N/m) and kjouer timit- A greater value kqpope Was positioned between Eupper 1imir and
the maximum stiffness of 108 N/m. The numerical values for those parameters are presented in
Table 12.2.
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Figure 12.12: Stiffness values chosen for the time domain simulation.
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Table 12.2: Stiffness values from Fig. 12.12 used for time domain simulations.
Parameter | Value [N/m]
kbellow 1.56025 x 105
klower limit 2.43437 x 106
Kstabie 5.47947 x 108
Kupper timit | 1.22204 x 107
Eabove 3.49578 x 107

The simulations considered {p(0)} = {0.01 0.01 001 0 0 O}T as initial conditions.
Figure 12.13 presents the results adopting Kpejio, (Fig. 12.12). There is an in phase wobbling
motion between the pressure plate and device that increases with time, indicated by the angles o
and 0, on Fig. 12.13(a), and by 3 and ¢, on Fig. 12.13(b). Vertical vibration amplitudes remain
constant during the simulation (Fig. 12.13(c)).

Adopting Ejpwer 1imi (Fig. 12.12), Figures 12.14(a) and 12.14(b) contains constant angular
motions throughout the simulation. On the other hand, the vertical movement is damped, with a
decrease of amplitude according to Fig. 12.13(c). In all cases, the vibration levels were greater on
the device.

In the middle of the stability range (Fig. 12.12), a cushion stiffness kg;q. results on a decay
of amplitudes in all degrees-of-freedom on Fig. 12.15. One important characteristic on the signals
is the out of phase motion between the pressure plate and device (Fig. 12.11), indicated by o and
6, on Fig. 12.15(a) and by /3 and 0, on Fig. 12.15(b).

On the upper limit of the stability range (Kypper 1imi+ On Tab. 12.2), damping is still effective
for reduction of vertical vibrations (Fig. 12.16(c)). In this situation, the out of phase motion per-
sists, like in Fig. 12.15, but wobbling amplitudes remain practically constant during free vibration.
Values for the pressure plate are greater in relation to the device (Figs. 12.16(a) and 12.16(b)).

The device is no longer effective for k..., that is placed out of the stability range on Fig.
12.3. The unstable condition is presented by the exponentially increasing wobbling amplitudes on
Fig. 12.16(a) and 12.17(b). Vertical vibrations are still reduced by damping (Fig. 12.17(c)).

Based on the previous results, Kpejo and kqpope produced unstable responses. The free vi-
bration for Kjower 1imit OF Kupper 1imit 18 critical, once that vibrations on the pressure plate can be
constant depending on the initial conditions. But it must be remembered that those are specific
values, and, within the stability range, there is a decay on the wobbling responses of the pressure

plate/device.
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Figure 12.13: Wobbling responses (Fig. 12.13(a) and 12.13(b)) and vertical motion (Fig. 12.13(c))
for kbellow-
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Wobbling response for hower limit

0.02 | : —
0.01 l : _gx
“ NARAARRARAAAAAAAAANR
£
g O ]
3 ARAARAARAAAAARARAAR
Q _0.01 1
~00% 0.02 0.04 0.66_ 0.08 0. 012
Time [s]
(@)
Wobbling response for Hower limit
0.02 : :
—B
— 0.01 : —
: ,\ VARARARAARAAARARAARAARANR
£
g 0
G ARAARARARAARARRAARA
Q _0.01 1
~00% 0.02 0.04 0.66_ 0.08 0. 012
Time [s]
(b)
Vertical response for Hower limit
0.02 : : : :
—— Pressure plate
—— Device
= 0.01 : : b
§-0.01
~0.0% 0.02 0.04 0.66_ 0.08 0. 0.12
Time [s]
(©

Figure 12.14: Wobbling responses (Figs. 12.14(a) and 12.14(b)) and vertical motion (Fig. 12.14(c))
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Wobbling response for kS
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Figure 12.15: Wobbling responses (Figs. 12.15(a) and 12.15(b)) and vertical motion (Fig. 12.15(c))
for kstable-
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responses (Figs. 12.16(a) and 12.16(b)) and vertical motion (Fig. 12.16(c




Wobbling response for k

above

Displacement [°]

— 4 L L L L L L L L L
0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Time [s]
(a)
Wobbling response for k

above

Displacement [°]

_ L L L L L L L L L
0'40 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Time [s]
(b)
Vertical response for kabove
0015 T T T I I
—— Pressure plate
oot} — Device
§ 0.005 I | | -
T
kS 0 ENRERENTA AR AR A RAARARAAAAAAAAAAAA AR AAIAARAN
i
o |
-0.005 : R
_001 l L L L L L L L L L
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Time [s]
(©

Figure 12.17: Wobbling responses (Figs. 12.17(a) and 12.17(b)) and vertical motion (Fig. 12.17(c))
for kabove-
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12.3.6 Chapter summary

This chapter presented the formulation of a stabilization device for the pressure plate. It
worked with the principle of veering, causing the stabilization of all mode shapes (Section 12.3.1).
On the stable range, in phase and out of phase wobbling motions were detected (Sections 12.3.3
and 12.3.4). The out of phase wobbling motions between the lower and upper disc are a favourable
condition for the use of the viscous damping. With this approach, damping is introduced on other
elements than the cushion spring. The time domain responses under free vibration from Section
12.3.5 agreed with the stability range determined on Section 12.3.1, producing decaying time re-

sponses for cushion values within the stability range.
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13 Conclusions and future work

13.1 Conclusions

13.1.1 Element formulation and possibilities

The system on Cardan coordinates (Chapter 6) presents greater modifications of its natural
frequencies in relation to the pressure plate rotating speed than the model with the rotating speed on
global coordinates (Chapter 8). The natural frequencies of the forward, backward and axial modes
for the model under hypothesis 2 were close to each other for greater values of cushion stiffness.
This thesis was innovative with assumption of relative displacement between the pressure plate and
the flywheel in case of viscous damping (Sections 5.2 and 7.2). Sections 5.3, 7.3.1 discussed in
detail that, due to the movement of this element, it is possible to generate vertical efforts when there
is motion under a surface that changes its height or on the example of an inclined flat disc.

As a result, the model on Cardan coordinates (Hypothesis 1) presented a term of stiffness
related to the contribution of rotating speed of the disc (Section 5.5.2), while the formulation with
the rotating speed on global coordinates (Hypothesis 2) presented terms related to the element
relative position angle (Section 7.4.2). Those terms resulted on instability under low levels of
stiffness on Sections 6.4 and 8.4. The models assuming viscous damping have a dual characteristic,
allowing instability due to the friction for higher values of contact stiffness and due to the effect
of a moving viscous element when it is reduced. In both cases, the modification of the clutch disc
rotating speed modified the real part of the eigenvalues of a viscously damped system (Sections
6.4 and 8.4). The whole literature (Chapter 3) takes into account structural damping, that do not
produce this effect.

The results from Chapter 9 indicate that real clutch discs, that have variations on their prop-
erties due to several reasons (manufacturing tolerances, uneven wear, etc.) may cause vibrations on
the pressure plate that cannot be directly associated to the existing literature. There was innovation
on the possibility if inclusion of variations on the cushion spring using elements from Section 5.5.
On the simulations with placement error on one element (Section 9.1), there was coupling between
the angular coordinates with axial movement. It was shown that such errors change significantly
the axial mode shape, decreasing the magnitude of vibration on axial direction and increasing the
role of the angular displacements. Proportional changes according to the angular coordinates with

symmetrical distribution (Section 9.2),did not cause a modification on the axial mode shape. When
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the stiffness for one coordinate was greater than the other, the unstable mode shape presented higher
amplitude. Only when the stiffness is equally distributed, the mode shape presents equal amplitudes

between these coordinates.

13.1.2 Application

Chapter 10 included real measurements on the diaphragm spring lever model interacting with
the cushion curve nearby the points of usage on a vehicle. Another important conclusion from this
part of the work was that the diaphragm spring stiffness is negative for a new clutch disc and
positive for an aged one. Any realistic model of clutch squeal will have to fulfill those technical
requirements, matching the properties included on the model with the functional curves of the real
system elements.

On Chapter 11 it was possible to conclude that attachment of the leaf springs at larger dis-
tances from the centre of gravity allowed the stabilization of the system with lower values of tan-
gential stiffness. The orientation angles were very important, once that with all elements at 45° the
non diagonal terms were maximized, requiring lower values of all parameters for stabilization. The
preload had no effect to stabilize the eigenvalues.

Chapter 12 contains the formulation of a stabilization device for the pressure plate. In this
formulation, stability was achieved during a situation of veering ( Liu (2002) and Perkins and
Mote Jr (1986)). On this situation, the upper and lower disc performed in phase and out of phase
wobbling movements, which allowed energy dissipation on the connection between them. The time
responses from Section 12.3.5 are related to the stability of the eigenvalues. For cushion stiffness
bellow or upper the stabilization limits, there was a growing wobbling response. Within the stable
region, such response presented a fast decay.

Clutch squeal is a very complex problem, once that up to know there is no complete expla-
nation for the fact that this phenomenon has been focus of publications for just 10 years from now
( Wickramarachi et al. (2005)). This thesis tried to deepen the research in terms of the compre-
hension of the clutch system itself in relation to the model, bringing the technical knowledge and
including real measurements when possible (Chapter 10). Besides that, it tried to discuss pending
questions on the matter on a equal basis. With the formulations proposed on this work, the analysis
of clutch squeal is not restricted, allowing a simultaneous evaluation test contributions of different
elements combined on the same model (cushion configurations, diaphragm spring, leaf springs,

stabilization device, etc.).
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13.2 Future works

Clutch squeal is an open field of study and it is on a early stage of development. There is still

room for the following works:

e Study the equations from this work in terms of linear time varying systems.
e Produce simulations involving the interaction of the elements developed on this work

e Study the nonlinear behaviour of this system. Based on Chapter 10, it is possible to include
the nonlinear stiffness profile of the diaphragm spring, that have parts with negative stiffness

and friction hysteresis.
e Include characteristics of the clutch disc on the model.

e The Finite Element Method can contribute for the introduction of the more realistic charac-
teristics on interaction between the cushion springs and the facings. But it is necessary to

change the contact model to allow the presence of friction damping.
e Take the experience and analysis tools provided by the vast knowledge on brake squeal.

e There is a pending question about the comprehension of the role of charcateristics of the

powertrain/vehicle on the threshold of squealing events.

e There is practically no available experimental data on the matter. Vehicular tests have already
started in order to understand the occurrence of squeal. Modal analysis tests have been started

too.
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A Friction distribution near coupling

A.1 Cardan coordinates

Near coupling, it occurs that the terms which depend on the expression y — 0 cos acos 3
practically vanish on Equation 5.37. The approximate function for small angles is calculated by
Eq. A.1.

drsiny — Bcosy ) + 6 (Bsiny + acosy)
3‘7%, ~h dcosv—l—ﬁ'sinv +9(5cosw—asin7) (A.1)
0
Assuming small angles, the norm of 317%, is calculated as Eq. A.1. It still depends on the

wobbling angles (a and ). For v = 0° and & = [ = 0 the unitary vectors are calculated by Eq.
A3.

‘?ﬁtm = h\/éﬂ + 32+ 20(aB — af) + 62(2 + a?) (A.2)
1% 1 “
— 3 trel
V= = N ————= (A.3)
’ 3Vt'rel a2 _'_ /82 O

Adopting o = v = 0° the unitary vector is given by Eq. A.4. Figure A.l presents the
distribution of the friction force and unitary relative speed when the element rotating speed () is
close to the values found for the pressure plate (7). Figure A.1(a) presents the pattern of friction
forces tangent to the disc radius. As the difference decreases, there is a reorientation of the friction
forces in Figs A.1(b) and A.1(c). Finally, for ¥ = 1000 rpm and 0 = 999.9999 rpm the unitary
relative speed of all elements is the same, on the direction given by Eq. A.4.

| 0 0
GV = m B¢ =sign(B) 41 (A4)
0

Similar results are found imposing 8 = v = 0° (Eq. A.5). The modification on the unitary

relative speed vector and friction forces is shown on Fig. A.2. Equation A.5 gives the direction of

187



;U (Figure A.2(d)), where all vectors are aligned with the axis ys.

1 o 1
GV = Tal 0 p = sign(a) 0 (A.5)
0 0

Even if @« = § = 7 = (° the unitary speed is influenced by the angular speeds. Figure A.3
presents results for & = £ = 1rad/s. If v — 6 = 100 rpm (Fig. A.3(a)) and ¥ — 6 =10 rpm
(Fig. A.3(b)) the direction is not substantially changed. For v — 0=1 rpm (Fig. A.3(c)) the field
presents significant changes and are no more tangent to the radius if z3 < 0 and y3 < 0. (Fig.
A.3(b)). The direction follows the direction given by Eq. A.6 on Fig. A.3(d) where & = B =0.1
rad/s. This degeneration of the friction forces in relation to the movement of the pressure plate is

the physical explanation for the occurrence of friction damping Section 5.5.

- —b
V 1
3];’ — 3 _)trr'el ~ ' O[ (A_6)
3Vt'rel \/ a2 + /82 O

A.2  With the rotating speedon global coordinates

Near coupling condition, the terms that depend on  — 0 on Eq. 7.39 become too small. An
approximation of the relative tangential speed is given by Eq. A.7. It depends on the wobbling
angle o as well as the wobbling speeds & and B.

B (—hcosa + sinaR; sin ;)
Vi & &h — Bsin aR; cos (A7)
0

Equation A.8 represents the normal vector near coupling adopting 5 = 0°. It shows that the
relative speed field will tends to align with the y; direction. Figures A.4 express such behaviour on
tangential relative speed degrading from ~ — 6 =10 rpm (Fig. A.4(a)) to vy — 6 =0.1 rpm (Fig.
A.4(d)).

7 3‘7/25Tez ah ! gn(c) (1) (A.8)
V= = = — = sign(a .
TVl lalh
rel O O
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Equation A.9 shows the case for « = 0°. Figures A.4 shows ;77" aligning wit the —z% for
situations from 4 — § = 10 rpm (Fig. A.5(a)) to ¥ — 6 = 0.1 rpm (Fig. A.5(d)).

o a [ 1
Jo= 3 Ht’"el =L = sign(f){ 0 (A.9)
|5Vt |5|h

rel |
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Figure A.1: Friction forces near coupling for a = (0°.
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B Tangential speed error

B.1 Cardan coordinates

Having in mind the development of the previous section, it is possible to make a comparison
on the physical representation of the original version of the unitary tangential relative speed (Eq.
5.37 and written here as ;U,oniineqar ) and its approximation (Eq. 5.42 noted here as 3ipeqr). The

deviation from the nonlinear case is shown in Fig.B.1. The norm error was calculated by Eq. B.1:

Norm error = 100 x

yPisncar = Pt B
’3 Vnonlinear ’

For a greater relative angular speeds (v = 1000 rpm and 6 = 900 rpm) the error is low,
reaching 1.2% if a and [ were chosen close to 1° Figs. B.1(a). When the system approaches the
coupling, errors become more significant. With 4 — 6 = 10 rpm (Fig. B.1(c)) a deviation of 14
% occurs for greater angular displacements. A critical point occur if  — 0=1 rpm (Fig. B.1(c)),
where errors above 180% were computed.

The direction error was calculated by Eq. B.2. The dot product between vectors give a mea-
sure of the relative angle between them. It was subtracted from 1 to verify how the approximation
deviate from perfect alignment (cos 0°). As it is possible to see in Fig. B.1(b), B.1(d) and B.1(f),
error on the orientation is extremely low no matter how close to coupling the system is.

. . ﬁlinear : ﬁnonlinear
Direction error = 1 — -2 3 (B.2)

| 3 ﬁlinear | | 3 ﬁnonlinear |

B.2 With the rotating speed on global coordinates

The norm and direction errors (Egs. B.1 and B.2) from Section B.1 were applied here. As
consequence of the formulation of the approximate unitary vector in Eq. 7.40, norm will present
very low errors in terms of angles. Figure B.3 shows results assuming & = B3 = 0and angles
within 107*° < o < 1° and 107*° < B < 1°. The element parameters were chosen as 1;p = 45°,
h =0.01 m, R = 0.0875 m.

Norm errors for relative speeds equal to 100, 10 and 1 rpm (Figs. B.3(a), B.3(c) and B.3(e),
respectively) have maximum errors near 0.14 % for wobbling angles near 1°. Maximum errors of

direction error were very low (approximately 10~!3 on Figs. B.3(b), B.3(d) and B.3(f)) if compared
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to the case on Cardan coordinates (Figs. B.1(b), B.1(d) and B.1(f)). On that approach, both norm
and direction errors increased for lower relative speeds (Figs. B.1).

On the other hand, the norm errors adopting &« = 6 = 1 rad/s were strongly affected by the
relative speed, with maximum value nearby 1.65% on Fig. B.3(a) (7 — 0 =100 rpm) that increases
to 15.55% if v — 0 =10 rpm on Fig. B.3(c). This error trespasses 100 % if v — 0=1 rpm (Fig.

B.3(e)). The direction errors also increased with lower relative speeds on Figs. B.4(b), B.4(d) and

B.3(f).
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Figure B.1: Unitary vector error for 1,0 = 45°,v = 0°, h = 0.0l m, R = 0.0875 m and &« = B =0

rad/s.
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Figure B.3: Unitary vector error for v,y = 45°, & = 8 = O rad/s, v = 0°, h = 0.0l m, R = 0.0875
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Figure B.4: Unitary vector error for 1,0 = 45°, v = 0°, & = = 1rad/s, h = 0.0l m, R = 0.0875
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