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He stretches out the north over the void

and hangs the earth on nothing. He binds

up the waters in his thick clouds, and the

cloud is not split open under them. He

covers the face of the full moon and

spreads over it his cloud. He has inscribed

a circle on the face of the waters at the

boundary between light and darkness. The

pillars of heaven tremble and are

astounded at his rebuke.

Job 26:7-11



Resumo

AZEVEDO, Felipe Miranda. Otimização Topológica Bidirecional Evolucionária Acustica para o

Projeto de Silenciadores. 2017. 120p. Dissertação (Mestrado). Faculdade de Engenharia Mecânica,

Universidade Estadual de Campinas, Campinas, Brasil.

Este trabalho propõe um procedimento para projeto de silenciadores automotivos baseado em

modelos acústicos por elementos finitos usando Otimização Acústica Evolucionária Bi-direcional.

O objetivo principal é descobrir a melhor configuração de barreiras dentro do silenciador acústico

usado na indústria automobilística que minimiza o nível de pressão sonoro na saída do silenciador.

O meio acústico é governado pela equação de Helmholtz e condições de contorno de paredes rígidas

são introduzidas para representar barreiras acústicas. O problema continuo é resolvido no domínio

da frequência e é discretizado usando o método dos elementos finitos.

A função objetivo adotada é Perda de Transmissão (TL). A maximização da TL garante que

o nível de pressão sonoro na saída do silenciador seja reduzido. Para encontrar a configuração de

barreiras acústicas que maximiza a função TL do silenciador o método de Otimização Topológ-

ica Evolucionária Bi-direcional (BESO) é utilizado. O método de otimização BESO foi escolhido

devido as suas características binárias e para evitar o uso de algoritmos de pós-processamento.

Usando o método BESO topologias simples em modelos 2D são encontradas, maximizando

TL para diferentes frequências. As soluções 2D encontradas podem ser utilizadas como referência

para a manufatura de silenciadores reais. Alguns exemplos são apresentados para mostrar a

eficiência do método proposto.

Palavras-chave: Otimização Topológica; Análise acústica; Silenciadores.



Abstract

AZEVEDO, Felipe Miranda. Bi-directional Evolutionary Acoustic Topology Optimization for

Muffler Design. 2017. 120p. Thesis (Mestrado). School of Mechanical Engineering, University of

Campinas, Campinas, Brazil.

This work proposes an automotive acoustic muffler design procedure based on finite element

acoustic models using a Bi-directional Evolutionary Acoustic Topology Optimization. The main

goal is to find the best configuration of barriers inside acoustic mufflers used in the automotive

industry that minimizes sound pressure level in the outlet of the muffler. The acoustic medium is

governed by Helmholtz equation and rigid wall boundary conditions are introduced to represent

acoustic barriers. The continuum problem is solved in the frequency domain and it is discretized

using the finite element method.

The adopted objective function is Transmission Loss (TL). Maximizing TL guarantees that

the sound pressure level at the outlet of the muffler is reduced. To find the configuration of acoustic

barriers that maximizes the Transmission Loss function of the muffler a Bi-directional Evolution-

ary Structural Optimization (BESO) method is used. The optimization method (BESO) used was

chosen because of its binary characteristics and to avoid using post-processing algorithms.

Using BESO method simple topologies in 2D models are reached, which maximizes the

Transmission Loss function for different frequencies. The 2D solutions can be used as reference

to manufacture 3D mufflers. A few examples are presented to show the efficiency of the proposed

design procedure.

Keywords: Topology Optimization; Acoustic analysis; Mufflers.
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1 INTRODUCTION

This chapter’s objective is to present the purpose and general scope of this work by introduc-

ing the main concepts of typical exhaust systems used in automotive industries. Initially, the moti-

vations and context that instigated this work are exposed showing the current search for healthier

environments in regards to sound pollution. Secondly, a brief bibliographic review is done on the

main themes surrounding this work creating a background and overall understanding of the state

of the art in regards to mufflers and optimization research. Following this work’s thematic review

general and specific goals of this research are listed. Thereon, a general description of this works

content is made, providing an understanding of each chapter’s layout.

1.1 Motivation and Context

Noise levels attributed to automobiles have been an important topic of study. Since the first

appearance of combustion engines, noise-related health problems have been an issue not only for

passengers but to pedestrians (GENUIT, 2004). The demand for power and speed in automobiles

grew quickly throughout the years and to answer that demand the industry created lighter and more

powerful engines. Noise generated inside and outside automobiles grew together with road traffic

requiring better noise absorbing technology (Krebber et al., 2002; García and Faus, 1991).

Noise created in urban centers was raised to a point that regulations had to be created to

control the harmful effects of the noise pollution generated by the automobiles. Recently those have

been updated to apply a more strict limit, the Environment Action Programme to 2020 adopted

by the European Union proposed a significant decrease in noise pollution, almost reaching the

recommended noise levels by the World Health Organization (JURAGA et al., 2015). One of the

pieces of equipment used to reduce noise in the circumstances mentioned above is the vehicles

silencer or muffler.

Positioned at the end of an internal combustion engine exhaust system, mufflers are an en-

gineering solution to control engine noise levels. Figure 1.1 presents an acoustic muffler model.

The principal goal of the exhaust system is to minimize the automobile’s engine radiated noise.

The constant pressure made by international organizations to decrease noise levels, recently updat-

ing the Environmental Noise Directive (2002/49/EC), encouraged the development of new muffler

schemes and other techniques for noise attenuation.
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Figure 1.1: Acoustic muffler at the end of an exhaust system.

The modeling of a muffler and the evaluation of its effectiveness have been important study

topics, Munjal (1987a) comprehensive work in this subject enabled new lines of research and had

a big impact in the automotive industry. Since then, optimization methods together with the Finite

Element Method have become popular tools for design in the most diverse research fields. Figure

1.2 presents a muffler model with perforated pipe.

Figure 1.2: Muffler model whit perforated pipe (YEDEG et al., 2016a).

In the scenario described above, this work proposes the usage of an optimization technique

in order to achieve a muffler internal topology with optimum characteristics. In this work, the

parameter or characteristic that must be maximized is the acoustic filter transmission loss (TL). A

bi-directional evolutionary structural optimization method (BESO) (HUANG AND XIE, 2010) was

chosen. Using this method the design of muffler internal barriers can be performed considering

different frequencies of operation and a certain amount of material.
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1.2 Bibliographic Review

In this section, a succinct bibliographic review is presented. A development timeline for muf-

fler acoustics, topology optimization, and acoustic optimization is created. The review starts with

references about acoustic filters transmission loss. In the sequence, a brief review about evolution of

structural optimization is presented. Finally acoustic topology optimization (ATO) area is reviewed.

1.2.1 Muffler Acoustics

Muffler and duct acoustics have been studied for a long time, but the first comprehen-

sive experimental investigation of muffler analysis and design was done by Davis et al. (1954)

(MUNJAL, 2013). The evolution of manufacturing techniques and the growing requirements for

less noise encouraged new researches in muffler design, since Davis et al. (1954) work several

authors studied the noise attenuation phenomena inside the muffler.

The acoustic filter theory first introduced by Davis et al. (1954) had wide acceptance, how-

ever, it still left phenomena unexplained, for instance, different behavior than expected when muf-

flers were subjected to higher frequencies and failure to describe muffler behavior for intricate

muffler configurations. Evaluating transmission loss in complex expansion chambers was a diffi-

cult task. Until the decade of 1970, engineers would have to rely on approximations and numerical

techniques like Finite Difference Method (FDM), but the application of those for complex geome-

tries was difficult. Young and Crocker (1975) developed an easier way of characterizing the muffler

noise attenuation property. The method proposed estimates TL using a finite element method (FEM)

with the advantage of working well with arbitrary geometries opposed to FDM. Following the same

trend, Craggs (1976) modeled acoustic muffler as damped acoustic systems using FEM.

In the subsequent years, some other aspects of muffler acoustics were introduced and studied.

The porosity of the duct inside a resonator or muffler presented a big issue in higher frequencies.

Sullivan and Crocker (1978) work created a mathematical model that accurately predicts the behav-

ior of resonators solving the issue mentioned above to a certain extent. Peat (1982) work introduced

flow into the analysis and four-pole parameters of ducts were evaluated using FEM.

In 1983 a considerable amount of muffler design studies had been reported but only a small

percentage of those included theoretical models and experimental studies on real exhaust systems
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(PRASAD AND CROCKER, 1983). Prasad and Crocker (1983) used a real eight-cylinder Ford engine

for experimentation and validation of their proposed model, which revealed the source conditions

importance to design and analysis of mufflers.

The main usage of low frequencies in order to take advantage of plane wave propagation in

most works reached a problem when the presence of higher modes started being noticed at area dis-

continuities of mufflers with intricate geometries (MUNJAL, 1987b). Those non-accounted higher

modes presented problems for the mufflers noise attenuation and diminished their performance.

Munjal (1987b) work presented a low computational cost 3D analysis method that accounted for

those problematic 3D higher modes facilitating muffler analysis.

Transmission Loss is an important characteristic of a muffler, its evaluation was mainly done

through the four-pole transfer matrix approach, to some, this approach was indirect and time-

consuming. Wu and Wan (1996) proposed a new method to effectively calculate TL, the Three-

Pole Method (TPM). Opposed to the transfer matrix approach which needed 2 sets of boundary

conditions resulting in 2 different systems to be solved, the TPM only needed 1 set of boundary

conditions and 1 system to be solved for evaluating TL at a given frequency (WU AND WAN, 1996).

Later on, Tao and Seybert (2003) reviewed the different methods of calculating TL, which included

TPM, Two-Source Method and the Two-Load method both using the transfer matrix method. Bi-

lawchuk and Fyfe (2003) compared TPM and the 4-pole transfer matrix methodology using FEM

and Boundary Element Method (BEM) approaches showing that both methods reach similar results

but the TPM with FEM approach was faster.

In the last decade, a lot of effort have been made towards finding muffler designs with higher

performance. Oh and Cha (2000) and Gerges et al. (2005) works took a step towards finding more

effective muffler designs using optimal design schemes and the transfer matrix method with exper-

imentation respectively.

1.2.2 Structural topology optimization

Structural optimization in a simplistic way is the search for the best structure that can with-

stand a certain load. Three types of optimzation can be cited: sizing optimization, shape optimiza-

tion and topology optimization. By rearranging the material (removing/adding) inside the structure

using a sensitivity number as a guide, topology optimization can find the best topology for the pro-

posed scenario. Prager and Rozvany (1977) work in modern optimal layout theories was a pioneer
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research in the field. Several methods of optimization were developed and improved since then.

Bendsøe and Kikuchi (1988) presented a work about homogenization theory of periodic me-

dia using porous materials as means to generate optimal topologies. One year later Bendsøe (1989)

proposed a simplified material model named Solid Isotropic Material with Penalization (SIMP).

The SIMP method became one of the most used methods in the optimization field being extremely

used even nowadays. Its popularity and development can be attributed to Ole Sigmund works (Sig-

mund, 1994, 1995, 2001). Along with, SIMP, other optimization techniques were developed with

the growing computational power and expansion of the field. Level-set method, homogenization

methods, evolutionary methods among others are examples of optimization methods.

Level-set method has appeared more recently, Wang et al. (2003) and Allaire et al. (2004) first

introduced and used the method. It consists in representing structural boundaries using a level set

model. Level set methods can represent complex topologies and boundary shapes of the structure

in a concise way. The flexibility of the method is one of its great advantages.

The BESO method presented in (QUERIN et al., 1998), an evolutionary optimization method,

was first introduced as the Evolutionary Structural Optimization (ESO) method in (Xie and Steven,

1993, 1997). The ESO method used a methodology of gradual removal or addition of elements

with discrete design variable instead of continuum variables. With further research, the method

changed to be more robust, becoming the Bi-directional Evolutionary Structural Optimization

(BESO) method. In its work Zhou and Rozvany (2001) pointed some shortcomings the method

had commenting on its validity. Zuo et al. (2010) and Huang and Xie (2007) works presented

studied tools such as numeric filters in order to make the method more robust and general.

Since its creation, the BESO method was used in several optimization problems showcasing

the versatility of the method. Vicente et al. (2016) did a multi-scale optimization to minimize fre-

quency response. Picelli et al. (2015) used the method to maximize the natural frequencies consid-

ering acoustic-structure interaction. Vicente et al. (2015) optimized frequency response considering

fluid-structure interaction.

1.2.3 Acoustic topology optimization

As mentioned before, topology optimization seeks to find the best structural design for a

certain case. Acoustic topology optimization (ATO) tries to achieve topologies that are optimum
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in an acoustical point of view. Until 2006 only a few problems in acoustics had been worked

with topology optimization (DÜHRING, 2006). One of the few works published was (BARBIERI

AND BARBIERI, 2006). Barbieri and Barbieri (2006) used shape optimization in order to maximize

muffler TL using Zoutendijk’s Feasible Directions Method (FDM). The FDM optimized each of

the design variables and a new analysis would be done until convergence criteria were met.

In regards to topology optimization, Dühring (2006) used SIMP method to control the acous-

tic properties in a room by changing the material distribution in the ceiling. The possibility of

decreasing sound levels in a specific portion of a room is of great interest in the automotive indus-

try, where the method could be applied to diminish sound levels where the passengers would be

sited for instance. In this case, the application of the topology optimization could also be used for

the design of soundproof materials or in the project of recording rooms.

Other applications of topology optimization with acoustic purposes were studied as well.

Wadbro and Berggren (2006) used the Method of Moving Asymptotes (MMA) to optimize an

acoustic horn trying to minimize the sound reflections that go back into the waveguide. Including

material in the expanding area of the horn and changing its configurations through the optimization

process created horns with more efficiency. Essentially the fact that better horns were designed for

a specific span of frequency proved that a topology optimization process for elastic structures could

also be applied in the acoustic field.

In further works, Dühring et al. (2008) showed that topology optimization can be used effec-

tively to minimize sound pressure amplitude in a chosen area inside a room and to create barriers

for noise attenuation purposes. Kim and Yoon (2015) proposed new shapes of sound barriers in

an outside environment by distributing rigid and porous material with a topology optimization ap-

proach, the "T" shape barrier was shown to be one of the most efficient sound barriers. Once the

applicability of the optimization approaches to this type of problem had been demonstrated several

other acoustic problems were studied.

Optimization approaches started being used in order to achieve greater noise attenuation in

mufflers . In Lee and Kim (2009) the muffler internal partitions were optimized using the MMA

method to achieve maximum TL. Using FEM and a three-pole methodology Lee and Kim (2009)

achieved a higher TL parameter introducing sound barriers inside the expansion chamber. Fol-

lowing the same trend, other authors have come to study the addition of partitions in expansion

chambers.
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Muffler TL maximization was done using different methods and different conditions and

muffler models. Lee and Jang (2012) optimized the muffler partitions layout considering TL and

flow characteristics. Yoon (2013) used a Delany-Bazley empirical model of a fibrous material in the

optimization process in order to find the best configuration of a porous material inside the muffler.

Other works presented acoustic-thermal coupling (LEE AND OH, 2014), flow-reversing chambers

(JANG AND LEE, 2016) etc.

New muffler models are being created and/or adapted to represent more realistically the work-

ing conditions and characteristics of a muffler. Yedeg et al. (2016a) proposed and studied a muffler

model with a perforated pipe implemented as a thin impedance layer inside the muffler and Yedeg

et al. (2016b) researched a way of using a Nitsche-type method for acoustic problems with embed-

ded permeable surfaces, this method cane be used as a modeling tool for muffler optimization.

While many works were done on ATO and more specifically on topology optimization of

mufflers, only a few used experimental data to further observe its simulation results, in Lee (2015)

work, acrylic mufflers were produced to validate Transmission Loss levels of two muffler optimized

topologies, the experiments presented similar TL curves thus validating the optimization results.

Most of the presented works in the field use 2D formulation to model the muffler, for the sake

of simplicity or to avoid big computational costs. Others used different softwares to study design

and definition of exhaust systems, Moura et al. (2008) used a commercial one-dimensional virtual

simulation software.

1.3 Objectives and Contributions

This works main purpose is to adapt and implement an acoustical topology optimization algo-

rithm using the BESO method for reactive muffler design. In order to optimized a reactive muffler

one of its performance parameters (TL) was chose as objective function and strategies of how to

evaluate this performance parameter and its sensitivities in the design domain are proposed. Fi-

nite element mesh influence in the optimum topologies reached is investigated. This works specific

objectives are listed bellow:

◦ Acoustical analysis of the behavior of reactive mufflers to develop the transmission loss op-

timization problem.

◦ Propose and validate a strategy for transmission loss evaluation together with a finite element
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approach.

◦ Implement an adapted BESO algorithm for the muffler acoustical problem.

◦ Evaluate the efficiency of the mufflers with the final topologies found using the proposed

method.

◦ Analyze finite element mesh influence in the final topologies.

This works most important contribution is the first usage of the BESO method for the muffler

optimization problem. Secondary investigations are done in order to observe the methods compati-

bility with the proposed optimization case. This work gives a general understanding of the muffler

acoustical problem as well.

1.4 Work layout description

This dissertation is organized into five chapters. This chapter presents a general overview of

acoustic mufflers including their functionality and importance in today’s society health. A brief

bibliographic review is done over the main themes of this dissertation, muffler acoustics, structural

topology optimization and acoustic topology optimization. The motivations for this research are

presented, general and specific objectives are listed and the contributions of this work are exposed.

Chapter 2 introduces the main study theme of this dissertation, expansion chamber mufflers.

Functionality, types and performance parameters are presented in order to lay a solid foundation of

the subject. The continuum formulation starting with the Helmholtz equation and boundary con-

ditions is described. A discrete finite element formulation is developed for the acoustical muffler

using a Weighted residual method. The method proposed for evaluating TL, objective function of

the optimization, is explained and validated using analytical equations as comparison. The model-

ing of the acoustic barriers introduced inside the muffler is described.

Chapter 3 presents the optimization problem. The sensitivity number is derived and the analy-

sis based on the sensitivity is explained. The evolutionary method (BESO) implementation aspects

are presented. Filter scheme, sensitivity history and design variable update steps of the optimization

are described. Finally, the evolutionary procedure proposed in this dissertation is summarized at the

end of the chapter.
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Chapter 4 exposes numerical examples and discusses the results of the optimization cases.

Primarily BESO Hard-kill results are presented and analyzed. Secondarily, four optimization cases

are presented using four different characteristic frequencies, this cases are studied and its final

topologies are evaluated. Different meshes are tested to see the methods capability of reaching

optimal topologies that are mesh independent.

Chapter 5 presents this dissertation’s concluding remarks and suggestion for future works.
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2 SILENCER ACOUSTICS: PERFORMANCE PARAMETERS, CON-

TINUUM FORMULATION AND DISCRETE MUFFLER MODELLING

Analysis of a muffler can be done using different methods, transfer matrix and three-pole

method are examples of it. This chapter presents concepts on acoustic filter theory with focus on

expansion chamber mufflers. The goal is to understand the theory and behavior of the expansion

chamber. The data acquired using the theory here explained will be used in the next chapters for

the optimization problem. The concepts and theory presented here can be found in Munjal (1987a),

Wu and Wan (1996), Barron (2002) and Lee and Kim (2009).

2.1 Introduction

A silencer is an important equipment used for noise control in machinery exhaust and other

sources involving gas flow (BARRON, 2002). Silencers can be passive or active. Passive silencers

exploit wave reflection (reactive muffler) or wave absorption (dissipative mufflers) in order to at-

tenuate sound and are mainly called mufflers. Active silencers use electronic techniques to create

destructive interference and attenuate sound.

Basically a silencer uses geometric tools to creates wave reflections effectively decreasing

the sound power output. The application of an optimization process in a reactive muffler seeks to

maximize the wave reflection effect that diminishes sound power in the outlet of the silencer. The

wave transmission phenomena inside the duct is governed by the Helmholtz equation.

The application of the Helmholtz equation yields the acoustic pressure in the frequency do-

main and has two important restrictions, energy dissipation effects are neglected and pressure wave

amplitude must be relatively small in comparison with atmospheric pressure (BARRON, 2002).

To analyze and solve the optimization problem proposed in this work it is necessary to solve the

Helmholtz equation.

The reactive muffler model characteristic acoustic pressure field given by the Helmholtz equa-

tion is an important indicator of the muffler behavior. It can be said that the acoustic pressure field

displayed by the muffler for any given frequency is a function of its attenuating properties. The

objective of this chapter is not only to present the concepts of acoustic filters but to give all the

mathematical modeling necessary to simulate the muffler behavior in the optimization problem
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Figure 2.2: Typical reactive automotive muffler (POTENTE, 2005).

is able to attenuate sound since the energy would still be the same in the outlet. The answer to that

paradox is that the reflection reduces the net energy flow in comparison with the unattenuated case

(FAHY, 2000). Although the process of sound attenuation by wave reflection is clear, it is still hard

to quantify the effect. Some performance parameters were created so that the wave reflection effect

on the muffler could be properly accounted for.

2.3 Muffler performance parameters

The performance of an acoustic filter, in this case an expansion chamber muffler, can be

measured using three parameters (MUNJAL, 1987a).

◦ Insertion Loss (IL)

◦ Level Difference (LD) or Noise Reduction (NR)

◦ Transmission Loss (TL)

Insertion loss by definition is the logarithmic ratio between the sound power in the outlet of a

system without a silencer and the sound power of the same system with a silencer. Figure 2.3 shows

two ducts, one has no silencer and has sound power W1 in the outlet and the other has a silencer

presenting W2 in the outlet.
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TL = 20 log
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(2.7)

Equation 2.7 can be used to evaluate transmission loss in a silencer where exhaust and tail

pipes have the same cross-sectional area. The same can be accomplished using analytical equations.

Works such as (MUNJAL, 1987a), (BARRON, 2002) and (DAVIS et al., 1954) present an analytical

formulation for single and double expansion chamber mufflers. Analytical equations presented in

this work assume the following:

◦ Sound pressures are small when compared with the absolute value of average pressure in the

system.

◦ Tailpipe is terminated with its characteristic impedance avoiding reflected waves.

◦ The muffler walls neither conduct nor transmit sound energy.

◦ Only plane pressure waves are considered.

◦ Viscosity effects are neglected.

The assumptions made refer to cylindrical ducts but can be used in bi-dimensional cases as

the one proposed in this work. For a single expansion chamber case in which exhaust pipe and tail

pipe have the same diameter, TL can be calculated as

TL = 10× log10

(

1 +
1

4

(

m− 1

m

)2

sin2
(

kL
)

)

(2.8)

where,

m =
d

di
, k =

2πf

c

d is the expansion chamber diameter, di is the inlet and outlet duct diameter, k is the wave number,

f is the frequency and c is the speed of sound in the medium. In Davis et al. (1954) work m was an

area ratio of the cylindrical mufflers, for the bi-dimensional case a width ratio is used. Evaluating

Eq. 2.8 from 0 to 1200 Hz analytical TL muffler behavior can displayed, as seen in Fig. 2.5.
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Figure 2.5: TL analytical function of a single expansion chamber muffler with m = 5.

The analytical transmission loss behavior show in Fig. 2.5 describes a typical pattern for an

expansion chamber. The transmission loss curve shown have maximum TL of approximately 8 dB

and minimum of 0 dB. In this work, a few of the frequencies that present peak TL (8 dB) and valley

TL (0 dB) were choose to be studied in the optimization cases, they are 346 Hz, 518 Hz and 690

Hz.

In this work, the optimization process will add material inside the expansion chamber so it

is possible that a double expansion chamber configuration appears. Figure 2.6 shows a 3D repre-

sentation of a double expansion chamber and a 2D model with its main measures for the analytical

formulation. Transmission loss can be calculated in an analytical manner for this kind of configu-

ration. According to Barron (2002),

TL = 10× log10
(

G2
1 +G2

2

)

(2.9)

where,

G1 = cos (2kL2)− (m− 1) sin (2kL2) tan (kL1) (2.10)
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Figure 2.7: TL analytical function of a double expansion chamber muffler (L1 = 0.11m, L2 =
0.25m and m = 5).

presents this different configuration and its measurements. The analytical formulation presented

before is not valid for this case. For configuration shown in Fig. 2.8 TL can be rewritten as,

TL = 10× log10

(

F 2
1 + F 2

2

16m2

)

(2.12)

where,

F1 = (m+ 1)2cos [2k (L1 + L2)]− (m− 1)2cos [2k (L2 − L1)] (2.13)

F2 =
1

2

(

m+
1

m

)(

(m+ 1)2sin [2k (L1 + L2)]− (m− 1)2sin [2k (L2 − L1)]

)

−

+

(

m− 1

m

)

(

m2 − 1
)

sin (2kL1)

(2.14)
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Figure 2.9: TL analytical function of a double expansion chamber muffler (L1 = 0.055m and
L2 = 0.195m).

Eqs. 2.16, 2.17 and 2.18.

▽
2P +

ω2

c2
P = 0 in ΩdUΩf (2.15)

▽P · n =
∂P

∂n
in Γw (2.16)

Vn = − 1

jρω

∂P

∂n
in Γi (2.17)

P = Z̄Vn = − Z̄

jρω

∂P

∂n
= − 1

jρωĀ

∂P

∂n
in Γo (2.18)
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2.4.1.1 Reactive acoustic system: Descretized formulation

To find approximate solutions of the acoustic muffler system a FEM approach was used. In

order to apply FEM a weighted residual formulation is used in the strong form of Eq. 2.15, so that

a weak form is obtained. Using weight function Φ, Eq. 2.15 becomes,

1

ρ

∫

Ω

Φ▽2PdΩ +
ω2

ρc2

∫

Ω

ΦPdΩ = 0 (2.20)

Using Green’s theorem the weak form of Eq. 2.20 can be rewritten as:

1

ρ

∫

Γ

Φ▽P · ndΓ− 1

ρ

∫

Ω

▽Φ · ▽PdΩ +
ω2

ρc2

∫

Ω

ΦPdΩ = 0 (2.21)

where Γ is the complete boundary of the domain presented in Fig. 2.10.

Using the Neumann boundary condition, Eq. 2.16, the weighted residual formulations be-

comes

1

ρ

∫

Ω

▽Φ · ▽PdΩ− ω2

ρc2

∫

Ω

ΦPdΩ =
1

ρ

∫

Γ

Φ
∂P

∂n
dΓ (2.22)

Equation 2.22 is the weak form of the Helmholtz equation. In this work the muffler model

will use three boundary conditions, rigid wall condition, imposed particle velocity and imposed

impedance, respectively shown in Eq. 2.23.











▽P · n = 0

Vn = 1

Z̄ = ρc

(2.23)

Using the boundary conditions proposed in Eqs. 2.16, 2.17 and 2.18 the weak form Eq. 2.22 can be

written as follows

1

ρ

∫

Ω

▽Φ · ▽PdΩ− ω2

ρc2

∫

Ω

ΦPdΩ = −1

ρ

(
∫

Γi

jρωΦVndΓi +

∫

Γo

jρωΦĀPdΓo

)

(2.24)

where the rigid wall boundary Γw integral vanishes accordingly with Eq. 2.23.
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Using Galerkin’s weighted residual approach the weight function and its gradient can be

interpolated using the same set of shape functions as the sound pressure and the sound pressure

gradient, such that






















Φ = Nφi

P = Npi

▽Φ = ∂Nφi = Bφi

▽P = ∂Npi = Bpi

(2.25)

where φi is the vector of nodal test function magnitudes, pi is the vector of nodal acoustic pressures,

N is the set of shape functions and B their derivatives.

Applying Galerkin’s approach from Eq. 2.25 in Eq. 2.24 the following system is reached

(

Kg + jωCg − ω2Mg

)

p = v (2.26)

with,

Ke =

∫

Ωe

BtBdΩe (2.27)

Ce = ρĀ

∫

Γoe

NtNdΓoe (2.28)

Me =
1

c2

∫

Ωe

NtNdΩe (2.29)

v = −jρω

∫

Γi

NtVndΓi (2.30)

where Ke is the fluid element stiffness matrix, Ωe is the element fluid domain, Ce is the element

damping matrix, Γoe is the outlet element boundary, Me is the element mass matrix, v is the force

equivalent vector in the inlet boundary Γi. Using the finite element methodology (Zienkiewicz and

Taylor, 2000; Reddy, 1993) the global matrices presented in Eq. 2.26 can be written as follows.

Kg =
N

A
i=1

Ke (2.31)
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Pin =
P1 − P2 · e−jk·l

1− e−j2k·l
(2.37)

where k is the wave number and l is the axial distance between pressure points 1 and 2.

Since,

Pout = Po

transmission loss described in Eq. 2.7 becomes

TL = 20× log10

(

∣

∣

∣

∣

1
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P1 − P2 · e−jk·l

1− e−j2k·l

∣

∣
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∣

)

(2.38)

Transmission Loss in Eq. 2.38 can be calculated once the acoustic pressures in points 1, 2 and 3 are

known.

2.6 Validating FEM muffler model

In this section the FEM approach presented before is used. The acoustic pressure distribution

in the muffler is displayed for some distinguished frequencies and the three-pole method presented

is compared with the given analytical equations.

2.6.1 Acoustic pressure distribution

Once the finite element system Eq. 2.26 is solved, the sound pressure for each finite element

is obtained. To find the acoustic pressures using a FEM model some variables must be defined, for

example, type of finite element, element size, expansion chamber muffler lengths and diameters.

In this work, all the examples use an element called Quad4. The Quad4 element is a rectangle

with 4 nodes, as displayed in Fig. 2.13. Meshes (a) and (b) presented have 720 elements and 3120

elements respectively. All necessary measures of the expansion chamber muffler and element size

used in the simulations of this section are exposed in Fig. 2.13. In the coarse mesh Fig. 2.13 (a) the

element size is 10x10 mm. In the fine mesh, Fig. 2.13 (b), the element size is 5x5 mm. Both elements

are square and identical for the whole domain. In consequence, the element can be calculated only
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(a)

(b)

(c)

(d)

Figure 2.14: Absolute acoustic pressure distribution for two different acoustic modes of the single
expansion chamber. (a) 346 Hz of frequency with 780 elements mesh. (b) 346 Hz of frequency with
3120 elements mesh. (c) 690 Hz of frequency with 780 elements mesh. (d) 690 Hz of frequency
3120 elements mesh.
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2.6.2 Transmission Loss - Three-pole method Vs. Analytical

In this work three different analytical cases were presented, a single expansion chamber pre-

sented in Fig. 2.4, a double expansion chamber by adding a partition presented in Fig. 2.6 and a

double expansion chamber by connecting two single expansion chambers presented in Fig. 2.8.

Using the three-pole method calculated with Eq. 2.38 together with the finite element approach a

comparison of the transmission loss curves and analytical TL response calculated with Eq. 2.8 for

the single expansion chamber can be done using the two different meshes presented.

Figure 2.15: Comparison of analytical with three-pole method transmission loss using different
finite element meshes.

In Fig. 2.15 the transmission loss curves for both meshes presented are shown. Since the

behavior presented by both meshes in respect to the transmission loss is similar both mesh options

could be used in the optimization cases. Although mesh (a) has the advantage of having a smaller

number of elements inducing a cheaper computational cost, mesh (b) was chose and used for the

optimization cases of this work. In Fig. 2.16 the TL behavior evaluated with mesh (b) is compared

with the analytical solution. The finest mesh was chosen due to a higher resolution needed during

the optimization process. Since a small percentage of volume (5%− 10%) will be taken out of the

design domain, rates of volume removal of each iteration will be of 10−1 order which require more
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refined meshes.

Figure 2.16: Comparison of analytical with three-pole method transmission loss.

In order to analyze the approximation error between both curves in Fig. 2.16 important data

on peaks and valleys was compiled in Tab. 2.1.

Table 2.1: Peak and valley information: Transmission loss and frequency.

TP Method TL (dB) Frequency (Hz) Analytical TL (dB) Frequency (Hz)

2nd Peak 8.368 520 8.299 516
3rd Peak 8.573 868 8.299 856
4th Peak 8.87 1200 8.299 1200

2nd Valley -0.00073 690 0 686
3rd Valley -0.0062 1042 0.00209 1030

Observing both Fig. 2.16 and Tab. 2.1 two errors can be estimated, amplitude error and fre-

quency error. The amplitude error is the difference in amplitude presented by the three-pole method

when compared with the analytical formulation. The frequency error is the difference between fre-

quencies presented by both curves in peaks and valleys. Both errors are estimated and summarized

in Tab. 2.2.
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Table 2.2: Peak and valley information: Transmission loss and frequency.

Amplitude error (%) Frequency error (%)

2nd Peak 0.8 0.77
3rd Peak 3.3 1.4
4th Peak 6.88 –

2nd Valley – 0.58
3rd Valley – 1.16

In the second peak of curves presented in Fig. 2.16 there is an amplitude error of 0.8% in

the third and fourth peak this error grows to 3.3% and 6.88% as shown in Tab. 2.2. The amplitude

errors in valleys is neglected as all transmission loss values can be rounded to 0. The frequency

error presented also shows growth when higher frequencies are analyzed. The second peak of the

tree-pole method curve presents 0.77% error in frequency when compared with the analytical curve.

The third peak of the three-pole method have 1.4% error. The fourth peak is not shown completely

therefore the frequency error is not evaluated.

The frequencies used in the optimization cases are in areas where the error is minimum. From

0 Hz until 690 Hz the error between the three-pole method with finite element approach and the

analytical formulation is less than 1%. Based on these results, for practical purposes, it can be said

that the FEM model is validated.

2.6.3 Double expansion chamber: Hard or Soft

For the double expansion chamber cases, rigid material was add to the empty chamber in

order to match the characteristics described in Figs. 2.6 and 2.8. In Fig. 2.17 the double chamber

configuration and its acoustic pressure distribution for 690 Hz are shown.

Using muffler FEM model Fig. 2.17 (a) and (b) a comparison between analytical TL and

three-pole method TL can be done. Figure 2.18 shows the comparison between three-pole method

calculated by Eq. 2.38 and double expansion chamber analytical Eq. 2.9 for muffler configuration

Fig. 2.17(a). Figure 2.19 shows the same comparison for muffler configuration Fig. 2.17(b). In

both figures a hard-kill approach was used to simulate rigid partitions inside the muffler. Using

this approach the elements are eliminated from the finite element mesh and rigid wall boundary

conditions are naturally included.
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(a)

(b)

Figure 2.17: Double expansion muffler models as proposed in Fig. 2.6 and 2.8. (a) Model with par-
tition creating two chambers (L1 = 0.11m, L2 = 0.25m and m = 5). (b) Model of two expansion
chambers connected by duct (L1 = 0.055m, L2 = 0.195m and m = 5).

Figure 2.18: Comparison of analytical TL with three-pole method TL, muffler configuration (a).

It can be noticed that the deviation presented by the amplitude and frequency of TL curves in

Figs. 2.18 and 2.19 are greater in this cases, particularly for the configuration Fig. 2.17(a), where

the TL curve show more complex and irregular oscilations. The behavior of configuration Fig.

2.17(b) is more smooth and the deviation presented between the numeric and analytical solution
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Figure 2.19: Comparison of analytical TL with three-pole method TL, muffler configuration (b).

are smaller.

In this work two approaches are used to simulate addition of material inside the expansion

chamber. The hard-kill approach entirely removes fluid elements from the finite element mesh

creating rigid walls while the soft-kill approach greatly diminishes the influence of the element

by multiplying its stiffness and mass matrices by a small number. Equations 2.39 and 2.40 show

how stiffness and mass matrices are evaluated when changing fluid elements, superscript f , to void

elements, superscript v.

Kv
e = λKf

e (2.39)

Mv
e = λMf

e (2.40)

The λ variable in both equations penalize the fluid and mass matrices, the smaller λ gets the

closer the element becomes to a complete void. For hard-kill approach λ is 0. In Figs. 2.20 and 2.21

the acoustic effects of hard and soft kill approaches are displayed. In Fig. 2.20 all incident waves
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Figure 2.22: TL comparison using different soft-kill multipliers for muffler model (a).

Fig. 2.23. Due to the high amount of void elements together the soft-kill and hard-kill approaches

have the same influence on the transmission loss behavior, making blue and black lines in Fig. 2.23

seem a single TL response curve.

In this chapter a brief review of expansion chamber muffler theory was done. The analytical

formulation for single and double expansion chambers was presented. The acoustic problem contin-

uum formulation was introduced and the boundary conditions for the muffler were described. The

discrete formulation was explained and used to evaluate the acoustic pressure fields. A Three-pole

method for evaluating TL was presented. Validation of the discrete formulation together with the

three-pole method was done. Different modeling techniques for rigid elements inside the muffler

were tested by analyzing their effects in the transmission loss parameters. The three-pole method

proposed in this chapter was proved to be a viable and accurate option to evaluate TL during the

optimization process. The next chapter will discuss the implementation of the optimization method.
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Figure 2.23: TL comparison using soft and hard-kill approach for muffler model (b).



53

3 BI-DIRECTIONAL EVOLUTIONARY TOPOLOGY OPTIMIZATION

FOR MUFFLER DESIGN

Topology optimization can be done with several methods, SIMP, Level Set and BESO are

examples . This chapter presents the acoustic muffler optimization problem and the methodology

used in this work for the optimization itself. The adapted BESO method used in this work is thor-

oughly explained. The sensitivity number required for the optimization is derived and the necessary

Bi-directional Structural Optimization method numerical implementation steps are introduced. The

concepts and theory presented in this chapter can be found in Sigmund and Petersson (1998), Huang

and Xie (2009), Huang and Xie (2010) and others.

3.1 Introduction

The BESO method proposed in Huang and Xie (2007) work was in fact first introduced as

Evolutionary Structural Optimization (ESO) by (XIE AND STEVEN, 1993). The ESO methodology

diverged from the widely used SIMP at the time. ESOs main proposal was to work with discrete

design variables throughout the optimization instead of the continuum approach SIMP offered. In

the ESO method there would be only void elements or filled elements, respectively elements with

design variable 0 or 1.

The binary characteristic offered by the ESO is one of its great advantages when comparing

optimization methods. This evolutionary approach is based on the gradual removal of less efficient

elements in the structure, changing their design variables from 1 to 0. In order to remove the less

efficient elements a sensitivity analysis of the structure is used to rank all elements in the design

domain according with their importance.

A later work discussed flaws in the methodology (HUANG AND XIE, 2010). Checker-

board patterns, mesh dependency and non-optimal solutions were the main problems presented

by the ESO evolutionary approach. The introduction of a filter scheme (SIGMUND AND PETERS-

SON, 1998) solved the mesh dependency and the checkerboard patterns. The logic ESO followed,

gradual removal of inefficient elements, would not account for cases were later in the optimization

a void element would become important to the structure, this caused the final topology to be an up-

graded structure but not an optimum structure. To solve this issue an algorithm that could remove

and add elements simultaneously was created, the BESO (HUANG AND XIE, 2007).
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The term bi-directional is related to the ability of the new algorithm to reevaluate if void

elements became important to the structure and change their design variable back to 1. The new

evolutionary approach has been used since then in several optimization problems, such as, compli-

ant mechanisms Li (2014), acoustic-structure interaction (PICELLI et al., 2015), frequency response

of fluid interaction systems (VICENTE et al., 2015) and so on.

In this work, the BESO method is adapted to an acoustical problem. The empty expansion

chamber presented in chapter 2 will have partitions added to it by the optimization process in order

to maximize transmission loss.

3.2 Transmission Loss Maximization

To improve the performance of a reactive muffler its transmission loss have to be maximized.

Works such as (LEE AND KIM, 2009), (YOON, 2013), (YEDEG et al., 2016a) and several others use

transmission loss function as at least one of the objective functions in the optimization process when

optimizing reactive mufflers. In this work the BESO method is used with the goal of maximizing

TL for different frequencies.

The reactive muffler optimization problem can be stated as

Find: x = xi where xi = xmin or 1 (3.1)

Maximize: TL (3.2)

Subject to:















(

Kg + jωCg − ω2M
g

)

p = v

Vf −
∑M

i=1 Vixi = 0

(3.3)

The design variable xi in Eq. 3.1 will change through the optimization process in order to

describe a new material layout. In this work, xi can assume two values, i.e. xmin indicating the

absence of the fluid element or the presence of a rigid element and 1 indicating the presence of the

fluid element. For the hard-kill method the xmin is changed to 0. The objective function in Eq. 3.2

is the Transmission Loss of the system, TL defined in Eq. 2.38. Equation 3.3 is a group of two
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equations, the global system equation and the volume constraint equation, with Vf being the final

prescribed volume fraction and M is total number of elements used to describe the optimization

domain Ωd.

The x variable appears in the global system in Eq. 3.3 by using interpolation scheme pre-

sented in Eq. 3.4 and 3.5.

Kg =
N

A
i=1

xΛ
i Ke (3.4)

Mg =
N

A
i=1

xΛ
i Me (3.5)

where Λ is a penalization factor.

Using the interpolation scheme presented the sensitivity analysis can be evaluated as shown

in the next section.

3.3 Sensitivity Analysis

In order to maximize a reactive muffler transmission loss parameter by removing or adding

elements it is necessary to know what elements are less or more efficient in the expansion chamber.

The sensitivity analysis is a rank of the elements based on their efficiency inside the muffler.

In this work the sensitivity used in order to maximize the objective function is gradient-based.

The derivative of the objective function Eq. 2.38 can be written as

αe =
∂TL(ω, xi)

∂xi

=
10

ln10

(

∂ | Pin |2
∂xi

1

| Pin |2 − ∂ | Po |2
∂xi

1

| Po |2
)

(3.6)

During the optimization process the sensitivities of filled elements (xi = 1) and void ele-

ments (xi = xmin) are calculated. Taking in consideration that the acoustic pressures calculated are

complex, Pin squared becomes
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P 2
in =

1

γ

(

P1Re−P2Recos
(

kl
)

−P2Imsin
(

kl
))2

+
1

γ

(

P1Im−P2Imcos
(

kl
)

+P2Resin
(

kl
))2

(3.7)

and accordingly,

P 2
o = P 2

3Re + P 2
3Im (3.8)

with γ being,

γ =
(

1− cos
(

2kl
))2

+
(

sin
(

2kl
))2

(3.9)

where subscripts (Re) and (Im) mean real and imaginary components respectively.

In order to evaluate the sensitivity the derivative terms of eq. 3.6 need to be calculated as

well. Equations bellow show how those terms can be expanded.

∂ | Pin |2
∂xi

=
2

γ
(P1Re − P2Recos (kl)− P2Imsin (kl))

(

∂P1Re

∂xi

− ∂P2Re

∂xi

cos (kl)− ∂P2Im

∂xi

sin (kl)

)

+
2

γ
(P1Im − P2Imcos (kl) + P2Resin (kl))

(

∂P1Im

∂xi

− ∂P2Im

∂xi

cos (kl) +
∂P2Re

∂xi

sin (kl)

)

(3.10)

∂ | Po |2
∂xi

= 2
∂P3Re

∂xi

P3Re + 2
∂P3Im

∂xi

P3Im (3.11)

To calculate Eq. (3.10) and Eq. (3.11), the differentiations of acoustic pressure in the three

points, P1, P2 and Po are necessary. Those can be found by differentiating the governing equation

system in Eq. (3.3) as:

dp

dxi

= −
(

Kg + jωCg − ω2Mg

)−1 d

dxi

(

Kg + jωCg − ω2Mg

)

p (3.12)

where v, the source therm, is considered constant.

The computational cost to solve Eq. 3.12 is significant. To avoid this computational cost, Chu

et al. (1996) and Vicente et al. (2015) used a different scheme to calculate the derivative of defined
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variables. In this work, the adjoint approach is applied. In order to determine the change of response

in specific degrees of freedom pj of the system due to the ith element removal, a vector fj can be

introduced. fj is locator vector, it is composed of zeros and a single one located in the position of

the specific degree of freedom wanted. The following can be written

dpj

dxi

= f tj ·
dp

dxi

(3.13)

The substitution of the global system derivative from Eq. 3.12 into Eq. 3.13 yields

dpj

dxi

= fj
tH−1dH

dxi

p (3.14)

where,

H =
(

Kg + jωCg − ω2Mg

)

The system’s global equation where only the locator vector fj acts can be written as

pj = H−1fj (3.15)

With the substitution of Eq. 3.15 in Eq. 3.14 the pressure derivates necessary to calculate the

sensitivity can be found:

dpj

dxi

= −pj
tdH

dxi

p (3.16)

where the global system’s matrix H derivative in respect to the design variable xi, can be calculated

in local form as follows:

dH

dxi

=
dKg

dxi

− ω2dMg

dxi

(3.17)

where,
dKg

dxi

= ΛxΛ−1
i Ke (3.18)
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dMg

dxi

= ΛxΛ−1
i Me (3.19)

Using Eqs. 3.18 and 3.19 in Eq. 3.17 the following equation is obtained.

dpj

dxi

= −
(

ΛxΛ−1
i

)

pj
t
(

Ke − ω2Me

)

p (3.20)

Once the pressure derivative Eq. 3.20 is found, the derivatives of P 2
in, Eq. 3.10, and P 2

o , Eq.

3.11, can be evaluated and the global sensitivity Eq. 3.6 can be rewritten as

αe =
∂TL(ω, xi)

∂xi

= ΛxΛ−1
i

10

ln10

(

∂ | Pin |2
∂xi

1

| Pin |2 − ∂ | Po |2
∂xi

1

| Po |2
)

(3.21)

The sensitivity analysis can be simplified as follows:

αe =
1

Λ

∂TL

∂xi

=















10
ln10

(

∂|Pin|
2

∂xi

1
|Pin|2

− ∂|Po|2

∂xi

1
|Po|2

)

xi = 1

xΛ−1
min

10
ln10

(

∂|Pin|
2

∂xi

1
|Pin|2

− ∂|Po|2

∂xi

1
|Po|2

)

xi = xmin

(3.22)

Using the sensitivity analysis described in Eq. 3.22 the importance of each element can be

displayed. Figure 3.1 shows the sensitivity distribution in an empty expansion chamber for different

frequencies. The sensitivity distribution gives a insight of where most of the void elements will be

concentrated. The removal of elements with smaller sensitivity number raises transmission loss and

the removal of elements with higher sensitivity number decreases the systems TL.

3.4 Acoustic Topology Optimization Numerical Implementation

In this work the acoustic topology optimization will be done using the Bi-directional evo-

lutionary structural optimization (BESO) method (HUANG AND XIE, 2010). The BESO approach

used in this work follows the scheme presented in the flow chart of Fig. 3.2.

The FEM analysis step, necessary to evaluate the acoustic pressure and transmission loss of
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(a)

(b)

(c)

(d)

Figure 3.1: Sensitivity number distribution for four different frequencies. (a) 346 Hz. (b) 420 Hz.
(c) 518 Hz. (d) 690 Hz.
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V i+1 = V i − ER (3.26)

Sorting αh
e in a descending order facilitates the process of choosing the elements to be added

or removed. In a compact way to describe the process, after sorting the sensitivities a threshold

is created where the elements underneath it, the most negative elements in this case, are removed

by switching their design variable xi from 1 to xmin and the elements above it have their design

variable changed to 1. This sensitivity threshold is called αth.

The elements above αth mentioned have their design variable xi switched to 1 based on an-

other optimization parameter named maximum volume addition ratio ARmax. During the optimiza-

tion process volume addition ration (AR) is calculated based on the number of elements above the

threshold. If AR is smaller than the prescribed ARmax than all elements above αth can be switched

back to xi = 1, otherwise, the ARmax is used to evaluate how many elements must return, using

this number the elements with design variable xmin that have the highest sensitivity are switched

to 1.

Its important to notice that the volume is descending to the volume constraint specified Vf

while there are void elements (xmin) being turned to solid elements (1) and vice-versa which means

that ER parameter must be respected, otherwise the volume constraint would never be met. (XIE

AND STEVEN, 1997) and (HUANG et al., 2010) developed and detailed the procedure needed for

BESO method variable design update used in this work.

3.4.4 Stopping Criteria

Once the prescribed final volume Vf is reached, the volume is then kept constant through-

out the next iterations and a stopping criteria is used to evaluate the convergence of the objective

function. The stopping criteria verifies that the variation of the objective function is within a pre-

scribed error τ , if so, than the optimization is finished and a final topology is reached. The variation

mentioned earlier can be evaluated as follows

error =
|
∑N

j=1(TL)
i−j+1 −

∑N

j=1(TL)
i−N−j+1|

∑N

j=1(TL)
i−j+1

≤ τ (3.27)
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where, TLi is the objective function value in the ith iteration and N is the prescribed number of

iterations the error will take in consideration.

3.4.5 Numerical implementation summary

The optimization algorithm can be summarized in a few steps once all the BESO concepts

and muffler acoustics theories are presented. The evolutionary iterative procedure is described as

follows.

1. Define BESO optimization parameters: Vf , ER, ARmax, rmin, τ and N .

2. Create a discrete domain using a finite element mesh considering particle velocity (Vn) and

imposed impedance (Z̄) boundary conditions.

3. Perform FEM analysis by solving the reactive muffler acoustic system Eq. 2.26 and finding

the acoustic pressure vector (p).

4. Evaluate the objective funtion (TL) of the current iteration using Eq. 2.38.

5. Perform the sensitivity analysis as described in section 3.3 and use numeric filter described

in section 3.4.1 to smooth the sensitivity number.

6. Determine the target volume fraction for the next iteration using Eq. 3.26 .

7. Remove and add fluid elements in accordance with section 3.4.3.

8. Repeat steps 3-7 until the final volumeVf is achieved and the convergence criteria Eq. 3.27 is

met.

In this chapter all implementation aspects of the BESO method for transmission loss maxi-

mization were presented. Next chapter presents numerical examples of the acoustic muffler opti-

mization problem and discussions of such examples.
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different parameters the alterations are mentioned. The starting expansion chamber is filled with

fluid, while the optimization iterations are ran the expansion chamber starts to be filled with void

elements creating rigid walls.

Table 4.2: BESO parameters for the examples 1, 2 and 3.

Variable Description Value

V Initial volume 100%
Vf Final volume fraction 95%
ER Evolutionary volume ratio 0.1%

ARmax Maximum addition ratio 0.1%
rmin Filter radius 3 mm
τ Stopping criteria tolerance 1× 10−4

N Stopping criteria parameter 10
Λ Optimization penalty factor 3

xmin Void element value 10−1

Next sections present optimization cases using hard-kill and soft-kill.

4.1 BESO: Hard-Kill void elements

In this section, the Hard-Kill void elements are used for modeling the rigid elements inside the

muffler expansion chamber during the optimization. For all optimization cases tested in this work

the Hard-kill approach was not capable of meeting the convergence criteria of Eq. 3.27. Figures

4.2, 4.3, 4.4 and 4.5 show the evolution of the objective function for the 4 different frequencies

used in the optimization cases.

The oscillating pattern observed in the objective function and volume evolution curves pre-

sented is caused by the repetitive creation of holes in the partitions created during the optimization

process. Figure 4.6 displays the effect mentioned before showing the topologies before and after

the holes appearance during the optimization. It is important to notice that while the convergence

criteria using the Hard-Kill approach is not met the optimization procedure provided final topolo-

gies that are similar to optimum topologies later shown in this work. In Fig. 4.7 a red line is drawn

to emphasize that the convergence criteria would be met by avoiding the creation of holes and that

would explain the effectiveness of the final topologies even without convergence.
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Figure 4.2: Transmission loss and volume evolution during the optimization procedure for 346 Hz.

Figure 4.3: Transmission loss and volume evolution during the optimization procedure for 420 Hz.



68

Figure 4.4: Transmission loss and volume evolution during the optimization procedure for 518 Hz.

Figure 4.5: Transmission loss and volume evolution during the optimization procedure for 690 Hz.
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The objective function oscillating pattern created during the optimization process could in-

dicate that the interpolation scheme used is not well suited for the dynamic problem with hard-kill

approach. The usage of another filter scheme could also be a remedy to this issue. The solution of

this convergence problem is not further studied in this work.

4.2 BESO: Soft-Kill void elements

In this section the Soft-Kill void elements are used for modeling the rigid elements inside the

muffler expansion chamber.

4.2.1 Example 1: Muffler Design for 1st low TL frequency

In this example the first valley frequency (ω = 346Hz) of the TL curve is used for the

optimization. Since transmission loss approaches zero at the picked frequency the sound pressure

coming from the inlet goes through the muffler almost unchanged.

Figure 4.8: Absolute acoustic pressure distribution in the muffer for 346 Hz.

Figure 4.8 shows the absolute acoustic pressure distribution inside the muffler. A similar

sound pressure is seen in inlet and outlet of the muffler, this effect is caused by the zero TL presented

by this example’s frequency.

The final topology for this optimization case is presented in Fig. 4.9 with the corresponding

acoustic pressure distribution. Trough the optimization process a rigid wall was created separating
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the single expansion chamber in two different chambers. It can be observed that the right side

chamber has a bigger length than the left side chamber. A similar topology was found by Lee and

Kim (LEE AND KIM, 2009).

Figure 4.9: Acoustic Pressure distribution in the optimized muffler of example 1.

The evolution of the objective function and volume fraction are shown in Fig. 4.10 together

with intermediary topologies. Between iterations 14 and 22 the objective function becomes unsta-

ble, that effect is caused because of the progression of the wall in construction. During the process

the wall are not continuous, once they have been fully built the objective function stabilizes in a

ascending pattern and then converges after the volume constraint Vf = 95% at the 50th iteration

is satisfied. After the 50th iteration the topology has reached stability and only a feel changes are

made in the topology until the convergence criteria is met, the transmission loss variation in this

stage is negligible.

Once the final topology is reached is possible do analyze its effectiveness calculating the

Transmission Loss parameter for a range of frequencies. Figure 4.11 shows the behavior of example

1 final topology for frequencies ranging from 1 Hz to 1200 Hz. The first transmission loss valley

became a point with approximately 16.4 dB instead of 0 dB, moreover, other frequencies had their

TL maximized, for instance in 518 Hz the whole peak of 8 dB was maximized to barely 20 dB.

Maximizing transmission loss guarantees a smaller sound pressure level in the outlet region.

Throughout the optimization, while TL is maximized the sound pressure level in the outlet is ex-

pected to get lower until a final topology is found. Figure 4.12 shows the evolution of sound pressure

level response in the outlet throughout the optimization, and as expected the sound pressure curve

is minimized.
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Figure 4.15: Acoustic Pressure distribution in the optimized muffer of example 2.

The evolution of the objective function and volume fraction are shown in Fig. 4.16 together

with some intermediary topologies. Between iterations 12 and 24 the objective function becomes

unstable, that effect is caused because of the progression of the wall in construction as it happened

in the first optimization case. Once the wall has been fully built the objective function stabilizes in

an ascending pattern and then converges after the volume constraint Vf = 95% at the 50th iteration

is satisfied. After the 50th iteration the topology has reached stability and only a feel adjustments

are made until the convergence criteria is met at the 69th iteration, the transmission loss variation

in this stage is negligible.

Once the final topology is reached is possible do analyze its Transmission Loss effective-

ness for a range of frequencies. Figure 4.17 shows the behavior of example 2 final topology for

frequencies ranging from 1 Hz to 1200 Hz. The middle transmission loss became a point with ap-

proximately 19.1 dB instead of 6 dB, moreover, other frequencies had their TL maximized as it

happened in example 1. The behavior of the muffler produced in example 2 is similar to the muffler

in example 1, however, it’s possible to notice that in example 2 the most prominent peak is slightly

shifted to the left expanding the area with higher TL by a small amount.

Since the frequency picked for this example already had 6 dB of TL before the optimization

began, the sound pressure in the outlet is expected to be smaller than the previous example in

the first iterations and that sound pressure is minimized through the optimization. In Fig. 4.18 the

evolution of the sound pressure in the outlet is presented.

The sound pressure level response in the outlet can be plotted for a range of frequencies, in

Fig. 4.19 the initial outlet response and the final outlet response are shown.
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Figure 4.18: Outlet sound pressure level evolution in example 2.

mode moves closer to second mode, although the second mode movement is negligible. Just as in

the first example, two low sound pressure level zones were expanded indicating a better muffler

performance.

4.2.3 Example 3: Muffler Design for peak TL frequency

In this example the frequency (ω = 518Hz) used for optimization corresponds to a TL value

that corresponds to a peak TL in the empty chamber case.

Figure 4.20 shows the absolute acoustic pressure field in the muffler with a higher TL value.

The acoustic pressure in the outlet is reduced unlike the first example were there is a significant

pressure concentration.

In accordance with the other examples, BESO parameters presented in tab. 4.2 are used and

the optimization is started with the domain in the same initial conditions.

The final topology for this optimization case is presented in Fig. 4.21 with the corresponding

sound pressure distribution. In this example the position of the wall is shifted to the right when
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cies ranging from 0 Hz to 1200 Hz. The peak transmission loss became a point with approximately

18.7 dB instead of 8.3 dB, moreover, other frequencies had their TL maximized as it happened in

example 1 and 2. The behavior of the muffler produced in example 3 is very similar to the muffler

in example 1 and 2, however, it’s possible to notice that in example 3 the most prominent peak is

slightly shifted to the left expanding the area with higher TL and the maximum TL for that peak

was also raised.

Figure 4.23: Transmission Loss for optimized topology of example 3 in a frequency range in con-
trast with the prior empty chamber.

Since the frequency picked for this example already had 8.3 dB of TL before the optimization

began, the sound pressure in the outlet is expected to be even smaller than the previous examples

in the first iterations. In Fig. 4.24 the evolution of the sound pressure in the outlet is presented,

although the expected result is the minimization effect of the sound pressure in the outlet, it is pos-

sible to notice that the sound pressure in the outlet is slightly raised at the end of the optimization.

As seen in Fig. 4.22, TL continues its ascendant pattern even while the outlet pressure is

raised fig. 4.24, this outcome is caused by the extension of the inlet tube, which causes an un-

expected increment in the inlet pressure thus causing the effect described above. The inlet sound

pressure becomes higher enough that even a increment in the outlet sound pressure still would still

mean the maximization of the TL which is another form of enhancing the muffler properties.
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Figure 4.24: Outlet sound pressure level evolution in example 3.

The sound pressure response in the outlet can be plotted for a range of frequencies, in fig. 4.25

the initial outlet response and the final outlet response are shown. In this example, the first mode

has its frequency reduced while the second mode slightly shifts having a decrease in frequency as

well. The third mode is reduced to the point a fourth mode appears. This changes in acoustic modes

created lower acoustic pressure level areas mainly between approximately 200 Hz and 600 Hz and

frequencies higher than 1000 Hz.

4.2.4 Example 4: Muffler Design for valley TL in higher frequency

In this example, the frequency (ω = 690Hz) used for optimization corresponds to a TL value

that corresponds to a valley TL in the empty chamber case, however the chosen frequency is almost

2 times bigger than the one from example 1.

Figure 4.26 shows the absolute acoustic pressure field in the muffler, as expected, with a TL

close to 0 dB the acoustic pressure in the outlet is similar to the one in the entrance. Two low

pressure zones can be identified.

BESO optimization parameters presented in tab. 4.2 are used with a single difference, the final
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Figure 4.27: Acoustic Pressure distribution in the optimized muffer of example 4.

different acoustic chambers.

The evolution of the objective function and volume fraction are shown in Fig. 4.28 together

with some intermediary topologies. Between iterations 14 and 26 the objective function becomes

unstable, that effect was already perceived in past examples and it is due to the progression of the

wall in construction, another significant jump in the objective function is noticed between iterations

43 and 46, this jump is caused by the conclusion of the second wall. Once both walls are fully

built the objective function stabilizes and then converges at iteration 99 after the volume constraint

Vf = 94% is satisfied at the 60th iteration.

Once the final topology is reached is possible do analyze its Transmission Loss effectiveness

for a range of frequencies. Figure 4.29 shows the behavior of example 4 final topology for frequen-

cies ranging from 1 Hz to 1200 Hz. The valley transmission loss became a point with approximately

31.2 dB instead of 0 dB, moreover, other frequencies had their TL maximized as it happened in the

other examples. The behavior of the muffler produced in example 4 has inferior performance in

frequencies ranging from 0 Hz to approximately 400 Hz. In higher frequencies, the TL observed is

bigger for every frequency when compared with the empty chamber.

In Fig. 4.30 the evolution of the sound pressure in the outlet is presented and the minimization

of the sound pressure can be observed as well as in examples 1 and 2.

The sound pressure response in the outlet can be plotted for a range of frequencies, in fig. 4.31

the initial outlet response and the final outlet response are shown. In this example, the second mode

approaches the first mode while the third have its frequency decreased just a little. This movement
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Figure 4.30: Outlet sound pressure level evolution in example 4.

Figure 4.31: Outlet sound pressure level for a range of frequencies in example 4.
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4.2.4.1 Different final volumes Vf

For the specific case of ω = 690 Hz the final volume was changed to facilitate convergence.

As said before, when using a final volume fraction of 95% the optimization attempted to create

3 cavities by using four barriers but the amount of void elements allowed, only 5%, made the

optimization process nearly 60 iterations longer than the other examples. In Fig. 4.32 the objective

function evolution of this case is presented. The topologies found with 95% and 94% were similar.

Figure 4.32: Objective function and volume fraction evolution for the case with 95% Vf .

Two other final volume fractions were tested, 92% and 90%. The results can be seen in

Figs.4.33 and 4.34.

In both new final volume fractions tested there was increase in the transmission loss function.

The increase in TL was caused by the extension of the inlet duct allowed by the extra volume of

rigid elements. The designer can choose the weight of the system and study the cost-benefit of

heaving heavier or lighter expansion chambers with higher or lesser TL.
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(a)

(b)

Figure 4.33: (a)Objective function and volume fraction evolution for Vf =92%. (b) Final topology
achieved with Vf =92%.
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(a)

(b)

Figure 4.34: (a)Objective function and volume fraction evolution for Vf =90%. (b) Final topology
achieved with Vf =90%.
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4.3 Mesh dependency analysis

In this section, a finer mesh is used in order to observe the optimization process convergence

and final topologies reached. Figure 4.35 (a) shows the evolution of the TL objective function and

volume throughout the optimization for the frequency of 346 and Fig. 4.35 (b) the final topology

obtained. The usage of a finite element mesh with 12480 elements provided a smooth convergence

avoiding the creation of holes in the partitions as observed in the examples presented in the previous

section. The final topology presented is similar to the case where a thicker mesh was used showing

that the numeric filter used avoided mesh dependency.

Figure 4.36 (a) shows the evolution of the TL objective function during the optimization

process for the frequency of 690 Hz. Different from previous section example the convergence of

the TL function show no signs of holes appearing in the partition walls during the optimization.

The final topology found using a finer mesh for the case of 690 Hz presented in Fig. 4.36 (b) is

similar to the topology shown in the previous section as well.

The usage of a finer mesh provided a smoother convergence curve for both examples and

no significant mesh dependency was found in the topologies presented in Figs. 4.35 (b) and 4.36

(b) showing the capability of the proposed methodology to achieve optimum results using different

mesh sizes.
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(a)

(b)

Figure 4.35: (a)Objective function and volume fraction evolution for optimizing 346 Hz frequency
using 12480 elements mesh. (b) Final topology achieved for the frequency of 346 Hz and Vf =
95%.
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(a)

(b)

Figure 4.36: (a)Objective function and volume fraction evolution for optimizing 690 Hz frequency
using 12480 elements mesh. (b) Final topology achieved for the frequency of 690 Hz and Vf =
95%.
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5 CONCLUSIONS AND SUGGESTED FUTURE WORKS

In this chapter, concluding remarks are presented based on the development of this work,

which had as its main goal, the numerical implementation of an algorithm for acoustic mufflers

design using the BESO method. Finally, a few suggestions for future research are listed.

5.1 Conclusions

This work presented a study of evolutionary optimization of acoustic mufflers. A discrete

model of an acoustic muffler was created using a finite element approach and the acoustic pres-

sure field inside the expansion chamber was visualized. Transmission loss performance parameter

was presented and three-pole method of TL evaluation was proposed and validated considering

analytical equations for single and double expansion chambers. The discrete finite element model

developed was then used together with an evolutionary optimization method to maximize transmis-

sion loss in reactive mufflers.

The acoustic topology optimization was done using the evolutionary method BESO. The

sensitivity analysis based on the TL three-pole method derivative was proven adequate for this

problem. The ranked sensitivity number as seen in the numerical examples section guided the opti-

mization in order to maximize TL and guided a minimization pattern for the outlet sound pressure

level.

The topology optimization proposed was studied from a design of acoustic mufflers point

of view. The topologies found not only maximized transmission loss but also were feasible and

could be manufactured for an industry application. The final topologies encountered presented high

transmission loss for the prescribed working frequency and in addition, high TL was found in other

frequencies.

The binary characteristic of the BESO approach favored the computational cost and the num-

ber of iterations until convergence criteria was met. The highest number of iterations necessary after

the final volume was achieved was 70 iterations for one of the 690 Hz cases where Vf was 95%.

For most of the numerical examples presented in this dissertation, a smaller number of iterations

was presented.
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5.2 Suggestions for future research

Important suggestions for future works continuing this research field are summarized in the

list bellow:

◦ Study the addition of Helmholtz resonators to the muffler in a post-processing algorithm,

avoiding low TL in specific frequencies.

◦ Study the influence of adding porous materials inside the muffler during the optimization

process. A multi-material optimization with fluid, porous and rigid elements is suggested.

◦ Study more complex muffler models. In the literature, there are already some cases with

perforated ducts for instance.

◦ Create and study 3D muffler models and compare the results found with the 2D models, if

similar, the results would show that a less expensive 2D model could be used effectively in

muffler design through optimization methods.

◦ Add acoustic-structure interaction in the muffler model, considering the partitions inside the

muffler vibration.

◦ Study optimization case with acoustic, thermic and flow objective functions and compare the

final topologies. In the literature, there are cases of coupled analysis.

◦ Study the effect of micro-scale approach material design for noise attenuation inside the muf-

fler. A micro-scale optimized material could be used for example to coat the rigid partitions

in the acoustic muffler.
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Abstract: This article introduces an evolutionary topology optimization approach applied to design acoustic mufflers.

The main goal is to find the best configuration of barriers inside typical acoustic mufflers used in the automotive industry.

The acoustic medium is governed by Helmholtz equation and rigid wall boundary conditions are introduced to represent

acoustic barriers. In order to find a configuration of acoustic barriers that minimize the Transmission Loss function of

the muffler an Evolutionary Structural Optimization (ESO) method will be used.

To represent the acoustic domain inside the muffler, several boundary conditions are implemented, such as, normal im-

posed velocity, imposed pressure and imposed impedance as anechoic termination or infinite outlet. The continuum

problem is solved in the frequency domain and it is discretized using the finite element method. Using ESO method a sim-

ple topology is reached, which maximizes the Transmission Loss function for different frequencies. The results reached

are then compared with results available in the literature, considering different boundary conditions and excitation fre-

quencies. The influence of fluid element discretization and of rejection parameters in the ESO method in the obtained

topologies are presented. This work will be escalated to solve acoustic cloaking device problems.

Palavras-chave: Topology Optimization, ESO Method,Transmission Loss, Acoustic Mufflers

1. INTRODUCTION

In the past few decades, topology optimization has been used to improve and find the best responses in vibroacoustic
systems using coupled and uncoupled formulation (Bendsoe and Sigmund, 2004; Huang and Xie, 2010). One of those
systems is represented by the expansion chamber named mufflers, currently used in sound attenuation in vehicle exaust
systems, that will be studied in this paper and has been studied in several publications (Munjal, 1987; Lee and Kim, 2009).

A number of authors have been devoted to study the problem of acoustic mufflers modeling and to propose different
design approaches to optimize the acoustic muffler. Yedeg et al. (2015) muffler model has a perforated pipe connecting
inlet and outlet and Lee and Jang (2012) muffler model couples flow and acoustic equations for the optimization problem.
The principal design approaches used are based on Solid Isotropic Material with Penalization (SIMP) method (Dühring
et al., 2008; Yedeg et al., 2015), or evolutionary structural optimization (ESO) method (Silva, 2007; Silva and Pavanello,
2010).

Actually the optimization of acoustic domains has been an important topic and investigations concerning noise attenu-
ation became a major issue in the present days. In this scenario muffler type devices studies grew in importance, Barbieri
and Barbieri (2005) used base shape optimization to improve Transmission Loss (TL) in a muffler, Lee and Kim (2009)
used MMA to create barriers or partitions in expansion chambers maximizing transmission loss effectively reducing sound
pressure levels in the outlet portion of the chamber.

In this work an evolutionary structural optimization (ESO) method is proposed to maximize TL and minimize acoustic
pressure level in the outlet of a single expansion chamber of one automotive muffler.

2. ANALYTICAL AND APPROXIMATE TRANSMISSION LOSS IN A MUFFLER

An automotive exhaust system, two-dimensional muffler Fig. 1, presents a Transmission Loss (TL) function that can
be analytically calculated by the following equation (Selamet and Radavich, 1997),
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Figure 1: Single Expansion Chamber Muffler
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and where d is the acoustic chamber diameter, di is the inlet and outlet pipes diameter, k is the wave number, f is the
frequency and c is the speed of sound in the medium.

Using Eq. (1) to predict the TL function for a muffler with, L = 0.5m, d = 0.15m and di = 0.03m, considering that
the domain is filled with air (c = 343m/s) for a frequency range, results shown in Fig. 2 are obtained.

Figure 2: TL analytical function of a single expansion chamber Eq. (1)

The analytical model for TL function is no longer valid when rigid wall conditions are included inside the muffler
acoustic chamber (Lee and Kim, 2009). In order to obtain an approximated solution the Finite Element Method is used
and another equation is stated to find the TL function for an acoustic chamber with rigid barriers, Eq. (3);

TL = 20× Log10
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)
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where l is the distance between points 1 and 2, P1 and P2 are pressures in the inlet pipe and P3 is the pressure in the outlet
pipe as shown in Fig. 1. The j =

√
−1 is the imaginary unit.

Problem formulation and corresponding finite element discretization are discussed in the next section.
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3. MUFFLER DEVICE: GOVERNING EQUATION AND FINITE ELEMENT MODEL

The governing equation of steady-state linear acoustic problems in frequency domain, valid inside the muffler acoustic
chambers is the Helmholtz equation (Dühring et al., 2008):

▽
2P(x,y) +

ω2

c2
P(x,y) = 0 (4)

where ω is the angular frequency in (rad/s), P is the acoustic pressure and ▽
2 is the Laplacian operator. Equation (4) is

valid in the acoustic domain shown in Fig. 3 in (ΩdUΩf ).
The weighted residual formulation for Eq. (4) can be written as;

1

ρ

∫

Ω

Φ · ▽2PdΩ+
ω2

ρc2

∫

Ω

Φ · PdΩ = 0 (5)

where ρ is the air density, φ is the Weight Function and Ωf is the fluid domain with Ωd being a partition of it, represented
in Fig. 3.

Rearranging the first term of Eq. (5) and using the Divergence Theorem, Eq. (5) can be written as:

1

ρ

∫

Γ

Φ · ▽P · ~ndΓ− 1

ρ

∫

Ω

▽Φ · ▽PdΩ+
ω2

ρc2

∫

Ω

Φ · PdΩ = 0 (6)

Since,

▽P · ~n =
∂P

∂n
(7)

Eq. (6) can be rearranged as:

1

ρ

∫

Ω

▽Φ · ▽PdΩ− ω2

ρc2

∫

Ω

Φ · PdΩ =
1

ρ

∫

Γ

Φ · ∂P
∂n

dΓ (8)

where Γ is the boundary of the acoustic domain.
For the problem stated in this paper two boundary conditions will be introduced, see Fig. 3, Ωf is the full domain filled

with fluid and Ωd represents part of the domain where partitions will be introduced. The Ωd region is the design domain
for the evolutionary optimization method. Two boundary conditions are imposed: Normal velocity Vn in boundary Γi,
expressed in Eq. (9), and normal impedance Z̄ in boundary Γo, expressed in Eq. (10).

Figure 3: Acoustic domain and Boundary conditions

Vn = − 1

jρω

∂P

∂n
(9)

P = Z̄Vn = − Z̄

jρω

∂P

∂n
= − 1

jρωĀ

∂P

∂n
(10)

where Vn is a vector of imposed velocities in Γi and Ā is acoustic admittance in Γo. To completely represent the whole
boundary boundary problem rigid wall natural conditions (▽Pn = 0) are imposed in Γw.
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Applying Eq. (9) and Eq. (10) in Eq. (8) we have

1

ρ

∫

Ω

▽Φ · ▽PdΩ− ω2

ρc2

∫

Ω

Φ · PdΩ = −1

ρ

(
∫

Γi

jρωΦVndΓi +

∫

Γo

jρωΦĀPdΓo

)

(11)

Using the finite element method is possible to approximate Eq. (11). Using Galerkin’s method the system response
equation for the stated problem is:

([

K
]

+ jω
[

C
]

− ω2
[

M
])

·
{

P
}

=
{

Vni

}

(12)

where,

[

K
]

=

∫

Ω

[

B
]t [

B
]

dΩ (13)

[

C
]

= ρĀ

∫

Γo

[

N
]t [

N
]

dΓo (14)

[

M
]

=
1

c2

∫

Ω

[

N
]t [

N
]

dΩ (15)

{

Vni

}

= −jρω

∫

Γi

[

N
]t
VndΓi (16)

and [N] is the vector containing the shape functions for the acoustic element discretization with [B] being its derivatives
(Desmet and Vandepitte, 2005), [K] is the acoustic stiffness matrix, [C] is the equivalent damping matrix relative to the
output boundary condition, [M] is the mass matrix and [Vni] is the vector relative to inlet conditions.

In this work, linear 4 node elements are used. Figure 4 shows the mesh used.

Figure 4: Muffler Mesh with 3120 elements measuring 0.005m.

Equation (12) can be used to verify the TL behavior for our domain previous to the addition of partitions, using the
boundary conditions presented in Fig. 3, (Vn = 1) in the entire inlet and (Z = ρc) in the entire outlet. Figure 5 shows a
comparison of results achieved with Eq. (1) and results from the formulation developed in this section.

4. EVOLUTIONARY ACOUSTIC OPTIMIZATION PROBLEM FOR TL MAXIMIZATION:

In this section the evolutionary acoustic optimization problem is stated and the sensitivity analysis is derived. In this
work an Evolutionary Topology optimization strategy is adopted, considering discrete values 1 or 0 which correspond to
acoustic and void elements respectively, in a discretized form of the equation system, this approach is called "hard kill"
in the literature. This method avoids intermediate density elements during the optimization procedure Huang and Xie
(2010).

4.1 Problem statement

The objective is to maximize the amplitude of the TL function for a predefined frequency. The desing variable xi

represents the presence (xi = 1) or absence (xi = 0) of our particular fluid element. When the fluid element is removed,
a rigid wall boundary condition is naturally imposed on the system, representing the local inclusion of a rigid barrier.

Considering volume constraints for barriers inclusion, the evolutionary optimization problem can be stated as:
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Figure 5: Comparison between analytical TL and FEM approximated TL.

Maximize TL = 20× Log10

(

∣

∣

∣

∣

1

P3

P1 − P2 · e−jk·l

1− e−j2k·l

∣

∣

∣

∣

)

Subject to:
([

K
]

+ jω
[

C
]

− ω2
[

M
])

·
{

P
}

=
{

Vni

}

Vf −
nel
∑

i=1

vixi = 0

xi = 0 or 1

In the ESO method a gradient-based optimizer is necessary in order to evaluate the relevance of each element after the
model analysis. This optimizer is generally called sensitivity and its calculation is described in the next section.

4.2 Transmission Loss Sensitivity Analysis

The sensitivity number is the objective function derivative with respect to the design variable, since transmission loss
can be written as,

TL(ω, xi) = 10× log10

( | Pin |2
| Pout |2

)

(17)

the derivative is,

∂TL(ω, xi)

∂xi

=
10

ln10
×
(

∂ | Pin |2
∂xi

· 1

| Pin |2 − ∂ | Pout |2
∂xi

· 1

| Pout |2
)

(18)

where Pin is,

Pin =|
(

P1 − P2 · e−jk·l

1− e−j2k·l

)

| (19)

and Pout is,

Pout =| P3 | (20)

Since Pin and Pout in Eq. (19) and Eq. (20) are complex numbers, they can be expanded as follows:

P 2
in =

1

γ

(

P1Re − P2Re · cos
(

k · l
)

− P2Im · sin
(

k · l
))2

+
1

γ

(

P1Im − P2Im · cos
(

k · l
)

+ P2Re · sin
(

k · l
))2

(21)
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P 2
out = P 2

3Re + P 2
3Im (22)

with γ defined as,

γ =
(

1− cos
(

2k · l
))2

+
(

sin
(

2k · l
))2

(23)

where subscripts (Re) and (Im) mean real and imaginary parts respectively.
To calculate Eq. (21) and Eq. (22) derivatives for sensitivity analysis, the differentiations of acoustic pressure in the

three points, P1, P2 and P3 are necessary. Those can be found by differentiating the governing equation system Eq. (24)
as:

{

dP

dxi

}

= −
([

K
]

+ jω
[

C
]

− ω2
[

M
])

−1 · d

dxi

([

K
]

+ jω
[

C
]

− ω2
[

M
])

·
{

P
}

(24)

where
{

Vni

}

is constant with respect to xi.
According to Chu et al. (1996), Vicente et al. (2015) and Vicente et al. (2016) in order to determine the change of

response in especific degrees of freedomPj of the system due to the ith element removal, a vector Fj can be introduced.
Fj is composed of zeros and a single one for the specific degree of freedom.

Thus we can write the following equations:

dPj

dxi

= Ft
j ·

dP

dxi

(25)

Z =
([

K
]

+ jω
[

C
]

− ω2
[

M
])

(26)

Substituting Eq. (24) in Eq. (25):

dPj

dxi

= F t
j · Z−1 · dZ

dxi

·
{

P
}

(27)

Since the systems response where only Fj acts can be written as,

Pj = Z−1 · Fj (28)

Eq. (27) becomes:

dPj

dxi

= −P t
j · dZ

dxi

·
{

P
}

(29)

where dZ
dxi

is the response matrix of the ith element, and can be calculated in local form, element by element.

Equation (29) aproximates dPi

dxi

avoiding huge computational costs and enabling dTL
dxi

evaluation.

5. NUMERICAL RESULTS

The objective of this section is to validate the formulation and implementation of the optimization method, finite
element model and TL evaluation, the numerical results presented by Lee and Kim (2009) are used for comparison.

The proposed example is represented in Fig. 1, with the configuration presented in section 2. It is a bi-dimensional
representative acoustic model, for a simple automotive muffler. Table 1 shows ESO parameters used to optimize the
system.

Table 1: ESO Parameters.
Evolutionary Ratio (ER) 0.166%

Final Volume (Vf ) 97 %

The topology optimization strategy proposed in this article is applied for four different frequencies, those are relative
to peak and valley values in Fig. 5.

It is possible to see that the final topologies produced in this work, shown in Fig. 6, are similar to the ones presented by
Lee and Kim (2009). Figure 7 shows the evolution of the Transmission loss function amplitude through the optimization
process for (ω = 519.5 Hz).
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(a)

(b)

(c)

(d)

Figure 6: Final topologies using ESO method ; (a): topology for a frequency of 346 Hz; (b): topology for a frequency
of 693 Hz; (c): topology for a frequency of 173 Hz; (d): topology for a frequency of 519.5 Hz.

Figure 7: TL evolution for 520 Hz example
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At the end of the optimization the maximum TL obtained for 519.5 Hz was 18 dB. Figure 8 shows TL response for a
range of frequencies for mufflers presented in Fig. 6.

(a) (b)

Figure 8: (a) TL responses for Mufflers (a) and (b); (b)TL responses for Mufflers (c) and (d)

According to the results presented here the ESO approach was validated. One of the reasons results displayed in
this paper do not agree completely with other publications is different methods being used, Lee and Kim (2009) used
SIMP method to find the barrier layout, and different numerical parameters, in this work an ESO approach was used, an
approach prior to Bi-directional Evolutionary Structural Optimization (BESO) method.

6. CONCLUSION

The main objective of this work is to propose an evolutionary methodology for acoustic otimization of automotive
mufflers. A sensitivity analysis of the optimization problem has been presented considering an evolutionary approach. In
order to maximize the Tranmission Loss, the optimiztion process has added attenuation barriers in the expansion chamber
interior. For different frequencies, the results presented show the capability of the proposed methodology to maximize
noise attenuation in the studied system. As a further work, the Bi-directional evolutionary structure optimization should
be implemented for a more detailed analysis of the muffler optimization and different acoustic problems, for example,
cloaking devices design.
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Abstract

This article introduces an evolutionary topology optimization approach applied to design acoustic
mufflers. The main goal is to find the best configuration of barriers inside typical acoustic mufflers
used in the automotive industry that minimizes sound pressure level in the outlet of the muffler.
The acoustic medium is governed by Helmholtz equation and rigid wall boundary conditions are
introduced to represent acoustic barriers. In order to minimize sound pressure level in a specific
location of the muffler this work uses Transmission Loss (TL) function maximization in the work
domain as strategy. Maximizing TL guarantees that the sound pressure level at the outlet of the
muffler is reduced. To find the configuration of acoustic barriers that maximizes the Transmission
Loss function of the muffler a Bi-directional Evolutionary Structural Optimization (BESO) method
will be used.

To represent the acoustic domain inside the muffler, a few boundary conditions are implemented,
such as, normal imposed velocity, imposed impedance as anechoic termination or infinite outlet and
rigid wall conditions. The continuum problem is solved in the frequency domain and it is discretized
using the finite element method. Using BESO method simple topologies are reached, which max-
imizes the Transmission Loss function for different frequencies. The influence of the fluid element
discretization and the rejection parameters in the BESO method are presented. This work will be
escalated to solve acoustic cloaking device problems.

Keywords: Transmission Loss, BESO, Acoustic, Barriers, Sound pressure.

1 Introduction

In the last two decades, topology optimization has been in a wide variety of problems, including the
improvement of responses in vibroacoustic systems using coupled and uncoupled formulation [1, 2]. One
of those problems is the expansion chambers named mufflers, currently used in sound attenuation in
vehicle exhaust systems. Mufflers were a extensive subject of study in [3] and furthermore studied in
optimizations problems for interior barrier optimization [4, 5].

Several authors worked the problem of modeling acoustic mufflers and proposed different design
approaches to optimize acoustic mufflers. A muffler model that has a perforated pipe connecting inlet
and outlet, Berggren et al. [6], and a muffler model that couples flow and acoustic equations for the
optimization problem, Jang and Lee [7], are examples o models used. The works published on the subject
use in majority, a design approach based on Solid Isotropic Material with Penalization (SIMP) method
[8, 6]. In this work an bi-directional evolutionary structural optimization (BESO) and (ESO) methods
[9, 10] are used.

The optimization of acoustic domains has been an important topic and investigations concerning
noise attenuation became a major issue, since new regulations for noise control are being enforced. In
this scenario muffler type devices studies grew in importance, Barbieri and Barbieri [11] used base shape
optimization to improve Transmission Loss (TL) in a muffler, Lee and Kim [5] used MMA to create
barriers or partitions in expansion chambers maximizing transmission loss effectively reducing sound
pressure levels in the outlet portion of the chamber.

In a previous work, muffler optimization was done using (ESO) method and it will be used as reference.
This work is a further study on muffler optimization using (BESO) method to maximize TL in a more
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robust manner. The (BESO) method has been used in multi-physics structures and problems such as
buoyant structures [12] and natural frequency maximization considering acoustic-structure interaction
[13]. The aspects of both methods that are similar will not be discussed in depth, refer to [14].

Figure 1: Single Expansion Chamber Muffler

2 MUFFLER DEVICE: GOVERNING EQUATION AND FI-

NITE ELEMENT MODEL

The governing equation of steady-state linear acoustic problems in frequency domain, valid inside the
muffler acoustic chambers is the Helmholtz equation as shown in [8]. Its possible to simulate exhaust
pipe conditions to a certain extent using the Helmholtz equation subjected to some boundary conditions.
The necessary set of equations bellow represent the differential problem to be solved.

▽
2P(x,y) +

ω2

c2
P(x,y) = 0 (1)

▽P · ~n =
∂P

∂n
(2)

Vn = − 1

jρω

∂P

∂n
(3)

P = Z̄Vn = − Z̄

jρω

∂P

∂n
= − 1

jρωĀ

∂P

∂n
(4)

where eq. (1) is the Helmhotz equation, eq. (2) is used to implement the necessary boundary conditions,
eq. (4) is an impedance boundary condition and eq. (3) is a particle velocity boundary condition. ω is
the angular frequency in (rad/s), P is the acoustic pressure and ▽

2 is the Laplacian operator. Equation
(1) is valid in the acoustic domain shown in Fig. 2 in (ΩdUΩf ).

The weighted residual formulation for Eq. (1) can be written as;

1

ρ

∫

Ω

Φ · ▽2PdΩ+
ω2

ρc2

∫

Ω

Φ · PdΩ = 0 (5)

where ρ is the air density, φ is the Weight Function and Ωf is the fluid domain with Ωd being a partition
of it, represented in Fig. 2.

Rearranging the first term of Eq. (5) and using the Divergence Theorem, Eq. (5) can be written as:

1

ρ

∫

Γ

Φ · ▽P · ~ndΓ− 1

ρ

∫

Ω

▽Φ · ▽PdΩ+
ω2

ρc2

∫

Ω

Φ · PdΩ = 0 (6)

Using Eq. (2), Eq. (6) can be rearranged as:
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1

ρ

∫

Ω

▽Φ · ▽PdΩ− ω2

ρc2

∫

Ω

Φ · PdΩ =
1

ρ

∫

Γ

Φ · ∂P
∂n

dΓ (7)

where Γ is the boundary of the acoustic domain.

2.1 Boundary and Problem Definition:

For the problem proposed in this paper two main boundary conditions will be implemented, Eqs. (3)
and (4). In Fig. 2, Ωf is the full domain filled with fluid and Ωd represents part of the domain where
partitions will be introduced. The Ωd region is the design domain for the evolutionary optimization
method.

Normal velocity Vn in boundary Γi, expressed in Eq. (3), and normal impedance Z̄ in boundary Γo,
expressed in Eq. (4).

Figure 2: Acoustic domain and Boundary conditions

where Vn is a vector of imposed velocities in Γi and Ā is acoustic admittance in Γo. To completely
represent the whole boundary boundary problem rigid wall natural conditions (▽Pn = 0) are imposed
in Γw.

Applying Eq. (3) and Eq. (4) in Eq. (7) we have

1

ρ

∫

Ω

▽Φ · ▽PdΩ− ω2

ρc2

∫

Ω

Φ · PdΩ = −1

ρ

(
∫

Γi

jρωΦVndΓi +

∫

Γo

jρωΦĀPdΓo

)

(8)

Using the finite element method is possible to approximate Eq. (8). Using Galerkin’s method the
system response equation for the stated problem is:

([

K
]

+ jω
[

C
]

− ω2
[

M
])

·
{

P
}

=
{

Vni

}

(9)

where,

[

K
]

=

∫

Ω

[

B
]t [

B
]

dΩ (10)

[

C
]

= ρĀ

∫

Γo

[

N
]t [

N
]

dΓo (11)

[

M
]

=
1

c2

∫

Ω

[

N
]t [

N
]

dΩ (12)

{

Vni

}

= −jρω

∫

Γi

[

N
]t
VndΓi (13)

and [N] is the vector containing the shape functions for the acoustic element discretization with [B]
being its derivatives [15], [K] is the acoustic stiffness matrix, [C] is the equivalent damping matrix
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relative to the output boundary condition, [M] is the mass matrix and [Vni] is the vector relative to
inlet conditions.

3 ANALYTICAL AND APPROXIMATE TRANSMISSION LOSS

IN A MUFFLER

An automotive exhaust system, two-dimensional muffler Fig. 1, presents a Transmission Loss (TL)
function that can be analytically calculated by the following equation [16],

TL = 10× Log10

(

1 +
1

4

(

m− 1

m

)2

· sin2
(

k · L
)

)

(14)

where,

m =
d

di
, k =

2πf

c
(15)

and where d is the acoustic chamber diameter, di is the inlet and outlet pipes diameter, k is the wave
number, f is the frequency and c is the speed of sound in the medium.

Using Eq. (14) to predict the TL function for a muffler with, L = 0.5m, d = 0.15m and di = 0.03m,
considering that the domain is filled with air (c = 343m/s) for a frequency range, results shown in Fig.
3 are obtained.

Figure 3: TL analytical function of a single expansion chamber Eq. (14)

The analytical model for TL function is no longer valid when rigid wall conditions are included
inside the muffler acoustic chamber [5]. In order to obtain an approximated solution the Finite Element
Method is used and another equation is stated to find the TL function for an acoustic chamber with
rigid barriers, Eq. (16);

TL = 20× Log10

(

∣

∣

∣

∣

1

P3

P1 − P2 · e−jk·l

1− e−j2k·l

∣

∣

∣

∣

)

(16)

where l is the distance between points 1 and 2, P1 and P2 are pressures in the inlet pipe and P3 is the
pressure in the outlet pipe as shown in Fig. 1. The j =

√
−1 is the imaginary unit.
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3.1 Mesh and Validation:

In this work, linear 4 node elements are used. Figure 4 depicts a mesh used for the results shown in the
further sections.

Figure 4: Muffler Mesh with 12480 regular elements of side measuring 0.0025m.

Equation (9) can be used to verify the TL behavior for our domain previous to the addition of
partitions, using the boundary conditions presented in Fig. 2. Figure 5 shows a comparison of results
achieved with Eq. (14)and results from the formulation used in this work.

Figure 5: Comparison between analytical TL and FEM approximated TL.

4 BI-DIRECTIONAL EVOLUTIONARY ACOUSTIC OPTI-

MIZATION PROBLEM FOR TL MAXIMIZATION:

In this section the bi-directional evolutionary acoustic optimization problem is stated, the approach is
described and the sensitivity number is presented. In this work an Evolutionary Topology optimization
strategy is proposed, considering discrete values 1 or 0 which correspond to acoustic and void elements
respectively, in a discretized form of the equation system, this approach is called ”hard kill” in the
literature [2].

The approach used in this paper, avoids intermediate density elements during the optimization
procedure as well as preventing the usage of post-processing algorithms, while having a smaller number
of iterations than general. In addition to what is done in (ESO) method, in the (BESO) approach used
here, a numeric filter, presented in [2], is implemented in order to have a smoother sensitivity number
and also, the filter has the function of averaging a sensitivity number to a rigid element that otherwise
would have none. It is important to notice that the sensitivity number can be either positive or negative,
so the influence of the rigid elements in the optimization process have to be carefully analyzed.
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4.1 Problem statement

The goal of the optimization is to maximize the objective function (TL) for a predefined frequency. The
design variable xi indicates the presence (xi = 1) or absence (xi = 0) of our fluid element. When the
fluid element is removed of the design domain, a rigid element with a rigid wall boundary condition is
naturally placed on the system, the local inclusion of several rigid elements will create the barriers need
for noise attenuation in this system.

Considering volume constraints, as measure of barriers inclusion, the evolutionary optimization prob-
lem is stated as:

Maximize TL = 20× Log10

(

∣

∣

∣

∣

1

P3

P1 − P2 · e−jk·l

1− e−j2k·l

∣

∣

∣

∣

)

Subject to:
([

K
]

+ jω
[

C
]

− ω2
[

M
])

·
{

P
}

=
{

Vni

}

Vf −
nel
∑

i=1

vixi = 0

xi = 0 or 1

4.2 BESO Approach

The BESO method uses a gradient-based optimizer in order to evaluate the relevance of each element
after the model analysis. This optimizer is generally called sensitivity and its calculation is described
bellow.

4.2.1 Transmission Loss Sensitivity Analysis

The sensitivity number is the objective function derivative with respect to the design variable, since
transmission loss can be written as,

TL(ω, xi) = 10× log10

( | Pin |2
| Pout |2

)

(17)

the derivative is,

∂TL(ω, xi)

∂xi

=
10

ln10
×
(

∂ | Pin |2
∂xi

· 1

| Pin |2 − ∂ | Pout |2
∂xi

· 1

| Pout |2
)

(18)

where Pin is,

Pin =|
(

P1 − P2 · e−jk·l

1− e−j2k·l

)

| (19)

and Pout is,

Pout =| P3 | (20)

Since Pin and Pout in Eq. (19) and Eq. (20) are complex numbers, they can be expanded as follows:

P 2
in =

1

γ

(

P1Re−P2Re · cos
(

k · l
)

−P2Im ·sin
(

k · l
))2

+
1

γ

(

P1Im−P2Im · cos
(

k · l
)

+P2Re ·sin
(

k · l
))2

(21)

P 2
out = P 2

3Re + P 2
3Im (22)

with γ defined as,
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γ =
(

1− cos
(

2k · l
))2

+
(

sin
(

2k · l
))2

(23)

where subscripts (Re) and (Im) means real and imaginary parts respectively.
In [14] a more explicit sensitivity number calculation is presented and in [17, 18] ways of facilitating the

calculation of the pressure derivative making the procedure less computational intensive are described.

5 NUMERICAL RESULTS

The objective of the example presented bellow is to implement the methodology developed for TL
maximization. In this section the results achieved using that optimization strategy are studied.

The proposed example in Fig. 1, with the configuration presented in section 2 is a bi-dimensional
representative acoustic model, for a simple automotive muffler. Table 1 shows BESO parameters used
to optimize the system.

The topology optimization strategy proposed in this article can be applied to any wanted frequency.
In this section the results presented used frequencies of 520 and 693 Hz, they are relative to peak and
valley frequencies in Fig. 5.

Table 1: BESO Parameters.
Evolutionary Ratio (ER) 0.166%
Admition Ratio (ARmax) 0.05%

Final Volume (Vf ) 97 %

(a)

(b)

Figure 6: Final topologies using BESO method ; (a): topology for a frequency of 520 Hz;
(b): topology for a frequency of 693 Hz;

It is possible to see that the final topologies produced in this work, shown in Fig. 6, are similar to
the ones presented by Lee and Kim[5]. Figure 7 shows the evolution of the Transmission loss function
amplitude through the optimization process for (ω = 520 Hz) and (ω = 693 Hz).
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Figure 7: Fluid volume evolution in the design domain and TL evolution considering a
frequency of 520 Hz

Figure 8: Fluid volume evolution in the design domain and TL evolution considering a
frequency of 693 Hz

At the end of the optimization the maximum TL obtained for 520 Hz was over 19 dB and for 693
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Hz was 29 dB. Figure 9 shows TL response for a range of frequencies for mufflers presented in Fig. 6,
characterizing the noise attenuation performance of the mufflers produced in this paper.

Figure 9: (a) TL responses for Mufflers (a) and (b)

According to the results presented here the BESO approach showed itself a viable option of opti-
mization.

6 CONCLUSION

The main objective of this work is to propose a bi-directional evolutionary methodology for acoustic
optimization of automotive mufflers, a new approach for this case study, exploiting its advantages. A
sensitivity analysis of the optimization problem has been presented considering an evolutionary approach.

In order to minimize sound pressure level at the muffler outlet, the optimiztion process has added
attenuation barriers in the expansion chamber interior in order to raise the Transmission Loss function
thus reaching the proposed goal. For different frequencies, the results presented show the capability of
the proposed methodology to maximize noise attenuation in the studied system. As a further work, new
elements can be introduced in the problem in order to make the mufflers more realistic, for example,
adding porous materials inside the acoustic chamber.
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