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RESUMO 

Durante a vida útil de um poço de petróleo as perdas de produção relativas ao seu 
potencial causam a interrupção da produção devido às operações de restauração. As empresas 
buscam estratégias para prevenir estas restaurações, sendo o heavy workover um dos maiores 
desafios. A restauração de um poço produtor geralmente é uma operação demorada e 
representa uma das maiores despesas operacionais durante a produção de um campo 
petrolífero.  

O conhecimento das causas de perda de produção durante a etapa do projeto ajuda 
no desenvolvimento de estratégias para prever situações problemáticas durante a produção. 
Portanto, o objetivo da presente pesquisa é estabelecer diretrizes e procedimentos para um 
projeto de poço, de forma a prevenir as restaurações e/ou evitar heavy workovers até o final da 
vida produtiva do poço. 

Inicialmente realizou-se uma busca na literatura dos últimos trinta e cinco anos, 
para identificar as principais causas de perda de produção, fatores para sua ocorrência, 
soluções e estudos de caso. Foram identificadas vinte e uma causas de perda de produção, e 
foram divididas em três tipos: 1) garantia de escoamento, 2) falha potencial na integridade e 
3) problemas de reservatório. 

Por exemplo, para as causas de perda de produção devido à garantia de 
escoamento a deposição de sólidos no sistema poço/linha foi a principal causa de perda, sendo 
os fatores fundamentais para esta deposição a composição do fluido de formação 
(hidrocarboneto e água) e variações de pressão e temperatura.  

Com este estudo conseguiu-se identificar mediante a superposição de gráficos 
(curva de hidratos, temperatura de aparecimento de parafinas, pressão de inicio de asfaltenos e 
índice de saturação) uma região livre de sólidos, denominada “envoltória de garantia de 
escoamento”. Neste gráfico, são traçadas as condições de fluxo de petróleo. Se estas 
condições se encontram dentro da envoltória o resultado pode ser uma possível não 
restauração, caso contrário, o projeto deverá contemplar tratamentos de prevenção para 
garantir uma mínima restauração e/ou tratamentos de remediação para obter uma fácil 
restauração (light workover). 

Mediante a pesquisa realizada, foi possível estabelecer diretrizes e procedimentos 
para o projeto de poço que são de grande valia para a melhora da produção durante sua vida 
útil. Para cada uma das causas de perda de produção (vinte e uma) identificou-se possíveis 
soluções que permitirão a prevenção das restaurações, evitando dispendiosas operações de 
heavy workover.  

Palavras Chave: Restauração de poços, Perfuração marítima, Perdas de produção, Projeto de 
poços, Poços submarinos.



 

  

ABSTRACT 

During the life of an oil well, production losses relating to its potential causes a 
production interruption due to well intervention operations. Companies are looking for 
strategies to prevent these interventions, being the heavy workover one of the biggest 
challenges. The well intervention of a well producer is usually a lengthy operation and 
represents one of the largest operating expenditure during the oilfield production.   

The knowledge of causes of production loss during the design phase helps in the 
development of strategies to predict problematic situations during well production. Therefore, 
the objective of the dissertation is to establish guidelines and procedures for a subsea well 
design to prevent the well intervention and/or avoid heavy workovers until the end of their 
productivity life.  

 A literature research of the last thirty-five years, to identify the main causes of 
production loss, factors for its occurrence, solutions and case studies was performed. Twenty 
one causes of production loss were identified, and were divided into three types: 1) flow 
assurance, 2) potential integrity failures, and 3) reservoir problems. 

As an example, the solids deposition in the well/line system were the main cause 
of production loss due to flow assurance, being the composition of the formation fluid 
(hydrocarbon and/or water) and changes in pressure and temperature the main factors for this 
deposition. 

A region free of solids known as “flow assurance envelope” was identified in this 
study through superposition of several graphs (hydrates curve, wax appearance temperature, 
asphaltene onset pressure and saturation index). In this graph oil flow conditions are plotted 
and the result is a possible non-intervention if the oil flow conditions are inside the envelope. 
On the other hand, the well design should implement prevention treatments in order to assure 
a minimum intervention and remediation treatments (light workover) to obtain an easy 
intervention.   

Through the research performed was possible to establish guidelines and 
procedures for a subsea well design that are of great value for the improvement of production 
during its useful life. For each one of the causes of production loss (twenty one) was 
identified possible solutions that will enable the prevention of well intervention, avoiding 
costly heavy workovers operations.  

Key Words: Well intervention, Offshore drilling, Production losses, Well design, Subsea 
well  
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The causes of the production loss are discovered during maintenance phase, and 

can be defined as the loss relative to the potential production. 

Usually the maintenance is not planned during well design phase; therefore 

intervention costs may represent a problem during production phase. 

The well intervention represents one of major operational expenditure for the oil 

industry especially in subsea wells, due to the cost of equipment and the time of the operation.   

In subsea wells, expenditures will be high if interventions are frequent and the 

consequence is that the well will not be economically profitable. Therefore the well 

intervention should be kept as low as possible. 

Well interventions are classified in two categories: light and heavy workovers.  

The most important difference between heavy and light workover is the treatment 

of the issue. A comparison can explain better: 

In heavy workovers it is necessary to remove the Christmas tree (X-mas tree) and 

to install the drilling BOP (Blowout Preventer). It normally includes the removal of the entire 

completion string from the well and requires the services of a Mobile Drilling Unit (MODU).  

In light workovers it is not necessary to remove the X-mas tree, because the 

operations may be carried out through the X-mas tree and the production tubing, i.e., using 

slickline, wireline and coiled tubing operations, and for that reason the use of a MODU is not 

necessary. 

One of the most important remarks is that in light workover the company takes 

around 15 days to solve the problem and in heavy workover, the operations typically range 

between 120 to 240 days (Birkeland, 2005). But this period can change; for instance in 

Campos Basin the light workover may take 15 days and heavy workover 30 days for some 

wells (Fonseca et al., 2013).  

Recently, the oil industry is doing many efforts to create new methods and 

technologies to prevent well interventions and mainly to avoid heavy workovers. 

For all the reasons above, it is very important to understand the causes of 

production loss in the initial design phase in order to save costs and time in the well 

interventions until the end of the productive life.    

Two fundamental concepts useful for a better understanding of this work are 

defined below: 

- Minimum intervention: is defined as the low intervention necessity that can 

be reaches trough modifications in the well design (prevention treatments) to 

avoid causes of production loss.  
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- Easy intervention: is defined as the well intervention performed by light 

workover (remediation treatments) when the cause of production loss cannot be 

avoided with the minimum intervention. 

The purpose of these concepts is to propose guidelines and procedures that should 

be implemented during well design phase in order to obtain a non-intervention, minimum or 

easy intervention during production phase.       

1.1. Objectives 

The main objective of this work is to establish guidelines and procedures to be 

applied during the well design phase for subsea wells in order to reduce and ease the well 

intervention until the end of the productive life.    

In order to get this point, causes of production loss, as well as prevention 

treatments and remediation treatments that can be applied with light workovers should be 

identified. 

The procedures are presented in flow charts and are applied in different study 

cases to show the applicability and to demonstrate the effectiveness.   

1.2. Organization 

This study is structured and divided in five chapters, in order to understand the 

proposed objectives. The introduction and objectives are presented in chapter 1. 

Chapter 2 presents the methodology of this work together with the selection of 

offshore petroleum regions.  

Chapter 3 presents an analysis for each cause of production loss, identifying the 

factors why it occurs, possible treatments (prevention and remediation) and case studies for 

each region.   

Chapter 4 discusses the results obtained based on the reports presented; 

establishes guidelines and procedures for each cause of production loss and presents case 

studies to verify the guidelines. 

Chapter 5 presents the conclusions and recommendations for future works. 

 





21 
 

  

Figure 2.1 shows the percentage of crude oil production in the world. The most 

representative offshore petroleum regions were: Brazil, Gulf of Mexico, North Sea and West 

Africa, and these regions produce together 10 MMBOPD, representing 13% of the whole 

crude oil production, placing themselves ahead of the major producers (Russia, Saudi Arabia 

and USA).  

These maritime regions are important in the development of offshore oil 

production and the new discoveries have placed these regions in a promising position (OE, 

2014).  

In Brazil, Campos Basin represented a 66% of the total oil production according 

to ANP (2015) until July 2015 and for this reason, Campos Basin is considered for this study. 

In the following, there is a brief description of each offshore petroleum region: 

- The Campos Basin is the main sedimentary area already explored in the 

Brazilian Coast and has an approximated area of one thousand square 

kilometers. 

The Campos Basin presents a subtropical current, which means relative strong 

currents with moderate waves and a hot weather. The production platforms are 

mostly Floating Production, Storage and Offloading (FPSO), the wells have 

subsea completion and the water depth typically ranges between 80 – 2400 

meters. The majority of the wells are located in deep and ultra-deep waters 

(Ribeiro, 2013; Barton, 2015). Figure 2.2 shows these features. 

The first field with commercial volume discovered was the Garoupa field in 

1974, presenting 124 meters depth. In the next year, the Namorado field was 

discovered and in 1976 was the Enchova Field. On 13 August of 1977, the 

Campos Basin started the commercial oil production there.  

Since the beginning of the production in the Campos Basin, Brazil became a 

representative oil producer in offshore regions (Petrobras, 2015).  

- The Gulf of Mexico presents calm environmental conditions but with 

metocean phenomena, such as, winter storms, tropical storms, hurricanes in the 

summer and a major problem: loop currents that flow in large eddies (Todd and 

Replogle, 2010).   
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The production platforms are typically Tension Leg Platform (TLP) and SPAR. 

The completion is wet and the water depth ranges between 454 – 2896 meters 

(Fig. 2.3). 

The Gulf of Mexico marked the birth of the offshore industry in 1947 with the 

Creole field. The peak of oil production in this region was in 1971 (shallow 

water). The oil production started to decline after 1971 leading to new 

discoveries in deep water. The first deep water oil production was in 1979 in 

the Cognac field (Pratt, 2014).  

- The North Sea presents severe environmental conditions with strong winds 

and currents. Most of the oil fields are characterized by fixed platforms, wet 

completion and the water depth ranges between 70 – 400 meters (Sangesland, 

2010), as presented in Fig. 2.4. 

In the North Sea the main discoveries of oil fields were in 1967 in Norway 

(Balder Field) and in 1969 in United Kingdom (Arbroath field). The first oil 

production in the North Sea was in 1975 with the Argyll field. At this time, the 

world oil prices were high enough enabling the North Sea oil production, 

which reached the peak in 1999 (Oil Finance Consulting, 2015).  

- The West Africa sea conditions have long-period swells and several wind sea 

(Olagnon et al., 2014). The water depth ranges between 40 – 2200 m but the 

majority of the offshore oil wells are in shallow waters and the main 

production platforms are FPSO’s (OE, 2014; OE 2015), as shown in Fig. 2.5. 

In West Africa the vast majority of the oil produced comes from Nigeria and 

Angola. Equatorial Guinea, Republic of Congo and Gabon have also a 

representative oil production (Kgosana et al., 2014).  

In Angola, the first offshore discover was the Malongo field in 1968 (Cabinda 

province). In 1996 the Elf Petroleum Company discovered the Girassol Field, 

with 1300 meters depth and production starting in 2001. Nowadays 97% of the 

production is from offshore fields (Koning, 2014).  
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In order to obtain more documents for the analysis, the references of the selected 

documents were investigated and a new set of more specific keywords was inserted in the 

databases, such as “hydrate, deposition, curve, Campos Basin”. 

The search was repeated until the required information for each cause of 

production loss was obtained. 

These documents were organized in a tables (see Appendix A) to identify the 

cause of production loss, the offshore petroleum region, the year of the document and the 

reference. The most relevant documents were commented.  

Table 2. 1 - Organization of documents found. 

Cause of 

production 

loss 

Offshore 

petroleum 

region 

Reference 

(Year) 
Comments 

Hydrate 
Campos 
Basin 

Teixeira et 
al, 1998 

In Albacora field, seven months after the 
beginning of oil production a blockage in two 
wells resulted due to hydrate formation in the 
manifold.  

Marques et 
al, 2002 

In a well in Campos Basin a repair of SSSV was 
scheduled, but was not possible to remove the 
X-mas tree due to a hydrate deposition. A ROV 
was necessary to identify the cause of the 
problem. 

Wax 
Gulf of 
Mexico 

Alwazzan 
et al., 2008  

Wax deposition in pipelines in Cottonwood 
field. 

Asphaltene North Sea 
Thawer et 
al., 1990 

Asphaltene deposition in production tubing and 
production facilities in the Ula field. 

Fines 

migration 

West 
Africa 

Ezeukwu et 
al., 1996 

A field study to evaluate organic and inorganic 
agents to determine their effectiveness to 
eliminate fines. 

Table 2.1 is an example of the organization of the documents. After the 

organization of all the documents, a second filtration was carried out based on the comments 

on each document. Those documents containing more information were selected and short 

abstracts were performed with the follow information: problem, approach, solution, 

conclusions, assumptions and limitations, application and critique. 

A new selection of the most relevant documents is possible after this filtration and 

the result was a data set with two hundred fifty-four documents for the four offshore 

petroleum regions.  



26 
 

  

3. ANALYSIS OF PRODUCTION LOSSES 

The classifications, in this section, and a description and the solutions of each 

cause of production loss will be presented based on collected data. 

Section 3.1 explains in a detailed form the occurrence of each cause of production 

loss, the main factors and presents some cases studies in order to demonstrate the statements.    

Section 3.2 presents prevention and remediation treatments for each cause of 

production loss.  

3.1. Causes of production loss 

According to the literature research, the identification of twenty one causes of 

production loss was possible. The causes of production loss were considered taking into 

account the four offshore petroleum regions.  

Causes of production loss in specific or in general cases were identified by other 

authors. A description of these works is given below: 

- The causes of intervention could be due to: excessive water or gas production, 

restricted hydrocarbon production, sand production, equipment failure and 

reservoirs depleted (Baker, 1980).  

- In Campos Basin, failure causes leading to a well intervention in a period of 

twelve years were mapped, identifying three most important groups of causes: 

flow, mechanical failure and reservoir. In this study, a total of sixteen failures 

were possible to identify (Frota, 2003).  

- In mature fields of Campos Basin some causes of production loss were 

identified, such as: hydrates, organic deposition (asphaltenes and wax), sand 

production, fines migration and scales (Rodriguez et al., 2007). 

- In the North Sea and in the Gulf of Mexico, well barrier components that 

failed and led to a leakage, causing production loss and well intervention were 

identified (Vignes, 2011; King and King, 2013). 

As described, this authors identified no more than twenty one causes, therefore the 

result of the literature research demonstrate that the search was carried out in an exhaustive, 

focused and accurate way, in order to identify the main causes of production loss.     

In the analysis featured by Frota (2003), it is possible to identify that a real basis 

data was used. Also, the author was the first one that analyzed the system of occurrences, 

grouping the causes according to the correlation among them. 
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Table 3. 1 - Group of causes of failure. 
Source: Frota (2003). 

Flow problems Mechanical failure Reservoir problems 

 Hydrates  
 Wax in flow lines 

 

 ANM 
 DHSV 
 Flow lines 
 Casing 
 Tubing 

 Reservoir 
 Stimulation 
 Gravel Pack 

 

Table 3.1 shows one of the most important conclusions from Frota (2003): group 

the causes of failure in three relevant categories. In addition, there is a less important group 

which is not considered because it is not related to production phase, e. g, relocation.   

 

Figure 3. 1 - Causes of failure.  
Source: Frota (2003). 

Figure 3.1 shows the percentage of well intervention for each group, the total of 

well intervention was seventy nine.  

Three types of causes of production loss were identified based on the 

characteristics of each cause and considering the groups created by Frota (2003): flow 

assurance, potential integrity failure and reservoir problems. The definition of each type of 

cause is given below.   

- Flow assurance: an unintentional oil flow reduction due to an increase of 

pressure load in the well& flow line system. 

- Potential integrity failure: a leak threat of the well &line system. 

- Reservoir problems: a production reduction due to damages near wellbore. 

 

Flow problems
Mechanical failures
Reservoir problems
Others

12.6%

27.7%

35.4%

24.1%
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Table 3. 2 - Types and causes of production loss. 

Loss of Flow Assurance Integrity Failure Reservoir Problems 

 Hydrates 
 Wax 
 Asphaltenes 
 Barium sulfate  
 Strontium sulfate  
 Calcium sulfate 
 Calcium carbonate 
 Calcium Naphthenate 
 Naturally Occurring 

Radioactive Materials 
(NORM) 

 Wellhead 
 Production casing 
 Christmas tree  
 Production tubing 
 Subsurface safety valve  
 Gas lift valve  
 Cement 
 Packer 

 

 Excessive water 
production 

 Excessive gas production 
 Sand production 
 Fines migration 

Table 3.2 shows the types of production loss and the causes of production loss 

found in this work; it was possible to insert all of the causes in these three types according to 

the definitions of each type of production loss.  

Table 3.2 can be considered as a base of the main causes of production loss for the 

most representative maritime regions. Other causes that lead to an intervention may probably 

exist but they are not presented in the selected maritime regions or it is not reported. For 

example, emulsions could be considered as a flow assurance problem, but this problem has 

not been reported in any maritime region selected.  

As seen in Fig. 3.1, these causes represented 87% of the well interventions in 

Campos Basin. It is important to remark: the data set found were two hundred fifty-four 

reports about causes of production loss for the four offshore petroleum regions, being 61 % 

for flow assurance, 26 % percent for potential integrity failures and 13% for reservoir 

problems. 

a) Flow Assurance  

Flow assurance ensures that oil flow can be moved from the reservoir to 

separation treatments without any restriction or blocking. These restrictions are mainly due to 

solids deposition over the production system.  

An early identification of the possible solids deposition plays a key role during oil 

production to prevent and plan future well interventions (Joshi et al., 2003).   

The main factors for solids deposition are the formation fluid composition 

(hydrocarbon or water), pressure and temperature (Ellison et al., 2000; Rodriguez et al., 2007; 

Cochran, 2003). The areas of solids deposition can be: 
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Experimental methods are more indicated to study and solve the issues in the oil 

industry but they are expensive. As a result, simplified models have been proposed over the 

years. These models can be classified in four major methods, such as: vapor-solid equilibrium 

method also known as k-value, modified k-value method, gas gravity method and empirical 

correlations method (Nasab et al., 2011).  𝑇 = −238.24469 + 78.99667 log(𝑝) − 5.352544[log(𝑝)]2 + 349.47387𝛾+ 150.85467𝛾2 − 27.6040651 log(𝑝) 𝛾                                      (1) 

According to Safamirzaei (2015) and other authors the equation proposed by 

Motiee (1991) is the most used in oil industry because can determine the conditions to hydrate 

formation at different compositions of natural gas (Eq.1); therefore this equation was selected 

for the present study.   

Table 3. 3 - Gas composition data for each offshore petroleum region. 

Component 

Campos Basin 

(Teixeira et al., 
1998) 

Gulf of Mexico 

(Szymczak et al., 
2005) 

North Sea 

(Argo et al., 
1997) 

West Africa 

(Brezger et al., 
2010) 

Mole fraction (%) 

Methane 76.30 88.54 95.31 88.75 

Ethane 11.30 1.17 2.96 5.93 

Propane 6.90 0.67 0.53 1.28 

I-butane 1.00 0.24 0.10 0.26 

N-butane 2.00 0.29 0.10 0.26 

I-Pentane 1.00 0.20 0.00 0.09 

N-pentane 0.00 0.17 0.00 0.06 

N-hexane 0.30 0.31 0.00 0.06 

N-heptane 0.30 7.51 0.00 0.10 

Nitrogen 0.70 0.26 0.00 0.66 

CO2 0.20 0.62 1.00 2.55 

  = 0.76  = 0.81  = 0.5981  = 0.64 

As previously discussed, the formation of hydrate depends mainly on the gas 

composition. Table 3.3 presents the gas composition for each offshore petroleum region 

considered in the present work.  
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Figure 3. 4 - Hydrate curves for each offshore petroleum region and hydrate deposition case 
studies. 

Figure 3.4 shows the hydrate curve calculated by Eq. (1), and the hydrate and non 

hydrate-zone based on gas composition of each offshore petroleum region presented in Tab. 

3.3. Three case studies are also presented in the Figure and are described below. 

Table 3. 4 - Case studies with hydrate deposition. 

Offshore petroleum 
region 

Field Place 

Oil flow conditions 

References Temperature 
(°F) 

Pressure 
(psi) 

Campos Basin Albacora Manifold 41.0 1,219.0 
Teixeira et al., 

1998 

Gulf of Mexico Genesis Pipeline 46 2,600.0 
Kashou et al., 

2004 

Table 3.4 presents some case studies, in which the hydrate curve was not 

predicted during the well design and hydrate deposition occurring during oil production. If it 

had been identified that the oil flow conditions were in the hydrate-zone, as shown in Fig. 3.4, 

the deposition probably would not happen. 
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Table 3. 5 - Case study without hydrate deposition. 

Offshore 
Petroleum 

Region 
Field Location 

Oil flow conditions 

Reference 
Temperature 

(°F) 
Pressure 

(psi) 

West Africa Azurite 
Subsurface Safety 

Valve 
71.6 4,625.0 

Brezger et al., 
2010 

Table 3.5 presents a case study for a well in West Africa; in this case the oil flow 

conditions were plotted on the hydrate curve during well design, and the result was a hydrate 

prone system (as shown in Fig. 3.4). In order to avoid the hydrate deposition, prevention and 

remediation treatments were applied.    

These three cases demonstrate that the prediction of hydrates during well design is 

vital to avoid the disruption of oil production that causes significant economic impact.   

In Campos Basin, from 1991 until 2006 the hydrate represented 27. 2% of well 

intervention and up to this day it is a challenge for oil industry. Occasionally, even though the 

ideal condition for hydrate formation is present, its deposition does not occur. This behavior is 

related to natural surfactants contained in hydrocarbons, acting as anti-agglomerate agents, 

keeping the formation of crystals dispersed of the oil phase (Camargo et al., 2004, Palermo, 

2004 

To let deeper the hydrates study the pressure was converted to depth in order to 

know approximately at which water depth the hydrates became a problem for each offshore 

petroleum region.  

The hydrostatic pressure equation was used (Eq. 2) proposed by Bourgoyne et al. 

(1986) in order to make the conversion of pressure to depth, with an average seawater density 

of 8.55 ppg . 

The sea water temperature was calculated with Eq. (3) proposed by Cardoso and 

Hamza (2014). The seabed temperature became constant from 2788 ft (850 m), reaching a 

minimum temperature of 39 °F ( 4°C) approximately.    

 

𝑧 = 𝑝0.052𝜌 (2) 

𝑇𝑆𝑊 = 8 × 10−9𝑧3 + 3 × 10−6𝑧2 − 3.01 × 10−2𝑧 + 22.505 (3) 
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Figure 3. 5 - Depth of beginning hydrate 

Figure 3.5 shows the hydrate curve for each offshore petroleum region and the sea 

water temperature as a function of depth. Note that for Campos Basin and Gulf of Mexico the 

approximate depth of hydrates deposition is 1640 ft (500 m), for West Africa 1870 ft    

(570 m) and finally for North Sea 1968 ft (600 m). 

In North Sea the water depth ranges between 70 – 400 m, and the possible hydrate 

deposition occurs from 600 m, then it is unlikely to occur and hydrate deposition. It was 

proven with the literature survey because in the North Sea the documents quantity to the 

hydrates deposition is reduced (see Fig 3.2).    

 Wax 

Wax contains paraffin of high molecular weight, with number of carbon 

molecules ranging from C15 to C75+. The amount of wax generally decreases with 

decreasing API gravity (Alwazzan et al., 2008; Petrowiki, 2015a).  

Wax has a crystalline appearance and tends to crystallize or precipitate from the 

crude oil at and below their wax appearance temperature (WAT) or wax precipitation 

temperature (WPT). It is known as the cloud point which is defined as the highest temperature 

in which the first solid wax crystal is formed at a given pressure (Hammami and Raines, 

1999).  

0

1000

2000

3000

4000

5000

6000

7000

0

2000

4000

6000

8000

10000

30 50 70 90

W
a

te
r 

d
ep

th
 (

ft
)

P
re

ss
u

re
 (

p
si

)
Temperature ( F)

Campos Basin Gulf of Mexico
North Sea West Africa
Sea water temperature 

≈39 F



35 
 

  

The wax deposition on a subsea production system also represents a great concern 

in the oil industry. Wax depends on the hydrocarbon composition (paraffinic content), and 

variations of temperature and pressure. The main characteristic in order to identify deposition 

of the solid is the WAT (Hammami and Raines, 1999). A common prevention treatment to 

avoid wax deposition is to maintain the temperature of the production system 3°C above 

WAT (Rodriguez et al., 2007). 

The WAT is a laboratory measure. There are several techniques to determine it 

such as: Differential Scanning Calorimetry (DSC), Cross Polarization Microscopy (CPM), 

filter plugging (FP) and others (Oschmann and Paso, 2013). The occurrence of wax deposition 

is undesirable when the hydrocarbon is flowing. However, when the oil flow stops flowing 

wax particles will interact and join together, forming a gel structure or a solid (Pedersen and 

Christense, 2007).  

The wax zone and non-wax zone can be identified through the WAT. If the oil 

contains paraffinic components and the operating temperature achieves the WAT, light 

components start the evaporation then the heavy components transform in wax crystals. 

Therefore, if the operational temperature is below the WAT, wax deposition can occur.   

 

Figure 3. 6 -Wax zone and Non wax-zone for a field in Gulf of Mexico and Equatorial 
Guinea. 

Figure 3.6 shows the WAT as a function of pressure for a field in Equatorial 

Guinea (Oschmann and Paso, 2013) and the Gulf of Mexico (Ratulowski et al., 2004).  
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Table 3. 6 - Case study for wax deposition. 

Offshore 
petroleum 

region 
Field Place 

WAT 
(°F) 

Temperature 
(°F) 

Reference 

North Sea Gannet Flowlines 96 39 
Craddock et al., 

2007 

The wax deposition was reported in the four offshore petroleum regions (see Fig. 

3.1). Table 3.6 shows a case study in which wax deposition was a concern due to lack of 

prediction of problems related to wax.  

In this field, wax deposition was first identified in 1999. After that for a future 

design, wax prevention and remediation treatments were included. The production can avoid 

the wax deposition if the project makes an early analysis of wax problems.  

 Asphaltenes 

Asphaltenes are organic materials, which consist of condensed aromatic and 

naphthenic rings with high molecular weight, containing nitrogen, sulfur and oxygen 

molecules. They are insoluble at room temperature in n-pentane and n-heptane, and soluble in 

benzene and toluene. Asphaltene may precipitate due to destabilization of maltene resins (acid 

contact), outgassing, shear in pumps, electrically charged metal surfaces, temperature 

reduction, and CO2 (Pedersen and Christense, 2007) 

Such as the hydrate and the paraffin, the main parameter for deposition of the 

asphaltene is the hydrocarbon composition. If the fraction of n-heptane is higher than 2 mg/l, 

the hydrocarbon is considered stable despite of variation of pressure and temperature 

(Akbarzadeh et al., 2007). Otherwise, the deposition is possible, and the pressure will be the 

main parameter that will promote the deposition. 

The hydrocarbon is a mixture of liquid and gas until it reaches the ideal condition 

of pressure and temperature to cause precipitation of the asphaltene. The limit condition curve 

is denominated as “the lower asphaltene onset pressure (AOP)”. Bellow of this curve, liquid, 

vapor and asphaltene are simultaneously present. When the hydrocarbon reaches the bubble 

point, only liquid and asphaltenes will be present, until the new boundary limit named as “the 

upper asphaltene onset pressure (AOP)” is attained.  

The envelope composed by lower AOP and upper AOP is known as “asphaltene-

zone”, and the asphaltene deposition can occur only in the region established by this 

envelope.  
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Measurements in the laboratory are necessary to determine the AOP, and 

techniques such as gravimetric, acoustic-resonance among others are applied (Pedersen and 

Christense, 2007; Akbarzadeh et al., 2007).     

 

Figure 3. 7 - Boundaries for asphaltene appearance and asphaltene zones.  
Source: adapted from Ratulowski et al. (2004). 

Figure 3.7 shows a typical asphaltene envelope for an oil well in the Gulf of 

Mexico, the limit conditions (upper AOP and lower AOP) and the asphaltene-zone and non 

asphaltene-zone. 

Table 3. 7 - Case studies for asphaltene deposition. 

Offshore Petroleum 
Region 

Field Location 
Asphaltene; Upper 
AOP-Bubble Point 

(psi) 

Operational 
Pressure (psi) 

Gulf of Mexico 
(Akbarzadeh et al., 2007) 

- Flowline 
Non stable;  
7500 – 2900 

3000 

North Sea 
(Takhar et al., 1995) 

Clyde Wellbore 
Non stable;  
2575 – 205 

2400 – 1800 

Table 3.7 shows case studies related to asphaltene deposition reported in the North 

Sea and Gulf of Mexico. In both cases, the n-heptane is lower than 2 mg/l, therefore, this 

hydrocarbon is considered as non-stable, and has the possibility of asphaltene deposition in 

the production system. Note that the operational pressure was inside the asphaltene zone, and 

the result was an asphaltene deposition.   
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If the hydrocarbon composition and the asphaltene deposition zone could be 

predicted in the initial phase, prevention and mitigation treatments could be applied during the 

well design.      

 Scales 

Scale is a mineral salt deposit which can occur along the petroleum production 

flow. The scale mechanism can be a self-scaling process or from the mixture of incompatible 

waters. The self-scaling process is the precipitation of salts of the formation water due to 

variations of the pressure and the temperature. And the incompatibility of water generally 

happens due to the mixture of the seawater (injected water) and the formation water, that’s 

mean in secondary recover (Kan and Tomson, 2010). 

The scale is formed when the concentration of a given salt exceeds the saturation 

limit, and precipitation of the salt happens. The limit for this condition can be obtained by the 

saturation index that is an indicator or a measure of the scale tendency.  

The saturation index is represented by 𝐼𝑆. If 𝐼𝑆 > 0, the solution presents potential 

for scaling. When 𝐼𝑆 = 0, the solution is in the equilibrium. And, if 𝐼𝑆 < 0, the scale 

deposition is not possible (Oddo and Tomson, 1982). 

Table 3. 8 - Types of scales, primary variables for its occurrence and scale mechanism. 

Chemical 
name 

Reaction 
Primary 
Variables 

Scale 
Mechanism 

Calcium 
carbonate 
(Calcite)  

𝐶𝑎(𝐻𝐶𝑂3)2 = 𝐶𝑎𝐶𝑂3 + 𝐶𝑂2 + 𝐻2𝑂 

 Pressure 
 Temperature 
 Total dissolved 

salts 
 pH 

 Self-scaling 
process 

 Incompatibly 
of waters 

Calcium 
sulfate 

CaSO42H2O → CaSO4 1 2⁄ H2O  Incompatibly 
of waters 

Barium 
sulfate 
(barite) 

𝑆𝑂4−2 + 𝐵𝑎+2 → 𝐵𝑎𝑆𝑂4 
  Incompatibly 

of waters 

Strontium 
sulfate 

(celestite) 
𝑆𝑂4−2 + 𝑆𝑟+2 → 𝑆𝑟𝑆𝑂4 

 Incompatibly 
of waters 

Naturally 
Occurring 

Radioactive 
Materials  
(NORM) 

𝐵𝑎2+ + 𝑅𝑎2+ + 𝑆𝑂42− → 𝐵𝑎(𝑅𝑎)𝑆𝑂4 

 Ion Lixiviation 
of radium 

 Total dissolved 
salts 

 Incompatibly 
of waters 
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Table 3.8 summarizes the types of scales in the offshore petroleum regions; in 

presented table are shown chemical formula, primary variables, and causes (Moghadasi et al., 

2003; Chilingar et al, 2008). Note that the main scale mechanism is incompatibility of waters. 

These scales can be classified into: “pH-independent” and “pH sensitive”. The 

sulfates (calcium sulfate, barite and celestite) are not function of pH and carbonates is 

influenced by pH.  

Various correlations have been proposed such as Stiff and Davis (1952) among 

others. These equations are based on the total dissolved solids (TDS), and the main limitation 

of this index is that it does not consider the pressure changes. New methods have emerged 

using CO2 partial pressure. In the present work, equations proposed by Oddo (1982, 1994) are 

considered. These equations (Eqs. 4 to 7) are functions of only the formation water and 

seawater composition data. 

𝐼𝑆 = log 𝐶𝐶𝑎𝐴𝑙𝑘2𝑝𝑋𝐶𝑂2 + 5,89 + 1,549 × 10−2𝑇 − 4,26 × 10−6𝑇2 − 7,44 × 10−5𝑝
− 2,52𝐼12 + 0,919𝐼                                                                                  (4) 

Equation (4) is to calculate the saturation index for calcium carbonate. This 

equation was obtained of derivation using conditional equilibrium constants, and depends of 

temperature, pressure, water composition and ionic strength. This is more accurate if calcium 

carbonate did not form before in any part of the production system. Because this equation do 

not used activity coefficients can be used day by day in the oilfields.    𝐼𝑆  = log{[𝐶𝑎2+][𝑆𝑂42−]} + 3.47 + 1.8 × 10−3𝑇 + 2.5 × 10−6𝑇2 − 5.9 × 10−5𝑝− 1.13𝐼12 + 0.37𝐼 − 2.0 × 10−3𝐼12𝑇 
(5) 

𝐼𝑆  = log{[𝐵𝑎2+][𝑆𝑂42−]} + 10,03 − 4,8 × 10−3𝑇 + 11,4 × 10−6𝑇2 − 4,8 × 10−5𝑝− 2,62𝐼1/2 + 0,89𝐼 − 2 × 10−3𝐼1/2𝑇 (6) 

𝐼𝑆  = log{[𝑆𝑟2+][𝑆𝑂42−]} + 6,11 + 2 × 10−3𝑇 + 6,4 × 10−6𝑇2 − 4,6 × 10−5𝑝− 1,89𝐼1/2 + 0,67𝐼 − 1,9 × 10−3𝐼1/2𝑇 (7) 

The equation (5) is for calcium sulfate, Eq. (6) for barium sulfate and Eq. (7) for 

strontium sulfate. The equation for calcium sulfate may not be accurate because this scale 

presents three phases.   
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In general, the formation water founded around the world presents high levels of 

226Ra and 228Ra. The most common NORM is found in barite scales, because NORM unlike 

other kind of scales does not precipitate directly with sulfate. They usually co-precipitate with 

barium or strontium (Godoy et al., 1999. Tomson et al., 2003).  

In the literature researched, a correlation for saturation index of NORM was not 

identified; but if the barium sulfate is prevented and properly monitored and controlled, the 

NORM problems should not occur (Tomson et al., 2003). 

NORM problems have been occurring in the North Sea, Gulf of Mexico, and 

Campos Basin, respectively, as we can see in Fig. 3.2. The big challenge of those offshore 

regions is the disposal of radioactive materials that can be harmful to humans and the 

environment. Activities in offshore regions have continuously developed strategies for the 

management of NORM (Gäfvert et al., 2006; Matta et al., 2002). 

 Naphthenates 

Naphthenate is a salt formed due to reaction between ARN acids (tetra acids with 

molecular weight above 1200 Dalton) as well as naphthenic acid present in crude oil and 

alkalis as calcium or sodium presented in produced waters. There are two forms of 

naphthenates salts: calcium and sodium naphthenates (Oduola et al., 2013). In the present 

work, reports about calcium naphthenates were found.  

The naphthenates formation depends on the pH of the water, which determines the 

degree of dissociation of the naphthenates acids. Some features help the naphthenates 

formation: increase of water pH, the production of high CO2 in connate water, water cuts 

between 5-50%, significant pressure drop and added heat as the separation process. 

In the last years, the crude oil of West Africa has been identified as an acid crude 

oil, increasing the possibility of production loss due to deposition of naphthenates. As an 

example, in Gimboa Field the calcium naphthenate was deposited in the separators, bulk oil 

treaters and hydrocyclones, resulting in a production loss (Junior et al., 2013). 

b) Integrity Failures 

In the last years, the well integrity has been a big problem in offshore oil wells, 

because it can affect the oil production, safety, environment, reputation of oil industry and 

asset value. These situations warned the oil industry to increase the focus in the problem 

(Corneliussen, 2006; Bourgoyne et al., 1999). 
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The well barrier components are different in each stage of the well. Figure 3.9 (a) 

shows the well barrier components for a production well based on ISO/TS 16530-2. This well 

barrier components form two envelopes based on this norm: primary and secondary. The 

envelope is known as primary or secondary barrier integral set (BIS). 

Figure 3.9 (b) shows the primary BIS represented in blue and secondary BIS 

represented in red. Primary BIS is the first well barrier envelope and the secondary BIS is the 

second well barrier both to prevent flow from a potential source of inflow. The secondary BIS 

operates when primary BIS failure.  

In the last years significant well incidents have been reported in Campos Basin, 

Gulf of Mexico, North Sea and West Africa. The well integrity became a big problem in 

offshore oil wells, representing a higher production loss, resulting in well intervention. 

Besides that, sometimes involve loss of lives and environmental damage resulting in huge 

economic impacts 

Based on the literature research, well barrier components that can fail were 

identified for each maritime region as described below: 

- Campos Basin 

In the data collection performed by Frota (2003) the well barrier components 

identified were: flow lines, Christmas tree (X-mas tree), subsurface safety valve, tubing, and 

casing, being flow lines the component with more failure. 

Table 3. 10 - Failure in well barrier component for Campos Basin. 
Source: Frota (2003). 

Well components % of failure 

Flow lines 11.39  

Christmas tree 10.13 

Subsurface safety valve 7.57 

Production tubing 2.53 

Production casing 1.27 

Table 3.10 shows the well barrier components with failure for Campos Basin. The 

main failure of the flowlines is solids deposition, but solids deposition is the main cause of 

production loss due to flow assurance therefore potential integrity failures and flow assurance 

production losses are related between then. If flow assurance problems are solved first 

probably potential integrity failures will not occur.  
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- The Gulf of Mexico 

In the Gulf of Mexico, two studies about well integrity failures were reported in 

2004 (Howard, 2004) and 2011 (Saeby, 2011). An average of 13213 wells and a percentage of 

failure of approximately 58 % was reported. The reliability of this well for one year was 

approximately of 56%. In both cases the main cause of integrity failure was the connection 

tubing.  

- The North Sea 

The North Sea reported four large studies about integrity failures: 2006 (Vignes et 

al., 2006), two in 2011 (Vignes, 2011; Feather, 2011) and finally in 2013 (King and King 

2013).  

An average of 1955 wells was reported in these four studies with a percentage of 

failure of approximately 20%. Considering a period of ten years of oil production these wells 

have approximately 10% of reliability to avoid failures. The low reliability is due to problems 

in connections (production tubing and casing), cement, and annular safety valve.  

 

Figure 3. 10 - Number and percentage of wells with fails in well integrity. 
Source: Vignes (2011). 

 

Figure 3.10 shows the percentage of wells that had failures in the well barrier 

components. This study was carried out in the North Sea for offshore oil wells; all of these 

wells resulted in well interventions (Vignes, 2011).  
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- West Africa 

West Africa reported problems such as: subsurface safety valve (SSSV) failures 

and minor leaks on X-mas tree and well components. However, it was identified in just one 

field because in the West Africa we cannot find many studies and reports about this topic 

(Ebitu et al, 2011). 

Table 3. 11 - Well barrier components that can fail. 

Primary Barrier Integral Set Secondary Barrier Integral Set 

Production casing 
Production packer 

Gas lift valve 
Production tubing 

Subsurface safety valve 

Production casing 
Cement 

Wellhead  
Christmas tree 

 

Table 3.11 shows the well barrier components that can fail for the primary and the 

secondary BIS. According to Fig. 3.9 (a) not all of the components presented in the four 

maritime regions are part of the barrier integral set (BIS) of a production well.  

Based on Fig. 3.10 and Tab. 3.10 the component with more percentage of failure 

is production tubing. Also is demonstrating that tubing fail since the first year of oil 

production until 29 years after the production. Therefore primary BIS fail more than 

secondary BIS. 

Formation is also part of BIS, but Da Fonseca (2012) made a statement saying 

that formation not fails during well production. So it was not considered as a failure 

component. 

However, the formation was considered in the analysis for the last phase of the 

well’s life cycle: the well abandonment. The well abandonment can be temporary or 

permanent. In both cases, a well barrier component for primary and secondary BIS is the 

formation (NORSOK D-010, 2013).  

In order to obtain a well abandonment that can be performed by a light workover, 

the formation should be cemented since the initial phase. If this step is not performed, during 

the well abandonment will be necessary to pull the tubing string to perform the formation 

cementation resulting in a heavy workover.   

Once identified the main well barrier components that can fail during the well 

production, is necessary identified the main type of failure that lead to the well intervention as 

follow each well barrier component will be described:  
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 Subsurface Safety Valve 

Also known as Downhole Safety Valve (DHSV), is defined by API 14A as a 

device that prevent uncontrolled well flow when is closed (API 14A, 2005). 

In fixed platforms the SSSV is installed 30 meters below mud line, and in a 

subsea well is located 10 meters below mud line (De Paula and De Lima Garcia, 2002). 

There are two main types of SSSV: Wireline Retrievable (WR-valve) and Tubing 

Retrievable (TR-valve). WR-valve is installed and retrieved by wireline operation. This valve 

reduces the ID (tubing), being difficult perform a through tubing operation. TR-valve is an 

integral part of the tubing string, unlike to WR-valve, this type of valve not is retrieved to 

perform a through tubing operation, but to replace a valve the tubing has to be pulled. For 

both valves, two different closing principles are used: ball and flapper, and can be equalizing 

or non-equalizing.  

 

Figure 3. 11 - Left: TR-valve and right: WR-valve.  
Source: Miura (1998). 

 

Figure 3.11 shows the TR – Flapper valve and the WR valve (flapper or ball). In 

accordance with Rausan and Vatn (1998) and Seime (2012) the failure modes to SSSV or 

DHSV are: 

- Fail to close on command (FTC) this failure is caused by corrosion/erosion, 

improper valve operation and plugged control that result in a damage in the 

pistons and/or flapper/ball. This failure can be detected during testing or when 

is necessary close the valve.       
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- Leakage through valve in closed position (LCP) is an uncontrolled leakage 

across the valve greater than API RP 14 B, this can be due to damage in 

flapper/ball or scratches in the seat sealing area that may result of wireline 

operations. This failure can be detected during testing or by a pressure drop in 

control line.      

- Fail to open on command (FTO) occurs when have a leakage in control line 

system or sever mechanical damage in the valve that result in the non open 

position, usually is detected immediately. 

- Premature closure of the valve (PC) results due to an unintentional relieve of 

hydraulic pressure that can lead to a ruptured control line or a leaking seal, 

usually is detected immediately.   

- Leakage in control line (LCL) usually is due to packing failures that result in a 

backflow of oil/gas in the control line leading to a leakage.     

- Fail to hold in nipple (FTH) is only for WR-valve, results of an improperly set 

valves or locking mechanism. It is detected during testing or abrupt control line 

pressure drop.     

- Fail to set in nipple (FSN) only for WR-valve.              

Once the failure modes of subsurface safety valve are known, we must identify 

the main failure that result in a production loss.  

 

Figure 3. 12 - TR-valve failure modes  

Figure 3.12 shows the failure modes of TR-valve. A study by SINTEF in 1988 for 

26 wells during a period of four years for North Sea identified four types of failures modes: 
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FTC, LCP, PC and FTO, of which FTC, LCP and PC are considered as critical failures, being 

the main failure mode fail to close (FTC) (Lindqvist et al., 1998; Rausand and Vatn, 1998).  

In 1993 another study confirmed this affirmation. The control lines maintains the 

valve in an open position. The control lines are vulnerable to crushing and clogging (solid 

contamination, bacteria growth and internal corrosion) resulting in FTC. 

Some possible treatments are: reduce contamination, package and DHSV with 

double control line (control line with redundancy).  

A treatment proposed by PETROBRAS was control the DHSV by annular 

pressure that is without control line (Moreira, 1993).  

Another study by SINTEF in 2009 stated that the main failure modes were: FTC, 

LCP and WCL, being the main failure the leak in close position (LCP) (Seime, 2012).  

Again in 2012 was confirmed that LCP was the main failure in DHSV. This study 

was performed in North Sea involving 2600 TR-valves flapper-type.  

For LCP we can install a redundancy in valve (TR-valves in series) is the same 

method adopted in North Sea wells. This solution saves money because only a heavy 

workover will be necessary if both valves fail (Corneliussen, 2006).  

 

Figure 3. 13 - WR-valve failure modes 

Figure 3.13 shows the study performed for the two types of WR-valve: WR/ball 

and WR/flapper by SINTEF.  In opposite to the TR-valve, the WR-valve presents more 

quantity of failure modes. Note that the ball valve has more percentage of failure than the 

flapper valve. Then the use of WR-valve and ball valve type are not recommended.   
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Studies to verify the necessity of install a DHSV in a subsea well were performed. 

In the same report was identified may be the DHSV can be substitute by the x-mas tree. As 

proved to remove the DHSV can bring consequences such as: economic consequences and 

blowout risk can be the result (Vesterkjaer, 2002). 

 Production Packer 

The production packer is a sealing device, and a standard component of a 

completion string in a well. It forms a seal between tubing and annulus during production. It 

is run with wireline or production tubing, is usually placed close to the bottom end of the 

production tubing and above the top of the perforations in a well.  

The packer is part of the primary BIS, protecting the well of undesirable produced 

fluids; therefore it is extremely important that the production packer is set up properly in the 

casing/liner (Torbergsen et al., 2012).   

Packers can be retrievable or permanent. A permanent packer can be removed 

from the wellbore only by milling. The performance of a permanent packer is better than a 

retrievable packer. Retrievable packer may or may not be resettable, but removal from the 

wellbore normally does not require milling.  

The International Organization for Standardization (ISO) and the American 

Petroleum Institute (API) have created a standard for packers. There are three levels, and six 

grades (plus one special grade) for design verification. The levels are Q3 to Q1; with grade Q1 

outlining the highest level of inspection and manufacturing verification procedures and Q3 

carry the minimum requirements. The grades can vary from V6 to V1, being V0 the special 

grade: 

- V6: Supplier/manufacturer-defined 

- V5: Liquid test  

- V4: Liquid test + axial loads 

- V3: Liquid test + axial loads + temperature cycling 

- V2: Gas test + axial loads  

- V1: Gas test + axial loads + temperature cycling 

- V0: Gas test + axial loads + temperature cycling + special acceptance criteria 

(V1 + zero bubble acceptance criteria) 
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The use of packers V3 - V6 results in challenges to the industry because they are 

not qualified for being gas-tight. If the well has a gas lift system or will be exposed to a gas 

medium the use of V2 - V0 is recommended being V0 the most reliable (Blaauw, 2012). 

 Production Tubing and Casing 

The production tubing is the normal flow conduit used to produce reservoir fluid; 

this is made up of typical approximately 12 m long tube connected by joints and is assembled 

with other completions components to make up the producing string.  

The production tubing selected for any completion should be compatible with the 

wellbore geometry, reservoir production characteristics and the reservoir fluids also must be 

adequately strong to resist loads and deformations associated with production and workovers  

The production casing is used to isolate production zones and in the same place 

the primary completion components are installed (Schlumberger, 2015). 

The connections are a critical point to production tubing and casing, because can 

be a possible potential leak point. If a connection is leaking, it could compromise the tubing 

string and losing the well integrity, to follow a brief explanation of the two major types of 

connection used in an oil well: 

- API connections, are designed with tolerances specified by API norms (Spec. 

5B, 5C e 5C3), this result in a problem, because the connections have a 

certain limit of operation. In case of leak, they need a certain compound to 

seal the leak path, but this compound deteriorates over time, making the 

connection more likely to leak (Blaauw, 2012)  

- Proprietary connections, also called premium or special connections, are 

designed and manufactured by commercial manufactures with capability of 

handling greater depths with higher pressures (> 4930 psi) and temperatures 

(> 250 °F), sour environment, gas production, steam well and a large dogleg 

(horizontal well). The price is five times the cost of API connections. These 

connections are used to achieve the gas-tight sealing reliability and 100% 

connection efficiency (Petrowiki, 2015b; Blaauw, 2012).   

In 1980 and 1990 Mobil E&P Technical Center (MEPTEC) was performed a 

research of the tubing leak; they discovered that the main cause of fail was due to 

connections.  
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In 2001 the main cause of failure were still the connections (90%); 55% fail in 

API connection (API 8 round) and 45% in non-qualified Premium connection. 

In 2013 the premium connection due to be modern connection, had a good 

procedure attachment. The metal-metal seal managed eliminate the leak problem in 

connections.  

Table 3. 12 - Case studies for connections.  
Source: King and King (2013). 

Date; Well 
completion 

number 

Connection 
number 

Connection type 
Leak percentage for 
well completion (%) 

1961-1964; 1,000 300,000 API 8-round 56.7 

1961-1964; 822 253,000 
Connection early 

premium 
Average 40.0 

1990-1998; > 180 >19,500 Premium  0.0 

Table 3.12 shows this improvement, concluding Premium or Proprietary 

connection managed zero leakage (King and King, 2013). 

The Premium connections are mainly recommended for wells with possibility of 

gas production or that has a gas lift system, if the well does not have a gas lift system API 8-

round are recommended.  

 Gas Lift Valve 

The gas lift valve is used in the oil well to allow the injection of gas as a 

secondary method of recovery. The most used valves are the named King valve that allows 

the gas pass through to the tubing, and prevents the oil pass to the annulus. The most common 

valve of this type is the wireline retrievable valve that is inserted in the completion string in a 

side-pocket mandrel. 

The main failure mode is the description when the flow goes to annulus due to 

non-lock check valve it means FTC, this could be (Gilbertson, 2010; Holand, 2014):  

- Detritus blockage the main valve or check valve. 

- Incorrect injection pressure 

- Fole down pressure and the valve remain open. 

- Corrosion of valve haste (main valve or check valve)  
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Based on a research performed in thirteen wells in the North Sea, gas lift valve 

reported fifty-two failures due to deposition of scales resulting in fail to close.  

The Gulf of Mexico between 1995 and 2010, reports 1,500 case studies in which 

the causes for fire in the platform were due to gas lift valve failure.  

A way to prevent this problem is avoid the formation and deposition of scales, 

detritus and solids in the valve. Both treatments are recommended: improve the gas lift 

performance it means modify the design and increase the reliability of the valve and change 

the valve with slickline operation during the oil production (Holand, 2014).   

 Wellhead 

The wellhead is the termination point of casing and tubing string, it provides a 

suspension point and pressure seals, it can be located in land, platform or in subsea.  

The main point of leakage in the wellhead is the X-mas tree cavity; this is the 

connection between the X-mas tree and the WH. The leak does not affect in the annulus 

pressure, therefore is difficult to detect. Sometimes the potential leakage not is recent 

(mechanical fails in the seal); it may be due to hydraulic residues which cause pressure 

variation. The main leaks can be due to:  

- Design capabilities exceed in operation 

- Dirt and hydraulic residues  

- Inadequate clean 

- Problems related vibration 

- Pressure test in DHSV 

- Wellhead design fail 

- Properties of elastomeric seal (Ohm, 2013) 

In the North Sea the increase in gas leakage frequency in wellhead seals became a 

research topic for several oil industries in Norway (Statoil, Shell and ConocoPillips).  

The main research due to wellhead leakage was for Oseberg East field for three 

wells that presented problems in C1 that can be detected by “sniff test” in a daily routine. This 

problem may be solved avoiding SRL seals and using CAHN seal of Cameron or a double 

tandem seal based on these companies’ recommendation.  
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In another field a little gas leakage in wellhead in the North Sea was reported. 

This could happen due of lack of practice in testing the seal after installation. The leakage in 

wellhead can occur between two or three years after the production with gas lift system 

started or because the seal is not optimized. Some practical recommendations are:  

- before the beginning of production the seal must be tested. If the test is 

negative the well must be prepared for an intervention that can be the use of 

chemical sealants like “Sealtite”; 

- the continuous monitoring of wellhead;  

- installing a pressure alarm to alert when the defined pressure exceed;  

- draining the hydraulic oil during installation or testing;  

- adequate clean of seals;  

- depressurizing the C1 cavity before DHSV test;  

- replace the fluid in WH cavities by nitrogen;  

- not to exceed the design capacities;  

- coiled tubing (CT) operations. 

Although the wellhead reported leakage during production well, this can be 

considered as negligible, because does not exist risk of explosion and/or fire (Ohm, 2013).   

As mentioned above, as in the North Sea as Gulf of Mexico the dry completion is 

presented it means we can use the study for wellhead as example for Gulf of Mexico.  

In Campos Basin and West Africa so far, there are not available reports about this 

type of failure. This can happens because is difficult to observe a leakage in wet completion 

due in higher depth.  

 Christmas tree 

The wet Christmas tree is a submerse equipment that controlled the 

production/injection of flow in the well, the components are gate valves, control lines and a 

control system. The dry x-mas tree has the same purpose of wet X-mas tree. The only 

difference is the location (the dry x-mas tree in platform and the wet x-mas tree in subsea).  
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There are standards to maintain security operations and avoid accidents as: API 

6A, API 17D, ISSO 13628-4 and ISSO 10423:2009. The X-mas tree is composed by seven 

valves (Albernaz, 2005):  

- Production Master Valve (PMV- M1)  

- Annulus Master Valve (AMV – M2) 

- Production Wing Valve (PWV – W1) 

- Annulus Wing Valve (AWV – W2) 

- Crossover valve (XOV) 

- Production Swab Valve (PSV – S1) 

- Annulus Swab Valve (ASV – S2) 

- Annulus isolation valve (AIV)  

 

Figure 3. 16 - Left: Conventional Christmas tree and right subsea Christmas tree  
Source: Miura (2015) 

Figure 3.16 shows the conventional X-mas tree or dry tree and the wet X-mas 
tree. 

In a X-mas tree the main failure is in the gate valves. A study to find the main 

critical failures in the gate valves was performed, and the result was:  

- Fail to close (FTC) 

- Leak in close position (LCP) 

- External leakage (EXL) 
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Figure 3. 17 - Failure modes for gate valves - master and wing.  
Source: Albernaz (2014). 

Figure 3.17 shows the percentage of failures, being the main failure “fail to close 

(FTC)” followed by “leak in close position (LCP)” concluding that 42% of the failures in the 

gate valve were critical failures. 

Table 3. 13 - Relation between failure mode and water depth. 
Source: Alves (2012). 

Failure mode 
Water Depth 

Shallow Deep Ultra-deep 

Fail to close Low Mid High 

Leak in close position Without variation 

External leak High Low Mid 

Table 3.13 shows that the failure mode depends of the well depth: shallow, deep 

and ultra-deep water. Note that in fail to close (FTC) there are increments of the failure rate 

regarding water depth. In leak in close position (LCP) the failure rate is practically unaffected 

by depth variation. The external leak (EXL) is higher in shallow water due to the interaction 

of external hydrostatic pressure, because it is more expected little bubbles in shallow water 

than in ultra-deep water. 

Also the failure in the valve may depend on the operational years. For example, a 

X-mas tree that was installed in 1980 presented external leak and in recent project (2000) the 

fail type was fail to close.  

Concluding that the main failure in deep water and ultra-deep water is “fail to 

close” and for shallow water “external leak” (Alves, 2012; Stendebakken, 2014). 
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In subsea wells as well as in wellhead, the failure in X-mas tree is difficult to 

detect. The possible prevention treatments are: perform a valve test before to start the oil 

production, clean the valve periodically to avoid solid deposition and routine inspections. The 

best option in case of failure during well production is use a ROV (Alves, 2012).  

 Cement 

Since the beginning of oil industry, the cement was used to isolate the formations; 

a primary cementation with faults may lead to gas migration through cement. During the well 

production, the cement is submitted to higher pressures and possible gas migration. If the 

cement is not bond to the formation the result can be a leak or blowout (Etetim, 2013).  

The problems during production well due to inadequate cementation could be: 

- Micro-annuls formation interface casing/cement 

- Bond break cement/formation 

- Fractures through cement 

- Cement corrosion 

- Cement degradation 

The main problem in cementation is a poor or inadequate primary cementation job 

that may be due to bad well cleaning, cement circulation, casing centralization or login test 

(Vignes, 2011).  

In order to perform a good cementation, some factors may be considerate 

(Blaauw, 2012): 

- When a circulation of cement begins, the wells should be cleaned, because 

solids residues may increase the pumping pressure due to friction resulting in 

formation fractures. 

- Adequate use of chemical treatments against a corrosive environment. 

- Perform a cement evaluation.  

Another solution proposed was the use of sealants instead of cement such as: 

Thermaset, Sandaband Settled barite, Ultra Seall, Fly ash, Ground, Silica, Camseal. However 

no material is better than cement (Etetim, 2013). 

Based on Vignes (2011), Blaauw (2012) and King and King (2013) perform a 

good primary cementation is the main solution to avoid cement problems.      
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Figure 3.18 shows the causes of production loss due to reservoir problems and the 

main factors for the occurrence. The main factors for the reservoir problems are the energy 

reservoir source (water and/or gas) and the type of reservoir.  

The energy source age in primary and secondary recover: 

- In primary recover the drive reservoir mechanism are gas cap, solution gas, 

water influx and combined mechanism, for the first two gas is the energy 

source, for the third is water and finally for the fourth water and gas are 

combined.  

- In secondary recover, the methods that inject water or gas, such water 

injection or gas injection may cause problems during production phase.  

For the energy reservoir source (water or gas) the excessive water and gas 

production are the main causes of production loss and for the type of reservoir the main 

causes are fines migration and sand production.   

 Excessive water and gas production 

The excessive water production is considered as the major technical, 

environmental, and economic problem associated with oil production. The water production 

represents the largest waste stream because the environmental impact of handling, treating 

and disposing the produced water affects the profitability of the production well (Aminian, 

2005).  

Coning, fingering, fractures, barrier breakdowns, channels behind casing and 

others are some reasons for the excessive water and gas production being the coning the main 

cause (Baker, 1991; Seright et al., 2003). 

- Water and gas coning 

Coning is the movement of reservoir fluids as water (upward) or gas (down) 

infiltrates the perforation zone in the oil well. The water comes from water drive and gas from 

gas cap or solution gas; and both come together from combined mechanism.  

In order to originate the water or gas coning two forces are necessary: gravity and 

viscous. The first one arises from fluid density differences and the second one from pressure 

gradients associated with fluid flow through the reservoir. Usually, coning is associated with 

high production rates (Ahmed, 2001). 
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Table 3. 15 - Relative permeabilities. 

Sw Sw* Kro Krw 

0.10 0.00 1 0.00 

0.20 0.11 0.70 0.00 

0.30 0.22 0.47 0.01 

0.40 0.33 0.30 0.04 

0.50 0.44 0.17 0.09 

0.60 0.56 0.09 0.17 

0,75 0.72 0.02 0.38 

Table 3.15 present the results after applied the Eq. (10) to (12). The necessary data 

for this calculus were the initial irreducible water saturation (Swi = 0.1) and residual oil 

saturation (Sor = 0.25). The Sor was used to calculate the last irreducible water saturation (Sw 

= 1 – Sor). 

 

Figure 3. 23 - Relative permeability curve 

Figure 3.23 shows the relative permeabilities for water (Krw) and oil (Kro) as 

function of water saturation (Sw). The data presented on Tab. 3.15 are plotted in this figure. 
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 Gas coning 

The correlation presented by Addington (1981) for the critical rate was performed 

based on field data and a sensitivity analysis correlation for various reservoir and fluid 

properties was carried out. Some assumptions of his model were: the well receives little or no 

aquifer support and the reservoir had homogeneous horizontal and vertical permeabilities.  

𝑃 =  𝑞𝑡 (𝑘𝑣𝑘ℎ)0,1 𝜇𝑜𝐹1 𝐹2𝑘ℎ√ℎ𝑝 (13) 

Equation (13) is used to calculate the critical rate for gas coning. As to water 

coning for gas coning exists correlations to calculate the time breakthrough such Papatzacos 

et al. (1991), Benamara and Tiab (2001), among others. The use of these equations depends of 

the assumptions and restrictions.    

 Fines migration 

Fines migration is defined as the movement or the drag of fines particles until 

wellbore. The fine-grained are present in most sandstone and some carbonates with a size 

range of 0.0005 to 0.04 millimeters (0.5 to 40 microns).  

The mobilization of fines reaches the perforations, blocking and restricting the oil 

flow, with severe oil production loss. Fines migration is identified as the most costly sources 

of well damage (Hibbeler et al., 2003). 

 

Figure 3. 26 - Forces acting in a fine particle.  
Source: You et al. (2013). 

Figure 3.26 shows the forces (electrostatic – Fe and gravitational – Fg that attaches 

it to the rock and drag - Fd and lift Fl that detaches the particle from the grain surface) in 

which the particle is subjected at the rock surface    
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In order to predict the damage originated by fines migration and to estimate the 

necessity of a well intervention, a correlation for steady state production was considered 

because time, damage and production rate are taken into account.  

Zeinijahromi et al. (2012) identified the movement of the fines through porous 

media in an established time and based on a production rate, in an artesian well. In the first 

phase he used water and then in the second phase he used oil. 

𝑆 = 𝛽𝑠𝑠𝑐𝑤𝑞𝑡2𝜋𝑟𝑤 {𝑠𝑟𝑤2𝜋 exp(𝑠𝑟𝑤) [𝐸𝑖(𝑠𝑟𝑑) − 𝐸𝑖(𝑠𝑟𝑤)] + 1 − 𝑟𝑤𝑟𝑑 𝑒𝑥𝑝[−𝑠(𝑟𝑑 − 𝑟𝑤)]} (14) 

Equation (14) can be used in order to determine the damage from drainage radius 

until a damage equal to zero and the necessity of a well intervention. As a result, it can 

support the well engineer in predicting and planning the well intervention.  

 

Figure 3. 27 - Granulometry distribution curve for Sw-17. 
Source: Carrillo (2008). 

In order to shown the application of the Eq. (14), the well Sw-17 was considered. 

Based on Fig. 3.27 this well have a fine concentration in a range of 95 – 100 %, representing 

5% in weight.  
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Table 3. 18 - Data for fines migration. 

Data set units 

s 20 
s 0.03 1/ft 
cw 0.05 
q 6290 stb/d 
rw 1 ft 
rd 1.44 ft 
t 3650 d 

Table 3.18 shows the data for the well Sw-17 presented by Carrillo (2008) and the 

coefficients: filtration coefficient for size exclusion fines capture (s) and formation damage 

coefficient for straining (s) presented by Zeinijahromi et al. (2011). 

A variation of 5”since the drainage ratio was considered with the purpose to 

measure the distance where the damage starts to be bigger than zero. The goal is to determine 

the need of the well intervention.  

 

Figure 3. 28 - Damage calculated for fines migration. 

Figure 3.28 shows the damage obtained at different radios. The result shows that 

at this period (10 years) already exists damage that means that the fines probably can cause a 

production loss. Therefore to identify the necessity of a well intervention will be necessary 

other calculus for a different period of time.    
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 Sand Production 

Sand production occurs mainly in unconsolidated sandstone reservoirs with older 

formations (Osisanya, 2010). Usually, it is impossible to stop the sand production after the 

occurrence (Adeyanju and Oyekunle, 2010).  

The consequences of sand production are the risk of well failure, erosion of 

pipelines and surface facilities, sand separation and disposal. The cost of handling and 

disposing sand is expensive, especially in offshore fields (Adeyanju and Oyekunle, 2010). 

The method usually to avoid sand production problems is the use of the sand 

control completions. An appropriate sand control should be made with the purpose to avoid a 

re-entry to repair the sand control due to a fail (King and Wildt, 2003). The sand control 

method depends on site-specific conditions, operating practices and economic considerations 

(Petrowiki, 2015d) 

Two considerations to select sand control are important (Wong et al., 2003):  

(1) The identification of the dominant failure mechanism, such as:  

a) screen erosion 

b) screen corrosion 

c) hot spots after screen plugging by scale 

d) hot spots caused by inadequate gravel packing in the annulus resulting in 

localized flow 

e) screen collapse due to compaction 

f) destabilization of annular pack because of excessive down-hole flowing 

velocity from perforation 

g) screen collapse due to plugging, etc  

(2) The maximum constrains for the failures through the calculus of flow velocity. 

As an example, for cased-hole gravel the required velocities are: the average 

flowing velocity existing in perforation at the casing inside diameter (ID) labeled 

as Vc and the flowing velocity on the screen surface directly across the perforation 

labeled as Vs. These velocities are compared with a conservative maximum 

velocity limit (Vcm) and a maximum screen erosion velocity limit (Vsm), 

respectively. 
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Table 3. 19 - Failures in sand control completion types. 
 Source: King and Wildt (2003). 

Completion Type Infant Failure % of infant failure 

Cased and Perforated 

Within 30 days of start of 
production, sand flow to 
surface (screen aperture) 

0 
Screen Only Completion (SOC) 0.6 

Cased Hole Gravel Pack 0.8 
Open Hole Gravel Pack 0.57 
High Rate Water Packs 0.53 

Frac Pack 0.24 
Screenless Fracs 0 

Expandable Screens 1 

Table 3.19 shows the study performed by King and Wildt (2003) to determine the 

failure percent in completion types (sand control). Based on this study the recommended sand 

controls are the cased and perforated and the screenless fracs.  

The four offshore petroleum regions are characterized by sandstones reservoir. 

The typical sand control used in these regions are: Frac Pack and Gravel Pack operations 

(Marques et al., 2007). 

Table 3. 20 - Case Studies for reservoir problems. 

Year 
Incident 

Offshore 
petroleum 

region 

Reservoir 
problems 

Reference 

1995 Exceed of water production in Cantarell field. North Sea Water coning 
Peng and Yeh, 

1995 

1995 
Amber field has water influx and gas cap 
drive reservoir mechanism, resulting in 
exceed of water and gas production 

Gulf of 
Mexico 

Water and gas 
coning 

Wu et al., 
1995 

1996 
Exceed of gas production, in order to avoid 
the gas advance was used foams. North Sea Gas coning 

Surguchev 
and Hanssen, 

1996 

2006 
A mathematic model to predict the gas/oil 
relation and modifications in production rate 
was suggested. 

North Sea Gas coning 
Mjaavatten et 

al., 2006 

2008 
Production decrease and the surface facilities 
failed due to excess water and gas production. 

Gulf of 
Mexico 

Excess water 
and gas 

production 

Daltaban et 
al., 2008 

2008 
A water breakthrough resulting in a inhibition 
of oil production, a heavy workover was need 
to introduce a swellable packer technology 

Campos 
Basin 

Excess water 
production 

Ueta et al., 
2008 

2009 
Massive sand production after a few months 
of production (expandable sand screen) 

West 
Africa 

Sand 
Production 

Guinot et al., 
2009 

2009-
2012 

Exceed of gas production North Sea Gas coning 
Ziegel et al., 

2014 

Table 3.20 shows some case studies in which a well intervention was necessary 

for the four offshore petroleum regions. 
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The main factors leading to production loss and some cases studies showing the 

severity of the well intervention were described. In the next section prevention and 

remediation treatments will be presented.  

3.2. Prevention and remediation treatments 

As previously explained, prevention treatments are expensive but their application 

during the production phase can help save money, avoiding unnecessary or unplanned well 

interventions.  

The worst of the cases of remediation treatments is to perform a heavy workover. 

The reason is that it results in a great waste of time, money and sometimes modifications in 

the platform in order to allow this operation’s type. 

In this section some prevention treatments that are used nowadays with good 

results are recommended. The recommended remediation treatments are those performed by 

light workovers.  

For each cause of production loss possible prevention and remediation treatments 

were identified. These causes may not be always solved through prevention treatments then 

remediation treatments are necessary.  

There are several treatments to prevent and remediate flow assurance problems. 

Based on Kondapi and Moe (2013) there are four types of technologies:  

(1) The aging technologies were used for several years and were replaced for 

technologies that are cheaper.  

(2) Embryonic technology is relative new and still in the development phase, 

performing experiments and tests. 

(3) Emerging technology is being used in oil industry, but until now need a 

qualification testing process.   

(4) Matured technology is used for a several years and day-by-day the oil industry 

is trying to improve this technology to be environmentally friendly. 

Of these four types of technology the matured technology was selected. This type 

of technology is usually applied in the most of the fields and is available from several 

suppliers in the service market.  
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  Table 3. 21 - Prevention and remediation treatments for flow assurance. 

Cause of 
production loss 

Prevention Remediation References 

Hydrates 

 Thermal insulation 
 Direct electric Heating 

(DEH) 
 Thermodynamic Hydrate 

Inhibitors: 
 Mono Ethylene Glycol 

(MEG) 
 Low Dosage Hydrate 

Inhibitors (LDHI): 
 Kinetic Hydrate 

Inhibitors (KHIs) 
 Anti agglomerates (AAs) 

 Dead oil/hot oil 
flushing 

 Depressurization 

 Kondapi and 
Moe., 2013 

 Cardoso et 
al.,  2003 

Wax 

 Thermal insulation 
 Direct electric Heating 

(DEH) 
 Paraffin inhibitors 

 Mechanical 
removal 

 Pigging 

 Kan and 
Tomson, 
2010 

 Kondapi and 
Moe., 2013 

Asphaltene Asphaltene inhibitors 

 Kondapi and 
Moe, 2013 

 Montesi et 
al., 2011 

Scale Scale inhibitors 

 Kondapi and 
Moe, 2013 

 Refaei and 
Al-Kandari, 
2009 

 Bezerra et al., 
1996 

Calcium 
Naphthenate 

Naphthenates inhibitor Mechanical removal  Goldszal et 
al., 2002 

Table 3.21 shows the matured prevention and remediation treatments for each 

causes of production loss due to flow, besides Kondapi and Moe (2013) another authors are 

cited because in this documents this treatments were used obtaining good results. 

As naphthenates is not a common problem in the offshore petroleum regions, 

Kondapi and Moe (2013) did not present a solution for this problem but as this cause mainly 

occurs in West Africa, the main prevention treatment used to solve this problem is 

Naphthenate inhibitor (Goldszal et al, 2002). 

The application of remediation treatments can be perform by methods as bull 

heading (squeeze) or coiled tubing, that is, light workover operations. The most complicated 
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method and maybe the most expensive is coiled tubing, due to a necessity of a vessel to bring 

the coiled tubing equipment. Although coiled tubing is considered as a light workover.  

Usually the costs of the prevention treatments are expensive but they are more 

cost effective throughout the life of the well than to apply a remediation treatment during the 

production phase. 

Remembering the description given for each cause of production loss due to flow 

assurance, the main factors involved in the occurrence of the loss are: temperature, pressure, 

fluid formation composition (hydrocarbon and/or water formation) and in case of hydrates, 

the presence of water is a fundamental factor. 

As seen in Tab. 3.21 the prevention treatments modify a factor to avoid the 

deposition in the well line & system. In the case of hydrates, thermal insulation, direct electric 

heating and hot oil flushing increases the temperature of the production system. For wax 

deposition, prevention treatments also modify the temperature. For the other causes, the 

treatments try to keep the component in a dissolved phase over a broader range of pressure 

and temperature. 

The selection of the prevention and remediation treatment depends of each 

company for instance in Campos Basin the techniques used for prevent and remediate 

hydrates and scale depositions are (Cardoso et al., 2003): 

- Thermal insulation (Prevent hydrate); 

- Pigs (remove scales – remediation treatment); 

- Umbilical, X-mas tree, and tubing string features to allow chemical inhibitors 

injection (prevent scales); 

- Coiled tubing intervention (remove hydrates or scales – remediation treatment) 

For potential integrity failures was identify remediation treatments that can avoid 

the failure during well design phase with a modification in the well barrier component and 

prevention treatments that can be applied with light workovers.  

The main remediation treatment for leakage in well integrity is the use of sealants. 

The most used sealants in the oil industry are Sandaband, Thermaset and Seal-tite (Blaauw, 

2012). 

- Sandaband and Thermaset 

To avoid leakage, a gas resistant material is necessary. Sandaband and Thermaset 

were used in several wells worldwide. The method of bullheading to apply the material in the 

leakage is used (Sandaband, 2015)  
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- Seal-tite 

It was development in 1995 to apply in SSSV and control lines, and then the 

applications were extended. The sealant is liquid and when it is injected in the well the 

molecules are linked together forming a flexible solid. Unlike the other type of sealants, seal-

tite can be applied in different leakages as packer, SSSV, wellhead, gate valve of X-mas tree 

and control lines (Seal-tite, 2015) 

For potential integrity failures in the description of each well barrier component 

solutions to avoid the failure were appointed, these solutions are currently used and until 

know all the application had a good results. For example, in North Sea wells due to fails in 

subsurface safety valve a TR-valve in series (redundancy valve) was adopted, it saves money 

because only a heavy workover will be necessary if both valves fail. 

Table 3. 22 - Prevention and remediation treatments for potential integrity failures. 

Well barrier 
component 

Prevention  Remediation Reference 

Subsurface Safety 
Valve 

Redundancy in valve - 
 Corneliussen, 

2006 
 Seime, 2012 

Packer Use Packer V0 - Blaauw, 2012 

Production tubing 
and casing 

Change API connection by 
proprietary connection in well 
with gas lift system or a gas 
environment 

- 
King and King, 
2013 

Gas lift valve Change valve with slickline - Holand, 2014 

Wellhead 

Change elastomeric seal by 
metal-metal seal 

Chemical sealant Ohm, 2013 
 Pressure monitoring 
 Foam around test plug 
 Injection of nitrogen to 

cavities 

Christmas tree 
Test valve before production 
begins 

 Clean the valve 
periodically 

 Routine 
inspections 

 ROV use 

 Alves, 2012 
 Stendebakken, 

2014 

Cement 
Check cement job during 
drilling phase 

- 

 Vignes, 2012 
 Blaauw, 2012 
 King and 

King, 2013 

Table 3.22 shows the recommended prevention treatments to avoid or minimize 

the main failure during well design and remediation treatments when is not possible to avoid 

the main failure.  
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Finally for reservoir problems were selected remediation treatments that can be 

applied with light workover and being usually used, as matured technologies.  

The only reservoir problems that have a prevention treatment is sand production. 

The correlation to determine the damage and critical rate can be considered as a prevention 

treatment, but his do not avoid the well intervention only estimate the need of the well 

intervention resulting in a better management, then correlation are considered as a step to 

select the best remediation treatment.  

Table 3. 23 - Prevention and remediation treatments for reservoir problems. 

Reservoir 
problem 

Prevention Remediation Reference 

Water conning - 

 Sealants 
 Gel 
 Packer 

(wireline) 

Jaripatke and Dalrymple, 2010 

Gas conning - 
 Sealants 
 Foam 

 Seright et al., 2003 
 Surguchev and Hanssen, 

1996 
 Wassmuth et al., 2000 

Fines migration - 
 Dispersant 
 Nanofluid 
 Solvents 

Ezeukwu et al., 1998 

Sand Production Sand control  - 
 Petit et al., 2007 
 Wong et al., 2003 
 King and Wildt, 2003 

 
Table 3.23 shows the prevention and remediation treatments for reservoir 

problems. Note that the sand production as previously described is the only reservoir problem 

that have a prevention treatment. 

Water-control treatments are usually effective if the target zones are properly 

isolated. The main treatments are the injection of gels in the oil well. However, it is preferable 

to inject the gel before water breakthrough, to retard the water movement for the oil zones – 

see application of well Sw - 17 (Seright et al., 2003). 
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The treatments for gas coning are also sealants as the water coning. In some 

places the use of foams is common. Nevertheless the use of gelling foams is preferable, due to 

the gelation process, where the foam structure solidifies, increasing the ability of the gel-foam 

(Surguchev and Hanssen, 1996; Wassmuth et al., 2000).  

The methods used to apply this remediation treatment can be: 

- Bullheading that is considered the most economical treatment. This technique 

does not use an isolation of the interest zone in some cases the treatment fluid 

can invade the oil zone, for that reason may considered not appropriate. 

- Mechanical packers or bridge plugs through wireline operations (water and gas 

coning). 

- Isoflow techniques the treatment fluid is direct injected in desire zone and a 

non-sealing to protect oil zone.    

- A coiled tubing operation place the treatment fluid to the desire area, is better 

than bullheading but is more expensive and it takes longer time. 

These techniques can be classified as light workover because it is not necessary to 

remove the X-mas tree (Jaripatke and Dalrymple, 2010).  

New technologies for reservoir problems 

Some new technologies are developed in the early 90’s but only was implemented 

in 1998 in Troll field – North Sea, this new technology is known as Inflow Control Device 

(ICD).  

The Inflow Control Device is a choking device that can be installed together the 

sand control screen, integrated with annular isolation, artificial lift and intelligent completion.  

This technology is installed during completion phase, and then is considered as 

prevention treatments, besides this is gained popularity due to the capacity of increase the oil 

production, minimize water and gas coning, this technology is not usually used (Alkhelaiwi 

and Davies, 2007). 
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4. RESULTS AND DISCUSSION 

In this section, guidelines and procedures will be proposed, based on the analysis 

presented in the previous chapter for each type of production loss, in order to obtain a well 

design of easy and minimum intervention. 

Section 4.1 presents the main factors considered for the proposed guidelines and 

procedures, for each type of production loss. 

Section 4.2 presents the application of the guidelines and procedures for different 

cases, in order to demonstrate the effectiveness and future applications.  

4.1. Guidelines and procedures 

The three different types of production loss obtained and introduced in Sec 3.1 

was considered to propose the guidelines and procedures, these are also based on prevention 

and mitigation treatments recommended in Sec 3.2. Each guideline and procedure is described 

below. 

a) Loss of flow assurance  

In the Sec. 3.1 was identified the causes of production loss due to flow assurance 

and the main factors for its occurrence.  

Table 4.1 - Main factors for flow assurance. 

Causes Main Factor 

Hydrates 

 Water presence 
 Hydrocarbon composition 
 Pressure 
 Temperature 

Wax  Hydrocarbon composition 
 Temperature 

Asphaltenes  Hydrocarbon composition 
 Pressure 

Scale 
 Water composition 
 Pressure 
 Temperature 

Naphthenates 
 Hydrocarbon composition 
 Water composition 
 pH 

Table 4.1 shows the main factors for each cause of production loss due to flow 

assurance. Note that fluid formation composition (hydrocarbon or/and water) is the one of the 

main factors of each cause of production loss.  
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In the case of wax although the main factor being the temperature based on Fig. 

3.6 the change of temperature is a function of the pressure, this occur also with the 

asphaltenes that the main factor is the pressure but based on Fig. 3.7 this depend of the 

temperature.  

So, for the analysis (intervention zone) were considered these three factors: fluid 

formation composition, temperature and pressure, but Naphthenates and NORM were not 

considered in the analysis because was the literature did not report an equation with those 

three factors together.  

Each cause of production loss due to flow assurance presents a curve as a function 

of pressure and temperature (Fig. 3.4, Fig. 3.6, Fig. 3.7 and Fig. 3.8). Those curves were 

superposed to obtain a graph with a region free of solids, denominated as “Flow Assurance 

Envelope (FAE)”.  

Some authors, such as Jamaluddin et al. (2003) and Ratuloswki et al (2004) 

presented a similar diagram for hydrates, wax and asphaltenes deposition. The purpose of 

those works was to demonstrate that solids might be deposited anywhere in the production 

system.  

In order to identify if the well design is of easy or minimum intervention is 

necessary to plot the oil flow conditions. When oil flow conditions are inside the FAE the 

possible result is a non-intervention. Otherwise, the well intervention could be “minimum 

intervention” with prevention treatments or “easy intervention” with remediation treatment.  

The application of prevention treatments during the phase of well design can 

avoid the well intervention during oil production. Nevertheless, the oil well should be 

prepared for a well intervention.  

Table 4. 2 - Classification of easy and minimum intervention based on the FAE. 

Oil Flow Conditions Treatment Intervention 

Inside FAE - Non - intervention 

Outside FAE 
Prevention Minimum Intervention 

Remediation Easy intervention 

Table 4.2 shows treatments and classifications for an intervention based on the 

FAE. As appointed in Sec 3.1 the minimum temperature considerate for this analysis was sea 

bed temperature 39 °F. 
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Figure 4. 2 - Procedure for a well design of easy and minimum intervention for causes of 
production loss due to flow assurance 

 
Figure 4.2 shows the procedure that should be followed to obtain a minimum 

and/or easy intervention. This procedure is explained in 6 steps: 

1. Perform the characterization of formation fluid. 

a. Identify if naphthenates are presented, and apply prevention treatments – 

minimum intervention. 

2. Determine the curves for each cause of production loss (see Fig. 3.4, Fig. 3.6, 

Fig. 3.7 and Fig. 3.8); 

3. Superimpose the curve of each cause of production loss (see Fig. 4.1); 

4. Identify the flow assurance envelope; 

5. Plot the oil flow condition; 

6. Identify if the oil flow conditions are inside or outside the flow assurance 

envelope. 

a. Inside  Possible non intervention 

b. Outside  Prevention treatments during well design – minimum 

intervention; and modifications of the well design in order to allow light 

workover – easy intervention. 
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The main guideline for causes of production loss due to a flow assurance is the 

step six; because with this step it is possible to achieve the purpose of obtain a minimum and 

easy intervention.  

b) Potential Integrity failures 

In Sec. 3.1 (b) the main failure for each well barrier component was identified. As 

result of this information we can conclude that is possible to have modifications during the 

well design phase as shown in Tab. 3.22.   

Table 4. 3 - Main failures and causes in well barrier components. 

Well barrier component Failure  Failure cause 

Subsurface Safety Valve Leak in close position  Damage to flapper 
 Damage to seal 

Packer Package loss  Presence of gas 

Production tubing and casing Connection  API connection in gas lift system 

Gas lift valve Fail to close  Scales deposition 

Wellhead Seal 
 Elastomeric seal 
 Hydraulic residues 

Christmas tree (valves) 

Fail to close (deepwater)  Solid deposition 

Leak in close position 
(shallow water) 

 Heavy structural loads 
 Corrosion 
 Erosion 

Cement Lack of bond cement-casing-
formation  Inadequate primary cementation 

Table 4.3 shows the main failures and the causes of the failure for each well 

barrier component. Considering the definition of minimum and easy intervention and based 

on Tab. 3.22, only gas lift is of easy intervention. For some components, besides the 

prevention treatments, they also have remediation treatments that avoid the use of heavy 

workover.  

Table 4. 4 - Well intervention classification for well barrier component. 

Well barrier component 
Failure is possible 

to avoid 
Intervention 

Subsurface Safety Valve YES Minimum 
Packer YES Minimum 

Production tubing and casing YES Minimum 
Gas lift valve NO Easy 

Wellhead YES 
 Minimum 
 Easy 

Christmas tree YES 
 Minimum 
 Easy 

Cement YES Minimum 
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Table 4.4 shows which well barrier component is of minimum or easy 

intervention according to Tab. 3.22 and Tab. 4.3.  

The establishment of guidelines is based on the analysis presented for causes of 

production loss due to integrity failures.  

In order to know with well barrier components can fail during production phase, 

first is necessary to identify the primary and secondary barrier integral set of a production 

well based on Fig 3.9 (a) and (b). 

Once identified the well component shall be identified the main failure as presents 

in Tab. 4.3. If the failure is possible to avoid with modifications in the well design or in the 

component is considered as a minimum intervention, otherwise prevention treatments will be 

necessary to obtain an easy intervention.  

 

Figure 4. 3 - Procedure for a well design of easy and minimum intervention for causes of 
production loss due to potential integrity failures 
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Figure 4.3 shows the procedure that should be followed to obtain a minimum 

and/or easy intervention for causes of production loss due to integrity potential failures. This 

procedure is explained in 4 steps: 

1. Identify primary and secondary BIS for a production well based on Fig 3.9 (b) 

2. Identify well barrier components that can fail based on Tab. 3.11 

3. Identify the main failure for each well barrier component based on Tab. 4.3. 

4. Determine if it is or not possible to avoid the failure based on Tab. 4.4. 

a. Avoidable, apply prevention treatments, as example Tab. 3.22 – 

Minimum intervention 

b. Non Avoidable, modify the well design to allow the repair of the well barrier 

component (remediation treatment, as example see Tab. 3.22) – Easy 

intervention 

The guideline proposed for this type of production loss is the step 4, because with 

this is possible to achieve the goal of a minimum and easy intervention 

c) Reservoir problems 

Based on characteristics of each reservoir problem was possible to conclude that 

sand production is the only problem that may result in a minimum intervention. For the other 

reservoir problems the use of correlations aids to estimate the need of the intervention 

resulting in an easy intervention. 

Table 4. 5 - Well intervention classification in reservoir problems. 

Reservoir problem Intervention 

Water coning 
Easy Gas coning 

Fines migration 
Sand production Minimum 

Table 4.5 shows the causes of production due to reservoir problems and the 

classification of the intervention (minimum and easy).  

The most important thing to evaluate the reservoir problems is identify which 

reservoir problems are presented in the well based on Fig. 3.18 as well as the reservoir 

conditions to perform all the calculations.      
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A sand control completion type will be necessary if sand production is a problem. 

Some types of sand control completions are presented in Tab. 3.19. The use of correlations to 

estimate the need of a well intervention based on critical production rate (if water or gas 

coning are a problem) and damage (if the fines migration is a problem) were necessary to 

estimate the need of the well intervention as demonstrate in examples in case Sw-17. After 

that will be necessary to project the well to allow remediation treatments (some are 

recommended in Tab. 3.23), to obtain and easy intervention. 

 

Figure 4. 4 - Procedure for a well design of easy and minimum intervention for reservoir 
problems 
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Figure 4.4 shows the procedure that should be followed to obtain a minimum 

and/or easy intervention for causes of production loss due to reservoir problems. This 

procedure is explained in 3 steps: 

1. Identify reservoir problems based on Fig. 3.18.  

2. Select sand control during well design phase if sand production is a problem - 

minimum intervention.  

3. Use correlations to determine damage (fines migration), critical production 

rate (water and gas coning) if those problems were detected: 

a. Estimate the need of a well intervention 

b. Prepare the well design to allow remediation treatments – easy 

intervention. 

The steps 2 and 3 are considered as the guidelines to obtain an easy and minimum 

intervention for reservoir problems. 

Note that for the three types of causes of production loss, only the step that results 

in minimum or easy intervention was considered as a guideline, because this achieves the 

purpose of the work. The other steps and the set of steps are considered as a procedure. 

As explained in previous chapter some causes of production are correlated. In the 

next section, an application of each procedure and guideline will be demonstrated in different 

cases and a final case will demonstrate the correlation between the causes.  

4.2. Applications 

Guidelines and procedures proposed were applied for each type of production 

loss, different cases validate this proposal.   

 Case study application – Flow assurance  

- Roncador Field – Campos Basin (Brazilian region) 

As previously discussed, the first step to obtain a well design of easy and 

minimum intervention is to perform the flow assurance envelope (Fig. 4.1) based on the solids 

deposition diagrams and the knowledge of fluid formation composition is necessary.  
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Table 4. 6 - Data Available Roncador Field. 
Source: Minami et al. (2000). 

Constituent 
Concentration (mg/l) 

Formation water Seawater 

Sodium (Na+) 65,000 11,500 
Potassium (K+) 410 226 
Calcium (Ca2+) 7,100 504 
Magnesium (Mg2+) 800 1,390 
Barium (Ba2+) 44 1 
Strontium (Sr2+) 580 9 
Chloride (Cl-) 116,982 21,300 
Sulfate (SO42−) 32 2,834 
Bicarbonate (HCO3) 20 150 
Carbon dioxide (CO2) Gas (%) 0.075 

Table 4.6 shows the data available in the literature for Roncador Field: the hydrate 

curve, formation water and seawater composition (Minami et al., 2000); with this data the 

hydrate and scales zones were possible to be identified.  

Table 4. 7 - Oil flow conditions for two wells in Roncador Field. 

 Place 

Oil Flow Conditions 

Temperature 
(°C) 

Pressure 
(Psi) 

Well 1 Flowline 4 2,175 

Well 2 

Separator 70 213 
Flowline 25 213 

Downhole 65 2,133 
Reservoir 65 4,764 

Table 4.7 shows the oil flow conditions for two wells: one for a pressurized 

flowline and another one for a producing well.  

Equation (4) for calcium carbonate and Eqs. (5) to (7) for sulfates were employed 

to calculate the saturation index. A mixture with volume ratio of 50:50 (formation 

water/seawater) was taken. 

Hydrate, calcium carbonate, barium sulfate, strontium sulfate and calcium 

carbonate curves were obtained. These curves were superposed to obtain the flow assurance 

envelope. 
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Analysis 

The well 1 did not follow the guidelines established in the present work, such as: 

 The possible zone of hydrate deposition was not identified; 

 Prevention treatments in the well design were not applied;  

 Modification in the well design to allow light workover was not performed. 

And the results were production and time loss due to the remediation treatments 

applied.   

The well 2 followed the guidelines established in the present work: 

 The well engineers predicted the scale deposition at different oil flow 

conditions; 

 Prevention treatments during the well design phase were applied.  

And the result was a production without interruptions.  

- Tombua Landana – West Africa 

The data available in the literature for Tombua Landana Field are the formation 

water and seawater composition (Chen et al., 2007). From this data is possible to identify the 

scale zone.  

Table 4. 8 - Data Available Tombua Landana. 
Source: Chen et al. (2007). 

Constituent 
Concentration (mg/l) 

Formation water Sea Water 

Sodium (Na+) 80,425.0 11,020.0 
Potassium (K+) 1,114.0 408.4 
Calcium (Ca2+) 18,128.0 421.9 

Magnesium (Mg2+) 1,102.0 1,322.0 
Barium (Ba2+) 146.0 0.02 

Strontium (Sr2+) 1,161.0 68.9 
Chloride (Cl-) 158,969.0 19,805.0 
Sulfate (SO42−) 25.0 2,775. 4 

Bicarbonate (HCO3) 14.0 145.0 
Carbon dioxide (CO2) Gas (%) 3.4 0.03 

Table 4.8 shows the data available for Tombua Landana field. For the calculus of 

saturation index, a mixture of 50/50 in volume (formation water/sea water) was considered. 

Equation (4) for calcium carbonate and Eqs. (5) to (7) for sulfates were employed.  
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During the design of this well, barium sulfate and calcium carbonate were 

predicted. Prevention treatments were applied such as Split Sulfate Removal, downhole scale 

inhibitor, installation of additional scale inhibitor injection points, and scale squeeze 

treatments (bullheading). As a result, production losses were not reported.     

Analysis 

The well followed the guidelines established in the present work: 

 The possible zone of scale deposition was identified; 

 Prevention treatments in the well design were implemented;  

 A modification in the well design, in order to allow light workover was 

performed; 

Problem with scales were not reported after Chen et al. (2007). 

Both cases validated the methodology, i.e., that following the guidelines 

established during the design phase can avoid oil production losses. 

 Case study application – Potential Integrity Failure  

- Bonga Field – West Africa 

In Bonga’s Field two different situations were identified (Ebitu et al., 2011). : 

1) During oil production, failures occurred in Bonga’s Field. Subsurface safety 

valve (SSSV) failures, minor leaks on various well components and X-mas 

tree. 

In one production well, a failure in the SSSV occurred. The well was shut-in 

and a heavy workover was performed. The tubing string was removed to 

replace the valve. The well was recompleted after two years.  

2) Once identified integrity problems, a well integrity management was 

implemented in Bonga’s field, for future wells. The result was an early 

detection of the failures in the well barrier components, minimal shut-in and 

consistent compliant of preventive treatments. The Bonga team is also looking 

for new methods of carrying out remediation treatments avoiding the heavy 

workover, such as the use of wireline or slickline methods.  
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Analysis 

In the Bonga field two situations were identified: 

(1) The guidelines proposed in the present work have not been followed: 

 Well barrier component that can fail was not identified (SSSV); 

 The main failure of the component was not identified; 

 Redundancy in the valve was not implemented. 

This situation resulted in a shut-in of two years and a heavy workover to replace 

the SSSV. 

(2) The guidelines proposed in the present work have been followed: 

 Well barrier component that can fail was identified; 

 The main failure of the component was identified; 

 Prevention treatments were implement; 

 Remediation treatments avoided heavy workovers. 

The result was a well with minimal interruption in the oil production, cost 

effective methods of leak repairs, and light workover systems.   

- Gulf of Mexico  

In Gulf of Mexico several wells experienced sustained casing pressure. Two cases 

are presented as follow (Bourgoyne, 1999): 

 After six years of production an oil well was shut in, but the efforts to restart 

the production were not enough. The oil production was restored after two 

years and problems related to sustained casing pressure occurred again and the 

well had to be abandoned.  

 Another well had the same problem. Seven well interventions to restore the oil 

production were necessary, spending over 20 million dollars. 

Analysis 

In both wells guidelines proposed were not followed: 

 Well barrier component that can fail was not identified (Cement); 

 The main failure of the component was not identified; 

 Prevention treatment was not applied (Verify cement job during drilling 

phase), 
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The result was higher production losses, costly interventions and abandonment of 

the well.  

 Case study application – Reservoir Problems  

As a case study, guidelines and procedures proposed for reservoir problems in the 

present work were applied for two cases in the Gulf of Mexico.  

- Gulf of Mexico 

 Cantarell Field – This well have a combined drive mechanism. The oil 

production started to decline after a brief period of production. The cause 

of production loss was gas and water coning, being the main problem gas 

coning.  

The reservoir layer thickness varies about 20 and 80 feet. The simulations 

shown a gas advance of 22.7 feet by month with the production rate 

adopted. It resulted in a shut-in of the well after four month of production 

(Datalban et al., 2008). 

 X Field – This deepwater well is located in Gulf of Mexico, and is a 

sandstone reservoir. After 18 months of production, it started to decline 

around 7,500 BOPD to 2200 BOPD due to fines migration and failure in 

the sand screen. The procedure adopted was to sidetrack the well and run a 

frac-pack completion with nanoparticles (Belcher et al., 2010).  

Analysis 

Both cases did not follow the guidelines and procedure established in the present 

work: 

 The reservoir problems was not identified (gas and water coning, based on 

reservoir drive mechanism, and fines migration based on type of reservoir) 

 Correlations to predict the need of a well intervention were not used. 

 Remediation treatments to avoid heavy workover were not implemented 

Higher production losses and the need of a heavy workover resulted. 
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For each type of production loss, guidelines and procedures were applied in 

different case studies, following a case study will be presented to shown the correlation 

between the causes of production loss.  

 Case study application – Correlation between flow assurance and potential 

integrity failures 

- Ula field – North Sea 

The fraction of n-heptane in the hydrocarbon composition is 0.57%. Reservoir 

temperature is 289 °F (≈143 C) and initial pressure 7,114 psi. 

In 1986, the downhole safety valves (DHSV), in two production wells, became 

hard to open. A heavy workover was necessary to remove the DHSV. In these valves, 

asphaltene deposition was identified. Asphaltenes also were deposited in the production 

tubing, restricting the oil production (Thawer et al., 1990).  

Analysis 

The wells did not follow the guidelines established in the present work, such as: 

 The possible zone of asphaltene deposition was not identified; 

 Prevention treatments in the well design were not applied; 

 A possible failure in the well barrier component (DHSV) was not identified; 

 A redundancy in the valve was not implemented. 

The result was a heavy workover and production losses due to asphaltene 

deposition in the well/line system and a failure in the DHSV. 

In all of the study cases, it is noted that guidelines and procedures match in 

general with problems reported in operations, which gives confidence to consider guidelines 

as a methodology to obtain minimum or easy intervention to be accomplished in the well 

design phase and to avoid oil production losses.  
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Table 4. 10 - Summary of causes of production. 

Type of cause 
of production 

loss 
Cause Main Factor Guideline and intervention 

Flow 
assurance 
losses 

Hydrate 

 Fluid 
formation 
composition 

 Temperature 
 Pressure 

 

Identify if the oil flow conditions are 
inside or outside the flow assurance 
envelope. 
 Inside  Possible non intervention 

 Outside  Prevention treatments 
during well design – Minimum 
intervention; and modifications of 
the well design in order to allow light 
workover – Easy intervention. 

 

Wax 
Asphaltene 
Naphthenate 

Scale 

Barium 
sulfate 
Calcium 
carbonate 
Calcium 
sulfate 
Strontium 
sulfate 
NORM 

Calcium 
Naphthenate 

 Fluid 
formation 
composition 

 pH 

Identify if naphthenates are presented, 
and apply prevention treatments – 
minimum intervention. 

Integrity 
failures 

Subsurface 
safety valve                                                             

Failure type 

Determine if it is or not possible to 
avoid the failure. 
 Avoidable, apply prevention 

treatments – minimum intervention 
 Non Avoidable, modify the well 

design to allow the repair of the well 
barrier component – easy 

intervention 

Packer 
Production and 
casing tubing 
Gas lift valve 
Wellhead 
Christmas tree 
Cement 

Reservoir 
problems 

Water Conning 

Energy source 

Use correlations to determine damage 
and  critical production rate: 
 Estimate the need of a well 

intervention 
 Prepare the well design to allow 

remediation treatments – easy 

intervention. 

Gas Conning 

Fines migration 
Type of 
reservoir 

Sand production 
Select sand control during well design 
phase if sand production is a problem - 
minimum intervention.  

Table 4.10 is the summary of the twenty one causes of production loss, main 

factors for its occurrence and guidelines. 

 

  



94 
 

  

5. CONCLUSION 

The extensive literature review resulted in the major causes of production loss for 

the most representative offshore petroleum regions, along with possible prevention and 

remediation treatments.  

Twenty one causes of production loss were found and those were classified in 

three types: flow assurance (9 causes), potential integrity failures (8 causes) and reservoir 

problems (4 causes). 

The common cause of production loss due to flow assurance for the four offshore 

petroleum regions were hydrates and wax, although the amount of reports were different, as 

shown in Fig. 3.2. There is not a common cause for the potential integrity failures in the four 

offshore petroleum regions but the well barrier component that presented more failure was the 

production tubing. Finally, for reservoir problems, the main cause reported was the sand 

production due to the sandstone formation presented in these regions. 

 Reservoir problems specially water and gas coning, can be considered as the most 

difficult production loss to be treated. When the production of water or gas begins in an 

excessive way, remediation treatments may not be effective and in the worst cases, the result 

is a well abandonment. 

Potential integrity failures may consider environmental risks, because in the case 

of leak, the fluid formation may go to the sea polluting the environment and also may cause a 

blowout jeopardizing the platform staff. 

As described in Sec 3.1 some causes of production loss may be correlated with 

each other. As an example, if flow assurance problems are solved in a first stage, problems 

such as deposition in well barrier components may be avoided, resulting in a solution to 

prevent potential integrity failures.  

Remediation treatments for the three types of production loss may be applied 

together with light workovers, avoiding the expensive heavy workovers until the end of the 

productive life.  

As described in Sec 3.2 several oil industries are applying these treatments in the 

oil wells but these treatments were applied after the occurrence of a well intervention. This 

behavior may be due to the investment of time and money for the analysis of the causes 

during the well design. The ideal design should detect possible problems during the initial 

design phase, in order to avoid problematic scenarios or waste money.  
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The guidelines and procedures for the three types of causes of production loss 

may be considered as a methodology that should be followed during the well design phase; 

reducing and easing the well intervention and avoiding unexpected interruptions in oil 

production, achieving the objective of this work (see Sec. 4.1). 

The case studies presented in Sec. 4.2 show the validity of the use of guidelines 

and demonstrate the effectiveness of the presented proposals.  

 Recommendations for future works 

The identification of the causes of production loss was carried out for the four 

most representative maritime regions. Another analysis may be carried out for all the 

maritime regions in order to identity all of the causes of production loss for subsea wells, 

including a comparative analysis with causes identified in shallow water, deep water and 

ultra-deep water. 

The work did not present a cost analysis. The cost analysis can be carried out to 

measure how much money an oil industry spends waiting for the occurrence of the production 

loss and how much the oil industry would spend applying the procedures and guidelines 

proposed.  

The proposal of this work is related to conventional completions, and a suggestion 

for a further work is to compare with an intelligent completion. The objective might be to 

know if the intelligent completion really reduces the well intervention. This analysis may also 

include the costs of intelligent completions and compare with the costs of the previous 

suggestion.  

Based on the recommended prevention and remediation treatments a study 

comparing and evaluating the different treatments may be carried out, also considering cost 

and efficiency.   

 In this work the guidelines and procedures were represented in flow charts to 

obtain a well design of easy and minimum intervention. For future works, new guidelines may 

be increased or the procedure may be presented in a different way. 
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APPENDIX A – DATA SET OF CAUSES OF PRODUCTION LOSS 

FOR 35 YEARS OF LITERATURE REVIEW 

Table A. 1 - Organization of documents found 

Causes of 
Production loss 

Offshore 
Petroleum Region 

Reference 
Comments 

Author Year 

Asphaltenes 

Gulf of Mexico 
Cenegy 2001 No 

Montesi et al. 2011 Yes 
Alapati and Joshi 2013 Yes 

North Sea 
Thawer et al. 1990 Yes 
Takhar et al. 1995 Yes 

Garshol 2005 Yes 

Hydrates 

Campos Basin 

Teixeira et al. 1998 Yes 
Minami et al. 1999 Yes 

Assayag 2000 No 
Davalath et al. 2002 No 
Freitas et al. 2002 Yes 

Marques et al. 2002 Yes 
Cardoso et al. 2003 Yes 

Cochran 2003 Yes 
Marques et al. 2003 Yes 
Camargo et al. 2004 Yes 
Palermo et al. 2004 Yes 
Davalath et al. 2004 Yes 
Rodrigues et al. 2007 Yes 

Noe et al. 2008 Yes 
Evangelista et al. 2009 Yes 

Pedroso et al. 2009 Yes 
Zerpa et al. 2011 (a) No 
Zerpa et al. 2011 (b) No 
Duarte et al. 2012 No 
Duque et al. 2012 No 

Gulf of Mexico 

Peavy and Cayias 1994 No 
Yousif and Dunayevsky 1995 No 

Yousif 1996 No 
Frostman 2000 No 

Milkov et al. 2000 No 
Fu et al. 2001 No 
Cochran 2003 Yes 

Cooley et al. 2003 No 
Kashou et al. 2004 Yes 

Szymczak et al. 2005 Yes 
Johnson and Angel 2005 Yes 

Swanson et al. 2005 No 
Harun et al. 2006 No 
Harun et al. 2006 No 
Harun et al. 2007 No 
Kane et al. 2008 Yes 

Gounah et al. 2008 No 
Mazloum et al. 2011 No 
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Causes of 
Production loss 

Offshore 
Petroleum Region 

Reference 
Comments 

Author Year 

Hydrates 

North Sea 

Dawson and Murray 1987 Yes 
Fadnes et al. 1994 No 
Lysne et al. 1995 No 
Argo et al. 1997 Yes 

Lervik et al. 1997 Yes 
Wilson et al. 2004 No 

MacDonald et al. 2006 Yes 
Molyneux et al. 2013 Yes 

West Africa 

Yahaya-Joe et al. 2000 No 
Cottom et al. 2005 No 
Watson et al. 2006 No 
Lafitte et al. 2007 No 

Owodunni and Ajienka. 2007 No 

Monahan. 2009 No 
Brezger et al. 2010 Yes 
Thant et al. 2011 No 

Oschmann and Paso. 2013 Yes 

Thomson et al. 2013 No 

Wax 

Campos Basin 

Bastos 1994 Yes 
Khalil et al. 1994 Yes 
Gomes et al. 1994 Yes 

Lima and Alves. 1995 Yes 

Gomes et al. 1996 Yes 
Lino et al. 1997 No 

Minami et al. 1999 Yes 
Miranda and Silva 2000 No 

Cardoso et al. 2003 Yes 
Marques et al. 2003 Yes 
Davalath et al. 2004 Yes 
Camargo et al. 2004 Yes 
Rodrigues et al. 2007 Yes 

Noe et al. 2008 Yes 
Garner et al. 2011 No 

Noville and Naveira 2012 No 

Gulf of Mexico 

Hammami and Raines 1999 Yes 
Zougari and Hammami 2005 No 

Fung et al. 2006 Yes 
Manfield et al. 2007 No 
Alwazzan et al. 2008 Yes 

Bailey and Allenson 2009 No 
Shecaira et al. 2011 Yes 

Wylde 2011 No 

North Sea 

Partley and bin Jadid 1986 Yes 
Marchall 1990 Yes 
Hamouda 1992 Yes 
Starkey 1994 Yes 

Allena and Walters 1999 No 

Labes-Carrier et al. 2002 No 

Craddock et al 2007 Yes 
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Causes of 
Production loss 

Offshore 
Petroleum Region 

Reference 
Comments 

Author Year 

Wax West Africa 

Hsu and Brubaker 1995 No 
Owodunni and Ajienka 2007 No 

Farayola et al. 2010 No 
Oseghale and Akpabio 2012 No 

Adeyanju and Oyekunle 2013 Yes 
Oschmann and Paso. 2013 Yes 

Barium Sulfate 

Campos Basin 

Bezerra et al. 1990 Yes 
Ferreira et al. 1990 Yes 
Bezerra et al. 1996 Yes 
Minami et al. 2000 Yes 
Marques et al. 2001 Yes 

Rosario and Bezerra 2001 Yes 

Bezerra et al. 2003 Yes 
Bezerra et al. 2004 No 
Mota et al. 2004 Yes 

Bogaert et al. 2006 No 
Bogaert et al. 2007 No 

Guimaraes et al. 2007 No 
Rodriguez et al. 2007 Yes 
Hernandes et al. 2008 Yes 

De Almeida Neto et al. 2009 No 

Gomes et al. 2010 No 

Gulf of Mexico 

Mazzoline et al. 1992 No 
Jordan et al 2011 No 

Mackay et al. 2014 No 
Sopngwi et al. 2014 No 

North Sea 

Carrel 1987 Yes 
Todd and Yuan 1990 No 

de Vries and Arnaud 1993 No 

Paulo et al. 2001 No 
Mackay et al. 2003 No 
Mastin et al. 2003 No 
Inches et al. 2006 No 

Refaei and Al-Kandari 2009 Yes 

West Africa 

Poggesi et al 2001 No 

Davis and McElhiney 2002 No 

Rosseau et al. 2003 No 
Collins et al. 2004 No 
Chen et al. 2007 Yes 

Patterson et al. 2011 No 
Jordan 2014 No 

Calcium 
Naphthenate 

Campos Basin De Olivieira et al 2013 No 

North Sea 
Vindstad et al. 2003 No 
Melvin et al. 2008 No 

West Africa 

Goldzal et al. 2002 Yes 
Williams et al. 2007 No 

Junior et al. 2013 No 
Odoula et al. 2013 Yes 
Nichols et al. 2014 No 
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Causes of 
Production loss 

Offshore 
Petroleum Region 

Reference 
Comments 

Author Year 
Calcium Sulfate Gulf of Mexico Yuan 2004 Yes 

Calcium 
carbonate 

Campos Basin Rodriguez et al. 2007 Yes 

North Sea 
Mitchell et al. 1980 No 

Kostol and Rasmussen 1993 Yes 
Brankling et al. 2001 No 

West Africa 

Azaroual et al. 2001 No 
Rosseau et al. 2003 No 
Jordan et al. 2006 No 
Chen et al. 2007 Yes 

Courbot and Hanssen. 2007 No 

NORM 

Campos Basin 

Godoy et al. 1999 Yes 
Matta et al. 2002 Yes 

Schenato et al. 2013 Yes 
Petrobras 2014 No 

Gulf of Mexico 

Rutherford and 
Richardson 1993 Yes 

Shannon 1993 No 
Fletcher et al. 1995 No 

OGP 2005 No 
Chevron 2013 No 

North Sea 
Gäfvert et al. 2006 Yes 

Hylland and Eriksen 2013 No 

Strontium Sulfate 

Campos Basin 

Bezerra et al. 1990 Yes 
Ferreira et al. 1990 Yes 
Marques et al. 2001 Yes 

Rosario and Bezerra 2001 Yes 
Bezerra et al. 2003 Yes 
Mota et al. 2004 Yes 

Bogaert et al. 2006 No 
Bedrikovetsky et al. 2007 No 

Rodrigues et al. 2007 Yes 
Hernandes et al. 2008 Yes 

Reid et al 2009 No 
Bezerra et al. 2013 No 

North Sea 
Yuan 1989 No 

Todd and Yuan 1992 No 

West Africa 
Jordan et al. 2006 No 

Thomson et al. 2013 No 

Cement 

Campos Basin 
Frota 2003 Yes 

Da Fonseca 2012 Yes 

Gulf of Mexico 
Hebert 1986 No 
Howard 2004 Yes 

King and King 2013 Yes 

North Sea 

Attard 1991 Yes 
Feather 2011 Yes 
Saeby 2011 No 

Blaauw 2012 Yes 
Torbergensem 2012 Yes 

Etetim 2013 Yes 

West Africa 
Piot et al. 2001 No 

Rusch et al. 2004 No 
Sonde et al. 2014 No 
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Causes of 
Production loss 

Offshore 
Petroleum Region 

Reference 
Comments 

Author Year 

Christmas tree 

Campos Basin 
Albernaz 2005 Yes 

Rodriguez et al. 2005 Yes 
Alves 2012 Yes 

North Sea 
Dawson and Murray 1987 Yes 

Stendebakken 2014 Yes 

Gas Lift valve 

Campos Basin de Moraes et al. 2014 No 

North Sea 

Pucknell et al. 1994 No 
Kinnear and John 1996 No 

Gilbertson 2010 Yes 
Holand 2014 Yes 

Packer 

Gulf of Mexico King et al. 2005 No 

North Sea 

Kostol and Rasmussen 1993 Yes 

Humphreys and Ross 2009 No 

Blaauw 2012 Yes 

Production Casing 

Gulf of Mexico 

Bourgoyne et al. 1999 Yes 
Bourgoyne et al. 2000 No 

Li et al. 2003 No 
Soter et al. 2003 No 
Ispas et al. 2005 No 
Zhang et al. 2008 No 
Furui et al. 2012 No 

North Sea 

Anvik and Gibson 1985 Yes 
Andrews 1988 No 

Vudovich et al. 1988 No 
Attard 1991 Yes 
Bruno 1992 No 
Molnes 1993 Yes 

Barkved et al. 2003 Yes 

Vignes et al. 2008 No 
Innes et al. 2010 No 

Blaauw 2012 Yes 
Etetim. 2013 Yes 

West Africa Shen 2011 No 

Production 
Tubing 

Gulf of Mexico Bradford et al. 2002 No 

North Sea 

Vudovich et al. 1988 No 
Bruno 1992 No 

Kostol and Rasmussen 1993 Yes 

Molnes 1993 Yes 

Hannah and Seymour 2006 No 

Subsurface Safety 
Valve 

Campos Basin 
Moreira 1993 Yes 

Frota 2003 Yes 
Rodriguez et al 2005 Yes 

Gulf of Mexico 
Leboeuf et al 2008 No 

Todd and Replogue 2010 Yes 
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Causes of 
Production loss 

Offshore 
Petroleum Region 

Reference 
Comments 

Author Year 

Subsruface Safety 
Valve 

North Sea 

Engen and Rausan 1982 No 

Moines and Iversen 1990 No 

Molnes and Sundet 1993 Yes 

Brookes 1994 Yes 
Lindqvist 1998 Yes 
Rausan 1998 Yes 

Molnes and Strand 2000 No 

Vesterkjaer 2002 Yes 
Birkeland 2005 Yes 

Corneliussen 2006 Yes 
Vignes et al 2006 Yes 

Barratt 2010 Yes 

Vignes and Aadnoy 2010 Yes 

Vignes 2011 Yes 
Seime 2012 Yes 

King and King 2013 Yes 

West Africa 
Wakama et al. 2004 

Ebitu et al. 2011 Yes 
Wellhead North Sea Ohm 2013 

Excess of gas 

Gulf of Mexico 
Wu et al. 1995 Yes 

Daltaban et al. 2008 Yes 
De la Garza et al. 2012 

North Sea 

Surguchev and Hansse. 1996 Yes 

Benamara and Tiab. 2001 Yes 

Mjaavatten et al. 2006 No 
Ziegel et al. 2014 Yes 

Excess of water 

Campos Basin 

Capeleiro Pinto et al. 2003 No 

Carrillo 2008 Yes 
Ueta 2008 Yes 

Sampaio et al. 2012 

Gulf of Mexico 
Wu et al 1995 Yes 

Daltaban et al 2008 Yes 
North Sea Peng and Yeh 1995 Yes 

Fines migration 

Gulf of Mexico Morgenthaler and Fry 2012 No 

West Africa 
Ezeukwu et al. 1998 Yes 

Chike et al. 2004 No 
Afolabi et al. 2008 No 

Sand Production Campos Basin 

Acosta et al. 2007 No 
Marques et al. 2007 Yes 

Rodrigues et al. 2007 Yes 
Coffee 2008 Yes 

Pedroso et al. 2010 Yes 

Marques and Pedroso. 2011 No 
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Causes of 
Production loss 

Offshore 
Petroleum Region 

Reference 
Comments 

Author Year 

Sand Production 

Gulf of Mexico 

Fahel and Brienen. 1992 No 
Wong et al. 2003 Yes 
Stair et al. 2004 No 

Gillespie et al. 2005 Yes 

Oubre and Hasemann; 2010 No 

North Sea 
Foo et al. 2013 No 

Kostol and Rasmussen. 1993 Yes 

West Africa 

Delattre et al. 2002 No 
Delattre et al. 2004 No 
Ezeukwu et al. 2007 Yes 

Petit et al. 2007 Yes 
Guinot et al. 2009 Yes 
Furgier et al. 2013 No 

Table A. 2 - Comments 

References 
Comments 

Author Year 

Adeyanju and 
Oyekunle 2013 

Present a mathematical model to simulate sand production in Nigeria. Explain 
that is difficult to stop the sand production after the occurrence. The effect of 
the sand production in the oil production. 

Alapati and Joshi 2013 
Asphaltene deposition in the flowlines in Green Canion Block. Prevention and 
remediation treatments 

Albernaz 2005 The objective of this work was to analyze the reliability of the Christmas tree, 
the main failures and possible solutions. 

Alves 2012 
A data set of failures in Wet Christmas tree for since 1993 until 2010 from 
Campos Basin was analyzed in order to determine the main failure mode, the 
main factors and solutions. 

Alwazzan et al. 2008 Wax deposition in pipelines in Cottonwood field. 
Anvik and 

Gibson 1985 Casing deformation in the overburden 

Argo et al. 1997 
Presents the gas composition of an oil field in North Sea, and prevention 
technology in order to avoid the hydrate deposition in the pipelines: Threshold 
Hydrate Inhibitor (THI) 

Attard 1991 
This paper discusses the occurrence of annulus pressure in Hutton oilfield, the 
problems associated with this, the causes of annulus pressures, evaluation of 
safety aspects and concerns associated. 

Barkved et al. 2003 Carbonates deposition caused a failure in casing (collapse) 

Barratt 2010 

Explain a case history occurred in Gannet platform in UK sector of the North 
Sea. The problem was a blockage in the safety valve control line that rendered 
the existing tubing retrievable safety inoperable; in order to solve this problem 
a major rig workover was necessary. 

Bastos 1994 Presents causes of well intervention in Albacora field. 
Benamara and 

Tiab. 2001 Correlation for gas coning based on North sea oil wells and Addington (1981) 

Bezerra et al. 1990 Barium and strontium sulfate scales in producer wells due to seawater injection 
and water formation in the Namorado Field 

Bezerra et al. 1996 Prevention and remediation treatments for scales (Campos Basin) 
Bezerra et al. 2003 Methods for scale prediction 
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Author Year 

Birkeland 2005 
Comparison between subsea and platforms wells based on well intervention. 
Classification of subsea intervention. Light and heavy workover discussion. 
Advantages of Light workover in Norwegian Continental Shelf (NCS) 

Blaauw 2012 

This thesis presents some of the aspects of the well integrity to consider for 
obtaining and maintaining adequate well integrity throughout the lifecycle of 
the well. Describe the well barrier components and the main failures, for 
example: casing (connections), cement (bad cement job), packer (V3-V6). 

Bourgoyne et al. 1999 Analyze the severity and the frequency of the occurrence of SCP in the GoM. 
Possible causes of these problems are discussed and case studies are described. 

Brezger et al. 2010 
Explain the hydrate formation management in Azurite Field localized in West 
Africa, the gas composition, and describe a problem occurred in the surface 
controlled subsurface safety valve due to hydrate deposition. 

Brookes 1994 
Present problems occurred in Buchan field as failures in DHSV and leakage in 
different valves. 

Camargo et al. 2004 
This paper explain the brief summary about today flow assurance issues 
presented in Campos Basin as hydrates and wax. Hydrate and wax design 
criteria. Prevention and remediation treatments. 

Cardoso et al. 2003 Describe the flow assurance problems (hydrates, wax, asphaltenes, and scales) 
that were faced in Albacora, Bijupirá/Salema and Marlim field. 

Carrillo 2008 Show some case studies for fines migration, excess of production water/gas for 
Campos Basin. 

Cenegy 2001 Asphaltene deposition in a oilfield (Gulf of Mexico) 

Chen et al. 2007 

This paper documents a scale risk assessment and the development of a scale 
management plan during the frontend engineering design of the Tombua-Landa 
development in West Africa. The major trends observed in water chemical 
composition was barium and calcium, then the possibility of scale deposition is 
high. Seawater and Injected water composition are presented. 

Cochran 2003 
Explain what is hydrates, shows the best practices available and proven 
technology for deepwater subsea oil fields: insulate flowlines, depressurization, 
and methanol injection. 

Coffee 2008 Sand deposition in the separators of the Albacora Field 

Corneliussen 2006 

The main objective of this thesis has been the development of procedures and 
methods for risk assessment of oil and gas wells. Explain about well integrity, 
well barrier failures, and causes of the failures for the different WBC as 
Subsurface Safety Valve. 

Craddock et al 2007 
Describes in detail the removal of wax deposits from Gannet field considered as 
the major subsea flowline using a chemical dissolver; 

Da Fonseca 2012 
This master thesis try to estimates the mean time to failure of each BIS 
identified in completion configuration, the methodology proposed may be used 
for maintenance intervention resource. 

Daltaban et al 2008 Case studies due to water and gas production problems in Cantarell field 
localized in Gulf of Mexico. Gas coning analysis. 

Davalath et al. 2004 Wax and hydrates in the Bijupira and Salema Fields. 
Dawson and 

Murray 1987 Hydrate problems in Magnus field, deposition in flowlines. 

Ebitu et al. 2011 
Explain the main well integrity issues in Bonga field. Case studies about well 
barrier components such as subsurface safety valve, casing failures. Explain 
why is important prevent this problems since the well design phase. 

Etetim 2013 

This thesis describes the process criteria and consideration of design of 
wellbore seals to establish well integrity behind casing. Material cements were 
evaluated in order to improve the primary cementing and avoid leaks during 
production phase. The main reason of failure in cement is cited. 

Evangelista et al. 2009 Typical Campos basin ultra deepwater 1541 m - 4°C seabed 
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References 
Comments 

Author Year 

Ezeukwu et al. 2007 A field study to evaluate organic and inorganic agents to determine their 
effectiveness to eliminate fines. 

Feather 2011 
Presents percentage of wells with integrity issues in the Gulf of Mexico and 
North Sea. 

Ferreira et al. 1990 
Deposition of strontium sulfate due to water injection in the Namorado Field. 
The strontium sulfate do not precipitates at temperature range between 50 - 
95°C 

Freitas et al. 2002 
Describes operational procedures carried out in Campos Basin to locate and 
dissociate gas hydrates plugs in subsea equipments and pipelines. Two cases 
are discusses in Roncador field and Marlim field. 

Frota 2003 

A real data base was used from Campos Basin during a period of twelve years. 
This data base was used in order to identify the main causes of failure that lead 
to a well intervention. The author identified three groups of causes of failure: 
flow, mechanical failure and reservoir. 

Fung et al. 2006 Pig cleaning in pipelines. 

Gäfvert et al. 2006 
Shows results from 41 Norwegian offshore platforms during a five-month 
period in order to analyze the 226Ra, 228vRa and 210 Pb, discharge of these 
through produced water. 

Garshol 2005 Asphaltene deposition in the production tubing in Gyda Field. 

Gilbertson 2010 
This master thesis presents a study about failures in gas lift valves, and 
proposes a positive-locking, thermally-actuated safety valve in order to solve 
the problem. A prototype of this valve is explained. 

Gillespie et al. 2005 Gravel pack failure, due to flow rate velocity. The authors adopted some 
criteria to avoid this problem. 

Godoy et al. 1999 Description about NORM in Campos Basin. 

Goldzal et al. 2002 
Presents a study about prevention methods in order to avoid scale and 
naphthenate deposition. Also presents a prevention method applied in Dalia 
field. 

Gomes et al. 1994 Flowline problems in Albacora field 

Gomes et al. 1996 
Solutions for flow assurance issues for Albacora, Marlim and Barracuda field 
localized in Campos Basin. 

Guinot et al. 2009 In Okwori subsea field several downhole-sand control failures was occurred, 
this represented a rig intervention cost of USD several million. 

Hammami and 
Raines 1999 

Explanation about wax deposition, onsets of paraffin crystallization 
temperatures (WAT) and shows some analysis carried for Gulf of Mexico 
samples. 

Hamouda 1992 Case study in Ekofisk 
Hernandes et al. 2008 Bullhead as a solution in the Espadarte Field 

Holand 2014 Gas lift incidents, reliability, possible solutions 
Howard 2004 Casing pressure problems presented in Gulf of Mexico. 

Johnson and 
Angel 2005 This paper explain the main prevention and remediation treatments for Troika 

field that should be implemented in order to avoid hydrate plug. 

Junior et al. 2013 Calcium naphthenate description. Gimboa field presented calcium naphtehnate 
problems. Remediation treatments applied. 

Kane et al. 2008 Hydrates formation in GEP due to increase of water production in Matterhorn 
field. 

Kashou et al. 2004 
A hydrate plug was detected in Genesis field localized in Gulf of Mexico. 
Temperature of deposition is presented and also remediation and removal 
techniques applied. 

Khalil et al. 1994 
A new technology to solve the paraffin deposition in Campos Basin oilfields: 
Nitrogen Generating Systems. 

King and King 2013 Presents an exhaustive literature review about failures in well barrier 
components as cement and casing. Current solutions at different oil fields. 
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References 
Comments 

Author Year 
Kostol and 
Rasmussen 

1993 Leakage in tubing production, sand production problems, calcium carbonate 
deposition. Statford field. 

Lervik et al. 1997 Hydrates prevention by electrical methods in Troll field. 
Lima and Alves. 1995 Remediation treatments for wax deposition. Explanation about pig. 

Lindqvist 1998 
Presents results from a comprehensive reliability study of SCSSV used in the 
North Sea. Data collected form 26 oil/gas fields in the North Sea. The main 
failure modes and description. 

MacDonald et al. 2006 Combination between hydrate and corrosion inhibitor in order to avoid hydrate 
deposition 

Marchall 1990 Wax deposition in the pipelines in Valhall field. 
Marques et al. 2001 Experiences in the Namorado Field 

Marques et al. 2002 
In a well in Campos Basin a repair of SSSV was scheduled, but was not 
possible to remove the X-mas tree due to a hydrate deposition. A ROV was 
necessary to identify the cause of the problem. 

Marques et al. 2003 
A wax deposition occurred in flowlines. Some solutions are presented as 
replace the flowline (6 MM US$), or cleaning with a pig. 

Marques et al. 2007 

Campos Basin is sandstone reservoir then since the pioneer oil discoveries were 
realized a sand management strategy to achieve a desirable level of production. 
This paper presents an overview of the evolution of Petrobras open hole gravel 
packing operational practices and a description of the main steps taken to 
improve HOHGP. 

Matta et al. 2002 Presents the reports about radion levels (NORM) in Campos Basin. 

Minami et al. 1999 Presents case studies for Marlim, Bijupirá and Barracuda. These fields had wax 
problems in flowlines and pipelines. 

Minami et al. 2000 Presents formation and seawater composition of Roncador field, this tables are 
useful in order to determine the saturation index. 

Molnes 1993 
Failure mode, number of failures and MTTF of subsurface safety valve - TR 
(Flapper). Historical development in TR-SCSSV Flapper type reliability (1992-
2009) 

Molnes and 
Sundet 

1993 
This work presents the methodology and results form a major research project 
on well completion equipment reliability. The main failure modes of DHSV, 
production tubing, and the well intervention carried out due to these problems. 

Molyneux et al. 2013 Hydrate case study in Atlantic-Cromarty field 

Montesi et al. 2011 
A proposal in order to determine the prediction of asphaltenes and the influence 
in the CAPEX (Blinf Faith Field) 

Moreira 1993 
The objective of this work was to investigate the safety aspects in SSSV for a 
subsea completed. Identify the potential failures, analyze it is possible remove 
the SSSV. Solutions adopted by Petrobras. 

Mota et al. 2004 Deposition from moderate to severe in the Marlim West Field 
Noe et al. 2008 Describes the main flow assurance problems in Roncador field and solutions. 

Odoula et al. 2013 
Explain calcium naphthenate. The problems occurred in two fields in West 
Africa. Pictures shown the calcium naphthenate deposition. Remediation 
techniques: CaN inhibitor. 

Oschmann and 
Paso. 2013 

Presents a successful implementation of LDHI (Low Dosage Hydrate Inhibitor) 
and PPD (Pour Point Depressant) for a new deepwater production system 
offshore Africa. Wax Appearance Temperature for this field as function of 
pressure. 

Palermo et al. 2004 Presents some Petrobras field cases in which hydrate deposition did not happen, 
because crudes have natural surfactants. 

Partley and bin 
Jadid 1986 Wax deposition in Troll field 

Pedroso et al. 2009 Definition of hydrates, temperature of deposition, different types of inhibitors. 
Pedroso et al. 2010 ESP problems due to sand deposition in the Carapeba Field 
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Peng and Yeh 1995 
Discusses the use of horizontal wells in reservoir with was or gas coning 
problems. Presents cases studies about these problems (Troll field - water 
coning) 

Petit et al. 2007 

Wells in Girassol field are localized in unconsolidated sandy turbiditic 
reservoir. The completion strategies employed in these wells are the installation 
of sand control. This paper provide an overview of the stand alone screens in 
open hole and cased hole frac-packs after 5 years of production and injection. 

Rausan 1998 Description about the main failure modes of SCSSV and estimation of the mean 
time to failure and the mean fractional dead-time. 

Refaei and Al-
Kandari 

2009 
This paper present a background about scales, the water chemical reactions , 
location of scale deposition, water treatments, steps that should be taken in 
order to solve scale problems. 

Rodrigues et al. 2007 

This paper summarizes the history of the damage and main completion troubles 
associated to Campos Basin deepwater matured fields. Prediction, prevention 
and remediation aspects. Presents production problems such as hydrates, wax, 
sand production, fines migration, scales. 

Rodriguez et al 2005 Two cases are presented. The second case presents a leakage in the wet x-mas 
tree. 

Rosario and 
Bezerra 2001 

Presents the methodology for characterization of formation water and scale 
prediction in the waterflooding project of a deep-water field, from Campos 
Basin. 

Rutherford and 
Richardson 1993 

The purpose of this paper is to explain the involvement with NORM in the Gulf 
of Mexico. Presents a short history of the NORM in the oil industry. 

Schenato et al. 2013 Explanation about NORM, risks, Brazilian laws. 

Seime 2012 Description about hydraulic and electrical DHSV, the main failure modes, pros 
and cons of these two valves, solutions to avoid the main failures. 

Shecaira et al. 2011 Wax deposition caused problems in Cottonwood field. 
Starkey 1994 Case study in Ness field. 

Stendebakken 2014 
The main purpose of this work was estimate the retrieval rate of the Christmas 
tree relating with well intervention; determine the main failure mode of this 
intervention and possible solutions. 

Surguchev and 
Hansse. 

1996 Consequences of sustained casing pressure in GoM. 

Szymczak et al. 2005 
Describe a case study occurred in Gulf of Mexico, the problems was due to 
hydrate deposition. Explain possible solutions that should be adopted. 

Takhar et al. 1995 Production loss due to asphaltene in the Clyde Field. 

Teixeira et al. 1998 In Albacora field, seven months after the beginning of oil production a 
blockage in two wells resulted due to hydrate formation in the manifold. 

Thawer et al. 1990 Asphaltene deposition in Ula Field in the production tubing and production 
facilities 

Todd and 
Replogue 2010 Presents the metocean conditions for Gulf of Mexico. Subsurface safety valve 

failures presented in Thunder horse. Hydrate problems. 

Torbergensem 2012 
Well integrity and well barrier definition. Some cases of loss of well integrity 
such as casing, wellhead, tubing. Failures in the different well barrier 
components. 

Ueta 2008 
A water breakthrough resulting in an inhibition of oil production, a heavy 
workover was needed to introduce a swellable packer technology in Campos 
Basin. 

Vesterkjaer 2002 

The objective of this work is to develop and understanding of the contribution a 
dowhole safety valve represents to the overall risk in a subsea oil/gas well. 
Subsurface relation with blowout. Christmas tree and subsurface safety valve 
discussion. 
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Vignes 2011 

The objective of this work was present the methods for analyzing, evaluating 
and communicating the well integrity challenges, trying to find solutions in 
order to improve well integrity. This work presents five papers writhe by the 
author discussing the well integrity problems. 

Vignes and 
Aadnoy 

2010 Presents a table that shows the percentage of wells with failures in well barrier 
components such as wellhead, DHSV, GLV, tubing, casing, Packer, cement. 

Vignes et al 2006 

A description of a pilot project carried out by PSA. Different companies was 
invited to write a report describing the failure problems in the oil wells. 
Statistics of the failures in production and injection wells, percentage of failure 
in the well barrier components. 

Wong et al. 2003 
Studies about asphaltene deposition, for example increasing the water cut the 
asphaltene deposition rate can decrease. 

Wu et al 1995 
Amber field has water influx and gas cap drive reservoir mechanism, resulting 
in exceed of water and gas production 

Yuan 2004 Calcium carbonate and calcium sulfate problems in Canyon Express localized 
in Gulf of Mexico. Presents the saturation index. 

Zerpa et al. 2011 
(a) 

This work present the importance of developing a gas hydrate model in flow 
assurance for the oil industry. Explain the model of hydrate formation. 

Ziegel et al. 2014 Gas coning in North Sea 

Table A. 3 - References 

References 
Bibliography 

Author Year 

Acosta et al. 2007 

Acosta, M., Farias, R., Vilela, A. J., et al. 2007. Deepwater Horizontal 
Openhole Gravel Packing in Marlim Sul Field, Campos Basin, Brazil - 
Completion Project Learning Curve and Optimization. SPE Drilling & 
Completion 22 (04): 334-340. SPE 96910. 

Adeyanju and 
Oyekunle 2013 

Adeyanju, A. O., and Oyekunle, L. O. 2013. Experimental Study of Wax 
Deposition in a Single Phase Sub-cooled Oil Pipelines. SPE Nigeria Annual 
International Conference and Exhibition, Lagos, Nigeria, 5-7 August. SPE 
167515. 

Afolabi et al. 2008 

Afolabi, A. F., Opusunju, A. U., Jaspers, H. F., et al. 2008. Increasing 
Production in a Brownfield With Heavy Crude and Fine Problems by 
Application of New HF-Acid System: Case Histories. SPE International 
Symposium and Exhibition on Formation Damage Control, Lafayette, 
Louisiana, USA, 13-15 February. SPE 112558. 

Alapati and Joshi 2013 
 Alapati, R. and Joshi, N. 2013. New Test Method for Field Evaluation of 
Asphaltene Deposition, Offshore Technology Conference, Houston, Texas, 6 
- 9 May. OTC 24168 

Albernaz 2005 
Albernaz, R. S.2005. Estudo da importância e sensibilidade de eventos de 
falha para árvores de natal molhadas. 175p. Master Thesis – Oceanic 
Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro. 

Allen and Walters 1999 
Allen, R. F., and Walters, M. 1999. Erskine Field Early Operating 
Experience, Offshore Europe Conference, Aberdeen, Scotland, 7 - 9 
September. SPE 56899 

Alves 2012 

Alves, A.L.R. 2012. Disponibilidade Instantânea de Poços Submarinos 
Durante a Fase de Produção – Visão de Segurança Operacional. 157p. 
Master Thesis – Oceanic Engineering, Universidade Federal do Rio de 
Janeiro, Rio de Janeiro. 
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Alwazzan et al. 2008 
Alwazzan, A. T., Utgard, M. W., and Barros, D. 2008. Design Challenges 
Due to Wax on a Fast Track Deepwater Project. Offshore Technology 
Conference, Houston, Texas, 5-8 May. OTC 19160. 
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Andrews, I. J. 1988. A Case Study of Casing Failure and Damage Under 
Artificial Lift Conditions in the Montrose Field. European Petroleum 
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