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Resumo

PICELLI, Renato. Otimização Topológica Evolucionária de Problemas com Interação Fluido-

estrutura. 2015. 189p. Tese (Doutorado). Faculdade de Engenharia Mecânica, Universidade

Estadual de Campinas, Campinas, Brasil.

O objetivo desta tese é o desenvolvimento de uma ferramenta computacional para

projeto de estruturas considerando interação fluido-estrutura usando otimização topológica.

Uma metodologia de otimização estrutural topológica é proposta associada à formulações

de elementos finitos em problemas fluido-estrutura acoplados. Nesses tipos de problemas a

estrutura sofre carregamentos advindos do meio fluido, ou seja, pressão e/ou forças viscosas.

As dificuldades em se projetar estruturas sob carregamentos de fluidos surgem devido à

variação da localização, direção e magnitude dos carregamentos quando a forma e topologia

da estrutura são alteradas durante a otimização. Isso se torna o principal desafio para os

métodos tradicionais baseados na interpolação da densidade do material. Nesses métodos, as

superfícies em contato com o fluido não são definidas explicitamente devido à existência de

elementos estruturais de densidade intermediária. Neste trabalho é proposta uma metodologia

alternativa para esse tipo de carregamento dependente da topologia. Com a extensão do

método de otimização estrutural evolucionária bidirecional (BESO) associada à formulações

fluido-estrutura acopladas, pressões e forças viscosas podem ser modeladas diretamente para

qualquer topologia estrutural devido à natureza discreta dos métodos evolucionários. Assim, o

problema é resolvido sem a necessidade de parametrização das superfícies de carregamentos de

pressão. A metodologia BESO é estendida considerando os procedimentos de alteração entre

elementos fluido-estrutura-vazios, novas análises de sensibilidade e restrições. Problemas em

estado estacionário são considerados, incluindo elasticidade linear para a análise estrutural e as

equações de Laplace, Helmholtz e escoamento incompressível de Navier-Stokes para a análise

do fluido. Carregamentos constantes e não constantes são modelados. Diversos exemplos e

aplicações são explorados com a metodologia proposta.

Palavras-chave: Otimização Topológica; Otimização Estrutural Evolucionária; Método BESO;

Carregamentos dependentes do desenho; Interação fluido-estrutura



Abstract

PICELLI, Renato. Evolutionary Topology Optimization of Fluid-structure Interaction Prob-

lems. 2015. 189p. Thesis (PhD). School of Mechanical Engineering, University of Campinas,

Campinas, Brazil.

The aim of this thesis is the development of a computational tool for the design of

structures considering fluid-structure interaction using topology optimization. A methodology

of structural topology optimization is proposed in association with finite element formulations

of fluid-structure coupled problems. In this type of problems, the structure undergoes fluid

loading, i.e., pressure and/or viscous loads. The difficulties in designing fluid loaded structures

arise due to the variation of location, direction and magnitude of the loads when the structural

shape and topology change along the optimization procedure. This turns out to be an additional

difficulty for the traditional density-based topology optimization methods. In density-based

methods, the pressure loaded surfaces are not explicitly defined due to the existence of inter-

mediate density elements. In this thesis, it is suggested an alternative methodology to handle

this type of design-dependent loads. With an extended bi-directional evolutionary structural

optimization (BESO) method associated with different fluid-structure formulations, pressures

and viscous loads can be modelled straightforwardly for any structural topology due to the

discrete nature of the method. Thus, the problem is solved without any need for pressure load

surfaces parametrization. The BESO methodology is extended considering the procedures of

switching fluid-structure-void elements, new sensitivity analyses and constraints. Steady state

problems are considered, including linear elasticity for the structural analysis and Laplace,

Helmholtz and incompressible Navier-tokes flow equations for the fluid analysis. Constant

and non constant loads are modelled. Several examples and applications are explored with the

proposed methodology.

Keywords: Topology Optimization; Evolutionary Structural Optimization; BESO Method;

Design-dependent loads; Fluid-structure Interaction
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1 INTRODUCTION

The modelling of complex systems involving the interaction between two or more physi-

cal phenomena that occur in different time and space scale is one of the main current paradigms

in computational mechanics. The knowledge resulted from the many researchers in this field can

be used to grasp the behavior of our complex multiphysics surroundings. An adequate model

can be obtained by using a finite number of discrete subcomponents of the system. Between the

available discretization methods, the Finite Element Method (FEM) is a computational tech-

nique widely used to solve multiphysics engineering problems (Zienkiewicz and Taylor, 2005).

In complex geometries or multiphysics systems, the FEM provides for engineers the in-

formations they could not obtain intuitively nor analytically. The method is then a powerful tool

that can be used to improve engineering analysis and to better design complex systems, such as

those found in coupled multiphysics problems. Furthermore, the FEM can be associated with

optimization techniques, e.g., structural topology optimization, leading to non-intuitive optimal

designs.

This thesis proposes and investigates a new approach to improve engineering design by

performing structural topology optimization in different fluid-structure interaction (FSI) prob-

lems. We start with a brief historical introduction of structural design from the Western point of

view.

1.1 Engineering design: handling forces

Throughout history, mankind has been striving to design all kinds of tools to different

purposes. Let us consider design as the act to build hand tools, buildings, machineries, pieces

of art and include engineering on it as any intellectual attempt to turn ideas into reality using

different tools.

Engineering design involves the handling of different types of forces to move things or

to achieve a final product. The concept of force was mathematically and intuitively, although

not fully correctly, understood and used in the beginning years of science. A proof of that is the

acclaimed quotation by Archimedes:

“Give me a place to stand on, and I can move the earth.”

– Archimedes, (Heath, 2002)
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In his quotation, Archimedes referred to the possibility of small forces moving great

weights with the help of a lever system. Archimedes’ Law of the Lever states that a weight

equivalent to a force FE can be moved with the aid of a lever and a fulcrum when a force FA

applied at the opposite side of the lever is large enough such that

FAda = FEde (1.1)

where da and de are the distance from the fulcrum of FA and FE , respectively, as illustrated in

Figure 1.1. The greater the distance da, smaller is the magnitude of the force needed to move

the weight. This leads to the important idea of the center of mass of a mass configuration, as

well as the concept of moment used in classical mechanics.

AF

da de

EF

Figure 1.1: Archimedes’ lever representation.

A problem can be formulated and solved to find the minimum force needed to move a

large weight with an available lever and a fulcrum. Would that lead us to a first idea of an

optimization problem?

Galileo Galilei also aimed to build better with less. In 1638, Galileo presented a logical

abstraction of the shape of a cantilever beam for uniform strength (Lee, 2007), as given in Figure

1.2. The famous italian scientist was a polymath. He investigated different type of forces, apart

from a structural design scope. For instance, he carried out experiments culminating in the law

of falling bodies.

Some years later, Sir Isaac Newton lapidated Galileo’s conclusions, introduced new ideas

and took the concept of force to a reliable mathematical level by formulating his famous three

equations of motion with the aid of calculus (Newton, 1999). His groundbreaking work opened

a wide range of possibilities to modern science and engineering.
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ies a more fundamental basis, culminating in the beginning of the mathematical theory of elas-

ticity. Throughout the first half of the century, French engineers such as Claude Navier, Au-

gustin Cauchy, Siméon-Denis Poisson, Barré de Saint-Venant and others, were occupied with

the mathematical theory of elasticity. In England, engineers studied strength of materials ex-

perimentally in order to solve the numerous engineering problems during the intense industrial

development, after the work of James Watt in machinery industry (Timoshenko, 1953). The in-

troduction of iron and steel into structural and mechanical engineering made the experimental

study of the mechanical properties of those materials essential.

New developments in industrial, military and civil societies initiated a rush in structural

engineering in the Western world. First, in North America, commercial conditions implied the

need of different machinery and infrastructure to transportation and mercantilism. Later on, the

American reconstruction post-civil war represented a special stage in human society develop-

ment, leading to new types of engineering for economic recovering concentrated on system

development (Wells, 2010). At the end of that time, in Europe, theory of elasticity had received

significant contributions by famous scientists such as, between many others, George Gabriel

Stokes, comparing solids and viscous fluids, and James Clerk Maxwell, who developed the

technique of photoelastic stress analysis.

The highly stressed conditions met by the components used in modern structural design

called for a new and challenging set of load environments in structural problems. New materials

were developed by metallurgy under the investigation of fatigue phenomena. This would be

critical later in airship design.

Between the turn of the twentieth century, the brazilian young student Alberto San-

tos Dumont envisioned flight as a personal means of transportation, fostering an approach to

lightweight structures. In 1906, Santos Dumont created the first ‘ultra-light’ monoplane, as il-

lustrated in Figure 1.3.

Unfortunately, the world suffered two World Wars in the following years, which stopped

the structural attenuation of aeroplane structures at that time and demanded different, stockier

structures to support the inertial forces generated by the high speeds and tight turns of aerial

combat (Wells, 2010). Again, military efforts guided the development of technologies, as well

as structural engineering.

Until the mid-1900’s, extensive contributions were made to structural design in science

and engineering. Fracture mechanics was investigated, three dimensional solutions were derived

in elasticity and theories of vibration and impact were deepened (Timoshenko, 1953). Post-

world war times increased the need for different structural applications, such as aerospace en-
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Figure 1.3: Santos Dumont’s first ultra-light monoplane named 14-bis (image extracted from
Portal São Francisco website at the url http://www.portalsaofrancisco.com.br/alfa/historia-do-
aviao/historia-do-aviao.php, in 14th July, 2015).

gineering. Numerical methods were developed, e.g., the FEM (Zienkiewicz and Taylor, 2005).

Architectural approaches were also incorporated to engineering design.

History showed that science and engineering were devoted to develop structural designs

with many different ambitions. Although structural engineering was used to whatever human

society demanded, e.g., economic growth or military efforts, engineers always attempted to im-

prove performance considering the available resources. By attempting to improve performance

and to reach better (or best) solutions, engineers carried out optimization.

1.3 Background

In structural design, many different types of engineering problems can be approached

with optimization. This thesis is focused on topology optimization of structures interacting with

multiphysics surroundings. Herein, specific fluid-structure interaction problems are considered.

The following sections aim to describe the background and the state of the art of structural

topology optimization. At last, the methodology is briefly described and the objectives and

contributions are bounded.

1.3.1 Structural optimization

Structural optimization can be interpreted as the attempt to find the best structure to sup-

port specific load cases respecting some possible constraints. Mathematically, a general engi-
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neering optimization problem consists in finding the design variables x1, x2, ..., xn, that

minimize: f (x)

x

subject to: g (x) ≤ 0

h (x) = 0

(1.2)

where x = [x1, x2, ..., xn]
T , the scalar function f (x) is the objective function and g (x) =

[g1 (x) , g2 (x) , ..., gm (x)]T and h (x) = [h1 (x) , h2 (x) , ..., hp (x)]
T are functions that repre-

sent inequality and equality constraints, respectively, of the optimization problem (Herskovits

et al., 2007).

In the scope of structural optimization, the objective function f (x) can be used to classify

the structure, indicating the global structural performance. Usual objective functions are defined

in terms of volume, local displacements, overall stresses, structural mean compliance, vibration

responses and others. The constraints g (x) and h (x) usually indicate any design requirements

or restrictions, e.g., structural mass, equilibrium conditions, maximum displacements, etc. The

vector x describes the structural configuration and can change during the optimization process.

Each design variable xn is defined depending on the type of optimization.

One can identify three main types of numerical structural optimization, namely sizing,

shape and topology optimization (Papalambros and Wilde, 2000). They are distinguished be-

tween the changes they can cause to structural geometries, defined by the type of design

parametrization, i.e., the set of design variables x. Figure 1.4 illustrates the different structural

optimization categories.

(a) (b) (c) (d)

Figure 1.4: Representation of the (a) structural design problem; and three different types of
structural optimization: (b) sizing, (c) shape and (d) topology optimization (van Dijk, 2012).

In sizing optimization geometric parameters such as thickness, diameters and lengths are

set as design variables (Rozvany et al., 1995). Consequently, the structural shape and topology

are kept fixed in this type of optimization and the final result resembles that of the initial design,
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as seen in Figure 1.4(b). The optimization method is able then to define the optimal dimensional

values of the design variables according with the objective function.

Shape optimization is able to modify the position and geometry of the structural bound-

aries by parameterizing the shape of the design (Bendsoe, 1989). In Figure 1.4(c), the red dots

and lines indicate the control points and tangents that can be used as design variables x in this

type of optimization (van Dijk, 2012). This approach is more complex than sizing optimization

but not as flexible as the third optimization category.

A more general class of structural optimization relies on finding the optimal distribution of

material inside a structural design domain and it is called topology optimization (Bendsoe and

Sigmund, 2003). This type of optimization allows the creation of new cavities and structural

members by altering not only sizes and shapes but also the layout of the structure. Points in the

structural domain are set as design variables and can represent the existence or the absence of

solid material, as illustrated in Figure 1.4(d).

1.3.2 Topology optimization of continuum structures

The idea of structural topology optimization is to design optimal structures by distributing

solid material inside a design domain. In this case the geometry of the structure is defined by a

set of design variables xi (x) in a “0-1" configuration. This leads to an indicator function

xi (x) =

{

1 for Ωs,

0 for Ωv,
(1.3)

where Ωs and Ωv are the solid and void domains, respectively (Maute et al., 1999). The function

xi is defined by the design variables along the structural design domain and represents the

material (xi = 1) and the no material (xi = 0) domains. Figure 1.5 illustrates a structural design

problem and a possible solution using topology optimization.

Structural
design domain

Void

Solid s

Topology
optimization

v

Figure 1.5: Example of structural design problem and solution with topology optimization.

The design variables in topology optimization are usually associated with a discretized
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model using the Finite Element Method (FEM). The function xi can indicate the material prop-

erties of the ith element in the finite element mesh or even its existence or absence. The manner

that the elemental material properties are defined may be called as material model. The material

model and the design variables update scheme (optimizer) can be used to classify the types of

topology optimization methods. Currently, the most established methods are:

1. Density-based methods, including the homogenization and the Solid Isotropic Material

with Penalization (SIMP) models.

2. Discrete methods, which include the Bi-directional Evolutionary Structural Optimization

(BESO) method used in this thesis.

3. Boundary variation methods, such as the Level-set Method (LSM) and topological

derivative-based methods.

Density-based topology optimization methods are the most widely used and describe the

design variables in terms of a material density distribution ρmin ≤ ρ (x) ≤ 1, indicating the

amount of solid material existent in each point x of the design domain (Bendsoe and Sigmund,

2003; van Dijk, 2012). In the FEM discretization, an element density ρe is employed for each

finite element. A critical aspect of these methods is the selection of interpolation functions

to express the element densities as a function of continuous design variables. The whole set

of design variables (interpolated densities) forms x. The element densities are restricted to a

lower bound ρmin to avoid singular structural problems (Bendsoe and Sigmund, 2003) and

intermediate densities ρmin < ρe < 1 represent a specific volume fraction of the completely

solid material. This leads to a gray-scale representation, as illustrated in Figure 1.6(b). This

interpretation of continuous variables as material densities identifies a means to avoid numerical

issues with purely 0-1 problems and iteratively steer the solution towards a discrete solid/void

solution (Deaton and Grandhi, 2014). An optimizer such as the Method of Moving Asymptotes

(MMA) by Svanberg (1987) can be used to solve the optimization problem and find the optimal

densities configuration ρ (x). A general density-based topology optimization on linearly static

finite element analysis can be formulated as:

minimize: f (ρ (x) ,U)

ρ (x)

subject to: K (ρ (x))U = F (ρ (x))

gi (ρ (x) ,U) ≤ 0

hi (ρ (x) ,U) = 0

ρmin ≤ ρ (x) ≤ 1

(1.4)
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where f is the objective function, depending on the vector of design variables ρ (x) and the

vector of structural displacements U, K is the global stiffness matrix, F is the force vector and

g and h are the inequality and equality constraints, respectively.

The evolutionary methods apply a discrete design update scheme (optimizer) to iteratively

guide the solution to the optimum. This implies crisply defined structural boundaries that are

free of gray-scale intermediate densities, as seen in Figure 1.6(c). In these methods the design

variables are described in a discrete manner as xi = [0, 1], which defines the existence (xi = 1)

or the absence (xi = 0) of solid material in each finite element (Xie and Huang, 2010). One may

state that both density-based and evolutionary methods are quite similar in the light of the fact

that both are gradient-based methods and present similar procedures and final solutions while

having different design update schemes. In the evolutionary methods, a lower bound xi = xmin

can also be employed to avoid singular structural problems and interpolation functions can also

be used to develop the sensitivity analysis, which approximates even more these methods to the

density-based ones (Huang and Xie, 2009). However, the main drawbacks of the evolutionary

methods concern the handling of different constraints. The discrete update scheme is based on

a target volume, which defines the amount of solid material in each iteration. Thus, an equality

volume constraint is always present and different constraints should be able to be coexist with

this volume-based update scheme. This scheme also leads to criticisms on its absence of mathe-

matical optimization theories. A standard evolutionary optimization problem can be formulated

as:
minimize: f (xi,U)

xi

subject to: K (xi)U = F (xi)

h = V (xi) /V0 = Vs

xi = [0,1]

(1.5)

where V (xi) is the volume of the existent material, V0 is the volume of the structural design

domain and Vs the prescribed final structural volume fraction.

Structural
design domain

Structural
design domain

Structural
design domain

(a) Design problem (b) SIMP approach (c) BESO approach

Figure 1.6: Solutions for (a) a structural design problem; by the (b) SIMP-model (Sigmund,
2001a) and (c) BESO approaches.

On the other hand, in the category of boundary variation methods, a level set function Φ



33

can be employed to describe a material domain inside the structural design domain as

xi (x) =











Φ(x) > c for x ∈ material domain

Φ(x) = c for x ∈ interface

Φ(x) < c for x ∈ void

(1.6)

where c is a constant, usually taken as 0 (van Dijk et al., 2012). The Level-set Method (LSM)

relies on finite elements and a Heaviside function can be used to map the geometries of the

material domain. These methods are also closely related to density-based approaches (van Dijk

et al., 2012) and MMA can be used to solve LSM topology optimization problems. The shape of

the geometric boundary is modified by controlling the motion of the level set (e.g., Heaviside)

function according to the physical problem and optimization conditions (Deaton and Grandhi,

2014). Holes can merge, leading to new and different structural members. Other types of func-

tions can also be used, such as a shape functional and its topological derivative, which measures

the sensitivity of the function with respect to an infinitesimal singular domain perturbation, e.g.,

the insertion of holes (Norato et al., 2007; Novotny and Sokolowskixie, 2003).

1.3.3 Evolutionary topology optimization methods

The topology optimization problems considered in this thesis are solved adopting the

discrete update scheme of the evolutionary methods. In this subsection, general remarks are

outlined and the standard BESO method is depicted in the manner it was developed by Huang

and Xie (2007).

Originally, the evolutionary methods were based on the evolution of structures in nature,

in which material is placed near regions subjected to high stresses. The so called Evolutionary

Structural Optimization (ESO) method was performed with a gradual elimination of inefficient

material from a structural domain discretized by the FEM, leading the structure to evolve to-

wards better shapes and topologies (Xie and Steven, 1993). The idea is to use the gradient

(derivative) information of the objective function as an indicator of the efficiency of each ele-

ment in the structural performance, similarly as the carried out by density-based methods.

Attempts to extend the ESO algorithm to a bi-directional approach were carried out by

ranking elements for removal and for addition separately (Yang et al., 1999a; Querin and Steven,

1998; Querin et al., 2000). Such treatment showed to be illogical and could lead to non optimal

solutions (Xie and Huang, 2010). Following research on the evolutionary methods conducted

by Huang and Xie (2007) proposed a new algorithm using a bi-directional approach, the so

called Bi-directional Evolutionary Structural Optimization (BESO) method. The BESO method
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in the manner it was developed by Huang and Xie (2007) addresses the known issues related

to topology optimization of continuum structures, such as proper statement of the optimization

problem, checkerboard pattern, mesh-dependency and convergence of solution (Xie and Huang,

2010).

Starting from a full design domain or initial guess design, the BESO method can simul-

taneously remove and add elements in each iteration step. The elements in the structural design

domain are listed and ranked according to their efficiency relatively to the objective function.

This efficiency is evaluated by a sensitivity analysis. The sensitivity of the objective function is

defined by its derivative:

αfi =
∂f (xi,U)

∂xi

(1.7)

where αfi is the derivative of the objective function f with respect to the design variables xi. The

derivative is evaluated locally at the element level, generating a so called sensitivity number αi

for each element. The sensitivity numbers represent the contribution of each design variable xi

to the structural performance. The elements with the lowest sensitivities can be removed from

the design domain with a minimum change in the objective function. To address numerical

problems such as checkerboard and mesh-dependency, a spatial filter technique similar to the

one proposed by Sigmund and Peterson (1998) is applied on the sensitivities. Huang and Xie

(2007) have shown that the filtered sensitivity numbers should be averaged with their previous

iteration values to help in the stabilization of the optimization.

The discrete update scheme of the BESO method is based on a target volume Vn+1 which

specifies the structural volume fraction of the following iteration, n + 1. The target volume is

defined as

Vn+1 = Vn(1± ER), (1.8)

where ER is the evolutionary ratio and sets the percentage of structural volume which increases

or decreases Vn towards the prescribed final volume fraction Vs.

The rank list of elemental sensitivities is then used to set a new distribution of solid (xi =

1) and void (xi = 0) elements, based on a sensitivity threshold αth, for which







αi ≤ αth is set as xi = 0,

αi > αth is set as xi = 1,
(1.9)

where αth is the sensitivity of the ith element at the rank list position equivalent to the target

volume fraction. A maximum volume addition ratio ARmax is introduced to limit the maximum

number of added elements. For further details of the BESO method and the discrete design

update scheme the reader is referred to the original article by Huang and Xie (2007) or the



35

reference book by Xie and Huang (2010). The previous procedures are repeated until a final

structural volume fraction Vs is achieved and a convergence criterion is satisfied.

1.3.3.1 BESO algorithm for structural compliance minimization

The most common problem of structural topology optimization is the structural com-

pliance minimization. For this case, the evolutionary topology optimization problem can be

formulated as:
min: C (xi) =

1
2
uT
s Ksus

xi

subject to: Ksus = Fs

h = V (xi) /V0 = Vs

xi = [0,1]

(1.10)

where C is the structural mean compliance and Ks and us are the global stiffness matrix and

the vector of structural displacements, respectively, and Fs the vector of forces. The equality

constraint h defines the prescribed final structural volume as a fraction of the initial full design

domain volume. The mechanical equilibrium Ksus = Fs is another equality constraint and it

is usually satisfied in advance with the finite element analysis. For such optimization problem,

the basic following BESO algorithm is the current and standard evolutionary approach (Xie and

Huang, 2010):

1. Discretize the design domain using a finite element mesh and assign initial property val-

ues (0 or 1) for the elements to construct an initial design.

2. Perform finite element analysis to obtain the structural responses by solving the equilib-

rium equation:

Ksus = Fs. (1.11)

3. Calculate the elemental sensitivity numbers. In structural compliance minimization, the

sensitivity numbers are equivalent to the elemental strain energy as follows:

αi =
1

2
uT
i K

i
sui. (1.12)

where Ki and ui are the elemental stiffness matrix and nodal displacements, respectively.

4. Apply a numerical filter scheme to smooth the sensitivities.

5. Average the sensitivity numbers with their history information.

6. Determine the target volume Vn+1.
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7. Set a new solid-void distribution by using the update BESO scheme given by Equation

1.9.

8. Repeat steps 2-8 until the constrained volume Vs is achieved and a convergence criterion

is satisfied.

The evolutionary history of a compliance minimization problem using the BESO proce-

dures is shown in Figure 1.7.
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Figure 1.7: Example of (a) structural topology design problem of a cantilever beam, (b) solution
by the standard BESO method and (c) evolutionary history of the optimization problem.
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1.4 Scientific literature review

The first approach of topology optimization dates back to 1864 when James Clark

Maxwell published “On reciprocal figures and diagrams of forces" (Maxwell, 1864), where

he discussed fundamental principles for the layout of truss structures of minimum weight and

prescribed maximum stresses. Forty years later, the Australian mechanical engineer Anthony G.

M. Michell extended Maxwell’s principles to quasi-continuum truss structures (Michell, 1904).

For one load cases, Michell presented orthogonal curved trusses with no shear stresses and

maximum stiffness for given structural mass, see Figure 1.8.

Figure 1.8: Example of Michell-structure.

In the 70’s, Hemp (1973) and Prager and Rozvany (1977) extended Michell’s approach to

more complex optimization problems with multiple constraints and load cases applying analyti-

cal methods (Maute et al., 1999). With the advance of the computers, the topology optimization

methods for truss and beam structures have been developed into a design tool (Kirsch, 1989).

These approaches were based on the so-called ground-structure approach (Dorn et al., 1964).

Topology optimization of grounded-structures became an important topic in structural opti-

mization (Rozvany et al., 1995; Lewinski and Rozvany, 2008) and it is still a special research

field (Lyu and Saitou, 2005; Sokól and Rozvany, 2013; Zegard and Paulino, 2014; Sokól and

Rozvany, 2015; Tangaramwong and Tin-Loi, 2015; Zhong et al., 2015).

Research on optimal topologies in continuum structures began with Rossow and Tay-

lor (1973) with the idea of finding optimal designs with variable thickness using the FEM. In

a very pioneering work from 1988, Martin P. Bendsoe and Noboru Kikuchi suggested a ho-

mogenization method to relate solid and void elements with their microstruture density in a

topology optimization problem (Bendsoe and Kikuchi, 1988). Their method was expanded to

multiple load cases (Diaz and Bendsoe, 1992) and eigenproblems (Diaz and Kikuchi, 1992).

Further work emphasized the mathematical aspects of the homogenization method (Hassani

and Hinton, 1999) and the wide use in topology optimization by Bendsoe (1995). The mate-

rial interpolation technique named SIMP (Solid Isotropic Material with Penalization) was first

introduced in the paper by Rozvany et al. (1992) for shape optimization and further used in
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topology optimization by Rozvany et al. (1994) and Yang and Chuang (1994).

Some authors were devoted then to address the many issues of topology optimization

using the density-based approach, such as checkerboard patterns (Bendsoe et al., 1993; Diaz

and Sigmund, 1995; Sigmund and Peterson, 1998) and the development of optimality criteria

(Rozvany et al., 1994) as well as convergence analysis (Svanberg, 1994; Cheng and Pedersen,

1997). The SIMP technique rapidly became a popular material interpolation scheme for topol-

ogy optimization with the work by Ole Sigmund (Sigmund, 1994, 1995) and his role in the

dissemination of the method, publishing later the famous 99 line topology optimization code

(Sigmund, 2001b).

The density-based methods of topology optimization have undergone a rapid development

and were incremented with many different techniques. Efforts were carried out to integrate

boundary design optimization and topology design (Olhoff et al., 1993; Maute and Ramm,

1997). Restriction methods were implemented first by Haber et al. (1996) who considered

perimeter constraints. Gradient and slope constrained methods were also developed (Peters-

son and Sigmund, 1998; Borrvall and Peterson, 2001), while Poulsen (2001) introduced mini-

mum length scale controls in topology optimization. Stolpe and Svanberg (2001) proposed an

alternative interpolation scheme for topology optimization, namely Rational Approximation of

Material Properties (RAMP). Topology optimization was extended to a wide range of structural

design problems, such as vibration problems (Ma et al., 1995; Krog and Olhoff, 1999; Peder-

sen, 2000), stability (Min and Kikuchi, 1997; Neves et al., 2002), stress constraints (Duysinx

and Bendsoe, 1998; Duysinx and Sigmund, 1998), geometric non-linearities (Jog, 1996; Buhl

et al., 2000; Bruns and Tortorelli, 2001), synthesis of compliant mechanisms (Sigmund, 1997;

Chen and Kikuchi, 2001) and materials design for different types of applications (Sigmund and

Torquato, 1996; Terada and Kikuchi, 1996; Silva et al., 1997; Yi et al., 2000). All these devel-

opments and extensions were compiled in a reference book of structural topology optimization

by Bendsoe and Sigmund (2003), establishing the density-based methods as new techniques of

structural design.

Still in the 90’s, different topology optimization methods were developed. The so called

Evolutionary Structural Optimization (ESO) was proposed by Yi Min Xie and Grant P. Steven

as a topology optimization method based on successive material elimination (Xie and Steven,

1993). The ESO method became well known, however not as popular as the density-based

topology optimization, receiving severe criticism years later (Zhou and Rozvany, 2001) on its

heuristic inspiration and lack of mathematical formulation. Attempts were made to extend the

ESO methods to different structural design problems (Chu et al., 1996; Xie and Steven, 1996;

Chu et al., 1997; Li et al., 1999) and a first book was published (Xie and Steven, 1997). Steven

et al. (2000) used ESO for the first time for general physical field uncoupled problems, including
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a fluid domain design case. Nevertheless, the method still presented some limitations because

of its complete elimination of material. Further improvements to the ESO method proposed a

bi-directional algorithm (Querin and Steven, 1998) and the Sequential Element Rejections and

Admissions (SERA) method (Rozvany and Querin, 2002) to allow void (or very low density)

elements to return to the solid condition. At that time other types of topology optimization devel-

oped from the combination of different techniques, such as Genetic Algorithms (GA) (Chapman

et al., 1994) and later on the earlies 2000 the Level-set Method (LSM) (Sethian, 1999; Wang

et al., 2003). A topological derivative concept was formalized by Sokolowski and Zochowski

(1999) in shape optimization and used in topology optimization by Céa et al. (2000); Novotny

(2003).

Post years 2000 the research field of topology optimization has virtually exploded and

has been extended to many different design problems. New procedures were proposed and dis-

cussed in terms of convergence analysis (Martinez, 2005; Sigmund, 2007) as well as regular-

ization techniques, such as numerical filtering in mesh-independence and checkerboard control

(Poulsen, 2002, 2003; Jang et al., 2003; Lazarov and Sigmund, 2011; Sigmund and Maute,

2012) and projection methods (Guest et al., 2004, 2011; Wang et al., 2011). Other extensions

were developed for density-based methods in structural topology optimization such as consid-

ering nonlinear responses (Yoon and Kim, 2005; Jung and Gea, 2004; Yoon and Kim, 2007),

heat transfer and thermoelasticity (Gersborg-Hansen et al., 2006; Gao et al., 2008; Gao and

Zhang, 2010) and design-dependent loads, pressure (Hammer and Olhoff, 2000; Sigmund and

Clausen, 2007; Lee and Martins, 2012) and self-weight (Bruyneel and Duysinx, 2005). Stress

constraints (Pereira et al., 2004; Duysinx et al., 2008; Qiu and Li, 2010) and dynamic systems

(Du and Olhoff, 2007b; Yoon et al., 2007) also followed to be important and challenging topics

in topology optimization.

A variety of engineering disciplines rather than structural design began to be handled with

topology optimization. The density-based approach was applied to design fluid flow paths (Bor-

rvall and Petersson, 2003; Gersborg-Hansen et al., 2005; Evgrafov, 2006) as well as acoustic

and wave propagation systems (Wadbro and Berggren, 2006; Du and Olhoff, 2007a; Duhring

et al., 2008). Relatively new applications of density-based topology optimization emerged in

the last decade such as aerolasticity (Maute and Allen, 2004; Leon et al., 2012) and biomedical

design (Sutradhar et al., 2010).

On the other hand, the years 2000 were important to the development of the ESO-based

methods. Attempts were made to improve the efficiency of the evolutionary methods (Kim et al.,

2003) and to extend them to different problems (Li et al., 2004; Yang et al., 2005; Ansola et al.,

2006). In 2007, Xiaodong Huang and Yi Min Xie proposed a new and efficient bi-directional

update scheme for the evolutionary methods, calling it Bi-directional Evolutionary Structural
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Optimization (BESO) method (Huang and Xie, 2007). The BESO method from Huang and Xie

(2007) is the standard and currently used version of the evolutionary methods and addresses the

many known issues of the topology optimization methods, such as checkerboard patterns, mesh-

dependency and convergence. One year later, Huang and Xie (2008a) published a work showing

that the new BESO algorithm circumvent the many problems pointed years earlier by Zhou and

Rozvany (2001). The BESO method could then efficiently solve different topology optimization

problems such as for nonlinear structures (Huang and Xie, 2008b), multiple materials design

(Huang and Xie, 2009), natural frequencies maximization (Huang et al., 2010), self-weight

loads (Huang and Xie, 2011) and others. A further review of ESO type methods for topology

optimization was published (Huang and Xie, 2010) as well as a reference book by Xie and

Huang (2010). Therewith, the evolutionary methods reached maturity and are currently applied

to different problems with similar results as the density-based ones. Some problems concerning

the handling of different constraints are still an issue for the BESO method.

Very recent works confirm the intense area of topology optimization for both density-

based (Yoon, 2013; Alexandersen et al., 2014; Evgrafov, 2015; Jenkins and Maute, 2015) and

evolutionary (Zuo and Xie, 2014; Xia and Breitkopf, 2014; Vicente et al., 2015; Huang et al.,

2015) methods. The level-set methods experienced also a rapid development in the last years

and are currently established as one of the main topology optimization tools (Allaire et al.,

2004; Pingen et al., 2010; van Dijk et al., 2010; Shu et al., 2011; Kreissl and Maute, 2012;

van Dijk et al., 2012). A complete review of the LSM is presented by van Dijk et al. (2013).

Some researchers took use of level-set functions to improve the geometry update scheme of the

topological derivative-based methods (Norato et al., 2007; Amstutz et al., 2012; Lopes et al.,

2015). Other types of topology optimization such as genetic algorithms still exist but are less

used. Figure 1.9 presents the amount of publications concerning the keyword “topology opti-

mization” in the Web of Science data post years 2000, an evidence of the recent growth and

activity of this scientific area.

Deaton and Grandhi (2014) surveyed the current state of the topology optimization meth-

ods considering developments after the year 2000. The authors detailed all the procedures of

the existent topology optimization methods and their research stages. They also present a list of

recommendations and perspectives related to the field of structural and multidisciplinary opti-

mization. The list outlines the needs for the near future research in the area. The list of future

perspectives is composed by: design-dependent physics; stress-based topology optimization;

multidisciplinary and multiphysics applications; biomedical design and medical applications;

robust and reliability-based topology; topology to shape and size transition; advanced manufac-

turing capabilities and high performance computing (HPC) and graphics processing unit (GPU)

implementations.
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Figure 1.9: Results of the search on “topology optimization” keyword in the Web of Science
data in March/2015.

The open research topics summarized in this list (Deaton and Grandhi, 2014) also reflects

the class of sections and works presented at the 11th World Congress of Structural and Multi-

disciplinary Optimization (WCSMO-11), which took place in 2015 at Sydney, Australia, orga-

nized by the International Society for Structural and Multidisciplinary Optimization (ISSMO).

Between them one can cite the works by Picelli et al. (2015c) on design-dependent fluid flow

loads, de Leon et al. (2015) on stress constraints, Norgaard et al. (2015) on unsteady fluid flow

patterns, Chang (2015) on biomedical applications, Hu et al. (2015) on reliability-based design

optimization, Lian and Sigmund (2015) on combination of topology and shape optimization,

Smith et al. (2015) on additive manufacturing and Andreassen et al. (2015) on HPC.

1.4.1 The design-dependent problem

Much has been done to extend the methods of topology optimization to a multitude of

design problems. However, relatively few authors have been devoted to model design-dependent

physics, which is the focus of this thesis. In this type of problems, two or more physical fields

governed by different differential equations interact between each other and their responses

depend on the configuration of the interface they share.

The idea of this thesis is to develop methodologies for design-dependent problems using

specific fluid-structure interaction models. In this case, design-dependency is characterized by
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allowing the fluid-structure interfaces to change their location during optimization. Usually, the

structures in these problems are loaded by fluid pressure loads.

In pressure loaded structural design problems, the position of the loads depends on the

shape and topology of the structure. Such problems are encountered in hydrostatics and dy-

namics of wind, water loaded mechanical and civil structures such as ships, submerged struc-

tures, airplanes, pumps, etc. (Sigmund and Clausen, 2007). Figure 1.10 illustrates the design-

dependency of this type of problems. While the structural topology changes by the optimization

procedures, the location, direction and even the magnitude of the pressure loads can also change.

Structural
design domain

Structural
design domain

Structural
design domain

(a) Design problem (b) Fixed load case (c) Design-dependent load

Figure 1.10: Illustration presented by Chen and Kikuchi (2001) of (a) structural topology design
problem and possible solutions obtained with (b) fixed load cases and (c) design-dependent
loads.

The density-based methods were created considering fixed load cases such as shown in

Figure 1.10(b). In these methods, moving load surfaces is an issue related to boundary data

(Sigmund and Clausen, 2007). The identification of the surfaces where design-dependent loads

will act is not straightforwardly determined because of the presence of intermediate density

elements. The interface between lower and higher densities is usually smooth during the opti-

mization procedures and the load boundaries are unknown. Hammer and Olhoff (2000) pointed

out the problem first in topology optimization. The authors proposed the identification of equal

density points and the use of Bézier curves to model load surfaces in pressure problems, as

illustrated in Figure 1.11. A complete literature review of design-dependent pressure loading

problems is given in Chapter 2.

In most of the works attempting to address this class of loads, the pressure field is consid-

ered constant and directly applied as tractions in the structural analysis after a pressure surface

parametrization. Some others can describe non constant pressure fields, however with mixed

multiphysics models and overlapping domains. This thesis proposes the modelling of classic

fluid governing equations and the discrete BESO design update scheme as a basis to topol-

ogy optimization of different types of fluid-structure interaction problems. The structural and

fluid domains are modelled separately and interact through their interfaces. The configuration
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Figure 1.11: Example of topology design problem with (a) design-dependent pressure loads;
(b) 2D design with non-uniform and discontinuous density distributions; (c) points of equal
densities, (d) Bézier curves and (e) parametrized pressure surface. Method for pressure surfaces
parametrization proposed by Hammer and Olhoff (2000).

and position of the fluid-structure interfaces are allowed to change during the optimization pro-

cedures. The idea is that the methodologies developed here can be extended to different multi-

physics applications in the near future. Figure 1.12 presents a flowchart illustrating the scientific

slot of the methodology of this thesis (first published with the paper by Picelli et al. (2015b))

on design-dependent pressure loads literature. The flowchart links the publications which are

chronologically or thematically related, according to the type of technique it is used to solve the

design-dependent problem.

1.5 Fluid-structure interaction models

This work is devoted to designing improved structures using as performance informa-

tion the structural responses induced by fluid pressure loads. Herein, one shall consider three

different types of fluids interacting with linear elastic structures, see Figure 1.13, sorted here as:

◦ Fluid 1: Nonviscous incompressible and irrotational fluids, describing a hydrostatic anal-

ysis.

◦ Fluid 2: Acoustic fluids, describing a vibroacoustic analysis.

◦ Fluid 3: Viscous fluid flows, describing viscous and pressure loads from a stationary fluid

flow.
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SIMP-model and
surface parametrization

Evolutionary method

Figure 1.12: Literature review flowchart of design-dependent pressure loading problems illus-
trating the scientific spot where the extended BESO method of this thesis is inserted on.

In hydrostatic analysis (Fluid 1), the equilibrium of the solid can be considered as a func-

tion of the static fluid pressure field Pf , which loads the structure at the wetted walls Sfs, as

illustrated in Figure 1.13(a). It is of interest to notice that this static problem is not coupled,

because Pf is the solution of a hydrostatic problem which can be solved independently from
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Figure 1.13: Elastic solids immersed on different types of fluids: (a) nonviscous hydrostatic
fluids, (b) acoustic fluids and (c) viscous fluid flows.

the equilibrium of the solid. In constrast with the static case, the dynamical problem (Fluid

2) is found to be coupled. The motion of the structure induces some motion within the fluid,

while the motion of the fluid generates a fluctuating pressure field which loads the structure,

see Figure 1.13(b). As a consequence, the motion of the solid is modified (Axisa and Antunes,

2007).

For viscous fluid flows (Fluid 3), the equilibrium of the structure depends on viscous and

pressures forces on the wetted wall Sfs of a fluid flowing with certain velocity vf , see Figure

1.13(c). If the structural displacement field us is large enough, the fluid flow path changes along

time. Consequently, the fluid responses also change (Bazilevs et al., 2013).

In general, coupling conditions in a fluid-structure model can be given by ensuring the

continuity of the velocity and the equilibrium between both domains on the wetted wall Sfs, as-

suming the fluid adheres to the walls and a fluid-structural stress balance on Sfs. The structures

are considered here to be linearly elastic for all interacting fluids, which brings three different

fluid-structure interaction models explored in this thesis.

Although the interaction between a structure and the three different types of fluids de-

scribed here can be classified as fluid-structure interaction (Axisa and Antunes, 2007; Bazilevs

et al., 2013), in the field of topology optimization fluid-structure interaction is referred to the

group of problems involving a structure and a viscous fluid flow in the manner described by

Bazilevs et al. (2013), while acoustic-structure interaction is referred to problems such as the

ones described by Morand and Ohayon (1995) and Axisa and Antunes (2007). Examples of that

are the references papers by Yoon (2010), for fluid-structure interaction, and Yoon et al. (2007),

for acoustic-structure interaction.
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All types of motion for Newtonian fluids can be derived by using the momentum and

continuity equations, which when combined build the Navier-Stokes equations. The follow-

ing chapters describe the specific fluid cases considered and the equations which describe the

different fluid-structure interaction models used in this work. Herein, both physical fields are

formulated within the framework of continuum mechanics. However, the fluid formulations are

derived by using the Eulerian viewpoint while a Lagrangian viewpoint is used to derive the

structure formulation. The variables of the fluid and the solid domains are shared between all

types of models.

The three fluid-structure models described here are used in four different topology op-

timization problems. Chapters 2 and 3 apply the case of Fluid 1 in design-dependent fluid

pressure loading problems and subsea buoyancy modules design, respectively. Chapter 4 uses

Fluid 2 as a fluid model in natural frequency maximization of acoustic-structure interaction

systems, while Chapter 5 uses viscous fluid flows (Fluid 3) in fluid-structure interaction op-

timization problems. All these fluid-structure systems are designed with the proposed BESO

method extension.

1.6 Extended BESO update scheme

The proposed methodology used in this thesis is a BESO-based approach. The main con-

tribution to the BESO method is the handling of different types of incompressible fluid models

in the optimization problems. This allows fluid-structure interaction to be formulated in evo-

lutionary structural optimization problems. Basically, incompressible fluid domains are placed

alongside structural design domains.

In the finite element discretized form, the discrete BESO update scheme sets a new design

variables distribution (solid/void) for the structural design domain in each optimization step.

The void elements which appear in the design domain and are next to the initial fluid domain

can be substituted by incompressible fluid elements. Thus, the initial fluid region is updated and

the fluid-structure interface Sfs is allowed to move, i.e., to change its position in each iteration

of the optimization procedure, as illustrated in Figure 1.14.

With the moving interface procedure, the fluid region tracks the fluid-structure interface

changes. Then, coupling stress balances can be carried out straightforwardly for any discrete de-

sign configuration and design-dependent loads can be easily handled in the optimization prob-

lem. This is the main feature of the extended BESO method proposed in this thesis.
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Figure 1.14: Optimization step: fluid region update as a new operation in each iteration step of
the BESO method procedure.

1.7 Objectives and contributions

The main objective of this work is to contribute to the methods of Structural Topology

Optimization in problems with design-dependent physics by using fluid-structure interaction

(FSI) models. An extension of the evolutionary optimization methods is developed in this work

and applied in four different optimization problems, namely:

◦ Structural topology optimization for design-dependent fluid pressure loads.

◦ Topology optimization of submerged buoyant structures.

◦ Natural frequency maximization of acoustic-structure interaction systems.

◦ Structural topology optimization considering stationary viscous fluid flow loads.

As specific objectives, this thesis intends to:

◦ implement a numerical code to solve different fluid-structure interaction equations with

the finite element method.
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◦ develop a technique to allow the switch of different types of finite elements such as fluids

and solids with the BESO method procedures.

◦ solve topology optimization problems with design-dependent FSI loads using the pro-

posed fluid-structure BESO method.

◦ introduce an inequality constraint in the standard evolutionary topology optimization

problem.

The following conference papers have been derived from this PhD research:

◦ Evolutionary Topology Optimization for Fluid-structure Interaction Problems and Natu-

ral Frequency Maximization (Picelli et al., 2012).

◦ Topology Optimization Considering Design-dependent Loads, abstract only (Picelli et al.,

2013).

◦ Topology Optimization Including Buoyancy Inequality Constraints (Picelli et al., 2014).

◦ Topology Optimization Considering Design-dependent Stokes Flow Loads (Picelli et al.,

2015c).

The following journal papers have been derived from this PhD research:

◦ Bi-directional Evolutionary Structural Optimization for Design-dependent Fluid Pressure

Loading Problems (Picelli et al., 2015b).

◦ Evolutionary Topology Optimization for Natural Frequency Maximization Problems Con-

sidering Acoustic-structure Interaction (Picelli et al., 2015d).

◦ Topology Optimization for Submerged Buoyant Structures, submitted on August 2015

(Picelli et al., 2015a).

1.8 Layout of the thesis

This thesis is composed by seven chapters to divide the main contributions of the research,

as shown schematically in Figure 1.15. This introductory chapter described the state of the art

in Structural Topology Optimization and the “scientific spot” this doctoral research is inserted
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on. A brief description of the fluid-structure interaction models and the extended BESO update

scheme were also presented in this introduction.

The four different optimization problems previously mentioned are introduced, formu-

lated, solved and discussed with numerical results in Chapters 2, 3, 4 and 5. These chapters are

self-contained and may be read independently, since they are mainly composed by texts from

conference and journal papers. In each chapter, specific introductions, literature reviews and

problem formulations are presented.

Chapter 6 brings final conclusions and suggestions for further research and Appendix A

presents the implementation details of the developed methodologies.
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3 Design of submerged buoyant structures
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5 Design-dependent viscous fluid flow loads

6 Conclusions

Figure 1.15: Structure of this thesis.
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2 STRUCTURAL TOPOLOGY OPTIMIZATION FOR DESIGN-

DEPENDENT FLUID PRESSURE LOADS

Context

To minimize structural compliance in problems with design-dependent pressure loads, a

hydrostatic fluid (Fluid 1 mentioned in Chapter 1) has been employed to model pressure fields

in an evolutionary topology optimization approach. The discrete procedures of the evolutionary

methods allow the modelling of separate fluid and structural domains. Thus, constant and non

constant fluid pressure fields can be solved using classic governing equations and finite element

discretizations. A new sensitivity term has been derived from the design-dependent loads. This

work has been the first attempt to solve the design-dependent pressure loading problem with

evolutionary topology optimization and multiphysics analysis. This contribution has first been

published in the conference proceedings of the 5th International Conference on Coupled Prob-

lems in Science and Engineering (Picelli et al., 2013) and later in Engineering Optimization

(Picelli et al., 2015b).

2.1 Introduction

Topology optimization of continuum structures (Bendsoe and Sigmund, 2003) has been

used to solve many structural and multiphysics problems in engineering. The idea is to find

optimal topologies inside predefined design domains concerning objective functions and con-

straints. Since its introduction (Bendsoe and Kikuchi, 1988), the methods of topology optimiza-

tion have been extended to different applications (Chen and Kikuchi, 2001; Sigmund, 2001b;

Duhring et al., 2008; Silva and Pavanello, 2010). Although some of these procedures have

reached a satisfactory level, many topics are still open to research, such as design-dependent

pressure loading problems.

The difficulties to optimize structures subjected to pressure loads arise due to the variation

of location, direction and magnitude of the loads during the optimization procedure. This turns

to be an additional difficulty for the traditional density based topology optimization methods,

like in the SIMP (Bendsoe and Sigmund, 2003) and homogenization approaches (Bendsoe and

Kikuchi, 1988). In these methods, the pressure loaded surfaces are not explicitly defined due to

the existence of intermediate density elements (Hammer and Olhoff, 2000).

Some of the main efforts to solve the topology optimization problem considering design-
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dependent pressure loads have been in the creation of the surface where the pressure will act.

Initially, Hammer and Olhoff (2000) proposed the identification of iso-density nodal points and

the usage of Bézier spline functions to obtain the boundary where the pressure will act. Their

method was further improved by Du and Olhoff (2004a,b), in which the authors modify the

technique of finding the density isolines. More recently, other methods to identify the pressure

surfaces were proposed. Zhang et al. (2008) proposed an alternative boundary search scheme by

using a density threshold to classify all the elements in load-carrying and nonloading-carrying

elements. The same method was extended further for 3D cases (Zhang et al., 2010). Zheng et al.

(2009) used a potential function based on an electric potential to model the pressure surface.

Lee and Martins (2012) improved the method of Du and Olhoff (2004a), eliminating the need

of isoline endpoints predefinition.

Also for the density based methods, other schemes have been proposed to handle design-

dependent pressure loads, being some of them heuristic techniques or even treating artificial

multiphysics problems. To simulate the pressure loading, Chen and Kikuchi (2001) considered

a fictitious thermal problem. The hydrostatic pressure was simulated by thermal loads between

a solid and a fluid domain due to the mismatch of their thermal expansion coefficients. Simi-

larly, Bourdin and Chambolle (2003) used a fictitious liquid in a fluid-solid-void topology op-

timization. Perimeter penalization was applied in order to avoid homogenization of the phases.

Sigmund and Clausen (2007) suggested the use of a mixed equivalent formulation to model

an incompressible fluid-structure region. Later, Bruggi and Cinquini (2009) proposed a mixed

model using another element approximation in order to avoid some numerical difficulties due

to the incompressible model assumptions. Also, Andreasen and Sigmund (2013) extended the

same idea for applying topology optimization to fluid-structure interaction problems in satu-

rated poroelastic media.

The techniques mentioned above present volumes with intermediate density materials and

not well defined pressure surfaces. As an alternative scheme, Yang et al. (2005) explored cases

including structural downward surface loads with the evolutionary methods. Very recently, Xia

et al. (2015) used a level set method to solve pressure load problems. In this work, the extended

BESO method for applications in fluid loaded structural problems is explored.

In the evolutionary methods the design variables are restricted to discrete values 1 and

0, which corresponds to complete solid and void elements, respectively. Then, no intermediate

density elements are allowed during the optimization procedures. Herein, the extended BESO

method substitutes some of the void elements by incompressible fluid ones capable to model

the pressure field. The fluid/void elements are easily controlled by expanding both fluid and

void regions considering their neighboring elements. For instance, new fluid elements should

appear only besides fluid neighbor elements. With no intermediate densities, both solid-void



52

and fluid regions as well as the pressure surfaces are explicitly defined. In this context the

traditional displacement-pressure (u/P ) formulation (Zienkiewicz and Bettess, 1978) can be

used for the fluid-structure model. In the static analysis, the solid and fluid fields are governed by

the elasticity equation and Laplace’s equation, respectively. The two separate fields are partially

coupled by surface-coupling integrals, which guarantees equilibrium conditions on the fluid-

structure interfaces.

Herein, it is considered static equilibrium and the compliance minimization of structures

in contact with pressurized fluids. This methodology can be applied to different engineering

fields, such as the automotive, aeronautical and metallurgic industry or also offshore structures,

where there are different types of fluid-structure interaction. With the proposed method, design-

dependent pressure loads can be easily handled with the classical and simple finite element

formulations. Furthermore, the pressure surface changes are tracked straightforwardly.

This chapter is outlined as follows: Section 2.2 presents the governing equations and the

finite element model for the fluid-structure system. In Section 2.3, the topology optimization

problem and the sensitivity analysis are described. Section 2.4 discusses the implementation

matters and the steps of the extended fluid-structure BESO method. Section 2.5 shows the nu-

merical results achieved with the proposed methodology for three benchmark examples. Section

2.6 concludes the chapter.

2.2 Fluid-structure model: Governing equations and finite element discretiza-

tion

It is considered the static analysis of flexible structures in contact with incompressible

pressurized fluids. The fluid-structure system is modelled assuming small strain and displace-

ments for a linearly elastic continuum solid domain and an inviscid and irrotational fluid do-

main. All the details about this formulation can be found in the reference article of Zienkiewicz

and Bettess (1978) or in reference books (Morand and Ohayon, 1995; Axisa and Antunes,

2007). Following, the governing equations for the fluid and structural domains as well as the

coupling boundary conditions are briefly outlined.
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2.2.1 Fluid domain

In the static analysis, the governing equation for the homogeneous, inviscid and irrota-

tional fluid domain Ωf can be described by Laplace’s equation

∇2Pf = 0 in Ωf , (2.1)

where Pf is the fluid pressure and ∇2 is the Laplacian differential operator.

Proper boundary conditions must be imposed. In this work, the following boundary con-

ditions are considered (see Figure 2.1):

Pf = P0 on Sp, (2.2)

∇Pf · n = 0 on Sf , (2.3)

representing the pressure boundary condition (Equation 2.2) and the hard wall condition (Equa-

tion 2.3) on the fluid boundaries Sp and Sf , respectively. The term P0 is the constrained pressure,

n is the outward unit normal vector to the fluid and ∇ is the gradient vector operator.

2.2.2 Structural domain

Neglecting body forces, the linear structural static analysis is governed by

∇ · σs (u) = 0 in Ωs, (2.4)

where ∇ · σs is the divergence of the Cauchy stress tensor and u is the displacement field on

the solid domain Ωs. In this work, only Dirichlet boundary conditions are applied to the solid

domain:

u = u0 on Su, (2.5)

representing the displacement boundary conditions for all points on the solid boundaries Su, as

seen in Figure 2.1. The term u0 is the vector of prescribed displacements on Su and us is the

vector of displacements.
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Figure 2.1: The solid (Ωs) and fluid (Ωf ) domains and boundary conditions. Pressure P0 is im-
posed on the portion Sp of the fluid boundary. Fluid pressure loads act on the structure through
the fluid-structure interface Sfs.

2.2.3 The coupled fluid-structure system

At the interface Sfs between the structural and fluid domains, the fluid and the structure

move together in the normal direction of the boundary. The normal vector n (see Figure 2.1)

can be used in order to obtain the continuity in pressure on the interface Sfs as follows:

σsn = −Pfn on Sfs. (2.6)

This equation ensures the continuity in pressure on the the interface Sfs, which indicates the

pressure forces ffs = Pfn exerted by the fluid on the structure.

Using an approximation based on the finite element method (FEM), the force acting on

the structure provided by the fluid pressure can be calculated as

ffs =

∫

Sfs

NT
s nNfdSfsPf , (2.7)

where Pf is the vector of nodal pressures, n is the normal vector inwards the structural domain

and Ns and Nf contains the finite element shape functions for the interface. This formulation

is equivalent to the static part of the dynamic acoustic-structure interaction model described in

terms of structural displacements and fluid pressures (u/Pf ) by Zienkiewicz and Bettess (1978);

Morand and Ohayon (1995); Axisa and Antunes (2007). The integral in Equation 2.7 defines an

interface finite element placed on the line shared by neighboring fluid and structural elements

and connects pressures and displacements degrees of freedom. In the present thesis, both fluid

and structural elements are modelled with linear shape functions. Thus, the interface element

is a two-node element with linear shape functions and Ns = Nf . Writing the surface coupling
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integral as

Lfs =

∫

Sfs

NT
s nNfdSfs, (2.8)

the coupling forces ffs can be written in a discretized form as

ffs = LfsPf . (2.9)

Thus, in the context of the finite element approximation, and assuming no external loads

are applied, the hydroelastic equilibrium problem can be described by a nonsymmetric system

of equations
[

Ks −Lfs

0 Kf

]{

us

Pf

}

=

{

0

0

}

, (2.10)

where us is the vector of nodal structural displacements and Ks and Kf are the stiffness matri-

ces of the structural and fluid domains, respectively, expressed in an element domain Ωe as

Ks =

∫

Ωe

(∇Ns)
T
Ds∇NsdΩe, (2.11)

Kf =

∫

Ωe

(∇Nf )
T∇NfdΩe, (2.12)

where Ds is the elasticity matrix. The matrix Lfs is the global coupling matrix (Morand and

Ohayon, 1995).

In this one-way coupled multiphysics model, the fluid analysis provides pressure loads to

the structural analysis through the application of the coupling matrices. In this case, the fluid

pressure field can actually be solved separately. However, for the sake of generality, by imposing

the boundary conditions from Equations 2.2, 2.3, 2.5 and 2.6 and solving Equation 2.10, both

fluid and structure responses can be obtained simultaneously for any discretized fluid-structure

configuration. This turns to be handy for the iterative procedures of topology optimization. The

equilibrium equation for the structure alone can be expressed as

Ksus = LfsPf , (2.13)

extracted from Equation 2.10.
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2.3 Problem formulation and sensitivity analysis

2.3.1 Topology optimization problem

The examples considered in this work concern compliance minimization with volume

constraint of structures under fluid pressure loading. The objective is to find the distribution of a

given amount of solid material to obtain a structure with maximum stiffness, which is equivalent

to a minimum compliance C (xi) (external work), a physical quantity that can be understood

as the flexibility of the structure. The evolutionary topology optimization problem for this case

can be formulated as:

min: C (xi) =
1
2
uT
s Ksus,

xi

subject to:

[

Ks −Lfs

0 Kf

]{

us

Pf

}

=

{

0

0

}

and b.c.,

h = V (xi) /V0 = Vs,

xi = [0,1] ,

(2.14)

where V0 is the volume of the full design domain, Vs is the prescribed final structural volume

fraction, nel is the number of elements inside the design domain and xi represents the dis-

crete design variables, in which 1 is a solid element and 0 is void or fluid. The extended BESO

method substitutes some of the void elements by incompressible fluid ones capable of mod-

elling the pressure field. First, the standard BESO update scheme is used to set a 0/1 design.

Then, the fluid region is updated considering their neighboring elements. For instance, new fluid

elements should be placed only besides fluid neighbor elements, as illustrated in Figure 1.14.

Fluid elements which appear inside the design domain are considered equivalent to a void de-

sign variable (xi = 0) in the optimization procedure, i.e., in the sensitivity analysis and in the

0/1 update scheme. However, they are fluid elements in the finite element analysis.

2.3.2 Sensitivity analysis

The sensitivity of the structural compliance due to an element removal can be obtained by

its direct derivative:
∂C

∂xi

= uT
s Ks

∂us

∂xi

+
1

2
uT
s

∂Ks

∂xi

us. (2.15)

The equilibrium equation of the structural system (Equation 2.13) can be derived in order
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to find the unknown ∂us/∂xi:
∂ (Ksus)

∂xi

=
∂ (LfsPf )

∂xi

. (2.16)

Applying the chain rule on both sides of the previous equation, one has

∂Ks

∂xi

us +Ks

∂us

∂xi

=
∂Lfs

∂xi

Pf + Lfs

∂Pf

∂xi

. (2.17)

The passive pressure change due to a solid element removal is considered in this work to

be small enough and the derivative ∂Pf/∂xi is neglected. Then, isolating the derivative of the

displacement vector:
∂us

∂xi

= K−1
s

(

∂Lfs

∂xi

Pf −
∂Ks

∂xi

us

)

. (2.18)

With the substitution of Equation 2.18 in Equation 2.15, one can rewrite the compliance

derivative as
∂C

∂xi

= uT
s KsK

−1
s

(

∂Lfs

∂xi

Pf −
∂Ks

∂xi

us

)

+
1

2
uT
s

∂Ks

∂xi

us. (2.19)

Then, the sensitivity of the objective function is expressed as

∂C

∂xi

= uT
s

∂Lfs

∂xi

Pf −
1

2
uT
s

∂Ks

∂xi

us. (2.20)

The sensitivity must be evaluated for each element of the design domain in order to rank

their contribution to the objective function. To evaluate the sensitivity from Equation (2.20)

at the elemental level, the variation of the stiffness ∂Ks/∂xi due to the ith element removal

must be found. The presented version of the BESO method is developed using a “hard-kill”

technique, where the densities of the void elements are set as zero similarly as proposed by

Huang and Xie (2007). A material interpolation scheme similar to the SIMP method can also

be used in order to set a very small density for the void elements in a “soft-kill” evolutionary

procedure (Huang and Xie, 2009). Both hard-kill and soft-kill approaches present similar results

for structural design and can be used in a similar manner.

In the hard-kill approach, no material interpolation functions or design variables with very

small values appear in the element modelling. The material is then the simple superposition

(finite element assembly) of all solid element stiffness matrices Ki
s. Thus, the definition of

the sensitivities cannot be derived as a continuous function in the manner it is carried out by

the SIMP approach. Therefore, an approximation based on a single step finite difference can



58

be carried out for the hard-kill sensitivities, considering the structural configuration before and

after an element removal (Xie and Huang, 2010). The derivative of the global structural stiffness

matrix with respect to the design variable of the ith element can be then expressed as

∂Ks

∂xi

≈ Ki
s. (2.21)

The derivative of the coupling matrix ∂Lfs/∂xi also needs to be evaluated. It indicates the

change in the coupling condition due to the ith element removal. This change can be predicted

considering the difference in coupling between the system configuration after and before the

element removal. Thus,
∂Lfs

∂xi

≈ (∆Lfs)
i =

(

L∗

fs − Lfs

)i
, (2.22)

where Lfs is the coupling matrix before the element removal and L∗

fs is the final coupling matrix

after the element removal.

For a general solid element, one may verify the change in the coupling configuration by

the interface coupling forces. Figure 2.2 presents a possible coupling forces configuration before

and after an element removal. By knowing this configuration, the change (L∗

fs − Lfs)
i can be

evaluated. The minus sign changes the direction of the coupling forces, as seen in Figure 2.2.
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Figure 2.2: Coupling forces configuration before and after a structural element removal. The
derivative ∂Lfs/∂xi can be approximated by the change of the coupling matrices (∆Lfs)

i =
(

L∗

fs − Lfs

)i
after the ith element removal. The arrows indicate the pressure loads LfsPf from

the fluid elements acting on the structure.

It can be noticed that, no matter what the initial coupling configuration is, the change

(L∗

fs − Lfs)
i always ends up as that showed in Figure 2.2. It represents the change in pressure
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loads when a solid element is removed and a fluid element is placed in, transferring the interface

pressure through the whole element. Therefore, for any solid element, a (8×4) matrix containing

the coupling matrices through the element boundaries can represent the change in the coupling

configuration, as following:
∂Lfs

∂xi

≈ (L∗

fs − Lfs)
i = Li

c, (2.23)

where Li
c is the matrix assembled according to the coupling configuration change, showed in

Figure 2.2. In a regular mesh with square elements, this matrix is evaluated considering the

normal vector n outwards the fluid element and it can be directly expressed as

Li
c =

li
6

































2 0 0 1

2 1 0 0

0 −2 −1 0

1 2 0 0

0 −1 −2 0

0 0 −2 −1

1 0 0 2

0 0 −1 −2

































, (2.24)

where li is the length of the element’s edge.

Finally, substituting the derivatives ∂Ks/∂xi and ∂Lfs/∂xi into Equation 2.20 and rear-

ranging it, the sensitivity numbers for design-dependent fluid pressure loading problems in the

evolutionary topology optimization are

αi = −
∂C

∂xi

=







1
2
uT
i K

i
sui − uT

i L
i
cPi xi = 1

0 xi = 0
, (2.25)

where ui and Pi are the vectors with nodal displacements and pressures, respectively, at the ith

element.

This analysis can be carried out for each element i in the design domain. For solid ele-

ments which are not at the fluid-structure interface, the pressure transferred by the occupying

fluid is null and the term uT
i L

i
cPi in Equation 2.25 vanishes, leading to the traditional num-

ber 1
2
uT
i K

i
sui, the elemental strain energy. Thus, in practice, the complete sensitivity number

is evaluated just for the solid elements at the fluid-structure interface. For solid elements with

only three neighbors, the change presented in Figure 2.2 is not completely true. However, a very

small amount of elements at the fluid-structure interface has only three neighbors and this sit-

uation may be disregarded. The new term uT
i L

i
cPi in the sensitivity analysis can be interpreted

as the work done by the pressure loads at the elemental level, since Li
cPi is a vector of cou-
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pling forces at the solid element, which is multiplied by the elemental displacements in order to

compute the sensitivities. The sensitivity number αi ranks the contribution of the ith element to

the objective function. The solid elements with the smallest sensitivity numbers are considered

structurally inefficient or underutilized and they can be removed from the finite element model

with a minimum change in the total compliance.

2.4 Numerical implementation

Originally, the Evolutionary Structural Optimization (ESO) was based on a successive

elimination of material from the initial design domain (Xie and Steven, 1993). The ESO method

was extended to different structural design problems (Xie and Steven, 1996; Li et al., 1999).

Steven et al. (2000) used the ESO method for the first time for general physical field uncoupled

problems, including a fluid domain design case. One of the last most important developments

in the ESO-based methods was the convergent and mesh-independent bi-directional version,

the BESO method from Huang and Xie (2007). The BESO method allows material to be si-

multaneously removed and added in the domain until the volume constraint and a convergence

criterion are satisfied. The method was initially addressed as a hard-kill technique and a further

improvement introduced an interpolation scheme, exploring the method in a soft-kill approach

(Huang and Xie, 2009).

In this work, the proposed methodology is a hard-kill BESO-based approach, in which

some void elements are substituted by incompressible fluid ones and the loads are generated by

imposed pressures in the coupled model. To rank all the elements according to their contribu-

tion to the objective function, the sensitivity number from Equation 2.25 is evaluated for each

element. Boundary and interior elements are identified by checking their neighboring elements.

A solid element is a boundary element if it has at least one fluid neighbor element and an inte-

rior element if it does not have any fluid neighbors. A mesh-independence filter is applied all

over the mesh by averaging each elemental sensitivity number with its neighboring elements.

The filter scheme is similar to that presented by Sigmund and Peterson (1998). To evaluate the

filter weights, nodal sensitivity numbers αj are calculated by averaging the elemental sensitivity

numbers of the jth connected elements. These nodal sensitivity numbers must be converted back

into elemental sensitivities by projecting a sub-domain Ψi with length scale rmin and centered

in the ith element. All the nodes inside Ψi must have their nodal sensitivity numbers averaged

to the ith elemental level as follows:

αi =
nod
∑

j=1

w(rij)αj/
nod
∑

j=1

w(rij), (2.26)
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where rij is the distance between the node j and the center of the element i, nod is the total

number of nodes inside the design domain and w(rij) is a weight factor that is equal to rmin−rij

for nodes inside the sub-domain Ψi and 0 for nodes outside the sub-domain. The above filter

scheme can effectively address mesh-dependency and checkerboard problems. However, the

objective function and the corresponding topology may not be convergent. In order to avoid this

problem, Huang and Xie (2007) showed that the above sensitivity numbers should be averaged

with its previous iteration numbers, given as

αi =
αn
i + αn−1

i

2
, (2.27)

where n is the current iteration number. Thus, the updated sensitivity number includes the his-

tory of the sensitivity information in the previous iterations (Huang and Xie, 2007).

For each iteration, a target volume Vn+1 is defined as

Vn+1 = Vn(1± ER), (2.28)

where ER is the evolutionary ratio and n the number of the iteration. ER is the percentage of

the current structural volume and increases or decreases Vn+1 towards a structural desired final

volume fraction Vs. The target volume Vn+1 sets the threshold αth of the sensitivity numbers.

Solid elements (xi = 1) which

αi ≤ αth (2.29)

are switched to fluid/void condition (xi = 0). Fluid elements (xi = 0) are switched to solid

condition (xi = 1) when

αi > αth. (2.30)

Meanwhile, the addition volume (AR) is restricted to a maximum addition ratio ARmax,

which declares the maximum allowable solid volume fraction that can be added per iteration.

Once AR > ARmax, only some of the elements with highest sensitivity numbers are added in

order to set AR = ARmax. Then, some of the elements with the lowest sensitivity numbers are

removed to satisfy the target volume Vn+1. Each target volume defines the amount of elements

that the structure must have in the iteration n + 1. The capability of a fluid/void element to

have a higher sensitivity number is played by the filter scheme. The projection scheme allows

fluid/void elements near highly solicited solid regions to have nonzero sensitivity numbers and

return to solid condition. It also controls the size of the members in the structure related to the

rmin parameter, which indicates how intense is the smoothing of the sensitivity numbers through

the design domain.
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Once the prescribed final volume is achieved, the target volume remains constant as Vs.

The algorithm evolves until a convergence criterion with a predefined tolerance τ is satisfied.

This convergence is estimated as

|
∑5

k=1 Cn−k+1 −
∑5

k=1 Cn−5−k+1|
∑5

i=1 Cn−k+1

≤ τ , (2.31)

which means that the compliance variation is evaluated for the last 10 successive iterations

of the algorithm. More details about these implementation issues (e.g. filter scheme, element

removal/addition and convergence criterion) can be found in Huang and Xie (2007).

2.4.1 The extended fluid-structure BESO method

The evolutionary procedures of the presented BESO method for fluid pressure problems

are given as follows:

1. Discretize the design domain using a finite element (FE) mesh for the given boundary

conditions. Initially, a global fluid-structure stiffness matrix Kg must be assembled un-

coupled.

2. Couple and store a current global matrix Kn with the coupling matrices according to

the current design of the nth iteration and the appropriate boundary conditions. Thus, the

current Kn becomes equivalent to the fluid-structure stiffness matrix from Equation 2.10.

3. Perform FE analysis on the current design to obtain the displacement and pressure re-

sponses.

4. Calculate the sensitivity numbers according to Equation 2.25.

5. Apply the filter scheme. Project the nodal sensitivity numbers to the design domain and

smooth the sensitivity numbers for all (fluid, void and solid) elements in the design do-

main.

6. Average the sensitivity numbers with their previous iteration (n − 1) numbers and then

save the resulting sensitivity numbers for the next iteration.

7. Determine the target structural volume Vn+1 for the next iteration.

8. Construct a new fluid-structure design by switching design variables xi from 1 to 0 and

from 0 to 1. In order to control the fluid and void regions, a decision should be taken when

the elements must have their design variables stated as xi = 0. If the element has at least
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one fluid element as neighbor, it must be turned also into a fluid element. If the element

does not have any fluid neighbors, the element must be turned into a void. This procedure

is repeated until there are no more changes in the fluid-void regions. In this case, some

layers of structural elements nearby the fluid-structure interface can be replaced by fluid

elements and void holes appear only inside the structure.

9. Remove and/or add the elemental stiffness matrices from the original uncoupled global

matrix Kg according to the change of the current design.

10. Repeat steps 2-10 until the prescribed structural volume Vs is reached and the convergence

criterion from Equation 2.31 is satisfied.

2.5 Numerical results

In this section, three benchmark examples from the literature are explored in order to ex-

pose the capabilities of the presented extended BESO method considering fluid pressure loads.

The parameters and features of the method are discussed, as well as convergence analysis is

shown.

2.5.1 Arch-like structure

In this example, the influence of the new sensitivity number from Equation 2.25 and

the main features of the method are discussed. The 2D model is illustrated in Figure 2.3. An

underwater structure subject to hydrostatic pressure from a fluid domain is considered for com-

pliance minimization. The imposed pressure is P0 = 1 Pa. In this case, when the pressure is

constant all over the fluid domain, the dimensions of the fluid field are not relevant. Moreover,

the imposed fluid pressure can be chosen arbitrarily resulting in the same structural topology

solution because of the linear behavior of the structure. The design domain is equally divided

into 200 × 100 four-node plane stress elements, totaling 20000 elements. The material is con-

sidered with Young’s modulus E = 70 GPa and Poisson’s ratio ν = 0.3. Equation 2.10 is used

to obtain the pressure and displacement responses.

An example of sensitivity number distribution is shown in Figure 2.4 considering the left

half of the full initial design domain. The sensitivity numbers indicate the relative elemental

efficiency with respect to the objective function. The elements with dark blue color have the

lowest sensitivity numbers and those in red have the highest numbers. If one wants to maximize

the stiffness, it is reasonable to remove the elements with the lowest sensitivities (lower strain

energy).
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Fluid

Design domain

0fP P

2 m

1 m 0fP P0fP P

Figure 2.3: Fluid-structure model: An underwater structure subject to hydrostatic pressure.

Figure 2.4: Example of elemental sensitivity numbers distribution evaluated by the Equation
2.25 for the the left side of the initial design domain.

Starting from the initial full design, BESO’s evolutionary ratio is chosen to be ER = 5%

for this example. The final prescribed volume is Vs = 20% and the filter radius used is rmin = 0.1

m. The other parameters are set as ARmax = 5% and τ = 0.01. Figure 2.5 presents the BESO’s

topology solution with the iteration number n and structural volume Vn. Figure 2.6 shows the

convergence history for this example. The final solution converged to a structure with an almost

constant mean compliance of 0.213 · 10−9 Nm.

Concerning the general purposes of the method, the design domain is gradually evolv-

ing to an arch-like structure with no gray scale patterns, such as those observed in the SIMP

approach. During the evolution of the algorithm, solid elements are changed by fluid ones, acti-

vating and deactivating degrees of freedom. The fluid region evolves and occupies the structural
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at the interface) have smoother boundaries than those obtained disregarding the pressure loading

derivatives, specially at earlier stages of the optimization. It may confirm that the introduction of

the term uT
i L

i
cPi corrects the gradient information of the objective function for this problem. At

latter stages, the topologies present less low strain energy regions, which minimizes the effect

of the pressure sensitivity term.

αi =
1
2
uT
i K

i
sui − uT

i L
i
cPi αi =

1
2
uT
i K

i
sui

Figure 2.7: BESO’s topology snapshot with and without pressure loading sensitivities.

As expressed in Equation 2.28, the discrete update scheme of the BESO method is based

on a target volume Vn+1 and is able to reduce or increase Vn towards Vs, as well as to keep

volume constant when Vn = Vs. Therewith, an initial guess structural design can be set in the

design domain before the optimization starts. For this same example, Figure 2.8 presents the

evolution of the arch-like structure obtained with the extended BESO method with an initial

guess design. The final result is the same arch presented in Fig. 2.5.

One advantage of starting with a smaller portion of structural elements is that computation

time can be saved because of the reduced degrees of freedom when the hard-kill approach is

used, specially for large models such as 3D cases. Figure 2.9 presents the convergence history

for the arch-like structure with initial guess design. It can be noticed that the initial structure

has already the prescribed final volume, i.e., Vn = Vs. Then, the structure evolves to an arch

without changing its volume presenting the final compliance value C = 0.211 · 10−9 Nm, very

close to the case with initial full design.

The initial guess design presents a compliance higher than the final arch-like structure and

the convergence curve from Figure 2.9 evidences the minimization of the structural compliance.

Starting with the full design domain, the minimization problem starts with a non feasible solu-

tion (volume constraint not active) and presents initial lower compliance because of the higher

amount of solid material.
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Figure 2.9: Convergence history of the arch-like structure’s mean compliance starting with an
initial guess design.

Fluid
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0fP P

3 m

2 m

Figure 2.10: Fluid-structure model: piston head structure under pressure loading.

Even though the design update schemes from both BESO and SIMP methods are differ-

ent, the topology evolution obtained by the BESO method showed some similarities with the

intermediate solutions presented by Lee and Martins (2012). The obtained final solution is also

in agreement with the topology obtained by Lee and Martins (2012). However, herein there is

no need for additional material boundary parametrization schemes such as the ones proposed

by Lee and Martins (2012) and other authors.

The mixed finite element models from Sigmund and Clausen (2007) and Bruggi and Cin-

quini (2009) turn the problem slightly different and the fluid volume should be constrained
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n = 0;Vn = 100%; n = 9;Vn = 80%;

n = 28;Vn = 49%; n = 68;Vn = 30%;

Figure 2.11: BESO’s topology solution for the piston head example with iteration number n and
structural volume Vn.

in order to avoid fluid cavities formation. It implies in different topologies depending on the

constrained fluid volume. Nevertheless, the results are somewhat similar with the presented

method. Figure 2.12 presents the convergence history of the piston head’s mean compliance

with the BESO method. The final mean compliance obtained is C = 1964.9 Nm.

In order to compare both strain energy and pressure loading sensitivities from Equation

2.25, Figure 2.13 presents the sensitivity values for the solid elements along the fluid-structure

interface in the initial full design. The elements are sorted from the left to the right side, accord-

ing to their centroids in the horizontal axis. It is showed that the pressure loading sensitivities

uT
i L

i
cPi can be either positive or negative, smaller or higher than 1

2
uT
i K

i
sui, although gener-

ally smaller. This value corrects the gradient information due to the fluid-structure boundary

changes. When solid elements are removed, the sensitivity term 1
2
uT
i K

i
sui globally increases

more than uT
i L

i
cPi, which makes the strain energy term more representative while the algo-

rithm evolves.
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Figure 2.12: Convergence history of the piston head mean compliance.

Figure 2.13: Sensitivities for the solid elements along the fluid-structure interface in the initial
full design for the piston head finite element model.
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2.5.3 Pressure chamber design

The design of a pressure chamber has been considered in reference articles (Chen and

Kikuchi, 2001; Hammer and Olhoff, 2000; Zhang et al., 2008). A pressurized fluid is placed

inside a channel between two structural design domains, as showed in Figure 2.14. For this

example, the pressure values can vary during the optimization procedure and the capability of

the present formulation in the handling of different pressure fields is demonstrated. A structural

non-design domain is also considered in the model.

Design domain

 o
0fP P

Fluid

Non-design domain

3.
8 

m

6.0 m

Design domain

Non-design domain

 i0fP P
Inlet

Outlet
0.3 m

0.2 m2.9 m

0.3 m
1.

2 
m

0.
8 

m
0.

3 
m2.1 m1.0 m

0.
2 

m

Figure 2.14: Fluid-structure model: A pressurized fluid inside a channel between the structural
design domains.

An initial full design is adopted. The evolutionary ratio is set as ER = 2.5% and the

prescribed volume Vs = 25%. The filter radius used is rmin = 0.18 m. The other parame-

ters are chosen to be as ARmax = 2.5% and τ = 0.001. Both inlet pressure (P0)
i and outlet

pressure (P0)
o are set as 10 Pa. For this case, the value of the pressure field is constant during

the optimization procedures. The whole fluid-structure model is discretized with four differ-

ent meshes: (a) 60×38 (2280 elements), (b) 120×76 (9120 elements), (c) 300×190 (57000

elements) and (d) 1200×260 (912000 elements). Figure 2.15 presents the final topologies ob-

tained by the BESO method with different meshes. All the four topologies occur to be the same,

which shows the convergence of the method and its mesh-independency feature. Additionally,

they are quite similar with the topologies presented by the reference articles (Chen and Kikuchi,

2001; Hammer and Olhoff, 2000; Zhang et al., 2008). The final mean compliance obtained for

the case (c) with 57000 elements is C = 1.63 · 10−7 Nm.
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(a) (b)

(c) (d)

Figure 2.15: Pressure chamber design by the BESO method with: (a) 60×38 (2280 elements),
(b) 120×76 (9120 elements), (c) 300×190 (57000 elements) and (d) 1200×260 (912000 ele-
ments).

The presented extended fluid-structure BESO method is capable to model non constant

pressure fields. In order to explore this feature and show the new possibilities of the method,

the inlet pressure of the model from Figure 2.14 is set as (P0)
i = 15 Pa while the outlet pres-

sure is (P0)
o = 10 Pa. Figure 2.16 presents the snapshots of the topology evolution (including

the pressure field contours) for the chamber design using different inlet and outlet pressure and

using the same BESO parameters of the previous case. It is possible to observe, specially at

earlier stages, the variation of pressure contours while the solid topology is evolving. Figure

2.17 presents the convergence history of this chamber optimization problem. The final mean

compliance obtained is C = 2.24 · 10−7 Nm. In this case, the pressure loads change their loca-

tion, direction and magnitude during the optimization procedure, in which the algorithm uses

the fluid-structure system of Equation 2.10 to solve the pressure fields of each iteration.

Different pressure fields imply in different final topologies, as shown in Figure 2.18 for

different values of (P0)
o. Pressure surfaces parametrization schemes usually are not able to

model non constant pressure fields, since they interpolate only a constant pressure boundary on

a structural model, such as those presented by reference articles (Hammer and Olhoff, 2000; Du

and Olhoff, 2004a,b; Zhang et al., 2008; Zheng et al., 2009; Lee and Martins, 2012; Yang et al.,

2005). The mixed models from Sigmund and Clausen (2007) and Bruggi and Cinquini (2009)

are capable to model any linear pressure field, however with overlapping fluid and structural do-

mains and the final results presenting some intermediate density materials. The presented BESO

solution is able to model any linear pressure field in the optimization process with separate
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n = 0;Vn = 100% n = 9;Vn = 80%

n = 21;Vn = 59% n = 37;Vn = 39%

n = 55;Vn = 25% n = 69;Vn = 25%

Figure 2.16: Pressure chamber design by the BESO method with inlet pressure (P0)i = 15 Pa
and outlet pressure (P0)o = 10 Pa. The pressure field is shown for the fluid domain.

domains and classical finite element formulations. Furthermore, no boundary parametrization

schemes are needed or intermediate density elements are obtained with the BESO method.

2.6 Conclusions

In this work the extended version of the BESO method for structures subjected to fluid

pressure loads has been investigated. The approach is based on the substitution of void ele-

ments by incompressible fluid ones capable to transfer pressure through the fluid region. The

pressure loading is automatically obtained by the use of coupling matrices integrated over the
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Figure 2.17: Convergence history of the chamber’s mean compliance with different inlet and
outlet pressure.

(P0)i = 15 Pa; (P0)o = 0 Pa; (P0)i = 15 Pa; (P0)o = 2 Pa;

(P0)i = 15 Pa; (P0)o = 4 Pa; (P0)i = 15 Pa; (P0)o = 6 Pa;

Figure 2.18: Final solutions for the pressure chamber design problem by the BESO method with
inlet pressure (P0)i = 15 Pa and different outlet pressures (P0)o.
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fluid-structure interfaces. It is shown that this technique presents solutions in which the pres-

sure loading surfaces are explicitly defined. Results presented convergence (tolerance τ = 0.001)

in less than 70 iterations for all examples and the final topologies showed to be quite similar

with the current scientific literature. With the presented methodology separate fields are used

to model both structural and fluid domains, which makes the finite element model easy to im-

plement and computationally cheaper than with the mixed models. The method is also capable

to model any linear pressure field, differently from most of the reference articles. This gives

potential to the evolutionary methods to explore different fluid-structure systems.

In general, the BESO method is proposed as a simple algorithm to treat pressure load-

ing problems using a partially coupled formulation. This work may provide an insight to the

multiphysics optimization by showing that a fluid-structural optimization with moving multi-

physics interfaces can be easily handled with the BESO method and the classic mathematical

formulations.
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3 TOPOLOGY OPTIMIZATION OF SUBMERGED BUOYANT

STRUCTURES

Context

To design submerged buoyant structures, an inequality constraint has been introduced in

the evolutionary topology optimization problem. The inequality constraint prescribes a min-

imum volume of solid material plus interior voids in order to guarantee the structure to be

buoyant. This constraint is shifted to the objective function with the aid of a penalty factor in

order to use the volume-based BESO update approach. The same fluid model (Fluid 1) from

the previous chapter is used to model the underwater pressure field. This contribution has first

been published in the conference proceedings of the 11th World Congress on Computational

Mechanics (Picelli et al., 2014) and later submitted to Engineering Optimization (Picelli et al.,

2015a).

3.1 Introduction

Structural topology optimization (Bendsoe and Sigmund, 2003) has been used extensively

in structural design problems, especially in the aerospace and automotive industries. Over the

last decade considerable effort has been made to extend the methods used in topology optimiza-

tion to different problems, such as those involving different objective functions and constraints

or even multiphysics problems (Chen and Kikuchi, 2001; Sigmund, 2001b; Yoon et al., 2007;

Duhring et al., 2008; Silva and Pavanello, 2010; Andreasen and Sigmund, 2013). Here, it is

proposed the use of topology optimization in offshore structural engineering, specifically in

the design of completely submerged (subsea) buoyancy modules to support oil pipelines. Sub-

sea buoyancy modules provide buoyancy forces for offshore pipelines (flexible risers, cables

and umbilicals) to hold them in specific geometric configurations other than the natural self-

weight catenary riser shape, as seen in Figure 3.1. Buoyancy also reduces the overall weight of

the pipeline, shifting up buckling loads. Deepwater buoyancy modules of this type are usually

made from polymers and may be used at water depths of up to 2000 m.

To design subsea polymer buoys with topology optimization, buoyancy effects and

design-dependent underwater pressure loads must be considered. Topology optimization con-

sidering interior voids has already been explored, as in the paper by Clausen et al. (2014), but

buoyancy has not been considered. To the best of the authors’ knowledge, this work is the first to

take buoyancy effects into account in topology optimization. Design-dependent pressure loads
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association with commercial finite element codes and the use of classical formulations. How-

ever, the evolutionary methods still lack of procedures in handling multiple linear and nonlinear

constraints, while this is simpler to be considered with the density-based methods.

The idea by Picelli et al. (2015b) was extended to acoustic-structure interaction problems,

as shown by Vicente et al. (2015) and Picelli et al. (2015d). This evidences the recent uses of

the BESO method on multiphysics problems (Picelli et al., 2015c). The discrete nature of these

methods are also recently explored in multiscale problems (Xie et al., 2012; Zuo et al., 2013;

Xia and Breitkopf, 2014; Huang et al., 2015; Xia and Breitkopf, 2015). Similar approaches can

also be adopted by other topology optimization methods with explicit boundaries definition,

such as level set based methods (Luo et al., 2012; Shu et al., 2014; Xia et al., 2015).

To handle pressure loads, the fluid-structure BESO method described by Picelli et al.

(2015b) is used. This approach substitutes some of the void elements with hydrostatic fluid ones

that can model the pressure field. Laplace’s equation is used to model the fluid domain, allow-

ing the existence of constant and non-constant pressure fields at wet fluid-structure interfaces.

The use of surface coupling matrices turns out the problem handy for the discrete topology opti-

mization scheme by transferring pressure loads automatically to the structural analysis whatever

is the structural topology. Herein, buoyancy requirements are introduced as an inequality con-

straint in the optimization problem. According to Archimedes’ principle, the buoyancy force is

equivalent to the weight of the fluid displaced by the submerged structure and can be expressed

as:

FB = −ρfVfga, (3.1)

where FB is the buoyancy force acting on the structure, ρf is the mass density of the fluid, Vf

the volume of the displaced fluid and ga the vector of the gravitational acceleration. The force

FB is balanced by the weight Ws of the structure, expressed as:

Ws = msga, (3.2)

where ms is the mass of the structure, implying in a resulting force

Fresulting = FB +Ws. (3.3)

As the mass of the structure is a constraint in the proposed optimization method, Ws

is constant and the only variable in the force diagram is FB, which depends exclusively on Vf ,

since ρf and ga are also constant. The volume Vf of the displaced fluid is equivalent to the sum of

the volumes of the structural material and the buoy’s interior voids. Thus, in order to guarantee

higher buoyancy, the entire buoy volume (including structure and interior voids) must be as
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big as possible, implying in a positive Fresulting. In this work it is assumed that the buoyancy

modules must withstand the underwater surrounding pressure and exhibit minimal deformation

so that they maintain the correct displaced volume. Hence, the final goal of the optimization

problem is to design a structure as stiff as possible that can handle design-dependent underwater

pressure loads and has high buoyancy (displaced fluid volume).

This chapter is organized as follows: Section 3.2 introduces the governing equations and

the finite element model for the fluid-structure system. In Section 3.3, the topology optimiza-

tion problem and sensitivity analysis are described. Section 3.4 discusses implementation issues

and the steps in the fluid-structure BESO method. Section 3.5 presents the discussion and the

numerical results obtained using the proposed methodology. Section 3.6 presents final conclu-

sions.

3.2 Fluid-structure model: governing equations and finite element discretiza-

tion

We consider the static analysis of completely submerged flexible structures floating in

an incompressible fluid domain. The use of subsea buoyancy modules in deepwater conditions

implies high pressures in the fluid domain. Because of the depth at which the modules are

operating, these pressures can be considered constant in this case.

The fluid-structure system is modelled assuming a linearly elastic continuum solid do-

main and hydrostatic fluids. All the details of this formulation can be found in the article by

Zienkiewicz and Bettess (1978) or in reference books (Morand and Ohayon, 1995; Axisa and

Antunes, 2007). The following sections briefly outline the governing equations for the fluid and

structural domains, the coupling boundary conditions and the finite element discretization.

3.2.1 Fluid domain

In the static analysis, the governing equation considering a homogeneous, inviscid, irro-

tational fluid domain Ωf can be described by Laplace’s equation

∇2Pf = 0 in Ωf , (3.4)

where Pf is the fluid pressure (Morand and Ohayon, 1995).
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The following boundary conditions are imposed:

Pf = P0 on Sp, (3.5)

∇Pf · n = 0 on Sf , (3.6)

representing the pressure boundary condition (Equation 3.5) and the hard wall condition (Equa-

tion 3.6) on the fluid boundaries Sp and Sf , respectively, as illustrated in Figure 3.2. The term

P0 is the imposed deepwater pressure value and must be different than zero.

3.2.2 Structural domain

Neglecting body forces, the linear structural static analysis is governed by

∇ · σs (u) = 0 in Ωs, (3.7)

where ∇ · σs (u) is the divergence of the Cauchy stress tensor and u is the displacement field

on the solid domain Ωs. Dirichlet boundary conditions are applied to the solid domain as:

u = u0 on Su. (3.8)

This represents the constrained displacements for all points on the solid boundaries Su, as shown

in Figure 3.2. A void domain Ωv can also exist inside the solid domain.

s

f

0fP P

0u u

0u u
fS

fS
pS

fsS uS

uS

n

0fP�  n

0fP�  n
v

Figure 3.2: The solid (Ωs), fluid (Ωf ) and void (Ωv) domains and boundary conditions. Pressure
P0 is imposed on the portion Sp of the fluid boundary. Fluid pressure loads act on the structure
through the fluid-structure interface Sfs.
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3.2.3 The coupled fluid-structure system

The normal vector n (see Figure 3.2) can be used in order to guarantee the equilibrium

condition between fluid pressures and structural tractions on the interface Sfs as follows:

σsn = −Pfn on Sfs. (3.9)

With the aid of relations derived from the governing equations and the coupling condition

from Equation 3.9, the interface loads can be obtained (Morand and Ohayon, 1995; Axisa and

Antunes, 2007). An approximation based on the finite element method (FEM) can be used to

model a spatial coupling matrix

Lfs =

∫

Sfs

NT
s nNfdSfs (3.10)

and to write the coupling forces ffs in a discretized form as

ffs = LfsPf , (3.11)

where Pf is the vector of nodal pressures, n is the normal vector inwards the structural domain

and Ns and Nf contains the finite element shape functions for the interface.

Thus, in the context of the finite element approximation, and assuming no external loads

are applied, the hydroelastic equilibrium problem can be described by a non-symmetric system

of equations

[

Ks −Lfs

0 Kf

]{

us

Pf

}

=

{

0

0

}

, (3.12)

where us is the vector of structural displacements and Ks and Kf are the stiffness matrices of

the structural and fluid domains, respectively. The matrix Lfs is the coupling matrix (Morand

and Ohayon, 1995).

In this one-way coupled multiphysics model, the fluid analysis provides pressure loads

to the structural analysis through the application of the coupling matrices. In this case, the

fluid pressure field can actually be solved separately. However, for the sake of generality, by

imposing the boundary conditions from Equations 3.5, 3.6, 3.8 and 3.9 and solving Equation

3.12, both fluid and structure responses can be obtained simultaneously for any discretized
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fluid-structure configuration. This turns to be handy for the iterative procedures of topology

optimization. Furthermore, this methodology can be extended to different design-dependent

physics problems, where fully coupled equations might exist (Vicente et al., 2015; Picelli et al.,

2015d).

3.3 Problem formulation

3.3.1 Topology optimization problem

The buoy design problems considered in this work involve minimizing the mean compli-

ance of structures under design-dependent pressure loads while satisfying volume and buoyancy

constraints. The objective is to find how a given amount of solid material should be distributed

to ensure that the structure has maximum stiffness (or minimum compliance C (xi)) and a pre-

scribed buoyancy. The evolutionary topology optimization problem for this case can be formu-

lated as:
min: C (xi) =

1
2
uT
s Ksus,

xi

subject to:

[

Ks −Lfs

0 Kf

]{

us

Pf

}

=

{

0

0

}

and b.c.,

g = 1− B
Blim

≤ 0,

h = V (xi) /V0 = Vs,

xi = [0,1] ,

(3.13)

where C (xi) is the mean structural compliance, Blim is the minimum required buoyancy vol-

ume (displaced fluid area for 2D cases), B is the buoyancy volume of the current structural

design, V0 is the full design domain volume, Vs is the prescribed final solid volume fraction,

nel is the number of elements inside the design domain and xi represents the discrete design

variables, 1 being a solid element and 0 a fluid/void. The inequality constraint g sets a threshold

for the required buoyancy volume and the equality constraint h sets the amount of solid material

to be used with respect to the volume of the design domain. The constraint g is considered to

be active when B, measured by the joint volume of structural and void elements, is equal as the

prescribed buoyancy volume Blim. The final solution do not need to present an active g, since

B > Blim is also in the feasible solution region and it g is inactive in this case. The constraint

h must be active in the final solution, ensuring the solution to present a final volume fraction

equal to Vs.

To enable the procedures in the standard evolutionary method to be used, the previous

problem statement is modified so that it can be solved in a penalty form (Luenberger and Ye,
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2008). Thus, the topology optimization problem becomes:

min: f (xi) =
1
2
uT
s Ksus + pmax(0,g),

xi

subject to:

[

Ks −Lfs

0 Kf

]{

us

Pf

}

=

{

0

0

}

and b.c.,

h = V (xi) /V0 = Vs,

xi = [0,1] ,

(3.14)

where p is an arbitrary penalty factor. When B is lower than Blim, g is greater than 0 and

is added to the objective function f(xi). This behavior is then discouraged by a high penalty

factor.

3.3.2 Sensitivity analysis

Evolutionary methods are based on the evolution of structures in nature, in which material

is placed near regions subjected to high stresses (Xie and Steven, 1993; Xie and Huang, 2010).

Starting from a full design domain (or initial solution), the BESO method slowly removes el-

ements and reduces the solid volume fraction towards Vs. Void elements near high-stressed

regions can return to the solid. A sensitivity analysis is needed to determine the efficiency of

each element in the structural performance and decide which element should be eliminated or

returned to the solid. This is achieved by determining the derivative of the objective function

with respect to the design variables, which represents the change in the objective function when

element xi is removed. The derivative of f(xi) with respect to xi is:

∂f(xi)

∂xi

= αCi + pαBi, (3.15)

where αC and αB correspond to the derivatives of the compliance and buoyancy objective func-

tions, respectively. The derivative of the compliance is

αCi =
∂C

∂xi

= uT
s Ks

∂us

∂xi

+
1

2
uT
s

∂Ks

∂xi

us. (3.16)

The equilibrium equation of the structural system (first equation in the system of Equation 3.12)

can be derived to find the unknown ∂us/∂xi:

∂ (Ksus)

∂xi

=
∂ (LfsPf )

∂xi

. (3.17)
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Applying the chain rule on both sides of the previous equation, we have

∂Ks

∂xi

us +Ks

∂us

∂xi

=
∂Lfs

∂xi

Pf + Lfs

∂Pf

∂xi

. (3.18)

Assuming that the values of the high depth pressure field Pf are constant, the derivative

∂Pf/∂xi is zero. Then, isolating the derivative of the displacement vector

∂us

∂xi

= K−1
s

(

∂Lfs

∂xi

Pf −
∂Ks

∂xi

us

)

, (3.19)

and substituting Equation 3.19 in Equation 3.16, we can rewrite the derivative of the compliance

as

αCi = uT
s KsK

−1
s

(

∂Lfs

∂xi

Pf −
∂Ks

∂xi

us

)

+
1

2
uT
s

∂Ks

∂xi

us. (3.20)

After simplification, the derivative of the compliance is given by

αCi = uT
s

∂Lfs

∂xi

Pf −
1

2
uT
s

∂Ks

∂xi

us. (3.21)

The derivative of the buoyancy can be expressed as

αBi =
∂g

∂xi

=
∂(1− B

Blim
)

∂xi

= −
1

Blim

∂B

∂xi

. (3.22)

The derivatives are then evaluated locally at the element level, generating a sensitivity

number αi for each element represented by both compliance (αCi) and buoyancy (αBi) element

sensitivities

αi = −
∂f(xi)

∂xi

= − (αCi + pαBi) . (3.23)

The minus sign is introduced when minimization of the objective function is considered in the

optimization problem.

The version of the BESO method described here is developed using a hard-kill technique,

where the densities of the void elements are set to zero, as proposed by Huang and Xie (2007).

A material interpolation scheme similar to the SIMP-model can also be used to set a very small

density for the void elements in a soft-kill evolutionary procedure described by Huang and Xie

(2009). When used with a mesh-independence filter, both hard-kill and soft-kill approaches

present similar results for structural design and can be used in a similar manner, as shown by

Huang and Xie (2010).

In the hard-kill approach, no material interpolation functions or design variables with very

small values appear in the element modelling. The material is then the simple superposition
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(finite element assembly) of all solid element stiffness matrices Ki
s. Thus, the definition of

the sensitivities cannot be derived as a continuous function in the manner it is carried out by

the SIMP approach. Therefore, an approximation based on a single step finite difference can

be carried out for the hard-kill sensitivities, considering the structural configuration before and

after an element removal (Xie and Huang, 2010). The derivative of the global structural stiffness

matrix with respect to the design variable of the ith element can be then expressed as

∂Ks

∂xi

≈ Ki
s. (3.24)

The derivative of the global structural stiffness matrix with respect to the design vari-

able of the ith element can be approximated by a finite difference step considering the element

removal and can be expressed as
∂Ks

∂xi

≈ Ki
s. (3.25)

The derivative of the coupling matrix ∂Lfs/∂xi indicates the change in the coupling con-

dition when the ith element is removed. This change can be predicted by a finite difference with

step equivalent as the system configuration before and after the element removal. Thus,

∂Lfs

∂xi

≈ (∆Lfs)
i =

(

L∗

fs − Lfs

)i
, (3.26)

where Lfs is the coupling matrix before the element is removed and L∗

fs is the final coupling

matrix after the element is removed.

For a general solid element, we can determine the change in the coupling configuration

from the interface coupling forces. Figure 3.3 shows a possible coupling configuration before

and after removal of an element. Knowing this configuration, the change (L∗

fs − Lfs)
i can be

evaluated. The minus sign changes the direction of the coupling force given by Lfs, as shown

in Figure 3.3.

It can be seen that, no matter what the initial coupling configuration, the change

(L∗

fs − Lfs)
i is always as shown in Figure 3.3. This represents the change in the coupling forces

when a solid element is removed and replaced with a fluid element, which transfers the inter-

face pressure through the whole element. Therefore, for any solid element, a matrix containing

the coupling terms through the element boundaries can represent the change in the coupling

configuration, as follows:
∂Lfs

∂xi

≈ (L∗

fs − Lfs)
i = Li

c, (3.27)

1We use the term “buoyancy area" to refer to the cross sectional area of the buoy.
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Figure 3.3: Coupling forces configuration before and after an element removal. The derivative
∂Lfs/∂xi can be approximated by the change in the coupling matrices (∆Lfs)

i = (L∗
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after removal of the ith element. The arrows indicate the pressure loads ∆LfsPf exerted by the
fluid elements on the structure.

where Li
c is the matrix assembled according to the change in the coupling configuration, shown

in Figure 3.3. Thus, the term αCi can be expressed as

αCi = uT
i L

i
cPi −

1

2
uT
i K

i
sui. (3.28)

To find αBi, the derivative ∂B/∂xi must be calculated. This derivative represents the

change in the total buoyancy volume B when element xi is removed. The absolute change in B

can be approximated as

(

∂B

∂xi

)i

≈ |∆B (xi) | = |(B∗ − B)i| = (Ai)
fs , (3.29)

where B∗ is the buoyancy volume after removal of the ith element, and the superscript fs indi-

cates that the term is valid only for elements at the fluid-structure interface. Removal of elements

in the interior of the structure does not cause any change in B. For 2D cases, solid elements at

the fluid-structure boundaries cause a change equivalent to the area Ai of the element, as seen in

Figure 3.4. In these cases, the derivative of the buoyancy objective function is a constant valid

only for solid elements at the fluid-structure interface. For all other elements, the sensitivity

value is 0. Thus, returning to Equation 3.22, αBi can be expressed as:

αBi =
∂g

∂xi

≈ −
1

Blim

(Ai)
fs . (3.30)
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Figure 3.4: Change in B due to a solid element removal at (a) the fluid-structure interface and
(b) an interior element.

Combining Equation 3.30 and 3.28 and rewriting Equation 3.23, the sensitivity numbers

that should be used in the buoyancy-module design are

αi = −
∂f(xi)

∂xi

=







1
2
uT
i K

i
sui − uT

i L
i
cPi +

p

Blim
(Ai)

fs xi = 1

0 xi = 0
. (3.31)

This analysis is carried out for each element i in the design domain. For solid elements

which are not at the fluid-structure boundary (interface), the pressure transferred by the occu-

pying fluid is null and the term uT
i L

i
cPi vanishes. The term for buoyancy in the sensitivities

are also only for boundary elements. Although the sensitivities for void elements are computed

as zero, the application of a numerical filter scheme extrapolates the sensitivities on the finite

element mesh and neighboring voids close to regions with high sensitivities can return to solid.

It is also important to note that the new term αBi is only valid when the inequality con-

straint g is active. The first term of αi is the strain energy of element xi. The second term is the

derivative of the pressure loads at the element level. The elements with the lowest sensitivities

can be removed from the domain with a minimum change in the objective function. When g is

not active, the compliance derivatives will provide the gradient information for the optimiza-

tion procedure. For buoyant structures, the minimum compliance would be obtained with the

smallest possible structure without holes, i.e., a structure with a very small B. However, as B

decreases, g will be active and the solid elements at the fluid-structure interfaces will have a
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high sensitivity number because of the penalty factor p, causing elements to be added in the

regions next to the fluid-structure interfaces so that the volume (and consequently B) of the

structural design increases. At this point, only elements in the interior of the structure will be

removed, since these elements have lower sensitivities.

3.4 Optimization procedure

Originally, evolutionary structural optimization (ESO) was based on successive elimi-

nation of material from the initial design domain (Xie and Steven, 1993). Subsequently, the

method was extended to different structural design problems (Xie and Steven, 1996; Li et al.,

1999). Steven et al. (2000) used ESO for the first time for general physical field uncoupled

problems, including a fluid domain design case. Further improvements to the ESO method were

made using a bi-directional algorithm (Querin and Steven, 1998) and the sequential element

rejections and admissions (SERA) method (Rozvany and Querin, 2002)to allow void (or very

low density) elements to return to the solid condition.

One of the last major developments in ESO-based methods was the convergent and mesh-

independent BESO method proposed by Huang and Xie (2007), which allows material to be

simultaneously removed and added in the domain until a volume constraint and convergence

criterion are satisfied. The method was initially used as a hard-kill technique, but a further

improvement introduced an interpolation scheme that adopted a soft-kill approach (Huang and

Xie, 2009). In general, these methods can be considered gradient-based methods that rely on

design updates and result only in 0/1 solutions during the optimization process.

The proposed methodology described in this article is a hard-kill BESO approach, in

which some void elements are substituted by incompressible fluid ones and the loads are gen-

erated by imposed pressures in the coupled model. Finite element analysis is carried out and

Equation 3.12 is used to obtain the fluid-structure responses.

3.4.1 Implementation issues for a BESO-based method

In order to rank all the elements according to their contribution to the objective func-

tion, the sensitivity numbers from Equation 3.31 are evaluated for each element. A mesh-

independence filter is applied over the whole mesh by averaging each elemental sensitivity

number with its neighboring elements. The filter scheme is similar to that described by Sig-

mund and Peterson (1998). To evaluate the filter weights, nodal sensitivity numbers αj are
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calculated by averaging the elemental sensitivity numbers of the jth connected elements. These

nodal sensitivity numbers must be converted back into elemental sensitivities by projecting a

sub-domain Ψi with length scale rmin centered on the ith element. All the nodes inside Ψi must

have their nodal sensitivity numbers averaged back to the ith elemental level as follows:

αi =
nod
∑

j=1

w(rij)αj/
nod
∑

j=1

w(rij), (3.32)

where rij is the distance between the node j and the center of the element i, nod is the total

number of nodes inside the design domain and w(rij) is a weight factor whose value is rmin−rij

for nodes inside the sub-domain Ψi and 0 for nodes outside the sub-domain. This filter scheme

can effectively address mesh-dependency and checkerboard problems. However, the objective

function and corresponding topology may not be convergent. To avoid this problem, Huang and

Xie (2007) showed that the above sensitivity numbers should be averaged with their previous

iteration numbers as follows

αi =
αn
i + αn−1

i

2
, (3.33)

where n is the current iteration number. Thus, the updated sensitivity number includes the his-

tory of the sensitivity information in the previous iterations (Huang and Xie, 2007).

For each iteration, a target volume Vn+1 is defined as

Vn+1 = Vn(1± ER), (3.34)

where ER is the evolutionary ratio and n the number of the iteration. ER is the percentage

change in the structural volume and causes Vn+1 to increase or decrease toward the final desired

structural volume fraction Vs. When Vn = Vs, the equality constraint h is active and the target

volume Vn+1 is kept equal to Vs until the convergence of the algorithm. The target volume Vn+1

sets the threshold αth of the sensitivity numbers. Solid elements (xi = 1) for which αi ≤ αth

are switched to the fluid/void condition (xi = 0). Fluid/void elements (xi = 0) are switched to

the solid condition (xi = 1) when αi > αth.

Meanwhile, the volume addition ratio (AR) is restricted to a maximum addition ratio

ARmax, which specifies the maximum allowable solid volume fraction that can be added per it-

eration. It plays an important role when the inequality constraint g is violated and solid elements

at the interfaces have highly penalized sensitivities. Because of filtering, exterior fluid/void el-

ements close to the interfaces are also given high sensitivities and tend to return to solid con-

dition. The amount of these new solid elements is controlled by the maximum admission ratio

ARmax. This parameter is usually set with similar values to ER, e.g., between 1% and 5%. If

AR > ARmax, only some of the elements with highest sensitivity numbers are added to set
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AR = ARmax. Then, some of the elements with the lowest sensitivity numbers are removed

to satisfy the target volume Vn+1. When the variables xi for an element are equal to zero, a

decision must be taken as the element can become a fluid element or a void. If the element has

at least one fluid element as neighbor, it must be turned into a fluid element. If the element does

not have any fluid neighbors, it must be turned into a void. This procedure is repeated until there

are no more changes in the fluid-void regions. Thus, some layers of structural elements near the

fluid-structure interface can be replaced by fluid elements, and void elements appear only inside

the structural domain.

When the prescribed final volume Vs is reached, the target volume remains constant, i.e.,

Vn+1 = Vn. The algorithm evolves until a stop criterion with a predefined tolerance τ is satisfied.

Differently from the standard convergence criterion proposed by Huang and Xie (2007) for the

BESO method and used by Picelli et al. (2015b) for pressure loads, here the following formula

is used to evaluate the convergence of the solution:

|Cn − Cn−1|+ |Cn−1 − Cn−2|

Cn − Cn−1

≤ τ , (3.35)

where Cn is the structural compliance value for the current iteration. This formula is a particular

case of the standard one, using less iterations to determine the convergence of the solution. This

is justified by the hydrostatic stress state in which the buoyant structures are found. For these

structures every small change in their structural design leads to higher changes in compliance

than for the structures presented in Picelli et al. (2015b) when no buoyancy is considered and

bending stress is predominant. The following numerical results show that the proposed formula

is satisfactory to determine the convergence of this optimization problem.

3.4.2 The extended fluid-structure BESO method

The evolutionary procedure for the BESO method presented here for buoyancy module

design problems is as follows:

1. Define the design domain, loads and boundary conditions.

2. Define the BESO parameters.

3. Discretize the design domain using a finite element (FE) mesh for the given boundary

conditions. Initially, a global fluid-structure stiffness matrix Kg must be assembled un-

coupled.
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4. Couple and store a current global matrix Kn with the coupling matrices according to

the current design of the nth iteration and the appropriate boundary conditions. Thus, the

current Kn becomes equivalent to the stiffness matrix from Equation 3.12.

5. Perform FE analysis (using Equation 3.12) on the current design to obtain the displace-

ment and pressure responses.

6. Calculate the sensitivity numbers according to Equation 3.31.

7. Apply the filter scheme. Project the nodal sensitivity numbers on the finite element mesh

and smooth the sensitivity numbers for all (fluid, void and solid) elements in the design

domain.

8. Average the sensitivity numbers with their values in the previous iteration (n−1) numbers

and then save the resulting sensitivity numbers for the next iteration.

9. Determine the target structural volume Vn+1 for the next iteration.

10. Construct a new fluid-structure design by switching design variables xi from 1 to 0 and

from 0 to 1, tracking the update of the fluid-void regions.

11. Remove and/or add the element stiffness matrices from the original uncoupled global

matrix Kg according to the change in the current design.

12. Repeat steps 2-12 until the stop criterion from Equation 3.35 is satisfied.

3.5 Numerical results

In this section two examples are explored to show the capabilities of the BESO method

when used for buoyancy module design as described in this work. The parameters and features

of the method are discussed. Convergence analysis is carried out for both examples.

3.5.1 Test case

To test the algorithm, a simple square-shaped, buoyant structure is chosen. Figure 3.5

shows the structure floating in a fluid domain. A quarter of the model is discretized with 11664

finite elements, of which 10000 are solid and 1664 fluid. The solid material used is a polymer

with Young’s modulus E = 1.25 KPa and Poisson’s ratio ν = 0.37. The pressure P0 imposed

on the fluid domain is an arbitrary value of 1 Pa. The fluid properties are not taken into account

in the static analysis when body forces are neglected. Similarly to the previous chapter, when
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the pressure is constant all over the fluid domain, the imposed fluid pressure can be chosen

arbitrarily resulting in the same structural topology solution.

Design domain
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Figure 3.5: Design problem: complete fluid-structure model and the design domain used (a
quarter of the model) including boundary conditions.

Because of the buoyant nature of the structure, this type of model behaves differently

from those used previously in structural topology optimization (Bendsoe and Sigmund, 2003;

Xie and Huang, 2010). A floating structure suffers equal compression in all directions, and if it is

completely solid, is therefore in a hydrostatic pressure state with the same stress values all over

the structural domain independently of the coordinate system. This also implies that the strain

energy term 1
2
uT
i K

i
sui on αi is equal for all the elements in a structure with no holes inside.

Then, starting from a full design domain, the evolutionary topology optimization method would

not work without the derivatives uT
i L

i
cPi of the design-dependent pressure loads, otherwise all

solid elements would have the same sensitivities. Furthermore, the following expression is also

valid for this model of buoyant structures at the initial full solid design:

uT
i K

i
sui = uT

i L
i
cPi. (3.36)

The parameters of the BESO method for the test case design problem are set to ER =

5%, ARmax = 5% and Vs = 20%. The filter radius applied is rmin = 0.015 m, the penalty

factor is chosen to be p = 1 · 104 and the buoyancy lower limit Blim is set to 0.0331 m2,

which is equivalent to the area of 5300 elements from the design domain. Figure 3.7 shows

snapshots of the evolutionary topology solution until final convergence. Initially, only solid

elements at the fluid-structure interface are removed because of the influence of uT
i L

i
cPi on

the sensitivities. When the buoyancy inequality constraint is active, the penalty factor p gives

the elements at the interface a high sensitivity number. Then, holes are created in the structure

and the algorithm evolves until convergence is reached. In Figure 3.8, it can be seen that the

buoyancy area B decreases in the first iterations until the buoyancy inequality constraint is
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Figure 3.6: (a) Displacement field and (b) sensitivities distribution for the buoyant structure
model.

active (iteration 10) and B increases. The same phenomena can be observed in iteration 39,

when the inequality constraint is active again. Figure 3.9 shows the evolutionary history for the

global mean compliance of the buoyant structure.

n = 0 n = 5 n = 10 n = 15 n = 20

n = 25 n = 30 n = 35 n = 40 n = 43

Figure 3.7: Snapshots of the test case solution.

For this simple 2D test case, the final solution obtained is a hollow cylinder. This result is

intuitive and is already expected as the optimal buoyant structure with a volume constraint. If

one takes the formula for the area Ac of a circle

Ac = 4B = πr2c , (3.37)

where rc is the radius of the circle and the number 4 appears because a quarter of the whole

design model is used (see Figure 3.10), one can predict the radius of the optimal structure for



94

0 5 10 15 20 25 30 35 40
0.0298

0.0376

0.0454

0.0532

0.061

0.0688

Iterations

B
(m

2
)

 

 

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
o
lu
m
e
fr
a
ct
io
n

B
Blim

Volume fraction

Figure 3.8: Evolutionary history of the buoyancy area B of the buoyant structure.
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Figure 3.9: Evolutionary history of the global mean compliance of the buoyant structure.

this test case as function of B:

rc =

√

4B

π
. (3.38)

The formula of a cross-sectional area As of a hollow cylinder with an external radius rc
and internal radius ri can be given as

4As = π
(

r2c − r2i
)

. (3.39)
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rc

ri

As B = As + Av

Av

Ac = 4B

Figure 3.10: Geometric properties of the hollow cylinder associated with the solutions for the
test case.

If rc is substituted and ri is isolated, one can predict the internal radius for the final optimal

hollow cylinder as a function of As,

ri =

√

4 (B − As)

π
, (3.40)

and, consequently, the thickness ts of the hollow cylinder

t = rc − ri. (3.41)

In conclusion, for this simple test case rc depends on B and ri is directly determined

by Vs, since As depends on the final volume of solid material. The results of numerical anal-

ysis of the previous equations for different hollow cylinders obtained using the BESO method

with different values of Blim are shown in Table 3.1. The differences between the geometrical

measurements of the BESO topology solutions and the analytical results of the previous equa-

tions are given by the thickness ts in Table 3.1, which is always smaller than the element size

(0.0025). Thus, the numerical BESO solutions agree with the analytical equations, validating

the methodology. Problems with greater complexity (as in the next example) can be expected to

result in more complex designs.

3.5.2 Subsea buoy design case

As a study case, a subsea buoy design problem is chosen. The buoy is built with two

semicircles with an inner and outer radius, and the pipeline is attached to the buoy’s inner

edge, similarly as shown in Figure 3.11. At higher oil temperatures and deepwater pressures,

a pipeline’s natural tendency is to relieve its axial stress by buckling. The type of buoyancy
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Table 3.1: Dimensions of the hollow cylinders identified as the stiffest buoyant structures using
the BESO method with different values of Blim in the buoyancy inequality constraint. Values of
the thickness ts are shown for the geometrical measurements of the topology solutions and the
numerical results of Equation 3.41 in the column BESO and Theory, respectively, as well as the
absolute difference between them (column Diff.).

Topology Blim (m2) B (m2) As (m2) rc (m) ri (m)
ts (m)

BESO Theory %Diff.

0.0288 0.0333 0.0125 0.2050 0.1625 0.0425 0.0431 0.0007

0.0331 0.0381 0.0125 0.2200 0.1800 0.0400 0.0397 0.0003

0.0375 0.0429 0.0125 0.2325 0.1975 0.0350 0.0370 0.0020

0.0419 0.0477 0.0125 0.2450 0.2125 0.0325 0.0347 0.0022

module described here reduces the severity of buckle bending by using buoyancy to decrease

the operational submerged weight of the pipeline, especially in long vertical pipelines such as

the catenary riser. In some other applications, e.g., when pipelines are installed over subsea soil,

the buoyancy module decreases lateral soil-structure friction using the same buoyancy principle.

For this buoyancy-module problem, only one of the two semicircles making up the de-

sign is considered. The extended design domain is shown in Figure 3.12. Figure 3.12(a) shows

the buoyant structural model immersed in a pressurized fluid domain. Half of the model is dis-

cretized with finite elements. The boundary conditions for the finite element model used are

shown in Figure 3.12(b); these include a symmetry condition and a blocked degree of free-

dom which makes the model non-singular. The inner edge (represented by a thick black line) is

considered a non-design domain, i.e., it remains as solid material during the whole algorithm.

The inner radius should remain fixed as a design requirement. The solid material adopted is a

polymer with Young’s modulus E = 1.25 kPa and Poisson’s ratio ν = 0.37. The pressure P0

imposed on the fluid domain is an arbitrary value of 1 Pa. The fluid properties are not taken into
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Figure 3.11: Example of subsea buoy module for oil pipeline support (image extracted from
Flotation Technologies© website at the url http://www.flotec.com/products/buckle-migration-
buoyancy-modules, in 18th September, 2013).

account in the static analysis when body forces are neglected.

Buoyant Structure
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(a) (b)

Figure 3.12: Structural optimization design problem: (a) complete fluid-structure model and (b)
design domain using half of the model showing the boundary conditions for the structure.

For the design problem shown in Figure 3.12 two initial solutions are considered, one

starting from the initial full design and another with an initial semicircle solution covering

75% of the design domain. The whole model is discretized with 51513 finite elements. The

evolutionary ratio (ER) is chosen to be 1%, i.e., the volume of solid material decreases 1% in

each iteration until it reaches Vs, which is chosen to be 30%. The other parameters of the BESO

method are set as, ARmax = 5%, rmin = 0.0125 m and τ = 0.001. Figure 3.13 shows the

initial solutions and final topologies for both cases, as well as a comparison case in which the

fluid-structure interfaces are kept fixed. The buoyancy area limit Blim is chosen as 0.1485 m2,

which is equivalent to 80% of the area of the initial semicircle solution in Figure 3.13(b). The

penalty factor is chosen as p = 1 · 105.
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Case 1 Case 2 Case 3
(a) (b) (c)

Figure 3.13: Buoy module designs with topology optimization: (a) Case 1 - full design domain
and final topology; (b) Case 2 - initial semicircle solution and final topology (design-dependent
loads); (c) Case 3 - initial semicircle solution and final topology with fixed fluid-structure inter-
faces (fixed loads).

It can be seen that the final topologies in Figures 3.13(a) and 3.13(b) mainly cover the

areas in the initial guess solutions, indicating that the starting topology has a strong influence

on the final solution and suggesting that the designer should choose the initial guess according

to some desired final solution. This behavior is expected since the structure is floating. When

pressure is applied all over a floating structure that can change its shape and topology, the

structure starts to seek an equilibrium state, behaving like bubbles. Indeed, the final results in

this work are bubble-like structures. This behavior can be observed in Figure 3.14, which shows

snapshots of the solution for Case 2.

Table 3.2 shows some objective function data for all the cases in Figure 3.13. Although

it uses the same amount of solid material, the structure in Case 2 is the stiffest and represents

an increase in stiffness and reduction in buoyancy area compared with Case 3 of around 39%

and less than 13%, respectively. The results for Case 1 were very similar to those for Case 2.

Figure 3.15 and 3.16 show the evolutionary history of the buoyancy area and structural mean

compliance, respectively, for Case 2. They correlate in each iteration the values of B and C. It

can be seen that when the inequality constraint g is active (iterations 16 and 44), the buoyancy

area B increases drastically because of the penalty parameter in the sensitivities from Equation

3.31. With sudden structural changes, the mean compliance value presents high oscilations.

However, these values are minimized in the following iterations and converge to an almost

constant value satisfying the proposed convergence criterion, as seen in Figure 3.16.

The following analyses show the different solutions obtained using different parameter

settings and allow the details of the method to be explored. The reference parameters are the
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n = 0 n = 5 n = 10 n = 15

n = 20 n = 25 n = 30 n = 35

n = 40 n = 45 n = 50 n = 58

Figure 3.14: Snapshots of the Case 2 solution after different iterations.

Table 3.2: Objective function data for the cases shown in Fig. 3.13.

Case 1 Case 2 Case 3

Vs 30% 30% 30%
B 0.1622 m2 0.1628 m2 0.1856 m2

Compliance 4.2429·10−4 Nm 4.2061·10−4 Nm 5.8800·10−4 Nm

same from Case 2. Figure 3.17 shows the topologies produced when three different evolutionary

ratios are used (1%, 3% and 5%). The numerical results did not vary significantly, and the final

solutions differed only in some aspects of their topology, reflecting different local minima.

Another important parameter of the method is the maximum admission ratio ARmax,

which can limit the amount of added solid elements per iteration. Figure 3.18 presents different

solutions obtained with different ARmax’s. It was observed that smaller ARmax’s leaded to

smaller changes in the fluid-structure boundaries because less solid elements are allowed to

be added in these regions per iteration. Higher admission ratios allow more drastic changes in

the interface shapes. However, the amount of solid elements is also limited by the filter radius,

which extrapolates the highly penalized sensitivities in the interface regions. Thus, the ARmax

parameter does not affect the solution with a high enough value. As seen in Figure 3.18, the

final solution is the same for ARmax = 5% and ARmax = 100%, this last being equivalent as

not considering the rule of maximum addition ratio.
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Figure 3.15: Evolutionary history of the buoyancy area for Case 2.

0 10 20 30 40 50
0.0663

0.8181

1.57

2.3218

3.0737

3.8255 x 10−3

Iterations

Co
m

pl
ia

nc
e 

(N
m

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vo
lu

m
e 

fra
ct

io
n

 

 

Volume fraction
Compliance

Figure 3.16: Evolutionary history of the mean compliance of the buoy in Case 2.

Figure 3.19 shows the different solutions when the penalty factor p was varied. It can be

seen that this variable can exert a considerable influence on the solution. The penalty method

seemed to be convergent with p between 1 · 107 and 1 · 109. Smaller penalty factors produced

greater variations in the outer shape than higher penalty factors.

The strain energy distributions of the final structures for Case 2 (variable boundary) and

Case 3 (fixed boundary) for p = 1·105 are shown in Figure 3.20. Both strain energy distributions

are normalized to the maximum strain energy in Case 3 so that the same scale can be used. It
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ER = 1% ER = 3% ER = 5%
C = 4.2061·10−4 Nm C = 4.1250·10−4 Nm C = 4.1123·10−4 Nm

B = 0.1628 m2 B = 0.1621 m2 B = 0.1619 m2

Figure 3.17: Different solutions with different evolutionary ratios.

ARmax = 1% ARmax = 3% ARmax = 5% ARmax = 100%
C = 4.2061·10−4 Nm C = 4.1250·10−4 Nm C = 4.1123·10−4 Nm C = 4.1123·10−4 Nm

B = 0.1628 m2 B = 0.1621 m2 B = 0.1619 m2 B = 0.1619 m2

Figure 3.18: Different solutions with different maximum admission ratios.

C = 4.0437·10−4 Nm C = 4.0043·10−4 Nm C = 4.2061·10−4 Nm C = 4.4137·10−4 Nm
p = 1 · 103 p = 5 · 103 p = 1 · 105 p = 5 · 105

C = 4.1294·10−4 Nm C = 4.0488·10−4 Nm C = 4.0951·10−4 Nm C = 3.9732·10−4 Nm
p = 1 · 107 p = 5 · 107 p = 1 · 109 p = 5 · 109

Figure 3.19: Different solutions with different penalty factors p.
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can be observed that for the bubble-like structure (Case 2) the strain energy distribution is

much smoother than for Case 3, in which the predominant structural patterns are bars under

compression. This result is reflected in the compliance value, which is around 39% smaller for

the bubble-like design, as shown in Table 3.2. This justifies the use of the proposed methodology

even though the final buoyancy area of the buoy with the variable boundary is smaller than the

buoyancy area of the fixed-boundary buoy in this example. One important point worth noticing

is that the proposed buoy module can be used in a region where drag forces are negligible, i.e.,

where the loads produced by subsea fluid flows are much smaller than the deepwater pressure

loads. Because its external shape is similar to that of the buoy in Case 3, this solution may also

be suitable for use in regions where drag forces are quite high. However, in cases where the

solution looks like Case 1, i.e., the buoy has a significantly different shape, further analysis may

be needed.

C = 4.2061·10−4 Nm C = 5.8800·10−4 Nm
B = 0.1628 m2 B = 0.1856 m2

Figure 3.20: Normalized strain energy distribution for the buoyancy module designed with the
proposed methodology using p = 1 · 105 and variable and fixed boundaries.

3.6 Conclusions

This work proposes the use of topology optimization to identify alternative structural de-

signs in offshore engineering. The specific case of fully submerged buoyancy modules under

constant underwater pressure loads is considered. The extended BESO method proposed by

Picelli et al. (2015b) is used to directly circumvent the known issues in topology optimization

of design-dependent pressure loading problems. The discrete nature of the evolutionary proce-

dures allows the switch between solids, fluids and voids with explicitly defined fluid-structure

interfaces. Thus, no parametrization schemes are needed to model the pressure surfaces. A new

inequality constraint is used to guarantee minimum required buoyancy effects, measured by
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the volume of the displaced fluid. It was shown that with a penalty factor, the evolutionary

optimization problem could handle a different constraint rather than only the standard volume

one. The final topologies were bubble-like structures, results that confirm the effectiveness of

the proposed methodology. The parameters of the method were discussed. Comparison of the

results with a case in which the pressure loads are fixed showed that a stiffer structure could

be designed by moving the fluid-structure interfaces and fulfilling the buoyancy requirements

simultaneously. If other types of forces are negligible, e.g., viscous flow loads, the proposed

solutions can be used as a starting point for the design of new deepwater buoyancy modules to

support oil pipelines. Further improvements can be carried out, such as the consideration of non

constant pressure fields or buckling constraints.
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4 NATURAL FREQUENCY MAXIMIZATION OF ACOUSTIC-

STRUCTURE INTERACTION SYSTEMS

Context

Attempts have been made to maximize natural frequencies of structures using topology

optimization, however, generally with no multiphysics analysis. This work investigates the in-

fluence of acoustic fluids on the vibration modes of a coupled acoustic-structure interaction

system and how the natural frequencies of the structures in these systems can be maximized.

The dynamic acoustic-structure interaction model (using Fluid 2 mentioned in Chapter 1) and

the same extended BESO fluid-structure update scheme by Picelli et al. (2015b) have been

applied in this work. This contribution has been published in Finite Elements in Analysis and

Design (Picelli et al., 2015d).

4.1 Introduction

Structural Topology Optimization method for continuum structures (Bendsoe and Sig-

mund, 2003; Xie and Huang, 2010) has gained in popularity and now is used daily as a design

tool in industry and academy. The basic idea is to find an optimal distribution of material in a

structural design domain considering an objective function and constraints. Commercial topol-

ogy optimization tools have been developed based on special Finite Element Method (FEM)

solvers or have been added in standard commercial packages, many of them concerning stiff-

ness or natural frequencies maximization.

Although the optimization procedures have reached a satisfactory level of maturity, many

topics are still open to research. An important group consists of multiphysics problems. Com-

mercial FEM packages often contain solvers for multiphysics problems, however they do not

enable optimization.

Through the last 10 years, the methods of topology optimization have been under a con-

siderable scientific effort to be extended to different physical phenomena problems. One may

cite aerolastic structures (Maute and Allen, 2004), acoustics design (Duhring et al., 2008; Silva

and Pavanello, 2010; Yoon, 2013), thermo-elastic stresses (Gao et al., 2008), fluid flows (Aage

et al., 2008) and fluid-structure interaction (Kreissl et al., 2010; Yoon, 2010; Andreasen and Sig-

mund, 2013), acoustic-structure responses (Yoon et al., 2007; Shu et al., 2014; Vicente et al.,

2015), multiscale analysis (Xie et al., 2012; Xia and Breitkopf, 2014) and others.
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The presented work aims to contribute in the design of multiphysics systems, more specif-

ically in acoustic-structure interaction design problems. Yoon et al. (2007) proposed a mixed

element formulation to model acoustic-structure responses. The method approximated both

acoustic and solid domains in an overlapped mixed model, allowing the solid isotropic ma-

terial with penalization (SIMP) technique to be applied. Vicente et al. (2015) developed a new

sensitivity analysis for the bi-directional evolutionary structural optimization (BESO) method

for frequency responses minimization of acoustic-structure systems. The authors considered

the minimization of pressures and displacements under harmonic loads. Differently from Yoon

et al. (2007) and Vicente et al. (2015), herein no loads are applied and free vibration of coupled

acoustic-structure systems is considered for eigenvalues maximization. The fluid and solid fields

considered here are modelled with the classic finite element formulation from Zienkiewicz and

Bettess (1978), currently and widely used in commercial codes. In the coupled eigenproblem

both acoustic and structural fields strongly influence the vibration modes of the system in all di-

rections since no harmonic excitation is applied. This type of modal analysis has been explored

in topology optimization for purely structural analysis (Pedersen, 2000; Jensen and Pedersen,

2006; Huang et al., 2010; Du and Olhoff, 2007b), but not for free vibration of acoustic-structure

problems using the classic formulation.

In order to allow the switch between solid, fluid and void elements, the BESO method is

applied. The discrete update scheme of the evolutionary methods allow the use of separate and

different governing equations during the optimization problems, such as proposed by Picelli

et al. (2015b). This overcomes a well known challenge of the classic density based methods in

dealing with moving multiphysics loads and interfaces (Sigmund and Clausen, 2007; Lee and

Martins, 2012). Thus, in the context of multiphysics optimization, the BESO method presents

some potential applications specially considering classic formulations, which can be advanta-

geous for the combination of commercial FEM packages and the optimization codes.

The technique called Evolutionary Structural Optimization (ESO) was first introduced in

the 90’s by Xie and Steven (1993). The ESO method was initially proposed as a gradual re-

moval of inefficient material from the design domain until the remaining structure converges

to the optimum topology. Material elimination is done after a sensitivity analysis. A later de-

velopment of this method was called Bi-directional ESO (BESO), in which elements are also

added in void positions near to the elements with the highest sensitivity numbers (Querin and

Steven, 1998). In the evolutionary optimization methods, the elemental sensitivity number is a

local index and represents the sensitivity of the objective function when the element is added

or removed. Papers considering the BESO method have presented convergent and mesh inde-

pendent solutions (Huang and Xie, 2007), natural frequencies constraints (Huang et al., 2010)

and others. Recently, Sigmund and Maute (2013) and Deaton and Grandhi (2014) have cited

the evolutionary methods as one class of the main structural topology optimization methods.
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The chapter is organized as follows: Section 4.2 presents the governing equations and

the finite element model for the acoustic-structure coupled system. In Section 4.3, the topology

optimization problem for free vibration is formulated and the sensitivity analysis is carried out.

Details of the method are also described. Section 4.4 shows the numerical results achieved with

the proposed methodology. Finally, conclusions are drawn in Section 4.5.

4.2 Acoustic-structure interaction: governing equations and finite element

model

Herein, the analyzed systems are limited to free vibration of flexible structures in contact

with acoustic fluids. For this system, the structure can be described by the differential equation

of motion for a continuum body assuming small deformations and the fluid by the acoustic

wave equation. All the details of this formulation can be found in the article by Zienkiewicz and

Bettess (1978) or in reference books (Morand and Ohayon, 1995; Axisa and Antunes, 2007).

The governing equations for the fluid and structural domains as well as the coupling boundary

conditions are defined as follows.

4.2.1 Acoustic domain

In this work, the fluid is considered inviscid, irrotational and only under small transla-

tion conditions. The governing equation for the pressure field in a homogeneous acoustic fluid

medium can be described by the acoustic wave equation

1

c2f

∂2Pf

∂t2
−∇2Pf = 0 in Ωf , (4.1)

where Pf is the acoustic pressure and cf is the speed of sound in the acoustic domain Ωf . The

following boundary conditions are considered:

Pf = 0 on Sp, (4.2)

and,

∇Pf · nf = 0 on Sf . (4.3)

Equation 4.2 represents the pressure Dirichlet boundary condition applied on the bound-

ary Sp, where Pf = 0 in all the examples considered in this work. When Pf = 0, the boundary

Sp is considered to be as a free open surface, while Equation 4.3 represents the hard wall natural
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boundary condition applied on Sf , which can be considered as a closed surface (Zienkiewicz

and Bettess, 1978). Figure 4.1 illustrates the acoustic-structure interaction system used in this

work.

s
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0fP 

u 0

u 0
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uS

n

sn

fn
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Figure 4.1: The coupled acoustic-structure system: the acoustic fluid domain Ωf and the struc-
tural domain Ωs coupled by integrals on the acoustic-structure interface Sfs.

4.2.2 Structural domain

It is considered the equilibrium of a linearly elastic structure in the domain Ωs. The solid

domain is governed by the equilibrium equation

∇ · σs (u)− ρs
∂2u

∂t2
= 0 in Ωs, (4.4)

where ∇ · σs (u) is the divergence of the Cauchy stress tensor, ρs is the structural mass density

and u is the structural displacement vector field. Dirichlet boundary conditions are applied as

follows:

u = 0 on Su. (4.5)

Body forces are not considered in this work.

4.2.3 Discretized coupled acoustic-structure system

At the interface Sfs between the structural and fluid domains, the fluid and the structure

move together in the normal direction of the boundary. The normal vector n = nf = −ns (see
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Figure 4.1) can be used in order to guarantee the equilibrium condition between fluid pressures

and structural tractions on Sfs

σsns = Pfnf on Sfs. (4.6)

With relations derived from the governing equations and the previous coupling conditions,

the interface forces may be obtained. Using a finite element discretization, the force acting on

the structure provided by the acoustic fluid pressure is

ffs =

∫

Sfs

NT
s nNfdSfsPf , (4.7)

and the excitation acting on the fluid domain can be expressed in terms of the structural accel-

eration

fsf = −ρf

∫

Sfs

NT
f nNsdSfsüs, (4.8)

where Pf is the vector of nodal pressure in the finite element model, ρf is the mass density of

the fluid, us is the vector of nodal structural displacements and Ns and Nf contain the finite

element shape functions for structural and fluid elements.

The introduction of a spatial coupling matrix Lfs, where

Lfs =

∫

Sfs

NT
s nNfdSfs, (4.9)

allows the coupling forces to be written as

ffs = LfsPf , (4.10)

and

fsf = −ρfL
T
fsüs, (4.11)

where ffs and fsf are the nodal force vectors on the interfaces.

Thus, the acoustic-structure problem can be described by an unsymmetrical system of

equations (Morand and Ohayon, 1995)

[

Ms 0

ρfL
T
fs Mf

][

üs

P̈f

]

+

[

Ks −Lfs

0 Kf

][

us

Pf

]

=

[

0

0

]

, (4.12)

where Ms and Ks are the structural mass and stiffness matrices, respectively, and Mf and Kf
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are the fluid mass and stiffness matrices, respectively, expressed as

Ks =

∫

Ωe

(∇Ns)
T
Ds∇NsdΩe, (4.13)

Ms = ρs

∫

Ωe

NT
s NsdΩe, (4.14)

Kf =

∫

Ωe

(∇Nf )
T∇NfdΩe, (4.15)

Mf =
1

c2f

∫

Ωe

NT
f NfdΩe, (4.16)

where Ds is the elasticity matrix. This formulation is equivalent to the dynamic acoustic-

structure interaction model described in terms of structural displacements and fluid pressures

(us/Pf ) by Zienkiewicz and Bettess (1978); Morand and Ohayon (1995); Axisa and Antunes

(2007). Compactly,

[Mfs] [üfs] + [Kfs] [ufs] = [ffs] , (4.17)

where Mfs and Kfs are the acoustic-structure mass and stiffness matrix, respectively. These

matrices comprise the structural and fluid matrices, represented by the subscript s for the struc-

tural field and f for the acoustic field.

4.3 Evolutionary topology optimization for free vibration problems including

acoustic-structure interaction

In this section the optimization problem is formulated, the sensitivity analysis is derived

and the evolutionary procedure is described.

In the evolutionary topology optimization methods for structural problems, the design

variable, xi, is restricted to discrete values 1 or 0 (0 for hard-kill or xmin for the soft-kill proce-

dure), which corresponds to solid and void elements, respectively. Then, no intermediate density

elements are allowed during the optimization procedures (Xie and Huang, 2010). Herein, the

extended BESO method can substitute the solid elements by fluid or void ones (Picelli et al.,

2015b; Vicente et al., 2015). With no intermediate densities, solid, void and fluid regions as

well as the interface between the domains are explicitly defined.
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4.3.1 Problem statement

In free vibration analysis the following eigenproblem is solved to describe the dynamic

behavior of an acoustic-structural system:

(Kfs − ω2
kMfs)Φk = 0, (4.18)

where ωk is the kth natural frequency and Φk is the corresponding coupled eigenmode.

Premultiplying Equation 4.18 with the transposed eigenvector, ΦT
k , the eigenvalue ω2

k can

be related with Φk by

ω2
k =

ΦT
kKfsΦk

ΦT
kMfsΦk

, (4.19)

which is called the Rayleigh quotient.

For natural frequencies maximization of the described acoustic-structure system, the dis-

crete optimization problem can be defined as

min: ω2
k,

xi

subject to: (Kfs − ω2
kMfs)Φk = 0 and b.c.,

V (xi) /V0 = Vs,

xi = [xmin,1] ,

(4.20)

where V0 is the full design domain volume, Vs is the prescribed final solid volume fraction and

nel is the number of elements inside the design domain. The binary design variable xi declares

the presence of a completely solid element (1) or a void element with a small value of xmin

(e.g. 10−4). In dynamic cases, the soft-kill procedure is adopted for the evolutionary methods

in order to avoid localized vibration modes, according to Huang et al. (2010). Herein, some

of the voids elements are substituted by fluid ones, tracking the changes of the fluid-structure

interfaces during the optimization. It is important to point out that all void elements in the design

domain are set as xmin = 10−4, even when a fluid is placed in the same position. Thus, a small

region of the design domain presents overlapped fluid and void (soft) elements.

4.3.2 Sensitivity analysis

Considering that maximizing ω2
k is the same as maximizing ωk, the sensitivity of the

objective function due to a structure element removal can be obtained by deriving ωk with
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respect to the design variables,

∂ωk

∂xi

=
1

2ωkΦ
T
kMfsΦk

[

2
∂ΦT

k

∂xi

(

Kfs − ω2
kMfs

)

Φk +ΦT
k

(

∂Kfs

∂xi

− ω2
k

∂Mfs

∂xi

)

Φk

]

.

(4.21)

With the aid of Equation 4.18, the derivative may be simplified as

∂ωk

∂xi

=
1

2ωkΦ
T
kMfsΦk

[

ΦT
k

(

∂Kfs

∂xi

− ω2
k

∂Mfs

∂xi

)

Φk

]

. (4.22)

In order to evaluate the derivatives of the acoustic-structure mass and stiffness matrices,

a material model can be chosen. For the soft-kill BESO method developed by Huang and Xie

(2009), to keep the ratio between mass and stiffness constant when xi = xmin it is required that

ρ(xmin) = xminρs,

E(xmin) = xminEs,
(4.23)

where ρs and Es are the density and Young’s modulus of the solid material, respectively. To

guarantee the previous condition the material interpolation scheme can be applied as follows

ρ(xmin) = xiρs

E(xi) =
[

xmin−x
p
min

1−x
p
min

(1− xp
i ) + xp

i

]

Es,
(4.24)

where (0 < xmin ≤ xi ≤ 1) and p is a penalization factor.

Neglecting the alteration in Mf , Kf and Lfs due to the ith solid element removal, the

derivatives of the global acoustic-structure mass and stiffness matrices may be evaluated by

∂Mfs

∂xi

= Ms
i , (4.25)

∂Kfs

∂xi

=
1− xmin

1− xp
min

pxp−1
i Ks

i , (4.26)

where Ms
i and Ks

i are the mass and stiffness matrices of the ith solid element, respectively.

With the derivatives of Kfs and Mfs from Equations 4.25 and 4.26 and considering that

the eigenvector is mass-normalized (ΦT
kMfsΦk = 1), the sensitivity for the kth natural fre-

quency is
∂ωk

∂xi

=
1

2ωk

ΦT
k

(

1− xmin

1− xp
min

pxp−1
i Ks

i − ω2
kM

s
i

)

Φk. (4.27)
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For the solid-fluid-void design, the sensitivity numbers αi for natural frequency maxi-

mization can be expressed as

αi =







1
2ωk

ΦT
k

(

1−xmin

1−x
p
min

Ks
i −

ω2

k

p
Ms

i

)

Φk xi = 1

1
2ωk

ΦT
k

(

x
p−1

min
−x

p
min

1−x
p
min

Ks
i −

ω2

k

p
Ms

i

)

Φk xi = xmin

, (4.28)

or when xmin tends to 0

αi =

{

1
2ωk

ΦT
k

(

Ks
i −

ω2

k

p
Ms

i

)

Φk xi = 1

−ωk

2p
ΦT

kM
s
iΦk xi = xmin

. (4.29)

Sometimes, cases with multiple frequencies optimization might be considered, e.g., both

ωk and ωk+1 maximization, where the objective function is the sum of ωk and ωk+1. For this case,

we can mention that the sensitivity numbers are evaluated by the mean value of the sensitivities

of both k and k + 1 considered eigenmodes, as shown by Xie and Steven (1996) and Zuo et al.

(2010).

4.3.3 Summary of the evolutionary procedure

The main steps of the extended fluid-structure BESO methodology are given as follows:

1. Discretize the design domain using a finite element (FE) mesh for the given boundary

conditions. Initially, the global acoustic-structure mass, Mfs, and stiffness, Kfs, matrices

must be assembled uncoupled assuming that all the degrees of freedom can alternate

between displacement and pressure.

2. Couple and store current design matrices Mn and Kn with the coupling matrices ac-

cording to the current design of the nth iteration and the appropriate boundary condi-

tions. Thus, the current matrices become equivalent to the acoustic-structure matrices

from Equation 4.12.

3. Perform FE analysis (solve Equation 4.18) on the current design to obtain the eigenvalues,

ω2
k, and the coupled eigenmodes, Φk.

4. Evaluate the sensitivity numbers αi according to Equation 4.28.

5. Apply a filter scheme. Evaluate nodal sensitivity numbers αj by averaging the elemental

sensitivity numbers of the jth connected elements. Project a sub-domain Ψi with length

scale equal to the filter radius rmin and centered in the ith element. All the nodes inside
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Ψi must have their nodal sensitivity numbers averaged back to the ith elemental level as

follows:

αi =
nod
∑

j=1

w(rij)αj/
nod
∑

j=1

w(rij), (4.30)

where rij is the distance between the node j and the center of the element i, nod is the

total number of nodes inside the design domain and w(rij) is a weight factor that values

rmin − rij for nodes inside the sub-domain Ψi and 0 for nodes outside the sub-domain.

6. Average the sensitivity numbers with their previous iteration (n− 1) numbers as follows

αi =
αn
i + αn−1

i

2
(4.31)

where n is the current iteration number. Huang and Xie (2007) have showed that this aver-

aging helps in the stabilization of the optimization process. This procedure demonstrated

to be an effective way to avoid convergence problems.

7. Determine the target structural volume Vn+1 for the next iteration n+1. The target volume

Vn+1 is defined as

Vn+1 = Vn(1± ER) (4.32)

where ER is the evolutionary ratio. ER is the percentage of V0 and increases or decreases

Vn+1 towards the final prescribed structural volume fraction Vs.

8. Update the design variables. The target volume Vn+1 sets the threshold αth of the sensi-

tivity numbers. Solid elements (xi = 1) which

αi ≤ αth (4.33)

are switched to void condition (xi = xmin). Void elements (xi = xmin) are switched to

solid condition (xi = 1) when

αi > αth (4.34)

Meanwhile, the volume addition ratio (AR) is restricted to a maximum addition ratio

ARmax, which declares the maximum allowable addition volume per iteration. Once

AR > ARmax, only some of the elements with highest sensitivity numbers are switched

to xi = 1 in order to set AR = ARmax. Then, some of the elements with the lowest

sensitivity numbers are switched to xi = xmin to satisfy the target volume Vn+1. Each

target volume defines the percentage of solid elements that the structure must have in the

iteration n+ 1.

9. Update the fluid region considering the elements with design variable xi = xmin. If the

void element has at least one fluid element as neighbor, it must be turned also into a fluid
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element. If the element does not have any fluid neighbors, the element must be kept as

void. This procedure is repeated until there are no more changes in the fluid-void regions.

In this case, some layers of structural elements nearby the fluid-structure interface can be

replaced by fluid elements and void holes appear only inside the structural domain.

10. Update the original uncoupled global matrices Kfs and Kfs according to the change of

the current design.

11. Repeat steps 2-11 until the prescribed structural volume fraction is achieved and the con-

vergence criterion with a predefined tolerance τ is satisfied. The variation in the objective

function is calculated as

|
∑3

m=1 Cn−m+1 −
∑3

m=1 Cn−m−2|
∑3

i=1 Cn−m+1

≤ τ (4.35)

where n is the current iteration number and C is the value of the objective natural fre-

quency ωk or ωk + ωk+1 for multiple natural frequencies objectives. This equation esti-

mates the change in the objective function during the last 6 iterations of the algorithm.

More details about implementation issues (e.g. filter scheme, element removal/addition

and convergence criterion) can be found in Xie and Huang (2010); Huang and Xie (2007).

4.4 Numerical results

In this section, some optimization problems are solved with the extended BESO method.

The first example considers a clamped beam vibrating between two acoustic fluid domains and

it is used as a comparison to the literature. The second example proposes the optimization of

a tunable resonant device, in which open and closed fluid cavities are used. The last example

considers the maximization of the first two natural frequencies of a water dam model.

4.4.1 Beam example

The first example considers a clamped beam between two acoustic fluid domains. The

unitary thickness coupled model (showed in Figure 4.2) is under free vibration and plane stress

condition. This example is similar to the one presented by Yoon et al. (2007). Herein, the solid

Young’s modulus used is 70 GPa, the density is 2700 kg/m3 and the Poisson’s ratio is 0.3. The

fluid domain has density of 1000 kg/m3 and the speed of sound in the medium of 1450 m/s. An

amount of 90000 finite elements is used to discretized the model.
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Fluid Fluid

Design domain

0fP  0fP 

2 m 2 m0.5 m

2 
m

Initial guess design

0.25 m

0f fP�  n

0f fP�  n 0f fP�  n

0f fP�  n

Figure 4.2: A clamped beam between two fluid domains under free vibration.

For this design problem BESO’s evolutionary ratio is chosen to be as ER = 2% and the

final prescribed volume Vs = 50%. The filter radius used is rmin = 60 mm and the penalty

factor is p = 3. The other parameters are set as xmin = 0.001, ARmax = 5% and τ = 0.001.

Figure 4.3 presents the solution obtained with the initial structure starting from the full design

domain and from an initial guess design (thiner clamped beam) with initial volume fraction

most nearly to V (xi) = 50% = Vs. This last allows the optimization to be carried out with

constant volume during the whole algorithm. Both topologies showed to be similar between

each other, with the final natural frequency ω1 = 152.31 Hz for the solution starting with the full

design domain and ω1 = 152.41 Hz starting with the initial guess design. Both topologies are in

accord with the one obtained by Yoon et al. (2007), which used the SIMP method and a mixed

finite element formulation. Figure 4.4 presents some snapshots of the final solution for the case

with initial guess design.

(a) (b)

Figure 4.3: Clamped beam solutions obtained with the BESO method with initial structure
starting from the: (a) full design domain; (b) initial guess design with 50% of the design domain.

No intermediate density elements are present in the final solution. This allows the fluid el-

ements to be updated and placed inside the design domain, tracking the fluid-structure interfaces
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n = 0 n = 2 n = 4 n = 6 n = 10 n = 23

Figure 4.4: Snapshots of the BESO solution starting from an initial guess design.

and moving coupled loads. Thus, the coupling integrals can be evaluated straightforwardly in

each step of the optimization using the classic formulation by Zienkiewicz and Bettess (1978).

For the case with initial guess design, Figure 4.5 shows the evolution history of the objective

function along the iterations. In this case, the objective function, ω1 increased from 125.03 Hz

to 152.41 Hz, an increase of almost 22%.
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Figure 4.5: Evolutionary history of the objective function for the clamped beam example.



117

4.4.2 Open and closed acoustic cavity

This example aims to maximize the natural frequencies of a tunable device (showed in

Figure 4.6), which can be set opening or closing its superior fluid domain edge. The closed cav-

ity condition is represented by the hard wall boundary condition, ∇Pf ·nf = 0 shown as thicker

edge lines in Figure 4.6, and the open cavity is set defining the imposed pressure boundary con-

dition, Pf = 0 (Zienkiewicz and Bettess, 1978). Both open and closed configurations present

different natural frequencies. Numerically, closed cavities present a zero eigenvalue, which it

is not of real practice interest and it is disregarded here. The system showed in Figure 4.6 is

modelled with 99200 finite elements with thickness of 0.2 m and plane stress condition. The

solid Young’s modulus used is 70 GPa, density of 2700 kg/m3 and the Poisson’s ratio is taken

as 0.3. The fluid domain has density of 1000 kg/m3 and the speed of sound in the medium of

1450 m/s. The model is defined with an structural initial guess design as showed in Figure 4.6.

Figure 4.7 presents the first three resonant frequencies of the model for both open and closed

configuration.

Fluid

Design domain

0fP 

Closed cavity:
Open cavity:

Initial guess design

1 m

0.
2 

m
0.

4 
m

0.
1 

m
0.4 m 0.2 m 0.4 m

0f fP�  n

0f fP�  n 0f fP�  n

0f fP�  n 0f fP�  n

Figure 4.6: Tunable device with open and closed acoustic fluid cavities.

For the BESO method starting with the initial guess design, the evolutionary ratio is set

as ER = 1% and the prescribed volume fraction Vs = 50%. The other parameters are set as

rmin = 25 mm, ARmax = 1%, xmin = 0.0001, τ = 0.0001 and, finally, the penalty factor

p = 3. Figure 4.8 presents the structural topology solution considering maximization of the first

natural frequency, ω1, for both open and closed fluid cavity configuration. The difference in the

topology solutions is expected since the first vibration mode of the coupled system is altered
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(a) Open fluid cavity (b) Closed fluid cavity

Figure 4.9: Evolutionary history of the objective function for both (a) open and (b) closed device
configuration.

by Zienkiewicz and Bettess (1978). Disregarding surface waves, a free surface condition is

imposed at the upper edge of the fluid domain as Pf = 0 and the hard-wall condition, ∇Pf ·nf =

0, at the inferior and the right edge of the domain. The design domain is considered to have an

inclined edge. A solid non-design domain is considered, as represented in Figure 4.10. This also

can be an initial approximation for a water dam design problem.

Fluid

Solid non-design domain

Design domain

Initial guess design 0fP 

0.77 m 2.2 m

0.68 m

0.03 m

1 
m

1.7 m0.62 m

0f fP�  n

0f fP�  n

Figure 4.10: Water tank model.

With the initial guess design, BESO started with an evolutionary ratio ER = 1% until

a prescribed volume fraction Vs = 35%. The other BESO parameters are set as rmin = 75

mm, ARmax = 1%, xmin = 0.0001, τ = 0.0001 and p = 3. In this example, multiple fre-

quencies maximization is explored. The model is discretized with 76800 finite elements. The
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solid Young’s modulus used is 17 GPa, density of 2400 kg/m3 and the Poisson’s ratio is taken

as 0.3. The fluid domain has density of 1000 kg/m3 and the speed of sound in the medium of

1450 m/s. Figure 4.11 presents the topology solutions for ω1 maximization and for both ω1+ω2

maximization, as well as the evolutionary history of the objective function for each case.
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Figure 4.11: Topology and evolutionary history for the solutions of the water tank design prob-
lem considering (a) ω1 maximization and (b) multiple ω1 + ω2 maximization.

Considering only the first natural frequency maximization, the value ω1 increased from

129.50 Hz to 205.93 Hz, representing an increase of 59%, while the second natural frequency

suffered a significant reduction. For the case of multiple frequencies maximization, ω1 increased

from 129.50 Hz to 200.97 Hz, representing an increase of 55%, almost as the only ω1 maximiza-

tion. In addition, ω2 did not suffered the same reduction as in the first case and the objective

function ω1+ω2 increased from 447.07 Hz to 508.29, representing an increase of 14%. For this

example, the fluid-structure interfaces do not change their location. Even though, the relation

between stiffness and mass summing the coupled contributions of both acoustic and structure

fields are changing while structural elements are removed. To illustrate this change, Figure 4.12

presents the first two vibration modes for the acoustic field considering the initial guess de-

sign and the topologies after the optimization cases. This characterizes the dependency of the

responses (eigenmodes) on the coupled acoustic-structure model also for fixed fluid-structure

interfaces.
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1 
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Figure 4.13: Water tower model.

The crossing in these coupled vibration modes may lead to misinformations and the algorithm

may not converge. Thus, numerical techniques are needed then to avoid this problem. However,

here it is showed that this problem can be avoided by simply averaging both multiple natural

frequencies, as shown bt Yang et al. (1999b) for the evolutionary methods. In this example,

considering the maximization of both ω1 and ω2, the vibration modes cross but do not become

multiple, as showed in Figure 4.15(b), in the evolutionary history of the objective function.

Figure 4.16 presents the first three coupled vibration modes for the initial full design domain

and for the structures obtained with ω1 and with ω1 + ω2 maximization, in which the final

crossed modes can be observed. The displacement field is upscaled for better visualization.

Similar structures are presented in Bendsoe and Sigmund (2003), considering only structural

vibration.



123

0 10 20 30 40 50 60 70
45

132

219

306

393

480

567

654

741

828

915

Iterations

N
at

u
ra

l 
fr

eq
u
en

ci
es

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
o
lu

m
e 

fr
ac

ti
o
n

 

 

Volume

ω
1

ω
2

ω
3

(a) (b)

Figure 4.14: Water tower model example: (a) structural topology solution for ω1 maximization
and (b) evolutionary history of the objective function.

0 5 10 15 20 25 30 35
45

132

219

306

393

480

567

654

741

828

915

Iterations

N
at

u
ra

l 
fr

eq
u

en
ci

es

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
o

lu
m

e 
fr

ac
ti

o
n

 

 

Volume

ω
1

ω
2

ω
3

(a) (b)

Figure 4.15: Water tower model example: (a) structural topology solution for ω1 + ω2 maxi-
mization and (b) evolutionary history of the objective function.

4.5 Conclusions

This work applied the extended fluid-structure BESO method to the maximization of the

first natural frequencies of acoustic-structure systems. Coupled models under free vibration

were designed considering moving multiphysics interfaces as well as fixed boundaries.
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it in practical examples. Thus, the coupled modes change. Both open and closed configurations

were analyzed considering the first natural frequency maximization. The last example consid-

ered a water tank model with fixed solid-fluid boundaries. Even though the interface and the

fluid field were kept fixed, it was shown that the pressure modes in the fluid changed from one

case to another. This characterizes the coupled dependency of the acoustic-structure model on

the vibration modes and, consequently, in the optimization of acoustic-structure free vibration

problems.

To the best of the authors’ knowledge, the combination of acoustic-structure free vibra-

tion problems and the evolutionary optimization methods are considered for the first time in

this work. The discrete nature of the BESO method present potential to handle complex mul-

tiphysics problems, since the moving interfaces can be explicitly evaluated in each step of the

optimization. Thus, with the virtual explosion of the multiphysics optimization problems, the

evolutionary methods might be of useful application in science and industrial matters.
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5 STRUCTURAL TOPOLOGY OPTIMIZATION CONSIDERING STA-

TIONARY VISCOUS FLUID FLOW LOADS

Context

This work explores the evolutionary topology optimization approach in problems with

fluid-structure interaction. First, fluid flow pressure drop minimization has been carried out us-

ing Brinkman equations. Later, cases of “dry” and “wet” structural topology optimization have

been explored solving Stokes and Navier-Stokes equations (Fluid 3 mentioned in Chapter 1).

In “dry” optimization, fluid-structure interfaces have been kept fixed. For “wet” optimization,

the BESO fluid-structure update scheme by Picelli et al. (2015b) has been extended to track the

changes in the interfaces between the structures and the viscous fluid flow. Part of this contribu-

tion considering “wet” topology optimization has been published in the conference proceedings

of the 11th World Congress of Structural and Multidisciplinary Optimisation (Picelli et al.,

2015c).

5.1 Introduction

In order to improve the mechanical system design in the field of engineering, Structural

Topology Optimization (Bendsoe and Sigmund, 2003) has been developed. The idea is to find

optimal structural topologies inside predefined design domains concerning objective functions

and constraints. Much has been done in industrial applications of structural topology optimiza-

tion, but some topics are still challenging and open to research, specially concerning the inter-

action between structures and different other types of phenomena.

This work concerns the interaction between linear structural models and fluid flow models

governed by incompressible Navier-Stokes equations. Here, evolutionary topology optimization

is applied to pressure drop minimization in viscous fluid flow problems and also structural

design in fluid-structure interaction (FSI) problems.

Considering fluid flow problems, topology optimization has been applied first by Borrvall

and Petersson (2003) in order to minimize the dissipated power of the fluid flow, aiming to

obtain optimal fluid paths considering stationary Stokes flow equations. One year later, the ap-

proach was generalized by Evgrafov (2005) to allow optimization of Stokes fluid flow in porous

materials, using Navier-Stokes equations (Evgrafov, 2006). Aage et al. (2008) showed the ap-

plication of fluid flow topology optimization in large scale problems. Alternative formulations
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were proposed using Darcy-Stokes representation (Guest and Prévost, 2006; Wiker et al., 2007).

The full incompressible Navier-Stokes equations were considered for the first time in topology

optimization by Gersborg-Hansen et al. (2005), in which inertia effects are also relevant to

the fluid flow. Unsteady incompressible Navier-Stokes flow was also considered (Deng et al.,

2011, 2013). Besides that, other methods were applied to fluid flow topology optimization, such

as level-set methods (Challis and Guest, 2009; Kreissl and Maute, 2012). Up to the date of this

thesis, the evolutionary methods were not considered in fluid flow topology optimization. At the

other hand, the methodologies for fluid flow optimization are well established and have been

associated with other physics problems, such as heat transfer (Koga et al., 2013; Alexandersen

et al., 2014).

In the scope of fluid-structure interaction, only a few authors have developed methodolo-

gies for structural topology optimization in FSI problems. Recently, Jenkins and Maute (2015)

adopted the nomenclature used in aeroelasticity (internal “dry” and external “wet” surfaces) to

distinguish and classify the topology optimization methods of FSI problems according to the

treatment they apply on the fluid-structure boundaries. They classified as dry optimization the

cases where only the shape and topology of the internal structure are optimized and wet opti-

mization when the methods are able to manipulate the geometry of the fluid-structure interface,

Sfsi, as illustrated by Figure 5.1.

fsiS
Inlet

Outlet
Fluid Structure

Dry optimization

Wet optimization

Initial design

Figure 5.1: Representation of “dry” and “wet” topology optimization approaches in FSI prob-
lems, as classified by Jenkins and Maute (2015).

In the case of dry topology optimization, the fluid-structure interfaces are explicitly de-

fined and coupling conditions can be formulated and discretized with standard methods (Allen
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and Maute, 2005; Jenkins and Maute, 2015). On the other hand, the classic density-based topol-

ogy optimization methods become arduous when dealing with the case of wet optimization and

specialized computational techniques are needed to track the coupling conditions during opti-

mization. The main challenge is similar to those from design-dependent pressure loads (Sig-

mund and Clausen, 2007; Picelli et al., 2015b), where fluid-structure interfaces can change

when the structural design is changed by the optimizer. Thus, FSI loads may also change their

location, direction and magnitude during optimization. Methods with intermediate density el-

ements are not able to identify straightforwardly these interface changes. To circumvent this

problem a few techniques have been proposed in the recent years.

Kreissl et al. (2010) carried out shape and topology optimization considering fluid-

structure interaction, however they did not really consider the changes of the interfaces. In the

wet optimization case, Yoon (2010) used a monolithic approach for the FSI model in topology

optimization. The methodology was then extended to include an electro-fluid-thermo-compliant

multiphysics actuator design (Yoon, 2012) and to stress-based problems (Yoon, 2014). An-

dreasen and Sigmund (2013) considered FSI in poroelasticity for shock absorbers. These ideas

basically used mixed and overlapping physics formulations, similarly as proposed by Sigmund

and Clausen (2007), which was also applied to frequency responses minimization in acoustic-

structure problems (Yoon et al., 2007). Up to the date of this thesis, no other methods of topol-

ogy optimization were applied to real “wet” optimization cases in this type of fluid-structure

interaction problems.

In this context, the presented work proposes the application of the extended BESO method

for FSI system design. The discrete nature of the evolutionary methods imply that no interme-

diate density elements are allowed during the optimization procedures. Thus, fluid-structure

boundaries are always explicitly defined and the coupling boundary conditions evaluation is

straightforward.

The following sections formulate the optimization problems, in which potential power

minimization (drag or pressure drop reduction) in viscous fluid flow is applied and structural

mean compliance minimization is carried out in “dry” and “wet” optimization.

5.2 Fluid-structure models: governing equations and finite element discretiza-

tions

This work describes the use of evolutionary topology optimization in viscous flow prob-

lems, considering fluid flow microchannels and also fluid-structure interaction. Following, the

governing equations and finite element formulations are described for all models used.
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5.2.1 Viscous fluids

The motion of a fluid particle in space are given by the Navier-Stokes equations. These

equations are the basic governing equations for a viscous, heat conducting fluid in a domain Ωf .

They are expressed by the combination of the momentum and continuity equations, Equations

5.1 and 5.2, respectively, which describe the changes in momentum and acceleration of a fluid

flow due to pressure and viscous forces acting on the fluid (Gresho and Sani, 2000). The referred

Navier-Stokes equations can be written as:

ρf

(

∂vf

∂t
+ vf · ∇vf

)

= −∇Pf + µ∇2vf + f , (5.1)

∂ρf
∂t

+∇ · (ρfvf ) = 0, (5.2)

where ρf is the fluid density, µ is the fluid dynamic viscosity, vf is the fluid velocity field, Pf

the fluid pressure and t is time.

The fluid in this work undergoes some assumptions, which simplify the problem: the flow

is laminar and at steady-state (∂vf/∂t = 0); the medium is incompressible (∂ρf/∂t = 0 and

ρf is constant); the medium has a Newtonian character (µ is constant); there are no body forces

(f = 0) and the medium properties are temperature and energy independent (no addition of a

heat conduction equation).

Under these assumptions, the viscous fluid flow used in this work is governed by the so

called incompressible Navier-Stokes equations, expressed as:







ρf (vf · ∇vf ) = −∇Pf + µ∇2vf

∇ · (vf ) = 0
. (5.3)

The left side of the steady-state incompressible Navier-Stokes equations consists of a

convective term ρf (vf · ∇vf ), which depends on vf and represents inertia effects. The right

side is the divergence of the fluid stress tensor σf , which presents a diffusive term µ∇2vf . The

relation between the convective and diffusive terms is an indicative of the flow speed or how the

fluid flow is affected by inertia. This relation can also be called Reynolds number (Re) and can

be used to predict the fluid flow pattern. Higher Reynolds number implies more complex fluid

flow patterns, such as turbulent flows.

Although the fluid flow is considered to be laminar in this work, the presence of a con-

vective term in the governing equation still makes the problem nonlinear, requiring more spe-
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cialized solvers. In order to solve Equation 5.3, the following boundary conditions are applied

(see Figure 5.2:

vf = v0 on Sin, (5.4)

vf = 0 on Sw, (5.5)

Pf = 0 on Sout, (5.6)

representing the velocity profile given at the inlet (Equation 5.4), no-slip condition at fluid flow

walls (Equation 5.5) and outlet constrained pressure value (Equation 5.6).

By imposing the previous boundary conditions and solving Equation 5.3, one can obtain

the velocity and pressure profiles of the viscous fluid flow.

Inlet

Outlet

f
inS

outS

wS

wS0f v v

0fP 

0f v

0f v

Figure 5.2: The viscous fluid domain Ωf and boundary conditions. A velocity profile vf = v0

is given at inlet boundary Sin, outlet pressure is set as Pf = 0 in Sout and the no-slip conditions
(zero velocities vf = 0) are imposed at the fluid flow walls Sw.

For very low Reynolds number (Re ≪ 1), the fluid has very high viscosity or flows with

very small velocities. In cases like this, the convective term of the Navier-Stokes equations tends

to be negligible if compared with the diffusive term. When this is true, the flow is viscous driven

and governed by the so called Stokes flow equations:







µ∇2vf −∇Pf = 0

∇ · (vf ) = 0
. (5.7)

These equations are a particular case of the incompressible Navier-Stokes equations,

which consists in a linear system of equations making the problem much easier to be solved.

The same boundary conditions from Equations 5.4, 5.5 and 5.6 and the scheme in Figure 5.2

are used to solve Stokes flow in this work. The simplifying assumptions used for Navier-Stokes

equations are also considered here. This type of flow can also be called as creeping flow.
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In order to minimize pressure drop and find optimal fluid flow channels, Borrvall and

Petersson (2003) initiated a research area using topology optimization in fluid mechanics. The

authors used a combination of the previously described Stokes flow with Darcy’s Law, which

describes the flow of a fluid through a porous medium. This combination results in the Brinkman

equations. Neglecting body forces, these equations can be expressed as:







µ∇2vf + α (xi)vf −∇Pf = 0

∇ · (vf ) = 0
(5.8)

where α (xi) is the inverse permeability of the porous media, added with the aid of Darcy’s law,

which depends on a design variable xi.

The inverse permeability is a measure of flow resistance through the fluid medium. In the

scope of topology optimization, the fluid elements with higher α are said to be more resistant

(low porosity medium) to the flow than the elements set with lower α (high porosity medium).

Higher α implies in nearly solid medium (low porosity) and increases the flow resistance, drop-

ping down fluid velocities. In the limit when α tends to zero, the fluid has very high permeability

(high porosity) and the flow is governed only by Stokes flow equations. This is very advanta-

geous for topology optimization, since fluid elements can be turned into nearly solid elements

by setting a high inverse permeability α and the fluid flow can be solved without any extra

Dirichlet boundary conditions. Furthermore, fixed walls or flow obstacles can be inserted with

the same approach. Brinkman’s equations are solved in the same manner as the previous Stokes

and Navier-Stokes equations. The function that defines the inverse permeability used in this

work is:

α (xi) = αU + (αL − αU) xi

1 + q

xi + q
, (5.9)

where q is a penalty parameter considered as 1 in this work, xi is the design variable in pressure

drop minimization problems and αU = 2,5µ/0,012 and αL = 2,5µ/1002 are the upper and lower

limits of the inverse permeability (Gartling et al., 1996).

5.2.2 Solid domain

Herein it is considered linear elasticity, small displacements and deformations, for a solid

domain Ωs interacting with a viscous fluid flow loads. Neglecting body forces and any acceler-

ation, the linear structural analysis is governed by

∇ · σ (us) = −f fsi, (5.10)
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where ∇ · σs (u) is the divergence of the Cauchy stress tensor, u is the structural displacement

field and f fsi denotes the vector with the loads from the viscous fluid flow calculated at the fluid-

structure interface Sfs, see Figure 5.3. Then, before solving Equation 5.10, Dirichlet boundary

conditions are applied to the solid domain:

u = 0. (5.11)

Following, the FSI coupling conditions are presented, from which the tractions f fsi are

obtained. By topology optimizing the structure, a void domain Ωv can also be present.

fsSInlet

Outlets
f

inS

outS

wS

wS

wS

0f v v

0fP 
v

0f v 0f v

0f v

0s u

Figure 5.3: The solid (Ωs), fluid (Ωf ) and void (Ωv) domains and boundary conditions. With
steady-state fluid velocities and pressures profiles, fluid flow reaction forces can be calculated
on the fluid-structure interfaces Sfs and imposed as loads in the structural analysis.

5.2.3 Fluid-structure interaction model

The existence of both fluid and structure domains with a shared interface in FSI leads

to some possibilities in the modelling description. Such possibilites means to model the FSI

systems with: Eulerian/spatial, Lagrangian/material or Arbirtrary Lagrangian Eulerian (ALE)

descriptions.

In this work, the governing equations are derived and used in an Eulerian description

for the fluid flow and a Lagrangian description for the structure, which implies the use of two

different meshes. To ensure the FSI coupling conditions (Bazilevs et al., 2013; Hou et al., 2012;

Bosma, 2013), the following relations must be satisfied:

vf = u̇ on Sfs and, (5.12)

σsns = −σfnf on Sfs. (5.13)
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The first relation (Equation 5.12) states that the fluid follows the structure on Sfsi with

same velocity, declaring that the fluid does not leave or penetrate the structure. In this work, this

is guaranteed when steady-state is considered (u̇ = 0) and no-slip conditions for the fluid flow

are imposed on the fluid-structure interface,

vf = 0 on Sfs. (5.14)

To obey the second relation, Equation 5.13, the vector of FSI loads f fsi can be calculated

as reactions forces on Sfs using the fluid stress tensor σf and imposed as tractions f fsi on the

structural boundaries in contact with Sfs (Hou et al., 2012).

By solving Equation 5.10, the displacement field of the linear elastic structure can be

obtained. In fully coupled FSI problems, structural displacements implies deformations in the

fluid-structure interfaces Sfs. The fluid equations need then to be solved again in order to con-

sider the deformations on Sfs. Different staggered and monolithic approaches are used to solve

these FSI problems (Yoon, 2010; Bosma, 2013).

This work is limited to small structural displacements and deformations, similarly as con-

sidered by Yoon (2010) in topology optimization. This implies a minimum deformation of the

interface Sfsi and, consequently, it does not effectively alter the fluid responses. Thus, the prob-

lems considered here are actually one-way coupled, where the steady-state fluid velocity and

pressure profiles are used to calculate the fluid reactions that are used to solve the structural

problem. After the structural displacements are obtained, the problem is considered solved.

Following, the FSI algorithm used in this work is described in the scope of the finite element

discretization.

The finite element modelling of the compressible or incompressible Navier-Stokes equa-

tions are a challenge in computational mechanics (Zienkiewicz and Taylor, 2005; Brooks and

Hughes, 1982; Oñate et al., 2006). In this work, a finite element code is implemented to solve

these equations. Two main difficulties arise in the finite element modelling of the incompress-

ible Navier-Stokes equations: the incompressibility condition and convective-dominated cases

(high Reynolds number).

A mixed finite element method is chosen in order to model the incompressible Navier-

Stokes equations, in which fluid velocities and pressures are interpolated in the same finite

element. With adequate shape functions, these elements are stable and satisfy compatibility

conditions, such as the Ladyzenskaja-Babuska-Brezzi (LBB) condition for incompressible el-

ements (Gresho and Sani, 2000; Brezzi and Fortin, 1991). Although they can be costly for
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large-scale problems, they showed to be effective for the cases explored in this work. Figure 5.4

shows the finite element used here, named as Q2rP1 (Rupp et al., 2015), in which velocities are

interpolated with serendipity shape functions and pressures with bilinear shape functions in the

isoparametric axes (r, s).

r

s

Velocities

Pressures

Figure 5.4: Mixed finite element Q2rP1.

In a Cartesian coordinate system (x, y), the finite element matrices which solve the in-

compressible Navier-Stokes equations (described in Equation 5.3) are

[

Kf +KT (vf ) −Q

−Q 0

]{

vf

Pf

}

=

{

0

0

}

, (5.15)

where,

Kf = µ

∫

Ωe

BT I0BdΩe, (5.16)

KT (vf ) = ρf

∫

Ωe

NT
vNv (vx∇Nx

v + vy∇Ny
v) dΩe and, (5.17)

Q =

∫

Ωe

∇NT
vNPdΩe. (5.18)

The matrices N contain the shape functions for velocities and pressures with the cor-

respondent v and P subscripts, respectively (Bathe, 2006). The matrix B contains the partial

derivatives of the shape functions and, for 2D cases,

I0 =







2 0 0

0 1 0

0 0 1






. (5.19)

All matrices are evaluated in the element domain Ωe. The matrix Kf includes the dif-
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fusive terms, viscosity effects, and KT (vf ) includes the inertia terms, while Q models the

incompressibility condition. For Stokes flow, i.e., very small velocities, KT (vf ) is negligible

and the finite element model is
[

Kf −Q

−Q 0

]{

vf

Pf

}

=

{

0

0

}

. (5.20)

By imposing the boundary conditions described in Equations 5.4, 5.5, 5.6 and 5.14 the

discretized incompressible Navier-Stokes and Stokes systems (Equations 5.15 and 5.20, respec-

tively) can be solved and the response vectors vf and Pf on the fluid domain can be obtained.

When Brinkman equations are considered, a new term is added to the fluid stiffness matrix,

which is then expressed as:

Kf = µ

∫

Ωe

BT I0BdΩe +

∫

Ωe

α (xi)N
TNdΩe, (5.21)

where α (xi) is the inverse permeability that depends on the design variables xi used only in

pressure drop minimization problems, and not in fluid-structure interaction in this work.

For the structural analysis, the elements are also discretized with serendipity shape func-

tions (S2 element) in order to match both fluid and solid finite element meshes. With a matching

fluid-structure mesh, the evaluation of the fluid loads at the structural boundaries is straight-

forward and no extra interpolation techniques are needed. The finite element model for the

structure is used here as

Ksus = −{[Kf +KT (vf )]vf −QPf}
fsi , (5.22)

where Ks is the finite element matrix for the structure and us is the displacements vector. The

FSI loads {[Kf +KT (vf )]vf −QPf}
fsi are evaluated as fluid reaction forces at the fluid-

structure interfaces Sfs.

In order to model the fluid-structure interaction, two assumptions are made: incompress-

ible fluid and structure are at steady state; and small structural displacements and deformations

are considered. Thus, the control volumes of the fluid domain before and after structural defor-

mation are identical.

These assumptions leads the fluid-structure interaction problem of this work to be one-

way coupled, as mentioned previously. This means that the fluid velocities and pressures imply

loads on the structure, but the structural displacements and deformations are considered linear

and small and do not alter the fluid flow domain. The following items summarize the fluid-
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structure algorithm in the manner it is implemented in this work.

1. Discretize the fluid and the solid domains Ωf and Ωs, respectively, with Q2rP1 mixed

finite elements for the fluid and eight nodes serendipity quadrilateral elements S2 for the

structure.

2. Apply the boundary conditions from Equations 5.4, 5.5, 5.6 and 5.14 and solve Equation

5.15, if the incompressible Navier-Stokes flow is considered, or Equation 5.20, if Stokes

flow is considered.

If Navier-Stokes is considered, use a Newton-Raphson solver with solution step:

Vk+1
NS = Vk

NS −
f
(

Vk
NS

)

F ′

(

Vk
NS

) , (5.23)

where Vk
NS is the kth approximation of the solution of function f . In FEM context, the

function f is the residual and F ′ the first order derivative of f with respect to the solution

VNS . Here,

f
(

Vk
NS

)

=

[

Kf +KT (vf ) −Q

−Q 0

]{

vf

Pf

}

−

{

fbc

0

}

, (5.24)

where fbc is the force vector after applying the Dirichlet boundary condition (Equation

5.4),

F ′
(

Vk
NS

)

=

[

Kf +KT (vf ) −Q

−Q 0

]

, (5.25)

and

Vk
NS =

{

vf

Pf

}

. (5.26)

3. Calculate the FSI loads f fsi by evaluating the fluid reaction forces

{[Kf +KT (vf )]vf −QPf}
fsi at the fluid-structure interface Sfs.

4. Solve linear elasticity from Equation 5.22 to obtain the structural displacements us.

5.3 Topology optimization problems

Here, both fluid flow energy dissipation and structural compliance minimization for FSI

problems are formulated. Fluid flow energy dissipation minimization is first carried out. The

aim is to obtain optimal fluid paths or channels. These patterns are then discretized as linear

structures and dry topology optimization is carried out. Finally, wet optimization cases are ex-

plored in order to evidence the features of the extended fluid-structure BESO method.
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5.3.1 Pressure drop minimization

Fluid flow drag or pressure drop (energy dissipation) minimization can be carried out

by minimizing the potential power of the fluid flow. Here, we consider the potential power of

Stokes flows (Evgrafov, 2005). The evolutionary topology optimization problem for this case

can be formulated as:

min: D (xi) =
1
2
vT
f Kfvf ,

xi

subject to:

[

Kf −Q

−Q 0

]{

vf

Pf

}

=

{

0

0

}

and b.c.,

h = V (xi) /V0 = Vf ,

xi = [0,1] ,

(5.27)

where D (xi) is the fluid potential power function, vf and Pf are the velocity and pressure

vectors, respectively, and Kf and Q are fluid matrices which discretize Darcy-Stokes equations.

The term V0 is the volume of the full design domain, Vf is the prescribed final fluid volume

fraction, nel is the number of elements inside the design domain and xi represents the discrete

design variables, in which 1 is a fluid with low porosity and 0 is a fluid with high porosity

(representing a rigid solid element). Thus, in this case, fluids with low porosity allow the viscous

fluid to flow and represent the optimal fluid path, while fluids with high porosity are considered

as rigid walls in this model.

5.3.2 Sensitivity analysis: Pressure drop minimization

The sensitivity of the potential power can be obtained by direct derivation of D (xi):

∂D

∂xi

= vT
f Kf

∂vf

∂xi

+
1

2
vT
f

∂Kf

∂xi

vf . (5.28)

In this model, a velocity profile is given at inlet as a constant boundary condition value

vf = v0. In this case,

vf = v0 ⇒
∂vf

∂xi

= 0. (5.29)

At the other hand, when Dirichlet boundary conditions are imposed, in this case vf = v0,

a load vector ff is applied to guarantee the equilibrium of the equation. The derivatives of ff are

not zero, though. However, they are disregarded here. Returning to Equation 5.28, one can write
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the sensitivity of the objective function D (xi), similarly presented by Bendsoe and Sigmund

(2003), as
∂D

∂xi

=
1

2
vT
f

∂Kf

∂xi

vf . (5.30)

The derivative of matrix Kf evaluated locally at the element level can be directly ex-

pressed as
∂Kf

∂xi

=
dα (xi)

dxi

Kα, (5.31)

dα (xi)

dxi

= (αL − αU) q
(1 + q)

(xi + q)2
, (5.32)

where Kα is the finite element matrix which discretize the Brinkman term in Darcy-Stokes

equations and αL, αU and q are the related parameters of the model. Then, rewriting Equation

5.30, the sensitivity number for pressure drop minimization in Darcy-Stokes flow can be stated

as following:

αi =
1

2

∂D

∂xi

= (αL − αU) q
(1 + q)

(xi + q)2
vT
i Kαvi, (5.33)

where the subscript i indicates the values of vf at the nodal element level.

Simplifying Equation 5.33, for xi = 1 and x1 = 0, one can rewrite the sensitivity numbers

for pressure drop minimization as

αi =







(αL − αU)
q

(1+q)
vT
i Kαvi xi = 1

(αL − αU)
(1+q)

q
vT
i Kαvi xi = 0

(5.34)

In practice, both sensitivity numbers are very similar, since the parameter value q = 1 is

used in this work. However, for elements with xi = 0, the flow undergoes a high porosity fluid

and the velocity field at those elements are nearly zero, which diminishes the sensitivities at

these regions.

5.3.3 Structural compliance minimization under FSI loads

The dry and wet topology optimization cases considered in this work concern structural

compliance minimization under viscous fluid flow loads and volume constraints. The fluid

model considered is governed by the incompressible Navier-Stokes equations. The evolutionary
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topology optimization problem for this case can be formulated as:

min: C (xi) =
1
2
uT
s Ksus

xi

subject to: Ksus = −{[Kf +KT (vf )]vf −QPf}
fsi

h = V (xi) /V0 = Vs

xi = [0,1]

(5.35)

where C (xi) is the structural mean compliance, Ks and us are the stiffness matrix and the

displacement vector of the structure, respectively. Pressure and viscous loads are imposed as

tractions in the linear structural analysis using the Navier-Stokes fluid model by the matrices

Kf , KT (vf ), Q, vf and Pf . When inertia terms are neglected and only Stokes flow is consid-

ered, KT (vf ) = 0. The term V0 is the full design domain volume, Vs is the prescribed final solid

volume, nel is the number of elements inside the design domain and xi represents the discrete

design variables, in which 1 is a solid element and 0 is void or an occupying fluid.

5.3.4 Sensitivity analysis: Structural compliance minimization

The sensitivity of the structural compliance due to an element removal can be obtained by

its derivative:
∂C

∂xi

= uT
s Ks

∂us

∂xi

+
1

2
uT
s

∂Ks

∂xi

us. (5.36)

The equilibrium equation of the structural system (Equation 5.22) can be derived in order

to find the unknown ∂us/∂xi:

∂ (Ksus)

∂xi

= −
∂ {[Kf +KT (vf )]vf −QPf}

∂xi

. (5.37)

Considering that, the change in the pressure Pf and the velocity vf due to a solid element

removal is small enough or even inexistent, its derivative is considered to be zero. Applying the

chain rule on the left side of the previous equation and deriving the right side, one have

∂Ks

∂xi

us +Ks

∂us

∂xi

= −
∂Kf

∂xi

vf −
∂KT (vf )

∂xi

vf +
∂Q

∂xi

Pf . (5.38)

Isolating the derivative of the displacement vector:

∂us

∂xi

= K−1
s

(

−
∂Kf

∂xi

vf −
∂KT (vf )

∂xi

vf +
∂Q

∂xi

Pf −
∂Ks

∂xi

us

)

. (5.39)
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With the substitution of Equation 5.39 in Equation 5.36, one can rewrite the compliance

derivative as

∂C

∂xi

= uT
s KsK

−1
s

(

−
∂Kf

∂xi

vf −
∂KT (vf )

∂xi

vf +
∂Q

∂xi

Pf −
∂Ks

∂xi

us

)

+
1

2
uT
s

∂Ks

∂xi

us. (5.40)

The product KsK
−1
s becomes the identity. Then, multiplying and making the summation

of the terms, the sensitivity of the objective function is expressed as

∂C

∂xi

= −uT
s

∂Kf

∂xi

vf −
∂KT (vf )

∂xi

vf + uT
s

∂Q

∂xi

Pf −
1

2
uT
s

∂Ks

∂xi

us. (5.41)

To evaluate the sensitivity from Equation 5.41 at the elemental level, the variation of the

stiffness, ∂Ks/∂xi, must be found. Similarly to Chapters 2 and 3 of this thesis, using a hard-kill

approach, the material is simply defined by its design variable as

Ei = xiE
0, (5.42)

and,

Ks =
nel
∑

i=1

xiK
i
s, (5.43)

where E0 denotes the Young’s modulus of the solid material and Ki
s is the ith element stiffness

matrix. Thus, the derivative of the structural stiffness matrix with respect to the design variable

of the ith element is expressed as
∂Ks

∂xi

= Ki
s, (5.44)

when xi = 1. For void/fluid elements, xi = 0, this derivative is null.

The derivatives of the other terms from Equation 5.41 represent the changes in the fluid

domain due to the removal of the ith element. These changes occur only in the fluid-structure

interface, since the fluid domain is changed only when solid elements at the interface are re-

moved. It is assumed that pressure values are transfered throughout the element when a solid

is replaced by a fluid, characterizing a design-dependent load, similarly as presented by Picelli

et al. (2015b) for pressure loading problems. However, this is not valid for the velocity values,

since there are no-slip boundary conditions at the fluid walls. Even though a fluid element re-

places a solid one at the interface, the fluid velocities at that element are still zero. Thus, it is

assumed the hypothesis that the terms multiplied by vf in the sensitivity expressed by Equa-

tion 5.41 vanish at the element level. For the third term, multiplied by Pf , the derivative of the
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incompressibility matrix is expressed as

∂Q

∂xi

= Qi, (5.45)

where Qi is the fluid elemental incompressibility matrix. It represents an addition of a fluid

matrix in the problem, when a solid element at the fluid-structure interface is removed. Thus,

the complete sensitivity numbers for stiffness maximization of structures under incompressible

viscous fluid flow loads are

αi = −
∂C

∂xi

=







1
2
uT
i K

i
sui − uT

i Q
iPi xi = 1

0 xi = 0
, (5.46)

where the subscript i indicates the values of us and Pf at the element level.

This analysis is carried out for each element i in the design domain. For structural ele-

ments which are not at the fluid-structure interface, the pressure transferred by the occupying

fluid is null and the term uT
i Q

iPi in Equation 5.46 vanishes, leading to the traditional number
1
2
uT
i K

i
sui, the elemental strain energy. The complete sensitivity number is evaluated then only

for the solid elements at the fluid-structure interface. For the case of dry optimization, consid-

ering that the interfaces do not change during optimization, the second term of the sensitivities

from Equation 5.46 can be disregarded.

5.4 Optimization procedures

For pressure drop minimization and “dry” structural topology optimization cases, the stan-

dard BESO approach (Xie and Huang, 2010) can be applied since no design-dependent physics

occur in these problems. For “wet” structural topology optimization, the methodology described

by Picelli et al. (2015b) can be extended for this type of fluid-structure interaction system. Fol-

lowing, these procedures are summarized for the present “wet” optimization case. For further

numerical details, see Xie and Huang (2010); Picelli et al. (2015b).

5.4.1 The extended BESO method for fluid-structure interaction problems

The following algorithm lists the steps of extended the BESO method for “wet” struc-

tural compliance minimization in steady state and small displacements fluid-structure interac-

tion problems.
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1. Define design domain, loads and boundary conditions.

2. Define BESO parameters.

3. Discretize the design domain using a FE mesh for the given fluid and structure domains.

4. Apply the fluid boundary conditions and solve fluid flow FE Equations 5.15.

5. Identify the fluid flow loads considering the fluid-structure boundary conditions, apply

the solid boundary condition and solve structural FE Equation 5.22.

6. Calculate the sensitivity numbers according to Equation 5.46.

7. Apply a filter scheme. Project the nodal sensitivity numbers on the finite element mesh

and smooth the sensitivity numbers for all (fluid, void and solid) elements in the design

domain.

8. Average the sensitivity numbers with their previous iteration numbers and save the result-

ing sensitivity numbers for the next iteration.

9. Determine the target structural volume Vn+1 for the next iteration.

10. Construct a new fluid-structure design by switching design variables xi from 1 to 0 and

from 0 to 1, tracking the changes of the fluid-structure interfaces. Details of the material

update scheme can be found in Xie and Huang (2010); Picelli et al. (2015b).

11. Assemble the global matrices according to the change of the current design.

12. Repeat steps 2-12 until the following stop criterion is satisfied:

|
∑5

k=1 Cn−k+1 −
∑5

k=1 Cn−5−k+1|
∑5

i=1 Cn−k+1

≤ τ (5.47)

where n is the current iteration number, C is the value of the objective function (structural

compliance) and τ is a prescribed convergence tolerance.

5.5 Numerical results

In this section, numerical results are presented. Pressure drop minimization problems con-

sidering Darcy-Stokes flow are briefly explored with the BESO method. An “aerodynamic” pro-

file obtained with this methodology is used as a structural profile for dry optimization consid-

ering both Navier-Stokes and Stokes flow loads. At last, “wet” optimization cases are explored.

The focus of this work is on wet optimization, since this is the main contribution of the extended

fluid-structure BESO method.
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5.5.1 Pressure drop minimization

Benchmark examples

In order to validate the application of the BESO method to fluid flow pressure drop mini-

mization, two benchmark examples are shown. Figure 5.5 presents the examples first proposed

by Borrvall and Petersson (2003), pipe bend and double pipe models.
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Figure 5.5: Benchmark examples for fluid flow pressure drop minimization: (a) pipe bend and
(b) double pipe models.

Discretized Darcy-Stokes flow equations are used to obtain the responses of the fluid flow,

velocities and pressures, vf and Pf , respectively, using Q1P0 finite elements, one order lower

than the element described in Section 5.2.3. The sensitivity numbers from Equation (5.34) are

used to rank the efficiency of the fluid elements relative to the objective function. Starting from

the initial full design domain, i.e., all elements begin as xi = 1, BESO method iteratively

removes and adds elements in the design domain towards the final prescribed volume fraction

Vf . BESO parameters for the pipe bend model are set as ER = 2%, ARmax = 5%, rmin = 0.04

m, Vf = 25% and τ = 0.001. For the double pipe model, ER = 2%, ARmax = 2%, rmin = 0.06

m, Vf = 30% and τ = 0.001. Figure 5.6 presents the fluid flow paths obtained with the BESO

method for both benchmark examples.

Both solutions are in accord with the literature, (Borrvall and Petersson, 2003; Challis

and Guest, 2009). In each iteration, BESO’s update scheme declares the next design variables

distribution. Elements with xi = 0 are set with a high porosity Brinkman coefficient, which

drops down the velocity field in these elements nearly to zero and represent a rigid element in

this optimization problem. The fluid flows then basically through the low porosity elements,
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(a) (b)

Figure 5.6: Fluid flow paths for (a) pipe bend and (b) double pipe models obtained with the
BESO method and Darcy-Stokes equations.

where xi = 1. It is observed that the solution evolves quickly to a topology similar to the final

one when the volume constraint is reached. After that, the solution slowly moves towards the

final topology taking quite many iterations to converge, as showed in Figure 5.7.

n = 0;Vn = 100%; n = 10;Vn = 80%; n = 20;Vn = 60%; n = 30;Vn = 40%;

n = 40;Vn = 25%; n = 100;Vn = 25%; n = 160;Vn = 25%; n = 237;Vn = 25%;

Figure 5.7: Topology evolution of the pipe bend example obtained with BESO method for pres-
sure drop minimization.

Fluid flow with obstacles

This example considers a fluid flow with obstacles. BESO method should find the optimal

fluid path which circumvents the obstacles (rigid walls) and present minimum pressure drop
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Aerodynamic profile

The model illustrated in Figure 5.10 represents a fluid flowing with constant velocity pro-

file, vf = v0. BESO method must find the fluid profile (with volume constraint) that minimizes

pressure drop in the fluid flow. Such profile is expected to be aerodynamic, which is the geom-

etry that tends to imply minimum change in the fluid flow streamlines.

0f v v

0f v v

0f v v

0f v v
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40
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m
m
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Fluid design domain

20
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m
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Figure 5.10: Fluid flow in a channel: example for aerodynamic profile.

A fluid design domain of 400× 200 mm is centered in the model. A non-design domain,

set as rigid elements, is centered in the model with dimension 1 × 2 mm. Starting with the

full design domain, BESO parameters are set as ER = 1%, ARmax = 5%, rmin = 0.02 mm,

Vf = 80% and τ = 0.0001, while fluid mass density and dynamic viscosity are ρf = 1000

kg/m3 and µ = 0.001 N·s/m2, respectively. Figure 5.11 presents the final solution obtained with

BESO method and the fluid flow streamlines. The wedge at the front and back of the optimal

shape is of angle 90o, which is in accord with the solution presented by Borrvall and Petersson

(2003) and also previously obtained by Pironneau (1973) with shape optimization.

5.5.2 Structural compliance minimization: “dry” optimization

The fluid profile of the previous example is used here for structural mean compliance

minimization, considering the case of dry optimization. The rigid elements which builds the

aerodynamic profile are substituted by linear elastic structural elements. The fluid flow is now

governed by the incompressible Navier-Stokes equations and the one-way coupled FSI analysis

is applied. This fluid-structure model is illustrated in Figure 5.12. The fluid boundary conditions

are the same as in the previous example, except for the outlet, where only P0 is set and no
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the full Navier-Stokes fluid flow loads.

(a) Stokes equations (b) Navier-Stokes equations

Figure 5.13: Solution for “dry” structural topology optimization of the aerodynamic profile
considering: (a) Stokes fluid flow loads and (b) full Navier-Stokes fluid flow loads.

Both solutions showed to be quite different, presenting structural members with different

relative inclinations. This is expected when comparing the Stokes flow, which neglects inertia

terms, with full Navier-Stokes equations. Figure 5.14 presents the velocity and pressure fields

for both type of flows. Stokes flow is a viscous driven flow, in which viscous and pressure loads

acts, while in Navier-Stokes flow the loads are mainly pressure dominant. This is reflected in the

structural topology, where inclined structural members arise to support the drag forces from the

Stokes flow and, considering Navier-Stokes flow, structural members are distributed in order to

support the high pressure field at the front of the aerodynamic profile. It indicates the complexity

of the fluid-structure problem and how non-intuitive structural design can be in these cases.

5.5.3 Structural compliance minimization: “wet” optimization

The next examples explores the features of the extended BESO method in wet structural

topology optimization of FSI problems. Results are presented considering both incompressible

Stokes and Navier-Stokes fluid flow equations for the fluid field, discretized with Q2rP1 finite

elements. The structure is considered linear elastic and is discretized with serendipity shape

functions S2 elements, in order to match nodes with the fluid domain. Thus, no interpolation

schemes are needed in order to transfer the FSI loads through the domains.

Flexible structure immersed in a fluid flow channel

A viscous fluid flows through a microchannel with a flexible structure immersed obstruct-

ing the flow. The physical model is shown in Figure 5.15. A constant inlet velocity profile

vf = v0 is considered. The pressure boundary condition is imposed at the outlet as P0 = 0 and
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Figure 5.15: Structural design problem for a fluid flow channel.

m/s and Case 3 with v0 = 1 m/s. For the smallest velocity profile (Case 1) considered, Stokes

flow equations are used, since the inertia terms of Navier-Stokes equations tend to zero in such

small velocity regime. For Cases 2 and 3, full incompressible Navier-Stokes equations are used.

(a) Case 1: v0 = 0.0001 m/s
Stokes equations

(b) Case 2: v0 = 0.1 m/s
Navier-Stokes equations

(c) Case 3: v0 = 1 m/s
Navier-Stokes equations

Figure 5.16: Topology solutions obtained with BESO method for the structural barrier example
with inlet velocities: (a) v0 = 0.0001 m/s, (b) v0 = 0.1 m/s and (c) v0 = 1 m/s. The fluid flow
in Case 1 is governed by incompressible Stokes flow equations and for Cases 2 and 3 the fluid
flows are governed by incompressible Navier-Stokes equations.

The structures obtained with BESO method showed to be different for different fluid

velocity regimes. This is expected, since the pressure and viscous loads are different for each

case, implying in different structural deformation. Figure 5.17 presents the velocity and pressure

responses for Cases 1, 2 and 3.

In each iteration, BESO’s update scheme set a new distribution of design variables, xi.

Figure 5.18 presents snapshots of the topology evolution along the nth iterations for Case 1,
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Figure 5.20: Topology and velocity field evolution of the structural barrier example in “wet”
FSI topology optimization for: (a) Case 1 and (b) Case 3.

mization papers (Chen and Kikuchi, 2001; Zhang et al., 2008), which consider only nonviscous

pressure loads. The presented work explores the proposed design problem including viscous

flow loads. The physical model is presented in Figure 5.21. In this example, the fluid is gov-

erned by incompressible Stokes flow equations. A linear elastic structure should be designed

with volume constraints in order to support the FSI loads. The fluid density is chosen to be ρf

= 1000 kg/m3 and its viscosity as µ = 0.001 N·s/m2 with inlet velocity v0 = 1 m/s. No-slip

boundary conditions are imposed at the fluid flow walls and the fluid-structure interface. Right

after the inlet the fluid flows through two structural domains considered as elastic non-design

domain. The model was discretized with 9152 finite elements in total, being 7648 solid elements

and the other 1504 ones modelling the initial fluid flow. The elasticity modulus of the structure

is chosen to be as E = 7 ×109 N/m2 and the Poisson’s ratio ν = 0.3.

BESO started from the initial full design domain with an evolutionary ratio ER = 2%

until a prescribed structural volume fraction Vs = 25%. The other BESO parameters are set as

ARmax = 5%, rmin = 0.015 m, τ = 0.001 and N = 5. Figure 5.22 presents the structural

topology solution for the flow chamber design problem. Figure 5.23 presents snapshots of the

topology solution and the fluid velocity fields during the optimization.

This example evidences the strong design-dependency between the structural topology

evolution and the fluid flow in wet topology optimization. The fluid region is updated while

structural elements are iteratively removed. Thus, viscous and pressure loads change their loca-

tion, direction and magnitude during the optimization. Figure 5.24 compares the viscous fluid

flow chamber design with the method which considers design-dependent fluid (nonviscous)

pressure loads. The same design problem is considered for both cases. However, for the nonvis-
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Figure 5.21: Structural design problem for a fluid flow chamber.

Figure 5.22: Structural topology solution for the flow chamber example.

cous case a pressure boundary condition is imposed at the inlet as P0 = 500 Pa (similar value to

the obtained with the Stokes flow inlet) and at the outlet as P0 = 0. Although this is not a proper

comparison, it indicates the behavior of the viscous flow loads. The minimum compliance solu-

tion obtained considering stokes flow loads presents bar-like structures while when considering

a nonviscous fluid the obtained structure presents curved shapes.

5.6 Conclusions

The standard BESO method is applied to pressure drop minimization in Stokes flow prob-

lems in this work. Darcy-Stokes equations are used to model the fluid flow with Brinkman’s

porosity term, which facilitates the use of standard topology optimization methods. A profile

can be obtained with such procedure. This profile obtained with BESO method is used in struc-
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The main contribution in this work is the application of the proposed extended BESO

method in “wet” structural topology optimization in FSI problems. The features of the evo-

lutionary methods allow the switch between fluid and solid elements, which address the main

challenge of dealing with moving fluid-structure boundaries during the optimization procedures.

This represents the potential use in the area of fluid-structure interaction systems design. The

results considered a flexible structure in contact with viscous fluid flows governed by incom-

pressible Navier-Stokes equations. The structural topology is designed considering compliance

minimization and design-dependent FSI loads. A steady state one-way coupled FSI model is

used. This limits the applications of the proposed methodology to small deformation problems.

The extension to more complex and robust FSI models are the future of this research. Differ-

ent fluid discretizations, e.g. meshless methods, and nonlinear elasticity can be considered to

improve the extended BESO method described in this thesis.
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6 CONCLUDING REMARKS

In this chapter some concluding remarks are presented. General comments on the scien-

tific contributions are outlined. The methodology developed and each topology optimization

problem explored are discussed. Finally, some suggestions for future research are pointed out.

6.1 Summary and discussions

This thesis focused on contributing to the methods of Structural Topology Optimization

in problems with design-dependent physics, one of the open research topics pointed out by the

survey from Deaton and Grandhi (2014). Different design-dependent FSI models were used.

An extension of the evolutionary optimization methods was developed in order to allow the

switch between solid, fluid and void finite elements. The research was divided in four different

topology optimization problems, each one introduced, formulated, solved and discussed with

numerical results in separate chapters. Following, general conclusions concerning each opti-

mization problem are given:

◦ Chapter 2: Bi-directional evolutionary structural optimization for design-dependent fluid

pressure loading problems: This topology optimization problem aimed to design stiffest

structures under constant and non constant fluid pressure fields. The main contribution to

general topology optimization problems is that the technique developed here allows the

handling of design-dependent fluid pressure loads straightforwardly, without any need of

boundaries parametrization nor approximated multiphysics mixed models. Hydrostatic

fluids and linear structural finite elements could be switched during the optimization pro-

cedures for the first time with separate domains by using a discrete optimization technique

(BESO method). The use of separate domains allows the implementation of classic gov-

erning equations, which can be useful for the association of the present methodology with

commercial FEM packages. The BESO method presented crisply defined fluid-structure

interfaces, showed to be mesh-independent and solved efficiently the same benchmark

examples presented by Hammer and Olhoff (2000); Chen and Kikuchi (2001); Sigmund

and Clausen (2007) and others, with less than 70 iterations. The idea of using a coupled

fluid-structure formulation can be extended to other multiphysics problems, such as the

ones explored in the other chapters of this thesis and the extension to frequency responses

by Vicente et al. (2015).

◦ Chapter 3: Topology optimization for submerged buoyant structures: This work aimed to

apply the extended fluid-structure BESO method to design stiffest buoyant structures for



158

offshore pipelines support. Constant pressure fields were considered because of the deep-

water condition of the buoyancy modules. Design-dependent fluid pressure loads were

handled in the same manner as in the previous problem as well as the same governing

equations were used. The main contribution to general topology optimization problems

is the introduction of an inequality constraint which sets the minimum volume of the

buoyant structure, represented by the sum of void and structural elements, at the same

time as solving a design-dependent pressure loading problem. This also aims to improve

the formulations of the evolutionary methods, since one of the main drawbacks of the ES-

O/BESO methods is the difficulty in handling different constraints rather than the standard

volume equality ones. With crisply defined and moving fluid-structure interfaces, a stiffer

structure could be design in comparisons with a case with fixed interfaces. The methodol-

ogy was validated with a test case and a subsea buoy design case, presenting bubble-like

topologies and convergence with less than 60 iterations.

◦ Chapter 4: Evolutionary topology optimization for natural frequency maximization prob-

lems considering acoustic-structure interaction: The idea of switching fluid, structural

and void elements was extended to acoustic-structure systems in free vibration problems.

Coupled natural frequencies could be maximized as shown by several numerical results.

The acoustic-structural physical model also allowed the modelling of open and closed

acoustic cavities, which strongly influences the coupled modes. The main contribution

to the evolutionary and general topology optimization problems is the handling of cou-

pled free vibration problems, considering the maximization of coupled acoustic-structure

natural frequencies in a global manner. Papers such as the one by Yoon et al. (2007) de-

veloped topology optimization for minimizing local responses. During this PhD research,

Vicente et al. (2015) applied the idea of the extended BESO method to frequency re-

sponses minimization at some points (or areas) of the fluid or structural domains. The

method presented crisp solutions with refined meshes and convergence with less than 45

iterations, except the case with crossing modes. This last also indicates a future step of

this research, in which an algorithm to control crossing eigenmodes should be tested.

◦ Chapter 5: Structural topology optimization considering stationary viscous fluid flow

loads: This topology optimization problem aimed to design stiffest structures under

design-dependent viscous flow loads. As suggested by Jenkins and Maute (2015), the

terms of “dry” and “wet” topology optimization problems in FSI were discussed. The

“dry” optimization approach was explored with the standard BESO method and presented

in this work. This characterizes an incremental scientific contribution, since the novelty is

only the new application for the evolutionary methods. The main contribution in Chapter

5 to general topology optimization problems is the handling of the “wet” approach by

using the idea of the extended fluid-structure BESO method. To the date of this thesis

defense, only Yoon (2010) explored a “wet” optimization approach with topology op-
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timization using a density-based method. Both works from Yoon (2010) and this thesis

considered small displacements and deformations, which turns the fluid-structure inter-

action problem easier to be solved. A more robust algorithm can be used to consider the

fully coupled FSI model in order to achieve more practical design problems. The same

features of the presented methodology described in the previous chapters were observed

in this FSI design problem, except the number of iterations after convergence, which

reached up to 110.

In general, the extended fluid-structure BESO method showed to be efficient in solving

topology optimization problems with design-dependent physics. The modelling of both fluid

and structural fields with separate governing equations and finite element meshes can indi-

cate other research directions or new possibilities in solving different multiphysics optimization

problems.

6.2 Suggestions for further research

Following, some suggestions for further research are given:

◦ To apply the extended BESO method in different design-dependent physics problems,

such as mass and heat transfer, acoustic absorption, eletromagnetics, compliant mecha-

nisms, etc.

◦ To explore different equality and inequality constraints as well as the deepening of the

proposed buoyancy inequality constraint.

◦ To implement the extended BESO method considering multiscale topology optimization.

◦ To construct 3D printed prototypes for experimental tests, specially in dynamic problems.

◦ To include different governing equations, such as acoustic absorption models, in order

to develop an extended BESO method capable to optimize systems with four or more

different finite elements during the optimization procedures, e.g., fluids, structures, voids

and acoustic absorbers.

◦ To use other discretizations for the FSI models such as meshless methods, e.g., the Smooth

Particle Hydrodynamics (SPH) method.

◦ To consider large structural displacements and deformations in the FSI problems with

viscous flow loads as well as transient problems.

◦ To associate the extended BESO method with commercial FEM codes.
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A IMPLEMENTATION DETAILS

This appendix aims to expose the implementation details of the basic methodology pre-

sented in this work. They are described by aspects of preprocessing, processing, postprocessing

and specific functions needed to reproduce the results of this thesis.

The development of computational routines was carried out using the commercial soft-

wares ANSYS in APDL programming, for preprocessing, and MATLAB, for processing and

postprocessing. A computer with a 64-bit Intel Core i7-4770 processor at 3.40 Ghz and 16.0

GB of RAM was available for this work. Figure A.1 illustrates the computational tasks distri-

bution for the developed methodologies.

Preprocessing

APDL file input

FE model construction

Write mesh data file

Processing

Read FE mesh

Optimization parameters input

Mesh information matrices creation

FE matrices assemblying

BESO algorithm

Postprocessing

Plot graphics and figures

ANSYS

MATLAB

Figure A.1: Computational tasks distribution for the presented methodology.

A.1 Preprocessing

The ANSYS was chosen as a finite element mesh generator for the presented thesis using

its Parametric Design Language (APDL). Thus, complex geometries can be easily parametrized

by programming APDL codes. The computational routine includes two APDL files, one for

creating parametrically designed meshes and another for writing the mesh data file.
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A.2 Processing

The processing initiates with a MATLAB code for reading the finite element mesh data

file in a standard manner chosen for this work, such as

coordinates =

[

x y
...

...

]

, (A.1)

defining the node in each row number and its coordinates in each column,

incidence =

[

type node1 node2 node3 node4
...

...
...

...
...

]

, (A.2)

which declares the incidence of the finite elements, defining the element type (mat = [void = 0,

solid = 1, fluid = 2]) and its nodes,

b.c. =

[

node DOF value
...

...
...

]

, (A.3)

with boundary conditions and, if external loads are imposed,

loads =

[

node DOF value
...

...
...

]

. (A.4)

A Matlab file is written with material properties and optimization parameters input. Be-

fore the finite element analysis, some matrices are created containing some mesh informations,

e.g., nodal connectivity, element centroids and element neighbours. For example, the informa-

tion with neighbour elements are stored in a matrix such as

neighbor =

[

number ele1 ele2 ele3 ele4
...

...
...

...
...

]

, (A.5)

with the element number and all its neighboring element numbers in a regular quadrilateral

mesh. These matrices are useful for identifying the fluid-structure interfaces in the presented

methodology. With the information of element neighbors and shared nodes, the coupling ma-

trices can be calculated and assembled directly and structural elements at the fluid-structure

interface can be identified, i.e., structural elements with fluid neighbors.

For the finite element analysis, a degree of freedom (DOF) identification matrix, ID, is
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created. This ID matrix depends on the problem and can have the form,

ID =

















(vfx)
node1 (vfx)

node2 · · ·

(vfy)
node1 (vfy)

node2 · · ·

(Pf )
node1 (Pf )

node2 · · ·

(usx)
node1 (usx)

node2 · · ·

(usy)
node1 (usy)

node2 · · ·

















(A.6)

indicating a number for each DOF in each node. Not all the problems considered in this work

need all these DOF’s, e.g., in nonviscous fluids no velocities are present. Thus, the number 0 is

included in (vfx)
node1, (vfx)

node2, etc. and represents inexistent DOF’s. With the aid of the ID

matrix the following function can be used for assembling the global finite element matrices:

1 function [K] = KassemblyFSIpress(inci,ID,Kef,Ke,mat,nelsol,nelflu)

2 % Fluid elements DOF's

3 loc = [ID(3,inci(find(mat == 2),2));

4 ID(3,inci(find(mat == 2),3));

5 ID(3,inci(find(mat == 2),4));

6 ID(3,inci(find(mat == 2),5))];

7 % Index vectors

8 If = reshape(repmat(loc,4,1),nelflu*16,1);

9 Jf = kron(loc(:),ones(4,1));

10 Kf = repmat(Kef(:),nelflu,1);

11 % Solid elements DOF's

12 loc = [ID(4,inci(find(mat == 1),2));

13 ID(5,inci(find(mat == 1),2));

14 ID(4,inci(find(mat == 1),3));

15 ID(5,inci(find(mat == 1),3));

16 ID(4,inci(find(mat == 1),4));

17 ID(5,inci(find(mat == 1),4));

18 ID(4,inci(find(mat == 1),5));

19 ID(5,inci(find(mat == 1),5))];

20 % Index vectors

21 Is = reshape(repmat(loc,8,1),nelsol*64,1);

22 Js = kron(loc(:),ones(8,1));

23 Ks = repmat(Ke(:),nelsol,1);

24 % Global index vectors

25 I = [If; Is];

26 J = [Jf; Js];

27 Kg = [Kf; Ks];

28 % Assembly

29 K = sparse(I,J,Kg);

30 end
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This function is used to assemble the uncoupled fluid-structure matrix in the design-

dependent pressure loading problems from Chapters 2 and 3. It makes use of some predefined

Matlab functions to organize the matrix values and their degrees of freedom in order to use

the sparse function to finally assemble the global matrix. The inputs Ke and Kef indicate the

structural and fluid stiffness matrices, respectively, while nelsol and nelflu are the numbers of

solid and fluid elements present in the model.

In the nonviscous static and dynamic models from Chapters 2, 3 and 4, the fluid-structure

matrices must coupled calculating the matrix Lfs (expressed in Equation 2.8) for each inter-

face segment, connecting fluid pressure and structural displacements. In stationary viscous flow

problems, Chapter 5, the fluid and structural matrices can be assembled in a single uncoupled

matrix. However, each domain is solved separately, provided the traction balance is carried out.

The global finite element matrix is assembled considering that all DOF’s can exist in some

iteration during the optimization. This allows the switch between solid, fluid and void elements.

In each iteration the active DOF’s must be identified in order to solve the global matrix. For

example, in a hard-kill approach, a node which eventually is connected to only void elements

should be considered to have only non active DOF’s. Thus, a sub-matrix which includes only

the active DOF’s can be extracted from the global finite element matrix. This step does not

represent a significant computational cost for the whole calculation time and can be carried out,

for example, with the following programming lines:

1 disp([' Identifying active DOFs!'])

2 dofn = [1:neq]';

3 for i = 1:nnos

4 % Types of elements conected to the node i

5 ele_type = inci(nonzeros(noconnect(i,2:5)),1);

6 % Identifying and blocking DOF's

7 if (isempty(find(ele_type == 1))) && (isempty(find(ele_type == 2)))

8 % Only void elements connected to the node i

9 dofn(ID(3,i)) = 0;

10 dofn(ID(4,i)) = 0;

11 dofn(ID(5,i)) = 0;

12 end

13 if (isempty(find(ele_type == 1)))

14 % Only fluid elements connected to the node i

15 dofn(ID(4,i)) = 0;

16 dofn(ID(5,i)) = 0;

17 elseif (isempty(find(ele_type == 2)))

18 % Only solid elements connected to the node i

19 dofn(ID(3,i)) = 0;

20 end
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21 end

22 % Blocking DOF's with boundary conditions

23 for i = 1:ncont

24 if (cont(i,1) 6= 0) && (cont(i,2) 6= 4) && (cont(i,3) == 0)

25 dofn(ID(cont(i,2)+3,cont(i,1))) = 0;

26 elseif (cont(i,1) 6= 0) && (cont(i,2) == 4) && (cont(i,3) == 0)

27 dofn(ID(3,cont(i,1))) = 0;

28 end

29 end

30 % DOF's ativos

31 dofa = nonzeros(dofn);

The variable neq indicates the total number of available DOF’s. Imposed DOF’s of zero values

are also included here. This procedure allows the switch between different types of elements

without the need of changing the numeration of DOF’s and finite element equations.

After solving the global finite element matrix a response vector U is obtained. The sensi-

tivities can be then calculated. A matrix H is evaluated containing all the filtering weight factors

w(rij) as described in previous chapters. This is a similar procedure as the one proposed by Sig-

mund and Peterson (1998) and it is well known in the field of structural topology optimization.

The matrix H with the weight factors is the same for whenever filtering is needed and it can

be built only once before the BESO algorithm starts. To filter the sensitivities, averaged nodal

sensitivity numbers are calculated and multiplied by the matrix H. The sensitivities and filtering

are only evaluated for the design domain.

Before the BESO update scheme, the sensitivities are sorted, the target volume is calcu-

lated and the sensitivities thresholds are defined. The standard BESO update scheme verifies

the sensitivities thresholds and switches solid and void elements, obtaining a discrete void/solid

design, as described in the previous chapters. Then, the proposed BESO fluid region update

scheme is carried out. This scheme introduces fluid elements through neighboring elements

layer by layer until the fluid region is completely in contact with the structure, as illustrated in

Figure A.2. Some programming loops are needed to verify whether void elements inside the

design domain have fluid neighbors. This iterative procedure is repeated until no more void el-

ements have fluid neighbor ones. This step also does not represent a significant computational

cost for the whole calculation time.

The following function is used as the extended fluid-structure BESO update scheme, in-

cluding the standard BESO scheme and the proposed fluid region update.

1 function [mat,inci] = ...
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Structural
design domain

fP

BESO 0/1
update scheme

Fluid region update

Figure A.2: BESO fluid region update scheme illustration.

updatematBESO(ARi,ARmax,In,mat,inci,designD,nath,I,V,elside,fixedfluid)

2 % Removing/adding elements considering first only 0 and 1

3 if (ARi ≤ ARmax) % If AR is lesser or equal maximum AR

4 % Removing/adding elements in mat vector

5 mat(In(1:nath)) = 1;

6 mat(In((nath+1):end)) = 0;

7 else % If AR is greater than maximum AR

8 % Material vector sorted according to In

9 In_mat = mat(In);

10 % Numbers of elements to be added

11 nadd_ath = round(ARmax*length(designD));

12 % Adjusting nath for even amount of removed elements

13 nadd_ath = round(nadd_ath/2)*2;

14 % Searching i index in In_mat corresponding to ath_add

15 % Counting amount of 0's in In_mat until the value of nadd_nath

16 aux_In_mat = 0;

17 for i = 1:length(In_mat)
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18 if (In_mat(i) == 0) || (In_mat(i) == 2)

19 aux_In_mat = aux_In_mat+1;

20 if aux_In_mat == nadd_ath

21 In_add = i;

22 break

23 end

24 end

25 end

26 % Number of elements to be removed

27 nret_ath_aux = round((V(I+1)-V(I))*length(designD));

28 % Adjusting nath for even amount of removed elements

29 nret_ath_aux = round(nret_ath_aux/2)*2;

30 nret_ath = nadd_ath-nret_ath_aux;

31 % Searching i index in In_mat corresponding to ath_del

32 % Counting amount of 1's in In_mat until the value of nret_nath

33 aux_In_mat = 0;

34 for i = length(In_mat):(-1):1

35 if In_mat(i) == 1

36 aux_In_mat = aux_In_mat+1;

37 if aux_In_mat == nret_ath

38 In_ret = i;

39 break

40 end

41 end

42 end

43 % Removing/adding elements in mat vector

44 mat(In(1:In_add)) = 1;

45 mat(In((In_ret):end)) = 0;

46 end

47 %-----------------------------------------------------------------------%

48 % Extended BESO fluid region update scheme

49 % Returning fixed fluids to mat

50 mat(fixedfluid) = 2;

51 % Setting auxiliary counter

52 aux = 1;

53 % While fluid region still advances

54 while (aux 6= 0)

55 % Resetting auxiliary counter

56 aux = 0;

57 % Updating fluid region

58 for i = 1:length(mat)

59 % For fluid elements

60 if (mat(i) == 2)

61 % Identifying type of neighbour elements

62 for j = 2:5

63 % If neighbour element exists

64 if (elside(i,j) 6= 0)
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65 % If neighbour element is void

66 if mat(elside(i,j),1) == 0

67 % Neighbour element becomes fluid

68 mat(elside(i,j),1) = 2;

69 % Auxiliary counter

70 aux = aux+1;

71 end

72 end

73 end

74 end

75 end

76 end

77 % Updating type of elements

78 inci(:,1) = mat;

79 end

The original uncoupled fluid-structure matrix must be then updated by removing and/or adding

element matrices or re-assembling the whole matrix considering the new fluid-structure config-

uration. A new finite element analysis should be carried out and the BESO algorithm iterated

until the convergence criterion and the volume constraints are satisfied. During the BESO iter-

ations the computational cost is concentrated in solving the finite element equations, i.e., cou-

pling matrices calculation, filtering, design variables update and others do not represent costly

procedures.

A.3 Postprocessing

The postprocessing is carried out in Matlab by using predefined functions such as

imagesc, colormap, fill and graphic edition.
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