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I don’t like work, - no man does - but I like

what is in the work, - the chance to find

yourself. Your own reality - for yourself, not

for others - what no other man can ever

know. They can only see the mere show, and

never can tell what it really means.

Joseph Conrad
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Resumo

O trem de potência é um sistema complexo, uma vez que envolve a interação entre compo-

nentes tais como o motor, a embreagem, a transmissão e as rodas. Diversos fenômenos de ruı́do,

vibração e sua severidade (NVH) podem surgir durante o seu funcionamento (judder, clonk, shuf-

fle, rattle, etc.). O squeal de embreagens é um fenômeno relativamente novo desse sistema e ele

surge como um ruı́do de tom único, especialmente em situações de partida na fase de modulação

da embreagem.

Componentes tais como as molas cushion, membrana e de retrocesso foram modeladas a fim

de permitir a criação de diferentes projetos e combinações em termos de posição e propriedades

fı́sicas. Um mecanismo de estabilização para a placa de pressão foi testado numericamente para

servir como uma alternativa para o sistema quando não existem possibilidades de modificações nos

seus parâmetros.

Discos de embreagens reais contêm imperfeições devido à utilização, tolerâncias da manu-

fatura, etc. Para levar esses fatos em consideração, um elemento rotativo de rigidez/amortecimento

viscoso com atrito foi criado para representar as molas cushion e suportar distribuições arbitrárias

ao longo do perı́metro do disco, permitindo que cada elemento tenha suas próprias caracterı́sticas.

A suposição de amortecimento viscoso introduziu termos relacionados à velocidade de rotação do

disco de embreagem na matriz de rigidez. Simulações com pequenos erros de posicionamento nas

molas cushion geraram acoplamento entre a vibração axial da placa de pressão e seus deslocamen-

tos angulares.

A mola membrana foi modelada como uma alavanca, permitindo a introdução de medições.

Isso foi importante para identificar regiões de rigidez negativa e positiva, explicando sua interação

com uma curva de cushion real. As molas de retrocesso foram modeladas, resultando numa

representação matricial na qual foi possı́vel gerar termos de rigidez positiva fora da diagonal prin-

cipal.

Finalmente, o mecanismo de estabilização para o sistema consistiu de outro disco conectado

à placa de pressão. Quando as propriedades do dispositivo foram ajustadas apropriadamente, ele

foi efetivo em uma situação de veering. Nessa condição, as coordenadas de ambos os discos foram

combinadas nas formas modais, causando movimentos de wobbling fora de fase que resultaram em

dissipação de energia nos elementos de conexão.

Palavras Chave: squeal de embreagens, trem de potência, NVH
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Abstract

The powertrain is a complex system, once that it involves the interaction between compo-

nents such as the engine, the clutch, the transmission and the wheels. Several noise, vibration and

harshness (NVH) phenomena may appear during its operation (judder, clonk, shuffle, rattle, etc.).

Clutch squeal is a relatively new phenomenon of this system and it appears as a single tone noise,

especially on a drive-off condition on the modulation phase of the clutch.

Components such as the cushion, diaphragm and leaf springs were modelled to allow the

creation of different designs and combinations in terms of position or physical properties. A stabi-

lization device for the pressure plate was numerically tested to serve as an alternative to the system

when there are no practical possibilities of modifications on its parameters.

Real clutch discs contain imperfections due to usage, manufacturing tolerances, etc. To take

these facts into consideration, a rotating stiffness/viscous damper element with friction was created

to represent the cushion springs and support arbitrary distributions along the perimeter of the disc,

allowing each element to have its own characteristics. The assumption of viscous damping intro-

duced terms related to the clutch disc rotating speed on the stiffness matrix. Simulations with small

position errors on the cushion spring generated coupling between the pressure plate axial vibration

and its angular displacements.

The diaphragm spring was modelled as a lever, allowing the introduction of measurements. It

was important to identify regions of negative and positive stiffness, explaining its interaction with

a real cushion curve. The leaf springs were modelled, which resulted on a matrix representation

where it was possible to generate positive stiffness terms out of its main diagonal.

Finally, the stabilization device for the system consisted of another disc connected to the

pressure plate. When the device properties were properly adjusted, it was affective in a situation of

veering. In this condition, the coordinates of both discs were combined on the mode shapes, causing

out of phase wobbling motions, that resulted on energy dissipation on the connection elements.

Keywords: clutch squeal, powertrain, NVH
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3.2.4 Hervé et al. (2008b) and Hervé et al. (2009) . . . . . . . . . . . . . . . . 15

3.2.5 Freitag et al. (2010) and Fidlin et al. (2011) . . . . . . . . . . . . . . . . 16

3.2.6 Senatore et al. (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Related reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Kushwaha et al. (2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xxxi



3.3.2 Bearing squeal: Kirchner et al. (2005) . . . . . . . . . . . . . . . . . . . 18

3.4 Model comparisons and the most urgent pending questions . . . . . . . . . . . . . 19

4 Experimental modal analysis of the clutch system 23

4.1 Configurations tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Hipothesis 1: Model using Cardan coordinates 25

5.1 Pressure plate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Rotation matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.2 Angular speeds and accelerations . . . . . . . . . . . . . . . . . . . . . . 26

5.1.3 Inertia components and modal properties . . . . . . . . . . . . . . . . . . 28

5.2 Modelling a rotating spring/viscous damper element with friction . . . . . . . . . . 30

5.2.1 Basic relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 Element effort and the constant contact position assumption . . . . . . . . 32

5.2.3 Elastic and damping forces . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.4 Relative motion between the element and pressure plate . . . . . . . . . . 34

5.2.5 Approximation of the tangential speed at contact point . . . . . . . . . . . 35

5.2.6 Friction force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.7 Normal force calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.8 Friction distribution and its relation with plate movement . . . . . . . . . . 41

5.3 A phenomenological example for a moving viscous damper . . . . . . . . . . . . . 46

5.4 Efforts for a moving viscous damper and their relation with the element matrices . 47

5.4.1 Damper efforts for α 6= 0◦ and β = 0◦ . . . . . . . . . . . . . . . . . . . . 48

5.4.2 Damper efforts for α = 0◦ and β 6= 0◦ . . . . . . . . . . . . . . . . . . . . 50

5.4.3 Related element matrices and the damping force for γ̇ 6= 0 . . . . . . . . . 50

5.5 Element matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5.1 Element stiffness components . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5.2 Characteristics for Cardan coordinates . . . . . . . . . . . . . . . . . . . . 54

5.5.3 Element damping components . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5.4 Excitation vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.5 Very important remarks on the stability study of this system . . . . . . . . 56

6 Hipothesis 1: Wobbling modes and characteristics of systems with equal and symmet-

rically distributed elements 57

6.1 Rotating speed influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 Stable motion - Backward wobbling for γ̇ > 0 and θ̇ = 0 . . . . . . . . . . 62

xxxii



6.1.2 Unstable motion - Forward wobbling with γ̇ > 0 and θ̇ = 0 . . . . . . . . . 67

6.2 Stiffness and relative speed influence . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 System with viscous damping effects . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 System with viscous damping and friction . . . . . . . . . . . . . . . . . . . . . . 77

6.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5.1 Rotating speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5.2 Relative speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5.3 Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5.4 Viscous damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Hipothesis 2: Model considering the rotating speed on global coordinates 81

7.1 Pressure plate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.1 Rotation matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.2 Angular speeds and accelerations . . . . . . . . . . . . . . . . . . . . . . 82

7.1.3 Inertia components and modal properties . . . . . . . . . . . . . . . . . . 84

7.1.4 Stability for γ̈ = 0 and γ̇ 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1.5 Stability for γ̇ = 0 and γ̈ 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1.6 Stability for γ̇ 6= 0 and γ̈ 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Modelling a rotating spring/viscous damper element with friction . . . . . . . . . . 89

7.2.1 Elastic and damping forces . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.2 Relative motion between the element and pressure plate . . . . . . . . . . 89

7.2.3 Approximation of the tangential speed at contact point . . . . . . . . . . . 90

7.2.4 Normal and friction force calculation . . . . . . . . . . . . . . . . . . . . 91

7.3 Efforts for a moving viscous damper and their relation with the element matrices . 91

7.3.1 Damping efforts for α 6= 0◦ and β = 0◦ . . . . . . . . . . . . . . . . . . . 91

7.3.2 Damping efforts for β 6= 0◦ and α = 0◦ . . . . . . . . . . . . . . . . . . . 92

7.3.3 Related element matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4 Element matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4.1 Element stiffness components . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4.2 Characteristics for the rotating speed on the global reference system . . . . 95

7.4.3 Element damping components . . . . . . . . . . . . . . . . . . . . . . . . 96

7.4.4 Excitation vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.4.5 Very important remarks on the stability study of this system . . . . . . . . 96

xxxiii



8 Hipothesis 2: Wobbling modes and characteristics of systems with equal and symmet-

rically distributed elements 97

8.1 Rotating speed influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.1.1 Unstable motion - Forward wobbling with γ̇ > 0 and θ̇ = 0 . . . . . . . . . 99

8.1.2 Stable motion - Backward wobbling for γ̇ > 0 and θ̇ = 0 . . . . . . . . . . 99

8.2 Stiffness and relative speed influence . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.3 System with viscous damping effects . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.4 System with viscous damping and friction . . . . . . . . . . . . . . . . . . . . . . 102

8.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.5.1 Rotating speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.5.2 Relative speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.5.3 Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.5.4 Viscous damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9 Cushion heterogeneity 107

9.1 Position error simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.1.1 Mode shapes for a symmetric distribution . . . . . . . . . . . . . . . . . . 109

9.1.2 Mode shapes with a position error and fixed elements . . . . . . . . . . . . 111

9.1.3 Mode shapes with a position error and moving elements . . . . . . . . . . 113

9.1.4 Eigenvalue characteristics for symmetric, fixed and moving elements . . . 116

9.1.5 Position error level and the coupling with vertical motions . . . . . . . . . 117

9.2 Symmetric distributions according to axial motion with asymmetrical stiffness ac-

cording to angular displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.2.1 Unbalanced stiffness distribution without damping . . . . . . . . . . . . . 119

9.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

10 Diaphragm spring: physical representation and the inclusion of real measurements in

the model 127

10.1 Diaphragm spring lever model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

10.2 Element matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.3 Relations between the cushion, clamp load and release effort . . . . . . . . . . . . 131

10.3.1 Clamp load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.4.1 New clutch disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.4.2 Worn clutch disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xxxiv



10.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

11 Considerations on the leaf spring representation 139

11.1 Leaf spring (strap) description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

11.2 An inclined stiffness element subjected to wobbling . . . . . . . . . . . . . . . . . 139

11.3 Inclined stiffness matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

11.4 Using the stiffness matrix ([KsII ]i) . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11.4.1 Elements with the same direction (∆ρs1 = ∆ρs2 = 0) . . . . . . . . . . . . 144

11.4.2 Elements with symmetric orientation (∆ρs1 = 120◦ and ∆ρs2 = 240◦) . . . 146

11.5 Using the preload matrix ([KsI ]i) . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

12 A device for pressure plate stabilization 155

12.1 Stabilization device formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

12.1.1 Connection matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

12.2 System matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

12.3 An applied numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

12.3.1 Natural frequencies, curve veering and stability range . . . . . . . . . . . . 160

12.3.2 Axial mode shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

12.3.3 In phase wobbling motion . . . . . . . . . . . . . . . . . . . . . . . . . . 164

12.3.4 Out of phase wobbling motion . . . . . . . . . . . . . . . . . . . . . . . . 166

12.3.5 Time domain response of the system . . . . . . . . . . . . . . . . . . . . . 167

12.3.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

13 Conclusions and future work 177

13.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

13.1.1 Element formulation and possibilities . . . . . . . . . . . . . . . . . . . . 177

13.1.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

13.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Bibliography 181

Appendix A Friction distribution near coupling 187

A.1 Cardan coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.2 With the rotating speedon global coordinates . . . . . . . . . . . . . . . . . . . . . 188

xxxv



Appendix B Tangential speed error 195

B.1 Cardan coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B.2 With the rotating speed on global coordinates . . . . . . . . . . . . . . . . . . . . 195

xxxvi



1 Introduction

The powertrain or driveline is a complex system, involving the interaction of different compo-

nents (engine, gearbox, tires, etc.) during its operation. Each one of them has its particular features,

(technical names, working principles, design possibilities, manufacturing tolerances, etc.). Com-

bine these variables and put this large set into proper operation is a very difficult task, once that

problems may emerge only on the last stages of design. Even worse, they can happen after the

customer has already acquired the product. Clutch squeal is a relatively new subject of study on the

area, once that the first scientific publication found (Wickramarachi et al., 2005) dates back only

10 years from the date of conclusion of this thesis.

1.1 Clutch squeal/Eek technical description

The phenomenon can have different names depending on the manufacturer or country. From

the start, it is important to inform that part of the works refer to “Eek” ( Wickramarachi et al.

(2005), Freitag et al. (2010), Drozdetskaya et al. (2011), Fidlin et al. (2011)) while some specify

the term “clutch squeal” ( Hervé et al. (2008b), Hervé et al. (2008a), and Hervé et al. (2009)).

This thesis will attain to the last term due to the fact that this is the terminology used by the known

circle of contacts from the industry.

A squeal occurrence during a drive-off is presented on Fig. 1.1 during the phase of modu-

lation of the clutch disc. There is a very high relative rotating speed between the engine flywheel

and the transmission. The phenomenon can be noticed as a frequency component of 280 Hz (Fig.

1.1(b)), measured by an accelerometer inside the gearbox. The squeal event in this case lasted for

2.4s. (Kinkaid et al., 2003) stated that literature agree on brake squeals on a distinct frequencies

for the same brake system. As far as the practical knowledge of the author goes, little deviations

happened on the occurrence of clutch squeals, in this case, approximately between 278-281 Hz.

From the mentions of clutch squeal found in literature (Chapter 3), experimental data is scarce

(Wickramarachi et al., 2005).

Table 1.1 contains the frequency ranges clearly determined by the papers. Based on this,

it is possible to observe that they are much lower than the ones reported for brake squeal (above

1000 Hz according to Kinkaid et al. (2003)). Besides that, Hervé et al. (2009) mentioned on

the introduction of their work that clutch squeal frequencies could be higher than 1000 kHz. A

wider range of occurrence from 250 to 500 Hz could be related to the fact that there is no further
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Table 1.1: Clutch squeal/eek frequency reange found in literature.

Frequency [Hz] 250 300 350 400 450 500

Wickramarachi et al. (2005)

Freitag et al. (2010)

Drozdetskaya et al. (2011)

Fidlin et al. (2011)

This thesis

Figure 1.2 contains the cumulative sum of clutch squeal events obtained from a real vehicular

test. Here occurs a threshold for the squealing events, meaning that it is necessary to change some

system parameters from their original post manufacturing stage up to a “state” where the instability

can take place.
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Figure 1.2: Experimental occurrence of clutch squeal events for a passenger car.

1.2 Clutch squeal in relation to other powertrain Noise, Vibration and Harshness (NVH)

phenomena

Figure 1.3 shows a scheme organizing the main powertrain Noise, Vibration and Harshness

(NVH) phenomena. Some phenomena occur when the transmission is either in idle, when the

vehicle is still with engine on, or with engaged gear, in a situation of torque transmission to the

wheels. The clutch facings may be sliding in relation to the pressure plate/flywheel. By such

distinction, phenomena with a fully coupled clutch can be modelled as pure torsional vibration

problems:
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• shuffle and clunk/clonk ( Krenz (1985), Crowther et al. (2005), Menday et al. (1999), Simion-

atto (2011))

• creeping

• gear rattle ( Singh et al. (1989), Wang et al. (2001), Kim and Singh (2001), Brancati et al.

(2005), Miyasato (2011), Simionatto (2015))

• clap and start/stop

The occurrence of NVH phenomena are related to both system and operational conditions.

With this idea, a vehicle susceptible to some phenomenon must be excited by the proper input.

Some events are found during drive-off, like judder ( Albers and Herbst (1998), Centea et al.

(2001), Perestrelo (2013)) while others are found with stable loads (creeping, rattle). The genera-

tion of torque pulses may result on clonk/clunk or clap. Natural frequencies of the powertrain may

be excited either by rotating speed orders (rattle) or torque pulses (shuffle).

The final distinction is made on the annoying subjective aspects for the driver or passengers.

Some are most critical in terms of vehicle oscillations (judder,shuffle) while others are basically

related to the noise generated by impacts on the gears. But they are not only acoustic problems,

once that they are all generated by some vibration behaviour.

By this whole classification, one can define clutch squeal from Fig. 1.3 as “a phenomenon

that happens with a combination of engaged gear+sliding clutch on a drive-off situation, resulting

in a single tone noise for the driver”.

1.3 Thesis objective

This thesis has the following objectives:

1. Explore the differences between two hypotheses for the representation the pressure plate and

cushion springs, adopting relative motion and viscous damping dissipation.

2. Create a rotating stiffness/viscous damper element with friction that supports arbitrary dis-

tributions along the perimeter of the pressure plate. Verify the behaviour of the system with

errors on the cushion spring.

3. Give realistic features to the model and develop possibilities for squeal mitigation, providing

a theoretical basis for the use of the leaf springs and the creation of a mechanical device for

the stabilization of the pressure plate.
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Figure 1.3: Powertrain phenomenon description.

1.4 Thesis outline

Figure 1.4 presents the knowledge areas. The chapters are grouped in terms of background,

theoretical development, element possibilities and application.

1.4.1 Background

Chapter 2 contains the basic principles of the clutch system technology. The necessary tech-

nical terms and working principles are provided to give a better comprehension of the literature.

Chapter 3 describes the papers on the matter available up to the date of conclusion of this thesis,

grouping them based on common characteristics, and pointing the differences. The analysis on

Section 3.4 will result on the model with the following hypotheses, that impact the rest of the work:
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Figure 1.4: Thesis organization.

• Hypothesis 1: Model using Cardan coordinates (Chapters 5, 6, and 9).

• Hypothesis 2: Model adopting the rotating speed on global coordinates (Chapters 7, 8 10, 11,

and 12 ).

Chapter 4 presents results from the modal analysis of a real clutch system in order to under-

stand the structural behaviour of the system. It supports the assumption of a rigid pressure plate

during a squealing event (Fig. 1.1) on Chapters 5 and 7.

1.4.2 Theoretical development

Real clutch discs contain imperfections due to usage, manufacturing tolerances, etc. To take

these facts into consideration, a rotating stiffness/viscous damper element with friction (Fig. 1.5)

was created to represent the cushion springs and support arbitrary distributions along the perimeter

of the disc, allowing each element to have its own characteristics. Chapters 5 (Hypothesis 1) and
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7 (Hypothesis 2) contain the formulation steps taken to obtain the contact element compatible with

hypotheses 1 and 2. They were calculated under the assumption of constant contact radius, with

parameters that enable the creation of different configurations for the cushion. Viscous damping

was considered, differently from the approach from the literature, that took into account structural

damping without a deep physical bound to the system ( Fidlin (2006) and Fidlin et al. (2011)).

Each element is represented on Sections 5.5 (Hypothesis 1) and 7.4 (Hypothesis 2) in a lin-

earized form by a combination of matrices, relating the stiffness, damping, and friction efforts. This

assumption is helpful for their numerical implementation. With a more general form, this element

is able to include errors and variations on the parameters in a very practical way on the models. The

studies will focus on the element on Cardan coordinates, once that it resulted on constant modal

properties in a situation of fixed elements (Section 9.1.2). The assumption of movement on the

viscous damper element brought a new set of efforts to the model, that are discussed separately on

Sections 5.3, 5.4 (Hypothesis 1), and 7.3 (Hypothesis 2). They are responsible for the introduction

of terms on the global stiffness matrix related to damping and the rotating speed of the element on

Sections 5.5.2 (Hypothesis 1) and 7.4.2 (Hypothesis 2).

1.4.3 Element possibilities

The element matrices from Sections 5.5 (Hypothesis 1) and 7.4 (Hypothesis 2) are gradually

included on a symmetric distributed model on Chapters 6 (Hypothesis 1) and 8 (Hypothesis 2),

providing results for the comparison of the model obtained on Cardan coordinates and the one

derived with the rotating speed on global coordinates. Section 6.1 has a physical interpretation to

the wobbling modes associated with squeal in a didactic manner. The models considering the effect

of movement on the viscous damper element are provided on Sections 6.4 (Hypothesis 1) and 8.4

(Hypothesis 2).

All the previous effort leads to Chapter 9, were the full potential of the element is discussed.

Simulations will be performed to study the effect of a small error on the position of one element

on the global behaviour of the system. The cushion variability or heterogeneity, emerge from the

natural manufacturing tolerances or usage. Those errors are responsible for the modification of the

mode shapes, specially coupling the pressure plate wobbling angles with the axial movement of the

plate.
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1.4.4 Application and mitigation

The formulation developed on Chapters 5,6,7, 7, 10, 9, 11, and 12 serve for the purpose of

combination and analysis of different elements as presented in Fig. 1.5. They are “building blocks”

for the computational implementation of clutch squeal models.

Figure 1.5: Elements representation.

With the theoretical development and the possibilities of the element established, the works

start a phase of application, bringing technical aspects in order to give more realistic features to the

model. The formulation chosen was the one assuming the rotating speed on global coordinates due

to the reduced influence of the rotating speed (Chapter 8).

Chapter 10 (Fig. 1.5) introduces a lever model for the diaphragm spring, assuming that it is

operating after the point of deformation of the clutch cover. The real clutch system involves the

interaction of the diaphragm spring with the cushion curve. More realistic models will only be

obtaining matching the operating points of both elements. Real measurements of the characteristic

function of those elements are included on the model.

Chapter 11 (Fig. 1.5) presents a formulation for the leaf springs or straps. Those elements

are not included on the models from literature and they represent an important characteristic: a

real possibility of reduction on influence of the frictional skew symmetric terms from the system.

Simulations will be performed in order to find the best configurations for instability mitigation.

Another attempt for the stabilization of the pressure plate is provided on Chapter 12 (Fig. 1.5)

by the use of device. It is an alternative idea for the inclusion of damping on the cushion springs.

It will mitigate instability under the occurrence of veering on the mode shapes ( Liu (2002) and

Perkins and Mote Jr (1986)).
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2 Clutch system introduction

This chapter will give a very short introduction on the clutch. As any other automotive com-

ponent, there are several technical aspects and constructive types to discuss. It will attain to its most

basic principles and characteristic curves to give basic technical knowledge necessary to understand

the terminology on the literature review (Chapter 3) and to provide the physical association for the

models on this thesis. References for a deeper research are Micknass (1993), Drexl (1999), and

Shaver and Shaver (1997).

2.1 Working principles

The whole system is presented in Fig. 2.1 in a condition of torque transmission. The flywheel

is bolted to the crankshaft and it moves due to the moments from the crank mechanism of each

cylinder of the engine. The clutch cover is attached to the flywheel, rotating together with it.

Figure 2.1: Clutch system during torque transmission (Fig. 2.1) (Adapted from Lerestrelo (2013)).
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Figure 2.3: Clutch system during torque interruption (Adapted from Lerestrelo (2013)).

2.2 Cushion curve characteristics

The cushion springs are positioned between the friction facings (flywheel and pressure plate

side), as presented in Fig 2.4(a). The total curve of cushion (Fig. 2.4(b)) results basically from the

combined characteristics of facings, rivets and cushion springs. Looking for the new disc function,

an initial stage combines low values of normal load with low stiffness condition, being favourable

for torque modulation. The slope increases more significantly near the nominal load, achieved

when there is full torque transmission from the flywheel to the inputshaft without slip.

After several couplings, the cushion curve is degraded. On the same picture, the point of

maximum load is now shifted to a lower value of displacement. Besides the material removal due

to wear on the facings, Sfarni et al. (2011) provided a complementary comment by explaining the

embedding phenomenon. The cushion springs gradually deforms the facings, resulting in an “aged

profile” Fig. 2.4(b). The most important point here is that it is not related to wear. The cushion

spring is the physical entity related to the friction element modelled on Sections 5.2 and 7.2.
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Figure 2.4: Clutch disc main elements (Fig. 2.4(a)) and cushion curve (Fig. 2.4(b)) for a passenger

car.
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3 Review on the minimal models for clutch squeal/Eek

Brake noise/vibration has been widely studied since the early decades of the twentieth century

and has produced many literature reviews ( Crolla and Lang (1991), Papinniemi et al. (2002),

Kinkaid et al. (2003)). Authors have gone into the analysis of more specific aspects of the theme,

such as numerical analysis (Ouyang et al., 2005), minimal models (von Wagner et al., 2007) and

comfort (Cantoni et al., 2009). For other systems, the interaction between railway wheel and noise

also produced several studies, reviewed by Thompson and Jones (2000).

In the past 10 years a significant number of publications about clutch squeal/eek have ap-

peared (Section 1.1). Section 3.2 shows that the literature on the matter covers at least six different

lumped models directly dedicated for clutch squeal/eek up to the date of publication of this the-

sis( Wickramarachi et al. (2005), Fidlin (2006), Hervé et al. (2008b), Hervé et al. (2009), Fidlin

et al. (2011) and Senatore et al. (2013)).

There are drastic simplifications on in comparison to the real system. From the technical

point of view, there is still a lot of work to determine exactly what the phenomenon is. Maybe,

on the future, with more cases and investigation, clutch squeal can be more certainly categorized

just like brake squeal (Kinkaid et al., 2003). By now, there are four distinct research directions for

squeal/eek:

1. Pressure plate bending modes (Wickramarachi et al., 2005)

2. Rigid body motion ( Fidlin (2006), Hervé et al. (2008b) and Hervé et al. (2009))

3. Inputshaft influence ( Fidlin et al. (2011) and Freitag et al. (2010))

4. Powertrain mode shapes (Senatore et al., 2013)

von Wagner et al. (2007) is included on this review, besides that it was conceived for brake

squeal, once that some of its features had a great impact on the following clutch squeal works.

Fidlin et al. (2011) reported a friction related damping phenomenon that was credited to Hochlenert

(2006). Similar terms involving this characteristic occur in several publications ( von Wagner et al.

(2007), Hervé et al. (2009) and Fidlin et al. (2011)).

The discussion on Section 3.2 will be focused on both theoretical and technical aspects.

Related reports are described in Section 3.3. Section 3.4 will organize the models in terms of simi-

larities points. This chapter ends with a discussion over the pending questions or some possibilities

of innovation based on this literature.
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3.1 A comment on the limitations for the usage of a Finite Element with friction

Ouyang et al. (2005) on his review about numerical study of brake squeal have traced the

usage of a linear frictional spring element back to Liles (1989). Equation 3.1 contains the formu-

lation provided by Soom et al. (2003). The element gives the normal forces (N1 and N2) and the

tangential efforts (T1 and T2) between nodes 1 and 2 on directions x and y.
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(3.1)

Massi et al. (2007) introduced Eq. 3.1 on Ansys using an element named MATRIX27. Soom

et al. (2003) explains that the linearized contact stiffness kn is often calculated based on the ratio

between the pressure and the roughness of the surfaces (average asperity heights). It is, in general,

a very high value, found above 106N/m on Massi et al. (2007) and Soom et al. (2003). Section

3.2 shows many examples of a friction damping effect that cannot be reproduced by this approach

( von Wagner et al. (2007), Hervé et al. (2009) and Fidlin et al. (2011)).

3.2 Clutch squeal/eek theoretical models chronology

In this section, the literature is organized based on the date of publication and each paper is

described in detail.

3.2.1 Wickramarachi et al. (2005)

Wickramarachi et al. (2005) published the first academic paper mentioning “eek noise”. Near

the engagement of a dry friction clutch the sound spectrum , measurements indicated a frequency

nearby 500 Hz related to the wobbling modes of the disc, where it vibrated as a rigid component.

A multiple of this frequency coincided with the first bending modes of the plate, contributing to

the noise. For this purpose, the authors have created a mixed representation taking into account

both wobbling and bending. The pressure plate structure was distributed within four lumped mass

elements, connected by the plate stiffness. The equations of motion on Wickramarachi et al. (2005)

did not include the gyroscopic effect on the formulation. Wickramarachi et al. (2005) based his

analysis on the eigenvalues of this system. Conclusions were obtained by the verification of the
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effect of some parameter on their real part. The results from the simulations indicated that a thinner

pressure plate could reduce instability and a reduction on the friction coefficient could stabilize the

system. The structural stiffness was the most influential parameter to avoid coupling on the mode

shapes.

3.2.2 Fidlin (2006)

Fidlin (2006) created a wobbling model for a clutch disc on his book on nonlinear dynamics.

There was a consideration of a disc over an elastic support. The gyroscopic effects are not included

on the model. Unlike many works from the literature review, contact occurred on the very thin

friction ring distributed along the outer radius of the disc. Damping coefficients are included on

the system matrix after the formulation is finished, without a physical assumption. Fidlin (2006)

concluded that the system without damping on the elastic layer would always be unstable.

3.2.3 von Wagner et al. (2007)

Following a comment from Cantoni et al. (2009), the work from von Wagner et al. (2007)

resulted in a model very close to a real brake system , where two contact elements represents the

braking pads, maintaining fixed positions in relation to the rotating disc. The authors included

Cardan coordinates on the formulation. The new feature that makes this model part of this review

is the existence of friction damping terms that depend on the inverse of the rotating speed of the

disc. This friction induced damping ( (Hochlenert, 2006) as reported on Fidlin et al. (2011)) causes

a threshold on the stability. von Wagner et al. (2007) made a simulation where the real part of an

unstable eigenvalue crossed the imaginary plane from a positive value (indicating instability or

brake squeal, in this case) to negative one (stable behaviour).

3.2.4 Hervé et al. (2008b) and Hervé et al. (2009)

The same model was used as basis for Hervé et al. (2008b) and Hervé et al. (2009). The

authors clearly explain on the beginning of one of the works that this is a “phenomenological

model” (Hervé et al., 2008b). Hervé et al. (2008b) did not present the necessary steps to obtain the

equations of motion, but it presented a model using a different coordinate system in comparison to

von Wagner et al. (2007), once that there are different combinations of the inertial moments inside

the matrices of mass, damping and stiffness. This thesis obtained the same inertial terms adopting
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the rotating speed on global coordinates. Such procedure will be shown on Section 7.1 and the

matrices will be presented in Section 7.1.3, with additional terms that depend on the acceleration,

that where certainly cancelled due to the consideration of a constant rotating speed. Hervé et al.

(2008b) included the signal of the relative speed between the flywheel and the disc on the skew

symmetric terms of the stiffness matrix.

The authors worked with the structure of the system matrices using non dimensional terms,

concluding that an increase on the total amount of damping could enhance the stability region for

this system. If it is not equally distributed between the degrees of freedom, the stability region may

present abrupt transitions.

Those damping distributions are obtained only by changes on external elements. Hervé et al.

(2008b) and Hervé et al. (2009) deals with equally distributed parameters on the contact, because

the skew symmetric terms of those matrices are equal.

Hervé et al. (2008a) created a mathematical tool for the identification of limit cycles that was

used on Hervé et al. (2009), that expanded the findings from Hervé et al. (2008b) to include nonlin-

ear effects. They concluded that an increase on the circulatory action (related to friction moments

based on the stiffness forces) resulted in both increase of amplitude and frequency in relation to the

linear case. The “iso-damping distribution” was not the best configuration for amplitude reduction

in situations of nonlinear vibration.

3.2.5 Freitag et al. (2010) and Fidlin et al. (2011)

A new factor was introduced by Freitag et al. (2010), who explained that eek happened due

to a mode shape of the system inputshaft+clutch disc (Fig. 3.1(a)). This picture resembles the

configuration of clutch set of a passenger car (Fig. 2.1). Previous works directly refer to or could

be associated to modification on the cushion spring( Wickramarachi et al. (2005), Fidlin (2006),

Hervé et al. (2008b) and Hervé et al. (2009)).

Freitag et al. (2010) pointed on the influence of the tilting stiffness of the disc (Fig. 3.1(a)).

In terms of product development, the radial stiffness of the disc had been modified to decouple it

from the inputshaft motion. The radial motion of a friction disc was studied on Fidlin and Stamm

(2009), where the authors identified a self-centering phenomenon at lower speeds and coupling

between torsional and radial mode shapes on a phenomenological model.

It is essential to settle a major difference between the clutch systems on heavy duty vehicles

to the one on passenger cars. On the first case, there is an extra bearing to allow an extended

inputshaft, presented in Fig. 3.1(b). This shaft is sustained in two points inside the clutch bell
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housing: one that sustains the shaft inside the transmission and other positioned on the flywheel.

Even so, these vehicles may also present clutch squeal.

(a) Tilting and radial stiffness according to Freitag

et al. (2010).

(b) Clutch system with a guided input-

shaft (Adapted from Lerestrelo (2013)).

Figure 3.1: Ekk relation with the inputshaft from Freitag et al. (2010) (Fig. 3.1(a)) and a inputshaft

with an extra bearing (Fig. 3.1(b))

Fidlin et al. (2011) concluded that the friction coefficient did not change the stability of an

undamped system and a longer rod stabilized the disc. Without structural damping, the system

stabilizes only through friction damping (Hochlenert, 2006). On the phenomenological model,

they concluded that for each friction value there was a certain damping threshold that stabilizes the

system. The authors found a linear relation between both parameters.

3.2.6 Senatore et al. (2013)

Senatore et al. (2013) expanded the representation including a pressure plate on a 5 degree-

of-freedom driveline model with a dual mass flywheel ( Albers (1994)). Unlike the previous works

that separated part of the system and created a minimum phenomenological model, this paper brings

a systemic approach for the study. Drozdetskaya et al. (2011) reported measurements of torsional

vibrations on the transmission speed during an eek event. The pressure plate was modelled in order

to investigate the coupling between torsional movements and the wobbling motions of the plate.

Axial vibration of this element was also taken into account, but with the assumption of a equally
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distributed cushion spring, this movement was not coupled with other movements of the plate. The

pure axial motion was found within “169 Hz-750 Hz” (Senatore et al., 2013). Senatore et al. (2013)

concluded after linearization, the pressure plate motion was decoupled from the torsional degrees

of freedom. Even so, torsional vibrating modes could happen on the eek/clutch squeal frequency

range.

3.3 Related reports

Powertrain literature provide other occurrences of vibrating/noise phenomena that are not

directly related to clutch squeal/eek. They are important to widen the practical knowledge or to

create distinctions with other situations. By now, the works from Sections 3.3.1 and 3.3.2 are

treated as having no relation with the ones from Section 3.2.

3.3.1 Kushwaha et al. (2002)

Kushwaha et al. (2002) published a paper about a phenomenon named “whoop”. According

to the authors, movements of the engine flywheel happen due to the explosions on the cylinders.

As consequence of that, combined with the flexibility on the crankshaft, a natural frequency of the

clutch system is excited during the operation of the clutch pedal. As a result, there is a combination

of vibration and noise near the engaging phase of the clutch. None of the works from Section 3.2

reported an engine influence on the phenomenon.

3.3.2 Bearing squeal: Kirchner et al. (2005)

Kirchner et al. (2005) reported another condition named as “cold start squeal”. According

to them, such phenomenon happened on very low temperatures (below 5◦ C) and just in a situa-

tion where the clutch was not engaged during the engine start. The spectrum of this phenomenon

involved at least 18 frequencies ranging from 2800-3200 Hz. The authors discovered that the

phenomena excited mode shapes of the diaphragm spring (Fig. 2.2(b)). Due to manufacturing tol-

erances each local finger mode happens in a slightly different frequency from each other, resulting

in very distinct but close modes.
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3.4 Model comparisons and the most urgent pending questions

By thinking on the description of Chapter 2 it is possible to verify that the works from Section

3.2 are based on huge simplifications on the clutch system elements. For example, the diaphragm

spring is not detailed or mentioned in some cases, the leaf springs, the engine, etc. Clutch squeal

is on a very early developing stage, with each model representing a new characteristic that is found

to be relevant on the matter.

Table 3.1 presents the organization and a new denomination of each work, referred to as

Wi. Then, all the works are compared on Table 3.2. A common characteristic in this section

is the assumption of a constant friction coefficient. Apart from Wickramarachi et al. (2005), all

other works took into account rigid body movement, even in situations with the inclusion of the

inputshaft dynamics Fidlin et al. (2011).

Table 3.1: Authors of clutch squeal related works.

Work Authors

W1 Wickramarachi et al. (2005)

W2 Fidlin (2006)

W3 von Wagner et al. (2007)

W4 Hervé et al. (2008b)

W5 Hervé et al. (2009)

W6 Fidlin et al. (2011)

W7 Senatore et al. (2013)

Table 3.2: Comparison between clutch squeal works. Authorship is given by Table 3.1.

W1 W2 W3 W4 W5 W6 W7

Flexible pressure plate X

Rigid body wobbling X X X X X X

Gyroscopic effect X X X X X

Rotating speed on Cardan coordinates X X X

Rotating speed on global coordinates X X

Constant friction coefficient X X X X X X X

Inputshaft influence X

Friction damping terms X X X

Nonlinear effects X X

Powertrain modelling X
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Chapter 4 presents the results of modal analysis of a clutch system to show that the frequency

detected on Fig. 1.1(b) is not related to bending modes of the pressure plate, that could be a source

for the problem according to Wickramarachi et al. (2005).

From Table 3.2 it is possible to see that two distinct coordinates have been used to model the

pressure plate. The true meaning of this occurrence is that there are two different representations

for the same real system ( Hervé et al. (2008b) and Hervé et al. (2009) vs. Fidlin et al. (2011)

and Senatore et al. (2013)). This thesis will bring these two representations to a common set of pa-

rameters (rotating speeds, geometric relations, etc.) and physical disposition (assuming the friction

contact between the clutch disc and pressure plate). Each conditions will be considered as a spe-

cific hypothesis for the generation of the model. The element on Cardan coordinates (”Hypothesis

1”) is developed on Chapter 5, while the one considering the rotating speed on global coordinates

(”Hypothesis 2”) is presented on Chapter 7.

All works report a strong influence of the elastic/friction contact on the phenomenon. In

other words, the cushion spring is crucial to the phenomenon and a detailed description of this

region must be made. Besides Hervé et al. (2008b), Hervé et al. (2009) and Fidlin et al. (2011)

there is no assumption on the relative displacement between the elements. Here this characteristic is

explicitly included by a relative position angle. Such formulations are presented on both hypothesis

on Sections 5.2.4 and 7.2.2. A comparison on their behaviour can be traced looking at the models

with symmetric distribution of elements on Chapters 6 and 8.

The friction damping terms, which depend on the inverse of the relative angular speeds, will

be discussed since its principle, the unitary tangential relative speed (Sections 5.2.5 and 7.2.3). A

better understating of such behaviour is provided through the real configuration of the tangential

speeds near coupling are found on Appendix A.1 and A.2. The limitations from the error on the

unitary norm and direction can be consulted Appendix B.1 and B.2. Such discussions are not

provided in detail on the literature.

Fidlin (2006) and Fidlin et al. (2011) included energy dissipation on the model using struc-

tural damping, after the equations of motion were obtained. Hervé et al. (2008b) also uses this

term to refer to damping. This thesis explicitly includes a rotating viscous damping element on the

formulation, allowing relative movement between the pressure plate and the clutch disc. The phys-

ical interpretation for the efforts and moments produced by the moving viscous damper is given on

Sections 5.4 and 7.3.

A consequence from the element matrices (Sections 5.5 and 7.4) is the possibility for the

creation of different element dispositions in relation to the pressure plate. Non symmetrical distri-

bution involving position error on one element or unbalanced stiffness according to the coordinates

are presented on Chapter 9.
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From this whole literature there are still room for two possible technical approaches for at-

tenuation:

• Chapter 11: thinking on other elements of the clutch system, the leaf springs may be used to

stabilize this system.

• Chapter 12: a device for pressure plate stabilization is proposed to apply an external damping

to the system.
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4 Experimental modal analysis of the clutch system

The clutch system is composed by structural components, like the pressure plate and the

cover (Chapter 2). The determination of the frequencies of the first non-rigid mode shape is impor-

tant to rule out or not flexibility of the elements on the clutch squeal frequency range (Fig. 1.2).

The analysis from this chapter is also created to emphasize that there is no relation between the

squealing frequency and the excitation of mode shapes of components assumed as separate bodies.

Iterations between the elements define the modal properties of the system.

4.1 Configurations tested

In this work, combinations between the components were gradually done, from the simplest

(pressure plate only) to the more complex one (flywheel + cover + clutch disc). The conditions

tested are shown in Fig. 4.1 and described as follows:

• Configuration P (Fig. 4.1(a)) resulted on the analysis of the pressure plate alone;

• Configuration C (clutch cover)(Fig. 4.1(b)) is used to study the interaction between the

pressure plate , straps and the diaphragm spring;

• Configuration FCP+ (Fig. 4.1(d)) was obtained when the clutch cover is bolted to the fly-

wheel;

• Configuration FCP- (Fig. 4.1(c)) was created removing the pressure plate from the previous

case;

• Configuration FCPD (flywheel + clutch cover + cutch disc ) (Fig. 4.1(e)) is a condition closer

to the original system. It is important to point out that the inputshaft, release system and the

connection between the flywheel and the crankshaft were not taken into account;

Figure 4.2 contains the Frequency Response Function (FRF) sums for the experiments. Fo-

cusing only on the first amplitude peak, it is possible to see that configuration P presented greater

levels of vibration around 900 Hz. Such results indicate that the pressure plate is a rigid body on

the squealing frequency range for this specific vehicle, found nearby 280 Hz on Fig. 1.2.

Configuration C results on a visualization of peaks nearby 500 Hz. If the pressure plate is

removed and the cover is bolted to the flywheel (FCP-), the first peak occurs between 550 and 600
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5 Hipothesis 1: Model using Cardan coordinates

As it was discussed in Chapter 3, the models from von Wagner et al. (2007), Fidlin et al.

(2011), and Senatore et al. (2013) used Cardan coordinates to model the interaction disc/friction

element. The model based on this hypothesis present results based on the influence of the spin

speed during operation. This system is commonly seen in rotordynamic models ( Childs (1993)

and Muszynska (2010)).

A rotating spring/ damper element is derived in Section 5.2 to interact with a disc modelled in

Section 5.1, making it possible to create different configurations. This possibility will be explored

on Chapter 9. The physical interpretation of the moving damper element is shown in Sections 5.3

and 5.4. The moments and forces developed in this chapter will give origin to the stiffness and

damping element matrices that will be discussed in Sections 5.5.1 and 5.5.3. The user can adopt

them to create different designs by choosing the desired properties. The element matrices will be

presented on Section 5.5.

5.1 Pressure plate model

Section 5.1.1 present the rotation matrices for Cardan coordinates. The angular speeds and

accelerations are found on Section 5.1.2. The inertia matrices from Section 5.1.3 are studied in

terms their eigenvalues characteristics.

5.1.1 Rotation matrices

The transformation matrices, speeds and accelerations for these coordinates are provided on

Schiehlen and Eberhard (1986). Angle α (Fig. 5.1(b)) originates a rotation matrix for x axis [Rα]
T

to transform a vector
0
~r from the coordinate system xyz (Fig. 5.1(a)) to x1y1z1, represented as

1
~r

(Eq. 5.1). The inverse transformation is calculated by Eq. 5.2.

1
~r = [Rα]

T
0
~r =







1 0 0

0 cosα sinα

0 − sinα cosα





 0
~r (5.1)

0
~r = [Rα] 1~r (5.2)
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A rotation given by β (Fig. 5.1(c)) moves the representation from x1y1z1 to x2y2z2 (Eq. 5.3)

for y axis, while the inverse transformation is given by Eq. 5.4.

2
~r = [Rβ]

T
1
~r =







cos β 0 − sin β

0 1 0

sinβ 0 cos β





 1
~r (5.3)

1
~r = [Rβ] 2~r (5.4)

Finally, the angle γ (Fig. 5.1(d)) is used to provide a rotation around the z axis from x2y2z2

to x3y3z3 according to Eq. 5.5. The inverse relation is shown in Eq. 5.6.

3
~r = [Rγ]

T
2
~r =







cos γ sin γ 0

− sin γ cos γ 0

0 0 1





 2
~r (5.5)

2
~r = [Rγ] 3~r (5.6)

As a result, the transformation matrix [Rαβγ ] is used to transfer a vector
3
~r from the coordi-

nate system x3y3z3 to a representation on xyz (Eq. 5.7). It results from the successive rotations

combining the Eqs. 5.1, 5.3 and 5.5.

[Rαβγ ] =







cosβ cos γ − cosβ sin γ sinβ

sinα sinβ cos γ + cosα sin γ − sinα sinβ sin γ + cosα cos γ − sinα cosβ

− cosα sinβ cos γ + sinα sin γ cosα sinβ sin γ + sinα cos γ cosα cosβ






(5.7)

0
~r = [Rα][Rβ][Rγ] 3~r = [Rαβγ ] 3~r (5.8)

5.1.2 Angular speeds and accelerations

The full expression of the angular speeds (Eq. 5.9) and accelerations (Eq. 5.10) are necessary

for the equations of motion describing the wobbling movement of the disc.

3
~ω =







cos β cos γ sin γ 0

− cos β sin γ cos γ 0

sin β 0 1

















α̇

β̇

γ̇











=











3
ωx

3
ωy

3
ωz











(5.9)
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5.1.3 Inertia components and modal properties

The linearization of Eq. 5.11 (based on Ginsberg (1998)) results on Eq. 5.12, considering

{p}T =
{

α β
}T

. The mass [M ] and the gyroscopic [G] matrices (represented on Eqs. 5.13 and

5.14) still depend on γ, generating non-diagonal terms of inertia.







Ixx 3
ω̇x − (Iyy − Izz) 3

ωy 3
ωz = 0

Iyy 3
ω̇y − (Izz − Ixx) 3

ωz 3
ωx = 0

(5.11)

[M ] {p̈}+ [G] {ṗ} = {0} (5.12)

[M ] =

[

Ixx cos γ Ixx sin γ

−Iyy sin γ Iyy cos γ

]

(5.13)

[G] = γ̇

[

− sin γ (Ixx − Iyy + Izz) cos γ (Ixx − Iyy + Izz)

− cos γ (−Ixx + Iyy + Izz) − sin γ (−Ixx + Iyy + Izz)

]

(5.14)

Assuming Ixx = Iyy = I it is possible to remove the influence of γ by multiplying Eq. 5.12

by a matrix [T ] (Eqs. 5.15 and 5.16).

[T ][M ] = I

[

cos γ − sin γ

sin γ cos γ

][

cos γ sin γ

− sin γ cos γ

]

= I

[

1 0

0 1

]

(5.15)

[T ][G] = γ̇Izz

[

cos γ − sin γ

sin γ cos γ

][

− sin γ cos γ

− cos γ − sin γ

]

= γ̇Izz

[

0 1

−1 0

]

(5.16)

Looking in Eq. 5.17 it is possible to conclude that the modal properties on the system are not

influenced by the angular rotation γ. The characteristic polynomial of this system is given by Eq.

5.18:

I

[

1 0

0 1

]{

α̈

β̈

}

+ γ̇Izz

[

0 1

−1 0

]{

α̇

β̇

}

=

{

0

0

}

(5.17)

λ2
[

I2λ2 + (γ̇Izz)
2
]

= 0 (5.18)

A pair of null eigenvalues λ1, λ
∗

1
= 0 are calculated, meaning that this system is semi def-

inite. Another pair is λ2, λ
∗

2
= ±j

( |γ̇|Izz
I

)

, characterizing a stable oscillating response. In the
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case of a disc shown in Fig. 5.2(a), which will be used for many models in this whole work, the

inertia moments are given by Eq 5.19 and 5.20, where Rin and Rout are its inner and outer radius,

respectively. The mass is represented by m while its thickness is given by 2h.

Ixx = Iyy = I =
m

12

[

3
(

R2

in +R2

out

)

+ 4h2
]

(5.19)

Izz = m

(

R2

in +R2

out

2

)

(5.20)

For m = 2 kg, h = 0.01 m, Rin = 0.075 m and Rout = 0.1 m, values close to a real pressure

plate. Unless it is not clearly stated on the text, these properties will remain as standard throughout

this work. Figure 5.2(b) contains a Campbell diagram showing the natural frequency close to the

second order, whose approximation is presented in Eq. 5.21.

ωn = |γ̇|Izz
I

= |γ̇| 6
(

3 +
4h2

R2

in +R2
out

) ≈ |γ̇|2 (5.21)
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Figure 5.2: Annular disc (Fig. 5.2(a) ) and Campbell diagram of the system from Eq. 5.17 (Fig.

5.2(b)).
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5.2 Modelling a rotating spring/viscous damper element with friction

It is important to state that such elements are found on the clutch squeal related literature

( von Wagner et al. (2007), Hervé et al. (2008b), Hervé et al. (2009)) but they are derived for

constant positions and properties, with restricted possibilities for the creation of different designs.

The most important contribution of this chapter for clutch squeal simulation is a formula-

tion that allows relative movement between disc and contact element (Section 5.2.4). The angular

relative position and speed is explicit on the equations and will have special impact on the damp-

ing matrices shown in Section 5.5. Modifications on stiffness can be implemented as well as the

changes of geometry (angular distribution, radius distance, etc.). The formulation assumes a vis-

cous damping element working in parallel with the elastic spring on the contact. It will allow the

dynamic model an energy dissipation theory other than structural damping ( Fidlin (2006), Fidlin

et al. (2011)).

The normal force will be calculated on Section 5.2.7 with a procedure presented by von

Wagner et al. (2007). The distribution of the friction forces according to the plate movement

happens in Section 5.2.8. Limitations of this formulation will be provided on Appendix B.1.

The discussion on Section 5.2.8 over the friction force will be very useful to understand the

skew symmetric terms on the system matrices (Section 6.1) and to explain the stable or unstable

motion on Sections 6.1.1 and 6.1.2.

5.2.1 Basic relations

Figure 5.3(a) shows a simplified clutch system without the CSC (Fig. 2.1). The engine and

the flywheel rotate at a constant speed γ̇, while the clutch disc has the same speed as the inputshaft

(θ̇). Based on this representation, the model from Fig. 5.3(b) is created.

On Fig.5.3(b) the pointO describes the origin of the global coordinate system, whileG stands

for the mass center of the disc. The spring is attached to the surface rotating at speed ωd, while

frictional contact exists at point Q. P is located above the contact point Q, which is separated by

a distance h. A force Fz is applied on the mass centre of the pressure plate to guarantee a static

displacement ze.

The rotating spring element (Fig. 5.3(b)) depends on the following parameters:

• ki: element stiffness

• ci: element damping
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5.2.2 Element effort and the constant contact position assumption

This element can be physically related to an elastic curve such as the cushion measurement,

described on Sec. 2.2. Figure 5.4 shows that, for the nonlinear curve, the load N0 occurs for the

displacement ze. In this situation, ki represents a linearized stiffness around point ze in a first order

approximation. This approach allows studying load and stiffness separately from each other. For

the linear case, there is N0 = kize. The notation for static load on the works from the literature on

Section 3.2 was maintained. On the following chapters, it will be possible to change the formulation

from the linear case to the linearized version, by a substitution of the term kize by the loadN0. This

observation remains valid for the element matrices of Sections 5.5 and 7.4 and up to the end of this

work.

Figure 5.4: Comparison between a linear a nonlinear stiffness curves.

Figure 5.5(a) shows a representation of a cushion spring. It may look like the letter “Z” or

“S”, depending on the design (Micknass, 1993). It is important to note that it results from a curved

metal plate. Its upper part is riveted to the facing on the pressure plate side, while the lower part is

connected to the flywheel facing by the same procedure. The cushion spring for the contact on the

pressure plate is assumed as a composition of two stiffness elements (Fig. 5.5(b)). The vertical load

discussed on the previous section is given by the parameter ki. The spatially oriented horizontal

stiffness ks supports the other element, acting both coordinate x and y. As consequence of this

configuration, the same constant position vector
3
~rGQ (Section 5.2.3) in relation to the centre of

gravity G can be obtained when there is pressure plate motion (Fig. 5.5(c)). This assumption will

have a strong impact on the normal force calculation on Section 5.2.7.
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(a) Representation of a cushion spring. (b) Stiffness components and contact radius.

(c) Element position after motion of the plate.

Figure 5.5: Considerations on the position of the friction element.

5.2.3 Elastic and damping forces

As a direct consequence of the coordinate system, Section 5.2.3 will show that the fric-

tion/damping efforts will be related to the displacements of the pressure plate γ and the relative

displacement ψ. There is the position vector
3
~rGQ (Eq. 5.22). The spring and damper only provide

effort on the vertical direction. The displacement
0
rGQz

(Eq. 5.23) of the contact pointQ in relation

to the mass centre of the pressure plate is given by the following expression:

3
~rGQ =

{

Ri cosψi Ri sinψi −h
}T

(5.22)

0
rGQz

= (− cosα sin β cos γ + sinα sin γ)Ri cosψi+

+ (cosα sin β sin γ + sinα cos γ)Ri sinψi − h cosα cos β
(5.23)

The total displacement on contact (Eq. 5.24) is obtained by adding a negative displacement

0
rOGz

of point G in relation to the system origin. A static equilibrium point is defined by ze, which
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is used to introduce a compression pre load to the spring. This parameter is important to make sure

that the contact is never lost between pressure plate and friction element.

0
rOQz

=
0
rOGz

+
0
rGQz

= − (z + ze) + (− cosα sin β cos γ + sinα sin γ)Ri cosψi+

+ (cosα sin β sin γ + sinα cos γ)Ri sinψi − h cosα cos β
(5.24)

The displacement on z axis is used to calculate the spring (
0
~F ki):

0
~F ki = ki

[

−h−
0
rOQz

]

~k =
0
F ki

~k (5.25)

The damping effort is calculated by Eq. 5.26 by the differentiation of Eq. 5.24:

0
~F ci = ci

[

−
0
ṙOQz

]

~k =
0
F ci

~k (5.26)

5.2.4 Relative motion between the element and pressure plate

The relative motion will define the position the rotating element in relation to the coordinate

system attached to the pressure plate. The friction element/clutch disc rotating speed
3
~ωd (Eq. 5.27)

is calculated on the coordinate system x3y3z3:

3
~ωd = [Rαβγ ]

T











0

0

θ̇











= θ̇











− cosα sin β cos γ + sinα sin γ

cosα sin β sin γ + sinα cos γ

cosα cos β











(5.27)

The angle ψi describes the relative position between element and plate. Looking from the

coordinate system x3y3z3 it is possible to see that when the pressure plate speed is greater than the

friction disc speed (γ̇ > θ̇ on Fig. 5.6(a)), ψi increase clockwise from its initial location (ψ0 = 0◦).

In this case, tangential relative speed (
3
~Vtrel) follows the pressure plate rotation, while the friction

force
3
~Fri points on the opposite direction. On the other hand, if γ̇ < θ̇ (Fig. 5.6(b)) the derivative

ψ̇i follows the counterclockwise direction, being calculated as Eq. 5.28:

ψ̇i = − (γ̇ −
3
ωdz) = −

(

γ̇ − θ̇ cosα cos β
)

(5.28)

Integrating Eq. 5.28 it is possible to calculate ψi(t) (Eq. 5.29). The initial position angle ψi0

is very important to define the location of the i-th element in relation to the others. If the surfaces

are slipping, all elements are displaced by −γ(t) + θd(t).
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ψi(t) = −
∫ t

0

γ̇ dt+

∫ t

0

θ̇ cosα cos β dt = ψi0 − γ(t) + θd(t) (5.29)

(a) Relative displacement for γ̇ > θ̇ (b) Relative displacement for γ̇ < θ̇

Figure 5.6: Relative motion between the disc and element.

5.2.5 Approximation of the tangential speed at contact point

The speed of the pressure plate at the contact point
3
~VQ (Fig. 5.7) is calculated as Eq. 5.30:

3
~VQ =

3
~VG +

3
~VGQ (5.30)

The vertical speed of its center of gravity
3
~VG (Fig. 5.7) is calculated on the system x3y3z3:

3
~VG = [Rαβγ ]

T











0

0

0
ṙOGz











= (−ż)











− cosα sin β cos γ + sinα sin γ

cosα sin β sin γ + sinα cos γ

cosα cos β











(5.31)

The relative speed between points G and Q is calculated in Eq. 5.32. The angular speed of

the pressure plate (
3
~ω ) was previously calculated on Eq. 5.9:
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The speed of the inferior disc on the contact point is calculated as Eq. 5.35. The tangential

speed of the friction element (Eq. 5.36) takes into account only components on the x3y3 plane. It

is important to note that this speed does not depend on H .

3
~V inf =

3
~ωd × 3

~rOdQ (5.35)

3
~V tinf

=











3
V infx

3
V infy

0











= θ̇











− [h (cosα sin β sin γ + sinα cos γ) +Ri sinψi cosα cos β]

h (− cosα sin β cos γ + sinα sin γ) +Ri cosψi cosα cos β

0











(5.36)

The tangential relative speed
3
~V trel between the contact element/pressure plate is given by

Eq. 5.37. Its position in relation to the disc is shown in Figs. 5.9(a) and 5.9(b).

3
~V trel = 3

~V tsup − 3
~V tinf

= (−ż)











− cosα sinβ cos γ + sinα sin γ

cosα sinβ sin γ + sinα cos γ

0











+ α̇











h cosβ sin γ − sinβRi sinψi

h cosβ cos γ + sinβRi cosψi

0











+

+ β̇











−h cos γ
h sin γ

0











+
(

γ̇ − θ̇ cosα cosβ
)











− sinψi

cosψi

0











+

− θ̇h











− (cosα sinβ sin γ + sinα cos γ)

− cosα sinβ cos γ + sinα sin γ

0











(5.37)

The expression of
3
~V trel depends on the variable array ~ε =

{

α α̇ β β̇ ż
}T

. It can be

linearized using the Jacobian matrix [J(~ε0)] evaluated at an specific point ~ε0 (Eq. 5.38). Imposing

~ε0 =
{

0 0 0 0 0
}T

, the Jacobian no longer depends on ż (Eq. 5.39). It will be important for

the approximation of the unitary vector on the direction of
3
~V trel .

3
~V trel =











fx(α, α̇, β, β̇, ż)

fy(α, α̇, β, β̇, ż)

fz(α, α̇, β, β̇, ż)











= ~f(~ε) ≈ ~f(~ε0) + [J(~ε0)] (~ε− ~ε0) (5.38)
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[J(~ε0)] =

















∂fx
∂α

∂fx
∂α̇

∂fx
∂β

∂fx

∂β̇

∂fx
∂ż

∂fy
∂α

∂fy
∂α̇

∂fy
∂β

∂fy

∂β̇

∂fy
∂ż

∂fz
∂α

∂fz
∂α̇

∂fz
∂β

∂fz

∂β̇

∂fz
∂ż

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~ε = ~ε0

=







θ̇h cos γ h sin γ θ̇h sin γ −h cos γ 0

−θ̇h sin γ h cos γ θ̇h cos γ h sin γ 0

0 0 0 0 0







(5.39)

The linearization of the tangential speed is given by Eq. 5.40 and it is influenced by the disc

angles α and β and by its derivatives (α̇ and β̇):

3
~V trel =















−
(

γ̇ − θ̇
)

sinψi + h
(

α̇ sin γ − β̇ cos γ
)

+ ˙θh (β sin γ + α cos γ)
(

γ̇ − θ̇
)

cosψi + h
(

α̇ cos γ + β̇ sin γ
)

+ ˙θh (β cos γ − α sin γ)

0















(5.40)

In a next step, an approximation on the norm of Eq. 5.40 is made considering that the terms

which depend on h and h2 are negligible:

∣

∣

∣3
~V trel

∣

∣

∣
≈
{

R2

i (γ̇ − θ̇)2
}1/2

= Ri

∣

∣

∣
γ̇ − θ̇

∣

∣

∣

(5.41)

With these simplification step, the normal vector on the direction of the relative tangential

speed (
3
~ν) is obtained in Eq. 5.42. Terms that depend on the inverse of

∣

∣

∣
γ̇ − θ̇

∣

∣

∣
on Cardan co-

ordinates appear on Fidlin et al. (2011), von Wagner et al. (2007) and Senatore et al. (2013).

There are limitations of this approach, and they will be discussed on Appendices A.1 and B.1. The

components
3
νx and

3
νy are described in Eqs. 5.43 and 5.44. Section 5.5 will present stiffness and

damping terms related to them.

3
~ν = 3

~V trel
∣

∣

∣3
~V trel

∣

∣

∣

=











3
νx

3
νy

0











(5.42)
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3
νx = −sign

(

γ̇ − θ̇
)

sinψi +
h

∣

∣

∣γ̇ − θ̇
∣

∣

∣

(

α̇ sin γ − β̇ cos γ
)

+
θ̇h

∣

∣

∣γ̇ − θ̇
∣

∣

∣

(β sin γ + α cos γ) (5.43)

3
νy = sign

(

γ̇ − θ̇
)

cosψi +
h

∣

∣

∣
γ̇ − θ̇

∣

∣

∣

(

α̇ cos γ + β̇ sin γ
)

+
θ̇h

∣

∣

∣
γ̇ − θ̇

∣

∣

∣

(β cos γ − α sin γ) (5.44)

5.2.6 Friction force

The friction force on Cardan coordinates
3
~F fri (Eq. 5.45) is obtained with direction opposed

to the tangential relative speed (Fig. 5.6). Its moments are calculated on Eq. 5.46. The results on

the other system are the same.

3
~F fri = −µ

3
N

3
~ν = −µ

3
N











3
νx

3
νx

0











= −µ
3
N











3
νx

3
νx

0











=











3
F frix

3
F friy

0











(5.45)

3
~M fri = 3

~rGQ ×
3
~F fri =











−µh
3
N

3
νy

µh
3
N

3
νx

µ
3
NRi (3νx sinψi − 3

νy cosψi)











(5.46)

5.2.7 Normal force calculation

The normal contact force on the disc is given as Eq. 5.47 and it is represented on Fig. 5.8.

The force
0
~Fs represent a static force that holds the element on a specific position.

3
~Ni =











0

0

3
Ni











(5.47)

von Wagner et al. (2007) took into consideration that it is necessary to solve a system of

equations to obtain the normal force of this system. All efforts involved on the contact, friction,

damping and stiffness forces must be moved to the global system. The force
0
~F s comes from the

supporting stiffness presented in Section 5.2.2 (Fig. 5.5). Then equilibrium on the vertical direction
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Figure 5.8: Diagram for normal force calculation.

on the element must be taken into account (Eq. 5.48):

−
0
N iz − 0

F friz
+

0
F kiz

+
0
F ciz

= 0 (5.48)

Equation 5.48 lead to Eq. 5.49 presenting the actual amplitude of the normal force. The

nonlinear expression depends on function f1 (Eq. 5.50), that can be approximated by Eq. 5.51.

3
N i = f1

(

0
F kiz

+
0
F ciz

)

(5.49)

f1 = {cosα cos β − µ [(− cosα sin β cos γ + sinα sin γ)
3
νx+

+ (cosα sin β sin γ + sinα cos γ)
3
νy]}−1

(5.50)

f1 ≈ 1 + µsign(γ̇ − θ̇) [− sin γ sinψi + cos γ cosψi]α

+ µsign(γ̇ − θ̇) [cos γ sinψi + sin γ cosψi] β
(5.51)

The normal force on Eq. 5.52 contains the original stiffness and damping forces, but new

parameters are the friction related terms:

3
N i ≈ 0

F kiz
+

0
F ciz

+ µkizesign(γ̇ − θ̇) [− sin γ sinψi + cos γ cosψi]α+

+ µkizesign(γ̇ − θ̇) [cos γ sinψi + sin γ cosψi] β
(5.52)

Equation 5.45 imposes that the friction force always remains on the plane x3y3. But it can be
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represented on global coordinates as
0
F frix

,
0
F friy

and
0
F friz

on Figs. 5.9(a) and 5.9(b). In both

pictures,
0
F friz

occurs on a vertical direction and an equilibrium assumption allows the resolution

of this problem, making necessary the step on Eq. 5.48.

(a) Angles imposed as α > 0 and β > 0. (b) Angles imposed as α < 0 and β < 0.

Figure 5.9: Friction force components in an element positioned at ψi = 45◦

The element linearized matrices on Section 5.5 are obtained from the normal contact force

(Eq. 5.53):

3
~MNi

=
3
~rGQ ×

3
~Ni (5.53)

5.2.8 Friction distribution and its relation with plate movement

To assure contact, it is necessary that
3
N i > 0 (positive normal force) for all situations (Eq.

5.54). The preload is constant as
3
N consi = kize which is always positive. A variable normal force

can be either positive or negative (
3
N vari > 0 or

3
N var < 0) resulting from the motion of the

surface above an elastic/damped support.

3
N i = 3

N consi + 3
N vari (5.54)
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If the pressure plate does not vibrate, the normal force is uniform as it can be seen in Fig. 5.10

(ze = 0.001 m in this example). Hence, the friction force has the same magnitude in every position.

To understand the effect of motion on the distribution of friction forces, a series of examples were

created assuming rotation on the pressure plate only, while the element remained still (γ̇ > 0

and θ̇ = 0). In this representation, only the constant friction vector (
3
~F frconsi

) is opposed to the

relative speed, while the variable portion (
3
~F frvari

) can be interpreted as a vector which possesses

the same line of action as the relative speed, but it changes direction according to
3
N vari . Figure

5.10 presents
3
N vari = 0.

3
~F fri = −µ

3
N

3
~ν = −µ (

3
N consi + 3

N vari) 3
~ν =

3
~F frconsi

+
3
~F frvari

(5.55)

Figure 5.10: Friction forces under uniform normal load distribution.

Figure 5.11(a) illustrates the case when the variable normal force is positive, and there is

compression of the element around the static position. The variable friction force has the same

direction as
3
~F frconsi

, resulting in an increased total friction force
3
~F fri . In the other hand, if the

variable normal force is negative (Figure 5.11(b)), it means that the total normal force is reduced

from its mean value. As consequence of that, the total friction force decreases in terms of magnitude

and this condition can be represented by a variable friction force opposed to the constant vector.
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It is important to emphasize here that
3
~F fri never changes its direction due to the preload on the

spring but it can vary along the disc due to the wobbling movement. The variable friction forces

(
3
~F frvari

and
3
N vari) are purely theoretical, but they will be very helpful on the comprehension of

the physical effects caused by effort fluctuations.

(a) (b)

Figure 5.11: Friction forces for two different conditions of
3
N var.

Figure 5.12(a) contains an scheme for the distribution of the variable friction force when

α > 0◦ and β = 0◦. All elements positioned with coordinates y3 > 0 are found with
3
N vari <

0 (decreased normal force). The variable friction vectors point in opposition to
3
~F frconsi

(Fig.

5.12(b)), which result in a lower friction
3
~F fri . For x3 = 0, there is no variable force once that no

displacements occur around the static position.

If α < 0◦ and β = 0◦, an inversion on the variable force distribution takes place com-

pared to the previous case (Figure 5.12(c)). Here, elements located at y3 > 0 are found with an

increased normal force (
3
N vari > 0) and the variable friction follows the direction of

3
~F frconsi

(Fig-

ure 5.12(d)). Elements positioned assuming y3 < 0 present
3
~F frvari

opposed to the total friction

force, which is lower than
3
~F frconsi

(Figure 5.12(d)).

Angular displacements on β affect the force distribution along the x axis. For β > 0◦ and

α = 0◦ the compression force is increased from its static value (
3
N vari > 0) for x3 > 0 (Figure

5.13(a)). As consequence of that, the disc sector for x3 > 0 presents an increase on the total friction

force (Figure 5.13(b)). If x3 < 0, it occurs a decrease on
3
~F fri once that the variable friction force

is opposed to the constant portion. Figures 5.13(c) and 5.13(d) display the variable and total friction

forces in a situation where β < 0◦ and α = 0◦.
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At qx = qy = 0 the previous equation can be approximated by Eq. 5.59.

~FQ = −civ tan δ~j ≈ −civδ~j (5.59)

The situation from Eq. 5.59 is represented on Fig. 5.15(a). In this case, a viscous damper

element may produce a vertical effort that depends on the slope of the track (δ) and its moving

speed (v). The previous example illustrate the case where qy = 0 and q̇y 6= 0.

Figure 5.15(a) also shows that the element apply a negative effort on the track and works

under traction. If the movement happens on the opposite direction (v < 0) (Fig. 5.15(b)), there

will be a positive effort on the track, but it would operate under compression.

(a) (b)

Figure 5.15: Moving viscous element for v > 0 (Fig. 5.15(a)) and v < 0 (Fig. 5.15(b)).

5.4 Efforts for a moving viscous damper and their relation with the element matrices

The previous example can be the initial spark for the comprehension of the behaviour of the

rotating damper element. But on this case, the track will be substituted by a constant radius track

on a wobbling disc. For illustrative purposes, pressure plate is fixed (γ̇ = 0 and γ = 0) and only

the clutch rotates (θ̇ 6= 0). Friction is not included on this example (µ = 0).
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5.4.1 Damper efforts for α 6= 0◦ and β = 0◦

Based on the equation for vertical displacement on the contact point Q (Eq. 5.24), the ex-

pressions can be simplified for a constant angle α (α̇ = 0, β = 0◦ and β̇ = 0), resulting in Eqs.

5.60 and 5.61. The damping force is calculated by Eq. 5.62.

0
rOQz

= sinαRi sinψi − h (5.60)

0
ṙOQz

= sinα
(

γ̇ + ψ̇i

)

Ri cosψi = sinα
(

γ̇ − γ̇ + θ̇
)

Ri cosψi = θ̇ sinαRi cosψi (5.61)

0
~F ci = −ci

[

0
ṙOQz

]

~k = −ciθ̇ sinαRi cosψi
~k (5.62)

A crucial fact is that, even in case of γ̇ 6= 0, the expression of Eq. 5.61 depends only on

the rotating speed of the clutch disc θ̇. It will happen again on Eq. 5.64. It indicates a physical

behaviour that will be detailed on Section 5.4.3.

The vertical displacement (Eq. 5.60) and speed (Eq. 5.61) are presented in Fig. 5.16(a).

By looking at the shape of
0
rOQz

, it is possible to stablish analogous behaviour with Figs. 5.15(a)

and 5.15(b) remembering that on this case movement occurs in relation to a sinusoidal track. The

explanation involves positions named as Q1, Q2, Q3 and Q4 indicated in Figs. 5.16(a), 5.16(b) and

on the realistic system on Fig. 5.17(a).

If the element moves on a region with x1 > 0 (−270◦ < ψi < 90◦), the situation is analogous

to Fig. 5.15(a), and the viscous damper moves on a track with increasing height. During this

condition there is a negative damping effort (Fig. 5.16(b)) that reaches a peak at pointQ1 (ψi = 0◦),

located on the middle of this path.

A transition the previous behaviour occur on Q2 (ψi = 90◦ on Fig. 5.17(a)) with a maximum

vertical position (Fig. 5.16(a)), but with no force (Fig. 5.16(b)). Then,
0
~F ci changes its direction

for positions where x1 < 0 (90◦ < ψi < −270◦), on a case analogous to Fig. 5.15(b), due

to a decreasing height in relation to the rotating direction. A maximum damping force happens

on Q3 (ψi = 0◦), but on a different direction compared to Q2. Another transition happens at

Q4(ψi = 270◦), where the track profile changes to an increasing behaviour.

The damping force for the rotating element in different positions is shown in Fig. 5.17(a),

adopting h = 0 and α > 0◦. A positive total torque
0
~M cy could happen considering that there was a

single damper element in every position of Fig. 5.17(a) . For a situation with α < 0 (Fig. 5.17(b)),
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this hypothetical torque would be on the opposite direction.
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Figure 5.16: Vertical displacement and speed on Fig. 5.18(a) for α > 0◦. The damping force

appears on Fig. 5.18(b). Data: Ri = 0.08m, c = 1Ns/m, ψ̇i = 1rad/s and α = 5◦.

(a) (b)

Figure 5.17: Damping forces in different positions for α > 0◦ (Fig. 5.17(a)) and α < 0◦ (Fig.

5.17(b)).
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5.4.2 Damper efforts for α = 0◦ and β 6= 0◦

The following examples will be made under similar assumptions from the previous case but

considering on α = 0◦ on Eqs. 5.24 , resulting on Eq. 5.63 and 5.64. The damping force in this

case is calculated by Eq. 5.65.

0
rOQz

= − sin βRi cosψi − h (5.63)

0
ṙOQz

= sin β
(

γ̇ + ψ̇i

)

Ri sinψi = sin β
(

γ̇ − γ̇ + θ̇
)

Ri sinψi = θ̇ sin βRi sinψi (5.64)

0
~F ci = −ci

[

0
ṙOQz

]

~k = −ciθ̇ sin βRi sinψi
~k (5.65)

The approach done for the previous case (Section 5.4.1) was repeated here. Displacements,

speeds and damping forces with β = 5◦ are shown in Figs. 5.18(a) and 5.18(b), respectively. In this

situation, the region comprehending the points Q1, Q2 and Q3 (0◦ < ψi < 180◦) presents negative

damping forces (Fig. 5.18(b)), with increasing amplitudes. This region is similar to the example

from Fig. 5.15(a).

For (180◦ < ψi < 360◦) the forces are positive, with a maximum value at Q4. The vertical

position is gradually decreased in a similar way to Fig. 5.15(b). Combining the forces on both

sides of the plate, paying attention to the directions of forces on points Q2 and Q4, it is possible to

observe that the hypothetical torque
0
~M cx is negative for β > 0◦. Figure 5.19(b) shows that

0
~M cx

is positive if β < 0◦.

5.4.3 Related element matrices and the damping force for γ̇ 6= 0

Moments due to rotation of the damper element were related to angular displacements, so

they resulted on the stiffness matrix contribution [KIV ]i on Eq. 5.73. Just like the friction moments,

this effect may result on skew symmetric terms on the equations of motion. Matrix [KV ]i (Eq. 5.74)

represents friction forces related to the influence of the moving damper on the normal force.

The damping moments for static displacements for α or β were displayed on Figs. 5.17 and

5.19. The conditions can be organized on Table 5.1. The point to discuss here is that displacements

on α resulted on moments on y axis with the same signal. Besides that, angular changes on β

resulted on
0
~M cx with opposed signal on x axis. Such results remind the Figs. 6.2 and 6.3, where
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Figure 5.18: Vertical displacement and speed on Fig. 5.18(a) for β > 0◦. The damping force

appears on Fig. 5.18(b). Data: Ri = 0.08m, c = 1Ns/m, ψ̇i = 1rad/s and β = 5◦.

(a) (b)

Figure 5.19: Damping forces in different positions for β > 0◦ (Fig. 5.19(a)) and β < 0◦ (Fig.

5.19(b)).

the friction moments also presented similar characteristics in relation to the angles.

Figure 5.20 illustrates the case of a grounded element, where the height h between the contact

point Q and the centre of gravity G remains constant no matter the inclination angle α or rotating

speed of the disc (γ̇). It means that, damping moments similar to the ones presented on Sections
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Table 5.1: Damping moments for γ̇ = 0 and θ̇ 6= 0 on Cardan coordinates.

Fixed angles α = 0◦ β = 0◦

Static angular displacements β > 0◦ β < 0◦ α > 0◦ α < 0◦

0
~M cx - + 0 0

0
~M cy 0 0 + -

5.4.1 and 5.4.2 are not affected by the spin speed of the disc on Cardan coordinates. This is the

main reason behind the fact that matrices [KIV ]i (Eq. 5.73) and [KV ]i (Eq. 5.74) from Section

5.5 depend only on θ̇. The impact of this effect on the system equations and behaviour will be

presented at Sections 6.3 and 6.4.

Figure 5.20: Viscous damper fixed on the ground (Fig. 5.20) with the rotating speed on Cardan

coordinates.

5.5 Element matrices

The element on Fig. 5.3(b) will influence the system in terms of stiffness , damping and

friction terms from the combination of moments from the normal (Eqs. 5.53) and friction ( Eq.

5.46) forces in Eq. 5.66:







3
Mxi

=
3
MNix

+
3
M frix

3
Myi = 3

MNix
+

3
M frix

(5.66)

The full expression of the angular speeds (Eq. 5.9) and accelerations (Eq. 5.10) are necessary

for the equations of motion describing the wobbling movement of the pressure plate (Eq. 5.67),
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calculated using the torque contribution of the ith element. The expression on the vertical direction

is written on the global reference frame. Auxiliary angles derivatives, such as the relative angle (

ψ̇i ) need to be included.


























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
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
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

Ixx 3
ω̇x − (Iyy − Izz) 3

ωy 3
ωz =

n
∑

i=1

3
Mxi

Iyy 3
ω̇y − (Izz − Ixx) 3

ωz 3
ωx =

n
∑

i=1

3
Myi

m
0
r̈OGz

=
n
∑

i=1

(

0
N iz + 0

F friz

)

− Fz

ψ̇i = −
(

γ̇ − θ̇ cosα cos β
)

(5.67)

Linearizing the Eqs. 5.67, a new representation of the system is obtained for {p} =
{

α β z
}T

(Eq. 5.68). It presents a mass ([M ]) and gyroscopic ([G]) matrices shown in Eqs. 5.11. The con-

tribution of the ith element is inserted as an stiffness [Ki] and damping [Ci] matrix. The constant

friction forces and moments originate a excitation vector {fi} (Eq. 5.80). The constant axial force

for the static displacement is represented by {F} =
{

0 0 −Fz

}T

. This approach is very helpful

once that a complex eigenvalue analysis can lead to a verification of the stability of this system.

[M ] {p̈}+
(

[G] +
n
∑

i=1

[Ci]

)

{ṗ}+
n
∑

i=1

[Ki] {p} =
n
∑

i=1

{fi}+ {F} (5.68)

5.5.1 Element stiffness components

The matrices for the rotating speed on Cardan coordinates depend on γ and ψi. The relative

movement between the pressure plate and spring/damper element generate a stiffness matrix that

can be formed from the combination of 6 different matrices (Eq. 5.69), each one having an char-

acteristic feature. In order to simulate a linearized version, it is possible to substitute N0 = kize

(Section 5.2.2). For all following matrices (Eqs. 5.70, 5.71, 5.72, 5.73, 5.75, 5.77, 5.78, and 5.79)

the trigonometric functions are represented by sg = sin γ, cg = cos γ, sp = sinψi, cp = cosψi

and s2p = sin(2ψi).

[Ki] = [KI ]i + [KII ]i + [KIII ]i + [KIV ]i + [KV ]i + [KV I ]i (5.69)

Matrix [KI ]i (Eq. 5.70) represents the effect of the contact stiffness itself, existing even on
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the frictionless case. The normal force containing friction related terms (Eq. 5.48) results friction

stiffness terms depending on µ2 in [KII ]i (Eq. 5.71). The difference from von Wagner et al. (2007)

and Senatore et al. (2013) is the absence of the stiffness due to the normal load N0 = kize, due to

the constant radius assumption made on Section 5.2.2.

[KI ]i = ki







sg.(R2

i /2).s2p+ cg.R2

i .sp
2 −cg.(R2

i /2).s2p+ sg.R2

i .sp
2 −Ri.sp

−sg.R2

i .cp
2 − cg.(R2

i /2).s2p cg.R2

i .cp
2 − sg.(R2

i /2).s2p Ri.cp

−sg.Ri.cp− cg.Ri.sp cg.Ri.cp− sg.Ri.sp 1






(5.70)

[KII ]i = µ2hkize







−sg.(1/2).s2p+ cg.cp2 cg.(1/2).s2p+ sg.cp2 0

−sg.sp2 + (1/2).cg.s2p cg.sp2 + (1/2).sg.s2p 0

0 0 0






(5.71)

In undamped systems, friction force is included by matrix [KIII ]i (Eq. 5.72). It is influenced

by the relative speed between the element and the pressure plate and by the term h, which is half

of the height of the plate.

[KIII ]i = µkisign(γ̇ − θ̇)







h.(−sg.Ri.cp
2 − cg.(Ri/2).s2p) h.(cg.Ri.cp

2 − sg.(Ri/2).s2p) h.cp

h.(−sg.(Ri/2).s2p− cg.Ri.sp
2) h.(cg.(Ri/2).s2p− sg.Ri.sp

2) h.sp

0 0 0






(5.72)

5.5.2 Characteristics for Cardan coordinates

The relative movement assumption (Section 5.2.1) results in frictionless damped systems an

influence of ciθ̇ on a stiffness matrix [KIV ]i (Eq. 5.73). Here is a major difference in relation to

the literature (Chapter 3). Damped systems will change their stiffness according to the clutch disc

rotating speed θ̇. This additional influence is included in case of friction on [KV ]i (Eq. 5.74). This

is part of the innovation of this work, once that it does not appear on the formulations from von

Wagner et al. (2007), Fidlin et al. (2011) or Senatore et al. (2013).

[KIV ]i = ciθ̇







cg.(R2

i /2).s2p− sg.R2

i .sp
2 sg.(R2

i /2).s2p+ cg.R2

i .sp
2 0

−cg.R2

i .cp
2 + sg.(R2

i /2).s2p −sg.R2

i .cp
2 − cg.(R2

i /2).s2p 0

−cg.Ri.cp+ sg.Ri.sp −sg.Ri.cp− cg.Ri.sp 0






(5.73)
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[KV ]i = µhciθ̇sign(γ̇ − θ̇)







sg.(Ri/2).s2p− cg.Ri.cp
2 −cg.(Ri/2).s2p− sg.Ri.cp

2 0

sg.Ri.sp
2 − cg.(Ri/2).s2p −cg.Ri.sp

2 − sg.(Ri/2).s2p 0

0 0 0






(5.74)

Matrix [KV I ]i contains the effect of the static equilibrium (Eq. 5.75). If the clutch disc is

rotating (θ̇ 6= 0) this matrix contains circulatory terms that are influenced by the inverse of the

relative speed. It is a direct consequence of the approximation on the unitary vector of the tangent

relative speed (Eq. 5.42). Similar terms occur on the work from Fidlin et al. (2011).

[KV I ]i =
µh2kizeθ̇

|γ̇ − θ̇|







−sg cg 0

−cg −sg 0

0 0 0






(5.75)

5.5.3 Element damping components

The element damping matrix [Ci] (5.76) is composed by a pure damping matrix [CI ]i (Eq.

5.77) and a friction related one [CII ]i (Eq. 5.78). The matrix [CIII ]i (Eq. 5.79) depends on the

inverse o the relative speed γ̇ − θ̇ and represents the friction damping effect. Similar terms occur

on von Wagner et al. (2007), Senatore et al. (2013) and Fidlin et al. (2011).

[Ci] = [CI ]i + [CII ]i + [CIII ]i (5.76)

[CI ]i = ci







sg.(R2

i /2).s2p+ cg.R2

i .sp
2 −cg.(R2

i /2).s2p+ sg.R2

i .sp
2 −Ri.sp

−sg.R2

i .cp
2 − cg.(R2

i /2).s2p cg.R2

i .cp
2 − sg.(R2

i /2).s2p Ri.cp

−sg.Ri.cp− cg.Ri.sp cg.Ri.cp− sg.Ri.sp 1






(5.77)

[CII ]i = µcisign(γ̇ − θ̇)







h.(−sg.Ri.cp
2 − cg.(Ri/2).s2p) h.(cg.Ri.cp

2 − sg.(Ri/2).s2p) h.cp

h.(−sg.(Ri/2).s2p− cg.Ri.sp
2) h.(cg.(Ri/2).s2p− sg.Ri.sp

2) h.sp

0 0 0






(5.78)

[CIII ]i =
µh2kize

Ri|γ̇ − θ̇|







cg sg 0

−sg cg 0

0 0 0






(5.79)
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5.5.4 Excitation vector

The excitation vector {fi} (Eq. 5.80) takes into account terms that depend on kize:

{fi} =











kizeRi sinψi − µhkize cosψisign(γ̇ − θ̇)

−kizeRi cosψi − µhkize sinψisign(γ̇ − θ̇)

−kize











(5.80)

5.5.5 Very important remarks on the stability study of this system

It is important to stablish here that the system presented on Eq. 5.68 which uses the element

matrices is a linear time-varying system. The relative position angle ψi and the pressure plate

rotation γ will result on changes on the inner structure of every element matrix. Future works

will involve the application of the Floquet Theory ( Nayfeh and Balachandran (2008), Bittanti

and Colaneri (2008)) to fully determine its stability regions. By now, this thesis will analyse the

eigenvalues of the linear system, assuming ψi and γ as instantaneous angles.
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6 Hipothesis 1: Wobbling modes and characteristics of systems with

equal and symmetrically distributed elements

This chapter is intended to be the point of introduction for the wobbling movements of the

pressure plate under the assumption of Cardan coordinates. Fidlin (2006) provided an explanation

for the excitation of the phenomena in terms of frictional moments. Here, the distinction made

on Section 5.2.8 between constant/variable friction will be used to show how their moments may

excite the pressure plate on Sections 6.1.1 and 6.1.2.

The influence of the rotating speed, cushion stiffness, relative speed and viscous damping

will be gradually added to the system. It will provide the comprehension of the importance of each

matrix deduced in Section 5.5. The properties of systems with equal and symmetrically distributed

elements will serve as basis for the differences found with more complex cushion configurations

describe on Chapter 9 in case of positioning errors.

6.1 Rotating speed influence

Figure 6.1 shows a model of a pressure plate supported by four spring elements. If the

element are equal,the frictional moments, indicated by the pairs ~Mfrconsx1
, ~Mfrconsx2

, ~Mfrconsy1
and ~Mfrconsy2

cancel each other.

Figure 6.1: Constant moments under uniform normal load distribution.
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For equally spaced elements (ψi0 = 0◦, 90◦, 180◦ and 270◦) and imposing γ = 0, wobbling

can be studied apart from the axial motion, as expressed in Eq. 6.1. It results from the contribution

of matrices [KI ]i (Eq. 5.70), [KII ]i (Eq. 5.71) and [KIII ]i (Eq. 5.72). Here, each component have

the same stiffness (k), radial positionR and friction coefficient µ . The friction damping terms from

Eq. 5.79 will be neglected at this point, with the consideration that the relative speed field remains

always tangent to the disc, in permanent slip and far from the coupling condition (Appendix A.1).

The gyroscopic matrix in this situation depends only on Izz.







Ixx 0 0

0 Iyy 0

0 0 m

















α̈

β̈

z̈











+ γ̇







0 Izz 0

−Izz 0 0

0 0 0

















α̇

β̇

ż











+

+ k







2R2 + 2µ2zeh 2µRhsign(γ̇) 0

−2µRhsign(γ̇) 2R2 + 2µ2zeh 0

0 0 4

















α

β

z











=











0

0

0











(6.1)

The variable friction forces (explained on Section 5.2.8) are introduced inside the equations

of motion as skew symmetric terms. They express its interaction with the wobbling angles. The

comprehension of how they are interact with the pressure plate to result in Eq. 6.1 is given by the

analysis of the displacement on each angle separately. On the following examples, the disc rotating

speed is assumed as γ̇ > 0.

Positive α causes an inversion of ~Ffrvar on the element positioned at ψ0 = 90◦ due to the

decrease on the normal force (Fig. 6.2(a)). As a result, both forces induce a positive friction

moment on the disc on y3 (Eq. 6.2).

{

Mfrvarx
Mfrvary

}∣

∣

∣

∣

∣

α 6= 0, β = 0

=

{

0

2µRhsign(γ̇)α

}

(6.2)

In a similar way of thinking, Figure 6.2(b) shows that a negative rotation in α results in

friction forces producing negative moment on y3 axis.

For β > 0 there is an inversion on the variable friction force on ψ0 = 180◦ (Fig. 6.3(a)).

Consequently, negative friction torque is applied on x3 axis (Eq. 6.3).

{

Mfrvarx
Mfrvary

}∣

∣

∣

∣

∣

α = 0, β 6= 0

=

{

−2µRhsign(γ̇)β

0

}

(6.3)
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Figure 6.3(b) represents that β < 0 results in friction forces producing positive torque on x3

axis.

It is important to emphasize here that, in al cases (Figs. 6.2(a), 6.2(b), 6.3(a) and 6.3(b)) the

constant friction moments cancel each other just like the case described in Fig. 6.1.

(a)

(b)

Figure 6.2: Variable friction force distribution for α > 0 and α < 0 (γ̇ > 0 and θ̇ = 0).
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(a)

(b)

Figure 6.3: Variable friction force distribution for β > 0 and β < 0 (γ̇ > 0 and θ̇ = 0).

Figure 6.4(a) contains the variation of the modal properties for different rotating speeds

adopting m = 2 kg, R = 0.0875 m, ze = 0.001m, µ = 0.3 and h = 0.01 m. A total stiffness of

3 × 106 N/m is distributed on the 4 spring elements. Both frequencies present similar values for

very low rotating speed (185 Hz for a |γ̇| = 1 rpm). As speed is augmented, the natural frequency

related to the unstable mode increases up to 220.9 Hz at |γ̇| = 2000 rpm. On the other hand, the

stable mode presents a natural frequency of 154.8 Hz at |γ̇| = 2000 rpm.
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The increasing rate of the natural frequency of the unstable mode was found to be 0.019

Hz/rpm at 2000 rpm (Fig. 6.4(b)). For the stable mode, this derivative was calculated as -0.013

Hz/rpm at 2000 rpm. These results will be important later on Section 8.1. Figure 6.4(c) shows the

real part of the eigenvalues, emphasizing that instability occurs due to a positive real part found

near 20.
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Figure 6.4: Natural frequencies of the system in Eq. 6.1.

The free response of the system is calculated by the combination of its modes as shown in Eq.

6.4. Variables di and d∗i form complex conjugate pairs of numbers that account for the contribution

of each vibration mode.

{

α(t)

β(t)

}

= d1

{

X11

X21

}

eλ1t + d∗
1

{

X11

X21

}

∗

eλ
∗

1
t + d2

{

X21

X22

}

eλ2t + d∗
2

{

X21

X22

}

∗

eλ
∗

2
t (6.4)
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A specific mode response is shown in Eq. 6.5, by setting to zero the contributions di d
∗

i of

other modes. It is necessary to manipulate the real (Re({Xi})) and imaginary part (Im({Xi})) of

the eigenvector as well as the complex components of di. The eigenvalue is written as λi = σi+j̟i:

{x(t)} = di {Xi} eλit + d∗i {X∗

i } eλ
∗

i t

= [Re(di) + j Im(di)] [Re({Xi}) + j Im({Xi})] e(σi + j̟i)t+

+ [Re(di)− j Im(di)] [Re({Xi})− j Im({Xi})] e(σi − j̟i)t

= 2eσit {[Re(di) Re({Xi})− Im(di) Im({Xi})] cos̟it +

− [Re(di) Im({Xi}) + Im(di) Re({Xi})] sin̟it}

(6.5)

6.1.1 Stable motion - Backward wobbling for γ̇ > 0 and θ̇ = 0

Complex eigenvectors where obtained for different rotating speeds. The results were rep-

resented based on the eigenvector associated to eigenvalues with positive imaginary part ( λi =

σi + j̟i).

With γ̇ > 0, there is X21 = j (Fig. 6.5(b)), while X11 = 1 in all situations (Figs. 6.5(a)). It

means that on the stable mode shape β presents a phase shift of 90◦ in relation to α (Eq. 6.6).

{

X11

X21

}

=

{

1

j

}

=







1

exp
(

j
π

2

)







, for γ̇ > 0 (6.6)

Substituting Eq. 6.6 on Eq. 6.5 it is possible to obtain the free response of the stable mode in

Eq. 6.7. By choosing Re(di) = 0 the expression is simplified to Eq. 6.8. Equation 6.9 represents

the angular wobbling speeds calculated from the differentiation of Eq. 6.8.

{

α(t)

β(t)

}

= 2eσit

{[

Re(d1)

{

1

0

}

− Im(d1)

{

0

1

}]

cos̟it +

−
[

Re(d1)

{

0

1

}

+ Im(d1)

{

1

0

}]

sin̟it

} (6.7)

{

α(t)

β(t)

}

= −2eσit Im(d1)

{

sin̟it

sin (̟it+ 90◦)

}

(6.8)
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Figure 6.5: Complex stable mode shape for γ̇ > 0 and θ̇ = 0. Eigenvalue with positive imaginary

part ( λi = σi + j̟i).

{

α̇(t)

β̇(t)

}

= 2eσit Im(d1)

[

−σi
{

sin̟it

cos̟it

}

+̟i

{

− cos̟it

sin̟it

}]

(6.9)

Decaying responses of the system in terms of displacement and speed are shown in Figs.

6.6(a) and 6.6(b), respectively, for a natural frequency of 169.2 Hz.
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Figure 6.6: Displacement free response after 10 complete periods (Fig. 6.6(a)) and angular speeds

(Fig. 6.6(b)) for di = 0.01j, γ̇ = 1000 rpm and θ̇ = 0.

Besides the mathematical notation previously presented in Eq. 6.6, it is necessary to give a
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physical explanation for the stability of this mode shape. Combining the variable friction estab-

lished in Eqs. 6.2 and 6.3 the system is excited by the friction related torque provided by Eq. 6.10.

This moment can be normalized if it is divided by 2µRh. The result can be explicitly written in Eq.

6.11 by substituting the expression of displacements (Eq. 6.8).

{

Mfrvarx
Mfrvary

}

= 2µRhsign(γ̇)

{

−β(t)
α(t)

}

(6.10)

{

Mfrvarx
Mfrvary

}

normalized

=

{

−β(t)
α(t)

}

= 2eσit Im(d1)

{

cos̟it

− sin̟it

}

(6.11)

Figure 6.7(a) presents the angular speed α̇ withMfrvarx , while Fig. 6.7(b) shows the relation

in time between β̇ and Mfrvary
. It is possible to see that the friction moments are always opposed

to the motion of the disc. The variable component of the friction force introduced in Section 5.2.8

expresses the role of friction on this system. It is the reason why amplitudes decrease with time.
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Figure 6.7: Angular speeds and variable friction in x and y directions (Figs. 6.7(a) and 6.7(b)) for

di = 0.01j, γ̇ = 1000 rpm and θ̇ = 0.

One period of motion is depicted in terms of angular displacements and friction forces in

Figs. 6.8(a) and 6.8(b), respectively. They are totally related once that every instant labelled as

a, b, c,... i is represented as wobbling condition of the pressure plate in Fig. 6.9. For a observer

situated on the global reference frame xyz, the axis z3 seem to move against the direction given by

the rotating speed γ̇ as presented in Figs. 6.9(a), 6.9(c), 6.9(e) , 6.9(g) and 6.9(i). In analogy to the
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field of rotordyamics ( Muszynska (2010), Childs (1993) and Genta (2007)), this pattern could be

interpreted as a backward wobbling. The friction force distribution in these cases was presented in

detail in Figs. 6.2 and 6.3 once that only one friction moment component is acting on the system.

Intermediary states are presented by Figs. 6.9(b), 6.9(d), 6.9(f) and 6.9(h) where the friction

forces configurations are represented right bellow each one of them. As it is possible to visualize

in Figs. 6.8(a) and 6.8(b), these are conditions where both Mfrvarx and Mfrvary are acting on the

disc simultaneously.

From Fig. 6.9(a) to 6.9(c) the disc moves from α = 0◦ to α < 0 and from β < 0 to

β = 0. Meanwhile, Fig. 6.9(b) shows that the variable friction forces generate moments such that

Mfrvarx
> 0 and Mfrvary

< 0. In sequence, the disc changes its position from Fig. 6.9(c) to

another state where α = 0 and β > 0. During this process, Figure 6.9(d) presents Mfrvarx
< 0

and Mfrvary
< 0.

Between Fig. 6.9(e) to 6.9(g) the disc moves from α = 0 to α > 0 and from β > 0 to β = 0,

while the friction moments are oriented as Mfrvarx
< 0 and Mfrvary

> 0. Finally, the disc returns

to its initial position from Fig. 6.9(e) to 6.9(i). The coordinate α decreases from α > 0 to α = 0

while Mfrvarx
is positive (Fig. 6.9(d)). Angle β becomes negative while Mfrvary

is positive.

During the whole period, the variable friction forces always produced torque in opposition to the

movement.
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Figure 6.8: Stable free response viewed in detail in Fig. 6.8(a) and normalized moments (Fig.

6.8(b)) (di = 0.01j, γ̇ = 1000 rpm and θ̇ = 0).
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Figure 6.9: Stable mode for γ̇ > 0 and θ̇ = 0 (Backward wobbling).
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6.1.2 Unstable motion - Forward wobbling with γ̇ > 0 and θ̇ = 0

Looking on Figs. 6.10(a) and 6.10(b) it is possible to see that the unstable mode is expressed

by Eq. 6.12, where β presents a phase shift of -90◦ in relation to α.

{

X12

X22

}

=

{

1

−j

}

=







1

exp
(

−j π
2

)







, for γ̇ > 0 (6.12)
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Figure 6.10: Complex unstable mode shape for γ̇ > 0 and θ̇ = 0. Eigenvalue with positive

imaginary part ( λi = σi + j̟i).

Substituting Eq. 6.12 on 6.5 the free response of the unstable mode is calculated (Eq. 6.13).

This expression is simplified to Eq. 6.14 using Re(di) = 0.

{

α(t)

β(t)

}

= 2eσit

{[

Re(d2)

{

1

0

}

+ Im(d2)

{

0

1

}]

cos̟it +

+

[

Re(d2)

{

0

1

}

− Im(d2)

{

1

0

}]

sin̟it

} (6.13)

{

α(t)

β(t)

}

= −2eσit Im(d2)

{

sin̟it

sin (̟it− 90◦)

}

(6.14)

Figure 6.11(a) presents the increasing displacement response of the system while Fig. 6.11(b)
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shows its angular speeds according to Eq. 6.15:

{

α̇(t)

β̇(t)

}

= 2eσit Im(d1)

[

σi

{

− sin̟it

cos̟it

}

−̟i

{

cos̟it

sin̟it

}]

(6.15)
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Figure 6.11: Displacement free response after 10 complete periods (Fig. 6.11(a)) and angular

speeds (Fig. 6.11(b)) for di = 0.01j, γ̇ = 1000 rpm and θ̇ = 0.

The normalized friction force is shown in Eq. 6.16 following the same procedure done in the

previous section. The results from Figs. 6.12(a) and 6.12(b) reveals that the friction moments act in

favour of motion, once that Mfrvarx
acts in phase with α̇ as well as the torque Mfrvary

according

to β̇. This is the physical explanation behind the instability indicated by the positive real part of the

eigenvalue.

{

Mfrvarx
Mfrvary

}

normalized

=

{

−β(t)
α(t)

}

= 2eσit Im(d1)

{

− cos̟it

− sin̟it

}

(6.16)

Like the previous case, the points indicated as a,b,... i on Fig. 6.13(a) are represented physi-

cally in Fig. 6.9. The complete time period is lower than the one presented in Fig. 6.8(a) once that

the unstable mode has a greater natural frequency of 201.9 Hz.

The sequence shown in Figs. 6.14a, 6.14c, 6.14e, 6.14g and 6.14i represent that the axis z3

seems to move according to the sense of the angular speed γ̇. Details of the friction distribution in

these cases are found on Figs. 6.2 and 6.3.

In Fig. 6.14a the disc is a position where α = 0 and β > 0. During the motion to Fig. 6.14b
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Figure 6.12: Angular speeds and variable friction in x and y directions (Figs. 6.12(a) and 6.12(b))

for di = 0.01j, γ̇ = 1000 rpm and θ̇ = 0.

(α = 0 and β = 0) the variable friction forces generate Mfrvarx
< 0 and Mfrvary

< 0, that act in

favour of the movement. The same occurs when the disc moves from Fig. 6.14c to 6.14e (α = 0

and β < 0). Figure 6.14d presents Mfrvarx
> 0 and Mfrvary

< 0. The body performs a positive

rotation around axis x3 simultaneously with a negative rotation on axis y3.

From Fig. 6.14e to Fig. 6.14g (α < 0 and β = 0) the disc presents positive rotations on both

axis with Mfrvarx
> 0 and Mfrvary

> 0 (Fig. 6.14f). It is returning to the original position when

it goes from Fig. 6.14g to Fig. 6.14i (β > 0 and α = 0). The friction forces are arranged such

thatMfrvarx
< 0 and Mfrvary

> 0 .
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Figure 6.13: Unstable free response viewed in detail in Fig. 6.13(a) and normalized moments (Fig.

6.13(b)) (di = 0.01j, γ̇ = 1000 rpm and θ̇ = 0).
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Figure 6.14: Unstable mode for γ̇ > 0 and θ̇ = 0 (Forward wobbling).
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6.2 Stiffness and relative speed influence

The friction damping effect was included in Eq. 6.1 using [CIII ]i (Eq. 5.79). The equations

of motion are presented in Eq. 6.17. The friction damping terms are included as the matrix terms

c11 = c22 (Eq. 6.18). The matrix [KV I ]i (Eq. 5.75) introduces new skew symmetric terms that

depend on the inverse of |γ̇ − θ̇| on (Eq. 6.19).







Ixx 0 0

0 Iyy 0

0 0 m

















α̈

β̈

z̈











+






γ̇







0 Izz 0

−Izz 0 0

0 0 0






+







c11 0 0

0 c22 0

0 0 0























α̇

β̇

ż
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(6.17)

c11 = c22 = 4
µh2kze

R|γ̇ − θ̇|
(6.18)

k12 = k21 = 2µkRhsign(γ̇ − θ̇) + 4
µh2kzeθ̇

R|γ̇ − θ̇|
(6.19)

Figure 6.15 contains the natural frequencies if the total cushion stiffness is increase from 1

to 107 N/m. The rotating speeds were adopted as γ̇ = 2000 rpm and θ̇ = 0 rpm. Such results

are similar to the ones obtained by Senatore et al. (2013). The forward wobbling mode presents

the greatest values even for low stiffness. Section 5.1.3 presented that this system is semi definite,

with a zero frequency. As a result from that, the backward wobbling mode starts with extremely

low frequencies (Fig. 6.15(b)) that grows up to figures from the forward mode. The axial mode

is also strongly influenced by this parameter. The real part of the forward mode increases with

this stiffness, specially after 104 N/m. The axial mode is stable and conservative, once that friction

damping occurs only for angular degrees-of-freedom.

Figs. 6.15(d) and 6.15(e) contains the results keeping the pressure plate speed as γ̇ = 2000

rpm and varying the clutch disc rotating speed between 0 rpm < θ̇ < 1990 rpm and 2010 rpm <

θ̇ < 4000 rpm. Natural frequencies are not affected by the clutch disc speed, as presented in Fig.

6.15(d). In this case, the axial mode shape have an intermediate value between the backward and

forward wobbling modes.
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Figure 6.15: Natural frequencies according to cushion stiffness in linear (Fig. 6.15(a)) and log-

arithmic (Fig. 6.15(b)) scales. Figure 6.15(c) contains the real part of the eigenvalues. Natural

frequencies (Fig. 6.15(d)) and real parts (Fig. 6.15(e)) in relation to the relative speed.
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The relative speed (γ̇ − θ̇) affects the stability. On the verge of coupling, no matter the

condition, both wobbling modes have negative real parts on its eigenvalues. This is the consequence

from the friction damping effect (von Wagner et al., 2007). The skew symmetric stiffness terms

multiplied by θ̇ on Eq. 6.19 become greater when |γ̇ − θ̇| −→ 0 with θ̇ 6= 0, which could increase

the variable friction terms. In this case, the damping from Eq. 6.18 prevails. There are limitations

on the range of usage of this element, that are found in Appendix B.1. For γ̇ − θ̇ > 0, the forward

mode is unstable, but if the relative displacement changes its signal, it is stabilized, while the

backward mode presents positive real parts on its eigenvalues. Hervé et al. (2008b) produced such

results by changing the signal of the circulatory action (Section 3.2.4). Once again, the axial mode

is not affected by the relative speed.

6.3 System with viscous damping effects

To create the model from Eq. 6.20 damper and stiffness elements were equally distributed

around the perimeter of the disc (ψi0 = 0◦, 90◦, 180◦ and 270◦). This condition is theoretical, with

the assumption of µ = 0 on Eq. 6.17. The skew symmetric terms 2θ̇cR2 on the stiffness matrix

are contributions from [KIV ]i (Eq. 5.73), which are related to the moving viscous damper element

(Section 5.4). Section 6.4 will present a combination with friction.
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(6.20)

Figure 6.16 presents the natural frequencies with c = 5 Ns/m and a total cushion stiffness of

3× 102 N/m. The disc has a rotating speed of γ̇ = 2000 rpm. In this situation, the frequency of the

forward wobbling mode occurs above 60 Hz, while the axial and backward modes presented very

low frequencies.
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Figure 6.16: Eigenvalue real parts (Fig. 6.16(b)) and natural frequencies (Fig. 6.16(a)) for a system

with viscous damping without friction for c = 5 Ns/m and a total cushion stiffness of 3× 102 N/m.

The observation of the real part of those eigenvalues (Fig. 6.16(b)) lead to the following

observations:

• For γ̇ − θ̇ < 0, the rotating speed of the elements (θ̇) is greater than the one on the pressure

plate (γ̇). With γ̇ − θ̇ < −2000 rpm, the forward wobbling motion is unstable, while the

backward and axial motions remain stable.

• With −2000 rpm < γ̇ − θ̇ < 2000 rpm the system is stable.

• When 0 < γ̇ − θ̇ < 2000 rpm the rotating speed of the elements is lower than the one on the

pressure plate but on the same direction.

• With γ̇ − θ̇ > 2000 rpm the backward motion is unstable. This condition is theoretical, be-

cause it is necessary to assume an inversion on the direction of rotation of the damper/stiffness

elements when γ̇ = 2000 rpm.

The damping factors (ζi = −Re(λi)/|λi|) are presented in Fig. 6.3 in terms of percentage. It

is possible to observe that modifications on θ̇ changes the damping factor for the backward mode

when γ̇ − θ̇ becomes closer to 2000 rpm. The axial motion presents a constant characteristics. The

forward wobbling have very low levels of |ζi|, indicating that the unstable response will have a slow

increase rate.
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Figure 6.17: Eigenvalue damping factors for a system with viscous damping without friction for c

= 5 Ns/m and a total cushion stiffness of 3× 102 N/m.

The damping efforts due to the movement of the viscous damper elements on Eq. 6.20 are

given by ~Mmov (Eq. 6.21):

~Mmov =

{

Mmovx

Mmovy

}

= −2cR2θ̇

{

β(t)

−α(t)

}

(6.21)

The time response for the backward/forward motions can be obtained as Eq. 6.5. For di =

0.001, γ̇ = 2000 rpm and θ̇ = 6000 rpm , the backward response is presented by Fig. 6.18. The

torque componentsMmovx andMmovy are opposed to the wobbling speeds α̇ and β̇ on Figs. 6.18(a)

and 6.18(b), respectively. On the other hand, such torques act in favour of the forward motion on

Figs. 6.19(a) and 6.19(b).
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Figure 6.18: Backward wobbling motion (Figs 6.18(a) and 6.18(b)) Parameters considered as γ̇ =
2000 rpm and θ̇ = 6000 rpm (c = 5 Ns/m and a total cushion stiffness of 3× 102 N/m).
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Figure 6.19: Forward wobbling motion (Figs. 6.19(a) 6.19(b)). Parameters considered as γ̇ =
2000 rpm and θ̇ = 6000 rpm (c = 5 Ns/m and a total cushion stiffness of 3× 102 N/m).

The sequence on Fig. 6.20 results from the combination of configurations obtained on Section

5.4 (Figs. 5.17 and 5.19). The forward wobbling is excited by the vertical damping forces (indicated

as Fci), that result on Mmovx and Mmovy . In every condition, such efforts act in favour for the next

position.

Figure 6.20: Damping efforts for unstable motion due to the moving viscous damper element on

Cardan coordinates (γ̇ 6= 0 and θ̇ 6= 0).
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6.4 System with viscous damping and friction

Viscous damping was included in Eq. 6.17 resulting in Eq. 6.22. Matrices [CI ]i (Eq. 5.77)

and [CII ]i (Eq. 5.78) are responsible for new terms on c11 = c22 (Eq. 6.23) and c12 = c21 (Eq. 6.24).

Matrix [KV ]i (Eq. 5.74) result in a new term involving the clutch disc rotating speed θ̇, damping

and friction on k11 = k22 (Eq. 6.25). The terms from [KIV ]i (Eq. 5.73) appear on k12 = k21 (Eq.

6.26), as presented on Eq. 6.20. Friction coefficient of µ = 0.3 is considered.
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(6.22)

c11 = c22 = 4
µh2kze

R|γ̇ − θ̇|
+ 2cR2 (6.23)

c12 = c21 = 2µcRhsign(γ̇ − θ̇) (6.24)

k11 = k22 = 2kR2 + 2µ2kzeh− 2µhcθ̇sign(γ̇ − θ̇) (6.25)

k12 = k21 = 2µkRhsign(γ̇ − θ̇) + 4
µh2kzeθ̇

R|γ̇ − θ̇|
+ 2cR2θ̇ (6.26)

Depending on the values involved on the friction contact the effect from the moving viscous

damping can prevail on this system. For example, Figures 6.21(a) and 6.21(b) present the natural

frequencies and eigenvalue real parts with c = 5 Ns/m and a total cushion stiffness of kcushion =

3× 102 N/m. Those results are practically the same as the ones from Fig. 6.16.

If the cushion stiffness is increased to 3 × 106 N/m with c = 5 Ns/m, the natural frequencies

and real parts (Figs. 6.21(c) and 6.21(d)) are very similar to the case on the previous section (Fig.

6.2).

Increasing the damping to c = 30 Ns/m, all eigenvalues are found with negative real parts

(Fig. 6.21(f)), but unaltered in terms of frequency (Fig. 6.21(e)). The damping influence for
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stabilization was tested by Hervé et al. (2008b). Figure 6.21(f) shows that, greater values of

viscous damping allow the influence of the clutch disc rotating speed (θ̇) on the real parts of the

eigenvalues. It is caused by the terms related to the moving viscous elements introduced on Eqs.

6.25 and 6.26.

The simulations on Figs. 6.21 indicate two different mechanisms for self excitation on this

model:

1. a combination of viscous damping with very low levels of cushion stiffness or friction re-

sulted on instability of the plate, due to the forces produced by the movement of the damper

element. The physical explanation for the efforts were presented on Sections 5.4.1, 5.4.2 and

6.3. An important point is that this is not related to friction, but to the shape of the elements

and the assumption of rotation on the element.

2. low damping in comparison to the stiffness resulted on wobbling motions, excited by friction

related moments. This case was carefully detailed on Section 6.1 and documented in all the

works from Chapter 3.

There are no traceable works on the physical model of energy dissipation on the interaction

between the cushion springs and the facings. The assumption of viscous damping was arbitrary on

this thesis, but it includes a representation energy dissipation on the model with physical meaning.

With another arbitrary assumption of proportional damping, the dependence on the rotating speed

of the disc θ̇ disappears. Even so, this is a theoretical advance on the subject, once that such

phenomena was not documented on the clutch squeal literature and cannot be reproduced by any

of the models from Chapter 3.

6.5 Chapter summary

The observations from this chapter are separated into different physical domains:

6.5.1 Rotating speeds

The system modelled on Cardan coordinates presented the following characteristics (γ̇ 6= 0

and θ̇ = 0):

• The natural frequency of the unstable mode was greater and increased with the rotating speed.

It was represented as a forward wobbling mode.
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Figure 6.21: Natural frequencies (Fig. 6.21(a), 6.21(c) and 6.21(e)) and eigenvalue real parts (Fig.

6.21(b), 6.21(d) and 6.21(f)) according to the relative speed (γ̇ − θ̇) with µ = 0.3 and γ̇ = 2000
rpm.
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• The stable mode presented a backward motion, with a natural frequency that decreased with

the rotating speed .

6.5.2 Relative speed

The relative speed resulted on the following conditions on the simulations:

• Friction damping stabilized both models near coupling conditions, according to the findings

from von Wagner et al. (2007).

• The axial mode remained stable for all situations

• Due to the modification on the direction o friction moments, the forward mode was unstable

for γ̇ − θ̇ > 0. Such relations were first proposed by Hervé et al. (2008b). The backward

mode became unstable for γ̇ − θ̇ < 0.

6.5.3 Stiffness

From the previous simulations it was possible to verify that, for low stiffness:

• On Cardan coordinates, low values of cushion stiffness influenced the backward wobbling

and the axial modes.

For high cushion stiffness, the following behaviour was observed:

• On Cardan coordinates, the forward/backward/axial mode frequencies increased but remained

distant from each other.

• Greater values of stiffness increased the real part from the eigenvalue for the forward mode.

6.5.4 Viscous damping

• Viscous damping introduced instability for low levels of cushion stiffness. The rotating speed

of the disc θ̇ altered the behaviour of the real parts of the eigenvalues.
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7 Hipothesis 2: Model considering the rotating speed on global coor-

dinates

By choosing this representation, the model present results based on the influence of the pre-

cession speed during operation. Although Hervé et al. (2008b) and Hervé et al. (2009) did not

specify in detail the procedures to obtain the equations of motion, the author found similar inertia

matrices adopting the rotating speed on global coordinates.

First, Section 7.1 presents the rigid body formulation of the pressure plate for Hypothesis 2.

The necessary steps to obtain the stiffness/viscous damper element with friction are provided on

Section 5.2, followed by the efforts due to the movement of the viscous damper element (Section

7.3). Finally, the element matrices are described on Section 7.4.

7.1 Pressure plate model

The proper sequence of rotations using the matrices presented on Section 7.1.1 result on the

angular speed and accelerations on Section 7.1.2. Hervé et al. (2008b) and Hervé et al. (2009)

used a similar formulation, but here it will be shown on Section 7.1.3 that this system is not only

influenced by the rotating speed as presented on Section 5.1.3 (Hypothesis 1) but also by the angular

acceleration.

7.1.1 Rotation matrices

Angle γ (Fig. 7.1(b)) originates a rotation matrix for z′ axis [Rγ]
T to transform a vector

0
~r′

from the coordinate system x′y′z′ (Fig. 7.1(a)) to x′
1
y′
1
z′
1
, represented as

1
~r′ (Eq. 7.1). The inverse

transformation is calculated by Eq. 7.2.

1
~r′ = [Rγ]

T
0
~r′ (7.1)

0
~r′ = [Rγ] 1~r

′ (7.2)

A rotation given by β (Fig. 7.1(c)) moves the representation from x′
1
y′
1
z′
1

to x′
2
y′
2
z′
2

(Eq. 7.3),

while the inverse transformation is given by Eq. 7.4.
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2
~r′ = [Rβ]

T
1
~r′ (7.3)

1
~r′ = [Rβ] 2~r

′ (7.4)

Finally, the angle α (Fig. 7.1(d)) is used to provide a rotation around the x′ axis from x′
2
y′
2
z′
2

to x′
3
y′
3
z′
3

according to Eq. 7.5. The inverse relation is shown in Eq. 7.6.

3
~r′ = [Rα]

T
2
~r′ (7.5)

2
~r′ = [Rα] 3~r

′ (7.6)

As a result, a vector can be expressed on global coordinates using Eq. 7.7. The matrix [Rγβα]

is shown in Eq. 7.8.

0
~r′ = [Rγ][Rβ][Rα] 3~r = [Rγβα] 3~r

′ (7.7)

[Rγβα] =







cosβ cos γ − cosα sin γ + sinα sinβ cos γ sinα sin γ + cosα sinβ cos γ

cosβ sin γ cosα cos γ + sinα sinβ sin γ − sinα cosβ + cosα sinβ sin γ

− sinβ sinα cosβ cosα cosβ






(7.8)

7.1.2 Angular speeds and accelerations

The full expression of the angular speeds (Eq. 7.9) and accelerations (Eq. 7.10) are necessary

for the equations of motion describing the wobbling movement of the pressure plate.

3
~ω′ =







1 0 − sin β

0 cosα sinα cos β

0 − sinα cosα cos β

















α̇

β̇

γ̇











=











3
ωx′

3
ωy′

3
ωz′











(7.9)
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3
~̇ω′ =







1 0 − sin β

0 cosα sinα cos β

0 − sinα cosα cos β

















α̈

β̈

γ̈











+ γ̇







0 − cos β

cosα cos β − sinα cos β

− sinα cos β − cosα sin β







{

α̇

β̇

}

+

− α̇β̇











0

sinα

cosα











=











3
ω̇x′

3
ω̇y′

3
ω̇z′











(7.10)

(a) (b)

(c) (d)

Figure 7.1: Rotations assumed on the model keeping the rotating speed on global coordinates.
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7.1.3 Inertia components and modal properties

The body modelled in these coordinates presents more inertia effects than the previous one

(Eq. 5.12). The coordinates are considered as {p}T =
{

α β
}T

. Equation 7.11 shows a mass

matrix [M ] (Eq. 7.12) and a gyroscopic one [G] (Eq. 7.13), that depends on all inertia moments

Ix′x′ , Iy′y′ and Iz′z′ . It also has the contribution of matrix [H1(γ̇)] (Eq. 7.14), which includes terms

that depend on γ̇ on the stiffness matrix. Even the disc acceleration have influence on its behaviour,

expressed through the term [H2(γ̈)] (Eq. 7.15). It occurs that Ix′x′ = Iy′y′ < Iz′z′ for the disc

(Eq. 5.19 and 5.20) so matrix [H2(γ̈)] is skew symmetric but its non diagonal terms have opposite

signals compared to the ones found on [G] (Eq. 7.13). The term [H2(γ̈)] is not found on Hervé

et al. (2008b) or Hervé et al. (2009).

[M ] {p̈}+ [G] {ṗ}+ ([H1(γ̇)] + [H2(γ̈)]) {p} = {0} (7.11)

[M ] =

[

Ix′x′ 0

0 Iy′y′

]

(7.12)

[G] = γ̇

[

0 −Ix′x′ − Iy′y′ + Iz′z′

Ix′x′ + Iy′y′ − Iz′z′ 0

]

(7.13)

[H1(γ̇)] = γ̇2

[

Iz′z′ − Iy′y′ 0

0 (Iz′z′ − Ix′x′)

]

(7.14)

[H2(γ̈)] = γ̈

[

0 −Ix′x′

Iy′y′ 0

]

(7.15)

The modal properties of the system are found by Eq. 7.16 assuming Ix′x′ = Iy′y′ = I and

an eigenvalue λi. The numerical examples will use the data from Section 5.1.3. Non trivial solu-

tions are obtained imposing a determinant different from zero, which results on the characteristic

polynomial shown in Eq. 7.17.

[

Iλ2i + γ̇2 (Iz′z′ − I) γ̇λi (−2I + Iz′z′)− γ̈I

γ̇λi (2I − Iz′z′) + γ̈I Iλ2i + γ̇2 (Iz′z′ − I)

]{

X1i

X2i

}

=

{

0

0

}

(7.16)

[

Iλ2i + γ̇2 (Iz′z′ − I)
]2

+ [γ̇λi (2I − Iz′z′) + γ̈I]2 = 0 (7.17)

Equation 7.17 can be separated into Eqs. 7.18 and 7.19:
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λ2i + λγ̇

(

Iz′z′

I
− 2

)

j +

[

γ̇2
(

Iz′z′

I
− 1

)

− γ̈j

]

= 0 (7.18)

λ2i − λγ̇

(

Iz′z′

I
− 2

)

j +

[

γ̇2
(

Iz′z′

I
− 1

)

+ γ̈j

]

= 0 (7.19)

The solutions from Eq. 7.18 are given by Eq. 7.20. They depend on ∆ (Eq. 7.21), a

complex parameter where the rotating speed affects its real part and acceleration has influence on

the imaginary portion.

λi = −
(

γ̇

2

)[

Iz′z′

I
− 2

]

j ±
√
∆

2
(7.20)

∆ = −γ̇2
(

Iz′z′

I

)2

+ 4γ̈j = |∆|ejφ =





√

γ̇4
(

Iz′z′

I

)4

+ 16γ̈2



 ejφ (7.21)

The phase angle from Eq. 7.21 may assume different values according to the rotating speed

and acceleration:

• π/2 < φ < π, if γ̇ 6= 0 and γ̈ 6= 0 (Fig. 7.2(a)).

• φ = π/2, if γ̇ = 0 and γ̈ 6= 0 (Fig. 7.2(b)).

• φ = π, if γ̇ 6= 0 and γ̈ = 0 (Fig. 7.2(c)).

(a) γ̇ 6= 0 and γ̈ 6= 0 (b) γ̇ = 0 and γ̈ 6= 0 (c) γ̇ 6= 0 and γ̈ = 0

Figure 7.2: Parameter ∆ (Eq. 7.21) for different conditions of acceleration and rotating speeds.

Applying the same procedure done to Eq. 7.18 in Eq. 7.19 and combining the results, a pair

of stable (Eq. 7.22) and unstable (Eq. 7.23) eigenvalues are obtained.

85



λ1, λ
∗

1
= −

√

|∆|
2

cos

(

φ

2

)

± j

{

γ̇

2

[

2− Iz′z′

I

]

−
√

|∆|
2

sin

(

φ

2

)

}

(7.22)

λ2, λ
∗

2
=

√

|∆|
2

cos

(

φ

2

)

± j

{

γ̇

2

[

2− Iz′z′

I

]

+

√

|∆|
2

sin

(

φ

2

)

}

(7.23)

7.1.4 Stability for γ̈ = 0 and γ̇ 6= 0

If the disc is at constant rotating speed, ∆ is a real number (Fig. 7.2(c)), resulting in two

pairs of pure imaginary eigenvalues (Eqs. 7.24 and 7.25). The non accelerated system presents an

oscillatory behaviour.

λ1, λ
∗

1
= ±j

{

γ̇

2

[

2− Iz′z′

I

]

+

√

|∆|
2

}

(7.24)

λ2, λ
∗

2
= ±j

{

γ̇

2

[

2− Iz′z′

I

]

−
√

|∆|
2

}

(7.25)

One of the natural frequencies match the first order (Eq. 7.27) while the other can be found

quite close to this value (Eq. 7.26). They can be visualized in Fig. 7.1.4.

ωn1
= |λ1| = |λ∗

1
| = |γ̇|

(

Iz′z′

I
− 1

)

(7.26)

ωn2
= |λ2| = |λ∗

2
| = |γ̇| (7.27)

7.1.5 Stability for γ̇ = 0 and γ̈ 6= 0

In this case, the eigenvalues are presented at Eq. 7.29 and 7.28 for 0 6 γ̈ 6 2000 rad/s2.

The purely accelerated system is unstable. An important event is that now they both have the same

natural frequency, indicated by Eq. 7.30 and plotted in Fig. 7.4(a). In this situation, the eigenvalues

keep their characteristics over the whole acceleration range ( Fig. 7.4(b)).

λ1, λ
∗

1
=

√

2|γ̈|
2

(−1± j) (7.28)
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Figure 7.3: Natural frequencies for γ̈ = 0.

λ2, λ
∗

2
=

√

2|γ̈|
2

(1± j) (7.29)

ωn1
= ωn2

=
√

|γ̈| (7.30)

The condition with γ̈ 6= 0 and γ̇ = 0 is very specific, happening on the verge of movement

(t = 0 s) or when the disc is changing its rotating speed direction from γ̇ > 0 to γ̇ < 0 or the other

way round. It is helpful to indicate asymptotic behavior when γ̇ → 0 and γ̈ 6= 0.
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Figure 7.4: Natural frequencies (Fig. 7.4(a)) and eigenvalue real part (Fig. 7.4(b)) for γ̇ = 0.
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7.1.6 Stability for γ̇ 6= 0 and γ̈ 6= 0

For this general case, Equation 7.31 shows that the unstable mode has a natural frequency

greater than the stable one due to the negative signal that follows the term that is multiplied by γ̇ in

Eq. 7.32:

ωn2
= |λ2| = |λ∗

2
| = 1

2

{

|∆|+ γ̇2
[

Iz′z′

I
− 2

]2

+ 2γ̇
√

|∆|
[

2− Iz′z′

I

]

sin

(

φ

2

)

}1/2

(7.31)

ωn1
= |λ1| = |λ∗

1
| = 1

2

{

|∆|+ γ̇2
[

Iz′z′

I
− 2

]2

− 2γ̇
√

|∆|
[

2− Iz′z′

I

]

sin

(

φ

2

)

}1/2

(7.32)

Fig. 7.5(a) presents the natural frequencies for an acceleration of 2000 rad/s2. For lower

speeds, the influence of acceleration prevails (Section 7.1.5) and the absolute value of the eigenval-

ues occur nearby
√
γ̈ (Eq. 7.30). As speed increases, the frequency ωn2

(Eq. 7.31) occurs near the

first order (Section 7.1.4). Figure 7.5(b) shows that the positive part of eigenvalue λ2 is greater for

lower rotating speeds. Increase γ̇ reduces the instability level of this system.
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Figure 7.5: Natural frequencies (Fig. 7.5(a)) and eigenvalue real parts (Fig. 7.5(b)) for γ̈ = 2000

rad/s2.
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7.2 Modelling a rotating spring/viscous damper element with friction

The same sequence presented in Section 5.2 is followed to deduce the rotating element. Here

the coordinate system shown in Section 7.1 will be used. First, the elastic and damping forces are

defined on Section 7.2.1. Then, the relative motion between the element and the pressure plate

is calculated on Section 7.2.2. The tangential relative speed and its approximated expression is

deduced is on Section 7.2.3. Friction and normal forces are discussed on Section 7.2.4.

7.2.1 Elastic and damping forces

On coordinates x′
3
y′
3
z′
3
, there is the position vector

3
~r′GQ =

{

Ri cosψi Ri sinψi −h
}T

,

assuming the constant contact radius from Section 5.2.2. The procedure for the determination of

contact forces is the same as the one as the case in Cardan coordinates. The total displacement

0
r′OQz

(Eq. 7.33) is obtained by adding a negative displacement
0
r′OGz

of point G in relation to the

system origin. The stiffness and damping efforts are given by Eqs. 7.33 and 7.34, respectively.

0
r′OQz

=
0
r′OGz

+
0
r′GQz

= − (z + ze)− sin βRi cosψi + sinα cos βRi sinψi − h cosα cos β
(7.33)

0
~F ′

ki = ki [−h−
0
r′OP ′

z
]~k =

0
F ′

ki
~k (7.34)

0
~F ′

ci = ci
[

−
0
ṙ′OP ′

z

]

~k =
0
F ′

ci
~k (7.35)

7.2.2 Relative motion between the element and pressure plate

The friction element/clutch disc rotating speed is calculated on the coordinate system x′
3
y′
3
z′
3

as Eq. 7.36:

3
~ω′

d = [Rγβα]
T











0

0

θ̇











= θ̇











− sin β

sinα cos β

cosα cos β











(7.36)

The rotating speed component of the disc (Eq. 7.37) comes from Eq. 7.9 presented on Section
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7.1.2.

3
ωz′ = γ̇ cos γ cos β − β̇ sinα (7.37)

Following the methodology from Section 5.2.4, Equation 7.38 shows that in this case the

relative angular speed depends on the wobbling speed β̇ as well as on γ̇ and θ̇:

ψ̇i = −
(

3
ωz′ − 3

ω′

dz

)

= −
[(

γ̇ − θ̇
)

cos γ cos β − β̇ sinα
]

(7.38)

7.2.3 Approximation of the tangential speed at contact point

With the simplification step similar to the one found in Section 5.2.5, the relative tangential

speed
3
~V ′

trel is given by Eq. 7.39:

3
~V ′

trel = 3
~V ′

tsup − 3
~V ′

tinf
≈











−(γ̇ − θ̇) (αh+Ri sinψi)− hβ̇

(γ̇ − θ̇) (Ri cosψi − βh) + α̇h

0











(7.39)

The normal vector on the direction of the relative tangential speed (~ν) is approximated by Eq.

7.40. Similar terms are noted on the equations of motion on Hervé et al. (2009). It is important to

note that terms that depend on the inverse of |γ̇ − θ̇| multiply only the wobbling angular speeds α̇

and β̇. The same unitary vector calculated for Cardan coordinates (Eq. 5.42) also presented such

terms involving the wobbling angles α and β. These characteristics result in lower error in terms

of wobbling angles near coupling on Appendices A.2 and B.2.

3
~ν ′ = 3

~V ′
trel

∣

∣

∣3
~V ′

trel

∣

∣

∣

≈



























(

− sinψi −
h

Ri

α

)

sign(γ̇ − θ̇)− hβ̇

|γ̇ − θ̇|Ri
(

cosψi −
h

Ri

β

)

sign(γ̇ − θ̇) +
hα̇

|γ̇ − θ̇|Ri

0



























=











3
ν ′x

3
ν ′y

0











(7.40)
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7.2.4 Normal and friction force calculation

The normal force of the element is given by Eq. 7.41 and its position in relation to the friction

force
3
~F ′

fri (Eq. 7.42) was presented in Fig. 5.8. With an equilibrium condition solved (Section

5.2.7 based on von Wagner et al. (2007)), an approximation of the amplitude of the normal force

is given by Eq. 7.43.

3
~N ′

i =











0

0

3
N ′

i











(7.41)

3
~F ′

fri = −µ
3
N ′

i 3
~ν ′ (7.42)

3
N ′

i ≈ 0
F ′

kiz
+

0
F ′

ciz
+ µkizesign(γ̇ − θ̇) (cosψiα + sinψiβ) (7.43)

The moments of the friction and normal forces are given by Eqs. 7.44 and 7.45:

3
~M ′

fri = 3
~r′GQ ×

3
~F ′

fri (7.44)

3
~M ′

Ni
=

3
~r′GQ ×

3
~N ′

i (7.45)

7.3 Efforts for a moving viscous damper and their relation with the element matrices

Beside the differences on the stability of the pure inertial system on Section 7.1.3, the as-

sumption of the rotating speed on global coordinates will present another aspect for the moments

assuming a rotating disc. As it will be presented in Sections 7.3.1 and 7.3.2, this approach results

on damping forces with γ̇ 6= 0 or θ̇ 6= 0.

7.3.1 Damping efforts for α 6= 0◦ and β = 0◦

With α 6= 0◦ and β = 0◦, Eqs. 7.33 and its derivative result on Eqs. 7.46 and 7.47. The

vertical effort in this situation depends on γ̇ and θ̇ (Eq. 7.48). For γ̇ = 0, they are exactly the same

as Eqs. 5.60 and 5.61.
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0
r′OQz

= sinαRi sinψi − h (7.46)

0
ṙ′OQz

= sinαRi cosψiψ̇i = (θ̇ − γ̇) sinαRi cosψi (7.47)

0
~F ′

ci = −ci
[

0
ṙ′OQz

]

~k = ci(γ̇ − θ̇) sinαRi cosψi
~k (7.48)

The angle γ positioned on global coordinates represents the movement of precession. Fig.

7.6 have a sequence of conditions with γ = 0◦, 45◦ and 90◦ for a static displacement α > 0. Back

on Fig. 5.20, the angular rotation did not change the height on the damper contact. On this case, the

precession movement allows the pressure plate to rotate with an constant inclination α for every

rotating angle γ. Point Q1 present positive damping forces once that between Figs. 7.6(a),7.6(b)

and 7.6(c) the distance l is decreasing its height. This situation is similar to Fig. 5.15(b).

(a) (b) (c)

Figure 7.6: Damping forces for γ = 0◦, 45◦ and 90◦ (Figs. 7.6(a), 7.6(b) and 7.6(c)) with α > 0 .

7.3.2 Damping efforts for β 6= 0◦ and α = 0◦

The vertical displacement and speed on the contact becomes Eqs. 7.49 and 7.50 for β 6= 0◦

and α = 0◦. With γ̇ = 0, Eqs. 5.63 and 7.50 are the same as Eqs. 5.63 and 5.64. The damping

effort on this situation si represented by Eq. 7.51.

0
r′OQz

= − sin βRi cosψi − h (7.49)
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Ix′x′
3
ω̇x′ − (Iy′y′ − Iz′z′) 3

ωy′ 3ωz′ =
n
∑

i=1

3
Mx′

i

Iy′y′ 3ω̇y′ − (Iz′z′ − Ix′x′)
3
ωz′ 3ωx′ =

n
∑

i=1

3
My′i

m
0
r̈′OGz′

=
n
∑

i=1

(

0
N ′

i + 3
F ′

friz

)

− Fz′

ψ̇i = − (
3
ω′

z − 3
ωdz) = −

[(

γ̇ − θ̇
)

cos γ cos β − β̇ sinα
]

(7.52)

The equations of motion of this system are described by Eq. 7.53.The mass [M ] and gy-

roscopic matrices ([G] and [H1(γ̇)]) were developed on Section 7.1.3. With the assumption of

constant rotating speed, the inertial term [H2(γ̈)] (Eq. 7.15) is not included on the formulations.

The element matrices ([K ′

i],[C
′

i] ) and effort arrays {fi} will be presented on Sections 7.4.1, 7.4.3,

and 7.4.3.

[M ] {p̈}+
(

[G] +
n
∑

i=1

[C ′

i]

)

{ṗ}+
(

[H1(γ̇)] +
n
∑

i=1

[K ′

i]

)

{p} =
n
∑

i=1

{f ′

i}+ {F} (7.53)

7.4.1 Element stiffness components

The matrices for the rotating speed on global coordinates depend only on ψi. The relative

movement between the pressure plate and spring/damper element generate a stiffness matrix that

can be formed from the combination of 6 different matrices (Eq. 7.54), each one having an char-

acteristic feature. In order to simulate a linearized version, it is possible to substitute N0 = kize

(Section 5.2.2).

[K ′

i] = [K ′

I ]i + [K ′

II ]i + [K ′

III ]i + [K ′

IV ]i + [K ′

V ]i + [K ′

V I ]i (7.54)

Matrices [K ′

I ]i (Eq. 7.55), [K ′

II ]i (Eq. 7.56) and [K ′

III ]i (Eq. 7.57) can be obtained by

imposing γ = 0◦ on Eqs. 5.70, 5.71 and 5.72 from the case using Cardan coordinates.

[K ′

I ]i = ki







R2

i sin
2 ψi −(R2

i /2) sin(2ψi) −Ri sinψi

−(R2

i /2) sin(2ψi) (R2

i /2) cos
2 ψi Ri cosψi

−Ri sinψi Ri cosψi 1






(7.55)
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[K ′

II ]i = µ2hkize







cos2 ψi (1/2) sin(2ψi) 0

(1/2) sin(2ψi) sin2 ψi 0

0 0 0






(7.56)

[K ′

III ]i = µsign(γ̇ − θ̇)







−kih(Ri/2) sin(2ψi) kihRi cos
2 ψi kih cosψi

−kihRi sin
2 ψi kih(Ri/2) sin(2ψi) kih sinψi

0 0 0






(7.57)

7.4.2 Characteristics for the rotating speed on the global reference system

In Section 5.5.2, the damping related contributions on the stiffness matrices (Eqs. 5.73 and

5.74) were related to the friction element rotating speed θ̇. One greater difference obtained for this

case is presented on [K ′

IV ]i (Eq. 7.58) and [K ′

V ]i (Eq. 7.59) that depend on the relative speed ψ̇

only. Such terms does not occur on the literature ( Hervé et al. (2008b), Hervé et al. (2009)) and

they are consequence on the initial assumption of relative movement between the friction element

and the pressure plate.

[K ′

IV ]i = ciψ̇i







(R2

i /2) sin(2ψi) R2

i sin
2 ψi 0

−R2

i cos
2 ψi −(R2

i /2) sin(2ψi) 0

−Ri cosψi −Ri sinψi 0






(7.58)

[K ′

V ]i = µhciψ̇isign(γ̇ − θ̇)







−Ri cos
2 ψi −(Ri/2) sin(2ψi) 0

−(Ri/2) sin(2ψi) −Ri sin
2 ψi 0

0 0 0






(7.59)

A specific term is represented by [K ′

V I ]i (Eq. 7.60), where the friction force cause a stiffness

contribution that depends on the ratio h2/Ri. For its equivalent counterpart on Cardan coordinates

(Eq. 5.75), such terms would not influence the system if the clutch disc does not rotate θ̇ = 0.

Here, the skew symmetric terms provided by Eq. 7.60 are unavoidable if µ 6= 0.

[K ′

V I ]i = µ

(

h2

Ri

)

kizesign(γ̇ − θ̇)







0 −1 0

1 0 0

0 0 0






(7.60)
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7.4.3 Element damping components

The element damping matrix [C ′

i] (7.61) is composed by a pure damping matrix [C ′

I ]i (Eq.

7.62) and a friction related one [C ′

II ]i (Eq. 7.63). The matrix [C ′

III ]i (Eq. 7.64) depends on the

inverse o the relative speed γ̇ − θ̇ and represents the friction damping effect. Similar terms occur

on Hervé et al. (2009). These matrices can be obtained from Eqs. 5.77, 5.78 and 5.79 with the

imposition of γ = 0◦.

[C ′

i] = [C ′

I ]i + [C ′

II ]i + [C ′

III ]i (7.61)

[C ′

I ]i = ci







R2

i sin
2 ψi −(R2

i /2) sin(2ψi) −Ri sinψi

−(R2

i /2) sin(2ψi) (R2

i /2) cos
2 ψi Ri cosψi

−Ri sinψi Ri cosψi 1






(7.62)

[C ′

II ]i = ciµhsign(γ̇ − θ̇)







−(Ri/2) sin(2ψi) Ri cos
2 ψi cosψi

−Ri sin
2 ψi (Ri/2) sin(2ψi) sinψi

0 0 0






(7.63)

[C ′

III ]i =
µh2kize

Ri|γ̇ − θ̇|







1 0 0

0 1 0

0 0 0






(7.64)

7.4.4 Excitation vector

The excitation vector {fi} takes into account terms that depend on kize (Eq. 7.65). It is equal

to the the results given on Eq. 5.80.

{f ′

i} =











kizeRi sinψi − µhkize cosψisign(γ̇ − θ̇)

−kizeRi cosψi − µhkize sinψisign(γ̇ − θ̇)

−kize











(7.65)

7.4.5 Very important remarks on the stability study of this system

The element matrices from Section 7.4 depend on the relative position angle ψi. The com-

ments from Section 5.5.5 are also valid for this case.
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8 Hipothesis 2: Wobbling modes and characteristics of systems with

equal and symmetrically distributed elements

The element matrices from Section 7.2 (Hypothesis 2) are gradually included on the model

in order to verify the influence of rotating speed (Section 8.1), cushion stiffness and relative speed

(Section 8.2). Finally, the viscous damping influence is provided by Sections 8.3 and 8.4.

8.1 Rotating speed influence

Initially, the element matrices [K ′

I ]i (Eq. 7.55) , [K ′

II ]i (Eq. 7.56) and [K ′

III ]i (Eq. 7.57) from

Section 7.4.1 were applied , removing the influence of the friction damping terms. Combining

elements for ψi0 = 0◦, 90◦, 180◦ and 270◦ results on the model from Eq. 8.1. The elements

inside the stiffness matrix are given by k11 (Eq. 8.2) and k12 (Eq. 8.3), respectively. An important

characteristic on this approach is the existence of inertia terms that depending on the rotating speed

in k11 ( γ̇2(Iz′z′ − I)). These formulation is practically the one found on Hervé et al. (2008b)

adding the terms with µ2, changing the physical disposition of the elements.


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0 0 4k
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z


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





=











0

0

0











(8.1)

k11 = (2R2 + 2µ2zeh)k + γ̇2(Iz′z′ − I) (8.2)

k12 =
[

2µkRh− 4µ(h2/R)kze
]

sign(γ̇) (8.3)

An example is tested with the same data from the model in cardan coordinates (Section 6.1)

(m = 2 kg, R = 0.0875 m, µ = 0.3, h = 0.01 m and k = 3 × 106/4 N/m) and γ̇ ranges from 1 to

8000 rpm. Looking at Fig. 8.1(a) it is possible to see that the frequencies do not increase as a

line like the model on cardan coordinates (Fig. 6.4(a)). The stable and unstable modes present

natural frequencies really close to each other that change like a polynomial curve, reaching 234.4

and 232.2 Hz at 8000 rpm, respectively. At 1 rpm, both frequencies are closer to 192.2 Hz.

The numerical derivatives from the curves on Fig. 8.1(a) are presented on Fig. 8.1(b). It
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is possible to see that, at 8000 rpm, both eigenvalues have a maximum positive increase rate that

is lower than 0.02 Hz/rpm. The representation obtained on Cardan coordinates (Section 6.1) had

similar increasing rates at 2000 rpm (Fig. 6.4(b)).
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Figure 8.1: Natural frequencies according to the rotating speed ( γ̇ > 0 and θ̇ = 0).

An important conclusion that comes from the results from Fig. 8.1:

• the model becomes less sensitive to modifications on the pressure plate rotating speed if it

is assumed on the global reference system. Thinking on the real measurements from Fig.

1.1, it is possible to note a constant frequency in relation to variations of the engine rotating

speed. It is still very early in terms of research to take this step without taking into account

all possible nonlinear effects and deep structural analysis, but the rotating speed on global

coordinates seems to be more suited for this condition. It is not possible to locate any clear
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comment on that in Hervé et al. (2008b), Hervé et al. (2008a) and Hervé et al. (2009). As

consequence of these considerations, the formulation on Chapters 10, 11, and 12 will be done

using it.

The real part of the eigenvalues changed with speed, as presented in Fig. 8.1(c). The unstable

case had a real value close to 20 while the stable one presented values nearby -20 at 1 rpm. With

higher rotating speeds, the absolute value from the real part of the eigenvalues reached 17 at 8000

rpm.

8.1.1 Unstable motion - Forward wobbling with γ̇ > 0 and θ̇ = 0

The unstable motion is represented by Eq. 8.4, is the same as the one on Eq. 6.12. Likewise

the previous case, unstable motion can be described by Fig. 6.14. The wobbling characteristics

were not affected by the coordinate system.

{

X11

X21

}

=

{

1

−j

}

=







1

exp
(

−j π
2

)







, for γ̇ > 0 and θ̇ = 0 (8.4)

8.1.2 Stable motion - Backward wobbling for γ̇ > 0 and θ̇ = 0

The stable mode shape found on this coordinate system is written as in Eq. 8.5. Looking

at Section 6.1.1, it is the same as Eq. 6.6. The stable wobbling motion still apparently moves

backwards in relation to the rotating speed. This motion is still physically described by 6.9.

{

X12

X22

}

=

{

1

j

}

=







1

exp
(

j
π

2

)







, for γ̇ > 0 and θ̇ = 0 (8.5)

8.2 Stiffness and relative speed influence

The model from Eq. 8.6 is obtained from Eq. 8.1 with the inclusion of friction damping,

given by matrix [C ′

III ]i (Eq. 7.64). The skew symmetric terms are a little bit different from the

previous case (Eq. 8.7). The terms c11 = c22 (Eq. 8.8) have the same dependence on the relative

speed from Eq. 6.18.
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0

0
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
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



(8.6)

k12 =
[

2µkRh− 4µ(h2/R)kze
]

sign(γ̇) (8.7)

c11 = c22 = 4
µh2kze

R|γ̇ − θ̇|
(8.8)

The foward/backward wobbling frequencies are close to each other (Fig. 8.2(a)). On this

approach, only the axial mode is affected by low stiffness values (Fig. 8.2(b)). Higher cushion

stiffness (approximately above 104 N/m) caused all natural frequencies to get closer to each other.

The graphic on logarithmic scale indicates that the axial mode frequency follows the wobbling

modes (Fig. 8.2(b)). Once again, greater values of stiffness resulted on increase of the real part of

the forward eigenvalue on Fig. 8.3(a). The formulation on Eq. 8.6 is very similar to the one found

on Hervé et al. (2009).
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Figure 8.2: Natural frequencies according to cushion stiffness in linear (Fig. 8.2(a)) and logarithmic

(Fig. 8.2(b)) scales.
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Figure 8.3: The real part of the eigenvalues.

Figure 8.4(a) shows that all eigenvalues are closer for γ̇ = 2000 rpm and they are not affected

by the relative angular speed. The model with rotating speeds on global coordinates, is stabilized

by friction damping (Fig. 8.4(b)). Modification on the stability also occurs due to the signal of

relative speed (Hervé et al., 2008b).
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Figure 8.4: Natural frequencies (Fig. 8.4(a)) and real parts (Fig. 8.4(b)) in relation to the relative

speed considering a total cushion stiffness of 3× 106 N/m.
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8.3 System with viscous damping effects

The model from Eq. 8.9 is obtained considering µ = 0 on Eq. 8.6 with additional terms

related to equally distributed viscous damping elements, using matrices [K ′

IV ]i (Eq. 7.58) and [C ′

I ]i
(Eq. 7.62).
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
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The moving damping effort on this case (Eq. 8.10) depends on ψ̇ = −γ̇ + θ̇. If ψ̇ > 0, the

moment ~M ′
mov have signals equal to Eq. 6.21. In a situation of instability, this effort excites the

forward wobbling mode, as represented by Fig. 6.20.

~M ′
mov =

{

M ′

movx

M ′

movy

}

= −2cR2|ψ̇|sign(ψ̇)
{

β(t)

−α(t)

}

= −2cR2|ψ̇|
{

β(t)

−α(t)

}

(8.10)

On the other hand, if ψ̇ < 0 the orientation of those efforts is changed (Eq. 8.11). This

is a specific characteristic for hypothesis 2, where the movement of the inclined plate creates the

damping efforts (Section 7.3).

~M ′
mov =

{

M ′

movx

M ′

movy

}

= 2cR2|ψ̇|
{

β(t)

−α(t)

}

(8.11)

8.4 System with viscous damping and friction

Equation 8.12 is obtained from the previous system (Eq. 8.6) using matrices [C ′

I ]i and [C ′

II ]i
(Eqs. 7.62 and 7.63). The matrices [K ′

IV ]i and [K ′

V ]i (Eqs. 7.58 and 7.59) introduced terms related

to ψ̇ = −γ̇ + θ̇ on Eqs. 8.13 and 8.14.
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(8.12)

k11 = k22 = (2R2 + 2µ2zeh)k + γ̇2(Iz′z′ − I)− 2µhcψ̇sign(γ̇ − θ̇) (8.13)

k12 = µ
[

2kRh− 4(h2/R)kze
]

sign(γ̇ − θ̇) + 2cR2ψ̇ (8.14)

c11 = c22 = 4
µh2kze

R|γ̇ − θ̇|
+ 2cR2 (8.15)

c12 = c21 = 2µcRhsign(γ̇ − θ̇) (8.16)

Figures 8.5(a) and 8.5(b) presents simulations varying −2000 rpm < θ̇ < 6000 rpm with

γ̇ = 2000 rpm with results similar to the case on Cardan coordinates (Section 6.3). For the total

cushion stiffness off 3 × 102 N/m and c = 5 Ns/m, the natural frequencies remained close, as

presented in Fig. 8.5(a). The forward mode is unstable for γ̇ − θ̇ < −2000 rpm (Fig. 8.5(b)).

Under hypothesis 2, it is possible to induce instabilities by modifications on the rotating

speed of the pressure plate (−2000 rpm < γ̇ < 6000 rpm), maintaining θ̇ = 2000 rpm. With lower

stiffness, the natural frequencies (Fig. 8.5(c)) were affected by rotation. There is a similar profile

to the inertial system from Section 7.1.4 presented on Fig. 7.1.4. The rotating speed on global

coordinates allowed the generation of moments related to the movement of the plate in relation to

the element (Section 7.3). The real part of the eigenvalue related to the forward mode was greater

for γ̇ − θ̇ < 0 (ψ̇ > 0).

With a total cushion stiffness off 3× 106 N/m and c = 30 Ns/m, Figure 8.5(e) shows that the

natural frequencies are not significantly affected by the relative speed (γ̇ − θ̇). On the other hand,

the real part of the eigenvalues indicate stability (Fig. 8.5(f)) and they are affected by the terms that

depend on ψ̇ on Eqs. 8.14 and 8.15. It depends on the relation between γ̇ and θ̇.
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Figure 8.5: Natural frequencies real parts in relation to the relative speed (γ̇ − θ̇).
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8.5 Chapter summary

The observations from this chapter are separated into different physical domains:

8.5.1 Rotating speeds

In this chapter it was possible to observe for the model keeping the rotating speed on global

coordinates (γ̇ 6= 0 and θ̇ = 0):

• the natural frequencies are closer, but the one from the stable mode was greater than the value

found for the unstable case.

• natural frequencies increase with the pressure plate rotating speed in a polynomial form.

• models obtained using these coordinates are less sensitive to the pressure plate rotating speed.

• the wobbling movements are the same as the ones obtained in Cardan coordinates.

8.5.2 Relative speed

The relative speed resulted on the following conditions on the simulations:

• Friction damping stabilized the model near coupling conditions, according to the findings

from von Wagner et al. (2007).

• The axial mode remained stable for all situations.

• Due to the modification on the direction o friction moments, the forward mode was unstable

for γ̇ − θ̇ > 0. Such relations were first proposed by Hervé et al. (2008b).

• The backward mode became unstable for γ̇ − θ̇ < 0.

8.5.3 Stiffness

From the previous simulations, it was possible to verify that, for low stiffness, only the axial

mode frequency was modified.

For high cushion stiffness, the following behaviour was observed:
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• All frequencies became very close to each other.

• Greater values of stiffness increased the real part from the eigenvalue for the forward mode.

8.5.4 Viscous damping

• Due to the consideration of viscous damping and relative movement between the pressure

plate/element, the model with the rotating speed on global coordinates presented instability

according to the relation between the engine and clutch disc rotating speeds in situation of

low values of cushion stiffness.
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9 Cushion heterogeneity

All the literature on clutch squeal takes into account symmetrically distributed friction el-

ements, with equal physical properties for the contact (Chapter 3). The element matrices from

Sections 5.5 and 7.4 were created with the intention of allowing more complex distributions in

terms of position, stiffness, damping and friction coefficient. Those differences may emerge from:

• manufacturing problems or characteristics from production.

• uneven wear on the surfaces or more complex tribological interactions on the contact.

• intentional modifications made in order to generate prototypes.

Senatore et al. (2013) modelled the pressure plate with equally distributed elements, resulting

on an axial movement decoupled from the wobbling motion. This chapter will show that even small

changes on the position of the contact element may result in important modifications on the system

behaviour. When the total stiffness is not balanced in relation to the axis, there is coupling between

angular displacements and axial motion. Based on the conclusions from these simulations, Section

9.2 will be more specific focusing on the situations with proportional error on the total stiffness

values without coupling with the vertical motions.

9.1 Position error simulations

Figure 9.1(a) represents a pressure plate with equally space elements (ψ10 = 0◦,ψ20 =

90◦,ψ30 = 180◦ and ψ40 = 270◦). A schematic of a deviation of 5◦ ( ψ20 = 95◦) on the posi-

tion of element 2 is displayed on Fig. 9.1(b).

The element from Section 5.2 modelled on Cardan coordinates presents inertia matrices de-

pending on γ (Eq. 5.12) and element matrices depending on γ and ψ (Section 5.5). It offers two

possibilities for modifications on the displacement:

• Fixed element (θ̇ = 0): Figure 9.2(a) shows that it is possible to change both angles, consid-

ering ψi = ψi0 − γ, where ψi0 is the initial position of the element, which stays on the same

place in relation to the global reference frame.

• Moving element (θ̇ 6= 0): Figure 9.2(b) presents the assumption of modification with ψi =

ψi0 + ∆ψ = ψi0 − γ + θ. The position of the pressure plate (γ) as well as the one from the

disc (θ) are necessary on this case.
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(a) (b)

Figure 9.1: Upper view for equally distributed elements (Fig. 9.1(a)). An error of 5◦ in element 2

(Fig. 9.1(b))

(a) (b)

Figure 9.2: Movement assuming a fixed (Fig. 9.2(a)), and moving element (Fig. 9.2(b)).
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The element with the rotating speed on global coordinates (Section 7.2) only allows simula-

tions assuming moving elements, once that its matrices are written in terms of the relative angle ψi

(Section 7.4).

The simulations were done assuming a pressure plate with m = 2kg, h = 0.01m, Rin =

0.075 m and Rout = 0.1m. When not clearly explained, standard properties were assumed as

k = 3× 106/4 N/m, γ̇ = 2000 rpm, u = 0.3, R = 0.0875m, and ze = 0.001m..

9.1.1 Mode shapes for a symmetric distribution

The vector {Xi} =
{

X1i X2i X3i

}T

represents the i-th mode shape for coordinates {p} =
{

α β z
}T

. All the results presents eigenvectors for eigenvalues with positive imaginary part (

λi = σi + j̟i).

For equally distributed elements (Fig. 9.2), the increase on the position ψi0 did not produce

changes on amplitude or phase on those mode shapes (Figs. 9.3). All models from Chapters 6 and

8 presented this characteristic.

Adopting a unitary norm and referencing the phase on the first degree of freedom, Equation

9.1 (Figs. 9.3(a) and 9.3(b)) represents a backward mode (Section 6.1.1):











X11

X21

X31











=











0.7071

0.7071j

0










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









0.7071∠0◦

0.7071∠90◦

0











(9.1)

Equation 9.2 (Figs. 9.3(c) and 9.3(d)) is related to a pure axial movement with |X32| = 1:











X12

X22

X32











=











0

0

1











(9.2)

Equation 9.3 (Fig. 9.3(e) and 9.3(f)) can be interpreted as forward wobbling (Section 6.1.2):











X13

X23

X33











=











0.7071

−0.7071j

0











=











0.7071∠0◦

0.7071∠− 90◦

0











(9.3)

109



0 90 180 270 360

−1

−0.5

0

0.5

1

Angular diplacement [°]

A
b
s
o
lu

te
 v

a
lu

e

Mode 1 − symmetric distribution

 

 

|X
11

|

|X
21

|

|X
31

|

(a)

0 90 180 270 360
−180

−90

0

90

180

Angular diplacement [°]

P
h
a
s
e
 [
°]

Mode 1 − symmetric distribution

 

 

∠ X
11

∠ X
21

∠ X
31

(b)

0 90 180 270 360

−1

−0.5

0

0.5

1

Angular diplacement [°]

A
b
s
o
lu

te
 v

a
lu

e

Mode 2 − symmetric distribution

 

 

|X
12

|

|X
22

|

|X
32

|

(c)

0 90 180 270 360
−180

−90

0

90

180

Angular diplacement [°]

P
h
a
s
e
 [
°]

Mode 2 − symmetric distribution

 

 

∠ X
12

∠ X
22

∠ X
32

(d)

0 90 180 270 360

−1

−0.5

0

0.5

1

Angular diplacement [°]

A
b
s
o
lu

te
 v

a
lu

e

Mode 3 − symmetric distribution

 

 

|X
13

|

|X
23

|

|X
33

|

(e)

0 90 180 270 360
−180

−90

0

90

180

Angular diplacement [°]

P
h
a
s
e
 [
°]

Mode 3 − symmetric distribution

 

 

∠ X
13

∠ X
23

∠ X
33

(f)

Figure 9.3: Absolute values (Figs. 9.3(a), 9.3(c) and 9.3(e)) and phase angles (Figs. 9.3(b), 9.3(d)

and 9.3(f)) for the case from Fig. 9.1(a).
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9.1.2 Mode shapes with a position error and fixed elements

For the fixed element (Fig. 9.1(a)), all properties remained constant with ∆ψ = −γ (Figs.

9.4,9.5, and 9.6). The main difference that emerged from the error of 5◦ was the combination of the

wobbling movements with axial vibrations.

Mode 1 is written in Eq. 9.4 (Fig. 9.4(a) and 9.4(b)). On the previous simulation, this mode

shape represented a pure backward wobbling mode (Eq. 9.1). The phase of X21 in relation to

X11 is no longer 90◦, changing to ∠X21 = 98.5083◦. The vertical coordinate X31 present a small

amplitude.
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
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
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(9.4)
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Figure 9.4: Mode 1 assuming a fixed element (Figs. 9.4(a) and 9.4(b)).

Mode 2 is written in Eq. 9.5 (Fig. 9.5(a) and 9.5(b)). It still presents high values of vertical

vibration |X32| = 0.5695. I is the one with the most representative contribution of angular vibration,

with |X12| = 0.8189.
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(9.5)
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Figure 9.5: Mode 2 assuming a fixed element (Figs. 9.5(a) and 9.5(b)).

Mode 3 is written in Eq. 9.6 (Fig. 9.6(a) and 9.6(b)). The angles X13 and X23 still contain

similarities of amplitude and phase with the forward wobbling from Eq. 9.3. There is a small

contribution of vertical motion, indicated by |X33| = 0.0036.


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Figure 9.6: Mode 3 assuming a fixed element (Figs. 9.6(a) and 9.6(b)).
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In this case, the former pure vertical vibrating mode (Eq. 9.5) was modified with the inclusion

of greater amount of angular displacements. The former pure wobbling modes (Eqs. 9.4 and 9.5)

had smaller contribution of axial vibration. The most important verification is that, for position

errors, the properties for symmetrically distributed or fixed elements can be done for one position

only.

9.1.3 Mode shapes with a position error and moving elements

For these simulations, the rotating speeds were considered as γ̇ = 2000 rpm and θ̇ = 1000

rpm. The eigenvalues were calculated for a complete turn of the pressure plate 0 < γ < 360◦ in

Figs. 9.8, 9.9 and 9.11. Due to the fact that the rotating speed of the clutch disc is half the value

found for the plate, for equal initial conditions, there is γ = 2θ. In this case, all elements are

equally moved according to ψi = ψi0 +∆ψ, where −180◦ < ∆ψ < 0. Physically, all elements are

shifted from an initial disposition (Fig. 9.7(a)) to another distribution in relation to the plate x3y3

(Fig. 9.7(b)). The placement error on element 2 moves from positions with y3 > 0 to y3 < 0. From

the theoretical perspective, there is |∆ψ| 6= |γ|.

(a) (b)

Figure 9.7: Initial (Fig. 9.7(a)) and final dispositions (Fig. 9.7(b)) .

The results from Figs. 9.8, 9.9, and 9.11 are all displayed according to the pressure plate

angle γ. They all share a common behaviour of mode shapes varying according to the relative

position between the plate and the elements.

Mode 1 preserves characteristics of a wobbling movement, once that |X11| and |X21| present

the highest amplitudes (Fig. 9.8(a)) and the phase angle of the second degree-of-freedom (∠X21)

remain close to 90◦. If γ < 180◦, α greater amplitudes than β (|X11| > |X21|). For 180◦ <
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γ < 360◦, the previous relation is changed to |X21| < |X11|. The vertical contribution is low

|X31| = 0.008544, but there are strong variations on its phase nearby γ = 165◦ (Fig. 9.8(b)).
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Figure 9.8: Mode 1 assuming a moving element (Figs. 9.8(a) and 9.8(b)).

The second mode shape still have the greater values for axial vibration (|X32| on Fig. 9.9(a)).

There is a peak value for |X12| with |X22| ≈ 0 at γ = 0◦. This condition is changed to very high

values of |X22| combined with |X12| ≈ 0 at γ = 180◦. The phases from Fig. 9.9(b) do not indicate

wobbling motions, once that ∠X12 is closer to 0◦ for 0◦ < γ < 180◦. Figure 9.10 shows a sequence

combining axial motion with angular movement in this situation. In phase or out of phase angles do

not produce the aspect of wobbling, resulting in a pressure plate that seems to move up and down

swinging its sides.
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Figure 9.9: Mode 2 assuming a moving element (Figs. 9.9(a) and 9.9(b)).
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Figure 9.10: Combination of an axial vibration with an angular displacement that does not produce

wobbling.

The amplitudes of the third mode from Fig. 9.11(a) are very similar to the case on Fig. 9.8(a).

Both |X13| and |X23| are very high, but |X13| > |X23| for 0 < γ < 180◦ and |X13| < |X23| within

180 < γ < 360◦. The phase angle still indicates a forward wobbling movement (∠X23 ≈ −90◦

on Fig. 9.11(b)). The vertical movement has an small contribution but, just link the case on Fig.

9.8(b), it presents abrupt changes on its phase.
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Figure 9.11: Mode 3 assuming a moving element (Figs. 9.11(a) and 9.11(b)).

The element with the rotating speed on global coordinates produces only the aspect of Figs.

9.8, 9.9 and 9.11 on the mode shapes once that it allows only simulations based on moving ele-

ments. Due to the regularity on the modal properties with errors, the following studies will focus

on the study of heterogeneity on the model on Cardan coordinates with fixed elements.
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9.1.4 Eigenvalue characteristics for symmetric, fixed and moving elements

The eigenvalue characteristics for modes 1, 2, and 3 are represented in Figs. 9.12, and 9.13

for the conditions from Sections 9.1.1, 9.1.2, and 9.1.3. In all cases, the eigenvalues remained with

constant properties along the simulations. Natural frequencies from modes 1 and 2 were lower in

case of position error, with fixed or moving elements (Figs. 9.12(a) and 9.12(c)). The only situation

were the errors increased the frequency occurred for mode 3 (Fig. 9.13(a)), with characteristics of

a forward wobbling mode. The real parts of the eigenvalues were gently reduced in case of position

error. The moving element produced the lowest values due to a reduction on the difference γ̇ − θ̇,

which increases a little the effect of friction damping (Section 6.2) on this system.
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Figure 9.12: Natural frequencies (Fig. 9.12(a) and 9.12(c)) and eigenvalue real parts (Fig. 9.12(b)

and 9.12(d)) for mode 1 and 2, adopting the conditions of symmetric distribution, fixed and moving

elements.
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Figure 9.13: Natural frequency (Fig. 9.13(a)) and eigenvalue real parts (Fig. 9.13(b)) for mode 3,

adopting the conditions of symmetric distribution, fixed and moving elements.

9.1.5 Position error level and the coupling with vertical motions

This simulation takes into account position errors on the second element according to ψ2 =

ψ20 + ∆ψ. The initial location is chosen as ψ20 = 90◦ (Fig. 9.2(a)) and the error is varied within

−30◦ < ∆ψ < 30◦. Figure 9.14(a) shows that the first natural frequency decreases for greater

errors, while the third value increases with ∆ψ. The eigenvalues real parts present more significant

differences for greater |∆ψ|.
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Figure 9.14: Natural frequencies and eigenvalue real parts (Figs. 9.14(a) and 9.14(b)) for different

levels of error on element 2.
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If ∆ψ = 0◦, the second mode presents a purely axial vibration (Fig. 9.15). When |∆ψ| is

increased, the contribution from |X32| diminishes, followed by an enhanced contribution from α

(|X12|). There is a smaller contribution from β (|X22|). During the simulation, conditions with

∆ψ 6= 0 created an unbalanced distribution of stiffness on the system, coupling all coordinates.

The wobbling motions indicate higher amplitudes with greater errors (Fig. 9.16). Mode 1

(Fig. 9.16(a)) presented |X11| < |X21|, while mode 3 (Fig. 9.16(b)) had the opposite behaviour

(|X23| > |X13|).
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Figure 9.15: Second mode amplitude according to the position error on element 2.
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Figure 9.16: Mode amplitudes (Figs. 9.16(a) and 9.16(b)) according to the position error on ele-

ment 2.
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9.2 Symmetric distributions according to axial motion with asymmetrical stiffness accord-

ing to angular displacements

Figure 9.17 presents a spacial view of the element distribution from Fig. 9.1(a), that were

assumed as fixed on Cardan coordinates, that produced constant properties with heterogeneity on

Section 9.1.2. Elements 1 and 3 are positioned along the x axis, while the pair 2 and 4 remain on

opposite sides along the y axis. Now, it is possible to distribute the total cushion stiffness kcushion

between them assuming proportional changes. But on all modifications the relation k1 + k2 + k3 +

k4 = kcushion is maintained. For any distributions considering k1 = k3 and k2 = k4 the mass of the

plate is balanced on the vertical direction, without the coupling verified on Section 9.1.5. The only

source of energy dissipation is friction damping. The rotating speed was chosen as γ̇ = 2000rpm.

Figure 9.17: Element distribution in a situation for the simulation of unbalanced properties.

9.2.1 Unbalanced stiffness distribution without damping

Considering that k1 = k3 = 0.275kcushion and k2 = k4 = 0.225kcushion, it is possible to

achieve a proportion of k1 + k3 = 0.55kcushion and k2 + k4 = 0.45kcushion. In other words, 55% of

the total stiffness is concentrated for angular displacements on β and 45% for α.
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The vector {Xi} =
{

X1i X2i X3i

}T

represents the i-th mode shape for coordinates {p} =
{

α β z
}T

. All the results presents eigenvectors with unitary norm for eigenvalues with positive

imaginary part ( λi = σi + j̟i).

In all cases, the natural frequencies increased with kcushion (Fig. 9.18(a)) with the mode

1 with higher frequencies and mode 2 with intermediate values. The real part of eigenvalue 3

augmented with greater stiffness values (Fig. 9.18(b)). This characteristic is similar to the one

found on Section 6.2.
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Figure 9.18: Eigenvalues natural frequency (Fig. 9.18(a)) and real parts (Fig. 9.18(b)) for the

unbalanced cushion case.

When the total cushion stiffness is varied within 100 < kcushion < 107N/m, the first mode on

Fig. 9.19(a) presents greater amplitudes on α (|X11|) in relation to β (|X21|). For stiffness values

below 104N/m, these values are found as |X11| ≈ 0.74 and |X21| ≈ 0.67 (Eq. 9.7). For these

cases, the phase ∠X21 = 90.19◦ (Fig. 9.19(b)), indicating a backward wobbling.











X11

X21

X31











=











0.7416

−0.0023 + 0.6709j

0











=











0.7416∠0◦

0.6709∠90.1974◦

0











, for kcushion < 104N/m (9.7)

For higher values of stiffness, there is a situation where |X11| increases up to 0.86 and |X21|
decreases to 0.5 for 107N/m (Eq. 9.8). There is an almost imperceptible phase modification on

this region.
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Figure 9.19: Mode 1 for the unbalanced cushion case (Figs. 9.19(a) and 9.19(b)), assuming k1 +
k3 = 0.55kcushion and k2 + k4 = 0.45kcushion.

On mode 3 (Fig. 9.20(a)), the angular movement on both coordinates remained very similar

in case of low stiffness values, as presented on Eq. 9.9 with |X11| = |X11| = 0.707. But, differently

from the previous case (Fig. 9.19), there is an increase on the amplitudes of |X21| in relation to |X11|
for very high values of cushion stiffness. Equation 9.10 presents |X13| = 0.539 and |X23| = 0.8423

for kcushion = 107N/m. This forward wobbling mode (Fig. 9.20(b)) presented higher vibration on

β, which is the coordinate with greater stiffness ( k1 + k3 = 0.55kcushion).
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The axial mode remained unchanged for these tests (Fig. 9.21), meaning that these propor-
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tional changes did not couple the angles with the vertical vibration.
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Figure 9.20: Mode 3 for the unbalanced cushion case (Figs. 9.20(a) and 9.20(b)), assuming k1 +
k3 = 0.55kcushion and k2 + k4 = 0.45kcushion.
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Figure 9.21: Mode 2 for the unbalanced cushion case (Figs. 9.20(a) and 9.20(b)), assuming k1 +
k3 = 0.55kcushion and k2 + k4 = 0.45kcushion.

The previous case can be inverted with k2 = k4 = 0.275kcushion and k1 = k3 = 0.225kcushion.

Now there is more stiffness for movements on α than or β. The results on Fig. 9.22 are the opposite

to the ones on Figs. 9.19 and 9.20. The backward wobbling on Fig. 9.22(a) have greater values of

|X21| for high kcushion. The forward movement have greater values on |X11| (Fig. 9.22(b)).
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Figure 9.22: Amplitude on mode 1 and 3 for k1 + k3 = 0.45kcushion and k2 + k4 = 0.55kcushion

(Figs. 9.22(a) and 9.22(b)).

When the ratio (k1 + k3)/kcushion is increased, it means that the contribution of k2 + k4 are

decreased for k1+k2+k3+k4 = kcushion. Figure 9.23(a) shows that (k1+k3)/kcushion < 0.5, there

is more stiffness for angular displacements on α, reducing |X11| on Fig. 9.23(a) and an increment

on |X13| on Fig. 9.23(b). Amplitudes on β (|X22| on Fig. 9.23(a) and |X23| on Fig. 9.23(b)) follow

the opposite relations. For situations when the proportion is no longer equal between the element

pairs ((k1 + k3)/kcushion 6= 0.5), there is an increase on the natural frequency of mode 3 (Fig.

9.24(a)) that is followed by a decrease on its real part (Fig. 9.23(b)).
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Figure 9.23: Amplitudes for modes 1 and 2 (Figs. 9.23(a) and 9.23(b)) for kcushion = 107N/m.
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Figure 9.24: Amplitudes for modes 1,2,and 3 (Figs. 9.24(a) and 9.24(b)) for kcushion = 107N/m.

9.3 Chapter summary

From Section 9.1, the model on Cardan coordinates allows modifications on γ and ψi, while

the representation with the rotating speed on global coordinates worked on ψi. The following

conditions were verified:

• The simulations with the position errors (for moving and fixed elements) created coupling
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between the angular displacements with the axial vibration.

• Moving elements resulted on modifications o the mode shapes at each position of the plate.

• Symmetric distributions or irregularities considering fixed elements possessed constant prop-

erties during the simulations.

• In all cases, the eigenvalues of the system remained with constant properties according to the

pressure plate angle.

• The relative amplitudes between the angular displacements were increased in situations of

position error.

From Section 9.2.1, it was possible to observe that:

• With low values of cushion stiffness, the mode with characteristics of a backward wobbling

mode presented greater differences of amplitude between coordinates α and β. The forward

wobbling mode presented very close amplitudes on those coordinates.

• In both cases, the difference between amplitudes increased significantly for high stiffness

values.

• The forward wobbling mode presented larger amplitudes for coordinates with a more signif-

icant stiffness amount.
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10 Diaphragm spring: physical representation and the inclusion of

real measurements in the model

The diaphragm spring applies normal load to the pressure plate and has specific nonlinear

stiffness characteristics. A lever model for the diaphragm spring is made on Section 10.1. It as-

sumes that there is no deflection on the elements on the clutch cover (Shaver and Shaver, 1997).

The literature does not give support for a model that could assume arbitrary distributions of prop-

erties of the diaphragm spring (Chapter 3). Numerical simulations including real curves from a

passenger car with manual transmission will be presented in Section 10.4 for new (Section 10.4.1)

and worn (Section 10.4.1) clutch discs.

10.1 Diaphragm spring lever model

The diaphragm spring from Figs. 2.1 and 2.3 will be simplified to a lever pinned at point

Omi
Fig. 10.1, that represents the articulation point at the rivets in Fig. 10.1. The distances

bi and ai will define the displacement/effort ratios. The constant moment Mmi
is included once

that it applies a constant load to the pressure plate during torque transmission at a certain static

position ze. Such condition is presented by Kimmig (1998). The stiffness kmi
and damping cmi

will be linearized parameters related to the stiffness and damping of the diaphragm spring. The

contact force representing the bearing effort on the fingers will be Fri (Figs. 10.1 and 10.1), that is

considered as the release load.

Figure 10.1: Side view of the diaphragm spring lever model (Fig. 10.1).
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Figure 10.2: Diaphragm spring (Fig. 10.1).

The contact point S is located above the centre of gravity of the plate (G), by a distance d

(Fig. 10.1). The position vector (Eq. 10.1) is obtained by the angle θdpi and radius Rdpi (Fig. 10.3).

3
~r′GS =

{

Rdpi cos θdpi Rdpi sin θdpi di

}T

(10.1)

Figure 10.3: Upper view of the contact point S.

In global coordinates, this position is written as Eq. 10.2:

0
~r′GS = [Rγβα] 3~r

′
GS (10.2)

The total displacement in relation to the origin ( Eq. 10.3) is obtained by assuming a variable
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displacement z on the vertical direction. A static position is given by ze.

0
r′OSz

=
0
r′GSz

− (z+ ze) = −Rdpi sin β cos θdpi +Rdpi sinα cos β sin θdpi +di cosα cos β− z− ze

(10.3)

The total displacement in relation to the initial position of S is calculated as in Eq. 10.4:

∆
0
r′OSz

= di − 0
r′OSz

(10.4)

The previous deformation resulted on a rotation θmi
around the point Omi

a Fig. 10.4. This

picture leads to the deduction of the deformation on the fingers of the spring ∆
0
rfz on Eq. 10.5.

sin θmi
=

∆
0
r′OSz

bi
=

∆
0
r′fz
ai

(10.5)

It is necessary to perform a balance of moments around point Omi
(Eq. 10.6) in order to

obtain the force at the contact point Fs, that is presented in Eq. 10.7. The element moments are

calculated by Eq. 10.8:

−FSbi cos θmi
+Mmi

− Fria cos θdpi − cmi
θ̇mi

− kmi
θmi

= 0 (10.6)

0
~F ′

S = −
{

Mmi

bi
− Fri

(

ai
bi

)

−∆
0
r′OSz

[

kmi

b2i

]

−∆
0
ṙ′OSz

[

cmi

b2i

]}

~k (10.7)

3
~M ′

S =
3
~F ′

S ×
3
~r′GS (10.8)

10.2 Element matrices

The element matrices result from Eq. 10.8. Equation 10.9 contains the influence of the

stiffness kmi
. The static efforts (contributions related to Mmi

and Fri) appear on Eq. 10.10. It is

important to note that, in both case, an increase on the geometric parameter b results in a reduction

on the total stiffness provided by the element.

[KdpI ] =

[

kmi

b2i

]







R2

dpi
sin2 θdpi −(R2

dpi
/2) sin (2θdpi) −Ri sin θdpi

−(R2

dpi
/2) sin (2θdpi) −R2

dpi
cos2 θdpi Rdpi cos θdpi

−Rdpi sin θdpi Rdpi cos θdpi 1






(10.9)
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Figure 10.4: Lever model after a deformation θmi
.

[KdpII ] = di

[

Mmi

bi
− Fri

(

ai
bi

)]







−1 0 0

0 −1 0

0 0 0






(10.10)

The damping matrix [CdpI ] (Eq. 10.11) contains a similar structure to [KdpI ] (Eq. 10.9).

Greater values of bi also resulted on reduction of damping. Equation 10.12 is an excitation vector.

[CdpI ] =

(

cmi

b2i

)







R2

dpi
sin2 θdpi −(R2

dpi
/2) sin (2θdpi) −Rdpi sin θdpi

−(R2

dpi
/2) sin (2θdpi) −R2

dpi
cos2 θdpi Rdpi cos θdpi

−Rdpi sin θdpi Rdpi cos θdpi 1






(10.11)

{Fdp} =































−
[

Mmi
di

bi
− Fri

(

ai
bi

)]

Ri sin θdpi
[

Mmi
di

bi
− Fri

(

ai
bi

)]

Ri cos θdpi

−
[

Mmi
di

bi
− Fri

(

ai
bi

)]































(10.12)
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An important point here is that the operation done on Eq. 10.7 creates equivalent vertical

stiffness/damping elements at the connection point S (Figs. 10.4). Equivalent terms kdpi , cdpi and

Fm from Eq. 10.13 could be replaced on Eqs. 10.9, 10.10, 10.11 and 10.12 .



























kdpi =
kmi

b2i

cdpi =
cmi

b2i

Fm =
Mmi

bi
− Fri

(

ai
bi

)

(10.13)

The previous approach allows distinct ways to represent the diaphragm spring:

1. Create simulations using theoretical quantities for the physical parameters on Fig. 10.1.

2. Introduce realistic measurements on the model, handling with equivalent vertical quantities

(Eq. 10.13). This approach will be presented in Section 10.4.

3. Create distributions of the lever element according to θdpi .

10.3 Relations between the cushion, clamp load and release effort

Figure 10.5 contains the force balance on the system on a static condition. When the driver

wants to separate the clutch from the flywheel, an effort Fri is applied on the diaphragm spring

fingers. Two forces act in order to separate the pressure plate from the flywheel, one contribution

from the cushion springs Fcushion and another from the leaf springs Fleaf (studied in more detail in

Chapter 11). They both result on the contact force FS , which is in equilibrium with the diaphragm

spring moment Mm and the release force.

Rigorously, there is Fs = Fcushion + Fleaf (Kimmig, 1998). But considering that the leaf

springs have a minor contribution in relation to the cushion, it is possible to approximate the pre-

vious expression as Fs ≈ Fcushion. Such relation is indicated on Shaver and Shaver (1997). The

normal force is defined by Fcushion and was presented in Section 2.2. The clamp load curve (Fig.

10.7(a)) represents the maximum load that could be applied by the diaphragm spring. It is mea-

sured without the influence of Frelease. But in any situation, the clamp load gives a measure of an

approximation of the diaphragm stiffness (Fig. 10.7(b)).
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Figure 10.5: Force contributions on the system.

10.3.1 Clamp load

The clamp load curve is the total force that the diaphragm spring applies to the pressure plate.

It is represented by the forces FS when Fri = 0 on Fig. 10.5. Figure 10.6 contains a schematic

view of the instrumentation of the test bench used for the clutch cover. At the bottom, the total

force on the pressure plate FS is also monitored by clamp load sensor. The reference for a positive

pressure plate position is indicated on Fig. 10.6.

Figure 10.6: Clamp and release load experimental setup (Adapted from Lerestrelo (2013)).

Due to the hysteresis, the clamp load curve for a passenger car with manual transmission is

represented on Fig. 10.7(a) with the following features:
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• The upper curve is obtained for increasing pressure plate positions.

• The lower curve is measured if the position is reduced.

• The numerical mean value will be applied in Sections 10.4.1 and 10.4.2.

Figure 10.7(b) presents the derivative of Fig. 10.7(a) resulting on the necessary values for the

stiffness kdpi (Eq. 10.13). Its contribution is not negligible to a model, once that the values found

are greater than 106 N/m. Figure 10.7(a) provide a clear view of regions with positive and negative

stiffness.
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Figure 10.7: Clamp load curve with indication of the path for pressure plate position in-

crease/decrease (Fig. 10.7(a)). Its derivative is represented on Fig. 10.7(b).
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10.4 Numerical simulations

Having the previous explanations in mind, simulations were performed considering a new

and a worn clutch disc (Sections 10.4.1 and 10.4.2), on the model from Section 8 with the cushion

curves from Chapter 2. The pressure plate was assumed with a cylindrical shape (m = 1.5kg, h =

0.01m, Rin = 0.075m and Rout = 0.1m). The contact radius was considered as Ri = 0.0875m.

10.4.1 New clutch disc

Figure 10.8(a) presents the clamp and cushion curves on the same graphic. The reference for

displacement for the cushion curve was inverted in relation to Fig. 2.4(b). Point Fnew indicates

a fully coupled condition, where the cushion springs balance the effort of the plate. The pressure

plate position according to the reference on Fig. 10.6 is shown on the abscissa. Point Fnew is

the reference for the clamp load measurement. When the driver needs to decouple the clutch, the

displacement is moved to the right, as indicated on the picture. In this situation, the pressure plate

can be separated from the clutch disc. The normal force on the plate is given by the value of the

cushion function (Fm on Eq. 10.13). Considering the clutch cover ratio, the difference between

those curves is related to the release effort Fri .

In this condition, the diaphragm spring works on a region of negative stiffness ranging be-

tween −1.2 × 106 and −0.8 × 106 N/m that gradually increases according to the position of the

pressure plate (Fig. 10.8(b)). Between 0 and 0.2 mm , high values of cushion stiffness (above

5× 106 N/m) are found.

It is possible to look at the natural frequencies on Fig. 10.8(c) and see that they follow

the cushion profile. Near coupling condition, the natural frequencies of the stable and unstable

wobbling modes as well as the axial movement of the plate start above 400 Hz. At approximately

0.1 mm, they reach values nearby 300 Hz, which is very close to the value found for real events

(Fig. 1.1).

The real part of the unstable eigenvalue was augmented for greater levels of friction (Fig.

10.8(d)) as indicated by Wickramarachi et al. (2005). Its greatest values occurred closer to the

position of Fnew.
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Figure 10.8: Clamp load and cushion curve on for a new clutch disc (Fig. 10.8(a)). Stiffness values

(Fig. 10.8(b)), natural frequencies (Fig. 10.8(c)) and eigenvalue real parts (Fig. 10.8(d)) for a new

clutch disc.

10.4.2 Worn clutch disc

When the clutch is worn, the thickness of the organic facings is reduced. The embedding

phenomenon (Sfarni et al., 2011) can change the cushion curve if the spring causes internal defor-

mations on the facings. As a direct consequence from that, the equilibrium condition is shifted to

the point Fwear in Fig. 10.9(a). The load value is practically the same as the one found for Fnew

(Fig. 10.8(a)). In this case, the cushion profile is modified to be the worn disc version from Fig.

2.4(b). For positive displacements from the equilibrium value, Fig. 10.9(a) presents that a positive

slope on the clamp load, indicating positive stiffness for the diaphragm spring operating under these
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conditions.

The derivative of the clamp and cushion curves is shown in Fig. 10.9(b). The diaphragm

spring have a positive stiffness between 0.5 and 2 × 106 N/m that decreases for greater position

from the equilibrium point. The cushion spring have stiffness above 0.5 × 107 N/m up to the

position -1.5 mm. In comparison to the previous case (Fig. 10.8(c)), higher natural frequencies

are computed under these circumstances. Values nearby 300 Hz occur only after at -1.4 mm, at

least 0.3 mm far from the initial position. The unstable mode real part increased with the friction

coefficient (Wickramarachi et al., 2005), like the previous case, with peak on low displacement

values.
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Figure 10.9: Clamp load and cushion curve on for a worn clutch disc (Fig. 10.9(a)). Stiffness

values (Fig. 10.9(b)), natural frequencies (Fig. 10.9(c)) and eigenvalue real parts (Fig. 10.9(d)) for

a worn clutch disc.

136



10.5 Chapter summary

A lever model for the diaphragm spring was presented in Section 10.1. Besides that, it was

shown that clamp load and cushion measurements can be included to the simulations. This was

intended to be helpful for designers, creating a bridge between the formulations on the previous

chapters with the technical field. A realistic model needs to fulfil the points of the new and worn

clutch disc.

By looking at the key conditions for the clutch its was possible to observe that the diaphragm

spring may have regions with negative (new disc) or positive (worn disc) stiffness. Besides that,

the greatest factor that determines the behaviour of the natural frequencies of this system was the

cushion spring.
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11 Considerations on the leaf spring representation

In this chapter, the leaf springs are modelled, taking into account its position in relation to

the clutch cover/pressure plate system. It will be possible to observe that, due to its action on

both wobbling coordinates, it can be effective to turn a skew symmetric stiffness matrix into an

asymmetric form. This action will have a greater impact on the system stability.

This idea has not occurred on the clutch literature (Chapter 3) but Hoffmann et al. (2002)

studied a minimal model for brake squeal where it was possible to modify its stability with the

modification of the angles of inclined springs attached to a mass positioned over a moving belt with

frictional contact. But here it will be explained that the inclined element representing the straps/leaf

spring will allow modification on stiffness, distance from the centre of gravity, and preload. This

approach tends to stabilize this system without the use of damping.

11.1 Leaf spring (strap) description

A leaf spring(s) or strap(s) from a passenger car clutch system are presented in Fig. 11.2. It

does not have an know helical spring characterization, but it is responsible to separate the pressure

plate from the clutch disc when the torque transmission is interrupted. In this work, it is assumed

as a composition of an axial stiffness element (kzi) with a tangential one (kti). Figure 11.2 depicts

the points where the strap is connected to the clutch cover. The extremities of this element are fixed

through rivets, one on the pressure plate (points E1, E2 and E3) and the other on the housing (points

CV1, CV2 and CV3).

11.2 An inclined stiffness element subjected to wobbling

Figures 11.3(a) and 11.3(b) represent the movement of the pressure plate in relation to the

clutch housing. During operation, both elements have the same rotating speed γ̇. There is no

relative angular motion between them. The tangential stiffness kt is attached to the pressure plate

at point Ei, while it is fixed on the housing at the point CVi (Fig. 11.3(a) ). This configuration is

directly based on the real system (Fig. 11.2). The position of point Ei in relation to the centre of

gravity of the plate G is given by angle θri and radius Ri (Fig. 11.3(a)) and the distance from the

centre of gravity l (Fig. 11.3(b)). Due to the previous assumption of relative motion, the rotating

angles γ do not cause deformation on the stiffness element, once that this angular motion happens
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in both the pressure plate and housing simultaneously.

Figure 11.1: Leaf spring interpretation.

Figure 11.2: Position of the straps in relation to the pressure plate and clutch cover.

The position of attachment on the pressure plate is given by Eq. 11.1. This work considers

the stiffness element in a position bellow the pressure plate (Fig. 11.3(b)). These model is suited

for a pressure plate modelled on the coordinate system from Section 7.1.
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3
~r′GEi

=
{

Ri cos θri Ri sin θri −l
}T

(11.1)

The tangential efforts will be calculated on the coordinate system x′
1
y′
1
z′
1
. Comparing Figs.

7.1(b) and 7.1(a), this approach will avoid unnecessary calculations involving the angle γ. In global

coordinates, this position vector is given by:

1
~r′GEi

= [Rβ][Rα] 3
~r′GEi

(11.2)

Adopting a vertical translation, the position of the point Ei in relation to the origin O is given

by Eq. 11.3:

1
~r′OEi

=
1
~r′OG +

1
~r′GEi

=
{

0 0 −z − ze

}T

+
1
~r′GEi

(11.3)

The deformation on the element is calculated by Eq. 11.4:

∆
1
~r′OEi

=
{

Ri cos θri Ri sin θri −l
}T

+
1
~r′OEi

(11.4)

To move the representation from x′
1
y′
1
z′
1

to the system x4y4z4 (Fig. 11.3(a)) it is necessary

the use of a rotation matrix determined by angle ρi, and the transformations given by Eqs. 11.5 and

11.6.

4
~r′ = [Rεi ]

T
1
~r′ =







cos ρi sin ρi 0

− sin ρi cos ρi 0

0 0 1





 1
~r′ (11.5)

1
~r′ = [Rεi ] 4~r

′ =







cos ρi − sin ρi 0

sin ρi cos ρi 0

0 0 1





 4
~r′ (11.6)

The deformation ∆
1
~r′OEi

is transformed as presented on Eq. 11.7. The element effort is

shown in Eq. 11.8 where kti is the tangential stiffness and Ftei is a preload of the spring opposed

to the rotating speed γ̇.

∆
4
~r′OEi

= [Rεi ]
T∆

1
~r′OEi

=















∆
4
r′OEix

∆
4
r′OEiy

∆
4
r′OEiz















(11.7)
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(a)

(b)

Figure 11.3: Leaf spring modelled on upper (Fig. 11.3(a)) and side (Fig. 11.3(b)) views.
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4
~F ′

ti =















0

−Fei + kt∆
4
r′OEiy

0















(11.8)

The element effort is moved to the global coordinates (Eq. 11.9), which results on forces
1
Ftx

and
1
Fty on the plane xy. Then, they are written on the system attached to the body (Eq. 11.10):

1
~F ′

ti = [Rεi ]
T

4
~F ′

ti =











1
Ftx

1
Fty

0











(11.9)

3
~F ′

ti = [Rα]
T [Rβ]

T
1
~F ′

ti (11.10)

The element matrices are calculated from moments around the centre off gravity on Eq.

11.11:

3
~M ′

ti = 3
~r′GEi

×
3
~F ′

ti (11.11)

11.3 Inclined stiffness matrices

The matrix [KsI ]i from Eq. 11.12 has the effect of the spring static load that is defined by

both position and orientation angles (θri and ρi).

[KsI ]i = FeiRi







− cos ρi sin θri − sin ρi sin θri 0

cos ρi cos θri sin ρi cos θri 0

0 0 0






(11.12)

Matrix [KsII ]i (Eq. 11.13) has the effect of the tangential stiffness kti . It is important to

note here that it depends on the square of the distance l (Fig. 11.3(b)), meaning that the farther the

element is positioned from the centre of gravity, the greater the inner elements off this matrix will

be. If sin (2ρi) 6= 0, the element is able to produce torque for movements on both α and β. This

contribution of stiffness does not depend on the element position θri .

[KsII ]i = ktil
2







cos2 ρi (1/2) sin(2ρi) 0

(1/2) sin(2ρi) sin2 ρi 0

0 0 0






(11.13)
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11.4 Using the stiffness matrix ([KsII ]i)

Equation 11.14 presents the total contribution of a set of 3 inclined elements with same stiff-

ness (kt) and distance l. Function fs11 , fs22 and fs12 are written in terms of trigonometric relations

Eq. 11.15. Shift angles ∆ρs1 and ∆ρs2 allow the creation of elements in directions based on a

common reference ρ.

[KsII ] =
3
∑

i=1

[KsII ]i = ktl
2







fs11 (ρ,∆ρs) fs12 (ρ,∆ρs) 0

fs12 (ρ,∆ρs) fs22 (ρ,∆ρs) 0

0 0 0






(11.14)























fs11 = cos2(ρ) + cos2(ρ+∆ρs1) + cos2(ρ+∆s2)

fs22 = sin2(ρ) + sin2(ρ+∆ρs1) + sin2(ρ+∆ρs2)

fs12 =

(

1

2

)

sin(2ρ) +

(

1

2

)

sin [2(ρ+∆ρs1)] +

(

1

2

)

sin [2(ρ+∆ρs2)]

(11.15)

11.4.1 Elements with the same direction (∆ρs1 = ∆ρs2 = 0)

If all elements are arranged on with the same orientation angle, Equation 11.15 becomes Eq.

11.16. The elements on the main diagonal (fs11 and fs22) will be positive values, while the element

fs12 is a sinusoidal function that can result on negative values. For ρ = 45◦ the expression given by

fs12 reaches a maximum value (Fig. 11.4(a)). In this case, fs11 = fs22 = fs12 .























fs11 = 3 cos2(ρ)

fs22 = 3 sin2(ρ)

fs12 =

(

3

2

)

sin(2ρ)

(11.16)

Combining the model from Chapter 8.1 with Eqs. 11.14 and 11.16 results on Eq. 11.17. The

only source of damping in this case are the friction related terms (c11 = c22 on Eq. 11.18).

[

I 0

0 I

]{

α̈

β̈

}

+

[

c11 γ̇(−2I + Iz′z′)

γ̇(2I − Iz′z′) c22

]{

α̇

β̇

}

+

[

k11 k12

−k21 k22

]{

α

β

}

=

{

0

0

}

(11.17)
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c11 = c22 = 4
µh2kze

R|γ̇ − θ̇|
(11.18)

When all stiffness are have the same direction, the terms k12 and k21 out from the main

diagonal (Eqs. 11.19 and 11.20) are different. The terms on the main diagonal (k11 and k22) may

be different if ρ 6= 45◦ (Eqs. 11.21 and 11.22).

k12 =
[

2µkRh− 2µ(h2/R)kze
]

sign(γ̇) + (ktl)
2

(

3

2

)

sin(2ρ) (11.19)

k21 =
[

2µkRh− 2µ(h2/R)kze
]

sign(γ̇)− (ktl)
2

(

3

2

)

sin(2ρ) (11.20)

k11 = (2R2 + 2µ2zeh)k + γ̇2(Iz′z′ − I) + 3(ktl)
2 cos2(ρ) (11.21)

k22 = (2R2 + 2µ2zeh)k + γ̇2(Iz′z′ − I) + 3(ktl)
2 sin2(ρ) (11.22)
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Figure 11.4: Element functions for ∆ρs1 = ∆ρs2 = 0◦ (Fig. 11.4(a)). Physical distribution with

ρ = 45◦ on Fig. 11.4(b).

The simulations were done assuming a pressure plate with m = 2kg, h = 0.01m, Rin =

0.075 m and Rout = 0.1m. The cushion parameters were assumed as k = 3× 106/4 N/m, u = 0.3,

R = 0.0875m and ze = 0.001m. A constant rotating speeds (γ̇ = 2000 rpm and θ̇ = 0 rpm) were

adopted on the model.
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Figure 11.6(a) presents the unstable mode natural frequency that is found nearby 195-197

Hz. Due to the asymmetric stiffness terms, this characteristics for the stable mode may achieve

very high values, up to 104 Hz with kt = 1010N/m (Fig. 11.6(b)). Figures 11.6(c) (eigenvalue real

part) and 11.6(d) (real part signal) shows a transition on stability of this system. They present the

following trend:

• if the element is positioned very close to the centre of gravity (l ≈ 0), kt must be greater than

1010 N/m.

• increase the absolute value of l requires a lower tangential stiffness for stability

• Equation 11.14 depends on l2 and, as a direct consequence from that, all results in Fig. 11.6

are mirrored in relation to l = 0m. Physically, there is no difference if the tangential stiffness

is positioned bellow or above the centre of gravity of the pressure plate.

• the real part of the stable eigenvalue is increased (Fig. 11.6(e)) but it is always negative (Fig.

11.6(f)).

11.4.2 Elements with symmetric orientation (∆ρs1 = 120◦ and ∆ρs2 = 240◦)

A symmetric orientation of the elements is achieved with ∆ρs1 = 120◦ and ∆ρs2 = 240◦

(Fig. 11.5(a)). For this configuration, Equation 11.23 presents that the skew symmetric terms are

zero fs12 = 0. The elements on the main diagonal are constant (fs11 = fs11 = 3/2), independent

from the reference angle ρ (Fig. 11.5(b)).























fs11 = cos2(ρ) + cos2(ρ+ 120◦) + cos2(ρ+ 240◦) = 3/2

fs22 = sin2(ρ) + sin2(ρ+ 120◦) + sin2(ρ+ 240◦) = 3/2

fs12 =

(

1

2

)

sin(2ρ) +

(

1

2

)

sin [2(ρ+ 120◦)] +

(

1

2

)

sin [2(ρ+ 240◦)] = 0

(11.23)
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(a) (b)

(c) (d)

(e) (f)

Figure 11.6: Results for ∆ρs1 = ∆ρs2 = 0◦ and ρ = 45◦. Natural frequencies (Figs. 11.6(a)

and 11.6(b)), eigenvalue real parts (Figs. 11.6(c) and 11.6(e)) and their signals (Figs. 11.6(d) and

11.6(e)).
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(a) (b)

(c) (d)

(e) (f)

Figure 11.7: Results for ∆ρs1 = 120◦, ∆ρs2 = 240◦ and ρ = 0◦. Natural frequencies (Figs. 11.7(a)

and 11.7(b)), eigenvalue real parts (Figs. 11.7(c) and 11.7(e)) and their signals (Figs. 11.7(d) and

11.7(f)).
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11.5 Using the preload matrix ([KsI ]i)

The combination of three inclined elements lead to the following contribution in terms ac-

counting a common preload Fe and radius Rs (Eq. 11.26). Equation 11.27 presents the trigono-

metric functions fp11 , fp22 , fp12 and fp21 choosing a symmetrical distribution in relation to the disc

(θr = 0, 120 and 240◦ on Eq. 11.12). Angles ∆ρs1 and ∆ρs2 are used to define the orientation of

those elements (Eq. 11.14) .

[KsI ] =
3
∑

i=1

[KsI ]i = FeRs







fp11 fp12 0

fp21 fp22 0

0 0 0






(11.26)































fp11 = − cos ρi sin 0
◦ − cos(ρ+∆ρs1) sin 120

◦ − cos(ρ+∆ρs2) sin 240
◦

fp22 = sin ρi cos 0
◦ + sin(ρ+∆ρs1) cos 120

◦ + sin(ρ+∆ρs2) cos 240
◦

fp12 = − sin ρi sin 0
◦ − sin(ρ+∆ρs1) sin 120

◦ − sin(ρ+∆ρs2) sin 240
◦

fp21 = − cos ρi cos 0
◦ − cos(ρ+∆ρs1) cos 120

◦ − cos(ρ+∆ρs2) cos 240
◦

(11.27)

Figure 11.8(a) shows the functions from Eq. 11.27 with equal orientation angles ∆ρs1 =

∆ρs2 = 0◦. Based on the previous picture, such configuration lead to the following conclusions:

• there is no effect of preload fp11 = fp22 = fp12 = fp21 = 0◦

• the designer can only make modifications on the stiffness (Section 11.4.1)

A very different condition is presented by Eq. 11.8(a), where a symmetric orientation is used

(∆ρs1 = 120◦ and ∆ρs2 = 240◦). It results on a skew symmetric matrix. Figure 11.8(b) shows

the trigonometric functions from Eq. 11.27 for different orientation references (ρ). The terms out

from the main diagonal are greater for ρ = 0◦ (|fp12 | = |fp21 | = 1.5) while fp11 = fp22 = 0. This

orientation case allows modifications on preload and stiffness (Section 11.4.2) and is physically

represented by Fig. 11.5(a).

[KsII ] =
3FeRs

2







sin ρ − cos ρ 0

cos ρ sin ρ 0

0 0 0






(11.28)
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Figure 11.8: Element functions for ∆ρs1 = ∆ρs2 = 0◦ (Fig. 11.8(a)) and ∆ρs1 = 120◦ and

∆ρs2 = 240◦ (Fig. 11.8(b))

.

The inclusion Eq. 11.28 on the system from Eq. 11.17 results in k11 = k22 on the main

diagonal (Eq. 11.29) and k21 = k12 (Eq. 11.30).

k11 = k22 = (2R2 + 2µ2zeh)k + γ̇2(Iz′z′ − I) +

(

3

2

)

(ktl)
2 +

3FeRs

2
sin ρ (11.29)

k21 = k12 =
[

2µkRh− 2µ(h2/R)kze
]

sign(γ̇)− 3FeRs

2
cos ρ (11.30)

The system data was the same from Section 11.4.1. The element distance was chosen as

l = 0.1 m. The total tangential stiffness was varied between 104 < kt < 1011 N/m while the

preload was tested within −8000 < Fe < 8000 N.

Up to ρ = 45◦ (Fig. 11.10(a)), the real parts from the eigenvalues (Figs. 11.9(a) and 11.9(b))

indicate that negative values of Fe does ot affect the stability of this system. For a positive value of

Fe, there is a threshold where the stability between the stable/unstable modes are interchanged.

Such transition is shifted for ρ = 45◦ (Fig. 11.10(b)) , where an increase on the positive

preload resulted on a reduction of the total stiffness needed for stability (Figs. 11.9(c) and 11.9(d)).

Adopting ρ = 90◦ (Fig. 11.10(c)), there is no influence of preload, only high values of

tangential stiffness affected the stability (Figs. 11.9(e) and 11.9(f)).
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(a) ρ = 45◦ (b) ρ = 45◦

(c) ρ = 75◦ (d) ρ = 75◦

(e) ρ = 90◦ (f) ρ = 90◦

Figure 11.9: Eigenvalue real parts for the unstable (Figs. 11.9(a),11.9(a) and 11.9(a)) and stable

(Figs. 11.9(b),11.9(b) and 11.9(b)) mode shapes with ρ = 45◦, 75◦ and 90◦.
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(a) ρ = 45◦ (b) ρ = 75◦ (c) ρ = 90◦

Figure 11.10: Element configurations with symmetric orientation (∆s1 = 120◦ and ∆s1 = 240◦

).

11.6 Chapter summary

The leaf springs or straps were modelled on Section 11.2. It resulted in two matrices (Section

11.3) one representing the influence of the tangential stiffness (Eq. 11.12) and another account the

spring preload (Eq. 11.13). All results are tied to the assumption that energy dissipation occurs

only due to friction damping on the system.

• a greater distance from the centre of gravity required lower stiffness values for stabilization

• Elements with equal orientation angles required lower values of stiffness to achieve stability.

The element matrices presented non-diagonal elements. Preload had no effect on this case.

• Symmetric oriented elements eliminated the non-diagonal terms of Eq. 11.12, resulting on

very high stiffness values for stabilization. Preload could be used on this case, but with no

significant effect on stability.
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12 A device for pressure plate stabilization

This part of the work presents a device that was conceived to introduce damping to the pres-

sure plate. It follows the initial idea from Tondl (1975), who linked an auxiliary mass to a self

excited system through a spring and viscous elements. Such idea has not been tried yet on the

literature (Chapter 3).

Section 12.1 contains the deduction of the connection elements. The device will be assumed

to be another disc with annular shape. Their formulation was made to allow different distributions

on the interface between the pressure plate and the device mass.

A numerical example will be tested on Section 12.3, showing that the stability range of this

system is achieved on the condition of curve veering ( Liu (2002) and Perkins and Mote Jr (1986)).

There are in phase and out of phase wobbling movements on that will be discussed on Sections

12.3.4 and 12.3.4.

12.1 Stabilization device formulation

Figure 12.1(a) shows the pressure plate and device mass/inertia with centres of gravity G and

Gd, respectively. The spring/damper element is placed between points S and T, with a linear stiff-

ness and viscous damping coefficients kdi and cdi . The parameter Ri describes the radial distance

while the angle εdi is used to place the element. Equation 12.1 has the parameter d that indicates

a position above the point G and while in Eq. 12.2 the variable a indicates a distance bellow the

point Gd.

3
~r′GT =

{

Ri cos εdi Ri cos εdi d
}T

(12.1)

3
~r′GdS =

{

Ri cos εdi Ri cos εdi −a
}T

(12.2)

The device may move according to two wobbling angles (θx,θy), with an additional vertical

movement indicated by zd (Fig. 12.1(b)). The pressure plate have similar degrees of freedom α, β

and z. The coordinate system is detailed on Section 7.1.3, where the constant angular speed γ̇ is

maintained on the global reference frame.

The vertical displacement of the pressure plate at point T is given by Eq. 12.3 taking into

account only angular movement. The complete expression (Eq. 12.4) requires the additional terms
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from axial motion
0
r′OGz

:

0
r′GTz

= − sin βRi cos εdi + sinα cos βRi sin εdi + d cosα cos β (12.3)

0
r′OTz

=
0
r′OGz

+
0
r′GTz

= −(z−ze)−sin βRi cos εdi +sinα cos βRi sin εdi +d cosα cos β (12.4)

(a)

(b)

Figure 12.1: Geometric relations of the stabilization device (Fig. 12.1(a)). Spacial position of the

device and wobbling angles (Fig. 12.1(b)).
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The displacement on the device attachment point S (Eq. 12.6) is obtained by the combination

of
0
r′GdSz

(Eq. 12.5) and the axial displacement
0
rOdGdz

:

0
r′GdSz

= − sin θyRi cos εdi + sin θx cos θyRi sin εdi − a cos θx cos θy (12.5)

0
r′OdSz

=
0
r′OdGdz

+
0
r′GdSz

= −zd−sin θyRi cos εdi+sin θx cos θyRi sin εdi−a cos θx cos θy (12.6)

The stiffness effort on the pressure plate (Eq. 12.7) is calculated using the total deformation

between points S and T (Eqs. 12.8 and 12.9), considering ∆
0
r′OTz

> ∆
0
r′OdSz

.

0

~F ′

kiplate
= −kdi

[

∆
0
r′OTz

−∆
0
r′OdSz

]

~k (12.7)

∆
0
r′OTz

=
0
r′OTz

− d (12.8)

∆
0
r′OdSz

=
0
r′OdSz

+ a (12.9)

The effort acting on the plate
3

~F ′

kiplate
on the frame x′

3
y′
3
z′
3

is obtained as in Eq. 12.10. The

moments are calculated on Eq. 12.11. Considering
3

~F ′

kidevice
= −

3

~F ′

kiplate
, the stiffness moments

on the device are calculated by Eq. 12.11.

3

~F ′

kiplate
= [Rγβα]

T

0

~F ′

kiplate
=

0

~F ′

kiplate











− sin β

sinα cos β

cosα cos β











(12.10)

3

~M ′

kiplate
=

3
~r′GT ×

3

~F ′

kiplate
(12.11)

3

~M ′

kidevice
=

3
~r′GdS ×

3

~F ′

kiabsorber
=

3
~r′GdS ×

[

−
3

~F ′

kiplate

]

(12.12)

12.1.1 Connection matrices

A linearization on the torques from Eqs. 12.11 and 12.12 makes it possible to obtain the

connection matrix [KrI ] (Eq. 12.13). The matrix [P (εdi , Rdi)], gives the stiffness state accord-
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ing to the element angular position (εdi) and radius (Ri). It is arranged for a state space p =
{

α β z θx θy zd

}T

, where the upper positions refer to the motions of the pressure plate

while the lower portion contains the degrees of freedom of the device. If a similar procedure from

Section 12.1 is done to the damping forces and the dissipative part of the connection ([Ccon]i) is

determined as Eq. 12.14. This connection will be responsible to introduce an external damping to

the pressure plate.

[Kcon]i = kdi [P (εdi , Rdi)] = kdi























R2

di
sin2 εdi −(R2

di
/2) sin (2εdi) −Rdi sin εdi

−(R2

di
/2) sin (2εdi) R2

di
cos2 εdi Rdi cos εdi

−Rdi sin εdi Rdi cos εdi 1

−R2

di
sin2 εdi (R2

di
/2) sin (2εdi) Rdi sin εdi

(R2

di
/2) sin (2εdi) −R2

di
cos2 εdi −Rdi cos εdi

Rdi sin εdi −Rdi cos εdi −1

−R2

di
sin2 εdi (R2

di
/2) sin (2εdi) Rdi sin εdi

(R2

di
/2) sin (2εdi) −R2

di
cos2 εdi −Rdi cos εdi

Rdi sin εdi −Rdi cos εdi −1

R2

di
sin2 εdi −(R2

di
/2) sin (2εdi) −Rdi sin εdi

−(R2

di
/2) sin (2εdi) R2

di
cos2 εdi Rdi cos εdi

−Rdi sin εdi Rdi cos εdi 1























(12.13)

[Ccon]i = cdi [P (εdi , Ri)] (12.14)

12.2 System matrices

The whole system comprehending the pressure plate and the device is written in Eq. 12.15.

This formulation allows the creation of a wider range of possibilities in terms of connection ele-

ments distribution, as well as different configurations off the rotating friction elements from Section

7.4.

[M ]sys {p̈}+ ([G]sys + [C]sys) {p̈}+ ([H(γ̇)]sys + [K]sys) {p} = {F}sys + {F}ext (12.15)

The elements from the matrices [M ]sys (Eq. 12.16), [G]sys (Eq. 12.17) and [H]sys (Eq. 12.18)

result from the composition of the following elements:
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• mass matrices ([M ]plate and [M ]device) based on Eq. 7.12. The total mass of the plate and

device are defined as mplate and mdevice in Eq. 12.16, respectively.

• gyroscopic matrices ([G]plate and [G]device) based on Eq. 7.13.

• inertial stiffness matrices [H1(γ̇)]plate and [H1(γ̇)]device are based on Eq. 7.14.

[M ]sys =





























[M ]plate
0

0

0 0 mplate






[0]3×3

[0]3×3







[M ]device
0

0

0 0 mdevice





























(12.16)

[G]sys =





























[G]plate
0

0

0 0 0






[0]3×3

[0]3×3







[G]device
0

0

0 0 0





























(12.17)

[H]sys =





























[H1(γ̇)]plate
0

0

0 0 0






[0]3×3

[0]3×3







[H1(γ̇)]device
0

0

0 0 0





























(12.18)

The damping matrix [C]sys (Eq. 12.19) is obtained by the combination of the device con-

nection matrices [Ccon]i (Eq. 12.14) with the rotating friction elements [C ′

i] (Eq. 7.61). The same

procedure has to be done for the stiffness component [K]sys (Eq. 12.20). A external effort array

[F ]sys (Eq. 12.21) takes into account all individual effort arrays {f ′

l} from Eq. 7.65.

[C]sys =
n
∑

i=1

[Ccon]i +
N
∑

l=1

[

[C ′

l ] [0]3×3

[0]3×3 [0]3×3

]

(12.19)
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[K]sys =
n
∑

i=1

[Kcon]i +
N
∑

l=1

[

[K ′

l ] [0]3×3

[0]3×3 [0]3×3

]

(12.20)

[F ]sys =







N
∑

l=1

{f ′

l}

{0}
3×1






(12.21)

12.3 An applied numerical example

Equation 12.15 was simulated choosing a pressure plate with mplate = 2kg, h = 0.01m,

Rin = 0.075m and Rout = 0.1m. The contact radius was considered as Ri = 0.0875m. The

total cushion stiffness (kcushion) was tested from 104 to 108 N/m and it was divided between 4

equally distributed friction elements using the model from Section 8.2. A common constant friction

coefficient of 0.3 and a static displacement of 0.001 m were adopted.

Four connecting elements were placed between the pressure plate and the device, positioned

by εdi = 0◦, 90◦, 180◦ and 270◦ with Rdi = 0.0812m. Damping and stiffness of each element

were set as cdi = 25Ns/m and kdi = 1.75 × 105N/m. The geometry of this device was a hollow

cylinder with an inner and outer radius of 0.075 m and 0.0875 m, respectively. It has a total mass

of 0.4 kg and a distance of 2 mm between its centre of gravity and the contact surfaces. A common

constant rotating speed of 1800 rpm was adopted.

12.3.1 Natural frequencies, curve veering and stability range

As the cushion stiffness was increased, the natural frequencies of this system evolved as Fig.

12.2. Their values found for 104N/m and 108N/m are detailed in Table 12.1. From these data, it is

possible to verify two distinct groups of mode shapes. Modes 1, 2 and 3 start at frequencies bellow

32 Hz and they reach maximum values nearby 212 Hz. Another group, of modes 4, 5 and 6 start at

higher frequencies and increasing up to 1100 Hz.

From the literature, some definitions on curve veering can be found:

• Liu (2002): “Mode localization and eigenvalue curve veering are the phenomena of rapid

and even violent changes in dynamic modes.”.

• Perkins and Mote Jr (1986):“An important characteristic of curve veering is that the eigen-

functions associated with the eigenvalues on each locus before veering are interchanged
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during veering in a rapid but continuous way. ”

Figure 12.2 presents such phenomenon, once that the curves from modes 1, 2 and 3 get

really close to mode 4,5 and 6 within the region delimited by a “Stability range”. Apart from this

situation, the frequencies from those groups are very different. Their associate mode shapes were

carefully tracked using the Modal Assurance Criterion (Allemang, 2003) and their characteristics

will be explained on Section 12.3.2

10
4

10
5

10
6

10
7

10
8

10
1

10
2

10
3

10
4

Total cushion stiffness [N/m]

N
a
tu

ra
l 
fr

e
q
u
e
n
c
y
 [
H

z
]

 

 

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Stability range
Stability range

Figure 12.2: Natural frequencies for the example on Section 12.3.

Table 12.1: Mode shapes and the variation on its natural frequencies.

Mode Initial frequency [Hz] Final frequency [Hz]

1 10.2714 209.8114

2 31.2808 211.3844

3 31.7184 211.3953

4 228.8469 1113.193

5 228.9418 1113.9022

6 230.6833 1129.3153

The real part of the eigenvalues are displayed on Fig. 12.3. The stability rage was defined

on the interval were all real parts were negative. The numerical simulation gave such results for

cushion stiffness between 2.4× 106 and 1.2× 107 N/m. For low stiffness values, mode 2 presented

the greater real part. Out from the upper limits of this curve, mode 4 had an increasing real part. It

is possible to conclude that:
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• Within the stability range, the device modified the system to allow energy dissipation, avoid-

ing the self excitation of the pressure plate.

The modal damping on Fig. 12.4 show an increasing behaviour for modes 1, 2, 3 and a de-

creasing tendency for modes 4, 5 and 6. For both groups, maximum damping ratios occurred nearby

10 % for this group of parameters. Negative modal damping represents an unstable condition.
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Figure 12.3: Real part of eigenvalues for the example on Section 12.3.
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Figure 12.4: Damping factors for the example on Section 12.3.
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An important phenomenon occurs here and in all following situations. On the stability range

(between 2.4× 106 and 1.2× 107 N/m for this case) both pressure plate (z) and device (zd) vibrate

on the same mode shape (Fig. 12.5(a) and 12.5(c)). A sequence of vibration on the stability range

is detailed on Fig. 12.6. Out from this condition, vibration seems to be localized on one element

only. This and the following results fit on the veering definition from Perkins and Mote Jr (1986).

The stability range occurs on the transition of behaviour of these mode shapes.

(a) (b)

Figure 12.6: Axial modes 1 and 6 for a total cushion stiffness of 6× 106 N/m.

12.3.3 In phase wobbling motion

Modes 2 and 3 occur with lower natural frequencies (Fig. 12.2). Based on Figs. 12.7(a) and

12.7(c), it is possible to observe wobbling on the pressure plate and on the device due to the non-

zero amplitudes on α, β, θx and θy. On the transition (or stability range), there is a combination of

movements of both elements. For high stiffness values, only the device vibrate (Figs. 12.7(a) and

12.7(c)).

For mode 2 (Fig. 12.7(b)), the phase relation between α and β is practically the same one

found for θx and θy. Even for mode 3 (Fig. 12.7(d)) similar phase characteristics happen among

these pairs. On important conclusion from this is that the pressure plate and the device perform

together a forward or a backward wobbling (in phase motion). Vibration on the stability range

is detailed on Fig. 12.8 (kcushion = 6 × 106 N/m). Mode 2 is represented as a forward wobbling,

while mode 3 is a backward motion. Figure 12.8 agrees with the results on Fig. 12.7(a) and 12.7(c),
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{

ṗ(t)
}

=
6
∑

i=1

(

diλi {Xi} eλit + d∗
1
λ∗i {X∗

i } eλ
∗

i t
)

(12.23)

Choosing t = 0 s, Equation 12.24 contains the relation between the initial conditions {p(0)}
and {ṗ(0)} with the complex constants arranged on a array {d} on Eq. 12.25 (Meirovitch, 2010).

This system of equations can be solved for any desired initial state, resulting on specific values of

{d}.

{

{p(0)}
{ṗ(0)}

}

=

[

{X1} {X∗

1
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6
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1
{X∗
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} . . . λ6 {X6} λ∗

6
{X∗

6
}

]

{d} (12.24)

{d} =
{

d1 d∗
1
. . . d6 d∗

6

}T

(12.25)

Figure 12.12 highlights specific stiffness values on the eigenvalue real part previously shown

in Fig. 12.3. The lower and upper limits of the stability range are indicated by stiffness klower limit

and kupper limit, respectively. The parameter kstable stand for eigenvalues with negative real part.

The parameter kbellow was calculated as the mean value between the minimum stiffness con-

sidered (104 N/m) and klower limit. A greater value kabove was positioned between kupper limit and

the maximum stiffness of 108 N/m. The numerical values for those parameters are presented in

Table 12.2.
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Figure 12.12: Stiffness values chosen for the time domain simulation.
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Table 12.2: Stiffness values from Fig. 12.12 used for time domain simulations.

Parameter Value [N/m]

kbellow 1.56025× 105

klower limit 2.43437× 106

kstable 5.47947× 106

kupper limit 1.22204× 107

kabove 3.49578× 107

The simulations considered {p(0)} =
{

0.01 0.01 0.01 0 0 0
}T

as initial conditions.

Figure 12.13 presents the results adopting kbellow (Fig. 12.12). There is an in phase wobbling

motion between the pressure plate and device that increases with time, indicated by the angles α

and θx on Fig. 12.13(a), and by β and θy on Fig. 12.13(b). Vertical vibration amplitudes remain

constant during the simulation (Fig. 12.13(c)).

Adopting klower limit (Fig. 12.12), Figures 12.14(a) and 12.14(b) contains constant angular

motions throughout the simulation. On the other hand, the vertical movement is damped, with a

decrease of amplitude according to Fig. 12.13(c). In all cases, the vibration levels were greater on

the device.

In the middle of the stability range (Fig. 12.12), a cushion stiffness kstable results on a decay

of amplitudes in all degrees-of-freedom on Fig. 12.15. One important characteristic on the signals

is the out of phase motion between the pressure plate and device (Fig. 12.11), indicated by α and

θx on Fig. 12.15(a) and by β and θy on Fig. 12.15(b).

On the upper limit of the stability range (kupper limit on Tab. 12.2), damping is still effective

for reduction of vertical vibrations (Fig. 12.16(c)). In this situation, the out of phase motion per-

sists, like in Fig. 12.15, but wobbling amplitudes remain practically constant during free vibration.

Values for the pressure plate are greater in relation to the device (Figs. 12.16(a) and 12.16(b)).

The device is no longer effective for kabove, that is placed out of the stability range on Fig.

12.3. The unstable condition is presented by the exponentially increasing wobbling amplitudes on

Fig. 12.16(a) and 12.17(b). Vertical vibrations are still reduced by damping (Fig. 12.17(c)).

Based on the previous results, kbellow and kabove produced unstable responses. The free vi-

bration for klower limit or kupper limit is critical, once that vibrations on the pressure plate can be

constant depending on the initial conditions. But it must be remembered that those are specific

values, and, within the stability range, there is a decay on the wobbling responses of the pressure

plate/device.
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Figure 12.13: Wobbling responses (Fig. 12.13(a) and 12.13(b)) and vertical motion (Fig. 12.13(c))

for kbellow.
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Figure 12.14: Wobbling responses (Figs. 12.14(a) and 12.14(b)) and vertical motion (Fig. 12.14(c))

for klower limit.
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Figure 12.15: Wobbling responses (Figs. 12.15(a) and 12.15(b)) and vertical motion (Fig. 12.15(c))

for kstable.
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Figure 12.16: Wobbling responses (Figs. 12.16(a) and 12.16(b)) and vertical motion (Fig. 12.16(c))

for kupper limit.
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Figure 12.17: Wobbling responses (Figs. 12.17(a) and 12.17(b)) and vertical motion (Fig. 12.17(c))

for kabove.
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12.3.6 Chapter summary

This chapter presented the formulation of a stabilization device for the pressure plate. It

worked with the principle of veering, causing the stabilization of all mode shapes (Section 12.3.1).

On the stable range, in phase and out of phase wobbling motions were detected (Sections 12.3.3

and 12.3.4). The out of phase wobbling motions between the lower and upper disc are a favourable

condition for the use of the viscous damping. With this approach, damping is introduced on other

elements than the cushion spring. The time domain responses under free vibration from Section

12.3.5 agreed with the stability range determined on Section 12.3.1, producing decaying time re-

sponses for cushion values within the stability range.

175



176



13 Conclusions and future work

13.1 Conclusions

13.1.1 Element formulation and possibilities

The system on Cardan coordinates (Chapter 6) presents greater modifications of its natural

frequencies in relation to the pressure plate rotating speed than the model with the rotating speed on

global coordinates (Chapter 8). The natural frequencies of the forward, backward and axial modes

for the model under hypothesis 2 were close to each other for greater values of cushion stiffness.

This thesis was innovative with assumption of relative displacement between the pressure plate and

the flywheel in case of viscous damping (Sections 5.2 and 7.2). Sections 5.3, 7.3.1 discussed in

detail that, due to the movement of this element, it is possible to generate vertical efforts when there

is motion under a surface that changes its height or on the example of an inclined flat disc.

As a result, the model on Cardan coordinates (Hypothesis 1) presented a term of stiffness

related to the contribution of rotating speed of the disc (Section 5.5.2), while the formulation with

the rotating speed on global coordinates (Hypothesis 2) presented terms related to the element

relative position angle (Section 7.4.2). Those terms resulted on instability under low levels of

stiffness on Sections 6.4 and 8.4. The models assuming viscous damping have a dual characteristic,

allowing instability due to the friction for higher values of contact stiffness and due to the effect

of a moving viscous element when it is reduced. In both cases, the modification of the clutch disc

rotating speed modified the real part of the eigenvalues of a viscously damped system (Sections

6.4 and 8.4). The whole literature (Chapter 3) takes into account structural damping, that do not

produce this effect.

The results from Chapter 9 indicate that real clutch discs, that have variations on their prop-

erties due to several reasons (manufacturing tolerances, uneven wear, etc.) may cause vibrations on

the pressure plate that cannot be directly associated to the existing literature. There was innovation

on the possibility if inclusion of variations on the cushion spring using elements from Section 5.5.

On the simulations with placement error on one element (Section 9.1), there was coupling between

the angular coordinates with axial movement. It was shown that such errors change significantly

the axial mode shape, decreasing the magnitude of vibration on axial direction and increasing the

role of the angular displacements. Proportional changes according to the angular coordinates with

symmetrical distribution (Section 9.2),did not cause a modification on the axial mode shape. When
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the stiffness for one coordinate was greater than the other, the unstable mode shape presented higher

amplitude. Only when the stiffness is equally distributed, the mode shape presents equal amplitudes

between these coordinates.

13.1.2 Application

Chapter 10 included real measurements on the diaphragm spring lever model interacting with

the cushion curve nearby the points of usage on a vehicle. Another important conclusion from this

part of the work was that the diaphragm spring stiffness is negative for a new clutch disc and

positive for an aged one. Any realistic model of clutch squeal will have to fulfill those technical

requirements, matching the properties included on the model with the functional curves of the real

system elements.

On Chapter 11 it was possible to conclude that attachment of the leaf springs at larger dis-

tances from the centre of gravity allowed the stabilization of the system with lower values of tan-

gential stiffness. The orientation angles were very important, once that with all elements at 45◦ the

non diagonal terms were maximized, requiring lower values of all parameters for stabilization. The

preload had no effect to stabilize the eigenvalues.

Chapter 12 contains the formulation of a stabilization device for the pressure plate. In this

formulation, stability was achieved during a situation of veering ( Liu (2002) and Perkins and

Mote Jr (1986)). On this situation, the upper and lower disc performed in phase and out of phase

wobbling movements, which allowed energy dissipation on the connection between them. The time

responses from Section 12.3.5 are related to the stability of the eigenvalues. For cushion stiffness

bellow or upper the stabilization limits, there was a growing wobbling response. Within the stable

region, such response presented a fast decay.

Clutch squeal is a very complex problem, once that up to know there is no complete expla-

nation for the fact that this phenomenon has been focus of publications for just 10 years from now

( Wickramarachi et al. (2005)). This thesis tried to deepen the research in terms of the compre-

hension of the clutch system itself in relation to the model, bringing the technical knowledge and

including real measurements when possible (Chapter 10). Besides that, it tried to discuss pending

questions on the matter on a equal basis. With the formulations proposed on this work, the analysis

of clutch squeal is not restricted, allowing a simultaneous evaluation test contributions of different

elements combined on the same model (cushion configurations, diaphragm spring, leaf springs,

stabilization device, etc.).
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13.2 Future works

Clutch squeal is an open field of study and it is on a early stage of development. There is still

room for the following works:

• Study the equations from this work in terms of linear time varying systems.

• Produce simulations involving the interaction of the elements developed on this work

• Study the nonlinear behaviour of this system. Based on Chapter 10, it is possible to include

the nonlinear stiffness profile of the diaphragm spring, that have parts with negative stiffness

and friction hysteresis.

• Include characteristics of the clutch disc on the model.

• The Finite Element Method can contribute for the introduction of the more realistic charac-

teristics on interaction between the cushion springs and the facings. But it is necessary to

change the contact model to allow the presence of friction damping.

• Take the experience and analysis tools provided by the vast knowledge on brake squeal.

• There is a pending question about the comprehension of the role of charcateristics of the

powertrain/vehicle on the threshold of squealing events.

• There is practically no available experimental data on the matter. Vehicular tests have already

started in order to understand the occurrence of squeal. Modal analysis tests have been started

too.
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HERVÉ, B.; SINOU, J.J.; MAHÉ, H. e JEZEQUEL, L. Analysis of squeal noise and mode cou-

pling instabilities including damping and gyroscopic effects. European Journal of Mechanics-

A/Solids, vol. 27, n. 2, 141–160, 2008b.
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A Friction distribution near coupling

A.1 Cardan coordinates

Near coupling, it occurs that the terms which depend on the expression γ̇ − θ̇ cosα cos β

practically vanish on Equation 5.37. The approximate function for small angles is calculated by

Eq. A.1.

3
~V trel ≈ h















(

α̇ sin γ − β̇ cos γ
)

+ θ̇ (β sin γ + α cos γ)
(

α̇ cos γ + β̇ sin γ
)

+ θ̇ (β cos γ − α sin γ)

0















(A.1)

Assuming small angles, the norm of
3
~V trel is calculated as Eq. A.1. It still depends on the

wobbling angles (α and β). For γ = 0◦ and α̇ = β̇ = 0 the unitary vectors are calculated by Eq.

A.3.

∣

∣

∣3
~V trel

∣

∣

∣ = h

√

α̇2 + β̇2 + 2θ̇(α̇β − αβ̇) + θ̇2(β2 + α2) (A.2)

3
~ν = 3

~V trel
∣

∣

∣3
~V trel

∣

∣

∣

≈ 1
√

α2 + β2











α

β

0











(A.3)

Adopting α = γ = 0◦ the unitary vector is given by Eq. A.4. Figure A.1 presents the

distribution of the friction force and unitary relative speed when the element rotating speed (θ̇) is

close to the values found for the pressure plate (γ̇). Figure A.1(a) presents the pattern of friction

forces tangent to the disc radius. As the difference decreases, there is a reorientation of the friction

forces in Figs A.1(b) and A.1(c). Finally, for γ̇ = 1000 rpm and θ̇ = 999.9999 rpm the unitary

relative speed of all elements is the same, on the direction given by Eq. A.4.

3
~ν =

1

|β|











0

β

0











= sign(β)











0

1

0











(A.4)

Similar results are found imposing β = γ = 0◦ (Eq. A.5). The modification on the unitary

relative speed vector and friction forces is shown on Fig. A.2. Equation A.5 gives the direction of
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3
~ν (Figure A.2(d)), where all vectors are aligned with the axis y3.

3
~ν =

1

|α|











α

0

0











= sign(α)











1

0

0











(A.5)

Even if α = β = γ = 0◦ the unitary speed is influenced by the angular speeds. Figure A.3

presents results for α̇ = β̇ = 1 rad/s. If γ̇ − θ̇ = 100 rpm (Fig. A.3(a)) and γ̇ − θ̇ = 10 rpm

(Fig. A.3(b)) the direction is not substantially changed. For γ̇ − θ̇ = 1 rpm (Fig. A.3(c)) the field

presents significant changes and are no more tangent to the radius if x3 6 0 and y3 6 0. (Fig.

A.3(b)). The direction follows the direction given by Eq. A.6 on Fig. A.3(d) where α̇ = β̇ = 0.1

rad/s. This degeneration of the friction forces in relation to the movement of the pressure plate is

the physical explanation for the occurrence of friction damping Section 5.5.

3
~ν = 3

~V trel
∣

∣

∣3
~V trel

∣

∣

∣

≈ 1
√

α̇2 + β̇2











−β̇
α̇

0











(A.6)

A.2 With the rotating speedon global coordinates

Near coupling condition, the terms that depend on γ̇ − θ̇ on Eq. 7.39 become too small. An

approximation of the relative tangential speed is given by Eq. A.7. It depends on the wobbling

angle α as well as the wobbling speeds α̇ and β̇.

3
~V ′

trel ≈











β̇ (−h cosα + sinαRi sinψi)

α̇h− β̇ sinαRi cosψi

0











(A.7)

Equation A.8 represents the normal vector near coupling adopting β = 0◦. It shows that the

relative speed field will tends to align with the y′
3

direction. Figures A.4 express such behaviour on

tangential relative speed degrading from γ̇ − θ̇ = 10 rpm (Fig. A.4(a)) to γ̇ − θ̇ = 0.1 rpm (Fig.

A.4(d)).

3
~ν ′ =

3
~V ′

trel
|
3
~V ′

trel |
=

α̇h

|α̇|h











0

1

0











= sign(α̇)











0

1

0











(A.8)
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Equation A.9 shows the case for α = 0◦. Figures A.4 shows
3
~ν ′ aligning wit the −x′

3
for

situations from γ̇ − θ̇ = 10 rpm (Fig. A.5(a)) to γ̇ − θ̇ = 0.1 rpm (Fig. A.5(d)).

3
~ν ′ =

3
~V ′

trel
|
3
~V ′

trel |
=

β̇h

|β̇|h











−1

0

0











= sign(β̇)











−1

0

0











(A.9)
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(a) (b)

(c) (d)

Figure A.2: Friction forces near coupling for β = 0◦.
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(a) (b)

(c) (d)

Figure A.3: Friction forces near coupling for α̇ = β̇ = 1rad/s.
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(a) (b)

(c) (d)

Figure A.4: Friction forces near coupling for α̇ = 1 rad/s and β̇ = 0.
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(a) (b)

(c) (d)

Figure A.5: Friction forces near coupling for β̇ = 1 rad/s and α̇ = 0.
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B Tangential speed error

B.1 Cardan coordinates

Having in mind the development of the previous section, it is possible to make a comparison

on the physical representation of the original version of the unitary tangential relative speed (Eq.

5.37 and written here as
3
~νnonlinear ) and its approximation (Eq. 5.42 noted here as

3
~νlinear). The

deviation from the nonlinear case is shown in Fig.B.1. The norm error was calculated by Eq. B.1:

Norm error = 100× |
3
~νlinear − 3

~νnonlinear|
|
3
~νnonlinear|

(B.1)

For a greater relative angular speeds (γ̇ = 1000 rpm and θ̇ = 900 rpm) the error is low,

reaching 1.2% if α and β were chosen close to 1◦ Figs. B.1(a). When the system approaches the

coupling, errors become more significant. With γ̇ − θ̇ = 10 rpm (Fig. B.1(c)) a deviation of 14

% occurs for greater angular displacements. A critical point occur if γ̇ − θ̇ = 1 rpm (Fig. B.1(c)),

where errors above 180% were computed.

The direction error was calculated by Eq. B.2. The dot product between vectors give a mea-

sure of the relative angle between them. It was subtracted from 1 to verify how the approximation

deviate from perfect alignment (cos 0◦). As it is possible to see in Fig. B.1(b), B.1(d) and B.1(f),

error on the orientation is extremely low no matter how close to coupling the system is.

Direction error = 1− 3
~νlinear · 3~νnonlinear

|
3
~νlinear| |3~νnonlinear|

(B.2)

B.2 With the rotating speed on global coordinates

The norm and direction errors (Eqs. B.1 and B.2) from Section B.1 were applied here. As

consequence of the formulation of the approximate unitary vector in Eq. 7.40, norm will present

very low errors in terms of angles. Figure B.3 shows results assuming α̇ = β̇ = 0 and angles

within 10−4◦ < α < 1◦ and 10−4◦ < β < 1◦. The element parameters were chosen as ψi0 = 45◦,

h = 0.01 m, R = 0.0875 m.

Norm errors for relative speeds equal to 100, 10 and 1 rpm (Figs. B.3(a), B.3(c) and B.3(e),

respectively) have maximum errors near 0.14 % for wobbling angles near 1◦. Maximum errors of

direction error were very low (approximately 10−13 on Figs. B.3(b), B.3(d) and B.3(f)) if compared
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to the case on Cardan coordinates (Figs. B.1(b), B.1(d) and B.1(f)). On that approach, both norm

and direction errors increased for lower relative speeds (Figs. B.1).

On the other hand, the norm errors adopting α̇ = β̇ = 1 rad/s were strongly affected by the

relative speed, with maximum value nearby 1.65% on Fig. B.3(a) (γ̇− θ̇ = 100 rpm) that increases

to 15.55% if γ̇ − θ̇ = 10 rpm on Fig. B.3(c). This error trespasses 100 % if γ̇ − θ̇ = 1 rpm (Fig.

B.3(e)). The direction errors also increased with lower relative speeds on Figs. B.4(b), B.4(d) and

B.3(f).
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(a) Norm error for γ̇ = 1000 rpm and θ̇ = 900 rpm (b) Direction error for γ̇ = 1000 rpm and θ̇ = 900 rpm

(c) Norm error for γ̇ = 1000 rpm and θ̇ = 990 rpm (d) Direction error for γ̇ = 1000 rpm and θ̇ = 990 rpm

(e) Norm error for γ̇ = 1000 rpm and θ̇ = 999 rpm (f) Direction error for γ̇ = 1000 rpm and θ̇ = 999 rpm

Figure B.1: Unitary vector error for ψi0 = 45◦, γ = 0◦, h = 0.01 m, R = 0.0875 m and α̇ = β̇ = 0

rad/s.
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(a) Norm error for γ̇ = 1000 rpm and θ̇ = 900 rpm (b) Direction error for γ̇ = 1000 rpm and θ̇ = 900 rpm

(c) Norm error for γ̇ = 1000 rpm and θ̇ = 990 rpm (d) Direction error for γ̇ = 1000 rpm and θ̇ = 990 rpm

(e) Norm error for γ̇ = 1000 rpm and θ̇ = 999 rpm (f) Direction error for γ̇ = 1000 rpm and θ̇ = 999 rpm

Figure B.2: Unitary vector error for ψi0 = 45◦, γ = 0◦, h = 0.01 m, R = 0.0875 m and α̇ = β̇ = 1

rad/s.
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(a) Norm error for γ̇ = 1000 rpm and θ̇ = 900 rpm (b) Direction error for γ̇ = 1000 rpm and θ̇ = 900 rpm

(c) Norm error for γ̇ = 1000 rpm and θ̇ = 990 rpm (d) Direction error for γ̇ = 1000 rpm and θ̇ = 990 rpm

(e) Norm error for γ̇ = 1000 rpm and θ̇ = 999 rpm (f) Direction error for γ̇ = 1000 rpm and θ̇ = 999 rpm

Figure B.3: Unitary vector error for ψi0 = 45◦, α̇ = β̇ = 0 rad/s, γ = 0◦, h = 0.01 m, R = 0.0875

m
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(a) Norm error for γ̇ = 1000 rpm and θ̇ = 900 rpm (b) Direction error for γ̇ = 1000 rpm and θ̇ = 900 rpm

(c) Norm error for γ̇ = 1000 rpm and θ̇ = 990 rpm (d) Direction error for γ̇ = 1000 rpm and θ̇ = 990 rpm

(e) Norm error for γ̇ = 1000 rpm and θ̇ = 999 rpm (f) Direction error for γ̇ = 1000 rpm and θ̇ = 999 rpm

Figure B.4: Unitary vector error for ψi0 = 45◦, γ = 0◦, α̇ = β̇ = 1 rad/s, h = 0.01 m, R = 0.0875

m
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