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Resumo

A interferometria sísmica é uma metodología que permite calcular as funções de Green para fontes

(ou receivers) onde só temos receptores (ou fontes, respectivamente). Isto pode ser feito com métodos

baseados em correlação ou convolução. Neste trabalho nós apresentamos uma nova abordagem para

reposicionar o arranjo sísmico desde a superfície da terra num datum arbitrario em profundidade,

onde são usados os teoremas de reciporocidade unidireccionais tipo correlação e convolução. O

proceso de redatumação pode ser feito em três passos: (a) cálculo a função de Green desendente para

fontes na superfície da terra e receptores no datum, (b) cálculo da correspondente função de Green

ascendente, e (c) cálculo do campo de onda completo com o arranjo sísmico reposicionado no datum.

Para calcular os passos (a) e (b) nós precisamos como dados de entrada o arranjo sísmico na superfície

da terra e campos de onda modelados com as velocidades do medio acima do datum. Já para o cálculo

do passo (c) é necessario conhecer as respostas dos passos (a) e (b), os quais serão usados como dados

conhecidos na equação de interferometria baseada em convolução. O método leva em consideração a

não homogenidade do medio acima do datum, reduzindo os eventos anti-causais e artefatos, quando

é comparado com métodos baseados puramente em correlação.

Palavras chave: Interferometria sísmica, teoremas de reciporcidade unidireccionais, convolução and

correlação.



Abstract

Seismic interferometry is a method to retrieve Green’s functions for sources (or receivers) where

there are only receivers (or sources, respectively). This can be done by correlation- or convolution-

based methods. In this work we present a new approach to reposition the seismic array from the

earth’s surface to an arbitrary datum at depth using the one-way reciprocity theorems of convolution

and correlation type. The redatuming process is done in three steps: (a) retrieving the downward

Green’s function for sources at the earth’s surface and receivers at the datum, (b) retrieving the corre-

sponding upward Green’s function, and (c) retrieving the reflected upward wavefield for sources and

receivers at the datum. Input for steps (a) and (b) are the surface data and wavefields simulated in

a velocity model of the datum overburden. Step (c) uses the responses of steps (a) and (b) as input

data in the convolution-based interferometric equation. The method accounts for inhomogeneities

in the overburden medium, thus reducing anticausal events and artefacts as compared to a purely

correlation-based procedure.

Key words: Seismic interferometry, one-way reciprocity theorems, convolution and correlation.
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1. Introduction

The redatuming of seismic data is a classic technique in the repertoire of seismic processing. Its

purpose is to simulate data as if it were acquired from a new datum, i.e., a different measurement

surface (Berryhill, 1979, 1984). The redatuming technique’s principal applications are the correction

of seismic data for the effects of an acquisition at an irregular surface and for the effects of complex

geological structures in the overburden such as low-velocity layers or strong lateral variations. The

objective is to focus the seismic data processing closer to the target in a specific subsurface region

(Wapenaar et al., 1992).

In recent years there has been a growing interest to improve petroleum exploration and process-

ing of seismic data using interferometric techniques. Seismic interferometry is a technique based on

optical physics. It allows us to use parts of the information contained in the seismic data that are not

taken into account in conventional processing. Its basic principle allows us to generate new seismic

responses or virtual sources where only receivers were placed (Wapenaar et al., 2010a). In seismic

exploration, authors like Claerbout (1968) and Scherbaum (1978) were the first to make use of inter-

ferometric techniques. Claerbout (1968) showed that the Green’s function for reflections recorded at

the Earth’s surface could be obtained by the autocorrelation of the data generated by buried sources in

a 1D medium, while Scherbaum (1978), constructed geological structure based on the properties of

the Green’s functions, using information of microquakes. Other authors as Wiggins (1984) and Wape-

naar (1993) have been discussed about other interferometric methods, i.e., the Kirchhoff integral, and

nowadays the discussion have included amplitude correction (Tegtmeier et al., 2004). Another line

of research is dedicated to wave-equation-based redatuming (Yilmaz and Lucas, 1986; Bevc, 1995;

Schneider et al., 1995). More information on redatuming can be found in Schuster and Zhou (2006).

The classical redatuming procedure correlates surface seismic data with those acquired at depth as

was mentioned before. This correlation-based method has been well studied in the literature, by Xiao

and Schuster (2006), Schuster and Zhou (2006), Dong et al. (2007), Lu et al. (2008), Wapenaar et al.

(2008), Schuster (2009), Curtis (2009), Wapenaar et al. (2010a), van der Neut et al. (2011), van der
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Neut (2012), and many others. They attempt to use the techniques with the objective of improving the

seismic sections and reducing the uncertainty in hydrocarbon exploration in regions of high structural

and sedimentological complexity. Recently authors like Slob et al. (2007) and Wapenaar et al. (2008)

extend the interferometric definition including not only crosscorrelation, but also crossconvolution

inside of the technique.

Seismic interferometry by convolution is an alternative to the classical correlation-based scheme.

There are many situations where the convolutional form is more convenient than the correlation-based

methods. One of the main advantages of the convolution-based procedure is its inherent compensa-

tion for the properties of the source wavelet. Another important advantage is that the underlying

theory does not require the assumption of a lossless medium (Slob and Wapenaar, 2007).

In this work we proposed a methodology that considers the properties of both convolution and

correlation methods to solve the limitation of each when considered separately. We deduced similar

equations to van der Neut et al. (2015a), where we used the one-way reciprocity theorems of cor-

relation and convolution type to calculate expressions to retrieve the up- and downward wavefields

constituents. Using both up- and downward wavefield as input data, is possible do the reposition of

the seismic array from the earth’s surface at an arbitrary datum in depth. This could be done con-

sidering two interpretations: convolution and correlation methods. To retrieve the up- and downward

wavefields constituents and the complete wavefield at the datum, we calculated the inverse functions

to retrieve them.

In the first chapter we deduced the Helmholtz wave equation starting from the movement and

deformation expressions. In the second chapter we deduced the reciprocity theorems of convolution

and correlation type in the complete and the one-way wavefields. In the chapter three we deduced the

interferometric redatuming methods with correlation and convolution-based. In the chapter four we

showed our expressions to calculate the up- and downward wavefield constituents by inversion and

we presented two interpretations to calculate the complete wavefield at datum using as input above

wavefields in expressions with convolution and correlation-based. In chapter five we deduced the

inverse functions to solve the expressions in chapter four. Finally, in chapter six we showed the nu-

merical experiments to validate our expressions to calculate the up- and downward with source at the

earth’s surface and receivers at datum, and the complete wavefield redatumed using the expressions

from chapter three, four and five.
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1.1 Acoustic wave equation

The Fourier transform of a time-dependent function d(t) is defined as d̂(ω) =
∫

∞

−∞
d(t) exp(−iωt)dt,

where i is the imaginary unit and ω denotes the angular frequency. And the inverse Fourier transform,

is defined as d(t) = 1
2π

∫

∞

−∞
d̂(ω) exp(iωt)dω. From the Fourier definition we can noticed that the

limits of the integration can be decomposed in two time intervals, (−∞, 0] and [0,∞). According

with Bleistein et al. (2001) the first interval corresponds to the physical condition of anticausality, i.e.,

the wavefield described at some time in the past implodes towards a source at time zero. The second

interval corresponds to the physical condition of causality, that is, the source is initiated at some finite

time, which can be taken at t = 0, before the wavefield is recorded. Having a clear definition of the

Fourier transforms, and in order to deduce the Helmholtz wave equation, we define the acoustic wave

equations for movement and deformation in frequency domain, respectively, as

∇p̂(x, ω) + iωρ(x)v̂(x, ω) = f̂ , (1.1)

∇ · v̂(x, ω) + iωκ(x)p̂(x, ω) = q̂, (1.2)

where x = (x1, x2, x3) and the subscripts are the axis coordinates, p̂(x, ω) is the acoustic pressure

(Pa), i is the imaginary part, ω is the angular frequency, ρ is the volume density of mass (kg/m3),

v(x, ω) is the particle velocity (m/s), κ is the compressibility (Pa−1), f is the volume source density

of volume force (N/m3) and q is the volume density of injection rate (s−1).

Multiplying equation (1.1) by 1
ρ(x)

, applying the divergent and multiplying by ρ(x), respectively,

we have

ρ(x)∇ ·

[

1

ρ(x)
∇p̂(x, ω)

]

+ iωρ(x)∇ · v̂(x, ω) = ρ(x)∇ ·

[

1

ρ(x)
f̂

]

. (1.3)

Multiplying (1.2) by iωρ(x), yields

iωρ(x)∇ · v̂(x, ω)− ω2ρ(x)κ(x)p̂(x, ω) = iωρ(x)q̂. (1.4)

Subtracting equation (1.3) with (1.4), and taking into account that κ = 1
c2ρ(x)

, we have

ρ(x)∇ ·

[

1

ρ(x)
∇p̂(x, ω)

]

+
ω2

c2
p̂(x, ω) = −

∇ρ(x)

ρ2(x)
f̂ +

1

ρ(x)
∇ · f̂ − iωρ(x)q̂, (1.5)

where c is the wave velocity. This expression is the inhomogeneous Helmholtz wave equation. We
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2. Reciprocity Theorems

In this chapter, we will derive the reciprocity theorems using the Helmholtz wave equation with

velocity and density variation. These deductions allows us to discuss the limitations of the geometric

distribution of the surface within the reciprocity theorems. Also, it is possible to analyze, how the sur-

faces geometric distribution can be influencing problems, i.g., interferometry, redatuming, focusing

functions, etc. That is possible because the reciprocity theorems have as principal base the Gauss’s

theorem, which in the most basic essence consider a closed surface. We will do especial focus in the

one-way reciprocity theorems of correlation and convolution type, which are the basis to the main

contribution of this research work.

2.1 Reciprocity theorem of the convolution type

Considering F̂ (x, ω) in equation (1.6) as a monopole, where f̂(x, ω) = 0 and q̂(x, ω; xs) =

q̂(x, ω)δ(x − xs). Following Wapenaar et al. (2010a,b), we consider two states A and B in the

Helmholtz equation in order to calculate the reciprocity theorem of the convolution type. We assume

both states to have the same properties, i.e., ρA(x) = ρB(x) = ρ(x) and cA(x) = cB(x) = c(x).

Moreover, we assume that wavefields in both states have causal sources inside volume V . Since the

states differ only in the source, the corresponding wavefields p̂(x, ω; xA) = p̂A and p̂(x, ω; xB) = p̂B

must satisfy

ρ(x)∇ ·

[

1

ρ(x)
∇p̂A

]

+
ω2

c2(x)
p̂A = −F̂A, (2.1)

ρ(x)∇ ·

[

1

ρ(x)
∇p̂B

]

+
ω2

c2(x)
p̂B = −F̂B, (2.2)

Note that equations (2.1) and (2.2) show us that the difference between the state A and B is in the

source distribution and the wavefield, the other properties remain the same. Multiplying equation

(2.1) by p̂(x, ω; xB) and equation (2.2) by p̂(x, ω; xA), we have

ρ(x)p̂B∇ ·

[

1

ρ(x)
∇p̂A

]

+
ω2

c2(x)
p̂B p̂A = −p̂BF̂A, (2.3)
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ρ(x)p̂A∇ ·

[

1

ρ(x)
∇p̂B

]

+
ω2

c2(x)
p̂Ap̂B = −p̂AF̂B. (2.4)

Subtracting equations (2.3) with (2.4), we have

ρ(x)p̂B∇ ·

[

1

ρ(x)
∇p̂A

]

− ρ(x)p̂A∇ ·

[

1

ρ(x)
∇p̂B

]

= −p̂BF̂A + p̂AF̂B. (2.5)

Reorganizing factors in the left-hand side of equation (2.5), we obtain

ρ(x)

[

∇ρ(x)

ρ2(x)

(

p̂B∇p̂A − p̂A∇p̂B
)

+
1

ρ(x)

(

p̂B∆p̂A − p̂A∆p̂B
)

]

= p̂AF̂B − p̂BF̂A. (2.6)

Then, equation (2.6) can be written as

∇ ·

[

1

ρ(x)

(

p̂B∇p̂A − p̂A∇p̂B
)

]

=
1

ρ(x)

(

p̂AF̂B − p̂BF̂A
)

. (2.7)

After integration over an arbitrary volume V , equation (2.7) has an appropriate form to apply Gauss’s

theorem (equation 1.8). The result is the reciprocity theorem of convolution type, which we can

represent as

©

∫

S

∫

1

ρ(x)

(

p̂B∇p̂A − p̂A∇p̂B
)

· n̂dS =

∫∫

V

∫

1

ρ(x)

(

p̂AF̂B − p̂BF̂A
)

dV. (2.8)

Finally, equation (2.8) is the reciprocity theorem of the convolution type with density and velocity

variation. This is because the operations in the frequency domain i.e., p̂B∇p̂A are convolutions in the

time domain. According with Bleistein et al. (2001) the integral over the closed surface S in equation

(2.8) could be approached to zero, using the "Sommerfeld radiation conditions". Then, expression

(2.8) can be written as

©

∫

S

∫

1

ρ(x)

(

p̂B∇p̂A − p̂A∇p̂B
)

· n̂dS = 0. (2.9)

2.2 Reciprocity theorem of correlation type

A completely analogous analysis can be carried out starting at the complex conjugate of equation

(2.1) together with expression (2.2). Replacing the wavefield p̂A and the source term F̂A in the

above derivations by p̂A∗ and F̂A∗, where the superscript ∗ denotes complex conjugate. Rewriting
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expressions (2.1) and (2.2) for this analysis case, we have

ρ(x)∇ ·

[

1

ρ(x)
∇p̂A∗

]

+
ω2

c2(x)
p̂A∗ = −F̂A∗, (2.10)

ρ(x)∇ ·

[

1

ρ(x)
∇p̂B

]

+
ω2

c2(x)
p̂B = −F̂B, (2.11)

As the previous analysis, again we can verify that the difference between states A and B are in the

source distribution and in the wavefield. Multiplying equations (2.10) by p̂B and (2.11) by p̂A∗, we

have

ρ(x)p̂B∇ ·

[

1

ρ(x)
∇p̂A∗

]

+
ω2

c2(x)
p̂B p̂A∗ = −p̂BF̂A∗, (2.12)

ρ(x)p̂A∗∇ ·

[

1

ρ(x)
∇p̂B

]

+
ω2

c2(x)
p̂A∗p̂B = −p̂A∗F̂B. (2.13)

Subtracting equation (2.13) from (2.12), we have

ρ(x)p̂B∇ ·

[

1

ρ(x)
∇p̂A∗

]

− ρ(x)p̂A∗∇ ·

[

1

ρ(x)
∇p̂B

]

= −p̂BF̂A∗ + p̂A∗F̂B. (2.14)

Reorganizing factors in the left-hand side of equation (2.14), we obtain

ρ(x)

[

∇ρ(x)

ρ2(x)

(

p̂B∗∇p̂A − p̂A∇p̂B∗
)

+
1

ρ(x)

(

p̂B∆p̂A∗ − p̂A∗∆p̂B
)

]

= p̂A∗F̂B − p̂BF̂A∗. (2.15)

Equation (2.15) can be written as

∇ ·

[

1

ρ(x)

(

p̂B∇p̂A∗ − p̂A∗∇p̂B
)

]

=
1

ρ(x)

(

p̂A∗F̂B − p̂BF̂A∗

)

. (2.16)

After integration over an arbitrary volume V , equation (2.16) has an appropriate form to apply the

Gauss’s theorem (equation 1.8). The result can be written as

©

∫

S

∫

1

ρ(x)

(

p̂B∇p̂A∗ − p̂A∗∇p̂B
)

· n̂dS =

∫∫

V

∫

1

ρ(x)

(

p̂A∗F̂B − p̂BF̂A∗

)

dV. (2.17)

Equation (2.17) is the reciprocity theorem of the correlation type with density and velocity variation.

This is because the operations in the frequency domain i.e. p̂B∇p̂A∗ are correlations in the time

domain. According with Wapenaar and Berkhout (1989) the integral over the closed surface S in

equation (2.17) could be approached to zero, using the "Wapenaar anti-ratiation conditions". Then,
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Reciprocity theorem of convolution type

In order to decompose the closed surface in equation (2.9) to express the integral over a closed

surface as an integral of open surface, as we can see in the next deduction, we write equation (2.9) as

∫

S1

∫

1

ρ(x)
(p̂B∇p̂A − p̂A∇p̂B) · n̂1dx1dx2 +

∫

S2

∫

1

ρ(x)
(p̂B∇p̂A − p̂A∇p̂B) · n̂2dx1dx2 +

∫

S3

∫

1

ρ(x)
(p̂B∇p̂A − p̂A∇p̂B) · n̂3dx1dx2 = 0. (2.19)

According with Bleistein et al. (2001), the integral over the surface S3 is zero when this surface is

extended at the infinite. Then, equation (2.19) we can express the reciprocity theorem of convolution

type as

∫

S1

∫

1

ρ(x)
(p̂B∇p̂A − p̂A∇p̂B) · n̂1dx1dx2 = −

∫

S2

∫

1

ρ(x)
(p̂B∇p̂A − p̂A∇p̂B) · n̂2dx1dx2, (2.20)

where S1 and S2 now denote the complete horizontal planes at x3 = x1
3 and x3 = x2

3, respectively.

To derive equation (2.20), no assumptions regarding the nature of the medium inside and outside the

surface S were necessary. In other words, this equation is valid for general inhomogeneous media,

as long as the sources are outside volume V and the medium properties in both states are the same

inside the volume V .

Reciprocity theorem of correlation type

In this section, we will simplify the reciprocity theorem of correlation type, decomposing the

closed surface in equation (2.18), analogous to convolution type deduction. knowing the procedure,

we write equation (2.18) as

∫

S1

∫

1

ρ(x)
(p̂B∇p̂A∗ − p̂A∗∇p̂B) · n̂1dx1dx2 +

∫

S2

∫

1

ρ(x)
(p̂B∇p̂A∗ − p̂A∗∇p̂B) · n̂2dx1dx2 +

∫

S3

∫

1

ρ(x)
(p̂B∇p̂A∗ − p̂A∗∇p̂B) · n̂3dx1dx2 = 0. (2.21)

Then form of the integral over the surface S3 in equation (2.21) does not allow for the application

of the Sommerfeld radiation conditions. However, using the “Wapenaar anti-radiation conditions”

(Wapenaar and Berkhout, 1989), we can also justify that this integral tends to zero when the surface S3
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decomposed in up- (−) and downgoing (+) constituents, i.e.,

p̂(x, ω) = p̂+(x, ω) + p̂−(x, ω). (2.23)

Equation (2.23) is important, because this decomposition allows to derive the one-way reciprocity

theorems of convolution and correlation type. These, in turn, are the basis for the retrieval of the up-

and downgoing Green’s functions using least squares inversion.

At this point, we suppose that the sources are delta functions in space and time, and the velocity

field is sufficiently smooth in a small region around both surfaces S1 and S2. Under these assumptions,

we can express the up- and downgoing pressure fields p̂(x, ω; xs) as the ray-theoretical approximation

of the Green’ function, which form is given by the following expression

p̂±(x, ω; x
s) = A(x; xs) exp [∓iωT (x; xs)] , (2.24)

where T is the traveltime function that satisfies the eikonal equation ‖∇T (x; xs)‖2 = 1
c2(x)

, the sub-

script ± in equation (2.24) is the down- and upgoing wavefield direction, respectively, and A(x; xs)

amplitude, mainly determined by the geometrical-spreading factor. Signs (−) and (+) in the exponen-

tial factor in equation (2.24) are refer to causal and anticausal responses in time domain, respectively.

In order to calculate the gradient of the pressure field, we does the derivative of equation (2.24), yields

us

∇p̂± = ∇A(x; xs) exp [∓iωT (x; xs)]∓ iωA(x; xs)∇T (x; xs) exp [∓iωT (x; xs)] . (2.25)

When the expression (2.25) is evaluated with high values of frequency, the term ∓iωT (x; xs) could

be depressed because the term ∓iωA(x; xs)∇T (x; xs) exp [∓iωT (x; xs)] in high frequency values is

dominant respect the other term, this case is called as “high-frequency approximation”. At that case,

the gradient of equation (2.25) can be represented as

∇p̂± ≈ ∓iωp̂±∇T (x; xs), (2.26)

where the amplitude variation has been neglected.

One-way reciprocity theorem of convolution type

In this section, we derive the one-way reciprocity theorems of convolution type using the above

wavefield decomposition. This theorem is helpful to extract detailed information about the waves and
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their behavior as a function of the propagation direction. When the wavefield is decomposed into up-

and downgoing components, the gradients of these individual wavefield components depend on the

propagation direction.

We start our derivation at the one-way reciprocity theorem of convolution type, replacing equation

(2.23) in the expression (2.20), we obtain

∫

S1

∫

1

ρ(x)

[(

p̂B+ + p̂B
−

)

∇
(

p̂A+ + p̂A
−

)

−
(

p̂A+ + p̂A
−

)

∇
(

p̂B+ + p̂B
−

)]

· n̂1dx1dx2 =

−

∫

S2

∫

1

ρ(x)

[(

p̂B+ + p̂B
−

)

∇
(

p̂A+ + p̂A
−

)

−
(

p̂A+ + p̂A
−

)

∇
(

p̂B+ + p̂B
−

)]

· n̂2dx1dx2. (2.27)

Assuming that the medium is smooth in a small region around S1 and S2 the gradient of pressure

fields can be approximated in high frequency with the expression (2.26). Still upon high-frequency

arguments, the main contributions to the integrals in equation (2.27) come from stationary points on

surfaces S1 and S2. At those stationary points p̂A and p̂B are identical. This implies, for example,

that the terms p̂B+∇p̂A
−

and −p̂A
−
∇p̂B+ give equal contribution to the integral, whereas the contributions

of −p̂B+∇p̂A+ and p̂A+∇p̂B+ cancel each other (Wapenaar and Fokkema, 2006). Hence, we can rewrite

equation (2.27) as

∫

S1

∫

1

ρ(x)

(

p̂B+∇p̂A
−
+ p̂B

−
∇p̂A+

)

· n̂1dx1dx2 ≈ −

∫

S2

∫

1

ρ(x)

(

p̂B+∇p̂A
−
+ p̂B

−
∇p̂A+

)

· n̂2dx1dx2. (2.28)

Considering that surfaces S1 and S2 have the geometrical configuration as we show in the Figure (2.2),

the normal vectors at the surfaces S1 and S2 in equation (2.28) can be expressed as n̂1 = (0, 0,−1)

and n̂2 = (0, 0, 1), respectively, allowing us to express equation (2.28) as

∫

S1

∫

1

ρ(x)

(

p̂B
−
∂3p̂

A
+ − p̂A

−
∂3p̂

B
+

)

dx1dx2 ≈

∫

S2

∫

1

ρ(x)

(

p̂B+∂3p̂
A
−
+ p̂B

−
∂3p̂

A
+

)

dx1dx2. (2.29)

We write in the left-hand side of the equation (2.29) the term p̂B+∂3p̂
A
−

as −p̂A
−
∂3p̂

B
+, that is the most

convenient form for our deductions in future sections of this work. Equation (2.29) is the most

common form to write the one-way reciprocity theorem of convolution type.
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One-way reciprocity theorem of correlation type

In this section we will deduce the one-way reciprocity theorem of correlation type, in which we

consider the state A as a complex conjugate, denoting this with an asterisk (∗). Considering equation

(2.23) in its complex conjugate form, we replace it into the equation (2.22), obtaining

∫

S1

∫

1

ρ(x)

[(

p̂B+ + p̂B
−

)

∇
(

p̂A∗

+ + p̂A∗

−

)

−
(

p̂A∗

+ + p̂A∗

−

)

∇
(

p̂B+ + p̂B
−

)]

· n̂1dx1dx2 =

−

∫

S2

∫

1

ρ(x)

[(

p̂B+ + p̂B
−

)

∇
(

p̂A∗

+ + p̂A∗

−

)

−
(

p̂A∗

+ + p̂A∗

−

)

∇
(

p̂B+ + p̂B
−

)]

· n̂2dx1dx2. (2.30)

As previous analysis, the principal contributions to the integrals in equation (2.30) comes from the

stationary points on surfaces S1 and S2. This implies, for example, that the terms p̂B+∇p̂A∗

+ and

−p̂A∗

+ ∇p̂B+ give equal contribution to the integral, whereas the contributions of p̂B+∇p̂A∗

−
and −p̂A∗

−
∇p̂B+

cancel each other (Wapenaar and Fokkema, 2006). After that, we can write equation (2.30) as

∫

S1

∫

1

ρ(x)

(

p̂B+∇p̂A∗

+ + p̂B
−
∇p̂A∗

−

)

· n̂1dx1dx2 ≈ −

∫

S2

∫

1

ρ(x)

(

p̂B+∇p̂A∗

+ + p̂B
−
∇p̂A∗

−

)

· n̂2dx1dx2. (2.31)

Similar to previous analysis we consider the normal vectors at surfaces S1 and S2 as n̂1 = (0, 0,−1)

and n̂2 = (0, 0, 1), respectively, to deduce the following expression

∫

S1

∫

1

ρ(x)

(

p̂B
−
∂3p̂

A∗

−
− p̂A∗

+ ∂3p̂
B
+

)

dx1dx2 ≈

∫

S2

∫

1

ρ(x)

(

p̂B+∂3p̂
A∗

+ + p̂B
−
∂3p̂

A∗

−

)

dx1dx2. (2.32)

Again we write the equation (2.32) as the most convenient form to our future deductions in this work,

we rewrite the term p̂B+∂3p̂
A∗

+ to −p̂A∗

+ ∂3p̂
B
+ in the left-hand side of equation (2.32). Equation (2.32) is

the most common form to write the one-way reciprocity theorem of correlation type.

2.5 Source-receiver reciprocity

In this section we will deduce the reciprocity theorem between the Green’ functions, where we

also consider a especial conditions in the medium where the wavefield is propagated. In this case,

the medium between xA and xB in the Figure (2.3) is inhomogeneous. Through the use of Gauss’

theorem with the vector field appropriately chosen, we will deduce the Green’s functions reciprocity

theorem for points xA and xB in a variable-density medium.
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which results is the identity
Ĝ(xA, ω; xB)

ρ(xA)
=

Ĝ(xB, ω; xA)

ρ(xB)
. (2.39)

From equation (2.39), we see that the Green’ function between points xA and xB is not reciprocal, if

the values of the densities at these points are different. However, a density-scaled Green’s function

(Bleistein et al., 2001) is reciprocal as can be seen, if we multiplied each side of equation by a density

factor
√

ρ(xA)ρ(xB), as

[

Ĝ(xA, ω; xB)

ρ(xA)

]

√

ρ(xA)ρ(xB) =

[

Ĝ(xB, ω; xA)

ρ(xB)

]

√

ρ(xA)ρ(xB). (2.40)

Therefore, the density-scaled Green’s function can then be defined as

ĝ(x, ω; xs) =

√

ρ(xs)

ρ(x)
Ĝ(x, ω; xs), (2.41)

where xs is the source position. Conversely, the Green’ function can be recovered from its density-

scaled version by

Ĝ(x, ω; xs) =

√

ρ(x)

ρ(xs)
ĝ(x, ω; xs). (2.42)

We can note that in the case of constant density the density-scaled Green’s function ĝ(x, ω; xs) re-

duces to the Green’s function Ĝ(x, ω; xs) itself. With definition (2.41), the reciprocity relation is

ĝ(xA, ω; xB) = ĝ(xB, ω; xA). (2.43)
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3. Interferometric Redatuming

In this chapter, we deduce the basic interferometry equations based on the reciprocity theorem of

correlation type in order to apply this theory as a way to focus seismic imaging below geologically

complex bodies or structures. Redatuming is a technique that seeks to correct seismic data for effects

of an irregular surface acquisition (land seismic data) and effects of complex geological structures

in the overburden. Interferometric methods can be used to relocate sources where only receivers are

available and have been used to move acquisition geometries to the ocean bottom or transform data

between surface seismic and velocity seismic profiles. By combining modeling with interferometry

and correlating the modeled direct wave with seismic surface data, we can relocate the acquisition

system to an arbitrary datum in the subsurface, in which the propagation of direct waves can be mod-

eled with sufficient accuracy. In this way, we can carry the seismic acquisition geometry from the

surface to geologic horizons of interest. Specifically, we show the derivation and approximation of

the seismic interferometry equation, conveniently using Green’s theorem for the Helmholtz equation

with density variation.

3.1 Interferometric equation with correlation-based expressions

We start with a review of the basic interferometry equation (see, e.g., Wapenaar et al., 2010a).

We consider the case where we have a closed surface S with receivers located on it. Inside the

enclosed volume V , we have two sources located in positions xA and xB, where x = (x1, x2, x3)

(see Figure 3.1). Considering the form of the wave equation (1.7) we define two expressions with the

same form but evaluated at different source position xA and xB, respectively, as

ρ(x)∇ ·

[

1

ρ(x)
∇Ĝ∗(x, ω; xA)

]

+
ω2

c2(x)
Ĝ∗(x, ω; xA) = −δ(x− xA), (3.1)

and

ρ(x)∇ ·

[

1

ρ(x)
∇Ĝ(x, ω; xB)

]

+
ω2

c2(x)
Ĝ(x, ω; xB) = −δ(x− xB). (3.2)
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The reciprocity of Green’s functions, as seen above have the following relation

1

ρ(xB)
Ĝ(xB, ω; xA) =

1

ρ(xA)
Ĝ(xA, ω; xB). (3.6)

Replacing relation (3.6) in equation (3.5) we have

©

∫

S

∫

1

ρ(x)

[

Ĝ(x, ω; xB)∇Ĝ∗(x, ω; xA)− Ĝ∗(x, ω; xA)∇Ĝ(x, ω; xB)
]

· n̂ dS =

1

ρ(xB)

[

Ĝ∗(xB, ω; xA)− Ĝ(xB, ω; xA)
]

.

(3.7)

On the right-hand side of equation (3.7) the real part of Ĝ(xB, ω; xA) cancels. Thus, we obtain the

general interferometry relation that is

©

∫

S

∫

1

ρ(x)

[

Ĝ(x, ω; xB)∇Ĝ∗(x, ω; xA)− Ĝ∗(x, ω; xA)∇Ĝ(x, ω; xB)
]

· n̂dS =

−
2i

ρ(xB)
Im

[

Ĝ(xB, ω; xA)
]

,

(3.8)

or

©

∫

S

∫

1

ρ(x)

[

Ĝ(x, ω; xB)∇Ĝ∗(x, ω; xA)− Ĝ∗(x, ω; xA)∇Ĝ(x, ω; xB)
]

· n̂dS =

−
2i

ρ(xA)
Im

[

Ĝ(xA, ω; xB)
]

.

(3.9)

This is the fundamental relationship for all interferometry techniques with correlation, because it

proves that the Green’s function of the propagation from xA to xB can be obtained with information

about the wavefield propagating from xA and from xB to (all) receivers on the closed surface. This

only is possible if xA and xB are inside the closed surface.

3.1.1 Correlation-based Green’s function approximation

For the following considerations, we refer to Figure (3.1). In high-frequency approximation, the

Green’ function’s gradients satisfy

∇Ĝ(x, ω; xs) ≈ −iωĜ(x, ω; xs)∇T (x; xs). (3.10)
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The complex conjugate of equation (3.10) reads

∇Ĝ∗(x, ω; xs) ≈ iωĜ∗(x, ω; xs)∇T (x; xs). (3.11)

Substituting equations (3.10) and (3.11) in (3.8), and simplifying the imaginary terms on both sides,

we have

− iωρ(xB)©

∫

S

∫

1

ρ(x)

[

Ĝ(x, ω; xB)∇T (x; xA)Ĝ∗(x, ω; xA)+

Ĝ∗(x, ω; xA)∇T (x; xB)Ĝ(x, ω; xB)
]

· n̂dS ≈ 2iIm
[

Ĝ(xB, ω; xA)
]

.

(3.12)

At the stationary point (Bleistein et al., 2001) it is satisfied that ∇T (x; xA) = ∇T (x; xB) = ∇T (x).

This implies that both terms in the left-hand side of equation (3.12) have the same contribution at the

stationary point. Then is possible to rewrite equation (3.12) as

−iωρ(xB)©

∫

S

∫

1

ρ(x)
Ĝ(x, ω; xB)∇T (x)Ĝ∗(x, ω; xA) · n̂ dS ≈ iIm

[

Ĝ(xB, ω; xA)
]

. (3.13)

Considering expression (3.11) is possible rewrite equation (3.13) as

©

∫

S

∫

1

ρ(x)
Ĝ(x, ω; xB)∇Ĝ∗(x, ω; xA) · n̂ dS ≈ −iIm

[

Ĝ(xB, ω; xA)

ρ(xB)

]

. (3.14)

Equation (3.14) allows us to calculate the Green’ function between the source points xA and xB, only

multiplying in the frequency domain the Green’ functions with source in xB and receivers varying in

x by the gradient of the complex conjugate Green’ function with source in xA and receivers varying in

x. This is a particular and important result in the literature i.e., Wapenaar et al. (2010a), because with

a simple multiplication in the frequency domain allows us to retrieve Green’s functions for source

positions where we only have receivers.

3.2 Interferometric equation with convolution-based expressions

In this section, we will present the seismic interferometry by convolution-based, that is an alter-

native to the classical correlation-based scheme. According with Wapenaar et al. (2010b) in many

situations is most convenient to make interferometry by convolution-based than by correlation-based.

One of the main advantages of the convolution-based procedure is its inherent compensation for the

properties of the source wavelet. Another important advantage is that the underlaying theory does not
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respectively, we have

©

∫

S

∫

1

ρ(x)

[

Ĝ(xB, ω; x)∇Ĝ(x, ω; xS)− Ĝ(x, ω; xS)∇Ĝ(xB, ω; x)
]

· n̂ dS =

−

∫∫

V

∫

1

ρ(x)

[

δ(x− xS)Ĝ(xB, ω; x)
]

dV,

(3.18)

solving the volume integral of right-hand side of equation (3.18) we obtain

©

∫

S

∫

1

ρ(x)

[

Ĝ(xB, ω; x)∇Ĝ(x, ω; xS)− Ĝ(x, ω; xS)∇Ĝ(xB, ω; x)
]

· n̂ dS =

−
1

ρ(xS)
Ĝ(xB, ω; xS).

(3.19)

This is the fundamental relationship for all convolution based interferometry techniques, because it

proves that the Green’ function of the propagation from xS to xB can be obtained with information

about the wavefield propagating from xS to (all) receivers on the closed surface.

3.2.1 Convolution-based Green’s function approximation

In this section we will simplify the term evaluated in equation (3.19). The right-hand side of

equation (3.19) contains a combination of two convolution products in the frequency domain. To

start we observe that Ĝ(x, ω; xS) is the superposition of an inward and outward propagating field,

denoted with the subscripts + and −, respectively, which is written as Ĝ(x, ω; xS) = Ĝ+(x, ω; x
S) +

Ĝ−(x, ω; x
S) (Wapenaar et al., 2010b). In the high frequency regime the derivatives in equation (3.19)

can be approximated in correspondence to the expression (2.26). The main contribution to integral

3.19 comes from the stationary points on surface S. However, the stationary points are different for

terms containing Ĝ+ than for those containing Ĝ−. Considering the wavefield decomposition of the

Green’s function Ĝ(x, ω; xS) is possible rewrite equation (3.19) as a coupled system, as we show in

equations (3.20) and (3.21). For terms containing Ĝ+ in the expression evaluated in the closed surface

integral in equation (3.19), we have at the stationary points

©

∫

S

∫

1

ρ(x)

[

Ĝ(xB, ω; x)∇Ĝ+(x, ω; x
S)− Ĝ+(x, ω; x

S)∇Ĝ(xB, ω; x)
]

· n̂dS =

iω ©

∫

S

∫

1

ρ(x)

[

−Ĝ(xB, ω; x)∇TĜ+(x, ω; x
S) + Ĝ+(x, ω; x

S)∇TĜ(xB, ω; x)
]

· n̂dS,

(3.20)
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whereas for terms containing Ĝ− we have

©

∫

S

∫

1

ρ(x)

[

Ĝ(xB, ω; x)∇Ĝ−(x, ω; x
S)− Ĝ−(x, ω; x

S)∇Ĝ(xB, ω; x)
]

· n̂dS =

iω ©

∫

S

∫

1

ρ(x)

[

Ĝ(xB, ω; x)∇TĜ−(x, ω; x
S) + Ĝ−(x, ω; x

S)∇TĜ(xB, ω; x)
]

· n̂dS.

(3.21)

Considering the gradient of in- and outward constituents of the Green’s functions, we can rewrite the

right-hand side expressions of equations (3.20) and (3.21) as, respectively

©

∫

S

∫

1

ρ(x)

[

Ĝ(xB, ω; x)∇Ĝ+(x, ω; x
S)− Ĝ+(x, ω; x

S)∇Ĝ(xB, ω; x)
]

· n̂dS, (3.22)

and

−©

∫

S

∫

1

ρ(x)

[

Ĝ(xB, ω; x)∇Ĝ−(x, ω; x
S) + Ĝ−(x, ω; x

S)∇Ĝ(xB, ω; x)
]

· n̂dS. (3.23)

According with Wapenaar and Fokkema (2006) at the stationary point over the surface S, the term

Ĝ(xB, ω; x)∇Ĝ+(x, ω; x
S) can be expressed as −Ĝ+(x, ω; x

S)∇Ĝ(xB, ω; x), the in equation (3.23)

the terms have contribution among them. On the other hand the term Ĝ(xB, ω; x)∇Ĝ−(x, ω; x
S) can

be expressed as −Ĝ−(x, ω; x
S)∇Ĝ(xB, ω; x), then the terms in equation (3.23) cancel each other.

Taking into account the above observations, we can rewrite the equation (3.19) as

2ρ(xS)©

∫

S

∫

1

ρ(x)
Ĝ(xB, ω; x)∇Ĝ+(x, ω; x

S) · n̂ dS = Ĝ(xB, ω; xS). (3.24)

Equation (3.24) allows us to calculate the Green’ function between x and xB, which represents the

wavefield inside the surface S, if we know the gradient of the reference wavefield ∇Ĝ+(x, ω; x
S) and

the Green’s function between xS and xB. Knowing this, it is possible retrieve Ĝ(xB, ω; x) using any

numerical inversion technique.

3.3 Correlation-based interferometric redatuming

For practical purposes, equation (3.8) is still inadequate, because it is extremely rare for closed

surface data to be available. Moreover, the Green’ functions’ gradients generally are unknown. There-

fore, the quantities in equation (3.8) need to be approximated by practically available data. In this

section we will consider the theory of correlation-based interferometry considering a seismic array
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Here ρA(x), ρB(x) and cA(x) and cB(x) are the density and velocity in the unperturbed and perturbed

media, respectively. There is a unique difference wavefield Ĝs(x, ω; xB), conventionally also know

as scattered (Bleistein et al., 2001) that allows to relate the two Green’s functions of the states A and

B as

ĜB(x, ω; xB) = ĜA(x, ω; xB) + Ĝs(x, ω; xB). (3.29)

It is our objective to determine this scattered wavefield due to the presence of inhomogeneities below

S2 as if recorded with sources and receivers at S2. Upon the use of the general form of the perturbation

operator or scattering potential, defined as (Rodberg and Thaler, 1967)

V = LB − LA, (3.30)

and using the wavefield decomposition (3.29), equation (3.26) can be written as

(

LA + V
)

[

ĜA(x, ω; xB) + Ĝs(x, ω; xB)
]

= −δ(x− xB). (3.31)

Together with equation (3.25), this leads to

LAĜs(x, ω; xB) = −V
[

ĜA(x, ω; xB) + Ĝs(x, ω; xB)
]

. (3.32)

At this point, we consider a Green’s function ĜA∗(x, ω; x′), which satisfies a Helmholtz equation

similar to expression (3.25), however with a point source at x′ positioned slightly above the datum in

depth. Multiplying in both sides of the complex conjugate of this Helmholtz equation by Ĝs(x, ω; xB)

we find

ρA(x)Ĝ
s(x, ω; xB)∇ ·

[

1

ρA(x)
∇ĜA∗(x, ω; x′)

]

+
ω2

cA(x)
Ĝs(x, ω; xB)ĜA∗(x, ω; x′) =

− Ĝs(x, ω; xB)δ(x− x′).

(3.33)

Correspondingly, multiplying in both sides of equation (3.32) by ĜA∗(x, ω; x′), we can explicitly

write

ρA(x)Ĝ
A∗(x, ω; x′)∇ ·

[

1

ρA(x)
∇Ĝs(x, ω; xB)

]

+
ω2

c2A(x)
ĜA∗(x, ω; x′)Ĝs(x, ω; xB) =

− ĜA∗(x, ω; x′)V
[

ĜA(x, ω; xB) + Ĝs(x, ω; xB)
]

.

(3.34)
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Subtracting equation (3.33) from (3.34) and rewriting the terms, we have

∇ ·

{

1

ρA(x)

[

ĜA∗(x, ω; x′)∇Ĝs(x, ω; xB)− Ĝs(x, ω; xB)∇ĜA∗(x, ω; x′)
]

}

=

1

ρA(x)

[

ĜA∗(x, ω; x′)VĜB(x, ω; xB)− Ĝs(x, ω; xB)δ(x− x′)
]

.

(3.35)

After application of Green’s theorem, solving the volume integral of the term with the delta function

and reorganizing the expression (3.35), we arrive at

Ĝs(x′, ω; xB) = ρA(x
′)

{

∫∫

V

∫

1

ρA(x)
ĜA∗(x, ω; x′)VĜB(x, ω; xB)dV−

©

∫

S

∫

1

ρA(x)

[

ĜA∗(x, ω; x′)∇Ĝs(x, ω; xB)− Ĝs(x, ω; xB)∇ĜA∗(x, ω; x′)
]

· n̂ dS

}

.

(3.36)

Equation (3.36) represents the scattered Green’s function with source in xB and receiver in x′, whose

results are given by the sum of a volume and a closed surface integrals, multiplied by the unperturbed

density in xA. It is given by the sum of a volume and a closed-surface integral, multiplied by the

unperturbed density in x′. Considering that in both states A and B the overburden between the

surfaces S1 and S2 is the same, the scattering potential satisfies V = 0 inside V . Thus,

∫∫

V

∫

1

ρA(x)
ĜA∗(x, ω; x′)VĜB(x, ω; xB)dV = 0. (3.37)

Equation (3.37) allows us to simplify the correlation-based interferometric expression (3.36) as an

integral evaluated over the closed surface S. Analogous to section (2.4), the closed surface integral

in the reciprocity theorem of correlation type is divided in three surfaces S1, S2 and S3, respectively,

as we can see in the Figure (3.4). Again, according to Schuster (2009) the Sommerfeld radiation

conditions guarantee that the integral over S3 vanishes at infinity.
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Correlation-based redatuming equation

According with the analysis corresponding to correlation-based in appendix A, only the integral

over the surface S1 contributes in equation (3.38). This implies that to all contributions Ĝs
−
(x, ω; xB)

originate below this surface. Thus, the Green’s function Ĝs
−
(x, ω; xB) measured at the surface S1 in

equation (3.38) can be interpreted as ĜB
−
(x, ω; xB) (Vasconcelos et al., 2009). Hence, equation (3.38)

can be written as

Ĝs(x′, ω; xB) ≈ 2ρA(x
′)

∫

S1

∫

1

ρA(x)

[

∂3Ĝ
A∗

−
(x, ω; x′)

]

ĜB
−
(x, ω; xB)dx1dx2, (3.42)

where x′ is an auxiliary variable that represent a coordinate at the datum (see Figure 3.5). Expression

(3.42) is an equation that allows us to relocate the receivers to an arbitrary datum using correlation-

based interferometric redatuming (see Figure 3.5a). It is possible retrieve the scattered wavefield

Ĝs(x′, ω; xB) just evaluating the crosscorrelation represented by the product ∂3ĜA∗

−
(x, ω; x′)Ĝs

−
(x, ω; xB)

and integrating it over the surface S1.

The input data to retrieve the redatumed Green’s functions are the complete seismic data Ĝs
−
(x, ω; xB)

over the surface S1 and the vertical derivative of the complex conjugate of the Green’s function

∂3Ĝ
A∗

−
(x′, ω; xB) which is the transmitted wavefield from the surface S1 until the datum at S2. Figure

(3.5) is a sketch that show us intuitively the process of redatuming in two steps: (1) receiver redatum-

ing (equation 3.42) and (2) source redatuming that is possible to do with the following expression

Ĝs(x′, ω; x′′) ≈ 2ρA(x
′)

∫

S1

∫

1

ρA(x)

[

∂3Ĝ
A∗

−
(x, ω; x′)

]

Ĝs
−
(x′, ω; xB)dx1dx2, (3.43)

where x′′ is an auxiliary variable that represents a coordinate at the datum. The input terms in equation

(3.43) are the Green’s function with redatumed receiver Ĝs
−
(x′, ω; xB), retrieved in expression (3.42),

and again the vertical derivative of the complex conjugate incident Green’s function ∂3Ĝ
A∗

−
(x′, ω; xA).

In this way it is possible to retrieve a seismic array at the datum Ĝs
−
(x′, ω; x′′), where both x′ and x′′

are the virtual receiver and source positions at datum, respectively.
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where this equation makes use of the Helmholtz operator in expression (3.27). We multiply both sides

of equation (3.44) by Ĝs(x′, ω; xB) to find

ρA(x)Ĝ
s(x, ω; xB)∇ ·

[

1

ρA(x)
∇ĜA(x, ω; xA)

]

+
ω2

c2A(x)
Ĝs(x, ω; xB)ĜA(x, ω; xA) =

− Ĝs(x, ω; xB)δ(x− xA),

(3.45)

Correspondingly, we multiply both sides of equation (3.32) by ĜA(x′, ω; xA) to find

ρA(x)Ĝ
A(x, ω; xA)∇ ·

[

1

ρA(x)
∇Ĝs(x, ω; xB)

]

+
ω2

c2A(x)
ĜA(x, ω; xA)Ĝs(x, ω; xB) =

− ĜA(x, ω; xA)V
[

ĜA(x, ω; xB) + Ĝs(x, ω; xB)
]

.

(3.46)

Subtracting equation (3.46) from (3.45) and rewriting it in a convenient form, we have

∇ ·

{

1

ρA(x)

[

ĜA(x, ω; xA)∇Ĝs(x, ω; xB)− Ĝs(x, ω; xB)∇ĜA(x, ω; xA)
]

}

=

1

ρA(x)

[

ĜA(x, ω; xA)VĜB(x, ω; xB)− Ĝs(x, ω; xB)δ(x− xA)
]

.

(3.47)

After application of Green’s theorem, solution of the volume integral over the term with the delta

function and reorganization, we have

Ĝs(xA, ω; xB) = ρA(x
A)

{

∫∫

V

∫

1

ρA(x)
ĜA(x, ω; xA)VĜB(x, ω; xB)dV−

©

∫

S

∫

1

ρA(x)

[

ĜA(x, ω; xA)∇Ĝs(x, ω; xB)− Ĝs(x, ω; xB)∇ĜA(x, ω; xA)
]

· n̂ dS

}

.

(3.48)

Equation (3.48) represents the scattering Green’ function with source in xB and receiver in xA, given

by the sum of a volume and a closed surface integrals, multiplied by the density at the receivers in the

state A. Considering again that in both states A and B the overburden in between surfaces S1 and S2

is the same (Figure 3.3), the scattering potential satisfies V = 0 inside V . Thus, the volume integral

satisfies
∫∫

V

∫

1

ρA(x)
ĜA(x, ω; xA)VĜB(x, ω; xB)dV = 0. (3.49)
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Equation (3.49) allows us to simplify the convolution-based interferometric expression (3.48) as an

integral over the closed surface S. Analogous to section (3.3), the closed surface integral in the reci-

procity theorem of correlation type is divided in three surfaces S1, S2 and S3, previously defined

(Figure 3.4). According to Schuster (2009) the integral over the surface S3 vanishes by the Sommer-

feld radiation conditions. Thus, we can rewrite equation (3.48) as

Ĝs(xA, ω; xB) ≈

ρA(x
A)

{

∫

S1

∫

1

ρA(x)

[

ĜA(x, ω; xA)∇Ĝs(x, ω; xB)− Ĝs(x, ω; xB)∇ĜA(x, ω; xA)
]

· n̂1dx1dx2+

∫

S2

∫

1

ρA(x)

[

ĜA(x, ω; xA)∇Ĝs(x, ω; xB)− Ĝs(x, ω; xB)∇ĜA(x, ω; xA)
]

· n̂2dx1dx2

}

.

(3.50)

To simplify equation (3.50), we rewrite it as

Ĝs(xA, ω; xB) = ρA(x
A)

[

Ĵ1 + Ĵ2

]

. (3.51)

where

Ĵ1 =

∫

S1

∫

1

ρA(x)

[

ĜA(x, ω; xA)∇Ĝs(x, ω; xB)− Ĝs(x, ω; xB)∇ĜA(x, ω; xA)
]

· n̂1dx1dx2, (3.52)

and

Ĵ2 =

∫

S2

∫

1

ρA(x)

[

ĜA(x, ω; xA)∇Ĝs(x, ω; xB)− Ĝs(x, ω; xB)∇ĜA(x, ω; xA)
]

· n̂2dx1dx2. (3.53)

Convolution-based redatuming equation

According to the analysis corresponding to the convolution-based in appendix A, equation (3.50)

only have contributions over the surface S2. The term Ĝs(xA, ω; xB) in equation (3.50) can be inter-

preted as ĜB(xA, ω; xB), because positions xA and xB are over the earth’s surface, as we showed in

the Figure (3.3). Hence, equation (3.50) can be written as

ĜB(xA, ω; xB) ≈ −2ρA(x
A)

∫

S2

∫

1

ρA(x)
Ĝs

−
(x′, ω; xB)∂3Ĝ

A
+(x

′, ω, xA)dx′

1dx
′

2. (3.54)

The first step to make redatuming can be done using the expression (3.54), that allows us to relocate

receivers by interferometric convolution-based methods, with the seismic array configuration of Fig-
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4. Interferometric redatuming by focusing

Inverse wavefield extrapolation is a term used to describe the process of recovering the wavefield

somewhere in depth and from there to recorded it on the earth’s surface, generally by retropropagation

back into the earth (van der Neut et al., 2015b). This concept is used in many imaging schemes, e.g.,

RTM (Kosloff and Baysal, 1983), interferometric redatuming (Schuster, 2009), Marchenko imaging

(Wapenaar et al., 2014) and others. Particularly, many works regarding the topic of Marchenko imag-

ing, study and employ inverse wavefield extrapolation to recover so-called focusing functions, where

the first iteration is based on the conventional wavefield extrapolation methods (van der Neut et al.,

2015a). Interferometric redatuming methods could be classified as conventional wavefield extrapo-

lation. But this classification can carry some problems, because this means that between surfaces S1

and S2 there is no presence of scatters in some input data at theoretical considerations, just as we

shown in Figures (3.5) and (3.6) to redatuming by correlation and convolution based, respectively.

This conventional techniques has a great limitation, because many of the artefacts are coming from

inhomogeneities in the overburden (Vasconcelos et al., 2009).

In this chapter, we propose a simpler alternative to the estimation of focusing functions, which

allows us to remove overburden multiples and spurious events from the Green’s functions retrieved at

a new datum in depth. The strength of the conventional procedure lies in the fact that it needs only an

estimate of the transmitted wavefield from the earth’s surface to the datum to recover the full wave-

field there. However, this makes it a rather sophisticated method to retrieve the Green’s functions at

the datum. By using an additional wavefield estimated in the overburden, our procedure allows us to

determine the up- and downgoing constituents of the Green’s functions at depth by means of a least-

squares inversion. Note, however, that this will generally require a better model of the overburden

inhomogeneities. Retrieved the up- and downward constituents makes possible to make redatuming if

we account a convolution operation in frequency domain between the downward constituent and the

redatuming wavefield with seismic array at datum, this all equal to the upward wavefield constituent

retrieved by inversion in above step.
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The equations of our method are the one-way reciprocity theorems of convolution and correlation

type. These two formulas can be reformulated in such a way that they allow us to express the data at

the surface as integrals over wavefields, which propagate only in the overburden and the desired up-

and downgoing wavefield constituents at the datum (van der Neut et al., 2015a). The two involved

wavefields in the overburden are the transmitted wavefield from the surface to the datum, and the so-

called truncated wavefield, i.e., the one reflected from the overburden scatterers only and recorded at

the surface receivers. Both wavefields can be simulated in a reference model which is homogeneous

below the datum.

4.1 Wavefield decomposition

To derive the relations deduced in this section, using our notation, we start with two states, A and B

(indicated by superscripts A and B) in the frequency-space domain (Figure 4.1). To do wavefield de-

composition in our proposed method, we defined that surfaces S1 and S2 have been extended to cover

the complete horizontal planes, i.e., they are now defined as ∂D1 = {(x1, x2, x3) ∈ R
3|x3 = x1

3} and

∂D2 = {(x1, x2, x3) ∈ R
3|x3 = x2

3}. In the state A, we considered a point source positioned imme-

diately above surface ∂D1. In this situation, the vertical derivative of the downgoing wavefield at the

surface can be expressed as ∂3p̂A+ = −1
2
δ(x1 − xA

1 )δ(x2 − xA
2 ) (See demonstration in Appendix B).

The validity region of this expression in state A is limited by surfaces ∂D1 and ∂D2. Between these

surfaces, the medium may be arbitrarily inhomogeneous. Above ∂D1 and below ∂D2 we considered

homogeneous halfspaces without a free surface (Figure 4.1).

In state B, we considered the same inhomogeneous medium between surfaces ∂D1 and ∂D2 as in

state A. Above ∂D1, we still considered a homogeneous medium halfspace without a free surface, but

below ∂D2 we considered a scattering body. The source in the state B is a point source immediately

above surface ∂D1, such that the vertical derivative of the downgoing wavefield can be represented

as ∂3p̂
B
+ = −1

2
δ(x − xB)δ(x2 − xB

2 ) (see Appendix B). In both states A and B, we considered the

wavefield decomposition into up- and downgoing constituents in analogy to equation (2.23). An

analysis of the physical situation in both states allows an interpretation of all propagation events at

each surface in Figure 4.1, resulting in Table (4.1).
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Solving right-hand side of the equation (4.1) we have

1

2ρ(xA)
ĜB

−
(xA, ω; xB)−

1

2ρ(xB)
ĜA

−
(xB, ω; xA) ≈ −

∫

∂D2

∫

1

ρ(x)
ĜB

−
(x′, ω; xB)∂3Ĝ

A
+(x

′, ω; xA)d2x′.(4.2)

Equation (4.2) is the first of our main results. This expression allows us to invert for the upgoing

Green’s function ĜB
−
(x′, ω; xB) at the datum ∂D2 if we know the corresponding Green’s functions

ĜB
−
(xA, ω; xB) at the surface ∂D1, as long as we have sufficient information on the inhomogeneous

medium between the two surfaces to model the terms 1
2ρ(xB)

ĜA
−
(xB, ω; xA) and 1

2ρ(x)
∂3Ĝ

A
+(x

′, ω; xA).

If we consider the particular case in equation (4.2) where the density constant we can simplify it

equation as

1

2
ĜB

−
(xA, ω; xB)−

1

2
ĜA

−
(xB, ω; xA) ≈ −

∫

∂D2

∫

ĜB
−
(x′, ω; xB)∂3Ĝ

A
+(x

′, ω; xA)d2x′. (4.3)

Equation (4.3) is a expression that allows us to retrieve ĜB
−
(x′, ω; xB), knowing the transmitted wave-

field ∂3Ĝ
A
+(x

′, ω; xA) and the truncated wavefield at overburden ĜA
−
(xB, ω; xA).

Downgoing Green’s functions

In a procedure similar to the analysis before, in this section we will deduce the expression to obtain

the downgoing constituent of the total Green’s function at the datum. In the first place, we replace the

expressions of Table (4.1) into the one-way reciprocity theorem of correlation type (equation 2.32),

to obtain

∫

∂D1

∫

1

ρ(x)

[

ĜB
−
(x, ω; xB)∂3Ĝ

A∗

−
(x, ω; xA) +

1

2
ĜA∗

+ (x, ω; xA)δ(x1 − xB
1 )δ(x2 − xB

2 )

]

d2x ≈

∫

∂D2

∫

1

ρ(x)
ĜB

+(x
′, ω; xB)∂3Ĝ

A∗

+ (x′, ω; xA)d2x′.

(4.4)

Solving the left-hand side and rewriting the right-hand side of equation (4.4) , we have

∫

∂D1

∫

1

ρ(x)
ĜB

−
(x, ω; xB)∂3Ĝ

A∗

−
(x, ω; xA)d2x+

1

2ρ(xB)
ĜA∗

+ (xB, ω; xA) ≈

−

∫

∂D2

∫

1

ρ(x)
ĜA∗

+ (x′, ω; xA)∂3Ĝ
B
+(x

′, ω; xB)d2x′.

(4.5)
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Due that states A and B have the same overburden medium, we can rewrite all terms of equation (4.5)

as

1

2ρ(xB)
ĜA∗

+ (xB, ω; xA) ≈ −

∫

∂D1

∫

1

ρ(x)
ĜA

−
(x, ω; xB)∂3Ĝ

A∗

−
(x, ω; xA)d2x−

∫

∂D2

∫

1

ρ(x)
ĜA∗

+ (x′, ω; xA)∂3Ĝ
A
+(x

′, ω; xB)d2x′,

(4.6)

replacing equation (4.6) in (4.5)

−

∫

∂D1

∫

1

ρ(x)
ĜA

−
(x, ω; xB)∂3Ĝ

A∗

−
(x, ω; xA)d2x−

∫

∂D2

∫

1

ρ(x)
ĜA∗

+ (x′, ω; xA)∂3Ĝ
A
+(x

′, ω; xB)d2x′

+

∫

∂D1

∫

1

ρ(x)
ĜB

−
(x, ω; xB)∂3Ĝ

A∗

−
(x, ω; xA)d2x ≈ −

∫

∂D2

∫

1

ρ(x)
ĜA∗

+ (x′, ω; xA)∂3Ĝ
B
+(x

′, ω; xB)d2x′.

(4.7)

Equation (4.7) allows us to calculate the vertical derivative of the downgoing Green’s function de-

fined as ∂3ĜB
+(x

′, ω; xB) at the datum. This is if we know the complex conjugate of the transmitted

wavefield from the earth’s surface until the datum 1
ρ(x)

ĜA∗

+ (x′, ω; xA). We also need to know the com-

plex conjugate of the truncated wavefield 1
ρ(x)

ĜA∗

−
(xB, ω; xA) and its corresponding vertical derivative

1
ρ(x)

∂3Ĝ
A∗

−
(x, ω; xA). However, if we consider that the density is constant, we can simplify the ex-

pression (4.7) as follows

−

∫

∂D1

∫

ĜA
−
(x, ω; xB)∂3Ĝ

A∗

−
(x, ω; xA)d2x−

∫

∂D2

∫

ĜA∗

+ (x′, ω; xA)∂3Ĝ
A
+(x

′, ω; xB)d2x′

+

∫

∂D1

∫

ĜB
−
(x, ω; xB)∂3Ĝ

A∗

−
(x, ω; xA)d2x ≈ −

∫

∂D2

∫

ĜA∗

+ (x′, ω; xA)∂3Ĝ
B
+(x

′, ω; xB)d2x′.

(4.8)

Here if we know the same Green’s functions listed to solve equation (4.8), as we mentioned above,

but without density factors. We can retrieve the vertical derivative of the downgoing constituent

∂3Ĝ
B
+(x

′, ω; xB) at the datum in equation (4.8).

4.2 Convolution-based interferometric redatuming

Having calculated the equations that allows us to retrieve the constituents up- and downgoing of

the Green’s functions at the datum, is possible to estimate an equation in order to retrieve a complete

wavefield at datum. Considering that each trace in the output gather ĜB
−
(x′, ω; xB) can be interpreted
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as the stack of a convolution gather, which is obtained by crossconvolution of each trace in the reflec-

tion response R̂n(x
′, ω; xd) at fixed source point xd at datum with each trace of the vertical derivative

of the downgoing constituent ∂3ĜB
+(x

′, ω; xB) with fixed source position xB at surface and receiver

location in x′ at the datum (Figure 4.2). According to Wapenaar et al. (2010b) in more situations it

is most convenient to make interferometry by convolution-based than by correlation-based expres-

sions. This is because in the convolution way, the processes to retrieve the interferometric responses

are compensate by the properties of the source wavelet. Another advantage is that it is unnecessary

to assume that the medium is lossless, as we mentioned previously in the section (3.4). Therefore,

because of the benefits of the convolution-based methods we focused our work in this method with

the numerical examples at Chapter 6. Expressions (4.2) and (4.8) ensures the presence of the com-

plete wavefield up- and downward constituents, respectively, with information of the medium in- and

outside at the surfaces ∂D1 and ∂D2, without free-surface. This allows us express as a complete

form the convolution-based equation deduced in expression (3.55), then the redatuming equation by

convolution-based can be expressed in the case of variable density as

ĜB
−
(x′′, ω, xB) = −2ρ(x′)

∫

∂D2

∫

1

ρ(x)
R̂n(x

′, ω; xd)∂3Ĝ
B
+(x

′, ω; xB)d2x′. (4.9)

Equation (4.9) is the main result of this work, with this equation is possible to retrieve the total

wavefield at the datum R̂n(x
′, ω; xd) using any inversion method (at the case of this work we used

least-squares), if we know the up- and downward Green’s function constituents 1
ρ(x′)

ĜB
−
(x′′, ω, xB)

and 1
ρ(x)

∂3Ĝ
B
+(x

′, ω; xB). This is an alternative to approach the redatuming problem, as we can see in

the Figure (4.2). In the case that the density is considered smooth enough laterally, equation (4.9) can

be expressed as

ĜB
−
(x′′, ω, xB) = −2

∫

∂D2

∫

R̂n(x
′, ω; xd)∂3Ĝ

B
+(x

′, ω; xB)d2x′. (4.10)

With the equation (4.10) is possible to retrieve the total Green’s functions at datum R̂n(x
′, ω; xd) if we

know the up- and downward Green’s functions constituents, using any numerical inversion methods.
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5. Inverse functions of the interferometric

redatuming expressions

In this chapter, we will deduce the inverse functions of the previously raised linear problems that

involve convolution and correlation based methods. The solutions to the inverse problems shown

here will be addressed in the continuum. Expressions proposed in this chapter have the introduction

of the point spread functions (PSF ) that allows us to solve the integral expressions and calculate

the desired Green’s functions. The PSF have the inconvenient that carry non-physical information,

then, to attenuate this kind of signals in the interferometric redatuming responses we introduce the

inverse of the point spread function (PSF−1). Other problem appear in the implementation of the

inversion methods because the space limitation of the seismic array. This was discussed by Wapenaar

and Fokkema (1997) (see Appendix C), where is commented about the limitations between inverse

wavefield extrapolation operators, where in spite of the time-symmetry of acoustic wave equation,

inverse wavefield extrapolation operators is not exact, even for the simple situation of a homogeneous

medium and an infinite aperture. On the other hand for strongly inhomogeneous media the kinematic

aspects of multi-valued events are handled correctly, but angle-dependent errors occur in their dynam-

ical behavior. Computational implementation of inverse operators also has limitations in the point of

surfaces coverage, because it involves discretization of the inverse problem, making laterally that the

solved integral surfaces truncated. Numerically the inverse problem will be solved by least-squares

inversion method.

5.1 Inversion of interferometric redatuming by convolution-based

In previous chapter, we mentioned that the interferometry by convolution methods is an inverse

linear problem that could be solved by any inversion of the numerical method. In this section, we show

a general methodology to calculate the inverse functions to retrieve the unknown Green’s function

form equations (3.54) and (3.55), in order to calculate the upward and redatuming Green’s functions,

respectively. To start, we will calculate the inverse function from equation (3.54), which result will
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be the input for the expression (3.55) in order to complete the redatuming of the total seismic array at

datum in depth.

Upward Green’s function

We start defining a point spread function (PSF ), that represents the blurring function of a delta

(Hansen et al., 2006; van der Neut and Wapenaar, 2015). The PSF in this case will be used to help

us to solve equation (4.3). To simplify the way of writing we denoted the PSF as a function P and

we define it as
∫

S1

∫

∂3Ĝ
A
+(x

′, ω; xA)∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA = P (x′, ω; x′′). (5.1)

Equations (5.1) represent the function P (x′, ω; x′′) that is composed by the autocorrelation between

the vertical derivative of the transmitted wavefield in state A in Figure (4.1) with source in xA and

receiver in x′ with the complex conjugate of itself with receiver in xA and source in x′′. Here, we

denoted x′ and x′′ as auxiliary variables that represents different positions of sources and receivers or

vice versa over the surface ∂D2 (datum). Multiplying both sides of (3.54) by ∂3Ĝ
A∗

+ (xA, ω; x′′) and

integrating it over the surface S1, yields

∫

S1

∫

ĜB(xA, ω; xB)∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA ≈

− 2ρA(x
A)

∫

S1

∫





∫

S2

∫

1

ρA(x)
Ĝs

−
(x′, ω; xB)∂3Ĝ

A
+(x

′, ω; xA)d2x′



 ∂3Ĝ
∗

+(x
A, ω; x′′)d2xA.

(5.2)

Reorganizing equation (5.2), we have

∫

S1

∫

ĜB(xA, ω; xB)∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA ≈

− 2ρA(x
A)

∫

S2

∫





∫

S1

∫

∂3Ĝ
A
+(x

′, ω; xA)∂3Ĝ
A∗

+ (xA, ω; x′′)dxA





1

ρA(x)
Ĝs

−
(x′, ω; xB)d2x′.

(5.3)

Replacing equation (5.1) in (5.3), we obtain

∫

S1

∫

ĜB(xA, ω; xB)∂3Ĝ
∗

+(x
A, ω; x′′)d2xA ≈ −2ρ0(x

A)

∫

S2

∫

1

ρA(x)
P (x′, ω; x′′)Ĝs

−
(x′, ω; xB)d2x′.

(5.4)
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Rewriting the right-hand side of equation (5.6), we have

∫

S2

∫





∫

S1

∫

ĜB(xA, ω; xB)∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA



P−1(x′, ω, x′′)d2x′ ≈

− 2ρA(x
A)

∫

S2

∫





∫

S2

∫

P (x′, ω; x′′)P−1(x′′, ω, x′)d2x′





1

ρA(x)
Ĝs

−
(x′, ω; xB)d2x′.

(5.7)

Replacing equation (5.5) in the right-hand side of expression (5.7), we have

∫

S2

∫





∫

S1

∫

ĜB(xA, ω; xB)∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA



P−1(x′, ω, x′′)d2x′ ≈

− 2ρA(x
A)

∫

S2

∫

δ(x′

1 − x′′

1)δ(x
′

2 − x′′

2)
1

ρA(x)
Ĝs

−
(x′, ω; xB)d2x′.

(5.8)

Solving right-hand side of equation (5.8) we obtain

Ĝs
−
(x′′, ω; xB) ≈

−
ρA(x

′′)

2ρA(xA)

∫

S2

∫





∫

S1

∫

ĜB(xA, ω; xB)∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA



P−1(x′, ω, x′′)d2x′.
(5.9)

Equation (5.9) is a expression that allows us to retrieve the up-ward Green’s function. Actually, this

equation is more exact than the first approximation to obtain Ĝs
−
(x′′, ω; xB) in equation (5.4). This is

because expression (5.4) have a PSF that is a blurring of delta function and this is not appropriate.

However, equation (5.9) considers the delta function definition in expression (5.5), which allows us

to obtain a equation (5.9) to retrieve Ĝs
−
(x′′, ω; xB) more accurately.

Redatuming

In this section, we will deduce a function to complete the redatuming at datum in depth with

equation (3.55) using as input data the upward Green’s function Ĝs
−
(x′′, ω; xB) calculated previously

in expression (5.9). To find the function to solve equation (3.55) we consider the same expression to

P in equation (5.1) but at difference of it, here we consider the source position at xB and receivers

at x′′. Multiplying equation (3.55) in both sides by ∂3Ĝ
A∗

+ (xB, ω; x′′) and integrating over the surface
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S1, we have

∫

S1

∫

Ĝs(x′′, ω; xB)∂3Ĝ
A∗

+ (xB, ω; x′′)d2xB ≈

− 2ρA(x
A)

∫

S1

∫





∫

S2

∫

1

ρA(x)
Ĝs

−
(x′′, ω; xd)∂3Ĝ

A
+(x

′, ω; xB)dx′



 ∂3Ĝ
A∗

+ (xB, ω; x′′)d2xB.

(5.10)

Reorganizing equation (5.10), we have

∫

S1

∫

Ĝs(x′′, ω; xB)∂3Ĝ
A∗

+ (xB, ω; x′′)d2xB ≈

− 2ρA(x
A)

∫

S2

∫





∫

S1

∫

∂3Ĝ
A∗

+ (xB, ω; x′′)∂3Ĝ
A
+(x

′, ω; xB)dxB





1

ρA(x)
Ĝs

−
(x′′, ω; xd)d2x′.

(5.11)

The integral over the surface S1 in the right-hand side of equation (5.11) is P as we show in equation

(5.1), then expression (5.11) can be rewritten as

∫

S1

∫

Ĝs(x′′, ω; xB)∂3Ĝ
A∗

+ (xB, ω; x′′)d2xB ≈ −2ρA(x
A)

∫

S2

∫

1

ρA(x)
P (x′, ω; x′′)Ĝs

−
(x′′, ω; xd)d2x′.

(5.12)

As previous analysis we also could have a redatuming expression with equation (5.12), considering

that P come from an inhomogeneous medium, the blurring function will have nonphysical events as

we showed in Figure (5.1). Analogous to equation (5.5), supposing that we know the inverse of the

function P , we applied it in both sides of expression (5.12) and make integration over the surface S2,

to obtain

∫

S2

∫





∫

S1

∫

Ĝs(x′′, ω; xB)∂3Ĝ
A∗

+ (xB, ω; x′′)d2xB



P−1(x′′, ω; x′)d2x′′ ≈

− 2ρA(x
A)

∫

S2

∫





∫

S2

∫

1

ρA(x)
P (x′, ω; x′′)Ĝs

−
(x′′, ω; xd)d2x′′



P−1(x′′, ω; x′)d2x′′,

(5.13)
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rewriting the right-hand side of equation (5.13) we have

∫

S2

∫





∫

S1

∫

Ĝs(x′′, ω; xB)∂3Ĝ
A∗

+ (xB, ω; x′′)d2xB



P−1(x′′, ω; x′)d2x′′ ≈

− 2ρA(x
A)

∫

S2

∫





∫

S2

∫

P (x′, ω; x′′)P−1(x′′, ω; x′)d2x′′





1

ρA(x)
Ĝs

−
(x′′, ω; xd)d2x′′.

(5.14)

Similar to expression (5.5), the inner integral of the right-hand side of equation (5.14) can be inter-

preted as a delta at position the x′, this allows us rewrite equation (5.14) as

∫

S2

∫





∫

S1

∫

Ĝs(x′′, ω; xB)∂3Ĝ
A∗

+ (xB, ω; x′′)d2xB



P−1(x′′, ω; x′)d2x′′ ≈

− 2ρA(x
A)

∫

S2

∫

δ(x′′

1 − x′

1)δ(x
′′

2 − x′

2)
1

ρA(x)
Ĝs

−
(x′′, ω; xd)d2x′′,

(5.15)

Finally, solving right-hand side of equation (5.15) we have

Ĝs
−
(x′, ω; xd) ≈

−
ρA(x

′)

2ρA(xA)

∫

S2

∫





∫

S1

∫

Ĝs
−
(x′′, ω; xB)∂3Ĝ

A∗

+ (xB, ω; x′′)d2xB



P−1(x′′, ω; x′)d2x′′.
(5.16)

Equation (5.16) is an expression that allows us to make redatuming at datum in depth. This equation

is evaluated over the surfaces S1 and S2, and only needs as input a model of the vertical deriva-

tive of the complex conjugate of the Green’s function from the earth’s surface until the datum at

depth ∂3Ĝ
A∗

+ (xB, ω; x′′), the upward Green’s function retrieved in equation (5.9) Ĝs
−
(x′′, ω; xB) and

P−1(x′′, ω; x′). At homogeneous case is relatively easy to make a model like this, because the back-

ground velocity is constant and supposed an approach of the model does not require great effort. But

things change when we consider an inhomogeneous overburden, because the background would be

more complex, and many events would be part of the data, causing presence of artefacts, doing it

more difficult when we try to retrieve the total Green’s function at datum. It is the case that we will

study in the next section, where we will retrieve the up- and downward Green’s functions at depth.

It will be the input that allows us to retrieve the total Green’s function at datum, when is account

homogeneity and inhomogeneities at the overburden.
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5.2 Interferometric redatuming by focusing

Now we have another system of equations to solve. This approach consider inhomogeneities at the

medium between surfaces ∂D1 and ∂D2 (Figure 4.1). In this case we will find expressions to retrieve

by inversion the up- and downgoing Green’s functions ĜB
−
(x′, ω; xB) and ∂3Ĝ

B
+(x

′, ω; xB) which

are expressed in equations (4.3) and (4.8), respectively. After calculating of the inverse operators to

retrieve the up- and downward Green’s functions at datum, we will use this as input data in expression

(4.10) to calculate the inverse operator that allows us to make relocate of source and receivers at datum

retrieving the response R̂n(x
′′, ω; x′) by inversion. To express the inverse operators in the most simple

form, we will assume that the medium has no high density contrasts.

Upgoing Green’s function

To start, we make use of the operator P defined in equation (5.1). Again, the operator P will bring

us information about the inhomogeneities in the overburden (Figure 5.1). Multiplying in both sides

of equation (4.2) by the complex conjugate of the vertical derivative of the transmitted wavefield with

source at the datum in x′′ and receiver at the earth’s surface in xA ∂3Ĝ
A∗

+ (xA, ω; x′′), we obtain

∫

∂D1

∫
[

1

2
ĜB

−
(xA, ω; xB)−

1

2
ĜA

−
(xB, ω; xA)

]

∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA ≈

−

∫

∂D1

∫





∫

∂D2

∫

ĜB
−
(x′, ω; xB)∂3Ĝ

A
+(x

′, ω; xA)dx′



 ∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA.

(5.17)

Rewriting the right-hand side of equation (5.17), yields

∫

∂D1

∫
[

1

2
ĜB

−
(xA, ω; xB)−

1

2
ĜA

−
(xB, ω; xA)

]

∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA ≈

−

∫

∂D2

∫





∫

∂D1

∫

∂3Ĝ
A
+(x

′, ω; xA)∂3Ĝ
A∗

+ (xA, ω; x′′)dxA



 ĜB
−
(x′, ω; xB)d2x′.

(5.18)
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In the integral over the surface S1 in the right-hand side of equation (5.18) can be interpreted as the

operator P in equation (5.1), then, expression (5.18) can be written as

∫

∂D1

∫
[

1

2
ĜB

−
(xA, ω; xB)−

1

2
ĜA

−
(xB, ω; xA)

]

∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA ≈

−

∫

∂D2

∫

P (x′, ω; x′′)ĜB
−
(x′, ω; xB)d2x′.

(5.19)

Analogous to equation (5.5) we suppose that is know the operator inverse P−1, then applying it in

equation (5.19) we obtain the following expression

∫

∂D2

∫

{

∫

∂D1

∫
[

1

2
ĜB

−
(xA, ω; xB)−

1

2
ĜA

−
(xB, ω; xA)

]

∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA

}

P−1(x′, ω; x′′)d2x′ ≈

−

∫

∂D2

∫





∫

∂D2

∫

P (x′, ω; x′′)P−1(x′, ω; x′′)d2x′



 ĜB
−
(x′, ω; xB)d2x′,

(5.20)

as we mentioned previously, the inner integral over the surface ∂D2 in the right-hand side of equation

(5.20) is a two-dimensional delta at position x′′, then, equation (5.20) can be rewritten as

∫

∂D2

∫

{

∫

∂D1

∫
[

1

2
ĜB

−
(xA, ω; xB)−

1

2
ĜA

−
(xB, ω; xA)

]

∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA

}

P−1(x′, ω; x′′)d2x′ ≈

−

∫

∂D2

∫

δ(x′ − x′′)δ(x′ − x′′)ĜB
−
(x′, ω; xB)d2x′,

(5.21)

solving the right-hand side of equation (5.21) we obtain the expression

ĜB
−
(x′′, ω; xB) ≈

−

∫

∂D2

∫

{

∫

∂D1

∫
[

1

2
ĜB

−
(xA, ω; xB)−

1

2
ĜA

−
(xB, ω; xA)

]

∂3Ĝ
A∗

+ (xA, ω; x′′)d2xA

}

P−1(x′, ω; x′′)d2x′,
(5.22)

Equation (5.22) is an expression that allows us to calculate the upward constituent of the Green’s

function with source over the earth’s surface and receiver at datum. We can note that the integral

is evaluated over surface ∂D1, where the input data is the original seismic array ĜB
−
(xA, ω; xB)

at the earth’s surface, the model of the overburden truncated with source and receivers on surface

ĜA
−
(xB, ω; xA) and a model of the transmitted wave field from the surface at datum ĜA∗

+ (xA, ω; x′′).



65

Downgoing Green’s function inversion

In this section we will deduce an inverse operator to retrieve the downward wavefield constituent

of equation (4.8). To start our analysis we define the auxiliary term B̂(xA, ω; xB) in equation (4.8) as

B̂(xA, ω; xB) =−

∫

∂D1

∫

ĜA
−
(x, ω; xB)∂3Ĝ

A∗

−
(x, ω; xA)d2x−

∫

∂D2

∫

ĜA∗

+ (x′, ω; xA)∂3Ĝ
A
+(x

′, ω; xB)d2x′

+

∫

∂D1

∫

ĜB
−
(x, ω; xB)∂3Ĝ

A∗

−
(x, ω; xA)d2x

(5.23)

Replacing expression (5.23) in (4.8) we obtain

B̂(xA, ω; xB) ≈ −

∫

∂D2

∫

ĜA∗

+ (x′, ω; xA)∂3Ĝ
B
+(x

′, ω; xB)d2x′. (5.24)

In order to deduce an inverse operator to retrieve the vertical derivative of the downward wavefield

∂3Ĝ
B
−
(x′, ω; xB) in equation (5.24) we define a new PSF as

∫

∂D1

∫

ĜA∗

+ (x′, ω; xA)ĜA
+(x

A, ω; x′′)d2xA = S(x′, ω; x′′). (5.25)

Where S is the PSF operator that is composed by the autocorrelation between the downward wave-

field constituent in state A with source in xA and receiver x′ with the complex conjugate of itself with

receiver in xA and source x′′. Multiplying in both sides of equation (5.25) by the term ĜA
+(x

A, ω; x′′)

we have
∫

∂D1

∫

B̂(xA, ω; xB)ĜA
+(x

A, ω; x′′)d2xA ≈

−

∫

∂D1

∫





∫

∂D2

∫

ĜA∗

+ (x′, ω; xA)∂3Ĝ
B
+(x

′, ω; xB)d2x′



 ĜA
+(x

A, ω; x′′)d2xA.

(5.26)

Rewriting the right-hand side of equation (5.26) we have

∫

∂D1

∫

B̂(xA, ω; xB)ĜA
+(x

A, ω; x′′)d2xA ≈

−

∫

∂D2

∫





∫

∂D1

∫

ĜA∗

+ (x′, ω; xA)ĜA
+(x

A, ω; x′′)d2xA



 ∂3Ĝ
B
+(x

′, ω; xB)d2x′.

(5.27)
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Replacing the definition in equation (5.25) in (5.27), we have

∫

∂D1

∫

B̂(xA, ω; xB)ĜA
+(x

A, ω; x′′)d2xA ≈ −

∫

∂D2

∫

S(x′, ω; x′′)∂3Ĝ
B
+(x

′, ω; xB)d2x′. (5.28)

Equation (5.28) is the first approximation to the inverse operator for the vertical derivative of the

downward Green’s function with sources at the earth’s surface and receiver at datum ∂3Ĝ
B
+(x

′, ω; xB).

Regarding that the operator S contains non-physical events, similar to the operator P , as we discussed

previously. Therefore, to improve the inverse operator in expression (5.28) we carry out in the same

procedure as the previous section, supposing that is know the inverse of the operator S, that we de-

noted as S−1. Multiplying the function inverse S−1 in both sides of expression (5.25) and integrating

it over the surface S2, we have

∫

∂D2

∫





∫

∂D1

∫

ĜA∗

+ (x′, ω; xA)ĜA
+(x

A, ω; x′′)d2xA



S−1(x′, ω; x′′)dx′ =

∫

∂D2

∫

S(x′, ω; x′′)S−1(x′, ω; x′′)d2x′ ≈ δ(x′

1 − x′′

1)δ(x
′

2 − x′′

2).

(5.29)

Multiplying in both sides of equation (5.28) by the inverse function S−1(x′, ω; x′′) and integrate it

over the surface S2, we obtain

∫

∂D2

∫





∫

∂D1

∫

B̂(xA, ω; xB)ĜA
+(x

A, ω; x′′)d2xA



S−1(x′, ω; x′′)d2x′ ≈

−

∫

∂D2

∫





∫

∂D2

∫

S(x′, ω; x′′)∂3Ĝ
B
+(x

′, ω; xB)d2x′



S−1(x′, ω; x′′)d2x′,

(5.30)

rewriting the right-hand side of equation (5.30) we have

∫

∂D2

∫





∫

∂D1

∫

B̂(xA, ω; xB)ĜA
+(x

A, ω; x′′)d2xA



S−1(x′, ω; x′′)d2x′ ≈

−

∫

∂D2

∫





∫

∂D2

∫

S(x′, ω; x′′)S−1(x′, ω; x′′)d2x′



 ∂3Ĝ
B
+(x

′, ω; xB)d2x′,

(5.31)
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Using the expression (5.29) in the inner integral over the surface ∂D2 of the right-hand side of equa-

tion (5.31) we have

∫

∂D2

∫





∫

∂D1

∫

B̂(xA, ω; xB)ĜA
+(x

A, ω; x′′)d2xA



S−1(x′, ω; x′′)d2x′ ≈

−

∫

∂D2

∫

δ(x′

1 − x′′

1)∂(x
′

2 − x′′

2)∂3Ĝ
B
+(x

′, ω; xB)d2x′.

(5.32)

Solving the right-hand side of equation (5.32) we have

∂3Ĝ
B
+(x

′′, ω; xB) ≈

−

∫

∂D2

∫





∫

∂D1

∫

B̂(xA, ω; xB)ĜA
+(x

A, ω; x′′)d2xA



S−1(x′, ω; x′′)d2x′.
(5.33)

Equation (5.33) is an expression that allows us to retrieve the vertical derivative of the downgoing

Green’s functions ∂3ĜB
+(x

′′, ω; xB) with source position in xB at the earth’s surface and the receiver

in x′′ at the datum. For the purpose of this work, we need above deductions for up- and downward

wavefield constituents to complete the redatuming process make reposition of source and receiver at

datum. To do it, we will use the interferometric redatuming by convolution method in expression

(4.10).

Redatuming

In this section we deduce an inverse operator to retrieve the total wavefield at the datum. Having

calculated the up- and downward Green’s functions constituents at datum, it is possible to relocate

the sources and the receivers at the surface ∂D2. To start the analysis, we define a new PSF operator

that we denoted as T . Different to the operator P in expression (5.1) that is composed by the auto-

correlation between the transmitted wavefield in the state A. Here, the operator T is composed by

the autocorrelation between the downward wavefield constituent in the state B with source position

in xB and receiver in x′, with the complex conjugate of itself with source position at x′′ and receiver

at xB, this is defined as

∫

∂D1

∫

∂3Ĝ
B
+(x

′, ω; xB)∂3Ĝ
B∗

+ (xB, ω; x′′)d2xB = T (x′, ω; x′′), (5.34)
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The definition of the operator T considers all of the events between scatters above and below the da-

tum with downward wavefield component with source at the earth’s surface and receiver at the datum.

Continuing with our deductions, we apply the expression (5.34) in equation (4.10), multiplying it in

both sides by ∂3Ĝ
B∗

+ (xB, ω; x′), which yields

∫

∂D1

∫

ĜB
−
(x′′, ω; xB)∂3Ĝ

B∗

+ (xB, ω; x′′)d2xB ≈

− 2

∫

∂D1

∫





∫

∂D2

∫

R̂n(x
′, ω; xd)∂3Ĝ

B
+(x

′, ω; xB)d2x′



 ∂3Ĝ
B∗

+ (xB, ω; x′′)d2xB,

(5.35)

rewriting right-hand side of equation (5.35), we obtain

∫

∂D1

∫

ĜB
−
(x′′, ω; xB)∂3Ĝ

B∗

+ (xB, ω; x′′)d2xB ≈

− 2

∫

∂D2

∫





∫

∂D1

∫

∂3Ĝ
B
+(x

′, ω; xB)∂3Ĝ
B∗

+ (xB, ω; x′′)dxB



 R̂n(x
′, ω; xd)d2x′.

(5.36)

substituting expression (5.34) in equation (5.36), we have

∫

∂D1

∫

ĜB
−
(x′′, ω; xB)∂3Ĝ

B∗

+ (xB, ω; x′′)d2xB ≈ −2

∫

∂D2

∫

T (x′, ω; x′′)R̂n(x
′, ω; xd)d2x′. (5.37)

As previous analysis, we know that the operator T have non-physical events. Then, supposing that is

know the inverse operator of T , denoted as T−1, we apply it in equation (5.34) to obtain the following

expression

∫

∂D2

∫





∫

∂D1

∫

∂3Ĝ
B
+(x

′′, ω; xB)∂3Ĝ
B∗

+ (xB, ω; x′)d2xB



T−1(x′, ω; x′′)d2x′ =

∫

∂D2

∫

T (x′, ω; x′′)T−1(x′, ω; x′′)d2x′ ≈ δ(x′

1 − x′′

1)δ(x
′

2 − x′′

2),

(5.38)
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having defined above expression, we multiply in both sides of equation (5.37) by T−1(x′, ω; x′′) and

make integration over the surface S2, we obtain

∫

∂D2

∫





∫

∂D1

∫

ĜB
−
(x′′, ω; xB)∂3Ĝ

B∗

+ (xB, ω; x′)d2xB



T−1(x′, ω; x′′)d2x′ ≈

− 2

∫

∂D2

∫





∫

∂D2

∫

T (x′, ω; x′′)R̂n(x
′, ω; xd)d2x′



T−1(x′, ω; x′′)d2x′,

(5.39)

rewriting the right-hand side of equation (5.39) we have the following expression

∫

∂D2

∫





∫

∂D1

∫

ĜB
−
(x′′, ω; xB)∂3Ĝ

B∗

+ (xB, ω; x′)d2xB



T−1(x′, ω; x′′)d2x′ ≈

− 2

∫

∂D2

∫





∫

∂D2

∫

T (x′, ω; x′′)T−1(x′, ω; x′′)d2x′′



 R̂n(x
′, ω; xd)d2x′.

(5.40)

The inner integral over the surface ∂D2 in the right-hand side of equation (5.40) can be substituted

by expression (5.38), then (5.40) can be written as

∫

∂D2

∫





∫

∂D1

∫

ĜB
−
(x′′, ω; xB)∂3Ĝ

B∗

+ (xB, ω; x′)d2xB



T−1(x′, ω; x′′)d2x′ ≈

− 2

∫

∂D2

∫

δ(x′

1 − x′′

1)δ(x
′

2 − x′′

2)R̂n(x
′, ω; xd)d2x′.

(5.41)

Solving the right-hand side of equation (5.41) we find the final expression to complete the redatuming

process with sources and receivers at the datum R̂n(x
′′, ω; xd)

R̂n(x
′′, ω; xd) ≈

−
1

2

∫

∂D2

∫





∫

∂D1

∫

ĜB
−
(x′′, ω; xB)∂3Ĝ

B∗

+ (xB, ω; x′)d2xB



T−1(x′, ω; x′′)d2x′.
(5.42)

Equation (5.42) is the main result of this work, because with this expression it is possible to retrieve

the total Green’s function at datum in the surface ∂D2. Note that equation (5.41) is evaluated over

surface ∂D1, that is the acquisition surface. Input data of equation (5.41) are the upward Green’s

function ĜB
−
(x′′, ω; xB) calculated with the expression (5.22), the complex conjugate of the downward
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Green’s function ĜB
+(x

B, ω; x′) calculated with the equation (5.32), and finally the PSF inverse

defined in expression (5.34).

5.3 Least squares

Least squares is a standard approach in regression analysis to approximate solution of overdeter-

mined systems, i.e., set of equations in which there are more equations than variables. "Least squares"

means that the overall solution minimizes the sum of the squares of the errors made in the result of

each single equation. To retrieve the Green’s functions at datum end to avoid the presence of arte-

facts in the inhomogeneous case, as we discussed before, is necessary to calculate the inverse of the

PSF , for that we will deduce an expression in order to invert it using Least square. We start defining

equation (5.5) in a matrix form as

PSF(x′

ij; x
′′

ij) PSF−1(x′

ij; x
′′

ij) = I, (i = 1, 2, ...,m) and (j = 1, 2, ...,m), (5.43)

where I is the identity matrix, PSF is the matrix form of the product in frequency domain between

ĜA
+ and ĜA∗

+ and PSF−1 is the matrix inverse of the PSF. Matrix system of equation (5.43) is solved

for each column of PSF−1(x′

i,j; x
′′

i,j) and for each I, where the terms for the first system to solve are

PSF = Pmxm =













P11 P12 P13 . . . P1m

P21 P22 P23 . . . P2m

...
...

...
. . .

...

Pm1 Pm2 Pm3 . . . Pmm













,Dmx1 =













D11

D21

...

Dm1













, Imx1 =













1

0
...

0













.

Where P is the PSF matrix, D is the inverse of each column of P and I represent each column of

the identity matrix. The principal goal of this kind of problems is to find the coefficients D that fit

into the equations as best as possible in order to solve the quadratic minimization problem, where the

objective function M is given by

M(S) = ‖P S − I‖2. (5.44)

In equation (5.44) the expression S represents the complete matrix with all inverted columns that

are represented in D, this equation is the standard approach to a linear regression with least squares.

Usually, ordinary least squares estimation leads to solving an overdetermined problem if the matrix

system have complete rank, then this solution will be of unique. On the other hand, If the matrix have

a variety of magnitude values that involve hight differences between its terms is necessary make a

regularization of it, then, in order to make this regularization to solve in equation (5.44) we include



71

term ǫ as

M(S) = ‖P S − I‖2 + ǫ‖S‖2. (5.45)

Where ǫ is the regularization factor, that improves the conditioning of the problem. The solution to

expression (5.45) is given by i.e., Watkins (2010) and is written as

S =
(

PTP + ǫ
)−1

PT . (5.46)

Expression (5.46) allows us to calculate the PSF−1 solving equation (5.45). Depending of the reg-

ularization parameter to solve the inverse problem in expression (5.46), we will stabilize the com-

putational implementation. In theory, this parameter would be small enough for the system to be

independent of it.
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6. Numerical Examples

In this chapter, we will exemplify the main deductions performed at previous sections, using

the appropriate numerical examples to explain the main physical phenomena involved specially, in

methods of inverse wavefield extrapolation for overburden with both homogeneous and inhomoge-

neous media. Also, we will test the interferometry with correlation and convolution based methods.

These methods are conventional approaches to make redatuming in the classics methods i.e., Schuster

(2009), Wapenaar et al. (2010a), etc.

6.1 Interferometric redatuming: Correlation-based method

To numerically validate the interferometric redatuming equations (3.42) and (3.43) to test its lim-

itations due to the use of the direct wave instead of the full reference wavefield, we applied interfero-

metric methods of convolution and correlation-type in a few simple numerical experiments.

Datum below a homogeneous layer

In our first test, we used a horizontally-layered velocity model with a width of 8 km and a depth of

3 km containing velocities between 1.8 km/s and 2.5 km/s (Figure 6.1). The datum is located 500 m

below the surface within the first homogeneous layer with velocity 1.8 km/s. This experiment repre-

sents the ideal theoretically situation, where the reference wavefield consists only of a direct wave.

We simulated synthetic data with a marine acquisition geometry considering three situations: (1)

Shots and receivers are located at the surface (Figure 6.1a). These are the data to be redatumed. (2)

Shots are located at the surface and receivers at 500 m depth (Figure 6.1b) and (3) shots and receiver

are located at 500 m depth (Figure 6.1c). The data of the latter two simulations are used for compari-

son to the redatuming results.

All three seismic arrays consisted of 201 sources spaced at 25 m, horizontally located between
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the full wave train in the exact overburden and the direct wave in the exact, smoothed and constant-

velocity models as compared to the data modeled at the datum. The three primary events are correctly

positioned and their relative amplitudes are well preserved. In addition to these desired effects, we

notice a number of events with smaller amplitudes. These are the unphysical events as discussed

above. Note that the true internal multiples in the medium below the datum are of much smaller

amplitude and cannot be seen at this scale. The traces obtained with the direct waves in the exact,

smoothed, and average-velocity models are very similar to each other, with a very small kinematic

error for the average-velocity model.

In Figure 6.14 we show the trace that corresponds to the offset 500 m in the redatuming responses

in Figure 6.12. The three primary events are correctly positioned and their relative amplitudes are well

preserved. In addition to these desired effects, we notice a number of events with smaller amplitudes.

These are the unphysical events as discussed above. Note that the true internal multiples in the

medium below the datum are of much smaller amplitude and cannot be seen at this scale

Event interpretation

To explain all events present in the parts of Figure (6.12), we have labeled them. In the next

set of figures, we will discuss the ray paths associated to all (physical and unphysical) events. In this

way, we will be able to better understand the shortcomings of each of the tested modeling approaches.

The events labeled 1, 2, and 3 are the desired primary reflections from the deeper reflectors after

redatuming. The corresponding ray paths associated with the original surface events, the two-step

redatuming operators (representing the convolution of the two one-step operators), and the redatumed

events are depicted in Figure (6.15).
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6.2 Interferometric redatuming: Convolution-based method

As we mentioned in section (3.2), interferometry by convolution is an alternative to the classical

correlation-based scheme and in many situations it is more convenient than the correlation methods

(Wapenaar et al., 2010b). In this section we will validate the expressions (3.54) and (3.55) that

also allow us to retrieve information of the wave propagation at the datum. As for the previous

analysis in above section, we will make numerical experiments in the models of Figures (6.1) and

(6.10) that consider homogeneous and inhomogeneous media, respectively, between the acquisition

surface and the datum. In this numerical experiment, we will also see the principal limitations of the

interferometric redatuming with convolution-based methods in an inhomogeneous medium. We note

that many of the artefacts are coming from the overburden, just as we interpreted in the convolution-

based interferometry in section (3.4), polluting the Green’s functions results at the datum. To retrieve

the responses in this section we use least-squares inversion methods to solve the equations (3.54) and

(3.55) to do redatuming of receivers and sources, respectively.

Datum below a homogeneous layer

In this numerical example we used the horizontally-layer velocity model that we showed in Figure

(6.1) with the same seismic array configuration explained in the model at the beginning of this chapter.

In this section we will solve the equations (3.54) and (3.55), that represent ill-posed problems. We

will solve these equations by least-squares inversion methods, which is necessary to stabilized them

in order to obtain numerically stables results. Therefore, we opted for a simple regularization of

the parameter ǫ as we showed in the section (5.3), and tested different values for the regularization

parameter to study its influence on the inversion result.

Receiver redatuming

To start, we solved by least-squares inversion the equation (3.54) to retrieve the upward Green’s

function with source at the earth’s surface and receivers at datum Ĝs
−
(x′, ω; xB). The goal of this

experiment is to validate the behavior of least-squares inversion with stabilization to retrieve PSF−1.

To do this we will use directly the inverse operator deduced in Chapter (5), where from equation

(3.54) we deduced the expression (5.9). For our tests to calculate the PSF−1 we used the following

values for the stabilization parameter ǫ: (a) 1%, (b) 0.1%, (c) 0.01% and (d) 0.001%, with respect to

the maximum absolute value of the PSF in equation (5.1). In Figure (6.21) we can see the responses

for each value of ǫ. Events 1, 2 and 3 correspond to the primary reflections above the datum, as shown

in Figure (6.1). We note that each event at the datum was positioned correctly (see Figure 6.21), com-
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to the maximum absolute value of the PSF . These parameters were: (a) 1%, (b) 0.1%, (c) 0.01%

and (d) 0.001%. In Figure (6.29) we shown the causal result of having used the inverse operator

(5.9) with the PSF−1 retrieved with the four percentages of ǫ. In this result we note that events 1,

2 and 3 are kinematically correct. On the other hand, we have the events that are coming from the

overburden reflections, that we labeled as 4, 5, 6, 7 and 8. In Figure (6.29) we also note that when

decreasing ǫ, there events coming from the overburden tend to vanish. The unique event that prevails

is the boundary effect, which is coming from the anticausal events. Figures (6.29c-d) have attenuated

the primary reflections too much, together with events 4, 5, 6 and 8. Also we note that in Figures

(6.29c-d) instability begins to appear due to the sensitive of this inversion method, whose principal

limitation is the problem that we try to solve here being ill-posed. According with van der Neut and

Wapenaar (2015) the instability effects that come from PSF−1 can be attenuated using FK filters,

but for our case this is not the objective, however if we consider the FK filters, Figures (6.29c-d)

could be improved. All of the events interpreted in Figure (6.29) are explained in detail in Figure

(6.31), where we showed each ray path that explains the corresponding event in the seismic response

in Figure (6.29).

Continuing our analysis, in Figure (6.30) we have the anticausal events of the upward Green’s

function retrieved with equation (5.9). Each response in Figure (6.30) corresponds to the anticausal

part of each response in Figure (6.29), respectively. We can see that the anticausal part only contains

event 9, the ray path of which is interpreted in Figure (6.31). We also see that the anticausal response

corresponds to each regularization parameter ǫ, where noted that the boundary effect is too strong,

however in all responses is possible to recognize the presence of event 9. Some instabilities appear

especially in the Figures (6.30c-d). These artefacts are coming from the ill-posedness which is very

sensitive to small variations to the regularization parameter. As mentioned before, in Figure (6.31)

we interpret each event in the causal and anticausal responses using the inverse operator in equation

(5.9). We noted that all of the events retrieved are physical. Figures (6.31a-b) show the ray paths

of the primary reflections of the layers below the datum and their delay because of reverberation in

the overburden layer, respectively. Figures (6.31c-d) show the ray paths of events in the overburden,

where only event 9 is anticausal. This interpretations are very important to take into account in

the next step of the redatuming process, because we will understand the real importance of using the

interferometry by convolution-based. Its importance lies in the many artefacts and nonphysical events

that are too common in methods with correlation-based. Here these artefacts are attenuated by the

effect of the PSF−1, as we will show later.
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artefacts or non physical events. Our inversion response nicely recovers high-quality versions of the

physical events just as interpreted in Figure (6.35b).

Upward wavefield constituent by focusing

Once worked the downward inverse extrapolation, now we will calculate the up-ward Green’s

functions using the inverse operator calculated in equation (5.22). To do that, we need three input

data: (1) the model of the vertical derivative of the transmitted wavefield from the earth’s surface

until 500m at depth (datum of our numerical model), (2) the model of the truncated wavefield with

sources and receivers at the earth’s surface and (3) the PSF−1 retrieved by least-squares, to do that

we tested four different values to the regularization parameter ǫ to invert the PSF : (1) 1%, (2) 0.1%,

(3) 0.01% and (4) 0.001%. Using this results, we retrieved the upward Green’s function with equation

(5.22), where we showed that only the causal upward constituents are retrieved, these responses have

not artefacts or non physical events. Figure (6.39) shows the upward Green’s functions retrieved with

different values to ǫ.

We observed in Figure (6.39) that, as desired, only upgoing Green’s functions constituents were

retrieved. A comparison with Figure (6.35a) reveals correct positioning. Also the dynamic proper-

ties of the inverted events largely correspond to those in the modeled section. Events 13, 14 and 5

correspond to a second order multiple and are the weakest events. Moreover, except for boundary

effects, any non physical events appear in the inverted sections. Which is an important advantage

over correlation-based redatuming techniques. We also have a fundamental difference regarding to

the downgoing case, the effect of using different values for the regularization parameter is clearly

visible. We noticed differences in relative amplitudes and, most important, in wavelet shape.

The more quantitative analysis of the zero-offset traces (Figure 6.40) reveals more details. We notice

the overall good match between the inverted traces and the upgoing events in the modeled data, both

in travel time and in amplitude. On the other hand, as desire the downgoing events are absent from

the invert data. While increasing values of the regularization parameter help to better suppress the

numerical artefacts, they also lead to broadened wavelets of the inverted events. Again, a value of

ǫ = 0.001 seems a good compromise between data quality and noise suppression. Once retrieved

the up- and downward Green’s functions constituents by inversion, we will complete the redatuming

of the seismic array with sources and receiver at 500 m at depth. To do that, we will use the two

interpretations named at section (4): (a) convolution-based and (b) correlation-based.
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Figure 6.58: Redatuming using inversion in the case of inhomogeneous overburden with the model of
Figure (6.52). Comparison of the traces at 100 m offset between the responses of the Figure (6.56).

Pre-stack depth migration of the redatuming results

Finally, we will validate our redatuming results. As we mentioned before, we applied eikonal-

based pre-stack Kirchhoff depth migration method (Li and Fomel, 2013) to show the geological struc-

ture and demonstrate that the redatuming events are well positioned, when compared with the exact

model. As we know the true velocity of the model below the datum we can use it in our migrations

and retrieve the seismic sections of the redatuming responses (Figure 6.60) and compare it with the

exact model in Figure (6.59a).

In Figure (6.60) we show that all of the events below the datum at 1 km in depth in the model

(6.52) were retrieved in the true position when we applied the eikonal-based pre-stack Kirchhoff

depth migration (Li and Fomel, 2013). We see that the migration results was too clean, which means

that many of the noise coming from the PSF−1 in the down- and upward Green’s functions and also

from the inverse process that allows us to complete the redatuming method vanishes. We noticed that

Figure (6.60d) was the most unstable response.

Also we noticed in the migration responses in Figure (6.60) that the irregular event between the

horizontal reflectors is not well continuous, specially in the valleys and crests of geological structures.

This is because we have bad sampling at the datum, meaning that we have a spatial aliasing, because

we tried to repositioned the same source-receiver distribution over the earth’s surface in the datum.

This loss of resolution is because many of the stationary events at the lateral seismic array distribution

are lost when the seismic array is repositioned at a new surface in depth.
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7. Conclusions

In this work we deduced the classical interferometric expressions with convolution and correlation-

based. These equations allows us to reposition the seismic array over the earth’s surface to an arbitrary

datum at depth in two steps: (a) redatuming of receivers and (b) redatuming of sources. To do this,

we needed as input data the vertical derivative of the transmitted wavefield from the earth’s surface

until the datum in depth.

The classical interferometric expressions of convolutions and correlation-based have limitations

when the overburden have inhomogeneities. To investigate the feasibility of the interferometric direct-

wave redatuming, we have applied the method to synthetic surface data from a simple horizontally

stratified model in order to construct redatumed data for sources and receivers at 500 m of depth. Our

numerical example demonstrates that the redatumed reflections events are repositioned correctly and

keep the correct amplitude proportions when compared with data obtained from seismic modeling at

the datum level. In our numerical experiments, we have also investigated the consequences of inho-

mogeneities in the overburden. If the medium between the surface and the datum is free of scatterers,

the redatumed wavefield is only perturbed by boundary effects. However, if the overburden contains

strong reflectors, unphysical events are created in the redatumed data. We have analyzed the kine-

matics of all visible reflections in the redatumed data to discuss their origins and distinguish physical

from unphysical events. In this way, we have seen that the unphysical events are the consequences of

incorrectly redatumed overburden multiples.

By numerical examples, we have discussed the advantages and limitations of the classical correlation-

based interferometric redatuming, particularly the quality of the recovered physical events and the

origins of the generated nonphysical events. We demonstrated that even if the inhomogeneous over-

burden above the datum is fully known, using only the direct wave for redatuming is advantageous

over using the full wave train. The full wave train generates much more artifacts, because, even the

primaries can be incorrectly redatumed and rise more unphysical events in the redatumed data. This

is a consequence of surface-seismic data which allows only single-sided redatuming rather than reda-
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tuming from a closed boundary as required by the theory. In the other hand, when we discussed the

limitations of the convolution-based interferometric redatuming, we demonstrated that the tendency

of the non-physical events is to vanish as a consequence of the inversion properties when the inho-

mogeneous overburden above the datum is fully known.

In order to remove the artefacts that come from the inhomogeneities in the overburden when is

used the classical interferometric expressions of convolution and correlation type in the redatuming

process, we derived a new interferometric procedure to calculate the down- and upward Green’s func-

tions with sources at the earth’s surface and receivers at a datum in depth, using the inverse wavefield

extrapolation. With this methodology it is possible to retrieve only the down- and upward propagating

constituents on an arbitrary focusing surface without anticausal events and without artifacts. Com-

bining the down- and upward Green’s function retrieved by wavefield inversion with the conventional

version of convolution- based interferometric redatuming, we were able to retrieve the reflected wave-

field at the datum, as demonstrated in many synthetic-data examples. As a major advantage, there is

no influence of anticausal events in the final responses, which were removed with the inverse wave-

field extrapolation in the first step of the redatuming process. To do this we only need the following

input data if we know the overburden media: (a) transmitted wavefield from the earth’s surface until

the datum and its corresponding vertical derivative and (b) the full wavefield train above the datum

with all seismic array over the earth’s surface and its corresponding vertical derivative.

To solve the mathematical expressions that required inversion in this work, was necessary to

consider the solution as an inverse problem. For that purpose, we used least-squares inversion to

retrieve the desired wavefield constituents. We tested the behaviour of the inversion using different

values for the regularization parameter. Though the problem is ill-posed, the numerical results for the

retrieved up- and downgoing wavefield constituents showed a strong dependence on the regularization

parameter. All recovered wavefields matched nicely with the simulated data at the datum. In this way,

we have demonstrated that all retrieved events are kinematically correct. Moreover, in difference

to purely correlation-based redatuming, the investigated technique has not produced non-physical

events.
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A. Appendix A

Integral surfaces analysis in the correlation-based interferometric

redatuming

Integral over the surface S1

In this section we analyze the Green’ functions, following the methodology of Wapenaar and

Berkhout (1989). The analysis is carried out in the wavenumber domain. Also we will make de-

composition of the incident and scattering wavefield in up- and down-ward constituents. We denote

surface S1 by lateral coordinates (x1
1, x

1
2), at a fixed x1

3.

In the cylindrical geometry that we showed in the Figure 3.4, the versor of surface S1 is given by

n̂1 = (0, 0,−1). Substitution of the integral of expression (3.40), yields

Î1 = −

∫

S1

∫

1

ρA(x)

[

ĜA∗(x, ω; x′)∂3Ĝ
s(x, ω; xB)− Ĝs(x, ω; xB)∂3Ĝ

A∗(x, ω; x′)
]

dx1dx2. (A.1)

According to Wapenaar and Berkhout (1989), we can divide the Green’s function in two parts, rep-

resenting upward and downward wave fields. In this case, the unperturbed complex conjugate and

scattered wavefields can be written as

ĜA∗(x, ω; x′) = ĜA∗

+ + ĜA∗

−
, (A.2)

Ĝs(x, ω; xB) = Ĝs
+ + Ĝs

−
. (A.3)

Subscripts (+) and (−) refer to down- and up-ward wavefield propagation, respectively. Replacing
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equations (A.2) and (A.3) in equation (A.1), we have

Î1 = −

∫

S1

∫

1

ρA(x)

[

(

ĜA∗

+ + ĜA∗

−

)

∂3

(

Ĝs
+ + Ĝs

−

)

−
(

Ĝs
+ + Ĝs

−

)

∂3

(

ĜA∗

+ + ĜA∗

−

)

]

dx1dx2.(A.4)

We now make use of the Parseval’s theorem (Wapenaar and Berkhout, 1989), defining the wavenum-

ber vector as K = (k1, k2)

∫

−∞

∞
∫

Â∗(x, ω)B̂(x, ω)dx1dx2 =

(

1

2π

)2 ∫

−∞

∞
∫

Ã∗(K,ω)B̃(K,ω)dk1dk2, (A.5)

where Â(x, ω) and B̂(x, ω) are space-dependent functions and Ã(K,ω) and B̃(K,ω) are their 2D spa-

tial Fourier transforms. We denoted that the Green’s functions and the density after applied the Parse-

val’s theorem have the following configuration G̃A∗

+ = G̃∗

+(K, x1
3, ω; x

A), G̃s
+ = G̃+(K, x1

3, ω; x
s) and

ρ̃A = ρ̃A(K, x1
3), respectively. The same configuration is valid to the upward wavefield constituents.

Applying theorem (A.5) in equation (A.4), we have

Ĩ1 = −

(

1

2π

)2 ∫

S̃1

∫

1

ρ̃A

[

(

G̃A∗

+ + G̃A∗

−

)

∂3

(

G̃s
+ + G̃s

−

)

−

(

G̃s
+ + G̃s

−

)

∂3

(

G̃A∗

+ + G̃A∗

−

)

]

dk1dk2.

(A.6)

where x1
3 just indicate the position in x3 at surface S1, as we mentioned before. On the other hand

we defined the surface in the wavenumber domain as S̃1 = {(k1, k2) ∈ R
2}. Similar to previous

definitions, the Green’ functions satisfy the following one-way wave equations in the wavenumber

domain

∂3G̃
s
±
= ∓ik3G̃

s
±
, (A.7)

The complex conjugate of the Green’ function with source position in xA, satisfies the following

one-way wave equation:

∂3G̃
A∗

±
= ±ik3G̃

A∗

±
. (A.8)
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If we define ‖k‖2 = k2
1 + k2

2 , then for k2
1(x

1
3) ≤ ‖k(x1

3)‖
2, k3 is defined

k2(x
1
3) =

√

‖k(x1
3)‖

2 − k2
1(x

1
3), (A.9)

where k∗

3 = k3. For k2
1(x

1
3) > ‖k(x1

3)‖
2, k3 is defined as

k2(x
1
3) = −i

√

‖k(x1
3)‖

2 − k2
1(x

1
3), (A.10)

where k∗

3 = −k3. According to Wapenaar and Berkhout (1989), equation (A.9) corresponds to the

propagating wavenumber area and the expression (A.10) corresponds to the evanescent-wavenumber

area. Substituting the one-way equations (A.7) and (A.8) in equation (A.6), we have:

Ĩ1 = −

(

1

2π

)2
{

∫

S̃1

1

∫

1

ρ̃A

[

(

G̃A∗

+ + G̃A∗

−

)

ik3

(

−G̃s
+ + G̃s

−

)

−
(

G̃s
+ + G̃s

−

)

ik3

(

G̃A∗

+ − G̃A∗

−

)

]

dk1dk2

+

∫

S̃2

1

∫

1

ρ̃A

[

(

G̃A∗

+ + G̃A∗

−

)

ik3

(

−G̃s
+ + G̃s

−

)

−
(

G̃s
+ + G̃s

−

)

ik3

(

G̃A∗

−
− G̃A∗

+

)

]

dk1dk2

}

.

(A.11)

Surfaces in equation (A.11) are defined as S̃1
1 =

{

(k1, k2) ∈ S̃1 | k
2
1(x

1
3) ≤ ‖k(x1

3)‖
2
}

and S̃2
1 =

{

(k1, k2) ∈ S̃1 | k
2
1(x

1
3) > ‖k(x1

3)‖
2
}

. Equation (A.11) can be written as

Ĩ1 = −2

(

1

2π

)2
[

∫

S̃1

1

∫

1

ρ̃A

(

G̃s
−
ik3G̃

A∗

−
− G̃s

+ik3G̃
A∗

+

)

+

∫

S̃2

1

∫

1

ρ̃A

(

G̃s
−
ik3G̃

A∗

+ − G̃s
+ik3G̃

A∗

−

)

]

.

(A.12)

According to Wapenaar and Berkhout (1989), in the equation (A.12), the second integral over the

evanescent wavenumber area is negligible when both of the sources in xA and xB are not in the direct

vicinity of k(x1
3). The main contributions to the integral in equation (A.11) come from the stationary

points of the surface S̃1
1 . This implies, for example that the terms G̃s

−
ik3G̃

A∗

−
and −G̃A∗

−
ik3G̃

s
−

give
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equal contribution to the integral, whereas the contributions G̃s
+ik3G̃

A∗

−
and −G̃A∗

−
ik3G̃

s
+ cancel each

other (Wapenaar and Fokkema, 2006). Hence, equation (A.11) can be written as

Ĩ1 ≈ −2

(

1

2π

)2 ∫

S̃1

1

∫

1

ρ̃A

(

G̃s
−
ik3G̃

A∗

−
− G̃s

+ik3G̃
A∗

+

)

dk1dk2. (A.13)

Using expressions (A.7) and (A.8), treating correctly the signs and applying the inverse Parseval’s

theorem in equation (A.13), yields

Î1 ≈ 2

∫

S1

∫

1

ρA(x)

(

Ĝs
−
∂3Ĝ

A∗

−
+ Ĝs

+∂3Ĝ
A∗

+

)

dx1dx2. (A.14)

Equation (A.14) is the integral evaluated over the surface S1, where the expression Ĝs
−
∂3Ĝ

A∗

−
and

Ĝs
+∂3Ĝ

A∗

+ represent crosscorrelations in the time domain.

Finally in the integral over the surface S1, the terms Ĝs
+ and ĜA∗

+ vanishes because in states A and

B we not considered free-surface. The last assumption allows us to rewrite equation (A.14) as

Î1 ≈ 2

∫

S1

∫

1

ρA(x)
Ĝs

−
∂3Ĝ

A∗

−
dx1dx2. (A.15)

Integral over the surface S2

The analysis of the integral over surface S2 is analogous to the done for surface S1, but in this

case the normal vector over surface S2 is n̂2 = (0, 0, 1). Therefore the integral has the same form as

(A.14), but with opposite sign. Thus, we can rewrite this integral expression for surface S2 as

Î2 ≈ −2

∫

S2

∫

1

ρA(x)

(

Ĝs
−
∂3Ĝ

A∗

−
+ Ĝs

+∂3Ĝ
A∗

+

)

dx1dx2 = 0. (A.16)

In equation (A.16) we look at each term evaluated in the integral over the surface S2. In term

Ĝs
−
∂3Ĝ

A∗

−
the factor ĜA∗

−
vanishes, because in state A the medium below the surface S2 is homo-

geneous. Implying that there cannot be an upward propagating wavefield. Moreover in the second

term in equation (A.16), Ĝs
+∂3Ĝ

A∗

+ , the Green’s function Ĝs
+ approximately vanishes, because Ĝs

represent only the wavefield from scatters below surface S2, implying that there are no downgoing

constituents at surface S2.
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Integral surfaces analysis in the convolution-based interferometric

redatuming

Integral over the surface S1

We will start the analysis of the integral over the surface S1, just like we did in previous sections.

To do that we remind that at the surface S1, the versor n̂1 = (0, 0,−1). Replacing it in equation

(3.52), we have

Ĵ1 = −

∫

S1

∫

1

ρA(x)

[

ĜA(x′, ω; xA)∇Ĝs(x′, ω; xB)− Ĝs(x′, ω; xB)∇ĜA(x′, ω; xA)
]

dx1dx2. (A.17)

The wavefields in the above integral can be decomposed into the up- and downward propagating

constituents, regarding expressions (A.2) and (A.3) in the previous section. Doing the wavefield

decomposition in equation (A.17), we can rewrite this expression as

Ĵ1 = −

∫

S1

∫

1

ρA(x)

[

(

ĜA
+ + ĜA

−

)

∂3

(

Ĝs
+ + Ĝs

−

)

−
(

Ĝs
+ + Ĝs

−

)

∂3

(

ĜA
+ + ĜA

−

)

]

dx1dx2. (A.18)

We now make use of the following version of Parseval’s theorem (Wapenaar and Berkhout, 1989)

∫

−∞

∞
∫

A(x)B(x)dS =

(

1

2π

)2 ∫

−∞

∞
∫

Ã(−k)B̃(k)dK, (A.19)

where A(x) and B(x) are space-dependent functions and Ã(−k) and B̃(k) are their 2D spatial Fourier

transforms, defining again k = (k1, k2, k3) as wave number vector. Applying the theorem (A.19) in

the equation (A.18), we have

J̃1 = −

(

1

2π

)2 ∫

S̃1

∫

1

ρ̃A

[

(

G̃A
+ + G̃A

−

)

∂3

(

G̃s
+ + G̃s

−

)

−

(

G̃s
+ + G̃s

−

)

∂3

(

G̃A
+ + G̃A

−

)

]

dk1dk2.

(A.20)

As we mentioned in previous section, the Green’s functions satisfy the following one-way wave

equations

∂3G̃
A
±
= ∓ik3G̃

A
±
, and ∂3G̃

s
±
= ∓ik3G̃

s
±
. (A.21)
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The one-way wave equations defined in the relations (A.21), we can apply all these in the equation

(A.20), which yields

J̃1 = −

(

1

2π

)2
{

∫

S̃1

∫

1

ρ̃A

[

(

G̃A
+ + G̃A

−

)

ik3

(

−G̃s
+ + G̃s

−

)

−

(

G̃s
+ + G̃s

−

)

ik3

(

−G̃A
+ + G̃A

−

)

]

dk1dk2

}

.

(A.22)

According to Wapenaar and Berkhout (1989), the main contributions to the integral in equation (A.22)

come from the stationary points on the surface evaluated. This implies, for example that the terms

G̃s
+ik3G̃

A
−

and −G̃A
−
ik3G̃

s
+ give equal contribution to the integral, whereas the contributions G̃s

+ik3G̃
A
+

and −G̃A
+ik3G̃

s
+ cancel each other (Wapenaar and Fokkema, 2006). Hence, equation (A.22) can be

written as

J̃1 ≈ −2

(

1

2π

)2 ∫

S̃1

∫

1

ρ̃A

(

G̃s
−
ik3G̃

A
+ − G̃s

+ik3G̃
A
−

)

dk1dk2. (A.23)

Using expressions (A.21) in equation(A.23) and applying the inverse Parseval’s theorem in (A.19),

yields

Ĵ1 ≈ 2

∫

S1

∫

1

ρA(x)

(

Ĝs
−
∂3Ĝ

A
+ + Ĝs

+∂3Ĝ
A
−

)

dx1dx2 = 0. (A.24)

Equation (A.24) is the integral evaluated over the surface S1, where the expression ĜB
s−∂3Ĝ

A
i+ and

ĜB
s+∂3Ĝ

A
i− represent crossconvolutions in the time domain. Looking in detail each one of the terms

in the expression (A.24). Since we consider a homogeneous halfspace above the nonfree surface S1,

the terms ĜA
+ and Ĝs

+ vanish at the surface S1, then the integral over surface S1 is zero.

Integral over the surface S2

An integral expression to describe the surface S2 can be found following the previous analysis,

where it is possible to reach almost the same expression of (A.24), the unique difference will be the

sign of the equation, because our versor at the surface S2 is n̂2 = (0, 0, 1). Then, the expression

(A.24) at surface S2 will be

Ĵ2 ≈ −2

∫

S2

∫

1

ρA(x)

(

Ĝs
−
∂3Ĝ

A
+ + Ĝs

+∂3Ĝ
A
−

)

dx1dx2. (A.25)
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In the integral over the surface S2, ĜA
−

also vanishes because in state A, the medium below S2 is also

homogeneous. Then, equation (A.25) is written as

Ĵ2 ≈ −2

∫

S2

∫

1

ρA(x)
Ĝs

−
∂3Ĝ

A
+dx1dx2. (A.26)

The integral over the surface S2 showed in the equation (A.26) evaluate the crossconvolution between

the upward Green’s function and the vertical derivative of the downward Green’s function ĜB
s−∂3Ĝ

A
i+.
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B. Appendix B

Green’s function limits

We define that x = {(x1, x2, x3) ∈ R
3|x3 = xs

3}. The Green’s function is the solution of a wave

equation with a punctual source, which can be written as

ρ(x)∇ ·

[

1

ρ(x)
∇Ĝ(x, ω; xs)

]

+
ω2

c(x)2
Ĝ(x, ω; xs) = −δ(x1 − xs

1)δ(x2 − xs
2)δ(x3 − xs

3) (B.1)

To evaluate the behavior of the Green’s function near to the source location at the position xs
3, we can

integrate this expression between xs
3 − α and xs

3 + α as

xs

3
+α

∫

xs

3
−α

{

ρ(x)∇ ·

[

1

ρ(x)
∇Ĝ(x, ω; xs)

]

+
ω2

c(x)2
Ĝ(x, ω; xs)

}

dx3 =

− δ(x1 − xs
1)δ(x2 − xs

2)

xs

3
+α

∫

xs

3
−α

δ(x3 − xs
3)dx3 = −δ(x1 − xs

1)δ(x2 − xs
2).

(B.2)

For small α, we can assume that ρ and c are constant in the interval (x3 − α, x3 + α). Then, except

for the vertical derivative of the Green’s function, all terms on the left-hand side of equation (B.2) are

continuous in x3. Thus, in the limit of very small α, only the terms involving ∂3G are different from

zero. Thus, we can conclude that

lim
α→0

∂3Ĝ(x, ω; xs)
∣

∣

∣

xs

3
+α

− lim
α→0

∂3Ĝ(x, ω; xs)
∣

∣

∣

xs

3
−α

= −δ(x1 − xs
1)δ(x2 − xs

2). (B.3)

If we assume local homogeneity around the source, it follows that the first term in the left-side corre-

sponds to the downgoing wavefield that is ignited by the source, while the second term corresponds
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to the upgoing wavefield. Hence, this result can be written as

∂3Ĝ+(x, ω; x
s)
∣

∣

∣

x=xs

3

− ∂3Ĝ−(x, ω; x
s)
∣

∣

∣

x=xs

3

= −δ(x1 − xs
1)δ(x2 − xs

2). (B.4)

Since the source radiates equally in both up- and downgoing directions, it can be reasoned that

(van der Neut, 2016)

∂3Ĝ
+(x, ω; xs)

∣

∣

∣

x=xs

3

= −
1

2
δ(x1 − xs

1)δ(x2 − x2
2), (B.5)

and

∂3Ĝ
−(x, ω; xs)

∣

∣

∣

x=xs

3

=
1

2
δ(x1 − xs

1)δ(x2 − x2
2). (B.6)
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C. Appendix C

Boundary effects of the redatuming methods

In this Appendix we will show the principal limitation of the redatuming methods with correlation

and convolution-based. This topic is treated by Wapenaar and Fokkema (1997), where they explained

the principal reasons of retrieve artifacts when is used complex conjugate inverse operators to make

inversion. It is well known that the wavefield recorded in a finite aperture is not exact. The wave-

field contains artefacts that can be kinematically explained as ghost wavefields radiated by secondary

sources located at the endpoints of the aperture, see Figure (C.1a) (Wapenaar and Fokkema, 1997).

On the other hand we can suppose that the data would be recorded on an infinite aperture. Then for-

ward wavefield extrapolation would be exact, because the ghost wavefield of the secondary sources

at the endpoints would vanish when these endpoints were moved towards infinity, see Figure (C.1c)

(Wapenaar and Fokkema, 1997). Since the wave equation in symmetrical in time, one would expect

a similar conclusion for inverse extrapolation from an infinite aperture, see Figures (C.1b) and (C.1d).

In the numerical examples of this thesis work we showed that the boundary effect appear because

the real acquisition is discretized. According with van der Neut et al. (2015a) this kind of noise could

be attenuated in the shot domain using FK filters. An alternative to attenuate this kind of noise could

be done when is applied normal move-out (NMO) and stacking in each shot gather. Doing this, the

tendency is make attenuation of the non coherent information.




