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Resumo

A interferometria sismica ¢ uma metodologia que permite calcular as fun¢des de Green para fontes
(ou receivers) onde sé temos receptores (ou fontes, respectivamente). Isto pode ser feito com métodos
baseados em correlagcdo ou convolucio. Neste trabalho nds apresentamos uma nova abordagem para
reposicionar o arranjo sismico desde a superficie da terra num datum arbitrario em profundidade,
onde sdo usados os teoremas de reciporocidade unidireccionais tipo correlacdo e convolucdo. O
proceso de redatumacdo pode ser feito em trés passos: (a) cilculo a funcdo de Green desendente para
fontes na superficie da terra e receptores no datum, (b) calculo da correspondente funcdo de Green
ascendente, e (c) cdlculo do campo de onda completo com o arranjo sismico reposicionado no datum.
Para calcular os passos (a) e (b) nés precisamos como dados de entrada o arranjo sismico na superficie
da terra e campos de onda modelados com as velocidades do medio acima do datum. Ja para o célculo
do passo (c) é necessario conhecer as respostas dos passos (a) e (b), os quais serdo usados como dados
conhecidos na equagdo de interferometria baseada em convolug¢do. O método leva em consideracdo a
nao homogenidade do medio acima do datum, reduzindo os eventos anti-causais e artefatos, quando

€ comparado com métodos baseados puramente em correlacao.

Palavras chave: Interferometria sismica, teoremas de reciporcidade unidireccionais, convolu¢do and

correlagdo.



Abstract

Seismic interferometry is a method to retrieve Green’s functions for sources (or receivers) where
there are only receivers (or sources, respectively). This can be done by correlation- or convolution-
based methods. In this work we present a new approach to reposition the seismic array from the
earth’s surface to an arbitrary datum at depth using the one-way reciprocity theorems of convolution
and correlation type. The redatuming process is done in three steps: (a) retrieving the downward
Green’s function for sources at the earth’s surface and receivers at the datum, (b) retrieving the corre-
sponding upward Green’s function, and (c) retrieving the reflected upward wavefield for sources and
receivers at the datum. Input for steps (a) and (b) are the surface data and wavefields simulated in
a velocity model of the datum overburden. Step (c) uses the responses of steps (a) and (b) as input
data in the convolution-based interferometric equation. The method accounts for inhomogeneities
in the overburden medium, thus reducing anticausal events and artefacts as compared to a purely

correlation-based procedure.

Key words: Seismic interferometry, one-way reciprocity theorems, convolution and correlation.
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1. Introduction

The redatuming of seismic data is a classic technique in the repertoire of seismic processing. Its
purpose is to simulate data as if it were acquired from a new datum, i.e., a different measurement
surface (Berryhill, 1979, 1984). The redatuming technique’s principal applications are the correction
of seismic data for the effects of an acquisition at an irregular surface and for the effects of complex
geological structures in the overburden such as low-velocity layers or strong lateral variations. The
objective is to focus the seismic data processing closer to the target in a specific subsurface region
(Wapenaar et al., 1992).

In recent years there has been a growing interest to improve petroleum exploration and process-
ing of seismic data using interferometric techniques. Seismic interferometry is a technique based on
optical physics. It allows us to use parts of the information contained in the seismic data that are not
taken into account in conventional processing. Its basic principle allows us to generate new seismic
responses or virtual sources where only receivers were placed (Wapenaar et al., 2010a). In seismic
exploration, authors like Claerbout (1968) and Scherbaum (1978) were the first to make use of inter-
ferometric techniques. Claerbout (1968) showed that the Green’s function for reflections recorded at
the Earth’s surface could be obtained by the autocorrelation of the data generated by buried sources in
a 1D medium, while Scherbaum (1978), constructed geological structure based on the properties of
the Green’s functions, using information of microquakes. Other authors as Wiggins (1984) and Wape-
naar (1993) have been discussed about other interferometric methods, i.e., the Kirchhoff integral, and
nowadays the discussion have included amplitude correction (Tegtmeier et al., 2004). Another line
of research is dedicated to wave-equation-based redatuming (Yilmaz and Lucas, 1986; Bevc, 1995;

Schneider et al., 1995). More information on redatuming can be found in Schuster and Zhou (2006).

The classical redatuming procedure correlates surface seismic data with those acquired at depth as
was mentioned before. This correlation-based method has been well studied in the literature, by Xiao
and Schuster (2006), Schuster and Zhou (2006), Dong et al. (2007), Lu et al. (2008), Wapenaar et al.
(2008), Schuster (2009), Curtis (2009), Wapenaar et al. (2010a), van der Neut et al. (2011), van der
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Neut (2012), and many others. They attempt to use the techniques with the objective of improving the
seismic sections and reducing the uncertainty in hydrocarbon exploration in regions of high structural
and sedimentological complexity. Recently authors like Slob et al. (2007) and Wapenaar et al. (2008)
extend the interferometric definition including not only crosscorrelation, but also crossconvolution

inside of the technique.

Seismic interferometry by convolution is an alternative to the classical correlation-based scheme.
There are many situations where the convolutional form is more convenient than the correlation-based
methods. One of the main advantages of the convolution-based procedure is its inherent compensa-
tion for the properties of the source wavelet. Another important advantage is that the underlying

theory does not require the assumption of a lossless medium (Slob and Wapenaar, 2007).

In this work we proposed a methodology that considers the properties of both convolution and
correlation methods to solve the limitation of each when considered separately. We deduced similar
equations to van der Neut et al. (2015a), where we used the one-way reciprocity theorems of cor-
relation and convolution type to calculate expressions to retrieve the up- and downward wavefields
constituents. Using both up- and downward wavefield as input data, is possible do the reposition of
the seismic array from the earth’s surface at an arbitrary datum in depth. This could be done con-
sidering two interpretations: convolution and correlation methods. To retrieve the up- and downward
wavefields constituents and the complete wavefield at the datum, we calculated the inverse functions

to retrieve them.

In the first chapter we deduced the Helmholtz wave equation starting from the movement and
deformation expressions. In the second chapter we deduced the reciprocity theorems of convolution
and correlation type in the complete and the one-way wavefields. In the chapter three we deduced the
interferometric redatuming methods with correlation and convolution-based. In the chapter four we
showed our expressions to calculate the up- and downward wavefield constituents by inversion and
we presented two interpretations to calculate the complete wavefield at datum using as input above
wavefields in expressions with convolution and correlation-based. In chapter five we deduced the
inverse functions to solve the expressions in chapter four. Finally, in chapter six we showed the nu-
merical experiments to validate our expressions to calculate the up- and downward with source at the
earth’s surface and receivers at datum, and the complete wavefield redatumed using the expressions

from chapter three, four and five.
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1.1 Acoustic wave equation

The Fourier transform of a time-dependent function d(t) is defined as d(w = [T _d(t) exp(—iwt)dt,
where ¢ is the imaginary unit and w denotes the angular frequency. And the inverse Fourier transform,
is defined as d(t) = 5 [° d(w) exp(iwt)dw. From the Fourier definition we can noticed that the
limits of the integration can be decomposed in two time intervals, (—oo, 0] and [0, 00). According
with Bleistein et al. (2001) the first interval corresponds to the physical condition of anticausality, 1.e.,
the wavefield described at some time in the past implodes towards a source at time zero. The second
interval corresponds to the physical condition of causality, that is, the source is initiated at some finite
time, which can be taken at ¢ = 0, before the wavefield is recorded. Having a clear definition of the
Fourier transforms, and in order to deduce the Helmholtz wave equation, we define the acoustic wave

equations for movement and deformation in frequency domain, respectively, as

A

Vi(z,w) +iwp(z)o(r,w) = f, (L)

V- o(z,w) + iwk(x)p(z,w) = q, (1.2)

where © = (z1,x9,x3) and the subscripts are the axis coordinates, p(x,w) is the acoustic pressure
(Pa), i is the imaginary part, w is the angular frequency, p is the volume density of mass (kg/m?),
v(z,w) is the particle velocity (m/s), k is the compressibility (Pa™1), f is the volume source density

of volume force (N/ m?3) and q is the volume density of injection rate (s~ 1).

Multiplying equation (1.1) by @, applying the divergent and multiplying by p(x), respectively,
we have

Vio,)| +ip(o)¥ - i(o0) = o)V | (13)

iwp(r)V - oz, w) — wp(r)k(z)p(z,w) = iwp(r)§. (1.4)
Subtracting equation (1.3) with (1.4), and taking into account that kK = Wl(x)’ we have

L . w w_QAxw:_vP(x)A 1 f —iwp(2)d
p(z)V [p(x)Vp( 7 )} + il w) 2(2) f+p(x)V [ —iwp(r)q, (1.5)

where c is the wave velocity. This expression is the inhomogeneous Helmholtz wave equation. We
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define the source term of right-hand side of Equation (1.5) as

s Vplx) . 1 P .
F=- f+ V- f—iwp(x)q. (1.6)
EORATE )
We choose impulsive point sources of volume injection rate, according to F=-6 (x — x). Thisis a

Dirac delta source in the position z°. Considering the above situation, the wavefield of equation (1.5)

can be expressed in terms of acoustic Green’s function, according to

w2

(@)

1 ~
p(x)V - | —VG(z,w;z%)| +

o) Gz, w;z®) = —6(x — z°). (1.7)

1.2 Gauss’s Theorem

The basis for all seismic interferometry is the Gauss’s theorem, which relates an integral over
a closed surface S of an arbitrary vector field to an integral over the enclosed volume V' of the

divergence of the vector field, this is written as:

#F-ﬁdS:// vV - FdV, (1.8)
S 1%

where [ is a continuously differentiable vector field defined on a neighborhood of V. The left side of
equation (1.8) is a surface integral over the surface .S and the right side is a volume integral over the
volume V' (Figure 1.1).

X2
£, IXB

Figure 1.1: Representation of a volume V' with surface S, 7 is a surface normal versor.

To deduce the reciprocity theorems of convolution and correlation types, we start considering a
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closed surface (Figure 1.2). On the surface we have sources and inside there are two receivers in the
positions z 4 and x g, respectively. The medium in- and outside the surface S can be anything. This

is the classical configuration to deduce the reciprocity theorems.

t*__ e

Figure 1.2: Representation of a volume V' with surface S, the points A and B are inside V' and n is
the surface normal vector.

In the next chapter we will deduce the reciprocity theorems, to both, full and one-way wavefield
at cases of convolution and correlation type. Which we will have as a base the Gauss’s theorem to
make our deductions. There we will see that using conveniently this theorem we can make deductions

in order to calculate the reciprocity theorems previously cited.
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2. Reciprocity Theorems

In this chapter, we will derive the reciprocity theorems using the Helmholtz wave equation with
velocity and density variation. These deductions allows us to discuss the limitations of the geometric
distribution of the surface within the reciprocity theorems. Also, it is possible to analyze, how the sur-
faces geometric distribution can be influencing problems, i.g., interferometry, redatuming, focusing
functions, etc. That is possible because the reciprocity theorems have as principal base the Gauss’s
theorem, which in the most basic essence consider a closed surface. We will do especial focus in the
one-way reciprocity theorems of correlation and convolution type, which are the basis to the main

contribution of this research work.

2.1 Reciprocity theorem of the convolution type

Considering F'(z,w) in equation (1.6) as a monopole, where f(z,w) = 0 and §(z,w;z*) =
G(z,w)dé(x — x*). Following Wapenaar et al. (2010a,b), we consider two states A and B in the
Helmholtz equation in order to calculate the reciprocity theorem of the convolution type. We assume
both states to have the same properties, i.e., p?(z) = pP(x) = p(z) and c(z) = cB(x) = c(z).

Moreover, we assume that wavefields in both states have causal sources inside volume V. Since the

states differ only in the source, the corresponding wavefields p(z,w; z4) = p* and p(z, w; 28) = pP
must satisfy
(2)V { ! V““]+ R @.1)
pP\T | VP p =—- ) .
p(x) c(x)
(2)V { ! VAB}JF WP s pB 2.2)
p(x)V - | == Vp"| + 5 —=p" = —F", :
p(x) (z)

Note that equations (2.1) and (2.2) show us that the difference between the state A and B is in the
source distribution and the wavefield, the other properties remain the same. Multiplying equation

(2.1) by p(x, w; x7) and equation (2.2) by p(x, w; x4), we have

1

p(z)

2
~ ~ W B N
p()pPV - { VPA} +3 (x)poA = —pP A, (2.3)
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2

1 R W A “Af
—val + 5 —pp” = —p'FP. (2.4)
(z)

p(z)

Subtracting equations (2.3) with (2.4), we have

o2}V - [

b b
plx) px)

Reorganizing factors in the left-hand side of equation (2.5), we obtain

p(x)ﬁBV-{ Vﬁf“] —p(x)ﬁAV-[ VﬁB] = —pPFA 4 pAFP, (2.5)

Volx) , nr . A 1 5. . A aa IS
p(z) { 2P< ) (vapA _ AVpB) L (pBApA _ pAApB):| _ pAFB _ pBFA' (2.6)
P2 () p(z)

Then, equation (2.6) can be written as

AV [L (ﬁBvﬁA _ﬁAVﬁB)] -

~A 1B ~B 1A
e e <p FB_ pBE ) 2.7)

After integration over an arbitrary volume V', equation (2.7) has an appropriate form to apply Gauss’s
theorem (equation 1.8). The result is the reciprocity theorem of convolution type, which we can

represent as

1 BoiA ApaBY o _///L CATB | ABA
#p(x) (vt =5V s = I (07 = 5" ) av. 2.8)
S \%4

Finally, equation (2.8) is the reciprocity theorem of the convolution type with density and velocity
variation. This is because the operations in the frequency domain i.e., p? Vp* are convolutions in the
time domain. According with Bleistein et al. (2001) the integral over the closed surface .S in equation
(2.8) could be approached to zero, using the "Sommerfeld radiation conditions". Then, expression

(2.8) can be written as

1
%% —— (pPVpA — pAVpP) - 7dS = 0. (2.9)
! p(x)

2.2 Reciprocity theorem of correlation type

A completely analogous analysis can be carried out starting at the complex conjugate of equation
(2.1) together with expression (2.2). Replacing the wavefield p* and the source term F in the

above derivations by p4* and F4* where the superscript * denotes complex conjugate. Rewriting
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expressions (2.1) and (2.2) for this analysis case, we have

1 w2 N

p(x)V - [MW‘*} + CQ(x)ﬁA* =P, (2.10)
1 w2 .

p(x)V ’ {wvﬁ]g} + CQ(x)ﬁB = _FB7 (2.11)

As the previous analysis, again we can verify that the difference between states A and B are in the
source distribution and in the wavefield. Multiplying equations (2.10) by ? and (2.11) by p**,

have

~ 1 A A w2 ~B ~Ax ~B 11 A%
p(z)p”V - {—va}+ b P = =t P, (2.12)
p(x) A(x)
p(x)ﬁA*V 1 vAB:| + ;"}2 ﬁA*ﬁB — —ﬁA*FB. (213)
() A(x)

Subtracting equation (2.13) from (2.12), we have

~ 1 ~ *- ~ Ax 1 ~ ~B 1 Ax ~Ax T
p(x)pBV | ——=Vpt| — p(a:)pA V. | —VpP| = —pBFY 4 pM B, (2.14)
p() ] p()

Reorganizing factors in the left-hand side of equation (2.14), we obtain

VP(Z‘) ABxg A - Bx
p(z) {—pg(x) (7 Vp" — pVp%) +

Equation (2.15) can be written as

1 ~ ~ Ax AAR A A A% T ~B 11 A%
M(pBApA —pA ApB)} = pMFB —pBFA . (2.15)

v [L et e - L

After integration over an arbitrary volume V', equation (2.16) has an appropriate form to apply the

<ﬁA*ﬁB . ﬁBFA*> ) (216)

Gauss’s theorem (equation 1.8). The result can be written as

# L (pPVp** — pA*VpP) - adS = /// L (pA*FB . pBFA*) dv. 2.17)
I o) W ple)

Equation (2.17) is the reciprocity theorem of the correlation type with density and velocity variation.

*

This is because the operations in the frequency domain i.e. pZVpA* are correlations in the time
domain. According with Wapenaar and Berkhout (1989) the integral over the closed surface S in

equation (2.17) could be approached to zero, using the "Wapenaar anti-ratiation conditions". Then,
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expression (2.17) can be written as

1
- Vi 59 s o 2.18)
! p(r)

2.3 Surface decomposition of reciprocity theorems

In this section we will analyze the closed surface at the area integrals in the reciprocity theorems of
convolutions and correlations type, previously deduced. The integral over the closed surface in equa-
tions (2.9) and (2.18) can be treated conveniently if is considered a cylindrical section of the wave-
propagation medium, while the geometric restriction remains that the surface has to be closed. Now
we show that the integrals in equations (2.9) and (2.18) can not only represent closed surfaces, but can
also depict open surface integrals, simplifying the reciprocity theorem expressions above. This sim-
plification is the fundamental basis to deduce the basic theory of interferometric redatuming methods.
Surface S in equation (2.9) and (2.18) may be represented geometrically by a cylinder, composed
of three surfaces defined as S; = {(x1, 29, 73) € R¥|a3 = 23}, Sy = {(x1, 22, 23) € R¥|a3 = 23}
and S3 = {(z1, 79, 23) € R®|z3 = 3}, with the versors n; = (0,0, —1), 7y = (0,0,1) and ng =

(21, 22, 0), respectively (Figure 2.1).

/] =12 rﬁ/l = (0707_1)
X1

ny = (0,0,1)

Figure 2.1: Cylinder divided in three different surfaces, Si, S; and Ss.
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Reciprocity theorem of convolution type

In order to decompose the closed surface in equation (2.9) to express the integral over a closed

surface as an integral of open surface, as we can see in the next deduction, we write equation (2.9) as
L Bosd  AAosBy - L Bosd  AAgsBy o
(p°Vp* — p?Vp©) - nudridrs  + (p°Vp* — pVp©) - nodrydas +
p(x) p(x)

Sl S2

I oA AoABy -
// M(pBVpA — pAVpP) - fgdzidr, = 0. (2.19)
S3

According with Bleistein et al. (2001), the integral over the surface S5 is zero when this surface is
extended at the infinite. Then, equation (2.19) we can express the reciprocity theorem of convolution

type as

1 A e X 1 A L )
// p_(m) (pBVpA — pAVpB) -fdridry = — // M(pBVpA . pAva) odaydry,  (2.20)
S o

where S; and S5 now denote the complete horizontal planes at x3 = z} and z3 = 22, respectively.
To derive equation (2.20), no assumptions regarding the nature of the medium inside and outside the
surface S were necessary. In other words, this equation is valid for general inhomogeneous media,
as long as the sources are outside volume V' and the medium properties in both states are the same

inside the volume V.

Reciprocity theorem of correlation type

In this section, we will simplify the reciprocity theorem of correlation type, decomposing the
closed surface in equation (2.18), analogous to convolution type deduction. knowing the procedure,

we write equation (2.18) as
1 ~ A~ Ax ~ Ak A ~ 1 ~ A~ Ax ~ART A ~
// M(pBVpA —pA VpB) -npdridry  + // m(pBVpA —pA VpB) - nadridry +
Sl S2

1 A ~Ax A~ Ax A A~
// M(pBVpA — pM*VpP) - hgdaydz, = 0. (2.21)
S3

Then form of the integral over the surface S5 in equation (2.21) does not allow for the application
of the Sommerfeld radiation conditions. However, using the “Wapenaar anti-radiation conditions”

(Wapenaar and Berkhout, 1989), we can also justify that this integral tends to zero when the surface S
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tends to infinity. In effect, these conditions state that there should be no contributions from infinity to
this integral in an inhomogeneous medium with sufficient scattering. Hence, the reciprocity theorem

of correlation type can be written as

1 Bodr  adsen . I o Boidr dren .
//—(pBVpA —pt VpB) -t dxridry = —//—(pBVpA —pt VpB) - Nodxidry. (2.22)
/ p(x) J p(x)

1 2

Again with S; and S, denoting the complete horizontal planes at x3 = z3 and z3 = 3, respectively.
Equation (2.22) is valid for general inhomogeneous media inside and outside surface S. This theorem
is valid if the media inside at surface S is scattering enough to satisfy the “Wapenaar anti-radiation

conditions”.

2.4 One-way reciprocity theorems

To derive the one-way forms of the above reciprocity theorems, we consider the two states, A
and B, in the situation depicted in Figure (2.2). The surfaces S; and S; have now been extended
to cover full horizontal planes, i.e., they are now defined as S; = {(x1, 22, 73) € R*|x3 = z3} and
Sy = {(z1, 79, 23) € R*|z3 = 23}. Both states A and B have a source positions at surface S;, in
x4 and 25, respectively, and the receivers are distributed over both surfaces. Note that we do not

consider S to be a free surface.

2 " VT (.r:.r“)
nlk/w‘(.r; ) anng 1
XA 1 1 / XB
S, X S,

S, >
ANV ;1) ,'95 3 VI (z;2")

1, 1,
State A State B

Figure 2.2: Sketch of two sources at positions 24 and ¥ inside a volume V' with receivers along the
closed surface S with position 2. The positions « are the directions of the incoming waves from 24
and 27 and their angles 6“ and 6 with respect to the unit normal versor 7 to the surface.

According with Wapenaar and Berkhout (1989) the total wavefield p(x,w) at the receiver can be
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decomposed in up- (—) and downgoing (+) constituents, i.e.,

ﬁ('wi) :ﬁJr(xuw)_'—ﬁ*(wi)' (223)

Equation (2.23) is important, because this decomposition allows to derive the one-way reciprocity
theorems of convolution and correlation type. These, in turn, are the basis for the retrieval of the up-

and downgoing Green’s functions using least squares inversion.

At this point, we suppose that the sources are delta functions in space and time, and the velocity
field is sufficiently smooth in a small region around both surfaces S; and S;. Under these assumptions,
we can express the up- and downgoing pressure fields p(x, w; z*) as the ray-theoretical approximation

of the Green’ function, which form is given by the following expression

pa(,w; a®) = A(z; 2°) exp [FiwT (x; %)), (2.24)

where T is the traveltime function that satisfies the eikonal equation ||VT (z;z%)||* = 02#@), the sub-
script + in equation (2.24) is the down- and upgoing wavefield direction, respectively, and A(z;z*)
amplitude, mainly determined by the geometrical-spreading factor. Signs (—) and (+) in the exponen-
tial factor in equation (2.24) are refer to causal and anticausal responses in time domain, respectively.
In order to calculate the gradient of the pressure field, we does the derivative of equation (2.24), yields

us
Vi = VA(z; 2°) exp [FiwT (z; 2°)] F iwA(z; 2°) VT (x; 2°) exp [FiwT (z; 2°)) . (2.25)

When the expression (2.25) is evaluated with high values of frequency, the term FiwT (z; z*) could
be depressed because the term FiwA(x; x°) VT (z; 2°) exp [FiwT (x; 2°)] in high frequency values is
dominant respect the other term, this case is called as “high-frequency approximation”. At that case,

the gradient of equation (2.25) can be represented as
Vit = FiwpL VT (z; %), (2.26)
where the amplitude variation has been neglected.

One-way reciprocity theorem of convolution type

In this section, we derive the one-way reciprocity theorems of convolution type using the above

wavefield decomposition. This theorem is helpful to extract detailed information about the waves and
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their behavior as a function of the propagation direction. When the wavefield is decomposed into up-
and downgoing components, the gradients of these individual wavefield components depend on the

propagation direction.

We start our derivation at the one-way reciprocity theorem of convolution type, replacing equation

(2.23) in the expression (2.20), we obtain
1 D ) D N N A A A~ A
J] 5 (4B ¥ 54 5) = (544 54) 9 (5 4 52)] - s =
s

1
S T @)~ (AT G+ )] e, 2D
Sa

Assuming that the medium is smooth in a small region around S; and S, the gradient of pressure
fields can be approximated in high frequency with the expression (2.26). Still upon high-frequency
arguments, the main contributions to the integrals in equation (2.27) come from stationary points on
surfaces S; and S,. At those stationary points p* and p? are identical. This implies, for example,
that the terms ﬁf Vp#A and —p4 Vﬁf give equal contribution to the integral, whereas the contributions
of —ﬁf Vﬁﬂ and ﬁﬁ Vﬁf cancel each other (Wapenaar and Fokkema, 2006). Hence, we can rewrite

equation (2.27) as

1 g Boay 1 opes Bear
// —— (pBVp? + pPVpY) - hdridr, ~ — // —— (PPt + pPVpL) - Nadwidrs.  (2.28)
M) )

Considering that surfaces S; and S5 have the geometrical configuration as we show in the Figure (2.2),
the normal vectors at the surfaces S; and S5 in equation (2.28) can be expressed as n; = (0,0, —1)

and 1, = (0,0, 1), respectively, allowing us to express equation (2.28) as
L iiBo A ~An B L (iBa 2A | sBo A
—— (pZ0sp’. — pLOspY) daiday = —— (py03p” + p~ 05p7) daxidxs. (2.29)
S//p(x) ( + +) 1 / () ( + +) 1
1 2

We write in the left-hand side of the equation (2.29) the term ﬁfagﬁf‘ as —ﬁf‘agﬁf, that is the most
convenient form for our deductions in future sections of this work. Equation (2.29) is the most

common form to write the one-way reciprocity theorem of convolution type.
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One-way reciprocity theorem of correlation type

In this section we will deduce the one-way reciprocity theorem of correlation type, in which we
consider the state A as a complex conjugate, denoting this with an asterisk (x). Considering equation

(2.23) in its complex conjugate form, we replace it into the equation (2.22), obtaining
1 . . e s o A A )
[ o 162429 (52 52) — 4529 (32 4 57)] e, =
S1
1
- Sy L2422V (52 92 = (o + 2V (4 P2)] - e (230)
So

As previous analysis, the principal contributions to the integrals in equation (2.30) comes from the
stationary points on surfaces S; and S;. This implies, for example, that the terms ﬁfVﬁﬁ* and
—ﬁf* Vﬁf give equal contribution to the integral, whereas the contributions of ﬁf Vp?* and —ﬁf‘*Vﬁf

cancel each other (Wapenaar and Fokkema, 2006). After that, we can write equation (2.30) as
1 N ~ Ax A~ ~ Ax ~ 1 ~ ~ Ax ~ ~ Ax ~
// — (PEVP_? +P€fo ) -nydridry = — // — (prpf +p]_3fo ) ‘Nadridry. (2.31)
/ p(x) K p(z)

Similar to previous analysis we consider the normal vectors at surfaces S; and S, as n; = (0,0, —1)

and ny = (0,0, 1), respectively, to deduce the following expression
L Bo Ae  ~Asq -B L po de | ~BA -4
pZ0sp=" — pyt0sp)) dandus = PR osp* + pPospt) dydas. (2.32)
S// p(IL‘) ( + +) ; p(IL‘) ( + + )

Again we write the equation (2.32) as the most convenient form to our future deductions in this work,
we rewrite the term ﬁf (%,ﬁﬂ* to —ﬁﬁ* 83ﬁf in the left-hand side of equation (2.32). Equation (2.32) is

the most common form to write the one-way reciprocity theorem of correlation type.

2.5 Source-receiver reciprocity

In this section we will deduce the reciprocity theorem between the Green’ functions, where we
also consider a especial conditions in the medium where the wavefield is propagated. In this case,
the medium between z* and 2 in the Figure (2.3) is inhomogeneous. Through the use of Gauss’
theorem with the vector field appropriately chosen, we will deduce the Green’s functions reciprocity

theorem for points 2 and ¥ in a variable-density medium.
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)L/z\)fﬁ

Figure 2.3: Sketch of a source at position z* with a receiver at position 2, where [ is the represen-
tation of a wave path from z* to 25,

We start from equations (1.5) and (1.7). For simplicity, we write GA =G (7, w; x™). Multiplying
Equation (1.5) by G4, we obtain
p(2)GAV - {Lw} + W G4 p=—F(z,w)G4, (2.33)
p(x) ()
and multiplying the equation (1.7) at the position 24 by p, yields
n 1 A w? A AN
p(x)p V - [MVG } + Cz(x)p G* = =z — z7)p. (2.34)

Subtracting Equations (2.33) and (2.34), integrating over an arbitrary volume V', and applying Gauss’s
theorem show in Equation (1.8), we find

Z]%%x) <ﬁVGA —G*Av;a) S = /V//ﬁ [

An analogous analysis as done to obtain equation (2.9), expression (2.35) can be written as

=y
=
E
)
S
|
=
8
|
S
=

p} dv. (2.35)
1 ~ ~NA NA ~ A~
e (pVG e vp) hdS =0, (2.36)
oS

Using equation (2.36) in expression (2.35) and solving the volume integral of the Dirac delta at a

point z# of the function p, yields

plz?,w) = p(z?) /// ﬁp(x./w)éAdV. (2.37)

Considering another stage, where the source term is in the position 27, then we have F (r,w) =

§(x — o), replacing this in the equation (2.37), yields

Gz, w; 2P) = pla?) /// ﬁé(z — 2B G (2, w; )V, (2.38)
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which results is the identity

N

Gz, wya®) G(zB, w; z?)
plzt)  p(a®)

From equation (2.39), we see that the Green’ function between points 24 and 2 is not reciprocal, if

(2.39)

the values of the densities at these points are different. However, a density-scaled Green’s function
(Bleistein et al., 2001) is reciprocal as can be seen, if we multiplied each side of equation by a density

factor \/p(x4)p(zB), as

G(z4, w; 2B - C(2B w: 2
[W] plat)pla”) = [(pTB))] p(a4)p(aP). (2.40)

Therefore, the density-scaled Green’s function can then be defined as

da,wia®) = [P G, w0, (2.41)

where x; is the source position. Conversely, the Green’ function can be recovered from its density-

scaled version by

@(x,w;xs) = pp(;c) §(z,w;x). (2.42)

We can note that in the case of constant density the density-scaled Green’s function g(z,w;z*) re-
duces to the Green’s function G(x, w; ) itself. With definition (2.41), the reciprocity relation is
A

g( ,w;xB) = Q(xB,w;xA). (2.43)
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3. Interferometric Redatuming

In this chapter, we deduce the basic interferometry equations based on the reciprocity theorem of
correlation type in order to apply this theory as a way to focus seismic imaging below geologically
complex bodies or structures. Redatuming is a technique that seeks to correct seismic data for effects
of an irregular surface acquisition (land seismic data) and effects of complex geological structures
in the overburden. Interferometric methods can be used to relocate sources where only receivers are
available and have been used to move acquisition geometries to the ocean bottom or transform data
between surface seismic and velocity seismic profiles. By combining modeling with interferometry
and correlating the modeled direct wave with seismic surface data, we can relocate the acquisition
system to an arbitrary datum in the subsurface, in which the propagation of direct waves can be mod-
eled with sufficient accuracy. In this way, we can carry the seismic acquisition geometry from the
surface to geologic horizons of interest. Specifically, we show the derivation and approximation of
the seismic interferometry equation, conveniently using Green’s theorem for the Helmholtz equation

with density variation.

3.1 Interferometric equation with correlation-based expressions

We start with a review of the basic interferometry equation (see, e.g., Wapenaar et al., 2010a).
We consider the case where we have a closed surface S with receivers located on it. Inside the
enclosed volume V', we have two sources located in positions x4 and xp, where = = (z1, x9,x3)
(see Figure 3.1). Considering the form of the wave equation (1.7) we define two expressions with the

same form but evaluated at different source position 2 and zZ, respectively, as

] 2

p(x)V - lﬁV@*(z,w;xA)_ + (1) G*(z,w; ) = —6(z — z?), (3.1
and - 5
p(x)V {p—x)V(A}’(x,w;xB)_ + ngm)é(x,w;xB) = —6(z — o). (3.2)
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In equation (3.1) the superscript * denotes the complex conjugate.

VL Y, VI

Figure 3.1: Two-dimensional sketch of two sources at positions x4 and xp inside a volume V' with
receivers along the closed surface S of V. Indicated at position = are the propagation directions of the
incoming waves from x4 and 3, and their angles 64 and 65 with respect to the unit normal vector n
to the surface.

, and subtracting

Multiplying equations (3.1) by G(z,w; 28) and equation (3.2) by G*(z, w; )

the results, we can write, in analogy to the analysis of the source-receiver reciprocity theorem

1 - By Ao 2N o w VO (. o B _
v.{m[(}(x,w,x VG (2, w;27) = G (2, w;27) VG (7, w; )}}

5 [ = e ) = oo — )Gt

Integrating equation (3.3) over an arbitrary volume V' with surface S and applying Gauss’ theorem

(3.3)

~ ~

1 A R

# @ [G(x,w;xB)VG*(x,w;xA) — G*(x,w;xA)VG’(x,w;xB)] -ndS =
p(x

S

/V// %x) [5(95 )G (w0 2) — (o — 2N w1 xB)} " (3.4)

The volume integral on the right-hand side of equation (3.4) can be explicitly solved. This yields

# % [é(iE,WS xB)Vé*(g;,w; ;L'A) — é*(x,w; ZEA)VG(.Z',W; :LB)] A dS =
P
] (3.5)

Gz, w; 2P).
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The reciprocity of Green’s functions, as seen above have the following relation

1 . 1 .
G(zB, w; zt Gz, w;x?P (3.6)

o ) = S Gt et

Replacing relation (3.6) in equation (3.5) we have

ﬂ% [G(m,w;xB)Vé*(x,w;wA) - @*(x,w;xA)Vé(x,w;xB)] -ndS =
p(z
| (3.7

p(x")

[é(x Jwi ) — GaP w )| .

On the right-hand side of equation (3.7) the real part of G (xP, w; x4) cancels. Thus, we obtain the

general interferometry relation that is

ﬂ % [G(x,w;a:B)Vé*(x,w;xA) - @*(x,w;xA)V@(x,w;xB)] -ndS =
p(z

2i (3.8)
7 ~ B A
ey m (06 )]
or
ﬂ ﬁ [é(w’w;xB)Vé*@W?mA) - é*($,W;xA)Vé(m,w;xB)] -ndS =
) 2i (3.9)
1 ~
~ ™ (Gt e

This is the fundamental relationship for all interferometry techniques with correlation, because it
proves that the Green’s function of the propagation from z* to 2” can be obtained with information
about the wavefield propagating from 2 and from 2 to (all) receivers on the closed surface. This

only is possible if 2 and =¥ are inside the closed surface.

3.1.1 Correlation-based Green’s function approximation

For the following considerations, we refer to Figure (3.1). In high-frequency approximation, the

Green’ function’s gradients satisfy

VG(z,w; 2°) = —iwG (x,w; 2°) VT (z; 2°). (3.10)
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The complex conjugate of equation (3.10) reads
VG (z,w;2°) = iwG* (x,w; 2°) VT (z; 2°). (3.11)

Substituting equations (3.10) and (3.11) in (3.8), and simplifying the imaginary terms on both sides,

we have

- iwp(xB)# ﬁ [G’(x, w; 2PV (222G (2, w; )+
(3.12)

G*(m,w;xA)VT(x;xB)G(x,w;xB)] -ndS &~ 2iIm [G(xB,w;xA)} .

At the stationary point (Bleistein et al., 2001) it is satisfied that VT (z; ) = VT (x;28) = VT (z).
This implies that both terms in the left-hand side of equation (3.12) have the same contribution at the

stationary point. Then is possible to rewrite equation (3.12) as

—iwp(xB)ﬂ ﬁé(m,w;xB)VT(x)é*(x,w; ) - dS ~ilm [é(mB,w;xA)} . (3.13)
S

Considering expression (3.11) is possible rewrite equation (3.13) as

ﬂ Lé(x,w;l'B)Vé*(x,w;%A) -ndS ~ —ilm [

~ LA
G wiah) | (3.14)
p()

) p(aP)
Equation (3.14) allows us to calculate the Green’ function between the source points z** and -, only
multiplying in the frequency domain the Green’ functions with source in z” and receivers varying in
x by the gradient of the complex conjugate Green’ function with source in 2 and receivers varying in
2. This is a particular and important result in the literature i.e., Wapenaar et al. (2010a), because with
a simple multiplication in the frequency domain allows us to retrieve Green’s functions for source

positions where we only have receivers.

3.2 Interferometric equation with convolution-based expressions

In this section, we will present the seismic interferometry by convolution-based, that is an alter-
native to the classical correlation-based scheme. According with Wapenaar et al. (2010b) in many
situations is most convenient to make interferometry by convolution-based than by correlation-based.
One of the main advantages of the convolution-based procedure is its inherent compensation for the

properties of the source wavelet. Another important advantage is that the underlaying theory does not
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require the assumption of a lossless medium (Slob and Wapenaar, 2007). To deduce the convolution-
based type expressions, we consider that outside at the closed surface S we have a point source
denoted as ° (Figure 3.2). At this point, we define two Helmholtz equations, where equation (3.15)
have a point source at the position z° and the second equation is (3.16) which the source term is zero,
this equation have virtual sources over the closed surface S denoted as x which correspond to the

stationary points between x° and 2 (see Figure 3.2)

1

z)V - (@, w; 25 H(x,w;2%) = —0(x — 2). :
PO - |V + G wia®) = (o - o) a.15
and | )

p(x)V - {mVG(x , W; T):| + 62($)G’(.1; ,wiyx) = 0. (3.16)

The geometrical configuration for the convolution-type method is described in Figure (3.2)

s

A

n

Figure 3.2: Two-dimensional sketch of a source at positions 2 outside the surface S, with receivers
along and inside the position  and z?, respectively, at the closed surface S of volume V. Where 7 is
the unit normal vector at the surface S.

Multiplying equations (3.15) by G/(2:2, w; ) and equation (3.16) by G(x,w; 2%), and subtracting
the results, respectively, analogous to the analysis of the source-receiver reciprocity theorem, this

operation can be expressed as

V- {L [G($B7w;x)VG(x,w;$S) — G(x,w;a:s)V(A}(a:B,w;x)} } =
(3.17)

applying Gauss’ theorem making integration over an arbitrary surface S and an arbitrary volume V/,



39

respectively, we have

ﬂ% [é(mB,w;x)V@(x,w;xs) - @(x,w;xS)VG(xB,w;x)] -ndS =
p(x
° . (3.18)
_ L L S\A(LB .
///p(x) [5@ z”)G(x ,w,x)] av,
v
solving the volume integral of right-hand side of equation (3.18) we obtain
#% [G’(xB,w;x)V@(x,w;xS) - G’(w,w;xs)V@(xB,w;x)] -ndS =
p(x
S ) (3.19)
- G(z®, w;a®
p(z) ( )

This is the fundamental relationship for all convolution based interferometry techniques, because it
proves that the Green’ function of the propagation from z° to 2” can be obtained with information

about the wavefield propagating from z° to (all) receivers on the closed surface.

3.2.1 Convolution-based Green’s function approximation

In this section we will simplify the term evaluated in equation (3.19). The right-hand side of
equation (3.19) contains a combination of two convolution products in the frequency domain. To
start we observe that G (z,w; x%) is the superposition of an inward and outward propagating field,
denoted with the subscripts 4 and —, respectively, which is written as G(z, w; 25) = G (2, w; 25) +
G_ (x,w; x%) (Wapenaar et al., 2010b). In the high frequency regime the derivatives in equation (3.19)
can be approximated in correspondence to the expression (2.26). The main contribution to integral
3.19 comes from the stationary points on surface S. However, the stationary points are different for
terms containing G+ than for those containing G_. Considering the wavefield decomposition of the
Green’s function G (x,w; %) is possible rewrite equation (3.19) as a coupled system, as we show in
equations (3.20) and (3.21). For terms containing G‘+ in the expression evaluated in the closed surface

integral in equation (3.19), we have at the stationary points

ﬂ ﬁ [G(:cB,w;:c)VéA:c?w;xS) - G+(x,w;x5)vé(x37w;x)} AdS —
(3.20)

~

S
iwﬂ % [—G’(xB, w; 2) VTG, (z,w; %) + G (x,w; 29) VTGP, w; az)} -ndS,
p(x
S
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whereas for terms containing G_ we have

ﬂ L [é(mB,w;x)Vé_(x,w;xS) — GA_(x,w;xS)V@(xB,w;x)} -ndS =
(3.21)

A ~

Mﬂ 1 [é(x37w;x)VTé_(x,w; %) + G_(z,w; 2°) VTG (2P, w; m)} - ndS.
5

Considering the gradient of in- and outward constituents of the Green’s functions, we can rewrite the

right-hand side expressions of equations (3.20) and (3.21) as, respectively

1 A A A o A
# m [G(mB,w; 2)VG, (z,w;2%) — Go (2, w; 2°)\VG(2P, w; x)] -ndS, (3.22)
and
1 A A A a A~
—# @) [G(xB, w; 2)VGE_(z,w;2%) + G_(7,w; 2°) VG (28, w; :U)] -ndS. (3.23)

S

According with Wapenaar and Fokkema (2006) at the stationary point over the surface S, the term
G(2B,w; 2)VG (x,w; 2°) can be expressed as —G_ (x,w; 2°)VG(2B, w; x), the in equation (3.23)
the terms have contribution among them. On the other hand the term G2, w; 2)VG _(z, w; 2°) can
be expressed as —G_(z,w; 25)VG(2”,w; z), then the terms in equation (3.23) cancel each other.

Taking into account the above observations, we can rewrite the equation (3.19) as

~

1 4 .

2P($S)# ﬂG(mB, w; 1)VG (2, w;2%) -7 dS = Gz, w; 2%). (3.24)

. .
. P

Equation (3.24) allows us to calculate the Green’ function between x and 2, which represents the

wavefield inside the surface S, if we know the gradient of the reference wavefield Vé+ (7, w;2°) and

the Green’s function between ° and 2. Knowing this, it is possible retrieve G (2P, w; x) using any

numerical inversion technique.

3.3 Correlation-based interferometric redatuming

For practical purposes, equation (3.8) is still inadequate, because it is extremely rare for closed
surface data to be available. Moreover, the Green’ functions’ gradients generally are unknown. There-
fore, the quantities in equation (3.8) need to be approximated by practically available data. In this

section we will consider the theory of correlation-based interferometry considering a seismic array
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over the earth’s surface, we will show that it is possible to relocate this seismic array to an arbitrary
position at depth that we call datum. To start the analysis of both correlation and convolution-based
the interferometric methods (next section), we consider two states A and B, just as we show in Figure
(3.3). We consider state A to represent the background (or unperturbed) medium and B the perturbed

medium.

State A State B

Figure 3.3: Two states with the same inhomogeneous medium between surfaces S; and S5. State
A describes the transmitted wavefield from S; to Sy and its scattered response recorded at .S; if the
medium is homogeneous above S; and below S,. State B describes the corresponding wavefields if
the medium is also inhomogeneous below .S;. The dotted line indicates the volume V.

Interferometric methods based on correlation could be a initial tool to retrieve the Green’ functions
in depth and try to focus the seismic image in the area of interest. The Helmholtz equations describing

the wavefields for a point source at 22 in states A and B are
LAGM (x,w; 2P) = —=0(x — 2P), (3.25)

and
LEGE (z,w;2P) = —6(x — 2P), (3.26)

equations (3.25) and (3.26) are associated to the Helmholtz operators as

A w?
_ _ e 27
£ =¥ |V 320
and
- (x)V-[ = V}+ W (3.28)
I pp@) | @) |
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Here p4(x), pp(z) and c4 () and cp(x) are the density and velocity in the unperturbed and perturbed
media, respectively. There is a unique difference wavefield @S(x, w; zP), conventionally also know
as scattered (Bleistein et al., 2001) that allows to relate the two Green’s functions of the states A and
B as

GP(x,w;2P) = GMa, w; 2P) + G*(x, w; 2P). (3.29)

It is our objective to determine this scattered wavefield due to the presence of inhomogeneities below
S, as if recorded with sources and receivers at So. Upon the use of the general form of the perturbation

operator or scattering potential, defined as (Rodberg and Thaler, 1967)
V=184, (3.30)
and using the wavefield decomposition (3.29), equation (3.26) can be written as
(£ +V) [GA(x, w; zP) + G*(z, w; xB)} = —0(x — 2P). (3.31)
Together with equation (3.25), this leads to

LAG (,w;2") = =V [G"%x,w;xB) + C?S(rc,w;xB)] - (3.32)

At this point, we consider a Green’s function G4 (x,w;z’), which satisfies a Helmholtz equation

similar to expression (3.25), however with a point source at 2’ positioned slightly above the datum in

depth. Multiplying in both sides of the complex conjugate of this Helmholtz equation by @S(x, w; z8)
we find
pa(2)G*(x,w; 2PV - [ ! VG (z w':r’)] + W G*(x,w; 2B) G (2, w; 2') =
o palz) o ca(r) o (3.33)

— G*(z,w; Yo (x — o).
Correspondingly, multiplying in both sides of equation (3.32) by GA* (x,w;x’), we can explicitly

write

1
pa() ch(@) (3.34)
— G (z,w; ')V [G’A(I,w;xB) + G (z,w; xB)] :

pa(2)GY (x,w; ')V - { Vés(a:,w;xB)] +
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Subtracting equation (3.33) from (3.34) and rewriting the terms, we have

1 A N A A
V- [GA*(x,w; VG (z,w; 2P) — G* (2, w; 2P )VE* (2, w; x’)] =

pa(®) (3.35)
1

pa()

[éA*(x, w; 2 VG (&, w; 2P) — G*(x,w; 2P (x — ;1:’)] .

After application of Green’s theorem, solving the volume integral of the term with the delta function

and reorganizing the expression (3.35), we arrive at

G (o w; Py = pA(:c’){ ///pAl(x) G (2, w; 2 )WWGEP (2, w; 2P)dV —
v (3.36)

1 N A A A
ﬂ [GA*(QS,OJ;.T/)VGS(JZ,W; 2B) — GF (2, w; 2P ) VG (2, w; x')] -ndS p.
pa(z)
S
Equation (3.36) represents the scattered Green’s function with source in 2 and receiver in 2/, whose
results are given by the sum of a volume and a closed surface integrals, multiplied by the unperturbed
density in z**. It is given by the sum of a volume and a closed-surface integral, multiplied by the
unperturbed density in 2’. Considering that in both states A and B the overburden between the

surfaces S and S is the same, the scattering potential satisfies V = 0 inside V. Thus,

1 4 .
// G (z,w; 2"\ VGB (2, w; 2P)dV = 0. (3.37)
J) - pa)

Equation (3.37) allows us to simplify the correlation-based interferometric expression (3.36) as an
integral evaluated over the closed surface S. Analogous to section (2.4), the closed surface integral
in the reciprocity theorem of correlation type is divided in three surfaces S, So and S5, respectively,
as we can see in the Figure (3.4). Again, according to Schuster (2009) the Sommerfeld radiation

conditions guarantee that the integral over S3 vanishes at infinity.
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Figure 3.4: Sketch with a cylindrical closed surface S, decomposed into three surfaces Sy, S and Ss.
At surface S there is a seismic array, which with interferometric redatuming will be redatumed to
the datum in the surface S;.

With the remaining integrals over surfaces S; and S5 in equation (3.36), we have

~

G* (2!, w; 2P) ~

1 A A A A
pa(x) // [GA*(x,w;x’)VGs(x,w;xB) — G (,w; 2P)VEM (2, w; x’)} - npdrydra+
pa(z) (3.38)

St

// L [GA*(x,w;x')Vés(x,w;xB) - @S(x,w;xB)VéA*(x,w;x’)] - Nodxydzsy 3.
pal)

Sa

Integrals over surfaces S; and S5 will be simplified to obtain an expression that allow us to relocate
the seismic array at the surface to an aleatory datum at depth (see Figure 3.4). To simplify it, in the

equation (3.38) we write the Green’ function with source in 2 and receiver at x4 as
G* (2w 2P) = pa(x)) [fl + f2:| : (3.39)
where the factors I are defined respectively as

~ 1 A A N N
I = //pA—(x) [GA*(:c,w; ' \VG* (z,w; 2P) — Gs(x,w;:cB)VGA*(a:,w;:c’)} ~Nydridry, (3.40)
St

and

I = //L [GA*(x,w;xl)Vés(x,w; 2Py — Gs(x,w;xB)VéA*(x,w;x’)} - Nodxydrs. (3.41)
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Correlation-based redatuming equation

According with the analysis corresponding to correlation-based in appendix A, only the integral
over the surface S; contributes in equation (3.38). This implies that to all contributions Ge (2, w; 2B)
originate below this surface. Thus, the Green’s function G* (7, w; xP) measured at the surface S in
equation (3.38) can be interpreted as GB (x,w; xB) (Vasconcelos et al., 2009). Hence, equation (3.38)

can be written as

és(x’,w;xB)QQpA(x’)// - [Ggéf*(x,w;x') GB(x,w; 2P)daydz,, (3.42)
M pal2)

where 2’ is an auxiliary variable that represent a coordinate at the datum (see Figure 3.5). Expression
(3.42) is an equation that allows us to relocate the receivers to an arbitrary datum using correlation-
based interferometric redatuming (see Figure 3.5a). It is possible retrieve the scattered wavefield
G*(2',w; zP) just evaluating the crosscorrelation represented by the product dsG4*(x, w; =) G (x, w; =)
and integrating it over the surface 5.

The input data to retrieve the redatumed Green’s functions are the complete seismic data G (7, w;2P)
over the surface S; and the vertical derivative of the complex conjugate of the Green’s function
93GA* (2, w; #B) which is the transmitted wavefield from the surface S; until the datum at S,. Figure
(3.5) is a sketch that show us intuitively the process of redatuming in two steps: (1) receiver redatum-

ing (equation 3.42) and (2) source redatuming that is possible to do with the following expression

~ 1 ~ N
G (2, w; ") ~ 2p4(2") // [&ng*(:v,w; )| G5 (2, w; 2P)dx day, (3.43)
/ pa(z)

where z” is an auxiliary variable that represents a coordinate at the datum. The input terms in equation
(3.43) are the Green’s function with redatumed receiver Gs (', w; B ), retrieved in expression (3.42),
and again the vertical derivative of the complex conjugate incident Green’s function D5 GA* (2, w; ).
In this way it is possible to retrieve a seismic array at the datum G* (2, w; ), where both 2’ and "

are the virtual receiver and source positions at datum, respectively.
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03GA* (z, w; o)

Figure 3.5: Sketch that shows the redatuming of a seismic survey to a new datum in two steps: (a)
virtual receivers and (b) virtual sources.

3.4 Convolution-based interferometric redatuming

In this section, we deduce an expression using seismic interferometry by convolution, that is
an alternative to the classical correlation-based scheme, explained in the previous section. Accord-
ing to Wapenaar et al. (2010b), there are many situations where it is more convenient. One of the
main advantages of the convolution-based procedure is its inherent compensation for the properties
of the source wavelet. Another important advantage is that the underlying theory does not require the
assumption of a lossless medium. The analysis is very much analogous to the one for the correlation-
based equations. As before, we consider two states A and B for the analysis, representing the per-
turbed and unperturbed media, that are defined by the expressions (3.15) and (3.16), respectively. The
Helmholtz equation describing the wavefield for a point source just below the earth’s surface at 2%

and receiver at z, both of these in state A, just as we show in Figure (3.3), is

LAGA(z,wya?) = =0(x — ), (3.44)
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where this equation makes use of the Helmholtz operator in expression (3.27). We multiply both sides
of equation (3.44) by G*(z/, w; z”) to find

A 1 A A ~
pa(2)G* (z,w; 25)V - {p @ VGA(x,w;xA)} + 2w G (2, w; 28) Gz, w; 1) =
A

— Gz, w; 25)5(x — ™),

Correspondingly, we multiply both sides of equation (3.32) by GA(z/, w; 24) to find

2

PAE)GH it |V )| G )i a”) =

pa() ci(7) (3.46)
— GA(z,w; )V [GA(x,w;xB) + G*(, w; xB)] :

Subtracting equation (3.46) from (3.45) and rewriting it in a convenient form, we have

v 1 [GA<x’w;xA)VGs($yw;$B) - @S(x,w;xB)VGA(x,w;:cA)} —
o (3.47)
ﬂAl(x) |G @, VG (2, w50) = G (w2 — 2]

After application of Green’s theorem, solution of the volume integral over the term with the delta

function and reorganization, we have

G (2, w;2P) = pA(xA){ /// pA1<x>GA(x,w;xA)VéB(w,w;xB)dV—
v (3.48)

~

# ! [GA(x, w; zMYVE (2, w; 2P) — G (2, w; 2P )VEA (2, w; ZL‘A)i| N dS}.
S

pa()

Equation (3.48) represents the scattering Green’ function with source in 2 and receiver in 24, given
by the sum of a volume and a closed surface integrals, multiplied by the density at the receivers in the
state A. Considering again that in both states A and B the overburden in between surfaces S; and S,
is the same (Figure 3.3), the scattering potential satisfies V = 0 inside V. Thus, the volume integral

satisfies

/V// pAl(:p)éA(x’ w; zYVGE (2, w; 2P)dV = 0. (3.49)
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Equation (3.49) allows us to simplify the convolution-based interferometric expression (3.48) as an
integral over the closed surface S. Analogous to section (3.3), the closed surface integral in the reci-
procity theorem of correlation type is divided in three surfaces Sy, Sy and Ss3, previously defined
(Figure 3.4). According to Schuster (2009) the integral over the surface S5 vanishes by the Sommer-

feld radiation conditions. Thus, we can rewrite equation (3.48) as

N

G* (2, w; 2P) ~
{// (z,w; ) VG (2, w; 2B) — Gs(m,w;xB)VéA(a:,w;xA)} -nydrydre+
palz (3.50)
// [GA(m,w; :I:A)Vés(a:,w; zB) — Gs(x,w; mB)VéA(x,w; .CEA)} “Nodxdxs §.
pa(x)
To simplify equation (3.50), we rewrite it as
G2 (a2, w; 2B) = pa(z?) [jl + j2:| . (3.51)

where

~

o 1 ~ ~ A
Ji = // oa (@) [GA(x,w;mA)VGS(a:,w;xB) — Gs(x,w;xB)VGA(x,w;xA)] -npdridry, (3.52)
A

S1

and

Jo = // P 1@) [G’A(x,w;xA)Vés(x,w;xB) - és(x,w;ﬁB)VéA(x,w;xA)] - Nodxidrs. (3.53)
A

Convolution-based redatuming equation

According to the analysis corresponding to the convolution-based in appendix A, equation (3.50)
only have contributions over the surface S;. The term @S(xA, w; zP) in equation (3.50) can be inter-
preted as GB (24, w; 2P), because positions 2 and 2 are over the earth’s surface, as we showed in

the Figure (3.3). Hence, equation (3.50) can be written as

X 1 . R
GB(z?, w;2P) ~ —2,0,4(35‘4)///) <x>G5_(x/,w;xB)ﬁgGﬁ(x',w,mA)dx’ldx’Q. (3.54)
A

The first step to make redatuming can be done using the expression (3.54), that allows us to relocate

receivers by interferometric convolution-based methods, with the seismic array configuration of Fig-
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ure (3.6a). With this equation it is possible retrieve the scattered Green’s function Gs (2, w; 2B) by
inversion, assuming that we know the vertical derivative of the transmitted wave field 95G A2, w;zt)
and the full seismic data at the earth’s surface G (24, w; 2P). The second step allows us to retrieve
the Green’s function with sources and receiver at the datum. If we used the result of the expression
(3.54) as an input, together with the vertical derivative of the transmitted wavefield, it is possible to

complete the redatuming process. The equation that describe mathematically the second step is

A 1 A N
G* (2, w; 2P) = —2pA(x’)//p (x)Gs(x/,w;x”)ﬁgGﬁ(ml,w;mA)dx’ldx’Q. (3.55)
A
Sa

Equation (3.55) is the expression that describes convolution-based interferometric redatuming. If the
Green’s function with source at the earth’s surface and receivers at datum G (2',w; xP) is know, and
we can model the vertical derivative of the incident Green’s function 83631‘ (z',w; x), it is possible
to retrieve by inversion the upward component of the scattering Green’s function @s(x’ ,w; x’) with

source and receiver at datum. Here x” is a virtual source at the datum, respectively.

vy ASV‘)
&

(f);;(;'i (2, w, z?)

(b)

Figure 3.6: Sketch that shows the redatuming equations of a seismic array on the earth’s and at datum
the (a) virtual receivers and (b) virtual sources.
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4. Interferometric redatuming by focusing

Inverse wavefield extrapolation is a term used to describe the process of recovering the wavefield
somewhere in depth and from there to recorded it on the earth’s surface, generally by retropropagation
back into the earth (van der Neut et al., 2015b). This concept is used in many imaging schemes, e.g.,
RTM (Kosloff and Baysal, 1983), interferometric redatuming (Schuster, 2009), Marchenko imaging
(Wapenaar et al., 2014) and others. Particularly, many works regarding the topic of Marchenko imag-
ing, study and employ inverse wavefield extrapolation to recover so-called focusing functions, where
the first iteration is based on the conventional wavefield extrapolation methods (van der Neut et al.,
2015a). Interferometric redatuming methods could be classified as conventional wavefield extrapo-
lation. But this classification can carry some problems, because this means that between surfaces S,
and S, there is no presence of scatters in some input data at theoretical considerations, just as we
shown in Figures (3.5) and (3.6) to redatuming by correlation and convolution based, respectively.
This conventional techniques has a great limitation, because many of the artefacts are coming from

inhomogeneities in the overburden (Vasconcelos et al., 2009).

In this chapter, we propose a simpler alternative to the estimation of focusing functions, which
allows us to remove overburden multiples and spurious events from the Green’s functions retrieved at
a new datum in depth. The strength of the conventional procedure lies in the fact that it needs only an
estimate of the transmitted wavefield from the earth’s surface to the datum to recover the full wave-
field there. However, this makes it a rather sophisticated method to retrieve the Green’s functions at
the datum. By using an additional wavefield estimated in the overburden, our procedure allows us to
determine the up- and downgoing constituents of the Green’s functions at depth by means of a least-
squares inversion. Note, however, that this will generally require a better model of the overburden
inhomogeneities. Retrieved the up- and downward constituents makes possible to make redatuming if
we account a convolution operation in frequency domain between the downward constituent and the
redatuming wavefield with seismic array at datum, this all equal to the upward wavefield constituent

retrieved by inversion in above step.
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The equations of our method are the one-way reciprocity theorems of convolution and correlation
type. These two formulas can be reformulated in such a way that they allow us to express the data at
the surface as integrals over wavefields, which propagate only in the overburden and the desired up-
and downgoing wavefield constituents at the datum (van der Neut et al., 2015a). The two involved
wavefields in the overburden are the transmitted wavefield from the surface to the datum, and the so-
called truncated wavefield, i.e., the one reflected from the overburden scatterers only and recorded at
the surface receivers. Both wavefields can be simulated in a reference model which is homogeneous

below the datum.

4.1 Wavefield decomposition

To derive the relations deduced in this section, using our notation, we start with two states, A and B
(indicated by superscripts A and B) in the frequency-space domain (Figure 4.1). To do wavefield de-
composition in our proposed method, we defined that surfaces .S, and S have been extended to cover
the complete horizontal planes, i.e., they are now defined as 9D; = {(x1, T2, 23) € R?|x3 = z1} and
0Dy = {(x1, 29, 13) € R3|x3 = 22}. In the state A, we considered a point source positioned imme-
diately above surface 9D;. In this situation, the vertical derivative of the downgoing wavefield at the
surface can be expressed as dspf = —16(z1 — z1')d(x2 — z4) (See demonstration in Appendix B).
The validity region of this expression in state A is limited by surfaces 9D, and 0D,. Between these
surfaces, the medium may be arbitrarily inhomogeneous. Above 9D, and below 9D, we considered

homogeneous halfspaces without a free surface (Figure 4.1).

In state B, we considered the same inhomogeneous medium between surfaces 0D, and 9D as in
state A. Above d D1, we still considered a homogeneous medium halfspace without a free surface, but
below 0D, we considered a scattering body. The source in the state B is a point source immediately
above surface 0D, such that the vertical derivative of the downgoing wavefield can be represented
as 0sp? = —20(x — 2P)d(x2 — 2¥) (see Appendix B). In both states A and B, we considered the
wavefield decomposition into up- and downgoing constituents in analogy to equation (2.23). An
analysis of the physical situation in both states allows an interpretation of all propagation events at

each surface in Figure 4.1, resulting in Table (4.1).
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State A State B

Figure 4.1: Two wavefield states in an inhomogeneous overburden. State A is used to describe the
transmitted wavefield from the surface and it response recorded at the datum and at the surface. State
B describe the total wavefield propagation taking into account all events propagating in the medium.

Surface | Direction State A State B
0D, + point source in z* | point source in z”
0D, - GA(x,w; %) GB(z,w;2P)
0Dy + G4 (2, w; z?) GE (2!, w; xP)
0D, - 0 GB (2, w; 2B)

Table 4.1: Analysis of the up- and downgoing wavefields at surfaces 0D, and 9Ds in states A and B,
respectively.

Upgoing Green’s functions

In this section we will deduce a equation that allows us to retrieve the upgoing constituent of
the total Green’s function at datum, considering the model of Figure (4.1). Taking into account the
relations of the states A and B and its interpretation wavefield decomposition in the Table (4.1),
we substituted this terms in the one-way reciprocity theorem of convolution type that is showed in

equation (2.29), to obtain

// % [Gfg(x,w; x3)%<5(x1 —a)d(zs — 23) — GA (7, w; SUA)%fS(SUl = 27)0(wy — a3) | d'w &
p(x
oDy

1 . R
- GB(2', w; 2?)0,G (2, w; a2
dl[/ p(T) ( ) 3 +( )

4.1
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Solving right-hand side of the equation (4.1) we have

2P(ZA)CA¥B(Q:A,w;xB) — 2p<1$B)CA¥A(xB w; 4 // —GB (2, w; )83G (2, w; zt)d?a’. (4.2)
dDs

Equation (4.2) is the first of our main results. This expression allows us to invert for the upgoing

Green’s function G (2',w; xP) at the datum 9D, if we know the corresponding Green’s functions

GB (24, w; 2P) at the surface D, as long as we have sufﬁcient information on the inhomogeneous

medium between the two surfaces to model the terms 3 ( 37 F A GA(2B, wy )and 83GA(J: w; z4).

If we consider the particular case in equation (4.2) Where the density constant we can simplify it

equation as

14 1
2GB(xA w; :BB)—§GA(:U w; 4 //GB ' w; xP) 05 G (2 w; ) dPa (4.3)

0D

Equation (4.3) is a expression that allows us to retrieve GB (2, w; 2P), knowing the transmitted wave-

field 935G (2/, w; 2*) and the truncated wavefield at overburden G4 (27, w; ).

Downgoing Green’s functions

In a procedure similar to the analysis before, in this section we will deduce the expression to obtain
the downgoing constituent of the total Green’s function at the datum. In the first place, we replace the
expressions of Table (4.1) into the one-way reciprocity theorem of correlation type (equation 2.32),

to obtain

// {GB z,w; %) 05 G (, w; ) + %@ﬁ*(:{:,w; Mo (x — 2P)5(xg — 2B | P =

(4.4)
/mé’f(m’,w;xB)@géﬁ*(x',w;xA)de’.
oDy
Solving the left-hand side and rewriting the right-hand side of equation (4.4) , we have
1 4 . 1 .
——GB(x,w; 28)0:GY (1, w; o) d?w + G (2P wy ) ~
8D/ p(z) 2p(aB) "

' (4.5)

1 . .
—/ me*(az’,w;:EA)Gng(a:’,w;xB)de’.

0Do
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Due that states A and B have the same overburden medium, we can rewrite all terms of equation (4.5)

as
ﬁéﬁ*(x w; o / —GA (2, w; 2P)83G (, w; ) d*x—
(4.6)
// —— G (2 w; 223G (2, w; 2P P
replacing equation (4.6) in (4.5)
1 - A 1 - R
- ——GA(z,w: 280G (2, w; M) P — / —— G (2w OGN (2 w; B AP
BZM (s G i =[] Gl G s
1 : @.7)
//—GB z, w; 28) 3G (, w; x4 //—GA* ', w; 0GP (2 w; 2P da.
8D1 8D2

Equation (4.7) allows us to calculate the vertical derivative of the downgoing Green’s function de-
fined as 83@’3 (2, w; 2B) at the datum. This is if we know the complex conjugate of the transmitted
wavefield from the earth’s surface until the datum GA* (z',w; ). We also need to know the com-
plex conjugate of the truncated waveﬁeld GA* (:E w; z) and its corresponding vertical derivative
2@ 83GA*(:E w; z4). However, if we con31der that the density is constant, we can simplify the ex-

P
pression (4.7) as follows

— //éé(w,w;xB)ﬁgéé*(x,w;xA)dzx— //éﬂ*(:ﬂ’,w;xA)agéﬁ(a:’,w;a:B)dzx’

0D 0D>
—1—/ GB(x,w;xB)ﬁgéA*(x,w;xA)d2x%—/ G4 (2, w; 205G (2 w; 2P dPa .

8D1 8D2

(4.8)

Here if we know the same Green’s functions listed to solve equation (4.8), as we mentioned above,
but without density factors. We can retrieve the vertical derivative of the downgoing constituent
836‘5(:6’ ,w; xP) at the datum in equation (4.8).

4.2 Convolution-based interferometric redatuming

Having calculated the equations that allows us to retrieve the constituents up- and downgoing of

the Green’s functions at the datum, is possible to estimate an equation in order to retrieve a complete

wavefield at datum. Considering that each trace in the output gather GB (2, w; 2B) can be interpreted
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as the stack of a convolution gather, which is obtained by crossconvolution of each trace in the reflec-
tion response R, (2',w; 2?) at fixed source point 2 at datum with each trace of the vertical derivative
of the downgoing constituent 83Gf(x’ ,w; xP) with fixed source position z? at surface and receiver
location in z’ at the datum (Figure 4.2). According to Wapenaar et al. (2010b) in more situations it
is most convenient to make interferometry by convolution-based than by correlation-based expres-
sions. This is because in the convolution way, the processes to retrieve the interferometric responses
are compensate by the properties of the source wavelet. Another advantage is that it is unnecessary
to assume that the medium is lossless, as we mentioned previously in the section (3.4). Therefore,
because of the benefits of the convolution-based methods we focused our work in this method with
the numerical examples at Chapter 6. Expressions (4.2) and (4.8) ensures the presence of the com-
plete wavefield up- and downward constituents, respectively, with information of the medium in- and
outside at the surfaces 0D, and 0D,, without free-surface. This allows us express as a complete
form the convolution-based equation deduced in expression (3.55), then the redatuming equation by

convolution-based can be expressed in the case of variable density as

GB (2" w,zP) = —2p(2") //%Ji’n(x’,w;xd)ﬁgéf(:c’,w;xB)d%'. 4.9)
o(z

0D>

Equation (4.9) is the main result of this work, with this equation is possible to retrieve the total
wavefield at the datum Rn(x’ ,w; %) using any inversion method (at the case of this work we used
least-squares), if we know the up- and downward Green’s function constituents pé,)@? (2", w, xB )
ﬁ&;é’f(:ﬁ’ ,w; zB). This is an alternative to approach the redatuming problem, as we can see in

the Figure (4.2). In the case that the density is considered smooth enough laterally, equation (4.9) can

and

be expressed as

~

GB(2",w,2P) = =2 //]A%n(x',w;xd)agéf(aj/,w;xB)dzx’. (4.10)

0Dq

With the equation (4.10) is possible to retrieve the total Green’s functions at datum I%n(a:’, w; x?) if we

know the up- and downward Green’s functions constituents, using any numerical inversion methods.
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0D
GB(2", w, ) R, (z',w; 2% aaéf(l", w; z°)

Figure 4.2: Sketch with the linear problem inversion. Where we have the one-way Green’s functions
responses at the focus datum calculated by inversion and the reflection at the datum to be calculated
by inversion.
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5. Inverse functions of the interferometric

redatuming expressions

In this chapter, we will deduce the inverse functions of the previously raised linear problems that
involve convolution and correlation based methods. The solutions to the inverse problems shown
here will be addressed in the continuum. Expressions proposed in this chapter have the introduction
of the point spread functions (PSF') that allows us to solve the integral expressions and calculate
the desired Green’s functions. The PSF' have the inconvenient that carry non-physical information,
then, to attenuate this kind of signals in the interferometric redatuming responses we introduce the
inverse of the point spread function (PSF~!). Other problem appear in the implementation of the
inversion methods because the space limitation of the seismic array. This was discussed by Wapenaar
and Fokkema (1997) (see Appendix C), where is commented about the limitations between inverse
wavefield extrapolation operators, where in spite of the time-symmetry of acoustic wave equation,
inverse wavefield extrapolation operators is not exact, even for the simple situation of a homogeneous
medium and an infinite aperture. On the other hand for strongly inhomogeneous media the kinematic
aspects of multi-valued events are handled correctly, but angle-dependent errors occur in their dynam-
ical behavior. Computational implementation of inverse operators also has limitations in the point of
surfaces coverage, because it involves discretization of the inverse problem, making laterally that the
solved integral surfaces truncated. Numerically the inverse problem will be solved by least-squares

inversion method.

5.1 Inversion of interferometric redatuming by convolution-based

In previous chapter, we mentioned that the interferometry by convolution methods is an inverse
linear problem that could be solved by any inversion of the numerical method. In this section, we show
a general methodology to calculate the inverse functions to retrieve the unknown Green’s function
form equations (3.54) and (3.55), in order to calculate the upward and redatuming Green’s functions,

respectively. To start, we will calculate the inverse function from equation (3.54), which result will
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be the input for the expression (3.55) in order to complete the redatuming of the total seismic array at

datum in depth.

Upward Green’s function

We start defining a point spread function (PSF’), that represents the blurring function of a delta
(Hansen et al., 2006; van der Neut and Wapenaar, 2015). The PSF' in this case will be used to help
us to solve equation (4.3). To simplify the way of writing we denoted the PSF as a function P and
we define it as

//83(A?ﬁ(x/,w;x‘4)83(§'ﬁ*(x‘4,w; "Vd*x? = P2/, w;x"). (5.1)

S1
Equations (5.1) represent the function P(z’,w;x”) that is composed by the autocorrelation between
the vertical derivative of the transmitted wavefield in state A in Figure (4.1) with source in 2 and
receiver in 2’ with the complex conjugate of itself with receiver in z* and source in z”. Here, we
denoted 2" and z” as auxiliary variables that represents different positions of sources and receivers or
vice versa over the surface 0 D5 (datum). Multiplying both sides of (3.54) by c%@f* (a:A, w; x") and
integrating it over the surface S, yields

//G'B@A,w;xB)agéf*(xA,w;x")d%A ~
S1

(5.2)
J A R
—QPA@A)// //mGi(m',w;xB)agGi(x',w;xA)de’ DG (2w ") P2
S1 2 Pa
Reorganizing equation (5.2), we have
//GBx w; 2P) 0G4 (24, w; ") Pt ~
(5.3)

pa(z)

Replacing equation (5.1) in (5.3), we obtain

~ A 1 A
//GB(xA,w;xB)ﬁgGi(xA,w;x”)deA ~ —2p0(x‘4)//TP(:E’,Q};x")Gs_(x',w;xB)d2x'.
palx
S1

Sa

(5.4)
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In the homogeneous case P(x’,w;z") could be a good approximation to a delta function, because
only physical events in the PSF would be retrieved. In the inhomogeneous case, if we consider in
state A all events in the overburden, then we obtain many artefacts from nonphysical events in the
function P (Figure 5.1).

X =L AN/
o
8:G4(z', w; z4) 05G4* (4, w; ") P(z',w;z")

Figure 5.1: Ray paths of P, where we show only three possible crosscorrelations, without regard
second, third and high multiple order. Black lines represent positive times and red lines represent
negative times. P(2’,w;x”) have two nonphysical responses with positive and negative signal, and a
point at datum corresponding to the unique physical event retrieved when s used the expression (5.1).

An alternative to attenuate the non-physical events that come from the function P in expression
(5.4) is computing the inverse of the function P and apply it in equation (5.4) to retrieve the upward
Green’s function G* (', w; 2”). Supposing that we know the inverse function of P, that we denoted
as P~!, we multiply in both sides of equation (5.1) by P~!(2/, w; 2”) and integrating over the surface

Sy, we obtain

// //83@ﬁ(x",w;xA)agéf*(xA,w;x’)d%A P 2w, 2" )d*y =
Sa 1

(5.5)
// Pz, w;2") P~ (o', w, 2" )d*x =~ 6(z)] — 2)d(ay — o).
Sa
Applying the inverse function P~1(2’, w, 2”) in equation (5.4) , we have
// //GB(zA,w;xB)ﬁgéﬂ*(xA,w;x”)deA P2 w, 2" d*r ~
S (5.6)

1 ~
_QpA(xA)// //pA(x)P(:L'”,w;x/)Gs'_(x’,w;:L’B)de' PN w, 2" )d?.
Sa 2
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Rewriting the right-hand side of equation (5.6), we have

// //GB(IA,w;IB)agéf*(xA,w;x”)deA P 2w, 2")d*r =~
S2 1

(5.7)
1 N
— 2pa(z?) // //P(x',w; VPN a" w2 )d*r | —— G5 (2, w; 2P)d.
pa(z)
S2 2
Replacing equation (5.5) in the right-hand side of expression (5.7), we have
// // GB (24, w; 2P) 3G (22, w; ") dPa? | P~ (2! w, 2”)d?r’ ~
(5.8)

1 N
—2pa(x // —a)o(zh — af)) ——G* (2, w; 2P)d?2’.

pa()
Solving right-hand side of equation (5.8) we obtain

éi(:c”, w;rP) =~

(5.9
2p // //GB 2 w; aP)0s G (24 wy ") dPat | P72 w, 2 dPa
Al

Equation (5.9) is a expression that allows us to retrieve the up-ward Green’s function. Actually, this
equation is more exact than the first approximation to obtain Ge (2", w; xP) in equation (5.4). This is
because expression (5.4) have a PSF’ that is a blurring of delta function and this is not appropriate.
However, equation (5.9) considers the delta function definition in expression (5.5), which allows us

to obtain a equation (5.9) to retrieve Gs (2", w; B) more accurately.

Redatuming

In this section, we will deduce a function to complete the redatuming at datum in depth with
equation (3.55) using as input data the upward Green’s function G* (2", w; %) calculated previously
in expression (5.9). To find the function to solve equation (3.55) we consider the same expression to
P in equation (5.1) but at difference of it, here we consider the source position at z and receivers

at 2”. Multiplying equation (3.55) in both sides by 836;‘3‘;* (2P, w; ") and integrating over the surface
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S, we have

//GS 2 wix )83GA*(35 w; 2" d*xB =

(5.10)
— 2pa(x // //p G (2" W$)83G (z',w; 2P)da’ 8GA*(95 ,w; ) d*aP.
Az
Reorganizing equation (5.10), we have
//GS 2 wix )83GA*(35 w; 2" d*xB =
(5.11)

1 A
— 2pa(e // // 0sG " (27, w; 2")05 G (o, w; ) da” G* (2", w; 2 d?2’

pa()

The integral over the surface .S in the right-hand side of equation (5.11) is P as we show in equation

(5.1), then expression (5.11) can be rewritten as

//C’s(x",w;xB)Ggéﬁ*(xB,w;x”)d ~ —2pa(x //p Pz w; 2GS (2" w; %) d?a.
alz
S1

(5.12)
As previous analysis we also could have a redatuming expression with equation (5.12), considering

that P come from an inhomogeneous medium, the blurring function will have nonphysical events as
we showed in Figure (5.1). Analogous to equation (5.5), supposing that we know the inverse of the
function P, we applied it in both sides of expression (5.12) and make integration over the surface S5,

to obtain

// // és<x//’w; xB)ﬁgéf*(xB,w; x”)d2l‘B Pil(l‘//,w; a:/)d2 "o
Sa 1
1 A
_ 2PA($A) // // P(:El,w;x")GS_(x”,w; :Ed)dQZE” P_I(I”,w; x')d%”,
F pa(z)

(5.13)
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rewriting the right-hand side of equation (5.13) we have

// //GS(CCN,M;:L’B)a3é'ﬁ*(x37w;x,/)d2x3 P_l(x”,w;l‘/)dQ "y
Sa 1
1 A
—2pa(z?) // // P2, w; 2" )P (2", w2 )d*2" | ——G* (2", w; 2% d?a”.
/ pa()
2 2

Similar to expression (5.5), the inner integral of the right-hand side of equation (5.14) can be inter-

(5.14)

preted as a delta at position the 2/, this allows us rewrite equation (5.14) as

// //és(xﬂ,w;xB)ﬁgéf_*(IB,w;x”)dQl’B P_l(m",w;x')d2 "
S2 1

1 A
— 2pa(2?) // §(z) — o)) () — ah) ——G* (2", w; 2%)d?a",
Sa

pa(x)

(5.15)

Finally, solving right-hand side of equation (5.15) we have

G(w w; %) ~

(5.16)
2,0 // //GS 2" w; aP)s G (28 w2 dPaP | PN (2", wi ) dPa
Az

Equation (5.16) is an expression that allows us to make redatuming at datum in depth. This equation
is evaluated over the surfaces S; and S5, and only needs as input a model of the vertical deriva-
tive of the complex conjugate of the Green’s function from the earth’s surface until the datum at
depth 05G4* (2P, w; "), the upward Green’s function retrieved in equation (5.9) G5 (2, w; 2B) and
P~1(z",w;x"). At homogeneous case is relatively easy to make a model like this, because the back-
ground velocity is constant and supposed an approach of the model does not require great effort. But
things change when we consider an inhomogeneous overburden, because the background would be
more complex, and many events would be part of the data, causing presence of artefacts, doing it
more difficult when we try to retrieve the total Green’s function at datum. It is the case that we will
study in the next section, where we will retrieve the up- and downward Green’s functions at depth.
It will be the input that allows us to retrieve the total Green’s function at datum, when is account

homogeneity and inhomogeneities at the overburden.
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5.2 Interferometric redatuming by focusing

Now we have another system of equations to solve. This approach consider inhomogeneities at the
medium between surfaces 0D; and 0D, (Figure 4.1). In this case we will find expressions to retrieve
by inversion the up- and downgoing Green’s functions GF(2/,w; 2%) and 8;G%(2',w; x”) which
are expressed in equations (4.3) and (4.8), respectively. After calculating of the inverse operators to
retrieve the up- and downward Green’s functions at datum, we will use this as input data in expression
(4.10) to calculate the inverse operator that allows us to make relocate of source and receivers at datum
retrieving the response Rn(x” ,w; x') by inversion. To express the inverse operators in the most simple
form, we will assume that the medium has no high density contrasts.

Upgoing Green’s function

To start, we make use of the operator P defined in equation (5.1). Again, the operator P will bring
us information about the inhomogeneities in the overburden (Figure 5.1). Multiplying in both sides
of equation (4.2) by the complex conjugate of the vertical derivative of the transmitted wavefield with

source at the datum in 2" and receiver at the earth’s surface in z# 9;G* (2, w; ), we obtain

//{ GB (24, w; 2P) — %Gf(xB w; )| DG (2, w; 2" ) dPat m

(5.17)
///Gwax )03G4 (2! w; x)da' | BsGA (2?, w; )P
oDy
Rewriting the right-hand side of equation (5.17), yields
1 4 .
//{ GE (2", w;2P) — EG‘i‘(a:B,w;xA) DG (2w ") P2 =
oDy
(5.18)

// / G4 (2, w; )5 G (2, w; ) da | GB (2, w; 2 P)d?a.

D>
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In the integral over the surface S in the right-hand side of equation (5.18) can be interpreted as the

operator P in equation (5.1), then, expression (5.18) can be written as

//{ GB (24, w; 2P) — %GA(xB,w;xA) G (2, wy ) dPx? ~

// o' w2 GB (o, w; B da.

9D

(5.19)

Analogous to equation (5.5) we suppose that is know the operator inverse P!, then applying it in

equation (5.19) we obtain the following expression

//{ //[ G2t wia”) - %éf(mB’W;IA) 336—?*(#7@0;x")d2$A}P_l(x'7w;x”)d2 '~

0Do 0D (5 20)

// // o w; )PV (2w )dPa | G (2, w; P )dP,

0D

as we mentioned previously, the inner integral over the surface 9Ds in the right-hand side of equation

(5.20) is a two-dimensional delta at position x”, then, equation (5.20) can be rewritten as

0Dz (5.21)

— // (5(x' — 2"z’ — 2")GB (2, w; 2B)d?

D>

solving the right-hand side of equation (5.21) we obtain the expression

GB (2" w;2P) ~

> ; 2
//{ //|: GB I » W5 'TB)_%GA<xByw;~TA) agGﬁ*(xA’w;x”>d2xA}Pl(x/7w;x//)d2x(/5, )

D> 0D

Equation (5.22) is an expression that allows us to calculate the upward constituent of the Green’s
function with source over the earth’s surface and receiver at datum. We can note that the integral
is evaluated over surface 0D, where the input data is the original seismic array G?(m"‘,w; 2P)
at the earth’s surface, the model of the overburden truncated with source and receivers on surface

CA}’f‘(xB ,w; ") and a model of the transmitted wave field from the surface at datum G’ﬁ*(x“‘, w; ).
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Downgoing Green’s function inversion

In this section we will deduce an inverse operator to retrieve the downward wavefield constituent

of equation (4.8). To start our analysis we define the auxiliary term é(xA, w; zP) in equation (4.8) as

B(z*, w; xP //GA;wa )05GA* (, w; ) x—//GA*a:wx 83G(3:w:1:)d2’

0D1 0D2

(5.23)
—1—/ GB(z,w; 25)0sG (z, w; o) dPx
aD,
Replacing expression (5.23) in (4.8) we obtain
B(z*, w; 2B //GA* ', w; 0GP (2 w; 2P dP . (5.24)

dDs
In order to deduce an inverse operator to retrieve the vertical derivative of the downward wavefield
93GB (2, w; zB) in equation (5.24) we define a new PSF as
/ GA* (2, w;x )GA(:U w; " d*x A = S(2', w; ). (5.25)
oDy

Where S is the PSF operator that is composed by the autocorrelation between the downward wave-
field constituent in state A with source in z# and receiver 2’ with the complex conjugate of itself with

receiver in z* and source x”. Multiplying in both sides of equation (5.25) by the term C;’f(x“‘, w; x")

// Bz, w; 28)G4 (2, w; 2 )dPa =

we have

dDy
(5.26)
////GA*xwa: )0sGE (2, w; aP)dPa’ | G (a, w; 2" )dPx?.
oDy
Rewriting the right-hand side of equation (5.26) we have
//B(xA,w;xB)éﬁ(xA,w;x")deA ~
dD1
(5.27)

// //GA*x W x GA(x Jw; 2P 83G (' PV

D>
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Replacing the definition in equation (5.25) in (5.27), we have

// z?, w; 2P GA(x w; ") d*x A ~ /wax 83 (xw:c)d:c. (5.28)

8D1 aDQ

Equation (5.28) is the first approximation to the inverse operator for the vertical derivative of the
downward Green’s function with sources at the earth’s surface and receiver at datum 83@5 (2, w; xP).
Regarding that the operator S contains non-physical events, similar to the operator P, as we discussed
previously. Therefore, to improve the inverse operator in expression (5.28) we carry out in the same
procedure as the previous section, supposing that is know the inverse of the operator S, that we de-
noted as S~!. Multiplying the function inverse S~ in both sides of expression (5.25) and integrating

it over the surface S5, we have

// //GA* o' w; MG (A wy ) dPa? | STHa  w; ) da! =

9D> (5.29)
// S(2',w; 2SN w2 dP e ~ §(x — )6 (xh, — o).

0D

Multiplying in both sides of equation (5.28) by the inverse function S~!(z/,w;z”) and integrate it

over the surface S5, we obtain

// // 2, w; 2B)GA (2, wy ) dPat | STV w; ) dPa m

ope (5.30)
// // o w; ") 0sGE (2, w; aP)dPa’ | ST w; a”)dPa,
D5
rewriting the right-hand side of equation (5.30) we have
// // o, w; 2B G (2w ) dPat | STV w; ) dPa m
op: : (5.31)

// // o’ wi ") ST w2 dP e 83Gf(x’,w;$3)d2x’,

0D> i
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Using the expression (5.29) in the inner integral over the surface 9D of the right-hand side of equa-
tion (5.31) we have

// // et wrx )GA(I‘ wi ") Pt | SN wi )P

0D, (5.32)
// o — a)0(xh — 25) 0GB (2 w; 2P dPa.

0D>

Solving the right-hand side of equation (5.32) we have

~

G2 (2", w;aP) ~
5.33
// // (2, w; 2P) G4 (2, w; )P | S7H!,w; ") dP . -39
oDy oDy

Equation (5.33) is an expression that allows us to retrieve the vertical derivative of the downgoing
Green’s functions Ggéf(x” ,w; rP) with source position in 2 at the earth’s surface and the receiver
in 2" at the datum. For the purpose of this work, we need above deductions for up- and downward
wavefield constituents to complete the redatuming process make reposition of source and receiver at
datum. To do it, we will use the interferometric redatuming by convolution method in expression
(4.10).

Redatuming

In this section we deduce an inverse operator to retrieve the total wavefield at the datum. Having
calculated the up- and downward Green’s functions constituents at datum, it is possible to relocate
the sources and the receivers at the surface 9D. To start the analysis, we define a new PSF’ operator
that we denoted as 7'. Different to the operator P in expression (5.1) that is composed by the auto-
correlation between the transmitted wavefield in the state A. Here, the operator 7" is composed by
the autocorrelation between the downward wavefield constituent in the state B with source position
in 2% and receiver in 2/, with the complex conjugate of itself with source position at 2" and receiver

at 2P, this is defined as

/ (%,G’f(:c’,w;xB)agéf*(xB,w;x”)deB =T(2',w; "), (5.34)

0Dy
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The definition of the operator 7" considers all of the events between scatters above and below the da-
tum with downward wavefield component with source at the earth’s surface and receiver at the datum.
Continuing with our deductions, we apply the expression (5.34) in equation (4.10), multiplying it in
both sides by dsG5* (27, w; '), which yields

/ éé(l’”aw;xB)aséf*(xB,w;x”)deB ~

dD;
(5.35)

2 [ ][] fulel s eGP | 06 (P i

8D1 Do
rewriting right-hand side of equation (5.35), we obtain
//ﬂ Gé(xlla w, xB)azgéf*(xB’ w7 l-//)dsz ~

dD:

(5.36)

-9 // / 83@’5@'7 w; xB)a3éf*($B,w; :E”)de Rn(l’/, o xd)de"
Dy

0D>

substituting expression (5.34) in equation (5.36), we have

//G’_B(x”,w;xB)agéf*(xB,w;x")deB A~ —2 //T(x’,w;:z:")f%n(m',w;xd)d%'. (5.37)

8D1 8D2

As previous analysis, we know that the operator 7" have non-physical events. Then, supposing that is
know the inverse operator of 7', denoted as 7!, we apply it in equation (5.34) to obtain the following

expression

// //%Gf(a:”,w;xB)agéf*(xB,w;x')d2$B T2, w;a")d*s =
Dy

0Dq

//T(:U’,w; "N, w; ") d?s’ ~ §(, — 2))6(2hy, — o),

0D>

(5.38)
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having defined above expression, we multiply in both sides of equation (5.37) by T (z’, w; z”) and

make integration over the surface Sy, we obtain

// /GB:(: w; 22) 05GP (2P w; a2 | TV (2!, w; ") dPa’ =

P2 (5.39)
-2 // // Ro(2' w2V d?2' | T (2!, w; 2" da,
dDy
rewriting the right-hand side of equation (5.39) we have the following expression
// / GB (2" w; 2P) 05GP (2P w; o)) dPaP | T (2!, w; ") dPa’ =
op: (5.40)
-2 // // o w; T N2 w; 2" dPa" | Ry (2!, w;ah)d?a
dDy

The inner integral over the surface 0D- in the right-hand side of equation (5.40) can be substituted

by expression (5.38), then (5.40) can be written as

// // (2", w; 2B) 0GP (28 w; )PP | T~V (2!, w; 2 )d?a’ =

oD (5.41)

—2 // — &)6(xy — 2B Ry (2, w; ) dPa.

0D>

Solving the right-hand side of equation (5.41) we find the final expression to complete the redatuming

process with sources and receivers at the datum R, (2", w; 2¢)

~

Ry(2",w;n?) ~
(5.42)
——// /GBQZ w; 22)05 G (28 w; a2 | TV (2!, w; 2" )dPa.

0D>

Equation (5.42) is the main result of this work, because with this expression it is possible to retrieve
the total Green’s function at datum in the surface 0D,. Note that equation (5.41) is evaluated over
surface 0D+, that is the acquisition surface. Input data of equation (5.41) are the upward Green’s

function GB (2, w; 2P calculated with the expression (5.22), the complex conjugate of the downward
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Green’s function Gf(xB ,w; ') calculated with the equation (5.32), and finally the PSF inverse

defined in expression (5.34).

5.3 Least squares

Least squares is a standard approach in regression analysis to approximate solution of overdeter-
mined systems, i.e., set of equations in which there are more equations than variables. "Least squares"
means that the overall solution minimizes the sum of the squares of the errors made in the result of
each single equation. To retrieve the Green’s functions at datum end to avoid the presence of arte-
facts in the inhomogeneous case, as we discussed before, is necessary to calculate the inverse of the
PSF, for that we will deduce an expression in order to invert it using Least square. We start defining
equation (5.5) in a matrix form as

PSF(z};; ) PSF ' (a};2f) =1, (i=1,2,...,m)and (j = 1,2,...,m), (5.43)
where I is the identity matrix, PSF is the matrix form of the product in frequency domain between
G‘f and Gﬂ* and PSF ™! is the matrix inverse of the PSF. Matrix system of equation (5.43) is solved

for each column of PSF~' (] ;; /) and for each I, where the terms for the first system to solve are

Pll P12 P13 le Dll
PSF_P,,, — | 2 12 I Pl D= | i =
Pml Pm2 Pm3 Pmm Dml 0

Where P is the PSF matrix, D is the inverse of each column of P and I represent each column of
the identity matrix. The principal goal of this kind of problems is to find the coefficients D that fit
into the equations as best as possible in order to solve the quadratic minimization problem, where the
objective function M is given by

M@S) = |[PS —1I|]. (5.44)

In equation (5.44) the expression S represents the complete matrix with all inverted columns that
are represented in D, this equation is the standard approach to a linear regression with least squares.
Usually, ordinary least squares estimation leads to solving an overdetermined problem if the matrix
system have complete rank, then this solution will be of unique. On the other hand, If the matrix have
a variety of magnitude values that involve hight differences between its terms is necessary make a

regularization of it, then, in order to make this regularization to solve in equation (5.44) we include
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term € as
M@S) = [P S —I||* + ¢S] (5.45)

Where € is the regularization factor, that improves the conditioning of the problem. The solution to

expression (5.45) is given by i.e., Watkins (2010) and is written as
S=(P'P+c) P (5.46)

Expression (5.46) allows us to calculate the PSF~! solving equation (5.45). Depending of the reg-
ularization parameter to solve the inverse problem in expression (5.46), we will stabilize the com-
putational implementation. In theory, this parameter would be small enough for the system to be

independent of it.
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6. Numerical Examples

In this chapter, we will exemplify the main deductions performed at previous sections, using
the appropriate numerical examples to explain the main physical phenomena involved specially, in
methods of inverse wavefield extrapolation for overburden with both homogeneous and inhomoge-
neous media. Also, we will test the interferometry with correlation and convolution based methods.
These methods are conventional approaches to make redatuming in the classics methods i.e., Schuster
(2009), Wapenaar et al. (2010a), etc.

6.1 Interferometric redatuming: Correlation-based method

To numerically validate the interferometric redatuming equations (3.42) and (3.43) to test its lim-
itations due to the use of the direct wave instead of the full reference wavefield, we applied interfero-

metric methods of convolution and correlation-type in a few simple numerical experiments.

Datum below a homogeneous layer

In our first test, we used a horizontally-layered velocity model with a width of 8 km and a depth of
3 km containing velocities between 1.8 km/s and 2.5 km/s (Figure 6.1). The datum is located 500 m
below the surface within the first homogeneous layer with velocity 1.8 km/s. This experiment repre-

sents the ideal theoretically situation, where the reference wavefield consists only of a direct wave.

We simulated synthetic data with a marine acquisition geometry considering three situations: (1)
Shots and receivers are located at the surface (Figure 6.1a). These are the data to be redatumed. (2)
Shots are located at the surface and receivers at 500 m depth (Figure 6.1b) and (3) shots and receiver
are located at 500 m depth (Figure 6.1c). The data of the latter two simulations are used for compari-

son to the redatuming results.

All three seismic arrays consisted of 201 sources spaced at 25 m, horizontally located between



Depth (Km)

73

Distance (Km) Distance (Km) Distance (Km)

0 5 0 5 0 5
0
2
——— —
2.0 25

Km/s

(a)

Depth (Km)
Depth (Km)

Figure 6.1: Modeling seismic data considering: (a) array of sources and receivers at the surface, (b)
array of shots at the surface and receivers at 500 m depth and (c) both arrays positioned at 500 m
depth.

coordinates 1 km and 6 km, and the same number of receivers for each shot, located at the same
horizontal positions (Figure 6.1). The wavelet used for the numerical modeling was a Ricker wavelet

with 25 Hz peak frequency. For simplicity, we considered the density in all layers constant.

Receiver redatuming

The first step of redatuming the complete seismic array from the surface to the datum consisted
of redatuming the receivers, i.e., transforming the configuration of Figure (6.1a) into the geometry
of Figure (6.1b). The seismic data recorded with the surface array contain three reflections. Their
two-way times at zero offset are: event 1 at¢ = 1.1 s,event2 at? = 1.4 sandevent3 att = 1.67 s
(Figure 6.2). To carry out the redatuming, we modeled all direct waves from all desired receiver
positions at depth to all true receiver positions at the surface (Figure 6.1b) and crosscorrelated them
with the surface data according to equation (3.42). Here, we used the same wavelet as in the original
data, assumed to be known. This first step yields the redatumed data for receivers at the datum
at 500 m in depth. The theoretical zero-offset times of the three reflection events 1, 2, and 3 are
t=0.82s,t=1.12sandt = 1.39 s, respectively (Figure 6.2a). The events are correctly positioned

at the times calculated from the model parameters.

Figure 6.2 shows the resulting common-shot gather with the receivers at the new depth in com-
parison to the modeled data with the same configuration. We see that the kinematic properties of

the data are nicely matched. For a more detailed inspection, Figure 6.3 shows a comparison of the
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Figure 6.2: Redatuming using seismic direct-wave interferometry with the numerical model of Fig-
ure 6.1. Step 1: Redatuming the receivers. (a) Redatumed data, and (b) modeled data for sources at
the surface and receivers at the datum.
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Figure 6.3: Redatuming using seismic direct-wave interferometry with the numerical model of Fig-
ure 6.1. Step 1: Redatuming the receivers. Comparison of the central trace (green line) to the modeled
data with the same configuration (solid red line).

central trace of the redatumed data (green line) to corresponding trace of the modeled data (red line).
Because the absolute amplitudes of the crosscorrelation are unreliable because of the presence of the
wavelet in the data, we normalized the traces to the amplitude of the first redatumed primary reflec-

tion. We see that the redatuming has positioned all three reflection events at their correct arrival times
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Figure 6.4: Redatuming using seismic direct-wave interferometry with the numerical model of Fig-
ure 6.1. Step 1: Redatuming the receivers. Comparison of the trace at 1000 m offset obtained from
receivers redatuming in Figure 6.2.

and that their relative amplitudes are correctly recovered. Note that the wavelets in the redatumed
trace are stretched in comparison to the modeled trace. The reason is that the crosscorrelations with

the modeled data wavelet slightly reduce the frequency content.

Figure 6.4 shows the normalized traces at offset 1000 m of the redatumed data corresponding to
the shot 101 in Figure 6.2. The three primary events are correctly positioned and their relative ampli-
tudes are well preserved. Figure (6.5) shows us the interpretation that describe the process to retrieve
the upgoing Green’s functions with sources at the earth’s surface and receivers at datum. Through
the process of crosscorrelation between the seismic data at the earth’s surface and the transmitted

wavefield from the earth’s surface until the datum it is possible make redatuming of the receivers.
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Figure 6.5: Redatuming using seismic direct-wave interferometry with the numerical model of Fig-
ure 6.1. Step 1: Redatuming the receivers. Black lines represent causal wavefields, i.e., positive times
and the white lines represent anticausal wavefields, i.e., negative times in the wavefield propagation.

Source redatuming

The second step of the complete redatuming of the full survey consists of repositioning the sources
at depth, i.e., transforming the configuration of experiment shown in Figure (6.1b) into the one shown
in Figure (6.1c¢). For this purpose, we sort the data into common-receiver gathers. These can be reda-

tumed using again equation (3.43) because of the reciprocity principle.

We used both data sets, the transmitted wavefield model and the upgoing Green’s function re-
trieved in above step as input to this second redatuming step. We see that the positioning of the three
reflections events in the two-step result (Figure 6.6a) matches when is compared with the exact model
(Figure 6.6b).

The two-step redatuming of the surface data introduces some additional noise, particularly at the
border of the events. These are boundary effects that result from the limited data aperture, as we
mentioned in the previous chapter. These effects are restricted to the boundary zone and are of less

importance if more input data are available.

For a more detailed analysis of the quality of the redatumed data, Figure (6.7) compares the nor-
malized redatumed trace at the center of both the source and receiver arrays to the corresponding

modeled one. As after receiver redatuming, all events are correctly positioned in time, and their rel-
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Figure 6.6: Redatuming using seismic direct-wave interferometry with the numerical model of Fig-
ure 6.1. Step 2: Redatuming the sources. Where (a) is the output response of the source redatuming
and (b) is the exact model
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Figure 6.7: Comparison of the normalized central trace of the fully redatumed shot gather of Fig-
ure (6.6a) (green line) with the corresponding traces obtained from modeling (green line) and from
redatuming the gather modeled with the receivers at the datum (red line).

ative amplitudes are correctly recovered. We observe again that the redatuming has caused a certain
wavelet deformation and stretch.  Figure 6.8 shows the complete redatuming with sources and re-
ceivers at the datum in 500 m in depth at the central shot 101 at offset 1000 m in all responses in

Figures 6.6. Figures 6.9 schematically explain the crosscorrelation between the output data of step 1
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Figure 6.8: Redatuming using seismic direct-wave interferometry with the numerical model of Fig-
ure 6.1. Step 2: Redatuming the sources. Comparison of the trace at 1000 m offset obtained from
sources redatuming in Figure 6.6.
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Figure 6.9: Redatuming using seismic direct-wave interferometry with the numerical model of Fig-
ure 6.1. Step 2: Redatuming the sources.

and the direct wave modeling at 500 m at depth. As result of the previous operation, we obtain the

redatumed data with sources and receivers at the new datum (Figure 6.9).
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Figure 6.10: Seismic array on surface considering a inhomogeneous overburden, where we describe:
(a) primary reflection events and (b) multiple events visible in the data.

Datum below a high-velocity layer: Correlation-based

In the second numerical experiment, we chose a model with a high-velocity layer (2.5 km/s) from
120 m to 400 m depth, between the original acquisition surface and the datum at 500 m depth. The
lower part of the model is the same as before (Figure 6.10a). In this situation, the reference wavefield
includes the direct wave and later arrivals due to scattering in the high-velocity layer. To restrict the
number of visible multiples, we did not use a free boundary at the top of the model. Our purpose is
to see how these later arrivals affect the quality of the redatumed data.

Figure (6.10) shows the modeled synthetic data with labeled events and ray-path sketches, sep-
arated in primary reflections (Figure 6.10a) and the most prominent multiples (Figure 6.10b). The
zero-offset times of the primary reflections are: ¢ty = 0.133 s, t5 = 0.357 s, t3 = 1.024 s, t4, = 1.324 s
and {5 = 1.597 s (Figure 6.10a). The strongest multiples are: Events 6 and 10 are the first multiples
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Figure 6.11: Models used for direct-wavefield modeling in the redatuming procedure. (a) Exact
overburden. (b) Smoothed overburden. (c¢) Constant velocity from average slowness. Also shown are
possible ray paths connecting sources at the datum to receivers at the surface.

in the second and third layers with zero-offset times {5 = 0.581 s and ¢, = 1.690 s; events 8, 9,
and 11 are peg-leg multiples with ¢t5 = 1.248 s, {9 = 1.548 s, and ¢;; = 1.820 s; and event 7 is
a second-order multiple in the second layer with ¢; = 0.805 s (Figure 6.10b). Other higher-order
multiples are present in the data but their amplitudes are too small to be visible. Not labeled is the

head wave, which is the first event at offsets larger than 250 m.

Redatuming

The redatuming procedure is the same as detailed for the first example. Also as before, we mod-
eled synthetic data for 201 sources and receivers, spaced at 25 m. For the wave modeling in our four
test of the redatuming process, we used three different background models, shown in Figure (6.11).
The first model uses the exact velocity model in the region between the surface and the datum (Fig-
ure 6.11a). With the exact model (Figure 6.11a), we carried out two experiments, one modeling the
direct wave only by means of one-way wave propagation, and the other modeling the complete wave
train. In the third test, we use a smoothed model (Figure 6.11b), and in the fourth test, we use a
constant-velocity model with the correct average slowness (Figure 6.11c). To calculate the direct
waves Figure (6.11) also shows ray paths associated with the modeled events in these overburden

models.

The results of the crosscorrelations between the data of Figure (6.10) and the different transmitted
waves using the models of Figure (6.11) are shown in Figure (6.12). As a first observation, we notice

that redatuming using the full wave train in the inhomogeneous overburden between the surface and
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Figure 6.12: Result of redatuming with the (a) full wave train from the exact inhomogeneous overbur-
den velocity model, (b) direct wave from the exact model, (c) direct wave from the smoothed model,
and (d) direct wave from the constant-velocity model. The resulting redatumed events are labeled
with numbers for further discussion.

the datum (Figure 6.12a) creates much more events then redatuming using the direct wave only (Fig-
ure 6.12b-d). A comparison with the desired result (Figure 6.6c) reveals that even the other results
contain more events than they should. Moreover, we notice upon closer inspection that the kinematic
behavior of the data redatumed using the constant-velocity model (Figure 6.12d) is slightly incorrect

at non-zero offset.

The principal conclusion from this experiment is that it might not be convenient use equation
(3.43) for redatuming in a strongly inhomogeneous overburden. As we can see in Figure (6.12),
all ways of modeling the wavefield in the overburden produce unphysical events that should not be
present in the redatumed data. In any case, using the direct wave only for redatuming is advantageous

over using the full wave train, even if the overburden model is exactly known.
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Figure 6.13: Comparison of the central trace obtained from redatuming using the full wave train in
the exact overburden and the direct wave in the exact, smoothed and constant-velocity models.
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Figure 6.14: Comparison of the trace at 500 m offset obtained from redatuming using the full wave
train in the exact overburden and the direct wave in the exact, smoothed and constant-velocity models.

For more detail we show in Figure (6.13) the normalized traces at zero offset, obtained using
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the full wave train in the exact overburden and the direct wave in the exact, smoothed and constant-
velocity models as compared to the data modeled at the datum. The three primary events are correctly
positioned and their relative amplitudes are well preserved. In addition to these desired effects, we
notice a number of events with smaller amplitudes. These are the unphysical events as discussed
above. Note that the true internal multiples in the medium below the datum are of much smaller
amplitude and cannot be seen at this scale. The traces obtained with the direct waves in the exact,
smoothed, and average-velocity models are very similar to each other, with a very small kinematic

error for the average-velocity model.

In Figure 6.14 we show the trace that corresponds to the offset 500 m in the redatuming responses
in Figure 6.12. The three primary events are correctly positioned and their relative amplitudes are well
preserved. In addition to these desired effects, we notice a number of events with smaller amplitudes.
These are the unphysical events as discussed above. Note that the true internal multiples in the

medium below the datum are of much smaller amplitude and cannot be seen at this scale

Event interpretation

To explain all events present in the parts of Figure (6.12), we have labeled them. In the next
set of figures, we will discuss the ray paths associated to all (physical and unphysical) events. In this

way, we will be able to better understand the shortcomings of each of the tested modeling approaches.

The events labeled 1, 2, and 3 are the desired primary reflections from the deeper reflectors after
redatuming. The corresponding ray paths associated with the original surface events, the two-step
redatuming operators (representing the convolution of the two one-step operators), and the redatumed

events are depicted in Figure (6.15).
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Figure 6.15: Ray paths for the surface events, crosscorrelation operator, and redatuming response, for

events 1, 2 and 3 of Figure (6.12).
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Figure 6.16: Ray paths for the surface events, crosscorrelation operator, and redatuming response, for
unphysical events 5, 6, 7, and 8 of Figure 6.12. Ray paths contributing negatively to the traveltimes

are shown in white.
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Event 4 is a boundary effect of the redatuming of the primary reflection at the first interface in
the overburden (see Appendix C). Events 5, 6, 7, and 8 (see ray paths in Figure 6.16) are unphysical
events resulting from redatuming the multiples with a first leg in the high-velocity layer (events 6, 8,
9, and 11 in Figure 6.10b) with the direct wave.
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Figure 6.17: Ray paths for the surface events, crosscorrelation operator, and redatuming response, for
unphysical events 9 and 10 of Figure 6.12a. Ray paths contributing negatively to the traveltimes are
shown in white.

Events 9, 10 and 11 appear only in Figure (6.12a), because they are unphysical events caused by
crosscorrelation of the data primaries with multiples in the modeled wave train. Specifically, these

events are obtained from redatuming the primaries of the 3rd, 4th and 5th reflectors (events 3, 4 and
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5 in Figure 6.10a) with the direct wave at the receiver side and with the first high-velocity-layer mul-
tiple at the source side or vice versa (see ray paths in Figure 6.17). A corresponding event generated

from the primary at the deepest interface is present (but barely visible) immediately after event 2 in
Figure 6.12a.

Finally, we can analyze the anticausal wavefield part of the redatumed wavefield generated by the
correlation-based interferometric redatuming procedure. Here, we restrict ourselves to discussing the
one obtained with the full wave train in the true overburden model (Figure 6.18a). The other three
results are similar (Figure 6.18b-d), but do not contain the events obtained from crosscorrelation with

the multiples. It should be kept in mind that the desired part of the redatumed wavefield is its causal
part.

(a) Offset (m) (b) Offset (m)
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"
0
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Figure 6.18: Anticausal part of the redatuming result using the full wave train from the exact overbur-
den velocity model. The labeled events are explained in the text. The anticausal results was using (a)
full wave train from the exact inhomogeneous overburden velocity model, (b) direct wave from the

exact model, (c) direct wave from the smoothed model, and (d) direct wave from the constant-velocity
model.
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Events 12 and 13 are the primary reflections from the two interfaces in the overburden. Since
they are above the datum, they appear in the redatumed data at negative traveltimes. Also visible is
the initial part of the redatumed head wave (event 4 in Figure 6.12). Finally, events 14 and 15 are
the events caused by redatuming these primaries with a direct wave and a multiple in the same way
as explained for events 9, 10 and 11 in Figure (6.12a). The ray paths associated with these events at

negative traveltimes are depicted in Figure 6.20.

For more detail, we show in Figure (6.19) the normalized traces at zero offset in the anticausal part
of the redatumed response. In this case we see that events 12 and 13 retrieved by interferometry with
correlation-based are matched with the exact model, which source and receivers are located at the
datum. Also the event 14 can be seen in the Figure (6.19), but with a very low amplitude, and event
15 does not appear in the central traces analyzed here. Because their amplitudes are too attenuated
by the propagation effects, they are almost invisible in the zero-offset trace. Actually, these events

correspond to second and third order multiples, as we interpret in the Figure (6.20).
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Figure 6.19: Trace at the zero offset corresponding to the anticausal part in Figures 6.18.
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Figure 6.20: Ray paths for the surface events, crosscorrelation operator, and redatuming response, for
events 12, 13, 14, and 15 of Figure (6.18). Ray paths contributing negatively to the traveltimes are
shown in white.
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6.2 Interferometric redatuming: Convolution-based method

As we mentioned in section (3.2), interferometry by convolution is an alternative to the classical
correlation-based scheme and in many situations it is more convenient than the correlation methods
(Wapenaar et al., 2010b). In this section we will validate the expressions (3.54) and (3.55) that
also allow us to retrieve information of the wave propagation at the datum. As for the previous
analysis in above section, we will make numerical experiments in the models of Figures (6.1) and
(6.10) that consider homogeneous and inhomogeneous media, respectively, between the acquisition
surface and the datum. In this numerical experiment, we will also see the principal limitations of the
interferometric redatuming with convolution-based methods in an inhomogeneous medium. We note
that many of the artefacts are coming from the overburden, just as we interpreted in the convolution-
based interferometry in section (3.4), polluting the Green’s functions results at the datum. To retrieve
the responses in this section we use least-squares inversion methods to solve the equations (3.54) and

(3.55) to do redatuming of receivers and sources, respectively.

Datum below a homogeneous layer

In this numerical example we used the horizontally-layer velocity model that we showed in Figure
(6.1) with the same seismic array configuration explained in the model at the beginning of this chapter.
In this section we will solve the equations (3.54) and (3.55), that represent ill-posed problems. We
will solve these equations by least-squares inversion methods, which is necessary to stabilized them
in order to obtain numerically stables results. Therefore, we opted for a simple regularization of
the parameter € as we showed in the section (5.3), and tested different values for the regularization

parameter to study its influence on the inversion result.

Receiver redatuming

To start, we solved by least-squares inversion the equation (3.54) to retrieve the upward Green’s
function with source at the earth’s surface and receivers at datum G* (2/,w; xP). The goal of this
experiment is to validate the behavior of least-squares inversion with stabilization to retrieve PSF L,
To do this we will use directly the inverse operator deduced in Chapter (5), where from equation
(3.54) we deduced the expression (5.9). For our tests to calculate the PSEF~! we used the following
values for the stabilization parameter e: (a) 1%, (b) 0.1%, (¢) 0.01% and (d) 0.001%, with respect to
the maximum absolute value of the PSF' in equation (5.1). In Figure (6.21) we can see the responses
for each value of €. Events 1, 2 and 3 correspond to the primary reflections above the datum, as shown

in Figure (6.1). We note that each event at the datum was positioned correctly (see Figure 6.21), com-
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pared with the synthetic data modeled at the datum (Figure 6.6b).

We can see in Figure (6.21) increasing boundary effects in the retrieved Green’s functions, just

as we commented the Section (5.4). As explained previously, this kind of events occurs because the
aperture of the seismic data is limited.
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Figure 6.21: Upgoing Green’s functions retrieved using the inverse operator in equation (5.9) with

different values for the regularization parameter in the PSE~!: (a) 1%, (b) 0.1%, (c) 0.01% and (d)
0.001% of the maximum absolute value of the PSF.

To verify if each event interpreted in Figure (6.21) is kinematically correct, we compare the central
trace of each response with the exact receiver redatumed model in Figure (6.22). We note that in the
zero-offset trace of the receiver-redatumed responses in Figure (6.21), the relative amplitudes have
the correct proportions as compared to the corresponding data modeled at the datum in Figure (6.22).
We see that the stabilization parameter with percentage 1% is the most stable, as compared to the
smallest stabilization percentage 0.001% in Figure (6.22). This observation allows us to infer that the

solution by inversion of this kind of problems is very sensitive to small variations.
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Figure 6.22: Central traces of the receiver redatuming responses at the datum.
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Figure 6.23: Comparison of the traces at 1000 m offset of the receiver redatuming responses at the
datum.

Taking into account the inverse operator in the expression (5.9) and the events highlighted in the
Figure (6.21), we can do an interpretation of the ray path propagation in Figure (6.24). As mentioned
before, this is the most simple model to apply the interferometric convolution-based operator, because

the PSF only contains one event in this response, because of the homogeneity of the overburden.
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Figure 6.24: Sketch that describes the ray path in the inverse operator expression (5.9), where from
the seismic data at the earth’s surface, the model of the incident Green’s function and the inverse of
the PSF, the receivers can be repositioned at the datum.

Source redatuming

In this section, we will complete the redatuming. For that, we will use the data from the pre-
vious section as input data to reposition the sources at the datum. Using the inverse operator in
equation (5.15) we can retrieve the complete Green’s function at the datum considering a homoge-
neous overburden. Again, to retrieve the Green’s functions, we did inversion of the PSF using four
regularization percentages, measured from the maximum absolute value of the PSF'. The different
responses of the source redatumation with different values of the regularization percentages of € are
showed in Figure (6.25). As we mentioned in the previous step, the consequence of using the inverse
operators is that it introduces artefacts in the Green’s functions retrieved responses, just like we shown

in the first step in Figure (6.21), most prominently the boundary effects.
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Figure 6.25: Central shot of the Green’s functions with source and receivers at datum using the inverse
operator in equation (5.13), as obtained using four different regularization percentages: (a) 1%, (b)
0.1%, (¢) 0.01% and (d) 0.001% of the maximum absolute value of the PSF.

For more details we show the central trace of each responses in Figure (6.25), where we note
that the three principal events are kinematically well positioned as compared to the modeled data in
Figure (6.26). Regarding the different stabilization factors we note that the responses become more
unstable with decreasing e. The valleys strong artifact at 0.25 s is the boundary effect. It is particularly
strong in the central trace because the effects of both boundaries enhance each other became of the
symmetrical geometry. The same properties at the central trace are preserved along the offset, as
we can see in Figure 6.27 that show the comparison of traces at 1000 m offset of the redatuming
responses in Figure 6.25.
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Figure 6.26: Central traces of the redatuming responses in Figure (6.25) compares with the central
trace of the exact model.
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Figure 6.27: Comparison of the traces at 1000 m offset of the redatuming responses in Figure (6.25)
compares with the central trace of the exact model.

Figure (6.28) schematically explains the inverse operator in equation (5.15) to retrieve the reda-
tumed Green’s functions. We note that the medium between the earth’s surface and the datum is
homogeneous. Then, the main limitation in this method is the aperture in the seismic acquisition and
in the stabilization, regarding that here we solve an ill-posed problem, which is sensitive to small

variations of the stabilization parameter e.
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Figure 6.28: Sketch that explains the process to retrieve the total Green’s function at datum using the
inverse operator deduced in equation (5.15).

Datum below a high-velocity layer

In this numerical example, we will analyze the main limitations of the interferometric redatuming
by convolution-based method when is account inhomogeneities in the media above the datum. To do
that we used the models shown in Figures (6.10) and (6.11a). Similar to the numerical example of
interferometric redatuming by correlation-based with inhomogeneous overburden, we will interpret
all of the events that are retrieved using the appropriate inverse operators which solve the equations
(3.54) and (3.55), that allow us to retrieve the upward and the complete redatuming of the Green’s
functions, respectively. To retrieve the total Green’s functions at the datum with convolution-based
methods, we only need as input the vertical derivative of the transmitted wavefield from the earth’s
surface at the datum, together with the complete seismic data at surface. It is possible to retrieve the
Green’s functions at the datum by convolution methods in two steps: (a) receivers repositioning using
equation (5.9) and (b) source repositioning using as input the Green’s function retrieved in step (a) in

equation (5.15). The two steps consider the inverse operators that solve equations (3.54) and (3.55).

Receiver redatuming

In this section, we will interpret the upward Green’s functions with sources at the earth’s surface
and receivers at the datum. We will analyze the causal and anticausal events in the responses retrieved
using the inverse operator showed in equation (5.9). In the Figure (6.29) we shown the upward
Green’s function retrieved using the expression (5.9). Here, it was necessary to invert the PSF
calculated with the vertical derivatives of the transmission wavefields, as shown in Chapter (5). In

this inversion we used again four different percentages for the regularization parameter €, with respect
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to the maximum absolute value of the PSF. These parameters were: (a) 1%, (b) 0.1%, (c) 0.01%
and (d) 0.001%. In Figure (6.29) we shown the causal result of having used the inverse operator
(5.9) with the PSF~! retrieved with the four percentages of e. In this result we note that events 1,
2 and 3 are kinematically correct. On the other hand, we have the events that are coming from the
overburden reflections, that we labeled as 4, 5, 6, 7 and 8. In Figure (6.29) we also note that when
decreasing e, there events coming from the overburden tend to vanish. The unique event that prevails
is the boundary effect, which is coming from the anticausal events. Figures (6.29¢c-d) have attenuated
the primary reflections too much, together with events 4, 5, 6 and 8. Also we note that in Figures
(6.29¢-d) instability begins to appear due to the sensitive of this inversion method, whose principal
limitation is the problem that we try to solve here being ill-posed. According with van der Neut and
Wapenaar (2015) the instability effects that come from PSF~! can be attenuated using F'K filters,
but for our case this is not the objective, however if we consider the FK filters, Figures (6.29c-d)
could be improved. All of the events interpreted in Figure (6.29) are explained in detail in Figure
(6.31), where we showed each ray path that explains the corresponding event in the seismic response
in Figure (6.29).

Continuing our analysis, in Figure (6.30) we have the anticausal events of the upward Green’s
function retrieved with equation (5.9). Each response in Figure (6.30) corresponds to the anticausal
part of each response in Figure (6.29), respectively. We can see that the anticausal part only contains
event 9, the ray path of which is interpreted in Figure (6.31). We also see that the anticausal response
corresponds to each regularization parameter €, where noted that the boundary effect is too strong,
however in all responses is possible to recognize the presence of event 9. Some instabilities appear
especially in the Figures (6.30c-d). These artefacts are coming from the ill-posedness which is very
sensitive to small variations to the regularization parameter. As mentioned before, in Figure (6.31)
we interpret each event in the causal and anticausal responses using the inverse operator in equation
(5.9). We noted that all of the events retrieved are physical. Figures (6.31a-b) show the ray paths
of the primary reflections of the layers below the datum and their delay because of reverberation in
the overburden layer, respectively. Figures (6.31c-d) show the ray paths of events in the overburden,
where only event 9 is anticausal. This interpretations are very important to take into account in
the next step of the redatuming process, because we will understand the real importance of using the
interferometry by convolution-based. Its importance lies in the many artefacts and nonphysical events
that are too common in methods with correlation-based. Here these artefacts are attenuated by the
effect of the PSF !, as we will show later.
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Figure 6.29: Upward causal responses obtained by the PSF' inversion according to equation (5.9)
with different values of e: (a) 1%, (b) 0.1%, (¢) 0.01% and (d) 0.001%.

Source redatuming

In this section, we will analyze the source redatuming, this step allows us to complete the reposi-
tion process of the seismic array at the datum. In Figure (6.32) we showed the results of the complete
redatuming, where we used as input data the results in Figures (6.29) and (6.30), and with the vertical
derivative of the transmitted wavefield from the earth’s surface at the datum. This input data was
used in equation (5.15), with the PSF'~1, that was retrieved by least-squares, similar to receiver reda-
tuming step. We used four regularization percentages respect to the maximum absolute value of the
PSF, which were: (a) 1%, (b) 0.1%, (¢) 0.01% and (d) 0.001%. At this point, is important to regard
the causal and anticausal redatuming results obtained with the correlation-base methods in Figures
(6.12a) and (6.18). This, is because we will compare the results obtained with the interferometric
redatuming by convolution-base with the correlation-base. The first point to compare between the
two approaches is the non physical events. We can see in Figure (6.12a) that we interpreted many of

the non physical events, that come from the reverberations in the overburden layer of the complete
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Figure 6.30: Upward anticausal responses obtained by the PSF' inversion according to equation (5.9)
with different values of e: (a) 1%, (b) 0.1%, (¢) 0.01% and (d) 0.001%.

seismic data at the earth’s surface and the incident wavefield from the earth’s surface at the datum.
But, in Figure (6.32) all events are physical, which is the main and great difference between the in-

terferometric methods with correlation and convolution based in the practical aspect.

If we compare the two expressions to obtain the redatuming results from the correlation (equation
3.43) and the convolution (equation 5.15) base, we noted that the main difference between the two
expressions is the presence of the term PSF~! in the convolution-based equation. This allows us to
assign to the PSF~! the attenuation of the non physical events in the convolution method, making
it most convenient for this case than the correlation-base methods. Following with the interpretation
of the redatuming results of the convolution-base method in Figure (6.32), we noted that at the top
of these appears a lineal noise that is coming from the boundary artefacts of the anticausal responses
(Figure 6.33). Events 1, 2 and 3 in Figure (6.32) correspond to the primary reflections, here we noted
that when decrease the stabilization parameter € the process to retrieve its responses is more unsta-

ble, and this events tend to vanish because of the boundary artefacts and noise that come from the
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Figure 6.31: Sketch of the equation (5.9) that explains the process to retrieve the (a) primary reflec-
tions and (b-c) events associated to reverberations in the overburden.

instability of the inversion method. The event 8 is very especial, because it is composed by positive

and negative signals, just as was interpreted in Figure (6.34), where this event represents a physical
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trajectory in the layer above the datum.

Also we noted that the convolution-base results in Figure (6.32) become more unstable when
decrease the percentage of the regularization parameter €. Principally in ¢ = 0.01% and € = 0.001%,

the primary reflections are too attenuated because of the influence of the boundary effects that come
from the anticausal part (Figures 6.32c-d).
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Figure 6.32: Causal redatuming responses obtained by the P S'F' inversion according to equation (5.9)
with different values of e: (a) 1%, (b) 0.1%, (c) 0.01% and (d) 0.001%.

On the other hand, in the Figure (6.33) we have the anticausal response corresponding to the clas-
sical approach of the interferometric redatuming by convolution-based. Here we noted that the events
7 and 9 comes from the primary responses that correspond to the illumination of the overburden inter-

faces from below. Similar to the anticausal response in the correlation-based method all of the events
are physical.

The main difference between the anticausal responses of correlation and convolution methods
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is the presence of internal multiples in the responses. Figure (6.18a) is the anticausal redatuming
response by correlation-base with exact overburden, where appears first and second-order multiples.
While in Figure (6.33) we showed the anticausal redatuming response by convolution-base which has

the multiples too attenuated, and only primary reflections appear in these responses, which correspond
to the events 7 and 9, interpreted in Figure (6.34).
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Figure 6.33: Anticausal redatuming responses obtained by the P.SF' inversion according to equation
(5.9) with different values of €: (a) 1%, (b) 0.1%, (¢) 0.01% and (d) 0.001%.

Finally in Figure (6.34) we have the interpretation of the highlighted events presented in Figures
(6.32) and (6.33). Where we noted that all of the events are physical. Also, all responses are coming
from three croscorrelations that correspond to the redatuming of the receivers at datum, the vertical
derivative of the transmitted wavefield and the inverse of the PSF, just as we deduced in the equation
(5.15). An interesting thing is that the vertical derivative of the transmitted wavefield from the earth’s
surface until the datum in all the events is direct, without internal multiples. We did such interpretation
because the responses in Figures (6.32) and (6.33) have not artefacts or events that include this time

of propagation. This observation help us to explain the artefact attenuation by the presence of the
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PSFEF~!. This because is the internal multiples of the transmitted wavefield could generate artefacts
or non physical events, as we explained in the correlation-based interferometric redatuming, but the
PSF~! have the property of attenuate this kind of artefacts.
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Figure 6.34: Sketch of the equation (5.15) that explains the process to retrieve the (a) primary re-
flections and (b) events associated to reverberations in the overburden with sources and receivers at
datum

6.3 Interferometric redatuming by focusing

In this numerical example, we will demonstrate and interpret the main result in this thesis. We
will use the model in Figure (6.10) in which we will make reposition of the sources and receivers at
the datum at 500m in depth. In the first place, we separated the redatuming process in three steps, in
three steps was used the deductions in chapter (5), the steps are: (1) Retrieve the down-ward Green’s
function using the inverse operator in the equation (5.32), (2) Retrieve the up-ward Green’s function
using the inverse operator in the equation (5.22) and (3) complete the redatuming of the seismic array

using both previous results in the expression (5.41).

For comparison, we simulated the full wavefield (Figure 6.35a) with sources at the surface and

receivers at the datum in 500 m of depth (Figures 6.35b-c). The visible events in the seismic section
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of the Figure (6.35a) are labeled with numbers in order to identify and interpret them. To facilitate the
interpretation, we used green arrows for downgoing events and red arrows for upgoing events. This
will also help us to compare the respective events with the inverted up- and downgoing wavefields

showed below.
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-2000 -1000 O 1000 2000

(b) 2.0

(©)

Figure 6.35: (a) Full synthetic seismic wavefield with its up- and downgoing constituents labeled,
obtained using a source array at the surface and receivers at the datum at 500 m in depth in the
horizontally layer, where was recorded the (b) downward and (c) upward wavefield constituents.

Downward wavefield constituent by focusing

As next step, we retrieved the downgoing constituents of the Green’s function Gf(x’ ,w;B) at
the datum in 500 m at depth with the inverse operator in equation (5.32). For this purpose, we mod-
eled the vertical derivative of the transmitted wavefield 9;G! (', w; ), the vertical derivative of the
truncated wavefield 83(3*1‘(33, w; ™) in the reference model without inhomogeneity below the datum
and the inverse of the PSF', that we retrieve by least-squares inversion. As we mentioned in section
(6.2), this inversion problem is ill-posed. Therefore, the least-squares inversion needs to be stabilized.
For this purpose we will use four regularization percentages to stabilize the inversion method, these
values of € are: (a) 1%, (b) 0.1%, (c) 0.01% and (d) 0.001%, in order is to study its influence on the

inversion result.

Figure (6.36) shows the inverted vertical derivative of the Green’s function 03 Gf (2, w; zP) at the
datum in 500 m at depth for the four values of the regularization parameter. In all four sections, the

kinematic properties and the relative amplitudes correspond to the downward propagating events in
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Figure 6.36: Down-ward Green’s function retrieved by inversion using equation (5.32), where we test
five different values to €, where: (a) 1%, (b)0.1%, (¢) 0.01% and (d) 0.001%. The percentage above
is with reference to the P.SF maximum value

the Figure (6.35a). For more quantitative evaluation of the result, Figures (6.37) and (6.38) shows
the central traces (zero-offset) and the traces at 500 m offset of the four downward wavefields of
Figures (6.36), retrieved by differently regularized inversions. Moreover, the black line in Figure
(6.37) is the result from synthetic modeling. We noticed again that the latter wavefield includes both
up- and downward propagating events. For better visibility, Figure (6.37a) shows the first 0.75 s and
Figure (6.37b) shows the part between 0.75 s and 1.9 s on a scale twenty times smaller. At this scale,
numerical artefacts become visible. For the weakest regularization (¢ = 0.001%), their amplitude is
comparable to that of the smallest events. Then, a value of ¢ = 0.01% is already sufficient to reduce

them to an acceptable level.

Comparing the modeled trace with the inverted ones, we noticed that events 1, 2, 4, 5, 6, 7, 8
and 9 match nicely. On the other hand, events 10, 11 and 12 are only present in the modeled result,

but they do not present a counterpart in the inverted traces. The reason is that events 10, 11 and 12
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Figure 6.37: Central traces of the downgoing Green’s functions sections in Figure (6.36) (coloured
lines) compared to the wavefield simulated with sources at the surface and receivers at the datum
(black line). (a) First part of the traces. (b) Later portion at a different scale.

belong to the upward propagating Green’s function. Therefore, their absence in the counterpart is the
desired behavior of the inversion. Event 3 does not appear in the central trace analyzed here, because
its amplitude is highly attenuated by the propagation effects when it is compared at the same scale

with the direct wavefield (event 1), making it almost invisible in the zero-offset trace.
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Figure 6.38: Comparison of the traces at 500 m offset of the downgoing Green’s functions sections
in Figure (6.36) (coloured lines) compared to the wavefield simulated with sources at the surface and
receivers at the datum (black line). (a) First part of the traces. (b) Later portion at a different scale.

In summary, we see that all downward propagating events are correctly positioned in time and

the amplitudes are comparable. Moreover and most importantly, the result does not exhibit strong
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artefacts or non physical events. Our inversion response nicely recovers high-quality versions of the

physical events just as interpreted in Figure (6.35b).

Upward wavefield constituent by focusing

Once worked the downward inverse extrapolation, now we will calculate the up-ward Green’s
functions using the inverse operator calculated in equation (5.22). To do that, we need three input
data: (1) the model of the vertical derivative of the transmitted wavefield from the earth’s surface
until 500m at depth (datum of our numerical model), (2) the model of the truncated wavefield with
sources and receivers at the earth’s surface and (3) the PSF ! retrieved by least-squares, to do that
we tested four different values to the regularization parameter € to invert the PSF": (1) 1%, (2) 0.1%,
(3) 0.01% and (4) 0.001%. Using this results, we retrieved the upward Green’s function with equation
(5.22), where we showed that only the causal upward constituents are retrieved, these responses have
not artefacts or non physical events. Figure (6.39) shows the upward Green’s functions retrieved with

different values to €.

We observed in Figure (6.39) that, as desired, only upgoing Green’s functions constituents were
retrieved. A comparison with Figure (6.35a) reveals correct positioning. Also the dynamic proper-
ties of the inverted events largely correspond to those in the modeled section. Events 13, 14 and 5
correspond to a second order multiple and are the weakest events. Moreover, except for boundary
effects, any non physical events appear in the inverted sections. Which is an important advantage
over correlation-based redatuming techniques. We also have a fundamental difference regarding to
the downgoing case, the effect of using different values for the regularization parameter is clearly
visible. We noticed differences in relative amplitudes and, most important, in wavelet shape.

The more quantitative analysis of the zero-offset traces (Figure 6.40) reveals more details. We notice
the overall good match between the inverted traces and the upgoing events in the modeled data, both
in travel time and in amplitude. On the other hand, as desire the downgoing events are absent from
the invert data. While increasing values of the regularization parameter help to better suppress the
numerical artefacts, they also lead to broadened wavelets of the inverted events. Again, a value of
e = 0.001 seems a good compromise between data quality and noise suppression. Once retrieved
the up- and downward Green’s functions constituents by inversion, we will complete the redatuming
of the seismic array with sources and receiver at 500 m at depth. To do that, we will use the two

interpretations named at section (4): (a) convolution-based and (b) correlation-based.
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Figure 6.39: Upward Green’s function retrieved with equation (5.22), where we has tested five differ-
ent values to €, where: (a)1%, (b) 0.1% (¢) 0.01% and (d) 0.001%.

Redatuming by inverse wavefield extrapolation: Convolution-based method

In this section, we will show the results to make reposition of sources and receivers at the datum
with convolution-based interpretation obtained in section (4). In the Figure (6.42) we have four
results that were retrieved using the inverse operator showed in expression (5.41). The input data to
retrieve the complete Green’s function at the datum in 500 m at depth are: (a) the downward wavefield
extrapolation retrieved with the equation (5.32), which result was showed in Figure (6.36) and (b)
the upward wavefield extrapolation retrieved with the equation (5.22), which result was showed in
Figure (6.39). The interferometric redatuming by convolution-based interpretation using the equation
(5.41) also needs as input data the PSF !, that is calculated multiplying in the frequency domain the
vertical derivatives of the downward wavefield constituent 83éf (2", w; xP) by the complex conjugate
of itself D3GP* (2", w; x7), just as we showed in the equation (5.34). Again, to retrieve the PSF !
we used four regularization percentages measured from the maximum absolute value of the PSF,
their percentages were: (a) 1%, (b) 0.1%, (c) 0.01% and (d) 0.001%. With each regularization value
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Figure 6.40: Redatuming using inversion in the case of inhomogeneous overburden with the model
of Figure (6.10). Comparison of the central trace between the responses of the Figure (6.39)

we will retrieve the results of the Figure (6.42).

We noted that in hte four results of the Figure (6.42), the primary reflection with sources and
receivers at datum (500 m at depth), denoted as 1, 2 and 3 were retrieved correctly. In addition of
this, we also retrieved the non physical event 4, which is coming from a reverberation of the trans-
mitted wavefield at the overburden correlated with the upward constituent of the first reflector below
the datum, just as we interpreted in Figure (6.44). While in Figures (6.42c-d) the event 4 was too
attenuated. This was because the smallest percentages to retrieve the PSF ! helps to attenuate the
non physical events, just as we showed in the interferometric redatuming by convolution-based in the

corresponding numerical example at section (6.2).

For more details of the analysis, we show the zero-offset traces (Figure 6.44) of the complete
redatuming retrieved by inversion of each response in the Figure (6.42). We noticed that all responses
that correspond to the primary reflections have a good match between the inverted traces and the exact

model with sources and receivers at 500 m of depth, both in travel time and in amplitude.
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Figure 6.41: Redatuming using inversion in the case of inhomogeneous overburden with the model
of Figure (6.10). Comparison of traces at 500 m offset between the responses of Figure (6.42)

Each event that appears in the results of Figures (6.42) and (6.43) was interpreted in the next set
of figures, where we will discuss the ray path associated to the physical and non physical events.
As we mentioned before, events 1, 2 and 3 are the primary reflections after redatuming. The Figure
(6.44a) shows a ray path that explains the origin of the primary reflections using the inverse operator
in the expression (5.41). In this figure we showed the most simple possibility to retrieve the primary
reflections, but we know that many of other ray path combinations contribute to retrieve the Green’s
function at the datum. On the other hand we have the non physical event 4 that is coming from a
reverberation of the downward wavefield constituent. This artefact is too attenuated with low values

of € in the inversion process, just as we showed in Figures (6.42c-d).
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Figure 6.42: Redatuming of source and receivers at 500m at depth retrieved by inversion using the
equation (5.41), where we test five different values to e, where: (a) 1%, (b)0.1%, (¢) 0.01% and (d)
0.001%. The percentage above is with reference to the PSF maximum value. Up- and down-ward
Green’s functions used here was retrieved by inversion in above steps.

Convolution-based redatuming with inverse wavefield extrapolation: Dip layer
model

In this numerical example, we will modify lightly the geological structure of the previous model,
in which we will consider a dipper layer in the overburden medium. We will make redatumation
with the expectation of testing the influence of our methodology to make reposition of sources and
receivers at an arbitrary datum in depth by inverse wavefield extrapolation with the convolution-based
interpretation in structures different to flat layers, as we showed in previous numerical examples. We
will apply the inverse operators in equations (5.22) and (5.32) to calculate the up- and downward
wavefields constituents, respectively. After retrieve up- and downward wavefield constituents we use
them as input data in the inverse operator at equation (5.41) to retrieve the complete wavefield with
sources and receivers at datum.
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Figure 6.43: Redatuming using inversion in the case of inhomogeneous overburden with the model
of Figure (6.10). Comparison of the central trace between the responses of Figure (6.42)
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Figure 6.44: Sketch of the equation (5.15) that explains the process to retrieve the (a) primary reflec-
tions 1, 2 and 3, and (b) the event 4 that is associated to the reverberation of the transmitted wavefield
in the overburden.

Model

In first place we will describe the model that we will analyze. In this model we have a source
and receivers distribution with a width at the earth’s surface of 5 km and depth of 2 km. The datum

is located at 1.2 km below the earth’s surface, in Figure (6.45) all three seismic arrays consisted of
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Figure 6.45: Modeling of the seismic input data considering: (a) array of sources and receivers at
the surface, (b) array of shots and receivers at the earth’s surface considering only information of
the overburden (truncated wavefield) and (c) array of shots at the earth’s surface and receivers at the
datum (transmitted wavefield).

201 sources spaced at 25 m, horizontally located between coordinates 0 km and 5 km, and the same
number of receivers for each shot, located at the same horizontal position. The wavelet used for the
numerical modeling was a Ricker wavelet with 25 Hz peak frequency. For simplicity, we considered
the density in all layers constant.

Interpretation of down- and upward wavefield constituents

In this section, for comparison we simulated the full wavefield with sources and receivers at the
datum in 1.2 km of depth (Figure 6.46). The events that appear in the seismic section of the Figure
(6.46a) are labeled with numbers in order to identify and interpret them. In this model we have 7
events, where 1 — 4 corresponds to the downward wavefield constituents (Figure 6.46b) and 5 — 7
corresponds to upward wavefield constituents (Figure 6.46¢). In the Figure (6.46a), events 6 and 7

are not visible, because correspond to second order multiples.

Downward Green’s functions

Once we have simulated the full wavefield, we will retrieve the down- and upward wavefields.
We will start with the downward wavefield constituent using the inverse operator in equation (5.32).
In Figure (6.45) we show the sketches that represent the input data models required to calculate the
up- and downgoing wavefield constituents. This input data are: (a) the complete seismic data with
source and receivers at the earth’s surface (Figure 6.46a), (b) the truncated model with its respectively

vertical derivative (Figure 6.46b) and (c) the transmitted wavefield with sources at the earth’s surface
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Figure 6.46: (a) Full synthetic seismic wavefield with its up- and downgoing constituents labeled,
obtained using a source array at the surface and receivers at the datum at 500 m in depth in the
horizontally layer, where was recorded the (b) downward and (c) upward wavefield constituents.

and receivers at the datum in 1.2km in depth and its corresponding vertical derivative.

In Figure (6.47) we have the inversion responses of the downward Green’s functions retrieved
considering four different percentages of the regularization parameter € to invert the PSF: (a) 1%,
(b) 0.1%, (c) 0.01%, (d) 0.001%. Each response in Figure (6.47) corresponds to the shot 150 and
have their corresponding interpretation in Figure (6.46b). In this case we denoted with numbers 1 — 4
the physical events and the non physical event was marked with the capital letter A. We noticed in
Figure (6.47) that the event 1 is present in all of the responses of this figure, while events 2, 3 and 4
appear only in the inversion responses with ¢ = 1% and ¢ = 0.1% (Figure 6.47a-b). The attenuation
of events 2, 3 and 4 in Figures (6.47c-d) is because the instability of the inversion process when is
considered smaller values to the regularization parameter e. We noted that specially in Figures (6.47b-
d) appear a linear noise at the right boundary of the shot figure, that we associated to the instability
of the inversion process, also for having consider smaller values of . In Figures (6.47a-b) appear a
non physical event that we denoted as A, this event corresponds to the delay of the event 1 because of
the reverberation of the complex conjugate of the model of the transmitted wavefield from the earth’s
surface at the datum in 1.2 km in depth. The non physical event also is attenuated because of the

inversion process with smaller values of e.
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Figure 6.47: Shot 150 of the downward wavefields retrieved with the inverse operator (5.32), where
we test four different values to e: (a) 1%, (b)0.1%, (¢) 0.01% and (d) 0.001%.

Upwa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>