
UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Mecânica

WALLACE GUSMÃO FERREIRA

Efficient Global Optimization Driven by

Ensemble of Metamodels: New Directions

Opened by Least Squares Approximation

Otimização Eficiente Global Dirigida por

Metamodelos Combinados: Novos Caminhos

Abertos pela Aproximação por Mı́nimos

Quadrados

CAMPINAS
2016

WALLACE GUSMÃO FERREIRA

Efficient Global Optimization Driven by

Ensemble of Metamodels: New Directions

Opened by Least Squares Approximation

Otimização Eficiente Global Dirigida por

Metamodelos Combinados: Novos Caminhos

Abertos pela Aproximação por Mı́nimos

Quadrados

Thesis presented to the School
of Mechanical Engineering of the

University of Campinas, in partial
fulfillment of the requirements

for the degree of Doctor in
Mechanical Engineering, in the

area of Solid Mechanics and
Mechanical Design.

Tese de Doutorado apresentada
à Faculdade de Engenharia Mecânica

da Universidade Estadual de Campinas,
como parte dos requisitos exigidos

para a obtenção do t́ıtulo de
Doutor em Engenharia Mecânica,
na área de Mecânica dos Sólidos e

Projeto Mecânico.

Orientador/Supervisor: Prof. Dr. Alberto Luiz Serpa

CAMPINAS
2016

FICHA CATALOGRÁFICA ELABORADA PELA
BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

Agência(s) de fomento e nº(s) de processo(s): Não se aplica.

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Luciana Pietrosanto Milla - CRB 8/8129

Ferreira, Wallace Gusmão, 1977-
F413e FerEfficient global optimization driven by ensemble of metamodels: : new

directions opened by least squares approximation / Wallace Gusmão Ferreira. –
Campinas, SP : [s.n.], 2016.

FerOrientador: Alberto Luiz Serpa.
FerTese (doutorado) – Universidade Estadual de Campinas, Faculdade de
Engenharia Mecânica.

Fer1. Otimização. 2. Mínimos quadrados. 3. Superfícies de resposta. 4.
Otimização global. 5. Otimização com restrições. I. Serpa, Alberto Luiz,1967-.
II. Universidade Estadual de Campinas. Faculdade de Engenharia Mecânica.
III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Otimização eficiente global dirigida por metamodelos combinados :
novos caminhos abertos pela aproximação por mínimos quadrados
Palavras-chave em inglês:
Optimization
Least squares
Response surfaces
Global optimization
Constrained optimization
Área de concentração: Mecânica dos Sólidos e Projeto Mecânico
Titulação: Doutor em Engenharia Mecânica
Banca examinadora:
Alberto Luiz Serpa [Orientador]
Emilio Carlos Nelli Silva
Marco Lúcio Bittencourt
Renato Pavanello
Valder Steffen Junior
Data de defesa: 01-12-2016
Programa de Pós-Graduação: Engenharia Mecânica

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ENGENHARIA MECÂNICA

COMISSÃO DE PÓ-GRADUAÇÃO EM ENGENHARIA MECÂNICA

DEPARTAMENTO DE MECÂNICA COMPUTACIONAL

TESE DE DOUTORADO ACADÊMICO

Efficient Global Optimization Driven by

Ensemble of Metamodels: New Directions

Opened by Least Squares Approximation

Otimização Eficiente Global Dirigida por

Metamodelos Combinados: Novos Caminhos

Abertos pela Aproximação por Mı́nimos

Quadrados

Campinas, 01 de Dezembro de 2016.

“If I had more time,

I would have written a shorter letter...”

Blaise Pascal, 1623-1662.

“Não é o conhecimento,

mas o ato de aprender,

não é a posse,

mas chegar lá, que promove

o maior encantamento.”

J. C. F. Gauss, 1777-1855.

Dedicatória

Este trabalho é dedicado a

Patŕıcia Vendramim,

minha Musa Inspiradora.

E aos pequenos Heitor e Ícaro,

nossas Obras Primas.

Sem vocês na minha vida,

nada mais importa!

Agradecimentos

Há certas coisas que começamos e não terminamos. Outras, nem chegamos a tentar. Este

trabalho começou em algum lugar do passado e, depois de uma caminhada longa, não tenho

mais clareza sobre quando realmente comecei, nem tampouco porque comecei... O fato é que,

mesmo nas horas de maior desmotivação, sempre tive a certeza de que iria terminar algum dia,

ou pelo menos iria morrer tentando...

Hoje, depois de muitas tentativas, erros e sucessos, horas de sono perdidas, dezenas de

artigos e caṕıtulos lidos (e outras dezenas que ficaram somente na promessa para ler algum

dia), rugas, alguns cabelos já esbranquiçados, entre outras venturas e desventuras, eis que dou-

me por satisfeito e é chegada a hora de colocar um ponto final nessa estória e iniciar outros

projetos. Não sei bem se terminei, mas tenho plena certeza de que percorrer esse caminho valeu

muito a pena!

Durante essa longa jornada pude contar com o Prof. Alberto Serpa, que me aceitou

como aluno-orientado em tempo parcial. Sempre com muita paciência e cortesia, tolerou todos

os meus atrasos, dúvidas, mudanças de tema de pesquisa e também sempre tentou me manter

motivado a chegar no fim da viagem. Seu amplo conhecimento e experiência acadêmica e indus-

trial, sua visão clara e objetiva e conselhos precisos foram de grande utilidade e me guiaram até

aqui. Além do mais, sempre leu prontamente, no mı́nimo detalhe, todos os meus manuscritos,

os quais culminaram nesse texto de tese. Entre outras coisas, aprendi também que “a vida deve

ser encarada como uma maratona e não uma prova de cem metros rasos”.

Agradeço aos professores membros da banca do exame de qualificação e defesa desse

trabalho e também aos revisores e editores para os quais submetemos os manuscritos para

publicação. Todas as correções e sugestões são de muita valia, contribuindo sobremaneira para

o texto chegar a esse ponto.

A infraestrutura para o desenvolvimento desse trabalho foi toda baseada na implementação

da SURROGATES Toolbox, compilada e desenvolvida pelo Dr. Felipe A. C. Viana, o qual,

além de deixar o código aberto e em domı́nio público, sempre foi muito gentil e prestativo a

sanar dúvidas e além do mais contribuiu com comentários e sugestões pertinentes no ińıcio

dessa pesquisa. Mais do que isso, grande parte do trabalho desenvolvido nessa tese tem como

principal referêcia os artigos publicados por Dr. Viana e seus colaboradores.

Sem dúvida este trabalho não teria sido posśıvel sem o apoio da Ford Motor Company

e pela colaboração de vários colegas e gestores. Foram de grande importância principal-

mente os meus supervisores diretos ao longo desse tempo: Gustavo Conrado (MSX), Luis

Coutinho (MSX), João S. Filho, Fernando Mendonça, José Feĺıcio, Ricardo Albuquerque, Ri-

cardo Cerqueira e Ciro Almeida. Obrigado por permitirem que eu dedicasse parte das minhas

horas de trabalho para desenvolver essa pesquisa. Sem esquecer também da imensa base de

dados de pesquisa cient́ıfica RLIS (Research Library and Information System), mantida pela

Ford, sem a qual eu provavelmente não conseguiria acesso a muitos livros e artigos, de forma

totalmente gratuita e sem burocracia.

Ainda com relação à Ford, um agradecimento especial ao Paulo Alves e ao Marcelo Ma-

galhães por terem me dado a oportunidade de fazer parte do time de MDO (Multidisciplinary

Design Optimization) e passar um peŕıodo de trabalho e treinamento em Dearborn, Michigan

(EUA). Essa experiência foi de grande importância pessoal e profissional e pude trocar con-

hecimentos nesse tempo com várias pessoas, entre elas, Rodrigo Miyamoto, Rairam Almeida,

Giri Namalwar, Aditya Raghunathan, Yogita Pai, Ariel Chintha, Chin-Hung Chuang, Joana

Rakowska, Amir Chator e aos colegas da Ford Alemanha: Michel Paas, Hessel van Dijk e

Thomas Erber. Esse peŕıodo me fez aprender muito sobre métodos de otimização multidisci-

plinar e metamodelagem, além de ter feito grandes amizades!

Gostaria de registrar também um agradecimento à Altair Engineering do Brasil e toda a

sua equipe, em especial: Valdir Cardoso, Yula Massuda, Karen Silva, Adriano Koga e Rogerio

Nakano, sempre soĺıcitos e prestativos no suporte técnico e outras “ajudas”, mais especifica-

mente com o pacote HyperWorks, utilizado em parte dos estudos de caso dessa tese.

Como não poderia faltar, meus pais e irmãos, por sempre me apoiaram e me incentivaram

a perserverar e a me desenvolver através dos estudos. A vocês: Romeu, Guida, Jane, Vanessa,

Júnior e Carla, sem me esquecer de Diva e Ricardo, meu muito obrigado!

Nos vários momentos em que me isolei para desenvolver esta pesquisa e escrever os textos

da tese, sacrifiquei horas importantes da convivência e companhia da minha amada esposa

Patŕıcia e dos nossos dois pequenos filhos Heitor e Ícaro. Espero poder recompensá-los a

contento! Obrigado por todo o apoio e paciência e por suportarem todos os momentos em que

eu fiquei longe de vocês.

Esse trabalho teve a ajuda ou influência, torcida ou cobrança, de várias pessoas, entre

amigos, colegas de trabalho e familiares. Listar todos não seria posśıvel, não haveria espaço

e, com certeza, eu me esqueceria de alguém. Como disse o professor R. S. Waslawick, não

vou mencionar os nomes pois “eles já sabem quem são”. Dessa forma, a todos vocês, muito

obrigado!

São Bernardo do Campo, SP, Brasil, Dezembro de 2016.

Resumo

FERREIRA, Wallace Gusmão. Otimização Eficiente Global Dirigida por Metamodelos Combi-

nados: Novos Caminhos Abertos pela Aproximação por Mı́nimos Quadrados. Faculdade

de Engenharia Mecânica, Universidade Estadual de Campinas. Campinas, SP, Brasil,

2016. 250p. (Tese de Doutorado, em Inglês)

O presente trabalho representa a compilação dos resultados anteriores dessa pesquisa

no campo de metamodelos combinados e otimização eficiente global (EGO), os quais foram

submetidos para publicação em periódicos especializados. Recentemente foi implementado nesse

trabalho de doutorado o algoritmo LSEGO que é uma abordagem para conduzir algoritmos

tipo EGO, baseando-se em metamodelos combinados através da aproximação por mı́nimos

quadrados (metamodelos combinados LS). Através dos metamodelos combinados LS é posśıvel

estimar a incerteza da aproximação usando qualquer tipo de metamodelagem (e não somente do

tipo kriging), permitindo estimar a função de expectativa de melhora para a função objetivo.

Nos experimentos computacionais anteriores em problemas de otimização sem restrições, a

abordagem LSEGO mostrou-se como uma alternativa viável para conduzir otimização eficiente

global usando metamodelos combinados, sem se restringir a somente um ponto adicional por

ciclo de otimização iterativa. Na presente tese, o algoritmo LSEGO foi extendido de modo a

tratar também problemas de otimização com restrições. Os resultados de testes numéricos com

problemas anaĺıticos e de referência e também em um estudo de caso de engenharia em escala

industrial mostraram-se bastante promissores e competitivos em relação aos trabalhos similares

encontrados na literatura.

Palavras Chave

- Otimização via metamodelos, Metamodelos combinados, Mı́nimos quadrados, Otimização

eficiente global , Otimização com restrições

Abstract

FERREIRA, Wallace Gusmão. Efficient Global Optimization Driven by Ensemble of Meta-

models: New Directions Opened by Least Squares Approximation. School of Mechanical

Engineering, University of Campinas - UNICAMP. Campinas, SP, Brazil, 2016. 250p.

(Doctor’s Thesis, in English)

In this work we review and compile the results of our previous research in the fields of

ensemble of metamodels and efficient global optimization (EGO). Recently we implemented

LSEGO that is an approach to drive EGO algorithms, based on LS (least squares) ensem-

ble of metamodels. By means of LS ensemble of metamodels, it is possible to estimate the

uncertainty of the prediction by using any kind of model (not only kriging) and provide an

estimate for the expected improvement function. In previous numerical experiments with un-

constrained optimization problems, LSEGO approach has shown to be a feasible alternative to

drive efficient global optimization by using multiple or ensemble of metamodels, not restricted

to kriging approximation or single infill point per optimization cycles. In the present work we

extended the previous LSEGO algorithm to handle constrained optimization problems as well.

Some numerical experiments were performed with analytical benchmark functions and also for

industry scale engineering problems with competitive results.

Keywords

- Surrogate based optimization, Ensemble of metamodels, Least squares, Efficient global opti-

mization, Constrained optimization

Contents

1 Introduction 15

1.1 Technological Scenario . 15

1.2 Thesis Subjects and Research Scope . 17

1.3 Objectives and Original Contributions of the Thesis 22

1.3.1 Phase I . 23

1.3.2 Phase II . 23

1.3.3 Phase III . 24

1.3.4 Summary of Implementations . 25

1.4 Thesis Chapters Outline . 25

2 Literature Overview 29

2.1 Some Historical Remarks . 29

2.2 Specific Literature for the Thesis Scope . 35

2.2.1 Metamodel Based Optimization . 37

2.2.2 Efficient Global Optimization . 38

2.2.3 Ensemble of Metamodels and EGO . 40

3 Metamodel Based Analysis and Optimization 43

3.1 Metamodel Creation Methods . 45

3.2 Metrics for Metamodel Validation . 46

3.3 Metamodel Based Optimization . 47

3.4 An Illustration with Metamodels . 49

4 Ensemble of Metamodels Background 51

4.1 Origins and Definitions . 51

4.2 An Example with Simple Average Ensemble . 54

4.3 Ensemble Methods in Engineering Design . 55

5 Ensemble of Metamodels by Least Squares 58

5.1 Basic Formulation . 58

5.2 Multicollinearity and Least Squares . 62

5.3 The Augmented Least Squares Approach . 64

5.4 An Example with Least Squares Variants . 67

5.5 The LS Ensemble Approach: Results Summary 71

6 Efficient Global Optimization (EGO) 74

6.1 Basic Formulation of EGO . 75

6.2 The Standard EGO Algorithm . 76

6.3 On Balancing Exploration and Exploitation . 77

6.4 Extensions for the EGO algorithm . 79

7 LS Ensemble of Metamodels EGO (LSEGO) 81

7.1 LSEGO Algorithm with Parallel Infill Points . 85

7.2 Illustrations: One and Two Variables Examples 86

7.3 The LSEGO Approach: Results Summary . 95

8 Applications to Constrained Optimization Problems 99

8.1 Computer Implementation . 100

8.1.1 Ensembles of Metamodels . 100

8.1.2 Maximization of the Expected Improvement Functions 101

8.2 Test Problems . 102

8.2.1 Analytical Benchmark Functions . 102

8.2.2 Analytical Engineering Problems . 102

8.2.3 Engineering Application: Car Impact . 106

8.3 Design of Experiments (DOE) . 109

9 Results and discussion 110

9.1 Analytical Benchmark Functions . 110

9.1.1 Braninh-Hoo . 110

9.1.2 Hartman-3 . 111

9.1.3 Hartman-6 . 111

9.1.4 Summary for Analytical Benchmarks . 115

9.2 Analytical Engineering Problems . 117

9.2.1 Three-Bar Truss . 117

9.2.2 Cantilever Beam . 122

9.2.3 Helical Spring . 124

9.2.4 Pressure Vessel . 125

9.2.5 Sequential Sampling vs. One-Stage Approach 128

9.2.6 Unfeasible Results Near Constraints Boundaries 129

9.3 Engineering Computer Model: Car Impact . 131

10 Concluding Remarks 134

10.1 Summary of Thesis Original Contributions . 134

10.2 Overall Achievements . 135

10.3 Some Possible Future Directions . 136

References 138

A SURROGATES Toolbox 147

B Boxplots Definition 148

C The Kriging Metamodel 149

D Test Functions 150

D.1 Analytical Benchmarks . 150

D.2 Engineering Applications . 152

E Preliminary Numerical Study 155

E.1 Introductory Note . 155

E.2 Abstract . 155

E.3 Numerical experiments . 155

E.3.1 Tests with an analytical function . 156

E.3.2 Tests with engineering problems . 157

E.4 Results and discussion . 159

E.4.1 Results with the analytical function . 159

E.4.2 Results with engineering problems . 164

F Multicollinearity and Least Squares 169

F.1 The Sources of Multicollinearity . 169

F.2 Prior Model Selection . 170

F.3 Gathering Additional Data . 172

F.4 Variable Selection Methods in Regression . 172

F.4.1 The Bias and Variance Dilemma . 172

F.5 Least Squares Variants . 175

F.5.1 Stepwise Regression . 175

F.5.2 Ridge Regression . 178

F.5.3 Principal Component Regression . 180

F.5.4 Penalized Least Squares: A Unified Approach 184

F.6 Other Least Squares Variants to Improve Accuracy 187

F.6.1 Effect of the Intercept Term . 187

F.6.2 Generalized Least Squares . 188

F.6.3 Lp-Norms and Robust Regression . 191

F.6.4 Total Least Squares . 197

G Manuscripts Submitted 202

15

1 Introduction

“Begin at the beginning and go on till you come to the end: then stop.”

Alice in the Wonderland

Lewis Carrol, 1832-1898.

1.1 Technological Scenario

Structural Optimization is a recognized and matured research area with more than thirty

years of increasingly intensive work worldwide. Extensive reviews can be found on the area of

optimization and engineering design, for instance: Sobieszczanski-Sobieski and Haftka (1997),

Haftka et al (1998), Papalambros (2002), Saitou (2005), Roy et al (2008), Yang et al (2013b)

and in the recent book Arora (2012).

As discussed by several authors in the technical literature, one of the main obstacles

for the large use and acceptance of structural optimization methods since its beginning is the

computer power. In the mid 1970s, the beginning of computer based structural optimization,

the computation time required for running analysis was the major drawback due to the limited

computer resources available.

On the other hand, the last twenty years were marked by the widespread availability

of low-cost and high-performance computers (or clusters) and also powerful commercial simu-

lation software (e.g., finite elements, FEM; multibody dynamics, MBD; and computational

fluid dynamics, CFD). This availability of computational resources leveraged the integration

of structural analysis and numerical optimization methods applied in practical engineering

development, instead of only in research or academic laboratories.

Paradoxically, even with the significant increase in hardware and software resources in the

last years, computation power is still a problem. Besides the high computation power available

today, the demands in terms of higher accuracy, complex analysis (e.g., nonlinear, transient,

multiphysics, multidisciplinary), and large design domains are continuously and rapidly in-

creasing. The dilemma looks like to be “infinite”, i.e., the more computational power we have,

the more complex are the problems we want to solve. This “never-ending” need of computer

resources in structural optimization is discussed in an interesting essay by Venkatararaman and

Haftka (2004).

16

As an example of this kind of situation faced by the engineers, the typical multidisci-

plinary design and optimization (MDO) problem found nowadays at automotive industry is

presented in Fig. 1. If, for instance, it is desired to optimize the vehicle mass (or cost), by

considering several disciplines, i.e., Safety, Durability and NVH (noise, vibration and harsh-

ness), the problem should involve hundreds of design parameters (e.g., sheet metal thickness

and material properties) and hundreds of functional responses to be monitored (e.g., stress

limits, natural frequencies, displacements, accelerations, etc).

Figure 1: Typical multidisciplinary design and optimization (MDO) problem at automotive
industry. Courtesy of Ford Motor Company. Reproduced with permission.

For example, even with high-end computers clusters used nowadays in automotive indus-

try, one single full vehicle analysis of high fidelity safety crash, by finite elements, takes up to

12 processing hours with 48 CPU in parallel. By its turn, one single full vehicle aerodynamics

analysis for drag calculation, using 96 CPU, should take up to 30 processing hours to finish.

In this context, it is virtually impossible to drive sensitivity analysis and/or multidisci-

plinary optimization by using directly the original computer models (e.g., FEM or CFD models)

to evaluate hundreds or thousands of designs proposals in feasible engineering time. Hence-

forth, another alternative approach must be applied, with lower computational cost and also

acceptable accuracy, in a way to make the optimization process feasible.

In this sense, the approximation methods for computer models (also known asmetamodels,

surrogate models, response surfaces) are considered key technologies to provide or improve the

feasibility to solve complex engineering problems as described in Fig. 1, for instance.

17

In summary, surrogate based (or response surface based, or metamodel based) optimiza-

tion1 refers to the process of using approximate objective and constraint functions to drive the

standard optimization algorithms available. In other words, instead of using the original time

consuming computer simulation models directly in the optimization process, they are replaced

by surrogate functions, or metamodels that can be accurate and fast running at same time to

foster the feasibility of the whole optimization process.

This methodology, known as metamodel based analysis and optimization, has shown to

be effective in multidisciplinary/multiobjective optimization scenarios and it has been widely

applied in both research and industry, for example automotive, aerospace and oil-gas prospec-

tion.

In this thesis we will present our developments and results in the field of metamodel based

analysis and optimization. The overall process can be roughly split in two main research fronts:

(i) the creation of accurate metamodels, with limited time and computer resources and (ii) the

management of the whole metamodel based optimization process in an efficient way.

In the next section we will provide more details regarding the main research subjects and

literature references needed to develop this thesis work.

1.2 Thesis Subjects and Research Scope

Roughly speaking this research is devoted to a main branch in the Structural Opti-

mization field known as Metamodel Based Optimization. Four our purposes here, this

branch of research can be divided in two other branches, i.e., Ensemble of Metamodels and

Efficient Global Optimization.

In the present section it is presented only a brief description of these research subjects and

the relevant references in the technical literature that inspired the development of the present

thesis work. Further and detailed discussion will be presented in the Literature Overview

(Chapter 2) and in the respective chapters along this thesis text.

As we mentioned in the previous section, our main research topic is the metamodel based

analysis and optimization processes and methods. See in Fig. 2 the comparison of two main

approaches available to treat complex optimization problems as displayed in Fig. 1, for example.

1Metamodel in simple terms means “model of a model” and its first use is acknowledged to Kleijnen (1985).
The terms response surface, surrogate or metamodel have the same meaning in the context presented here. We
will use metamodel more frequently (and sometimes surrogate) since they are the forms commonly found in the
engineering optimization literature.

18

Figure 2: Direct Optimization (left) versus Metamodel Based Optimization (right).

In the direct approach, Fig. 2 (left), at each iteration or cycle, the optimization algorithm

submits the simulation models to run in order to evaluate the performance responses fi(x). This

process can be repeated for several iterations, with hundreds or thousands function evaluations.

On the other hand, in Fig. 2 (right), the metamodel based approach (also called surrogate

based or response surface based), a design of experiments (DOE) is created and the simulation

models are submitted to evaluate the performance responses fi(x). This process is repeated un-

til reasonable approximations f̂i(x) for the responses are achieved. At the end, the optimization

algorithm uses the validated metamodels f̂i(x) in the search of the optimum design.

In practical terms, the direct approach is prohibitive (or even impossible) to be applied

in MDO problems as in Fig.1. On the other hand, the metamodel approach is feasible and

efficient in such complex MDO scenarios.

In summary, metamodel based optimization refers to the process of using fast running

metamodels, as surrogates of original complex and long time running computer simulation

models, with the aim to approximate the true objectives and constraint functions to be used

inside a standard optimization algorithm.

Metamodel Based Optimization is therefore the main branch of our research and it

has been widely applied in research and industry. Refer to Queipo et al (2005), Simpson et al

(2008) and Forrester and Keane (2009) for broader discussion on this subject.

19

Nowadays it is known that the best metamodeling strategy is always dependent on: the

degree of nonlinearity of the problem; the number of design variables; the sampling points

technique and distribution in the design space; the functional form of surrogate model (shape

and tuning parameters) and the error measure adopted.

After a lot of research and comparative studies in this subject performed in the last

decades, the conclusion is that it is a problem dependent issue. There is not a unique approxi-

mation method that can handle with equal and acceptable accuracy every problem at hand, or

at least the majority of problems to approximate. Each method has its pros and cons and the

user should be able to choose the best for his own purposes.

The task for selecting metamodels has not a trivial solution and, since the computational

cost for creating several metamodels is small as compared to the cost to evaluate the true

function being approximated, and henceforth the combining process or a mixed “selecting and

combining” approach can be a feasible way.

In this sense, concepts like ensemble of predictors, mixture of experts, committee of net-

works, etc., are well known in Machine Learning literature, see for instance Wolpert (1992),

Bishop (1995), Breiman (1996) and more recently Seni and Elder (2010). The idea is that, by

the combination of different predictors, it is possible to improve the final model accuracy for

both functional evaluation or pattern recognition purposes.

Motivated by the potential benefits, the research branch of Ensemble of Metamodels

methods has gained attention in the last years in the structural optimization engineering field

as well. For functional evaluation in general the ensemble of metamodels is formed as a linear

combination (weighted sum) of different models in a set. For this reason, the ensemble of

metamodels are also known as WAS (weighted averaged surrogates). This is an active area of

research that is getting maturity, as can be seen in the publications on this topic in the last

years: Viana et al (2009), Seni and Elder (2010), Viana (2011), Zhou (2012), Zhang and Ma

(2012) and Yang et al (2013b). The first part of our research is concentrated in this branch

and we will present the details in the next section.

Another branch of research is the so called Efficient Global Optimization (EGO),

that is a type of surrogate/metamodel based optimization approach with iterative (or sequen-

tial) sampling. In this kind of approach, the metamodels f̂i(x) are created and the expected

improvement functions Ei[Ii(x)] are maximized to generate additional points in the sampling

space (infill points) to be used in the next optimization cycle. The process iterates and the

20

global2 optimum is found when the level of expected improvement is negligible or the maximum

allowed number of cycles/iterations is reached. See in Fig. 3 a basic flowchart for the EGO

approach.

Figure 3: Efficient global optimization (EGO) process overview.

The EGO concept emerged after the work of Jones et al (1998), that was based mainly

on previous research on Bayesian Global Optimization (Schonlau (1997) and Mockus (1994)).

Traditionally the available EGO algorithms are based on the kriging metamodel approach and

a single infill point is generated per optimization cycle.

It can be observed an increasing research interest on EGO approaches with multiple infill

points per cycle published in the last years. See for example the works by Sóbester et al (2004),

Henkenjohann and Kukert (2007), Ponweiser et al (2008), Ginsbourger et al (2010) and Viana

et al (2013). Other recent EGO developments can be found in Rehman et al (2014), Mehari

et al (2015) and Encisoa and Branke (2015).

In Viana et al (2013), it was suggested an alternative scheme to generate multiple (or

2The term global optimization is used in this thesis by following the historical nomenclature for this family
of methods. The proper term should be “best local optimum” in the design space, since the domain is restrict
by definition in the metamodel based optimization and thus the “true global optimum” is not guaranteed to be
found.

21

parallel) infill points per cycle in the EGO algorithm by taking advantage of multiple surrogates,

or ensemble of metamodels. In this direction, as we will detail in the next section, the second

part of our research is concentrated on the combination of the advantages of Ensemble of

Metamodels and Efficient Global Optimization.

In summary, the focus of this thesis can be better explained with the flowchart presented

in Fig. 4. Our research work will concentrate mainly in two fronts, i.e., the two final steps of

the flowchart displayed in Fig. 4.

In this sense the step “Create Ensemble of Metamodels” of Fig. 4 refers to (i) the creation

of accurate metamodels, with limited time and computer resources and the step “Efficient

Global Optimization Algorithm” is related to (ii) the management of the whole metamodel

based optimization process in an efficient way, as outlined in the closing paragraphs of the last

section.

Figure 4: Efficient global optimization (EGO) with ensemble of metamodels. By using ensemble
of metamodels the standard EGO (Fig. 3) can be enhanced to accept different approximations
(not only kriging) and generate multiple infill points per optimization cycle.

In the next section we will present our specific objectives and main contributions achieved

with the work in the research branches discussed here in the field of Metamodel Based

Optimization, i.e., Ensemble of Metamodels and Efficient Global Optimization.

22

1.3 Objectives and Original Contributions of the Thesis

We divided the present thesis work in two main parts, i.e., (i) Theory and Implemen-

tations and (ii) Validation and Case Study. The two main research subjects presented in

the previous section, i.e., Ensemble of Metamodels and Efficient Global Optimization

are part of what we called Theory and Implementations. These subjects were developed

respectively in the Phase I and Phase II of the work. The Phase III refers to theValidation

and Case Study part of the thesis.

See in Fig. 5 an overall picture of the research subjects discussed and developed in this

thesis and their relation with the three main phases that comprise this work.

The “general objective” of this thesis is to compile and report our results and original

contributions achieved respectively in the Phase I, II and III. The “specific objectives” and

main outcomes with respect to each of these three phases will be described in the sequence.

Figure 5: Overview of the main research subjects and their relations to the main phases and
of the present thesis work.

23

1.3.1 Phase I

As discussed previously this phase was focused on the research subject Ensemble of

Metamodels, and the results were published in:

Ferreira W.G., Serpa A.L. (2016) Ensemble of metamodels: the augmented least squares

approach. Structural and Multidisciplinary Optimization, 53(5), 1019-1046, 2016. DOI:

10.1007/s00158-015-1366-1)

In this first paper we presented an approach to create ensemble of metamodels (or weighted

averaged surrogates) based on least squares (LS) approximation. The LS approach is appealing

since it is possible to estimate the ensemble weights without using any explicit error metrics

as in most of the existent ensemble methods. The proposed LS approach is a variation of the

standard LS regression, by augmenting the matrices in such a way that minimizes the effects

of multicollinearity inherent to calculation of the ensemble weights.

We tested and compared the “Augmented LS Ensemble” approach (LS-a) with different

classical LS variants and also with other existent ensemble methods, by means of analytical and

real-world functions from two to forty-four variables. The augmented least squares approach

(LS-a) performed with good accuracy and stability for prediction purposes, in the same level

of other ensemble methods and has computational cost comparable to the fastest ones.

As an additional feature, the LS based ensemble of metamodels has a prediction variance

function that enables the extension to the efficient global optimization. This extension was

developed and explored at Phase II.

1.3.2 Phase II

This phase was dedicated to the research subject Efficient Global Optimization, and

the results were submitted for publication. The following paper is under review by the journal

editors:

Ferreira and Serpa (SMO-15-0339) Ensemble of metamodels: Extensions of the least squares

approach to efficient global optimization. Structural and Multidisciplinary Optimization

(submitted/under review - ID SMO-15-0339.R1)

In this second paper we presented LSEGO (Least Squares Ensemble EGO), an approach

to drive efficient global optimization (EGO), based on the LS (least squares) ensemble of meta-

24

models, that was developed in Phase I and reported in our first publication, Ferreira and Serpa

(2016).

By means of LS ensemble of metamodels it is possible to estimate the pointwise uncer-

tainty3 of the prediction by using any kind of metamodel (not only kriging) and provide an

estimate for the expected improvement function.

For the analytical problems studied, the proposed LSEGO algorithm has shown to be

able to find the global optimum with less number of optimization cycles than the required by

the classical single infill point EGO approach.

As more infill points are added per optimization cycle, the faster is the convergence to

the global optimum (exploitation) and also the quality improvement of the metamodel in the

design space (exploration), specially as the number of variables increases, when the standard

single point EGO can be quite slow to reach the optimum.

Therefore the results of Phase II has shown that LSEGO can be a feasible option to

drive EGO with ensemble of metamodels, and it is not restricted to kriging and to single infill

point per optimization cycle. On the other hand, LSEGO was tested and validated only for

the unconstrained optimization of a few analytical benchmark functions.

In the Phase III of the work we extended the application of LSEGO to constrained

optimization problems as well.

1.3.3 Phase III

In the present thesis work we will first review and compile the results of our previous

research in the fields of ensemble of metamodels and efficient global optimization (EGO), re-

ported in the papers Ferreira and Serpa (2016) and Ferreira and Serpa (SMO-15-0339), as

described above. For easy and quick reference, these two submitted manuscripts are available

in the Appendix G.

In addition to these results already reported in Phase I and II, in the Phase III of the

work we extended the LSEGO algorithm to handle constrained optimization problems as well,

that were not covered in the previous phases.

Some numerical experiments were performed (Validation) with analytical benchmark

3The uncertainty concept treated in the present thesis will be related to only to overall metamodel accuracy,
that is mainly driven by different sampling points and different metamodel equations that can be arbitrarily
chosen by the user in each problem. It is not objective of the present work to treat uncertainty in the context
of Reliability Engineering.

25

functions and also for an industry scale engineering problem (Case Study) achieving compet-

itive results. Our intention is to summarize these last results in a third paper to be submitted

for publication near in the future.

In the next section we will outline the chapters structure used to fulfill the objectives and

present the main achievements of this research work.

1.3.4 Summary of Implementations

After the end of Phase I, II, and the Phase III of the present thesis, we implement and

test algorithms and methods related to:

• Ensemble of Metamodels based on standard least squares approximation and variants

(Phase I);

• Efficient Global Optimization algorithm based on least squares ensemble of metamodels

with extension to constrained optimization (Phase II and Phase II);

Although the methods developed here are prone to be extended to multi-objective op-

timization, as presented in Forrester et al (2008), in this thesis we only applied and tested

the algorithms to single-objective unconstrained and constrained optimization problems (i.e.,

analytical and engineering benchmarks and one industry application).

1.4 Thesis Chapters Outline

In this section it is presented a summary of the main chapters that compose the thesis

text. See a brief description of each chapter in the list that follows. Fig. 6 presents the list of

the main thesis chapters to the main subjects of the thesis research, as presented and discussed

in the previous sections.

• Chapter 2 - Literature Overview: The research panorama and key publications

available in the literature are presented and discussed.

• Chapter 3 - Metamodel Based Analysis and Optimization: The fundamentals

and basic formulation of metamodels for analysis and optimization are presented.

• Chapter 4 - Ensemble of Metamodels Background: In this chapter it is presented

the main formulation with the objective to create ensemble of metamodels found in pre-

vious research work available in the literature.

26

• Chapter 5 - Ensemble of Metamodels by Least Squares: This chapter summarizes

the main formulations and results achieved inPhase I and published in Ferreira and Serpa

(2016). This chapter has a close relation to the appendices E and F described later in

the sequence.

• Chapter 6 - Efficient Global Optimization (EGO): In this chapter it is presented

the main definitions and formulation of Efficient Global Optimization algorithms.

• Chapter 7 - LS Ensemble of Metamodels EGO (LSEGO): This chapter summa-

rizes the main formulations and results achieved in the Phase II of the thesis work. The

results were submitted for publication in Ferreira and Serpa (SMO-15-0339).

• Chapter 8 - Applications to Constrained Optimization Problems: This chapter

refers to the Phase III of the thesis work. In this chapter we describe the setup for the

numerical experiments performed to solve constrained optimization problems by using

LSEGO.

• Chapter 9 - Results and Discussion: The results of the numerical experiments de-

scribed in Chapter 8 are presented and discussed. These are the main results achieved in

the Phase III.

• Chapter 10 - Concluding Remarks: In this chapter we outline all the conclusions of

the present thesis and suggest some possible future research directions.

In order to keep the flow of the text as succinct and objective as possible, we moved all

the long discussion and derivations to the following appendices:

• Appendix A - SURROGATES Toolbox: Presents some details regarding the free

SURROGATES Toolbox implemented by F. A. C. Viana and coworkers Viana (2009). All

the numerical experiments and developments of this research were based on this toolbox.

• Appendix B - Boxplots Definition: Presents the definition of boxpolt used to compare

and analyze several results of this thesis.

• Appendix C - Kriging Metamodel: Kriging metamodel is the basis of EGO imple-

mentation (Chapter 6). The summarized formulation and equations are presented in this

appendix.

27

• Appendix D - Test Functions: Presents the equations of the test functions referred

along the thesis and used in the several numerical experiments performed during the

thesis work.

• Appendix E - Preliminary Numerical Study: This appendix compiles the first

research numerical studies that motivated the development of this thesis and later on

culminated in the results and publication achieved in Phase I.

• Appendix F - Multicollinearty and Least Squares: In this appendix we present the

details of the Least Squares methods available in the literature and the methods to handle

multicollinearity in regression problems, as referred in Chapter 5. This is an important

part of the research of Phase I but it is too long to be in the middle of the thesis text.

• Appendix G - Manuscripts Submitted: The two already submitted manuscripts,

Ferreira and Serpa (2016) and Ferreira and Serpa (SMO-15-0339) are completely available

in this appendix for easy and quick reference.

28

Figure 6: Overview of the main chapters and their relations to the main subjects of the thesis research. For clarity, the chapters related to
all subjects were omitted in the picture, i.e., Introduction, Literature Overview, Concluding Remarks and remaining appendices.

29

2 Literature Overview

“If I have seen further it is only by

standing on the shoulders of giants...”

Isaac Newton, 1642-1727.

2.1 Some Historical Remarks

The development of methods to describe the functional representation of scattered data

remounts to the beginning of the natural sciences. The mathematicians K. F. Gauss (1777-1855)

and P. S. Laplace (1749-1827) proposed different methods for estimating functional dependen-

cies from results of measurements of astronomy and physics. Gauss proposed the Least Squares

Method (LSM) and Laplace proposed the Least Modulo Method (LMM) and since that time a

question has raised to define which method was the best.

Until the beginning of the twentieth century preference was given to LSM. Later, in the

mid of twentieth century, it was observed that the accuracy of any estimator method is strongly

dependent on the noise pattern, its distribution and relationship with the measured data. These

observations favored the preference for LMM in some applications.

Other methods like Maximum Likelihood Method (MLM) has been proposed (R. Fisher,

1920) in order to cope with noise and the concept of robust estimation was introduced by P.

Huber in the 1960s.

Until nowadays it is not clear what is the best strategy for estimating functions in real-

life situations specially when the form and distribution of noise are not known. For further

details on these early developments related to approximation methods see Vapnik (2000) and

the references therein.

Based on literature survey published by Barthelemy and Haftka (1993), the use of ap-

proximation methods in conjunction with nonlinear programing to solve large structural design

problems has been proposed in earlier studies of Schmit, Arora and co-workers in the middle

of 1970s (e.g., Schmit and Farshi (1974), Schmit and Miura (1976) and Arora (1976)).

As discussed in this review by Barthelemy and Haftka (1993), at the beginning of 1990s

there were not enough data in the open literature to establish comprehensive comparison of the

effectiveness of various approximation concepts applied to structural optimization. The selec-

30

tion of which was the best method should be based on several attempts of different techniques

suited for the problem at hand and in the most cases the better solution was a combination of

different approaches.

In this sense, Barthelemy and Haftka (1993) concluded that “newer and emergent meth-

ods” like construction of response surfaces (e.g. Sacks et al (1989a) and Sacks et al (1989b))

and neural networks (e.g., Hajela and Berke (1990) and Carpenter and Barthelemy (1992))

should become cost effective even for large-scale problems with the advent of massively parallel

computers. These global approximation methods should also provide unique opportunities to

build inexpensive approximations to expensive analytical models4.

Most of the early literature related to metamodeling are traditionally written in the

statistics and operations research context, as example Box (1954), Box et al (1978), Kleijnen

(1985) and more recently Myers and Montgomery (2002) and Santner et al (2003).

Simpson et al (2001a) present a detailed survey of metamodels for computer-based engi-

neering design. They reviewed the common statistical techniques used to build approximations

of computer analysis codes in engineering design at that time. Also they were worried about the

“dangers of applying traditional statistical techniques to approximate deterministic computer

analysis codes”.

Based on our research of the open literature, Simpson et al (2001a) is one of the first works

that tried to define a clear and systematic methodology for the application of metamodeling

techniques to deterministic computer-based engineering design and to differentiate it from

traditional statistics methods applied mainly to real-world experiments, that are subjected to

random error in parameters and output, i.e., stochastic problems.

Simpson et al (2001a) reviewed the current available experimental design techniques and

its measures of merit, the prevalent approximation strategies named: response surfaces (i.e.,

polynomial regression), neural networks, inductive learning, kriging, and alternative new choices

for fitting such as multivariate regression splines and radial basis functions. Also, they discussed

the Taguchi approach combined to response surfaces in robust engineering design. At the end,

they summarized some guidelines and recommendation on using metamodels with deterministic

computer codes.

Simpson et al (2001a) advocated that comprehensive comparisons among different ap-

4After the work of Sacks et al (1989a) this approximation process become known as DACE, design and
analysis of computer experiments. Although the use of DACE is becoming rare nowadays, this term still can
be found in many references.

31

proaches should be performed in order to better understand its advantages and disadvan-

tages. The difficulties to handle problems with large-scale (i.e., more than 10 variables) were

highlighted and they suggested further investigations of problem partitioning or domain de-

composition methods to deal with large-scale problems. Finally, they suggested research on

metamodeling techniques applied to multi-objective and multidisciplinary engineering design

analysis and optimization.

In Queipo et al (2005) it is presented a comprehensive discussion of the fundamental as-

pects of surrogate-based (or metamodel-based) analysis and optimization, emphasizing main

theoretical concepts, methods, techniques and practical implications. Also, it is presented a

case study of the multi-objective optimization of an aerospace component by using polynomial

regression. Among research issues related to surrogate-based analysis and optimization they

listed: improvements on sampling techniques, alternative modeling methods to lead the de-

velopment of more robust approximation schemes (e.g., support vector regression), the use of

multiple surrogates simultaneously in prediction and optimization, more effective methods for

model validation (e.g., bootstraping) and efficient strategies for sensitivity analysis and design

screening. At the end, they highlighted that surrogate-based analysis and optimization is an

active area of research that has “the potential of playing a vital role in the successfull full-scale

development or modern aerospace systems while effectively considering the competing needs of

improving performance, reducing costs, and enhancing safety”.

Fang et al (2006) published the book: Design and Modeling for Computer Experiments.

The differential aspect of this book is that it is devoted to computer experiments, applied

mainly in approximation and optimization of computer-based simulated engineering problems

and not to statistical research. In fact, most of the examples in their book are collected from

engineering applications, from scientists and practitioners in industry.

In the same way, Forrester et al (2008) published another important book in the field:

Engineering Design via Surrogate Modeling: A Practical Guide, which confirms the increasing

interest and the technological importance achieved by this area during the previous years for

the engineering community.

Simpson et al (2008) presented an extensive historical survey and they recall that a central

question in the metamodeling for design and optimization is when multiple models are to be

considered. So the issue is on what approach to use: selecting or combining models. However,

they remarked that, up to that point, the advantages of combination over selection have never

32

been clarified. Within the controversy is that the most accurate surrogate did not always lead

to the best design, thus using multiple surrogates (or ensemble of surrogates) can improve

the robustness of the optimization at a minimal computational cost. On the other hand, it is

mentioned that after some research in the area, the potential gains of weighted average ensemble

of surrogates should diminish substantially in high dimension problems, possibly making the

gains very difficult in practice.

Besides all the controversy, Simpson et al (2008) remark that since the use of multiple

surrogates for optimization is affordable when compared to the actual simulations, then the use

of a set of surrogates (and possibly a weighted average surrogate) is very appealing in design

optimization research and practical applications.

Forrester and Keane (2009) published another extensive review in surrogate based op-

timization area. They discussed several techniques available for constructing surrogates and

also some enhancing possibilities such as exploiting gradient information and also multi-fidelity

analysis techniques. In addition, they discussed in detail some infill criteria available to improve

the optimization process and to balance exploration and exploitation capabilities provided by

the surrogate approach. In this sense, it is worth noting the Efficient Global Optimization

(EGO), based on probability of improvement and expected improvement functions, after the

pioneering work of Schonlau (1997) and Jones et al (1998). Finally, they remarked that the

metamodel based optimization must always include some form of iterative search and repetitive

infill process to ensure the accuracy in the areas of interest in the design space.

After developments in the last four decades, the use of metamodeling methods is nowadays

a common place in both research and practice in engineering design, analysis and optimization.

For a broader and historical perspective on this subject, refer for instance: Schmit and Farshi

(1974), Arora (1976), Kleijnen (1985), Sacks et al (1989a), Barthelemy and Haftka (1993), Madu

and Kuei (1994), Roux et al (1998), Wang and Shan (2007), Simpson et al (2008), Forrester

and Keane (2009), Viana et al (2010), Han and Zhang (2012) and Ramu and Prabhu (2013).

In addition, a collection of engineering research and applications has been recently published

in Koziel and Leifesson (2013).

As discussed in the previous chapter (Section 1.2), this research is concentrated on Meta-

model Based Optimization and, for our purposes here, this branch of research was divided

in two other branches, i.e., Ensemble of Metamodels and Efficient Global Optimiza-

tion. The literature regarding theses subjects is vast, but we can select some key references

33

(about thirty papers and books) that play an important role to the development of the present

research and thesis. With no intention to create an ultimate and definitive list, in Fig. 7 it is

presented an overview of the main references and their relations to the main subjects studied

in the present thesis.

Although metamodeling applied to simulation-based engineering design and optimization

is a recognized mature discipline, it is yet an intensive research field with some open issues and

controversy to be resolved. It is a consensus (e.g., Viana et al (2010) and Yang et al (2013b))

that there are some areas demanding further studies and enhancements, for instance:

• Development of more effective sampling methods;

• Feasibility and efficient treatment of large-scale problems;

• Alternative modeling methods to lead the development of more robust approximation

schemes (e.g support vector regression);

• Efficient handling of several responses and constraints;

• More effective methods for model validation;

• Improvements and new strategies for sensitivity analysis, results visualization and design

screening;

• Efficient methods to capture and deal with uncertainty, reliability and robustness.

• Efficient methods for combining EGO algorithms and iterative search (repetitive infill

process) to ensure the accuracy in the areas of interest in the design space.

In the next sections we will provide some more details and definitions regarding Meta-

model Based Optimization, Ensemble of Metamodels, Efficient Global Optimiza-

tion with the specific literature that provides the background and motivations for the research

presented in this thesis.

34Figure 7: Overview of the main literature references and their relations to the main research subjects of the thesis.

35

2.2 Specific Literature for the Thesis Scope

In the Section 1.2, the research scope of this thesis work was established and the main

concepts and the basic literature references were outlined. In order to develop the theoretical

concepts and implementations regarding Metamodel Based Optimization, Ensemble of

Metamodels, Efficient Global Optimization, each branch must be divided in new sub-

branches.

A more detailed view of the research subjects studied in the present thesis is displayed

in Fig. 8. As can be observed in the Theory and Implementations part, the two main

paths in direction of Ensemble of Metamodels and Efficient Global Optimization are

highlighted.

In the next sections the state of the art regarding these two main paths followed in the

present thesis will be detailed. The specific literature and main authors will be presented and

the relations to the implementations developed during this research, as outlined in Section 1.3,

i.e., the Augmented Least Squares Ensemble (LS-a) and the Least Squares Ensemble EGO

(LSEGO).

The definitions, formulations and equations regarding each subtopic displayed in Fig. 8

will be presented in the respective chapters and appendices, as described in Section 1.4.

36

Figure 8: Breakdown of the main research subjects of the thesis. Acronyms: RMS (root mean squares), PRESS (predicted sum of squares),
PWS (PRESS weighted surrogate), OWS (optimal weighted surrogate), LS (least squares).

37

2.2.1 Metamodel Based Optimization

Let us recover the brief discussion of Section 1.2. For convenience Fig. 9 will reproduced

here in order to keep the present section self contained.

Figure 9: Direct Optimization (left) versus Metamodel Based Optimization (right). In the direct
approach, at each iteration or cycle, the optimization algorithm submit the simulation models
to run in order to evaluate the performance responses fi(x). This process can be repeated
for several iterations, with hundreds or thousands function evaluations. In the metamodel
based approach, a design of experiments (DOE) is created and the simulation models are
submitted to evaluate the performance responses fi(x). This process is repeated until reasonable
approximations f̂i(x) for the responses are achieved. At the end, the optimization algorithm
uses the metamodels f̂i(x) to find the optimum design. In practical terms, the direct approach
is prohibitive (or even impossible) to be applied in MDO problems as in Fig.1. On the other
hand, the metamodel approach is feasible and efficient in such complex MDO scenarios.

As we stated before, in simple terms, metamodels or surrogate models are nothing but

some kind of “easy-to-calculate” fitting functions (e.g., interpolated or regression polynomials),

constructed with a set of data samples available. In this sense, the sampling data (i.e., different

simulation models in a DOE) can be evaluated in parallel and the overall optimization process

should be faster and it should require less function evaluations than the direct approach to find

the global optimum or even a set of improved design solutions.

The surrogate based optimization is in general an iterative (cyclic) process. At each cycle,

instances of simulation models (sampling points) with different parameters are evaluated. The

surrogate models are fit based on these data and the resulting approximate functions are used

in the search of optimum points (exploitation), analysis of the response behavior, sensitivity

38

and trends in the design space (exploration). Once optimum design candidates are found, they

are evaluated with the true simulation models and, if necessary, the new points are included in

the sampling space in order to improve the approximation and to restart the iterative process.

In summary, surrogate based (or response surface based, or metamodel based) optimiza-

tion refers to the process of using fast running metamodels as surrogates of original complex

and long time running computer simulation models to approximate the objectives and con-

straint functions in a standard optimization algorithm. This methodology has shown to be

effective in both multidisciplinary and multiobjective optimization problems and it has been

widely applied in research and industry. Refer to the reviews by Queipo et al (2005), Wang

and Shan (2007), Simpson et al (2008) and Forrester and Keane (2009) for the mathematical

background and detailed discussion on this subject.

2.2.2 Efficient Global Optimization

Recall in Fig. 10 the basic flowchart for the EGO approach, also already introduced in

Section 1.2.

The EGO concept emerged after the work of Jones et al (1998), that was based mainly

on previous research on Bayesian Global Optimization (Schonlau (1997) and Mockus (1994)).

Traditionally the available EGO algorithms are based on kriging approximation and a single

infill point is generated per optimization cycle.

A question that arises is that the selection of only one infill point per optimization cycle

can be quite slow to achieve the convergence to the optimum. If parallel computation is an

available resource, then multiple infill points should be defined and therefore less cycles might

be required for convergence. This aspect can be crucial specially if the computer models take

several hours to run (as we pointed out in Section 1.1) and a single point EGO approach

becomes prohibitive, specially in multidisciplinary optimization scenarios.

In practical terms, when parallel resources are easily available, it can be worthwhile to

run more simulations per cycle in order to reach an optimum in a reasonable lead time, even if

the total number of simulations is higher at the end of the optimization process.

The aspect of single versus multiple infill points per cycle is known and discussed since

the origins of EGO-type algorithms in the later 1990s. Schonlau (1997) proposed extensions

to the standard EGO algorithm to deliver “m points per stage”, but he pointed out numerical

difficulties in the evaluation of the derived expressions accurately at a reasonable computer cost

39

Figure 10: Efficient global optimization (EGO) flowchart. EGO is a sequential sampling meta-
model based optimization approach. Metamodels f̂i(x) are created and the expected improve-
ment functions E[I(x)] are maximized to generate infill points for the next optimization cycle.
The optimum is found if the level of expected improvement is negligible or the maximum allowed
number of cycles iterations is reached.

and number of function evaluations.

Besides this apparent disadvantage in terms of function evaluations, it can be observed

an increasing research interest on EGO approaches with multiple infill points per cycle (and

other metamodel based parallelization strategies as well) published in the last ten years. This is

because parallel computation is nowadays a relatively easy resource and the potential penalty

of parallel approaches in terms of function evaluations should be neglected in favor of quickly

delivering optimization results.

Although it can be considered a relatively new research field surrogate based global opti-

mization is gaining popularity as pointed out in Haftka et al (2016). In this recent and broad

survey they examined and discussed the publication focused on parallel surrogate-assisted global

optimization with expensive models. According to the authors this area is not mature yet and

it is not possible to conclude with respect to the comparative efficiency of different approaches

or algorithms without further research.

As discussed by Haftka et al (2016) different classes of algorithms or strategies can be

40

defined with the objective of balancing exploitation and exploration of the design space dur-

ing the optimization. In simple terms exploitation refers to deep diving (or zooming) in the

candidate areas of feasible optimum points in order to improve the objective function and

the constraints to deliver better optimization results. On the other hand, exploration means

adding infill points in different areas of the design space in order to reduce the uncertainty and

to improve the metamodel prediction capability.

The different classes of strategies involve the ones based on nature inspired algorithms like

genetic, evolutionary, particle swarm, etc., that are naturally parallelized (the populations can

be divided in different regions, or processors) and are commonly applied in global optimization.

In addition surrogate based strategies (like EGO) can be used together with the parallelization

to improve the exploitation and exploration features of the algorithms.

In this sense, specifically in the branch of metamodel-based multiple points per cycle

algorithms (like EGO or other approaches with similar objectives), refer for instance to Sóbester

et al (2004), Henkenjohann and Kukert (2007), Ponweiser et al (2008), Ginsbourger et al (2010),

Viana and Haftka (2010), Janusevskis et al (2012), Viana et al (2013), Desautels et al (2012),

Chaudhuri and Haftka (2012), Rehman et al (2014), Mehari et al (2015), Encisoa and Branke

(2015) and other interesting and relevant works referenced and discussed in Haftka et al (2016).

2.2.3 Ensemble of Metamodels and EGO

The effectiveness of selecting and/or combining different metamodels in the optimization

process has been investigated and discussed in the last years. See, for instance Zerpa et al

(2005), Goel et al (2007), Sanchez et al (2008), Viana et al (2009), Acar and Rais-Rohani

(2009), Acar (2010) and Viana (2011).

In most of these studies, it is suggested that ensemble of metamodels, or weighted averaged

surrogate (WAS) models, are able to provide better accuracy than individual metamodels work-

ing alone, and they can improve the overall robustness of the metamodel based optimization

process. Besides that, in Viana et al (2009) and Viana (2011) it is discussed that the potential

gains of using multiple surrogate models are not guaranteed and should be limited.

In fact, as pointed out in Viana (2011), “even after years of intensive research, surrogate

modeling still involves a struggle to achieve maximum accuracy within limited resources”. In

addition, as discussed by Yang et al (2013b), among the challenges in modeling and optimization

in the next years, (i) the best way to construct good surrogate models and (ii) the choice of

41

modeling and optimization algorithms for a given problem are still open questions for research.

As mentioned in Section 1.3, we proposed in the Phase I of this research the use of the

concept of least squares (LS) regression as a way to find the optimal weights in ensemble of

metamodels (or weighted average surrogates, WAS). These implementations and results were

published in Ferreira and Serpa (2016).

In most of the currently available WAS methods, for instance Goel et al (2007), Viana

et al (2009) and Acar and Rais-Rohani (2009), it is necessary to use specific error metrics

like PRESS (prediction sum of squares) to drive the process of finding the best weights in the

ensemble of metamodels. One of the drawbacks is that PRESS often has a high computational

cost to be evaluated.

Therefore, the LS approach has shown to be appealing in terms of lower computational

cost and simple formulation. In addition, LS methods are well known and established in

statistics field and have a series of variants developed to handle, for example, multicollinearity,

an inherent drawback that limits the accuracy of ensemble of metamodels.

Specifically for handling multicollinearity, we proposed in Ferreira and Serpa (2016) the

augmented least squares ensemble of metamodels (LS-a), that is a variation of the standard

least squares regression, by augmenting the matrix system in such a way that minimizes the

effects of linear dependency among the models.

In a second front of application, we pointed out that LS ensemble methods can be used

within the context of efficient global optimization. The ensemble of metamodels based on LS

approach inherits the variance estimator, which can be used in the definition of the expected

improvement function, that is the main driving force behind EGO methods.

In the Phase II of the present research, we extended our first results by proposing an

approach that is able to provide multiple infill points per cycle in a EGO-type algorithm by

using least squares ensemble of metamodels.

In Ferreira and Serpa (SMO-15-0339), see Appendix G, we presented the LSEGO algo-

rithm, that stands for “least squares ensemble efficient global optimization”. In the numerical

experiments performed, LSEGO has shown to be a feasible alternative to drive EGO algorithms

with ensemble of metamodels, and in addition it is not restricted to kriging nor a single infill

point per optimization cycle. LSEGO was applied in the optimization of analytical benchmark

functions (up to six variables) and including some examples of constrained optimization as well.

In addition LSEGO produced competitive results as compared to MSEGO for the optimization

42

Figure 11: Efficient global optimization (EGO) with ensemble of metamodels. By using en-
semble of metamodels the standard EGO (Fig. 10) can be enhanced to accept different ap-
proximations (not only kriging) and generate multiple infill points per optimization cycle, as in
LSEGO algorithm reported in Ferreira and Serpa (SMO-15-0339), see Appendix G.

of two benchmark functions. Recall in Fig. 11 a flowchart that summarizes the EGO process

with ensembles, as in LSEGO, previously mentioned in Section 1.3 as well.

Viana et al (2013) proposed the MSEGO (multiple surrogates EGO). They devised a way

export the uncertainty estimate for one kriging model to the other non-kriging models in a

multiple surrogates set. With different uncertainty estimates, they generate different instances

of expected improvement functions to be maximized and to provide multiple parallel infill points

in each EGO cycle. We suggested an alternative scheme to generate multiple infill points per

cycle in the EGO algorithm by using a LS ensemble, in order to take advantage of multiple

surrogates, as applied in Viana et al (2013).

In the present thesis we review and compile the results of our previous research in the field

of LS ensembles and EGO algorithms. In addition, in the Phase III of the present work, we

extended the LSEGO algorithm to handle constrained optimization problems. In order to test

the effectiveness of LSEGO approach in constrained optimization, some numerical experiments

were performed with analytical test functions. In addition, a case study with one industry scale

engineering problem is also presented.

43

3 Metamodel Based Analysis and Optimization

“It’s better to solve the right problem approximately

than to the wrong problem exactly.”

J. W. Tukey, 1915-2000.

Most physical phenomena can be described by means of mathematical models, such as

y = f(x), where x represent a vector of input variables, defined in ℜn, and y is an output scalar

variable that represents the response f(x) being modeled.

Since f(x) is costly and/or time consuming to evaluate, as in computer models of real

world applications (e.g., FE and CFD simulation models), the idea is to find a proper approx-

imation ŷ(x) ≈ y(x), also known as metamodel, surrogate or response surface, that is at same

time accurate, cheap and fast to evaluate.

Figure 12: The iterative process of creating metamodels: (i) Definition of Design Space, (ii)
Experimental Design, (iii) Models Evaluation, (iv) Metamodels Creation and (v) Metamodels
Validation. At the end of the process, the true response functions (original models) yi = fi(x)
can be replaced by validated approximate functions (metamodels) ŷi = f̂i(x), that are accurate
and fast to evaluate in sensitivity analysis, design space exploration and optimization studies.

44

The process of constructing approximate models (i.e., metamodeling) is iterative by defi-

nition. The five main steps that cover the metamodeling process (see Fig. 12) should be briefly

described as follows:

(i) Definition of Design Space: based on the original simulation models available, select

the inputs, i.e., the nv design variables x = [x1 · · · xnv
]T and respective bounds of design

the space, i.e., x ∈ χ. In addition, select the outputs, i.e., the responses yi = fi(x)

to be monitored. This step can be driven by prior experience and knowledge regarding

the problem, or by a previous sensitivity analysis to prioritize the most significant nv

variables, respective bounds and associated functional responses to control or optimize.

Although it is an important aspect for the proper and reasonable definition of variables

and the design space, discussion of sensitivity analysis methods is out of the scope of this

thesis. The interested reader should refer to Morris (1991), Saltelli et al (2004), Ioss and

Lemaitre (2015) and the references therein;

(ii) Experimental Design : perform a design of experiments (DOE), e.g., Factorial Design,

Uniform Design, Latin Hypercube, etc., and generate a set of N sampling points (or

“training” points) to evaluate the true functions yi(x);

(iii) Models Evaluation : run the true models and evaluate yi(x) at the training points de-

fined in step (ii);

(iv) Metamodels Creation : create the metamodels ŷi(x) by using any available procedure,

e.g.: PRS, Polynomial Response Surface; RBF, Radial Basis Functions; KRG, Kriging;

NN, Neural Networks; SVR, Support Vector Regression, etc.;

(v) Metamodels Validation : define a suited error metric and test the accuracy of ŷi (x) on

the validation points. If the accuracy is not acceptable, iterate by adding more sampling

points, step (ii); or by improving the approximation method (new fit or fine tuning), step

(iv).

In this way, by means of validated metamodels ŷi(x), many engineering activities can be

performed in a faster way, such as: preliminary studies and graphical visualization; prediction

and optimization; design sensitivity analysis; probabilistic, robust and reliability based design.

The metamodeling process for design and optimization has been developed and matured

during the last three decades. All the five steps outlined above and depicted in Fig. 12 are

45

well established in engineering design, and the details can be found in the books by Fang et al

(2006) and Forrester et al (2008).

3.1 Metamodel Creation Methods

In a general form, most metamodels can be created by using a linear combination of a set

of specific basis functions B = {B1 (x) , B2 (x) , · · · , BL (x)}, as described by Fang et al (2006).

Therefore, the metamodel ŷ (x) can be written in the following form:

ŷ (x) =
L
∑

i=1

βiBi (x) , (1)

where βi are unknown coefficients to be calculated.

There are different methods for selecting the basis set and calculating the coefficients,

which lead to different properties, such as: conceptual simplicity, transparency, accuracy, ro-

bustness, efficiency and computational cost. A detailed explanation about these methods should

be found in the books by Fang et al (2006) and Forrester et al (2008).

In engineering analysis and optimization the most common methods are:

Polynomial Response Surface (PRS): it is the oldest and one of the most popular tech-

nique in metamodeling, also known as Response Surface Methodology after Box (1954).

Further details are available in the works of Box and Draper (1987) and Myers and Mont-

gomery (2002).

Kriging (KRG): named after Krige (1951) in geostatistics work, also known as spatial cor-

relation modeling, has become popular in design and analysis of computer experiments

after Sacks et al (1989b). A recent comprehensive review on kriging metamodeling can

be found in Kleijnen (2009). Since it is the basis of EGO methods (Chapter 6), the main

equations are presented for reference in Appendix C.

Radial Basis Functions (RBF): initially developed by Hardy (1971), also in geology field,

it is one of the most often applied approaches in modern multivariate approximation

theory, when the task is to approximate (interpolate) scattered data in several dimensions.

Further details can be found in Buhmann (2003), Wendland (2005) and Fasshauer (2007).

Neural Networks (NN and RBNN): according to Fang et al (2006) the term neural net-

work has evolved to encompass a large class of models and “learning” methods for pa-

rameter estimation. The architecture of a neural network, based on the concept of neuron

46

model, describes how a network transforms its input to an output, as a mapping based

on weights that can be viewed as a non-parametric regression. The NN literature is large

and a broad description can be found in Bishop (1995). There is a close relation between

RBF and NN, see for instance a discussion in Buhmann (2003). A particular case of

NN-RBF is RBNN, radial basis neural networks, in which the resulting metamodel is a

regression instead of an interpolation.

Support Vector Regression (SVR): it is a special case of Support Vector Machines, that

is a generalization of the generalized portrait algorithm, developed by Vapnik and Lerner

(1963). A detailed explanation of SVR is available in Gunn (1997) and Smola and

Schölkopf (1998).

Nowadays, it is well known among the researchers and practitioners that there is no

“universal” approximation method for metamodeling purposes. The best strategy is dependent

on: the degree of nonlinearity of the problem at hand; number of design variables; on the

sampling technique; the functional form of surrogate model (shape and tuning parameters) and

the error measure adopted.

Interesting discussion can be found in the surveys on this branch of research, also referred

as “Design and Analysis of Computer Experiments”, “Metamodel Based Analysis and Design”

or yet “Surrogate-based Analysis and Optimization”: Queipo et al (2005), Wang and Shan

(2007), Simpson et al (2008), Forrester and Keane (2009), Viana et al (2010), Han and Zhang

(2012) and Ramu and Prabhu (2013).

3.2 Metrics for Metamodel Validation

Regarding the validation step in the metamodeling process outlined previously (see Fig.

12), several metrics can be defined to evaluate the prediction error e(x) = y(x) − ŷ(x), for

example: maximum absolute, average, correlation coefficient, etc. One common error measure

adopted is the root mean squared error, given by

RMSE =

√

√

√

√

1

Ntest

Ntest
∑

i=1

e2i (x) , (2)

where Ntest is the number of test points used to evaluate the prediction error.

It is useful in practice to define a normalized root mean squared error, NRMSE, for

47

example in terms of the maximum value for y = f(x) in the test set

NRMSE = 100%× RMSE

max
(

yi |Ntest

i=1

) . (3)

Then it is possible to remove magnitudes and make comparisons on the accuracy of different

models.

The squared sample linear correlation coefficient, R2, is another way to measure the

quality of fit for approximate models, in which R is given by

R (Xi, Yi) =

N
∑

i=1
(Xi − X̄)(Yi − Ȳ)

[

N
∑

i=1
(Xi − X̄)2

N
∑

i=1
(Yi − Ȳ)2

]
1

2

, (4)

with X̄ =
1

N

N
∑

i=1
Xi, for any two random vectors Xi and Yi, of size N .

Another common strategy, known as cross-validation, is defined as follows. For i =

1, · · · , N , let ŷ−i denotes the metamodel constructed based on excluding the i-th sampling

point (xi, yi) from the original set (leave-one-out). Therefore, the cross validation score or

PRESS (PREdiction Sum of Squares) is given by

CVN =
1

N

N
∑

i=1

{y(xi)− ŷ−i(xi)}2 . (5)

In order to reduce computational cost in the cross-validation process, the set of sampling points

N can be divided into k groups of same size, and the procedure is calculated by removing all

points in each k-th group, instead of one single point by time. Therefore, there is a trade-off

between accuracy and computational cost to estimate PRESS via this k-fold cross-validation.

Meckesheimer et al (2002) suggested k =
√
N or k = 1

10
N in order to balance accuracy and

efficiency.

3.3 Metamodel Based Optimization

In summary, the metamodel based optimization can be stated as a standard optimization

problem, by replacing the true objective function y = f(x) and the nc constraints gi(x), that

are complex and costly to compute, by their respective fast and cheap surrogates, i.e.,

xopt :























































min
x

ŷ(x)

subjected to (s.t.), ĝi(x)− gimax ≤ 0, i = 1 . . . nc

xlb ≤ x ≤ xub

, (6)

48

where gimax is the reference value (target) for i-th constraint5 and xlb and xub the bounds on the

design space. The optimum point xopt can be found by any available optimization algorithm:

gradient based, direct search, genetic algorithm, etc. See in Fig. 13 the basic steps of the

metamodel based optimization process. Refer to Queipo et al (2005) and Forrester and Keane

(2009) for details.

Figure 13: Metamodel based optimization process. The first phase of the process (first and
inner loop) corresponds to creation of the metamodels (as detailed in Fig. 12) to drive the
optimization algorithm chosen. The bigger and outer loop is the iterative metamodel based
optimization process as whole. At each optimization cycle, if the baseline design is not enough
improved, or the global optimum is not found, then at least three paths can be followed: redefine
the design space (clustering, windowing, etc.), add more samples to the DOE or improve the
quality of fit by changing or tuning the approximation method. The process is nearly the same
for multiobjective or multidisciplinary optimization scenarios as well.

5Only for notational convenience, without loss of generality, we will assume that all equality constraints
h(x) = 0 can be properly transformed into inequality constraints g(x).

49

3.4 An Illustration with Metamodels

In order to illustrate some metamodeling concepts, let us start by an approximation

example with a simple one variable function. As can be observed in Figure 14 both KRG and

RBNN match exactly, or almost exactly, all the DOE points (i.e. interpolation models), while

PRS and SVR deviate from all the sampling points (i.e. regression models).

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Polynomial Response Surface

x

y
(x

)

Exact

DOE Points

PRS−3

R
2
 = 0.802 (in)

R
2
 = 0.694 (out)

NRMSE = 39.94%

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Kriging

x

y
(x

)

Exact

DOE Points

KRG

R
2
 = 1.000 (in)

R
2
 = 0.787 (out)

NRMSE = 21.91%

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Radial Basis Neural Network

x

y
(x

)

Exact

DOE Points

RBNN

R
2
 = 1.000 (in)

R
2
 = 0.888 (out)

NRMSE = 16.82%

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Support Vector Regression

x

y
(x

)

Exact

DOE Points

SVR

R
2
 = 0.899 (in)

R
2
 = 0.813 (out)

NRMSE = 30.43%

Figure 14: Different metamodels for the same function y (x) = 3
10

+ sin
(

16
15
x− 1

)

+

sin2
(

16
15
x− 1

)

, i.e.: PRS, KRG, RBNN and SVR. All models generated by using the SUR-

ROGATES Toolbox (see details on Appendix A).

If we need to interpolate the points in the sample (in) and also have good accuracy out

of the sample (out), both KRG and RBNN should present problems. For instance, KRG is

good in the range (0− 0.6), but it is very poor in the range (0.6− 1.0). By its turn, RBNN is

good in the interval (0.4− 1.0) but it overfits the results in the range (0− 0.4), specially for

x < 0.2. In other words, for this example KRG and RBNN present good local accuracy which

is not true globally.

Alternatively, if the objective is not necessary to interpolate exactly the DOE points, but

predict with acceptable accuracy in the whole domain, which means regression, thus SVR or

PRS should be considered good for this simple example, since the deviation from the exact

50

values is almost equally spread (or smoothed) along the domain.

Even if we compare the objective error measure numbers, the answer will not be unique

as well. That is, the correlation measured by R2 (Eq. 4) at the data points (in) is perfect for

RBNN and KRG, i.e. R2 = 1, which is desired for interpolation. But the R2 numbers for these

two models differ significantly for unknown data (out).

In another way, SRV is quite stable in terms of R2 for (in) and (out) data, which represents

less overfitting, but the global error at points out of sample, measured by NRMSE, is higher

for SVR as compared to RBNN and KRG.

If we need to consider the computational cost involved to create the approximate models,

in addition to the accuracy level, the decision problem becomes more complex. It is known

that neural networks, KRG and SVR should by quite slow depending on the number of points

and variables involved, since they are based on local optimization loops in the generation and

fine tuning of the model parameters. In this sense, PRS is unbeatable and it should be a fairly

good solution for this problem presented in Figure 14. Although the error levels of PRS are the

worst ones, they are on the same order of SVR and the accuracy can be improved by adding

a few more points in the sample, or by increasing the degree of the basis polynomial in the

regression model at virtually no cost.

Of course this is a simple illustration problem, but the task of selecting a good or the best

model in practice is not easy, specially for higher number of variables and complex nonlinear

problems, which becomes more difficult when the cost to increase the sampling space is high,

as can be found in engineering design (e.g., automotive crash models, aerodynamic analysis,

fluid-structure interaction problems, that run for several hours in high performance computer

clusters).

Well, if there is no trivial solution, is there any way to combine a set of distinct ap-

proximate models and achieve a merged model with higher accuracy or good accuracy in a

broader sense than individual models alone? Is that possible to join the models in such a way

that incorporates the advantages and eliminates or alleviates the weaknesses from each model

available? Since the computational cost for creating several metamodels is small as compared

to the cost to evaluate the true function being approximated, then the combining process or a

mixed selection and combining approach starts making sense.

In fact, this question is not new and our objective in the next chapters is to discuss tradi-

tional methods developed for combining multiple metamodels for prediction and optimization.

51

4 Ensemble of Metamodels Background

“All models are wrong; some models are useful.”

George E. P. Box, 1919-2013.

In the previous chapter we presented the basic concepts of metamodeling and the most

common methods available to create an approximate model for a problem.

As we discussed, the best metamodeling strategy is always dependent on: the degree of

nonlinearity of the problem; the number of design variables; the sampling points technique

and distribution in the design space; the functional form of surrogate model (shape and tuning

parameters) and the error measure adopted.

After a lot of research and comparative studies in this subject performed in the last

decades, the conclusion is that it is a problem dependent issue. There is not a unique approxi-

mation method that can handle with equal and acceptable accuracy every problem at hand, or

at least the majority of problems to approximate. Each method has its pros and cons and the

user should be able to choose the best for his own purposes.

As we discussed in Section 3.4, the task for selection of metamodels is not a trivial solution

and, since the computational cost for creating several metamodels is small as compared to the

cost to evaluate the true function being approximated, the combining process (or a mixed

selection and combining approach) can be a feasible way.

This question is not new and our objective in the next sections is to discuss the methods

developed for combining multiple metamodels for prediction and optimization.

4.1 Origins and Definitions

Concepts like ensemble of predictors, mixture of experts, committee of networks, etc., are

well known in machine learning literature. See for instance Wolpert (1992), Hashem (1993),

Perrone and Cooper (1993), Bishop (1995) and Breiman (1996). The idea is that, by the

combination of different predictors, it is possible to improve the final model accuracy.

Let us discuss these ideas with a little more detail. Suppose that we have a set of M

models: ŷ1 (x), ŷ2 (x), ..., ŷM (x), which represent distinct numerical approximations of an

output y (x). In addition, all the models have been constructed based on the same set of N

sampling points, represented by the design matrix (or input-output matrix)

52

X = {(xi, yi) , i = 1, 2, · · · , N} .

As discussed previously, what is desired is not a collection of predictors for the same

problem, but one single model that represents or predicts as best as possible the true response

y (x) for the problem at hand.

The straight forward approach is to generate the collection of predictors and then select

the “best one”, in terms of predefined error measures. The best model selected in this way is

also known as “naive estimator”, as for instance in terms of mean squared error (MSE)

ŷNaive (x) = argmin
i

(MSE [ŷi (x)]) . (7)

At first, what is immediately argued is that once the models are generated and the best one

is selected from the list, all the effort demanded and information stored in the discarded models

are wasted. Second, the generalization properties of the approximation can be compromised

since the model with best performance in a validation set can lead to overfitting in future data.

Therefore combining properties of different predictors can be a way to add smoothness in the

final approximation.

As discussed for instance by Breiman (1996), the idea of combining predictions or forecasts

remounts to the late 1960s, with theoretical discussions in statistics and financial fields. Even

though, what was not clearly detailed up to early 1990s is how to perform such a combination

in a formal and systematic way. Up to that point, the techniques for combining predictors were

considered as more art than science. In Wolpert’s own words, many aspects of combining (or

stacking) predictors, at that moment, are treated as “black art”, Wolpert (1992).

In this sense, an ensemble of models can be defined as a linearly weighted summation6

ŷens (wi , x) = w0 +
M
∑

i=1

wiŷi (x) , (8)

where ŷi (x) are the M available distinct models, wi are the weights associated in the linear

combination and w0 is an intercept term. If w0 = 0 and wi =
1

M
, then it is defined the simple

average ensemble (SA).

The first developments on finding optimal weights wi in the ensemble are acknowledged

to Perrone and Cooper (1993) and Hashem (1993). They devised independently an approach

6Most of the publications is focused on linear ensembles, but it can be observed a growth of interest on
nonlinear ensemble methods, in which any type of approximation should be used to combine the models, e.g.,
neural networks, support vector regression, etc. See, for instance Yu et al (2005), Lai et al (2006) and Meng
and Wu (2012).

53

that has been presented and discussed in detail in the book by Bishop (1995). In summary, by

the minimization of the mean squared error (MSE), with respect to wi, and with
∑

i
wi = 1 as

constraint, it follows that

wi =

M
∑

i=1

(C−1)ij

M
∑

k=1

M
∑

j=1

(C−1)kj

, (9)

where the error correlation matrix C is estimated based on a validation set of Nv sampling

points as follows

Cij =
1

Nv

Nv
∑

n=1

[(yn − ŷi (xn)) (yn − ŷj (xn))] . (10)

The accuracy of the weights calculated in this way is directly dependent on the quality

of the estimation of the matrix C, as in Equation (10). By its turn, the accuracy of C is

dependent on the assumption that the errors ei (x) = y (x) − ŷi (x) have zero mean and are

uncorrelated, i.e.,

E [ei (x)] = 0 and E [ei (x) ej (x)] = 0 , if j 6= i , (11)

where E [·] denotes the statistical expectation.

In practice, this condition means that the matrix C need to be full rank and the Nv

sampling points are enough in number and distribution to assure the quality of the estimate of

C. Otherwise, the matrix inversion process will become unstable and the estimate of C−1 can

be ill-conditioned and therefore unreliable.

If these assumptions hold, it can be demonstrated that (ref. to Perrone and Cooper (1993)

or Bishop (1995) for details)

MSE (ŷens) ≤
1

M

M
∑

i=1

MSE (ŷi) , (12)

which means that: (i) the higher the number of distinct models, the lower is expected the

MSE for the weighted average ensemble (with a factor of 1
M
); and (ii) ŷens (x) provides the best

estimate of y (x) in the mean square sense, if the errors ei = yn − ŷi (xn) have zero mean and

are uncorrelated.

In practical applications, these theoretical levels of MSE reduction are difficult to achieve

because the models ŷi (x) can be highly correlated. In spite of that, we can find in the liter-

ature results advocating 10% or higher for reduction in MSE, by using weighted ensemble of

predictors.

Motivated by the potential benefits, ensemble methods for prediction still comprise an

54

active area of research that is getting maturity, as can be seen in the recent books dedicated to

this topic: Seni and Elder (2010), Zhou (2012) and Zhang and Ma (2012).

Although ensemble methods are well known in machine learning area, specially in predic-

tive statistics and financial forecasting, this approach is relatively new in the engineering field.

This is what we will present and discuss with more detail in Section 4.3.

4.2 An Example with Simple Average Ensemble

Before moving forward with the subject, let us apply and discuss the simple averaging

ensemble (SA) method in the combination of the four models presented in Section 3.4 and

displayed in Fig. 14. The result of this SA ensemble is presented in Fig. 15.

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Simple Averaging

x

y
(x

)

Exact

DOE Points

SA

R
2
 = 0.966 (in)

R
2
 = 0.845 (out)

NRMSE = 22.96%

Figure 15: Combining the four metamodels presented in Fig. 14 by simple averaging (SA).

In fact, as can be observed in Fig. 15, the final averaged model (SA) was able to approxi-

mate fairly well the function in the whole design domain. As expected, the resulting SA model

is only able for regression purposes, since it does not match the DOE points anymore because it

tries to respect all the models in the ensemble simultaneously. If we compare the error metrics,

R2 is good for both (in) and (out) data, and the global error measured is NRMSE = 22.96%,

which is smaller than the average value of the NRMSE of the previous models individually

(27.27%).

Of course this is only a quick toy example and the results cannot be immediately gener-

alized. However, these preliminary results indicate that if we refine the combining approach,

there is a good potential to improve the performance of the final ensemble model in the whole

design domain.

55

4.3 Ensemble Methods in Engineering Design

In the review presented by Queipo et al (2005) they remarked that the cost of constructing

surrogates (or metamodels) is small compared to the cost of the real computer simulations (i.e.,

the problems being modeled), thus using multiple surrogates may offer advantages to the use of

a single surrogate. In addition they remind that the use of multiple surrogates has a potential

to bring several advantages at the optimization and decision-making levels of design phases,

specially because: (i) it is expected from a weighted averaged model to provide a prediction with

lower variance than any of the individual surrogates; (ii) large variability in the estimated values

and variances among surrogates at a point in design space may indicate that the uncertainty

at that point is higher than predicted, therefore locations like that are prone to be refined by

additional sampling points.

Besides all the controversy, Simpson et al (2008) remark that since the use of multiple

surrogates for optimization is affordable when compared to the actual simulations, then the use

of a set of surrogates (and possibly a weighted average surrogate) is very appealing in design

optimization research and practical applications.

The first application of ensemble methods in engineering design and optimization, inspired

by the work in machine learning, is acknowledged to Zerpa et al (2005). They proposed the

estimation of the weights wi in the linear ensemble, Eq. (8), as

wi =

1

Vi
M
∑

j=1

1

Vj

, (13)

where Vi is the prediction variance estimation V (ŷ (x)) for the i-th metamodel.

Goel et al (2007) proposed heuristic schemes for estimating the weights in a weighted

averaged surrogate model (WAS), for instance: PWS (PRESS weighted surrogate), given by

wPWS
i =

w∗
i

M
∑

j=1

w∗
j

, (14)

where w∗
i is defined as

w∗
i = (Ei + αEavg)

β with Eavg =
1

M

M
∑

j=1

Ej , (15)

in which Ei is the global data-based error measure for the i-th surrogate model, in this case

PRESS. The parameters (α < 1 and β < 0) control the importance of averaging and the im-

portance of an individual surrogate respectively and it was suggested α = 0.05 and β = −1.

Acar and Rais-Rohani (2009) estimated the weight factors by solving a direct optimization

56

problem of the form:

min
wi

Err (ŷens , y) , subjected to
M
∑

j=1

wj = 1, (16)

and Err (ŷens , y) is any selected error metric. In this case it was used RMSE and PRESS to

drive the optimization.

Viana et al (2009) defined the optimal weighted surrogate (OWS) by:

min
wi

MSE (ŷens) = wTCw, s.t.
M
∑

j=1

wj = 1, (17)

with the matrix Cij =
1

N
ẽTi ẽj, where ẽ is the vector of cross-validation errors (PRESS) for the

i-th and j-th surrogates. The matrix C is similar to the one in Eq. (9), but in Eq. (17) it is

modified by using cross-validation procedure, i.e., Eq. (5), with the whole set of N sampling

points7.

In all the applications mentioned up to here the weights wi are considered constant in the

design domain (“global” weights). There is no restriction on defining the weights as dependent

on the location of the sampling points (“local” weights), i.e., wi (x). Even though, the results

published with local weights did not show remarkable improvements, when compared with the

constant definition of weights in the design domain. See for example Sanchez et al (2008) and

Acar (2010) for more details.

In general, most of the previous research suggested that ensemble of metamodels, or

weighted averaged surrogate models (WAS), are able to provide better accuracy than individual

metamodels working alone. In other words, it is advocated that weighted averaging schemes

should improve the robustness of the predictions and the optimization results, by reducing the

impact of poorly fitted surrogates in the ensemble.

On the other hand, as discussed in Viana et al (2009), the computational cost to calculate

PRESS can become prohibitive and, in addition, the gains in terms of reduction of RMSE

diminishes substantially as the number of variables increases, even with a large number of

sampling points. According to this research, unlike established in Eq. (12), none of the ensemble

methods tested was able to reduce the RMSE more than 10% when compared to the best model

(i.e., the most accurate in terms of PRESS).

In fact, in some examples Viana et al (2009) found that the ensemble model can be less

7By considering the general OWS method, Viana et al (2009) defined other variants as follows: OWSfull is
the optimal weighted surrogates by using the full C matrix; OWSconst is OWSfull with an additional positivity
constraint for wj in the optimization (Eq. 17) and OWSdiag is OWSfull modified by using only the diagonal
elements of the C matrix.

57

accurate than the best model in the set. Therefore, for the problems tested, it was not verified

enough evidence that the combination of models is always better than selecting the best model,

when PRESS is used as error metric to rank models and drive the estimation of the weights in

the ensemble.

Finally, since there are still some controversy and open questions, metamodeling methods

for prediction and optimization are included in the list of challenges for research in the next

years, as discussed by Yang et al (2013b). Based on what was presented in this chapter, we can

conclude that it is still needed some research in this area in order to clarify the open issues and

controversy and also stretch the boundaries of applications of multiple surrogates and ensemble

methods in design analysis and optimization.

In this sense, our first contribution is on the derivation of an ensemble method based on

the concept of least squares approximation. As we will show in the next chapter, this approach

is appealing since it is not dependent on any error explicit measure like PRESS, as in most of

the previous approaches proposed in the literature and discussed here. In addition, it has a

computational cost similar to the simple average, which can be a good feature since some error

measures like PRESS can be prohibitive as number of sampling points increase, specially in

high dimensions.

58

5 Ensemble of Metamodels by Least Squares

“When I have clarified and exausted a subject,

then I turn away from it,

in order to go into darkness again...”

J. C. F. Gauss, 1777-1855.

Based on the previous chapter, the main characteristic in the available weighted averaged

ensemble schemes is that it is necessary to evaluate an error measure (in general PRESS), which

often demands a large number of sampling points in order to be effective. In addition, as it

is known, the error computation by cross-validation can be cumbersome, even when a k-fold

strategy (refer to Eq. 5) is applied.

The present chapter summarizes the background and main results of the ensemble of

metamodels based on least squares. As discussed in Section 1.3, this is the core of the Phase

I of the research. Further details can be found in our previous work reported in Ferreira and

Serpa (2016). This chapter was planned to be as much as possible self contained but, if detailed

information is needed, refer to the complete manuscript in the Appendix G.

5.1 Basic Formulation

Here it will be followed an alternative approach for calculating weights in an ensemble

model, by minimizing the approximation error, without explicitly calculating any error measure

(e.g., PRESS), as discussed in the Section 4.3.

A general linear regression model can be written as

y = β0 +
nreg
∑

i=1

βizi (x) + ε , (18)

where zi represents any function zi(x) of the original regressors (or design variables) xj, and ε

is the error of the approximation. See Montgomery et al (2006) for details.

Then, by replacing zi(x) = ŷi(x) and βi = wi, the linear ensemble in Eq. (8) can be

rewritten as a linear regression problem, i.e.,

y = Ŷw + ε, (19)

where y = [y1 · · · yN]T , Ŷ = [ŷ1 (xi) · · · ŷM (xi)] and w = [w1 · · · wM]T , for N sampling

points and M metamodels.

59

Therefore, the standard least squares estimator for w in Eq. (19) is given by

ŵ = (ŶT Ŷ)−1ŶTy, (20)

and, according to the Gauss-Markov theorem, if the errors ε = [ε1 · · · εN]T are normally and

independently distributed (NID), with zero mean and finite variance, i.e., εi ∈ NID(0, σ2),

then ŵ is the referred as the best linear unbiased estimator (BLUE) of w. That is, ŵ provides

the minimum prediction error, in the least squares sense, and has minimum variance among

all unbiased linear estimators. For proofs and details see Montgomery et al (2006) or Björk

(1996), with more mathematical and numerical aspects.

The solution of the N ×M set of linear equations in Eq. (20) is well known and can be

performed efficiently by standard numerical algebra algorithms. In this way, ŵ minimizes the

errors (ei = yi− ŷiens), in the least squares sense, without explicitly calculating any costly error

measure, like PRESS for instance.

In addition to the simple formulation and computational efficiency, another interesting

property of ensemble methods with optimal weights estimated by Eq. (20) is that they inherit

the least squares variance estimate V [ŷens (x)], defined by ŝ2 (x), for the prediction at each

point x, that can be written as

ŝ2 (x) = σ̂2 [ŷ (x)]T
(

ŶT Ŷ
)−1

ŷ (x) , (21)

with ŷ (x) = [ŷ1 (x) ŷ2 (x) · · · ŷM (x)]T , and

σ̂2 =
ŷT
ensŷens − ŵT Ŷŷens

N − nv

(22)

where ŷens = [ŷens (x1) ŷens (x2) · · · ŷens (xN)]
T .

As we mentioned in Section 2.2.3, by means of the variance estimate, Eq. (21), it is

possible to derive an expected improvement function, which is the main ingredient for the

application of efficient global optimization algorithms. This branch of the research is covered

in the work Ferreira and Serpa (SMO-15-0339), ref. to Appendix G, and it will summarized in

Section 7.

It is worth noting that the idea of using least squares regression to find the optimal

ensemble weights in fact is not new. As remarked by Hashem (1993), if it is removed the

constraint to derive the Eq. (9), the solution for the optimal weights is equivalent to the least

squares regression. In spite of that, in this work it was only applied and tested the method

based on Eq. (9). In addition, the authors remarked that, due to the intrinsic similarity in

the metamodels ŷi, then a “potential problem” of multicollinearity can take place and it can

60

jeopardize the final accuracy of the ensemble predictor. Despite this observation, no further

suggestion or investigation on methods to solve (or at least reduce) the multicollinearity issue

have been addressed in this work or even in the related research by Perrone and Cooper (1993)

or Bishop (1995).

In Breiman (1996) it is presented the concept of stacked regressions for variable selection

and combination of predictors in CART, classification analysis and regression trees, in order

to improve accuracy. Breiman discussed that the direct unconstrained minimization of the

MSE (i.e. least squares) for the stacked predictors (i.e. ensembles) over the learning set, in

general overfits the data and the generalization tends to be poor. In addition, he pointed out

that, even using a cross-validation approach to find the weights, the multicollinearity make the

ensemble highly sensitive to small variations in the data. In order to handle overfitting and

multicollinearity, he suggested and applied the cross-validation allied to ridge regression, i.e.,
∑

i
wi = s and constrained minimization, i.e wi ≥ 0 and concluded that the later one consistently

provided good results for the stacked predictors, by reducing the MSE by 10% against the “best

predictor” alone, for two statistical data sets tested.

In the beginning of the present thesis research, we performed some preliminary numerical

studies with analytical functions (up to ten variables, nv = 10), in order to test the idea of

creating metamodel ensembles by using the least squares approximation concept. Here we

will outline the main outcomes of this initial study. If further information is needed, refer to

Appendix E for details.

The main results of this preliminary study are compiled in Figure 16. In summary, we

observed that:

(i) The accuracy of LS ensemble method is on the same level of the PRESS based ensemble

methods for moderate number of sampling points (N < 50) and LS was superior only for

very dense design spaces, see Fig. 16(a). On the other hand, even for a very large number

of sampling points, the computational cost for LS was always lower than OWS variants,

i.e., more than one order of magnitude, see Fig. 16(b);

(ii) The accuracy of LS ensemble method is on the same level of the OWS ensemble methods,

for increasing the number of variables, see Fig. 16(c). In the same way, the LS method

performed much faster than OWS methods, i.e., at least one order of magnitude for low

dimension problems (up to 5 variables) and more than two orders of magnitude for high

dimension problems (10 variables), see Fig. 16(d);

61

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

Number of Sampling Points, N

lo
g
 o

f
M

e
d
ia

n
 R

M
S

E

BestPRESS

OWSconst

OWSdiag

OWSfull

LS

LS

(a) nv = 2

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

Number of Sampling Points, N

lo
g

 o
f

C
P

U
 T

im
e

BestPRESS

OWSconst

OWSdiag

OWSfull

LS

LS

(b) nv = 2

0 1 2 3 4 5 6 7 8 9 10 11
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of Variables, n
v

lo
g

 o
f

M
e

d
ia

n
 R

M
S

E

BestPRESS

OWSconst

OWSdiag

OWSfull

LS

(c)

0 1 2 3 4 5 6 7 8 9 10
10

−1

10
0

10
1

10
2

10
3

Number of Variables, n
v

lo
g

 o
f

C
P

U
 T

im
e

BestPRESS

OWSconst

OWSdiag

OWSfull

LS

LS

(d)

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

10
1

Number of Variables, n
v

lo
g

 o
f

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f
R

M
S

E

BestPRESS

BestPRESS

LS
LS

LSstepwise

LSstepwise

(e)

1 2 3 4
0

5

10

15

20

25

30

35

1: n
v
 = 1 2: n

v
 = 2 3: n

v
 = 5 4: n

v
 = 10

S
a
n
d
a
rd

 D
e
v
ia

ti
o
n
 I
m

p
ro

v
e
m

e
n
t
[%

]

30.51%

23.44%

16.26%

0%

(f)

Figure 16: Main results of a preliminary numerical study with least squares (LS) ensemble in
comparison with PRESS based methods, i.e., variations of OWS, Eq. 17.

(iii) On the other hand, LS method presented an undesired instability (measured by the

standard deviation of RMSE in 100 runs) as the number of variables increases, see Fig.

16(e);

(v) The variation of accuracy of LS method has been reduced around 30% for 10 variables by

applying a stepwise selection procedure to the standard least squares solution, in order

to reduce the effect of multicollinearity among the metamodels, see Fig. 16(f).

Based on these preliminary results, we concluded that the LS method can be viewed as

an alternative to the PRESS based methods, since it is comparable in terms of accuracy and it

62

performs much faster than the other ensemble methods available.

These preliminary results motivated us to a deeper investigation regarding other available

variants of least squares methods to handle multicollinearity (e.g., ridge regression, principal

components, etc.), in order to understand if it is possible to further improve the accuracy and

stability of the LS approach.

In addition, we aimed to understand how the LS ensemble compares to the available

ensemble methods developed up to now, summarized in Section 4.3. Although multicollinearity

is not clearly discussed in deep on these previous works, it can be observed that in some sense

most of them also try to combat the multicollinearity effects in the ensemble, for instance by

smoothing the variance of the predictors, as in Eq. (13), or by controlling the size of the weights

by the constraint
∑M

j=1wj = 1, as in Eq. (16) and Eq. (17). On the other hand, these kind of

control is not clear in PWS, given by Eq. (14).

As far as we could investigate, there was not found any similar work in the literature in

this sense and we aimed to contribute in this front. This preliminary investigation was extended

and the results are detailed in Ferreira and Serpa (2016).

5.2 Multicollinearity and Least Squares

The issue of multicollinearity in least squares regression is well known in statistics and

related areas. See for instance Montgomery et al (2006), Chapter 11, and the list of references

therein for a broad perspective on this subject.

Among the several sources of multicollinearity, the primary ones are: (i) the data collection

method (size and distribution of sampling points) an (ii) models with redundant variables

(over-defined). During the last decades, several methods have been devised for dealing with

multicollinearity in least squares problems. In general, the techniques involve: a) gathering

additional data and b) model re-specification, in order to reduce the prediction errors induced

by multicollinearity.

For brevity we will not present here the detailed formulation for all the LS variants. Most

of them are covered in Montgomery et al (2006) and details regarding numerical implementation

are discussed by Björk (1996). Further information, assumptions and proofs can be found in the

references listed in each topic as follows. Refer to Appendix F for a broader discussion regarding

multicollinearty and least squares methods and a background on the the main motivations that

drive these approaches.

63

Stepwise Selection : algorithms developed to add and/or delete variables in a regression

model to control the accuracy and to reduce sources of error like multicollinearity. In

Miller (2002) it is presented an extensive discussion on these methods. We followed the

implementation presented in Fang et al (2006) for the variants: F -statistic by Efroymson

(1960); Akaike Information Criterion (AIC) by Akaike (1974); Bayesian Information Cri-

terion (BIC) by Schwarz (1978); ϕ-Criterion by Hannan and Quinn (1979) and Shibata

(1984); and the Residual Information Criterion (RIC) by Foster and George (1994);

Ridge Regression : originally published in the two companion papers Hoerl and Kennard

(1970a) and Hoerl and Kennard (1970b) to handle nonorthogonal data (i.e., multicollinear).

Several algorithms have been proposed in the literature for finding the best ridge estima-

tor, as the generalized cross-validation (GCV) procedure by Golub et al (1979), that is

one of the most accepted for automation;

Principal Components Regression : a deep and extensive discussion on principal compo-

nents analysis can be found in Jolliffe (2002). In summary, the original variables xi are

transformed to the principal components (PC) space zi and then the less significant PC

can be identified and removed to reduce the multicollinearity in the system. As in ridge

regression, several algorithms have been proposed as well for removing the less signifi-

cant PC. Golub et al (1979) proposed a variant of GCV suited to principal components

selection and it is applied here;

Constrained and Penalized Least Squares: in this cathegory, constraints should be added

to the ordinary least squares problem, for example the sum to unit and/or the positivity

of the coefficients, i.e.,
p
∑

i=1
βi = 1 and βi ≥ 0 and the problem now is known as constrained

least squares regression. In order to unify different constrained approaches, a general pe-

nalized least squares can be defined (ref. Fan and Li (2001) and Fang et al (2006)). The

LASSO (least absolute shrinkage and selection) algorithm by Tibshirani (1996) and the

SCAD (smoothly clipped absolute deviation) by Fan and Li (2001) are in this category.

We followed the implementation presented in Fang et al (2006);

Generalized and Weighted Least Squares: the ordinary least squares equation is modi-

fied by adding a weighing matrix, in order to control the variance of the regression coef-

ficients. The most common procedure is the iteratively re-weighted least squares, IRLS.

We followed the procedure presented in Montgomery et al (2006). See Weisberg (1985)

64

and Amemiya (1985) for different weighing schemes.

Robust Regression : these variants are adopted when the data are not normally distributed

or there are possible outliers. The literature regarding robust regression is vast and

a lot of classes of robust procedures have been proposed (ref. Rousseeuw and Leroy

(2003) and Huber and Rochetti (2009)). We adopted the class M-Estimators presented

in Montgomery et al (2006);

Total Least Squares: if both input and output matrices are contaminated by noise, the

ordinary least squares solution can not be accurate (ref. van Huffel and Vandewalle (1991)

and Markovsky and van Huffel (2007)). When total least squares method is applied, both

errors in inputs and outputs are minimized in the Frobenius norm sense. The basic

algorithm to solve total least squares is detailed in Fierro and Bunch (1997).

Effect of Intercept Term : The majority of ensemble methods are based on the definition

in Eq. (8) and does not take into account the intercept term for generating the linear

ensemble of models, i.e., it is assumed w0 = 0. In Hashem (1993), it was remarked the

effect of the intercept in the accuracy of the final ensemble of neural networks. They

identified that for well-trained network models, the optimal sum of weights tends to one

and the constant term tends to zero. However, for poorly trained networks the sum of

optimal weights is far from one and the constant term can be significantly different from

zero. In linear regression analysis this effect of intercept term is also known. As discussed

by Montgomery et al (2006), the effect of intercept can be significant, specially when data

lie in a region far from the origin of the design space. Therefore, there is no reason a

priori to neglect the intercept term in the ensemble models and it can be a good practice

to check whether the intercept term improves the accuracy of approximation or not.

5.3 The Augmented Least Squares Approach

In this section we present an approach based on the idea of gathering additional data

to reduce multicollinearity. In Fig. 17 we have the true response y (x) (solid line), and four

different metamodels ŷi (x) (dashed lines). It can be observed that the prediction at the N = 8

sampling points (circles), used to generate the approximations, is similar for all metamodels,

specially in case of interpolating ones, in which the prediction is the same by definition. On the

other hand, the prediction is much more different in the additional, Nadd = 7, out-of-sample

65

points (stars), which were not used to generate the metamodels.

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Different Metamodels

x

y
(x
)

Figure 17: Comparison of different approximation methods for the same problem. Continuous
line: true response y (x) = − (6x− 2)2 sin (12x− 4); Dashed lines: metamodels by PRS, KRG,
NN and SVR; Circles: sampling points used to create the metamodels; Stars: midpoints, out-
of-sample data not used in the approximations. Note that the models tend to be similar near
to the sampling points (circles) but they can differ a lot in the non sampled points (stars).

Let us consider two different cases. In the first one, the N points are used to generate the

metamodels ŷi (x) and then the matrix Ŷ = [ŷ1 (xi) · · · ŷM (xi)] is assembled. In the second

case, the metamodels ŷi (x) are evaluated at the Nadd points, and an augmented matrix Ŷaug

is assembled as follows

Ŷaug =



































ŷ1 (x1) · · · ŷM (x1)
...

. . .
...

ŷ1 (xN) · · · ŷM (xN)

ŷ1 (xN+1) · · · ŷM (xN+1)
...

. . .
...

ŷ1 (xN+Nadd
) · · · ŷM (xN+Nadd

)



































.

Since the predictions in the augmenting Nadd points are expected to differ among the

metamodels (as in the star points in Fig. 17), it is reasonable to assume that any collinearity

among the columns of Ŷ has a good chance to be reduced in the augmented case Ŷaug, if we

have enough Nadd points to take advantage of the diversity in the metamodel predictions in

points out-of-sample.

If this conjecture is valid, the ensemble weights w can be estimated for the augmented

66

system as

ŵaug =
(

ŶT
augŶaug

)−1
ŶT

augyaug, (23)

with yaug =
[

y1 · · · yN | yN+1 · · · yN+Naug

]T
. Since the linear dependency in Ŷaug is expected

to be lower than in Ŷ , then the accuracy and stability on estimating w by means of ŵaug is

expected to be improved as well.

In many practical situations of metamodeling in engineering design, gathering additional

points should be time consuming, costly or even impossible. In these cases, the whole data set

of N sampling points available should be split in two parts, for example N = Ntr + Nadd. In

the sequence, the metamodels are created based on the training data set Ntr and the weights

are then calculated based on the augmented system, Eq. (23), with all the N points available.

Therefore, in this case it will arise a trade-off regarding the loss of accuracy in the metamodels

approximated with less points (i.e., Ntr < N) and the possible gains of stability with the

augmented approach. In this sense, the optimal number of augmenting points, or the ideal rate

ηaug =
Nadd

Ntr +Nadd

, to balance accuracy and stability in the least squares ensemble needs to be

investigated.

In summary, the augmented least squares approach can be outlined in steps as follows:

i. Collect N = Ntr + Nadd random sampling points and evaluate the true response y for all

points collected;

ii. Generate the approximation models ŷi by using only the Ntr sampling points;

iii. Evaluate the metamodels ŷi at all N = Ntr+Nadd points and mount the augmented matrix

Ŷaug and the output vector ŷaug;

iv. Solve the system for the weights ŵaug with Eq. (23).

Let us check this assumption based on the example of Figure 17. We will use the pairwise

correlation matrix R (see Eq. 48 in App. F). Then, by using first only the N sampling points

(i.e. circles in Figure 17)

R =

















1.00 0.80 0.80 0.92

0.80 1.00 1.00 0.92

0.80 1.00 1.00 0.92

0.92 0.92 0.92 1.00

















and by using one additional point, where the difference in model is highest (x = 0.79), and all

the seven additional points (i.e stars in Figure 17), then we found respectively

67

R1

aug =

















1.00 0.78 0.79 0.91

0.78 1.00 0.90 0.92

0.79 0.90 1.00 0.87

0.91 0.92 0.87 1.00

















and R7

aug =

















1.00 0.65 0.69 0.89

0.65 1.00 0.85 0.83

0.69 0.85 1.00 0.81

0.89 0.83 0.81 1.00

















.

As can be observed in this example, R presents high pairwise correlation among models

(Rij > 0.8) and in addition models 2 (RBNN) and 3 (KRG) are perfect correlated (R23 =

1.00), when using only the sampling points. On the other hand, as expected, by augmenting

the system the correlation is reduced even by using only one extra point, as displayed in

R1
aug. Further, it is also observed that the reduction of the correlation is more pronounced by

augmenting the system with more points, as shown in R7
aug. Note that, for instance, with 1

extra point R23 = 0.9 and with 7 extra points R23 = 0.85; and in case of models 1 and 2,

R12 = 0.78 for 1 extra point, and with 7 extra points R12 = 0.65.

In this way, with this simple example we can see the potential of this method to reduce

multicollinearity in the ensemble method by least squares. In this sense, it is necessary to better

investigate the behavior of this method in a broader scenario and also to define how many points

are needed to use in order to augment the system and achieve the desired accuracy.

In the Section 5.4, we will illustrate the behavior of the augmented least squares approach,

as compared to other LS variants. In Section 5.5 we will summarize the results of Ferreira and

Serpa (2016).

5.4 An Example with Least Squares Variants

Once again let us make use of the simple example of the four models presented in Section

3.4 to illustrate the behavior of different least squares variants in the estimation of the weights

for the ensemble model. For convenience and easy reference the models presented in Fig. 14

will be repeated here in Fig. 18

As can be seen from the results in Table 1 and Figure 19, the different methods resulted

in numerically different weights and final accuracy for the approximation. In case of LSQ,

LSQstep and LSQrdg, the weight and errors are technically the same, when compared up to 4

decimal figures. The main difference is found for LSQaug and LSQpc, where the weights vary

significantly with respect to the standard least squares.

In addition, it is worth noting that LSQpc resulted in a large error reduction when com-

68

pared to LSQ and SA, by merging KRG and RBNN equally (w2 = w3 = 0.5), which are the

best two models in the set and by discarding PRS and SVR (w1 = w4 = 0.0), the poorest ones.

Therefore, it can be inferred from the results of this simple example that using different

LS variants can lead to different ensemble models with a potential to improve the quality of

fit. We investigated this in detail and the results will be summarized in the next section.

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Polynomial Response Surface

x

y
(x

)

Exact

DOE Points

PRS−3

R
2
 = 0.802 (in)

R
2
 = 0.694 (out)

NRMSE = 39.94%

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Kriging

x

y
(x

)

Exact

DOE Points

KRG

R
2
 = 1.000 (in)

R
2
 = 0.787 (out)

NRMSE = 21.91%

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Radial Basis Neural Network

x

y
(x

)

Exact

DOE Points

RBNN

R
2
 = 1.000 (in)

R
2
 = 0.888 (out)

NRMSE = 16.82%

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Support Vector Regression

x

y
(x

)

Exact

DOE Points

SVR

R
2
 = 0.899 (in)

R
2
 = 0.813 (out)

NRMSE = 30.43%

Figure 18: Different metamodels for the same function y (x) = 3
10

+ sin
(

16
15
x− 1

)

+

sin2
(

16
15
x− 1

)

, i.e.: PRS, KRG, RBNN and SVR. All models generated by using the SUR-

ROGATES Toolbox (see details on Appendix A). The present models are the same displayed
in Fig. 14, repeated here for easy reference to the results presented in Tab.1.

69

Table 1: Ensemble weights and error measures by different least squares variants, with respect to the models presented in Fig.14. For each
method it is displayed the resulting weights wi, the linear correlation coefficient for points in sample R2(in) and out of sample R2(out) and
the normalized RMSE.

Method w1 − PRS w2 −KRG w3 −RBNN w4 − SV R R2(in) R2(out) NRMSE

SA 0.250000 0.250000 0.250000 0.250000 0.966 0.845 22.96%

LSQ 0.000000 -0.000014 1.000014 0.000000 1.000 0.735 23.12%

LSQstep 0.000000 0.000000 1.000000 0.000000 1.000 0.735 23.12%

LSQrdg 0.000000 -0.000014 1.000014 0.000000 1.000 0.735 23.12%

LSQpc 0.000000 0.500000 0.500000 0.000000 1.000 0.864 19.07%

LSQaug1 0.000000 1.164681 -0.164681 0.000000 1.000 0.822 19.76%

LSQaug4 -0.207307 0.471877 0.145432 0.673353 0.988 0.888 19.65%

LSQaug7 0.086473 0.609291 0.150702 0.265185 0.989 0.909 16.71%

SA: simple average;
LSQ: standard least squares;
LSQstep: least squares with stepwise selection;
LSQrdg: least squares with ridge regularization;
LSQpc: least squares by principal components selection;
LSQaug1: standard least squares with augmented matrix - 1pt;
LSQaug4: standard least squares with augmented matrix - 4pts;
LSQaug7: standard least squares with augmented matrix - 7pts.

70

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Least Squares − Stepwise

x

y
(x

)

Exact

DOE Points

LSQstep

R
2
 = 1.000 (in)

R
2
 = 0.735 (out)

NRMSE = 23.12%

(a) Stepwise

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Least Squares − Ridge

x

y
(x

)

Exact

DOE Points

LSQrdg

R
2
 = 1.000 (in)

R
2
 = 0.735 (out)

NRMSE = 23.12%

(b) Ridge Regression

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Least Squares − Principal Components

x

y
(x

)

Exact

DOE Points

LSQpc

R
2
 = 1.000 (in)

R
2
 = 0.864 (out)

NRMSE = 19.07%

(c) Principal Components

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Least Squares − Augmented Matrix − 1

x

y
(x

)

Exact

DOE Points

LSQaug1

R
2
 = 1.000 (in)

R
2
 = 0.822 (out)

NRMSE = 19.76%

(d) LSQaug1

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Least Squares − Augmented Matrix − 4

x

y
(x

)

Exact

DOE Points

LSQaug4

R
2
 = 0.988 (in)

R
2
 = 0.888 (out)

NRMSE = 19.65%

(e) LSQaug4

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Least Squares − Augmented Matrix − 7

x

y
(x

)

Exact

DOE Points

LSQaug7

R
2
 = 0.989 (in)

R
2
 = 0.909 (out)

NRMSE = 16.71%

(f) LSQaug7

Figure 19: Combining multiple metamodels by using different variants of least squares (i.e.,
stepwise, ridge regression and principal components) versus the augmented least squares ap-
proach (LSQaug) with different number of augmenting points (1, 4 and 7). For this simple
example LSQaug performed better than the other methods in terms of accuracy (see details in
Tab. 1). Note that by adding more augmenting points the quality of fit improves but it can
be seen some saturation between 4 and 7 augmenting points for this case, which suggests that
there is an optimal value for ηaug for each problem.

71

5.5 The LS Ensemble Approach: Results Summary

In the work by Ferreira and Serpa (2016) we presented an approach to create ensemble

of metamodels (or weighted averaged surrogates) based on least squares (LS) approximation,

as discussed in Section 5.3.

The LS approach is appealing since it is possible to estimate the ensemble weights with

simple formulation and low computational cost, without using any explicit error metric like

PRESS (prediction sum of squares), as in most of the existent ensemble methods published in

the literature.

The proposed LS approach is a variation of the standard least squares regression by aug-

menting the matrix system, Eq. (23), in such a way that reduces the effects of multicollinearity,

inherent to calculation of the ensemble weights.

In numerical experiments performed in Ferreira and Serpa (2016) we investigated the

number of augmenting points needed by the augmented LS method, in order to be effective.

In summary, we observed that for low dimension problems the ideal number of data points to

augment the system is around one third (30% to 35% of the data), and in case of high dimension

this number is about 10% of the sampling points.

We also investigated the effect of increasing the number of metamodels in the augmented

least squares ensemble. In summary, we did not confirm the theoretical predictions that state:

“the higher the number of distinct models, the lower is expected the MSE for the weighted

average ensemble”, as discussed for example in the pioneer studies like Perrone and Cooper

(1993) or Bishop (1995) and summarized in Eq. (12).

For low dimension problems we observed a reduction in error from four to eight models

in the ensemble and the average error level remained constant up to thirty metamodels. On

the other hand, in case of high dimensions, the average error level remained almost constant by

increasing the number of metamodels in the ensemble, from four to thirty models. These results

suggest that the typical problems of engineering applications do not meet the assumption of

uncorrelated errors with zero mean and, in addition the underlying multicollinearity among

models compromises the accuracy of the final ensemble prediction.

In the sequence, we tested and compared the augmented LS approach with different

LS variants (i.e., stepwise selection, ridge regression, principal components, constrained least

squares, weighted and total least squares) and also with the other existent ensemble meth-

ods (Section 4.3), by means of analytical benchmark functions and real-world applications, in

72

problems in the range of two to forty-four variables.

In comparison with existent LS variants, the augmented LS approach was able to reduce

the level of prediction error (average RMSE) and the instability (standard deviation of RMSE)

due to multicollinearity. For the test problems investigated and by using 33% of the data as

augmenting points, none of the other existent LS variants was able to surpass the performance

of the proposed augmented LS approach in terms of prediction error level (average RMSE) and

stability (standard deviation of RMSE).

In the cases investigated, it was not observed any improvement in the error levels or

variation of LS solution by letting the intercept term, i.e., w0 in Eq. (8), to be nonzero in the

ensemble. Possibly there is a balance in the value of the remaining weights in the ensemble in

order to compensate the presence of the intercept in the final model. On the other hand, since

the intercept term is not necessarily null, it is recommended to check for each problem and data

(DOE) if the error levels can be improved or not by using the intercept term in the ensemble

equation. Since in most cases the ensemble calculation is fast, specially when compared to the

evaluation of the true models, then this verification should be worthwhile.

When compared with other weighted average ensemble schemes published in the literature

(i.e, simple averaging (SA), PWS, direct optimization of RMSE and OWS methods, detailed in

Section 4.3), in general the augmented LS approach performed with good accuracy and stability

for prediction purposes, in the same level of the existent ensemble methods. See boxplots8 in

Fig. 20 (a), (b) and (c).

This trend was observed for both analytical and “real-world” engineering problems (see

Appendix D.2). In terms of computational cost, for the studied problems the LS approach

performed up to three orders of magnitude faster than the PRESS based methods, and in

general it is comparable in terms of computational cost to the fastest method (i.e., the simple

averaging ensemble, SA). See these results with engineering problems in Fig. 20 (c), (d) and

(f).

As we discussed previously, an additional feature (nonexistent to the other existent en-

semble methods) is that the ensemble of metamodels based on least squares has a variance

estimate function, that enables the application in the EGO context. The developments and re-

sults in this branch of application for the proposed ensemble approach is presented in the work

Ferreira and Serpa (SMO-15-0339), ref to Appendix G, and will be summarized in Chapter 7.

8The definition of boxplot is in Appendix B.

73

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Truck Durability, n
v
 = 12

N
o
rm

a
liz

e
d
 R

M
S

E
 (

1
0
0
 r

u
n
s
)

Bes
tR

M
SE

LS
−a

SA

m
in
R
M

SE

O
W

S

PW
S

1
.0

0

(1

.0
0
)

0
.9

6

(0

.9
8
)

1
.6

0

(2

.5
3
)

0
.9

6

(0

.9
8
)

0
.9

7

(1

.0
6
)

1
.0

4

(1

.0
6
)

(a) Truck Durability, nv = 12

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Car NVH, n
v
 = 30

N
o
rm

a
liz

e
d
 R

M
S

E
 (

1
0
0
 r

u
n
s
)

Bes
tR

M
SE

LS
−a

SA

m
in
R
M

SE

O
W

S

PW
S

1
.0

0

(1

.0
0
)

1
.0

2

(1

.1
0
)

1
9
.2

8

(4

5
.1

1
)

1
.0

1

(1

.0
3
)

0
.9

9

(0

.9
9
)

1
.9

2

(2

.5
3
)

(b) Car NVH, nv = 30

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Car Frontal Crash, n
v
 = 44

N
o
rm

a
liz

e
d
 R

M
S

E
 (

1
0
0
 r

u
n
s
)

Bes
tR

M
SE

LS
−a

SA

m
in
R
M

SE

O
W

S

PW
S

1
.0

0

(1

.0
0
)

0
.9

9

(1

.1
8
)

2
.0

1

(1

0
.8

4
)

1
.0

0

(1

.1
1
)

1
.0

1

(1

.0
2
)

1
.1

7

(3

.3
7
)

(c) Car Frontal Crash, nv = 44

0

100

200

300

400

500

600

700

800

N
o
rm

a
liz

e
d
 C

P
U

 T
im

e
 (

1
0
0
 r

u
n
s
 −

 a
v
e
ra

g
e
)

BestRMSE
LS−a SA

minRMSE
OWS

PWS

1.0 28.8 27.6 28.3

746.5 743.0

(d) Truck Durability, nv = 12

0

200

400

600

800

1000

1200

N
o
rm

a
liz

e
d
 C

P
U

 T
im

e
 (

1
0
0
 r

u
n
s
 −

 a
v
e
ra

g
e
)

BestRMSE
LS−a SA

minRMSE
OWS

PWS

1.0 26.2 25.0 25.7

1044.9 1042.7

(e) Car NVH, nv = 30

0

1000

2000

3000

4000

5000

6000

N
o
rm

a
liz

e
d
 C

P
U

 T
im

e
 (

1
0
0
 r

u
n
s
 −

 a
v
e
ra

g
e
)

BestRMSE
LS−a SA

minRMSE
OWS

PWS

1.0 54.2 52.8 52.6

4843.8 4841.3

(f) Car Frontal Crash, nv = 44

Figure 20: Comparison of accuracy and computational time among the augmented least squares
(LS-a, ηaug = 33%) and different ensemble methods for engineering test problems with nv = 12,
nv = 30 and nv = 44 variables. The accuracy of LS-a (measured by RMSE) is in the same level
of the most accurate competitor methods, see boxplots on Figs. (a), (b) and (c). On the other
hand the computational cost of LS-a (time) is in the same level of SA and minRMSE but it
is much more faster than the PRESS based methods PWS and OWS, see Figs. (d), (e) and
(f). BestRMSE represents the best the model in terms of RMSE for each run; SA is the simple
average ensemble, Eq.(15); PWS refer to Eq. (14); minRMSE refer to Eq. (16) and OWS refer
to Eq. (17). All values normalized with respect to BestRMSE in each run. In all cases, the
number of metamodels in the ensemble is M = 4. Further details regarding these numerical
experiments can be found in Ferreira and Serpa (2016).

74

6 Efficient Global Optimization (EGO)

“The optimal is the enemy of the good.”

Voltaire, 1694-1778.

As pointed out by Forrester and Keane (2009): “the Holy Grail of global optimization

is finding the correct balance between exploitation and exploration”. Algorithms that favor

exploitation (search of the optimum) can be quite slow to converge and in addition be trapped

at a local extrema points and not be able to reach the global optimum. On the other hand,

pure exploration (improvement of the surrogate and search in the hole design space) may lead

to a waste of resources (function evaluations, simulations).

At the end of the day, the persistent dilemma for metamodel based optimization is: “how

to generate an accurate metamodel for prediction (exploration) and also to find a reasonable

optimum of the objective function (exploitation), at a minimum cost, i.e., with a minimum

number of sampling points (or evaluations of the true function)?”

As an attempt to solve this dilemma, after the work of Schonlau (1997) and Jones et al

(1998), efficient global algorithms (EGO) emerged as feasible tools to balance exploitation and

exploration of the design space.

In this sense, instead of using a “one-stage approach” (i.e., generate as much as possible

sampling points and evaluate them at once), researches on sequential sampling approaches

have been performed during the years. The main objective is to find a systematic way to start

the process with a small DOE and increase iteratively the number of sampling points, based

on some criteria of quality of fit, uniformity or improvement in direction of the global or local

optima. There are good reviews on this subject, see for instance: Jones (2001), Jin et al (2002),

Sóbester et al (2004), Sóbester et al (2005), Viana et al (2010).

There is still some controversy regarding the effectiveness of sequential sampling versus

one-stage approaches. Refer to a detailed discussion in Jin et al (2002) and a more recent

panorama in Viana et al (2010). On the other hand, it can be observed an increasing research

interest on efficient global optimization (EGO) approaches published recently, as for example

Henkenjohann and Kukert (2007), Ponweiser et al (2008), Ginsbourger et al (2010) and Viana

et al (2013).

The focus of our work here is to extend the concepts of EGO algorithms by using the

75

concept of LS ensembles. Therefore we present some background on EGO method in the next

sections.

6.1 Basic Formulation of EGO

Since the sampling data set χ is arbitrary, the determination of ŷ(x) can be stated as

“a realization of a stochastic process”. In this sense, the approximation can be modeled as

Gaussian, i.e., a normally distributed random variable Ŷ (x), with mean ŷ(x) and variance

ŝ2(x).

Efficient global optimization algorithms are centered in the concept of maximum expected

improvement. Let ymin = min(y1, . . . , yn) be the best current value for the function y(x) in

the sampling data set. Then, as described in Forrester et al (2008), the probability of an

improvement I(x) = ymin − Y (x) of a point x with respect to ymin, can be calculated as

P [I(x)] =
1

ŝ
√
2π

∫ 0

−∞
exp

(

− [I − ŷ]2
2ŝ2

)

dI, (24)

by abbreviating the dependence of I, ŝ and ŷ on x.

On the other hand, the amount of improvement expected can be obtained by taking the

expectation E[·] of max(ymin − Y (x), 0), which leads to

E[I(x)] = I(x)Φ

(

I(x)

ŝ(x)

)

+ ŝ(x)φ

(

I(x)

ŝ(x)

)

, (25)

for ŝ(x) > 0, and E[I(x)] = 0, otherwise. In this equation, I(x) ≡ (ymin − ŷ(x)), where ŷ is

a realization of Y , and Φ(·) and φ(·) are respectively the normal cumulative distribution and

normal probability density functions.

Eq. (25) is known as the expected improvement function of any point x in the design

space with respect to the current best value ymin. For details in the derivation see Forrester

and Keane (2009) or the original publications of Schonlau (1997) and Jones et al (1998).

By means of Eq. (25), the EGO algorithm can be defined for any metamodel ŷ(x) that

provides an uncertainty estimate ŝ(x). EGO was originally devised and is traditionally applied

with KRG (see basic formulation at Appendix C), but other models like PRS, RBF and other

Gaussian models can be used as well. See for example Sóbester et al (2004) in which RBF was

applied. In addition, as we mentioned previously and detailed in Section 5.1, by means of the

variance estimate, Eq. (21), it is possible to derive an expected improvement function for the

LS ensemble method as well.

Traditionally, the available EGO algorithms are based on kriging approximation and

76

a single infill point is generated per optimization cycle. In Section 6.2 the standard EGO

algorithm will be detailed and in Section 6.4 some possible extensions are discussed. Our EGO

approach based on LS ensembles will be detailed in Section 7.

6.2 The Standard EGO Algorithm

The standard EGO algorithm can be summarized in the following steps:

i. Define a set χ of N sampling points and start the optimization cycles (j ← 1);

ii. Evaluate the true response y(x) at all data sites in χ, at the current cycle j, and set

ymin ← min(y1, · · · , yN);

iii. Generate the metamodel ŷ(x) and estimate E[I(x)] with all the data points available in

the sampling space χ, at the current cycle j;

iv. Find the next infill point xN+1 as the maximizer of E[I(x)], χinfill ← xN+1 = maxE [I(x)];

evaluate the true function y (x) at xN+1 and add this new point to the sampling space:

χ← χ ∪ χinfill;

v. If the stopping criteria is not met, set

ymin ← min(y1, · · · , yN+1),

set (N ← N + 1), update cycle counter (j ← j + 1), and return to step iii. Otherwise,

finish the EGO algorithm.

It is important to note that, as can be inferred by the definition of the standard EGO al-

gorithm, the optimization process is driven by maximizing the auxiliary expected improvement

E[I(x)] function, instead of minimizing the original objective function y (x).

In this case, any valid optimization algorithm available to found the maximum of the

expected function at each cycle can be used such as gradient based, non-gradient, genetic,

evolutionary, mixed approaches, etc. In the present work we used the Matlab Genetic and

Pattern Search built-in algorithms. Further details can be found in Section 8.1.2.

77

−2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0
Function and Approximattion

x

y
(x

)

y(x)−Exact

y(x)−Approx

Initial Points

Infill Point

−2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Expected Improvement

x

E
[I
(x

)]

E[I(x)]
max E[I(x)]

(a) Cicle 01

−2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0
Function and Approximattion

x

y
(x

)

y(x)−Exact

y(x)−Approx

Initial Points

Infill Point

−2 −1 0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Expected Improvement for E[I(x)]

x

E
[I
(x

)]

E[I(x)]
max E[I(x)]

(b) Cicle 02

−2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0
Function and Approximattion

x

y
(x

)

y(x)−Exact

y(x)−Approx

Initial Points

Infill Point

−2 −1 0 1 2 3 4
0

0.005

0.01

0.015

0.02
Expected Improvement

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(c) Cicle 09

Figure 21: Illustration of the EGO algorithm by using the expected improvement function,
E[I(x)]. The sampling points (circles) were chosen coarsely in the domain in order to generate
a very poor approximation in the begining of cycle 01. At each cycle, the maximum of E[I(x)]
(triangle) is the suggested infill point for the next optimization cycle. Note that at cycle 02
the optimum is almost exactly found (exploitation), even with a poor approximation model.
After cycle 09, the optimum region is very dense and the metamodel quality is very good in
the whole design domain (exploration).

6.3 On Balancing Exploration and Exploitation

As we discussed previously (Section 2.2.2) the aspect of single versus multiple infill points

per cycle is known and discussed since the origins of EGO-type algorithms (Schonlau (1997)

and Jones et al (1998)).

Observe in Fig. 21 that the expected improved function E[I(x)] can be highly multimodal,

i.e., with many local maximum points in the whole design domain. Another trend in the progress

of EGO-type algorithms is that infill points can be generated too close during several cycles in

sequence, without effective improvement (exploitation) and with no or little contribution for

the quality of the metamodel in the other regions of the design space as well (exploration).

78

Note at cycle 09 in Fig. 21 the high density of infill points generated in the vicinity of the true

minimum.

Therefore, if it is possible to control efficiently the number of infill points generated per

cycle, then we have a potential to reduce the number of sampling points needed to reach the

minimum and also reduce the processing time, since the total number of optimization cycles

can be much less than with a single point approach.

Sóbester et al (2004) used a multistart optimization algorithm to find multiple maximum

points for the expected improvement function and take advantage of parallel processing re-

sources. Their results indicated accelerated convergence for the optimization, with significant

reduction in processing time.

In the last years we can observe an increasing research interest on EGO approaches with

multiple infill points per cycle. Henkenjohann and Kukert (2007), Ponweiser et al (2008) and

Ginsbourger et al (2010), for instance, proposed different implementations of parallel EGO

approaches by extending the concepts of generalized expected improvement and m-step im-

provement proposed in the work by Schonlau (1997).

In a different way, Viana et al (2013) proposed the MSEGO (multiple surrogates EGO). In

this case, they used multiple surrogates simultaneously at each cycle of EGO algorithm. With

at least one kriging model available, they devised a way to transfer (or export) the uncertainty

estimate for this model to the other non-kriging models in the set. By means of different

uncertainty estimates, they generate different instances of expected improvement functions to

be maximized and to provide multiple parallel infill points in each EGO cycle.

Forrester and Keane (2009) presented and discussed in detail other infill criteria developed

in order to try a good balance between exploitation and exploration, as for example: Goal

Seeking and Conditional Lower Bound. It is pointed out that choosing a suitable convergence

criterion to determine the end of the infill process and terminate the optimization cycles can be

rather subjective. The equilibrium between exploration and exploitation is problem dependent

and the perfect balance can be considered “utopia”, as remarked by Forrester and Keane (2009).

Although it is possible to see some advance on devising targets or stoping criteria for

metamodel based optimization, see for instance Queipo et al (2013), in practice there is still

no clear definition or a systematic way to declare the convergence of EGO-type algorithms. In

the engineering application, the metamodel based optimization process is stopped when the

computer resources, costs or schedule are not available anymore in order to continue the design

79

optimization process.

As remarked by Forrester and Keane (2009), the metamodel based optimization must

always include some form of iterative search and repetitive infill process to ensure the accuracy

in the areas of interest in the design space, as for instance Ge et al (2015), and this is in line

with the previous discussion in Section 2.2.1 and later displayed in detail at Fig. 13.

6.4 Extensions for the EGO algorithm

The EGO algorithm can be extended to handle constraints in the optimization by using

the concept of probability of improvement. The basis for this extension can be found in Schonlau

(1997) and with details and applications in Forrester et al (2008) and Han and Zhang (2012).

By following the derivation presented in Han and Zhang (2012), the idea is to find the

probability of satisfying the constraints gi (x). In other words, when P [Gi(x) ≤ 0] → 1,

the constraint is satisfied; otherwise, when P [Gi(x) ≤ 0] → 0, the constraint is violated.

Analogously to Eq. (24), P [Gi(x) ≤ 0] can be calculated as

P [Gi(x) ≤ 0] =
1

ŝi
√
2π

∫ 0

−∞
exp

(

− [Gi − ĝi]2
2ŝ2i

)

dGi (26)

where Gi(x) is the random variable related to ĝi(x) and ŝi(x) is the respective constraint

uncertainty estimate.

In this way, the step (iv) of the EGO standard algorithm presented at the end of Sec-

tion 6.2 can be modified as follows in order to accommodate nc independent and uncorrelated

constraints, i.e.,

xN+j =



























max
x

E[I(x)]
nc
∏

i=1
P [Gi(x) ≤ 0]

s.t., xlb ≤ x ≤ xub

. (27)

We extended the implementations presented in Ferreira and Serpa (SMO-15-0339), ref.

to Appendix G, in order to handle constrained optimization by means of Eq. (27). In order

to test the effectiveness of our EGO approach in constrained optimization, some numerical

experiments were performed with analytical benchmark functions and engineering problems.

These numerical tests will be described in Sections 8 and 9.

The treatment of multiobjective optimization problems can be also extended by using the

concept of probability and expected improvement. It is required a more elaborated derivation

that is out of the scope of this text and the details can be found in Forrester et al (2008).

80

In other direction, Jurecka (2007) has successfully extended and applied the EGO concept

to treat robust optimization problems as well, what is extremely important when the design

variables and functions are not deterministic.

As we discussed previously, objective convergence criteria is a demand for metamodel

based optimization and EGO-type algorithms as well as, for example, the one proposed by

Queipo et al (2013).

In addition, methods for reducing the number of sampling points (true function evalua-

tions) and, at same time, accelerating the overall convergence need to be investigated. In this

sense, the derivation of hybrid methods by combining classical sequential sampling or other

adaptive approaches (clustering, etc.) with EGO-type algorithms can be a promising front of

research.

These and other possible extensions of EGO-type algorithms are of interest for research

and practical applications and we intend to explore this field in our future work.

81

7 LS Ensemble of Metamodels EGO (LSEGO)

“Premature optimization is the root of all evil.”

D. E. Knuth, 1938-

As discussed in Section 1.3, this chapter summarizes the main formulations and results

achieved in the Phase II of the thesis work. The results were submitted for publication in

Ferreira and Serpa (SMO-15-0339). In the same way, this chapter was planned to be self con-

tained but, if detailed information is needed, refer to the complete manuscript in the Appendix

G.

Let us recall the variance estimate for the LS ensemble defined in Section 5.1 by means

of Eq. (21).

Therefore, if ŝ2 (x) is a good estimate for the uncertainty of the LS ensemble of metamodel

at the design space, then it can be used to derive the expected improvement function (Eq. 25)

in order to drive EGO algorithms, by using any kind of metamodels ŷi (x) and not only kriging.

In fact, we cannot verify or prove a priori that ŝ2 (x) is good or not for our purposes in

the EGO context. Since it is a well-established and accepted estimate for general least squares

regression, it will be applied in the present work without any proof. The main assumption is

that if the LS ensemble of metamodel has reasonable prediction accuracy, therefore the variance

prediction ŝ2 (x) should be reasonable as well. Our numerical experiments showed that ŝ2 (x)

works well for generating the EI function and the optimization is convergent in several problems

investigated. These results and conclusions will be presented and discussed in the next sections.

On the other hand, as mentioned by Viana et al (2013), although there can exist several

measures of quality for the variance estimate, it is possible to infer the behavior by using

the coefficient of linear correlation ρ (|e((x))|, ŝ((x))), where e(((x))) = y((x)) − ŷ((x)) is the

actual prediction error between the exact function and the approximation, in this case a LS-a

ensemble. We will use the same approach here by means of a simple illustration presented in

Fig. 22.

In this case, for a coarse sampling plan the quality of fit for LS-a is very poor as can be

observed in Fig. 22. On the other hand, the expected improvement function is able to suggest

infill points (max E[I((x))]) where the variance is high for the approximation. The correlation

in this case is very good, i.e., ρ (|e((x))|, ŝ((x))) = 0.85 with several points close to the 45

82

degrees line, and it is possible to observe that ŝ((x)) plays a good job estimating the behavior

of the actual prediction error e((x)) through the design space.

As we observed in preliminary numerical experiments, as the optimization cycles evolve

the quality of fit for the metamodel is naturally improved by the infill points added. As

consequence the quality of the estimation of ŝ((x)) also increases and the convergence for

LSEGO process is favored. In the next sections we will present and discuss the behavior of

LSEGO for different benchmark problems.

As presented in the review by Haftka et al (2016), different classes of algorithms or

strategies can be defined with the objective of balancing exploitation and exploration of the

design space during the optimization. It is still an open question and active area of research to

answer the question of how to add multiple infill points simultaneously in an efficient way.

Sóbester et al (2004) used a multistart optimization algorithm to find multiple maximum

points for the expected improvement function and take advantage of parallel processing re-

sources. Their results indicated accelerated convergence for the optimization with significant

reduction in processing time.

In the last years we can observe an increasing research interest in EGO approaches with

multiple infill points per cycle. Henkenjohann and Kukert (2007), Ponweiser et al (2008) and

Ginsbourger et al (2010), for instance, proposed different implementations of parallel EGO

approaches by extending the concepts of generalized expected improvement and m-step im-

provement proposed in the work by Schonlau (1997).

Ginsbourger et al (2010) proposed the multi-points or (q-points) expected improvement

(q-EI). They derived an analytical expression for 2-EI and statistical estimates based on Monte-

Carlo methods for the general case. Since Monte-Carlo methods can be computationally expen-

sive, they also proposed two classes of heuristic strategies to obtain approximately q-EI-optimal

infill points, i.e., the Kriging Believer (KB) and the Constant Liar (CL). Based on numerical

experiments, they reported that CL appears to behave as reasonable heuristic optimizer of the

q-EI criterion.

The use of probability of improvement (PI) to generate multiple infill points was discussed

by Jones (2001) as a variant of EGO. In this case EGO uses PI beyond a given target as selection

criterion. Maximizing PI based on different targets is a way to balance local (exploitation) and

global (exploration) searches. Aggressive targets favor more exploitation than exploration and

it is not clear how to set these targets properly.

83

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

Approximation by LS−a

x

y
(x

)

Exact

Data

max(E[I(x)]

LS−a

(a)

−5 0 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Expected Improvement for LS−a

x

E
[I
(x

)]

(b)

−5 0 5
0

0.5

1

1.5

2

2.5

x

 |
e

(x
)|

 o
r

s
(x

)

Absolute Prediction Error versus Prdicted Variance

|e(x)|

s(x)

(c)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

N
o

rm
a

liz
e

d
 |
e

(x
)|

 o
r

s
(x

)
Absolute Prediction Error versus Prdicted Variance (NORMALIZED)

norm. |e(x)|

norm. s(x)

(d)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized |e(x)|

N
o

rm
a

liz
e

d
 s

(x
)

Correlation Plot

ρ = 0.85

(e)

Figure 22: Correlation between |e((x))| and ŝ((x)) for the sinc function y(x) = sin(x)
x

. In (a),
for a very coarse sampling plan the quality of fit for LS-a is quite poor in the beginning of the
LSEGO optimization process. The expected improvement function E[I((x))] in (b) is able to
suggest reasonable infill points (max E[I((x))]), labled as square markers in (a). Observe in
(e) that ŝ((x)) is playing a good job estimating |e((x))| in the design space, with correlation
ρ (|e((x))|, ŝ(x)) = 0.85 and several points close to the 45 degrees line. Note in (c) and (d) the
similarity of |e((x))| and ŝ((x)). In (d) |e((x))| and ŝ((x)) were normalized to remove the scale
effects for a better visualization.

84

Viana and Haftka (2010) proposed a multi-point algorithm based on an approximation of

PI as infill criterion. Chaudhuri and Haftka (2012) proposed the algorithm EGO-AT by explor-

ing the concept of targets for selecting multiple points (PI), discussed by Jones (2001). With

EGO-AT (EGO with adaptive target) it is possible to adapt the targets for each optimization

cycle based on the success of meeting the target in the previous cycle and generate multiple

infill points.

As discussed in Haftka et al (2016), the seek of theoretical convergence proofs and rates

that quantify the benefits of parallel computation constitutes important recent developments in

the field. In this sense, several publications that investigate the theoretical bounds and rates of

convergence and algorithm properties can be listed and it is remarkable the work of Desautels

et al (2012) in machine learning area. Although the relevant theoretical developments, these

studies and proposed algorithms did not provide yet superior performance against the other

heuristic approaches that do not have proof of convergence.

Finally, according to Haftka et al (2016) the field of parallel surrogate-assisted global

optimization with expensive models is a relatively new research field that is not mature yet

and it is not possible to conclude with respect to the comparative efficiency of different ap-

proaches or algorithms. Further research is needed in order to take full advantage of additional

improvements provided by parallelized surrogate based global optimization approaches.

In a different way, Viana et al (2013) proposed the MSEGO (multiple surrogates EGO). In

this case, they used multiple surrogates simultaneously at each cycle of EGO algorithm. With

at least one kriging model available, they imported the uncertainty estimate for this model

to the other non-kriging models in the set. By means of different uncertainty estimates, they

generate different instances of expected improvement functions to be maximized and to provide

multiple parallel infill points in each EGO cycle.

Since we have an arbitrary set of M distinct metamodels, that are relatively fast to

generate (as compared with the true simulation model y (x)), then it is possible to create an

arbitrary number of Np partial LS ensembles ŷkens(x), by generating permutations of M̄ < M

metamodels. Therefore, by means of the Np partial LS ensembles there are Np respective

expected improvement functions Ek[I(x)] available to generate up to Np infill points per cycle.

In this case, differently from Viana et al (2013), it is not required to have at least one

kriging model in the set to generate the uncertainty estimates, since in LSEGO ŝ2k(x) are

generated directly from the least squares definition for the partial ensembles. Based on our

85

performed numerical performed we observed a good performance of LSEGO for the purpose of

multiple infill points per cycle.

The LSEGO algorithm will be summarized in the Section 7.1 and we will illustrate the

behavior of LSEGO for one and two variable problems in Section 7.2.

7.1 LSEGO Algorithm with Parallel Infill Points

The LSEGO algorithm with parallel infill points can be summarized in the following steps:

i. Define a set χ of N sampling points and start the optimization cycles (j ← 1);

ii. Evaluate the true response y(x) at all data sites in χ, at the current cycle j, and set

ymin ← min(y1, · · · , yN);

iii. Generate the M metamodels ŷi(x), the Np partial LS ensembles ŷkens(x) and the respective

expected improvement functions Ek[I(x)], with all data available at the current cycle j;

iv. Find the set of next distinct N∗
p ≤ Np infill points χinfill ←

[

xN+1, · · · ,xN+1+N∗

p

]

as the

respective maximizers of Ek[I(x)]; evaluate the true function y (x) at the N∗
p infill points

and add them to the sampling space: χ← χ ∪ χinfill;

v. If the stopping criteria is not met, set

ymin ← min(y1, · · · , yN+N∗

p
),

set (N ← N +N∗
p), update cycle counter (j ← j + 1) and return to step iii. Otherwise,

finish the LSEGO algorithm.

As stated before, we extended the LSEGO algorithm in order to handle constrained opti-

mization. In this case, the five steps outlined before are nearly the same for the unconstrained

case. The only difference is that the metamodel for the constraints, i.e., ĝi(x), should be cre-

ated as well and the maximization should be taken by considering the constrained expected

improvement defined by means of Eq. (27). We followed the directions provided with the imple-

mentations of EGO in Forrester et al (2008) to implement and extend our LSEGO algorithm.

86

In the next section we will first illustrate the behavior of LSEGO in the unconstrained

optimization of one and two dimensional functions. In sequence, in Section 7.3 we will sum-

marize the results of Ferreira and Serpa (SMO-15-0339). Further details can be found in the

complete manuscript in Appendix G.

After that, the numerical experiments for constrained examples will be presented in Sec-

tion 8.

7.2 Illustrations: One and Two Variables Examples

Fig. 23 illustrates the evolution of LSEGO for a one variable function with one infill point

per optimization cycle. At each optimization cycle it is presented the true function y(x) versus

the approximation by LS-a ensemble (left plot) and the expected improvement function E[I(x)]

(right plot), calculated by means of Eq. (25), with ŝ2 (x) as defined in Eq. (21).

At cycle 01 we have a very poor approximation with correlation coefficient R2 = 0.258

and normalized root mean squared error NRMSE = 31.9%. The E[I(x)] presents a clearly

defined peak close to the true minimum (xexactopt = 5.624). Note for this example in Fig. 23, at

the first six optimization cycles, the maximum of expected improvement function works in the

“exploitation mode” and prioritizes to add infill points around the optimum.

At this stage (cycle 06) the optimum found xopt = 5.600 is quite close to the exact

value (0.43% error), with a very good quality approximation for the metamodel: R2 = 0.975

and NRMSE = 4.2%. After cycle 06, the LSEGO algorithm automatically switches to the

“exploration mode” and the infill points are selected in order to improve the quality of the

approximation in the whole design space, instead of improving the minimum value found. The

LSEGO algorithm was stopped at cycle 12 with xopt = 5.600, R2 = 0.999 and NRMSE = 0.5%.

This behavior of LSEGO in one dimension was observed for other functions as well, with

different levels of nonlinearity and multimodality. Based on these preliminary results we can

conclude that LSEGO performed quite well in terms of exploitation and exploration of the

design space.

On the other hand, for higher dimension problems we noted a very slow convergence for

the algorithm, associated to a high concentration of infill points around the global optimum,

as observed in standard EGO algorithm as well. See for instance in Fig. 24 the behavior for

LSEGO for Giunta-Watson function (see Appendix D, Eq. (41)) with two variables and one

infill point per optimization cycle. Note in the detail at Fig. 25 that the exact minimum is

87

accurately found only at cycle 37 and all the infill points are located at this neighborhood. As

consequence, the quality of the approximation at cycle 37 is still poor outside the optimum

vicinity (note the difference on the exact and approximate contours for the function).

As we discussed before, note that the expected improvement function E[I(x)] has shown

to be very multimodal in most of the optimization cycles investigated for LSEGO (see the

E[I(x)] curves in Fig. 23). At higher dimensions it is expected that this effect can be more

pronounced.

We will illustrate the behavior of LSEGO with multiple infill points with functions of

two variables. Fig. 26 presents the same setup used in the case of Fig. 24 for Giunta-Watson

function (2 variables), but now with Np = 8 infill points per optimization cycle.

Note in Fig. 26 and details at Fig. 27 that, by allowing more infill points per cycle,

LSEGO converges very quickly to the exact optimum at cycle 05 (as compared to cycle 37, for

Np = 1 in Fig. 24), with a reasonable correlation for the metamodel at this point (R2 = 0.803

and NRMSE = 8.1%). In addition, if we let LSEGO to continue with the exploration,

the metamodel quality is continuously improved. The results at cycle 12 (R2 = 0.998 and

NRMSE = 0.6%) in Fig. 27 can be explained by the more spread of infill points (exploration)

not only on the vicinity of the optimum (exploitation), as in the case for one infill point per

cycle.

We observed the same performance of LSEGO for other functions as well. See for instance

the evolution for Branin-Hoo function (ref. App. D, Eq. (39)) in Fig. 28 and details at Fig.

29. In this case, LSEGO has found the three optimum points within high accuracy at cycle 05

(R2 = 0.999 and NRMSE = 0.5%), see Fig. 29.

Based on these preliminary results with one and two dimension functions, we can infer

that LSEGO has a good performance on driving EGO algorithm, with single and multiple infill

points per cycle. As more infill points are added per cycle, faster is the convergence to the global

optimum (exploitation) and also the quality improvement (predictability) of the metamodel in

the whole design domain (exploration).

In the next section we will summarize the results of the numerical experiments performed

with the objective to compare the performance of the proposed algorithm LSEGO versus the

traditional EGO.

88

0 2 4 6

−2

−1

0

1

2
Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.5

1

1.5
Expected Improvement − LSEGO

x

E
[I
(x

)]

E[I(x)]
max E[I(x)]

(a) Cycle 01

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5
Expected Improvement − LSEGO

x

E
[I
(x

)]

E[I(x)]
max E[I(x)]

(b) Cycle 02

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.05

0.1

0.15

0.2

0.25
Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(c) Cycle 03

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.1

0.2

0.3

0.4
Expected Improvement − LSEGO

x

E
[I
(x

)]

E[I(x)]
max E[I(x)]

(d) Cycle 04

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.05

0.1

0.15

0.2
Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(e) Cycle 05

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.05

0.1

0.15

0.2
Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(f) Cycle 06

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.005

0.01

0.015

0.02

0.025

0.03
Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(g) Cycle 08

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.005

0.01

0.015

0.02

0.025
Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(h) Cycle 10

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

1

2

3

4

5

6
x 10

−3Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(i) Cycle 11

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

1

2

3

4

5
x 10

−3Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(j) Cycle 12

Figure 23: Evolution of approximation (y(x) vs. ŷ(x) and expected improvement E[I(x)] for
y(x) = 1

700
(−2x+5x2+7x3) sin(2x) with Np = 1 infill point per optimization cycle with LSEGO

algorithm. The initial sampling points are at χ = [0, 2.25, 2.8, 3.75, 2π] and the LS-a ensemble
is used with four metamodels: PRS (ID = 1), KRG (ID = 2), RBNN (ID = 3) and SVR
(ID = 4), see Tab. 7.

89

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(a) Cycle 01

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(b) Cycle 10

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(c) Cycle 20

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(d) Cycle 30

Figure 24: Evolution of approximation of Giunta-Watson function (2 variables) with LSEGO
and Np = 1 infill point per optimization cycle. The 15 initial sampling points were generated
with Latin Hypercube Matlab function lhsdesign, and the LS-a ensemble is used with four
metamodels: PRS (ID = 1), KRG (ID = 2), RBNN (ID = 3) and SVR (ID = 4), see Tab. 7.

90

Contour of Exact Function

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(a) Exact Contour

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(b) Cycle 37: Approximation

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points at Cycle 37

(c) Cycle 37: Sampling Points

Figure 25: Detail of Fig. 25 at Cycle 37 for the evolution of approximation of Giunta-Watson
function (2 variables) with LSEGO and Np = 1 infill point per optimization cycle.

91

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(a) Cycle 01

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(b) Cycle 03

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(c) Cycle 05

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(d) Cycle 10

Figure 26: Evolution of approximation of Giunta-Watson function (2 variables) with LSEGO-8:
Np = 8 infill points per optimization cycle and the LS-a ensemble is used with four metamodels:
PRS (ID = 1), KRG (ID = 2), RBNN (ID = 3) and SVR (ID = 4), see Tab. 7.

92

Contour of Exact Function

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(a) Exact Contour

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(b) Cycle 12: Approximation

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points at Cycle 12

(c) Cycle 12: Sampling Points

Figure 27: Detail of Fig. 26 at Cycle 12 for the evolution of approximation of Giunta-Watson
function (2 variables) with LSEGO-8: Np = 8 infill points per optimization cycle.

93

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−5 0 5 10
0

5

10

15

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(a) Cycle 01

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−5 0 5 10
0

5

10

15

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(b) Cycle 03

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−5 0 5 10
0

5

10

15

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(c) Cycle 05

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−5 0 5 10
0

5

10

15

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(d) Cycle 10

Figure 28: Evolution of approximation of Branin-Hoo function (2 variables) with LSEGO-8:
Np = 8 infill points per optimization cycle and the LS-a ensemble is used with four metamodels:
PRS (ID = 1), KRG (ID = 2), RBNN (ID = 3) and SVR (ID = 4), see Tab. 7.

94

Contour of Exact Function

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(a) Cycle 10: Exact Contour

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(b) Cycle 10: Approximation

−5 0 5 10
0

5

10

15

x
1

x
2

Sampling Points at Cycle 10

(c) Cycle 10: Sampling Points

Figure 29: Detail of Fig. 28 at Cycle 10 for the evolution in the approximation of Branin-Hoo
function (2 variables) with LSEGO-8: Np = 8 infill points per optimization cycle.

95

7.3 The LSEGO Approach: Results Summary

We presented LSEGO, an approach to drive efficient global optimization (EGO), based

on LS (least squares) ensemble of metamodels. By means of LS ensemble of metamodels it is

possible to estimate the uncertainty of the prediction by using any kind of metamodels (not

only kriging) and provide an estimate for the expected improvement function. In this way,

LSEGO arises as an alternative to find multiple infill points at each cycle of EGO and improve

both convergence and prediction quality during the whole optimization process.

At first, we demonstrated the performance of the proposed LSEGO approach with one

dimensional and two dimensional analytical functions (these results were presented and dis-

cussed in Section 7.2). The algorithm has been tested with increasing number of infill points

per optimization cycle. As more infill points are added per cycle, faster is the convergence

to the global optimum (exploitation) and also the quality improvement (predictability) of the

metamodel in the whole design domain (exploration).

In a second test set, we compared the proposed LSEGO approach with the traditional

EGO (with kriging and a single infill point per cycle). For this intent, we used well known

analytical benchmark functions to test optimization algorithms, from two to six variables.

For the problems studied, the proposed LSEGO algorithm has shown to be able to find

the global optimum with a much smaller number of optimization cycles required by the classical

EGO approach. This accelerated convergence was specially observed as the number of variables

increased, when the standard EGO can be quite slow to reach the global optimum. See these

results in Fig. 30 for the functions Branin-Hoo, Hartman-3 and Hartman-6.

The results also showed that, by using multiple infill points per optimization cycle, driven

by LSEGO, the confidence of metamodels prediction in the whole optimization process is im-

proved. It was observed in the boxplots for all cases investigated a variability reduction with

respect to the initial sampling space (initial DOE) as more infill points are added during the

optimization cycles.

Fig. 31 presents boxplots of the optimization results for 100 experimental designs for

LSEGO vs. EGO. Note that at the beginning of the optimization (cycle 1) the minimum

solution found has a high dispersion as function of the initial DOE and this dispersion decreases

rapidily for LSEGO as the optimization cycles evolve. This behavior is observed in EGO but

at a much lower rate.

In the same direction of the results presented by Viana et al (2013), we found that by

96

using LSEGO with multiples points per cycle, a significant reduction in the dispersion of the

results (minimum of objective function) can be achieved as long as the optimization cycles

evolve. This trend confirms that by using LSEGO with multiple points per cycle the variability

and dependence of the optimization results on the initial DOE are reduced, what is not assured

by using EGO with only one infill point per cycle.

We also compared LSEGO versus standard EGO in terms of the number of function eval-

uations, which translates directly to computational cost (i.e., number of simulations required).

In the cases investigated, for two and six variables LSEGO performed better than EGO, but

for three variables EGO performed better than LSEGO. Therefore, if there is no restriction on

the number of parallel simulations, LSEGO accelerates significantly the convergence, but on

the other hand, the number of total function evaluations is problem dependent (on both the

dimension and nonlinearity) and the cost can be higher than required by EGO, for the same

level of improvement in the objective function.

Recall that, as we discussed previously in Section 2.2.2, when parallel computation is an

easy available resource, the potential penalty of parallel EGO approaches in terms of number

of function evaluation should be neglected in favor of fast delivering optimization results.

Finally, the results achieved are in accordance with previous work published in the related

research area. In this way, LSEGO approach has shown to be a feasible alternative to drive

efficient global optimization by using multiple or ensemble of metamodels, not restricted to

kriging approximation or single infill point per optimization cycles.

As discussed before, we extended the implementations for the standard LSEGO in order

to handle constrained optimization (see Eq. (27)). In order to test the effectiveness of this

extension to LSEGO approach in constrained optimization, some numerical experiments were

performed with analytical benchmark functions and engineering problems. These new results

will be described in detail in the Chapters 8 and 9.

97

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Number of Optimization Cycles

M
in

im
u
m

 o
f
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 (

y m
in

)

BraninHoo−2

y
min

 = 0.397887

EGO−Kriging

LSEGO−2

LSEGO−5

LSEGO−10

Exact Global Minumum

(a) Branin-Hoo, nv = 2

0 1 2 3 4 5 6 7 8 9 10 11

−3.8

−3.6

−3.4

Number of Optimization Cycles

M
in

im
u

m
 o

f
O

b
je

c
ti
v
e

 F
u

n
c
ti
o

n
 (

y m
in

)

Hartman−3

y
min

 = −3.862782

EGO−Kriging

LSEGO−10

Exact Global Minumum

(b) Hartman-3, nv = 3

0 2 4 6 8 10 12 14 16
−3.5

−3

−2.5

−2

−1.5

Number of Optimization Cycles

M
in

im
u

m
 o

f
O

b
je

c
ti
v
e

 F
u

n
c
ti
o

n
 (

y m
in

)

Hartman−6

y
min

 = −3.3223563

EGO−Kriging

LSEGO−10

Exact Global Minumum

(c) Hartman-6, nv = 6

Figure 30: Comparison EGO-Kriging versus LSEGO variants (LSEGO-x, where “x” indicates
the number of points per cycle) for the functions Branin-Hoo, Hartman-3 and Hartman-6.
Median (over 100 different initial sampling, DOE) for the efficient global optimization results
as function of the number of cycles. The convergence to the exact global minimum is accelerated
by adding more points per cycle with LSEGO in all the cases studied.

98

0

2

4

6

8

10

12

14

1 2 3 4 5 6
Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Branin−2: EGO−Kriging

(a) Branin-Hoo, EGO

0

2

4

6

8

10

12

14

1 2 3 4 5 6
Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Branin−2: LSEGO−10

(b) Branin-Hoo, LSEGO-10

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

1 2 3 4 5 6 7 8 9 10 11
Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Hartman−3: EGO−Kriging

(c) Hartman-3, EGO

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

1 2 3 4 5 6 7 8 9 10 11
Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
Hartman−3: LSEGO−10

(d) Hartman-3, LSEGO-10

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Hartman−6: EGO−Kriging

(e) Hartman-6, EGO

−3

−2.5

−2

−1.5

−1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Hartman−6: LSEGO−10

(f) Hartman-6, LSEGO-10

Figure 31: Comparison of the convergence of EGO-Kriging (left boxplots) vs. LSEGO with
ten points per cylce, LSEGO-10 (right boxplots), over 100 different inital DOE in each case for
the functions Branin-Hoo, Hartman-3 and Hartman-6. The variability of the results is higher
as the number of variables increases and the convergence to the optimum is very slow with one
infill point and EGO-Kriging. In all cases, the addition of multiple infill points per optimization
cycle with LSEGO-10 accelerates the convergence and also reduces significantly the dispersion
of the results as the optimization cycles evolve.

99

8 Applications to Constrained Optimization Problems

“It doesn’t matter how beautiful your theory is.

It doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong.”

Richard P. Feynman, 1918-1988.

The objective of this section is to present the implementation of LSEGO for handling

constrained optimization problems. As discussed in Section 1.3, this is part of the Phase III

of the research.

The first numerical test set was based on analytical benchmark functions. This kind of

functions are widely used to validate both metamodeling and optimization methods. We tested

before these functions in the previous phases of the work and we will extend the analysis here

in the context of constrained optimization.

The objective of the second test set is to apply LSEGO in some analytical problems well

known and published in the engineering literature. These problems have number of variables,

nonlinear characteristics and number of constraints typical of practical engineering problems.

With both analytical benchmarks and engineering functions, we expect to understand

the behavior and to validate the LSEGO algorithm with functions that are easy to generate

the sampling points we need with virtually no computer cost. In addition, for these analyt-

ical functions we can know in advance the local or global optimum points based on previous

results published in the optimization literature. Furthermore, we also can easily generate “ref-

erence optimum” points, by using any available optimization procedure or software as Matlab

Optimization Toolbox, for instance.

In the sequence, let us remember that the main reason for using a metamodel based

optimization process is when the true analytical functions are not known in advance, like the

ones defined by computer codes of engineering applications (e.g., FE and CFD simulation

models), as we introduced in Section 2.2.1 and detailed in Chapter 3.

In this sense, the objective of the last numerical experiment is to exemplify the application

of LSEGO in the constrained optimization of an industry scale engineering problem, based on

a finite element computer simulation model.

The present section will be divided as follows. In Section 8.1 it is presented the method-

100

ology used for computer implementation of LSEGO algorithm. In Section 8.2 the chosen test

problems are described and the details of the design of experiments are presented in Section 8.3.

The results of the numerical experiments performed are presented and discussed in Chapter 9.

8.1 Computer Implementation

We used the Matlab based SURROGATES Toolbox v2.0 (ref. Viana (2009)) as platform

for implementation and tests. See Appendix A for details.

In Ferreira and Serpa (2016), we implemented routines for LS ensemble of metamodels,

as described in Section 5. In Ferreira and Serpa (SMO-15-0339), refer to Appendix G, we

extended the implementations to include the standard EGO and LSEGO algorithms as well,

as described respectively in sections 6.2 and 7.1.

As presented and discussed in Section 7.1, in the present work we extended implementation

of our prior LSEGO algorithm to handle constrained optimizations by using Eq. (27).

The numerical implementation has been performed with Matlab v2009 on a computer

Intel(R) Core(TM) i7-3610QM, CPU 2.30GHz, 8Gb RAM, 64bits, and operational system

Windows 7.

8.1.1 Ensembles of Metamodels

The ensembles of metamodels were created with the augmented least squares approach

LS-a (Section 5), with ηaug ≈ 33% and nine distinct models of type PRS, KRG, RBNN and SVR,

by considering the setup presented in Tab. 7. Refer to SURROGATES Toolbox manual (ref.

Viana (2009)) for details on the equations and tuning parameters for each of these metamodeling

methods.

In order to create the partial ensembles for LSEGO, we used ten permutations of the nine

models displayed on Tab. 2, as follows. The first (full) ensemble used all the nine metamodels.

For the second partial ensemble we removed the model with ID = 9 from the full ensemble. For

the third one, the model with ID = 8 was removed from the full ensemble and we continued this

way up to get ten ensembles, i.e., one full LS ensemble (M = 9) and nine partial LS ensembles

(M̄ = 8).

101

Table 2: Basic metamodels setup for creating the ensembles.
ID Type Details

1 PRS Full quadratic model
2 KRG Quadratic regression, exponential correlation, θ0 = 10 and 10−2 ≤ θi ≤ 200
3 RBNN Goal = (0.05ȳ)2, Spread = 2/5 and MN = N

4 SVR C = 100max(|ȳ + 3σy|, |ȳ − 3σy|) and ǫ = σy/
√
N

5 PRS Linear model
6 KRG Linear regression, Gaussian correlation, θ0 = 10 and 10−2 ≤ θi ≤ 200
7 RBNN Goal = (0.05ȳ)2, Spread = 1/3 and MN = N/2

8 SVR C = 100max(|ȳ + 3σy|, |ȳ − 3σy|), ǫ = σy/
√
N , KernelOptions = 1/2 and Loss = Quadratic

9 KRG Constant regression, Gaussian correlation, θ0 = 10 and 10−2 ≤ θi ≤ 200

Obs.1: KRG: kriging; PRS: polynomial response surface; RBNN: radial basis neural network; SVR: support vector regression.
Obs.2: All other parameters not mentioned are kept with default values.
Obs.3: ȳ, σy and N are respectively: mean and standard deviation of y and number of sampling points.
Obs.4: No attempt has been made in order to fine tuning the surrogates shape parameters.

8.1.2 Maximization of the Expected Improvement Functions

In case of standard EGO, to miximize the expected improvement function at each op-

timization cycle, we used the Matlab Genetic Algorithm ga, with InitialPopulation set as

10nv individuals, chosen by using the function lhsdesign, optimized with maxmin criterion set

to 1000 iterations. The PopulationSize and Generations options were set to 100, with the

other parameters as default.

In case of LSEGO with multiple infill points, there are many expected improvement

functions to maximize per cycle. The use of a genetic algorithm can be quite time consuming

in this case. Based on preliminary numerical experiments, we found a good balance in accuracy

and computation time by using the Matlab Pattern Search algorithm patternsearch, with 10nv

initial points (X0), chosen by using the function lhsdesign, optimized with maxmin criterion

set to 1000 iterations.

As discussed in Jones (2001), the EGO-type algorithms tends to generate infill points quite

close to each other in several cycles. Sampling points too close can degenerate the approximation

of many metamodels, in special KRG and RBF.

In addition, infill points too close have low contribution to the exploration of the design

space, they can be a waste of resources and, in addition, they lead to a slower convergence for

the optimization. We verified this fact in several preliminary numerical experiments (ref. for

instance the illustration example of Fig. 25).

In this case, in order to avoid approximation issues during LSEGO cycles, we generated

exceeding infill points per cycle and selected distinct Np with highest expected improvement

value.

102

In our tests, we found a good balance by generating 2Np candidate infill points and then

we used a clustering procedure to remove points too close, or even equal to each other. After

the clustering selection, the Np distinct points are added to the sampling space for the next

optimization cycle.

In our first tests we used the Matlab function unique to remove equal points from the

sampling space, but this procedure has shown to be not effective.

Then we implemented a clustering selection procedure by using the Matlab function

cluster with the distance criterion. The cutoff was based on the maximum distance (dmax)

among points/clusters in the whole sampling space by using the Matlab linkage function. In

preliminary numerical tests we found that cutoff around to 10% of dmax is effective to remove

too close points.

8.2 Test Problems

8.2.1 Analytical Benchmark Functions

We used three well known analytical functions with different number of variables (nv) for

testing the optimization algorithms: Branin-Hoo (nv = 2), Hartman-3 (nv = 3) and Hartman-6

(nv = 6). See Appendix D for the respective equations.

For the analytical benchmark functions, we generated the constraints by following the

approach used in Forrester et al (2008) to test the constrained expected improvement formula-

tion.

That is, for Branin-Hoo function, let x∗1 = 3π and x∗2 = 2.475 be the coordinates of one

of the three local optima, then we write the normalized constraint as follows

g(x1, x2) =
x1x2
x∗1x

∗
2

− 1 ≥ 0. (28)

In this way, by using this hyperbolic function, at least one local optimum is forced to lie

exactly at the constraint boundary.

The same idea was used for Hartman-3 and Hartman-6 functions, with their respective

global optima, listed in Appendix D.

8.2.2 Analytical Engineering Problems

Four analytical constrained optimization problems, available in the mechanical engineer-

ing technical literature, were used to assess the performance of the proposed LSEGO algorithm.

103

Three-Bar Truss This is a test problem for constrained optimization, available in the book

Rao (2009). The objective functions to be minimized are the total weight f1(x) and the tip

displacement f2(x) of a simple three bar truss. The design variables are two distinct cross

section areas (x1 and x2) and the constraints are the tensile stresses at the three bars. i.e.,

σ1(x), σ2(x) and σ3(x). The respective equations are:

f1(x) = 2
√
2x1 + x2

f2(x) =
PH

E

1

x1 +
√
2x2

σ1(x) = P
x2 +

√
2x1√

2x21 + 2x1x2
− σ(u) ≤ 0

σ2(x) = P
1

x1 +
√
2x2
− σ(u) ≤ 0

σ3(x) = −P x2√
2x21 + 2x1x2

− σ(l) ≤ 0

x
(l)
i ≤ xi ≤ x

(u)
i i = 1, 2

, (29)

where P is the applied force, H is the the main dimension of the truss and E is the Young’s

modulus. The numeric data are: σ(u) = 20, σ(u) = −15, x(l)i = 0.1, x
(u)
i = 5.0, P = 20, H = 1

and E = 1.

For f1, the reported minimum is

x∗ = (0.78706, 0.40735)

with f ∗
1 = 2.6335 and for f2, the reported minimum is

x∗ = (5, 5)

with f ∗
2 = 1.6569.

Cantilever Beam These functions are due to Nowacki (1980) and they are used as test set

for metamodeling and optimization in Forrester et al (2008). The problem refers to a cantilever

beam of constant length l = 1.5 m, with an end tip load F = 5 kN and the variables x = (b, h)

are the retangular cross-section dimensions: the width (5 ≤ b ≤ 50) [mm] and the height

104

(20 ≤ h ≤ 250) [mm]. The objective is to minimize the cross section area y(x) = bh, subjected

to the constraints for tip displacement δ(x) and bending stress σ(x), i.e.,

δ(x) =
Fl3

3EIY
− δmax ≤ 0

σ(x) =
6Fl

bh2
− σY ≤ 0

, (30)

where IY =
bh3

12
is the section moment of inertia and E = 216.62GPa, G = 86.65GPa and

ν = 0.27 are the Young modulus, shear modulus and Poisson coefficient respectively for the

beam material. σY = 240 MPa is the yielding stress limit and δmax = 5 mm is the maximum

allowed tip deflection. There is no reported optimum for this problem, then we used Matlab

optimization function fmincon and found

x∗ = (5, 231.9)

with y∗ = 1159.3, that will we considered as the “reference optimum” solution.

Helical Spring This is also an example problem available in Rao (2009). The design variables

are the wire diameter d, the coil diameter D and the number of turns N . The objective is to

minimize the spring weight y(x), by limiting the deflection δ(x), shear stress τ(x) and vibration

natural frequency Fn(x). In summary, the equations are:

y(x) =
πd2

4
πDNρ

δ(x) =
8FD3N

d4G
− 0.1 ≤ 0

τ(x) = Ks
8FD

πd3
− 104 ≤ 0

Fn(x) =

√
Ggd

2
√
2ρπ

d

D2N
− 102 ≥ 0

d, D, N > 0

, (31)

where F = 1250lb, ρ = 0.3lb/in3, Ks = 1.05, G = 12× 106psi and g = 386.22in/s2.

There is no reported optimum for this problem then, with the same approach applied in

105

the Cantilever Beam, we used Matlab optimization function fmincon and found

x∗ = (1, 1.5, 3)

with y∗ = 3.331, that will we considered as the “reference optimum” solution.

Pressure Vessel This problem is acknowledged to Kannan and Kramer (1994). A cylindrical

pressure vessel has its both ends capped by hemispherical heads. There are four geometrical

design variables xi (i.e., two thicknesses, length and radius) and four constraints gj(x). The

objective is to minimize the manufacturing cost, y(x), due to material and processes. The

problem can be stated as:

y(x) = 0.6224x1x3x4 + 1.7781x2x
2
3

+ 3.1661x21x4 + 19.84x21x3

g1(x) = −x1 + 0.0193x3 ≤ 0

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −πx23x4 −
4π

3
x33 + 1.296× 106 ≤ 0

g4(x) = x4 − 240 ≤ 0

0.0625 ≤ x1,2 ≤ 6.1875

10 ≤ x3,4 ≤ 200

. (32)

Kannan and Kramer (1994) reported the optimum for this problem as

x∗ = (1.125, 0.625, 58.291, 43.690),

with y∗ = 7198.0428.

It is important to note that this is a highly multimodal problem, and several authors

published different local optimum solutions in the neighborhood of the one reported by Kannan

and Kramer (1994), in the range (6000 < y∗ < 9000).

In addition, most of these recent solutions for this problem were based on evolutionary

106

optimization (i.e., genetic algorithms, etc.), by using true functions instead of metamodels, and

the authors reported 80 × 103 to 150 × 103 function evaluations to reach the local optimum.

See a collection of examples in Coello (2000), Lemonge et al (2010) and Yang et al (2013a).

We will consider

x∗ = (0.8125, 0.4375, 42.0984, 176.6366),

with y∗ = 6059.7143, reported by Yang et al (2013a), as the “reference optimum” solution for

comparison.

8.2.3 Engineering Application: Car Impact

The objective of this numerical experiment is to exemplify the application of LSEGO in

the constrained optimization of an industry scale engineering problem, based on finite element

computer simulation model.

We selected one example regarding the optimization of collapsible impact energy ab-

sorbers. The development of efficient impact absorbers is crucial in several engineering ap-

plications as for example crashworthiness design of vehicles (cars, lifts, aircraft, ships, etc.),

crash barrier design, safety of nuclear structures, collision damage to road and bridges, offshore

installations and many others. Refer to Alghamdi (2001) for a comprehensive review on this

subject.

The computer simulation of collapsible impact energy structures involves several complex

phenomena such as large displacement/rotations, large strains and nonlinear material behavior

of components under contact and impact (transient loading).

There is a lot of research studies and engineering applications on this subject. See for

instance some recent publications: Elmarakbi et al (2013), Zhang et al (2014), Tanlak and

Sonmez (2014) and Zhang et al (2015).

Depending on the level of detail desired, the finite element model can take several minutes

for a single run or, even hours or days in high-end parallel computer clusters, as we mentioned

in Section 1.1. In such context, the metamodel approach is often the only feasible way to

perform design optimization.

The chosen model is part of the tutorial examples available in the HyperWorks Student

Edition, version v13.0 9. The models was built and executed with RADIOSS finite element

9HyperWorks is developed and distributed by Altair Engineering, Inc., see www.altair.com. HyperWorks

107

solver, that is largely used in industry for engineering applications, specially involving crash-

worthiness design.

The model is a simplified version for the full Car Frontal Pole Impact test, see Fig. 32. Car

crash tests are important for both occupant and pedestrian safety and are part of regulations in

many countries nowadays. For more information and details see the main regulation institutes,

i.e., NCAP10 and NHTSA11.

The vehicle front end is main structure to sustain efficiently the impact energy during a

frontal pole impact, for example. This kind of automotive structure is generally made by thin

sheet metal parts, in form of tubes, assembled together with spot or seam welds. See Fig. 33

for details.

We defined four continuous thickness design variables (t1, t2, t3 and t4), in the range [1.0

to 3.0] mm, for optimization, with baseline values

x = (2.5, 1.55, 1.55, 1.55).

In this case, the rigid wall is fixed and massless. The vehicle moves in the direction of the

rigid wall with a initial velocity of 15.6m/s.

The objective is to maximize the specific energy absorbed (SEA) due to plastic defor-

mation, by constraining the peak impact force to a controlled safety level. This approach is

commonly used in crashworthiness design optimization, see for instance Zhang et al (2014).

In this example, we normalized specific energy absorbed by the baseline value SEAbaseline,

then the objective function can be defined as

y(x) =
SEA(x)

SEAbaseline

.

In the same way, the constraint function, i.e., the normalized maximum/peak impact force

Fmax(x), with respect to the baseline value Fbaseline, can be defined as

g(x) = 1− Fbaseline

Fmax(x)
≥ 0.

This model was based on the tutorial example (HS-3550), available in HyperWorks. In

Student Edition was used in this work under authorization by Altair Engineering, Inc.
10www.globalncap.org
11www.nhtsa.gov

108

the computer system used in this work, each model takes about 10min for simulating 50ms of

the impact event.

For additional model details, see the online HyperWorks documentation.

(a) Frontal Pole Impact Model (b) Deformed Shape

Figure 32: Car frontal pole impact model. Demo RADIOSS model (HS-3550) available in
HyperWorks Student Edition, v13. Courtesy of Altair Eng., Inc.

(a) FE Mesh (b) Front End Structure (c) Design Variables

Figure 33: Car frontal pole impact model. Details of the finite element (FE) mesh, front end
structure and design variables (thickness, t1, t2, t3 and t4) selected for optimization.

109

8.3 Design of Experiments (DOE)

The initial DOE with N points (N = Ntr+Nadd) were created using the Latin Hypercube

Matlab function lhsdesign, optimized with maxmin criterion set to 1000 iterations. At each

cycle of LSEGO-10 (i.e., ten infill points per cycle), the augmenting points Nadd were chosen

from the full sampling set (N) to generate the LS-a ensemble with constant rate ηaug ≈ 33%.

After some preliminary numerical tests, we observed that it is important to assure for

each cycle i that the current optimum point, i.e., (xi
min, y

i
min) is always in the training set N i

tr.

Otherwise, the expected improvement function might wrongly generate an optimum point yi+1
min,

with higher value of yimin for the next cycle.

In order prevent this, at each cycle i, we sort the N i available sampling points in increasing

order of y(x) and put the current optimum at the top of the row. Then, the augmenting points

Nadd for the validation set are selected from the tail of the row, i.e., the ones with highest values

of y(x) and, in this way, the current optimum is always on the training set N i
tr.

For the analytical benchmark functions, i.e., Branin-Hoo, Hartman-3 and Hartman-6, we

used the same number of initial points N in the DOE as applied in Jones et al (1998), that is,

N = 21, N = 33 and N = 65, respectively.

For the analytical engineering problems, i.e., Three-Bar Truss, Cantilever Beam, Helical

Spring and Pressure Vessel, we used a similar ratio of initial sampling points per design variables

as in the analytical benchmarks, i.e., N = 21, N = 21, N = 33 and N = 45, respectively.

For the computer simulation model, i.e., Car Impact, we used N = 60 as initial DOE. The

software HyperStudy (part of HyperWorks suite) was used to automate the models parametriza-

tion and run.

In order to measure the quality of fit for the analytical problems (R2 and NRMSE),

Ntest = 5000 points were created by using the Latin Hypercube Matlab function lhsdesign,

optimized with maxmin criterion set to 100 iterations.

We will not repeat here the validation process summarized in Fig. 31. We already

demonstrated that the optimum solution is quite similar for different initial DOE. Even though,

for all analytical problems, we run ten times, with different initial DOE, and we present here

only the best solution achieved in each case.

In case of the Car Impact problem, since the number of points that can be generated is

time demanding, we run the problem only once and the respective results are presented.

110

9 Results and discussion

“Don’t torture the data.

If you torture the data long enough, it will confess.”

Ronald Coase, 1910-2013.

In this section we will present and discuss the results of the numerical experiments per-

formed in Phase III of the research to verify implementation of LSEGO for handling con-

strained optimization problems, as we detailed in Chapter 8.

9.1 Analytical Benchmark Functions

9.1.1 Braninh-Hoo

−5 0 5 10
0

5

10

15

x1

x
2

Sampling Points at Cycle 16

Feasible Area

g
1

Exact Optimum

Converged Optimum

Figure 34: Optimization results for the constrained Branhin-Hoo function. LSEGO-10 con-
verged exactly to the constrained optimum at x∗ = (9.425, 2.475) after 15 cycles. Note the
higher density and uniformity of infill points inside than outside the feasible area. The circles
“o” are the infill sampling points and the initial DOE points are labeled with asterisks “∗”.
The three unconstrained local optima of Branhin-Hoo are labeled as “stars”.

For the Branhin-Hoo function, the results of the constrained optimization with LSEGO-

10 are presented in Fig. 34. In this case, with the constraint defined with Eq. (28), there is

only one global optimum in the feasible area, exactly at the constraint boundary at

x∗
exact = (9.425, 2.475) .

111

Note that the algorithm added infill points at the whole design space, but the density and

uniformity of infill points inside is higher than outside of the feasible area.

The evolution of the objective function y(x) and the normalized constraint g(x) during

the optimization cycles with LSEGO-10 for Branin-Hoo function are presented in Fig. 35. Note

that LSEGO-10 started very far from the global minimum y∗ = 16.4266 and reached fast the

neighborhood of x∗
exact, at the second optimization cycle, with y∗ = 0.5987, although no further

improvement on y(x) was observed until cycle 14. LSEGO-10 converged exactly to the global

optimum at cycle 15.

9.1.2 Hartman-3

In the same way, the results for Hartman-3 function is presented in Fig. 36. LSEGO-10

reached the neighborhood of x∗
exact at cycle 5, with y∗ = −3.7899, i.e., 1.89% error from y∗exact.

The algorithm evolved in the cycles, by reducing the value of g(x) and trying to reach the

constraint boundary (i.e., g(x) = 0). At cycle 15, it was found y∗ = −3.8371, or 0.66% error

from y∗exact. At cycle 31, the algorithm reached

x∗ = (0.1444, 0.5553, 0.8537) ,

with y∗ = −3.8621 or 0.02% error from y∗exact, and no further improvement in y(x) or g(x) was

found up to 40 cycles.

9.1.3 Hartman-6

In case of Hartman-6 function, see Fig. 37, the algorithm converged at a slower rate to

the neighborhood of x∗
exact. At cycle 35, y∗ = −3.100329, or 6.68% error from y∗exact. At cycle

38, y∗ = −3.177094, or 4.37% error from y∗exact. We stopped the algorithm at cycle 50 with

little improvement with respect to cycle 38, i.e.,

x∗ = (0.2688, 0.1547, 0.4508, 0.2890, 0.3433, 0.6541) ,

and y∗ = −3.2082, or 3.44% error from y∗exact.

112

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

BraninHoo−2: Efficient Global Optimization with LS−Ensembles, Rep. # 93

Min. Obj. Function

Exact Global Minumum

(a) Objective Function y(x)

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Optimization Cycles

N
o
rm

a
liz

e
d
 C

o
n
s
tr

a
in

t
F

u
n
c
ti
o
n

BraninHoo−2: Efficient Global Optimization with LS−Ensembles, Rep. # 93

(b) Normalized Constraint g(x)

Figure 35: Evolution of the objective function y(x) and the normalized constraint g(x) during
the optimization cycles with LSEGO-10 for Branin-Hoo function. LSEGO-10 started with
y∗ = 16.4266 and reached y∗ = 0.5987 at cycle 2. LSEGO-10 converged to the global optimum
with y∗ = 0.3979 at cycle 15.

113

0 5 10 15 20 25 30 35 40
−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Hartaman−3: Efficient Global Optimization with LS−Ensembles, Rep. # 39

Min. Obj. Function

Exact Global Minumum

(a) Objective Function y(x)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

Optimization Cycles

N
o

rm
a

liz
e

d
 C

o
n

s
tr

a
in

t
F

u
n

c
ti
o

n

Hartaman−3: Efficient Global Optimization with LS−Ensembles, Rep. # 39

(b) Normalized Constraint g(x)

Figure 36: Evolution of the objective function y(x) and the normalized constraint g(x)
during the optimization cycles with LSEGO-10 for Hartman-3 function. LSEGO-10 found
y∗ = −3.7899, i.e., 1.89% error from y∗exact at cycle 5. The algorithm converged at cycle 31 with
y∗ = −3.8621 or 0.02% error from y∗exact.

114

0 5 10 15 20 25 30 35 40 45 50

−3

−2.5

−2

−1.5

−1

−0.5

Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Hartaman−6: Efficient Global Optimization with LS−Ensembles, Rep. # 66

Min. Obj. Function

Exact Global Minumum

(a) Objective Function y(x)

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

Optimization Cycles

N
o
rm

a
liz

e
d
 C

o
n
s
tr

a
in

t
F

u
n
c
ti
o
n

Hartaman−6: Efficient Global Optimization with LS−Ensembles, Rep. # 66

(b) Normalized Constraint g(x)

Figure 37: Evolution of the objective function y(x) and the normalized constraint g(x) during
the optimization cycles with LSEGO-10 for Hartman-6 function. At cycle 35, y∗ = −3.100329,
or 6.68% error from y∗exact. The algorithm was stopped at cycle 50 with little improvement with
respect to cycle 38. At this point y∗ = −3.2082, or 3.44% error from y∗exact.

115

9.1.4 Summary for Analytical Benchmarks

We repeated these numerical experiments with the analytical benchmark functions and

the convergence pattern was nearly the same for different initial sampling points. It is worth

noting that in all the cases, the optimization algorithm presented the convergence behavior in

steps. Observe this fact in Fig. 35 for Branin-Hoo and with more pronounced effect in Fig. 36

for Hartman-3 and in Fig. 37 for Hartman-6 function.

As discussed in Forrester and Keane (2009), this stepwise behavior can be understood as

the algorithm “switching” from the exploitation to exploration modes during the optimization

cycles. In other words, after adding some infill points in the beginning cycles, the quality of

fit of the metamodels increases and the algorithm is able to find some improvement in the

objective function (exploitation mode).

In the sequence, the algorithm switches to the exploration mode at some cycles, and the

next downhill “jump” in direction to the optimum is only achieved after the quality of fit of

the metamodels of y(x) and g(x) is enough to promote the next improvement. If we track

the quality of fit of the objective function during the optimization cycles, this behavior can be

observed.

See for instance the stepwise evolution of the quality of approximation of y(x) by means

of NRMSE and R2 during the optimization cycles for Hartman-3 function in Fig. 38. In this

case, at the initial cycles, the quality of fit is irregular/erratic at some extent, with jumps at

each three or five steps (cycles 3, 5, 10, 15, ...).

Recall to Fig. 36 and note that these jumps occur simultaneously to the ones observed

for the main improvements in objective function and for the constraint. When the accuracy of

the metamodel reaches stable levels (i.e., R2 > 0.9 and NRMSE < 2%, around cycle 20, the

algorithm is quite close to the global optimum and it converges at cycle 25, when the quality

of fit is very good (i.e., R2 ≈ 1).

In this sense, based on this observed behavior for the algorithm, it is recommended in

practical applications to monitor the quality of fit for the metamodels in parallel to the evolution

of the objective and constraint functions, in order to avoid premature or false convergence at

suboptimal points.

As we discussed before in Section 6.3, in practical situations, this balance between quality

of fit, improvement of objective function and constraints versus total number of sampling points,

must be observed for each problem.

116

In addition, in several practical problems, improvements in the objective or constraints

of orders of 10% to 25% are very hard to meet. In such situations, finding one or a set of

truly improved designs is much more important than finding the “global” optimum for the

problem, and the decision on when to stop the optimization cycles must be taken based on

these considerations as well.

These results with the analytical benchmarks showed that LSEGO algorithm works suc-

cessfully to handle constrained optimization problems as well. A deep numerical investigation

must be performed with different functions (number of variables, nonlinearity, multimodality,

etc.) and increasing number of constraints, in order to understand in detail the behavior,

convergence properties, advantages and limitations of LSEGO algorithm.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Optimization Cycles

N
R

M
S

E
 [

%
]

Evolution of NRMSE for Hartman−3 with LSEGO−10

(a) NRMSE, Hartman-3

0 5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1
Evolution of R

2
 for Hartman−3 with LSEGO−10

Optimization Cycles

R
2

(b) R2, Hartman-3

Figure 38: Evolution of the quality of fit of y(x), by means of NRMSE and R2 during the opti-
mization cycles with LSEGO-10 for Hartman-3 function. The optimization algorithm switches
from exploitation to the exploration mode during the cycles and the convergence is achieved in
steps. The downhill “jumps” in direction to the optimum occur in steps, after the quality of
fit of the metamodels of y(x) and g(x) is enough to promote the improvement.

117

9.2 Analytical Engineering Problems

9.2.1 Three-Bar Truss

In Fig. 39 and Fig. 40 it is presented the evolution of the objective functions f1(x)

(weight) and f2(x) (displacement) and also the respective normalized stress constraints for the

Three-Bar Truss problem with two variables and three constraints, as detailed in Eq. (29).

Note in Fig. 40 that LESEGO-10 converged exactly to the reference optimum, after two

cycles for f2(x) (displacement). On the other hand, although with significant improvement in

the objective function, the algorithm did not find any improved solution after cycle 11 for f1(x)

(weight).

For the Three-Bar Truss problem, we forced intentionally the algorithm to start in a

region completely away from the exact solution, in order to see if the convergence can still be

achieved with a very poor initial DOE. Observe in Fig. 41 that for f1(x) it was considered

(4 ≤ x1,2 ≤ 5) and for f2(x) it was considered (1 ≤ x1,2 ≤ 1) as region for the initial DOE.

In case of f1(x) (weight) for the Three-Bar Truss problem, we applied a sequential clus-

tering procedure to see how LSEGO-10 behaves and if it is possible to accelerate and improve

the convergence in direction of the exact solution of reference.

We restarted the optimization after cycle 08 by reducing the design space to (0 ≤ x1,2 ≤ 2)

and by adding ten extra points generated with Matlab function lhsdesign, see Fig. 43.

After the first cluster, the solution improved significantly at cycle 10 to the point

x∗ = (0.9008, 0.1707),

with f ∗
1 = 2.7186 (or 3.23% error from f ∗

1−exact).

Again, the algorithm stalled at the same optimum for more two cycles. Then we applied

a second clustering procedure after cycle 12, with another additional ten points and the design

space set to (0 ≤ x1,2 ≤ 1) in the optimization. This second cluster produced no effect and we

stopped the optimization at cycle 15. See the overall picture in Fig. 42, with the design space

at the end of cycle 15.

118

0 5 10 15 20 25
2

4

6

8

10

12

14

16

Optimization Cycles

O
b

j.
 F

u
n

c
ti
o

n
 (

W
e

ig
h

t)
:

y
 =

 f 1
(x

)

Three−Bar Truss(W)−2: Efficient Global Optimization with LS−Ensembles

Min. Obj. Function

Exact Global Minimum

(a) Objective Function f1(x)

0 5 10 15 20 25
−18

−16

−14

−12

−10

−8

−6

−4

−2

Optimization Cycles

S
tr

e
s
s
 C

o
n
s
tr

a
in

t
o
f
M

e
m

b
e
r

1
:
g

1
(x

)
=

 σ
(x

)
−

 σ
u

Three−Bar Truss(W)−2: Efficient Global Optimization with LS−Ensembles

(b) Normalized Constraint σ1(x)

0 5 10 15 20 25
−18

−16

−14

−12

−10

−8

−6

−4

Optimization Cycles

S
tr

e
s
s
 C

o
n
s
tr

a
in

t
o
f
M

e
m

b
e
r

2
:
g

2
(x

)
=

 σ
(x

)
−

 σ
u

Three−Bar Truss(W)−2: Efficient Global Optimization with LS−Ensembles

(c) Normalized Constraint σ2(x)

0 5 10 15 20 25
−22

−21

−20

−19

−18

−17

−16

−15

Optimization Cycles

S
tr

e
s
s
 C

o
n
s
tr

a
in

t
o
f
M

e
m

b
e
r

3
:
g

3
(x

)
=

 σ
(x

)
+

 σ
l

Three−Bar Truss(W)−2: Efficient Global Optimization with LS−Ensembles

(d) Normalized Constraint σ3(x)

Figure 39: Evolution of the objective function f1(x) (weight) and the normalized stress con-
straints σ1(x), σ2(x) and σ3(x) during the optimization cycles with LSEGO-10 for the Three-Bar
Truss problem.

119

0 1 2 3 4 5 6
1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78

1.8

Optimization Cycles

O
b
j.
 F

u
n
c
ti
o
n
 (

D
is

p
la

c
e
m

e
n
t)

:
y
 =

 f 2
(x

)

Three−Bar Truss(D)−2: Efficient Global Optimization with LS−Ensembles

Min. Obj. Function

Exact Global Minimum

(a) Objective Function f1(x)

0 1 2 3 4 5 6

−17.15

−17.1

−17.05

−17

−16.95

−16.9

−16.85

−16.8

−16.75

Optimization Cycles

S
tr

e
s
s
 C

o
n
s
tr

a
in

t
o
f
M

e
m

b
e
r

1
:
g

1
(x

)
=

 σ
(x

)
−

 σ
u

Three−Bar Truss(D)−2: Efficient Global Optimization with LS−Ensembles

(b) Normalized Constraint σ1(x)

0 1 2 3 4 5 6
−18.36

−18.34

−18.32

−18.3

−18.28

−18.26

−18.24

−18.22

−18.2

Optimization Cycles

S
tr

e
s
s
 C

o
n
s
tr

a
in

t
o
f
M

e
m

b
e
r

2
:
g

2
(x

)
=

 σ
(x

)
−

 σ
u

Three−Bar Truss(D)−2: Efficient Global Optimization with LS−Ensembles

(c) Normalized Constraint σ2(x)

0 1 2 3 4 5 6
−16.5

−16.45

−16.4

−16.35

−16.3

−16.25

−16.2

−16.15

−16.1

Optimization Cycles

S
tr

e
s
s
 C

o
n
s
tr

a
in

t
o
f
M

e
m

b
e
r

3
:
g

3
(x

)
=

 σ
(x

)
+

 σ
l

Three−Bar Truss(D)−2: Efficient Global Optimization with LS−Ensembles

(d) Normalized Constraint σ3(x)

Figure 40: Evolution of the objective function f2(x) (displacement) and the normalized stress
constraints σ1(x), σ2(x) and σ3(x) during the optimization cycles with LSEGO-10 for the
Three-Bar Truss problem.

120

(a) Design Space for f1(x)

(b) Desigin Space for f2(x)

Figure 41: Design space for f1(x) (weight) and f2(x) (displacement) at convergence for the
Three-Bar Truss problem. Feasible area indicated by hatches. Even starting the initial DOE
far away from the exact solution, LSEGO-10 was able to converge to exactly or at the optimum
neighborhood in few optimization cycles.

121

(a) Design Space f1(x)

Figure 42: Design space for f1(x) (weight) at convergence for the Three-Bar Truss problem,
after two clusters at cycle 08 and cycle 12. Feasible area indicated by hatches. After the
clustering procedure, LSEGO-10 converged to x∗ = (0.9008, 0.1707) with f ∗

1 = 2.7186 (or
3.23% error from f ∗

1−exact).

0 2 4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

Optimization Cycles

O
b
j.
 F

u
n
c
ti
o
n
 (

W
e
ig

h
t)

:
y
 =

 f 1
(x

)

Three−Bar Truss(W)−2: Efficient Global Optimization with LS−Ensembles

Min. Obj. Function

Exact Global Minimum

Cluster #1

Cluster #2

(a) Objective Function f1(x)

Figure 43: Evolution of the objective function f1(x) (weight) for the Three-Bar Truss problem
with a sequential clustering procedure at cycle 08 and cycle 12. After the clustering procedure,
LSEGO-10 converged to x∗ = (0.9008, 0.1707) with f ∗

1 = 2.7186 (or 3.23% error from f ∗
1−exact).

122

9.2.2 Cantilever Beam

In Figs. 44 and 45 it is presented the evolution of the optimization cycles for the Cantilever

Beam problem with two variables and two constraints, detailed in Eq. (30).

In this case, LSEGO-10 converged almost exactly at cycle 09 to the point

x∗ = (5.0000, 233.7748),

with y∗ = 1168.8739 (or 0.33% error from y∗exact) and no further improvement was observed

until cycle 12.

0 2 4 6 8 10 12
1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Optimization Cycles

O
b
j.
 F

u
n
c
t.
 (

S
e
c
ti
o
n
 A

re
a
):

 y
(x

)
=

 b
.h

,
[m

m
2
]

Nowacki Beam−2: Efficient Global Optimization with LS−Ensembles

Min. Obj. Function

Exact Global Minimum

(a) Objective Function y(x)

Figure 44: Evolution of the objective function y(x), during the optimization cycles with
LSEGO-10 for the Cantilever Beam problem. LSEGO-10 converged almost exactly at cycle
09 to the point x∗ = (5.0000, 233.7748) with y∗ = 1168.8739 (or 0.33% error from y∗exact.)

123

0 2 4 6 8 10 12
−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

Optimization Cycles

N
o

rm
a

liz
e

d
 B

e
n

d
in

g
 S

tr
e

s
s
 C

o
n

s
tr

a
in

t:
 g

1
(x

)
=

 σ
b

e
n

d
(x

)/
σ

y
 −

 1

Nowacki Beam−2: Efficient Global Optimization with LS−Ensembles

(a) Constraint Function δ(x)

0 2 4 6 8 10 12
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Optimization Cycles

N
o
rm

a
liz

e
d
 D

is
p
la

c
e
m

e
n
t
C

o
n
s
tr

a
in

t:
 g

2
(x

)
=

 δ
(x

)/
δ

m
a

x
 −

 1

Nowacki Beam−2: Efficient Global Optimization with LS−Ensembles

(b) Constraint Function σ(x)

Figure 45: Evolution of the normalized constraints δ(x) (displacement) and σ(x) (bending
stress), during the optimization cycles with LSEGO-10 for the Cantilever Beam problem.
LSEGO-10 converged almost exactly at cycle 09 with 0.33% error from y∗exact, and no further
improvement was observed for objective and constraints until cycle 12.

124

9.2.3 Helical Spring

The results for the Helical Spring problem with three variables and three constraints,

detailed in Eq. (31), are presented in Fig. 46.

In this case, LSEGO-10 converged to the exact solution at cycle 13.

0 5 10 15
3

4

5

6

7

8

9

Optimization Cycles

O
b

j.
 F

u
n

c
t.
 (

M
a

s
s
):

 y
(x

)

Spring−3: Efficient Global Optimization with LS−Ensembles

Min. Obj. Function

Exact Global Minimum

(a) Objective Function y(x)

0 5 10 15
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

Optimization Cycles

N
o

rm
a

liz
e

d
 S

h
e

a
r

S
tr

e
s
s
 C

o
n

s
tr

a
in

t:
 g

1
(x

)
=

 τ
(x

)/
τ m

a
x
 −

1

Spring−3: Efficient Global Optimization with LS−Ensembles

(b) Constraint Function δ(x)

0 5 10 15
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

Optimization Cycles

N
o
rm

a
liz

e
d
 D

is
p
la

c
e
m

e
n
t
C

o
n
s
tr

a
in

t:
 g

2
(x

)
=

 δ
(x

)/
δ

m
a
x
 −

 1

Spring−3: Efficient Global Optimization with LS−Ensembles

(c) Constraint Function τ(x)

0 5 10 15
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

Optimization Cycles

N
o
rm

a
liz

e
d
 D

is
p
la

c
e
m

e
n
t
C

o
n
s
tr

a
in

t:
 g

2
(x

)
=

 δ
(x

)/
δ

m
a
x
 −

 1

Spring−3: Efficient Global Optimization with LS−Ensembles

(d) Constraint Function Fn(x)

Figure 46: Evolution of the objective function y(x) (mass) and the normalized constraints δ(x)
(displacement), τ(x) (shear stress) and Fn(x) (natural frequency), during the optimization
cycles with LSEGO-10 for the Helical Spring problem. LSEGO-10 converged to the exact
solution at cycle 13.

125

9.2.4 Pressure Vessel

In Fig. 47 it is presented the evolution of the optimization cycles for the Pressure Vessel

problem, with four variables and four constraints, detailed in Eq. (32).

In same way of f1(x) (weight) for the Three-Bar Truss problem, the algorithm improved

the objective function but stalled at a suboptimal solution at cycle 15 and no further improve-

ment was found up to cycle 34.

We applied as well a sequential clustering procedure to see how LSEGO-10 behaves and

to verify if it is also possible to accelerate and improve the convergence in direction of the

reference exact solution.

After the clustering procedure, see Fig. 48, LSEGO-10 converged at cycle 19 to the point

x∗ = (1.0000, 0.4375, 45.9244, 152.9694),

with y∗ = 7408.5038, with a total of 473 evaluations of the true/exact function f(x). In Fig.

49, the evolution of the constraints after the clustering procedure is presented.

This solution is 2.92% different from the first solution reported by Kannan and Kramer

(1994). If we compare with the best value presented in Yang et al (2013a), the difference is

22.26%, but in this case the solution was found by using evolutionary computation, at cost of

an order of 80× 103 evaluations of the true/exact function f(x), what is obviously non feasible

in the context of metamodel based optimization.

126

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7
x 10

4

Optimization Cycles

O
b
j.
 F

u
n
c
t.
 (

C
o
s
t)

:
y
(x

)

Pr. Vessel−4: Efficient Global Optimization with LS−Ensembles

Min. Obj. Function

Exact Global Minimum

(a) Objective Function f1(x)

Figure 47: Evolution of the objective functions y(x) during the optimization cycles with
LSEGO-10 for the Pressure Vessel. The algorithm converged to a suboptimal at cycle 15
and no further improvement was found up to cycle 34.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7
x 10

4

Optimization Cycles

O
b

j.
 F

u
n

c
t.

 (
C

o
s
t)

:
y
(x

)

Pr. Vessel−4: Efficient Global Optimization with LS−Ensembles

Min. Obj. Function

Exact Global Minimum

Cluster #2

Cluster #3

Cluster #1

(a) Objective Function f1(x)

Figure 48: Evolution of the objective functions y(x) during the optimization cycles with
LSEGO-10 for the Pressure Vessel problem, with the clustering procedure.

127

0 2 4 6 8 10 12 14 16 18 20
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

Optimization Cycles

C
o
n
s
tr

a
in

t
F

u
n
c
t.
 g

1
(x

)

Pr. Vessel−4: Efficient Global Optimization with LS−Ensembles

(a) Constraint Function g1(x)

0 2 4 6 8 10 12 14 16 18 20
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Optimization Cycles

C
o

n
s
tr

a
in

t
F

u
n

c
t.
 g

2
(x

)

Pr. Vessel−4: Efficient Global Optimization with LS−Ensembles

(b) Constraint Function g2(x)

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

Optimization Cycles

C
o
n
s
tr

a
in

t
F

u
n
c
t.
 g

3
(x

)

Pr. Vessel−4: Efficient Global Optimization with LS−Ensembles

(c) Constraint Function g3(x)

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Optimization Cycles

C
o
n
s
tr

a
in

t
F

u
n
c
t.
 g

4
(x

)
Pr. Vessel−4: Efficient Global Optimization with LS−Ensembles

(d) Constraint Function g4(x)

Figure 49: Evolution of the constraint functions g1(x), g2(x), g3(x) and g4(x) during the opti-
mization cycles with LSEGO-10 for the Pressure Vessel problem, with the clustering procedure
at cycles 10, 14 and 17.

128

9.2.5 Sequential Sampling vs. One-Stage Approach

As we discussed in Section 6, there is still some controversy regarding the effectiveness of

sequential sampling versus one-stage approaches, ref. Jin et al (2002) and Viana et al (2010).

In order to check this fact for our examples with analytical engineering functions, we

repeated the one-stage optimization ten times, with different initial DOE, at a very large rate

of number of sampling points in terms of number of variables12, i.e., for f1(x) of Three-Bar

Truss N = 120 (60nnv); for Cantilever Beam N = 120 (60nnv); for Helical Spring N = 360

(120nnv) and for Pressure Vessel N = 460 (120nnv).

The results for this experiment are presented in Fig. 50. For the cases investigated,

the results showed that there is no guarantee to achieve the exact optimum with a one-stage

approach, even starting the optimization with a high density of sampling points in the design

space. Probably, the majority of these points are working only for improving the overall quality

of the metamodels (exploration) and these points are not being effective to help finding the

exact minimum (exploitation), what is clearly a waste of resources for optimization objectives

in mind.

These results confirm our beliefs that it is worthwhile to apply sequential sampling ap-

proaches like EGO-type algorithms, or some hybrid approach (allied to clustering, for instance),

in order to increase the number of points slowly and “surgically” at regions of the design space,

with real chance or expectation of improvement in the objective and constraint responses.

In this sense, we reinforce the comments of Forrester and Keane (2009), that the meta-

model based optimization must always include some form of iterative search and repetitive

infill process to ensure the accuracy in the areas of interest in the design space. In this di-

rection, we agree on the recommendations that a reasonable number of points for starting the

sequential sampling metamodel based optimization is about one third (33%) of the available

budget in terms of true function/model evaluations (or processing time) to be spent in the

whole optimization cycle.

12As a common practice for metamodel based optimization purposes, the number of points in initial DOE is
often in the range 5nnv to 10nnv.

129

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

1

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 (

1
0
 R

e
p
e
ti
ti
o
n
s
)

Three−Bar Truss(W)−2: One−Stage Optimization

Exact Optimum

(a) Three-Bar Truss

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

1

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 (

1
0

 R
e

p
e

ti
ti
o

n
s
)

Cantilever Beam−2: One−Stage Optimization

Exact Optimum

(b) Cantilever Beam

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

1

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 (

1
0

 R
e

p
e

ti
ti
o

n
s
)

Spring−3: One−Stage Optimization

Exact Optimum

(c) Helical Spring

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
4

1

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 (

1
0

 R
e

p
e

ti
ti
o

n
s
)

Pr. Vessel−4: One−Stage Optimization

Exact Optimum

(d) Pressure Vessel

Figure 50: Boxplots with the converged results for analytical engineering functions with one-
stage optimization. Each problem was repeated 10 times with different initial DOE, i.e., for
f1(x) of Three-Bar Truss N = 120 (60nnv); for Cantilever Beam N = 120 (60nnv); for Helical
Spring N = 360 (120nnv) and for Pressure Vessel N = 460 (120nnv). Even with very dense
number of initial sampling points, there is no guarantee of achieving the exact optimum.

9.2.6 Unfeasible Results Near Constraints Boundaries

As can be observed in the results presented here, some optimum found turned out to be

unfeasible (Hartman-6) or, although the constraints were not violated in the majority of cases

studied in this thesis, it was hard o find the optimum at the desirable location, that is, at a

constraint boundary (active constraints).

As discussed by Viana (2011) in constrained optimization (with constraints being meta-

models) or in reliability-based optimization, it can happen that after running the optimization

the solution found should be infeasible due to metamodel errors.

In order to try to avoid this kind of “pathology”, the first thing that can be done is the

correct choice of constraints to be included in the optimization, specially the redundant ones

130

and those that are unlikely to be active (at the constraint boundary), as discussed by Forrester

et al (2008).

In this cases, some sort of penalization approaches can be applied to the inactive or

violated constraints to force the optimum to the boundary or feasible region. In addition, other

strategies by managing the samples to favor the boundary or the feasible region can be applied,

as remarked by Forrester et al (2008).

Viana (2011) extended this discussion and possible directions can be (i) use of conserva-

tive constraints based on margin of safety parameters or targets to push the optimum to the

feasible region or (ii) use adaptive sampling methods to improve the prediction capability of

the constraints in the boundary between feasible and unfeasible domains.

In the present thesis we did not implement any kind of strategy or control for constraint

boundary prediction improvement and feasibility assurance. Although it is still an open ques-

tion, since it is a required feature for any optimization algorithm it is strongly recommended

to be studied and implemented in future developments of LSEGO and other metamodel based

optimization algorithms.

131

9.3 Engineering Computer Model: Car Impact

The evolution of objective and constraint functions during the optimization cycles for the

Car Impact problem is presented in Fig. 51. In this case, LSEGO-10 converged at cycle 03, to

the point

x∗ = (3.0000, 2.6705, 1.8630, 2.9231),

with y∗ = 21.1745 and g∗ = 0.02924. In other words, this optimum found by LSEGO-10

has ≈ 2000% more specific energy absorption performance, and the maximum impact force

was reduced 2.92% with respect to baseline design. We stopped the optimization algorithm

at Cycle 05 after no additional improvement in objective or constraint function. The whole

process finished with a total of 110 (27.5nv) sampling points (or function evaluations with the

true model).

0 1 2 3 4 5 6
0

5

10

15

20

25

Optimizationn Cycles

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 y

(x
)

Car Impact: Normalized SEA

(a) Objective Function y(x)

0 1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

Optimizationn Cycles

C
o

n
s
tr

a
in

t
F

u
n

c
ti
o

n
 g

(x
)

Car Impact: Normalized Peak Impact Force

(b) Normalized Constraint g(x)

Figure 51: Evolution of the of the objective function y(x) and the constraint function g(x)
during the optimization cycles with LSEGO-10 for the Car Impact problem. The algorithm
reached the optimum at cycle 03 with with y∗ = 21.1745 and g∗ = 0.02924.

Let us understand with more detail the improvements of the optimum design found with

respect to the baseline. See some comparisons in Figs. 52 and 53.

Note in Fig. 52 that the overall lateral buckling of the front end rails is more pronounced

for baseline design (right). When lateral buckling occurs, the efficiency of energy absorption

due to plastic strains is diminished. In addition, the lateral buckling of the rails tends to reduce

the engine compartment available size and, at same time, increase the acceleration of the engine

in the direction of the occupant compartment. Therefore, the chance of increasing the engine

132

intrusion through the dash-panel13 is higher, with more risk of damage to the occupants.

As can be observed in Fig. 52 (left), the intrusion of the engine in the dash-panel region

is smaller for the optimum than for the baseline design. In quantitative terms, observe the

dash-panel displacements, Fig. 53(a), ≈ 37% higher for baseline. In the same way, see in

Fig. 53(b) the maximum plastic strain levels in the dash-panel ≈ 48% higher for baseline, as

compared to the optimum values.

Therefore, based on these qualitative and quantitative comparisons, it is clear that the

optimum design found is significantly better in terms of impact performance than the baseline

design. In addition, the optimization algorithm converged in only three optimization cycles,

with a reasonable cost in terms of total number of sampling points.

Remember that the objective with this optimization example was the maximization of

the specific energy absorbed (SEA), with impact force as constraint (refer to Section 8.2.3). As

consequence, the optimum design resulted heavier than the baseline, since the mass was not

constrained in the problem statement. If the objective is mass reduction and performance, then

another optimization scenarios can be considered, but it is out of the scope of this illustration

example.

(a) Overall Deformed Shape - Bottom View

Figure 52: Comparison of results for Baseline (left) and Optimum Design (right) for the Car
Impact problem. Note the more pronounced lateral buckling of the front end rails and also the
intrusion of the engine in the dash-panel for the baseline design.

13The dash-panel is the main sheet metal part, behind the instrument panel and directly connected to the
vehicle floor that separate the cabin or cockpit from the engine compartment.

133

(a) Dash Panel Displacements - Front View

(b) Dash Panel Plastic Strains - Front View

Figure 53: Comparison of results for Baseline (left) and Optimum Design (right) the Car Impact
problem. In (a) the maximum dash-panel displacements are ≈ 37% higher for baseline. In (b)
the maximum plastic strain levels in the dash-panel are ≈ 48% higher for baseline, as compared
to the optimum values.

134

10 Concluding Remarks

“Don’t adventures ever have an end? I suppose not.

Someone else always has to carry on the story.”

The Fellowship of the Ring

J.R.R. Tolkien, 1892-1973.

10.1 Summary of Thesis Original Contributions

In this work we reviewed and compiled the results of our previous research in the fields

of ensemble of metamodels and efficient global optimization (EGO).

The first part of the research (Phase I) is already published in Ferreira and Serpa (2016).

In this first paper we presented an approach to create ensemble of metamodels (or weighted

averaged surrogates) based on least squares (LS) approximation.

The second part (Phase II) has been compiled in a second manuscript. In this second

paper, under review by the journal editors and recommended for publication, we presented

LSEGO (Least Squares Ensemble EGO), an approach to drive efficient global optimization

(EGO), based on the LS (least squares) ensemble of metamodels.

Our previous results with LSEGO were competitive and promising, but they were limited

only to unconstrained optimization. In the present thesis we extended the LSEGO algorithm

(developed in Phase I and Phase II to handle constrained optimization problems as well.

Some numerical experiments were performed with analytical benchmark functions and

also for an industry scale engineering problem with promising and competitive results.

Our tests were limited to single objective constrained optimization problems with two to

four variables and with one to four constraint functions. This extension and results comprise

the Phase III of our research project and it will summarized and submitted for publication

soon.

135

10.2 Overall Achievements

For all the analytical benchmark and analytical engineering problems investigated, LSEGO

was able to converge to the neighborhood of the exact (or reference optimum solution) in few

optimization cycles. In some examples, the convergence with LSEGO was slow and the algo-

rithm stalled at suboptimal regions. We observed that, in such situations, the combination of

LSEGO with other sequential or adaptive sampling techniques (e.g., design space clustering)

can enhance the convergence rate in direction of the reference optimum solution.

In all the problems investigated, LSEGO presented a stepwise convergence pattern, which

is common to EGO-type algorithms. In this sense, it is recommended in practical applications

to monitor the quality of fit for the metamodels in parallel to the evolution of the objective and

constraint functions, in order to avoid premature or false convergence to suboptimal points.

We also investigated the use of one-stage optimization for the analytical engineering func-

tions and this approach was not able to guarantee convergence to the exact solution, even

with a very dense initial sampling space. One possible explanation should be that the major-

ity of the initial points design space are working only for improving the overall quality of the

metamodels (exploration), and they are not being effective to help finding the exact minimum

(exploitation), what is clearly a waste of resources for optimization objectives.

These fact confirms that it is worthwhile to apply sequential sampling approaches like

EGO-type algorithms, or some other hybrid approach (allied to clustering, for instance), in

order to increase the number of points slowly and “surgically”, at potential optimum regions

of the design space. Consequently this kind of method can lead to real improvement in the

objective and constraint responses, instead of using a one-stage approach.

At the end, we performed a brief case study with the application of LSEGO in the

optimization of an engineering problem, i.e., a simplified version for the full Car Frontal Pole

Impact test. In this case, LSEGO converged in three optimization cycles to an improved

and feasible design. Based on qualitative and quantitative comparisons, we verified that the

optimum design found is significantly better in terms of impact performance than the baseline

design. In addition, the optimization algorithm converged with a reasonable cost in terms of

total number of sampling points.

The results presented in this study showed that the LSEGO algorithm works successfully

to handle constrained optimization problems in a feasible number of optimization cycles. On

the other hand, a deeper numerical investigation must be performed with different functions

136

(number of variables, nonlinearity, multimodality, etc.) and increasing number of constraints, in

order to understand in detail the behavior, convergence properties, advantages and limitations

of LSEGO algorithm.

As can be observed in the results presented here, although the constraints were not vio-

lated in the majority of cases studied in this thesis, it was hard o find the optimum at constraint

boundaries (active constraints).

The inaccuracy of metamodels at constraint boundary is known pathology discussed in

the metamodel optimization literature. In the present thesis we did not implement any kind of

strategy or control for constraint boundary prediction improvement and feasibility assurance.

Although it is still an open question, since it is a required feature for any optimization algorithm

it is strongly recommended to be studied and implemented in future developments of LSEGO

and other metamodel based optimization algorithms.

10.3 Some Possible Future Directions

At last but not least, it is possible to enumerate some possible directions for future

research. Some of them were not treated in this thesis because of inexorable priority and

timing concerns. Some others are open questions raised after the interpretation and discussion

of the results achieved here.

We would like to continue this research journey, but, as said by Tolkien, others are invited

to join us, because someone else has to continue this story...

In this way, without any intention to be complete, some questions can be listed:

• how to take advantage of sensitivity analysis methods for better variable and design space

definition and enhance the optimization algorithms behavior and results?

• how to incorporate or integrate EGO algorithms to handle reliability engineering and

robust optimization?

• how to take advantage of experimental data allied to computer results and function gra-

dients, to enhance the metamodel prediction capabilities?;

• is it possible to treat inverse problems by using EGO-family algorithms?

• is it possible to smooth the expected improvement functions and improve the EGO con-

vergence?

137

• what to expect from the application of the EGO methods to other classes of problems

such as: multiboby dynamics, noise vibration and harshness (NVH) and other ill-posed

and noisy problems like optimization of eigen-problems?

As we already discussed, other fronts of future research can be followed, for instance, the

treatment of multiobjective optimization problems and better treatment of constraints to avoid

unfeasible or inactive results.

Also, the correct handling of discrete and stochastic variables for robust optimization

is extremely important when the design variables and functions are not continuous and non-

deterministic.

In addition, objective and systematic convergence criteria is still a demand for metamodel

based optimization and EGO-type algorithms as well. In the same way, methods for reducing

the number of sampling points (true function evaluations) and, at same time, accelerating the

overall convergence need to be investigated.

In this sense, the derivation of hybrid methods by combining classical sequential sampling

or other adaptive approaches (clustering, etc.) with EGO-type algorithms can be a promising

front of research.

These and other possible extensions of EGO-type algorithms are of interest for research

and practical applications and we intend to explore this fields in our future work.

138

References

Acar E (2010) Various approaches for constructing an ensemble of metamodels using local error
measures. Structural and Multidisciplinary Optimization 42(6):879–896

Acar E, Rais-Rohani M (2009) Ensemble of metamodels with optimized weight factors. Struc-
tural and Multidisciplinary Optimization 37(3):279–294

Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on
Automation and Control 19:716–723

Alghamdi AAA (2001) Collapsible impact energy absorbers: an overview. Thin-Walled Struc-
tures 39:189–213

Ali MM, Khompatraporn C, Zabinski Z (2005) A numerical evaluation of several stochastic
algorithm on selected continuous global optimization test problems. Journal of Global
Optimization 31:635–672

Amemiya T (1985) Advanced Econometrics. Harvard University Pres, Cambridge, Massach-
setts, USA

Arora JS (1976) Survey of structural reanalysis techniques. Journal of Strucutral Division -
ASCE 102:783–802

Arora JS (2012) Introduction to Optimum Design, 3rd edn. Elsevier

Barthelemy JFM, Haftka RT (1993) Approximation concepts for optimum design - a review.
Structural Optimization 5:129–144

Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford University Press Inc., New
York, USA

Björk A (1996) Numerical Methods for Least Squares Problems. SIAM: Society for Industrial
and Applied Mathematics

Box GEP (1954) The exploration and exploitation of response surfaces: Some general consid-
erations and examples. Biometrics 10:16–60

Box GEP, Draper NR (1987) Empirical model building and response surfaces. John Wiley and
Sons, New York, USA

Box GEP, Hunter WG, Hunter SJ (1978) Statistics for Experimenters: An Introduction to
Design, Data Analysis, and Model Building. John Wiley and Sons

Breiman L (1996) Stacked regressions. Machine Learning 24:49–64

Buhmann MD (2003) Radial Basis Functions: Theory and Implementations. Cambridge Mono-
graphs on Applied and Computational Mathematics, Cambridge University Press, Cam-
bridge, UK

Carpenter WC, Barthelemy JFM (1992) Comparison of polynomial approximations and
artificial neural nets for response surfaces in engineering optimization. In: 33rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Confer-
ence, Dallas-TX-USA

139

Chaudhuri A, Haftka RT (2012) Efficient global optimization with adaptive target setting.
AIAA Journal 52(7):1573–1578

Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization prob-
lems. Computers in Industry 41(2):113–127

Desautels T, Krause A, Burdick J (2012) Parallelizing exploration-exploitation tradeoffs in gaus-
sian process bandit optimization. The Journal of Machine Learning Research 15(1):13,873–
3923

Efroymson MA (1960) Multiple regression analysis. In: Mathematical Methods for Digital
Computers, Wiley, New York, USA, pp 191–203

Elmarakbi A, Long YX, McIntyre J (2013) Crash analysis and energy absorption fo s-shapped
longitudinal memebers. Thin-Walled Structures 68:65–74

Encisoa SM, Branke J (2015) Tracking global optima in dynamic environments with efficient
global optimization. European Journal of Operational Research 242:744–755

Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle prop-
erties. Journal of American Statistical Association 96(456):1348–1360

Fang H, Rais-Rohani M, Liu Z, Horstemeyer MF (2005) A comparative study of metamod-
eling mehtods for multiobjective crashworthiness optimization. Computers & Structures
83:2121–2136

Fang KT, Li R, Sudjianto A (2006) Design and Modeling for Computer Experiments. Computer
Science and Data Analysis Series, Chapman & Hall/CRC, Boca Raton, USA

Fasshauer GE (2007) Meshfree Approximation Methods with MATLAB, Interdisciplinary
Mathematical Sciences, vol 6. World Scientific, Singapore

Ferreira WG, Serpa AL (2016) Ensemble of metamodels: The augmented least squares ap-
proach. Structural and Multidisciplinary Optimization 53(5):1019–1046

Ferreira WG, Alves P, Slave R, Attrot W, Magalhaes M (2012) Optimization of a CLU truck
frame. In: Ford Global Noise & Vibration Conference, Ford Motor Company, PUB-
NVH108-02

Fierro RD, Bunch JR (1994) Collinearity and total least squares. SIAM Journal of Matrix
Analysis Applications 15:1167–1181

Fierro RD, Bunch JR (1997) Regularization by truncated total least squares. SIAM Journal of
Scientific Computation 18(4):1223–1241

Forrester A, Keane A (2009) Recent advances in surrogate-based optimization. Progress in
Aerospace Sciences 45:50–79

Forrester A, Sóbester A, Keane A (2008) Engineering Desing Via Surrogate Modelling - A
Practical Guide. John Wiley & Sons, United Kingdom

Foster DP, George EI (1994) The risk inflation criterion for multiple regression. Annals of
Statistics 22:1947–1975

140

Frank IE, Friedman JH (1993) A statistical view on some chemometrics regression tools. Tech-
nometrics 35:109–148

Garthwaite PH (1994) An interpretation of partial least squares. Journal of the American
Statistical Association 8(425):122–127

Ge Q, Ciuffo B, Menendez M (2015) Combining screening and metamodel-based methods:
An efficient sequential approach for the sensitivity analysis of model outputs. Reliability
Engineering and System Safety 134:334344

Ginsbourger D, Riche RL, Carraro L (2010) Kriging is well-suited to parallelize optimization.
In: Computational Intelligence in Expensive Optimization Problems - Adaptation Learning
and Optimization, Springer, vol 2, pp 131–162

Giunta AA, Watson LT (1998) Comparison of approximation modeling techniques: polynomial
versus interpolating models. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multi-
disciplinary Analysis and Optimization, AIAA-98-4758, pp 392–404

Goel T, Haftka RT, Shyy W, Queipo NV (2007) Ensemble of surrogates. Structural and Mul-
tidisciplinary Optimization 33:199–216

Golub GH, van Loan CH (1980) An analysis of total least squares problem. SIAM Journal of
Numerical Analysis 17:883–893

Golub GH, Heath M, Wahba G (1979) Generalizaed cross-validation as a method for choosing
a good ridge parameter. Technometrics 21(2):215–223

Gunn SR (1997) Support vector machines for classification and regression. Technical Report.
Image, Speech and Inteligent Systems Research Group. University of Southhampton, UK

Haftka RT, Scott EP, Cruz JR (1998) Optimization and experiments: a survey. Applied Me-
chanical Reviews 7:435–448

Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global optimization
with expensive functions - a survey. Structural and Multidisciplinary Optimization 54(1):3–
13

Hajela P, Berke L (1990) Neurobiological computational models in structural analysis and
design. In: 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference, Part I, Long Beach-CA-USA, pp 345–355

Han ZH, Zhang KS (2012) Surrogate-Based Optimization - Real-World Application of Genetic
Algorithms, ISBN 978-953-51-0146-8 edn. InTech, Dr. Olympia Roeva - Editor, Shanghai,
China

Hannan EJ, Quinn BG (1979) The determination of the order of autoregression. Journal of
Royal Statistics Society - Series B 41:190–195

Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. Journal
of Geophysical Research 76:1905–1915

Hashem S (1993) Optimal linear combinations of neural networks. PhD thesis, School of Indus-
trial Engineering. Purdue University, West Lafayette, IN, USA

141

Henkenjohann N, Kukert J (2007) An efficient sequential optimization approach based on the
multivariate expected improvement criterion. Quality Engineering 19(4):267–280

Hoerl AE, Kennard RW (1970a) Ridge regression: Applications to nonorthogonal problems.
Technometrics 12(1):69–82

Hoerl AE, Kennard RW (1970b) Ridge regression: Biased estimation for nonorthogonal prob-
lems. Technometrics 12(1):55–67

Hoerl AE, Kennard RW (1976) Ridge regression: Iterative estimation of the biasing parameter.
Communications in Statistics A5:77–88

Hoerl AE, Kennard RW, Baldwin KF (1975) Ridge regression: Some simulations. Communi-
cations in Statistics 4:105–123

Huber PJ, Rochetti EM (2009) Robust Statistics. Wiley Series in Probability and Statistics,
John Wiley & Sons, Hoboken, New Jersey

van Huffel S, Vandewalle J (1987) Classical regression and total least-squares estimation. Linear
Algebra and its Applications 93:149–160

van Huffel S, Vandewalle J (1991) The Total Least Squares Problem: Computational Aspects
and Analysis. SIAM, Philadelphia, USA

Hunter DR, Li R (2005) Variable selection using mm algorithms. Annals of Statistics 33:1617–
1642

Ioss B, Lemaitre P (2015) A review on global sensitivity analysis methods. In: Uncertainty
management in simulation-optimization of complex systems: algorithms and applications,
Springer, pp 1–23

Janusevskis J, Riche RL, Ginsbourger D, Girdziusas R (2012) Expected improvements for
the asynchronous parallel global optimization of expensive functions: Potentials and chal-
lenges. Learning and Intelligent Optimization 7219:413–418

Jekabsons G (2009) RBF: Radial basis function interpolation for matlab/octave. Riga Technical
University, Latvia, version 1.1 ed.

Jin R, Chen W, Sudjianto A (2002) On sequential sampling for global metamodeling in engi-
neering design. In: Engineering Technical Conferences and Computers and Information in
Engineering Conference, DETC2002/DAC-34092, ASME 2002 Design, Montreal-Canada

Jolliffe IT (2002) Principal Component Analysis. Springer Series in Statistics, Springer, New
York, USA

Jones DR (2001) A taxonomy of global optimization methods based on response surfaces.
Journal of Global Optimization 21:345–383

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box
functions. Journal of Global Optimization 13:455–492

Jurecka F (2007) Optimization based on metamodeling techniques. PhD thesis, Technische
Universität München, München-Germany

142

Kannan BK, Kramer SN (1994) An augmented lagrange multiplier based method for mixed
integer discrete continuous optimization and its applications to mechanical design. Journal
of Mechanical Design 116:318–320

Kleijnen JPC (1985) Statistical Tools for Simulation Practioners. Marcel Decker, New York

Kleijnen JPC (2009) Kriging metamodeling in simulation: A review. European Journal of
Operational Research 192(3):707–716

Koziel S, Leifesson L (2013) Surrogate-Based Modeling and Optimization - Applications in
Engineering. Springer, New York, USA

Krige DG (1951) A statistical approach to some mine valuations and allied problems at the
witwatersrand. Master’s thesis, University of Witwatersrand, Witwatersrand

Kuan CM (2012) Econometrics - Lecture Notes. Available at:
http:homepage.ntu.edu.tw/~ckuan/e-about.html. National Taiwan University, Taipei,
Taiwan

Lai KK, Yu L, Wang SY, , Wei H (2006) A novel nonlinear neural network ensemble forecasting
model for financial time series forecasting. In: Lecture Notes in Computer Science 3991,
pp 790–793

Lemonge AC, Barbosa HJ, Borges CC, Silva FB (2010) Constrained optimization problems
in mechanical engineering design using a real-coded steady-state genetic algorithm. In:
Dvorkin E, Goldschmit M, Storti M (eds) Mecánica Computacional Vol. XXIX, Associación
Argentina de Mecánica Computacional, Buenos Aires, pp 9287–9303

Lophaven SN, Nielsen HB, Sondergaard J (2002) DACE - a matlab kriging toolbox. Tech. Rep.
IMM-TR-2002-12, Technical University of Denmark

Madu CN, Kuei CH (1994) Regression metamodeling in computer simulation - the state of the
art. Simulation Practice and Theory 2:27–41

Markovsky I, van Huffel S (2007) Overview of total least-squares methods. Signal Processing
87:2283–2302

Meckesheimer M, et al (2002) Computationally inexpensive metamodel assessment strategies.
AIAA Journal 40(10):2053–2059

Mehari MT, Poorter E, Couckuyt I, Deschrijver D, Gerwen JV, Pareit D, Dhaene T, Moerman
I (2015) Efficient global optimization of multi-parameter network problems on wireless
testbeds. Ad Hoc Networks 29:15–31

Meng C, Wu J (2012) A novel nonlinear neural network ensemble model using k-plsr for rainfall
forecasting. In: Bio-Inspired Computing Applications. Lecture Notes in Computer Science
6840, pp 41–48

Midi H, Hua LU (2009) The performance of latent root-m based regression. Journal of Mathe-
matics and Statistics 5(1):1–9

Miller A (2002) Subset Selection in Regression. Monographs on Statistics and Applied Proba-
bility, Chapman & Hall/CRC, USA

143

Mockus J (1994) Application of bayesian approach to numerical methods of global and stochas-
tic optimization. Journal of Global Optimization 4:347–365

Montgomery DC, Peck EA, Vining GG (2006) Introduction to Linear Regression Analysis.
Wiley Series in Probability and Statistics, John Wiley & Sons, Hoboken, New Jersey

Morris MD (1991) Factorial sampling plans for preliminary computer experiments. Technomet-
rics 33(2):161–174

Myers RH, Montgomery DC (2002) Response Surface Methodology: Process and Product Op-
timization Using Designed Experiments, 2nd edn. John Wiley and Sons, New York

Ng S (2012) Variable selection in predictive regressions. In: Handbook of Economical Forecast-
ing, Elsevier, pp 752–789

Papalambros PY (2002) The optimization paradigm in engineering design: promises and chal-
lenges. Computer-Aided Design 34:939–951

Perrone MP, Cooper LN (1993) When networks disagree: Ensemble methods for hybrid neural
networks. Artificial Neural Networks for Speech and Vision, Chapman & Hall, London,
UK

Ponweiser W, Wagner T, Vincze M (2008) Clustered multiple generalized expected improve-
ment: A novel infill sampling criterion for surrogate models. In: Wang J (ed) 2008 IEEE
World Congress on Computational Intelligence, IEEE Computational Intelligence Society,
IEEE Press, Hong Kong, pp 3514–3521

Queipo NV, Pintos S, Nava E (2013) Setting targets for surrogate-based optimization. Journal
of Global Optimization 55(4):857–875

Queipo NV, et al (2005) Surrogate-based analysis and optimization. Progress in Aerospace
Sciences 41:1–28

Ramu M, Prabhu RV (2013) Metamodel based analysis and its applications: A review. Acta
Technica Corviniensis - Bulletin of Engineering 4(2):25–34

Rao SS (2009) Engineering Optimization: Theory and Practice. John Wiley & Sons, Inc., 4th
Edition.

Rasmussen CE, Williams CK (2006) Gaussian Processes for Machine Learning. The MIT Press

Rehman SU, Langelaar M, Keulen FV (2014) Efficient kriging-based robust optimization of
unconstrained problems. Journal of Computational Science 5:872–881

Rousseeuw PJ, Leroy AM (2003) Robust Regression and Outlier Detection. Wiley Series in
Probability and Statistics, John Wiley & Sons, Hoboken, New Jersey

Roux WJ, Stander N, Haftka RT (1998) Response surface approximations for structural opti-
mization. International Journal for Numerical Methods in Engineering 42:517–534

Roy R, et al (2008) Recent advances in engineering design optimisation: challenges and future
trends. CIRP Annals - Manufacturing Technology 57:697–715

Sacks J, Schiller J, Welch W (1989a) Designs for computer experiments. Technometrics 31:41–47

144

Sacks J, Welch W, Michell TJ, Wynn HP (1989b) Design and analysis of computer experiments.
Statistical Science 36:409–435

Saitou K (2005) A survey of structural optimization in mechanical product development. Trans-
actions of the ASME 65:214–226

Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity Analysis in Practice: A
Guide to Assessing Scientific Models. John Wiley & Sons, West Sussex, England

Sanchez E, Pintos S, Queipo NV (2008) Toward and optimal ensemble of kernel-based ap-
proximations with engineering applications. Structural and Multidisciplinary Optimization
36:247–261

Santner TJ, Williams BJ, Notz WI (2003) The Design and Analysis of Computer Experiments.
Springer Series in Statistics, Springer-Verlag, New York, USA

Scheipl F, Kneib T, Fahrmeir L (2013) Penalized likelihood and bayesian function selection in
regression models. Advances in Statistical Analysis 97(4):349–385

Schmit LA, Farshi B (1974) Some approximation concepts for structural synthesis. AIAA Jour-
nal 12:692–699

Schmit LA, Miura H (1976) Approximation concepts for efficient strutural synthesis. NASA
CR-2552

Schonlau M (1997) Computer experiments and global optimization. PhD thesis, University of
Waterloo, Watterloo, Ontario, Canada

Schwarz G (1978) Estimating the dimension of a model. Annals of Statistics 6:461–464

Seni G, Elder J (2010) Ensemble Methods in Data Mining: Improving Accuracy Through
Combining Predictions. Synthesis Lectures on Data Mining and Knowledge Discovery,
Morgan & Claypool Publishers, Chicago, IL, USA

Shibata R (1984) Approximation efficiency of a selection procedure for a number of regression
variables. Biometrika 71:43–49

Simpson TW, Peplinski J, Koch PN, Allen JK (2001a) Metamodels for computer-based engi-
neering design: Survey and recommendations. Engineering with Computers 17(2):129–150

Simpson TW, Toropov V, Balabanov V, Viana FAC (2008) Design and analysis of computer
experiments in multidisciplinary design optimization: A review of how far we have come
- or not. In: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
Victoria, British Columbia

Simpson TW, et al (2001b) Kriging models for global approximation in simulation-based mul-
tidisciplinary design optimization. AIAA Journal 39(12):2233–2241

Smola AJ, Schölkopf B (1998) A tutorial on support vector regression. NeuroCOLT2 Technical
Report Series. NC2-TR-1998-030, Berlin, Germany

Sóbester A, Leary SJ, Keane A (2004) A parallel updating scheme for approximating and opti-
mizing high fidelity computer simulations. Structural and Multidisciplinary Optimization
27:371–383

145

Sóbester A, Leary SJ, Keane A (2005) On the design of optimization strategies based on global
response surface approximation models. Journal of Global Optimization 33:31–59

Sobieszczanski-Sobieski J, Haftka RT (1997) Multidisciplinary aerospace design optimization:
Survey and recent developments. Structural Optimization 14:1–23

Tanlak N, Sonmez FO (2014) Optimal shape design of thin-walled tubes under high velocity
axial impact loads. Thin-Walled Structures 84:302–312

Thacker WI, Zhang J, Watson LT, Birch JB, Iyer MA, Berry MW (2010) Algorithm 905:
SHEPPACK: modified shepard algorithm for interpolation of scattered multivariate data.
ACM Transactions on Mathematical Software 37(3):1–20

Tibshirani R (1996) Regression shrinkage and selection via lasso. Journal of Royal Statistical
Society 58(1):267–288

Vapnik V, Lerner A (1963) Patter recognition using generalized portrait method. Autom Re-
mote Control (English Translation) 24(6):774–780

Vapnik VN (2000) The Nature of Statistical Learning Theory, 2nd edn. Springer-Verlag

Venkatararaman S, Haftka RT (2004) Structural optimization complexity: what has moore’s
law done for us? Structural and Multidisciplinary Optimization 28:375–287

Viana FAC (2009) SURROGATES toolbox user’s guide version 2.0 (release 3). Available at
website: http://fchegury.googlepages.com

Viana FAC (2011) Multiples surrogates for prediction and optimization. PhD thesis, University
of Florida, Gainesville, FL, USA

Viana FAC, Haftka RT (2010) Surrogage-based optimization with parallel simulations using
probability of improvement. In: Proceedings of the 13th AIAA/SSMO Multidisciplinary
Analysis Optimization Conference, Forth Worth, Texas, USA

Viana FAC, Haftka RT, Steffen V (2009) Multiple surrogates: how cross-validation error
can help us to obtain the best predictor. Structural and Multidisciplinary Optimization
39(4):439–457

Viana FAC, Cogu C, Haftka RT (2010) Making the most out of surrogate models: tricks of
the trade. In: Proceedings of the ASME 2010 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference IDETC/CIE 2010,
Montreal, Quebec, Canada

Viana FAC, Haftka RT, Watson LT (2013) Efficient global optimization algorithm assisted by
multiple surrogates techniques. Journal of Global Optimization 56:669–689

Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design
optimization. ASME Journal of Mechanical Design 129(4):370–380

Weisberg S (1985) Applied Linear Regression. Wiley Series in Probability and Statistics, John
Wiley & Sons, New Jersey, USA

Wendland H (2005) Scattered Data Approximation. Cambridge Monographs on Applied and
Computational Mathematics, Cambridge University Press, UK

146

Wolpert D (1992) Stacked generalizations. Neural Networks 5:241–259

Yang XS, Huyck C, Karamanoglu M, Khan N (2013a) True global optimality of the pressure
vessel design problem: a benchmark for bio-inspired optimisation algorithms. International
Journal of Bio-Inspired Computation 5(6):329335

Yang XS, Koziel S, Liefsson L (2013b) Computational optimization, modeling and simulation:
Recent trends and challenges. Procedia Computer Science 18:855–860

Yu L, Wang SY, Lai KK (2005) A novel nonlinear ensemble forecasting model incorporating
glar and ann for foreign exchange rates. Computers and Operations Research 32:2523–2541

Zerpa LE, Queipo NV, Pintos S, Salager JL (2005) An optimization methodology of alkaline-
surfactant-polymer flooding processes using field scale numerical simulation and multiple
surrogates. Journal of Petroleum Science and Engineering 47:197–208

Zhang C, Ma Y (2012) Ensemble Machine Learning. Methods and Applications. Springer, New
York, USA

Zhang X, Zhang H, Wen Z (2015) Axial crushing of tapered circular tubes with graded thickness.
International Journal for Mechanical Sciences 92:12–23

Zhang Y, Sun G, Xu X, Li G, Li Q (2014) Multiobjective crashworthiness optimization of
howllow and conical tubes for multiple load cases. Thin-Walled Structures 82:331–342

Zhou ZH (2012) Ensemble Methods. Foundations and Algorithms. Machine Learning & Pattern
Recognition Series, Chapman & Hall/CRC, Boca Raton, USA

147

A SURROGATES Toolbox

The SURROGATES Toolbox (ref. Viana (2009)) is a Matlab14 based toolbox that aggre-

gates and extends several open-source tools previously developed in the literature for design and

analysis of computer experiments, i.e., metamodeling and optimization. We used the version

v2.0, but v3.0 already includes EGO variants15.

The SURROGATES Toolbox uses the following collection of third party software pub-

lished: SVM by Gunn (1997), DACE by Lophaven et al (2002), GPML by Rasmussen and

Williams (2006), RBF by Jekabsons (2009), and SHEPPACK by Thacker et al (2010). The

compilation in a single framework has been implemented and applied in previous research by

Viana and co-workers, as for example Viana et al (2009) and Viana (2011).

14Matlab is a well known and widely used numerical programing platform and it is developed and distributed
by The Mathworks Inc., see www.mathworks.com.

15Further details and recent updates of SURROGATES Toolbox refer to the website:
https://sites.google.com/site/srgtstoolbox/.

148

B Boxplots Definition

Boxplot is a common statistical graph used for visual comparison of the distribution of

different stochastic variables in a same plane. We used the Matlab function boxplot (with

default parameters) to create the boxplots in the present work. See in Fig.54 an example of

boxplot, with the distribution of four random variables.

2

3

4

5

6

7

8

9

1 2 3 4
 Variables

Boxplot Example

V
a

lu
e

s

Figure 54: Boxplot example with the distribution of four random variables. Each box is defined
by lines at the lower quartile (25%), median (50%) and upper quartile (75%) of the data. Lines
extending above and upper each box (whiskers) indicate the spread for the rest of the data out
of the quartiles definition. If existent, outliers are represented by plus signs “+”, above/below
the whiskers.

149

C The Kriging Metamodel

Kriging model, originally proposed by Krige (1951), is an interpolating metamodel in

which the basis functions, as stated in Eq. 1, are of the form

ψ(i) = ψ
(∥

∥

∥x(i) − x
∥

∥

∥

)

= exp



−
k
∑

j=1

θj
∣

∣

∣x(i) − xj
∣

∣

∣

pj



 , (33)

with tuning parameters θj and pj normally determined by maximum likelihood estimates.

With the parameters estimated, the final kriging predictor is of the form

f̂(x) = µ̂+ψTΨ−1 (y − 1µ̂) , (34)

where y =
[

y(1) . . . y(N)
]T
, 1 is a vector of ones, Ψ = ψ(r)(s) is the so called N × N matrix of

correlations between the sample data, calculated by means of Eq. 33 as

Ψ = ψ
(∥

∥

∥x(r) − x(s)
∥

∥

∥

)

(35)

and µ̂ is given by

µ̂ =
1TΨ−1y

1TΨ−11
. (36)

One of the key benefits of kriging models is the provision of uncertainty estimate for the

prediction (mean squared error, MSE) at each point x, given by

ŝ2(x) = σ̂2

[

1−ψTΨ−1ψ +
1− 1TΨ−1y

1TΨ−11

]

, (37)

with variance estimated by

σ̂2 =
(y − 1µ̂)T Ψ−1 (y − 1µ̂)

N
. (38)

Refer to Forrester et al (2008) or Fang et al (2006) for further details on metamodel

formulation.

150

D Test Functions

D.1 Analytical Benchmarks

In the reference Ali et al (2005) it is presented as appendix “A Collection Benchmark

Global Optimization Test Problems”, that compiles 50 test functions from the optimization

related literature. These kind of functions are widely used to validate both metamodeling and

optimization methods, as for example Goel et al (2007), Acar and Rais-Rohani (2009), Acar

(2010), Viana et al (2009) and Viana et al (2013). The functions used and referenced along

this thesis are the following.

Branin-Hoo

y (x) =

(

x2 +
5.1x21
4π2

+
5x1
π
− 6

)2

+ 10
(

1− 1

8π

)

cos (x1) + 10, (39)

for the region −5 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 15. There are 3 minimum points in this region, i.e.,

x∗ ≈ (−π, 12.275) , (π, 2.275) , (3π, 2.475) with f (x∗) =
5

4π
.

Hartman

y(x) = −
4
∑

i=1

ci exp



−
nv
∑

j=1

aij (xj − pij)2


, (40)

where xi ∈ [0, 1]nv , with constants ci, aij and pij given in Table 3, for the case nv = 3 (Hartman-

3); and in Table 4 and Table 5, for the case nv = 6 (Hartman-6).

In case of Hartman-3, there are four local minima,

xlocal ≈ (pi1, pi2, pi3) ,

with flocal ≈ −ci and the global minimum is located at

x∗ ≈ (0.114614, 0.555649, 0.852547) ,

with f (x∗) ≈ −3.862782.

In case of Hartman-6, there are four local minima,

xlocal ≈ (pi1, pi2, pi3, pi4, pi5, pi6) ,

151

with flocal ≈ −ci and the global minimum is located at

x∗ ≈ (0.201690, 0.150011, 0.476874, 0.275332, 0.3111652, 0.657301),

with f (x∗) ≈ −3.322368.

Table 3: Data for Hartman-3 function, ci and aij and pij .
i ci aij pij

j = 1 2 3 j = 1 2 3
1 1 3 10 30 0.3689 0.117 0.2673
2 1.2 0.1 10 35 0.4699 0.4387 0.747
3 3 3 10 30 0.1091 0.8732 0.5547
4 3.2 0.1 10 35 0.03815 0.5743 0.8828

Table 4: Data for Hartman-6 function, ci and aij.
i ci aij

j = 1 2 3 4 5 6
1 1 10 3 1 3.5 1.7 8
2 1.2 0.05 10 17 0.1 8 14
3 3 3 3.5 1.7 10 17 8
4 3.2 17 8 0.05 10 0.1 14

Table 5: Data for Hartman-6 function, pij.
i pij

j = 1 2 3 4 5 6
1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.665
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Giunta-Watson This is the “noise-free” version of the function used by Giunta and Watson

(1998)

y(x) =
nv
∑

i=1

[

3

10
+ sin

(

16

15
xi − 1

)

+ sin2
(

16

15
xi − 1

)]

, (41)

where x ∈ [−2, 4]nv . For this domain and one variable, i = 1, the local maximum is located at

x∗ ≈ 2.74218,

with f (x∗) ≈ 2.29999. In case of two variables, i = 2, the local maximum is located at

x∗ ≈ (2.74218, 2.74218)

with f (x∗) ≈ 4.59999.

152

Aircraft Wing Weight (LiftSurf) This is a function used in Forrester et al (2008), pp.10-

13. It is based on Raymer (2006) and represents roughly the weight of a Cessna C172 Skyhawk

aircraft for preliminary design studies. The 10 variable version for the function is

W = 0.036S0.758
w W 0.0035

fw

(

A

cos2 Λ

)0.6

q0.006λ0.04
(

100tc
cos Λ

)−0.3

(NzWdg)
0.49 + SwWp , (42)

where the parameters (design variables) are described in the Table 6. After sensitivities studies

it was identified that Nz, Wdg, Sw and tc are the most important variables for this problem.

Then, by keeping the remaining variables constant in their baseline values, the problem can

reduced to 4 variables.

Table 6: Nomenclature for the aircraft wing weight model.

Symbol Parameter Baseline Lower Bound Upper Bound
Sw Wing area (ft2) 174 150 200
Wfw Weight of the fuel in the wing (lbf) 252 220 300
A Aspect ratio 7.52 6 10
Λ Quarter-chord sweep (deg) 0 −10 10
q Dynamic pressure at cruise (lbf/ft2) 34 16 45
λ Taper ratio 0.672 0.5 1
tc Aerofoil thickness to chord ratio 0.12 0.08 0.18
Nz Ultimate load factor 3.8 2.5 6
Wdg Flight design gross weight (lbf) 2000 1700 2500
Wp Paint weight (lbf/ft2) 0.064 0.025 0.08

D.2 Engineering Applications

In Figs. 55 and 56 are presented simulation models currently applied in automotive indus-

try. These models are typical examples of the ones used in the Multidisciplinary Optimization

(MDO) department at Ford Motor Company, where the author of the present thesis works as

structural optimization engineer. The examples described in this section are taken only as il-

lustrations and they were part of a MDO project presented in a restrict conference summarized

in the report by Ferreira et al (2012).

A regular MDO study at early design phases can comprise several models with hundreds of

design variables and response functions to be monitored. After design sensitivity analysis stage,

the top most significant variables and functions are selected in each model for metamodeling

and multidisciplinary optimization.

We will use in this work the data available for the following variables and responses

regarding these models to compare the performance of the ensemble methods discussed in this

work by means of real-world applications.

153

Truck Models and Responses

a) Truck Durability: it is presented in Fig. 55(a) a finite elements (FEM) model build in

NASTRAN for truck frame durability evaluation. The durability responses (i.e., stress

and/or fatigue/endurance metrics) are described as function of nv = 12 geometry vari-

ables;

b) Truck Dynamics: it is presented in Fig. 55(b) a multibody model build in ADAMS for

vehicle dynamics evaluation. The dynamics responses (i.e., displacements, velocities or

accelerations for ride and handling performance) are defined based on the same nv = 12

geometry variables used in the durability responses.

(a) Durability

(b) Vehicle Dynamics

Figure 55: Examples of truck models applied in automotive industry for metamodeling and
optimization. Courtesy of Ford Motor Company.

Car Models and Responses

a) Car NVH: it is presented in Fig. 56(a) a FEM model build in NASTRAN for passenger

car NVH (noise, vibration and harshness) evaluation. The NVH response is described as

function of nv = 30 geometry variables;

b) Car Crash: it is presented in Fig. 56(b) a FEM model in RADIOSS for passenger car

Frontal Crash evaluation. The crash responses (i.e., displacements, velocities or acceler-

ations for safety performance) are described with nv = 44 variables, that is the same 30

geometry used for NVH and additional 14 material parameters.

154

(a) NVH

(b) Frontal Crash

Figure 56: Examples of passenger car models applied in automotive industry for metamodeling
and optimization. Courtesy of Ford Motor Company.

155

E Preliminary Numerical Study

E.1 Introductory Note

Our preliminary studies and numerical experiments with LS ensembles, which motivated

the development of this thesis, started in 2009. Since these results were not published before,

we will record them here in this appendix for convenience.

E.2 Abstract

The use of approximate mathematical models as surrogates for expensive computational

simulation models has became a common practice in engineering design analysis and opti-

mization. In the last five years, some research has been conducted in order to investigate the

effectiveness of selecting and combining different surrogate models. These studies suggested

that a weighted averaged surrogate model (WAS) has better accuracy than individual surro-

gates. Most of the previous proposed WAS schemes was based on the prediction sum of squares

(PRESS) and demonstrated that using an ensemble of surrogate models can improve robust-

ness of the predictions by reducing the impact of a poorly fitted surrogate model. On the other

hand, the computational cost involved in calculating an error measure such as PRESS is high,

which can limit its applicability. In this work it is implemented an alternative approach for

estimating weights for ensemble of surrogates models, based on the concept of the standard

least squares approximation, without explicitly calculating any error measure. The numerical

results of a comparative study show that the proposed method presents accuracy in the same

level of magnitude as compared to the methods published in the literature. On the other hand,

the computational cost of the proposed method is at least one order of magnitude faster than

the others based on PRESS.

E.3 Numerical experiments

The main objective of the present work is to implement and to compare the performance of

the proposed least squares (LSQ) ensemble of surrogates method against previously developed

approaches based on PRESS error.

In order to complete this objective, we separate the numerical experiments in two parts.

At first, we study and compare the overall behavior of LSQ in terms of accuracy, relative

156

computational cost and error variance, as function of the number of sampling points and num-

ber of design variables, by using analytical benchmark functions. In the second test set, the

performance of LSQ method is compared with his competitors in the metamodeling of real

engineering problems published in the literature.

We use the SURROGATES Toolbox developed by Viana (2009). It is a MATLAB based

framework that aggregates and extends several open-source tools previously developed in the

literature for design and analysis of computer experiments.

The approach adopted here to conduct the numerical experiments follows the methodology

traditionally applied in the field. In particular, we follow and adapt some strategies used by

Viana et al (2009) to conduct our tests.

All the examples were executed in a laptop Dell Vostro 1310 (Intel Core 2 Duo T8100

2.10GHz, 4Mb RAM), running MATLAB v2006a, on Windows Vista.

E.3.1 Tests with an analytical function

In the first test set, the analytical benchmark function presented in Giunta and Watson

(1998) is used. This function is described by Eq. 41 in the Appendix D.

At first, we study the performance and convergence of the WAS techniques as the number

of sampling points increases. In this set, the methods are compared for the one dimensional case

(nv = 1), when N = 10, 20, 50 and 100 points sampled in the design space χ = x1 ∈ [−2, 4].

Next, we compare the performance of the WAS techniques, as the number of variables

increases. The cases considered are nv = 1, 2, 5 and 10 variables, in the design space χ = x ∈
[−2, 4]nv . For each case, the number of sampling points is chosen based on the rule N = 20nv,

in order to keep the same point density as dimension changes.

As a common practice in comparative studies of metamodeling performance, in all cases

investigated, we repeat the experiments with 100 different DOE to average out the influence of

random sampling points on the quality of fit. The DOE are created by using the Latin Hyper-

cube MATLAB function lhsdesign, optimized with maxmin criterion with 1000 iterations.

The ensemble of surrogates are composed with 4 distinct models, that is: PRS, KRG,

RBNN and SVR, by considering the setup described in Table 7.

All the WAS options available in SURROGATES Toolbox were considered: NPWS, PWS,

OWSfull, OWSconst, OWSdiag (Eqs. 14 to 17) and BestPPRESS. In the BestPRESS option,

the surrogate with lower PRESS has the weight set to w = 1, and the others are set to w = 0.

157

Table 7: Surrogate models setup.

Model Modeling technique Details

PRS Polynomial response surface Full quadratic model.

KRG Kriging Quadratic regression, exponential correlation, θ0 = 10 and 10−2 ≤ θi ≤ 200

RBNN Radial basis neural network Goal = (0.05ȳ)2 and Spread = 2/5.

SVR Support vector regression C = 100max(|ȳ + 3σy |, |ȳ − 3σy |) and ǫ = σy/
√
N

Obs.1: All other parameters not mentioned are kept with default values.
Obs.2: ȳ, σy and N are respectively: mean and standard deviation of y and number of sampling points.
Obs.3: No attempt has been made in order to fine tuning the surrogates shape parameters.

The LSQ method has been implemented in SURROGATES Toolbox.

In all the examples, a total of Ntest = 2000 test points are considered to calculate RMSE,

as defined in Eq. 2. The cross-validation procedure is applied with k = 10, when N > 20, to

balance accuracy and computational cost for PRESS calculation. Otherwise, the leave-one-out

cross-validation approach is applied.

E.3.2 Tests with engineering problems

In the second test set, four engineering problems are considered. These problems were

chosen since they provide a wide range of: number of variables, sampling strategies and sam-

pling point density and functional responses with different nonlinearity and multimodality in

the design space. A brief description of each problem is given as follows. Aerospike nozzle:

this problem has been studied by Simpson et al (2001b). The objective in this example is the

optimization of the propulsion system of a space shuttle rocket engine. The problem consists

of 3 geometry variables and 3 functional responses, i.e., vehicle gross liftoff weight (GLOW),

thrust wall pressure and nozzle weight. An experimental design with 25 runs were used to

conduct the metamodeling; Automotive crashworthiness: the objective of this study is the

crashworthiness optimization of an automobile subjected to a frontal impact test at 56.5km/h.

A computer experiment with 27 runs and 10 design variables is conducted and 3 functional

responses are monitored, i.e., impact energy absorbed after 20ms and 40ms and the peak ac-

celeration at engine top. Further details are available in Fang et al (2005); Engine block and

head joint assembly: the objective of the design in this example is to optimize the design

158

variables to minimize the gap lift of the assembly. A computer experiment employing 27 runs

and 8 variables was conducted to optimize the design of the head gasket sealing function. Other

details can be found in Fang et al (2006), p.135; Engine noise, vibration and harshness

(NVH): this problem deals with the optimization of NVH performance of an engine in oper-

ational conditions. The problem consists of a computer experiment with 30 runs, 17 design

variables and the response considered is the oil pan radiated noise as function of engine RPM.

Additional information can be found in Fang et al (2006), p.208.

The metamodels setup used for the engineering problems are in general the same of the

used in the previous section (see Table 7), except when the number of sampling points versus

number of variables are not enough to fit a full quadratic polynomial as for PRS and KRG. In

these cases, a lower order polynomial is chosen. Except for this change, all other parameters

used are the same of Table 7.

Since we have no access to the true models of these problems in order to generate new

sampling points and to evaluate the RMSE, we separate the experimental designs in two sets:

one for training and another one for model validation. In all the cases studied, we repeated the

experiments with 100 different DOE, to average out the influence of random sampling points

on the quality of fit. In each run we sort the design matrix rows and then we separate N points

for training and the remaining Ntest points to evaluate the RMSE. Table 8 present details for

the resulting 8 engineering test cases studied.

Table 8: Parameters of engineering problems.

ID Description nv N Ntest

A1 Aerospike nozzle GLOW 3 20 5

A2 Aerospike nozzle thrust 3 20 5

A3 Aerospike nozzle weight 3 20 5

C1 Car crash energy absorbed at 20ms 10 20 7

C2 Car crash energy absorbed at 40ms 10 20 7

C3 Car crash peak acceleration at engine 10 20 7

E1 Engine block and head assembly 8 20 7

E2 Engine NVH at 6000rpm 18 20 10

159

E.4 Results and discussion

E.4.1 Results with the analytical function

In this section the results achieved by using the analytical benchmark function (Eq. 41)

will be presented.

The results of increasing the number of sampling points are presented in Table 9 and

Figure 57. It is possible to observe that LSQ method presents a convergent behavior. As

the number of sampling point increases, the RMSE monotonically decreases. In addition the

median, mean and standard deviation of RMSE of LSQ (achieved over 100 runs) are in the

same level of magnitude of other methods, as can be observed in Figure 57(a). On the other

hand, the computational cost of LSQ is always a small fraction of other methods, i.e., 13 times

faster for N = 10 and 94 times faster for N = 100. These results are illustrated in Figure 57(b).

160
Table 9: Effect of increasing the sampling points density.

BestPRESS LSQ OWSconst OWSdiag OWSfull PWS NPWS

N ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s

10 1.00 0.98 0.15 0.30 0.31 0.10 0.71 0.70 0.10 0.70 0.71 0.07 1.57 1.55 0.23 0.72 0.72 0.05 0.75 0.75 0.05

20 1.00 0.98 0.25 1.80 1.97 0.53 1.41 1.75 0.86 3.59 3.63 0.95 3.57 3.75 1.08 6.91 6.91 0.67 10.20 10.19 0.42

50 1.00 0.94 0.23 0.68 0.70 0.14 0.94 0.90 0.20 0.95 0.91 0.19 0.97 0.97 0.22 4.14 4.21 0.40 11.29 11.29 0.33

100 1.00 0.98 0.20 0.23 0.24 0.05 0.82 0.81 0.17 0.82 0.81 0.17 0.90 0.88 0.18 3.19 3.20 0.21 10.10 10.14 0.21

Obs.1: N is the number of sampling points, ¯̄x , x̄ and s are respectively: median, mean and standard deviation of RMSE over 100 runs.
Obs.2: The values of ¯̄x , x̄ and s are normalized in relation of the median RMSE measured for BestPRESS in each case of N .

161

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

Number of Sampling Points, N

lo
g

 o
f

M
e

d
ia

n
 R

M
S

E

BestPRESS

LSQ

OWSconst

OWSdiag

OWSfull

LSQ

(a)

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

Number of Sampling Points, N

lo
g
 o

f
C

P
U

 T
im

e

BestPRESS

LSQ

OWSconst

OWSdiag

OWSfull

LSQ

(b)

Figure 57: Effect of increasing the sampling points density.

The results of increasing the number of variables are presented in Table 10 and Figure

58. Again, it is possible to observe that the median, mean and standard deviation of RMSE

of LSQ (achieved over 100 runs) are in the same level of magnitude of other methods, as can

be seen in Figure 58(a). The same is true for the computational cost of LSQ, that is always a

small fraction of other methods, i.e., 34 times faster for nv = 1 and 217 times faster for nv = 10.

These results are illustrated in Figure 58(b).

In all cases studied, it is remarkable that more than 95% of the computational cost of the

PRESS based methods is consumed in the cross-validation procedure. For instance, in the case

of 10 variables, 99.98% of the CPU time was spent in PRESS calculation.

162
Table 10: Effect of increasing the number of variables.

BestPRESS LSQ OWSconst OWSdiag OWSfull PWS NPWS

nv ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s

1 1.00 0.98 0.25 1.80 1.97 0.53 1.41 1.75 0.86 3.59 3.63 0.95 3.57 3.75 1.08 6.91 6.91 0.67 10.20 10.19 0.42

2 1.00 0.99 0.23 1.02 1.32 1.09 0.97 0.95 0.21 0.99 0.97 0.18 0.81 0.81 0.17 1.19 1.18 0.15 1.53 1.53 0.11

5 1.00 0.87 0.31 1.04 1.38 1.33 0.99 0.87 0.30 0.96 0.87 0.23 1.00 0.86 0.30 0.99 0.95 0.15 1.14 1.13 0.09

10 1.00 1.01 0.04 1.02 2.12 1.65 0.99 1.00 0.04 1.01 1.01 0.04 0.99 1.01 0.08 1.20 1.20 0.04 1.56 1.56 0.05

Obs.1: nv is the number of sampling points, ¯̄x , x̄ and s are respectively: median, mean and standard deviation of RMSE over 100 runs.
Obs.2: The values of ¯̄x , x̄ and s are normalized in relation of the median RMSE measured for BestPRESS in each case of nv.

163

0 1 2 3 4 5 6 7 8 9 10 11
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of Variables, n
v

lo
g

 o
f

M
e

d
ia

n
 R

M
S

E

BestPRESS

LSQ

OWSconst

OWSdiag

OWSfull

(a)

0 1 2 3 4 5 6 7 8 9 10
10

−1

10
0

10
1

10
2

10
3

Number of Variables, n
v

lo
g

 o
f

C
P

U
 T

im
e

BestPRESS

LSQ

OWSconst

OWSdiag

OWSfull

LSQ

(b)

Figure 58: Effect of increasing the number of variables.

Figure 59 presents the behavior of the standard deviation of RMSE. It can be seen

in Figure 59(a) that, as the number of sampling points increases, the variance of RMSE is

monotonically decreasing for all methods studied. On the other hand, the variance of LSQ

method increases with the number of variables in a faster rate than the other methods, as can

be seen in Figure 59(b).

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

Number of Sampling Points, N

lo
g

 o
f

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f
R

M
S

E

BestPRESS

LSQ

OWSconst

OWSdiag

OWSfull

LSQ

(a)

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of Variables, n
v

lo
g

 o
f

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f
R

M
S

E

BestPRESS

LSQ

OWSconst

OWSdiag

OWSfull

LSQ

(b)

Figure 59: RMSE standard deviation as function of sampling points density (a) and number
of variables (b).

Although the accuracy observed for LSQ is in the same level of other methods, the increas-

ing error variance, as the model dimension increases, should cause an undesirable instability

in the calculation of the WAS weights in highly nonlinear or noisy problems, specially in high

dimensions. This increasing variance of LSQ may be attributed to multicollinearity of the sur-

rogate models in the ensemble, when the sampling points distribution in the design space tends

164

to be sparse. In other words, this effect should be attributed to a lack of linear independence

(or collinearity) of the surrogates in the ensemble. As shown in Figure 59(a), this problem may

be reduced by increasing the number of sampling points (with small computer cost increas-

ing for LSQ, as previously shown in Figure 57(b)). Since the increasing of sampling points in

metamodeling problems is not easy in practice, the alternative should be the implementation of

some method that reduces the variance due to multicollinearity in linear regression (e.g. step-

wise regression, ridge regression, principal components, etc). See for instance Miller (2002),

Montgomery et al (2006) and the references therein.

In order to verify this possibility, we implemented a version of stepwise regression method

for variable selection in least squares. The results of this test are presented in Figure 60. As

can be observed, the stepwise variable selection method (LSQstepwise) is able to reduced the

standard deviation of RMSE in the calculation of the WAS weights.

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

10
1

Number of Variables, n
v

lo
g

 o
f

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f
R

M
S

E

BestPRESS

LSQ

LSQstepwise

LSQ

LSQstepwise

BestPRESS

(a)

1 2 3 4
0

5

10

15

20

25

30

35

1: n
v
 = 1 2: n

v
 = 2 3: n

v
 = 5 4: n

v
 = 10

S
a
n
d
a
rd

 D
e
v
ia

ti
o
n
 I
m

p
ro

v
e
m

e
n
t
[%

]

30.51%

23.44%

16.26%

0%

(b)

Figure 60: Improvement of RMSE standard deviation based on least squares stepwise variable
selection.

These preliminary results are promising and open a new front of research in this area.

There are several methods available in the literature for dealing with multicollinearity in linear

regression that must be investigated. In addition, it is not clear how these methods behave

with different number of surrogates in the ensemble, in association with the number of sampling

points and design variables.

E.4.2 Results with engineering problems

The results of engineering problems are presented in Table 11 and Figure 61. These

results confirm the general trends observed with the tests with analytical functions presented

165

in the previous section. That is, the accuracy of LSQ, measured by means of median, mean and

standard error of RMSE over 100 runs, are in the same level of magnitude of PRESS based

methods.

166
Table 11: Results of engineering problems.

BestPRESS LSQ OWSconst OWSdiag OWSfull PWS NPWS

ID ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s ¯̄x x̄ s

A1 1.00 0.98 0.36 1.00 0.98 0.37 0.92 0.97 0.43 0.92 0.97 0.43 1.07 1.10 0.44 0.84 1.12 0.66 1.15 1.50 0.90

A2 1.00 1.04 0.46 1.01 1.05 0.46 1.04 1.05 0.44 1.04 1.05 0.44 1.23 1.39 0.88 1.79 1.92 0.73 4.08 4.91 3.02

A3 1.00 1.01 0.41 1.28 3.34 3.54 0.98 1.04 0.48 0.98 1.05 0.48 0.95 1.06 0.45 1.05 1.25 0.60 1.41 1.65 0.78

C1 1.00 1.01 0.30 1.05 1.49 0.99 0.99 1.02 0.27 1.03 1.03 0.27 0.92 0.96 0.29 1.18 1.18 0.31 1.42 1.43 0.37

C2 1.00 1.02 0.26 1.06 1.44 0.88 0.97 1.01 0.25 1.02 1.03 0.25 0.97 0.99 0.23 1.18 1.20 0.36 1.49 1.58 0.44

C3 1.00 1.05 0.22 1.08 1.16 0.44 1.00 1.04 0.25 0.99 1.04 0.30 1.08 1.11 0.26 1.05 1.09 0.34 1.16 1.14 0.38

E1 1.00 1.05 0.32 0.97 1.00 0.29 0.87 0.90 0.31 0.91 0.92 0.30 0.91 0.96 0.31 0.91 0.91 0.30 0.90 0.90 0.30

E2 1.00 0.96 0.30 1.07 1.45 1.21 0.98 0.93 0.29 1.09 1.08 0.36 0.51 0.53 0.14 1.45 1.51 0.51 1.55 1.61 0.52

Obs.1: ¯̄x , x̄ and s are respectively: median, mean and standard deviation of RMSE over 100 runs.
Obs.2: The values of ¯̄x , x̄ and s are normalized in relation of the median RMSE measured for BestPRESS in each case.

167

Figure 61 presents the boxplots for the normalized RMSE for the case problems A1 and

E1 (see Table 11). As can be seen, the dispersion of RMSE over 100 runs is comparable among

the all the WAS methods studied. The other cases were not shown only for brevity, but the

overall dispersion behavior of RMSE is similar to the achieved for A1 and E1 cases.

BestPRESS LSQ OWSconst OWSdiag OWSfull PWS NPWS

0.5

1

1.5

2

2.5

3

3.5

4

N
o
rm

a
liz

e
d
 R

M
S

E

A1: Aerospike Nozzle GLOW − n
v
 = 3, N = 20, Ntest = 5

(a)

BestPRESS LSQ OWSconst OWSdiag OWSfull PWS NPWS

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 R

M
S

E

E1: Engine Block − n
v
 = 8, N = 20, Ntest = 7

(b)

Figure 61: Boxplots of normalized RMSE for engineering problems A1 (a) and E1 (b), respec-
tive to Table 11.

The Table 12 presents the absolute CPU time spent for constructing the WAS models

for each one of the engineering problems studied. As can be observed, the time spent in LSQ

remains almost constant, since in all the engineering problems the number of sampling points

considered are the same (N = 20). On the other hand, the cost of PRESS based methods are

affected also by the number of variables in the model. In the worst case, A1, LSQ method

performed 34 times faster. In the best case, E2, LSQ performed 46 times faster than the other

methods.

Table 12: CPU times (seconds) for engineering problems.

ID BestPRESS LSQ OWSconst OWSdiag OWSfull PWS NPWS

A1 5.7348 0.1686 5.7480 5.7410 5.7346 5.7388 5.7329

C1 6.1669 0.1643 6.1892 6.1737 6.1664 6.1719 6.1650

E1 5.8532 0.1635 5.8725 5.8625 5.8532 5.8561 5.8525

E2 7.5249 0.1650 7.5431 7.5348 7.5263 7.5275 7.5236

One should argue that an order of 5 or 7 seconds spent in WAS calculation for PRESS

based methods is not significant. On the other hand, this impact should be expressive in

168

optimization contexts, specially when new sampling points (infill points) are iteratively included

in the model to reduce the approximation error and improve the optimization results. It is not

rare an iterative optimization problem to require an order of 100 or more infill iterations to

achieve an acceptable optimum result (see for instance Forrester et al (2008)). If we need,

for example, to construct the metamodel problem E2 in 100 optimization iterations, the cost

would be 16.50s considering the LSQ method, against 752.49s for BestPRESS. Therefore, this

difference of CPU time should not be neglected.

In summary, the results corroborate that, in practical applications, LSQ method should

be considered as an alternative of the PRESS based methods, since it is comparable in terms

of accuracy and it performs much faster than the other WAS methods available.

169

F Multicollinearity and Least Squares

F.1 The Sources of Multicollinearity

The issue of multicollinearity in least squares regression is well known in statistics and

related areas and the research in this front remounts at least to the decade of 1950. See for

example Björk (1996) and Montgomery et al (2006) and the list of references therein for a

broader perspective on this subject.

By definition, the least squares problem is based on the assumption that the k regressors

xi, or predictor variables, in the simple linear case of Eq. (18), are mutually orthogonal. In

other words, it is assumed in advance that there is no linear relationship among the predictor

variables.

In matrix form, the least squares problem can be stated as

y = Xβ + ε , (43)

where y is a (N × 1) vector of responses; X is a (N × p) matrix of the regressor variables; β

is a (p× 1) vector of unknown coefficients; and ε is a (p× 1) vector of random errors, that

are assumed to be normally and independently distributed, with zero mean and finite variance,

i.e., εi ∼ NID(0, σ2). In this form, N represents the number of observations (or samples) and

p = k when the intercept term β0 is considered zero and p = (k + 1), otherwise.

One possible solution for Eq. (43) is the standard least squares estimator, i.e.,

β̂ = (XTX)−1XTy , (44)

that has the following properties:

(a) Unbiasedness :

Bias
(

β̂
)

≡ E
[

β̂
]

− β = 0 ⇒ E
[

β̂
]

= β ; (45)

(b) Variance:

Var
(

β̂
)

≡ E
[

β̂β̂
T
]

− E
[

β̂
] (

E
[

β̂
])T

= σ2(XTX)−1 , where

σ2 ≈ σ̂2 =
yTy − β̂T

XTy

N − p ;

(46)

170

(c) Mean Squared Error :

MSE
(

β̂
)

≡ E
[

∥

∥

∥β̂ − β
∥

∥

∥

2
]

= tr
{

Var
(

β̂
)}

+
∥

∥

∥Bias
(

β̂
)∥

∥

∥

2
;

(47)

(d) Gauss-Markov Theorem: The least squares estimator β̂ is the best linear unbiased estima-

tor (BLUE) of β.

For proofs and details on these properties see Montgomery et al (2006) or Björk (1996).

Unfortunately, in most applications the assumption of mutually orthogonal does not hold

and the final regression model can be misleading or erroneous. Thus, when there are linear

or near-linear dependencies among the regressors, the problem of multicollinearity arises. This

is due to the fact that the so called correlation matrix XTX has rank lower than p and for

consequence its inverse does not exist anymore. In this case, the least squares estimate β̂

becomes numerically unstable.

This instability of the coefficients can be explained by the variance definition. If the

matrix XTX has linear dependence among columns (i.e., multicollinearity), then the variance

of the coefficients can increase rapidly or become infinite and by consequence the prediction

will be poor.

Among the several sources of multicollinearity, the primary ones are: (i) the data col-

lection method (size and distribution of sampling points) and (ii) model overdefined or with

redundant variables. During the last decades, several methods have been devised for dealing

with multicollinearity in least squares problems (see Montgomery et al (2006), Chap. 11). In

general the techniques include gathering additional data and some kind of modification in the

the way that the coefficients β̂ are estimated, in order to reduce the prediction errors induced

by multicollinearity.

F.2 Prior Model Selection

In our context, the main source of multicollinearity is due to the fact the models ŷi(x)

tend to be very similar since all of them are trying to match the true response y(x), as best as

possible, therefore the problem is overdefined on its nature. In addition, this situation can be

worsened if the sampling points are not well distributed in the design space.

171

In this way, by assuming that we have a fairly good design space distribution, the first

option is to conduct a prior selection and remove the most redundant models in the set [ŷ1 (x),

ŷ2 (x), ... , ŷM (x)], by means of some heuristic method.

One quick way, for instance, can be by using the concept of correlation, i.e., by defining

the pairwise correlation matrix R = [r2(ŷi, ŷj)], where r (Xi, Yi) is the sample linear correlation

coefficient, that is,

r (Xi, Yi) =

N
∑

i=1
(Xi − X̄)(Yi − Ȳ)

[

N
∑

i=1
(Xi − X̄)2

N
∑

i=1
(Yi − Ȳ)2

]
1

2

(48)

with

X̄ =
1

N

N
∑

i=1

Xi,

for any two random vectors Xi and Yi, of size N .

In this way, Rii = 1 and (0 ≤ Rij ≤ 1), for i 6= j. Therefore, we can easily identify the

most correlated models based on a threshold, say for example (Rij ≥ 0.8), and verify if it is

possible to eliminate the less significant model in the pair ij from the set, before creating the

ensemble.

This heuristic approach can be useful when we have a large set of models, thus we can

rapidly identify the most correlated pairs and remove the poorest ones in terms of accuracy in

advance. It is worth noting that, specially for small sets, this criterion must be carefully used

since interpolating or highly accurate models can lead to (Rij → 1.0) as well, and of course

cannot be discarded blindly.

Other diagnostics for multicollinearity exist in the least squares literature. Most of them

are based on the examination of the correlation matrix XTX, namely: correlation coefficients,

determinant, eigensystem analysis, VIF (variance inflation factors), etc. We will not present

them here, since at the end of the day all these diagnostic measures are useful to estimate

pairwise correlation and not more than that. For example, it is possible to identify pairs of

highly correlated models, but if the collinearity is among more than two models it cannot be

identified by a simple inspection. In addition, as we already discussed, pure collinearity does

not mean directly that models are not significant in terms of accuracy or predictability for the

ensemble. Refer to Chap. 11 of Montgomery et al (2006) for a detailed discussion on this

subject.

172

F.3 Gathering Additional Data

As reported in Montgomery et al (2006), one of the best methods to reduce the sources of

multicollinearity in least squares is collecting additional data. The idea is first to understand the

distribution of points in the design space and add more sampling points in the non-populated

areas, in order to avoid concentrations along lines and therefore break-up multicollinearity.

In many cases, unfortunately, collecting additional data is costly or even impossible. In

other cases, collecting additional data is not a viable solution to the multicollinearity problem

because its source is due to constraints on the model or in the population. This is the case of

ensemble of metamodels. All the models ŷi are trying to approximate the true response y as

best as possible, or exactly in the case of interpolation. Therefore, multicollinearity will come

up naturally since the columns formed by the metamodels ŷi tend to be quite similar.

F.4 Variable Selection Methods in Regression

A central problem in least squares regression is related to the definition of the best set of

variables or predictors to build the model. It is desired to define a parsimonious model, i.e.,

the simpler regression model that represent the problem at hand, as always as possible. A

parsimonious model is easier to interpret, to collect data and, in addition, it is less prone to

redundancies that induce linear dependencies and multicollinearity and reduce accuracy and

predictability.

It is well known that the key driving question in all the variable selection methods is:

“How to include or exclude variables in a least squares model in order to achieve the desired

accuracy and be parsimonious at same time?”

During the decades several methods have been devised, implemented and tested in an

attempt to answer this question. In this sense, let us briefly explain the concept of balancing

bias and variance in least squares approximation.

F.4.1 The Bias and Variance Dilemma

As remarked by Montgomery et al (2006), the Gauss-Markov property assures that the

estimator β̂ has minimum error, in the least squares sense, among all unbiased linear estimators,

but there is no guarantee that its variance will be small.

As we discussed previously, when the method of least squares is applied to nonorthogonal

173

data, very inaccurate estimates of β can be obtained, due to the inflation of the variance. This

implies that the absolute values of the coefficients are very unstable and may dramatically

change in sign and magnitude by small variations in the design matrix X.

One way to mitigate this issue is to relax the requirement that the estimator of β be

unbiased. Let us assume that we can find a β̂
∗
in such a way that

β̂
∗
= β̂ − δ, with ‖δ‖ <

∥

∥

∥β̂
∥

∥

∥ , and E [δ] = δ, (49)

then the bias will be

Bias
(

β̂
∗)

= E
[

β̂ − δ
]

− β ⇒ Bias
(

β̂
∗)

= −δ (50)

and, by assuming that β̂ and δ are independent, then

Var
(

β̂
∗)

= Var
(

β̂ − δ
)

= Var
(

β̂
)

− Var (δ) . (51)

In addition, the MSE will become

MSE
(

β̂
∗)

= tr
{

Var
(

β̂
)}

− tr {Var (δ)}+ ‖δ‖2

= E
[

∥

∥

∥β̂ − β − δ
∥

∥

∥

2
]

= E
[

2
∥

∥

∥β̂ − β
∥

∥

∥

2
+ 2 ‖δ‖2 −

∥

∥

∥β̂ − β + δ
∥

∥

∥

2
]

= 2MSE
(

β̂
)

+ f
(

‖δ‖2
)

(52)

by using the parallelogram law for vector norms and the linearity of the expectation operator.

In summary, it can be concluded that, by allowing a small amount δ of bias in β̂
∗
, the

variance of β̂
∗
will be smaller than β̂. On the other hand, the mean squared error at the data

may increase rapidly as a function of the level of bias induced. If the effect of increasing bias is

smaller than the effect of reducing variance then it is possible to reduce the error. Therefore,

by controlling the size of β̂, it is possible to control the stability and error level of the solution

by balancing bias and variance.

In Figure 62, a geometrical interpretation on this behavior of the solution of β̂ in terms

of bias and variance is presented for a generic problem with two variables, i.e., β = [β1, β2]
T .

The idea behind this behavior is by choosing a smaller estimator β̂
∗
, then the variance will be

smaller. As consequence, the price for reducing variance will be always by adding bias in the

solution, i.e., the mean squared error will not be the minimum anymore at the sampling points.

In practical terms, it means that if one chooses a biased estimator β̂
∗
, by increasing the

174

Figure 62: An illustration of bias and variance dilemma in least squares. The BLUE estimator
has minimal MS error but the associated variance is large. On the other hand, by accepting
some bias or in other words shrinking the vector β̂, the MSE increases and the variance is
reduced (improved stability). Adapted based on Montgomery et al (2006).

mean squared error at sampling points, the variance will be reduced and the sensitivity of the

regression coefficients to changes on the data will be also reduced (i.e., less sensitivity to noise

or perturbations in the components of matrix X). Therefore, with more stable coefficients, the

overfitting can be reduced and the accuracy of predictions for future data will increase as well.

The possible ways to reduce the magnitude of the vector β̂ are mainly two: (i) by remov-

ing/combining variables from the scope of the model, or by forcing some of the β̂i = 0; and (ii)

by reducing (shrinking) the size of the vector β̂.

Based on these two central ideas, most of the methods summarized in Section F.5 were

devised in order to find a solution on how to trade-off between bias and variance, and improve

accuracy and predictability for a given set of variables in a problem least squares problem.

Finally, variable selection methods is a large front of research in least squares approxi-

mation field. Miller (2002) presented an extensive review on variable selection in regression

problems and this is still a subject of active research, as can bee seen in the recent publications,

for instance Ng (2012) which states that: “The variable selection is by no means solved.” and

Scheipl et al (2013) that reinforces that there is still a wide and open field for future research

in variable and function selection in multivariate regression.

175

F.5 Least Squares Variants

F.5.1 Stepwise Regression

Several heuristic procedures and algorithms have been developed to add and/or delete

variables in a regression model to control the accuracy and predictability. In Miller (2002) it is

presented an extensive discussion on these methods.

The idea is to start from a large set of possible variables and to find a small subset of

variables (or candidate subsets) that reduces the modeling errors. Then this field of research

is known as: subset selection in regression.

By starting from the full model on the Equation (43), let us assume that there are p

candidate regressors x1, x2, · · ·, xp. In addition, let r be the number of regressors that are to

be deleted from the full model. Therefore, the regression equation can be written as

y = Xsβs +Xrβr + ε , (53)

where X has been partitioned into Xs, a (N × s) matrix whose columns represent the regressors

to be retained; and Xr, a (N × r) matrix whose columns represent the regressors to be deleted

from the full model. In the same sense, β is partitioned accordingly in βs and βr.

Now, for the subset model,

y = Xsβs + ε , (54)

the least squares estimate is, similarly to the full model derivation,

β̂s =
(

XT
s Xs

)−1
XT

s y . (55)

By analyzing the properties of the estimator β̂s, it can be demonstrated that

E
[

β̂s

]

= β̂s +
(

XT
s Xs

)−1
XT

s Xrβ̂r

= β̂s +Aβ̂r

(56)

where A =
(

XT
s Xs

)−1
XT

s Xr is called aliasing matrix. Thus β̂s is a biased estimate of βs,

i.e., Bias (βs) = Aβ̂r, unless the deleted variables βr are zero or the retained variables are

orthogonal to the deleted variables (i.e., XT
s Xr = 0).

In case of variance, it follows that

Var
(

β̂s

)

= σ2
(

XT
s Xs

)−1
. (57)

By the fact that the variance is a positive semidefinite matrix and provided that

vT (A+B)v ≥ vTAx ∀v 6= 0 , (58)

176

and X can be rewritten as

X = [Xs 0] + [0 Xr]

= S+R
(59)

then, it can be concluded that,

vT
(

XTX
)

v ≥ vT
(

STS
)

v (60)

which leads to

Var
(

β̂
)

≥ Var
(

β̂s

)

(61)

That is, the variance of the least squares estimates of the parameters in the full model Var
(

β̂
)

are greater than or equal to to the variances of the corresponding parameters in the subset

model, Var
(

β̂s

)

. Consequently, deleting variables from the full model never increases the

variances of the estimates of subset models.

Finally, the mean squared error for the subset model is

MSE
(

β̂s

)

= tr
{

σ2
(

XT
s Xs

)−1
}

+
∥

∥

∥Aβ̂r

∥

∥

∥

2
(62)

and again, since the bias is introduced by deleting variables, the mean squared error for the

subset model will be lower than the full model, if and only if the effect of reduction in variance

is higher than the effect of increasing bias. In this way, the search for smaller subsets with

lower variance and possible lower MSE than the full model makes sense, although there is no

proof in advance that there exist at least one subset model that satisfies this expectation.

Because evaluating all possible subsets can be computationally burdensome, various meth-

ods have been developed for evaluating only a small number of subset regression models by

adding or deleting variables one at a time, step by step. These methods are generally referred

to as stepwise-type procedures. There are in general three categories: (1) forward selection,

starting from no variables and adding one at time; (2) backward elimination, starting from

the full model and deleting variables one at a time; and (3) stepwise regression, a common

combination of procedures (1) and (2).

Based on specific statistical assumptions, several stopping rules were developed for this

class of algorithms. Efroymson (1960) was the first to use the term “stepwise regression” and

his method is based on the F -statistic distribution to define the significance level to add or

delete variables, and it is still used today in several computer codes for least squares regression.

The Efroymson’s Algorithm can be summarized as follows, according to Miller (2002):

177

Let us first define the residual sum of squares as

RSS =
N
∑

i=1
e2i

=
N
∑

i=1
(yi − ŷi)2 ,

(63)

where yi is the true response and ŷi is the fitted value for the i-th data site.

(a) Addition: Let RSSs denote the residual sum of squares with s variables in the model.

Suppose the smallest RSS which can be obtained by adding another variable to the

present set, is RSSs+1. The ratio

Re =
RSSs −RSSs+1

RSSs+1/ (N − s− 2)
(64)

is calculated and compared with an ‘F-to-enter’ value, Fe. If Re is greater than Fe, the

variable is added to the selected set.

(b) Deletion: With s variables, let RSSs−1 be the smallest RSS that can be obtained after

deleting any variable from the previously selected ones. The ratio

Rd =
RSSs−1 −RSSs

RSSs/ (N − s− 1)
(65)

is calculated and compared with an ‘F-to-delete’ value, Fd. If Rd is less than Fd, the

variable is deleted from the selected set.

(d) Level of Significance: The criteria Fe and Fd are calculated based on the inverse of F

cumulative distribution function, i.e., F−1
(α, ν1, ν2)

, with numerator degrees of freedom ν1

and denominator degrees of freedom ν2, for the corresponding level of significance α ×
100%. If, for instance, for a variable to be added, it is considered 95% percentile of F

distribution (or α = 5%), then Fe = F−1
(0.05, s+1, N−s−2). So, if Re is greater than Fe, it

is the same to say that p-value > 5%, and therefore we fail to reject H0 in the following

hypotheis test:











H0: the variable xs+1 is insignificant, i.e., βs+1 = 0.

H1: the variable xs+1 is not insignificant, i.e., βs+1 6= 0.
(66)

Henceforth, we conclude with more than 95% confidence level that the variable is signif-

icant to be added in the selected subset model.

178

The algorithm starts with no variables in the model and then moves forward by adding

all the variables considered significant to the selected subset. In the sequence the algorithm

moves backward by testing if any of the previously selected variables can be deleted without

appreciably increasing the residual sum of squares. It is common to use the level of significance

(0.01 < α < 0.05), and if one needs to find a more parsimonious model (smaller subset), then

set (αe < αd) and the addition will be more strict than deletion of variables.

Other popular stepwise regression methods have been proposed, motivated by different

stopping criteria, for instance, apud Fang et al (2005): Mallows Cp criterion, (Mallows, 1973);

AIC - Akaike Information Criterion, Akaike (1974); BIC - Bayesian Information Criterion,

Schwarz (1978); ϕ-Criterion, Hannan and Quinn (1979) and Shibata (1984); and RIC - Residual

Information Criterion, Foster and George (1994).

For more details on these algorithms and variations see Miller (2002), Montgomery et al

(2006) and in special Fang et al (2005), that presents a good set of engineering computational

examples and comparisons based on these methods for subset selection in regression.

F.5.2 Ridge Regression

One of the most famous class of biasing estimators is the ridge regression, originally

proposed in the two companion papers Hoerl and Kennard (1970a) and Hoerl and Kennard

(1970b). The ridge estimator is found by solving a modified version of the normal equations.

In this approach, the ridge estimator β̂R is the solution of

β̂R =
(

XTX+ kIp
)−1

XTy , (67)

where k ≥ 0 is a constant parameter to control the level of bias-variance in the solution and Ip

is the (p× p) identity matrix. As can be noted, when k = 0 the solution is the unbiased least

squares estimator.

It can be noted as well that the ridge estimator is a linear transformation of the standard

least squares estimator, i.e., β̂R = Zkβ̂, where Zk, given by

Zk =
(

XTX+ kIp
)−1 (

XTX
)

, (68)

is the matrix in the linear transformation (function of k), since y = Xβ̂.

Thus, k controls the size of β̂R, by scaling (or shrinking) the vector β̂, in order to induce

bias and reduce the variance. In this sense the class of biased estimators are also called shrinkage

estimators.

179

By rewriting the equation for mean squared error, it can be shown that

MSE
(

β̂R

)

= tr
{

Var
(

β̂
)}

+
∥

∥

∥Bias
(

β̂
)∥

∥

∥

2

= tr
{

σ2Zk

(

XTX+ kIp
)−1

}

+ k2βT
(

XTX+ kIp
)−2

β

= σ2
p
∑

j=1

λj

(λj + k)2
+ k2βT

(

XTX+ kIp
)−2

β

(69)

where λ1, λ2, · · ·, λp are the eigenvalues of the matrix XTX. Then, if k > 0, the variance in

β̂R monotonically decreases as the bias increases. In addition, Hoerl and Kennard proved that

exists a nonzero k for which the MSE(β̂R) will be less than the variance of the least squares

estimator β̂. Therefore, the challenge is to find k in a such way that the reduction in variance

term is greater than the bias term, then MSE
(

β̂R

)

will be reduced as well.

Hoerl and Kennard originally proposed the method by graphical inspection of the behavior

of the coefficients with respect to increasing values of k, i.e., ridge trace inspection. Ridge trace

inspection is a good method for a small number of coefficients but it is not practical to solve

problems with large number of variables in an automatic and systematic way. In addition, the

inspection of ridge trace is a subjective procedure requiring judgment form the analyst.

An analytical way to estimate of k was suggested by Hoerl et al (1975), that is

k =
pσ̂2

β̂
T
β̂

, (70)

where β̂ and σ̂2 are calculated based on the ordinary least squares solution. In a subsequent

paper, Hoerl and Kennard (1976) proposed an iterative algorithm based on the Equation (70).

There are many other variants proposed in the literature for choosing k. Even though, as

noted by Montgomery et al (2006), there is no guarantee that all these methods are superior

to straightforward inspection of the ridge trace.

In this sense, the generalized cross-validation statistic (GCV) procedure by Golub et al

(1979) is one of the most accepted for automation, i.e.,

GCV (k) =
1

N

∥

∥

∥y −Xβ̂
∥

∥

∥

[1− e(κ)/N]2
, (71)

where

e (k) = tr
[

X
(

XTX+ kI
)−1

XT
]

(72)

and k is selected to be

k = argmin
k

GCV(k) . (73)

180

The minimization procedure is done by computing GCV for a discrete set of points in the

interval (0 < k < 1), therefore the final estimator β̂R is the one that has the lowest GCV(k)

score.

Once k is defined or selected, it is possible to modify the ridge matrices definition and

then use a standard least squares algorithm, as follows,

XA =







X
√
kIp





 , yA =











y

0p











, (74)

with Ip and 0p respectively the identity matrix of order p × p and null vector of order p × 1,

and then

β̂R =
(

XT
AXA

)−1
XT

AyA =
(

XTX+ kIp
)−1

XTy . (75)

It is worth noting that the ridge solution can be viewed as a constrained least squares in

the form

min
β
‖y −Xβ‖2

subject to βTβ ≤ d2
, (76)

where the radius d depends on k.

Finally, as remarked by Montgomery et al (2006), the ridge estimate will not necessarily

provide the best “fit” to the data, but this is not the real concern, since the main interest

is on reducing multicollinearity and to obtain a stable set of parameter estimates. The ridge

estimates may result in an equation that does a better job of prediction for future observations

than would the ordinary least squares, although there is no guarantee nor conclusive proof that

this will happen in fact.

F.5.3 Principal Component Regression

Another approach that can be used to generate biased least squares estimators is known

as principal component regression. A deep and extensive discussion on principal components

analysis can be found in Jolliffe (2002).

Let us define a linear matrix transformation such that

Z = XV, (77)

where V = [V1 V2 · · · Vp] is a (p× p) matrix whose k-th column Vk is the k-th eigenvector

of XTX. In this way, Z = [Z1 Z2 · · · Zp] is a (p× p) matrix whose k-th column Zk is the

k-th principal component (PC) of X. In addition, it can be shown that

ZTZ = VTXTXV = Λ , (78)

181

where Λ is a diagonal (p× p) matrix of eigenvalues of XTX, i.e., Λ = diag (λ1, λ2, · · · , λp).

Since V is orthogonal, then Xβ can be rewritten as XVVTβ and the standard regression

equation can be rewritten as

y = Zγ + ε , (79)

where γ is defined as the linear transformation

γ = VTβ ⇒ β = Vγ, (80)

and the predictor variables are replaced by their PC in the regression model, with the same

transformation, i.e., z = VTx.

In other words, the original vector of variables x = (x1, x2, · · · , xp)
T are transformed

to a new set of variables z = (z1, z2, · · · , zp)
T as follows







































z1 = VT
1 x ⇒ z1 = V11x1 + V21x2 + · · ·+ Vp1xp

z2 = VT
2 x ⇒ z2 = V12x1 + V22x2 + · · ·+ Vp2xp

...
...

...

zp = VT
p x ⇒ zp = V1px1 + V2px2 + · · ·+ Vppxp

, (81)

and, in this way, the variable zi are called principal components (PC) of the original variables

xi.

By analogy, the least squares estimator of γ is

γ̂ =
(

ZTZ
)−1

ZTy = Λ−1ZTy (82)

and the variance matrix of γ̂ is

Var (γ̂) = σ2
(

ZTZ
)−1

= σ2Λ−1. (83)

Thus, a small k-th eigenvalue of
(

XTX
)

means that the variance of the corresponding or-

thogonal regression coefficient will be large. If all the eigenvalues λi = 1, then the original

variables are orthogonal. On the other hand, one λi is equal to zero, implies a perfect linear

relationship among the variables. Therefore, one or more eigenvalue λi near zero indicate that

multicollinearity is present and it can destroy the accuracy of the least squares coefficients

estimate, since Var (γ̂k) = σ2λ−1
k →∞.

Therefore, the use of principal component approach can provide many advantages in least

squares approximation. By using principal components it is possible to combat multicollinearity

by using less than the full set of transformed variables zi in the regression model.

In their definition, see Jolliffe (2002), the PC are generated in sequence in a way that

the first PC, i.e., z1 = VT
1 x is a linear function of elements of x having maximum variance.

182

The second PC, z2 = VT
2 x, is another linear transformation, uncorrelated with z1, and having

maximum variance, and so on, that the k-th step is a linear function zk = VT
k x is generated

that has maximum variance and it is uncorrelated with all the previously generated PC, i.e.,

z1, z2, · · · , zk−1. Therefore, up to p PC can be generated and it is hoped, in general, that the

most variation in x will be accounted for by s PC, where (s < p). Then it is possible to reduce

the complexity of the problem by transforming the original variables to the smallest set of PC

able to explain the data.

Figure 63 presents a geometric interpretation of the idea of principal components. In

this hypothetical example, the original variables x1 and x2 are clearly correlated, since the data

dispersion is concentrated around a straight line, which is an evidence that x1 and x2 have some

level of linear dependency, at least for this sample. The corresponding principal components

z1 and z2 and their axes are also displayed. It can also be observed that the dispersion (or

variance) is much more pronounced in the direction of z1 than in z2. Therefore, if we properly

define z1 = αx1 + βx2 in the direction of the straight line that concentrate the dispersion of

points, as shown in the figure, then the problem should be explained with only one variable z1,

that accounts for the most of the variance within the data.

−1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

x
1

x
2

Variables and Principal Components

z
2

z
1

Figure 63: Geometric interpretation of variables and the respective principal components in
two dimensions.

By the definition of principal components, it can be shown that the respective variance is

given by

Var (zi) = Var
(

VT
k x
)

= λi, (84)

and, as we explained, the higher the variance of a PC, the higher is its capacity to explain the

data.

183

In the sequence, let us assume that the principal components are arranged in order of

decreasing variance, i.e., (λ1 ≥ λ2 ≥ · · · ≥ λp > 0). The idea is to remove the r

PC with smallest variances, i.e., nearly zero eigenvalues, and to apply the least squares estimate

to the remaining (p− r) components, that is

γ̂PC = [γ̂1 γ̂2 · · · γ̂p−r | 0 0 · · · 0]T . (85)

Then, by applying the orthogonal transformation backwards, in order to get the original coef-

ficients, it follows that

βPC = Vγ̂PC =
p−r
∑

j=1

λ−1
j VT

j X
TyVj . (86)

It is worth noting that, by removing less significant principal components zi not necessarily

delete variables xi from the original model, since each PC is a linear combination of all xi. On

the other hand it is observed that by using small subset of PC offers considerable improvement

over standard least squares when the data are ill-conditioned and the original regressors have

linear dependencies, as we shown previously in the example of Figure 63.

Jolliffe (2002) presents a comprehensive review on the methods developed to choose a sub-

set of principal components and variables. The immediate approach for choosing the (s = p− r)
PC to be kept in the model is based on the cumulative percent of total variation. In this sense

it is desired to retain the selected PC that contribute with, say 80% to 90% of total variation.

By defining the ratio

ts = 100%×

s
∑

k=1
λk

p
∑

k=1
λk

, (87)

and choosing a threshold, i.e., t∗, somewhere in the range 70% to 90% and retaining the least s

PC such as (ts > t∗), a rule, which in practice preserves in the first s PC most of the information

in x, is provided.

Another possibility is to normalize the eigenvalues, for example

λ̄i =
λi

max (λi)
, (88)

and to remove the PC proportionally smaller eigenvalues. For example, by setting a target value

for instance λ̄∗ > 10%, then all PC with normalized eigenvalues
(

λ̄i < λ̄∗
)

will be removed from

the selected set and, in this way, it is possible to mitigate most of the ill-conditioning present

in XTX.

It is observed that targets for removing eigenvalues like t∗, λ̄∗ or other variants are sub-

jective and problem dependent. Therefore, it is recommended to apply some kind of iterative

184

approach to select the correct cut-off value for each problem at hand.

Golub et al (1979) suggested a modified version of GCV statistic in order to handle

variable selection for principal components, i.e.,

GCV (s) =

1

N
‖I−A (s)‖2

[

1

N
tr (I−A (s))

]2 , (89)

where the matrix A (s) is given by

A (s) = UD (s)
[

D (s)T D (s)
]−1

D (s)T UT , (90)

in which D (s) is a diagonal matrix calculated from the singular value decomposition of X, i.e.,

X = UDVT , (91)

by setting all but the s-th subset of singular values equal to 0, and, in the same way, the optimal

s is selected to be s = argmin
s

GCV(s).

It can be found in the literature many other variants of linear regression based on principal

components or with close connections to it with the objective to produce biased estimates to

remove colinearities and/or improve the accuracy of the fit. For example latent root regression

Midi and Hua (2009) and partial least squares, PLS, Garthwaite (1994). However, based on

the discussion driven by Jolliffe (2002), there is no evidence that any of these methods are

absolutely superior to others in the comparative studies published.

F.5.4 Penalized Least Squares: A Unified Approach

As we explained and discussed in the last sections, a key issue in least squares regression

is to control the size, i.e., the norm of the least squares estimator vector β̂, in order to balance

bias an variance and to find a more stable and accurate model.

Common constraints are added to the ordinary least squares problem, for example the

sum to unit and/or the positivity of the coefficients, i.e.,

p
∑

i=1

βi = 1 and βi ≥ 0 .

In these cases the problem now is known as constrained least squares regression.

By using a slightly different approach, the least squares problem can be stated as an

optimization problem, where the objective is to find β̂ that minimizes a suitable function of

‖β‖, under the constraint y = Xβ, for instance, by following the derivation proposed in Fang

185

et al (2006),

‖β‖2 + λ0 ‖y −Xβ‖2 , (92)

where ‖·‖ is the Euclidean norm and λ0 is a Lagrange multiplier, and by considering this

problem as a penalized sum of least squares

1

2
‖y −Xβ‖2 + λ ‖β‖2 , (93)

where λ now is referred to as a regularization parameter or tunning parameter. The solution of

(93) can be expressed as

β̂λ =
(

XTX+ 2λIp
)−1

XTy , (94)

where Ip is the identity matrix of order p. As can be noted, this solution is nothing but the

ridge least squares estimate, that we presented and discussed previously.

Therefore the concept of penalized least squares allows to extend the concept of variable

and model selection, since variable selection can be stated as a type of regularization problem.

By considering other penalty functions, let us define a general penalized least squares as

Q (β) =
1

2
‖y −Xβ‖2 +N

p
∑

i=1

Pλ (|βi|) , (95)

where Pλ (·) is a pre-specified nonnegative penalty function, and λ is a regularization param-

eter, which may depend on N and can be chosen by any data dependent criterion such as

cross-validation. The penalized least squares minimization problem leads to a penalized least

squares estimator. The regularization parameter λ controls the level of bias and variance and,

eventually the complexity of the model, i.e., when λ increases the model tends to be simpler

(more parsimonious) and the opposite is also true.

Many traditional variable selection methods can be derived in the form of penalized least

squares, by choosing suitable penalty function Pλ (·) and the regularization parameter λ. For

instance, by using the L0 penalty

Pλ (|βi|) =
1

2
λ2I (|βi| 6= 0) , (96)

where I (·) is the indicator function, i.e.,

I (ξ) :











1 if ξ ∈ χ
0, otherwise.

. (97)

If we consider for example the variable selection methods cited in Section F.4, i.e., Mallows Cp

AIC, BIC, φ -criterion and RIC, and apply the general form in Equation (96) it is possible to

define specific formulas for λ, as function of the variation σ, the number of samples N and/or

the number of selected coefficients s. See Fan and Li (2001) and Fang et al (2006) for a good

186

account on these methods and their connections to the penalized least squares.

By using other penalty forms, different methods can be proposed, for instance, the Lq

penalty, as proposed by Frank and Friedman (1993), also known as bridge regression

Pλ (|βi|) = λ |βi|q , q > 0, (98)

and the so called LASSO (least absolute shrinkage and selection) algorithm, by Tibshirani

(1996), which is based on the L1 penalty in the form

Pλ (|βi|) = λ |βi| . (99)

As detailed by Breiman (1996), variable selection methods in regression suffer from several

drawbacks, like computational cost and lack of stability. Motivated to drive these issues, Fan

and Li (2001) proposed the SCAD (smoothly clipped absolute deviation) penalty and compared

its performance with other methods for variable selection. They advocate that SCAD is an

improvement by saving computational cost and resulting in a continuous solution to avoid

unnecessary modeling variation and excessive introduction of bias.

The SCAD penalty is then defined as follows. Suppose that the initial value β0 obtained

from ordinary least squares solution is close to the minimizer of Equation (95). If βi0 is close

to zero, then set βi0 = 0 and the penalty function is estimated in the neighborhood of β0 (i.e.,

by Taylor’s series expansion) as

Pλ (|βi|) ≈ Pλ (|βi0|) +
1

2

{

P ′

λ (|βi0|)
|βi0|

}

(

β2
i − β2

i0

)

, for βi ≈ βi0 , (100)

with the first derivative of penalty function given by

P ′

λ (βi) = λ

{

I (βi ≤ λ) +
(aλ− βi)+
(a− 1)λ

I (βi > λ)

}

, (101)

for some a > 2 and βi > 0 and I (·) the indicator function.

In this way, Pλ (|βi|) is defined continuous and differentiable up to second order, a property

that provide advantages over L0 and L1 penalties, for example, in terms of stability, moderate

bias and computational cost, as discussed in Fan and Li (2001). The final solution for least

squares by SCAD penalty is driven by an iterative process similar to ridge regression. See

details of this algorithm in Fan and Li (2001) or Fang et al (2006). The convergence properties

of this algorithm was studied and presented in Hunter and Li (2005).

In Fang et al (2006) it is presented a detailed explanation on penalized least squares meth-

ods like, SCAD, LASSO in comparison to stepwise regression by F -statistic (as in Efroymson

algorithm), AIC, BIC RIC and φ-criterion. In one application example in regression with 6

variables, presented in Fang et al (2006) (pp. 259-261), surprisingly all the other implemented

187

variable selection yielded exactly the same regression coefficients except LASSO. In this ex-

ample, LASSO slightly shrunk the regression coefficients and yielded a slightly larger sum of

squared errors.

Finally, variable selection methods is a large front of research in least squares approxi-

mation field. Miller (2002) presented an extensive review on variable selection in regression

problems and this is still a subject of active research, as can be seen in the recent publications,

for instance Ng (2012) which states that: “The variable selection is by no means solved.” and

Scheipl et al (2013) that reinforces that there is still a wide and open field for future research

in variable and function selection in multivariate regression.

F.6 Other Least Squares Variants to Improve Accuracy

F.6.1 Effect of the Intercept Term

Let us recall the definition of linear ensemble, i.e.,

ŷens (wi , x) = w0 +
M
∑

i=1

wiŷi (x) . (102)

The majority of methods does not take into account the intercept term, or the constant w0 for

generating the linear ensemble of models, i.e., w0 = 0.

In the study developed by Hashem (1993), it was remarked the effect of the intercept in the

accuracy of the final ensemble of neural networks. They identified that for well-trained network

models, the optimal sum of weights tends to one and the constant term tends to zero. However,

for poorly trained networks, the sum of optimal weights is far from one and the constant term

is significantly different from zero. The authors noted that these results evidenced the role of

ensemble in the approximation in case of poorly trained networks and, on the contrary, the

only “fine-tuning” role of the ensemble in case of well trained networks.

In regression analysis this effect of intercept is also known, as can be viewed in Figure 64.

As discussed by Montgomery et al (2006), the effect can be significant specially when data lie

in a region far from the origin. In many cases a model with intercept provides a much better

fit in the region of space where the data were collected.

Therefore there is no reason a priori to neglect the intercept term in the ensemble models.

Since it is generally fast to generate the linear ensemble, it can be a good practice to check

whether the intercept term improves the accuracy of approximation or not.

188

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Effect of Intercept Term in Linear Regression

x

y
 =

 f
(x

)

Non−intercept Model
y = β

1
x

Intercept Model

y = β
0

*
 + β

1

*
x

Figure 64: Difference of considering or neglecting the intercept term in regression for one
dimensional problem.

F.6.2 Generalized Least Squares

In the linear regression equation, i.e.,

y = Xβ + ε , (103)

the basic assumption is that the random errors are normally and independently distributed

(NID), with zero mean and finite variance, i.e., εi ∈ NID(0, σ2), which means, in other words,

that the errors are uncorrelated and have constant variance, or

Var (ε) = σ2I , (104)

where I is the identity matrix of order N .

In many cases these assumptions do not hold and the observations y should be correlated

and have unequal variances, i.e.,

Var (ε) = σ2Σ , (105)

where Σ is a general (N ×N) matrix , the variance-covariance matrix, with distinct diagonal

terms and off-diagonal terms nonzero.

In situations like that, the least squares estimator β̂ =
(

XTX
)−1

XTy is not as accurate

as expected and assured by Gauss-Markov theorem. Therefore some modifications to least

squares solution are necessary in order to make the estimation reasonable.

Let us assume that it is possible to define a linear matrix transformation, as follows

Gy = GXβ + Gε . (106)

189

As direct consequence, we have

β̂G =
(

XTGTGX
)−1

XTGTGy and Var (Gε) = σ2GΣGT . (107)

In order to make the error assumptions true, we need to force

Var (Gε) = σ2GΣGT = σ2I. (108)

Then, since Σ is symmetric and positive definite, by the variance-covariance definition, thus it

can be diagonalized as Σ = SΛST , where S and Λ are the corresponding matrices of eigenvec-

tors and eigenvalues of Σ.

Since Σ− 1

2 = SΛ− 1

2ST , then Σ− 1

2Σ
(

Σ− 1

2

)T
= I, therefore G must be proportional to

Σ− 1

2 , i.e.,

G = νΣ− 1

2 , (109)

for some constant ν.

Now, for this choice of G, the assumptions on the error variance hold and the generalized

least squares estimator of β is given by

β̂gls =
(

XTΣ−1X
)−1

XTΣ−1y with Var
(

β̂gls

)

= σ2
(

XTΣ−1X
)−1

. (110)

In practice, the problem is on how to define the covariance matrix Σ. In general, this

matrix is not known a priori, or even in some cases Σ is found to be singular. Therefore it must

be estimated based on convenient assumptions regarding the errors ε shape or structure on their

variances. In this sense, when Σ is estimated, the method is known as feasible generalized least

squares.

This kind of problem commonly arises in time series analysis in econometrics, for example.

Further details on generalized least squares theory and methods to estimate Σ can be found in

Kuan (2012) and Amemiya (1985).

In general, the solution for generalized least squares problems is carried on with an iter-

ative process. The first step is the ordinary least squares and in the sequence Σ is estimated

in order to get the feasible generalized least squares estimator β̂fgls. The method is repeated

until some convergence criterion is fulfilled, for example, at the iteration (k + 1)

max
i

∣

∣

∣β̂i,(k+1) − β̂i,(k)
∣

∣

∣

∣

∣

∣β̂i,(k)
∣

∣

∣

< ξ , (111)

for the i-th component of β̂ and ξ is the tolerance, which in general is set to 10−8.

In the related bibliography, Amemiya (1985), it is possible to find different approaches

to estimate Σ, based on the correlation pattern assumed for the errors. The multicollinearity

190

problem in least squares is mainly related to linear dependencies on the columns of the matrix

X, i.e., some level of redundancy in the variables. On the other hand, correlation in the errors

is in general associated to linear dependencies on the lines of X, i.e., some redundancy in the

observations of yi. The redundancy in the observations is common to arise in problems where

the data are collected repeatedly across the time, which is proper to time series analysis in

Economics, for instance.

In other contexts, the correlation of yi or εi is not existent or it is not severe and thus

it can be neglected. That is our case, since the data is generated by designed experiments

methods (DOE) and the uniqueness of the lines of X is in general forced. On the other hand,

we have no control on the variance of εi and it is not possible to assure that it will be constant

for each line i.

In cases like that, where is reasonable to assume uncorrelation of εi and non constant

variance, it is possible to assume Σ−1 as a diagonal matrix W, with distinct terms on the

diagonal. This method is known as weighted least squares, since each line is weighted by it

respective variance, then the least squares estimation is

β̂wls =
(

XTWX
)−1

XTWy with Var
(

β̂wls

)

= σ2
(

XTWX
)−1

, (112)

where W is given by

W =





















w11 0

w22

. . .

0 wNN





















, (113)

and thus,

Var (ε) = σ2W−1 . (114)

Now, the question is centered on the estimation of the N weights wii. See for example Weisberg

(1985) for a discussion on different methods for this purpose.

One feasible approach is to regress the residuals ei = yi − ŷi, in terms of the variables xi,

e = Xβe, (115)

and then estimate Var (e) by

Var (êi) = σex
T
i

(

XTX
)−1

xi, (116)

with σe estimated by

σ̂e =
eTe− β̂T

eX
Te

N − p . (117)

191

And finally, W is estimated by

W =



























1

Σ̂11

0

1

Σ̂22
. . .

0
1

Σ̂NN



























, (118)

with Σ̂ii = Var (êi).

The most widely used procedure is the iteratively reweighted least squares, IRLS. The

starting point is to perform an ordinary least squares and estimate the coefficients β̂0 and the

weighing matrix W0. Then process iterates by reestimating βk and Wk, i.e.,

β̂k+1 =
(

XTWkX
)−1

XTWky , (119)

until some convergence is achieved, that can be based on Equation (111), i.e., the percent

variation of coefficients β̂k+1, with respect to the previous step, i.e., β̂k.

In this way, after the convergence of the iterative process, the weighted least squares

solution β̂wls is expected to be more accurate than the ordinary least squares β̂0, when the

errors are not correlated and their variances are not constant.

F.6.3 Lp-Norms and Robust Regression

When the assumption of normally distributed output y in the linear regression model

holds, the method of least squares provides estimates with good statistical properties. However,

there are many situations where this assumption is not realistic and the distribution of y is

clearly nonnormal and/or there are data points (i.e., outliers) that affect the final regression

model accuracy.

In physical measurements, the outliers should be spurious data, and, whenever is possible,

they are removed from the sampling space. On the other hand, there are several situations

that these points cannot be considered as outliers, because they are part of the deterministic

problem, as for instance in highly nonlinear phenomena, like in vehicle crash simulations or CFD

analyses. In these cases, other methods or variants of least squares solutions, less sensitive (or

more robust) to the presence of outliers, must be applied.

In order to make an illustration, let us see the response pattern of some numerical bench-

mark and engineering functions, by means of normal probability plots. The graphs in Figure

65 present the sampling distribution of the response y of benchmark functions from nv = 2

192

to nv = 10 variables, and the number of points in the sampling space are set in two levels,

N = 10nv (graphs on the left) and N = 100nv (graphs on the right). All the points have been

generated by using optimized latin hypercube sampling by means of the the Matlab function

lhsdesign, with maxmin criterion and iterations = 1000. The details of the benchmark

functions can be found in the Appendix D.

When the distribution can be considered normal, the data in the normal plot should lie

in a straight line or a nearly straight line in the range of interest. It can be observed that

the normality assumption is not reasonable for most of the functions displayed, with moderate

sampling points density, i.e., N = 10nv, which is a usual value for metamodeling purposes in

engineering applications.

Even in extremely high densities, N = 100nv (which is not usual or should be unfeasible

in practice), the normal distribution is not realistic in the whole data ranges. In addition, this

behavior is not dependent on the number of variables but on the problem itself, as can be

observed for instance in the response for Nowacki Bending (2 variables), Figs. 65 (e) and (f),

with a nonnormal distribution and on the contrary, the LiftSurf Weight response (10 variables),

Figs. 65 (g) and (h), with a nearly normal distribution.

By using robust regression methods, the nonnormality issue can be handled. A robust

procedure is one that make the least squares solution insensitive or less sensitive to outliers or

the so called “heavy-tailed” distributions, such as the ones shown in Figure 65. In addition

to insensitivity to this kind of distribution or outliers, a robust estimation procedure should

provide the same results as ordinary least squares when the data range is normal and there are

no “outliers”.

The literature regarding robust regression is vast and a lot of classes of robust procedures

have been proposed. See for example the books by Huber and Rochetti (2009) and Rousseeuw

and Leroy (2003). In this work we will follow the derivation for robust regression presented in

Montgomery et al (2006), specifically the class of robust methods known as M-Estimators.

The first regression method developed with robustness property is the least absolute devia-

tion, also known as least modulo. As described by Björk (1996), there is a historical controversy

regarding the invention of least squares methods. It is attributed to Laplace in 1799, the regres-

sion by the principle of minimizing the the sum of absolute errors, i.e.,
∑N

i=1 |ei|, or L1-norm.

The algebraic principle of what is known as least squares i.e.,
∑N

i=1 e
2
i or L2-norm, was first

published by Legendre in 1805, and Gauss claimed that himself devised the statistical analysis

193

of least squares as a better solution than least absolute errors in 1795.

According to Montgomery et al (2006), in 1887 F. Y. Edgeworth argued that least squares

was overly influenced by large outliers, issue that could be solved by using L1-norm. In this

sense, the L1-norm regression is thus a special case of the family of Lp-norm regression, in which

the model parameters are chosen to minimize
∑N

i=1 |ei|p, where 1 ≤ p ≤ 2, and the problem can

be formulated and solved by means of nonlinear programing techniques.

In the cases that normal distribution is not a valid assumption, it can be reasonable to

model the errors by another convenient distribution. Of course the distribution pattern is not

known in advance, but after running an ordinary least squares, for example, it is possible to

infer the error distribution by normal probability plots or another convenient approach and

then proceed to refining the approximation iteratively. The L1-norm regression problems arises

naturally from the maximum-likelihood approach with double-exponential error distribution

modeling, as described in Montgomery et al (2006).

194

0 20 40 60 80 100 120 140 160 180 200

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

Data

P
ro

b
a
b
ili

ty

Normal Probability Plot, Branin−Hoo 20pts

(a) Branin-Hoo, nv = 2, N = 20.

0 20 40 60 80 100 120 140 160 180 200

0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997

Data

P
ro

b
a
b
ili

ty

Normal Probability Plot, Branin−Hoo 200pts

(b) Branin-Hoo , nv = 2, N = 200.

0 0.5 1 1.5 2 2.5

x 10
6

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

0.997

Data

P
ro

b
a
b
ili

ty

Normal Probability Plot, ExtRosenbrock 90pts

(c) Ext. Rosenbrock, nv = 9, N = 90.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

0.001

0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997

0.999

Data

P
ro

b
a
b
ili

ty

Normal Probability Plot, Ext. Rosenbrock 900pts

(d) Ext. Rosenbrock, nv = 9, N = 900.

−2 0 2 4 6 8 10 12 14 16

x 10
8

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

Data

P
ro

b
a
b
ili

ty

Normal Probability Plot, Nowacki Bend 20pts

(e) Nowacki Bending, nv = 2, N = 20.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
9

0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997

Data

P
ro

b
a
b
ili

ty

Normal Probability Plot, Nowacki Bend 200pts

(f) Nowacki Bending, nv = 2, N = 200.

200 250 300 350 400
0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

0.997

Data

P
ro

b
a
b
ili

ty

Normal Probability Plot, LiftsurfW 100pts

(g) Liftsurf W, nv = 10, N = 100.

150 200 250 300 350 400

0.001

0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997

0.999

Data

P
ro

b
a
b
ili

ty

Normal Probability Plot, LiftsurfW 1000pts

(h) Liftsurf W, nv = 10, N = 1000.

Figure 65: Normal Probability plots for numerical benchmarks and engineering functions with
different number of variables, nv and number of sampling points, N . Straight line indicate
perfect normal distribution of data.

195

In this way, it is possible to define a class of robust estimators that minimize a function

ρ (ei), for example,

min
β

N
∑

i=1

ρ (ei) = min
β

N
∑

i=1

ρ

(

yi − xT
i β

s

)

, (120)

where xi denotes the i-th row of X and s is a tuning parameter to properly scale the errors. A

common choice of for s is

s =
1

0.6745
median(|ei −median (ei)|) , (121)

that leads to unbiased estimator of the variance σ for large number of samples N .

This kind of estimator is called M-Estimator, where M stands for maximum-likelihood.

Therefore, with appropriate choices of ρ (ei) to model the error distribution, it is possible to find

different estimators to model the problem by regression. If one set for instance, ρ (z) = 1
2
z2,

−∞ < z < ∞, and s = 1, the standard least squares estimator is achieved. Several other

functions ρ (z) can be defined, and the most popular are: Huber’s t, Hamsay Ea, Andrews’

wave and Hampel’s 17A. The functions ρ (z), also called influence functions, differ by the

softness or severity when damping the effect of outliers in the least squares response. See

Montgomery et al (2006) for details on these functions.

The minimization procedure in Eq. (120) can be handled by nonlinear optimization

techniques, but the traditional procedure is the iteratively re-weighted least squares, IRLS,

as in Equation (119), for the weighted least squares procedure. The starting point is to lead

a ordinary least squares and estimate the coefficients β̂0, the scale parameter s. Then the

process iterates by re-estimating βk and the matrix Wk, until convergence is achieved. In

matrix notation,

β̂k+1 =
(

XTWkX
)−1

XTWky , (122)

where Wk is a N ×N diagonal matrix of “robust weights” defined by

wii(k) =



















ψ
(

z̃i(k)
)

z̃i(k)
if z̃i(k) 6= 0

1 if z̃i(k) = 0

, (123)

where z̃i(k) =

(

yi − xT
i β̂k

)

sk
and ψ (z) =

dρ (z)

dz
. As stated by Montgomery et al (2006), usually

only a few iterations are required to achieve convergence. Therefore, depending on the magni-

tude of the errors, represented by z̃i, and the shape of the function ψ (z), then different weights

wii are applied. In other words, the higher the error, the lower the weight.

There is no general agreement about the estimation of the variance of the robust coef-

196

ficients β̂rob. There are many formulas for this purpose, based on different assumptions, but

there is no consensus on which one is the best. One common estimate is

Var
(

β̂rob

)

=

N
∑

i=1
wi

(

yi − xT
i β̂
)2

N − p
(

XTWX
)−1

. (124)

In Figure 66 it is shown a hypothetical example by comparing standard least squares

solution and robust regression. The 100 scatter points has been generated by adding random

normal noise to the trend line (y = 10 − 2x). The outliers have been artificially generated by

modifying the response of the last 5 points. Note that the standard least squares solution is

affected by the presence of outliers, i.e., the LS regression line (y = −16.52 − 1.19x) is moved

in the direction of the outliers, in order to balance the vertical distances, since the method

considers equal weights for all the errors. On the other hand, by applying different weights wii

for the errors, the robust regression line (y = 10.81− 2.04x) “ignores” the presence of outliers

and it better approximates the “true trend line” of the data if we remove the outliers and apply

standard least squares to the remaining points, i.e., (y = 10.05− 2.00x).

0 20 40 60 80 100 120 140 160

−200

−150

−100

−50

0

50

x

y

Standard Least Squares vs. Robust Regression

Outliers

Standard LS

Robust Regression

Figure 66: Comparison between least squares and robust regression.

As remarked by Montgomery et al (2006), in practical applications of regression the two

more frequent problems encountered are nonnormality of the observations and multicollinearity.

Although both issues are from different nature and sources, in a significant number of applica-

tions, nonnormal distributions (with or without outliers) and lack of linear independence of the

variables occur simultaneously. Several authors have suggested that either robust and biased

estimation methods should be sufficient for handling both issues at same time. In addition, it is

worth noting that robust regression estimates are frequently unstable when X is ill-conditioned,

thus it would be desirable to have a technique for solving both problems at same time.

197

If we rewrite the robust minimization, by adding a constraint as in ridge regression

min
β

N
∑

i=1
ρ

(

yi − xT
i β

s

)

subject to βTβ ≤ d2
, (125)

where the radius d depends on the ridge parameter k, then the optimum solution is a ridge

robust estimator β̂RR.

The IRLS algorithm can be modified by augmenting the matrix X and vector y

XA =







X
√
kIp





 , yA =











y

0p











, (126)

with Ip and 0p the identity matrix of order p × p and null vector of order p × 1, respectively,

and then, by changing the robust iteration procedure to estimate, for a certain ridge parameter

k, i.e.,

β̂j+1 =
(

XT
AWjXA

)−1
XT

AWjyA , (127)

and then, by using this modified procedure, the ridge robust estimator β̂RR is obtained and it

is possible to handle both multicollinearity and nonnormal data simultaneously.

F.6.4 Total Least Squares

The ordinary least squares method assume that the columns of the X matrix, i.e., the

input variables, are error free and all the errors are confined to the right hand side term, i.e.,

the response vector y (the output variable). However, in many applications this assumption is

not realistic, i.e., both X and y are contaminated by noise and the ordinary least squares solu-

tion is not accurate anymore. This kind of problem arises in several fields, for example: signal

processing, modal and spectral analysis, linear system theory, system identification and astron-

omy. See the review Markovsky and van Huffel (2007) and the book van Huffel and Vandewalle

(1991) for a good account on the areas and applications that this problem is common.

Motivated to solve this issue, 40 to 50 years ago, statisticians developed methods such as

“orthogonal regression”, “errors-in-variables models” and “measurement errors”. In fact, it is

attributed to R. Addock in 1877 the first development in this sense, apud Markovsky and van

Huffel (2007). More recently, in the field of numerical analysis, this kind of problem has been

studied and the solution formalized in terms of singular value decomposition, SVD, by Golub

and van Loan (1980), where the term “total least squares” has been first used.

The method is traditionally generalized to the multivariate case, i.e., the output is a

matrix Y of order (N × d), where N is the number of observation and d is the number of

198

different response vectors and (N > d). For simplicity, let us concentrate first on the univariate

case, i.e., d = 1. The problem now is that both X and y are prone to errors, i.e., the matrix

∆X and the vector ∆y, respectively

(X+∆X)β = y +∆y + ε, (128)

and the classical total least squares solution looks for the minimal correction matrix ∆X and

vector ∆y, in the following optimization problem

min
∆X, ∆y

‖[∆X ∆y]‖F , subjected to (X+∆X)β = y +∆y , (129)

where ‖A‖F =
√

tr (ATA) is the Frobenius norm of a matrix A.

Thus, differently to ordinary least squares, that minimizes the Euclidean norm of the error

in the response vector y, both errors in the variables matrix X and vector y are minimized in

the Frobenius norm sense, when total least squares is applied. The total least squares estimator

β̂tls is, in this way, the solution for the optimally corrected system of equations

X̂β = ŷ , (130)

with X̂ = (X+∆X) and ŷ = (y +∆y).

It is shown by Golub and van Loan (1980) that the solution of total least squares can

be driven by singular value decomposition (SVD). By following the notation and derivation

presented in van Huffel and Vandewalle (1987), let the SVD of the N × (p+ 1) augmented

matrix Ξ = [X y] be given by

Ξ = ÛΣ̂V̂T , (131)

with the definitions






































Û = [û1, · · · , ûp+1] ûi vector of order (N × 1) ,

V̂ = [v̂1, · · · , v̂p+1] ûi vector of order (p+ 1)× 1 ,

ÛT Û = V̂T V̂ = Ip+1 Û and V̂ are unitary matrices ,

Σ̂ = diag (σ̂1, · · · , σ̂p+1) with σ̂1 ≥ · · · ≥ σ̂p+1 ,

(132)

where ûi and v̂i are respectively the right and left singular vectors and and σ̂i the singular

values of the augmented matrix Ξ.

It is shown that, if σ̂p > σ̂p+1 (unique singular values) and y is not orthogonal to ûp+1,

then the total least squares estimator is

β̂tls =
(

XTX− σ̂2
p+1I

)−1
XTy , (133)

or, by using the singular components (values and vectors) of Ξ,

β̂tls =
p
∑

j=1

(

σ̂2
j − σ̂2

p+1

)−1
σ̂j
(

ûT
i y
)

v̂j . (134)

199

If σ̂p+1 coincides with other singular values of Ξ, the solution is a linear combination of the

corresponding right singular values, such that β̂tls has minimum norm in the Frobenius sense.

See van Huffel and Vandewalle (1991) for proofs and details.

In Figure 67, it is presented a geometrical interpretation of least squares and total least

squares solution for the same data points in one dimension. The least squares (LS) try to find

the minimum sum of squared vertical distances to the regression line (errors in y), while total

least squares (TLS) try to minimize the sum of squared orthogonal distances (errors in both y

and x) and, as a consequence, the solutions (regression lines) are different.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

Least Squares Solution

LS regression line

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

Total Least Squares Solution

LS regression line

TLS regression line

Figure 67: Comparison between least squares and total least squares solution.

The relationship of total least squares estimator and classical solutions, i.e., ordinary,

ridge and principal components regression is presented in van Huffel and Vandewalle (1987).

For instance, if we compare TLS and ridge, by means of Equations (133) and (67), if k = −σ̂2
p+1,

then the total least squares solution can be interpreted as a deregularizing solution or a kind

of reverse ridge regression. In this sense, the total least squares works by removing bias from

the estimation, by subtracting the σ̂2
p+1 from XTX, when both the input and output variables

are subjected to errors.

In terms of variance, it is shown by van Huffel and Vandewalle (1991), that for independent

and identically distributed errors,

Var
(

β̂tls

)

≈ σ̂p+1

N

(

1 +
∥

∥

∥β̂tls

∥

∥

∥

2
)

(

XTX−Nσ̂2
p+1I

)−1
. (135)

Thus, the variance for total least squares estimators is larger than ordinary least squares.

However, in terms of mean squared error (i.e., variance and bias balanced) the bias reduction

and variance increasing can annihilate each other, producing comparable MSE for total least

squares and ordinary least squares, for moderate sample sizes N . In case of increasing both

200

noise level and sample sizes N , it is observed in simulation tests that total least squares solution

becomes asymptotically superior in terms of accuracy. On the other hand, since the variance

is in general higher in total least squares, it can lead to instabilities and lack of robustness in

presence of outliers in the data.

Therefore, total least squares methods has emerged as a successful method for noise

reduction in linear least squares problems in a number of applications. In a similar way to

ordinary least squares methods, a lot of research have been conducted to improve the qualities

and reduce the advantages of total least squares solutions. In this sense, variations in terms

of regularization to handle multicollinearity, non contestant variances and robust methods, for

instance, have been developed for total least squires as well. Additional connections, extensions,

and sensitivity properties of total least squares and classical solutions are described in van Huffel

and Vandewalle (1991). Recent developments and variants are discussed in Markovsky and van

Huffel (2007).

The basic algorithm to solve classic total least squares, for the multivariate case, d > 1,

can be depicted as follows, according to Fierro and Bunch (1997):

1. Compute the SVD of the augmented matrix Ξ = [X Y] and consider the partitioning

V̂ =







V̂
(p×p)
11 V̂

(p×d)
12

V̂
(d×p)
21 V̂

(d×d)
22





 ; (136)

2. A total least squares solution exists and it is unique if and only if V̂22 is non-singular and

σ̂p 6= σ̂p+1. In this case, the total least squares estimator is

β̂
∗
tls = −V̂12

(

V̂22

)†
, (137)

where A† denotes the pseudoinverse of A;

3. If V̂22 is singular, chose a truncation parameter s ≤ min (p, rank (Ξ)), such as V̂22 is full

rank and σ̂s 6= σ̂s+1, and then calculate the truncated total least squares solution, i.e.,

β̂
∗
ttls = −V̂s 12

(

V̂s 22

)†
, (138)

with the reduced (or truncated) matrix

V̂s =







V̂
(p×s)
s 11 V̂

(p×q)
s 12

V̂
(q×p)
s 21 V̂

(d×q)
s 22





 , (139)

201

with q = p − s + d. In this way, by truncated total least squares it is possible to solve

numerically rank deficient problems, i.e., when the matrix Ξ has one or more small

singular values, for instance when multicollinearity is present. By removing the small

singular values of Ξ, then a unique minimal norm solution β̂
∗
ttls can be found. The

threshold s should be adaptively defined by some iterative process. In this work, it

is adopted a similar approach for removing principal components, i.e., by normalizing

singular values

σ̄i =
σ̂i

max (σ̂i)
, (140)

and then removing the proportionally smaller ones. For example, by setting a target

value σ̄∗ > 10%, then all normalized singular values (σ̄i < σ̄∗) will be removed from the

solution. Another possibility is to use a procedure similar to the global cross-validation,

GCV, and to remove the singular values one by one. The selected solution is the one with

minimum GCV. In this case, since we have no parameter k, the GCV score is proportional

to the norm of the error, i.e.,
∥

∥

∥y −Xβ̂ttls

∥

∥

∥.

Finally, in our context, the total least squares approach can be useful to improve the

accuracy of ensemble of metamodels by least squares in two ways. First, although the original

variables x for computer models are supposed to be deterministic and error free, the least

squares solution for ensembles is defined based on modified variables, i.e., the approximate

models ŷi (x), that are stochastic realizations and, as consequence, subjected to random errors

which add noise to the matrix Ŷ in Equation (20). Second, when the multicollinearity is a

concern, this problem can be assessed by regularization procedure like the truncated total least

squares or any available variant, as discussed in Fierro and Bunch (1994) and Fierro and Bunch

(1997).

202

G Manuscripts Submitted

We include in this appendix the manuscript versions of the papers submitted for publica-

tion.

The first paper is already published and the original file can be found at the journal’s

website. In this appendix we include for reference the the accepted manuscript version.

Ferreira W.G., Serpa A.L. (2016) Ensemble of metamodels: the augmented least squares

approach. Structural and Multidisciplinary Optimization, 53(5), 1019-1046, 2016. DOI:

10.1007/s00158-015-1366-1

The second paper is still under review by the journal editors and reviewers. In this

appendix we include for reference the the last submitted manuscript version.

Ferreira and Serpa (SMO-15-0339) Ensemble of metamodels: Extensions of the least squares

approach to efficient global optimization. Structural and Multidisciplinary Optimization

(submitted/under review - ID SMO-15-0339.R1)

Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

Ensemble of Metamodels: The Augmented Least Squares
Approach

Wallace G. Ferreira · Alberto L. Serpa

Received: date / Accepted: date

Abstract In this work we present an approach to cre-

ate ensemble of metamodels (or weighted averaged sur-

rogates) based on least squares (LS) approximation.

The LS approach is appealing since it is possible to es-
timate the ensemble weights without using any explicit

error metrics as in most of the existent ensemble meth-

ods. As an additional feature, the LS based ensemble
of metamodels has a prediction variance function that

enables the extension to the efficient global optimiza-

tion. The proposed LS approach is a variation of the
standard LS regression by augmenting the matrices in

such a way that minimizes the effects of multicollinear-

ity inherent to calculation of the ensemble weights. We

tested and compared the augmented LS approach with
different LS variants and also with existent ensemble

methods, by means of analytical and real-world func-

tions from two to forty-four variables. The augmented
least squares approach performed with good accuracy

and stability for prediction purposes, in the same level

of other ensemble methods and has computational cost
comparable to the faster ones.

Keywords Ensemble of metamodels · Weighted

average surrogates · Least squares approximation

W. G. Ferreira
Ford Motor Company Brazil
CAE & Optimization Engineering
Av. Taboão, 899
09655-900, S. B. Campo, SP, Brazil
Tel.: +55-11-41744207
E-mail: wferrei7@ford.com - wgferreira@yahoo.com

A. L. Serpa
University of Campinas - UNICAMP
School of Mechanical Engineering - FEM
Department of Computational Mechanics - DMC
13083-970, Campinas, SP, Brazil
Tel.: +55-19-35213387
E-mail: serpa@fem.unicamp.br

1 Introduction

In the last three decades, the use of metamodeling meth-

ods (also known as surrogate modeling or response sur-

face methodology) to replace expensive computer sim-

ulation models such as FE (Finite Elements) or CFD

(Computational Fluid Dynamics) found in automotive,

aerospace and oil-gas industry, for example, has be-
come a common place in both research and practice

in engineering design, analysis and optimization. Ex-

tensive reviews in this area can be found in: Queipo
et al (2005), Simpson et al (2008), Forrester and Keane

(2009), Viana et al (2010) and Ramu and Prabhu (2013).

A collection of engineering research and applications
has been recently published in Koziel and Leifesson

(2013).

The effectiveness of selecting and/or combining dif-

ferent metamodels in the optimization process has been
investigated and discussed in the last years. See, for in-

stance Zerpa et al (2005), Goel et al (2007), Sanchez

et al (2008), Viana et al (2009), Acar and Rais-Rohani

(2009), Acar (2010) and Viana (2011). In most of these
studies, it is suggested that ensemble of metamodels,

or weighted averaged surrogate (WAS) models are able

to provide better accuracy than individual metamodels
working alone, and can improve the overall robustness

of the metamodel based optimization process. Besides

that, in Viana et al (2009) and Viana (2011) it is dis-
cussed that the potential gains of using multiple surro-

gate models are not guaranteed and should be limited.

In fact, as pointed out in Viana (2011), “even after

years of intensive research, surrogate modeling still in-

volves a struggle to achieve maximum accuracy within
limited resources”. In addition, as discussed by Yang

et al (2013), among the challenges in modeling and opti-

mization in the next years, (i) the best way to construct

2 Wallace G. Ferreira, Alberto L. Serpa

good surrogate models and (ii) the choice of modeling

and optimization algorithms for a given problem are
still open questions for research.

In this research, we performed a series of numerical

experiments by applying the concept of least squares

(LS) regression in order to find the optimal weights in
ensemble of metamodels. In most of the currently avail-

able methods, for instance Goel et al (2007), Viana et al

(2009) and Acar and Rais-Rohani (2009), it is neces-
sary to use specific error metrics like PRESS (predic-

tion sum of squares) to drive the process of finding the

best weights in the ensemble of metamodels. Therefore,
the LS approach is appealing in terms of lower compu-

tational cost and simple formulation. In addition, LS

methods are well known and established in statistics

field and have a series of variants developed to han-
dle, for example, multicollinearity, an inherent draw-

back that limits the accuracy of ensemble of metamod-

els.

Specifically for handling multicollinearity, we pro-
pose in this work the augmented least squares ensemble

of metamodels, a variation of the standard least squares

regression, by augmenting the matrix system in such
a way that minimizes the effects of linear dependency

among the models, inherent to calculation of the ensem-

ble weights, specially when the least squares approach

is applied.

In a second front of application, LS ensemble meth-
ods can be used within the context of efficient global

optimization. The ensemble of metamodels constructed

based on LS approach inherits the variance estimator,
which can be used in the definition of the expected im-

provement function. In summary, efficient global opti-

mization (EGO) (ref. Jones et al (1998)) is an iterative
approach that, at each optimization cycle defines one

infill point that maximizes the expected improvement,

with respect to the minimum of the objective function.

Recently, Viana et al (2013) presented the MSEGO al-
gorithm (multiple surrogates EGO), that extends the

concept of EGO by using multiple metamodels to gen-

erate several infill points in parallel.

The aim of our research is to present the findings
regarding the augmented least squares approach for en-

semble of metamodels in both prediction and optimiza-

tion purposes. In order to fulfill this objective, we di-
vided research in two manuscripts. In the present one

we will focus on the development of the LS ensem-

ble of metamodels algorithm and the numerical experi-

ments performed to verify the accuracy of the proposed
method for prediction. The optimization objectives will

be covered in a companion work, Ferreira and Serpa

(2015b), in which we will present the extensions and

results of the proposed approach in the context of EGO

algorithms and applications.

The remainder of the present manuscript will be
divided as follows. In Section 2, the metamodeling pro-

cess and the metrics used for model validation are out-

lined. The previous research in the field of ensemble

of metamodels is presented in Section 3. The concept
of ensemble of metamodels by least squares approxi-

mation and the proposed augmented least squares ap-

proach are presented and detailed in Section 4. In Sec-
tion 5 we present and discuss the results of the numeri-

cal experiments performed to validate and compare the

augmented least squares approach with other ensemble
methods. Finally, the concluding remarks are presented

in Section 6.

2 The Metamodeling Process

Most physical phenomena can be described by using a

mathematical model, such as y = f(x), where x rep-

resent an input vector of variables defined in ℜn, and

y is an output scalar variable that represents the re-
sponse f(x) being modeled. Since f(x) is costly and/or

time consuming to evaluate, as in computer simulation

models (e.g., FE and CFD) for real world applications,
the idea is to find a proper approximation ŷ(x) ≈ y(x),

also known as metamodel, surrogate or response sur-

face, that is accurate, cheap and fast to evaluate.

The iterative process of constructing approximate

models (i.e., metamodeling) should be described briefly
in five steps, as follows:

(i) Definition of Design Space: select the nv design vari-
ables x = [x1 · · · xnv

]
T

and define the bounds of

the design space, i.e., x ∈ χ. This step can be driven

by prior experience and knowledge regarding the
problem, or by a previous sensitivity analysis to pri-

oritize the most significant nv variables and respec-

tive bounds;

(ii) Experimental Design: perform a design of experi-
ments (DOE), e.g., Factorial Design, Uniform De-

sign, Latin Hypercube, etc., and generate a set of

N sampling points (or “training” points) to evalu-
ate the true function y(x);

(iii) Models Evaluation: run the true models and eval-

uate y(x) at the training points defined in step (ii);
(iv) Metamodels Creation: create the metamodel ŷ(x),

by using any available procedure, e.g.: PRS, Poly-

nomial Response Surface; RBF, Radial Basis Func-

tions; KRG, Kriging; NN, Neural Networks; SVR,
Support Vector Regression, etc.;

(v) Metamodel Validation: define a suited error metric

and test/validate the accuracy of ŷ (x). If the accu-

Ensemble of Metamodels: The Augmented Least Squares Approach 3

racy is not acceptable, iterate by adding more sam-

pling points, step (ii); or by improving the approxi-
mation method, step (iv).

In this way, by means of validated metamodels ŷ(x),
many engineering activities can be performed in a faster

way, such as: preliminary studies and graphical visual-

ization; prediction and optimization; design sensitivity

analysis; probabilistic, robust and reliability based de-
sign.

The metamodeling process for design and optimiza-

tion has been developed and matured during the last
three decades. All the five steps (i-v) outlined above

are reasonably well established in engineering design,

and the details can be found in the books of Fang et al
(2006) and Forrester et al (2008).

2.1 Metrics for Metamodel Validation

Regarding the step (v) in the metamodeling process

outlined previously (i.e., validation), several metrics can

be defined to evaluate the prediction error e(x) = y(x)−

ŷ(x), for example: maximum absolute, average, correla-
tion coefficient, etc. One common error measure adopted

is the root mean squared error, defined by

RMSE =

√

√

√

√

1

Ntest

Ntest
∑

i=1

e2i (x) , (1)

whereNtest is the number of test points used to evaluate

the prediction error.

Another common strategy, known as cross-validation,
is defined as follows. For i = 1, · · · , N , let ŷ−i denote

the metamodel constructed based on excluding the i-th

sampling point (xi, yi) from the original set (leave-one-
out). Therefore, the cross validation score or PRESS

(PREdiction Sum of Squares) is given by

CVN =
1

N

N
∑

i=1

{y(xi)− ŷ−i(xi)}
2
. (2)

In order to reduce computational cost in the cross-

validation process, the set of sampling points N can

be divided into k groups of the same size, and the pro-
cedure is calculated by removing all points in each k-th

group, instead of one single point by time. Therefore,

there is a trade-off between accuracy and computational

cost to estimate PRESS via this k-fold cross-validation.

3 Ensemble of Metamodels Background

3.1 Origins and Definitions

Concepts like ensemble of predictors, mixture of ex-

perts, committee of networks, etc., are well known in

machine learning literature. See for instance Wolpert

(1992), Hashem (1993), Perrone and Cooper (1993),
Bishop (1995) and Breiman (1996). The idea is that,

by the combination of different predictors, it is possible

to improve the final model accuracy.
In this sense, an ensemble of models is defined as

linearly weighted summation1

ŷens (wi , x) = w0 +

M
∑

i=1

wiŷi (x) , (3)

where ŷi (x) are the M available distinct models, wi are

the weights associated in the linear combination and w0

is an intercept term. If w0 = 0 and wi =
1

M
, then it is

defined the simple average ensemble (SA).

It is acknowledged to Perrone and Cooper (1993)
and Hashem (1993) the first developments on finding

optimal weights wi in the ensemble. They devised in-

dependently an approach that has been presented and
discussed in detail in the book by Bishop (1995). In

summary, by the minimization of the mean squared er-

ror (MSE) with respect to wi and with
∑

i

wi = 1 as

constraint, it follows that

wi =

M
∑

i=1

(

C−1
)

ij

M
∑

k=1

M
∑

j=1

(C−1)kj

, (4)

where the error correlation matrix C is estimated based
on a validation set of Nv sampling points as follows

Cij ≈
1

Nv

Nv
∑

n=1

[(yn − ŷi (xn)) (yn − ŷj (xn))] . (5)

It can be demonstrated that (ref. to Perrone and

Cooper (1993) or Bishop (1995) for details)

MSE (ŷens) ≤
1

M

M
∑

i=1

MSE (ŷi) , (6)

which means that: (i) the higher the number of distinct

models, the lower is expected the MSE for the weighted

average ensemble (with a factor of 1
M
); and (ii) ŷens (x)

provides the best estimate of y (x) in the mean square

sense, if the errors ei = yn− ŷi (xn) have zero mean and

are uncorrelated. In practical applications, these theo-
retical levels of MSE reduction are difficult to achieve

because the models ŷi (x) can be highly correlated. In

1 Most of the publications is focused on linear ensembles,
but it can be observed a growth of interest on nonlinear en-

semble methods, in which any type of approximation should
be used to combine the models, e.g., neural networks, support
vector regression, etc. See, for instance Yu et al (2005), Lai
et al (2006) and Meng and Wu (2012).

4 Wallace G. Ferreira, Alberto L. Serpa

spite of that, we can find in the literature results ad-

vocating 10% or higher for reduction in MSE by using
weighted ensemble of predictors.

Motivated by the potential benefits, ensemble meth-

ods for prediction is still an active area of research that
is getting maturity, as can be seen in the recent books

dedicated to this topic: Seni and Elder (2010), Zhou

(2012) and Zhang and Ma (2012).
Although ensemble methods are well known in ma-

chine learning area, specially in predictive statistics and

financial forecasting, this approach is relatively new in

the engineering field. This is what we will present and
discuss with more detail in the next section.

3.2 Ensemble Methods in Engineering Design

The first application of ensemble methods in engineer-

ing design and optimization, inspired by the work in

machine learning, is acknowledged to Zerpa et al (2005).
They proposed the estimation of the weights wi in the

linear ensemble, Eq. (3), as

wi =

1

Vi

M
∑

j=1

1

Vj

, (7)

where Vi is the prediction variance estimation V (ŷ (x))

for the i-th metamodel.

Goel et al (2007) proposed heuristic schemes for es-
timating the weights in a weighted averaged surrogate

model (WAS), for instance: PWS (PRESS weighted sur-

rogate), given by

wPWS
i =

w∗
i

M
∑

j=1

w∗
j

, (8)

where w∗
i is defined as

w∗
i = (Ei + αEavg)

β
with Eavg =

1

M

M
∑

j=1

Ej , (9)

in which Ei is the global data-based error measure for

the i-th surrogate model, in this case PRESS. The pa-

rameters (α < 1 and β < 0) control the importance of

averaging and the importance of an individual surro-
gate, respectively and it was suggested α = 0.05 and

β = −1.

Acar and Rais-Rohani (2009) estimated the weight
factors by solving a direct optimization problem of the

form:














min
wi

Err (ŷens , y)

subjected to (s.t.)

M
∑

j=1

wj = 1 ,
(10)

and Err (ŷens , y) is any selected error metric. In this

case it was used RMSE and PRESS to drive the opti-
mization.

Viana et al (2009) defined the optimal weighted sur-

rogate (OWS) by:

min
wi

MSE (ŷens) = wTCw, s.t.

M
∑

j=1

wj = 1, (11)

with the matrix Cij =
1

N
ẽTi ẽj , where ẽ is the vector

of cross-validation errors (PRESS) for the i-th and j-th

surrogates. The matrix C is similar to the one in Eq.

(4), but in Viana et al (2009) it is modified by using
cross-validation procedure, Eq. (2) , with the whole set

of N sampling points.

In all the applications mentioned up to here the

weights wi are considered constant in the design domain
(global weights). There is no restriction on defining the

weights as dependent on the location of the sampling

points (local weights), i.e., wi (x). Even though, the re-
sults published with local weights did not show remark-

able improvements, when compared with the constant

definition of weights in the design domain. See for ex-

ample Sanchez et al (2008) and Acar (2010) for more
details.

In general, most of the previous research suggests

that ensemble of metamodels, or weighted averaged sur-

rogate models (WAS), are able to provide better ac-
curacy than individual metamodels working alone. In

other words, it is advocated that weighted averaging

schemes should improve the robustness of the predic-
tions and the optimization results, by reducing the im-

pact of poorly fitted surrogates in the ensemble.

On the other hand, as discussed in Viana et al (2009),

the computational cost to calculate PRESS can become
prohibitive and, in addition, the gains in terms of re-

duction of RMSE diminishes substantially as the num-

ber of variables increases, even with a large number of

sampling points. According to this research, on the con-
trary as stated in Eq. (6), none of the ensemble methods

tested was able to reduce the RMSE more than 10% as

compared to the best model (i.e., the most accurate
in terms of PRESS). In fact, in some cases they found

that the ensemble model can be less accurate than the

best model. Therefore, for the problems tested, it was
not verified enough evidence that the combination of

models is always better than selecting the best model,

at least when PRESS is used as error metric to rank

models and drive the estimation of the weights in the
ensemble.

Finally, since there are still some controversy and

open questions, metamodeling methods for prediction

and optimization are included in the list of challenges

Ensemble of Metamodels: The Augmented Least Squares Approach 5

for research in the next years, as discussed by Yang et al

(2013).

4 Ensemble of Metamodels by Least Squares

4.1 Basic Formulation

Here it will be followed an alternative approach for cal-
culating weights in an ensemble model, by minimizing

the approximation error, without explicitly calculating

any error measure (e.g., PRESS), as discussed in the
last section.

Let us recall that a general linear regression model

(ref. Montgomery et al (2006)) can be written as

y = β0 +

nreg
∑

i=1

βizi (x) + ε , (12)

where zi (x) represents any function of the original re-

gressors (or design variables) xj , and ε is the error on
the approximation.

Then, by replacing zi(x) = ŷi(x) and βi = wi, the

linear ensemble in Eq. (3) can be rewritten as a linear

regression problem, i.e.,

y = Ŷw + ε, (13)

where y = [y1 · · · yN]
T
, Ŷ = [ŷ1 (xi) · · · ŷM (xi)] and

w = [w1 · · · wM]
T
, for N sampling points and M

metamodels.

Therefore, standard least squares estimator for w in

Eq. (13) is given by

ŵ = (YT Ŷ)−1ŶTy, (14)

and, according to the Gauss-Markov theorem, if the er-
rors ε = [ε1 · · · εN]

T
are normally and independently

distributed, with zero mean and finite variance, i.e.,

εi ∼ NID(0, σ2), then ŵ is the referred as the best

linear unbiased estimator (BLUE) of w. That is, ŵ

provides the minimum prediction error, in the least

squares sense, and has minimum variance among all
unbiased linear estimators. For proofs and details see

Montgomery et al (2006) or Björk (1996).

The solution of the N ×M set of linear equations in

Eq. (14) is well known and can be performed efficiently
by standard numerical algorithms (ref. Björk (1996)).

In this way, ŵ minimizes the errors (ei = yi − ŷiens), in

the least squares sense, without explicitly calculating
any costly error measure, like PRESS for instance.

In addition to the simple formulation and compu-

tational efficiency, another interesting property of en-

semble methods with optimal weights estimated by Eq.

(14) is that they inherit the least squares variance es-

timate V [ŷens (x)] ≡ ŝ2 (x), for the prediction at each
point x, that can be written as

ŝ2 (x) = σ̂2 [ŷ (x)]
T
(

ŶT Ŷ
)−1

ŷ (x) , (15)

with ŷ (x) = [ŷ1 (x) ŷ2 (x) · · · ŷM (x)]
T
, and

σ̂2 =
ŷT
ensŷens − ŵT Ŷŷens

N − nv

(16)

where ŷens = [ŷens (x1) ŷens (x2) · · · ŷens (xN)]T .
As we mentioned in Section 1, by means of the vari-

ance estimate, Eq. (15), it is possible to derive an ex-

pected improvement function, which is the main ingre-
dient for the application of efficient global optimization

algorithms. This branch of the research will be covered

in the companion work Ferreira and Serpa (2015b).
It is worth noting that the idea of using least squares

regression to find the optimal ensemble weights in fact

is not new. As remarked by Hashem (1993), if it is re-

moved the constraint to derive the Eq. (4), the solution
for the optimal weights is equivalent to the least squares

regression. In spite of that, in the work by Hashem

(1993) it was only applied and tested the method based
on Eq. (4). In addition, the authors remarked that, due

to the intrinsic similarity in the metamodels ŷi, then

“potential problem” of multicollinearity can take place
and it can jeopardize the final accuracy of the ensemble

predictor. Despite this observation, no further sugges-

tion or investigation on methods to solve (or at least

reduce) the multicollinearity issue have been addressed
in the work by Hashem (1993) or even in the related re-

search by Perrone and Cooper (1993) or Bishop (1995).

By means of some preliminary numerical tests with
analytical functions (up to ten variables, nv = 10), we

found that the LS ensemble method is comparable in

terms of accuracy (same level of average RMSE) and
it performs much faster (one order of magnitude or

higher) than the PRESS based ensemble methods avail-

able, as presented in Section 3.2). On the other hand,

we also observed that LS ensemble can become unsta-
ble (i.e., high variation on RMSE with different data),

specially as the number of variables increases. By us-

ing a stepwise selection procedure in the LS solution,
we found around 30% reduction in the standard devi-

ation of RMSE for the tests performed. Therefore, we

got some evidence that, by combating multicollinearity,
it is possible to improve the accuracy of the final LS en-

semble of metamodels. See Appendix B for details.

These preliminary results motivated us to a deeper

investigation regarding other available variants of least
squares methods to handle multicollinearity (e.g., ridge

regression, principal components, etc.), in order to un-

derstand if it is possible to further improve the accuracy

6 Wallace G. Ferreira, Alberto L. Serpa

and stability of the LS approach. In addition, we aim

to understand how the LS ensemble compares to the
available ensemble methods developed up to now. As

far as we could investigate, there was not found any

similar work in the literature in this sense and we aim
to contribute in this front.

4.2 The Augmented Least Squares Approach

The issue of multicollinearity in least squares regres-

sion is well known in statistics and related areas. See

for instance Montgomery et al (2006), Chap. 11, and the

list of references therein for a broad perspective on this
subject. Among the several sources of multicollinearity,

the primary ones are: (i) the data collection method

(size and distribution of sampling points) an (ii) mod-
els with redundant variables (over-defined). During the

last decades, several methods were devised for dealing

with multicollinearity in least squares problems. In gen-
eral, the techniques involve: a) gathering additional data

and b) model respecification, in order to reduce the pre-

diction errors induced by multicollinearity.In Sec. 4.3

the most traditional methods are summarized. In addi-
tion, see Appendix C for an introductory background

on this subject.

In the present section we suggest an approach based
on the idea of gathering additional data to reduce mul-

ticollinearity. In Fig. 1 we have the true response y (x)

(solid line), and four different metamodels ŷi (x) (dashed
lines). It can be observed that the prediction at the

N = 8 sampling points (circles), used to generate the

approximations, is similar for all metamodels, specially

in case of interpolating ones, in which the prediction is
the same by definition. On the other hand, the predic-

tion is much more different in the additional, Nadd = 7,

out-of-sample points (stars), which were not used to
generate the metamodels.

Let us consider two different cases. In the first one,

theN points are used to generate the metamodels ŷi (x)
and then the matrix Ŷ = [ŷ1 (xi) · · · ŷM (xi)] is as-

sembled. In the second case, the metamodels ŷi (x) are

evaluated at the Nadd points, and an augmented matrix

Ŷaug is assembled as follows

Ŷaug =





















ŷ1 (x1) · · · ŷM (x1)
...

. . .
...

ŷ1 (xN) · · · ŷM (xN)

ŷ1 (xN+1) · · · ŷM (xN+1)
...

. . .
...

ŷ1 (xN+Nadd
) · · · ŷM (xN+Nadd

)





















.

Since the predictions in the augmenting Nadd points

are expected to differ among the metamodels (as in the

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10
Approximation by Different Metamodels

x

y
(x
)

Fig. 1 Combining multiple metamodels by differ-
ent methods. Continuous line: true response y (x) =
− (6x− 2)2 sin (12x− 4); Dashed lines: metamodels by PRS,
KRG, NN and SVR; Circles: sampling points used to create
the metamodels; Stars: midpoints, out-of-sample data not
used in the approximations.

star points in Fig. 1), it is reasonable to assume that any

collinearity among the columns of Ŷ has a good chance
to be reduced in the augmented case Ŷaug, if we have

enough Nadd points to take advantage of the diversity

in the metamodel predictions in points out-of-sample.

If this conjecture is valid, the ensemble weights w

can be estimated for the augmented system as

ŵaug =
(

ŶT
augŶaug

)−1

ŶT
augyaug, (17)

with yaug =
[

y1 · · · yN | yN+1 · · · yN+Naug

]T
. Since

the linear dependency in Ŷaug is expected to be lower

than in Ŷ , then the accuracy and stability on estimat-
ing w by means of ŵaug is expected to be improved as

well.

In many practical situations of metamodeling in en-
gineering design, gathering additional points should be

time consuming, costly or even impossible. In these

cases, the whole data set of N sampling points avail-
able should be split in two parts, for example N =

Ntr + Nadd. In the sequence, the metamodels are cre-

ated based on the training data set Ntr and the weights
are then calculated based on the augmented system,

Eq. (17), with all the N points available. Therefore,

in this case it will arise a trade-off regarding the loss

of accuracy in the metamodels approximated with less
points (i.e., Ntr < N) and the possible gains of sta-

bility with the augmented approach. In this sense, the

optimal number of augmenting points, or the ideal rate

ηaug =
Nadd

Ntr +Nadd

, to balance accuracy and stability

in the least squares ensemble needs be investigated.

Ensemble of Metamodels: The Augmented Least Squares Approach 7

In summary, the augmented least squares approach

can be outlined in steps as follows:

i. Collect N = Ntr+Nadd random sampling points and

evaluate the true response y for all points collected;

ii. Generate the approximation models ŷi by using only
the Ntr sampling points;

iii. Evaluate the metamodels ŷi at all N = Ntr +Nadd

points and mount the augmented matrix Ŷaug and
the output vector ŷaug;

iv. Solve the system for the weights ŵaug with Eq. (17).

As we stated before, part of our objective is the com-

parison of the proposed augmented LS approach among
other LS variants developed to handle multicollinear-

ity. In this sense, we will present in the next section

LS variants based on model re-specification, that were
developed during the decades in order to reduce the

prediction errors, specially the ones induced by multi-

collinearity.
In addition, we will compare our proposed method

against the previous ones, summarized in Sec. 3.2. Al-

though multicollinearity is not clearly discussed in deep

on these previous works, it can be observed that in
some sense most of them also try to combat the mul-

ticollinearity effects in the ensemble, for instance by

smoothing the variance of the predictors, as in Eq. (7),
or by controlling the size of the weights by the con-

straint
∑M

j=1 wj = 1, as in Eq. (10) and Eq. (11). On

the other hand, these kind of control is not clear in
PWS, given by Eq. (8).

4.3 Least Squares Regression Variants

For brevity we will not present here the detailed formu-
lation for all the LS variants. Most of them are covered

in Montgomery et al (2006) and details regarding nu-

merical implementation are discussed by Björk (1996).

Further information, assumptions and proofs can be
found in the references listed in each topic. See Ap-

pendix C a brief background on the the main motiva-

tions that drive these methods.

Stepwise Selection: algorithms developed to add and/or

delete variables in a regression model to control the
accuracy and to reduce sources of error like multi-

collinearity. In Miller (2002) it is presented an ex-

tensive discussion on these methods. We followed
the implementation presented in Fang et al (2006)

for the variants: F -statistic by Efroymson (1960);

Akaike Information Criterion (AIC) by Akaike (1974);

Bayesian Information Criterion (BIC) by Schwarz
(1978); ϕ-Criterion by Hannan and Quinn (1979)

and Shibata (1984); and the Residual Information

Criterion (RIC) by Foster and George (1994);

Ridge Regression: originally published in the two com-

panion papers Hoerl and Kennard (1970a) and Ho-
erl and Kennard (1970b) to handle nonorthogonal

data (i.e., multicollinear). Several algorithms have

been proposed in the literature for finding the best
ridge estimator, as the generalized cross-validation

(GCV) procedure by Golub et al (1979), that is one

of the most accepted for automation;
Principal Components Regression: a deep and extensive

discussion on principal components analysis can be

found in Jolliffe (2002). In summary, the original

variables xi are transformed to the principal com-
ponents (PC) space zi and then the less significant

PC can be identified and removed to reduce the mul-

ticollinearity in the system. As in ridge regression,
several algorithms have been proposed as well for

removing the less significant PC. Golub et al (1979)

proposed a variant of GCV suited to principal com-
ponents selection and it is applied here;

Constrained and Penalized Least Squares : in this cathe-

gory, constraints should added to the ordinary least

squares problem, for example the sum to unit and/or

the positivity of the coefficients, i.e.,
p
∑

i=1

βi = 1 and

βi ≥ 0 and the problem now is known as constrained

least squares regression. In order to unify differ-

ent constrained approaches, a general penalized least

squares can be defined (ref. Fan and Li (2001) and

Fang et al (2006)). The LASSO (least absolute shrink-

age and selection) algorithm, by Tibshirani (1996)
and the SCAD (smoothly clipped absolute devia-

tion) by Fan and Li (2001) are in this category. We

followed the implementation presented in Fang et al

(2006);
Generalized and Weighted Least Squares : the ordinary

least squares equation is modified by adding a weigh-

ing matrix, in order to control the variance of the
regression coefficients. The most common procedure

is the iteratively re-weighted least squares, IRLS. We

followed the procedure presented in Montgomery
et al (2006). See Weisberg (1985) and Amemiya

(1985) for different weighing schemes.

Robust Regression: these variants are adopted when the

data are not normally distributed or there are pos-
sible outliers. The literature regarding robust re-

gression is vast and a lot of classes of robust pro-

cedures have been proposed (ref. Rousseeuw and
Leroy (2003) and Huber and Rochetti (2009)). We

adopted the class M-Estimators presented in Mont-

gomery et al (2006);
Total Least Squares : if both input and output matri-

ces are contaminated by noise, the ordinary least

squares solution can not be accurate (ref. van Huf-

8 Wallace G. Ferreira, Alberto L. Serpa

fel and Vandewalle (1991) and Markovsky and van

Huffel (2007)). When total least squares method is
applied, both errors in inputs and outputs are min-

imized in the Frobenius norm sense. The basic al-

gorithm to solve total least squares is detailed in
Fierro and Bunch (1997).

4.4 Effect of the Intercept Term

The majority of ensemble methods based on the defini-
tion in Eq. (3) does not take into account the intercept

term for generating the linear ensemble of models, i.e.,

it is assumed w0 = 0.

In Hashem (1993) it was remarked the effect of the
intercept in the accuracy of the final ensemble of neural

networks. They identified that for well-trained network

models, the optimal sum of weights tends to one and
the constant term tends to zero. However, for poorly

trained networks the sum of optimal weights is far from

one and the constant term can be significantly different
from zero.

In linear regression analysis this effect of intercept

term is also known. As discussed by Montgomery et al

(2006), the effect of intercept can be significant, spe-
cially when data lie in a region far from the origin of

the design space.

Therefore, there is no reason a priori to neglect the
intercept term in the ensemble models and it can be

a good practice to check whether the intercept term

improves the accuracy of approximation or not.

5 Numerical Experiments

In this section we present the numerical experiments

performed to validate and compare the performance

proposed augmented LS approach. In summary, the
specific objectives are:

– to investigate the ideal number of augmenting points,
or the rate ηaug, to create the LS ensemble;

– to verify the effect of the number of metamodels in

the set to generate the LS ensemble;
– to compare the augmented LS approach with the

existent LS variants;

– to verify the effect of the intercept term in the ac-
curacy of the final LS ensemble model;

– to compare the augmented LS approach with the

existent ensemble methods, in terms of accuracy and

computational cost.

5.1 Computer Implementation

We used as platform for implementation and tests the

SURROGATES Toolbox v2.0 (ref. Viana (2009)), which

is a Matlab2 based toolbox that aggregates and extends

several open-source tools previously developed in the
literature for design and analysis of computer experi-

ments, i.e., metamodeling and optimization (including

EGO variants at v3.03). The SURROGATES Toolbox
uses the following collection of third party software:

SVM by Gunn (1997), DACE by Lophaven et al (2002),

GPML by Rasmussen and Williams (2006), RBF by
Jekabsons (2009), and SHEPPACK by Thacker et al

(2010). The compilation in a single framework has been

implemented and applied in previous research by Viana

and co-workers, as for example Viana et al (2009) and
Viana (2011).

We implemented Matlab routines for the LS vari-

ants, as described in Section 4, and incorporated them
to the function srgtsWAS, i.e., the corresponding SUR-

ROGATES Toolbox function for creating WAS mod-

els (weighted averaged surrogates). For the ordinary
LS solution and robust regression, we used the respec-

tive Matlab built-in functions regress and robustfit.

We adapted the Matlab implementation by Fang et al

(2006) for stepwise selection and penalized least squares.
For all the other LS families and variants we developed

our own algorithms, based on the references listed in

Section 4.3.

2 Matlab is a well known and widely used numerical pro-
graming platform and it is developed and distributed by The
Mathworks Inc., see www.mathworks.com.
3 Further details and recent updates of SUR-

ROGATES Toolbox refer to the website:
https://sites.google.com/site/srgtstoolbox/.

Ensemble of Metamodels: The Augmented Least Squares Approach 9

Several LS variants were implemented and tested in

preliminary studies. For brevity, we will present here
only the most representative for each family. In Tab.

1, the respective acronyms and descriptions of the LS

variants compared are presented.

Table 1 Least squares variants: acronyms and descriptions.
As in LS-a, the suffix “-a” can be added to all LS variants to
indicate the use in conjunction to the augmented approach.

Acronym Description

LS Ordinary Least Squares
LS-a Augmented LS
S Stepwise Selection, F-statistic

C Constrained LS:
∑

i
wi = 1 and wi ≥ 0

R Ridge Regression with GCV criterion
P Principal Components with GCV criterion
W Weighted Least Squares
T Total Least Squares
Ro Robust Regression with Huber function

The numerical implementation has been performed
with Matlab v2009, on a computer Intel(R) Core(TM)

i7-3610QM, CPU 2.30GHz, 8Gb RAM, 64bits, and op-

erational system Windows 7.

5.2 Experimental Setup

Table 2 Basic specifications for the experiments. nv: number
of variables, Ntr: training points, Nadd: augmenting points
and Ntest: test points to calculate RMSE.

Test Problem nv Ntr Nadd Ntest

Branin-Hoo 2 20 10 5× 2000
Hartman 3 30 15 5× 2000
Hartman 6 60 30 5× 2000
Ext. Rosenbrock 9 110 10 5× 2000
Dixon-Price 12 190 95 5× 2000
Truck Durability 12 120 30 30
Truck Dynamics 12 120 30 30
Car NVH 30 100 30 30
Car Crash 44 200 50 50

The approach adopted here for the numerical exper-

iments follows the methodology traditionally applied in
the field. In particular, we combined the strategies used

in Viana et al (2009) and Acar and Rais-Rohani (2009)

to perform our tests.

The ensemble of metamodels were composed with

four (M = 4) distinct models: PRS, KRG, RBNN and

SVR, by considering the setup presented in Tab. 3. Re-
fer to SURROGATES Toolbox manual, Viana (2009),

for details on the equations and tuning parameters for

each of these metamodeling methods.

We tested analytical benchmark functions and also

responses from engineering applications in the range

of number of variables from nv = 2 to nv = 44. The

details regarding each test problem are presented in the
Appendix A.

The quality of the approximation by metamodels is

strongly dependent on the number and distribution of
sampling points defined in the design space (i.e., de-

sign of experiments, DOE). As a common practice in

comparative studies of metamodeling performance, in
all the cases investigated, we repeated the each exper-

iment with 100 different DOE, in order to reduce the

influence of random data on the quality of fit by averag-

ing the results. The detailed setup for the experiments
with each test problem is presented in Tab. 2.

In case of the analytical benchmarks, the sampling

points (Ntr and Nadd) were created by using the Latin
Hypercube Matlab function lhsdesign, optimized with

maxmin criterion set to 1000 iterations. The RMSE, as

defined in Eq. (1), is calculated based on the average
RMSE of 5 test sets with Ntest = 2000 points each. In

case of the test set (Ntest), maxmin is set to 10 itera-

tions. For the engineering applications tested here, the

full data set is fixed and it is not possible to generate
100 different DOE, as in the analytical benchmarks. In

order to surpass this difficulty, in each of the 100 runs,

the points for the data sets (Ntr, Nadd and Ntest) were
chosen randomly from the original full set of sampling

points. In all test problems, when applicable, the cross-

validation procedure was performed with k = 10, to
balance accuracy and computational cost for PRESS

calculation.

The performance of different ensemble methods is

compared based on the average (µ) and standard de-
viation (σ) of RMSE, over the 100 repetitions for the

same test problem. We use in most cases boxplots4 for

easy visualization and comparison of the methods.
For convenience and easy reference, the competitor

ensemble methods of Sec. 3, compared in this work, are

summarized in Tab. 5.

4 Boxplot is a common statistical graph used for visual
comparison of the distribution of different variables in a
same plane. The box is defined by lines at the lower quar-
tile (25%), median (50%) and upper quartile (75%) of the
data. Lines extending above and upper each box (whiskers)
indicate the spread for the rest of the data out of the quartiles
definition. If existent, outliers are represented by plus signs
“+”, above/below the whiskers. We used the Matlab function
boxplot (with default parameters) to create the plots.

10 Wallace G. Ferreira, Alberto L. Serpa

Table 3 Basic metamodels setup for creating the ensembles, when M = 4.

Model Modeling technique Details

PRS Polynomial Response Surface Full quadratic model
KRG Kriging Quadratic regression, exponential correlation, θ0 = 10 and 10−2 ≤ θi ≤ 200
RBNN Radial Basis Neural Network Goal = (0.05ȳ)2 and Spread = 2/5

SVR Support Vector Regression C = 100max(|ȳ + 3σy |, |ȳ − 3σy |) and ǫ = σy/
√
N

Obs.1: All other parameters not mentioned are kept with default values.
Obs.2: ȳ, σy and N are respectively: mean and standard deviation of y and number of sampling points.
Obs.3: No attempt has been made in order to fine tuning the surrogates shape parameters.

Table 4 Metamodels setup for creating additional the ensembles, when M > 4. Otherwise refer to Tab. 3.

ID/M Acronym Details

5 PRS Linear model
6 RBNN Spread = 1/3 and MN = N/2
7 KRG Linear regression, Gaussian correlation

8 SVR C = 100max(|ȳ + 3σy |, |ȳ − 3σy |), ǫ = σy/
√
N , Loss = quadratic and KernelOptions = 0.5

9 RBNN Goal = (0.05ȳ)2, Spread = 1/2 and MN = N/3
10 KRG Linear regression, spherical correlation
11 KRG Constant regression, cubic correlation
12 SVR C = ∞, ǫ = 10−4 and Loss = quadratic

13 KRG Quadratic regression, spline correlation
14 KRG Linear regression, linear correlation
15 SVR C = ∞, ǫ = 10−4, Loss = quadratic and KernelOptions = 0.5
16 SVR C = ∞, ǫ = 10−4

17 KRG Quadratic regression, Gaussian correlation
18 KRG Linear regression, exponential correlation
19 KRG Constant regression, Gaussian correlation
20 KRG Constant regression, exponential correlation
21 KRG Linear regression, spline correlation
21 KRG Constant regression, spline correlation
23 KRG Linear regression, cubic correlation
24 KRG Quadratic regression, cubic correlation
25 KRG Constant regression, spherical correlation
26 KRG Quadratic regression, spherical correlation
27 KRG Constant regression, linear correlation
28 KRG Quadratic regression, linear correlation
29 RBNN Spread = 1 and MN = N/5
30 RBNN Spread = 1 and MN = N/10

Obs.1: All other parameters not mentioned are kept with default values.
Obs.2: ȳ, σy and N are respectively: mean and standard deviation of y and number of sampling points.

Obs.3: For all KRG models: θ0 = 10 and 10−2 ≤ θi ≤ 200.
Obs.4: For all RBNN models: Goal = (0.05ȳ)2.
Obs.5: No attempt has been made in order to fine tuning the surrogates shape parameters.

Table 5 Summary of ensemble methods used as comparison in the present work. See details in Section 3.

Acronym Description and Equation

SA Simple Average, Eq. (3): ŷens (wi , x) = w0 +

M
∑

i=1

wiŷi (x), with w0 = 0 and wi =
1

M
.

PWS PRESS Weighted Surrogate, Eq. (8): wPWS
i =

w∗

i

M
∑

j=1

w∗

j

, with w∗

i = (Ei + αEavg)
β and Eavg =

1

M

M
∑

j=1

Ej .

minRMSE Optimization of RMSE, Eq. (10): min
wi

Err (ŷens , y) , s.t.

M
∑

j=1

wj = 1, with Err (ŷens , y) = RMSE.

OWS Optimal Weighted Surrogate, Eq. (11): min
wi

MSE (ŷens) = wTCw, s.t.

M
∑

j=1

wj = 1.

Ensemble of Metamodels: The Augmented Least Squares Approach 11

5.3 Results and Discussion

5.3.1 Effect of the Number of Augmenting Points

First of all, we investigated the effect of number of aug-

menting points, or the rate ηaug, in the augmented least
squares approach. We selected the functions: Branin-

Hoo (nv = 2) to represent low dimension problems;

and the function Ext. Rosenbrock (nv = 9) to repre-
sent high dimension problems. We compared the aver-

age value and the standard deviation of the RMSE (in

100 runs) between the ordinary least squares solution
(LS) and the augmented least squares approach (LS-a)

with M = 4 metamodels in the ensembles (details in

Tab. 3). In all cases, the size of the training data set

(Ntr) was remained fixed as described in Tab. 2, and
only the additional points (Nadd) were varied to gener-

ate different rates ηaug.

The results are presented in Fig. 2. As we expected,

it can be observed a reduction in the average and stan-

dard deviation of RMSE by increasing the number of
augmenting points, for both low and high dimension

problems. In case of low dimension problems (Branin-

Hoo function), the most significant reduction in the lev-
els of mean and standard deviation of RMSE is in the

range 10% < ηaug < 35%, and the behavior remained

almost stable for ηaug > 35%. That is, no improvement

in RMSE was observed for ηaug > 35%, for the low di-
mension problems. On the other hand, for high dimen-

sion problem (Ext. Rosenbrock function), no significant

improvement in RMSE was observed for ηaug > 10%.
We observed a similar behavior for other functions as

well, as showed in Fig.3.

It is important to observe that, in practice, the total

number of sampling points, N , is in general fixed due to

limitations on computer resources. In the present com-

parison, we decided to keep Ntr fixed for some reasons.

First of all, the motivation behind our LS-a method

is gathering additional data, in order to improve the
ordinary LS method, by reducing multicollinearity. We

verified, after previous numerical experiments (see App.

B), that is very difficult to solve multicollinearity in
standard LS esnsemble only by adding more sampling

points, specially for higher number of variables, due to

the high density of points required. In this sense, we
pursued other variants of LS method and we devised

the LS-a ensemble as well to overcome this difficulty.

In the present comparative study, we aimed to verify
how much one have “to pay” with additional points

(Nadd) and improve the predictability of LS ensemble,

for a fixed number of training points (Ntr).

If, on the other hand, we keep N fixed and reduce

the number of training points (Ntr), with different aug-

5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

1.2

Percent of Augmenting Points, η
aug

 [%]

N
o
rm

a
liz

e
d
 V

a
lu

e

Mean, Branin

Std. Dev., Branin

Mean, Ext. Rosenbrock

Std. Dev., Ext. Rosenbrock

Fig. 2 Effect of number of augmenting points in the aug-
mented least squares approach (LS-a). The mean value and
standard deviation of RMSE in 100 runs are presented ver-
sus the rate ηaug, for the functions Branin-Hoo (nv = 2) and
Ext. Rosenbrock (nv = 9). The results are normalized with
respect to the standard least squares solution (LS) in each
case. In all cases, the number of metamodels in the ensemble
is M = 4.

menting rates ηaug, then the predictability of Ntr tends

to be reduced for a lower number of points, and the

beneficial effects of the remaining out-of-sample points

Nadd should be canceled. In this way, the comparison
would be confounding or even invalid for our purposes,

since it is not possible to separate these two conflict-

ing effects, i.e.: (i) reducing prediction quality (aver-
age RMSE) with lower number of training points Ntr

and (ii) improving stability by augmenting points Nadd

(standard deviation of RMSE), simultaneously.
In order to illustrate this behavior we run the exper-

iment by keeping N fixed and reducing the number of

training points (Ntr), with different augmenting rates

ηaug for Branin-Hoo (nv = 2)Ext. Rosenbrock (nv = 9)
and the results are presented in Fig. 4. Observe that

the prediction quality (average RMSE) tend to be lost

with lower number of training points, with ηaug > 30%.
Based on that, it is suggested to use augmenta-

tion points to generate the ensembles based on the rule

10% < ηaug < 30%. In other words, if it is difficult
or impossible to increase the data, then the available

N sampling points should be split in two sets Ntr and

Nadd, with 10% to 35% of the data left aside to estimate

the ensemble weights, by means of the augmented least
squares approach.

12 Wallace G. Ferreira, Alberto L. Serpa

5 10 15 20 25 30 35 40 45 50

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Percent of Augmenting Points, [%]

N
o

rm
a

liz
e

d
 V

a
lu

e

Mean RMSE

Std. Deviation of RMSE

(a) Hartman 3, nv = 3

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Percent of Augmenting Points, [%]

N
o

rm
a

liz
e

d
 V

a
lu

e

Mean RMSE

Std. Deviation of RMSE

(b) Hartman 6, nv = 6

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

Percent of Augmenting Points, [%]

N
o

rm
a

liz
e

d
 V

a
lu

e

Mean RMSE

Std. Deviation of RMSE

(c) Dixon-Price, nv = 12

Fig. 3 Effect of number of augmenting points in the aug-
mented least squares approach (LS-a). The mean value and
standard deviation of RMSE in 100 runs are presented versus
the rate ηaug, for the functions Hartman (nv = 3), Hartman
(nv = 6) and Dixon-Price (nv = 12). The results are normal-
ized with respect to the standard least squares solution (LS)
in each case. In all cases, the number of metamodels in the
ensemble is M = 4.

5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

1.2

Percent of Augmenting Points, η
aug

 [%]

N
o
rm

a
liz

e
d
 V

a
lu

e

Mean, Branin

Std. Dev., Branin

Mean, Ext. Rosenbrock

Std. Dev., Ext. Rosenbrock

Fig. 4 Effect of number of augmenting points in the aug-
mented least squares approach (LS-a), by keeping N fixed
and reducing the number of training points (Ntr), with dif-
ferent augmenting rates ηaug, for the functions Branin-Hoo
(nv = 2) and Ext. Rosenbrock (nv = 9). The mean value and
standard deviation of RMSE in 100 runs are presented versus
the rate ηaug. The results are normalized with respect to the
standard least squares solution (LS) in each case. In all cases,
the number of metamodels in the ensemble is M = 4.

5.3.2 Effect of Number of Metamodels

In a second test set, we verified the effect the number

of metamodels in the ensemble quality of fit, in order
to understand if the theoretical predictions of Eq. (6)

apply in our case.

We took advantage of SURROGATES Toolbox flex-

ibility to generate a large set of metamodels, in a similar
way as presented in Viana et al (2009). Starting from

the basic set (M = 4) presented in Tab. 3, we varied the

tuning parameters and shape functions to create sets
of different metamodels. For example: in case of PRS,

we considered linear polynomials, instead of quadratic;

In case of KRG, we changed the regression function to
linear and the correlation from exponential to gaussian,

etc. and so on, all the way up to (M = 30) metamodels,

by using different instances of PRS, KRG, RBNN and

SVR.See Tab. 4 for the metamodels using for M > 4.

The results for this test set are presented in Fig.

5. For low dimension problems it was observed a re-

duction on the error level of LS methods by doubling
the number of metamodels in the ensemble (i.e., from

4 to 8), but this reduction on the average RMSE and

standard deviation did not improved significantly from

8 to 30 metamodels in the ensemble. In case of high
dimension problems the reduction of error levels of LS

methods was not significant by increasing the number

of metamodels in the ensemble. Again, we also observed

Ensemble of Metamodels: The Augmented Least Squares Approach 13

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

Number of Metamodels, M

N
o
rm

a
liz

e
d
 V

a
lu

e

Mean, Branin

Std. Dev., Branin

Mean, Ext. Rosenbrock

Std. Dev., Ext. Rosenbrock

Fig. 5 Effect of number of metamodels in the ensemble
by augmented least squares approach (LS-a). The mean
value and standard deviation of RMSE in 100 runs are pre-
sented versus the number of metamodels M , for the func-
tions Branin-Hoo (nv = 2) and Ext. Rosenbrock (nv = 9).
The results are normalized with respect to the standard least
squares solution (LS) in each case. In all cases, the rate of
augmenting points is ηaug = 33%.

a similar behavior for other test functions as well and
the results are presented in Fig. 6.

In summary, based on these results, we did not con-

firmed the theoretical predictions based on Eq. (6), i.e.,
“the higher the number of distinct models, the lower is

expected the MSE for the weighted average ensemble”.

In our experiments, the “ideal number of metamodels

stayed at M < 15.

These results suggest that the typical problems of

engineering applications do not meet the assumption of

uncorrelated errors with zero mean and, in addition the
underlying multicollinearity among models, specially as

M increases, compromises the accuracy of the final en-

semble prediction, and the expected reduction in MSE
from Eq. (6) is not observed at all. In fact, the predic-

tion quality decreased after M > 15, for some examples

investigated, specially for large dimension problems.

5.3.3 Comparison of Least Squares Variants

In this test set we compared the performance of the aug-

mented least squares LS-a and the other LS variants.

The objective is to verify if it is possible to improve the
LS solution by using methods suited to handle multi-

collinearity.

It can be observed based on Fig. 7 that most of

the variants are able to reduce the average and stan-
dard deviation of RMSE with respect to the ordinary

least squares (LS). See for example, in case of low di-

mension (Branin-Hoo), LS-a with normalized average

RMSE µ = 0.58 (or 42% reduction) and normalized

standard deviation σ = 0.28 (or 72% reduction) with
respect to LS, in 100 runs. For the majority of the

other methods these reductions are around 30% for av-

erage value and 70% for standard deviation of RMSE.
In case of high dimension problems (Ext. Rosenbrock)

the reductions are also observed but they are more pro-

nounced on standard deviation (≈ 90%) than found for
the average value of RMSE (≈ 20%).

In all the cases studied, the best reduction in the

average and standard deviation of RMSE was achieved
by using the augmented approach LS-a (ηaug = 33%).

It can be observed that, even by combining the other

LS variants with the augmented approach, we did not
found any significant improvement in terms of average

value and standard deviation of RMSE.

See for instance in Fig. 7 the similarity on the box-

plots (and also on µ and σ values) for LS-a and the

other variants by using the augmented approach (i.e.,
S-a, C-a, R-a, P-a, W-a, Ro-a and T-a). This trend has

been confirmed with all the test problems investigated.

See for example in Fig. 8 the same behavior found for

the functions Hartman, nv = 3; Hartman, nv = 6 and
Dixon-Price, nv = 12.

Therefore, these results suggest that it does not
worth to use different LS variants to reduce the er-

ror level and variance of ordinary LS in the creation

of ensemble models. The highest improvement can be
achieved by using the augmented method LS-a, with a

proper number of augmenting points.

5.3.4 Effect of the Intercept

In this test set the aim is to verify the observations

of Hashem (1993) regarding the effect of the intercept
term in the ensemble.

In the problems studied, see Fig. 9, it was observed
that the intercept term can be in fact not null in several

runs for different DOE. Although it can be observed a

high spread on the data, the average/median value for

w0 is around zero. Therefore, on a local perspective,
the weights for the metamodels in the ensemble should

be different, if the intercept term is considered or not,

depending on the data (DOE).

On the other hand, on a global perspective, it was

not observed in 100 runs any remarkable improvement
in the average levels or standard deviation of RMSE for

LS solutions by letting the intercept term to be nonzero

in the ensemble. For instance, note the similarity on the

boxplots of LS-a (without intercept) and LS-a-0 (with
intercept) in the boxplots of Fig. 10. The same trend

can be observed for the other LS methods (S, R, P, W,

T and Ro), in low and high dimensions.

14 Wallace G. Ferreira, Alberto L. Serpa

So, it seems to be a controversy on the local and

global perspectives. Then, it is recommended to check
for each problem and data (DOE) if the error levels

can be improved or not by using the intercept term

in the ensemble equation. Since in most cases the en-
semble calculation is fast, specially when compared to

the evaluation of the true models, then this verification

should be worthwhile.

5.3.5 Comparison of Ensemble Methods

In this test set we compared the augmented least squares

approach (LS-a, ηaug = 33%) with other ensemble meth-

ods available in the literature. Refer to Tab. 5.

The methods OWS and PWS are available at SUR-
ROGATES Toolbox and we implemented the routines

for SA and minRMSE. In all cases, we considered M =

4, as in Tab. 3 and data sets as in Tab. 2. The cross-
validation procedure was performed with k = 10 in case

of OWS and PWS.

As can be observed in the boxplots of Fig. 11, except

for PWS, the performance of all ensemble methods was
similar, in terms of average value and standard devia-

tion of RMSE, for the functions Branin-Hoo, nv = 2;

Hartman, nv = 6; and Dixon-Price, nv = 12. On the
other hand, in the same way as observed in Viana et al

(2009), none of the ensemble methods performed signif-

icantly better than the best model in the set, in each

run, in terms of RMSE (labeled as BestRMSE).

In these analytical cases investigated, the reduction

on the average value of RMSE was lower than 3% and,

as can be observed by the numbers µ(σ) in Fig. 11.
In addition, it is observed that the standard deviation

is equal or worst than BestRMSE, in most cases. The

exception was in Dixon-Price function, but the reduc-
tions found on the standard deviation are not higher

than 5%.

This same trend has been observed for “real-world”

engineering problems (see Figs. 12 and 13). In the ap-
pendix (Sec. A.2) these simulation models currently ap-

plied in automotive industry are described.

Although it can be observed up to 15% reduction in

the average level of RMSE and up to 27% on the stan-
dard deviation for LS-a in truck responses (nv = 12, see

Fig. 12), the same was not observed in higher dimen-

sions (i.e., car responses (nv = 30 and nv = 44), Fig.
13). In addition, both SA and PWS have shown to be

inaccurate and unstable for the problems investigated.

For the other ensemble methods, the performance was
similar, in terms of average value and standard devia-

tion of RMSE.

In terms of computational cost, for the studied prob-

lems the LS approach performed up to three orders of

magnitude faster than the PRESS based methods, and

in general it is comparable in terms of computational
cost to the fastest method (i.e., the simple averaging

ensemble, SA). See these results in Fig. 14.

Finally, in terms of accuracy of prediction, we are
forced to agree with the discussion by Viana et al (2009)

and Viana (2011), with respect to multiple surrogates

or ensemble of metamodels. Unfortunately, we did not
find enough arguments to share the optimism of the

related research with ensemble methods in data mining

and machine learning, as for instance in Seni and Elder

(2010), Zhou (2012) and Zhang and Ma (2012), in terms
of prediction accuracy.

It seems that, due to the nature of the metamod-

eling, specially to deterministic problems, the multi-
collinearity will be always present, since the models

tends to be similar among each other. In this way, find-

ing a fair and accurate model tends to be the selection

of the best model in a set (for instance, BestRMSE),

instead of combining multiple models.

On the other hand, one hope for ensemble of meta-

models usability should be in the efficient global opti-
mization (EGO), as explored in the work Viana et al

(2013). We also explored this front in the context of LS

ensembles and the results are promising. The develop-
ments and results in this branch of application for the

proposed ensemble approach will be presented the con-

tinuation of the present research in Ferreira and Serpa
(2015b).

Ensemble of Metamodels: The Augmented Least Squares Approach 15

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Metamodels

N
o

rm
a

liz
e

d
 V

a
lu

e

Mean RMSE

Std. Deviation of RMSE

(a) Hartman 3, nv = 3

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Metamodels

N
o

rm
a

liz
e

d
 V

a
lu

e

Mean RMSE

Std. Deviation of RMSE

(b) Hartman 6, nv = 6

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Metamodels

N
o
rm

a
liz

e
d
 V

a
lu

e

Mean RMSE

Std. Deviation of RMSE

(c) Dixon-Price, nv = 12

Fig. 6 Effect of number of metamodels in the ensemble by
augmented least squares approach (LS-a). The mean value
and standard deviation of RMSE in 100 runs are presented
versus the number of metamodels M , for the functions Hart-
man (nv = 3), Hartman (nv = 6) and Dixon-Price (nv = 12).
The results are normalized with respect to the standard least
squares solution (LS) in each case. In all cases, the rate of
augmenting points is ηaug = 33%.

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Branin−Hoo, n
v
 = 2

N
o
rm

a
liz

e
d
 R

M
S

E
 (

1
0
0
 r

u
n
s
)

L
S

L
S

−
a

S

S
−

a

C

C
−

a

R

R
−

a

P

P
−

a

W

W
−

a

T

T
−

a

R
o

R
o
−

a

1
.0

0

(1
.0

0
)

0
.5

8

(0
.2

8
)

1
.4

6

(1
.2

0
)

0
.7

1

(0
.2

6
)

1
.0

1

(1
.0

1
)

0
.7

0

(0
.2

6
)

0
.9

0

(0
.8

4
)

0
.6

9

(0
.2

7
)

0
.7

5

(0
.4

1
)

0
.6

9

(0
.2

8
)

0
.7

5

(0
.4

1
)

0
.7

0

(0
.3

0
)

1
.0

0

(1
.0

0
)

0
.6

9

(0
.2

5
)

0
.9

0

(0
.8

4
)

0
.7

0

(0
.2

6
)

−1

0

1

2

3

4

5

Ext. Rosenbrock, n
v
 = 9

N
o
rm

a
liz

e
d
 R

M
S

E
 (

1
0
0
 r

u
n
s
)

L
S

L
S

−
a

S

S
−

a

C

C
−

a

R

R
−

a

P

P
−

a

W

W
−

a

T

T
−

a

R
o

R
o
−

a

1
.0

0

(1
.0

0
)

0
.7

9

(0
.0

8
)

2
.1

1

(1
.9

0
)

0
.8

4

(0
.1

0
)

1
.0

3

(1
.0

6
)

0
.8

4

(0
.1

0
)

0
.9

2

(0
.6

2
)

0
.8

3

(0
.0

9
)

0
.8

9

(0
.4

1
)

0
.8

3

(0
.1

0
)

0
.8

9

(0
.4

1
)

0
.8

3

(0
.0

9
)

1
.0

0

(1
.0

0
)

0
.8

3

(0
.1

0
)

0
.9

2

(0
.6

2
)

0
.8

4

(0
.1

0
)

Fig. 7 Comparison of least squares variants and the effect
of augmenting points for the functions Branin-Hoo (nv = 2)
and Ext. Rosenbrock (nv = 9). Values in the bottom part
of the graphs indicate respectively mean and standard devi-
ation µ (σ) of RMSE for each method in 100 runs. All values
normalized with respect to standard LS in each run. Suffix
“-a” indicate the augmented method with ηaug = 33%. In all
cases, the number of metamodels in the ensemble is M = 4.

16 Wallace G. Ferreira, Alberto L. Serpa

−1

−0.5

0

0.5

1

1.5

2

Hartman, n
v
 = 3

N
o
rm

a
liz

e
d
 R

M
S

E
 (

1
0
0
 r

u
n
s
)

L
S

L
S

−
a

S
−

a

C
−

a

R
−

a

P
−

a

W
−

a

T
−

a

R
o
−

a

1
.0

0

(1
.0

0
)

0
.7

6

(0
.7

8
)

0
.7

9

(0
.8

5
)

0
.7

8

(0
.8

1
)

0
.7

6

(0
.7

6
)

0
.7

7

(0
.8

0
)

0
.7

7

(0
.8

3
)

0
.7

6

(0
.7

6
)

0
.7

9

(0
.8

1
)

−1

−0.5

0

0.5

1

1.5

2

Hartman, n
v
 = 6

N
o
rm

a
liz

e
d
 R

M
S

E
 (

1
0
0
 r

u
n
s
)

L
S

L
S

−
a

S
−

a

C
−

a

R
−

a

P
−

a

W
−

a

T
−

a

R
o
−

a

1
.0

0

(1
.0

0
)

0
.9

2

(0
.2

9
)

0
.9

4

(0
.3

1
)

0
.9

3

(0
.3

0
)

0
.9

2

(0
.2

9
)

0
.9

2

(0
.3

0
)

0
.9

4

(0
.3

0
)

0
.9

2

(0
.2

9
)

0
.9

5

(0
.3

3
)

−1

−0.5

0

0.5

1

1.5

Dixon−Price, n
v
 = 12

N
o
rm

a
liz

e
d
 R

M
S

E
 (

1
0
0
 r

u
n
s
)

L
S

L
S

−
a

S
−

a

C
−

a

R
−

a

P
−

a

W
−

a

T
−

a

R
o
−

a

1
.0

0

(1
.0

0
)

0
.5

3

(0
.0

2
)

0
.5

4

(0
.0

2
)

0
.5

3

(0
.0

2
)

0
.5

3

(0
.0

2
)

0
.5

3

(0
.0

2
)

0
.5

3

(0
.0

2
)

0
.5

3

(0
.0

2
)

0
.5

4

(0
.0

2
)

Fig. 8 Comparison of least squares variants and the effect
of augmenting points for the functions Hartman (nv = 3),
Hartman (nv = 6) and Dixon-Price (nv = 12). Values in the
bottom part of the graphs indicate respectively mean and
standard deviation µ (σ) of RMSE for each method in 100
runs. All values normalized with respect to standard LS in
each run. Suffix “-a” indicate the augmented method with
ηaug = 33%. In all cases, the number of metamodels in the
ensemble is M = 4.

−8

−6

−4

−2

0

2

4

6

8

10

12

In
te

rc
e

p
t

T
e

rm
,

w
0
 (

1
0

0
 r

u
n

s
)

LS
−a

−0

S−a
−0

R
−a

−0

P−a
−0

W
−a

−0

T−a
−0

R
o−

a−
0

Branin−Hoo, n
v
 = 2

−1.5

−1

−0.5

0

0.5

1

x 10
6

In
te

rc
e
p
t
T

e
rm

,
w

0
 (

1
0
0
 r

u
n
s
)

LS
−a

−0

S−a
−0

R
−a

−0

P−a
−0

W
−a

−0

T−a
−0

R
o−

a−
0

Ext. Rosenb, n
v
 = 9

Fig. 9 Boxplots for the intercept term w0 in 100 runs for
the functions Branin-Hoo (nv = 2) and Ext. Rosenbrock
(nv = 9). Suffix “-a” indicate the augmented method with
ηaug = 33%. Suffix “-0” indicate the use of the intercept w0

in the ensemble. In all cases, the number of metamodels in
the ensemble is M = 4.

Ensemble of Metamodels: The Augmented Least Squares Approach 17

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Branin−Hoo, n
v
 = 2

N
o
rm

a
liz

e
d
 R

M
S

E
 (

1
0
0
 r

u
n
s
)

LS

LS
−a

LS
−a

−0

S−0

R
−0

P−0

W
−0

T−0

R
o−

0

1
.0

0

(1
.0

0
)

0
.6

1

(0
.2

6
)

0
.6

1

(0
.2

8
)

0
.6

2

(0
.2

6
)

0
.6

1

(0
.2

7
)

0
.6

1

(0
.2

8
)

0
.6

0

(0
.2

9
)

0
.6

1

(0
.2

7
)

0
.6

1

(0
.2

6
)

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Ext. Rosenb, n
v
 = 9

N
o
rm

a
liz

e
d
 R

M
S

E
 (

1
0
0
 r

u
n
s
)

LS

LS
−a

LS
−a

−0

S−a
−0

R
−a

−0

P−a
−0

W
−a

−0

T−a
−0

R
o−

a−
0

1
.0

0

(1
.0

0
)

0
.8

6

(0
.0

9
)

0
.8

6

(0
.0

9
)

0
.8

6

(0
.0

9
)

0
.8

6

(0
.0

9
)

0
.8

6

(0
.0

9
)

0
.8

6

(0
.0

9
)

0
.8

6

(0
.0

9
)

0
.8

7

(0
.1

1
)

Fig. 10 Effect of the intercept term w0 in the ensemble for
the functions Branin-Hoo (nv = 2) and Ext. Rosenbrock
(nv = 9). Values in the bottom part of the graphs indicate
respectively mean and standard deviation µ (σ) of RMSE
for each method in 100 runs. All values normalized with re-
spect to standard LS in each run. Suffix “-a” indicate the
augmented method with ηaug = 33%. Suffix “-0” indicate
the use of the intercept w0 in the ensemble. In all cases, the
number of metamodels in the ensemble is M = 4.

−1

−0.5

0

0.5

1

1.5

2

2.5

Branin−Hoo, n
v
 = 2

N
o

rm
a

liz
e

d
 R

M
S

E
 (

1
0

0
 r

u
n

s
)

Bes
tR

M
SE

LS
−a

SA

m
in
R
M

SE

O
W

S

PW
S

1
.0

0

(1

.0
0
)

0
.9

8

(1

.0
4
)

0
.9

9

(1

.0
4
)

0
.9

8

(1

.0
4
)

0
.9

9

(1

.0
6
)

1
.4

5

(0

.6
4
)

−1

−0.5

0

0.5

1

1.5

2

2.5

Hartman, n
v
 = 6

N
o

rm
a

liz
e

d
 R

M
S

E
 (

1
0

0
 r

u
n

s
)

Bes
tR

M
SE

LS
−a

SA

m
in
R
M

SE

O
W

S

PW
S

1
.0

0

(1

.0
0
)

0
.9

7

(1

.0
1
)

0
.9

9

(1

.1
5
)

0
.9

7

(1

.0
1
)

0
.9

7

(1

.0
2
)

1
.4

4

(5

.5
4
)

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Dixon−Price, n
v
 = 12

N
o

rm
a

liz
e

d
 R

M
S

E
 (

1
0

0
 r

u
n

s
)

Bes
tR

M
SE

LS
−a

SA

m
in
R
M

SE

O
W

S

PW
S

1
.0

0

(1

.0
0
)

0
.9

9

(0

.9
5
)

1
.0

0

(0

.9
9
)

0
.9

9

(0

.9
5
)

0
.9

9

(0

.9
6
)

2
.9

1

(1

.4
3
)

Fig. 11 Comparison among the augmented least squares (LS-
a, ηaug = 33%) and other ensemble methods for the functions
Branin-Hoo (nv = 2), Hartman (nv = 6) and Dixon-Price
(nv = 12). Values in the bottom part of the graphs indicate
respectively mean and standard deviation µ (σ) of RMSE for
each method in 100 runs. All values normalized with respect
to BestRMSE in each run. In all cases, the number of meta-
models in the ensemble is M = 4.

18 Wallace G. Ferreira, Alberto L. Serpa

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Truck Durability, n
v
 = 12

N
o

rm
a

liz
e

d
 R

M
S

E
 (

1
0

0
 r

u
n

s
)

Bes
tR

M
SE

LS
−a

SA

m
in
R
M

SE

O
W

S

PW
S

1
.0

0

(1

.0
0
)

0
.9

6

(0

.9
8
)

1
.6

0

(2

.5
3
)

0
.9

6

(0

.9
8
)

0
.9

7

(1

.0
6
)

1
.0

4

(1

.0
6
)

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Truck Veh. Dynamics, n
v
 = 12

N
o

rm
a

liz
e

d
 R

M
S

E
 (

1
0

0
 r

u
n

s
)

Bes
tR

M
SE

LS
−a

SA

m
in
R
M

SE

O
W

S

PW
S

1
.0

0

(1

.0
0
)

0
.8

4

(0

.7
3
)

1
.4

0

(2

.2
9
)

0
.8

5

(0

.7
6
)

0
.8

5

(0

.9
1
)

0
.9

6

(0

.9
2
)

Fig. 12 Comparison among the augmented least squares (LS-
a, ηaug = 33%) and other ensemble methods for the truck re-
sponses with nv = 12 variables. Values in the bottom part of
the graphs indicate respectively mean and standard deviation
µ (σ) of RMSE for each method in 100 runs. All values nor-
malized with respect to BestRMSE in each run. In all cases,
the number of metamodels in the ensemble is M = 4.

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Car NVH, n
v
 = 30

N
o

rm
a

liz
e

d
 R

M
S

E
 (

1
0

0
 r

u
n

s
)

Bes
tR

M
SE

LS
−a

SA

m
in
R
M

SE

O
W

S

PW
S

1
.0

0

(1

.0
0
)

1
.0

2

(1

.1
0
)

1
9
.2

8

(4

5
.1

1
)

1
.0

1

(1

.0
3
)

0
.9

9

(0

.9
9
)

1
.9

2

(2

.5
3
)

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Car Frontal Crash, n
v
 = 44

N
o

rm
a

liz
e

d
 R

M
S

E
 (

1
0

0
 r

u
n

s
)

Bes
tR

M
SE

LS
−a

SA

m
in
R
M

SE

O
W

S

PW
S

1
.0

0

(1

.0
0
)

0
.9

9

(1

.1
8
)

2
.0

1

(1

0
.8

4
)

1
.0

0

(1

.1
1
)

1
.0

1

(1

.0
2
)

1
.1

7

(3

.3
7
)

Fig. 13 Comparison among the augmented least squares (LS-
a, ηaug = 33%) and other ensemble methods for the car re-
sponses: Car NVH, nv = 30, and Car Crash, nv = 44 vari-
ables. Values in the bottom part of the graphs indicate re-
spectively mean and standard deviation µ (σ) of RMSE for
each method in 100 runs. All values normalized with respect
to BestRMSE in each run. In all cases, the number of meta-
models in the ensemble is M = 4.

Ensemble of Metamodels: The Augmented Least Squares Approach 19

0

100

200

300

400

500

600

700

800

N
o

rm
a

liz
e

d
 C

P
U

 T
im

e
 (

1
0

0
 r

u
n

s
 −

 a
v
e

ra
g

e
)

BestRMSE
LS−a SA

minRMSE
OWS

PWS

1.0 28.8 27.6 28.3

746.5 743.0

(a) Truck Durability, nv = 12

0

200

400

600

800

1000

1200

N
o

rm
a

liz
e

d
 C

P
U

 T
im

e
 (

1
0

0
 r

u
n

s
 −

 a
v
e

ra
g

e
)

BestRMSE
LS−a SA

minRMSE
OWS

PWS

1.0 26.2 25.0 25.7

1044.9 1042.7

(b) Car NVH, nv = 30

0

1000

2000

3000

4000

5000

6000

N
o

rm
a

liz
e

d
 C

P
U

 T
im

e
 (

1
0

0
 r

u
n

s
 −

 a
v
e

ra
g

e
)

BestRMSE
LS−a SA

minRMSE
OWS

PWS

1.0 54.2 52.8 52.6

4843.8 4841.3

(c) Car Frontal Crash, nv = 44

Fig. 14 Comparison of computational time among the augmented least squares (LS-a, ηaug = 33%) and different ensemble
methods, for engineering test problems. All values normalized with respect to BestRMSE in each run. In all cases, the number
of metamodels in the ensemble is M = 4.

20 Wallace G. Ferreira, Alberto L. Serpa

6 Concluding Remarks

In this work we presented an approach to create ensem-

ble of metamodels (or weighted averaged surrogates)

based on least squares (LS) approximation. The LS ap-

proach is appealing since it is possible to estimate the
ensemble weights with simple formulation and low com-

putational cost, without using any explicit error metric

like PRESS (prediction sum of squares), as in most of
the existent ensemble methods published in the litera-

ture.

The proposed LS approach is a variation of the stan-

dard least squares regression by augmenting the matrix
system in such a way that reduces the effects of mul-

ticollinearity, inherent to calculation of the ensemble

weights.

We investigated the number of augmenting points
needed by the augmented LS method, in order to be

effective. In summary, we observed that for low dimen-

sion problems the ideal number of data points to aug-

ment the system is around one third (30% to 35% of
the data), and in case of high dimension this number is

about 10% of the sampling points.

We also investigated the effect of increasing the num-

ber of metamodels in the augmented least squares en-
semble. In summary, we did not confirmed the theoret-

ical predictions that state: “the higher the number of

distinct models, the lower is expected the MSE for the
weighted average ensemble”. For low dimension prob-

lems we observed a reduction in error from four to eight

models in the ensemble and the average error level re-
mained constant up to thirty metamodels. On the other

hand, in case of high dimensions, the average error level

remained almost constant by increasing the number of

metamodels in the ensemble, from four to thirty mod-
els. These results suggest that the typical problems of

engineering applications do not meet the assumption

of uncorrelated errors with zero mean and, in addition
the underlying multicollinearity among models compro-

mises the accuracy of the final ensemble prediction.

In the sequence, we tested and compared the aug-

mented LS approach with different LS variants and also
with the existent ensemble methods, by means of an-

alytical benchmark functions and real-world applica-

tions, in problems in the range of two to forty-four vari-
ables.

In comparison with existent LS variants (i.e., step-

wise, ridge, principal components, constrained, weighted

and total least squares), The augmented LS approach

was able to reduce level of prediction error (average
RMSE) the instability (standard deviation of RMSE)

due to multicollinearity. For the test problems investi-

gated and by using th 33% of the data as augmenting

points, none of the other existent LS variants was able

to surpass the performance of the proposed augmented
LS approach, in terms of prediction error level (average

RMSE) and stability (standard deviation of RMSE).

In the cases investigated, it was not observed any
improvement in the error levels or variation of LS so-

lution by letting the intercept term to be nonzero in

the ensemble. Possibly there is a balance in the value
of the remaining weights in the ensemble in order to

compensate the presence of the intercept. On the other

hand, since the intercept term is not necessarily null,

it is recommended to check for each problem and data
(DOE) if the error levels can be improved or not by us-

ing the intercept term in the ensemble equation. Since

in most cases the ensemble calculation is fast, specially
when compared to the evaluation of the true models,

then this verification should be worthwhile.

When compared with other weighted average en-
semble schemes published in the literature (i.e, sim-

ple averaging, PWS, direct optimization of RMSE and

OWS methods), in general the augmented LS approach

performed with good accuracy and stability for predic-
tion purposes, in the same level of the existent ensem-

ble methods. In terms of computational cost, for the

problems studied, the LS approach performed up to
three orders of magnitude faster than the PRESS based

methods, and in general it has computational cost com-

parable to the fastest method (i.e., the simple averaging
ensemble, SA).

As we discussed previously, an additional feature

(nonexistent to the other existent ensemble methods) is

that the ensemble of metamodels based on least squares
has a prediction variance estimate function, that en-

ables the application in the efficient global optimization

context. The developments and results in this branch of
application for the proposed ensemble approach will be

presented the continuation of the present research, i.e.,

Ferreira and Serpa (2015b).

Acknowledgements The authors would like to thank Dr.
F.A.C. Viana for the prompt help with SURROGATES Tool-
box and also for the useful comments and discussions about
the preliminary results of this work.

W.G. Ferreira would like to thank Ford Motor Company
and also the support of his colleagues at MDO group and
Product Development department that helped on the devel-
opment of this work, which is part of his doctoral research
underway at UNICAMP.

Finally, the authors are grateful for the comments and
questions from the journal editor and reviewers. Undoubtedly
their valuable suggestions helped to improve the clarity and
consistency of the present text.

Ensemble of Metamodels: The Augmented Least Squares Approach 21

A Test Problems

A.1 Analytical Benchmarks

These functions were chosen since they are widely used to
validate both metamodeling and optimization methods, as for
example in Goel et al (2007), Acar and Rais-Rohani (2009)
and Viana et al (2009).

Branin-Hoo

y (x) =

(

x2 +
5.1x2

1

4π2
+

5x1

π
− 6

)2

+10
(

1− 1

8π

)

cos (x1) + 10,

(18)

for the region −5 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 15.

Hartman

y(x) = −
4

∑

i=1

ci exp

[

−
nv
∑

j=1

aij (xj − pij)
2

]

, (19)

where xi ∈ [0, 1]nv , with constants ci, aij and pij given in
Table 6, for the case nv = 3 (Hartman-3); and in Table 7
Table 8, for the case nv = 6 (Hartman-6).

Table 6 Data for Hartman-3 function.

i ci aij pij

j = 1 2 3 j = 1 2 3
1 1 3 10 30 0.3689 0.117 0.2673
2 1.2 0.1 10 35 0.4699 0.4387 0.747
3 3 3 10 30 0.1091 0.8732 0.5547
4 3.2 0.1 10 35 0.03815 0.5743 0.8828

Table 7 Data for Hartman-6 function, ci and aij .

i ci aij

j = 1 2 3 4 5 6
1 1 10 3 1 3.5 1.7 8
2 1.2 0.05 10 17 0.1 8 14
3 3 3 3.5 1.7 10 17 8
4 3.2 17 8 0.05 10 0.1 14

Table 8 Data for Hartman-6 function, pij .

i pij

j = 1 2 3 4 5 6
1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.665
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Extended Rosenbrock

y (x) =

nv−1
∑

i=1

[

(1− xi)
2 + 100

(

xi+1 − x2
i

)2
]

, (20)

where xi ∈ [−5, 10]nv .

Dixon-Price

y (x) = (x1 − 1)2 +

nv
∑

i=2

i
(

2x2
i − xi−1

)2
, (21)

where xi ∈ [−10, 10]nv .

Giunta-Watson

f(x) =

nv
∑

i=1

[

3

10
+ sin

(

16

15
xi − 1

)

+ sin2

(

16

15
xi − 1

)]

, (22)

where x ∈ [−2, 4]nv . This function the “noise-free” version of
the function used in Giunta and Watson (1998).

A.2 Engineering Applications

In Figs. 15 and 16 are presented simulation models currently
applied in automotive industry. These models are typical ex-
amples of the ones used in the Multidisciplinary Optimiza-
tion (MDO) department at Ford Motor Company, where the
first author of the present research works as structural op-
timization engineer. The examples described in this section
are taken only as illustrations and they were part of a MDO
project presented in a restrict conference summarized in the
report by Ferreira et al (2012).

A regular MDO study at early design phases can comprise
several models with hundreds of design variables and response
functions to be monitored. After design sensitivity analysis
stage, the top most significant variables and functions are se-
lected in each model for metamodeling and multidisciplinary
optimization.

We will use in this work the data available for the follow-
ing variables and responses regarding these models to com-
pare the performance of the ensemble methods discussed in
this work by means of real-world applications.

Truck Models and Responses

a) Truck Durability: it is presented in Fig. 15(a) a finite el-
ements (FEM) model build in NASTRAN for truck frame
durability evaluation. The durability responses (i.e., stress
and/or fatigue/endurance metrics) are described as func-
tion of nv = 12 geometry variables;

b) Truck Dynamics: it is presented in Fig. 15(b) a multibody
model build in ADAMS for vehicle dynamics evaluation.
The dynamics responses (i.e., displacements, velocities or
accelerations for ride and handling performance) are de-
fined based on the same nv = 12 geometry variables used
in the durability responses.

Car Models and Responses

a) Car NVH: it is presented in Fig. 16(a) a FEM model build
in NASTRAN for passenger car NVH (noise, vibration and

harshness) evaluation. The NVH response is described as
function of nv = 30 geometry variables;

b) Car Crash: it is presented in Fig. 16(b) a FEM model
in RADIOSS for passenger car Frontal Crash evaluation.
The crash responses (i.e., displacements, velocities or ac-
celerations for safety performance) are described with nv =
44 variables, that is the same 30 geometry used for NVH
and additional 14 material parameters.

22 Wallace G. Ferreira, Alberto L. Serpa

(a) Durability

(b) Vehicle Dynamics

Fig. 15 Examples of truck models applied in automotive in-
dustry for metamodeling and optimization. Courtesy of Ford
Motor Company.

(a) NVH

(b) Frontal Crash

Fig. 16 Examples of passenger car models applied in automo-
tive industry for metamodeling and optimization. Courtesy of
Ford Motor Company.

B Preliminary Numerical Study

<R1C3>, <R2C1> and <R2C3>.
Our preliminary numerical experiments with LS ensem-

bles were recorded in an internal research report at DMC-
FEM-Unicamp. Since these results were not published be-
fore, we summarize the main findings here in this appendix
for convenience.

B.1 Numerical Experiments Setup

We compared the performance of least squares ensemble (LS)
with PRESS based methods, i.e., variations of OWS, Eq. (11),
implemented SURROGATES Toolbox, Viana (2009).

At first we investigated the accuraccy as the number of
sampling points increases for the case of two variables (nv =
2) of Giunta-Watson function, Eq. (22), in the design space
χ = x ∈ [−2, 4]nv .

In addition, we compared the methods for increasing the
number of variables, i.e., nv = 1, 2, 5 and 10, also for Giunta-
Watson function, in the same design space. In this case, the
number of sampling points were chosen based on the rule
N = 20nv, in order to keep the same point density as the
dimension increases.

In all the cases investigated, we repeat the experiments
with 100 different sampling points (DOE), to average out the
influence of random data points on the quality of fit. The
DOE are created by using the Latin Hypercube MATLAB
function lhsdesign, optimized with maxmin criterion with 1000
iterations.

The ensemble of metamodels were composed with 4 dis-
tinct models, that is: PRS, KRG, RBNN and SVR, by con-
sidering the same setup presented in Tab. 3.

In all the examples, a total of Ntest = 2000 test points
were considered to calculate RMSE, as defined in Eq. (1).
The cross-validation procedure, Eq. (2), was applied with k =
10, to balance accuracy and computational cost for PRESS
calculation in OWS method and variations.

B.2 Summary of Results

The main results of this preliminary study are compiled in
Figure 17.

In summary, we observed that:
(i) The accuracy of LS ensemble method is on the same

level of the PRESS based ensemble methods for mod-
erate number of sampling points (N < 50) and LS was
superior only for very dense design spaces, see Fig. 17(a).
On the other hand, even for a very large number of sam-
pling points, the computational cost for LS was always
lower than OWS variants, i.e., more than one order of
magnitude, see Fig. 17(b);

(ii) The accuracy of LS ensemble method is on the same level
of the OWS ensemble methods, for increasing the num-
ber of variables, see Fig. 17(c). In the same way, the LS
method performed much faster than OWS methods. At
least one order of magnitude for low dimension problems
(up to 5 variables) and more than two orders of magni-
tude for high dimension problems (10 variables), see Fig.
17(d);

(iii) On the other hand, LS method presented an undesired
instability (measured by the standard deviation of RMSE
in 100 runs) as the number of variables increases, see Fig.
17(e);

Ensemble of Metamodels: The Augmented Least Squares Approach 23

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

Number of Sampling Points, N

lo
g
 o

f
M

e
d
ia

n
 R

M
S

E

BestPRESS

OWSconst

OWSdiag

OWSfull

LS

LS

(a) nv = 2

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

Number of Sampling Points, N

lo
g
 o

f
C

P
U

 T
im

e

BestPRESS

OWSconst

OWSdiag

OWSfull

LS

LS

(b) nv = 2

0 1 2 3 4 5 6 7 8 9 10 11
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of Variables, n
v

lo
g
 o

f
M

e
d
ia

n
 R

M
S

E

BestPRESS

OWSconst

OWSdiag

OWSfull

LS

(c)

0 1 2 3 4 5 6 7 8 9 10
10

−1

10
0

10
1

10
2

10
3

Number of Variables, n
v

lo
g
 o

f
C

P
U

 T
im

e

BestPRESS

OWSconst

OWSdiag

OWSfull

LS

LS

(d)

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

10
1

Number of Variables, n
v

lo
g

 o
f

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f
R

M
S

E

BestPRESS

BestPRESS

LS
LS

LSstepwise

LSstepwise

(e)

1 2 3 4
0

5

10

15

20

25

30

35

1: n
v
 = 1 2: n

v
 = 2 3: n

v
 = 5 4: n

v
 = 10

S
a
n
d
a
rd

 D
e
v
ia

ti
o
n
 I
m

p
ro

v
e
m

e
n
t
[%

]

30.51%

23.44%

16.26%

0%

(f)

Fig. 17 Main results of a preliminary numerical study with least squares (LS) ensemble in comparison with PRESS based
methods, i.e., variations of OWS.

(v) The variation of accuracy of LS method has been reduced
around 30% for 10 variables by applying a stepwise selec-
tion procedure to the standard least squares solution, in
order to reduce the effect of multicollinearity among the
metamodels, see Fig. 17(f).

Based on these preliminary results, we concluded that
the LS method can be viewed as an alternative of the PRESS
based methods, since it is comparable in terms of accuracy
and it performs much faster than the other ensemble meth-
ods available. In addition, the results with stepwise regression
motivated a deeper investigation on the available methods for
combating multicollinearity effects in least squares solution,
in order to verify its feasibility for application in ensemble
methods.

24 Wallace G. Ferreira, Alberto L. Serpa

C Multicollinearity in Least Squares

<R1C1>

C.1 The Sources of Multicollinearity

The issue of multicollinearity in least squares regression is
well known in statistics and related areas and the research
in this front remounts at least to the decade of 1950. See
for example Björk (1996) and Montgomery et al (2006) and
the list of references therein for a broader perspective on this
subject.

By definition, the least squares problem is based on the
assumption that the k regressors xi, or predictor variables, in
the simple linear case of Eq. (12), are mutually orthogonal. In
other words, it is assumed in advance that there is no linear
relationship among the predictor variables.

In matrix form, the least squares problem can be stated
as

y = Xβ + ε , (23)

where y is a (N × 1) vector of responses; X is a (N × p) matrix
of the regressor variables; β is a (p× 1) vector of unknown
coefficients; and ε is a (p× 1) vector of random errors, that are
assumed to be normally and independently distributed, with
zero mean and finite variance, i.e. εi ∼ NID(0, σ2). In this
form, N represents the number of observations (or samples)
and p = k when the intercept term β0 is considered zero and
p = (k + 1), otherwise.

One possible solution for Eq. (23) is the standard least
squares estimator, i.e.,

β̂ = (XTX)−1XTy , (24)

that has the following properties:

(a) Unbiasedness:

Bias
(

β̂
)

≡ E
[

β̂
]

− β = 0 ⇒ E
[

β̂
]

= β ; (25)

(b) Variance:

Var
(

β̂
)

≡ E

[

β̂β̂
T
]

− E
[

β̂
] (

E
[

β̂
])T

= σ2(XTX)−1 , where

σ2 ≈ σ̂2 =
yTy − β̂

T
XTy

N − p
;

(26)

(c) Mean Squared Error :

MSE
(

β̂
)

≡ E

[

∥

∥β̂ − β
∥

∥

2
]

= tr
{

Var
(

β̂
)}

+
∥

∥Bias
(

β̂
)∥

∥

2
;

(27)

(d) Gauss-Markov Theorem: The least squares estimator β̂ is
the best linear unbiased estimator (BLUE) of β.

For proofs and details on these properties see Montgomery
et al (2006) or Björk (1996).

Unfortunately, in most applications the assumption of
mutually orthogonal does not hold and the final regression
model can be misleading or erroneous. Thus, when there are
linear or near-linear dependencies among the regressors, the
problem of multicollinearity arises. This is due to the fact that
the so called correlation matrix XTX has rank lower than p

and for consequence the its inverse does not exist anymore. In
this case, the least squares estimate β̂ becomes numerically
unstable.

This instability of the coefficients can be explained by the
variance definition. If the matrix XTX has linear dependence
among columns (i.e., multicollinearity), then the variance of
the coefficients can increase rapidly or become infinite and,
by consequence the prediction will be poor.

Among the several sources of multicollinearity, the pri-
mary ones are: (i) the data collection method (size and distri-
bution of sampling points); (ii) model overdefined or with re-
dundant variables. During the decades, several methods have
been devised for dealing with multicollinearity in least squares
problems (see Montgomery et al (2006), Chap. 11). In general
the techniques include gathering additional data and some
kind of modification in the the way that the coefficients β̂ are
estimated, in order to reduce the prediction errors induced
by multicollinearity.

C.2 Prior Model Selection

In our context, the main source of multicollinearity is due to
the fact the models ŷi(x) tend to be very similar since all of
them are trying to match the true response y(x), as best as
possible, therefore the problem is overdefined on its nature.
In addition, this situation can be worsened if the sampling
points are not well distributed in the design space.

In this way, by assuming that we have a fairly good design
space distribution, the first option is conduct a prior selection
and remove the most redundant models in the set [ŷ1 (x),
ŷ2 (x), ... , ŷM (x)], by means of some heuristic method.

One quick way, for instance, can be by using the concept
of correlation, i.e. by defining the pairwise correlation matrix

R = [r2(ŷi, ŷj)], where r (Xi, Yi) is the sample linear correla-

tion coefficient, that is,

r (Xi, Yi) =

N
∑

i=1

(Xi − X̄)(Yi − Ȳ)

[

N
∑

i=1

(Xi − X̄)2
N
∑

i=1

(Yi − Ȳ)2

] 1

2

(28)

with

X̄ =
1

N

N
∑

i=1

Xi,

for any two random vectors Xi and Yi, of size N .
In this way, Rii = 1 and (0 ≤ Rij ≤ 1), for i 6= j. There-

fore, we can easily identify the most correlated models based
on a threshold, say for example (Rij ≥ 0.8), and verify if it is
possible to eliminate the less significant model in the pair ij
from the set, before creating the ensemble.

This heuristic approach can be useful when we have a
large set of models, thus we can rapidly identify the most
correlated pairs and remove the poorest ones in terms of ac-
curacy in advance. It is worth noting that, specially for small
sets, this criterion must be used carefully since interpolating
or highly accurate models can lead to (Rij → 1.0) as well, and
of course cannot be discarded blindly.

Other diagnostics for multicollinearity exist in the least
squares literature. Most of them are based on the examina-
tion of the correlation matrix XTX, namely: correlation co-
efficients, determinant, eigensystem analysis, VIF (variance
inflation factors), etc. We will not present them here, since
at the end of the day all these diagnostic measures are useful

Ensemble of Metamodels: The Augmented Least Squares Approach 25

to estimate pairwise correlation and not more than that. For
example, it is possible to identify pairs of highly correlated
models, but if the collinearity is among more than two mod-
els it cannot be identified by a simple inspection. In addition,
as we already discussed, pure collinearity does not mean di-
rectly that models are not significant in terms of accuracy or
predictability for the ensemble. Refer to Chap. 11 of Mont-
gomery et al (2006) for a detailed discussion on this subject.

C.3 Gathering Additional Data

As reported in Montgomery et al (2006), one of the best
methods to reduce the sources of multicollinearity in least
squares is collecting additional data. The idea is first to un-
derstand the distribution of points in the design space and
add more sampling points in the non-populated areas, in or-
der to avoid concentrations along lines and therefore break-up
multicollinearity.

In many cases, unfortunately, collecting additional data
costly or even impossible. In other cases, collecting additional
data is not a viable solution to the multicollinearity problem
because its source is due to constraints on the model or in the
population. This is the case of ensemble of metamodels. Since
all the models ŷi are trying to approximate the true response
y as best as possible, or exactly in the case of interpolation,
therefore the true response is acting y as a constraint in the
problem, and then multicollinearity will come up naturally.

C.4 Variable Selection Methods in Regression

A central problem in least squares regression is related to the
definition of the best set of variables or predictors to build
the model. It is desired to define a parsimonious model, i.e.
the simpler regression model that represent the problem at
hand, as always as possible. A parsimonious model is easier
to interpret, to collect data and, in addition, it is less prone
to redundancies that induce linear dependencies and multi-
collinearity and reduce accuracy and predictability.

It is well known that the key driving question in all the
variable selection methods is:
“How to include or exclude variables in a least squares model

in order to achieve the desired accuracy and be parsimonious at

same time?”

During the decades several methods have been devised,
implemented and tested in an attempt to answer this ques-
tion. In this sense, let us briefly explain the concept of bal-
ancing bias and variance in least squares approximation.

C.4.1 The Bias and Variance Dilemma

As remarked by Montgomery et al (2006), the Gauss-Markov
property assures that the estimator β̂ has minimum error, in
the least squares sense, among all unbiased linear estimators,
but there is no guarantee that its variance will be small.

As we discussed previously, when the method of least
squares is applied to nonorthogonal data, very inaccurate es-
timates of β can be obtained, due to the inflation of the vari-
ance. This implies that the absolute values of the coefficients
are very unstable and may dramatically change in sign and
magnitude by small variations in the design matrix X.

One way to mitigate this issue is to relax the requirement
that the estimator of β be unbiased. Let us assume that we
can find a β̂

∗

in such a way that

β̂
∗

= β̂−δ, with ‖δ‖ <
∥

∥β̂
∥

∥ , and E [δ] = δ, (29)

then the bias will be

Bias
(

β̂
∗
)

= E
[

β̂ − δ
]

− β ⇒ Bias
(

β̂
∗
)

= −δ (30)

and, by assuming that β̂ and δ are independent, then

Var
(

β̂
∗
)

= Var
(

β̂ − δ
)

= Var
(

β̂
)

−Var (δ) . (31)

In addition, the MSE will become

MSE
(

β̂
∗
)

= tr
{

Var
(

β̂
)}

− tr {Var (δ)}+ ‖δ‖2

= E
[

∥

∥β̂ − β − δ
∥

∥

2
]

= E
[

2
∥

∥β̂ − β
∥

∥

2
+ 2 ‖δ‖2 −

∥

∥β̂ − β + δ
∥

∥

2
]

= 2×MSE
(

β̂
)

+ f
(

‖δ‖2
)

(32)

by using the parallelogram law for vector norms and the lin-
earity of the expectation operator.

In summary, it can be concluded that, by allowing a small
amount δ of bias in β̂

∗

, the variance of β̂
∗

will be smaller than
β̂. On the other hand, the mean squared error at the data may
increase rapidly as a function of the level of bias induced. If
the effect of increasing bias is smaller than the effect of reduc-
ing variance then it is possible to reduce the error. Therefore,
by controlling the size of β̂, it is possible to control the sta-
bility and error level of the solution by balancing bias and
variance.

In Figure 18 is presented a geometrical interpretation on
this behavior of the solution of β̂ in terms of bias and variance,
for a generic problem with two variables, i.e. β = [β1, β2]

T .
The idea behind this behavior is by choosing a smaller esti-
mator β̂

∗

, then the variance will be smaller. As consequence,
the price for reducing variance will be always by adding bias
in the solution, i.e. the mean squared error will not be the
minimum anymore at the sampling points.

Fig. 18 An illustration of bias and variance dilemma in least
squares. The BLUE estimator has minimal MS error but the
associated variance is large. On the other hand, by accepting
some bias or in other words shrinking the vector β̂, the MSE
increases and the variance is reduced (improved stability).
Adapted based on Montgomery et al (2006).

26 Wallace G. Ferreira, Alberto L. Serpa

In practical terms, it means that if one chooses a biased
estimator β̂

∗

, by increasing the mean squared error at sam-
pling points, the variance will be reduced and the sensitivity
of the regression coefficients to changes on the data will be
also reduced (i.e. less sensitivity to noise or perturbations in
the components of matrix X). Therefore, with more stable
coefficients, the overfitting can be reduced and the accuracy
of predictions for future data will increase as well.

The possible ways to reduce the magnitude of the vector
β̂ are mainly two: (i) by removing/combining variables from
the scope of the model, or by forcing some of the β̂i = 0; and
(ii) by reducing (shrinking) the size of the vector β̂.

Based on these two central ideas, most of the methods
summarized in Sec. 4.3 were devised in order to find a solution
on how to trade-off between bias and variance, and improve
accuracy and predictability for a given set of variables in a
problem least squares problem.

Finally, variable selection methods is a large front of re-
search in least squares approximation field. Miller (2002) pre-
sented an extensive review on variable selection in regression
problems and this is still a subject of active research, as can
bee seen in the recent publications, for instance Ng (2012)
which states that: “The variable selection is by no means
solved.” and Scheipl et al (2013) that reinforces that there is
still a wide and open field for future research in variable and
function selection in multivariate regression.

References

Acar E (2010) Various approaches for constructing an ensem-
ble of metamodels using local error measures. Structural
and Multidisciplinary Optimization 42(6):879–896

Acar E, Rais-Rohani M (2009) Ensemble of metamodels
with optimized weight factors. Structural and Multidis-
ciplinary Optimization 37(3):279–294

Akaike H (1974) A new look at the statistical model identi-
fication. IEEE Transactions on Automation and Control
19:716–723

Amemiya T (1985) Advanced Econometrics. Harvard Univer-
sity Pres, Cambridge, Massachsetts, USA

Bishop CM (1995) Neural Networks for Pattern Recognition.
Oxford University Press Inc., New York, USA

Björk A (1996) Numerical Methods for Least Squares Prob-
lems. SIAM: Society for Industrial and Applied Mathe-
matics

Breiman L (1996) Stacked regressions. Machine Learning
24:49–64

Efroymson MA (1960) Multiple regression analysis. In: Math-
ematical Methods for Digital Computers, Wiley, New
York, USA, pp 191–203

Fan J, Li R (2001) Variable selection via nonconcave penal-
ized likelihood and its oracle properties. Journal of Amer-
ican Statistical Association 96(456):1348–1360

Fang KT, Li R, Sudjianto A (2006) Design and Modeling
for Computer Experiments. Computer Science and Data
Analysis Series, Chapman & Hall/CRC, Boca Raton,
USA

Ferreira WG, Serpa AL (2015b) Ensemble of metamodels:
Extensions of the least squares approach to efficient
global optimization. Structural and Multidisciplinary
Optimization (submitted - ID SMO-15-0339)

Ferreira WG, Alves P, Slave R, Attrot W, Magalhaes M
(2012) Optimization of a CLU truck frame. In: Ford
Global Noise & Vibration Conference, Ford Motor Com-
pany, PUB-NVH108-02

Fierro RD, Bunch JR (1997) Regularization by truncated to-
tal least squares. SIAM Journal of Scientific Computa-
tion 18(4):1223–1241

Forrester A, Keane A (2009) Recent advances in surrogate-
based optimization. Progress in Aerospace Sciences
45:50–79

Forrester A, Sóbester A, Keane A (2008) Engineering Desing
Via Surrogate Modelling - A Practical Guide. JohnWiley
& Sons, United Kingdom

Foster DP, George EI (1994) The risk inflation criterion for
multiple regression. Annals of Statistics 22:1947–1975

Giunta AA, Watson LT (1998) Comparison of approxima-
tion modeling techniques: polynomial versus interpolat-
ing models. In: 7th AIAA/USAF/NASA/ISSMO Sym-
posium on Multidisciplinary Analysis and Optimization,
AIAA-98-4758, pp 392–404

Goel T, Haftka RT, Shyy W, Queipo NV (2007) Ensemble of
surrogates. Structural and Multidisciplinary Optimiza-
tion 33:199–216

Golub GH, Heath M, Wahba G (1979) Generalizaed cross-
validation as a method for choosing a good ridge param-
eter. Technometrics 21(2):215–223

Gunn SR (1997) Support vector machines for classification
and regression. Technical Report. Image, Speech and In-
teligent Systems Research Group. University of South-
hampton, UK

Hannan EJ, Quinn BG (1979) The determination of the order
of autoregression. Journal of Royal Statistics Society -
Series B 41:190–195

Hashem S (1993) Optimal linear combinations of neural net-
works. PhD thesis, School of Industrial Engineering. Pur-
due University, West Lafayette, IN, USA

Hoerl AE, Kennard RW (1970a) Ridge regression: Ap-
plications to nonorthogonal problems. Technometrics
12(1):69–82

Hoerl AE, Kennard RW (1970b) Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics
12(1):55–67

Huber PJ, Rochetti EM (2009) Robust Statistics. Wiley Se-
ries in Probability and Statistics, John Wiley & Sons,
Hoboken, New Jersey

van Huffel S, Vandewalle J (1991) The Total Least Squares
Problem: Computational Aspects and Analysis. SIAM,
Philadelphia, USA

Jekabsons G (2009) RBF: Radial basis function interpolation
for matlab/octave. Riga Technical University, Latvia,
version 1.1 ed.

Jolliffe IT (2002) Principal Component Analysis. Springer Se-
ries in Statistics, Springer, New York, USA

Jones DR, Schonlau M, Welch WJ (1998) Efficient global
optimization of expensive black-box functions. Journal
of Global Optimization 13:455–492

Koziel S, Leifesson L (2013) Surrogate-Based Modeling and
Optimization - Applications in Engineering. Springer,
New York, USA

Lai KK, Yu L, Wang SY, , Wei H (2006) A novel nonlinear
neural network ensemble forecasting model for financial
time series forecasting. In: Lecture Notes in Computer
Science 3991, pp 790–793

Lophaven SN, Nielsen HB, Sondergaard J (2002) DACE -
a matlab kriging toolbox. Tech. Rep. IMM-TR-2002-12,
Technical University of Denmark

Markovsky I, van Huffel S (2007) Overview of total least-
squares methods. Signal Processing 87:2283–2302

Meng C, Wu J (2012) A novel nonlinear neural network en-
semble model using k-plsr for rainfall forecasting. In:

Ensemble of Metamodels: The Augmented Least Squares Approach 27

Bio-Inspired Computing Applications. Lecture Notes in
Computer Science 6840, pp 41–48

Miller A (2002) Subset Selection in Regression. Monographs
on Statistics and Applied Probability, Chapman &
Hall/CRC, USA

Montgomery DC, Peck EA, Vining GG (2006) Introduction to
Linear Regression Analysis. Wiley Series in Probability
and Statistics, John Wiley & Sons, Hoboken, New Jersey

Ng S (2012) Variable selection in predictive regressions. In:
Handbook of Economical Forecasting, Elsevier, pp 752–
789

Perrone MP, Cooper LN (1993) When networks disagree:
Ensemble methods for hybrid neural networks. Artifi-
cial Neural Networks for Speech and Vision, Chapman
& Hall, London, UK

Queipo NV, et al (2005) Surrogate-based analysis and opti-
mization. Progress in Aerospace Sciences 41:1–28

Ramu M, Prabhu RV (2013) Metamodel based analysis and
its applications: A review. Acta Technica Corviniensis -
Bulletin of Engineering 4(2):25–34

Rasmussen CE, Williams CK (2006) Gaussian Processes for
Machine Learning. The MIT Press

Rousseeuw PJ, Leroy AM (2003) Robust Regression and Out-
lier Detection. Wiley Series in Probability and Statistics,
John Wiley & Sons, Hoboken, New Jersey

Sanchez E, Pintos S, Queipo NV (2008) Toward and opti-
mal ensemble of kernel-based approximations with en-
gineering applications. Structural and Multidisciplinary
Optimization 36:247–261

Scheipl F, Kneib T, Fahrmeir L (2013) Penalized likelihood
and bayesian function selection in regression models. Ad-
vances in Statistical Analysis 97(4):349–385

Schwarz G (1978) Estimating the dimension of a model. An-
nals of Statistics 6:461–464

Seni G, Elder J (2010) Ensemble Methods in Data Mining:
Improving Accuracy Through Combining Predictions.
Synthesis Lectures on Data Mining and Knowledge Dis-
covery, Morgan & Claypool Publishers, Chicago, IL, USA

Shibata R (1984) Approximation efficiency of a selection pro-
cedure for a number of regression variables. Biometrika
71:43–49

Simpson TW, Toropov V, Balabanov V, Viana FAC (2008)
Design and analysis of computer experiments in multi-
disciplinary design optimization: A review of how far we
have come - or not. In: 12th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, Victoria,
British Columbia

Thacker WI, Zhang J, Watson LT, Birch JB, Iyer MA, Berry
MW (2010) Algorithm 905: SHEPPACK: modified shep-
ard algorithm for interpolation of scattered multivari-
ate data. ACM Transactions on Mathematical Software
37(3):1–20

Tibshirani R (1996) Regression shrinkage and selection via
lasso. Journal of Royal Statistical Society 58(1):267–288

Viana FAC (2009) SURROGATES toolbox user’s
guide version 2.0 (release 3). Available at website:
http://fchegury.googlepages.com

Viana FAC (2011) Multiples surrogates for prediction
and optimization. PhD thesis, University of Florida,
Gainesville, FL, USA

Viana FAC, Haftka RT, Steffen V (2009) Multiple surrogates:
how cross-validation error can help us to obtain the best
predictor. Structural and Multidisciplinary Optimization
39(4):439–457

Viana FAC, Cogu C, Haftka RT (2010) Making the most
out of surrogate models: tricks of the trade. In: Proceed-

ings of the ASME 2010 International Design Engineer-
ing Technical Conferences & Computers and Information
in Engineering Conference IDETC/CIE 2010, Montreal,
Quebec, Canada

Viana FAC, Haftka RT, Watson LT (2013) Efficient global
optimization algorithm assisted by multiple surrogates
techniques. Journal of Global Optimization 56:669–689

Weisberg S (1985) Applied Linear Regression. Wiley Series
in Probability and Statistics, John Wiley & Sons, New
Jersey, USA

Wolpert D (1992) Stacked generalizations. Neural Networks
5:241–259

Yang XS, Koziel S, Liefsson L (2013) Computational opti-
mization, modeling and simulation: Recent trends and
challenges. Procedia Computer Science 18:855–860

Yu L, Wang SY, Lai KK (2005) A novel nonlinear ensem-
ble forecasting model incorporating glar and ann for
foreign exchange rates. Computers and Operations Re-
search 32:2523–2541

Zerpa LE, Queipo NV, Pintos S, Salager JL (2005) An op-
timization methodology of alkaline-surfactant-polymer
flooding processes using field scale numerical simulation
and multiple surrogates. Journal of Petroleum Science
and Engineering 47:197–208

Zhang C, Ma Y (2012) Ensemble Machine Learning. Methods
and Applications. Springer, New York, USA

Zhou ZH (2012) Ensemble Methods. Foundations and Algo-
rithms. Machine Learning & Pattern Recognition Series,
Chapman & Hall/CRC, Boca Raton, USA

Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

Ensemble of metamodels: extensions of the least squares
approach to efficient global optimization

Wallace G. Ferreira · Alberto L. Serpa

Received: date / Accepted: date

Abstract In this work we present LSEGO, an approach

to drive efficient global optimization (EGO), based on

LS (least squares) ensemble of metamodels. By means

of LS ensemble of metamodels it is possible to esti-
mate the uncertainty of the prediction with any kind

of model (not only kriging) and provide an estimate for

the expected improvement function. For the problems
studied, the proposed LSEGO algorithm has shown to

be able to find the global optimum with less number of

optimization cycles than the required by the classical
EGO approach. As more infill points are added per cy-

cle, the faster is the convergence to the global optimum

(exploitation) and also the quality improvement of the

metamodel in the design space (exploration), specially
as the number of variables increases, when the stan-

dard single point EGO can be quite slow to reach the

optimum. LSEGO has shown to be a feasible option
to drive EGO with ensemble of metamodels as well for

constrained problems, and it is not restricted to kriging

and to single infill point per optimization cycle.

Keywords Ensemble of metamodels · Surrogate based
optimization · Efficient global optimization · Least
squares

W. G. Ferreira
Ford Motor Company Brazil
CAE & Optimization Engineering
Av. Taboão, 899
09655-900, S. B. Campo, SP, Brazil
Tel.: +55-11-41744207
E-mail: wferrei7@ford.com - wgferreira@yahoo.com

A. L. Serpa
University of Campinas - UNICAMP
School of Mechanical Engineering - FEM
Department of Computational Mechanics - DMC
13083-970, Campinas, SP, Brazil
Tel.: +55-19-35213387
E-mail: serpa@fem.unicamp.br

1 Introduction

In the last decades, the use of metamodeling meth-

ods (also known as surrogate modeling or response sur-

face methodology) to replace expensive computer simu-

lation models such as FE (Finite Elements) or CFD

(Computational Fluid Dynamics) found in automotive,

aerospace and oil-gas industry, for example, has become
a common place in both research and practice in engi-

neering design, analysis and optimization. A collection

of engineering research and applications in this field has
been recently published in Koziel and Leifesson (2013).

In this context, surrogate based (or response surface

based, or metamodel based) optimization refers to the

process of using fast running metamodels as surrogates
of original complex and long time running computer

simulation models to approximate the objectives and

constraint functions in a standard optimization algo-
rithm. This methodology has shown to be effective in

both multidisciplinary and multiobjective optimization

problems and it has been widely applied in research and

industry. Refer to the reviews by Queipo et al (2005),
Simpson et al (2008) and Forrester and Keane (2009)

for a broad and detailed discussion on this subject.

The surrogate based optimization is in general an

iterative (cyclic) process. At each cycle, instances of
simulation models with different parameters are eva-

luated (sampling points from a Design of Experiments,

DOE). The surrogate models are fit based on these sam-
pling data and the resulting approximate functions are

used in the search of optimum points (exploitation),

analysis of the response behavior, sensitivity and trends

in the design space (exploration). Once optimum design
candidates and other extrema points are found, they are

evaluated with the true simulation models and if neces-

sary the new points are included in the sampling space

2 Wallace G. Ferreira, Alberto L. Serpa

in order to improve the approximation and to restart

the iterative process. In Jones (2001) it is presented a
review on different approaches (also known as sequen-

tial sampling approaches) used to drive the global sur-

rogate based optimization.

Efficient global optimization (EGO) is an iterative

surrogate based approach that, at each optimization
cycle, one infill point is selected as the one that ma-

ximizes the expected improvement with respect to the

minimum of the objective function. The EGO concept

emerged after the work of Jones et al (1998), that was
based mainly on previous research on Bayesian Global

Optimization (Schonlau (1997) and Mockus (1994)).

Traditionally EGO algorithms are based on kriging ap-
proximation and a single infill point is generated per

optimization cycle.

A question that arises is that the selection of only
one infill point per optimization cycle can be quite slow

to achieve the convergence to the optimum. If parallel

computation is an available resource, then multiple infill
points should be defined and therefore less cycles might

be required for convergence. This aspect can be crucial

specially if the computer models take several hours to
run1 and a single point EGO approach becomes pro-

hibitive, specially in multidisciplinary optimization sce-

narios. In practical terms, when parallel resources are

not an issue, it can be worthwhile to run more simula-
tions per cycle in order to reach an optimum in a reaso-

nable lead time, even if the total number of simulations

is higher at the end of the optimization process.

The aspect of single versus multiple infill points per

cycle is known and discussed since the origins of EGO-

type algorithms at later 1990s. Schonlau (1997) pro-
posed extensions to the standard EGO algorithm to

deliver “m points per stage”, but he pointed out nume-

rical difficulties in the evaluation of the derived expres-
sions accurately at a reasonable computer cost. In addi-

tion, his results were limited to a two variable function

and indicate 18.9% penalty for the parallel approach in
terms of function evaluations for the same accuracy.

Besides this apparent disadvantage in terms of func-

tion evaluations, it can be observed an increasing re-
search interest on EGO approaches with multiple infill

points per cycle published in the last ten years. This

is probably because parallel computation is nowadays

1 For instance, even with high end computers clusters used
nowadays in automotive industry, one single full vehicle ana-
lysis of high fidelity safety crash FEM model takes up to
15 processing hours with 48 CPU in parallel. With respect to
CFD analysis one single complete car aerodynamics model for
drag calculation, by using 96 CPU, should take up 30 hours
to finish. An interesting essay regarding this “never-ending”
need of computer resources in structural optimization can be
found in Venkatararaman and Haftka (2004).

a relatively easy resource and the potential penalty of

parallel EGO approaches should be neglected in favor
of fast delivering results. See for example the works by

Sóbester et al (2004), Henkenjohann and Kukert (2007),

Ponweiser et al (2008), Ginsbourger et al (2010) and
Viana et al (2013).

In our previous research work, Ferreira and Serpa

(2015), we presented and discussed the concept of least
squares (LS) regression, in order to find the optimal

weights in ensemble of metamodels (or weighted ave-

rage surrogates, WAS). We proposed the augmented

least squares ensemble of metamodels (LS-a), a vari-
ation of the standard least squares regression to create

ensemble of metamodels. In this way, the ensemble of

metamodels constructed based on LS approach inher-
its the variance estimator, which can be used in the

definition of the expected improvement function to be

applied in EGO-type algorithms.
In the present work we extend the results of Fer-

reira and Serpa (2015) by proposing an approach that

is able to provide multiple points per cycle in a EGO-

type algorithm by using least squares ensemble of meta-
models. We use the acronym LSEGO, that stands for

“least squares ensemble efficient global optimization”.

In the numerical experiments performed, LSEGO has
shown to be a feasible alternative to drive EGO algo-

rithms with ensemble of metamodels, and in addition it

is not restricted to kriging nor a single infill point per
optimization cycle. LESEGO was applied in the opti-

mization of analytical benchmark functions (up to six

variables) and including some examples of constrained

optimization as well.
The remainder of the present text will be divided

as follows. In Section 2 we present the theoretical fun-

damentals of efficient global optimization and the stan-
dard EGO algorithm. In Section 3 we present and dis-

cuss our proposed LSEGO approach. In Section 4 we

present the numerical experiments performed to vali-
date and compare the LSEGO approach with the tra-

ditional EGO algorithm and the respective results and

discussion are presented in Section 5. Finally, the con-

cluding remarks are presented in Section 6.

2 Theoretical background

2.1 Metamodel based optimization

Let x = [x1 . . . xnv
]
T ∈ ℜnv be a vector of nv pa-

rameters or design variables. Metamodels are nothing

but methods that attempt to fit a function ŷ = f̂(x) :
ℜnv → ℜ to a set of known N data points χ : {xi, yi},
determined by a sampling plan (design of experiments,

DOE).

Ensemble of metamodels: extensions of the least squares approach to efficient global optimization 3

In most of the models, the approximate function

ŷ(x) ≈ y(x) (response surface, surrogate or metamodel)
can be given in the general form

ŷ(x) = wTψ(x), (1)

where w represents weights to be determined and ψ(x)

are the associated basis functions.
Further details on formulation and different types of

metamodels (e.g. polynomial response surfaces (PRS),

radial basis functions (RBF), neural networks (NN),
support vector regression (SVF), etc.) can be found in

Forrester et al (2008), Fang et al (2006) and in the

references therein. In the Appendix A it its presented
the basic formulation for kriging metamodel (KRG),

that will be referenced throughout this work.

The optimization process based on metamodels (i.e.,

metamodel based, response surface based or surrogate
based optimization) can be stated as a standard opti-

mization problem, by replacing the true objective func-

tion y = f(x) and the nc constraints gi(x), that are
complex and costly to compute, by their respective fast

and cheap surrogates, i.e.,

xopt =



























min
x

ŷ(x)

s.t., ĝi(x)− gimax ≤ 0, i = 1 . . . nc

xlb ≤ x ≤ xub

, (2)

where gimax is the reference value (target) for i-th con-

straint2 and xlb and xub the bounds on the design space.

The optimum point xopt can be found by any available
optimization algorithm: gradient based, direct search,

genetic algorithm, etc. Refer to Queipo et al (2005) or

Forrester and Keane (2009) for details.

2.2 Efficient global optimization (EGO)

As pointed out by Forrester and Keane (2009): “the

Holy Grail of global optimization is finding the cor-

rect balance between exploitation and exploration”. Al-
gorithms that favor exploitation (search of the opti-

mum), can be quite slow to converge and in addition be

trapped at a local minimum point and not be able to
reach the global optimum. On the other hand, pure ex-

ploration (improvement of the surrogate and search in

the hole design space) may lead to a waste of resources

(function evaluations, simulations). In this sense, effi-
cient global optimization (EGO) algorithms emerge as

feasible tools to balance exploitation and exploration of

the design space.

2 Only for notational convenience, without loss of genera-
lity, we will assume that all equality constraints h(x) can be
properly transformed into inequality constraints g(x).

Since the data set χ is arbitrary, the determination

of ŷ(x) can be stated as a realization of an stochas-
tic process. In this sense, the approximation can be

modeled as Gaussian, i.e., normally distributed random

variable Ŷ (x), with mean ŷ(x) and variance ŝ2(x).

Efficient global optimization algorithms are centered

in the concept of maximum expected improvement. Let
ymin = min(y1, . . . , yn) be the best current value for

the function y(x) in the sampling data set. The im-

provement is defined as I(x) = max (0, ymin − Y (x)).
Then, the probability of improvement of a point x with

respect to ymin, can be calculated as

P [I(x)] =
1

ŝ
√
2π

∫ 0

−∞

exp

(

− [I − ŷ]
2

2ŝ2

)

dI, (3)

by abbreviating the dependence of I, ŝ and ŷ on x.

On the other hand, the amount of improvement ex-

pected can be obtained by taking the expectation E[·]
of I(x), which leads to

E[I(x)] = Î(x)Φ

(

Î(x)

ŝ(x)

)

+ ŝ(x)φ

(

Î(x)

ŝ(x)

)

, (4)

for s(x) > 0, and E[I(x)] = 0, otherwise. In this equa-

tion, Î(x) ≡ (ymin − ŷ(x)) andΦ(·) and φ(·) are respec-
tively the normal cumulative distribution and normal

probability density functions.

Eq. 4 is known as the expected improvement function

of any point x in the design space, with respect to the

current best value ymin. For details in the derivation see

Forrester and Keane (2009) or the original publications

of Schonlau (1997) and Jones et al (1998).

By means of Eq. 4, the EGO algorithm can be de-
fined for any metamodel ŷ(x), that provides an uncer-

tainty estimate ŝ(x). EGO was originally devised and

is traditionally applied with KRG (see basic formula-

tion at Appendix A), but other models like PRS, RBF
and other Gaussian models can be used as well. See

for example Sóbester et al (2004) in which RBF was

applied.

2.3 The standard EGO algorithm

The standard EGO algorithm can be summarized in

the following steps:

i. Define a set χ of N sampling points and start the

optimization cycles (j ← 1);
ii. Evaluate the true response y(x) at all data sites in

χ, at the current cycle N , and set

ymin ← min(y1, · · · , yN);

4 Wallace G. Ferreira, Alberto L. Serpa

iii. Generate the metamodel ŷ(x) and estimate E[I(x)]

with all the data points available at the current cycle
N ;

iv. Find the next infill point xN+j as the maximizer

of E[I(x)]; evaluate the true function y (x) at xN+j

and add this new point to the sampling space χ;

v. If the stopping criteria is not met, set

ymin ← min(y1, · · · , yN+j),

update cycle counter (j ← j+1) and return to step
iii. Otherwise, finish the EGO algorithm.

2.4 Extensions for EGO algorithm

The EGO algorithm can be extended to handle constra-

ints in the optimization, by using the concept of proba-
bility of improvement. The basis for this extension can

be found in Schonlau (1997) and with details and ap-

plications in Forrester et al (2008) and Han and Zhang

(2012).
By following the derivation presented in Han and

Zhang (2012), the idea is to find the probability of

satisfying the constraints gi (x). In other words, when
P [Gi(x) ≤ 0]→ 1, the constraint is satisfied; otherwise,

when P [Gi(x) ≤ 0] → 0, the constraint is violated.

Analogously to Eq. 3, P [Gi(x) ≤ 0] can be calculated
as

P [Gi(x) ≤ 0] =
1

ŝi
√
2π

∫ 0

−∞

exp

(

− [Gi − ĝi]
2

2ŝ2i

)

dGi(5)

where Gi(x) is the random variable related to ĝi(x) and

ŝi(x) the respective constraint uncertainty estimate.
In this way, the step iv. of the EGO standard algo-

rithm presented at the end of Section 2.2 can be mo-

dified as follows to accommodate nc independent and
uncorrelated constraints, i.e.,

xN+j =















max
x

E[I(x)]×
nc
∏

i=1

P [Gi(x) ≤ 0]

s.t., xlb ≤ x ≤ xub

. (6)

The treatment of multiobjective optimization pro-

blems can be also extended by using the concept of
probability and expected improvement. It is required a

more elaborated derivation that is out of the scope of

this text and the details can be found in Forrester et al
(2008). In addition, Jurecka (2007) has successfully ex-

tended and applied the EGO concept to treat robust

optimization problems as well.

These and other possible extensions of EGO-type
algorithms are of interest for research and practical ap-

plications and we intend to explore this field in our

future work.

3 LS ensemble of metamodels EGO (LSEGO)

3.1 Definitions

As we presented in Ferreira and Serpa (2015), the linear
ensemble of metamodels can be written as

ŷens = Ŷw (7)

where y = [y1 · · · yN]
T
, Ŷ = [ŷ1 (xi) · · · ŷM (xi)] and

w = [w1 · · · wM]
T
, for N sampling points and M

metamodels.

If the optimal weights w are estimated by least

squares methods (LS), as we discussed in detail in Fer-
reira and Serpa (2015), then the resulting ensemble of

metamodels inherits the least squares variance estimate

V [ŷens (x)] ≡ ŝ2 (x), for the prediction at each point x,
that can be written as

ŝ2 (x) = σ̂2 [ŷ (x)]
T
(

ŶT Ŷ
)

−1

ŷ (x) , (8)

with ŷ (x) = [ŷ1 (x) ŷ2 (x) · · · ŷM (x)]
T
, and

σ̂2 =
ŷT
ensŷens − ŵT Ŷŷens

N − nv

(9)

where ŷens = [ŷens (x1) ŷens (x2) · · · ŷens (xN)]T .
Therefore, if ŝ2 (x) is a good estimate for the uncer-

tainty of the LS ensemble of metamodel at the design

space, then it can be used to derive the expected im-
provement function (Eq. 4) in order to drive EGO al-

gorithms, by using any kind of metamodels ŷi (x) and

not only kriging.

In fact, we cannot verify or prove a priori that ŝ2 (x)
is good or not for our purposes in the EGO context.

Since it is a well-established and accepted estimate for

general least squares regression, it will be applied in the
present work without any proof. The main assumption

is that if the LS ensemble of metamodel has reasonable

prediction accuracy, therefore the variance prediction
ŝ2 (x) should be reasonable as well. Our numerical ex-

periments showed that ŝ2 (x) works well for generating

the EI function and the optimization is convergent in

several problems investigated. These results and con-
clusions will be presented and discussed in the next

sections.

In this sense, we named this proposed approach as
LSEGO (least squares ensemble efficient global opti-

mization) and the intention in the present work is to

verify and demonstrate the efficiency of this method as
an alternative to drive EGO-type algorithms.

3.2 Illustrations: one infill point per cycle

Fig. 1 illustrates the evolution of LSEGO for a one vari-

able function with one infill point per optimization cy-

cle. At each optimization cycle it is presented the true

Ensemble of metamodels: extensions of the least squares approach to efficient global optimization 5

function y(x) versus the approximation by LS-a ensem-

ble (left plot) and the expected improvement function
E[I(x)] (right plot), calculated by means of Eq. 4, with

ŝ2 (x) as defined in Eq. 8.

At cycle 01 we have a very poor approximation with

correlation coefficient R2 = 0.258 and normalized root

mean squared error NRMSE = 31.9%. The E[I(X)]
presents a clearly defined peak close to the true min-

imum (xexact
opt = 5.624). Note for this example in Fig.

1, at the first six optimization cycles, the maximum of
expected improvement function works in the “exploita-

tion mode” and prioritizes to add infill points around

the optimum.

At this stage (cycle 06) the optimum found xopt =

5.600 is quite close to the exact value (0.43% error),
with a very good quality approximation for the meta-

model: R2 = 0.975 and NRMSE = 4.2%. After cy-

cle 06, the LSEGO algorithm automatically switches
to the “exploration mode” and the infill points are se-

lected in order to improve the quality of the approxi-

mation in the whole design space, instead of improving

the minimum value found. The LSEGO algorithm was
stopped at cycle 12 with xopt = 5.600, R2 = 0.999 and

NRMSE = 0.5%.

This behavior of LSEGO in one dimension was ob-

served for other functions as well, with different levels of

nonlinearity and multimodality. Based on these prelim-
inary results we can conclude that LSEGO performed

quite well in terms of exploitation and exploration of

the design space.

On the other hand, for higher dimension problems

we noted a very slow convergence for the algorithm, as-
sociated to a high concentration of infill points around

the global optimum, as observed in standard EGO al-

gorithm as well. See for instance in Fig. 2 the behavior
for LSEGO for Giunta-Watson function (see Appendix

B, Eq. 20) with two variables and one infill point per

optimization cycle. The exact minimum is accurately
found only at cycle 37 and all the infill points are lo-

cated at this neighborhood. As consequence, the quality

of the approximation at cycle 37 is still poor outside the

optimum vicinity (note the difference on the exact and
approximate contours for the function).

It is well known that the expected improvement
function can be extremely multimodal (i.e., with muti-

ple peaks that lead to several locations with high proba-

ble improvement). This behavior was observed in most
of the optimization cycles investigated for LSEGO as

well (see for instance the E[I(x)] curves in Fig. 1).

This multimodal behavior of the expected improve-

ment function can be taken as advantage by selecting

more than one infill point per optimization cycle in or-

der to accelerate the whole optimization process, as dis-

cussed in Sóbester et al (2004), for example.

3.3 LSEGO with parallel infill points

As we discussed in the Introduction (Section 1) the as-

pect of single versus multiple infill points per cycle is

known and discussed since the origins of EGO-type al-
gorithms (Schonlau (1997) and Jones et al (1998)).

Sóbester et al (2004) used a multistart optimiza-
tion algorithm to find multiple maximum points for the

expected improvement function and take advantage of

parallel processing resources. Their results indicated ac-
celerated convergence for the optimization with signif-

icant reduction in processing time.

In the last years we can observe an increasing re-

search interest on EGO approaches with multiple in-
fill points per cycle. Henkenjohann and Kukert (2007),

Ponweiser et al (2008) and Ginsbourger et al (2010), for

instance, proposed different implementations of paral-

lel EGO approaches by extending the concepts of gene-
ralized expected improvement and m-step improvement

proposed in the work by Schonlau (1997).

In a different way, Viana et al (2013) proposed the

MSEGO (multiple surrogates EGO). In this case, they
used multiple surrogates simultaneously at each cycle of

EGO algorithm. With at least one kriging model avai-

lable, they imported the uncertainty estimate for this

model to the other non-kriging models in the set. By
means of different uncertainty estimates, they generate

different instances of expected improvement functions

to be maximized and to provide multiple parallel infill
points in each EGO cycle.

In the same direction of the approach proposed by

Viana et al (2013), in the present work we suggest an

alternative scheme to generate multiple infill points per
cycle in the LSEGO algorithm by taking advantage of

multiple surrogates in a form of a LS ensemble.

Since we have an arbitrary set of M distinct meta-

models, that are relatively fast to generate (as com-

pared with the true simulation model y (x)), then it is
possible to create and arbitrary number of Np partial

LS ensembles ŷkens(x), by generating permutations of

M̄ < M metamodels. Therefore, by means of the Np

partial LS ensembles there are Np respective expected

improvement functions Ek[I(x)] available to generate

up to Np infill points per cycle.

In this case, differently from Viana et al (2013), it is

not required to have at least one kriging model in the set
to generate the uncertainty estimates, since in LSEGO

ŝ2k(x) are generated directly from the least squares de-

finition for the partial ensembles.

6 Wallace G. Ferreira, Alberto L. Serpa

Based on preliminary tests we observed a good per-

formance of LSEGO for the purpose of multiple infill
points per cycle. We will illustrate this application of

LSEGO at Section 3.4 and the final LSEGO algorithm

will be summarized in Section 3.5.

3.4 Illustrations: multiple infill points per cycle

We will illustrate the behavior of LSEGO with multiple

infill points with functions of two variables. Fig. 4 shows

the same setup used in the case of Fig. 2 for Giunta-
Watson function (2 variables), but now with Np = 8

infill points per optimization cycle.

Note in Fig. 4 that, by allowing more infill points per
cycle, LSEGO converges very quickly to the exact opti-

mum at cycle 5 (as compared to cycle 37, for Np = 1 in

Fig. 2), with a reasonable correlation for the metamodel

at this point (R2 = 0.803 and NRMSE = 8.1%). In
addition, if we let LSEGO to continue with the ex-

ploration, the metamodel quality is continuously im-

proved. Observe the results at cycle 12 (R2 = 0.998
and NRMSE = 0.6%), that can be explained by the

more spread of infill points (exploration), not only on

the vicinity of the optimum (exploitation), as in the
case for one infill point per cycle.

We observed the same performance of LSEGO for

other functions as well. See for instance the evolution

for Branin-Hoo function (ref. App. B, Eq. 18) in Fig.
6. In this case, LSEGO has found the tree optimum

points within high accuracy at cycle 05 (R2 = 0.999

and NRMSE = 0.5%).
Based on these preliminary results with one and two

dimension functions, we can conclude that LSEGO has

a good performance on driving EGO algorithm, with
single and multiple infill points per cycle. As more infill

points are added per cycle, faster is the convergence to

the global optimum (exploitation) and also the quality

improvement (predictability) of the metamodel in the
whole design domain (exploration). In the Section 4 we

will show the numerical experiments performed with

the objective to compare the performance of the pro-
posed algorithm LSEGO versus the traditional EGO.

3.5 LSEGO algorithm with parallel infill points

The LSEGO algorithm with parallel infill points can be

summarized in the following steps:

i. Define a set χ of N sampling points and start the
optimization cycles (j ← 1);

ii. Evaluate the true response y(x) at all data sites in

χ, at the current cycle N , and set

ymin ← min(y1, · · · , yN);

iii. Generate the M metamodels ŷi(x), the Np partial

LS ensembles ŷkens(x) and the respective expected
improvement functions Ek[I(x)], with all data avai-

lable at the current cycle N ;

iv. Find the set of next distinct N∗

p ≤ Np infill points

χinfill =
[

xN+j , · · · ,xN+j+N∗

p

]

as the respective

maximizers of Ek[I(x)]; evaluate the true function
y (x) at the N∗

p infill points and add them to the

sampling space: χ← χ ∪ χinfill;

v. If the stopping criteria is not met, set

ymin ← min(y1, · · · , yN+j , · · · , yN+j+N∗

p
),

update cycle counter (j ← j+1) and return to step

iii. Otherwise, finish the LSEGO algorithm.

Ensemble of metamodels: extensions of the least squares approach to efficient global optimization 7

0 2 4 6

−2

−1

0

1

2
Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.5

1

1.5
Expected Improvement − LSEGO

x
E

[I
(x

)]

E[I(x)]
max E[I(x)]

(a) Cycle 01

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5
Expected Improvement − LSEGO

x

E
[I
(x

)]

E[I(x)]
max E[I(x)]

(b) Cycle 02

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.05

0.1

0.15

0.2

0.25
Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(c) Cycle 03

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x
y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.1

0.2

0.3

0.4
Expected Improvement − LSEGO

x

E
[I
(x

)]

E[I(x)]
max E[I(x)]

(d) Cycle 04

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.05

0.1

0.15

0.2
Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(e) Cycle 05

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.05

0.1

0.15

0.2
Expected Improvement − LSEGO

x
E

[I
(x

)]

E[I(x)]
max E[I(x)]

(f) Cycle 06

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.01

0.02

0.03

0.04

0.05
Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(g) Cycle 07

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.005

0.01

0.015

0.02

0.025

0.03
Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(h) Cycle 08

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.005

0.01

0.015

0.02

0.025
Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(i) Cycle 09

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

0.005

0.01

0.015

0.02

0.025
Expected Improvement − LSEGO

x

E
[I

(x
)]

E[I(x)]
max E[I(x)]

(j) Cycle 10

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

1

2

3

4

5

6
x 10

−3Expected Improvement − LSEGO

x

E
[I
(x

)]

E[I(x)]
max E[I(x)]

(k) Cycle 11

0 2 4 6

−2

−1

0

1

Approximation by LS−a Ensemble

x

y
(x

)

y(x): Exact
y(x): LS−a
Initial Points
Infill Point

0 2 4 6
0

1

2

3

4

5
x 10

−3Expected Improvement − LSEGO

x

E
[I
(x

)]

E[I(x)]
max E[I(x)]

(l) Cycle 12

Fig. 1 Evolution of approximation y(x) vs. ŷ(x) and expected improvement E[I(x)] for y(x) = 1
700

(−2x+5x2+7x3) sin(2x) with
Np = 1 infill point per optimization cycle with LSEGO algorithm. The initial sampling points are at χ = [0, 2.25, 2.8, 3.75, 2π]
and the LS-a ensemble is used with four metamodels: PRS (ID = 1), KRG (ID = 2), RBNN (ID = 3) and SVR (ID = 4), see
Tab. 1.

8 Wallace G. Ferreira, Alberto L. Serpa

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(a) Cycle 01

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(b) Cycle 10

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(c) Cycle 20

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(d) Cycle 30

Fig. 2 Evolution of approximation of Giunta-Watson func-
tion (2 variables), with LSEGO and Np = 1 infill point
per optimization cycle. The 15 initial sampling points were
generated with Latin Hypercube Matlab function lhsdesign,
and the LS-a ensemble is used with four metamodels: PRS
(ID = 1), KRG (ID = 2), RBNN (ID = 3) and SVR
(ID = 4), see Tab. 1.

Contour of Exact Function

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(a) Exact Contour

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(b) Cycle 37: Approximation

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points at Cycle 37

(c) Cycle 37: Sampling Points

Fig. 3 Detail at Cycle 37 for the evolution of approximation
of Giunta-Watson function (2 variables), with LSEGO and
Np = 1 infill point per optimization cycle.

Ensemble of metamodels: extensions of the least squares approach to efficient global optimization 9

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(a) Cycle 01

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(b) Cycle 03

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(c) Cycle 05

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(d) Cycle 10

Fig. 4 Evolution of approximation of Giunta-Watson func-
tion (2 variables), with LSEGO-8: Np = 8 infill points per
optimization cycle and the LS-a ensemble is used with four
metamodels: PRS (ID = 1), KRG (ID = 2), RBNN (ID = 3)
and SVR (ID = 4), see Tab. 1.

Contour of Exact Function

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(a) Exact Contour

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(b) Cycle 12: Approximation

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x
1

x
2

Sampling Points at Cycle 12

(c) Cycle 12: Sampling Points

Fig. 5 Detail at Cycle 12 for the evolution of approxima-
tion of Giunta-Watson function (2 variables), with LSEGO-8:
Np = 8 infill points per optimization cycle.

10 Wallace G. Ferreira, Alberto L. Serpa

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−5 0 5 10
0

5

10

15

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(a) Cycle 01

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−5 0 5 10
0

5

10

15

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(b) Cycle 03

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−5 0 5 10
0

5

10

15

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(c) Cycle 05

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

−5 0 5 10
0

5

10

15

x
1

x
2

Sampling Points

Initial Points

Infill Points

Optimum

Exact Optima

(d) Cycle 10

Fig. 6 Evolution of approximation of Branin-Hoo function
(2 variables), with LSEGO-8: Np = 8 infill points per opti-
mization cycle and the LS-a ensemble is used with four meta-
models: PRS (ID = 1), KRG (ID = 2), RBNN (ID = 3) and
SVR (ID = 4), see Tab. 1.

Contour of Exact Function

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(a) Cycle 10: Exact Contour

Approximation by LS−a Ensemble

50 100 150 200

20

40

60

80

100

120

140

160

180

200

(b) Cycle 10: Approximation

−5 0 5 10
0

5

10

15

x
1

x
2

Sampling Points at Cycle 10

(c) Cycle 10: Sampling Points

Fig. 7 Detail at Cycle 10 for the evolution in the approxi-
mation of Branin-Hoo function (2 variables) with LSEGO-8:
Np = 8 infill points per optimization cycle.

Ensemble of metamodels: extensions of the least squares approach to efficient global optimization 11

4 Numerical experiments

In this work the main objective is to compare the per-

formance of the proposed algorithm LSEGO versus the

traditional EGO. The approach followed for analysis
here was based mainly on the work by Viana et al

(2013), with specific changes in in the overall setup

for the numerical experiments. In addition we applied

LSEGO in the optimization constrained optimization
of analytical benchmark functions, with the approach

outlined in Section 2.4, based on Eq. (6).

4.1 Computer implementation

We used the Matlab3 SURROGATES Toolbox v2.0 (ref.

Viana (2009)), as platform for implementation and tests.
See Appendix C for details.

In our previous work, Ferreira and Serpa (2015), we

implemented routines for LS ensemble of metamodels.

In the present work we extended the implementations
to include the standard EGO and LSEGO algorithms

as well, as described respectively in Section 2.3 and Sec-

tion 3.5.

The numerical implementation has been performed
with Matlab v2009, on a computer Intel(R) Core(TM)

i7-3610QM, CPU 2.30GHz, 8Gb RAM, 64bits, and ope-

rational system Windows 7.

4.2 Experimental Setup

4.2.1 Analytical benchmark functions

We used three well known analytical functions with

different number of variables (nv) for testing the opti-

mization algorithms: Branin-Hoo (nv = 2), Hartman-3
(nv = 3) and Hartman-6 (nv = 6). See Appendix B for

the respective equations.

For the constrained optimization experiments we
generated the constraints by following the approach

used in Forrester et al (2008) to test the constrained

expected improvement formulation.

That is, for Branin-Hoo function, let x∗

1 = 3π and
x∗

2 = 2.475 be the coordinates of one of the three lo-

cal optima, then we write the normalized constraint as

follows

g(x1, x2) =
x1x2

x∗

1x
∗

2

− 1 ≥ 0. (10)

3 Matlab a well known and widely used numerical progra-
ming platform and it is developed and distributed by The
Mathworks Inc., see www.mathworks.com.

In this way, by using this hyperbola function, at

least one local optimum is forced to lie exactly at the
constraint boundary.

The same idea was used for Hartman-3 and Hartman-

6 functions, with their respective global optima, listed
in Appendix B.

4.2.2 Ensembles of metamodels

The ensemble of metamodels were created with the aug-
mented least squares approach LS-a (ref. Ferreira and

Serpa (2015)), with ηaug ≈ 33% and nine distinct mod-

els of type PRS, KRG, RBNN and SVR, by considering
the setup presented in Tab. 1. Refer to SURROGATES

Toolbox manual (ref. Viana (2009)) for details on the

equations and tuning parameters for each of these meta-

modeling methods.
The EGO algorithm was implemented with the KRG

model ID = 2 presented on Tab. 1. In case of LSEGO,

we used ten permutations of the nine models displayed
on Tab. 1 as follows. The first (full) ensemble used all

the nine metamodels. For the second partial ensemble

we removed the model with ID = 9 from the full ensem-
ble. For the third one, the model with ID = 8 was re-

moved from the full ensemble and we continue this way

up to ten ensembles, i.e., one full LS ensemble (M = 9)

and nine partial LS ensembles (M̄ = 8).

4.2.3 Design of experiments

The quality of the approximation by metamodels and

the rate of convergence to the optimum is strongly de-
pendent on the number and distribution of the initial

sampling points defined in the design space (i.e., DOE).

In the cases investigated, as a common practice in com-
parative studies of metamodeling performance, we re-

peated each experiment with 100 different DOE, in or-

der to average out the influence of random data on the

quality of fit. The detailed setup for the initial DOE for
each test problem is presented in Tab. 2. We used the

same number of initial points Ntr in the DOE as used

in Jones et al (1998).
The 100 different initial DOE with N points (N =

Ntr+Nadd) were created by using the Latin Hypercube

Matlab function lhsdesign, optimized with maxmin cri-
terion set to 1000 iterations. At each cycle of LSEGO,

the augmenting points Nadd are chosen randomly for

the full sampling set (N) to generate the LS-a ensem-

ble with constant rate ηaug ≈ 33%.

4.2.4 Setup for EGO algorithms

In the optimization of each test problem (i.e., Branin-

Hoo, Hartman-3 and Hartman-6), we repeated EGO

12 Wallace G. Ferreira, Alberto L. Serpa

Table 1 Basic metamodels setup for creating the ensembles.

ID Type Details

1 PRS Full quadratic model
2 KRG Quadratic regression, exponential correlation, θ0 = 10 and 10−2 ≤ θi ≤ 200
3 RBNN Goal = (0.05ȳ)2, Spread = 2/5 and MN = N

4 SVR C = 100max(|ȳ + 3σy |, |ȳ − 3σy |) and ǫ = σy/
√
N

5 PRS Linear model
6 KRG Linear regression, Gaussian correlation, θ0 = 10 and 10−2 ≤ θi ≤ 200
7 RBNN Goal = (0.05ȳ)2, Spread = 1/3 and and MN = N/2

8 SVR C = 100max(|ȳ + 3σy |, |ȳ − 3σy |), ǫ = σy/
√
N , KernelOptions = 1/2 and Loss = Quadratic

9 KRG Constant regression, Gaussian correlation, θ0 = 10 and 10−2 ≤ θi ≤ 200

Obs.1: KRG: kriging; PRS: polynomial response surface; RBNN: radial basis neural network; SVR: support vector regression.
Obs.2: All other parameters not mentioned are kept with default values.
Obs.3: ȳ, σy and N are respectively: mean and standard deviation of y and number of sampling points.
Obs.4: No attempt has been made in order to fine tuning the surrogates shape parameters.

Table 2 Basic specifications for the initial DOE. nv: number
of variables, Ntr: training points and Nadd: augmenting points
for LS-a ensemble.

Test Problem nv Ntr Nadd

Branin-Hoo 2 21 10
Hartman-3 3 33 16
Hartman-6 6 65 32

and LSEGO Nrep = 100 times, in order to average out

the effect of different initial DOE on the convergence.

In case of EGO we used the standard case (Np =
1) infill point per cycle. In case of LSEGO we used

for Branin-Hoo (Np = 2, 5 and 10) points per cycle

and for Hartman functions (Np = 10). The acronym
LSEGO varies as function of Np, e.g., LSEGO-1 stands

for LSEGO with Np = 1 and LSEGO-10 stands for

LSEGO with Np = 10.

In order to compare the rate of convergence (ymin

vs. cycles), the total number of cycles allowed to run

was set 5 for Branin-Hoo, 10 for Hartman-3 and 15

for Hartman-6. For comparison of variability of ymin

at each cycle, as function of different DOE, we used

boxplots.4

In order to compare the level of improvement (Limp)

versus number of function evaluations (feval), for all
test problems, it was considered fmax

eval = 50, withNrep =

25 repetitions. In this case Limp is calculated for each

cycle k as:

Limp = 100%×
∣

∣

∣

∣

ykmin − y0min

yexactmin − y0min

∣

∣

∣

∣

, (11)

4 Boxplot is a common statistical graph used for visual
comparison of the distribution of different variables in a
same plane. The box is defined by lines at the lower quar-
tile (25%), median (50%) and upper quartile (75%) of the
data. Lines extending above and upper each box (whiskers)
indicate the spread for the rest of the data out of the quartiles
definition. If existent, outliers are represented by plus signs
“+”, above/below the whiskers. We used the Matlab function
boxplot (with default parameters) to create the plots.

where y0min is the minimum for the initial sample, ykmin

is the minimum value at cycle k and yexactmin is the exact

minimum value.

4.2.5 Maximization of the expected improvement

functions

In case of standard EGO (with one point per cycle) we

used the Matlab built-in genetic algorithm optimizer

ga with both PopulationSize and Generations set
100. The InitialPopulation was set with size 10nv

individuals, chosen by using the function lhsdesign,

optimized with maxmin criterion set to 1000 iterations.

In case of LSEGO with multiple infill points there
are many expected improvement functions to maximize

per cycle. The use of a genetic algorithm can be quite

time consuming in this case. Based on preliminary nu-
merical experiments, we found a good balance in accu-

racy and computation time by using the Matlab pat-

tern search algorithm patternsearch, with 10nv initial
points (X0), chosen by using the function lhsdesign,

optimized with maxmin criterion set to 1000 iterations.

As discussed in Jones (2001) the EGO-type algo-

rithms tends to generate infill points quite close to each
other in several cycles. Sampling points too close can

degenerate the approximation of many metamodels, in

special KRG and RBF. In addition, infill points too
close have low contribution to the exploration of the

design space, they can be a waste of resources and in

addition lead to a slower convergence for the optimiza-

tion. We verified this fact in several preliminary nu-
merical experiments (ref. for instance the illustration

example of Fig. 2).

In this case, in order to avoid approximation issues

during EGO and LSEGO cycles, we generated exceed-
ing infill points per cycle and selected distinct Np with

highest expected improvement value. In our tests we

found a good balance by generating 2Np candidate in-

Ensemble of metamodels: extensions of the least squares approach to efficient global optimization 13

fill points and then we used a clustering procedure to

remove points too close, or even equal to each other. Af-
ter the clustering selection, the Np distinct points are

added to the sampling space for the next optimization

cycle.
In our first tests we used the Matlab function unique

to remove equal points from the sampling space, but

this procedure has shown to be not effective. Then we
implemented a clustering selection procedure by using

the Matlab function cluster with the distance crite-

rion. The cutoff was based on the maximum distance

(dmax) among points/clusters in the whole sampling
space, by using the Matlab linkage function. In pre-

liminary numerical tests we found that cutoff around

to 10% of dmax is effective to remove too close points.

5 Results and discussion

5.1 Comparative study: LSEGO versus EGO

The objective in this test set is to compare the per-

formance of the proposed algorithm LSEGO versus the

traditional EGO.
In Fig. 8 it is presented the optimization results (me-

dian over 100 runs starting with different experimental

designs) for the classical efficient global optimization
algorithm EGO (only with kriging and one infill point

per cycle) and LSEGO (with LS ensemble of surro-

gates/metamodels and different number of points per

cycle, Np).
For the three functions studied here, it was observed

significant improvement on the reduction of number of

cycles for convergence by adding more infill points per
cycle. The higher the number of points per cycle, faster

the convergence. In addition this effect of accelerated

convergence per cycle is more evident as the number of
variables increases.

In case of Branin-Hoo function, we tested LSEGO

for Np = 2, 5 and 10. For Hartman-3 and Hartman-6 it

is presented only for Np = 10. In case of Hartman func-
tions we found a similar trend, as presented in Viana

et al (2013), with little difference in convergence for

Np = 5 and Np = 10. In this way we removed Np < 10
from the scope for these cases.

Fig. 9 is the counterpart of Fig. 8, by plotting the

results versus function evaluations instead of optimiza-
tion cycles. The idea is to compare LSEGO and EGO in

terms of computational costs, measured by the number

of simulations (function evaluations) required for the

same level of improvement on the objective function at
each optimization cycle.

As showed in the curves of Fig. 9, we can observe

that for Branin-Hoo and Hartman-3 (low to mid di-

mensions) at the beginning of the optimization cycles

EGO-Kriging has lower cost in terms of number of func-
tion evaluations than LSEGO-10 for the same level of

improvement, but at some point (e.g., around 70% for

Branin-Hoo) the situation is more favorable to LSEGO-
10, which is also observed of Hartman-3. In case of the

Hartman-6 function, the convergence of EGO-Kriging

is quite slow and LSEGO-10 always outperforms EGO-
Kriging in terms of function evaluations for the same

level of improvement.

These results confirm the fact that by using multi-

ple infill points per cycle with EGO algorithms is, in
general, beneficial in terms of delivering results in rea-

sonable processing time (when parallel computation is

available), but on the other hand it is not guaranteed
that the total computational cost of the optimization

process (by the total number of parallel simulations)

will be reduced at the end of the day. The trend on the
results indicate that this effect is problem dependent on

the number of variables and the level of nonlinearity of

the problem at hand.

Fig. 10 presents boxplots of the optimization results
for 100 experimental designs for LSEGO vs. EGO. Note

that at the beginning of the optimization (cycle 1) the

minimum solution found has a high dispersion as func-
tion on the initial DOE and this dispersion is rapidly

decreasing for LSEGO, what is observed in EGO at

much lower rate.
Again, in the same direction of the results presented

by Viana et al (2013), we found that by using LSEGO

with multiples points per cycle a significant reduction

in the dispersion of the results (minimum of objective
function) can be achieved as long as the optimization

cycles evolve. This trend confirms that by using LSEGO

with multiple points per cycle reduces the variability
and dependence of the optimization results on the ini-

tial DOE, what is not assured by using EGO with only

one infill point per cycle.
In summary the main objective of the experiments

in this set, compiled in Figs. 8, 9 and 10, is to highlight

that even by paying more function evaluations per cy-

cle, the behavior of parallel EGO-type algorithms can
be more stable with higher chance of convergence and

real improvement of the objective function with few

optimization cycles/iterations. In other words, as we
discussed in the Introduction (Section 1), these results

confirm that it can be worthwhile to spend more evalua-

tions in a controlled way in order to improve the overall
performance of the optimization process.

14 Wallace G. Ferreira, Alberto L. Serpa

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Number of Optimization Cycles

M
in

im
u
m

 o
f
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 (

y m
in

)

BraninHoo−2

y
min

 = 0.397887

EGO−Kriging

LSEGO−2

LSEGO−5

LSEGO−10

Exact Global Minumum

(a) Branin-Hoo, nv = 2

0 1 2 3 4 5 6 7 8 9 10 11

−3.8

−3.6

−3.4

Number of Optimization Cycles

M
in

im
u
m

 o
f
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 (

y m
in

)

Hartman−3

y
min

 = −3.862782

EGO−Kriging

LSEGO−10

Exact Global Minumum

(b) Hartman-3, nv = 3

0 2 4 6 8 10 12 14 16
−3.5

−3

−2.5

−2

−1.5

Number of Optimization Cycles

M
in

im
u
m

 o
f
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 (

y m
in

)

Hartman−6

y
min

 = −3.3223563

EGO−Kriging

LSEGO−10

Exact Global Minumum

(c) Hartman-6, nv = 6

Fig. 8 Comparison EGO-Kriging versus LSEGO variants for
the functions Branin-Hoo, Hartman-3 and Hartman-6. Me-
dian (over 100 different initial sampling, DOE) for the effi-
cient global optimization results as function of the number
of cycles. The convergence to the exact global minimum is
accelerated by adding more points per cycle with LSEGO in
all the cases studied.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

N
u
m

b
e
r

o
f
F

u
n
c
ti
o
n
 E

v
a
lu

a
ti
o
n
s

Level of Improvement [%]

BraninHoo−2

EGO−Kriging

LSEGO−10

(a) Branin-Hoo, nv = 2

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100
N

u
m

b
e
r

o
f
F

u
n
c
ti
o
n
 E

v
a
lu

a
ti
o
n
s

Level of Improvement [%]

Hartman−3

EGO−Kriging

LSEGO−10

(b) Hartman-3, nv = 3

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

N
u

m
b

e
r

o
f

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Level of Improvement [%]

Hartman−6

EGO−Kriging

LSEGO−10

(c) Hartman-6, nv = 6

Fig. 9 Comparison EGO-Kriging versus LSEGO-10. Median
(over 100 runs with different initIal samples, DOE) for the
number of function evaluations versus level of improvement.
In case of (Branin-Hoo and Hartman-3, LSEGO required
more function evaluations to achieve the same level of im-
provement at the beginning of the optimization. In case of
Hartman-6 LSEGO required less function evaluations for the
same improvement in the whole the process.

Ensemble of metamodels: extensions of the least squares approach to efficient global optimization 15

0

2

4

6

8

10

12

14

1 2 3 4 5 6
Optimization Cycles

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n

Branin−2: EGO−Kriging

(a) Branin-Hoo, EGO

0

2

4

6

8

10

12

14

1 2 3 4 5 6
Optimization Cycles

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n

Branin−2: LSEGO−10

(b) Branin-Hoo, LSEGO-10

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

1 2 3 4 5 6 7 8 9 10 11
Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Hartman−3: EGO−Kriging

(c) Hartman-3, EGO

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

1 2 3 4 5 6 7 8 9 10 11
Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Hartman−3: LSEGO−10

(d) Hartman-3, LSEGO-10

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Hartman−6: EGO−Kriging

(e) Hartman-6, EGO

−3

−2.5

−2

−1.5

−1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Optimization Cycles

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Hartman−6: LSEGO−10

(f) Hartman-6, LSEGO-10

Fig. 10 Comparison of the convergence of EGO-Kriging (left boxplots) vs. LSEGO-10 (right boxplots), over 100 different
initial DOE in each case for the functions Branin-Hoo, Hartman-3 and Hartman-6. The variability of the results is higher as
the number of variables increases and the convergence to the optimum is very slow with one infill point and EGO-Kriging. In
all the cases, the addition of multiple infill points per optimization cycle with LSEGO-10 accelerates the convergence and also
reduce significantly the dispersion of the results as the optimization cycles evolve.

16 Wallace G. Ferreira, Alberto L. Serpa

5.2 Results with constrained optimization

5.2.1 Braninh-Hoo

−5 0 5 10
0

5

10

15

x1

x
2

Sampling Points at Cycle 16

Feasible Area

g
1

Exact Optimum

Converged Optimum

Fig. 11 Optimization results for the constrained Branin-Hoo
function. LSEGO-10 converged exactly to the constrained op-
timum at x∗ = (9.425, 2.475), after 15 cycles. Note the higher
density and uniformity of infill points inside than outside the
feasible area. The circles “o” are the infill sampling points
and the initial DOE points are labeled with asterisks “∗”.
The three unconstrained local optima of Branin-Hoo are la-
beled as “stars”.

For the Branhin-Hoo function, the results of the

constrained optimization with LSEGO-10 are presented
in Fig. 11. In this case, with the constraint defined with

Eq. (10), there is only one global optimum in the feasi-

ble area, exactly at the constraint boundary at

x∗

exact = (9.425, 2.475) .

Note that the algorithm added infill points at the whole

design space, but the density and uniformity of infill

points inside is higher than outside the feasible area.
The evolution of the objective function y(x) and

the normalized constraint g(x) during the optimization

cycles with LSEGO-10 for Branin-Hoo function are pre-
sented in Fig. 12. Note that LSEGO-10 started very far

from the global minimum y∗ = 16.4266 and reached fast

the neighborhood of x∗

exact, at the second optimization

cycle, with y∗ = 0.5987, although no further improve-
ment on y(x) was observed until cycle 14. LSEGO-10

converged exactly to the global optimum at cycle 15.

5.2.2 Hartman-3

In the same way, the results for Hartman-3 function is

presented in Fig. 13. LSEGO-10 reached the neighbor-

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

Optimization Cycles

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n

BraninHoo−2: Efficient Global Optimization with LS−Ensembles, Rep. # 93

Min. Obj. Function

Exact Global Minumum

(a) Objective Function y(x)

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Optimization Cycles

N
o

rm
a

liz
e

d
 C

o
n

s
tr

a
in

t
F

u
n

c
ti
o

n
BraninHoo−2: Efficient Global Optimization with LS−Ensembles, Rep. # 93

(b) Normalized Constraint g(x)

Fig. 12 Evolution objective function y(x) and the normalized
constraint g(x) during the optimization cycles with LSEGO-
10 for Branin-Hoo function. LSEGO-10 started with y∗ =
16.4266 and reached y∗ = 0.5987 at cycle 2. LSEGO-10 con-
verged the global optimum with y∗ = 0.3979 at cycle 15.

hood of x∗

exact at cycle 5, with y∗ = −3.7899, i.e., 1.89%
error from y∗exact.

The algorithm evolved in the cycles, by reducing the

value of value of g(x) and trying to reach the constraint
boundary (i.e., g(x) = 0). At cycle 15, it was found

y∗ = −3.8371, or 0.66% error from y∗exact. At cycle 31,

the algorithm reached

x∗ = (0.1444, 0.5553, 0.8537) ,

with y∗ = −3.8621 or 0.02% error from y∗exact, and no

further improvement in y(x) or g(x) was found up to

40 cycles.

Ensemble of metamodels: extensions of the least squares approach to efficient global optimization 17

0 5 10 15 20 25 30 35 40
−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

Optimization Cycles

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n

Hartaman−3: Efficient Global Optimization with LS−Ensembles, Rep. # 39

Min. Obj. Function

Exact Global Minumum

(a) Objective Function y(x)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

Optimization Cycles

N
o
rm

a
liz

e
d
 C

o
n
s
tr

a
in

t
F

u
n
c
ti
o
n

Hartaman−3: Efficient Global Optimization with LS−Ensembles, Rep. # 39

(b) Normalized Constraint g(x)

Fig. 13 Evolution of the objective function y(x) and the
normalized constraint g(x), during the optimization cycles
with LSEGO-10 for Hartman-3 function. LSEGO-10 found
y∗ = −3.7899, i.e., 1.89% error from y∗exact at cycle 5. The
algorithm converged at cycle 31 with y∗ = −3.8621 or 0.02%
error from y∗exact.

5.2.3 Hartman-6

In case of Hartman-6 function, see Fig. 14, the algo-

rithm converged at a slower rate to the neighborhood
of x∗

exact. At cycle 35, y∗ = −3.100329, or 6.68% error

from y∗exact. At cycle 38, y∗ = −3.177094, or 4.37% er-

ror from y∗exact. We stopped the algorithm at cycle 50
with little improvement with respect to cycle 38, i.e.,

x∗ = (0.2688, 0.1547, 0.4508, 0.2890, 0.3433, 0.6541) ,

and y∗ = −3.2082, or 3.44% error from y∗exact.

We repeated these numerical experiments with the

analytical benchmark functions and the convergence

0 5 10 15 20 25 30 35 40 45 50

−3

−2.5

−2

−1.5

−1

−0.5

Optimization Cycles

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n

Hartaman−6: Efficient Global Optimization with LS−Ensembles, Rep. # 66

Min. Obj. Function

Exact Global Minumum

(a) Objective Function y(x)

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

Optimization Cycles

N
o
rm

a
liz

e
d
 C

o
n
s
tr

a
in

t
F

u
n
c
ti
o
n

Hartaman−6: Efficient Global Optimization with LS−Ensembles, Rep. # 66

(b) Normalized Constraint g(x)

Fig. 14 Evolution of the objective function y(x) and the
normalized constraint g(x), during the optimization cycles
with LSEGO-10 for Hartman-6 function. At cycle 35, y∗ =
−3.100329, or 6.68% error from y∗exact. The algorithm was
stopped at cycle 50 with little improvement with respect to
cycle 38. At this point y∗ = −3.2082, or 3.44% error from
y∗exact.

pattern was nearly the same for different initial sam-

pling points. It is worth noting that in all the cases, the
optimization algorithm presented the convergence be-

havior in steps. Observe this fact in Fig. 12 for Branin-

Hoo and with more pronounced effect in Fig. 13 for
Hartman-3 and in Fig. 14 for Hartman-6 function.

As discussed in Forrester and Keane (2009), this

stepwise behavior can be understood as the algorithm

“switching” from the exploitation to exploration modes,
during the optimization cycles. In other words, after

adding some infill points in the beginning cycles, the

quality of fit of the metamodels increase and the algo-

18 Wallace G. Ferreira, Alberto L. Serpa

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Optimization Cycles

N
R

M
S

E
 [

%
]

Evolution of NRMSE for Hartman−3 with LSEGO−10

(a) NRMSE, Hartman-3

0 5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1
Evolution of R

2
 for Hartman−3 with LSEGO−10

Optimization Cycles

R
2

(b) R2, Hartman-3

Fig. 15 Evolution of the quality of fit of y(x), by means
of NRMSE and R2, during the optimization cycles with
LSEGO-10 for Hartman-3 function. The optimization algo-
rithm switches from exploitation to the exploration mode,
during the cycles and the convergence is achieved in steps.
The“jumps” downhill in direction to the optimum occur in
steps, after the quality of fit of the metamodels of y(x) and
g(x) is enough to promote the improvement.

rithm is able to find some improvement in the objective

function (exploitation mode).

In the sequence, the algorithm switches to the ex-
ploration mode at some cycles, and the next “jump”

downhill in direction to the optimum is only achieved

after the quality of fit of the metamodels of y(x) and
g(x) is enough to promote the next improvement. If we

track the quality of fit of the objective function during

the optimization cycles, this behavior can be observed.

See for instance the stepwise evolution of the quality
of approximation of y(x) by means of NRMSE and R2,

during the optimization cycles for Hartman-3 function

in Fig. 15. In this case, at the initial cycles, the quality

of fit is erratic at some extent, with jumps at each three

or five steps (cycles 3, 5, 10, 15...).
Recall to Fig. 13 and note that these jumps occur

simultaneously as the ones at it is observed the main

improvements in objective function and for the con-
straint. When the accuracy of the metamodel reaches

stable levels (i.e., R2 > 0.9 andNRMSE < 2%, around

cycle 20, the algorithm is quite close to the global opti-
mum and it converges at cycle 25, when the quality of

fit is very good (i.e., R2 ≈ 1).

In this sense, based on this observed behavior for

the algorithm, it is recommended in practical applica-
tions to monitor the quality of fit for the metamodels, in

parallel to the evolution of the objective and constraint

functions, in order to avoid premature or false conver-
gence at suboptimal points. In practical situations, this

balance between quality of fit, improvement of objec-

tive function and constraints versus total number of
sampling points, must be observed for each problem.

In addition, in several practical problems, improve-

ments in the objective or constraints in the order of

10% to 25% are very hard to meet. In such situations,
finding one or a set of truly improved designs is much

more important than finding the “global” optimum for

the problem, and the decision on when to stop the op-
timization cycles must be taken based on these consid-

erations as well.

These results with the analytical benchmarks showed
that LSEGO algorithm works successfully to handle

constrained optimization problems as well. A deep nu-

merical investigation must be performed, with differ-

ent functions (number of variables, nonlinearity, mul-
timodality, etc.) and increasing number of constraints,

in order to understand in detail the behavior, conver-

gence properties, advantages and limitations of LSEGO
algorithm.

Ensemble of metamodels: extensions of the least squares approach to efficient global optimization 19

6 Concluding remarks

In this work we presented LSEGO, an approach to

drive efficient global optimization (EGO), based on LS

(least squares) ensemble of metamodels. By means of

LS ensemble of metamodels it is possible to estimate
the uncertainty of the prediction by using any kind of

metamodels (not only kriging) and provide an estimate

for the expected improvement function. In this way,
LSEGO is an alternative to find multiple infill points

at each cycle of EGO and improve both convergence

and prediction quality during the whole optimization
process.

At first, we demonstrated the performance of the

proposed LSEGO approach with one dimensional and

two dimensional analytical functions. The algorithm
has been tested with increasing number of infill points

per optimization cycle. As more infill points are added

per cycle, faster is the convergence to the global opti-

mum (exploitation) and also the quality improvement
(predictability) of the metamodel in the whole design

domain (exploration).

In a second test set, we compared the proposed

LSEGO approach with the traditional EGO (with krig-
ing and a single infill point per cycle). For this intent,

we used well known analytical benchmark functions to

test optimization algorithms, from two to six variables.

For the problems studied, the proposed LSEGO al-
gorithm has shown to be able to find the global op-

timum with much less number optimization cycles re-

quired by the classical EGO approach. This accelera-
ted convergence was specially observed as the number

of variables increased, when the standard EGO can be

quite slow to reach the global optimum.

The results also showed that, by using multiple in-
fill points per optimization cycle, driven by LSEGO, the

confidence of metamodels prediction in the whole op-

timization process is improved. It was observed in the

boxplots for all cases investigated a variability reduc-
tion with respect to the initial sampling space (initial

DOE), as more infill points are added during the opti-

mization cycles.

We also compared LSEGO versus standard EGO
in terms of the number of function evaluations, which

translates directly to computational cost (i.e., number

of simulations required). We can observe that for Branin-
Hoo and Hartman-3 (low to mid dimensions) at the

beginning of the optimization cycles EGO-Kriging has

lower cost in terms of number of function evaluations

than LSEGO for the same level of improvement, but as
the optimization cycle evolve the situation was more fa-

vorable to LSEGO, which is also observed of Hartman-

3. In case of the Hartman-6 function, the convergence of

EGO-Kriging was quite slow and LSEGO outperformed

EGO-Kriging in terms of function evaluations for the
same level of improvement in the whole optimization

process.

In addition we observed that the LSEGO algorithm
works successfully to handle constrained optimization

problems, in feasible number of optimization cycles. In

these constrained problems investigated, LSEGO pre-
sented a stepwise convergence pattern, which is com-

mon to EGO-type algorithms. In this sense, it is recom-

mended in practical applications to monitor the quality

of fit for the metamodels, in parallel to the evolution of
the objective and constraint functions, in order to avoid

premature or false convergence at suboptimal points.

Although we understand that these are promising
and competitive results, a deep numerical investigation

must be performed, with different functions (number

of variables, nonlinearity, multimodality, etc.) and in-
creasing number of constraints, in order to understand

in detail the behavior, convergence properties, advan-

tages and limitations of LSEGO algorithm.

The results achieved in the present work are in ac-
cordance with previous work published in the related

research area. In this way, LSEGO approach has shown

to be a feasible alternative to drive efficient global opti-
mization by using multiple or ensemble of metamodels,

not restricted to kriging approximation or single infill

point per optimization cycles.

In summary we observed that the behavior of paral-

lel EGO-type algorithms can be more stable with higher

chance of convergence and real improvement of the ob-

jective function with few optimization cycles/iterations.
In other words, it can be worthwhile to spend more

evaluations in a controlled way and improve the overall

performance of the optimization process.

And, last but not least, as we briefly discussed in

Section 2.4, it is worth noting that EGO-type algo-

rithms should be extended to treat properly more ge-
neral constrained, multiobjective and also robust op-

timization problems. As future research work, we in-

tend to extend the application of LSEGO approach

presented here within the context of constrained and
multidisciplinary optimization of a broader set of ana-

lytical benchmarks and real world engineering applica-

tions. We are already working in this front, with good
preliminary results, and our intention is to publish them

soon.

Acknowledgements The authors would like to thank Dr.
F.A.C. Viana for the prompt help with SURROGATES Tool-
box and also for the useful comments and discussions about
the preliminary results of this work.

W.G. Ferreira would like to thank Ford Motor Company
and also the support of his colleagues at MDO group and

20 Wallace G. Ferreira, Alberto L. Serpa

Product Development department that helped on the devel-
opment of this work, which is part of his doctoral research
underway at UNICAMP.

Finally, the authors are grateful for the questions and
comments from the journal editors and reviewers. Undoubt-
edly their valuable suggestions helped to improve the clarity
and consistency of the present text.

A The kriging metamodel

Kriging model, originally proposed by Krige (1951), is an in-
terpolating metamodel in which the basis functions, as stated
in Eq. 1, are of the form

ψ(i) = ψ
(
∥

∥x(i) − x
∥

∥

)

= exp

(

−
k
∑

j=1

θj
∣

∣x(i) − xj
∣

∣

pj

)

, (12)

with tuning parameters θj and pj normally determined by
maximum likelihood estimates.

With the parameters estimated, the final kriging predictor
is of the form

f̂(x) = µ̂+ψTΨ−1 (y − 1µ̂) , (13)

where y =
[

y(1) . . . y(N)
]T

, 1 is a vector of ones, Ψ = ψ(r)(s)

is the so called N×N matrix of correlations between the sample
data, calculated by means of Eq. 12 as

Ψ = ψ
(
∥

∥x(r) − x(s)
∥

∥

)

(14)

and µ̂ is given by

µ̂ =
1TΨ−1y

1TΨ−11
. (15)

One of the key benefits of kriging models is the provision
of uncertainty estimate for the prediction (mean squared er-
ror, MSE) at each point x, given by

ŝ2(x) = σ̂2

[

1−ψTΨ−1ψ +
1− 1TΨ−1y

1TΨ−11

]

, (16)

with variance estimated by

σ̂2 =
(y − 1µ̂)T Ψ−1 (y − 1µ̂)

N
. (17)

Refer to Forrester et al (2008) or Fang et al (2006) for
further details on metamodel formulation.

B Analytical benchmark functions

These functions were chosen since they are widely used to
validate both metamodeling and optimization methods, as
for example in and Jones et al (1998) and Viana et al (2013).

Branin-Hoo

y (x) =

(

x2 +
5.1x21
4π2

+
5x1
π

− 6

)2

+10
(

1− 1

8π

)

cos (x1) + 10,

(18)

for the region −5 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 15. There are 3 min-
ima in this region, i.e., x∗ ≈ (−π, 12.275) , (π, 2.275) , (3π, 2.475)
with f (x∗) =

5

4π
.

Hartman

y(x) = −
4
∑

i=1

ci exp

[

−
nv
∑

j=1

aij (xj − pij)
2

]

, (19)

where xi ∈ [0, 1]nv , with constants ci, aij and pij given in
Table 3, for the case nv = 3 (Hartman-3); and in Table 4
Table 5, for the case nv = 6 (Hartman-6).

In case of Hartman-3, there are four local minima,

xlocal ≈ (pi1, pi2, pi3) ,

with flocal ≈ −ci and the global minimum is located at

x∗ ≈ (0.114614, 0.555649, 0.852547) ,

with f (x∗) ≈ −3.862782.
In case of Hartman-6, there are four local minima,

xlocal ≈ (pi1, pi2, pi3, pi4, pi5, pi6) ,

with flocal ≈ −ci and the global minimum is located at

x∗ ≈ (0.201690, 0.150011, 0.476874,

0.275332, 0.3111652, 0.657301),

with f (x∗) ≈ −3.322368.

Table 3 Data for Hartman-3 function.

i ci aij pij

j = 1 2 3 j = 1 2 3

1 1 3 10 30 0.3689 0.117 0.2673
2 1.2 0.1 10 35 0.4699 0.4387 0.747
3 3 3 10 30 0.1091 0.8732 0.5547
4 3.2 0.1 10 35 0.03815 0.5743 0.8828

Table 4 Data for Hartman-6 function, ci and aij .

i ci aij

j = 1 2 3 4 5 6

1 1 10 3 1 3.5 1.7 8
2 1.2 0.05 10 17 0.1 8 14
3 3 3 3.5 1.7 10 17 8
4 3.2 17 8 0.05 10 0.1 14

Table 5 Data for Hartman-6 function, pij .

i pij

j = 1 2 3 4 5 6

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.665
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Giunta-Watson This is the “noise-free” version of the func-
tion used by Giunta and Watson (1998)

y(x) =

nv
∑

i=1

[

3

10
+ sin

(

16

15
xi − 1

)

+ sin2
(

16

15
xi − 1

)]

, (20)

where x ∈ [−2, 4]nv .

Ensemble of metamodels: extensions of the least squares approach to efficient global optimization 21

C SURROGATES Toolbox

The SURROGATES Toolbox (ref. Viana (2009)) is a Mat-
lab based toolbox that aggregates and extends several open-
source tools previously developed in the literature for design
and analysis of computer experiments, i.e., metamodeling and
optimization. We used the version v2.0, but v3.0 already in-
cludes EGO variants5.

The SURROGATES Toolbox uses the following collec-
tion of third party software published: SVM by Gunn (1997),
DACE by Lophaven et al (2002), GPML by Rasmussen and
Williams (2006), RBF by Jekabsons (2009), and SHEPPACK
by Thacker et al (2010). The compilation in a single frame-
work has been implemented and applied in previous research
by Viana and co-workers, as for example Viana et al (2009)
and Viana (2011).

References

Fang KT, Li R, Sudjianto A (2006) Design and Modeling
for Computer Experiments. Computer Science and Data
Analysis Series, Chapman & Hall/CRC, Boca Raton,
USA

Ferreira WG, Serpa AL (2015) Ensemble of metamodels: the
augmented least squares approach. Structural and Mul-
tidisciplinary Optimization 53(5):1019–1046

Forrester A, Keane A (2009) Recent advances in surrogate-
based optimization. Progress in Aerospace Sciences
45:50–79

Forrester A, Sóbester A, Keane A (2008) Engineering Desing
Via Surrogate Modelling - A Practical Guide. JohnWiley
& Sons, United Kingdom

Ginsbourger D, Riche RL, Carraro L (2010) Kriging is well-
suited to parallelize optimization. In: Computational In-
telligence in Expensive Optimization Problems - Adap-
tation Learning and Optimization, Springer, vol 2, pp
131–162

Giunta AA, Watson LT (1998) Comparison of approxima-
tion modeling techniques: polynomial versus interpolat-
ing models. In: 7th AIAA/USAF/NASA/ISSMO Sym-
posium on Multidisciplinary Analysis and Optimization,
AIAA-98-4758, pp 392–404

Gunn SR (1997) Support vector machines for classification
and regression. Technical Report. Image, Speech and In-
teligent Systems Research Group. University of South-
hampton, UK

Han ZH, Zhang KS (2012) Surrogate-Based Optimization
- Real-World Application of Genetic Algorithms, ISBN
978-953-51-0146-8 edn. InTech, Dr. Olympia Roeva - Ed-
itor, Shanghai, China

Henkenjohann N, Kukert J (2007) An efficient sequential op-
timization approach based on the multivariate expected
improvement criterion. Quality Engineering 19(4):267–
280

Jekabsons G (2009) RBF: Radial basis function interpolation
for matlab/octave. Riga Technical University, Latvia,
version 1.1 ed.

Jones DR (2001) A taxonomy of global optimization methods
based on response surfaces. Journal of Global Optimiza-
tion 21:345–383

5 Further details and recent updates of SUR-
ROGATES Toolbox refer to the website:
https://sites.google.com/site/srgtstoolbox/.

Jones DR, Schonlau M, Welch WJ (1998) Efficient global
optimization of expensive black-box functions. Journal
of Global Optimization 13:455–492

Jurecka F (2007) Optimization based on metamodeling tech-
niques. PhD thesis, Technische Universität München,
München-Germany

Koziel S, Leifesson L (2013) Surrogate-Based Modeling and
Optimization - Applications in Engineering. Springer,
New York, USA

Krige DG (1951) A statistical approach to some mine valua-
tions and allied problems at the witwatersrand. Master’s
thesis, University of Witwatersrand, Witwatersrand

Lophaven SN, Nielsen HB, Sondergaard J (2002) DACE -
a matlab kriging toolbox. Tech. Rep. IMM-TR-2002-12,
Technical University of Denmark

Mockus J (1994) Application of bayesian approach to nu-
merical methods of global and stochastic optimization.
Journal of Global Optimization 4:347–365

Ponweiser W, Wagner T, Vincze M (2008) Clustered mul-
tiple generalized expected improvement: A novel infill
sampling criterion for surrogate models. In: Wang J (ed)
2008 IEEE World Congress on Computational Intelli-
gence, IEEE Computational Intelligence Society, IEEE
Press, Hong Kong, pp 3514–3521

Queipo NV, et al (2005) Surrogate-based analysis and opti-
mization. Progress in Aerospace Sciences 41:1–28

Rasmussen CE, Williams CK (2006) Gaussian Processes for
Machine Learning. The MIT Press

Schonlau M (1997) Computer experiments and global opti-
mization. PhD thesis, University of Waterloo, Watterloo,
Ontario, Canada

Simpson TW, Toropov V, Balabanov V, Viana FAC (2008)
Design and analysis of computer experiments in multi-
disciplinary design optimization: A review of how far we
have come - or not. In: 12th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, Victoria,
British Columbia

Sóbester A, Leary SJ, Keane A (2004) A parallel updating
scheme for approximating and optimizing high fidelity
computer simulations. Structural and Multidisciplinary
Optimization 27:371–383

Thacker WI, Zhang J, Watson LT, Birch JB, Iyer MA, Berry
MW (2010) Algorithm 905: SHEPPACK: modified shep-
ard algorithm for interpolation of scattered multivari-
ate data. ACM Transactions on Mathematical Software
37(3):1–20

Venkatararaman S, Haftka RT (2004) Structural optimization
complexity: what has moore’s law done for us? Structural
and Multidisciplinary Optimization 28:375–287

Viana FAC (2009) SURROGATES toolbox user’s
guide version 2.0 (release 3). Available at website:
http://fchegury.googlepages.com

Viana FAC (2011) Multiples surrogates for prediction
and optimization. PhD thesis, University of Florida,
Gainesville, FL, USA

Viana FAC, Haftka RT, Steffen V (2009) Multiple surrogates:
how cross-validation error can help us to obtain the best
predictor. Structural and Multidisciplinary Optimization
39(4):439–457

Viana FAC, Haftka RT, Watson LT (2013) Efficient global
optimization algorithm assisted by multiple surrogates
techniques. Journal of Global Optimization 56:669–689

