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ABSTRACT 

The focus of this work was to develop a methodology to compare probabilistic data 

from two technologies, numeric reservoir simulation and 4D seismic. The first part of this 

study presents the proposed methodology that can be seen as a diagnostic tool to compare, 

guide and better understand simulation and seismic information. In this work the comparison 

between the two data sets was done in the pressure and saturation domain. So, multiple 

dynamic change maps (water saturation and pressure change maps) yielded from multiple 

simulation models and from probabilistic synthetic seismic inversion were the input of the 

methodology, which generates a “diagnostic map” that allows quantifying the agreement 

between simulation and seismic data. The information acquired from this “diagnostic map” 

was then applied to select the best simulation models using 4D seismic data, in regions 

where seismic was more precise than simulation. It was shown that the selected dynamic 

change maps from simulation models better matched the expected answer than the initial 

ones. In the second part of this study, a comparison between the proposed methodology and 

a traditional methodology was performed. It was considered that the traditional methodology 

uses probabilistic information from simulation and deterministic from seismic. Thus, the 

additional information that a probabilistic seismic integration in reservoir modelling 

workflow could bring was evaluated. Although satisfactory results were observed in both 

methodologies, proposed procedure showed to be more robust than the traditional method. 

The third part was performed to quantify which method was the most accurate to calculate 

the probability distribution of a certain data set. The estimation of probability distributions 

from seismic and simulation data sets was required in step one of the proposed 

methodology. Thus, the goal of the third part was to guarantee that the methodology 

developed in this work had used the most appropriate statistical tool. It was found that the 

kernel density estimator was the most accurate among the three methods studied. The fourth 

and last part of this dissertation presents a complementary study of the methodology 

developed in the first part. The aim of this last part was to evaluate the robustness of the 

proposed methodology when different qualities of simulation and seismic data were 

available, in other words, the applicability of the methodology in different (synthetic) cases. 

Despite parts two and three of the present work had shown significant results, it is important 

to highlight that the main contributions of this work is the “diagnostic map”, which integrate 



 

 

probabilistic data from simulation models and from 4D seismic from an innovative 

perspective. 

Keywords: history matching; 4D seismic; reservoir simulation; probabilistic integration; 

reservoir monitoring. 

 

  



 

 

RESUMO 

O foco do presente trabalho foi desenvolver uma metodologia para comparar dados 

probabilísticos de duas tecnologias, simulação numérica de reservatórios e sísmica 4D. A 

primeira parte deste estudo apresenta a metodologia proposta, que pode ser vista com uma 

ferramenta de diagnóstico para comparar, guiar e melhor compreender as informações da 

simulação e da sísmica. Neste trabalho a comparação entre os dois conjunto de dados foi 

feita nos domínios da pressão e da saturação. Assim, múltiplos mapas de mudanças 

dinâmicas (mapas de mudança de pressão e saturação de água) obtidos de múltiplos modelos 

de simulação e de uma inversão sísmica sintética probabilística foram os dados de entrada da 

metodologia, que gera um “mapa diagnóstico” que permite quantificar a concordância entre 

dados de simulação e sísmica. A informação obtida deste “mapa diagnóstico” foi então 

aplicada para selecionar os melhores modelos de simulação usando os dados da sísmica 4D, 

em regiões onde a sísmica era mais precisa que a simulação. Foi mostrado que os mapas 

selecionados dos modelos de simulação honraram melhor a resposta esperada que os mapas 

iniciais. Na segunda parte deste estudo, uma comparação entre a metodologia proposta e 

uma metodologia tradicional foi realizada. Considerou-se que a metodologia tradicional usa 

dados probabilísticos da simulação e determinísticos da sísmica. Assim, foi avaliado a 

informação adicional que a integração sísmica probabilística no fluxograma de modelagem 

de reservatório poderia trazer. Embora resultados satisfatórios tenham sido observados em 

ambas as metodologias, o procedimento proposto mostrou-se mais robusto que o método 

tradicional. A terceira parte deste trabalho foi realizada para identificar o método mais 

acurado para calcular a distribuição de probabilidade de um conjunto de dados.  A 

estimativa das distribuições de probabilidade da sísmica e da simulação é requerida no passo 

um da metodologia proposta. Assim, o objetivo deste estudo foi garantir que a metodologia 

desenvolvida neste trabalho usasse a ferramenta estatística mais adequada. O estimador 

kernel de densidade de probabilidade foi o método mais acurado entre os três estudados. A 

quarta e última parte desta dissertação apresenta um estudo complementar da metodologia 

desenvolvida na parte um. O objetivo desta última parte foi avaliar a robustez da 

metodologia proposta quando diferentes qualidades de dados da simulação e da sísmica 

estão disponíveis, ou seja, a aplicabilidade da metodologia em diferentes casos (sintéticos). 

Apesar das partes dois e três do presente trabalho terem mostrado resultados significantes, é 

importante destacar que a principal contribuição do presente trabalho foi o “mapa 



 

 

diagnóstico”, que integra com um perspectiva inovadora dados probabilísticos de modelos 

de simulação da sísmica 4D. 

 

Palavras Chave: Ajuste de histórico; sísmica 4D; simulação de reservatório; integração 

probabilística;  monitoramento de reservatório. 
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1. INTRODUCTION 

One of the main objectives of the reservoir engineer is to predict the overall behavior 

of the reservoir. In this context, simulation models have an important role, allowing the 

professional to integrate several measured properties from different areas and numerically 

simulate the reservoir behavior to evaluate field performance: predicting reserves, forecasting 

reservoir production, performing reservoir characterization studies, analyzing risks under 

different production strategies, managing the reservoir.  

However, the simulation models are simplifications of the real reservoirs and contain 

limitations such as numerical errors and uncertainties in the properties that describe the 

reservoir. The first limitation is inherent to any computational analyses and strongly depends 

of improvements in numerical methods to calculate complex equations, scale transfer from a 

certain data etc. The second one, uncertainties in the reservoir properties, occurs mainly 

because most of reservoir parameters are obtained indirectly, through correlation and 

interpretation (Maschio and Schiozer, 2013). 

In order to minimize these limitations, a history matching procedure is applied. 

Basically, the idea of this procedure is to change uncertain reservoir properties of the models 

until the simulation results match the measured (observed) dynamic data, such as pressure 

change and fluids rates. Therefore, history matching is an inverse problem, where the 

expected answer is known (production rates and pressure), and reservoir properties to reach 

this answer are unknown. This procedure has been developed since the late 60’s, but the last 

decade has seen notable progress with several published works (Sarma et al., 2005; Gervais 

and Roggero, 2010; Olivier and Chen, 2011; Emerick and Reynods, 2013; Maschio and 

Schiozer, 2016). 

In general, the observed dynamic data used is the production, injection and pressure 

measured at the wells (Ida, 2009). Nonetheless, the wells are located in sparse regions, which 

call for addition areal dynamic data, such as 4D seismic.  

4D seismic is the repetition of two (or more) 3D, or 2D seismic surveys acquired at 

different times over the same area. It gives areal dynamic reservoir information, that which 

can be used as additional data in history matching. Moreover, it can provide the fluid contact 

with time, estimate the fault seal and locate the bypass fluids (Yan, 2014).  
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studies in this context is the one presented by Gosselin et al. (2003), who used a gradient-

based methodology to optimize an objective function with 4D seismic information integrated. 

This method was named History Matching Using Time Lapse Seismic (HUTS) and showed 

significant improvement in reservoir characterization and reduction in the range of uncertain 

properties. Later, Portella and Emerick (2005) showed that HUTS works fine whether seismic 

data of good quality is available. In the same year, Stephen et al. (2005) presented a history 

matching method that used 4D seismic and production data simultaneously, on an integrated 

workflow, with some improvements in relation to HUTS, such as in the gradient-based 

method used. 

More recently, Almeida et al. (2014) used the indicator called Normalized Quadratic 

Deviation with Sign (NQDS) to incorporate a water saturation change map from 4D seismic 

in a history matching procedure.  

Beyond the type of the seismic data set used (amplitude, impedance or saturation and 

pressure domain) and how to use it (qualitatively or quantitatively) there is still another 

challenge, involving the quality of 4D seismic data. As emphasized Castro (2007) and Bosch 

et al. (2010), seismic signals and the seismic data processing (such as inversions) have several 

uncertainties, which make seismic responses non-unique. Besides that 4D interpretation 

requires the knowledge of rock and fluid properties which can be very uncertain too. 

Traditionally, seismic and simulation data are used deterministically, as illustrates 

Figure 2a. In this case, the dynamic change map (saturation and pressure change or 

impedance variation, etc.) obtained from a unique reservoir simulation model is compared 

(qualitatively or quantitatively) with the dynamic change map from a deterministic 4D 

seismic. In these cases, the uncertainties from simulation and seismic data are not quantified.  

However, reservoir simulation and 4D seismic data contain several uncertainties and 

limitations, since both technologies deal with several unknown properties and with solution of 

complex inverse problems, such as history matching (reservoir simulation data) and seismic 

inversion (4D seismic data).  

In order to mitigate inaccurate conclusion that can be obtained from studies with 

deterministic simulation model, the number of works that uses multiple models (probabilistic) 

instead of a single simulation model has increased. For problems with a large number of 

parameters taken probabilistically, there are some methods found in the literature: (1) the 

ensemble smoother (ES) method proposed by Leeuwen and Evensen (1996) and applied in 

reservoir history matching in works (Skjervheim et al., 2011; Emerick, 2016); (2) genetic 



15 

 

 

 

algorithms, used to reservoir calibration, as shown in Romero et al. (2000) and Xavier et al. 

(2013); (3) neighborhood algorithms, applied for history-matching problems (Suzuki, 2007; 

Jin et al., 2012) and others. 

Nonetheless, even when probabilistic simulation data are considered, if 4D seismic 

information is used, it is usually considered as a deterministic (“exact”) data that the multiple 

simulation models should match, as illustrates Figure 2b. Although it would be more 

reasonable contemplate the uncertainties from both technologies (since both have several 

limitations), there are still few works that used probabilistic seismic information from seismic 

and simulation in the same time (Figure 2.c).  

We can find some studies regarding seismic uncertainties; for instance, Grana and 

Mukerji (2014) proposed a Bayesian inversion to carry out 4D seismic data. The probabilistic 

estimates from this inversion could then be integrated in a history matching procedure. 

However, it is notorious the lack of works that proposed methodologies to integrate this 

probabilistic 4D seismic data with probabilistic reservoir simulation information. 

Emerick (2016) incorporated 4D seismic impedances using an approximated data-

error covariance. His work showed that the incorporation of 3D and 4D seismic provided 

some improvements in the data matches and great reductions in the variability of predicted 

water rate and in the permeability distribution of the field. 

Landa and Kumar (2011) presented a methodology where the reservoir models are 

calibrated using production and 4D seismic data simultaneously, through the same workflow. 

This procedure was performed in a probabilistic scenario and 4D seismic data were used in 

the amplitude domain. A probabilistic seismic modeling was required inside a history 

matching procedure, which allows accessing the pressure and saturation (or impedances) 

scenarios that provided the best final solution. This could be seen as a procedure that 

integrates probabilistic data from production and from 4D seismic. However this can be a 

very complex task to perform and good parameterization is necessary to guarantee the success 

of the implementation. Moreover, this probabilistic joint procedure (history matching and 

seismic inversion) can generate statistical bias that would not be observed in seismic 

inversions without production data integrated (as presented Grana and Mukerji, 2014). Hence, 

to avoid these drawbacks, it is interesting to develop a method that integrates probabilistic 

data from production and seismic but without perform this kind of joint process. 
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1.3. Premises 

 The study was developed using synthetic data. There is a reference model that 

represents the true earth model, in other words, the answers to be reached. Thus, this 

reference model is used to verify the accuracy of the proposed methodology. The 

reference model is also used to obtain the data usually measured in a field (well log, 

production data etc.). From these measured data the simulation models and history 

data are generated. 

 Seismic data (P and S impedances) were generated from a petro-elastic model that 

used input data from the reference model. These impedances were probabilistically 

inverted to obtain pressure and saturation estimates. No seismic amplitudes were used. 

 Pressure and saturation domain is used to compare simulation and seismic data. 

Pressure and saturation maps are more complex to be obtained from seismic data; 

however, they are direct responses from the simulation models. Another reason for 

working on saturation and pressure domains, as explained in Davolio (2013), is 

because the values of these physical quantities can be better controlled (to establish 

feasible limits) than the elastic properties of rock (such as impedance).  

 All data are in the same scale 110x90 blocks with 9 layers. 

 There is no presence of gas (the reservoir pressure is kept above bubble pressure 

through water injection). 

1.4. Description of the work 

This dissertation is structured in three papers. The first paper (Chapter 2) describes the 

methodology proposed to compare the probabilistic information from seismic and simulation, 

which is the main contribution of the present work. The second paper (Chapter 3) proposes a 

comparative study between the proposed methodology and one methodology performed with 

deterministic seismic information (traditionally used). The third paper (Appendix A), presents 

the statistical study performed to define the most accurate method to estimate the probability 

distribution of a certain data set. The information from this last paper is used in the first paper 

(Chapter 2).  

The dissertation also comprises Appendix B, which presents a complementary analysis 

to Paper 1 (Chapter 2) discussing the application of the methodology proposed with different 

datasets. Finally, Chapter 4 presents the most relevant conclusions and future steps.  
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A summary of the three papers and the relation between Appendix B and Paper 1 are 

highlighted in the next section. 

 

1.4.1. PAPER 1: ―A Methodology to Integrate Multiple Simulation Models and 

4D Seismic Data Considering Their Uncertainties‖ 

Germano S. C. Assunção, Alessandra Davolio, Denis José Schiozer.  
This paper was prepared for oral presentation at the SPE Annual Technical 

Conference and Exhibition held in Dubai, UAE, 26–28 September 2016. 
 

The methodology proposed in this paper is the main contribution of this dissertation, 

presenting a new mechanism to evaluate the information from 4D seismic and simulation data 

considering their uncertainties.  

As main results, we identified regions in the reservoir where 4D seismic data could 

bring more information than simulation and vice-versa. Moreover, it is possible to find 

reservoir locations where both data are providing divergent information (which is a indicative 

of presence of “unknown unknowns”) or convergent information (seismic and simulation are 

well matched). 

Appendix B presents some complementary results to Paper 1. The same methodology 

from Paper 1 is discussed in Appendix B, however different sets of data from simulation and 

seismic are tested, in order to evaluate the applicability of the proposed methodology. 

1.4.2. PAPER 2: ―A Comparative Study of two Methodologies to Integrate 

Reservoir Simulation and 4D Seismic Data‖ 

Germano S. C. Assunção, Alessandra Davolio, Denis José Schiozer.  
This Technical Paper was prepared for presentation at the Rio Oil & Gas Expo 

and Conference 2016, held between October, 24-27, 2016, in Rio de Janeiro. 

 

In this work, the methodology proposed in Chapter 2 is compared with a methodology 

traditionally used (which integrates 4D seismic deterministically). The methodologies are 

performed to select the most representative pressure and saturation changes maps from 

simulation models using 4D seismic data, mimicking an iteration of a seismic history 

matching procedure where only 4D seismic is used in the objective function. The models 

selected by the application of each methodology are compared and the differences between 

them are analyzed. 
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The contribution of this study to the dissertation is to show the most relevant 

differences brought between determinist and probabilistic use of seismic data to support 

reservoir characterization. 

1.4.3. PAPER 3: ―Quantitative Comparison of Non-Parametric Methods to 

Handle Probabilistic Data From 4D Seismic and Reservoir Simulation‖ 

Germano S. C. Assunção, Alessandra Davolio, Denis José Schiozer. 
To be submitted to a journal. 

 
A critical part in probabilistic analyses is the choice of the most accurate statistical 

method to estimate the probability distribution of the data sets used. There are several 

methods to estimate the probability distribution of a certain data set, but they present some 

drawbacks. Thus, this work aims to evaluate three of the most used methods: histogram, 

empirical cumulative frequency curve and kernel density estimator.  

After comparing the three methods we concluded that the kernel density estimator is 

the more accurate. The results from the present paper contribute to the development of 

methodology proposed in Chapter 2, since the estimation of the probability distribution is the 

first step of the proposed methodology.  

  



20 

 

 

 

  

2. PAPER 1: ―A Methodology to Integrate Multiple Simulation 

Models and 4D Seismic Data Considering Their 

Uncertainties‖ 

Germano S. C. Assunção, Alessandra Davolio, Denis José Schiozer.  

This paper was prepared for oral presentation at the SPE Annual Technical 

Conference and Exhibition held in Dubai, UAE, 26–28 September 2016.  
  



21 

 

 

 

 

 

SPE-181602-MS 

A Methodology to Integrate Multiple Simulation Models and 4D 
Seismic Data Considering Their Uncertainties 
Germano S. C. Assunção, Alessandra Davolio, Denis J. Schiozer, State University of Campinas 
(UNICAMP) 

Copyright 2016, Society of Petroleum Engineers 
 
This paper was prepared for presentation at the SPE Annual Technical Conference and Exhibition held in Dubai, UAE, 26–28 September 2016. 
 
This paper was selected for presentation by an SPE program committee following review of information contained in an abstract  submitted by the 
author(s). Contents of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The 
material does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, 
or storage of any part of this paper without the written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is 
restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of SPE 
copyright. 
 

 

Abstract 
Traditionally, integration between 4D seismic (4DS) and simulation data has been performed 
considering the 4DS data deterministically. However, there are uncertainties in the response 
of seismic. The goal of the methodology presented in this work is to compare the changes of 
dynamic properties estimated from 4DS and simulation models considering the uncertainties 
inherent to both data. 

The relevant reservoir uncertainties can be combined to generate multiple simulation 
models, which provide maps of dynamic changes, such as pressure change (Δp) and water 
saturation variation (ΔSw). Available 4DS can also be used to map dynamic changes. Through 
a stochastic seismic inversion, multiple ΔSw and Δp maps can be obtained from 4DS. After 
selecting a proper scale (scale transference), we compare the dynamic maps from seismic and 
simulation data using probabilistic density functions (PDFs), establishing levels of 
agreement/disagreement between 4DS and simulation data. 

To validate the methodology we use a synthetic dataset, with moderate complexity and 
seven uncertainties mapped, such as fault transmissibility, porosity, facies, and permeability. 
500 maps of ∆Sw and ∆p from 4D seismic were generated from prior probabilistic seismic 
inversion. 500 simulation models previously calibrated using well production data generated 
the set of 500 maps of ∆Sw and ∆p from simulation. Applying the methodology, we identify 
four regions: (1) reservoir locations where both estimates (seismic and simulation) are similar, 
showing regions properly calibrated, (2) locations where simulation estimates are more 
precise than 4D seismic, (3) reservoir locations where the data sets indicate divergent 
estimates, and (4) 4DS estimates are more precise than simulation. 

This information can be very useful to guide data integration. As an example, we show 
that region (4) can be used to select the simulation models that reproduce ∆Sw or ∆p behavior 
from 4DS, since 4D seismic data is more precise than the simulation estimates in this region. 
Other useful information from the proposed methodology is that the reservoir zones identified 
as region (2) can be used as a constraint to reinterpret 4D seismic data, as simulation estimates 
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are more precise. 
The methodology is a new way to evaluate the information from 4D seismic and 

simulation data considering uncertainties. The identification of these four regions can be 
useful in the parametrization phase of the history matching procedure (a complex process), as 
an additional tool to understand the properties in this procedure. The methodology also 
indicates possible locations to use reservoir engineering constraints to improve seismic 
interpretation, in regions where estimates from simulation are more precise than 4D seismic 
data. Moreover, we can use the methodology to determine critical reservoir locations to be 
reevaluated, those presenting disagreement between the two data source. 

 
Introduction 
Reservoir modeling is a complex task, involving a large number of uncertain properties that 
characterize the reservoir, such as water-oil contact, fault transmissibility, permeability and 
porosity distributions. A common practice to reduce the uncertainty of these properties is to 
evaluate the difference between dynamic observed data and simulated data. The properties in 
the simulation models are then updated until this difference reaches an acceptable value. This 
procedure, history matching, plays a key role in reducing the uncertainties, providing more 
reliable simulation models to manage the real reservoir, explore different locations for infill 
wells, study potential benefits of smart wells, optimize well distribution, and more (Oliver and 
Chen, 2011). 

According to Morell (2010), dynamic observed data is usually divided into two 
categories: production and seismic data. Production data, such as oil flow and bottom hole 
pressure, are obtained from well measurement but as the wells are in specific reservoir 
locations, they lack areal information. Seismic data, on the other hand, is spatially valuable, 
providing dynamic information in inter-well regions. 4DS is the difference observed over two 
or more 3D (or 2D) seismic data sets of the same area acquired at different times. In history 
matching, 4DS can be used as dynamic information to reveal unknown characteristics of the 
reservoir such as fluid displacement and pressure changes. 

In addition, the history matching can be performed deterministically or probabilistically. 
Using the deterministic approach a single simulation model attempt to reproduces the real 
reservoir. In this case, the properties are updated using available dynamic observed data and 
then the calibrated model guides the management of the real reservoir. This approach is 
statistically weak because it ignores the uncertainties of the properties: production forecast is 
performed using a single model. Considering these uncertainties is important because they can 
range widely. Thus, over the last years, research has focused on developing probabilistic 
history matching procedures, to handle several models simultaneously, for a more reliable 
analysis, as shown in Evensen et al. (2007), Elsheikh et al. (2012), and Maschio and Schiozer 
(2014). 

In this context, 4D seismic information is usually used as deterministic dynamic observed 
data to improve the reservoir models (probabilistic history matching) or model (deterministic 
history matching). Thus, we can compare the simulation result from a single model with the 
4D seismic data (e.g. study proposed by Almeida et al., 2014) or compare the results from 
multiple simulation models with the available 4D seismic data (e.g. works of Stephen et al., 
2004 and Riazi et al., 2013). These single or multiple simulation models may have been 
previously calibrated with a history matching procedure using production data from wells or 
not, depending on the study.  

Nonetheless, seismic data also have some uncertainties due to noise and possible errors 
caused by resolution, acquisition and processing the data. Deterministic 4D seismic 
information does not consider these uncertainties: the changes interpreted from 4D seismic 
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data are assumed “exact”, as Castro (2007) explained. Thus, following the current trend for 
using probabilistic history matching procedures to handle reservoir simulation models, using 
4D seismic information probabilistically would improve the accuracy of the 4D seismic data.  

Some works integrate 4D seismic data and simulation data following a probabilistic 
approach, such as the joint history matching/inversion. The basic idea of this procedure is to 
update well production data and 4D seismic data simultaneously. An objective function is 
defined to measure the mismatch between the measured dynamic data (production and 4D 
seismic-related data) and the corresponding simulated responses. Then, an optimization 
algorithm is run to minimize this function and update seismic and simulation data (Gervais-
Couplet et al., 2010 and Landa and Kumar, 2011).  

However, the joint history matching/inversion are a complex non-linear inverse problem, 
sometimes involving expensive computational simulations. One possible drawback of this 
approach is the generation of inconsistent geological behavior when minimizing the objective 
function. The success of this type of method (and others related to inverse problems) depends 
on defining the uncertain properties to be modified and how to change them, to achieve an 
acceptable match through an optimization procedure.  

The objective of this work is to compare probabilistic data from 4D seismic and reservoir 
simulation, but without an integrated optimization process. The main idea is to evaluate the 
agreement/disagreement of the two data sets (seismic and simulation) through the modified 
overlapping coefficient (OVL). We propose the use of the OVL as a tool to compare seismic 
and simulation data considering the uncertainties for both. This methodology is a diagnostic 
tool, which can be used to understand the uncertainties from both data sets, to guide the 
seismic and simulation integration in any process (for instance in joint history 
matching/inversion) and/or to select the most representative data sets concerning both sides: 
seismic and simulation. Previous work performed by Davolio and Schiozer (2015) proposed a 
methodology to compare maps of dynamic changes from 4D seismic and simulation data, this 
work presents a more robust way to compare them. 

 
Methodology 
This methodology integrates reservoir simulation data and 4D seismic data, quantitatively and 
probabilistically. The workflow in Fig. 1 shows the domain of integration between 4D 
seismic and simulation data for the proposed methodology. 

Considering n maps of ∆p estimated from a probabilistic 4D seismic inversion transferred 
to simulation scale and m maps of ∆p yielded from multiple simulation models. Two pressure 
change vectors are built for every reservoir grid block: SEISp= [∆p1

SEIS, ∆p2
SEIS... ∆pn

SEIS] and 
SIMp= [∆p1

SIM, ∆p2
SIM…∆pm

SIM]. 
The same procedure can be performed to ∆Sw maps, using the following vectors: 

SEISSw= [∆Sw1
SEIS, ∆Sw2

SEIS... ∆Swn
SEIS] and SIMSw= [∆Sw1

SEIS, ∆Sw2
SEIS…∆Swm

SEIS]. 
The overlapping coefficient (OVLC) refers to the area under two probability density 

functions. Thus, OVLC determines the relative closeness of the two datasets, where 0% 
represents complete disagreement and 100%, represents data agreement. 

Using the kernel density estimator (KDE) proposed by Botev et al. (2010), we can 
generate the probability density functions (PDFs) from both data.  

PDFSEIS and PDFSIM denote the probability distribution functions of vectors SEISp and 
SIMp, respectively. The overlapping coefficient is defined according to Weitzman (1970) 
apud Schmid and Schmidt (2006) by Eq. 1 and it can be used to identify the coincidence 
interval of PDFSEIS and PDFSIM: 
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  ……….…...........................................................(1) 

  

The OVLC method is usually used to compare two probability density functions, with 
applications in other fields. Further explanation about the OVLC can be found in Bradley 
(2006), and Al-Saleh and Samawi (2007). 

In this work we propose the modified overlapping coefficient (OVL). In this approach, 
two parameters are defined: (1) OVLSIM is the area of PDFSIM within the OVLC interval and 
(2) OVLSEIS is the area of PDFSEIS with the OVLC interval. These parameters are shown in 
Eqs. 2 and 3: 

                                                                         ,  ………....................................(2) 

                                                                            ,  ……………….….................(3) 

 

Fig. 2 illustrates the parameters presented above. The green dashed lines represent the 
overlapping interval (OVLC interval). We first identify the interval (Fig. 2a) and then 
compute the OVLSIM and OVLSEIS through Eqs. 2 and 3, as presented in Figs. 2b and 2c, 
respectively. 

The procedure is performed for every grid block. The OVL information is then gathered 
in two maps, the OVLSEIS and OVLSIM maps, to observe the overall behavior of the estimates 
from seismic and simulation data. We can identify the four different arrangements through 
cross plotting the OVLSIM and OVLSEIS maps, as Fig. 3 illustrates. 

Based on the cross plot, we defined four different regions indicating: (1) locations with 
agreement between simulation and seismic data, i.e., regions properly calibrated, (2) locations 
where simulation data is more precise than seismic, thus, simulation can be used to improve 
4D seismic interpretation1, (3) areas where simulation and seismic data disagree, indicating 
regions where the uncertainties related to both data should be re-evaluated, and (4) reservoir 
locations where seismic data is more precise than simulation, so 4D seismic data can be used 
to calibrate simulation models following traditional history matching practices. 

In the first phase of integration between seismic and simulation data, we considered 80% 
agreement between OVLSEIS and OVLSIM as an acceptable value. However this tolerance is 
user defined and as the responses from 4D seismic and simulation data become more precise, 
this parameter can be adjusted to a greater value. Note that precision in data analysis is 
associated with the amount of variation or dispersion of the data set. A precise data set 
indicates that the data points tend to the mean, while imprecision is indicated by data points 
spread out over a wider range of values, precision is not the same as accuracy. 

                                                 
1
 In this case, it is highly recommended to run a previous history matching using well production data to 

have (more) reliable models to evaluate the 4D seismic interpretation. 
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Fig. 4 presents an overall workflow of the proposed methodology, divided into three 
steps: (1) generate PDFs, (2) calculate OVLs in every grid and (3) cross plot OVLSIM and 
OVLSEIS and identify the 4 regions. Thus, identifying the 4 regions is the main contribution of 
our methodology. 

Instead of ∆p or ∆Sw maps, the proposed methodology can utilize any other 4D seismic 
attribute, such as impedances. The choice of which attribute to use depends on the data 
available. 
 
Application 
Reservoir description 

This study used a synthetic dataset to generate a 3D clastic model (Beta model), on which 
our approach is tested. We used a reference model representing the true earth model and 
corresponding to a system with two facies: sandstone and shaly-sandstone, with high 
horizontal continuity and different porosity, permeability and net-to-gross (NTG) 
distributions. The structural framework of the reservoir is represented by an anticline 
comprising 4 major faults with different transmissibility (Fig. 5a). The reference model 
contains about 1,600,000 cells (270x330x18). Nineteen wells are active during the flow 
simulation (Black-oil): eleven vertical producers and five vertical injectors (Fig. 5b). 

 
Model uncertainties 

Uncertainty in reservoir data is mainly caused by uncertainties in measurements, data 
handling coming in second. The two goals of uncertainty analysis are to quantify and reduce 
uncertain reservoir properties, aiming to generate more accurate models. There are seven 
uncertain attributes considered in this work: (1) relative permeability for the two facies, (2) 
ratio between permeability vertical and horizontal (Kz/Kx), (3) transmissibility of the four 
faults, (4) facies distribution, (5) porosity, (6) absolute permeability and (7) NTG 
distributions. Correia et al. (2016) presents further details about these uncertainties.  

 

Simulation models 
The history data was obtained from the reference model considering a five years flow 

simulation. Combining all the uncertain properties previously mentioned and using a coarser 
grid block (90x110x9), 500 simulation models (m= 500) was created through the DLHG 
technique (Schiozer et al., 2014). After the generation of the models, a well history matching 
was performed and the data here comprises 500 simulation models yielded from an 
intermediate step (step 2 of 4). The details of the well history matching are presented by 
Almeida et al. (2014). 
 
4D modeling 

The reference model provides the 4D seismic data used in this study. The first step of the 
seismic modeling consists of a flow simulation to predict fluid saturations and pressure in the 
reservoir at the time of the seismic surveys. There are a base survey before production start 
and a monitor after 5 years of production. The reservoir properties are converted to seismic 
attributes, such as P- and S-wave velocities and density (elastic domain) using the petro 
elastic model presented in Pazetti et al. (2015). In this work the “observed” seismic data are 
the P and S impedances computed from the forward modeling, no seismic amplitudes are 
generated. To produce a more realistic dataset a random noise was added to seismic 
impedances as described in Davolio and Schiozer (2014). These disturbed impedances are 
used as input to a probabilistic inversion procedure, based on Latin Hypercube, estimating 
pressure and saturation changes described in Davolio and Schiozer (2015), consequently, 
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multiple scenarios (n=500) of water saturation and pressure distribution are computed from 
4D seismic impedances. 

 
∆Sw and ∆p maps 

Fig. 6 illustrates the estimates of ∆Sw used in this work. All the maps are obtained from 
layer 3 (from 9 layers). In Fig. 6a, the reference map presents the expected value, that is, the 
true answer. Fig. 6b shows the mean of the saturation change maps from the 500 simulation 
models and Fig. 6c presents the mean of estimates from the 500 maps of ∆Sw provided by 4D 
seismic inversions. Reference and seismic information were scale transferred, therefore, 
available data (reference, simulation and seismic) are in the simulation scale (90x110x9).  

Likewise, Fig. 7a presents pressure change indicated by the reference model. The mean 
of 500 ∆p maps from simulation models is presented in Fig. 7b and 7c shows mean of 500 ∆p 
maps yielded from the 4D seismic inversion. 
 
Results  
Pressure analysis 

As we can see in Fig. 7b, the average ∆p estimate from the simulation models is 
homogeneous into the reservoir zones bounded by the faults. For example, the drained area of 
wells P1, P2, P9 and P11 indicates a mean value for ∆p of -14 MPa. The reservoir area 
between faults A and B, presents a mean value of ∆p equal to -8 MPa. In the region from fault 
C to D, ∆p is roughly zero. Hence, the ∆p estimate from history-matched models (using well 
data) is delimited by the presence of faults. Observing the reference map (Fig. 7a) we can see 
that the reference pressure behavior is homogenous throughout the reservoir. It indicates that 
the 500 models considered here, extracted from an intermediate step of the well history 
matching, do not have a proper pressure calibration. 

From a qualitative and visual analysis, we can see that the estimates provided by 4D 
seismic data (Fig. 7c) are closer to the reference map (Fig. 7a) than estimates from the 
simulation models. So the ∆p estimates from 4D seismic can be used to calibrate estimates 
from history-matched models. 

The above analysis is deceptively simple, as it is impossible to be performed for a real 
case due to the lack of the reference response of the reservoir. Thus, two issues must be 
highlighted: (1) how to guarantee correct analysis of uncertainties without a reference model 
and (2) how to quantitatively integrate probabilistic information from 4D seismic and 
simulation data using more information than just the mean values from data sets. 

The methodology proposed here, uses the overlapping coefficient to address these issues. 
The OVL-based methodology uses probability density functions, PDFs, to represent the 
available data. It brings more detail about distribution of studied data than a simple analysis of 
the mean average. Thus, it might convey some information that the mean from probabilistic 
data might not.  

By computing the parameters OVLSEIS and OVLSIM for every grid block and gathering 
this information in the OVLSEIS and OVLSIM maps, as shown in Fig. 8, we can observe the 
overall behavior of pressure change from 4D seismic and simulation models taking into 
account their variability 

Three different zones are visible in Fig. 8a: (1) where the estimations show low precision 
(OVLSIM < 80%), (2) where the precision of simulation estimates is high (OVLSIM >80%) and 
(3) a heterogeneous zone in the north, where OVLSIM varies from 0% to 100%.  

Regarding OVLSEIS map, Fig. 8b, the estimates from 4D seismic appear to be precise in 
most grid blocks. A few grid blocks, inside the rectangle (wells P1, P2, P9, P11, I1 and I2), 
presented OVLSEIS lower than 80%.  
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Different from the mean maps in Fig. 7b and 7c, the OVLSEIS and OVLSIM maps do not 
show the mean behavior of pressure change estimates, but how those estimates are distributed 
in every grid block and how precise these distributions are. OVLSEIS or OVLSIM greater than 
80% show precise estimates of ∆p, whereas values under 80% indicate estimates with lower 
precision, i.e. greater variability.  

We cross plotted the maps of Fig.  8 and grouped the OVL information for every grid 
block in the four proposed regions, as presents Fig. 9a. The points concentrate in region (1), 
where 4D seismic and simulation distributions look very much alike and in region (4), where 
seismic distribution is more precise than simulation distribution. Some points in region (3) 
show locations where seismic and simulation estimates indicate different ranges and a few 
points in region (2) when simulation is more precise than seismic. Fig. 9b illustrates the map 
from the cross plot information, allowing us identify the four regions in the reservoir 
configuration.  

To validate the procedure, Fig. 10 presents some examples of grid blocks where the PDF 
of ∆p from 4D seismic and from simulation models identified regions (1), (2), (3) and (4). At 
region (1) both PDFs show the same trend, indicating properly calibrated reservoir grid blocks 
(data agreement). In region (2), simulation distribution varies less than seismic distribution 
while in region (4) seismic distribution varies less. In region (3) seismic and simulation 
distributions present different ranges, therefore, as a future step, a more detailed analysis of 
the characteristics from those grid blocks must be carried out to improve the uncertainty 
mapping and definition of all data.  

The first application of the 4 regions map is to use the information from 4D seismic data 
at region (4). In these areas, estimations from 500 ∆p maps provided by 4D seismic data 
presented lower variability than estimates from well history matched models; therefore, 
seismic is useful to reduce uncertainties in reservoir simulation. 

We selected simulation models that reproduce the range indicated by 4D seismic 
distribution. Fig. 11 presents an example of selection using 4D seismic data for one grid 
block. Initial distribution from simulation is more variable, i.e. less precise, than selected 
simulation models within 4D seismic range.  

Fig. 11 presents the selection for one grid block. We applied it for every grid block in 
region (4), then gathered the 10% most frequently selected simulation models (considering all 
blocks), and then computed the mean from those models to finally obtain the ∆p map in Fig. 
12c. 

The selected simulation models (Fig. 12c) are closer to the expected answer (Fig. 12a) 
than the initial models (Fig. 12b). Note that the reservoir locations in blue in Fig. 12b, where 
the ratio between the mean of the initial ∆p estimates from simulation and the reference value 
(Fig. 12a), was greater than 2.5. The selected models presented values closer to the reference 
maps, with a ratio between ∆p estimates from selected models and reference value of roughly 
1.3 (where ratio 1 indicates identical values). These regions showed the greatest improvement 
although the others also improved. The selection generated estimates very close to the 
reference value as well as reduced uncertainties, since selected models present more precise 
distributions.  

Also note that we chose models according to the information from a small number of 
blocks (only those classified in region 4). So, the application of the OVL map allows the 
targeted use of 4D seismic information, differing from traditional methods that compare the 
quadratic difference between simulation and seismic data (for every grid block of the 
reservoir) as presented by Almeida et al. (2014). Assunção et al. (2016) compares the 
application of both procedures to select the simulation models that best honor the observed 
4D seismic data. They show that the OVL can provide a set of selected simulation models 
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more statically consistent with the 4D seismic data than the quadratic difference method. 
 

Saturation analysis 

Fig. 6c presents the average of the estimates of water saturation change from 4D seismic 
data. The mean value shows some variation of water in regions far from injectors, which were 
unexpected according to the true answer, representing zones with problematic seismic signals. 
Nonetheless, 4D seismic data show lower “rings” of water fronts than simulation, honoring 
the reference response.  

 Similarly to the pressure analysis previously presented, we calculated the parameters 
OVLSIM and OVLSEIS for every grid block and grouped in OVLSIM and OVLSEIS maps, seen in 
Fig. 13. For regions close to injector wells, both values, OVLSIM and OVLSEIS are high. 
Nonetheless, the water front OVLSEIS is greater than OVLSIM, as highlighted in the green 
rectangle. 

At the reservoir locations far from injector wells, such as the drainage area of production 
wells P8 and P9 (green arrows), OVLSEIS is lower than OVLSIM, as a result, we conclude that 
in these regions information from simulation is more precise than 4D seismic data. 

Cross plotting OVL maps (Fig. 14a) and mapping the four regions (Fig. 14b), we can 
identify locations where seismic data is more precise than simulation (region 4) and where 
simulation data is more precise than seismic (region 2). In region 4, seismic data must be used 
to reduce uncertainties in water front estimations provided by history matched models and in 
region 2 the simulation model results can be used as constraints to reduce noise and 
uncertainties in the probabilistic 4D seismic inversion. 

Selecting simulation models within the seismic distribution range, for every reservoir grid 
block at region 4 can be useful to calibrate simulation estimations. The method here applied is 
the same performed in the pressure analysis. We selected the simulation models at seismic 
range for every grid block and gathered the 10% (50 out of 500) most frequently selected 
models. Fig. 15 presents these results. 

Fig. 15c shows that around injector well I1, the waterfront zone was minimized when 
seismic information was incorporated. A perfect match of the saturation front was not 
expected because we are selecting only the best 50 models out of the 500 models available 
that did not include a perfect model. This type of procedure should be incorporated into a 
history-matching process (changing the reservoir uncertainties and generating new models) 
and by doing so we can generate simulation models that yield saturation fronts closer to those 
observed from 4D seismic data. However, history matching process is not the objective of this 
study; instead we present a new tool to assist this process. 
The methodology proved to identify models that better estimate ∆p and ∆Sw than initial 
models. Moreover, the application of OVL methodology also identified a critical zone, region 
3 (Figs. 9b and 14b). In this region, simulation and seismic estimations disagree without any 
indication of which is more accurate. In this case we must redefine the uncertainties. This 
methodology provided further useful information about region 2: the simulation estimations 
are more precise and could be used as a constraint to reinterpret 4D seismic attributes. 

 
Conclusions 
In this work, we proposed a tool to evaluate the agreement of probabilistic data from reservoir 
simulation and 4D seismic data as independent measurements (decoupled). The base of the 
methodology is the overlapping coefficient that enables identifying reservoir locations with 
high and low misfit, evaluating which technology, 4D seismic or numerical simulation, is 
more precise. 

We applied the proposed methodology to a synthetic dataset with the following results: 
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(1) reduced uncertainties in reservoir models using probabilistic 4D seismic inversion, (2) 
improved ∆p estimates from simulation models previously history matched using only well 
data and (3) calibrated the waterfront nearby injector wells. Moreover, we identified reservoir 
locations where information from simulation models can be applied to improve 4D seismic 
interpretation, that is, using simulation data to constrain seismic inversions (engineering-
consistent manner), as proposed, by Davolio et al. (2013) and Tian et al. (2014). We also 
identified critical reservoir zones for reevaluation, since the high disagreement between the 
two data can be an indicative of the presence of “unknown unknowns”. 

It is important to highlight that the present work integrated information from ∆Sw and ∆p 
maps, but information from other 4D seismic attributes, such as maps of acoustic impedance, 
can also be used.   

The next step is to integrate a history matching procedure, in short: from the selected 
models, perform a new history-matching procedure, and obtain another set of pressure and 
water saturation change maps from simulation data. The OVL comparison could then be 
performed again with the available 4D seismic data. 
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4D seismic is the repetition of 3D (or 2D) seismic surveys at different times in the reservoir. When 
comparing the difference between these surveys, it is possible to obtain a spatial view of the fluids displacement 
as well as the pressure changes in regions that are not covered by the wells. 

Traditionally, the history matching process is performed deterministically, i.e., the forecast and 
production strategies are based on a single model. In this situation, the S4D information (as changes in 
impedance maps, or saturation and pressure) is integrated as observed data that the simulation model must honor. 
Risso and Schiozer (2008) show an example of such integration. 

Nevertheless, the history matching procedure is an inverse problem and should have multiple possible 
responses. Combinations of different values of the parameters that characterize the reservoir can generate the 
observed data, which requires probabilistic approaches to handle these non-uniqueness responses (Xavier et al., 
2013; Maschio and Schiozer, 2014; Emerick, 2016). However, even when the history matching is performed 
probabilistically, 4D seismic is still integrated deterministically, so it is considered as a unique observed data that 
multiple simulation models must honor, as presents Riazi et al., 2013 and Almeida et al., 2014. 

Although uncertainties in seismic data are not usually considered, the acquisition, processing and 
interpretation of seismic has several limitations that should be taking into account. Using 4D seismic as observed 
data (deterministic) may not generate consistent and accurate results, since the impact of the seismic errors are 
neglected. Castro (2007) and Bosh et al. (2010) present some drawbacks of deterministic seismic inversion. In 
the present scenario, it is remarkable the lack of studies that integrate, probabilistically, both data: simulation 
models and 4D seismic. Landro and Kumar (2011) and Assunção et al. (2016) present some of examples found 
in the literature.  

The idea of this work is to compare the information acquired from two methodologies and evaluate the 
possible differences between them. The first uses the 4D seismic information in a deterministic way (classical 
approach), while the second uses 4D seismic probabilistically, considering its uncertainties.  
 

 

2. Objective 
 

The objective of this study is to evaluate the differences between two methodologies that incorporate 
the 4D seismic data within the history matching workflow. The first methodology, called quadratic difference 
(QD), uses 4D seismic deterministically following the traditional history matching practices such as the one 
proposed by Almeida et al. (2014). The second methodology, named OVL, considers an approach that handles 
probabilistic estimates from 4D seismic data and reservoir simulation models.  
 
 
3. Methodology 
 

In the present study we used a synthetic 4D seismic data that are represented by maps of pressure and 
saturation changes. Thus, available 4D seismic is n maps of ΔSw and Δp, yielded from a probabilistic synthetic 
seismic inversion and transferred to the scale of the simulation models. The information from simulation models 
are m maps of ΔSw and Δp, which are the dynamic changes estimated from m simulation models generated from 
the combination of mapped uncertainties (defined in section 4.2).  

The QD methodology, fully presented in section 3.1, is used to select the simulation models using 
deterministic 4D seismic data (section 3.1.1). Section 3.2 presents the OVL methodology, which also uses the 
4D seismic information to select the most representative simulation models. However, the OVL methodology 
uses probabilistic 4D seismic information (section 3.2.1). The last section of the methodology, section 3.3, 
present details about the differences evaluated between both methodologies. We emphasize that, due to the 
characteristics of the data sets, the analysis of Δp and ΔSw maps are performed separately.  
 

3.1. Quadratic difference (QD) methodology  
 

This methodology incorporates the seismic information deterministically, calculating the quadratic 
difference between the single map of Δp (or ΔSw) obtained from the observed 4D seismic information and the m 
maps of Δp (or ΔSw) generated from simulation of m models. There are multiple maps from simulation models 
that must be compared with the observed (deterministic) map obtained from 4D seismic inversion.  

The discrepancy between the m maps of Δp from simulation and the single Δp map from 4D seismic is 
measured by the quadratic difference in every grid block, according to Equation (1).  
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   ( )  ∑ ∑ (                     )           for s = 1, 2…m   (1) 

Where   is the number of blocks in every layer and   is the number of layers of the models. Variable   
represents the simulation model studied. SIM is the estimate from the simulation model and SEIS the estimate 
yielded from 4D seismic inversion.  

In the ΔSw analysis, due to the data variability in depth, the models comparison is made for each layer 
separately, as shown Equation (2). Thus, at layer 1 the selected models can be different of the selected models 
from layer k. For the pressure analysis, on the other hand, the selected models are the same concerning all layers. 
     (   )  ∑ (                       )       {                           (2) 

 
3.1.1. Selecting simulation models using QD 
 

After calculating the quadratic difference values,    ( ) and     (   ) the simulation models are 
placed in ascending order and the ones which presented the lowest values of    ( ) are selected. The same 
procedure is performed with     (   ). 
 
3.2. Overlapping (OVL) methodology 
 

In this methodology, the n maps of ∆p (or ∆Sw) from seismic are compared, simultaneously, with the m 
maps of ∆p (or ∆Sw) from simulation. The methodology consists in computing the overlapping coefficient 
(OVL) that shows the percentage of overlapping between the probability density functions (PDFs) generated 
with the ∆p (or ∆Sw) estimates from simulation and seismic data. The PDF are generated using the kernel density 
estimator proposed by Botev et al. (2010) and the OVL is calculated for every grid block independently. From 
the OVL comparison it is possible to identify four different regions: (1) both dynamic changes estimates from 
seismic and simulation are similar, (2) simulation estimates are more precise than 4D seismic, (3) the data sets 
indicate divergent estimates and (4) 4D seismic estimates are more precise than simulation. Figure 1 illustrates 
the methodology and the “4 Regions Map” that can be obtained gathering the information of every grid block. 
The methodology can be used as a diagnostic tool (for instance, define the agreement/disagreement of the two 
data sets and define which data is more precise) or/and to select the most representative models. This second 
application is explained in section 3.2.1.  
 
3.2.1. Selecting simulation models using OVL 
 

The selection step is presented at the bottom of Figure 1. The idea is to select only the simulation 
models that present the same dynamic change estimates of the seismic, using only the reservoir locations where 
seismic is more precise than simulation (Region 4). The selection of the simulation models is performed for 
every grid block and in the end of the procedure, the most frequently selected models considering all blocks are 
filtered as good models. The selection here is performed separately, for ∆Sw and ∆p, thus selected simulation 
models from ∆p analysis are not the same of ∆Sw. Assunção et al. (2016) provide further details about this 
methodology.   
 
3.3. Evaluating differences between QD and OVL methodology 
 

After the selection of simulation models using both methodologies separately, the differences between 
them are analyzed. In the pressure analysis, we compared the average map of ∆p maps selected by each 
methodology with the reference (true) map, to observe the improvements. We also compared the 4 Regions Map 
of the selected maps to observe how each methodology used the 4D seismic information available. Differences 
in some of the uncertain reservoir parameters such as faults transmissibility were also observed in this analysis.  

In saturation analysis, the average map and 4 Regions Map were also used to compare QD and OVL, 
however the saturation difference was observed locally. Instead of comparing the faults transmissibility, we 
compared the difference between the porosity and permeability maps from selected models from QD and OVL, 
as these properties are more related to saturation changes. 
 
 
4. Application 
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4. CONCLUSIONS AND FUTURE WORKS 

The current work presented a methodology to compare probabilistic dynamic changes 

maps (water saturation and pressure change maps) from 4D seismic and reservoir simulation 

models. The proposed method was fully described in Chapter 2 of this dissertation.  

The main contribution of this work was to generate a diagnostic tool, which measures the 

quality of available seismic and simulation data in every reservoir grid block, classifying them 

in four possible regions: (1) both data in agreement, (2) simulation models data more precise 

than 4D seismic data, (3) both data in disagreement and (4) 4D seismic data more precise than 

simulation data. This tool is a way to understand the uncertainties and to guide the integration 

between probabilistic seismic and simulation data. 

Moreover, in the results section from Chapter 2, it was shown that the information from 

the methodology can be useful to select the most representative dynamic maps from 

simulation using seismic information, when the latter was more precise than the former: from 

the 500 initial simulation maps of dynamic changes, the 50 (10%) selected maps presented 

more accurate results than the initial ones. To measure the accuracy of the initial and final 

maps it was used a reference model, which represents the expected (true) response.  

An application of the methodology to select the most representative seismic and simulated 

maps of dynamic changes was also tested in Appendix B, where different combinations of 

seismic and simulation data are studied. The main contribution of this section was to validate 

the methodology as a diagnostic tool and also to evaluate its application to identify in the 

selection of the most precise pressure change maps from seismic and simulation.  

In Chapter 3, a comparative study was performed to observe advantages and drawbacks 

between a traditional way to incorporate seismic data into reservoir modelling workflow and 

the proposed methodology. The main idea was compare the differences found in selected 

simulation models when 4D seismic information was used. This study was carried out 

separately for pressure and water saturation changes maps, presenting as main results: 

 ∆p maps: selected models using the methodology proposed in Chapter 2 presented 

different information form the selected models using the traditional methodology. 

Both methodologies reduced the differences between simulated data and expected 

response (from reference model), generating more accurate results than initial models. 

However, the proposed methodology used more efficiently the 4D seismic 
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information, since after the selection performed, simulation and seismic data presented 

more regions in agreement than before. Selected models from traditional 

methodology, nonetheless, still presented reservoir locations where seismic could be 

used, even after the selection of the simulation models using available seismic data; 

 ∆Sw maps: both methodologies showed valuable improvements to monitor the water 

front, however, the proposed methodology presented slightly better results, when 

compared with the expected response, than traditional method used. 

Furthermore, the differences in transmissibility, porosity and permeability distributions 

between selected models from traditional and proposed methodologies were observed. Again, 

different types of information were observed, highlighting a difference of 25% in some parts 

of the vertical permeability maps. The results from Chapter 3 is a indicative that by using the 

proposed methodology one can reach better calibrated models than by applying the traditional 

approach. 

An additional statistical study was presented in Appendix A. The main contribution of this 

section was to compare statistically, three methods that could be used to calculate the 

probability distributions from seismic and simulation data. As presented in Chapter 2, the first 

step in the proposed methodology was the probability estimation of the data and it highly 

depends on the method used, as shown in Appendix A. Thus, depending on the method used, 

the methodology from Chapter 2 could bring different outputs. It was developed a 

methodology to identify which statistical method was the most accurate one and kernel 

density estimator (KDE) was more accurate than the other two studied methods, namely, 

histogram and empirical cumulative frequency curve.  

The following next steps are proposed to complement the presented work: 

 Application of the proposed methodology to real datasets, that is, a more challenging 

one; 

 Performing the proposed methodology with a history matching procedure integrated. 

In this case, the diagnosis map can be used to guide the parameterization and the 

definition of the seismic objective function (defining regions to match seismic data, 

for instance). Also, this map can be used to access the quality of matching in each 

history matching iteration, providing a visual tool that brings spatial information not 

only about the error between the two data but also their variability. 
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Abstract 

4D seismic data is usually used as additional quantitative data to calibrate reservoir 
simulation models, providing information such as pressure and saturation changes. 
Traditionally, these data are used as deterministic observed data that the simulation models 
must match. However, due to the presence of noise and problems related to seismic 
acquisition and processing, interpreting seismic signals can be uncertain. Using probabilistic 
seismic analysis we can evaluate and mitigate these uncertainties.  

Some recent works have shown that integration of probabilistic seismic data into 
probabilistic history-matching workflows can provide useful information for model 
calibration. However, it is still a difficult task, as we are processing uncertain information 
from two complex technologies, 4D seismic data and reservoir simulation.  

Choosing the most accurate statistical method to estimate the probability density of the 
data sets is critical in some of these published works. Several methods estimate the 
probability density distribution of a certain data set, but all present some drawbacks. Thus, 
this work aims to evaluate the accuracy of three methods to estimate the distribution of a data 
set: histogram, empirical cumulative frequency curve, and kernel density estimator. 

This study has two parts: (1) statistical analysis of the methods, using parametric curves 
(curves with known characteristics) to estimate which is the most accurate, and (2) evaluation 
of the performance of the three methods when using realistic simulations and seismic data. 

The results show that, considering our application, the kernel density estimator is the 
most accurate, presenting the lowest error in both parts of the study. 

 
1. Introduction 
Reservoir simulation is an important tool for reservoir management because it simulates 

the behavior of a real field, allowing companies to test different production schemes among 
other activities. However, building reliable simulation models is difficult due to various 
limiting factors ranging from numerical errors (e.g. computational simplifications, scale 
transference) to uncertainties in reservoir characteristics (e.g. porosity and permeability 
distributions, transmissibility of the faults). 

To reduce the uncertainties of the parameters that characterize the reservoir and 
consequently provide more reliable simulation results, it is common practice to use observed 
data (measured data in the field) as information that the simulation models must reproduce. 
For the models to honor observed data, the uncertain parameters are modified until the 
difference between the simulations and observed data reach an acceptable level. This 
procedure, history matching, can be done using a single simulation model (deterministic 
approach) or multiple simulation models (probabilistic approach). 

Traditionally, deterministic history matching is used. However, probabilistic approaches 
have been further studied in recent years since it take into account several uncertainties, 
related to reservoir characterization, to be handled. Examples of probabilistic history-
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matching methodologies are presented in Maschio et al. (2008), Almeida, et al. (2014), and 
Yeh, et al. (2014).  

The observed data used in deterministic or probabilistic history matching is usually 
acquired from production wells placed in sparse regions of the reservoir. The lack of areal 
(spatial) observed data can yield simulation models with low geological consistency, even 
when using probabilistic history-matching procedures. To address this issue, additional 
technologies are used, notably 4D seismic data. 4D seismic is the acquisition, processing and 
interpretation of 3D (or 2D) seismic surveys, at different times during reservoir production. 
When comparing the difference between these surveys, we can obtain a spatial view of the 
movement of fluids and the pressure variation in regions between the wells.  

Seismic information is classically integrated as deterministic observed data that the 
simulation models must honor. However, seismic data also may contain uncertainties due to 
limitations in acquisition, processing, and interpretation. Therefore, once probabilistic 
approaches have good history-matching results, probabilistic studies can also be more 
effective to generate reliable 4D seismic data. 

Although it seems reasonably to work with probabilistic approaches concerning the two 
data, simulation models and 4D seismic, the comparison and interpretation of the two 
probabilistic data sets is still challenging. A few works found in the literature integrated 
probabilistic seismic information into reservoir modeling workflow, examples of this can be 
found in Landa and Kumar (2011), Davolio and Schiozer (2015), and Assunção, et al. (2016). 

Particularly, in the studies of Davolio and Schiozer (2015) and Assunção, et al. (2016), 
the accuracy of the statistical methods estimating the probability density 12(from seismic and 
simulation data) was a main limitation. The former work used histograms to compare seismic 
and simulation information to create a “map of classes”. The information in this case was 
water saturation change (∆Sw) and pressure variation (∆p). They showed that the “map of 
classes” could indicate which information was more useful, seismic or simulation, for every 
reservoir location. Assunção, et al. (2016) expanded the idea of the “map of classes”, 
developing a tool to compare the overlap of two curves (one from simulation and other from 
seismic data) to estimate the agreement between them, and evaluate whether 4D seismic or 
the simulation models are more precise for each reservoir location, and then use this 
information to select the most representative simulation models. In both works, the method 
used to estimate the probability density of the data sets was a critical part of the data analysis, 
significantly impacting the data interpretations. The work of Gibbons and Chakraborti (2011) 
presents several methods to estimate the probability density of a certain data set as well as the 
drawbacks. The selection of the numbers of bins, for instance, is the main limitation of the 
most used method, the histogram. Another two probability density methods commonly used 
are Empirical Cumulative Frequency Function (ECDF) and the Kernel Density Estimator 
(KDE). These methods also have limitations, namely the sensitivity to tail values for ECDF, 
and choosing the optimum bandwidth value in KDE.  

Motivated by studies applied in economics, Takada (2001) compared methods to estimate 
the probability density of a data set, focusing on the robustness of the methods to estimate 
heavy tailed data. To evaluate the accuracy of the methods he used Hellinger error. Raykar 
(2002) developed a qualitative and quantitative comparison between the histogram and kernel 
based methods using the Kullback-Leibler distance to measure the accuracy of the methods.  

As states Shalizi (2009), there are several statistical tools to measure the accuracy of a 
certain method. In addition to the Hellinger error and the Kullback-Leibler distance, we can 

                                                 
1In statistics, the density of a given data refers to the closeness/distance of the elements of this data. 
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use the mean-squared error (MSE), the total variation (or L1), or the log-likelihood ratio. 
However, the choice of the most accurate method strongly depends on the statistical objects of 
interest, which can be: density functions, regression functions, variance functions, etc. 
(Hansen, 2009). 

From the reservoir engineering perspective, more specifically comparing probabilistic 4D 
seismic and simulation models, we are interested in a method that generates accurate 
probability density functions (PDFs) and also generates curves that are easy to analyze, as we 
need to compare them to define which information, seismic data or simulation is more useful 
in each reservoir grid block (a reservoir model has thousands of blocks). 

Thus, this paper aims to find which of the three methods, histogram, ECDF or KDE, is 
the most accurate to generate two probability density functions to be compared: one from 4D 
seismic data and the other from multiple simulation models.  

The first part of this work statistically analyzes the parametric curves and the second part 
evaluates the performance of the three methods when applied to ∆Sw maps from reservoir 
simulation and 4D seismic data. We briefly summarize the three methods as well as the 
modified overlapping coefficient (the tool to compare the methods) before presenting the 
methodology. 

 
2. Literature Review 
The probability density function (PDF) describes the probability distribution of a data set. 

It is a nonnegative function, and the integral over it is equal to one.  
To estimate probability density we use information from an observed data set to create a 

PDF. The several methods to estimate the density of a certain data set are split between two 
classes: 

(1) Parametric: assumes that data are drawn from a known parametric family of 
distributions, for example the normal distribution with mean µ and standard 
deviation  .  

(2) Non-parametric: refers to statistical models that do not have data structures or 
characteristic parameters. These models do not make assumptions about the data 
distribution. Examples of non-parametric estimators are: histograms, the ECDF, 
and the KDE. 

In this section we present the three non-parametric methods tested in this work: 
histogram, ECDF and KDE. Other available methods and further explanations about 
parametric and non-parametric methods are found in Venables and Ripley (2002) and 
Wasserman (2005). 

We also provide more information about the modified overlapping coefficient (OVL), the 
tool we use to compare the three methods, in Section 2.4. 

 
2.1 Histogram 
Histograms are the most used density estimator. It is a graph that shows the probability 

distribution of data within certain ranges (bins).  
The first step in building a histogram is to identify the occurrence of the studied variable, 

e.g.: the water saturation variation estimates are only defined between zero and one. The 
second step is to divide the data into intervals (bins), and then count how many estimates are 
in each interval. The bins cannot overlap, they must be adjacent and with the same size.  

Choosing the number of bins is the main limitation when modeling histograms. Different 
data trends can be observed, for the same data, if different numbers of bins are chosen. Figure 
1 presents an example.  
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know that a data set is nonnegative, this is taken into account, resulting in a more consistent 
estimate of the data. Equation (6) shows the kernel estimator proposed by Botev et al. (2010): 

  ̂( )    ∑   (          ), (6) 

where the kernel function   (      ) is defined by Equation (7).    (      )    ∑  (              )   (         ), (7) 

Sections 2.1, 2.2 and 2.3 show the application of the methods used in this work, as well 
as the benefits and drawbacks of each one. The next section details the parameter OVL, the 
tool used in the present work to compare the three methods. 
 

2.4. Modified overlapping coefficient (OVL) 
 PDFSIM and PDFSEIS denote the probability distribution functions of two vectors, SIM 

and SEIS. These vectors represent, for instance, saturation variation estimated from multiple 
simulation models (SIM) and 4D seismic data (SEIS), respectively: SIM = {∆Sw1, ∆Sw2, 
…∆Swm} and SEIS = {∆Sw1, ∆Sw2, …∆Swn}. 

The classic coefficient of overlapping, in this work called OVLC, is defined according to 
Weitzman (1970) apud Schmid & Schmidt (2006) in Equation (8) and can be used to identify 
the similarity between PDFSIM and PDFSEIS. 

      ∫     *              +    ,  (8) 

The OVLC is a classic tool to compare two data sets, commonly used in reliability 
analysis (Al-Saleh and Samawi, 2007).  

Based on OVLC, Assunção et al. (2016) proposed the modified overlapping coefficient 
(OVL), which generates two parameters, named OVLSIM and OVLSEIS. Instead of only 
identifying similarities of the data, OVLSIM and OVLSEIS also show which data are more 
precise4, SIM or SEIS.  

In this case, after calculating the OVLC, we identify the OVLC interval, as presented in 
Figure 4a. The OVLC interval is the coincidence interval between the two PDFs. From the 
OVLC interval, we calculate the proportion of each PDF within it.  

The proportion of PDFSIM within the OVLC interval is called OVLSIM, and is calculated 
by Equation (9). Figure 4b illustrates this parameter.  

                                                                        ,  (9) 

 
OVLSEIS represents the proportion of PDFSEIS within the OVLC interval, as shown in 

Equation (10). Figure 4c presents a visual example of the OVLSEIS. 
 

                                                 
4 Precision and accuracy are two different statistical indicators:  

 Precision refers to the closeness of two or more measurements to each other. It is related to the 
variability of the data: high precision means low variability and vice versa.  

 Accuracy refers to the closeness of a measured value to a standard or known value.  
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Table 1 presents the OVLS cutoff values to define each arrangement. Thus, if both curves 
are more than 80% within the OVL interval, they are considered to be in agreement 
(Arrangement I). If both are less than 80% they are in disagreement (Arrangement II) and if 
one has an OVL greater than 80% and the other lower than 80%, the PDF with the greater 
OVL is more precise than the other (Arrangement III). 

 
Table 1–Characteristics of the arrangements 

Arrangement OVL values 

 I        > 80% and         > 80% 

II         < 80% and         < 80% 

III        > 80% and         < 80% (or vice versa) 

 

3. Methodology 
In section 3.1, the main contribution of this work, we present the methodology to 

calculate the accuracy of the three methods using the OVL. This first part identifies the most 
appropriate PDF builder using synthetic parametric curves. In the second part, section 3.2, 
instead of using synthetic parametric curves, we used data obtained from reservoir simulation 
models and from a probabilistic synthetic seismic inversion.  

 
3.1 Calculating the accuracy of three methods 
 Step 1: generation of parametric curves and calculation of the true OVLs 
First, we define the arrangement to be studied (Figure 5) and then we generate two 

parametric curves, one representing PDFSIM and another, PDFSEIS. These PDFs mimic 
probabilistic data that could be obtained from simulation models or 4D seismic data, more 
specifically, ∆Sw estimates as seen in Almeida et al. (2014), Davolio and Schiozer (2015), and 
Assunção et al. (2016). 

We then calculate the true OVLSIM and OVLSEIS, using the parametric curves with well-
defined characteristics. The OVLs are obtained using the trapezium rule to calculate the area 
under the curves and considering the three-sigma of the curve (which guarantees that all the 
values to be taken lie within three standard deviations of the mean).  

 
 Step 2: generating the discrete data sets 
Based on Latin hypercube sampling (LHS), we obtain the vectors SIM and SEIS, with the 

same size. These vectors must have the same behavior as the PDFSIM and PDFSEIS from the 
previous step and are the samples used to estimate the probability density distributions using 
the histogram, ECDF and KDE. More details about this sampling method can be found in  

Note that several vectors can have the behavior of a specific parametric curve. Therefore, 
instead of considering only one vector SIM and another vector SEIS, y vectors of SIM and 
SEIS are used, all with the characteristic of the PDFs defined in the previous step. We took 
this precaution to avoid interference caused by the Latin hypercube technique itself, since a 
vector can represent the specific PDF but have values more concentrated around the mean of 
the data, while others vectors may not.  

Therefore, vectors from SIM1 to SIMy mimic the PDFSIM while vectors from SEIS1 to 
SEISy represent the PDFSEIS. We highlight that every vector, SIMy or SEISy follows the 
specific PDF in the study, thus, for instance: SIM1 replicates the studied PDFSIM, and SIMy 
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     (      )  ∑ (       (      )        (    ))      ,   
(11) 

 
where        represents the method studied: Histogram, ECDF or KDE and      is the 
true answer calculated in step 1, y is the vector used (SIM1, SIM2 or SIMy). 

 
The same procedure is repeated for OVLSEIS, as shown below in Equation (12).       (      )  ∑ (        (      )         (    ))      ,  

(12) 
 

where y is the vector used (SEIS1, SEIS2 or SEISy). 
 

To compare estimates of QDSIM yielded from each method, we propose the following 
normalization.  

                        (      )        (      )   {     (                 )} ,   
  (13) 

where: denominator is the value of the method presenting the greatest QDSIM. 
 

Normalized QDSEIS is calculated as well, using Equation (14). 

                         (      )         (      )   {      (                 )} ,  
(14) 

At the end of the procedure, we select the method with the lowest Normalized QDSIM and 
QDSEIS, as the most accurate, to calculate the OVLs. 
 

3.2. Comparing the three methods using realistic reservoir data 
In section 3.1 we calculated the true value of the OVLs, and therefore we can now 

measure the accuracy of the three methods, since we have the real response from step 1. To 
prove the results from the previous section and apply the OVL methodology in realistic 
reservoir model, we follow this second section.  

Instead of using a parametric curve as the starting point, in this section, the available 
information are m maps of ∆Sw obtained from m simulation models and n maps of ∆Sw 
yielded from probabilistic 4D seismic data. Figure 7 presents an example with m = n = 3 in a 
reservoir with 4 grid blocks. Every reservoir grid block provides the information necessary to 
estimate the probability of water saturation change from simulation and seismic data. Thus, 
using each of the three methods we can estimate the probability of the data sets. We then 
calculate the OVLs parameters for every reservoir grid block, to identify whether simulation 
or seismic data are more precise.  

In comparison with the previous section (3.1), there are no steps 1 or 4, because there are 
no parametric curves to represent the real OVLs. This section evaluates how the three 
methods can affect the estimation of OVLSIM and OVLSEIS when realistic simulation and 
seismic data are used (although these data were obtained from a synthetic reservoir model). 
OVLs parameters are calculated for every grid block using the three methods and the 
similarities and discrepancies are analyzed. 
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Table 3–Parametric curves generated to Arrangement III. 
 Arrangement III (Normal curves) Arrangement III (Beta curves) 

Arrangements 
PDFSIM PDFSEIS PDFSIM PDFSEIS                 

I.1 0,75 0,05 0,70 0,02 2,0 7,0 2 50 

I.2 0,80 0,20 0,50 0,05 2,0 7,0 3 70 

I.3 0,90 0,30 0,80 0,01 1,0 2,0 4 80 

I.4 0,20 0,08 0,10 0,01 1,5 1,5 3 40 

I.5 0,36 0,09 0,20 0,05 1,0 2,0 1,50 40 

I.6 0,45 0,05 0,40 0,01 1,0 2,0 2,0 30 

I.7 0,68 0,09 0,49 0,03 2,0 4,0 3,0 55 

I.8 0,72 0,06 0,65 0,03 2,0 4,0 2,0 80 

I.9 0,66 0,07 0,55 0,02 3,0 6,0 3,0 85 

I.10 0,58 0,10 0,50 0,03 2,0 6,0 2,0 55 

 
For Arrangement III, we studied two types of parametric curves: normal and beta curves. 

Figure 8c presents Arrangement III using normal curves and Figure 8d, beta curves. Beta 
curves were also used in this case because they perform well with low variability curves in the 
interval [0,1]. These low variability curves aim to represent reservoir locations far from 
injectors, where simulation models can for instance estimate ∆Sw ~ 0 while 4DS estimate 
∆Sw different from zero (or vice-versa). 

To perform steps 2, 3 and 4 from section 3.1 of the methodology, we must generate the 
discrete data sets. For every arrangement, y=100 vectors SIM and SEIS were generated. Each 
vector was created with 500 elements, considered a sufficient number for Latin hypercube 
analysis and also because the available seismic and simulation data generates vectors with this 
size (see Section 4.2). However, this value can change according to the study. 

In this work, therefore, 4000 iterations are performed for each of the three methods 
studied (4 arrangements x 10 data sets per arrangement x 100 vectors SIM and SEIS), which 
was considered sufficient for a numerical analysis.   

 
4.2. Synthetic reservoir simulation and 4D seismic data 
4.2.1. Reservoir simulation data 
The simulation models were based on a reference model that represents a true earth 

model for this work. The reference model has two facies, four faults (and 13 sub seismic 
faults), 19 wells (11 injectors and 8 injectors) and is modeled in a fine grid (270x330 blocks 
and 18 layers). Figure 9a presents the faults of the reservoir and Figures 9b, 9c and 9d show 
porosity, facies and horizontal permeability distributions, respectively.  
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Figure 17b presented the normalized errors for Arrangement III using beta curves. The 
ECDF presented the greatest error and inaccurately estimated non-Gaussian curves.  

The estimated OVLSIM using the histogram presented high Normalized QDSIM, close to 
ECDF, however, the error of the histogram was practically zero in the OVLSEIS estimation. 
The characteristic of the beta curves in Figure 19a show high precision of PDFSEIS . As 
discussed in Arrangement III using normal curves, the histogram was accurate with precise 
curves. The PDFSEIS in Arrangement III using beta curves was precise, and so the histogram 
estimated OVLSEIS well. The kernel estimator followed the trends of the previous studied 
arrangements, presenting low overall error (Normalized QDSIM + Normalized QDSEIS).  

Analyzing the overall results (Arrangements I, II and III), we found the KDE to be most 
accurate and most stable. In the next section we discuss the accuracy of the methods when 
probabilistic data from simulation and seismic are used. 

 
5.2. Comparing the three methods applied in a synthetic reservoir model 

We calculated OVLSIM using the three methods based on m=n= 500 maps of ∆Sw from 
simulation models and 4D seismic data. Figure 20 presents the results. As explained in section 
3.2, every reservoir grid block provides the information necessary to estimate the probability 
of water saturation change from simulation and seismic data; thus, in every reservoir grid 
block OVLSIM and OVLSEI are computed allowing identifying whether simulation or seismic 
data are more precise.  

Comparing Figure 20a with 20c we observe similar behavior although OVLSIM-KDE 
presented slightly lower values than OVLSIM-HIST (a difference lower than 5%). OVLSIM 
estimated from ECDF presented significant differences when compared with the histogram 
and KDE (Figure 20b). The main difference is seen in the yellow rectangle, where OVLSIM-

ECDF ~ 50%, while OVLSIM-HIST and OVLSIM-KDE ~ 100 %. This difference reflects the 
influence of the tail values from the ECDF estimates. 

Taking a grid block in this area, ECDF and KDE seem alike (Figure 21a and 21d). 
However, when we focus on the PDFSIM from ECDF (Figure 21b), the influence of the tail 
values from ECDF is evident. 

The influence of the neighboring values does not account for ECDF analysis, different to 
KDE. In other words, the ECDF weighted every observed datum uniformly, while KDE 
considers the density of neighbors. Initially, we considered this to be an advantage of the 
ECDF method, since we do not assume any information of the data (“raw data”), however, the 
results from section 5.1 and 5.2 show that it is a drawback of the method, a significant cause 
of instability seen in ECDF: Figure 21b shows a difference lower than 5*10-3 in ∆Sw reducing 
OVLSIM-ECDF by approximately 50%, while the KDE (more accurate according to results from 
section 5.1) show OVLSIM ~ 100%. 

Analyzing OVLSEIS, we see that the three methods presented similar behavior close to 
injectors. However, in regions far from injectors, we observed significant differences, 
highlighted by the yellow arrows in Figure 22. 

Although KDE shows that 4D seismic data can be useful to calibrate the water front 
(locations where OVLSEIS>80), in reservoir locations far from injectors, KDE shows that 4D 
seismic data cannot be used (OVLSEIS < 80). Figure 10a shows that this result is accurate, 
since ∆Sw is close to zero in regions far from injectors. KDE shows that in regions far from 
well injectors, 4D seismic data are not useful because the seismic estimation of water 
saturation in these locations are affected by noise, agreeing with Figure 10b. 
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APPENDIX B 

Complementary results of paper ―A Methodology to Integrate Multiple 

Simulation Models and 4D Seismic Data Considering Their Uncertainties‖ 

 

1. Introduction 
 
Paper 1, in Chapter 2, introduces the OVL methodology and shows its application with a 

specific set of data. The results of this appendix represent a complementary study performed 

to evaluate the robustness of the proposed methodology when different quality of simulation 

and seismic data are available. Quality here refers to the presence of uncertainties and the 

corresponding accuracy of the data sets. 

The OVL methodology is applied and depending of the data sets studied, it is used region 

2 or 4 to select the most precise ∆p maps from simulation or seismic. Figure B.1 summarizes 

the steps followed. 

Remembering that in region 4 seismic data is more precise than simulation data and 

region 2 is the opposite.  Therefore, it is possible to use the grid blocks in region 4 to select 

∆p maps from simulation within the OVLC interval, reducing the variability of simulation 

data (Figure B.1d). This procedure is repeated for every grid block in (and only in) region 4. 

In the end of the procedure the 10% most frequently selected models considering all grid 

blocks of region 4 are chosen. The procedure is the same for region 2, however, instead of 

selection of ∆p maps from simulation, it is selected ∆p maps from seismic (Figure B.1b), 

since in this region pressure change estimates from simulation is more precise than seismic 

pressure changes estimates (Figure B.1a). 
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 Case I: uses the same set of data presented in Paper 1. They are shown again in order 

to compare the results from this case with the others cases analyzed.  

 Case II: aims to study if the methodology correctly identifies which information is the 

most precise, when seismic information are (intentionally) more precise than 

simulation. Additionally, it is tested whether the selected maps from simulation after 

the integration of seismic data are more accurate than the initial ones.  

 Case III: in this case, it was tested if simulation data could be used to constrain and 

better interpret seismic data. Thus, based on pressure changes estimates from history-

matched models, the most precise seismic maps are selected. 

 Case IV: the idea of this case is the same of the previous case, however when seismic 

data with and without noise are jointly studied, it is assured that there are “good” ∆p 

maps from seismic available, thus it is possible to observe if the methodology select 

those maps. 

Table B.1– Cases studied 
 Simulation Data 

Partially history- 
matched models 

History-matched  
models 

Seismic 
Data 

With Noise Case I Case III 
Without Noise Case II —— 

With and Without Noise —— Case IV 
 

3. Results and discussions 
 

 Case I:  
By comparing ∆p maps from 4D seismic with noise and ∆p maps from simulation data 

partially history-matched, it was identified regions where seismic data is more precise than 

simulation, however it was not observed regions where simulation is more precise than 

seismic data (Figure B.4b).  The mean of pressure changes estimates from the 500 initial 

simulation maps presented significant differences relative to the reference map (Figure B.4a).  

Observing Figure B.4c, the 50 (10% of 500) selected ∆p maps after 4D seismic 

incorporation presented better results than the initial ones. The 4 regions map, in Figure B.4d 

shows that more reservoir locations are in agreement (seismic and simulation data in 

agreement), since the number of grid blocks in region 1 increased considerably. 
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Figure B.4–Case I: before (top) and after (bottom) models selection. (a) Difference between the mean of 

500 ∆p maps from partially history-matched simulation models and the reference map, (b) 4 regions map 
comparing the 500 ∆p maps from seismic and simulation, (c) Difference between the mean of 50 ∆p maps 

selected and the reference map and (d) 4 regions map comparing the 500 ∆p maps from seismic and the 50 
∆p maps from simulation. Every map is showing the 3rd layer out of 9. 

 

 Case II: 
In Figure B.5, ∆p maps from 4D seismic without noise are compared with ∆p maps from 

partially history-matched models. As expected, all grid blocks in Figure B.5b are in region 4, 

showing that the methodology properly identified regions where seismic data is more precise 

than simulation data. Observing Figure B.5c, the 50 (10% of 500) selected ∆p maps from 

simulation presented results closer to the reference model than the 500 initial maps (Figure 

B.5a).  

Figure B.5d demonstrates that after seismic incorporation, there are more grid blocks in 

agreement (region 1) than the initial simulation data. Comparing Figure B.5d with Figure 

B.4d, the number of grid blocks in region 1 was smaller for the first case, which was also 
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expected, because 4D seismic used in case II has less variability than 4D seismic data from 

case I. 

 
Figure B.5– Case II: before (top) and after (bottom) models selection. (a) Difference between the mean of 
500 ∆p maps from partially history-matched simulation models and the reference map, (b) 4 regions map 
comparing the 125 ∆p maps from seismic without noise and the 500 ∆p maps from simulation models, (c) 
Difference between the mean of 50 ∆p maps selected from the methodology and the reference map and (d) 
4 regions map comparing the 125 ∆p maps from seismic and the 50 ∆p maps from simulation. Every map 

is showing the 3rd layer out of 9. 
 

 Case III: 
Note that, in cases I and II the most precise simulation maps were selected, but in cases 

III and IV, it is selected the most precise seismic maps using history-matched models. Figure 

B.6a illustrates difference between mean of pressure change estimates from the 500 maps 

from seismic and the reference map. Observing Figure B.6b, the methodology showed that 

most of the grid blocks are in region 2, so, simulation is more precise than seismic data.  

Using simulation data to constrain seismic data and choosing the most frequently selected 

seismic maps, it was obtained the mean of pressure change estimate of Figure B.6c. Although 
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the maps of Figures B.6a and B.6c seem to be similar, they contain different information, as 

presents the maps of Figures B.7. 

Differently of the cases I and II, after the selection ∆p maps from seismic, simulation and 

seismic data do not agreed in many regions, as presented in Figure B.6d, although the number 

of grid blocks in region 1 has increased.  

 

 

Figure B.6–Case III: before (top) and after (bottom) ∆p maps from seismic selection. (a) Difference 
between the mean of 500 ∆p maps from seismic with noise and the reference map, (b) 4 regions map 

comparing the 500 ∆p maps from seismic with noise and the 97 ∆p maps from history-matched simulation 
models, (c) Difference between the mean of 50 ∆p maps from seismic selected and the reference map and 
(d) 4 regions map comparing the 50 ∆p maps from seismic and the 97 ∆p maps from simulation. Every 

map is showing the 3rd layer out of 9. 
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Figure B.8– Case IV: before (top) and after (bottom) ∆p maps from seismic selection. (a) Difference 
between the mean of 625 ∆p maps from seismic (with and without noise) and the reference map, (b) 4 

regions map comparing the 625 ∆p maps from seismic and the 97 ∆p maps from history-matched 
simulation models, (c) Difference between the mean of 63 ∆p maps from seismic selected by the 

methodology and the reference map and (d) 4 regions map comparing the 63 ∆p maps from seismic and 
the 97 ∆p maps from simulation models. Every map is showing the 3rd layer out of 9. 

 


