UNIVERSIDADE ESTADUAL DE CAMPINAS – UNICAMP / SÃO PAULO FACULDADE DE ENGENHARIA MECÂNICA – FEM COMISSÃO DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA DEPARTAMENTO DE ENGENHARIA TÉRMICIA E FLUIDOS

Trabalho Final de Mestrado Profissional

CONFORTO TÉRMICO EM CASA DE PAINÉIS PRÉ-MOLDADOS DE CONCRETO

Autor: Carlos Antonio Angelim de Menezes Orientador: Prof. Dr. Kamal A. R. Ismail Co-Orientador: Prof. Dr. Waldemir Silva de Lima

Prof. Dr. Kamal A. R. Ismail – UNICAMP Presidente

Prof. Dr. Valdemar Silva Leal – UEMA 2º membro

Prof. Dr. Waldemir Silva de Lima – UEMA 3º membro

São Luís, 10 de fevereiro de 2004

Dedicatória

Dedico este trabalho à minha mãe Eunice, ao meu pai Antonio, à minha avó Maria, ao meu avô Joaquim e a toda a família.

Dedico, especialmente, aos meus filhos Carla e César.

Agradecimentos

Os meus sinceros agradecimentos a todos aqueles que direta ou indiretamente contribuíram para a realização deste trabalho e, especialmente, aos nossos amigos que, de alguma maneira, colaboraram conosco, como: Waldemir, Valdirson, Pinto, Rogério, Carlos, Paulino, João, Altair, Nazaré, Naura, Roseane, Ronildo, Rosane, Manuel, Paulo, Vicom, Pereira e Wellington.

"E por que andais ansiosos quanto ao vestuário? Considerai como crescem os lírios do campo: Eles não trabalham, nem fiam. Eu, contudo, vos afirmo que nem Salomão, em toda a sua glória, se vestiu como qualquer deles". Mateus 6, 28-29

Resumo

MENEZES, Carlos Antonio Angelim de. *Conforto térmico em casa de painéis pré-moldados de concreto*. Campinas: Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas/SP, 2004. 46 p. Trabalho Final de Mestrado Profissional.

Este trabalho representa uma contribuição importante na utilização do concreto para a construção de moradias, em função da solução adotada, parede composta, (concreto-ar-concreto), com (0,03 - 0,02 - 0,03)m, que apresentou resultados completamente satisfatórios quando comparados com os obtidos para uma obra de alvenaria de tijolos cerâmicos vazados, (0,10)m, visto que, em geral, as soluções apresentadas se constituíam de paredes de concreto com espessura nunca inferior a 0,10m, além da utilização de um material isolante térmico no centro ou em uma das faces, que representava a introdução de um novo processo construtivo, mais sofisticado, provocando um significativo aumento de custos.

Palavras-chave

Painéis de concreto, Conforto térmico, Parede dupla.

Abstract

MENEZES, Carlos Antonio Angelim de. *Conforto térmico em casa de painéis pré-moldados de concreto*. Campinas: Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 2004. 46 p. Trabalho Final de Mestrado Profissional.

The main contribuition given by this Paper is the use of concrete in popular building by used soluction of double wall, (concrete-air-concrete), with (0.03-0.02-0.03)m, that presented completelly acceptable responses in comparison with obtened for a building with empty – cored ceramics britks, generally speaking, the soluctions previously adopted, are concrete wall with more than 0.10m thickness with another insulating material inside or putted in one face of the wall, using a new material, a new tecnique, consequetly more expensive.

Key Words

Concret Wall, Thermic Insulating, Double Wall

Índice

Dedica	catória	iii
Agrad	decimentos	iv
Resum	no	vi
Abstra	at	vii
Índice	e	viii
Lista d	de figuras	X
Nome	enclatura	xi
Anexo	OS	xiii
Apênd	dices	XV
CAPI	ITULO 1 – INTRODUÇÃO	1
CAPI	ITULO 2 – REVISÃO DA LITERATURA	4
2.1	Condições para a transmissão de calor	4
2.2	Formas de transmissão de calor	4
2.2.1	Condução	4
2.2.2	Radiação	7
2.2.3	Convecção	9
2.3	Variação da temperatura	12
2.3.1	Variação da temperatura na parede plana	12

2.4	A Parede composta (concreto-ar-concreto)	
-----	--	--

CAP	PÍTULO 3 – MATERIAIS E MÉTODOS						
3.1	Projeto estrutural						
3.2	Estudo comparativo						
CAP							
CAP	PÍTULO 5 – CONCLUSÕES	25					
REFERÊNCIAS BIBLIOGRÁFICAS							

Lista de Figuras

Figura	2.1 -	- Transferência unidimensional de calor pelo processo de condução	
		(Difusão de energia)	6
Figura	2.2 -	Desenvolvimento de camada limite na transferência de calor por	
		convecção	11
Figura	2.3 –	A transmissão de calor através de uma parede plana.	
		(a) Distribuição de temperatura. (b) Circuito térmico equivalente	16
Figura	2.4 -	Circuito elétrico equivalente, em série, para uma parede composta	
		de (concreto-ar-concreto)	20

Nomenclatura

- A = área da seção (m^2)
- $E = poder emissivo (W / m^2)$

G = taxa de incidência de radiação, por unidade de área da superfície receptora. Capacidade de absortividade.(W/m^2)

h = coeficiente de transferência de calor (W / m^2 . K)

- k = condutividade térmica (W / m . K)
- L = espessura da parede (m)
- q = taxa de transferência de calor (W)
- u = velocidade de deslocamento das moléculas do fluido (m / s)
- U = coeficiente global de transferência de calor (W / m^2 . K)
- C_1 = primeira constante (K / m)
- C_2 = segunda constante (K)
- d_x = variação infinitesimal de deslocamento na direção do eixo x (m)
- dT = variação infinitesimal da temperatura (K)
- E_n = poder emissivo do corpo negro (W / m²)
- E_{S1} = campo elétrico, na superfície 1 (V)
- E_{S2} = campo elétrico, na superfície 2 (V)
- G_{ABS} = capacidade de absortividade absoluta (W/m²)
- h_1 = coeficiente de transferência de calor, no meio 1 (W / m². K)
- h_2 = coeficiente de transferência de calor, no meio 2 (W / m². K)
- h_3 = coeficiente de transferência de calor, no meio 3 (W / m². K)
- h_4 = coeficiente de transferência de calor, no meio 4 (W / m². K)

- h_r = coeficiente de transferência de calor por radiação (W/m². K)
- k_1 = condutividade térmica, do meio 1 (W/m². K)
- k_2 = condutividade térmica, do meio 2 (W/m².K)
- k_3 = condutividade térmica, do meio 3 (W/m². K)
- k_4 = condutividade térmica, do meio 4 (W / m². K)
- q" = taxa de transferência de calor, por unidade de área (W / m^2)
- q_x " = taxa de transferência de calor, na direção do eixo x , por unidade de área (W / m²)
- q_{conv} = taxa de transferência de calor por convecção (W)
- q_{rad} = taxa de transferência de calor por radiação (W)
- $q_x = taxa$ de transferência de calor na direção do eixo x (W)
- $R_{e,I}$ = resistência elétrica (V / A)
- $R_{t,cond}$ = resistência térmica condutiva (K / W)
- $R_{t,conv}$ = resistência térmica convectiva (K / W)
- $R_{t,rad}$ = resistência térmica radiante (K / W)
- R_{TOT} = resistência térmica total (K / W)
- $T_1 = T_{s1}$ = temperatura na superfície 1 (K)
- $T_2 = T_{s2}$ = temperatura na superfície 2 (K)
- $T_S = T_{sup}$ = temperatura da superfície (K)
- T_{VIZ} = temperatura da vizinhança (K)
- T_{∞} = temperatura do ambiente ou do meio (K)
- T(x) = temperatura ao longo de x (K)
- U_{α} = velocidade de deslocamento das moléculas no ambiente (m / s)
- α = absortividade (1)
- ΔT = diferença de temperatura (K)
- $\varepsilon = \text{emissividade}(1)$
- $\Sigma = \text{somatório}$
- ΣR_I = somatório de todas as resistências térmicas (V / A)
- σ = constante de Stefan Boltzmann, (W / m² . K⁴)
- Ω = unidade de resistência elétrica

Anexos

Anexo I

Fig. AI-1. Projeto estrutural em alvenaria	29
Fig. AI-2. Projeto estrutural em concreto	29
Fig. AI-3. Vista posterior, bloco de fundação e seção transversal dos pilares	30

Anexo II

AII.1 – Gráficos das temperaturas na alvenaria 10/06/03	31
AII.2 – Gráficos das temperaturas no concreto 10/06/03	31
AII.3 – Gráficos das temperaturas na alvenaria 11/06/03	32
AII.4 – Gráficos das temperaturas no concreto 11/06/03	32
AII.5 – Gráficos das temperaturas na alvenaria 13/06/03	33
AII.6 – Gráficos das temperaturas no concreto 13/06/03	33
AII.7 – Gráficos das temperaturas dos ambientes: alvenaria e concreto 10/06/03	34
AII.8 – Gráficos das temperaturas dos ambientes: alvenaria e concreto 11/06/03	34
AII.9 – Gráficos das temperaturas dos ambientes: alvenaria e concreto 13/06/03	34
AII.10 – Gráficos das Temperaturas dos ambientes: alvenaria e concreto 17/02/04	35
AII.11 – Gráficos das temperaturas dos ambientes: alvenaria e concreto 18/02/04	35
AII.12 – Gráficos das temperaturas dos ambientes: alvenaria e concreto 19/02/04	36
AII.13 – Gráficos das temperaturas dos ambientes: alvenaria e concreto 20/02/04	36
AII.14 – Gráficos das temperaturas dos ambientes: alvenaria e concreto 10/03/04	37
AII.15 – Gráficos das temperaturas dos ambientes: alvenaria e concreto 11/03/04	37

Anexo III

Foto 1 – Vista externa da obra	
Foto 2 – Vista interna da obra	
Foto 3 – Detalhe da fixação do termopar na alvenaria	
Foto 4 – Detalhe da fixação do termopar no concreto	
Foto 5 – Vista externa da obra de concreto	40
Foto 6 – Vista interna da obra de alvenaria	40
Foto 7 – Computador, interface e identificação dos termopares	41
Foto 8 – Cientista trabalhando	41
Foto 9 – Vista geral da obra e do laboratório de pesquisa	42
Foto 10 – A luz no fim do túnel	42

Apêndices

Apêndice A Tabela do levantamento das temperaturas em [°C] nos termopares no dia 10/06/03......44

Apêndice B Tabela do levantamento das temperaturas em [°C] nos termopares no dia 11/06/03......45

Apêndice C Tabela do levantamento das temperaturas em [°C] nos termopares no dia 13/06/03......46

Capítulo 1

Introdução

Ao iniciarmos o nosso trabalho com grandes painéis pré-moldados de concreto para a construção de edifícios, começamos a vislumbrar a possibilidade de utilizar toda a tecnologia de que dispúnhamos então, para viabilizar a construção de casas populares de painéis de concreto.

Contudo, a fábrica onde produzíamos os painéis, era constituída por equipamentos sofisticados, caros e de difícil manutenção, como: Pontes rolantes de até 50,0 kN; Mesas com seis vibradores, mesa basculante para o desmolde, uma central de concreto com capacidade de misturar 1,0m³, central de água quente, além de um conjunto de formas metálicas, com capacidade de até 1,0m³ cada.

Com instalações tão pesadas seria inviável pensar em massificar a utilização dos painéis prémoldados para a construção de casas populares.

Desde aquela época, ficou claro que a maneira de conseguir construir casas populares de painéis pré-moldados, era trabalhar com painéis mais leves, que pudessem ser deslocados e montados por apenas dois operários e que fossem fabricados em locais com instalações simples, como as pequenas fábricas de pré-moldados que são encontradas em diversos bairros periféricos de qualquer cidade brasileira.

A partir desta idéia, surgiu o primeiro grande obstáculo à utilização de painéis de concreto: o desconforto térmico. O concreto tem um calor específico menor do que o do tijolo de barro vazado, logo ele aquece mais rapidamente, atingindo altas temperaturas, nas primeiras horas da manhã, fazendo com que um ambiente com paredes de concreto atinja temperaturas de até 5°C acima de um

semelhante, em alvenaria de tijolo; enquanto que à noite, o concreto esfria, também mais rapidamente, fazendo com que a temperatura ficasse até 3°C abaixo.

Para resolver esses problemas, optamos pela utilização de placas de 1,96 x 0,50 x 0,03 m^3 , encaixadas em pilares pré-moldados duplos, de modo a reter no interior das paredes externas, uma camada de ar, que funcionasse como um isolante térmico, fazendo com que a temperatura interna fosse bem próxima à temperatura de ambiente idêntico em alvenaria de tijolo e que à noite fosse tal que houvesse maior conforto térmico.

Daí resolvemos utilizar o método de construir com parede composta (concreto – ar – concreto), em função de uma solução que já havíamos adotado na década de 80, que se constituiu em concretar pequenas placas de isopropileno, isopor, distribuídas no interior dos painéis de concreto. Essa tecnologia de usar placas de isopor de 0,015m de espessura, no centro de painéis de 0,075m de concreto, em 75% da área, aproximadamente, fez com que conseguíssemos um conforto térmico equivalente ao oferecido pela alvenaria de tijolo cerâmico. Em torno de 1°C abaixo, nas horas mais quentes e 1°C acima, por volta das 21 horas, no interior das habitações.

Este resultado encorajou-nos a desenvolver a idéia de empregar as placas largamente utilizadas para construir muros, com o cuidado de melhorar a fundação e os encaixes para se conseguir uma construção, estável, segura, funcional e com conforto térmico compatível.

A nossa intenção principal é oferecer uma moradia de baixo custo que proporcione aos moradores: abrigo das intempéries, segurança estrutural e um conforto térmico melhor ou, pelo menos, equivalente ao que se dispõe em uma casa de alvenaria de tijolos.

Em geral, os habitantes de construções de concreto reclamam de algumas características destas moradias pelo fato de estarem acostumados às casas de alvenaria. Algumas dessas reclamações são: 1) a falta de conforto térmico; 2) a falta de isolamento acústico e 3) a dificuldade de se colocar quadros nas paredes.

A solução adotada de construir as paredes externas em painéis duplos, já satisfaz completamente quanto ao conforto térmico e quanto ao isolamento acústico. No que se refere à 3ª questão, a solução é a utilização de uma furadeira para a aplicação de buchas fixas e a conseqüente colocação de quadros, cortinas etc.

Portanto, levando-se em conta as principais objeções às casas de painéis pré-moldados de concreto e tendo estudado as soluções adequadas, é que nos propusemos a apresentar um projeto de construção de baixo custo que atenda às necessidades mínimas de grande parte da população, que não dispõe de moradia; e que solucione de maneira satisfatória as desvantagens apontadas acima. Acrescentando a segurança quanto à estabilidade estrutural da obra e, também, quanto à violação da mesma por pessoas que pretendessem entrar na residência, sem a devida permissão dos moradores.

Assim, acreditamos estar contribuindo com o nosso esforço e as nossas idéias para que os nossos compatriotas possam desfrutar de habitações dignas, que ofereçam segurança e conforto térmico.

OS OBJETIVOS

Geral: Viabilizar a construção de casas de baixo custo, que possam ser executadas com técnicas simples, disponíveis em todo o território nacional.

Específicos: 1) Construir duas obras idênticas, com apenas uma característica diferente. As paredes de uma delas são de alvenaria de tijolos cerâmicos vazados, 0,10 m de espessura e a outra tem paredes duplas de concreto (concreto-ar-concreto), (0,03-0,02-0,03) m, como mostrado nas Figs. AI-1 e AI-2, na pág. 29; 2) verificar as temperaturas, durante algum tempo, nas faces internas e externas e em um ponto central no ambiente da alvenaria, alvamb, e no concreto, conamb (ver Figs. AI-1 e AI-2, pág 29); 3) construir tabelas e gráficos das temperaturas medidas; 4) fazer um estudo comparativo; 5) apresentar os resultados e conclusões. Além de associar a experiência adquirida no trabalho com painéis pré-moldados de concreto, com os conhecimentos adquiridos no curso de Mestrado Profissional na Área de Refrigeração e Condicionamento Ambiental.

Capítulo 2

Revisão da Literatura

2.1 Condições para a Transmissão de Calor

A transmissão de calor é o fenômeno que se verifica sempre que há uma diferença de temperatura entre duas regiões e pode ser definida como a transmissão de energia da região de temperatura mais alta, para outra de temperatura mais baixa.

Podemos identificar três modos diferentes de transmissão de calor: condução, radiação e convecção.

É importante a compreensão do que efetivamente ocorre na transmissão de calor real. Na natureza a condução, a radiação e a convecção (em fluidos) se verificam simultaneamente a partir de diferenças de temperaturas entre duas regiões. Na engenharia, à medida que uma dessas formas predomina, as outras são desprezadas após uma avaliação confiável da contribuição de cada uma delas. Pode até ocorrer o fato de uma forma de transmissão desprezível em uma etapa, vir a ser a mais importante numa etapa posterior.

2.2 Formas de Transmissão de Calor

2.2.1 Condução

A condução é um fenômeno que se verifica no interior de um mesmo meio (sólido, liquido ou gasoso) ou entre diferentes meios fisicamente interligados. Na transmissão de calor por condução, a energia é transmitida diretamente de molécula a molécula, sem se afastarem de maneira significativa de suas posições originais. A teoria cinética, estabelece que a temperatura de uma porção definida de matéria é proporcional à energia cinética média de todas as suas moléculas. A energia contida em uma porção de matéria, devida apenas ao estado de agitação e à posição relativa

entre suas moléculas é chamada de energia interna. Logo, se as moléculas de uma porção de matéria passarem a um estado de maior agitação, sua temperatura e sua energia interna aumentarão.

Quando um aumento de temperatura é verificado numa determinada região de uma porção de matéria, a energia interna também aumenta devido à maior agitação molecular e, em conseqüência, uma transmissão de calor por condução será observada à medida que a energia cinética será transferida das moléculas mais velozes da região mais quente, para as moléculas mais lentas da região de temperatura mais baixa. A transferência de energia ocorre nos líquidos e gases em função das colisões moleculares, enquanto que nos sólidos, como por exemplo, os metais, a transferência de energia se verifica pela difusão de elétrons muito rápidos das regiões mais quentes para as regiões menos quentes.

A condução é também muito importante nos fluidos onde ela apresenta-se em geral, associada à convecção e até à radiação. A equação da taxa de transferência de calor por condução é conhecida como "Lei de Fourier". Reynolds (1986).

Para uma parede plana como a mostrada na Fig. 2.1, podemos considerar condução unidimensional, apresentando uma linha de distribuição de temperatura T(x). A equação da taxa de transferência de calor é:

$$q''_x = -k \frac{dT}{dx}$$
(2.1)

O "*Fluxo de Energia*" q"_x é definido como a taxa de transferência de calor na direção do eixo *x* por unidade de área, perpendicular á direção do eixo *x*, sendo, ainda, diretamente proporcional ao produto do gradiente de temperatura dT/dx, nessa direção. A constante de proporcionalidade *k* que é uma propriedade de transporte chamada de "*condutividade térmica*" (*W/m.K*) é dependente do material da parede. O sinal negativo na equação 2.1 q"_x (*W/m*²), é devido ao fato de que a transferência ocorre de uma temperatura alta para outra mais baixa. Quando a temperatura varia "linearmente", como mostra a Fig. 2.1, temos as condições básicas do "*estado estacionário*" e podemos expressar o gradiente de temperatura, como:

$$\frac{dT}{dx} = \frac{T_2 - T_1}{L} \tag{2.2}$$

Onde T_1 (K) é a temperatura na superfície 1,S₁, T_2 (K) é a temperatura na superfície 2, S₂ e L é a espessura da parede.

Fig.2.1 Transferência unidimensional de calor pelo processo de condução.(Difusão de energia).

Logo, o fluxo de calor será:

$$q''_{x} = -k \frac{T_2 - T_1}{L}$$
(2.3)

ou ainda

$$q''_{x} = + k \frac{T_1 - T_2}{L}$$
(2.4)

ou

$$q''_x = k \frac{\Delta T}{L}$$
(2.5)

Onde $\Delta T = T_1 - T_2$ e q"_x, fluxo de calor. A taxa de transferência de calor por condução q_x, (W) que atravessa uma parede plana de área "A" é, então, o produto do fluxo de calor q"_x (W/m²) multiplicado pela área "A", ou seja:

$$q_x = q_x^* A \tag{2.6}$$

Portanto, para o caso de transmissão de calor por condução, são três as considerações básicas:

- 1. Condições de regime estacionário: T(x) tem distribuição linear;
- 2. Condução unidimensional ao longo da direção x, ver Fig. 2.1;
- 3. Condutividade térmica constante, material homogêneo.

2.2.2 RADIAÇÃO

A radiação térmica é a transmissão de calor produzida pela matéria (sólida ou fluida) que se encontra a uma temperatura não-nula. A emissão de energia por radiação é devida às mudanças nas configurações eletrônicas dos átomos ou moléculas que compõem a matéria. A energia radiante é transportada por meio de ondas eletromagnéticas, ou por fótons. A transferência de energia por radiação se realiza de maneira mais eficiente, no vácuo, enquanto que na condução e na convecção, se faz necessária a presença de um meio material sólido ou fluido. A transmissão de calor por radiação é realizada a partir da energia térmica de uma porção de matéria limitada, cuja taxa por unidade de área é conhecida como poder emissivo E (W/m²) da superfície. A lei de Stefan-Boltzmann estabelece um limite superior para o poder emissivo.

$$E_n = \sigma T^4_{sup} \tag{2.7}$$

Sendo a T_{sup} a temperatura absoluta (K) da superfície, e σ a constante de Stefan-Boltzmann ($\sigma = 5,67 \times 10^{-8} \text{ W/m}^2\text{.K}^4$). Incropera (1998). A equação (2.7) indica a emissão de um radiador ideal ou corpo negro. Para superfícies reais, o fluxo de calor emitido é dado por.

$$E = \varepsilon \sigma T^4_{sup}$$
(2.8)

Onde ε é uma propriedade característica da superfície radiante, conhecida como "emissividade", tem variação: $0 \le \varepsilon \le 1$, Kreith (1977), depende fundamentalmente do material utilizado e do acabamento da superfície. Valores representativos se encontram devidamente tabelados para uma grande variedade de produtos e materiais componentes.

A radiação que incide sobre uma superfície, pode ser proveniente de uma outra superfície, de uma vizinhança ou de uma fonte de calor muito mais distante, como por exemplo, o Sol. A taxa de incidência de quaisquer dessas radiações por unidade de área da superfície receptora, é denominada de irradiação, cujo símbolo é G.

O material da superfície terá a sua energia térmica aumentada mais ou menos de acordo com a maior ou menor capacidade de absortividade por unidade de área da superfície.

$$G_{abs} = \alpha G \tag{2.9}$$

A absortividade α , varia: $0 \le \alpha \le 1$. Halász (1994). Quando $\alpha < 1$ e a superfície é opaca, parte da irradiação é refletida. No caso da superfície ser semitransparente, parte da irradiação pode também ser transmitida.

É importante destacar que enquanto as radiações absorvidas e emitidas interferem na energia térmica da matéria, aumentando ou diminuindo sua temperatura, respectivamente, as radiações refletivas e transmitidas não produzem qualquer modificação no nível de energia térmica da matéria. O valor da absortividade α , depende de características dos materiais, do acabamento da superfície e, também, da natureza da irradiação. Por exemplo, a absortividade de uma superfície submetida a radiação solar, pode ser consideravelmente diferente da absortividade da mesma superfície submetida à radiação emitida pelas paredes de um forno.

Quando uma superfície isotérmica muito grande, envolve uma superfície bem menor e suas temperaturas são sensivelmente diferentes, a irradiação pode ser aproximada pela emissão devida a um corpo negro a T_{viz} , considerando-se $G = \sigma T_{viz}^4$. Se a superfície pode ser considerada uma superfície cinza, para a qual $\alpha = \varepsilon$ (absortividade = emissivida), a taxa liquida de transferência de calor por radiação a partir da superfície, por unidade de área, será.

$$q''_{rad} = \frac{q}{A} = \varepsilon E_n (T_{sup}) - \alpha G = \varepsilon \sigma (T^4_{sup} - T^4_{viz})$$
(2.10)

A expressão acima, estabelece a diferença entre a energia térmica cedida sob a forma de transmissão por radiação e a energia térmica que é recebida devido a absorção de radiação.

Uma equação mais compacta é muitas vezes utilizada para expressar a troca liquida ou global de calor por radiação:

$$q_{rad} = h_r A \quad (T_{sup} - T_{viz}) \tag{2.11}$$

Onde, a partir da eq. 2.10, o coeficiente de transferência de calor por radiação h_r é dado pela expressão.

$$h_{\rm r} \equiv \varepsilon \,\sigma \left(\,T_{\rm sup} + T_{\rm viz} \right) \,\left(\,T_{\rm sup}^2 - T_{\rm viz}^2 \right) \tag{2.12}$$

Que foi obtida com o objetivo de apresentar a equação da taxa de transferência de calor por radiação, linearizada, proporcional à diferença de temperaturas.

2.2.3 CONVECÇÃO

A convecção não é um fenômeno que se adequa exatamente à definição de transferência de calor, porque também engloba o mecanismo de transporte de massa. Contudo, a convecção realiza ainda a transferência de energia de regiões de maior temperatura para outra de temperatura mais baixa o que justifica a aceitação generalizada da expressão, transferência de calor por convecção.

Mais especificamente, podemos afirmar que na convecção a transferência de energia ocorre devido ao movimento molecular aleatório, ou difusão, e também em função do movimento global ou macroscópico da massa fluida. Esse movimento está relacionado ao fato de que em um determinado instante, uma grande quantidade de moléculas está se deslocando conjuntamente ou como agrupamentos de moléculas.

À medida que há movimento de massa, a existência de um gradiente de temperatura favorecerá a transferência de calor. Como as moléculas nos aglomerados moleculares conservam seus movimentos aleatórios, a transferência de calor será obtida pela soma da parcela correspondente ao transporte de energia devido ao movimento aleatório das moléculas com a parcela relativa ao transporte devido ao movimento global da massa fluida. Constitui uma prática generalizada, o uso do termo "convecção" para se referir a esse transporte associado e, por vezes,

emprega-se a expressão "advecção" para se referir ao transporte realizado exclusivamente pelo movimento global do fluido. Fox (2001).

Estamos particularmente empenhados no estudo da transferência de calor por convecção que se verifica quando uma superfície de contato é estabelecida entre um fluido em movimento e um corpo sólido, que se encontram em diferentes temperaturas. Vamos considerar o escoamento de um fluido sobre a superfície aquecida mostrada na Fig. 2.2.

As moléculas do fluido em contato com a superfície terão a velocidade da superfície u(0) = 0, ou seja, para y = 0 a velocidade é u = 0. À medida que a distância da superfície aumenta, a velocidade aumenta até um valor finito u_{∞} . A região do fluido correspondente a essa variação de velocidade é denominada de "camada limite hidrodinâmica" ou "de velocidade". Incropera (1998).

De maneira análoga, havendo diferença de temperatura entre o fluido e a superfície, surgirá no fluido uma variação de temperatura de T_{sup} em y = 0, até T_{∞} a uma certa distância da superfície y. Esta região onde se verifica a variação de temperatura é conhecida por "camada limite térmica". Estas regiões podem ter alturas diferentes ou iguais. Se $T_{sup} > T_{\infty}$, a transferência de calor por convecção ocorrerá da superfície para o fluido que se desloca.

Fig. 2.2 Desenvolvimento da camada limite na transferência de calor por convecção. Incropera (1998).

O que se verifica é que, fundamentalmente, nas proximidades da superfície, onde a velocidade do fluido é baixa, a transferência de calor é devida, principalmente, ao movimento molecular aleatório (difusão). O movimento global do fluido assume maior importância, à medida que o escoamento se desenvolve ao longo da direção do eixo x, a camada limite cresce e o calor que se propaga por ela é arrastado no sentido do escoamento.

Podemos classificar a transferência de calor por convecção, como convecção livre ou natural, quando o escoamento é induzido por forças de empuxo devidas às diferenças de densidade, provocadas por variações de temperatura no fluido, e como convecção forçada quando o escoamento do fluido é realizado pela utilização de meios externos como ventiladores, bombas, ventos atmosféricos, etc.

Qualquer que seja o processo de transferência de calor por convecção em estudo, a equação seguinte pode ser empregada:

$$q^{\prime\prime} = h \left(T_{sup} - T_{\infty} \right) \tag{2.13}$$

Onde q" que é o fluxo de calor por convecção (W/m^2), é diretamente proporcional à diferença entre a temperatura da superfície e a temperatura do fluido, T_{sup} e T_{∞} , respectivamente. Esta equação é conhecida como a "Lei de Resfriamento de Newton", sendo a constante de proporcionalidade h (W/m^2 .K) denominada de "coeficiente de transferência de calor por convecção". Essa constante depende das características na camada limite, que se comportam de acordo com a geometria da superfície, as condições do escoamento, propriedades termodinâmicas diversas e de fenômenos relativos ao transporte do fluido.

Podemos até dizer que o estudo da transferência de calor por convecção é, bàsicamente, o desenvolvimento de procedimentos com o objetivo de determinar o valor mais apropriado para o coeficiente de transferência de calor h.

Para a eq. (2.12), o fluxo de calor por convecção é considerado "positivo" se a temperatura da superfície é superior à temperatura do fluido $(T_{sup} > T_{\infty})$, no caso contrário, quando a temperatura do fluido é superior à temperatura da superfície, $(T_{\infty} > T_{sup})$, o fluxo de calor será considerado "negativo".

Contudo, podemos apresentar a Lei de Resfriamento de Newton, na forma.

$$q'' = h (T_{\infty} - T_{sup}).$$
 (2.14)

Neste caso, a convecção será invertida.

Quando há ocorrência simultânea de calor por convecção e por radiação, podemos calcular a taxa total de transferência de calor da superfície para o fluido, pela expressão.

$$q'' = q_{conv} + q_{rad} = hA(T_{sup} - T_{\infty}) + \varepsilon A\sigma (T^{4}_{sup} - T^{4}_{\infty})$$
(2.15)

2.3 Variação da Temperatura

2.3.1 Variação da Temperatura na Parede Plana

Estabelecidas as condições de contorno apropriadas, a solução da "equação do calor" pode fornecer a distribuição de temperatura para uma parede, onde não haja fontes ou sorvedouros de energia no seu interior. Assumindo que as condições do problema admitem o emprego do regime estacionário, a equação do calor tem a forma.

$$\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0\tag{2.16}$$

Onde k é a condutividade térmica (W/m.K) e dT(K) é a variação infinitesimal da temperatura ao longo da direção x.

A partir da equação do "Fluxo Térmico" (ou "Fluxo de Calor")

$$q''_x = \frac{q_x}{A} = -k\frac{dT}{dx}$$
(2.16a)

Onde q"_x é o fluxo térmico, (W/m²), q_x é a taxa de transferência de calor (W) e A a área da secção transversal (m²).

Podemos concluir que a resolução da equação (2.16), será muito simplificada se adotarmos que a condutividade térmica k do material da parede, será constante durante todo o experimento.

Logo, a solução geral da equação (2.16), pode ser obtida integrando-a duas vezes. Assim, teremos:

$$T(x) = C_1 x + C_2 \tag{2.17}$$

Para a determinação das constantes C_1 e C_2 , adotando-se as condições de contorno de primeira espécie, temos que para x=0 e x=L, ver Fig. 2.3, pág 16.

$$T(0) = T_{s1} e T(L) = T_{s2}$$

Onde T_{s1} é a temperatura (K), na face1, T_{s2} é a temperatura (K) na face 2 da parede e L é a espessura da parede (m).

Levando a temperatura em x = 0, na equação (2.17), encontramos:

$$T_{s1} = C_2$$

Procedendo de maneira análoga em relação a x = L, temos:

$$T_{s2} = C_1L + C_2$$
 : $T_{s2} = C_1L + T_{s1}$

De onde podemos determinar C₁,

 $C_1 = (T_{s2} - T_{s1})/L$

Levando-se C_1 e C_2 , à solução geral, obtemos que a distribuição de temperatura será dada por:

$$T(x) = (T_{s2} - T_{s1}) x/L + T_{s1}$$
(2.18)

Analisando a equação (2.18), podemos concluir que para o caso de condução de calor unidimensional em regime estacionário para uma parede plana, onde não haja fonte ou sumidouro de calor internos, com condutividade térmica considerada constante, a temperatura varia linearmente com a espessura x, como mostra a Fig. 2.1. Pág. 6.

Agora, que a distribuição de temperatura está estabelecida, a Lei de Fourier poderá ser utilizada.

$$q_x = -k A (dT/dx)$$
(2.18a)

Para a determinação da "Taxa de Transferência de Calor por Condução", ou seja

$$q_x = -k A (dT/dx) = k A/L (T_{s1} - T_{s2})$$
 (2.19)

Sendo a área da parede normal à direção da transferência de calor, constante e independente de x, para uma parede plana (espessura constante), o fluxo térmico, será obtida pela equação.

$$q''_x = q_x/A = k/L (T_{s1} - T_{s2})$$
 (2.20)

As equações (2.19) e (2.20) mostram claramente que a taxa de transferência de calor q_x , bem como o fluxo térmico $q_x^{,x}$, são constantes e independentes de x.

Podemos verificar que as condições de contorno adotadas para se chegar à solução particular, possibilitaram que a Lei de Fourier fosse empregada, também, para a obtenção da taxa de transferência de calor.

No nosso estudo, assumimos que as temperaturas nas superfícies T_{s1} em x = 0 e T_{s2} em x = L seriam utilizadas como as condições de contorno, embora soubéssemos que as temperaturas conhecidas são as dos fluidos de contato. Entretanto, é fato conhecido que as temperaturas da superfície e do fluído de contato, podem ser fàcilmente relacionadas pela realização de um balanço de energia na superfície.

Se por outro lado, pretendêssemos proceder aos balanços de energia nas superfícies da parede, lançaríamos mão de condições de contorno de terceira espécie na equação (2.17) quando do processo de eleição das constantes.

2.3.2 Resistência Térmica e Elétrica

É interessante verificar que uma análise visual da equação 2.19 nos leva a pensar na possibilidade de uma semelhança mais significativa entre o processo de condução de energia elétrica, associado à resistência elétrica e o processo de condução do calor, associado à resistência térmica, como mostra a Fig. 2.3. Pág. 16.

Baseado nesta idéia podemos concluir que a "resistência térmica na condução" (Resistência Térmica Condutiva) pode ser expressa, sob a forma.

$$R_{t,cond} = \frac{T_{s1} - T_{s2}}{q_x}$$
(2.21a)

$$R_{t,cond} = \frac{L}{kA}$$
(2.22b)

Onde R_{t,cond} é a resistência térmica condutiva (K/W).

Enquanto que na condução elétrica a resistência elétrica, é apresentada, na Lei de Ohm, sob a forma.

$$R_{e,I} = \frac{E_{s1} - E_{s2}}{I}$$
(2.22a)

$$R_{e,I} = \frac{L}{\sigma A}$$
(2.22b)

Onde R _{e,I}, é a resistência elétrica (Ω), E_{s1} e E_{s2} são os valores dos potenciais elétricos nos pontos 1 e 2(V), I é a corrente elétrica (A), L é o comprimento do condutor (m), σ a condutividade elétrica (W/m².K⁴) e A a seção transversal do condutor (m²).

A analogia entre as equações 2.21 e 2.22 é, direta e imediata.

Também poderemos aplicar o conceito de resistência térmica, quando lidamos com transferência de calor por convecção em uma superfície. Analisando a Lei de Resfriamento de Newton.

$$Q = hA(T_s - T_{\infty})$$
(2.23)

Onde q é a taxa de transferência de calor (W), h é o coeficiente de transferência de calor por convecção (W/m².K), A a área da superfície (m²), Ts a temperatura da superfície (K) e T_{∞} a temperatura do fluído (K).

Fig. 2.3 A Transmissão de calor através de uma parede plana. (a) Distribuição de temperatura. (b) Circuito térmico equivalente. Incropera (1998).

$$R_{t,conv} = \frac{(T_s - T_{\infty})}{q}$$
(2.24a)

$$R_{t,conv} = \frac{1}{hA}$$
(2.24b)

Os problemas de transferência de calor, pelo exposto acima, podem ser muito bem representados como uma analogia equacional e gráfica com os circuitos elétricos que, em geral, são de fácil entendimento e resolução.

Apresentamos um circuito térmico equivalente para uma parede plana composta por (concreto – ar – concreto), (0,03 – 0,02 – 0,03)m, com condições de convecção nas duas faces de cada painel, como mostrado na Fig. 2.4, Pág. 20. A taxa de transferência de calor será calculada

separadamente para cada elemento do circuito correspondente. Do mesmo modo que a corrente I é constante ao longo de todo o circuito elétrico, a quantidade de calor q que atravessa o circuito térmico, também o é. E pode ser expressa, como:

$$q_{x} = \frac{T_{\infty 1} - T_{s1}}{1/h_{1}A} = \frac{T_{s1} - T_{s2}}{L_{1}/k_{1}A} = \dots = \frac{T_{s4} - T_{\infty 4}}{1/h_{4}A}$$
(2.25)

Onde T_{s1} é a temperatura do fluido em contato com a superfície 1, ou seja, S₁, expressa em Kelvin (K), L₁ é a espessura da superfície 1, S₁, em (m), T_{s,4} é a temperatura em K, do fluido em contato com a superfície 4, S₄, T_{∞ 1}(K) e T_{∞ 4} (K) são as temperaturas dos fluidos a esquerda e à direita da parede composta.

A relação entre a diferença de temperatura total ou global, $T_{\infty 1}$ - $T_{\infty 4}$, a resistência térmica total, R_{TOT} , e a taxa de transferência de calor, q_x , terá a forma.

$$q_{x} = \frac{T_{\infty 1} - T_{\infty 4}}{R_{TOT}}$$
(2.26)

Considerando que as resistências condutiva e convectiva se apresentam de maneira análoga as resistências elétricas em série, podemos calcular a resistência térmica total, R_{TOT} , pela fórmula:

$$R_{\text{TOT}} = \frac{1}{h_1 A} + \frac{L_1}{k_1 A} + \dots + \frac{1}{h_4 A}$$
(2.27)

Nos casos em que se verifica uma troca de calor entre a superfície e sua vizinhança, muito significativa, uma outra resistência térmica poderá ser necessária. Se a superfície estiver separada de uma importante fonte de calor, por uma ampla vizinhança gasosa, é conveniente se levar em consideração a resistência térmica para a radiação (Resistência Térmica Radiante), que pode ser determinada pela expressão.

$$q_{rad} = h_r A(T_{sup} - T_{viz})$$
(2.28)

Onde q_{rad} = taxa de transferência de calor radiante (W), h_r é o coeficiente de transferência de calor por radiação (W/m².K), T_{sup} é a temperatura da superfície (K) e T_{viz} é a temperatura da vizinhança (K).

Daí poderemos determinar.

$$R_{t,rad} = \frac{T_{sup} - T_{viz}}{q_{rad}}$$
(2.29a)

$$R_{t,rad} = \frac{1}{h_r A}$$
(2.29b)

Sendo h_r determinado pela equação

$$h_r \cong \varepsilon \sigma \left(T_{s1} + T_{viz} \right) \left(T_{sup}^2 + T_{viz}^2 \right)$$
(2.30)

onde ϵ é emissividade e σ é a constante de Stefan-Boltzmann

2.4 A Parede Composta (concreto – ar – concreto)

O estudo da parede composta fica grandemente facilitado se adotarmos o uso dos circuitos térmicos equivalentes, como mostrado na Fig. 2.4. As paredes compostas podem apresentar uma quantidade qualquer de resistências térmicas, que serão associadas em série ou em paralelo, de acordo com as camadas que as compõem e com os variados tipos de materiais que as constituem.

Considerando a parede composta da Fig. 2.4, de (concreto - ar - concreto) (0,03 - 0,02 - 0,03)m, verificamos que as resistências térmicas equivalentes estarão dispostas em série. A taxa de transferência de calor para o sistema mostrado na Fig. 2.4, será determinada pela expressão.

$$q_{x} = \frac{T_{\infty 1} - T_{\infty 4}}{\Sigma R_{I}}$$
(2.31)

Onde $T_{\infty 1}$ - $T_{\infty 4}$ é a diferença global de temperatura e ΣR_I , o somatório de R_I , representa a soma total de todas as resistências térmicas, ao longo de toda a espessura da parede composta.

Logo, podemos verificar que:

$$q_{x} = \frac{T_{\infty 1} - T_{\infty 4}}{1/h_{1}A + L_{1}/k_{1}A + 1/h_{2}A + \dots + 1/h_{3}A + L_{3}/k_{3}A + 1/h_{4}A}$$
(2.32)

Outra maneira de determinar a taxa de transferência térmica é relacionando a diferença de temperatura e a resistência térmica correspondente, a cada elemento que compõe o sistema, como:

$$q_{x} = \frac{T_{\infty 1} - T_{s1}}{1/h_{1}A} = \frac{T_{s1} - T_{s2}}{L_{1}/k_{1}A} = \dots = \frac{T_{s3} - T_{s4}}{L_{3}/k_{3}A} = \frac{T_{s4} - T_{\infty,4}}{1/h_{4}A}$$
(2.33)

Quando lidamos com sistemas compostos é aconselhável, na maioria das vezes, trabalhar com um coeficiente global de transferência de calor, U, que é determinado a partir de uma equação análoga à da Lei de Resfriamentos de Newton.

Logo,
$$q_x \cong UA \Delta T$$
 (2.34)

Onde ΔT é a diferença global de temperatura (K) e U o coeficiente global de transferência de calor, que depende da resistência térmica global.

Procedendo a uma análise comparativa entre as equações 2.26 e 2.34, podemos concluir que

$$U A = 1/R_{TOT}$$
(2.35)

Por conseguinte, para a parede composta da Fig. 2.4, podemos escrever.

$$q_x = \frac{1}{R_{TOT}A}$$
(2.36)

Assim como,

$$q_{x} = \frac{T_{\infty 1} - T_{\infty 4}}{(1/h_{1}A + L_{1}/k_{1}A + 1/h_{2}A + \dots + 1/h_{3}A + L_{3}/k_{3}A + 1/h_{4}A}$$
(2.37)

Como podemos escrever, ainda, genericamente:

$$R_{\text{TOT}} = \Sigma \ R_{\text{I}} = \frac{\Delta T}{Uq} = \frac{1}{U \ A}$$
(2.38)

Figura 2.4: Circuito elétrico equivalente, em série, para uma parede composta de (concretoar-concreto).

Capítulo 3

Materiais e Métodos

3.1 Projeto Estrutural

O Projeto Estrutural foi concebido para oferecer uma moradia segura, onde os moradores possam desfrutar do prazer de habitar uma casa moderna, com uma funcionalidade bem definida, além da certeza de uma durabilidade superior às construções equivalentes em alvenaria e com um custo de manutenção muito menor.

Para maior estabilidade, a casa de painéis pré-moldados de concreto, foi projetada sobre uma fundação corrida, formada por blocos de fundação com 0,30m de base, sobre os quais são concretados os painéis inferiores que formarão as paredes. Os blocos de fundação serão assentados sobre uma camada de concreto magro (traço 1:4:8) de 0,05 x 0,40 m² ao longo de toda a fundação.

A seguir serão montadas as paredes até a altura de 3,00m com painéis pré-moldados de 1,96 x $0,50 \ge 0,03 \text{ m}^3$, que serão devidamente encaixados nos pilares de 16 x 16 cm², pré-moldados, com detalhes de encaixes apresentados nos desenhos, em anexo.

O teto será executado com laje pré-moldada, sobre a qual será montado o telhado de telha canal, único material cerâmico empregado na construção; pela sua qualidade, preço, fácil consecução e utilização consagrada.

Apresentamos um mini-projeto, detalhado nos anexos AI-1, AI-2 e AI-3.

Os gráficos foram construídos a partir dos dados (temperaturas) obtidos com a utilização de termopares TIPO J (Cobre-Constantan), conectados através da placa de aquisição de dados (LYNX-Modelo MCS. 1000V2) Ismail (2000), que realizou as leituras durante intervalos de tempo de aproximadamente (5) cinco minutos, a cada (1) uma hora, das 8:00h ás 19:00h, com um micro computador.

3.2 Estudo Comparativo

Os dois projetos idênticos nos possibilitarão determinar exatamente qual a diferença no que se refere ao conforto térmico, em função da utilização de paredes compostas de painéis pré-moldados de concreto ou de alvenaria de tijolos.

Para maior precisão na avaliação final, executamos duas mini salas sobre bases de tijolos de 2,40 x 0,80 x 0,10m³, constituídas por duas paredes compostas de concreto de 1,96 x 0,50 x 0,08m³ e 1,96 x 0,65 x 0,08m³ e duas de alvenaria de 1,96 x 0,50 x 0,10m³ e 1,96 x 0,65 x 0,10m³.

O teto é constituído por uma placa de concreto de 1,96 x 0,56 x 0,03m³ nos dois casos, aplicadas diretamente sobre as paredes de painéis ou alvenaria, cobertas com telhas cerâmicas, tipo canal. A utilização desta telha cerâmica se justifica em função das suas qualidades térmicas, facilidade de consecução e montagem, e pelo aspecto arquitetônico de utilização consagrada.

Como todas as outras características são idênticas, nos deteremos no estudo da transferência de calor para o ambiente interno através de uma parede composta de (concreto-ar-concreto) de (0,03 - 0,02 - 0,03) m e uma parede de alvenaria de tijolo de 0,10m de espessura, ver desenhos nos anexos AI-1 e AI-2.

Capítulo 4

Resultados e Discussões

A análise dos gráficos das temperaturas dos (5) cinco pontos medidos na alvenaria (Ver AI-1, Pág. 29) e os correspondentes relativos às medidas realizadas na construção de concreto (Ver AI-2, Pág. 29), podemos perceber uma enorme semelhança geométrica entre os mesmos, com destaque especial para os pontos de máximas temperaturas, que se verificaram nos mesmos horários, bem como as tendências de aumento ou redução da temperatura ao longo de todo período pesquisado. Outro aspecto importante é o que se constata ao examinar ponto a ponto, as temperaturas mais elevadas. No dia 10 de Junho de 2003, a alvenaria atingiu sua temperatura máxima às 09:00h $T_{alv2ext,9h} = 45,0^{\circ}$ C na face externa da parede 2, ou alv2ext, e na face interna alv2int a $T_{alv2int,9h} =$ $31,4^{\circ}$ C, portanto com uma diferença entra as faces externa e interna, da mesma parede, de $\Delta T_{alv2(ext$ $int),9h} = 13,6^{\circ}$ C; enquanto o painel duplo de concreto, con2ext atingiu $T_{con2ext,9h} = 39,2^{\circ}$ C, o con2int $T_{con2int,9h} = 30,8^{\circ}$ C, apresentando uma diferença de $\Delta T_{con2(ext-int),9h} = 8,4^{\circ}$ C, com a vantagem para o ambiente do concreto $T_{conamb,9h} = 31,6^{\circ}$ C, enquanto o ambiente da alvenaria chegou a $T_{alvamb,9h} =$ $32,2^{\circ}$ C no mesmo horário.

É indispensável registrar que a partir das 15:00h do dia 10 de Junho de 2003, começou a chover ininterruptamente até por volta das 16:00h, após o que continuaram as nuvens e uma neblina que entrou pela noite. Uma indicação segura de que a experiência é um procedimento realmente confiável, é a tendência que se estabeleceu em todos os termopares que a partir das 16:00h, registraram o equilíbrio térmico geral que estava se iniciando e que se mostrou de maneira mais clara às 19:00, quando todos os termopares registraram temperaturas de 27,4°C no con1int e 27,3°C na alv1int a 25,5°C no conamb e 26,0°C no alvamb. É interessante notar que um termopar colocado no con2ext apresentou discrepância após as 15:00h, o que também nos leva a reconhecer o comportamento completamente compatível de todos os outros termopares.

No dia 11 de Junho de 2003 uma análise dos gráficos da alvenaria e do concreto, nos mostra que as conclusões relativas aos resultados do dia 10 de Junho de 2003 são completamente aplicáveis ao dia 11 de Junho de 2003, exceto no que se refere às temperaturas medidas após as 16:00h, visto que, neste dia não houve ocorrência de chuva, não se verificando a tendência de equilíbrio térmico.

Neste dia o con1ext, e a alv1ext, estavam a 35,4°C e 35,2°C, por volta da 18:00h, enquanto que o conamb e a alvamb, estavam a 29,4°C e 29,7°C, respectivamente.

No dia 13 de Junho de 2003 o comportamento geral dos termopares esteve inteiramente dentro do esperado, compatível com as condições globais do tempo, sem apresentar uma tendência acentuada de equilíbrio térmico, como no dia 10, que choveu. Não apresentando, também, nenhum desvio de resultado significativo, o que se constitui em mais uma garantia de que os nossos resultados são, efetivamente, verossímeis.

A pedido do nosso orientador, Prof. Dr. Kamal A. R. Ismail, modificamos o afastamento entre as placas de concreto de 2,0 cm para 0,5 cm. Logo a partir do dia 17 de Fevereiro de 2004, estamos realizando as medições em uma construção de (concreto-ar-concreto) com (0,030-0,005-0,030)m e na mesma construção de alvenaria de tijolos cerâmicos vazados, com 0,10m, como anteriormente. Uma outra modificação introduzida na experiência na mesma data citada, foi o fechamento das extremidades com a utilização de papelões, além de estarmos utilizando termômetros calibrados (0,5°C) para medição das temperaturas a 55,0cm da entrada e 30,0 cm de altura em relação ao piso.

Os resultados apresentados foram totalmente compatíveis com os obtidos nas experiências anteriores (Ver gráficos AII.10, AII.11, Pág.35 e AII.12, AII.13, Pág. 36).

Por solicitação, também, do nosso orientador, fizemos 04 (quatro) furos com diâmetros de 1,0 cm, nos painéis de concreto com 23,0 cm; 73,0 cm; 123,0 cm; 173,0 cm da entrada, localizados a 5,0 cm do piso no painel interno e a 47,0 cm no painel externo. Apresentamos os resultados nos gráficos AII.14 e AII.15, na Pág. 37, onde podemos observar que os furos tornaram o ambiente do concreto, conamb, sempre mais confortável do que o ambiente da alvenaria, alvamb, durante todo o período pesquisado, 10 e 11 de Março de 2004.

Capítulo 5

Conclusões

A partir da análise dos dados obtidos nesta experiência e com o auxilio dos gráficos, podemos concluir que é perfeitamente aceitável a idéia de se construir uma casa com painéis pré-moldados de concreto que apresente um conforto térmico absolutamente equivalente ao de uma casa idêntica de alvenaria de tijolos cerâmicos vazados.

Até há algum tempo, havia uma questão intocável que era: uma casa de concreto é um espaço inabitável é o mesmo que o interior de uma estufa.

O que acabamos de mostrar é que, se uma solução adequada ao tipo de material empregado na construção for executada com critério e o conhecimento indispensável dos fenômenos térmicos, é plenamente possível lançar-se mão de novas tecnologias para viabilizar a produção de habitações mais funcionais, mais modernas, mais duráveis e mais acessíveis.

Baseado em nossa experiência na área de concreto pré-moldado, podemos assegurar que uma casa com sala, (3) três quartos, cozinha, banheiro e área de serviço, com área construída, de aproximadamente, 50,0m², pode ter sua construção concluída, pronta para ser habitada, em um prazo médio de (3) três semanas. Só este aspecto já representa uma redução de custo da ordem de 50%, no que se refere a mão-de-obra, em relação a uma casa, idêntica, de alvenaria de tijolo cerâmico.

Com relação às instalações elétricas e hidráulicas, que poderiam ser montadas no interior das paredes externas, achamos melhor executá-las de modo aparente. Isto torna muito mais simples qualquer intervenção no sentido de manutenção ou deslocamento das mesmas, sem a necessidade de gastos maiores.

A pintura deve ser feita com tinta texturada para dispensar qualquer acabamento especial na superfície do concreto, principalmente, para ocasionar uma refração difusa, o que também contribuirá para um maior conforto térmico.

Vale a pena salientar que na experiência realizada, a alvenaria foi apenas revestida com argamassa, não recebendo qualquer tipo de acabamento fino ou pintura, bem como o concreto que foi utilizado sem qualquer tratamento especial.

A solução completa será encontrada à medida que uma série de outras experiências sejam realizadas, variando-se algumas características, como: espessura das placas de concreto interna e externa, afastamento entre as placas, etc.

- FOX, R. W. & Mc Donald, A. T. Introdução à Mecânica dos Fluídos. Trad. Rio de Janeiro, LTC, 2001.
- HALÁSZ, Judith Zoltán & MARTINS, Alberto. **Princípios para o Condicionamento de Ar**. Faculdade de Engenharia Mecânica. UNICAMP, Campinas, SP, 1994.
- INCROPERA, Frank P. & DeWITT, David. P. Fundamentos de Transferência de Calor e de Massa. Rio de Janeiro, RJ. LTC Livros Técnico e Científicos. Editora S. A., 1998
- ISMAIL, Kamal A. R. Técnicas Experimentais em Fenômenos de Transferência. Campinas, SP. Ed. Do Autor, 2000.
- KREITH, Frank. Princípios da Transmissão de Calor. Trad. São Paulo, Edgard Blücher, 1977.

REYNOLDS, William C. Thermodynamics Tokyo Japan. Internacional Student Edition, 1986

ANEXOS

Anexo I

Fig. AI.2 - Projeto estrutural em concreto

AI-3 - Vista posterior, bloco de fundação e seção transversal dos pilares.

All.1 - Gráficos da alvenaria em 10/06/03

A II.2 - Gráficos do concreto em 10/06/03

A II.3 - G ráficos da alvenaria em 11/06/03

All.4 - Gráficos do concreto em 11/06/03

All.5 - Gráficos da alvenaria em 13/06/03

All.6 - Gráficos do concreto em 13/06/03

AII.7 - Gráficos dos am bientes em 10/06/03

A II.9 - G ráficos dos am bientes em $1\,3\,/0\,6\,/0\,3$

All.10 - Gráficos dos am bientes em 17/02/04

All.11 - Gráficos dos am bientes em 18/02/04

A II.12 - G ráficos dos am bientes em 19/02/04

All.13 - Gráficos dos am bientes em 20/02/04

All.14 - Gráficos dos am bientes em 10/03/04

All.15 - Gráficos dos am bientes em 11/03/04

Anexo III

Foto 1: Vista externa da obra

Foto 2: Vista interna da obra

Foto 3: Detalhe da fixação do termopar na alvenaria

Foto 4: Detalhe da fixação do termopar no concreto

Foto 5: Vista externa da obra de concreto

Foto 6: Vista interna da obra de alvenaria

Foto 7: Computador, interface e identificação dos termopares

Foto 8: Cientista trabalhando

Foto 9: Vista geral da obra e do laboratório de pesquisa

Foto 10: A luz no fim do túnel

APÊNDICES

APÊNDICE A

LEVANTAMENTO DAS TEMPERATURAS EM [°C] NOS TERMOPARES NO DIA 10/06/03

hore	junta	alv1avt	alv1int	alv?ovt	alv?int	alvamh	conlext	conlint	con?ext	con?int	conamh	observ	ações
1101 a	fria	aiviext		alv2CXt	arv2mt	aivainu	context	contint	conzext	conzint	conanio	tempo	con-alv
08:00	31,248	28,540	27,874	29,460	27,811	28,509	28,730	27,748	27,209	27,716	28,128	sol	-0,381
09:00	37,444	32,805	31,219	44,978	31,442	32,234	31,980	30,554	39,177	30,807	31,600	sol	-0,634
10:00	34,868	32,698	30,605	40,465	32,254	31,239	31,874	29,845	37,802	30,669	30,795	sol/nuv	-0,444
11:00	38,868	35,935	32,352	38,819	33,715	32,606	34,064	31,433	37,044	32,225	32,257	nuvens	-0,349
12:00	40,234	39,344	34,557	38,837	35,223	34,462	37,505	34,018	37,854	34,304	34,779	sol/nuv	+0,317
13:00	38,602	38,684	34,975	37,416	34,943	33,168	36,528	34,399	36,718	34,277	33,264	nuvens	+0,096
14:00	35,547	43,317	34,884	36,501	33,965	32,570	40,305	34,345	36,057	33,838	32,062	sol	-0,508
15:00	29,448	33,634	32,842	31,415	31,479	28,784	33,381	32,652	30,591	31,954	28,848	chuva	+0,064
16:00	27,278	28,453	30,735	28,387	29,690	27,027	28,517	30,673	24,681	29,626	26,583	chuva	-0,444
17:00	26,676	26,900	28,517	27,534	27,914	26,202	27,280	28,580	12,792	28,200	25,759	neblina	-0,443
18:00	27,018	26,957	27,654	26,988	27,242	26,227	27,147	27,876	19,283	27,559	26,418	neblina	+0,191
19:00	27,031	26,652	27,318	26,526	26,748	25,955	26,874	27,350	17,681	26,906	25,543	noite	-0,412

APÊNDICE B

LEVANTAMENTO DAS TEMPERATURAS EM [°C] NOS TERMOPARES NO DIA 11/06/03

hore	junta	alv1ovt	alv1int	alv?ovt	alv?int	alvamh	con levt	conlint	con?ext	con2int	conamh	observ	vações
101 a	fria	aiviest		aivzest	arv2int	arvanio	context	contine	conzext	conzint	conamb	tempo	con-alv
08:00	30,183	27,947	26,964	28,486	26,933	28,454	27,884	27,376	27,345	26,901	28,169	sol	-0,285
09:00	34,231	30,409	28,792	39,920	29,933	31,807	29,775	28,760	38,715	29,267	30,313	sol	-1,494
10:00	34,991	31,632	29,635	43,743	32,264	31,093	30,713	29,698	41,872	31,188	31,474	sol	+0,381
11:00	37,214	35,182	31,917	39,082	34,322	32,425	33,914	31,918	38,195	33,554	32,900	sol/nuv	+0,475
12:00	35,892	35,664	32,335	37,091	33,267	31,523	34,523	32,208	36,488	33,065	32,462	sol	+0,939
13:00	35,724	36,600	31,972	36,854	33,271	32,574	35,047	32,542	36,707	33,493	33,271	sol	+0,697
14:00	38,417	39,332	34,703	37,747	34,736	34,894	37,366	34,640	37,969	35,115	35,052	sol	+0,158
15:00	37,385	48,894	35,928	35,800	34,590	33,454	43,568	35,483	35,705	34,437	33,708	sol/nuv	+0,254
16:00	34,080	40,684	36,924	35,040	34,470	32,409	43,917	35,865	35,040	34,470	31,997	sol	-0,412
17:00	34,991	40,794	37,275	35,722	34,834	32,615	40,826	36,071	34,866	34,771	32,393	sol	-0,222
18:00	29,848	35,220	35,030	30,877	31,923	29,736	35,409	33,952	30,909	31,860	29,450	sol	-0,286

APÊNDICE C

LEVANTAMENTO DAS TEMPERATURAS EM [°C] NOS TERMOPARES NO DIA 13/06/03

hora	junta	alv1ext	alv1int	alv?evt	alv?int	alvamh	conlext	conlint	con?ext	con2int	conamb	observ	ações
101 a	fria	aivicat		arv2CAt	arv2int	aivaiib	context	contint	conzext	conzint	conamb	tempo	con-alv
09:00	31,507	30,458	28,774	30,706	30,074	29,884	32,864	30,296	33,683	31,881	30,328	sol	+0,444
10:00	32,944	32,182	29,963	40,552	31,770	31,136	32,436	29,995	38,332	30,566	30,342	sol	-0,794
11:00	36,283	35,510	31,960	38,586	33,830	33,260	35,352	31,864	37,602	32,594	32,467	sol	-0,793
12:00	36,344	36,970	32,944	36,844	33,992	33,008	37,160	33,229	36,273	33,071	33,166	sol	+0,158
13:00	37,262	39,878	35,090	38,229	35,186	34,710	38,926	34,995	37,722	34,868	34,710	sol/nuv	-
14:00	37,064	40,034	35,521	36,187	35,172	33,650	38,215	35,359	36,250	34,602	33,841	sol/nuv	+0,191
15:00	36,796	45,233	36,547	36,547	35,722	33,789	42,315	36,388	36,166	35,088	33,916	sol/nuv	+0,127
16:00	32,039	37,024	34,868	32,775	33,126	30,810	36,453	34,329	33,061	32,934	30,493	sol	-0,317
17:00	31,354	36,698	33,781	31,974	32,133	30,352	36,159	33,781	32,038	32,545	30,294	sol	-0,058
18:00	29,998	33,043	33,233	30,570	31,427	29,746	33,062	32,504	30,384	31,300	29,366	sol	-0,380