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Resumo

Recentes avanços na tecnologia de processadores multinúcleos e vários-núcleos popularizaram

a computação paralela, acelerando a execução de programas e possibilitando a simulação de

domínios maiores. Dentre os problemas complexos que requerem alta velocidade de proces-

samento, os problemas de fluidodinâmica computacional se destacam, já que suas simulações

tendem a ter um alto custo computacional e exigem grandes domínios de simulação. O método

baseado nas Redes de Boltzmann é um método de fluidodinâmica computacional apropriado

para o uso de paralelismo que vem ganhando destaque na comunidade científica. Embora haja

trabalhos que explorem o paralelismo em GPU nesse método, um simulador eficiente na execução

e visualização interativa ainda não foi explorado adequadamente. Assim, a proposta deste trabalho

é implementar em GPU um simulador interativo de fluidodinâmica com o método das Redes de

Boltzmann. Inicialmente, o simulador foi desenvolvido em linguagem C e foi paralelizado em CPU

usando MPI. Em seguida, foi paralelizado em GPU usando CUDA e convertido para linguagem

orientada a objetos em C++. Depois, a visualização interativa foi acrescentada utilizando técnicas

como interoperabilidade entre CUDA e OpenGL, texturização 3D, fluxo programável da GPU,

além de funções de interação com o usuário. O simulador foi validado para casos 2D e 3D em

fluxos monocomponentes monofásicos. Além disso, para demonstrar o ganho de desempenho em

velocidade de processamento de problemas paralelizados em relação a execuções sequenciais,

um conjunto de testes com tamanhos crescentes de domínio foi desenvolvido. O resultado dessa

comparação indicou que o simulador implementado em GPU com visualização interativa teve

desempenho 71.3 vezes maior em relação à versão sequencial em CPU sem visualização interativa.

Dessa forma, a abordagem de paralelização em GPU com visualização interativa mostrou-se muito

adequada à execução de simulações fluidodinâmicas, sendo uma ferramenta útil no estudo de

escoamentos fluídicos, capaz de executar inúmeros cálculos e lidar com a grande quantidade de

memória exigida por simulações fluídicas.

Palavras-chave: fluidodinâmica computacional (CFD), modelagem e simulação, programação

paralela (computação), visualização, computação gráfica.

xiii



Abstract

Recent advances on multicore and many-core processor technology have popularized the parallel

computing, accelerating program execution and enabling the simulation of larger domains. Within

the complex problems that require a high processing speed, the computational fluid dynamics

problems stand out, since their simulations tend to have high computational cost and demand large

simulation domains. The method based on the Lattice Boltzmann is an appropriate computational

fluid dynamics algorithm to explore parallelism that has been noteworthy in scientific community.

Although there are several works that approach GPU parallelism in this method, an efficient

simulator implementation and interactive visualization have not been explored adequately. Thus,

the purpose of this work is to implement in GPU an interactive fluid dynamics simulator based

on the Lattice Boltzmann method. First, the simulator was developed in C language and was

parallelized in CPU using MPI. Next, it was parallelized in GPU using CUDA and converted into

C++ object-oriented language. Then, the interactive visualization was added using techniques such

as CUDA-OpenGL interoperability, 3D texturing, GPU programmable pipeline, and interaction

features. The simulator was validated for 2D and 3D cases in single component, single phase

flows. Besides that, to show the performance gain in processing velocity of parallelized problems

in relation to sequential executions, a test set with increasing domain sizes was developed. This

comparison result indicated the GPU-implemented interactive simulator was 71.3 times faster

in relation to sequential CPU version without interactive visualization. Thereby, the GPU paral-

lelization approach with interactive visualization showed to be very adequate to fluid dynamics

simulations, being a useful tool in fluid flow study, capable of simulating numerous calculations

and dealing with the large amount of memory required in fluidic simulations.

Keywords: computational fluid dynamics (CFD), simulation and modelling, parallel programming

(computer science), visualization, computer graphics.
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1 Introduction

The chemical laboratory on a chip (Lab-On-a-Chip, or LOC) is a microfluidic device that has

been increasingly used in chemical and biochemical analyses (van den Berg and Lammerink, 1998;

Ehrfeld, 2003). LOCs tend to replace current analysis equipments, because of its high economic

impact. The LOCs’ main advantage is the higher performance chemical analyses, but other funda-

mental advantages over traditional analyses are their size reduction, the volume reduction of needed

reagents and samples, the manufacturing low cost and the shorter time needed for analyses (Gian-

nitsis, 2011; Cheng et al., 1998). Also called Micro Total Analysis Systems (µTAS), these devices

perform several different analytical steps, like sample introduction, sample pretreatment, chemical

reactions, analytical separation, and detection (Qin et al., 1998; Manz et al., 1990). The µTASes

convert chemical information in electrical or optical signals, enabling a higher level of automation

in systems (Mairhofer et al., 2009). The need for LOCs has arisen in the pharmaceutical industry

as a requirement for faster development of new drugs at a low cost (Jackson, 2006). The simultane-

ous synthesis of thousands of different chemical compounds, known as combichem (combinatorial

chemistry analysis), combined with the ability to perform data acquisition and analysis all in an

only device, has boosted the use and development of LOCs (Giannitsis, 2011).

LOCs require an accurate and uniform transport of a small amount of fluid (Elwenspoek et al.,

1994; Woias, 2004). In order to do it, some phenomena that may be neglected on analyses of macro-

scopic systems have to be included on microfluidic systems. These phenomena, like interfacial slip,

wetting, surface tension and Brownian motion, are difficult to be incorporated in traditional Com-

putational Fluid Dynamics methods, but are properly treated in simulation programs based on the

Lattice Boltzmann method (LBM) (Zhang, 2011). Furthermore, porous media flows, like petroleum

extraction, and surface flows, are also simulated with this method (Valderhaug, 2011).

The LBM was introduced by McNamara and Zanetti (1988) and originated from the combi-

nation of the Lattice Gas Cellular Automata for fluid flow simulation with the Boltzmann kinetic

theory of gases (Wolf-Gladrow, 2005). Aidun and Clausen (2010) considered it an efficient and

reliable method to simulate complex fluid flows. Besides that, the LBM has some advantages over

traditional methods: it is highly data-parallelizable (Obrecht et al., 2011b), which may lead to high

performance applications on the Graphics Processing Unit (GPU), and it easily deals with some

characteristics that common methods can not deal with or are very slow, like complex boundaries

and multicomponent, multiphase flows (Succi, 2001). Another advantage of the method is that it
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may be considered as a general-purpose solver method to be applied in other fields, like heat trans-

fer, electrical and magnetic fields, and diffusion processes (Mohamad, 2011; Zhang, 2011). Thus,

a general-purpose simulator can be implemented to run simulations of all these fields using LBM.

In 2007, NVIDIAr presented its new generation of general-purpose GPUs based on the Com-

pute Unified Device Architecture (CUDA), a proprietary technology for massively parallel process-

ing on GPU (Kirk and Hwu, 2010; NVIDIA, 2014b,a,c). Since then, several works about the LBM

on GPUs have been published (Volkov and Krafczyk, 2008; Tölke and Krafczyk, 2008; Micike-

vicius, 2009; Ma et al., 2009; Oliveira and Ferreira, 2012, 2013; Oliveira et al., 2013). Xian and

Takayuki (2011) demonstrated that LBM is appropriate for execution on GPUs, since the LBM is an

efficiently data-parallelizable problem. Therefore, when there is data parallelism, parallel program-

ming on GPUs is advantageous over parallel programming on Central Processing Units (CPUs),

due to the greater amount of processing units of GPUs (Sanders and Kandrot, 2011).

In this work, the objective was to implement in GPU an interactive fluid dynamics simula-

tor using the LBM, meeting some requirements of the Fundação de Amparo à Pesquisa do Estado

de São Paulo (FAPESP) project, called Fluid simulator implementation in microsystems based on

particle methods for massively parallel processing in GPU cluster (grant number 2009/09717−7),

in which this master thesis is included. The implementation has evolved from versions running on

a single CPU, passing through on parallel CPU and then on GPU, until versions with and without

interactive visualization. The source code of the last version, parallel GPU code with interactive

visualization, is available at Oliveira (2015). Classical literature cases were run, validating the sim-

ulator for two-dimensional (2D) and three-dimensional (3D) cases, for single component, single

phase (SCSP) and for some single component, multiphase (SCMP) cases. The current version was

compared to serial and parallel CPU code, showing that the GPU implementation with interactive

visualization is the most useful, because it combines the faster execution on GPU with interac-

tive features and online visualization, which allow an early intervention on simulation by changing

inappropriate simulation conditions interactively, and avoid computing time waste.

1.1 Literature Review

The Lattice Boltzmann equation has strong difficulties in simulating fluid flows with high

Reynolds number (Re). Li and Kwok (2004) proposed a new model with high Re and external
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forces to simulate electrokinetic phenomena in microfluidics, by considering pressure an external

force, which may represent the Lorentz force associated with external electric and magnetic fields

and other related forces. They obtained excellent agreement with experimental data in pressure-

driven microchannel flow and showed that this model is an effective computational tool to simulate

complex microfluidic systems that can not be described by electrokinetic theory. Kang et al. (2008)

investigated the electrokinetic effect on the fluid flow and mixing in a rectangular microchannel.

Yong et al. (2011) simulated multicomponent, multiphase flows in microfluidic devices success-

fully, and Zhang (2011) made a review of LBM applications in microfluidic systems for single

phase and multiphase flows, also including heat, electric and magnetic fields, and diffusion pro-

cesses. Moreover, Agarwal and Chusak (2010) simulated non-newtonian fluids with the LBM.

Several innovations were performed considering LBM on GPU. Palmer and Nieplocha (2002)

described several methods for ghost cell update of large, distributed arrays. The Global Array

toolkit was used to implement one version of the update algorithm and another three versions

of the shift algorithm that were applied to a LBM solver. They showed that no algorithm presented

optimal performance for all architectures and that the most efficient update depends on the system

architecture and on the problem size and dimensionality. Fan (2008) presented efficient ways to use

GPUs and GPU clusters for general-purpose GPU (GPGPU) in flow simulation and visualization.

He implemented a novel GPU-based adapted unstructured LBM algorithm for simulating flow on

arbitrary 3D triangular surfaces, and a LBM implementation of irregular-shaped simulation domain

on a GPU cluster. These contributions were applied for thermal fluid dynamics in a pressurized wa-

ter reactor of a nuclear power plant, and, finally, Fan (2008) developed Zippy, a general framework

for GPU cluster programming.

Chopard (2008) improved the accuracy of Lattice Boltzmann calculations, which were used

by Aksnes (2009) to simulate porous rocks. Tölke and Krafczyk (2008) implemented an efficient

2D LBM solver, introducing new schemes to avoid memory misalignments. Stürmer et al. (2009)

presented a fast and optimised LBM solver that saves memory on domains that have a large per-

centage of solid nodes. Bailey et al. (2009) improved GPU LBM results for the D3Q19 model

by increasing GPU multiprocessor occupancy, resulting in a maximum performance increase of

20%, and by introducing a space-efficient storage method that reduces GPU RAM requirements by

50% at a slight detriment to performance, called swap algorithm. Schreiber (2010) implemented

a LBM free surface fluid simulation and compared different memory layouts for this implementa-

tion, showing its realism in computer games with fixed fluid simulation domains, the importance

of advanced visualization methods for scientific simulations and to accelerate photo realistic ren-
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derings. Aksnes and Elster (2009) investigated the complex geometry of porous rocks to efficiently

simulate on GPU and techniques for reducing round-off errors. They also used the swap algorithm

in LBM implementations. Obrecht et al. (2011a) studied the global memory access mechanism

of GPUs to optimise regular data-parallel applications, and analysed the impact of memory mis-

alignments on GPUs for the LBM. Xian and Takayuki (2011) simulated 3D LBM on a multi-node

GPU cluster with CUDA and Message-passing Interface (MPI). They analysed performance of

different domain partitioning in order to optimise communication, and introduced an overlapping

technique between computation and communication, which improved the simulator performance.

Habich et al. (2011) used the optimisations proposed by Tölke and Krafczyk (2008) to implement

a LBM solver focusing on memory alignment and register shortage, and also analysed data transfer

rates for the Peripheral Component Interconnect express (PCIe) to explore multi-GPU parallelism.

Obrecht et al. (2011b) introduced new data transfer schemes in global memory to avoid misaligned

memory accesses, leading to 86% of the global memory maximum throughput for the GT200 graph-

ics card and efficient implementation even for complex LBM models. Obrecht et al. (2011c) also

implemented a thermal flow LBM solver on GPUs, proposing an efficient thermal handling and

achieving good agreement with literature and better performance, when compared to CPU solvers.

Valderhaug (2011) increased the maximum data set possible to simulate on GPUs by using tech-

niques to decrease memory requirements while maintaining numerical precision, and overlapped

communication and computations on a GPU cluster.

1.2 Contributions

There are promising results for the LBM, although it would be interesting to offer the user

an appropriate system with online visualization and interaction features, from which one may form

hypotheses about the simulation parameters, refine them and reevaluate their effects without restart-

ing the simulation. Such an implementation would benefit LOCs and µTAS design costs, and also

other fluidic analyses. However, to our best knowledge, there is not such a system that integrates

both LBM simulations, online visualization, and satisfactory interaction.

This work resulted in some versions of the LBM simulator: C, C++, MPI, and CUDA without

and with interactive visualization, as can be seen in Figure 1.1. The evolution of these versions

aimed performance gain, combined with the use of the swap algorithm optimisation, the bitmap

and the STL files import for data input to ease the simulation process, and the VTK files output
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to ease analyses. Furthermore, the algorithm was validated for SCSP flows in the literature. Those

were the contributions in the LBM field.

Besides those contributions, some work in LBM visualization was done considering the fol-

lowing visualization problems: (1) how to share GPU resources between simulation and visualiza-

tion algorithms; (2) how to share simulation data between CUDA C GPGPU language and the Open

Graphics Library (OpenGL) graphics API; (3) how to make visualized objects capable of promptly

reacting to user actions; and (4) how to change visualization to see different data and different

color maps. The first two problems were solved by exploiting the CUDA-OpenGL interoperability

resource. The third problem was solved by using the 3D texturing visualization method and by

using the Qt library (Qt, 2014) for the graphical user interface and the interaction tools. Finally, the

last problem was solved by using the OpenGL Shading Language (GLSL) to change visualized data

or color maps. All the contributions including a general view of the work are presented in Figure

1.2. Furthermore, the simulation speed with online visualization happening at interactive rate can

be considered a contribution, as these functionalities were added without great loss in performance.

The source code of the interactive GPU simulator is available at Oliveira (2015).

CUDA C++ with
interactive visualization

C

serial parallel

CPU

GPU

MPI

CUDA without
visualization

CUDA C++ without
visualization

Figure 1.1: Simulator versions.

1.3 Work organisation

Each chapter of this work is briefly described next. Figure 1.3 presents the relation between

the chapters.
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output

Color mapsData selection
Zoom, pan,
and rotation
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Cut, cursor, and
data normalization

Simulation Visualization

Figure 1.2: Work contributions and general view.

In chapter 2, the theory concerning the LBM is presented. A simplified form of the Boltzmann

equation is used to derive the Lattice Boltzmann equation. 2D and 3D models are discussed, and

the basic LBM is presented with the most common boundary conditions and application of external

forces. The SCMP theory is derived, approaching interparticles forces, equation of state and solid

walls. Finally, the chapter ends with important fluid concepts in the LBM context.

Chapter 3 presents the computational tools used in this work, with CUDA being the most im-

portant language. Furthermore, a brief history of CPU parallelism and GPU evolution are given, as

well as MPI notions that were important to understand the simulator versions. Next, the GPU visu-

alization is discussed, including the OpenGL-based 3D texturing technique used in this work, and

a key concept to achieve performance, the CUDA-OpenGL interoperability. To finish the chapter,

performance measurements are shown.

Chapter 4 gives details about the simulator implementation. This work met some FAPESP

project requirements and they were discussed in this chapter. The used optimisation techniques are

presented with figures to clarify the implementation. The visualization and graphical interface are

presented, exploring the use of shaders and Qt interaction features. Finally, the previous versions

of the simulator are discussed.

In chapter 5, the results are presented. First, SCSP flow validation tests, such as: Poiseuille

flow driven by gravity, Poiseuille flow driven by velocity/pressure boundaries (the entry length

effect), and flows past a cylinder under different Re regimes, are shown. These cases were compared

to literature experiments or simulations and had good agreement. Then, the SCMP cases that were
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5 Results

1 Introduction

2 The Lattice Boltzmann
method

3 Parallel processing

4 Implementation

6 Conclusion

Figure 1.3: A global view of this work chapters and their relations.

simulated successfully are presented, and they were: phase separation and interface minimization,

superficial tension estimation, flat interfaces, heterogeneous cavitation, and contact angles. After

that, a performance comparison was done, considering a 2D SCSP flow simulation for increasing

domain sizes. The GPU with interactive visualization code was compared to CPU serial and parallel

codes, indicating that the GPU interactive simulator was superior in relation to the other versions,

both by the simulation speed and by the use of interactive tools in simulation analyses.

Chapter 6 concludes this dissertation and presents some ideas for future work, and the annex

shows the two papers published during this work.
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2 The Lattice Boltzmann method

The LBM follows the idea that a gas is composed of interacting particles that can be de-

scribed by classical mechanics, but should be statistically treated (Sukop and Thorne Jr., 2005).

The mechanics comprehends streaming in space and perfectly elastic collisions that, despite of

being simple, reproduce the behaviour of real fluids.

In this chapter, the LBM equation and models are presented. Then, the boundary conditions

and the external forces are applied to the model. After that, the SCMP flow theory and the calcula-

tion of viscosity are described, the Reynolds number is reviewed, and the unit conversion from real

experiments into LBM simulations is explained. Finally, the Poiseuille flow and the Laplace law

are presented.

2.1 A simplified form of the Boltzmann equation

Statistical mechanics can describe a system using probability distribution functions. The dis-

tribution f (1)(x,p, t) provides the probability of finding a molecule at position x, with momentum

p, and at time t. This is the single particle distribution function, which is appropriate to describe

gas properties that do not depend on relative positions of molecules (Sukop and Thorne Jr., 2005).

The streaming process can be described with the term f (1)(x,p, t)dxdp, which gives the

probability of finding molecules with position coordinates in the range x ± dx and momentum

coordinates p± dp. Considering an external force F small in relation to the intermolecular forces,

if there are no collisions, at time t+ dt, the new positions of molecules of mass m starting at x are

x+(p/m)dt = x+(dx/dt)dt = x+dx and the new momenta are p = p+Fdt = p+(dp/dt)dt =

p+ dp. Then, the streaming equation, which determines f (1) at time t+ dt, is:

f (1)(x+ dx,p+ dp, t+ dt)dxdp = f (1)(x,p, t)dxdp. (2.1)

However, when there are collisions between molecules, some of them go to unexpected places

and do not follow the streaming process. To determine the collision equation, Γ(+)dxdpdt is defined

as the number of molecules that arrive in (x + dx,p + dp), but did not start at (x,p) during time
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dt, and Γ(−)dxdpdt as the number of molecules that do not arrive in (x+ dx,p+ dp), but started

at (x,p). Adding to the streaming equation:

f (1)(x+ dx,p+ dp, t+ dt)dxdp = f (1)(x,p, t)dxdp+ [Γ(+) − Γ(−)]dxdpdt. (2.2)

Then, the Taylor series expansion of the left-hand side of Equation 2.2 with the first-order terms:

f (1)(x+ dx,p+ dp, t+ dt) = f (1)(x,p, t) + dx.∇xf
(1) + dp.∇pf

(1) +

(︂

∂f (1)

∂t

)︂

dt+ ..., (2.3)

gives the Boltzmann equation:

[︂

f (1)(x,p, t) + dx.∇xf
(1) + dp.∇pf

(1) +

(︂

∂f (1)

∂t

)︂

dt+ ...

]︂

dxdp =

f (1)(x,p, t)dxdp+ [Γ(+) − Γ(−)]dxdpdt

(2.4)

or

v.∇xf
(1) + F.∇pf

(1) +

(︂

∂f (1)

∂t

)︂

= Γ(+) − Γ(−). (2.5)

The Boltzmann equation can be derived for more than one chemical component. With a col-

lision operator written more explicitly, the Boltzmann equation is a nonlinear integral differential

equation, which took 50 years to have an approximate solution (Harris, 1971). Nevertheless, with

Lattice Boltzmann methods, the equation can have an approximate solution from the particle per-

spective using explicit collision and streaming terms.

2.2 The Lattice Boltzmann models

The discretization of the Boltzmann equation in space reduces the number of possible posi-

tions and microscopic momenta that a particle can assume. The length unit of LBM is the lattice

unit (lu), the time unit is the lattice time (lt) and the mass unit is called just mass unit (mu).

For the 2D case, considering a square lattice, the continuum space and momenta are reduced

to eight directions, three velocity magnitudes and a single particle mass (Qian et al., 1992). This

particle mass is uniform and equals to 1mu, which makes the microscopic velocities and momenta

equivalent. This is the most common 2D model, called D2Q9 in literature, which consists of nine
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velocities as shown in Figure 2.1, with e0 representing particles at rest. The microscopic velocity

magnitude is 1 lu/lt for e1 to e4, and
√
2 lu/lt for e5 to e8, which makes all x- and y-components

equal to 0 or ±1, and one only needs to care about the microscopic velocity direction.

e0
e1

e2

e3

e4

e5e6

e7 e8
x

y

Figure 2.1: D2Q9 Lattice Boltzmann model.

For the 3D case and a cubic lattice, the most popular models are D3Q15, D3Q19, and D3Q27

(Aidun and Clausen, 2010), with the D3Q27 being equivalent to the D2Q9 in terms of accuracy.

While the D3Q15 is less precise, the D3Q27 is very computationally expensive, which makes

D3Q19 the model that better balances accuracy and efficiency (Mei et al., 2000). The D3Q19 model

consists of nineteen directions for the microscopic velocities and momenta (Mohamad, 2011), as

shown in Figure 2.2, and the particle mass is also uniform and equals to 1 mu. Analogously to the

D2Q9 model, the microscopic velocity magnitude is 1 lu/lt for e1 to e6, and
√
2 lu/lt for e7 to e18,

which makes all x-, y- and z-components equal to 0 or ±1.

e0 e1
e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

e16

e17

e18x

y
z

Figure 2.2: D3Q19 Lattice Boltzmann model.
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2.3 The basic Lattice Boltzmann equation

The LBM is a discretization on time, space and momentum of the Boltzmann kinetic the-

ory (Aidun and Clausen, 2010; Zhang, 2011). It recovers the Navier-Stokes equation in the contin-

uum limit, through the Chapman-Enskog expansion (Succi, 2001; Wolf-Gladrow, 2005). Simula-

tions with this method may be divided into two steps: streaming and collision, which are performed

iteratively (Wolf-Gladrow, 2005). The boundary conditions may be included in those steps or may

be performed in separate functions (Sukop and Thorne Jr., 2005). The streaming step means the

propagation of the fluid along the lattice, according to its velocity, while the collision step repre-

sents the collisions between the fluid particles and between fluid particles and solid walls (Chen

and Doolen, 1998). The basic equation of the method is:

fa(x+ ea∆t, t+∆t) = fa(x,t)−
[fa(x,t)− f eq

a (x,t)]

τ
, (2.6)

in which x is a lattice position, ea is its microscopic velocity on direction a, t is the simulation

time, ∆t is the simulation time step, fa is the single particle distribution function on direction a,

f eq
a is the equilibrium distribution function on direction a, and τ is the system relaxation parameter

(Sukop and Thorne Jr., 2005). The first two terms fa(x + ea∆t, t + ∆t) = fa(x,t) correspond to

the streaming step, and [fa(x,t)−f
eq
a (x,t)]

τ
is the collision step. This model for the collision step is a

simplification developed by Bhatnagar et al. (1954) and is known as BGK (Bhatnagar, Gross and

Krook) approximation.

To calculate the collision term, one must first calculate the equilibrium distribution function:

f eq
a (x) = waρ(x)

[︂

1 + 3
ea.u

c2
+

9

2

(ea.u)
2

c4
− 3

2

u2

c2

]︂

, (2.7)

in which wa is the weight for each particle. For instance, for the D2Q9 model, it is 4/9 for the rest

particles (a = 0), 1/9 for a = 1, 2, 3, 4, and 1/36 for a = 5, 6, 7, 8, and for the D3Q19 model,

wa is 4/9 for a = 0, 1/9 for a = 1, 2, ..., 6 and 1/36 for a = 7, 8, ..., 18. Finally, c is the lattice

sound speed, usually 1 lu/lt (Sukop and Thorne Jr., 2005). It is also necessary to calculate the

macroscopic velocity u and the macroscopic density ρ for each lattice node:

ρ =
8

∑︁

a=0

fa (2.8)
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u =
1

ρ

8
∑︁

a=0

faea. (2.9)

These equations are also the method output values, which enable the conversion between LBM

microscopic velocities and continuum macroscopic velocities.

2.4 Boundary conditions

In this section, the periodic, bounceback, constant velocity, and constant pressure boundary

conditions are shown. The periodic boundaries and the constant velocity and pressure conditions

are usually applied on the domain edges, while the bounceback is applied to solid nodes. The

simplicity of the boundary conditions is one of the most advantageous characteristics of the LBM,

because it allows the simulation of complex geometries.

2.4.1 Periodic boundaries

The periodic boundaries are the simplest conditions, in which the system is closed by their

edges (Sukop and Thorne Jr., 2005). The open ends of a slit can be connected to form an infinite

slit (the domain can be represented by a paper sheet that has its laterals connected, as in Figure

2.3(a)), or it is possible to have fully periodic boundaries, which form an infinite domain, as in the

toroid of Figure 2.3(b). These figures represent 2D domains, but the same concept can be applied

to a 3D domain, having one, two, or three periodic boundaries. This condition may be implemented

in the streaming step by feeding the inlet nodes (only the distribution functions that point inside

the domain) with the outlet nodes (distribution functions that point outside the domain), and vice

versa.

2.4.2 Bounceback boundaries

The bounceback boundary condition treats the solid nodes. Its advantage is the need to only

identify the solid nodes, which enables the simulation of complex geometries (Sukop and Thorne

Jr., 2005). The solid nodes may be divided into two types: solid nodes that make an interface with
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(a) 2D periodic bound-
aries applied on the left
and right edges of the do-
main.

(b) 2D periodic boundaries ap-
plied on all the four edges of the
domain (left, right, top and bot-
tom.

Figure 2.3: Periodic boundaries.

fluid nodes, and solid nodes that are surrounded by other solid nodes. Thus, solid nodes surrounded

by other solid nodes are not considered during the LBM iterations. This may save lots of unneces-

sary computations, specially if there are a few fluid nodes in the domain.

The bounceback imposes a no-slip condition, or zero velocity condition, for the solid nodes,

and mass conservation (Chen et al., 1996). When the distribution functions are propagated towards

a solid node, they go back to the fluid node that they were before the streaming step, but with

inverted directions. This condition works fine for τ ≈ 1, which makes the non-equilibrium terms in

Equation 2.6 be cancelled. The boundary called half-way wall bounceback leads to a second-order

error (Chen et al., 1996). In this boundary condition, fluid nodes adjacent to solid nodes have all

their opposite distribution functions inverted, such as f1 with f3, f2 with f4, f5 with f7, and f6 with

f8 for the 2D case (directions are shown in Fig. 2.4). The 3D case is analogous.

before bounceback after bounceback

solid wall solid wall

f1 f1

f2
f2

f3
f3

f4

f4

f5
f5f6

f6

f7

f7
f8 f8

Figure 2.4: Half-way wall bounceback scheme.

14



2.4.3 Constant velocity boundaries

The constant velocity boundary imposes a constant value for velocity in every axis of a do-

main edge. From this value, the macroscopic density can be calculated, and considering that, after

the streaming step of a 2D simulation, three microscopic densities (or distribution functions) are

unknown (Figure 2.5), these values need to be calculated to complete the boundary specification

(Sukop and Thorne Jr., 2005).

f1

f2

f3

f4

f5
f6

f7
f8

domain

Figure 2.5: The three unknown microscopic densities (circled) of the left edge after the streaming
step.

The derivation follows Zou and He (1997) for the left edge of a 2D domain. If the desired

constant velocity is u0 =

[︃

u0

0

]︃

, four equations are needed to solve for ρ, f1, f5, and f8. With

Equation 2.9, it is possible to write two equations for each axis:

ρu0 = f1 − f3 + f5 − f6 − f7 + f8, (2.10)

and

0 = f2 − f4 + f5 + f6 − f7 − f8. (2.11)

The other two equations are the macroscopic density (Equation 2.8), and the bounceback rule for

the non-equilibrium part of the particle distribution normal to the edge (Zou and He, 1997):

f1 − f eq
1 = f3 − f eq

3 . (2.12)
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Equations 2.8 and 2.10 can be equaled by isolating the microscopic densities f1, f5, and f8, and

then the result is solved to find ρ:

ρ =
f0 + f2 + f4 + 2(f3 + f6 + f7)

1− u0
. (2.13)

One can solve for f1 using Equation 2.12:

f1 = f3 +
2

3
ρu0. (2.14)

Now, Equation 2.11 is used to replace f5, and Equation 2.14 is used to replace f1 in Equation 2.10

to find f8:

f8 = f6 +
1

6
ρu0 +

1

2
(f2 − f4). (2.15)

The same can be done to find f5, replacing f8 from Equation 2.11:

f5 = f7 +
1

6
ρu0 +

1

2
(f4 − f2). (2.16)

2.4.4 Constant pressure boundaries

The constant pressure boundary imposes a constant value for pressure in every axis of a

domain edge. Pressure is equivalent to density through the equation of state (EOS) that relates

them directly:

P = cρ =
ρ

3
, (2.17)

in which a density ρ0 is specified and then the velocity is calculated using it. The maximum velocity

should be small relative to 1 lu/lt.

The solution is analogous to the constant velocity boundaries, but here the condition is derived

for the right edge of a 2D domain. In this case, the macroscopic velocity and three microscopic

densities are unknown after the streaming step, according to Figure 2.6.

If ρ0 is the desired density at the edge, four equations are needed to find u, f3, f6, and f7.

With Equation 2.9, two equations are written for each axis:

ρ0u0 = f1 − f3 + f5 − f6 − f7 + f8, (2.18)
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f1

f2

f3

f4

f5f6

f7 f8

domain

Figure 2.6: The three unknown microscopic densities (circled) of the right edge after the streaming
step.

and

0 = f2 − f4 + f5 + f6 − f7 − f8. (2.19)

Again, the other two equations are the macroscopic density (Equation 2.8) and the bounceback

rule for the non-equilibrium part of the particle distribution normal to the edge (Zou and He, 1997)

(Equation 2.12). Equations 2.8 and 2.18 can be equaled by isolating the microscopic densities f3,

f6, and f7, and then the result is solved to find u:

u = −1 +
f0 + f2 + f4 + 2(f1 + f5 + f8)

ρ0
. (2.20)

Solution of f3 is found using Equation 2.12:

f3 = f1 −
2

3
ρ0u. (2.21)

Now Equation 2.11 is used to replace f6, and Equation 2.21 is used to replace f3 in Equation 2.18

to find f7:

f7 = f5 −
1

6
ρ0u+

1

2
(f2 − f4). (2.22)

The same can be done to find f6, replacing f7 from Equation 2.19:

f6 = f8 −
1

6
ρ0u+

1

2
(f4 − f2). (2.23)
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2.5 External forces

External forces, such as gravitational acceleration, can be added to the simulation through a

term in the equilibrium velocity (Sukop and Thorne Jr., 2005). Using the second law of Newton,

and considering that density is proportional to mass, and that the relaxation time means the time of

collisions:

∆u =
τF

ρ
, (2.24)

in which ∆u is a change in velocity, that must be added to the equilibrium distribution function

velocity (Equation 2.7):

ueq = u+
τF

ρ
. (2.25)

2.6 Single component, multiphase (SCMP) flow

One of the most important characteristics of LBM is the ability to efficiently simulate SCMP

flows. The SCMP flow simulation comprehends only one chemical element divided into two

phases: liquid and vapor. As examples, with this system one can study surface tension, evapora-

tion, condensation, cavitation, contact angles, capillary rise, adsorption, capillary condensation and

flows in porous media. To simulate phases, a long-range attractive force has to be added into the

simulation. This force represents an interaction strength between particle distribution functions,

and is part of the fundamentals of the van der Waals EOS. As a result of these interactions, the level

of parallelism in LBM decreases (Sukop and Thorne Jr., 2005). The model described in this section

was developed by Shan and Chen (1993), who first worked with multiphase LBM models.

2.6.1 LBM interparticle forces

The long-range attractive forces are calculated using the nearest neighbour particle distribu-

tion functions:

F(x,t) = −Gψ(x, t)
8

∑︁

a=1

waψ(x+ ea∆t, t)ea, (2.26)
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in which G is the interaction strength, and wa is the weight for each particle. For example, in the

D2Q9 model, it is 1/9 for a = 1, 2, 3, 4, and 1/36 for a = 5, 6, 7, 8, and ψ is the interaction potential

(Shan and Chen, 1993):

ψ(ρ) = ψ0e
−ρ0
ρ , (2.27)

in which ψ0 and ρ0 are arbitrary constants. This interaction potential represents an isothermal pro-

cess, and must be monotonically increasing and bounded (Shan and Chen, 1993). Other equations

of the interaction potential are also used, such as ψ(ρ) = ρ0

[︁

1− e
−ρ

ρ0

]︁

(Shan and Chen, 1993), and

ψ(ρ) = ρ (Martys and Chen, 1996). Figure 2.7 shows the interaction potential of Equation 2.27 for

ψ0 = 4 and ρ0 = 200.
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Figure 2.7: Isothermal interaction potential function for ψ0 = 4 and ρ0 = 200.

The interaction strength G is negative for attraction between particles and, as the interparticle

force becomes stronger as density increases, the surface tension phenomenon can be simulated.

Thereby, liquid regions undergo a stronger cohesive force than vapor regions. Furthermore, the

attractive interparticle force is included in the model as an external force using Section 2.5.
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2.6.2 The SCMP equation of state of the Lattice Boltzmann method

The non-ideal EOS must be used to simulate fluids using Equations 2.26 and 2.27:

P = ρRT +
GRT

2
[ψ(ρ)]2. (2.28)

The ideal gas law is ρRT , which is used for the SCSP model. The non-ideal part is 1/2GRT [ψ(ρ)]2,

which represents the attractive force between molecules and reduces pressure when G is negative.

Phase separation may take place for negative G and nonmonotonic EOS. Applying RT = 1/3 for

both SCSP and SCMP models (Sukop and Thorne Jr., 2005) in Equation 2.28, the non-ideal EOS

becomes:

P =
ρ

3
+
G

6
ψ2(ρ). (2.29)

Figure 2.8 shows EOS plotted for some G values, with G = −92.4 being the critical value. This

model does not include a repulsive force, which makes the liquid phase be more compressible than

the vapor phase (Sukop and Thorne Jr., 2005). The equilibrium liquid-vapor configurations remain

the same, but some simulations are more difficult to be executed.

Figure 2.8: SCMP EOS for ψ0 = 4, ρ0 = 200, and G = 0,−80,−100,−120, and −140.
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2.6.3 SCMP flow with solid walls

There is an adhesive interaction force between fluid particles and solid surfaces. Martys and

Chen (1996) developed an elegant and simple model that calculates an analogous particle-particle

interaction force, with the difference that the solids around a node are summed up, instead of ψ

values:

Fads(x,t) = −Gadsψ(x, t)
8

∑︁

a=1

was(x+ ea∆t, t)ea, (2.30)

in which s values 1 for solid nodes and 0 for fluid nodes. Equation 2.27 is also used here to deter-

mine the interaction potential ψ.

2.7 Viscosity

The fluid kinematic viscosity in lu2/lt is:

ν =
1

3
(τ − 1

2
). (2.31)

The relaxation parameter τ should be greater than 1/2 for positive viscosity, and thus physical

viscosity. Instabilities start to appear when τ ≈ 1/2, and the most stable value for τ is 1 (ν = 1/6

lu2/lt) (Sukop and Thorne Jr., 2005).

2.8 Reynolds number

The Reynolds number (Re) is a non-dimensional number given by:

Re =
uL

ν
=
ρuL

µ
, (2.32)

in which u is the fluid velocity, L is the characteristic length and µ is the dynamic viscosity. The

Re shows a balance between viscous and inertial forces (Sukop and Thorne Jr., 2005), and real

and simulated flows should have the same Re value. Low Re means the flow is laminar, with

predominance of viscous forces, usually for internal flows with low velocity and high viscosity.

When Re << 1, the flow is called Stokes or creeping flow, and often happens for liquids in porous
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media because of the small pore sizes. When the Re gets higher, the Stokes flow starts to separate

from the obstacle and then eddies start to form. On the other hand, high Re leads to transition or to

turbulent flows, when inertial forces are predominant. High velocities, large characteristic lengths

or low viscosity can make the flow unstable.

2.9 Parameter conversion

To run simulations and interpret their results correctly, the LBM parameters should be cho-

sen properly, such as lattice size, numerical viscosity and maximum velocity (Januszewski, 2015).

Given the fluid velocity, the Re and the measurements of the channel whereby a real fluid flows, it

is possible to calculate the simulation parameters.

Using the lattice units given in Section 2.2, a simulation time step is by definition 1 lt, and

the distance between two adjacent lattice nodes is 1 lu. To find the lattice spacing ∆x, one should

use:

∆x =
L

N − 1
, (2.33)

in which L is the channel height in meters and N is the number of lattice nodes. The lattice spacing

unit is [m/lu]. Equation 2.34 calculates the lattice flow velocity:

ulb =
∆t

∆x
uphys, (2.34)

in which uphys is the experiment flow velocity. The lattice kinematic viscosity is:

νlb =
∆t

∆x2
uphysL

Re
=
uphys(N − 1)

Re
. (2.35)

By choosing a number of lattice nodes in one direction, the lattice spacing is calculated with

Equation 2.33 and, by choosing the lattice flow maximum velocity umax, it is possible to compute

the lattice time step size:

uphys = umax

∆x

∆t
. (2.36)

From this result, the lattice viscosity is computed. The difficulty of this method is the appropriate

choice of the lattice flow maximum velocity, because, despite the safe value of 0.1 lu/lt, some

flows may present instabilities at this value.
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There is another way to perform these calculations, by starting with a numerical viscosity

number. As the range of values that do not create instabilities in the simulation is small (0 < νlb <

0.17), this approach is appropriate to avoid instabilities. After picking up a value in this range and

a lattice flow maximum velocity, the same Equations 2.33 to 2.36 can be used to calculate the other

parameters.

2.10 Poiseuille flow

The Poiseuille flow occurs in a pipe or in a slit between two parallel surfaces (Sukop and

Thorne Jr., 2005). The velocities at the walls are zero, satisfying the no-slip condition, and the

maximum velocity is in the center of the flow. The velocity profile in a slit of width 2a is parabolic:

u(x) =
G*

2µ
(a2 − x2), (2.37)

in which G* is the linear pressure gradient (Pin−Pout)
L

or a gravitational pressure gradient (ρg). The

average velocity in a slit is 2/3 of the maximum velocity in the slit or pipe:

uaverage =
2

3

G*

2µ
a2. (2.38)

2.11 Laplace law

The Laplace law states that there is a pressure difference between the inside and the outside

of a bubble or a drop, and the pressure is always higher inside the bubble or drop. For 2D drops or

bubbles, there is only one possible radius of curvature, and the law is (Sukop and Thorne Jr., 2005):

∆P =
σ

r
. (2.39)

This law applies to interfaces between liquid and vapor phases of the same component, when

σ is called surface tension, and between different components, when σ is called interfacial tension.
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3 Parallel processing

From 1986 until 2002, software developers and final users could rely on technical advances

of microprocessors to increase performance of their programs, with an average of 50% more speed

per year (Pacheco, 2011). According to Sanders and Kandrot (2011), the first personal computers

ran with internal clocks operating at 1 MHz until 1 GHz and 4 GHz after 30 years, a gain of more

than 1000 times in the clock speed. However, after 2002, the performance gain decreased to 20%

per year due to technical issues, like the difficulty of dissipating heat of microprocessors with high

density of transistors, and also the reach of the physical limit to the transistor size.

Supercomputers also followed this way of achieving high performance gains, but combined

with the increasing number of processors, of usually tens or hundreds of thousands of processor

cores (Sanders and Kandrot, 2011). On the trail of supercomputers, aiming to overcome the smaller

amount of performance gain in the clock speed, the next step for industries was adding more than

one processor on a single chip. The multicore revolution, as it is sometimes referred, brought two-,

three-, four-, six-, eight-, twelve-, and even sixteen-core CPUs (Sanders and Kandrot, 2011).

The main consequence of this decision for programmers was that their programs based on

single core CPU would no longer benefit from new technologies as before, since programs writ-

ten for single-core processors do not recognise multiple cores. Since 2005, when most companies

started offering multicore processors, serial codes needed to be rewritten in order to fairly increase

performance using these new processors. There is a trend for developing translation programs,

which would automatically convert a serial code into parallel code, but since this approach has

only been good for specific cases, it is needed to write more efficient parallel algorithms for each

case separately (Pacheco, 2011).

Other trend in parallel processing is the recent general-purpose computation on GPUs. In the

early 1990s, the popularity of operating systems with graphical interface increased, creating a de-

mand for 2D display accelerators (Sanders and Kandrot, 2011). At the same time, a company called

Silicon Graphics already offered 3D graphics for professional computing, such as government, and

defense applications and scientific and technical visualization. They released the Open Graphics

Library (OpenGL) specification, the programming interface they used in their hardware. After

that, applications requiring 3D graphics had scaled incredibly, usually in realistic environments

for games. Other companies also developed their graphics accelerators, for example, NVIDIAr,
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ATI, and 3dfx. GPUs performed more and more functions of the OpenGL graphics pipeline, until

the NVIDIAr’s release of the GeForcer 3 series, which was the first chip to contain both pro-

grammable vertex and pixel shading stages and to enable more control over the GPU calculations.

Then, researchers began to use GPUs for general-purpose applications, but were harnessed to the

graphics application programming interface (API), being necessary to convert their problems into

rendering problems and deal with resource and programming restrictions from GPU, besides the

need of learning the OpenGL API. Five years after the release of the GeForcer 3 series, NVIDIAr

launched the GeForcer 8800 GTX, the first GPU with CUDA, that included new components spe-

cially designed for general-purpose applications, and aimed at easing GPU programming for these

users. As with multicore CPUs, programming GPUs requires rewriting serial code to take advan-

tage of the many-core approach.

In this chapter, an API for parallel programming on CPUs is presented, called Message-

passing Interface (MPI). Then, parallel programming on GPUs is discussed, starting with the GPU

concept and afterward CUDA, the scientific visualization field based on OpenGL and an important

tool called CUDA-OpenGL interoperability are explained.

3.1 Message-passing Interface

MPI is a library of functions for languagues such as C, C++, and Fortran, and uses the con-

cept of message passing to perform communications in distributed-memory systems, which consist

of computer nodes with their own memory, which are only accessible to its own node (Pacheco,

2011). Each instance of a program running on these nodes is called a process, which needs to

communicate information with other processes from different nodes to solve a problem. MPI does

this communication by using functions for point-to-point communications, which involve only two

processes, and collective communications, for more than two processes. As supercomputers are

usually distributed-memory systems, MPI is the adequate approach to use them, which makes MPI

an important tool in parallel computing.

In this subsection, the basic details of MPI are given, such as communication pattern, which

is the main characteristic of this API, and performance evaluation, which enables the measurement

of how faster a parallel program is in relation to serial code.
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3.1.1 Communication

All MPI code should be between functions MPI_Init() and MPI_Finalize(). The first func-

tion does all MPI setup, allocating memory for message buffers and identifying the process

rank, while the last one frees all memory used. MPI_Init() also defines a communicator called

MPI_COMM_WORLD, which consists of the collection of processes that are able to communicate

to each other (Pacheco, 2011). The communicator can provide information such as the total num-

ber of processes by using the function MPI_Comm_size(), and the rank of the process that calls the

function MPI_Comm_rank().

Recalling that MPI follows the single program, multiple data (SPMD) approach, it means

that only one program is written independently of the number of processes that will run, and this

is done by making branches that specify different tasks for each process. As input can only be

dealed by process 0, while all processes can deal with output, communications are necessary to ex-

change information among processes. Some point-to-point communications comprehend the func-

tions MPI_Send() and MPI_Recv() for sending and receiving messages; MPI_Ssend(), which makes

a synchronous send that always block until matching the right receive function; MPI_Sendrecv(),

which sends and receives a message in the same call; and MPI_Sendrecv_replace(), which sends

and receives a message when buffers are the same. On the other hand, some collective functions are

MPI_Reduce() and MPI_Allreduce(), for reduction operations; MPI_Bcast() for broadcasting infor-

mation; MPI_Scatter(), which divides an array equally to the processes and sends to each process

only the information it needs; and MPI_Gather() and MPI_Allgather(), which does the opposite of

MPI_Scatter, collecting all parts of an array from each process and sending it into a process or into

all processes, respectively (Pacheco, 2011).

Another important detail on MPI communications is the data distribution. In block partition,

data blocks are divided equally among the processes, and the first data block is assigned to the

first process, the second data block is assigned to the second process, and so forth. Other type of

data distribution is the cyclic partition, which assigns data like a round-robin scheduling, for ex-

ample, the first position of data goes to the first process, the second position goes to the second

process, and so on. These two types can be combined to create a third type of data distribution,

called block-cyclic partitioning, when blocks of data are assigned to the processes in a round-

robin manner. Most basic MPI functions works with block partition type, so, to have cyclic or

block-cyclic partitioning, a MPI-derived data type can be created in order to communicate different
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partitioning (Pacheco, 2011). The cost of sending, for example, ten memory positions in multiple

messages with size of one memory position is higher than sending one message with all ten posi-

tions, because of the communication overhead and the message setup that follows the transmited

data. MPI-derived data types are worthy because they can reduce the amount of messages between

processes, in case of different data types that need to be sent. A new MPI type can be built with the

function MPI_Type_create_struct(), which needs to be further committed with MPI_Type_commit()

and later freed with MPI_Type_free().

3.1.2 Performance assessment

To measure how faster a parallel code is than a serial code, MPI provides the function

MPI_Wtime(), which returns the number of seconds that have passed. The subtraction of two calls

for MPI_Wtime() gives time elapsed to run the code that is contained between these two calls. It

is worth noting that the time counted in this function includes CPU idle time, such as time wait-

ing for a call to MPI_Recv() returns (Pacheco, 2011). Before calling MPI_Wtime(), the collective

communication function MPI_Barrier() must be called to guarantee that all processes start the next

instruction at the same time. After measuring time, every process has its own value for the elapsed

time; a reduction operation has to be done to choose the maximum value, i.e., the time taken for

the slowest process to run.

When a program is assessed, it should be statistically treated, i.e., some measures with the

same input and same number of processes should be made in the same equipment with the same

configuration in order to get a more realistic value. The difference in measures is due to the interac-

tion of the program with the operating system, which is unpredictable, for example, the operating

system may be processing a data package from the Internet, or an input/output request from the

printer, etc. From these measures, the minimum runtime should be picked up, since these inter-

actions hardly ever make the program run faster. The number of MPI processes used should be

the same number of physical cores that a node has, in order to reduce interconnect bottlenecks

(Pacheco, 2011). This improves performance and reduces variability in run-times. Even micro-

processors that can run more than one thread per core are still counted as only one process per

core. Another thing to consider is that serial code is different from MPI parallel code running with

only one process. This happens because of the MPI overhead, so MPI code running with only one

process should not be used in performance evaluation.
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3.2 Graphics Processing Unit

GPUs follow a many-core approach and have a large number of smaller cores, when com-

pared to CPU. As other many-core processors, GPUs have the best floating-point performance since

2004, as shown in Figure 3.1. They also have higher memory bandwidth, as shown in Figure 3.2.

Figure 3.1: Temporal evolution of theoretical billion of floating-point operations per second
(GFLOPS) for NVIDIAr GPUs and Intel CPUs, for single and double precision (NVIDIA, 2014b).

The performance difference between GPUs and CPUs is due to design characteristics of both

types of processors. CPU is optimized for sequential code, so it has a sophisticated control logic

and large cache memories. The control logic can execute instructions in parallel and change their

order of execution, while cache memories reduce instruction and data access latencies (Sanders and

Kandrot, 2011). In GPU, control logic is very simple and cache memory is smaller, which leaves

room for lots of arithmetic units. These differences are shown in Figure 3.3, in which the number

of transistors dedicated to calculations is much higher on GPU, because the number of transistors

dedicated to cache memory and control logic is much smaller than on CPU (NVIDIA, 2014b). The

difference in memory bandwidth values is also due to design characteristics. While CPUs have to

satisfy requirements from the operating system, applications, and input/output devices, GPUs do
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Figure 3.2: Temporal evolution of theoretical memory bandwidth for NVIDIAr GPUs and Intel
CPUs (NVIDIA, 2014b).

not have these requirements, and with less constraints they are easily built with higher memory

bandwidth. The low cost is another advantage of GPUs, which offer high performance and are not

so expensive as clusters, so a great part of customers can have a computer with an off-board GPU.

Figure 3.3: Differences between CPU and GPU architectures (NVIDIA, 2014b).

GPU has increased its advantage when it started to work with the Institute of Electrical and

Electronics Engineers (IEEE) floating-point standard, which makes results more predictable, since

the NVIDIAr’s 80 series launch. The support is comparable to that of CPU’s, as well as precision.
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Nowadays double-precision speed is half of the single precision speed, just like high-end CPUs.

A GPU is organized into 8 streaming multiprocessors (SMs) in the NVIDIAr GeForcer

GTX 560 Ti graphics card, released in 2011. There, each SM has 48 streaming processors (SPs)

that share control logic and instruction cache, so there are 384 SPs, reaching 1.5 TFLOP. The SM

and SP are shown in Figure 3.4, in which multiprocessor 1, multiprocessor 2, ..., multiprocessor N

are the SMs; processor 1, processor 2, ..., processor M are the SPs, and device is the GPU. With

these values, thousands of threads can run, a number much higher than the number of threads in

multicore CPUs. The device, constant and texture memories are the Graphics Double Data Rate

(GDDR) Dynamic Random Access Memory (DRAM), which has more latency than CPU mother-

board memory, but this is hidden by the GPUs higher bandwidth. Although constant and texture

memories are together with device memory, each SM has its own constant and texture caches, as

shown in Figure 3.4. GTX 560 Ti has 1 GB of GDDR DRAM, and its memory bandwidth from

CPU to GPU is 5.7 GB/s, from GPU to CPU is 6 GB/s and internally it is 128 GB/s. The lower

values of communication with CPU are due to the PCIe bus bandwidth, and are comparable with

those from CPU Random Access Memory (RAM) memory. It is worth noting that the current com-

pute capability of new NVIDIAr graphics cards is 5, though the graphics card that was used in

this work, the NVIDIAr GeForcer GTX 560 Ti, have compute capability equal to 2.1 (Fermi

architecture).

Although GPUs have advantage over CPUs in computations, there are tasks that are better

performed on CPU, like input/output handling. Thus, to combine the best advantages of both archi-

tectures, most applications use hybrid systems, with CPU in sequential parts and GPU in intensive

calculations. For hardware-accelerated 2D and 3D rendering, a typical multi-platform API used to

interact with GPU is OpenGL. Its specification began as an initiative by SGI in 1991 and its new

versions are regularly released by the Khronos Group. For general purpose processing, NVIDIAr

created a parallel computing platform and programming model on top of GPUs. The CUDA pro-

gramming model is designed to support this approach, aiming for performance improvement.

3.3 CUDA

The CUDA platform was launched in November, 2006 by NVIDIAr (NVIDIA, 2014b). Its

current software version is the 6.5, even though this work was based on the version 5.5. CUDA
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Figure 3.4: GPU architecture (NVIDIA, 2014b).

C is an extension to C that permits the programmer to define kernels, functions that are executed

on GPU, in which the user can define the number of threads that will be run in parallel. Threads

compose a block, and blocks compose a grid, so all kernels runs with a number of blocks per grid

and threads per block. This CUDA configuration is exemplified in Figure 3.5. Blocks and grids may

have up to three dimensions, and they have a maximum number of threads per block and blocks per

grid, limited by the shared SP memory. On GTX 560 Ti, a block may have up to 1024 threads.

The decomposition in blocks and threads enables automatic scalability according to the num-

ber of SMs that a graphics card has. As thread blocks can be executed in any order, the GPU can

schedule the blocks in any order, increasing scalability. The scalability increases with the number

32



of the GPU SMs: the more the number of SMs, the faster a program runs, as shown in Figure 3.6

(NVIDIA, 2014b).

Figure 3.5: CUDA programming model (threads, blocks and grid) (NVIDIA, 2014b).

CUDA has a versatile memory hierarchy that should be used to achieve higher performance,

since the private local memory from each thread and the shared memory for each block are faster

than the global memory, which is available to all threads (NVIDIA, 2014b). Figure 3.7 shows

this memory hierarchy available to the threads. Local memory available to each thread are the

registers in Figure 3.4, and global memory is the device memory in the same figure. Threads also

access two read-only memory spaces: the constant and the texture memories. The use of constant

memory requires less memory bandwidth than the use of global memory, while texture memory

also improves performance when reads have specific access patterns (Sanders and Kandrot, 2011).
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Figure 3.6: Automatic scalability of CUDA programs according to the number of SMs of a GPU
(NVIDIA, 2014b).

Figure 3.7: CUDA memory hierarchy (NVIDIA, 2014b).
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3.4 Scientific visualization

In this section, the 3D texturing technique for volumetric visualization and the use of shaders

in the GPU programable pipeline are presented.

3.4.1 3D texturing

To solve the problem of simulating and visualizing online, a simple and efficient technique

of visualization should be chosen. The 3D texturing has wide support in GPU, is simple to imple-

ment and offers high frame update rates (Engel et al., 2006). Texture mapping is a technique that

aims at improving the quality of rendered images (Blythe, 1999) whose domain is a regular grid

(Engel et al., 2006). Usually, textures are used to provide more details about color and lighting of

a complex surface, through a fragment color modification, in order to give the scene more realism

(Akenine-Möller et al., 2008). In scientific visualization, texturing techniques can be applied with

other objectives, like simulation data visualization and image filtering (Telea, 2008).

Often a texture is an array of color values. Each element of this array is called texel, which is

an abbreviation for texture element (Akenine-Möller et al., 2008). A texture can have one, two or

three dimensions, and is attached to a model to create the desired effect (Shreiner, 2009). To be able

to visualize data, the texture needs to be bound to a proxy geometry. In scientific visualization, a 3D

texture may be data that one wants to visualize, like velocity or pressure in a fluid flow simulation.

The way of connecting the texture to the proxy geometry is through the texture coordinates

(Shreiner, 2009). Each vertex of the proxy geometry must be associated to a texture coordinate.

Then, the texture coordinates of the geometry vertices are interpolated, so that each pixel of the

rasterized image has a correspondence in the texture (Akenine-Möller et al., 2008). Figure 3.8

shows an example of the association between texture coordinates and geometry coordinates. In this

example, the volume data with size 4 x 4 x 4 represents a texture (Figure 3.8(a)). This texture should

be associated with a proxy geometry (Figure 3.8(b)) to result in Figure 3.8(c). In this figure, the

texture coordinates are normalized in the range from 0 to 1 in each dimension.
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Figure 3.8: Example of 3D texture mapping.

3.4.2 Shaders

Modern GPUs have a programmable pipeline that aims for improvements on lighting and on

texturing effects, and better image quality (Shreiner, 2009). A shader is a program to be run in

GPU, which replaces predefined functions of the fixed pipeline. There are four types of shaders:

vertex shaders, geometry shaders, fragment shaders, and tesselation shaders. Both three types of

shaders have similar syntax, and are processed with the same unit of a modern graphics card.

3.5 CUDA-OpenGL interoperability

When CUDA 5.5 is used, lots of memory copies between CPU and GPU usually happen,

which tends to be the bottleneck of this kind of implementation. With the simultaneous use of

OpenGL for visualization, it is possible to avoid these data transfers and also data transfers inside

the GPU at each change of contexts (CUDA and OpenGL). Furthermore, data are allocated on CPU

only in the beginning, and on GPU they are allocated only once for both contexts. This resource
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can be achieved because the CUDA programming interface allows the use of allocated resources

on the OpenGL context in CUDA kernels (Alt, 2012), through mapping/unmapping an OpenGL

buffer into CUDA’s memory space. Its objective is performance gain and memory savings, as less

memory transfers and less memory allocations are needed.

In our case, to use interoperability, a Pixel Buffer Object (PBO) is created in OpenGL, which

allows the buffering of a rendering that will not be immediately shown on the screen. This buffer

stores simulation results from CUDA calculations, which are shown after each CUDA-OpenGL

iteration. The PBO should also be associated to a cudaGraphicsResource CUDA pointer, which

contains simulation results in the CUDA context. In other words, as the PBO and the cudaGraph-

icsResource pointer are associated, they contain the same data. After that, for each iteration, the

cudaGraphicsResource pointer is mapped and recovered, then it is passed as an argument to the

CUDA kernels. Thereafter, CUDA calculations can be performed normally and, when they end, the

resource must be unmapped to be used in the OpenGL context.

To visualize PBO data in OpenGL, the PBO is binded to the 3D texture that is being visual-

ized, before associating its coordinates to a proxy geometry. Summing up the steps and functions

to use CUDA and OpenGL in the same graphics card:

∘ create a PBO;

∘ create a cudaGraphicsResource pointer;

∘ associate both variables with cudaGraphicsGLRegisterBuffer();

∘ for each iteration of CUDA and OpenGL:

· map the cudaGraphicsResource pointer (cudaGraphicsMapResources());

· obtain the mapped pointer (cudaGraphicsResourceGetMappedPointer());

· perform CUDA calculations passing the mapped pointer as a kernel argument;

· unmap CUDA pointer (cudaGraphicsUnmapResources()); and

· visualize with OpenGL.
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3.6 Performance evaluation

To evaluate performance of serial, CPU parallel and GPU parallel codes, and versions with

and without interactive visualization, or some other modifications, run-times of each one of these

versions are used to calculate a relation called speedup:

S(n,p) =
Tserial(n)

Tparallel(n,p)
, (3.1)

in which Tserial(n) is the run-time of the serial code, which depends on the number n of elements

of the domain, and Tparallel(n,p) is the run-time for the parallel code, which not only depends on

the number of elements of the domain, but also on the number of processes p (or the number of

cores in GPU). If the speedup is equal to p, then the code shows linear speedup, the ideal value

that is hardly achieved. With this ideal value, it is possible to calculate the code efficiency, which

measures the distance from the ideal value, and is the speedup per process:

E(n,p) =
S(n,p)

p
=

Tserial(n)

p× Tparallel(n,p)
, (3.2)

in which E(n,p) is less than 1.

Another way of assess performance of parallel implementations is the scalability. A program

is scalable when its efficiency does not decrease as the number of processes and the problem size

increase. A program that shows constant efficiency regardless of the problem size is called strongly

scalable. On the other hand, programs that shows constant efficiency only when the problem size

increases at the same rate as the number of processes are called weakly scalable.
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4 Implementation

This chapter describes the simulator implementation, the simulator engine, the visualization

procedures, and the graphics user interface. Finally, the serial version and the MPI parallel CPU

version, both without interactive visualization, are discussed. The source code of the GPU version

with interactive visualization is available at Oliveira (2015).

4.1 FAPESP project

This work aims at meeting some design requirements of the FAPESP project Fluid simulator

implementation in microsystems based on particle methods for massively parallel processing in

GPU cluster. These requirements were: to import 2D files and 3D computer aided design (CAD)

files to specify solid boundaries of the LBM domain, to import a previously defined experiment, to

define boundary conditions, initial conditions and excitations, to solve the fluid-structure problem,

to visualize simulation, to monitor the simulation with virtual sensors, and to save a simulation

instant. Details about these requirements are given in the next subsections.

4.1.1 2D and 3D files import

To import files that define the solid nodes of the simulation domain, it is required a monochro-

matic bitmap file for the 2D case, and a stereolithography (STL) file for the 3D case. In the 2D case,

black pixels indicate solid nodes in the simulation, while white pixels indicate fluid nodes, with one

pixel per node. In the 3D case, a STL file can be exported from CAD programs. The 3D model has

its solid parts as solid nodes, and the empty space is filled with fluid in the simulation. An input

parameter in the input parameter file (Subsection 4.1.2) defines the simulation dimension: if it is

equal to 1, it defines a 2D simulation, otherwise, if it is equal to any positive integer value, it defines

the value of the largest dimension of the 3D file. STL 3D models can be built with any size, and the

simulation size is defined at execution time.

The monochromatic bitmap file is currently read by the simulator with the help of the QImage

class of the Qt library (Qt, 2014), although in the first versions of the simulator, it was read with
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C support for file readings. Qt is a cross-platform application and a user interface framework for

developers using C++. In this work, Qt 5.1 is used to implement the user interface, interaction

features and some useful Qt classes that were used to improve the simulator.

The STL file is read with the help of the Common Versatile Multi-purpose Library for C++

(CVMLCPP). This library aims at offering high-quality implementation of commonly needed func-

tions, eliminating redundancy in basic implementation that may even have bugs (University of

Geneva, 2012). A regular 3D matrix, which is a basic structure of this library, and a geometry, for

3D surface models, are declared. Then the readSTL function is called to read the input STL file,

and the voxelize function converts the read 3D surface model into voxel data (in the 3D matrix),

with value 1 for solid voxels, and 0 for fluid voxels (a voxel is a volume element, just like pixel is a

picture element for 2D images). After that, the volume can be read through the matrix and the solid

matrix is filled with input values.

4.1.2 Previously-defined experiment import

To import previously-defined experiments, the simulator needs two files: a 2D or 3D model

(Section 4.1.1) and a file of input parameters. The input parameters are contained in a .dat-extension

file, and include:

∘ number of GPUs (devices);

∘ length of the maximum dimension for 3D domains (1 defines D2Q9 model) [lu];

∘ initial velocity of the fluid in x, y and z axes (one axis per line) [lu/ts];

∘ initial density of the fluid [mu/lu2 for 2D and mu/lu3 for 3D];

∘ fluid viscosity [lu2/ts];

∘ number of steps between each screen update [ts];

∘ external forces applied on the fluid in x, y and z axes (one axis per line) [mu lu/ts2];

∘ interaction strength [dimensionless]; and

∘ adsorption interaction strength [dimensionless].
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4.1.3 Definition of boundary conditions

The standard boundary condition is set with the periodic condition, i.e., if no other condition

is defined, the periodic condition is applied to every border of the domain. For solid nodes, the

standard is the bounceback condition. The simulator can also be changed to apply constant velocity

or pressure in the borders. All conditions were implemented according to Section 2.4.

4.1.4 Definition of initial conditions

Besides the previously-defined experiment import file, some other conditions can be initially

defined, such as uniform density or density plus a random component, vertical or horizontal inter-

face of liquid and gas, and seed bubbles or drops.

4.1.5 Definition of excitations

External forces can be applied to the whole domain, like the gravitational force, and were

implemented according to the Section 2.5. The initial value in each axis is defined in the input

parameters file, and this value is applied during the entire simulation.

4.1.6 Fluid-structure problem solution

The fluid-structure problem was solved through the bounceback boundary condition ex-

plained in Subsection 2.4.2. This condition is applied whenever there is an interface between solid

and fluid. The simplicity of this condition allows the simulation of complex geometries.

4.1.7 Simulation visualization

The simulation visualization was implemented using the OpenGL (version 4.3) and Qt (ver-

sion 5.1) libraries, and the OpenGL Shading Language (GLSL) (version 4.30.8 with shader prepro-
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cessor in version 430) for the shaders. The 3D texturing technique was applied to the simulation

domain, and the shaders, user interface, and interaction features that compose the visualization are

better explained further in this chapter.

4.1.8 Virtual sensors for simulation monitoring

The virtual sensor was implemented as a cursor in the user interface, which measures fluid

properties of the point on which the cursor is placed. Its details are given further in this chapter.

4.1.9 Save of a simulation instant

A simulation instant can be saved through an icon in the user interface, which calls a function

to save Visualization Toolkit (VTK) files. These files contain information about the simulation,

such as pressure and velocity fields, the number of components for the velocity, the number of files

in case of parallel save, and which data positions are contained in each file.

4.2 Simulation engine

Figure 4.1 shows a scheme of the performed LBM steps. First, memory is allocated on CPU

for LBM initial data. After the filling of initial data on the allocated memory, memory on GPU is

allocated, in order to copy CPU data into GPU global memory. Once done the setup, the LBM steps

starts running iteratively.

Simulation data (ρ, u, and each f ) were stored in a structure-of-arrays, in which ρ, u, and each

direction of f are an array of size equal to the number of lattice nodes of the domain. A structure-of-

arrays is useful to achieve coalescing in GPU, in contrast to the array-of-structures that is better for

CPUs. Threads read the arrays in contiguous memory sections, which allows efficient data reading

and writing (Aksnes and Elster, 2009). Results of each iteration were calculated in the collision

step, and they are: the macroscopic density of each node (ρ), the macroscopic velocity of each node

(u), or the macroscopic velocity in each axis (ux, uy or uz) of each node.
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Figure 4.1: Simulation engine.

The LBM steps were performed in GPU using CUDA, by calling two kernels iteratively in

case of single phase flows, and three kernels in case of multiphase flows. For single phase flows, one

kernel performed the streaming step and periodic boundaries, and the other performed the collision

step, bounceback, and inlet and outlet boundary conditions. For multiphase flows, the same kernel

was called for the streaming step and periodic boundaries, the second kernel performed the other

boundary conditions, the first part of collision, and the interaction potential calculation, and the

last kernel calculated the cohesive and adhesive forces and ended the collision. Figure 4.2 shows

the difference in kernels for single phase and multiphase flows, respectively. This difference is due

to the interaction potential field, that should be calculated for all points of the domain before the

simulation proceeds. It is worth noting that external forces and multiphase flow were implemented

only for 2D domains.

In all kernels executions, each block had 32 threads in x-axis, 4 blocks in y-axis, and 1 block

in z-axis, and the domain size was divided by these numbers in each axis to define the grid size

(width/32 in x-axis, height/4 in y-axis, and depth in z-axis). Each lattice node corresponds to one

thread.
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Figure 4.2: Collision kernels.

A sophisticated algorithm derived from the two-step algorithm, called swap algorithm, was

also used (Mattila et al., 2006; Bailey et al., 2009). In the two-lattice or shift algorithms, memory

needs to be allocated twice to represent two copies of the simulated domain. This is necessary

because data may be lost during the streaming step, which exchanges distribution values with the

neighbour nodes. In the two-step algorithm or the swap algorithm, this additional memory does not

need to be allocated, because a specific pattern of exchange of distribution values plays the role of

the additional memory (Latt, 2007; Aksnes and Elster, 2009). The swap algorithm works as follows:

in the streaming step, for each node, according to the example of Figure 4.3, the distribution value
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e1 of the current node (lattice node 0 in this example) is exchanged with the value e3 of the node

to which e1 points (lattice node 1 in this example), e2 of the current node is exchanged with e4 of

the node to which e2 points (lattice node 3), e5 from node 0 with e7 from node 2, and e6 from node

0 with e8 from node 4. After that, in the collision step, all distribution values within a fluid node

(the current node or node 0 in the example of Figure 4.3) are inverted, e.g., e1 with e3 within node

0, e2 with e4 within node 0 and so forth. The same algorithm can be applied to the D3Q19 model

analogously.
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Figure 4.3: Swap algorithm. Top: initial f ’s configuration. Middle: Exchange of f ’s with its neigh-
bours. Bottom: inversion of f ’s inside a node in the collision step.
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The swap algorithm advantages are that the bounceback condition for the solid nodes are

already treated in it, because in the collision step only the fluid nodes have their distribution values

inverted. Furthermore, the swap algorithm performs up to 43% more lattice updates per second,

when compared to the two-step algorithm, and requires almost half of the memory required, when

compared to the two-lattice algorithm (Mattila et al., 2006).

4.3 Visualization and graphical interface

As stated in Subsection 4.1.7, the visualization was implemented through the 3D texturing

technique to visualize the simulation domain, and the shaders to select data to be visualized by the

3D texture. The 3D texturing followed the Subsection 3.4.1, while the shaders and the user interface

are detailed on the next subsections. All code for visualization and graphical interface are available

at Oliveira and Volpe (2013).

4.3.1 Shaders

Shaders were used to allow the selection of data to be shown, like velocity magnitude or

density, and to change between different color maps to help data visualization. Details of both

implementations are given next.

Pixel buffers are used to map the simulation results stored in the CUDA’s memory, so that

each texel of coordinates (r, g, b, and a) contains velocity values from the three axes (x, y, and z)

and density values. Shaders were selected on dependence of the data to be shown, and Qt offers a

selection box that was placed on the toolbar icon to choose between these data. Visual effects of

different shaders are shown in Figure 4.4, and the following shaders are available:

∘ density: colors are mapped according to density;

∘ velocity_mag: colors are mapped according to velocity magnitude;

∘ velocity_x: colors are mapped according to velocity in x axis;

∘ velocity_y: colors are mapped according to velocity in y axis; and
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∘ velocity_z: colors are mapped according to velocity in z axis.

In the visualization part, steps that make interface with the shader programming languague

were performed through the Qt support for shaders: the QGLShaderProgram and QGLShader

classes. An object of these classes is capable of specifying the type of shader that is going to be

loaded, compiling and linking it, sending the necessary data, initializing GLSL, and using the pro-

grams. Another way to perform these steps is through the OpenGL API directly (Shreiner, 2009).

(a) Density shader. (b) Velocity magnitude shader.

Figure 4.4: Effect of shaders.

The vertex shader does the most of the job: basically it only reads the part of texture that

is interesting (r for x-axis velocity, g for y-axis velocity, b for z-axis velocity, rgb for magnitude

velocity and a for density), and converts every texture value into color values to be shown in screen.

The shader accesses the texture data that has been previously created as texture object, the selected

color map, and minimum and maximum values of the selected parameter.

Color maps modify the 1D texture to be sent to each shader. A color map is defined by cre-

ating a 256 x 256 pixels png-format bitmap with all desired colors disposed into columns along

x axis, from the minimum value up to the maximum value, as shown in Figure 4.5(a). Five dif-

ferent color maps are available in this simulator: Jet, Cold and Hot, Cool, Gray, HSV, and X-ray.

User-defined color maps can be included considering types of vision, such as normal, protanope,

deuteranope or tritanope visions (Matlab, 2014). Different color maps and their effects can be seen
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in Figure 4.5.

(a) Color maps. (b) Effect of
color maps in
the simulation
domain.

Figure 4.5: Use of shaders for color maps.

4.3.2 User Interface

The simulator interface was implemented using the Qt 5 programming framework, allowing

the development of a graphical interface in C++ with OpenGL support, through the QGLWidget

class. The visualization area contains the simulated domain and stays in the center of the program

window. The content of this area was implemented with OpenGL, and the mouse interactions were

implemented with Qt 5. The implemented interactions are shown in Figure 4.6 and consist of:

∘ rotation: left button of mouse rotates the domain (implemented using the Arcball technique

(Wikibooks, 2014));

∘ pan: right button of mouse moves the domain along the screen; and
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∘ zoom: mouse wheel can zoom in or out the domain.

(a) Simulation domain before rotation, pan and

zoom.

(b) Simulation domain after rotation, pan and

zoom.

Figure 4.6: Interactions in visualization area.

The simulation panel on the left side of Figure 4.6(a) was implemented as a QDockWidget

dock in Qt 5 and contains information like: amount of devices (GPUs), width, height, and depth of

the domain and relaxation time Tau (Figure 4.7(a)). There are also parameters that can be changed

interactively: x-, y-, and z-axis inlet velocities, density, and viscosity. Furthermore, the relaxation

time depends on viscosity; if viscosity changes, so does the relaxation time. This panel can be seen

in Figure 4.7(a).

The visualization panel on the right side of Figure 4.6(a) was also implemented as a QDock-

Widget dock and contains features to change the visualization (Figure 4.7(b)). The first feature is

the update steps, which define how many LBM iterations are performed before updating screen,

helpful to modify the simulation speed or the frame update rate. The second feature deals with

normalization: it defines minimum and maximum values of density and velocity to scale these pa-

rameters, which helps to visualize details of a domain region that otherwise would not be possible

to see (Figure 4.8). The clipping feature cuts the domain in each axis separately or in combination,

being possible to choose the cut position and to invert the cut (Figure 4.9). Finally, the cursor can

show simulation data, such as velocity and density of a particular position of the domain, defined

by a cursor in the visualization area or by the sliders in the visualization panel (Figure 4.10).
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(a) Simulation panel. (b) Visualization panel.

Figure 4.7: Simulator panels.

(a) Maximum velocity: 0.1. (b) Maximum velocity: 0.18.

Figure 4.8: Result of different normalization values for velocity.
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(a) Simulation domain before cut. (b) Simulation domain after cut.

Figure 4.9: Result of clipping feature.

(a) Cursor placed in the orange region of the
domain.

(b) Cursor position and its respective informa-
tion.

Figure 4.10: Use of cursor to extract information from simulation.

There are three context menus, named File, Simulation, and Help. In the File menu, there are

options to open a simulation configuration (input data), to open a color map, to save a VTK file

(with the state of a simulation), and to exit. In the Simulation menu, the options are run, pause or

stop the simulation, and the Help menu contains information about the simulator version. These

menus can be seen in detail in Figure 4.11.

The icon toolbar contains nearly the same information of the context menus, with icons to

open a simulation configuration, to open a color map, to save a VTK file, to run, pause, and stop
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the simulation, and to choose between different visualization data (density, velocity magnitude, or

velocity in any axis). Both the context menu and the icon toolbar can be seen in Figure 4.11.

Figure 4.11: Context menu and icon toolbar.

The status toolbar on the bottom of Figure 4.10(a) contains information about the simulation:

status tips on the left side and performance parameters on the right side. The performance parame-

ters are the amount of millions of lattice updates per second (MLUPS), simulation duration (s), the

amount of frames per second (fps), and the amount of performed simulation steps. This information

was added through the QLabel widget and is present in Figure 4.12.

Figure 4.12: Status bar.

4.4 Previous versions of the simulator

The final version of the simulator presented in this master thesis was developed step-by-step,

in a way that the following versions were implemented: serial CPU code, parallel CPU code, and

parallel GPU code. The interactive visualization was added later and only to the GPU version,

so that features such as the CUDA-OpenGL interoperability could be adopted. Besides helping in

the final version evolution, these versions could be used to assess performance of the interactive

simulator, by comparing the MLUPS performance measure and run-times.

The parallel CPU code was implemented with MPI and is explained next. Data-parallelism

was applied to serial code, dividing the domain into smaller column blocks, as in Figure 4.13.

Block-cyclic partitioning was used with block size equal to the number of processes.

Steps of streaming, collision, and boundary conditions were performed just like the serial

algorithm, with each process calculating its own subdomain, but after the streaming it is necessary
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5 Results

This chapter presents results in terms of validation cases and performance assessment of the

interactive simulator. The validation tests were divided into SCSP and SCMP cases, and the per-

formance evaluation was performed based on a 2D simulation of a single phase flow for increasing

domain sizes, comparing serial, MPI and CUDA versions. After the SCSP validation tests, an ap-

plication of a microfluidic device called oscillator was shown. Visualization results, such as the

graphical interface and the visualization of the domain, assisted the validation and performance

analyses, making them easier and faster.

The software code is available at Oliveira (2015) and was executed in a computer equipped

with the Intelr Core i7 CPU 950 at 3.07 GHz×8 processors (4 physical cores and 8 threads), 6 GB

of RAM memory, and NVIDIAr GeForcer GTX 560 Ti graphics card with 384 cores and 1 GB of

GDDR5 RAM memory, on Ubuntu 12.04 long-term support (LTS) Linux-based operating system.

The Intel processor theoretical throughput is 49 GFLOPS and NVIDIAr graphics card theoretical

throughput is 1.5 TFLOPS. Results were measured in fps, in MLUPS, and in seconds. These values

can be seen in the interactive simulator in the lower right corner, on the status bar (Figure 4.12).

5.1 Single component, single phase flow validation tests

SCSP cases were validated for 2D and 3D models for the following cases: Poiseuille flow

driven by gravity (only 2D), Poiseuille flow driven by velocity/pressure boundaries (entry length

effect), flows past a cylinder and unstable flow at high Reynolds numbers. SCSP models simulates

the behaviour of a single gas phase or a single liquid phase. Simulator results for these cases were

compared to analytical solutions, experimental results, or simulated results, showing the simulator

is appropriate for fluid flow simulations.

5.1.1 Poiseuille flow driven by gravity

Poiseuille flow driven by gravity in a slit is one of the simplest LBM simulations, and requires

bounceback condition for the walls, periodic boundaries for the open ends of the domain, and
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gravitational force applied as external force in the entire domain. The slit is actually infinite and

there is no entry length effect: it actually happens in the begin of simulation but at steady state the

flow is completely developed. It is worth noting that channels should be at least 5 lattice units wide

to show good results, and that lattice velocities should not be higher than aproximately 0.1 lu/lt

(Sukop and Thorne Jr., 2005). The velocity condition is due to the low Mach number approximation

for the LBM, meaning the LBM only works for the low Mach number hydrodynamics, because

there is a small velocity expansion implicitly used in the derivation of the Navier-Stokes equation

when one starts with the Lattice Boltzmann equation (He and Luo, 1997).
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Figure 5.1: Analytical and simulation result comparison for the Poiseuille flow.

In this 2D simulation, a domain of 1024 x 256 lu2 was chosen, and τ = 1 to have stable

results using the bounceback condition, leading to a kinematic viscosity of 1/6 lu2/lt. To keep the

maximum velocity approximately equal to 0.1 lu/lt, and using Equation 2.37, the gravitational

acceleration needed was 2.035 × 10−6 lu/lt2. The fluid density was chosen as 1 mu/lu2, leading

to a Reynolds number of 102.4 (using Equation 2.38). This flow is laminar, since turbulent flow

happens at Re > 1000 in a slit and Re > 2000 for a pipe. Figure 5.1 was plotted from the output

data generated by the simulator with help of the software MATLABr, and shows analytical and
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simulated results for this flow. The analytical result comes from the analytical solution shown

in Section 2.8. From this figure, it is possible to see the good agreement between analytical and

simulation results. The maximum error was approximately 2%.

5.1.2 Poiseuille flow driven by velocity/pressure boundaries

Velocity and pressure boundaries are useful to simulate entry length effects. When a fluid

enters a pipe, it takes some distance from the beginning of the pipe until the flow is fully devel-

oped and shows the Poiseuille flow. In some cases, this distance can be long, which justifies the

importance of this simulation.

In this simulation, constant velocity boundary condition was applied in the inlet, and con-

stant pressure boundary was applied in the outlet of the domain. The inlet constant velocity was

0.01 lu/lt and the outlet constant density (the relation between density and pressure is explained

in Section 2.4.4) was 1 mu/lu2 (2D) or 1 mu/lu3 (3D). The domain was 1024 x 256 lu2, and the

viscosity was 1/6 lu2/lt, giving a Re of approximately 10. Figure 5.3(a) shows the simulated entry

length effect from Sukop and Thorne Jr. (2005), and Figure 5.3(b) shows the result from the inter-

active simulator. In Figure 5.3(a), a normalized width of 0.2 lu was used, while in Figure 5.3(b)

the width had 256 lu, and the velocity profiles of the interactive simulator were plotted at distances

equivalent to the distances of Figure 5.3(a). Figure 5.3(b) and Figure 5.4(b) were plotted with help

of the software ParaView, using the VTK files generated by the simulator. One can note the match-

ing results between both figures, validating the simulator for LBM with 2D velocity and pressure

boundaries.

The 3D case was flow in the annulus between two pipes. The same conditions for the slit

were considered in this simulation. The domain can be seen in Figure 5.2 (plotted with ParaView)

and measures 128 x 128 x 32 lu3. In this figure, blue color represents solid nodes, and the flow is

represented by a Jet color map. Figure 5.4(a) shows the analytical entry length effect from Nouar

et al. (1995), and Figure 5.4(b) shows the result from the interactive simulator. In Figure 5.4(a), a

normalized width of 0.2 lu was used, while in Figure 5.4(b) the width had 24 lu, and the velocity

profiles of the interactive simulator were plotted at distances equivalent to the distances of Figure

5.4(a). The results of both figures match, validating the simulator for LBM with 3D velocity and

pressure boundaries.
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(a) Photograph of Stokes flow (Taneda, 1979). (b) Current lines of simulated Stokes flow
(Sukop and Thorne Jr., 2005).

Figure 5.5: Stokes flows past a cylinder (Re = 0.16).

Figure 5.6 shows the simulated Stokes flow from the interactive simulator for the 2D and 3D

cases (plotted with ParaView). It is possible to note that both results are qualitatively similar to the

photograph and to the simulated result from Figure 5.5. In both figures, colors indicate the velocity

magnitude, according to the Jet color map.

(a) 2D case. (b) 3D case.

Figure 5.6: Current lines of simulated Stokes flow past a cylinder (Re = 0.16).
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5.1.4 Flow separation past a cylinder

Separation occurs when Re is increased, and eddies are formed behind the cylinder. This

simulation had a Re of 41, resulting in flow separation with eddy generation. Constant velocity

boundary was applied in the inlet, and constant pressure boundary was applied in the outlet of the

domain. The domain was 1024 x 256 lu2 for the 2D case and 512 x 256 x 32 lu3 for the 3D case,

the inlet velocity was 0.041 lu/lt, the outlet density was 1 mu/lu2 for 2D and 1 mu/lu3 for 3D,

and the viscosity was 0.02 lu2/lt. Figure 5.7(a) shows the photograph of a flow separation (Taneda,

1956), while Figure 5.7(b) shows current lines of a simulated flow separation (Sukop and Thorne

Jr., 2005). Figure 5.8 shows the simulated flow separation from the interactive simulator for the 2D

and 3D cases (plotted with ParaView), with colors indicating the velocity magnitude, according to

the Jet color map. It is possible to note that both results are qualitatively similar to the photograph

and to the simulated results from Figure 5.7.

(a) Photograph of flow separation (Taneda,
1956).

(b) Current lines of simulated flow separa-
tion (Sukop and Thorne Jr., 2005).

Figure 5.7: Flow separation past a cylinder (Re = 41).

5.1.5 Unsteady flow past a cylinder

Higher Re leads to unsteady flows with vortex shedding that moves downstream. This flow

is known as von Kármán street and is also of great interest in fluid dynamics and LBM research

(Sukop and Thorne Jr., 2005; Succi, 2001). In this simulation, Re was 105, resulting in flow with

vortex shedding. Constant velocity boundary was applied in the inlet, and constant pressure bound-

ary was applied in the outlet of the domain. The domain was 1024 x 256 lu2 for the 2D case and 512
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(a) 2D case. (b) 3D case.

Figure 5.8: Current lines of simulated flow separation past a cylinder (Re = 41).

x 256 x 32 lu3 for the 3D case, the inlet velocity was 0.105 lu/lt, the outlet density was 1 mu/lu2

for 2D and 1 mu/lu3 for 3D, and the viscosity was 0.02 lu2/lt. Figure 5.9(a) shows the photo-

graph of a flow with vortex shedding and von Kármán street at Re = 105 (Taneda, 1956), while

Figure 5.9(b) shows the vorticity magnitude of a simulated flow at same Re (Sukop and Thorne Jr.,

2005). Figure 5.10 shows the simulated vorticity magnitude from the interactive simulator for the

2D and 3D cases (plotted with ParaView), with colors indicating the velocity magnitude, according

to the X-ray color map. Both results are qualitatively similar to the photograph and to the simulated

results from Figure 5.9.

(a) Photograph of unstable flow

(Taneda, 1956).

(b) Vorticity magnitude of simulated

unstable flow (Sukop and Thorne Jr.,

2005).

Figure 5.9: Vortex shedding and von Kármán street in unstable flow past a cylinder (Re = 105).
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(a) 2D case. (b) 3D case.

Figure 5.10: Vorticity magnitude of simulated flow with vortex shedding and von Kármán street
(Re = 105) at X-ray color map.

5.2 A Single component, single phase flow application: the fluidic oscillator

After SCSP flows validation, it is possible to show a LOC application called fluidic oscillator

(Gebhard et al., 1996). Figure 5.11(a) shows the operation of such a device. A fluid jet enters the

oscillator and tilts towards the attachment wall due to small fluctuations, creating a low-pressure

flow that attaches the fluid to the wall and makes it exit through one of the outlets. The feedback

channel allows some portion of the jet to come back closer to the supply nozzle, which makes the

jet to be switched to the other attachment wall. This way, a periodic output can be obtained, with

the fluid exiting one output port at each time.

The fluidic oscillator was drawn according to Gebhard et al. (1996) work and can be seen

in Figure 5.11(b). In this simulation, a 2D domain of 1664 x 1024 was used with an inlet velocity

of 0.02 lu/lt, and density of 1mu/lu2. Figure 5.12 and Figure 5.13 show the result of the fluidic

oscillator during its operation, recalling that the density field is at the top of the simulator interface,

and the velocity field is at the bottom. In Figure 5.12, it is possible to see the pressure difference

between each feedback channel, with the higher pressure in the channel beneath. The fluid in the

attachment wall beneath also has the higher velocity, and exits the oscillator while the upper outlet

has almost no fluid exiting it. The opposite happens in Figure 5.13, which was taken 14s after

Figure 5.12: the upper attachment wall has higher pressure and the fluid exits the oscillator through

it, creating an oscillatory device.
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Figure 5.13: Result of the fluidic oscillator simulation in the interactive simulator: fluid exiting
through the upper outlet (upper feedback channel with higher pressure).

5.3 Single component, multiphase flow validation tests

SCMP flow cases were validated for 2D models for the following cases: phase separation

and interface minimization, surface tension estimation, flat interfaces, heterogeneous cavitation,

and contact angles with solid surfaces. SCMP models can simulate the behaviour of two phases

of the same component, such as vapor and liquid phases. Simulator results for these cases were

compared to literature simulated results, showing the simulator is appropriate for SCMP fluid flow

simulations.

5.3.1 Phase separation and interface minimization

At steady state, phase separation becomes a single liquid droplet in vapor atmosphere, or

a single vapor bubble in liquid medium, depending on the total mass of the domain, which in

turn depends on the initial density. This happens because of the free energy minimization that

rearranges the domain into the minimum surface area volume (a circle in 2D case). Condensation

and evaporation are also simulated: bubbles or drops may grow, decrease, appear, or disappear

(Sukop and Thorne Jr., 2005).
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Figure 5.16: Literature surface tension estimation (Sukop and Thorne Jr., 2005).
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Figure 5.17: Surface tension estimation from the interactive simulator.
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(a) Literature result (Sukop and Thorne Jr.,
2005).

(b) Interactive simulator result.

Figure 5.20: Heterogeneous cavitation.

5.3.5 Contact angles

The appropriate value for Gads simulates all possible contact angles. To simulate contact an-

gles of 0, 90, and 180 degrees, it is necessary to calculate Gads by balancing cohesive and adhesive

forces (Sukop and Thorne Jr., 2005). Assuming the lattice nodes are pure liquid or pure vapor, all

neighbours of a node have the same density of this node, so its cohesive force is:

Fphase = −Gψ2
phase

8
∑︁

a=1

waea, (5.1)

in which all ψ are equal, and phase can be v for vapor or l for liquid.

A fluid node that is completely surrounded by solid walls undergoes the adhesive force:

F
phase
ads = −Gadsψphase

8
∑︁

a=1

waea. (5.2)

Fluid nodes that have the average ψ value represent an interface between liquid vapor, and
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experience:

F̄ = −Gψ̄2

8
∑︁

a=1

waea, (5.3)

F̄ads = −Gadsψ̄

8
∑︁

a=1

waea, (5.4)

in which ψ̄ = 1
2
(ψl + ψv).

To simulate a contact angle of 0∘, which means a surface completely wetted by liquid, the

adhesive force between the solid and the liquid is equal to the liquid cohesive force:

Fl = Fl
ads ⇔ Gads = Gψl. (5.5)

Using the liquid density from Section 5.3.3 (524.39mu/lu2), ψ = 2.732. The interaction strength

of this simulation was −120, so Gads = −327.79.

To simulate the contact angle of 90∘ on a surface wetted by liquid at a quantity exactly be-

tween completely wettable and completely non-wettable, the adhesive force of the solid on the

interface between liquid and vapor should equal the cohesive force at the liquid-vapor interface:

F̄ = F̄ads ⇔ Gads = G
(ψl + ψv)

2
, (5.6)

in which Gads = −187.16 with vapor density from Section 5.3.3 of 85.7mu/lu2 and ψv = 0.388.

Finally, to simulate the contact angle of 180∘ on a surface completely non-wettable by the

liquid, the adhesive force between the solid and the vapor must be equal to the cohesive force of

the vapor:

Fv = Fv
ads ⇔ Gads = Gψv, (5.7)

with Gads = −46.534 and ψv = 0.388.

Figure 5.21 shows good agreement between the results of Sukop and Thorne Jr. (2005) sim-

ulations and the interactive simulator for these three contact angles.
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(a) Literature result (Sukop and Thorne Jr., 2005).

(b) Interactive simulator result.

Figure 5.21: Simulation of three different contact angles: 0∘, 90∘, and 180∘.

5.4 Performance tests

To test the performance of the simulator versions, a set of various domain sizes (Table 5.1)

was created to run the Poiseuille flow during 500 iterations. The domain sizes varied from approx-

imately 32 thousand nodes up to more than 2 millions nodes at GPU and more than 16 millions

nodes at CPU. The amount of MLUPS was measured by carrying out 100 measures for serial and

parallel CPU versions, while 10 measures were taken for the interactive GPU version. To measure

run-time, the same 10 measures were carried out for the interactive GPU version, but for the serial

and parallel CPU versions, 3 measures were carried out. The difference in the amount of measures

was due to the possibility to choose a specified number of MLUPS measures in the serial and paral-

lel CPU versions, while the other measurements had to be taken manually. Two types of measures

were carried out in the interactive GPU algorithm: one was taken at maximum fps, here denoted

GPU 1, while the other had a limited value of around 30 fps, here denoted GPU 2. Next subsections

show results for each type of measurement.
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Table 5.1: Domain sizes used in the performance test.

Domain number Domain size Number of lattice nodes

1 512× 64 32,768
2 1024× 128 131,072
3 1024× 256 262,144
4 2048× 256 524,288
5 2048× 512 1,048,576
6 4096× 512 2,097,152
7 8192× 1024 8,388,608
8 8192× 2048 16,777,216

5.4.1 MLUPS assessment

Figure 5.22 shows the amount of MLUPS measured for each domain size tested for the MPI

version with varying number of processes (1, 2, 4, and 8). In this graph, the curves were generated

using the smoothed lines graph type from Excel, using a logarithmic x-axis. It is possible to note

that the serial code had a performance of 10.90 MLUPS on the average, while the parallel version

with MPI running with 1 process had a performance of around 5.22 MLUPS on the average, and

with 2 processes it was around 10.42 MLUPS on the average. These values indicate that it is not

recommended to consider MPI code with 1 process as serial code, because due to the MPI overhead,

its performance is worse than the pure serial code (of around half the performance). Although the

MPI code with 2 processes had a performance similar to serial code, the MPI code with 4 processes

had a performance of 19.90 MLUPS on the average, almost 83% more lattice updates than the serial

code.

Considering the MPI code with 8 processes, the performance was 20.14 MLUPS on the aver-

age, with almost no gain when compared to the MPI code with 4 processes. This happens because

the processor used in these tests had 4 physical cores and 8 threads, being possible to achieve a

slightly better performance with 8 threads, but nothing substantial. With more than 8 processes,

they would have to be divided among the processor threads, and the threads would have more than

one process running sequentially, so there would be no gain in performance neither this test was

not performed.
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With these performance results, it is possible to affirm that the interactive simulator based on

GPU is more advantageous than a CPU implementation without visualization. The gain in simula-

tion speed when using GPU accelerates analyses and transforms the simulator in an interactive time

simulator, while the interactive visualization brings useful tools that allow parameter modifications

on the simulation at execution time, and the results visualization is eased by the interaction tools.
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6 Conclusion

In this work, the LBM was implemented in order to be achieve high performance simulations.

The equations of the SCSP and the SCMP flows were studied, as well as boundary conditions and

external forces. To achieve high performance, the algorithm was parallelized in two architectures:

CPU using the MPI extension, and GPU using the CUDA extension. The swap algorithm was also

used to reduce memory requirements without compromising performance.

After that, an interactive 3D visualization procedure was implemented, aiming to have a

unique tool to simulate, visualize, and interact with fluid flows. The 3D texturing technique was

used in the simulation domain visualization, shaders were employed to switch between different

simulation data to be visualized, Qt classes were utilised to implement the interactive features, and

the interoperability between CUDA and OpenGL was used to gain performance by keeping all data

inside GPU, which avoided data transfers.

The simulator accepts a bitmap file to identify solid nodes in the domain for 2D simulations,

and a STL file for 3D simulations, which allowed to import domains drawn in CAD programs. A

feature to save VTK files was also included, being possible to save simulation instants to analyse

flow properties in other programs. The code was also made available at Oliveira (2015).

Simulation results of the literature classical flows showed good agreement for SCSP cases,

validating the simulator for single phase flows. Some SCMP cases were successfully simulated as

well, like the phase separation and interface minimization, flat interfaces, surface tension estima-

tion, heterogeneous cavitation, and contact angles.

From the implemented versions of this work, a performance test could be done considering

serial and parallel CPU codes, and interactive GPU code. The test considered 8 increasing-size

domains for a SCSP flow, 500 iterations, and the performance measurements were the amount

of MLUPS, run-time, and speedup. Results showed that the MPI code could almost double the

performance of serial code using the Intelr Core i7 CPU 950 processor, and that the interactive

GPU code achieved 71.3 times more speed than CPU serial code using the NVIDIAr GeForcer

GTX 560 Ti graphics card. It is worth noting that serial and MPI codes did not have interactive

visualization, and that the GPU code was limited to show around 30 fps. When the frame rate was

not limited, the performance gain was 25 times faster than serial code. These results showed that the
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GPU code is more appropriate for fluid flow simulations based on the LBM, because it can reach

interactive simulation speed. Moreover, the interactive visualization demonstrated to be useful in

LBM analyses, because it allows an early intervention at the simulation, change of simulation

parameters and fast achievement of simulation information.

The next steps of this work may be divided into two parts: LBM and parallelism. LBM

improvements, such as other algorithms and optimisations, might be added to the simulator in order

to enlarge the flows that can be simulated with LBM. Some SCMP cases remain to be simulated;

they were studied but were not included in this work because they still need adjustments. The cases

were: homogeneous cavitation, capillary rise, and vapor invasion in porous media. Multicomponent

multiphase flows, which were not discussed in this work, might be included in the simulator as well.

The GPU performance gain might be increased by optimisations on the code, by using more than

one GPU on the same node, and by using a cluster of GPUs that is presented at the Supercomputing

Laboratory.

82



References

AGARWAL, R.K. and CHUSAK, L. Lattice boltzmann simulations of slip flow of non-newtonian

fluids in microchannels. v. 74, 247–256, 2010.

URL: http://dx.doi.org/10.1007/978-3-642-14438-7_26

AIDUN, C.K. and CLAUSEN, J.R. Lattice-Boltzmann method for complex flows. Annual review

of fluid mechanics, v. 42, 439–472, 2010.

AKENINE-MÖLLER, T.; HAINES, E. and HOFFMAN, N. Real-Time Rendering. A. K. Peters,

Ltd., Natick, MA, USA, 3rd ed., 2008. ISBN 987-1-56881-424-7.

AKSNES, E.O. Simulation of fluid flow through porous rocks on modern GPUs. 2009.

AKSNES, E.O. and ELSTER, A.C. Porous rock simulations and Lattice Boltzmann on GPUs. In

PARCO, pp. 536–545. 2009.

ALT, A. Mixing graphics and compute with multiple GPUs. http://on-demand.gputechconf.com/

gtc/2012/presentations/S0267A-Mixing-Graphics-and-Compute-with-Multiple-GPUs-Part-A.pdf,

2012.

BAILEY, P.; MYRE, J.; WALSH, S.D.C.; LILJA, D.J. and SAAR, M.O. Efficient algorithms for

ghost cell updates on two classes of MPP architectures. 2009.

BHATNAGAR, P.L.; GROSS, E.P. and KROOK, M. A kinetic approach to collision processes

in gases. I. Small amplitude processes in charged and neutral one component systems. Technical

report, Massachusetts Institute of Technology, USA, 1954.

83



BLYTHE, D. Lighting and shading techniques for interactive applications. Silicon Graphics,

1999.

CHEN, S. and DOOLEN, G.D. Lattice Boltzmann method for fluid flows. Annual Review of

Fluid Mechanics, v. 30, 329–364, 1998.

CHEN, S.; MARTÍNEZ, D. and MEI, R. On boundary conditions in lattice Boltzmann methods.

Physics of Fluids, v. 8, 1996.

CHENG, J.; KRICKA, L.J.; SHELDON, E.L. and WILDING, P. Sample preparation in microstruc-

tured devices. Microsystem Technology in Chemistry and Life Science, v. 194, 215–231, 1998.

CHOPARD, B. How to improve the accuracy of Lattice Boltzmann calculations.

http://wiki.palabos.org/_media/howtos:singleprecisionlb.pdf, 2008.

EHRFELD, W. Electrochemistry and microsystems. Electrochimica Acta, v. 48, 2857–2868,

2003.

ELWENSPOEK, M.; LAMMERINK, T.S.J.; MIYAKEI, R. and RUITMAN, J.H.J. Towards inte-

grated microliquid handling systems. Journal of Micromechanics and Microengineering, v. 4,

227–245, 1994.

ENGEL, K.; HADWIGER, M.; KNISS, J.M.; RESZ-SALAMA, C. and WEISKOPF, D. Real-

Time Volume Graphics. A K Peters, Wellesley, Massachusetts, 2006. ISBN 1568812663.

FAN, Z. Flow simulation and visualization on GPU clusters. 2008.

GEBHARD, U.; HEIN, H. and SCHMIDT, U. Numerical investigation of fluidic micro-oscillators.

Journal of Micromechanics and Microengineering, v. 6, 115–117, 1996.

GIANNITSIS, A.T. Microfabrication of biomedical lab-on-chip devices. A review. Estonian

84



Journal of Engineering, v. 17, 109–139, 2011.

HABICH, J.; ZEISER, T.; HAGER, G. and WELLEIN, G. Performance analysis and optimization

strategies for a {D3Q19} lattice boltzmann kernel on nvidia {GPUs} using {CUDA}. Advances

in Engineering Software, v. 42, n. 5, 266 – 272, 2011. {PARENG} 2009.

URL: http://www.sciencedirect.com/science/article/pii/S0965997810001274

HARRIS, S.M. An Introduction to the Theory of the Boltzmann Equation. Holt, Rinehart and

Winston, New York, United States of America, 1st ed., 1971. ISBN 9780030827891.

HE, X. and LUO, L. Lattice Boltzmann model for the incompressible Navier-Stokes equation.

Journal of Statistical Physics, v. 88, 1997.

JACKSON, M.J. Microfabrication and Nanomanufacturing. CRC Press, 1st ed., 2006. ISBN

978-0824724313.

JANUSZEWSKI, M. Sailfish manual reference. http://sailfish.us.edu.pl/, Jan 2015.

KANG, J.; HEO, H. and SUH, Y. LBM simulation on mixing enhancement by the effect of hetero-

geneous zeta-potential in a microchannel. Journal of Mechanical Science and Technology, v. 22,

n. 6, 1181–1191, 2008.

URL: http://dx.doi.org/10.1007/s12206-008-0301-4

KIRK, D.B. and HWU, W.W. Programming massively parallel processors. Morgan Kaufmann,

2010.

LATT, J. How to implement your DdQq dynamic with only q variables per node (insted of 2q).

Technical report, Tufts University Medford, USA, 2007.

LI, B. and KWOK, D. Y. A Lattice Boltzmann model with high Reynolds number in the presence

of external forces to describe microfluidics. Heat and Mass Transfer, v. 40, n. 11, 843–851, 2004.

URL: http://dx.doi.org/10.1007/s00231-003-0442-z

85



MA, A.; CAI, J.; CHENG, Y.; NI, X.; TANG, Y. and XING, Z. Performance optimization strategies

of high performance computing on GPU. Advanced Parallel Processing, pp. 150–164, 2009.

MAIRHOFER, J.; ROPPERT, K. and ERTL, P. Microfluidic systems for pathogen sensing: a re-

view. Sensors, v. 9, 4804–4823, 2009.

MANZ, A.; GRABER, N. and WIDMER, H.M. Miniaturized total chemical analysis systems: A

novel concept for chemical sensing. Sensors and Actuators B: Chemical, v. 1, 244–248, 1990.

MARTYS, N.S. and CHEN, H. Simulation of multicomponent fluids in complex three-dimensional

geometries by the lattice Boltzmann method. Physical Review E, v. 53, 743–750, Jan 1996.

URL: http://link.aps.org/doi/10.1103/PhysRevE.53.743

MATLAB. Color maps. http://www.mathworks.com/help/matlab/ref/colormap.html, 2014.

MATTILA, K.; HYVÄLUOMA, J.; ROSSI, T.; ASPNÄS, M. and WESTERHOLM, J. An efficient

swap algorithm for the lattice Boltzmann method. Computer Physics Communications, pp. 200–

210, 2006.

MCNAMARA, G.R. and ZANETTI, G. Use of the Boltzmann equation to simulate lattice-gas

automata. Physical Review Letters, pp. 2332–2335, 1988.

MEI, R.; SHYY, W.; YU, D. and LUO, L. Lattice Boltzmann method for 3-D flows with curved

boundary. Journal of Computational Physics, v. 161, 680–699, 2000.

MICIKEVICIUS, P. 3D finite difference computation on GPUs using CUDA. In GPGPU-2:

Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units.

2009.

MOHAMAD, A.A. The Lattice Boltzmann equation for fluid dynamics and beyond. Springer,

2011.

86



NOUAR, C.; OLDROUIS, M.; SALEM, A. and LEGRAND, J. Developing laminar flow in the en-

trance region of annuli-review and extension of standard resolution methods for the hydrodynamic

problem. International Journal of Engineering Science, v. 33, 1517–1534, 1995.

NVIDIA. CUDA C best practices guide. http://docs.nvidia.com/cuda/cuda-c-best-practices-

guide/#axzz35l0JMtLn, Feb 2014a.

NVIDIA. CUDA C programming guide. http://docs.nvidia.com/cuda/cuda-c-programming-

guide/#axzz35l0JMtLn, Feb 2014b.

NVIDIA. Fermi compute architecture whitepaper 1.1. http://www.nvidia.com/content/PDF/

fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf, 2014c.

OBRECHT, C.; KUZNIK, F.; TOURANCHEAU, B. and ROUX, J.J. Global Memory Access

Modelling for Efficient Implementation of the Lattice Boltzmann Method on Graphics Processing

Units. v. 6449, 151–161, 2011a.

URL: http://dx.doi.org/10.1007/978-3-642-19328-6_16

OBRECHT, C.; KUZNIK, F.; TOURANCHEAU, B. and ROUX, J.J. A new approach to the lattice

Boltzmann method for graphics processing units. Computers and Mathematics with Applica-

tions, v. 61, 3628–3638, 2011b.

OBRECHT, C.; KUZNIK, F.; TOURANCHEAU, B. and ROUX, J.J. The TheLMA project: Multi-

GPU implementation of the lattice Boltzmann method. International Journal of High Perfor-

mance Computing Applications, v. 25, 295–303, 2011c.

OLIVEIRA, F.M.C. and FERREIRA, L.O.S. Simulation of the alcohol-oil mixture in a micromixer

using the Lattice Boltzmann method on a GPU device. In Proceedings of the 14th Brazilian

Congress of Thermal Sciences and Engineering. Rio de Janeiro, Brazil, 2012.

OLIVEIRA, F.M.C. and FERREIRA, L.O.S. Performance analysis of serial and parallel imple-

mentation for a 2D microfluidics simulator using the Lattice Boltzmann method. In Proceedings

87



of the 22nd Internacional Congress of Mechanical Engineering. Ribeirão Preto, Brazil, 2013.

OLIVEIRA, F.M.C. and VOLPE, L.M. Sistema interativo de visualização de dados volumétri-

cos. http://www.dca.fee.unicamp.br/courses/IA369E/2s2013/projects/oliveira-volpe/index.html,

Dec 2013.

OLIVEIRA, F.M.C. Lattibol_0.3.31f source code. https://github.com/FabiolaOliveira/lattibol_0.3.31f,

Mar 2015.

OLIVEIRA, F.M.C.; VOLPE, L.M. and FERREIRA, L.O.S. Performance analysis of parallel CPU

and GPGPU implementation of a 2D microfluidics simulator using the Lattice Boltzmann method.

In Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods

in Engineering. Pirenópolis, Brazil, 2013.

PACHECO, P. An introduction to parallel programming. Elsevier, 2011.

PALMER, B. and NIEPLOCHA, J. Efficient algorithms for ghost cell updates on two classes of

MPP architectures. 2002.

QIAN, Y.H.; D’HUMIERES, D. and LALLEMAND, P. Lattice BGK models for Navier-Stokes

equation. Europhysics Letters, v. 17, 479–484, 1992.

QIN, D.; XIA, Y.; ROGERS, J.A.; JACKMAN, R.J.; ZHAO, X. and WHITESIDES, G.M. Micro-

fabrication, microstructures and microsystems. Microsystem Technology in Chemistry and Life

Science, v. 194, 1–20, 1998.

QT. Qt project. http://qt-project.org/, 2014.

SANDERS, J. and KANDROT, E. CUDA by Example: an introduction to general-purpose

GPU programming. Addison-Wesley, 2011.

88



SCHREIBER, M. GPU based simulation and visualization of fuids with free surfaces. 2010.

SHAN, X. and CHEN, H. Lattice Boltzmann model for simulating flows with multiple phases and

components. Physical Review E, v. 47, 1815–1820, 1993.

SHREINER, D. OpenGL Programming Guide: The Official Guide to Learning OpenGL,

Versions 3.0 and 3.1. Addison-Wesley Professional, 7th ed., 2009. ISBN 0321552628, 978-

0321552624.

STÜRMER, M.; GÖTZ, J.; RICHTER, G.; DÖRFLER, A. and RÜDE, U. Fluid flow simulation on

the Cell Broadband Engine using the lattice Boltzmann method. Computers & Mathematics with

Applications, v. 58, n. 5, 1062 – 1070, 2009. Mesoscopic Methods in Engineering and Science.

URL: http://www.sciencedirect.com/science/article/pii/S0898122109002442

SUCCI, S. Lattice Boltzmann method: fundamentals and engineering applications with com-

puter codes. Numerical Mathematics and Scientific Computation. Oxford Science Publications,

2001.

SUKOP, M.C. and THORNE JR., D.T. Lattice Boltzmann modeling: an introduction to geosci-

entists and engineers. Springer, 2005.

TANEDA, S. Experimental investigation of the wakes behind cylinders and plates at low Reynolds

numbers. Journal of the Physical Society of Japan, v. 11, 302–307, 1956.

TANEDA, S. Visualization of separating Stokes flows. Journal of the Physical Society of Japan,

v. 46, 1935–1942, 1979.

TELEA, A.A. Data Visualization: Principles and Practice. A K Peters, 2008. ISBN 1568813066.

TÖLKE, J. and KRAFCZYK, M. TeraFLOP computing on a desktop PC with GPUs for 3D CFD.

International Journal of Computational Fluid Dynamics, v. 22, 443–456, 2008.

89



UNIVERSITY OF GENEVA. Common VersatileMulti-purpose Library for C++.

http://tech.unige.ch/cvmlcpp/, 2012.

VALDERHAUG, T.K. The Lattice Boltzmann simulation on multi-GPU systems. 2011.

VAN DEN BERG, A. and LAMMERINK, T.S.J. Micro total analysis systems: microfluidic aspects,

integration concept and applications. Microsystem Technology in Chemistry and Life Science,

v. 194, 21–49, 1998.

VOLKOV, V. and KRAFCZYK, M. Benchmarking GPUs to tune dense linear algebra. In Pro-

ceedings of the 2008 ACM/IEEE conference. 2008.

WIKIBOOKS. OpenGL programming/modern OpenGL tutorial Arcball.

http://en.wikibooks.org/wiki/OpenGL_Programming/ Modern_OpenGL_Tutorial_Arcball, 2014.

WOIAS, P. Micropumps—past, progress and future prospects. Sensors and Actuators B Chemi-

cal, v. 105, 28–38, 2004.

WOLF-GLADROW, D.A. Lattice-gas cellular automata and Lattice Boltzmann models - an

introduction, v. 1725. Springer, 2005.

XIAN, W. and TAKAYUKI, A. Multi-GPU performance of incompressible flow computation by

lattice Boltzmann method on GPU cluster. Parallel Computing, 2011.

YONG, Y.; YANG, C.; JIANG, Y.; JOSHI, A.; SHI, Y. and YIN, X. Numerical simulation of

immiscible liquid-liquid flow in microchannels using lattice Boltzmann method. Science China

Chemistry, v. 54, n. 1, 244–256, 2011.

URL: http://dx.doi.org/10.1007/s11426-010-4164-z

ZHANG, J. Lattice Boltzmann method for microfluidics: models and applications. Microfluid

Nanofluid, v. 10, 2011.

90



ZOU, Q. and HE, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK

model. Physics of Fluids, v. 9, 1997.

91



92



ANNEX A Published papers

Two papers were published during this masters: one in Proceedings of the 22nd Internacional

Congress of Mechanical Engineering (COBEM, 2013), Ribeirão Preto, Brazil, 2013, and another

in Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in

Engineering (CILAMCE, 2013), Pirenópolis, Brazil, 2013. Copies of these papers follow next.

93



PERFORMANCE ANALYSIS OF SERIAL AND PARALLEL

IMPLEMENTATION FOR A 2D MICROFLUIDICS SIMULATOR USING

THE LATTICE BOLTZMANN METHOD

Fabíola Martins Campos de Oliveira

Luiz Otávio Saraiva Ferreira

Department of Computational Mechanics, Mechanical Engineering Faculty, State University of Campinas, Campinas, Brazil
fabiola@fem.unicamp.br, lotavio@fem.unicamp.br

Abstract. Recent advancements on multicore processors technology led to parallel computing, decreasing runtime of

several interesting problems for engineering, and making possible an expansion of the problem domain. One example is

the fluid mechanics, an area of great economic and academic interest, whose simulations have high computational cost.

This said, a good method for simulating fluid flows with proven advantage for use in parallel computing is the Lattice

Boltzmann Method. As its algorithm is highly parallelizable, simulations based on this method tend to gain efficiency

when more cores are used. As a first step, this work gets a cpu-based algorithm for measuring efficiency running on a

single-core processor and, later, this algorithm is converted into a parallelized cpu-based code running on a multicore

processor. At last, the performance of both fluidic simulators based on the Lattice Boltzmann Method running on a

single-core processor and on a multicore processor is compared.

Keywords: Lattice Boltzmann method, microfluidics, parallel computing

1. INTRODUCTION

From 1986 until 2002, software developers and final users could rely on technical advances of microprocessors to
increase performance of their programs, having an average of 50% more speed per year (Pacheco, 2011). After 2002,
this performance decreased to 20% per year due to technical issues, like the difficulty of dissipating heat of high-density
transistors microprocessors. To overcome this, the next step for industries to achieve higher performance was adding more
than one processor on a single chip. The main consequence of this decision for programmers was that their old programs
would no longer benefit from new technologies as before, since single processor programs do not recognise multiple
processors. Since 2005, when most companies started offering multicore processors, serial codes needed to be rewritten
in order to increase performance using these new processors. There is a trend for developing translation programs, which
would automatically convert a serial code into a parallel code, but since this approach has only been good for specific
cases, it is needed to find more efficient algorithms for each case (Pacheco, 2011).

For mechanical engineering, an area that widely takes advantage of parallelization is fluid mechanics. Usually, tra-
ditional computational fluid dynamics (CFD) methods demand heavy computational resources in order to simulate fluid
flows properly. A more powerful method for solving fluid dynamics problems (Mohamad, 2011) that is effectively par-
allelizable is the Lattice Boltzmann method (LBM). Compared to finite differences method, LBM have proved to double
performance (Chen et al., 1994) LBM models the fluid as particles probabilities distribution functions, that collide and
propagate over a lattice domain (Oliveira and Ferreira, 2012). This method easily handles features that traditional CFDs
can not deal with or is very slow, like complex boundaries and multicomponent multiphase flows (Succi, 2001).

This work measures performance of a basic solver using the Lattice Boltzmann method, with solid walls, comparing
a pure serial code and a parallel version using Message-Passing Interface (MPI), an extension to languages like C and
C++ suitable for distributed-memory systems, meaning that each core has its own amount of memory, and therefore
communication among cores is required. As results showed that the parallel code is advantageous, there is expectation on
reusability of code for future implementations.

2. MESSAGE-PASSING INTERFACE (MPI) PROGRAMMING

MPI is an explicit parallel extension, what means that the work of each core must be specified, being a more powerful
tool than higher level languages, like OpenMP (Pacheco, 2011). The MPI extension includes type definitions, functions
and macros and is well suitable for distributed-memory systems, offering ways for communication among cores. There are
mainly two ways to parallelize a program: using task-parallelism or data-parallelism (Pacheco, 2011). Task-parallelism
divides the problem in several tasks that are distributed among cores, while data-parallelism divides the problem data
among cores, and they execute similar tasks on its own data. Writing parallel programs involves coordination of cores:
they usually need to communicate with each other, sending information or data. It is also desired for the program to have
load balancing, meaning that all cores should receive aproximately the same amount of work, so there are not idle cores
during execution of the program. Another type of coordination is syncronization: cores sometimes need to wait for all the
other cores to reach the end of a point in code before proceed.

Data can be divided in three ways: using a block partition, when first data block data/processes is assigned to first pro-
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cess, second data block data/processes, to second process, and so on; using a cyclic partition, like round-robin scheduling
or a block-cyclic partitioning, when blocks of data are assigned to process in a round-robin manner. Most basic MPI func-
tions works with block partition, but, to have cyclic or block-cyclic partitioning, a MPI derived data type can be created
in order to communicate different partitioning.

Lastly, the terms concurrent, parallel and distributed computing have slight differences. While concurrent computing
is most used for a program whose multiple tasks can be run at any time, parallel computing means that multiple tasks of a
program cooperate to solve a problem. Distributed computing is used for a program that needs to help other programs to
solve a problem.

3. NUMERICAL MODELS AND THE LATTICE BOLTZMANN METHOD

The Lattice Boltzmann method (LBM) derived from the Lattice Gas Cellular Automata (LGCA) method of fluid-flow
simulation (Wolf-Gladrow, 2005). LBM recovers Navier-Stokes equations in the macroscopic scale based on Boltzmann
kinetic theory (Succi, 2001).

In both LGCA and LBM methods, simulation is separated in two steps: streaming and collision. Discretizing the
original Boltzmann equation on time, space and momentum gives the LBM Eq. (1) (Aidun and Clausen, 2010; Zhang,
2011):

fa(x+ ea∆t, t+∆t) = fa(x, t)−
[fa(x, t)− feq

a (x, t)]

τ
(1)

in which x is the position of the particle, ea is its microscopic velocity, t is the time, ∆t is the time-step of the simulation,
fa is the particle probability distribution function on direction a, fa(x + ea∆t, t + ∆t) = fa(x, t) is the streaming
part, fe

aq is the equilibrium probability function, τ is the relaxation parameter and [fa(x,t)−feq

a
(x,t)]

τ
is the collision term,

which is the simplified model introduced in 1954 by Bhatnagar, Gross and Krook and known as BGK aproximation.
One of the most used LBE models is the D2Q9 (2 dimensions and 9 velocities), in which the microscopic velocity ea
(a = 0, . . . , 8) is restricted to 8 directions plus a rest particle, 3 magnitudes, and there is a single particle mass, as shown
in Fig. 1a (Oliveira and Ferreira, 2012). It was assumed on Eq. (1) that particle mass = 1, so that microscopic velocities
and momenta are equivalent.
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(a) D2Q9 lattice and microscopic velocities
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(b) Streaming step of D2Q9 lattice

Figure 1: LBM model and streaming step. Each velocity ea (black arrows) has an associated frequency fa (white arrows)

Units of length and time measurement are the lattice unit (lu) and the lattice time (lt), respectively. Velocity magni-
tudes of e1 through e4 is 1lu/lt, and velocity magnitudes of e5 through e8 is

√
2lu/lt.

The sum of distribution functions of a lattice node gives the macroscopic fluid density:

ρ =

8
∑︁

a=0

fa (2)

and the macroscopic velocity is computed as Eq. (3):

u =
1

ρ

8
∑︁

a=0

faea (3)
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1 INTRODUCTION

Phenomena such as interfacial slip and wetting, negligible on macroscopic systems but es-
sential on microfluidic devices, have difficulties to be incorporated on traditional computational
fluid dynamics (CFD) methods, but are conveniently handled by simulation programs based on the
Lattice Boltzmann Method (LBM). This method was introduced by McNamara and Zanetti (1988)
and, since then, it is being developed and successfully used for solving fluid dynamics problems
(Mohamad, 2011).

Fluids are modeled on LBM as fictitious particles that collide and propagate over a lattice,
and resulted from the junction of Lattice Gas Cellular Automata to Boltzmann theory of rarefied
gas dynamics (Wolf-Gladrow, 2005). It is an atomistic model, in opposition to the continuum
mechanics approach of the Navier-Stokes equations. Its main advantages over the conventional
CFD methods are the efficient parallelization (Obrecht, 2012), easy handling of multicomponent
multiphase flows, reactive flows, and complex boundaries (Succi, 2001). It is being used as a
general purpose solver for phenomena like heat transfer, electric fields, magnetic fields, diffusion
processes, flows in porous media, and shallow flows (Zhang, 2011).

This work investigates the parallelization efficiency of LBM by comparing the performance of
two different implementations of a two-dimensional (2D) LBM simulator targeted for microfluidic
systems design: a CPU (Central Processing Units) based implementation and a GPU (Graphics
Processing Unit) based implementation.

2 METHODS

Both CPU and GPU implementations of LBM use a nine-velocity vector structure (D2Q9)
associated to a single-component BGK model.

2.1 LBM basics

LBM simulation is performed in two steps: streaming and collision. Time, space and momen-
tum discretization of the Boltzmann equation, and projection onto a discrete spatial lattice results
on the equation of the Lattice Boltzmann Method (Zhang, 2010, Aidun, 2010) Eq.(1):

fa(x+ ea∆t, t+∆t) = fa(x, t)−
[fa(x, t)− f eq

a (x, t)]

τ
(1)

in which x is the position of the particle, ea is its microscopic velocity, t is the time, ∆t is the time
step of simulation, fa(x+ea∆t, t+∆t) = fa(x, t) is the streaming part and [fa(x, t)−f eq

a (x, t)]/τ
is the collision term.

The collision term of Eq.1 came from a simplified model (BGK) introduced in 1954 by Bhat-
nagar, Gross and Krook.

The discretized Boltzmann equation has the advantage, over its original form, that it may
be used for dense fluids. The original Boltzmann equation has application limited to short-range
interactions in low-density gas flow (Aidun, 2010). The most used bidimensional LBE model is the
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D2Q9 (2 dimensions and 9 velocities), in which microscopic velocity ea(a = 0, ..., 8) is restricted
to 8 directions plus a rest particle, has only 3 magnitudes, and there is a single particle mass, as
shown on the left side of Fig.(1). As on Eq.(1) is assumed unity particle mass, the microscopic
velocities and momenta are equivalent.
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Figure 1: Left: Microscopic velocities of D2Q9 lattice. Each velocity ea has an associated frequency fa. Right:

Streaming step on D2Q9 lattice.

The unit of length is the lattice unit (lu), and the time is measured in lattice time (lt). Velocity
magnitudes from e1 to e4 are 1lu/lt, and from e5 to e8 are

√
2lu/lt. If the distribution function is

thought as a frequency of occurrence, its sum results on the macroscopic fluid density Eq.(2):

ρ =
8

∑︁

a=0

fa (2)

and Eq.(3) represents the macroscopic velocity u:

u =
1

ρ

8
∑︁

a=0

faea (3)

Each density fa is moved to the nearest neighbor lattice node pointed by the corresponding
arrow on the streaming step, as shown on the right side of Fig.(1), changing the values of f for
every lattice node. Calculation of the value of the equilibrium distribution function f eq for each
node of the lattice, using Eq.(4), is the next step:

f eq
a (x) = waρ(x)

[︃

1 + 3
ea · u
c2

+
9

2

(ea · u)2

c4
− 3

2

u2

c2

]︃

(4)

in which wa is the weight for each particle: 4/9 for a = 0, 1/9 for a = 1, 2, 3, 4, and 1/36 for
a = 5, 6, 7, 8, and c is the lattice sound speed.
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The BGK approximation for the collision term of Eq.(1) is calculated for each node of the
lattice on the last step. Boundary conditions imposed are described on the next subsection.

2.2 Boundary conditions

Four boundary conditions were used in this simulation: constant velocity at inlet of domain,
constant pressure at outlet of domain, periodic condition at top and bottom edges of domain and
bounceback for solid nodes.

Constant velocity was implemented setting the particle probabilities distribution functions fa
entering into domain to the result of equilibrium function with initial values of velocity and density
from the input parameters. At the outlet of domain, constant pressure was simulated discarding
probabilities functions that points outside the domain and getting the values of the last but one
node. This way, the outlet works as the exit of a pipe. Periodic domain at the top/bottom edges was
implemented through the replacement of the probabilities functions leaving the bottom of domain
for those on the top, and functions leaving the top for those of the bottom of domain. Thereby, top
and bottom edges nodes will be the same, and the topology of domain becomes cylindrical (Sukop,
2007). At last, bounceback condition for solid nodes was used with all probabilities functions being
reversed in the presence of a solid node. The same boundary conditions were implemented on both
CPU and GPU code. The next subsections approach aspects of each implementation.

2.3 CPU implementation

The CPU code was implemented in C language to run on a CPU multicore processor using the
Message-Passing Interface (MPI) extension. MPI has type definitions, functions and macros so that
it is possible to specify work for each core of a microprocessor or cluster of CPUs (Pacheco, 2011).
It was designed for distributed-memory systems, when each core or node has its own memory not
acessible for the others. Thus, cores need to communicate in order to exchange information to
solve a problem together. Most parts of the code uses data-parallelism, meaning that the domain is
divided among the cores and each core works on its part of the domain. In the end of the streaming
step, the left and the right borders of the domain are sent to the right core that should contain that
border. In other cases, like reading the input parameters and printing results on the screen, task-
parallelism is applied, as only one core does this work and the others can do another task, aiming
higher performance. Some boundary conditions also use task-parallelism.

First, the code reads the input parameters formed by initial velocities in x and y axis, viscosity
and density of the fluid and how many iterations and saved files the user wants to have. Also, a
monochromatic bitmap is read to extract its width and height dimensions and solid nodes, being
black pixels a solid node, and white pixels, fluid nodes. Parameters read are showed at the screen
as well as duration time, time for saving files and performance (in MLUPS - Millions of Lattice
Updates Per Second) for each saved iteration. These data is also stored in a data file. After that, data
is initialized according to the Lattice Boltzmann Method, and simulation starts. For each step, all
cores save their part of data into a vtk file, that can be seen with viewer programs, such as Paraview.
After that, all cores perform the streaming step, border exchange step, boundary conditions step
and collision step. When each of these steps end, a barrier is placed between them so that all cores
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reach this point of code before proceed, so that there is not one core updating in the streaming step
while other core is already sending and receiving old data from the first core. Output files contain
information about the magnitude of velocity of each node. In the next subsection, implementation
details of GPU code are explored.

2.4 GPU implementation

The GPU code was implemented in CUDA C language to run on a GPU. In recent years,
GPUs has increased its computational capability related to number of operations per second as
well as memory bandwidth (Sanders, 2011). This higher performance is due to simpler controller
and greater quantity of cores, which apply the same operation in a large amount of data. CUDA C
is an extension for C language and was developed for general-purpose programming, bringing this
high performance in graphics computing to other areas, which benefit from data-parallelism.

In this code, streaming, boundary conditions and collision steps on each node are performed in
parallel. When using GPU, there is no need for correcting the domain after the streaming step, all
data are in its right position (Obrecht, 2011). Input and output data are treated by the CPU. While
GPU performs LBM steps, CPU saves the output file, gaining efficiency.

The input parameters are read in the same way of CPU code, and are printed on screen. Data
are initialized on CPU, and copied to GPU for the simulation. For each step, CPU saves output
data in a vtk file while GPU performs LBM steps. After each set of iterations that the user wants
to save, data from GPU are copied back to CPU. Output files also contain velocity values for all
lattice nodes.

2.5 Performance evaluation

For simulation of the CPU code, the microprocessor Intel(R) Core (TM) i7 CPU 950 at 3.07
GHz x 8 (four cores, eight threads) was used, in a computer with 6 GB of RAM memory. It has
49 GFLOPS of capability. For the GPU code, the same processor and RAM memory amount
were used with a NVIDIA GeForce GTX 560 Ti GPU with 384 cores and 1 GB of RAM memory
GDDR5. Its capability is 1.5 TFLOPS.

The Haagen-Poiseuille flow on a slit and flow past a cylinder under unstable Reynold (Re)
number were used to validate the fluidic behavior of the simulator and to benchmark both CPU
and GPU implementations. The performance was measured on Millions of Lattice Updates Per
Second (MLUPS) for domains of dimensions varying from 64 by 16 to 8192 by 2048 cells. Figure
2 shows the fully developed velocity profile for the flow between parallel plates (Haagen-Poiseuille
flow) for initial and inlet velocities in x axis of 0.1lu/lt, viscosity of 0.04lu2/lt and density of 1
lattice node/lu2. It can be seen the parabolic curve that agrees with literature (Succi, 2001) with
velocity around 0.15lu/lt at position 300 lu (Mohamad, 2011). Figure 3 shows the unstable flow
past a cylinder with Re number equal to 105 (Sukop, 2007). It is possible to see the vortex shedding
common to this flow.

CILAMCE 2013
Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in Engineering

Z.J.G.N Del Prado (Editor), ABMEC, Pirenópolis, GO, Brazil, November 10-13, 2013
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