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peŕıodo. Assim como a empresa, eu tive ganhos de conhecimento que seriam inatinǵıveis sem
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Resumo

Absorvedores de Vibração Pendulares Centŕıfugos (ou CPVAs) são uma tecnologia cri-
ada em 1911, que trouxe excelentes resultados na redução de vibração torcional de muitos
sistemas. Porém, sua aplicação em trens de potência automotivos para redução de vibração
no virabrequim tornou-se inviável ao final da década de 1940 pela existência de dampers

viscosos à base de silicone, uma solução mais barata e com desempenho similar em certas
aplicações. Contudo, a vibração torcional transmitida a transmissões manuais ou automati-
zadas, em certas velocidades cŕıticas, pode gerar rúıdo em ńıveis inaceitáveis, e as soluções
atuais para a atenuação deste tipo de vibração, em algumas aplicações, são ou pouco efetivas,
como o atrito em discos de embreagem, ou muito custosas, como volantes de dupla massa.
Por isso, neste trabalho busca-se a aplicação de absorvedores de vibração pendulares em um
disco de embreagem de um trem de potência automotivo equipado com uma transmissão au-
tomatizada para a redução de vibração torcional na transmissão, reduzindo possivelmente o
rúıdo de rattle. Para este fim, primeiramente são realizados testes no véıculo em estudo para
o levantamento de dados torcionais do trem de potência, e em seguida, um modelo linear
torcional é proposto, para que a dinâmica torcional do trem de potência seja representada.
Em seguida, uma análise extensiva dos principais tipos de CPVA é realizada. São realizadas
análises lineares e não lineares em modelos com parâmetros adimensionais de um e dois ro-
tores com pêndulos centŕıfugos, e nas análises não lineares, o Método de Múltiplas Escalas
é utilizado; um método mais robusto e preciso do que o método que vem sendo utilizado
nos principais trabalhos nesta área. Além disso, as análises são feitas considerando-se que
os pêndulos possuem trajetória genérica, e ênfase é dada às trajetórias clássicas: circular,
cicloide e epiciclóide. Com base nestas análises, duas metodologias de projeto de pêndulos
centŕıfugos são propostas. Além disso, um protótipo de disco de embreagem com pêndulo é
proposto. Então, baseando-se nas limitações do projeto, simulações são feitas utilizando o
modelo proposto para o trem de potência e o modelo não linear do pêndulo. As primeiras
simulações são feitas obedecendo as limitações do projeto, que propiciam um pequeno raio
de instalação do pêndulo e permitem que ele possua massa muito menor do que o valor ideal.
Estas simulações mostram que, neste caso o pêndulo se torna instável e ineficaz. Nas simu-
lações seguintes, as limitações de projeto são desprezadas e ambos os projetos de pêndulo
são testados. Com maior inércia, o absorvedor pendular é capaz de reduzir substancialmente
a vibração torcional na transmissão sem que seja necessário introduzir atrito no disco de
embreagem. Contudo, pêndulos com maior inércia podem comprometer a vida útil dos sin-
cronizadores da transmissão, e por isso estudos devem ser realizados para verificar este efeito
colateral.

Palavras Chave: Absorvedor de vibração; Pêndulo centŕıfugo; Vibração torcional; Trens de
potência automotivos.
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Abstract

Centrifugal Pendulum Vibration Absorbers (or CPVAs) are a technology which dates
back to 1911, and which has brought excellent results on the reduction of torsional vibrations
in many systems. Its application in automotive powertrains for the reduction of vibration
on the crankshaft became impracticable by the second half of the 1940s due to the existence
of silicone based viscous dampers, a cheaper solution that had similar performance in many
applications. However, torsional vibration transmitted to manual or semi-automatic gear-
boxes may cause unacceptable noise in some critical speeds, and the current solutions for
the mitigation of this kind of vibration are, in some cases, either not effective, as torsional
friction in clutch disks, or too expensive, as dual mass flywheels. For this reason, in this work,
the use of centrifugal pendulum vibration absorbers on a clutch disk of a vehicle powertrain
equipped with a semi-automatic gearbox is studied, aiming at reducing torsional vibration
at the gearbox, leading to possible reduction of rattle noise. For this means, firstly tests
are performed on the vehicle under investigation in order to obtain torsional data from its
powertrain, and a linear torsional model of it is proposed next, so that the torsional dynam-
ics of the powertrain can be represented. Then, an extensive analysis of the main types of
CPVA are performed. Linear and nonlinear analyses are made in models with dimensionless
parameters composed by one of two rotors and centrifugal pendulums. For the nonlinear
analyses, the Method of Multiple Scales is used; a more robust and precise method than
the one which has been used on the main literature in this area. Besides, the analyses are
performed considering general-path pendulums and emphasis is given to the classical paths:
circular, cycloid and epicycloid. Based on these analyses, two design techniques for CPVAs
are proposed. Furthermore, a prototype of a clutch disk with pendulum absorbers is pro-
posed. Then, based on project limitations, simulations are performed using the powertrain
model and the nonlinear model of the CPVA. The first simulations are performed taking into
consideration the project limitations, which allow a small radius for pinning the pendulum
and also for a small mass of the pendulum bob, much lower than the ideal value. These
simulations show that, in this case, the pendulum becomes unstable and ineffective. On
the forthcoming simulations, project limitations are neglected and both pendulum design
techniques are tested. With higher inertia, the pendulum absorbers are capable of providing
a substantial reduction on the amplitude of vibration of the gearbox without the need for
adding torsional friction to the clutch disk. However, pendulum bobs with high inertia may
harm the service life of the gearbox’s synchronizers, and further studies must be performed
to evaluate this side effect.

Keywords: Vibration absorber; Centrifugal pendulum; Torsional vibration; Automotive pow-
ertrains.
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1 INTRODUCTION

The development of a vehicle powertrain is a multidisciplinary task, and has to take into

consideration some key (and not independent) requirements, such as performance, efficiency,

durability, comfort, cost, safety and laws. The current trend on the development of new

vehicles is, besides reducing costs, to find innovative solutions to obey the ever tightening

emission laws, which define global standards.

In Brazil the laws demand the production of trucks and buses, which are diesel fueled,

to follow the European Emission Standards (EURO V up to 2015 and probably EURO VI

from 2016 on). Additionally, there is the governmental program Inovar Auto, which grants

up to 30% of deduction on the national tax on manufactured products (IPI) for vehicle

manufacturers that join the program. Those who have joined the program but were not able

to achieve the program’s milestones are subjected to severe financial penalties.

In order to meet these requirements, the solution found by manufacturers is to reduce

vehicle weight as much as possible, and to produce smaller but more powerful and efficient

engines. This trend is often referred to as downsizing, and has led to several consequences

on the design of the powertrain.

One of the main consequences in which this work is focused on, is comfort. Lighter and

more powerful engines tend to be important sources of torsional and translational vibration.

Also, lighter structures are more prone to vibrate and less favorable to sound insulation.

These factors worsen the physical and acoustic comfort which are decisive on the consumer’s

choice.

In order to present the motivations and objectives of this work in a clear and understand-

able way, it is necessary to present some technical aspects on powertrains and on Centrifugal

Pendulum Vibration Absorbers (CPVAs), which are done in the next two sections. After

that, the motivations, objectives and the outline of the work are presented.

1



1.1 Vehicle Powertrains and NVH

The acronym NVH on the title of this section stands for Noise, Vibration and Harsh-

ness, and refers to the research area which studies noise and vibration mitigation on ground

vehicles, more often cars, trucks and buses. There are many NVH phenomena to be studied,

which regard many types of noise, from squeaking between polymeric parts of the vehicle inte-

rior up to noise and vibration caused by engine, gearbox, joints, friction induced instabilities

and even more complex subjects.

In the scope of this work, among all the NVH phenomena, the phenomenon of interest

is a powertrain generated noise, resulting from the interaction of the powertrain itself and the

torsional vibration provided by the vehicle. The powertrain parts and the NVH phenomena

generated by their interaction are presented below, with sufficient details for this work.

However, further reading is suggested for the readers who seek for deep understanding of

these phenomena.

Among all the types of engines, the by far most usual type in Brazilian market are the

internal combustion (IC) engines. There are many types of IC engines, but the one being

studied in this work is the four stroke engine, which also represents the greatest majority of

the national fleet.

The term “four stroke” stands for the working principle of each cylinder, which is

divided in four stages: intake, compression, combustion and exhaust. On a gasoline fueled

engine, the intake stage is defined by the opening of the intake valves and the descent of

the piston allowing the air-fuel mixture in. On the second stage, this mixture is compressed

by the rise of the piston. After that, when the piston begins its second descent, the engine

plugs produce an electric spark that gives start to the combustion, raising the pressure in

the combustion chamber and pushing the piston all the way down. Finally, on the exhaust

stage, the exhaust valves are opened and the piston rises once more, pushing the burnt mass

out.

Diesel fueled engines are also four stroke engines. The difference between them and

gasoline fueled engines is that on the first two stages, only air is injected on the combustion

chamber and compressed. Also, the compression rate is usually much higher than on gasoline

engines. The combustion stage is started by the spraying of diesel directly on the combustion
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chamber at high pressure, with no need of sparks (and hence plugs). The combustion starts

through the contact between diesel and high pressure atmospheric air. The exhaust stage is

similar to the gasoline engine case.

Because of this working principle, on engines with an even number of cylinders the

pistons work in pairs, so that when one of them is on the intake stage, the other is on the

combustion stage, i.e. each pair of cylinders produce one combustion per revolution of the

engine. Three cylinder engines work with different phases between the cylinders, producing

three combustion every two revolutions.

Once the combustion stage is the one that propels the piston, and therefore the crank-

shaft, the torque produced by the engine is composed basically by a number of pulses per

revolution that is related to the number of cylinders of the engine, which originates the con-

cept of firing frequency. The firing frequency of an engine is the number of pulses of torque

the engine produces per revolution multiplied by the rotating speed of the crankshaft. Con-

sidering that the rotating speed of the engine is Ω, the most usual values of firing frequencies

related to the number of cylinders of a four stroke engine is shown in Table 1.1.

Table 1.1: Firing frequency according to number of cylinders of a four stroke engine.

Number of Cylinders 1 2 3 4 5 6 8
Firing Frequency (×Ω) 0, 5 1 1, 5 2 2, 5 3 4

The torque pulses produced by the engine are sharp and their sharpness has increased

in order to increase efficiency and improve combustion. Therefore, torque produced by an

engine with a given firing frequency, or firing orders (in the angle domain), has a spectrum

that contains not only the fundamental frequency, but also its multiples. Increased sharpness

of the pulses increases the amplitude of the multiples of the firing frequency, and modern

engines may present fundamental and second harmonic components of the engine torque with

equivalent amplitudes.

Therefore, it is known that the torque produced by the engine is oscillatory and the main

components on the spectrum of this torque are the ones at the first and second harmonics of

the firing frequency. This torque has to be distributed to the other parts of the powertrain

up to the wheels, allowing the vehicle to move. Although there are many layouts of vehicle

powertrains, some parts are common to almost all of them and are mentioned briefly.
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Linked to the flywheel of the engine there is usually a part that allows the powertrain

to be connected to or disconnected from the engine, which can be a clutch set or a torque

converter. This part usually transmits torque to a transmission that provides different gear

ratios suitable for different operating regimes. Transmissions are discussed in detail further

on the text. Depending on the layout of the powertrain, a differential gear can be directly

connected to the output of the transmission or through a propeller shaft. There may also

be more than one differential gear. This part allows the transmission of torque for multiple

driving wheels allowing their rotating speeds to be different, and hence enabling the vehicle

to perform turning maneuvers.

The transmission or gearbox is an important part of the powertrain, for providing

different gear ratios. It allows the driver to choose between high torque and low speeds or

lower torque and higher speeds, whichever suits best the driving conditions. The five most

common types of transmission are the manual, the automatic, the semi-automatic, the CVT

(continuously variable transmission) and the DCT (dual clutch transmission). Each one of

them have advantages and drawbacks to be discussed.

The most usual transmissions on North-American passenger cars are the automatic and

the CVT. The market share of vehicles with this type of transmission is rapidly increasing

among the luxurious vehicles in Brazil. These transmissions provide the driver with a very

good driving experience, once they are not required to actuate clutch pedals or shift gears,

and do not need to be concerned about engine stall. However, these gearboxes have a limited

torque capability, making them unsuitable for heavy duty applications or above.

Manual, semi automatic and dual clutch transmissions have unlimited torque capacity

and increased efficiency1. The advantage of the latter two types over the manual transmission

is that the user is not required to actuate the clutch pedal. Additionally, the semi automatic

transmission is a manual transmission with a mechatronic unit that controls two hydraulic

or pneumatic actuators, one for the clutch and the other for the selector forks.

These transmissions are composed by many gear pairs that are constantly meshed, but

one of the gears is not necessarily connected to its shaft, i.e. it may be free to spin. When

both gears of the gear pair are connected to their respective shafts, this gear is transmitting

torque, and hence it is called loaded gear pair. If one of the gears is not connected to its

1Fuel consumption is usually lower on vehicles with CVTs because these transmissions allow the engine
to operate on its most efficient range. However, in terms of energy dissipation, CVTs are less efficient than
manual, semi automatic or dual clutch transmissions.
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shaft, then this gear pair does not transmit torque and is called unloaded gear pair.

All the gear meshes in the transmission have clearances that allow the gear teeth to

perfectly mesh. This is not a problem for the loaded gear pairs, because even in the presence

of vibration, the gear teeth remain in contact in most operating regimes. However, once

the inertia of the unloaded gear pairs is low, if the shafts of the gearbox start to vibrate

torsionally with relevant intensity, then it may cause the teeth of the unloaded gear pairs to

collide against each other producing an undesirable noise, called gear rattle, to be discussed

in detail further in this text.

From this point on, once the vehicle under investigation in this work is equipped with

a semi automatic gearbox, the scope of the discussion is limited to applications of this type.

On vehicles with semi automatic or manual gearbox, the transmission of torque from the

engine to the gearbox is done through a clutch set, which is composed of a clutch cover and

a clutch disk.

The clutch cover is composed by a housing of metal that supports a Belleville spring

and a pressure plate. The Belleville spring presses the pressure plate against the friction

facings of the clutch disk, which is in contact with the flywheel. The friction between these

parts allow the transmission of torque. The clutch cover must be modeled in detail if coupling

phenomena are to be studied. On the operating regime studied in this work, however, the

clutch set must be fully coupled, and hence this part must not be detailed.

The clutch disk is a more complex part, which plays an important role on the dynamics

of the powertrain, and hence it must be explained in detail. An example of a clutch disk is

shown in Fig. 1.1.

The dark gray part on the outer portion of the disk is called friction facing. This facing

is made of a composite material and is applied on both sides of the disk. It touches the

pressure plate, on the transmission side and the flywheel on the flywheel side. The light gray

portion in the middle of the disk is called torsional damping pack2. It has an inner flange

that is connected to the friction facings and is free to move inside the pack. The springs,

visible in Fig. 1.1 are fitted into windows that exist on the flange and also on the outer metal

plate, so that when the friction facing moves in any direction, the springs are compressed and

2The terms damping and damper, on the names of the clutch disk parts are due to manufacturer’s choice.
These parts help to attenuate some vibration problems, but are composed by stiffness and a small amount
of friction. There is no actual damper in a clutch disk.
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Figure 1.2: Torsional characteristics of a clutch disk.

The torque provided by the engine can be thought of as the sum of a very slow varying

part, known as the mean torque, and a fast varying part, called torque fluctuation. High

levels of the mean torque occur when the driver presses the throttle pedal requiring the

vehicle to accelerate. This creates a considerable positive relative displacement on the clutch

disk, so that it operates only at the Drive stage of the main damper, the right-hand part

of the graphic shown in Fig. 1.2. The torque oscillation makes the point of operation to

oscillate about a given position on this stage.

Negative relative displacements occur on engine braking maneuvers. In this case the

engine decelerates the vehicle, and hence the disk operates on the Coast stage of the main

damper, the left-hand part of the graphic in Fig. 1.2.

The pre-damper, the center part of Fig. 1.2 operates when the mean torque of the

engine is so low that it is not capable of causing the disk to operate at drive condition. If

the clutch is engaged and the neutral gear is selected, then the vehicle is at idle condition,

and the low stiffness of the pre-damper reduces the transmission of torque fluctuation to the

gearbox, avoiding gear rattle. If a low gear is selected, then the vehicle moves very slowly,
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and the pre-damper has to be designed so that in this condition the rolling resistance of the

vehicle does not induce the disk to operate on the Drive stage of the main damper, avoiding

gear rattle.

Therefore, on vehicles equipped with dry clutches, the torsional characteristics of the

clutch disk play a very important role on the mitigation of vibration and noise originated at

the powertrain. For this reason, a brief description of the most important NVH phenomena

related to this type of powertrain is presented. It is important to notice that, sometimes the

NVH phenomenon and the condition at which it occurs are confusing. Hence, only the NVH

phenomena are presented first, and the operating regimes are presented next.

The NVH phenomena related to vehicles with dry clutches can be classified into three

categories: phenomena that occur before coupling, during coupling and after coupling. The

ones that occur before coupling are the roar noise and unwanted torque transmission.

The roar noise is caused by vibration of the pressure plate at high engine speeds when

the clutch is decoupled. This condition is certainly not a usual operating condition, but this

problem can be solved by the installation of soft springs to control the motion of the pressure

plate. The unwanted torque transmission occurs when the flywheel vibrates with large am-

plitudes and touches the friction facing of the clutch disk, even when the clutch set is fully

decoupled. This torque transmission makes synchronizers ineffective, and worsens shiftability

of some gears. In order to minimize this problem, modifications must be performed on the

crankshaft.

During coupling, there are two important and very interesting phenomena to be men-

tioned: judder and clutch squeal.

The judder occurs at drive-off conditions, and is mainly caused by irregularities on

the contact surface between the clutch disk and the flywheel, and also by friction induced

instability caused by the negative slope of the curve of the coefficient of friction along the

relative speed between the contact surfaces. It is characterized by low to mid frequency

longitudinal vibrations of the vehicle during the coupling of the clutch set, and it is purely

torsional. A very detailed study and description of this problem is found on the work of

Perestrelo (2013).

The clutch squeal is characterized by a high frequency noise that occurs during coupling.
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It is generated because of other type of friction induced instability, the sprag-slip, therefore

not purely torsional, and is usually very difficult to attenuate. A deep and very complete

work on this problem was done by Miyasato (2015).

The NVH phenomena that occur after coupling are the ones which can be affected by

the torsional characteristics of the clutch disk. They are the gear rattle, the shuffle and the

clunk.

Shuffle and clunk are two different phenomena which occur at the same driving condi-

tions and can be explained together. Shuffle is characterized by low frequency longitudinal

oscillations of the vehicle, typically between 2 and 8 Hz, and is caused by sudden load rever-

sals on the vehicle, i.e. conditions at which the driver requires maximum torque of the engine

through pressing the throttle pedal up to its limit, or conditions at which the driver releases

the throttle pedal quickly and the mean torque generated by the engine substantially drops.

If the shuffle oscillations are too severe, the loaded gear pairs may lose contact and

strongly collide against each other, causing an undesirable clunking noise, which is the clunk

phenomenon. Both of these phenomena can be attenuated through engine calibration, and

a detailed investigation on these phenomena made by the author of this work is found on

Simionatto (2011).

The last phenomenon to be mentioned that occurs with the clutch set fully coupled is

the gear rattle. It is generated by excessive torsional vibration in the gearbox, causing the

teeth on the unloaded gear pairs to collide against each other, producing noise. The high

amplitude vibration in the gearbox is typically caused by system amplification. In other

words, the oscillating torque of the engine excites some critical frequencies at which the

amplitude of vibration, mainly on the gearbox, is amplified. Linear models represent it as

an eigenfrequency.

A detailed study on how to model the nonlinear part of the system is found in the

work of Miyasato (2011), and a complete analysis on the ways to attenuate this amplification

through the inner friction of the clutch disk is found on the work of Lemes (2015 planned).

There are several operating conditions to be tested regarding the performance of the

torsional characteristics of the clutch disk on attenuating gear rattle, shuffle and clunk. These

conditions are sought to simulate the possible use scenarios of the vehicle. The most relevant
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conditions are listed below:

• Idle: This condition requires the vehicle to be stopped, the engine to be running at idle

speed, the neutral gear to be selected and the clutch set to be engaged. The purpose

of this test is to evaluate the performance of the pre-damper and to evaluate possible

gear rattle noise generated at idle condition, usually referred to as idle rattle.

• Start/Stop: This condition requires the vehicle to be stopped, the clutch set to be fully

engaged and the neutral gear to be selected. The engine is turned on and off repeatedly,

in order to evaluate the performance of the pre-damper at attenuating possible gear

rattle for engine speeds below the idle speed.

• Clap: This condition requires the vehicle to be stopped, the engine to be running at

idle speed and the neutral gear to be selected. The clutch set is engaged and disengaged

rapidly in order to verify if the pre-damper parameters are able to avoid the clutch disk

to reach the main damper. In case it occurs, loud gear rattle is expected.

• Creeping: In this condition the engine must be running at idle speed, the clutch set

must be fully engaged and a low gear must be selected. The purpose of this test is to

verify if in this condition the rolling resistance of the vehicle is able to force the clutch

disk to reach the Drive stage. In case it occurs, intermittent rattling noise is expected.

• Drive: This test is usually performed at all gears, except for the first ones. The vehicle

must be fully loaded and is driven at wide open throttle condition. Engine speed is

varied from idle speed to the maximum engine speed, and the performance of the drive

stage of the main damper at attenuating gear rattle at all rotating speeds is evaluated.

This is usually referred to as drive rattle.

• Coast: The conditions are exactly the same for the Drive test, but in this case the en-

gine speed starts at the maximum value and an engine braking maneuver is performed.

• Tip-in/Tip-out: This condition requires the clutch set to be engaged and a low gear

to be selected. The driver is required to press the throttle pedal for one or two seconds

and then to release it rapidly. They must do it repeatedly until the maximum speed of

the engine is reached. The purpose of this test is to evaluate possible shuffle and clunk,

but gear rattle is also found in this procedure.
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One must notice that the gear rattle shows up in all the tests performed with the clutch

set fully coupled, and hence the attenuation of this phenomenon is of utmost importance for

vehicle manufacturers, especially for companies that produce clutch disks.

One of the most usual ways to attenuate gear rattle is to add torsional friction to the

clutch disk. It is usually possible to set two levels of friction, one for the pre-damper and

other for the main damper. Once rattle is caused by a system amplification, an increase of

torsional friction makes the system dissipate energy when vibrating, which helps to control

the amplitude of the main amplification and hence the gear rattle noise. This works well for

the drive condition, but for the coast condition, usually less friction lead to less rattle noise.

Regarding the pre-damper, low amount of friction helps to reduce rattle at idle con-

dition, because in this case the transmissibility of displacement must be minimal, and the

main resonance is below the idle speed. This resonance may be excited when turning the

engine on or off, and if no friction is present, high amplitudes may occur, leading to loud

rattle noise when turning the vehicle on or off.

Another drawback of this solution is that it is effective for limited amplitudes and

frequencies. The damping effect caused by friction may degenerate for higher amplitudes

and higher frequencies, leading to still undesirable rattle noise.

In cases at which friction is not capable of controlling rattle, a dual mass flywheel can

be used. It is basically composed of two large inertias linked through a usually soft and long

travel spring. This device shifts the eigenfrequencies of the system so that the frequency

related to the amplification that originally caused gear rattle becomes out of the operating

range of speeds. In some cases, eigenfrequencies that were originally unreachable may lie on

the operating range, and these cases must be carefully treated. However, the main drawback

of this solution is that it is extremely expensive in comparison to the usual single mass

flywheel, and hence it is typically avoided by manufacturers.

A third way which is still not usual to deal with gear rattle is the use of centrifugal

pendulums vibrations absorbers. These absorbers are analogous to the well known tuned

mass dampers, with the difference that their tuning frequency is proportional to the rotating

speed of the system, i.e. it is possible to tune it to absorb a given order of vibration. This

feature makes it especially suitable for vehicle applications, because the torsional vibrations

are caused by orders of vibration generated at the engine.
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In some applications, these absorbers, also referred to as CPVAs, are applied to the

dual mass flywheel. On more recent applications, like on the patent by Rusch et al. (2014),

it has been applied to clutch disks, but this usage is still rare. However, if the parameters

of such pendulum are set correctly, gear rattle must vanish for all driving conditions, what

makes of this pendulum a promising solution, and therefore the object of study of this work.

For this reason the next section is devoted to the presentation of the basic working

principle of the CPVA, some historical features and the most usual layouts for its application.

1.2 An introduction to Centrifugal Pendulum Vibration Absorbers

Although CPVAs are currently the object of many researches, too few of its history is

documented and available. All the historic facts presented in this section are found in the

laborious and complete work of Wilson (1969).

The history of centrifugal pendulum vibration absorbers dates back to 1911, when

Kutzbach proposed a damper which was a carrier disk with fluid in U-shaped channels. This

design can be found in the sketch A of Fig. 1.3. Eighteen years later, Duesenberg proposed

a system composed of metal capsules partly filled with heavy fluid attached to a rotating

body. These designs have not attracted much contemporary interest because the dynamics

of such systems had not been investigated and there was no urgent need for these devices at

that time.

In 1930, Meissner published the first complete discussion on such devices. His findings

had been obtained through experiments with water columns in U-tubes. His results were

able to show the effectiveness of this solution and started a trend to find practical forms of

CPVAs, which lasted between 1930 and 1940. This trend led to the designs B to F, found in

Fig. 1.3.

The simplest form of implementing a CPVA is the roll-form, found on sketch B of Fig.

1.3. The great obstacle for its implementation is to predict whether the roll slides or rolls

on the contact surface, which may generate considerable amount of detuning. Experience

with this device has shown that if swing angles are kept lower than ±15◦, then the roll only

rolls on the contact surface. In 1938 Carter proposed a roll-form CPVA with gear teeth,
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Figure 1.3: Several designs of CPVAs. Reproduced from Wilson (1969)
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to avoid slipping. However, gear teeth only added mechanical complication to the project

and increased the amount of damping on the pendulum, which worsens its performance

substantially.

Regarding damping reduction, in 1932 F. M. M. B. Salomon proposed several designs

in order to try to obtain less damping on the pendulum. He tried simple and composite

assemblies, solid and hollow cylinders, metal spheres and fluids as pendulum masses and

used epicycloidal paths to improve the stability on conditions where pendulum amplitudes

became larger.

The design found on the sketch C of Fig. 1.3 is the bifilar link form, or parallel link

form. This design was proposed by R. R. R. Sarazin in 1930, and its great advantage over

the roll form is that the mass of the pendulum bob is not required to roll. Therefore, the

rotational inertia of the pendulum mass does not affect its tuning. Also, it is usually possible

to add more mass on this design than on roll forms. It also behaves better than the roll form

for not being required to roll or slide, and hence the maximum permissible amplitudes are

up to ±25◦.

The disadvantages of this specific layout are that for orders above the 2nd , the links may

have to be so short that they become difficult to manufacture. Furthermore, the links have

shown to present high amount of friction at high rotating speeds, worsening the performance

of the pendulum.

On sketch D of Fig. 1.3, a ring form type of CPVA is represented. The disadvantages

of this type of pendulum are exactly the same of the roll form type, with the drawback that

the transition from rolling to slipping may cause even greater detuning. It has been proposed

by Salomon in 1933.

The bifilar suspension type is found on sketch E of Fig. 1.3, and has several advantages

compared to the previous designs. The surfaces of the tracks and the pin are hardened, what

significantly reduces damping and wear. Also, the effective length of the pendulum bob is

given by the difference between the radii of the bore and the pin, making it easy to provide

much smaller effective lengths than using the bifilar link type. This allowed for the tuning

od the pendulum for much higher orders.

The path of the pendulum bob for large amplitudes is not circular, and grants better
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stability for large motions. Also, the light springs on the design are meant to hold the

pendulum in position for low to stationary speeds and to prevent knocking at start/stop, but

do not influence the behavior of the pendulum on its operating range. The patent on this

design has been placed by Sarazin in 1935.

Finally, on sketch F the duplex suspension type is shown. The main difference from

this design to the previous ones is that it has two degrees of freedom. However, only one of

its vibration modes can be used, because the second one is related to high amplitudes, what

is undesirable. This design has been applied successfully in some applications, though.

An important comment that must be made on the pendulum designs is that none of

them comprises a simple usual pendulum. This is due to the fact that the length of the

pendulum bob would often be too short to manufacture, and the pin which would hold the

bob attached to the carrier disk would have to resist to extreme shear stress. However, it is

very usual that problems on this area are formulated considering a simple pendulum attached

to a rotating disk. The parameters of this pendulum can be translated into the parameters

of any of the pendulums from the aforementioned layouts, and this eliminates the need for a

specific modeling for each type of CPVA.

Apart from the technical details of each design, there are also interesting facts on the

general history of centrifugal pendulums. One of the facts that motivated its usage was

that, in 1936, in a meeting on the Institute of Aeronautical Sciences, a leading American

aeronautical engineer expressed his opinion that, undoubtedly, the development of rotating

pendulums was one of the most valuable contributions to aircraft engine design in years.

Because of this fact, the first large scale applications of CPVAs were to radial aero-

engines. One of the first engines to be equipped with this technology was the Series G

Wright Cyclone, a 9 cylinder four stroke engine rated with 1, 000 bhp 3 at 2, 200 rpm.

A pendulum tuned to the 4.5th order was used and the benefits were huge. It was possi-

ble to find reduction on vibratory stresses in the airscrew blades, and also on the occurrence

of wear and tear of the power plant and of attached variable-pitch metal-bladed airscrew as-

sembly. On later version of this engine, the Series G-100, rotating pendulums were installed

at the front and rear crankwebs, allowing the engine rating to be increased to 1, 200 bhp at

3The unity bhp refers to brake horsepower. It is the power of the engine itself regardless of the losses
caused by gearboxes and other parts of the powertrain. The DIN standard and the SAE standard set rules
for the measurement of bhp.
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cylinder four stroke in-line engine rated at 300 bhp. It presented peak amplitudes of ±1.1◦ at

630 rpm, excited by the 6th order, and ±0.5◦ at 420 rpm, excited by the 9th order. With the

application of the CPVA, no resonances were found and the maximum amplitude of vibration

was of ±0.3◦ for the entire range.

During the following 20 years, Sulzer used CPVAs on its engines, especially on railroad

locomotives running at speeds up to 1, 000 rpm. The smallest damper produced by this

company had an external diameter of 17in (0.4318m) and total weight of 55lb (24.978kg).

It had two bifilar pendulums and was installed on a free end of a crankshaft on a 6 cylinder

four stroke in-line engine rated with 300 bhp at 1, 200 rpm.

The largest one they produced had an external diameter of 39.5in (1.0m) and weighed

1950lb (884.505kg), representing 1% of the total mass of the engine. It was composed of

four bifilar pendulums and was installed between the main crankshaft of a 7 cylinder two

stroke in-line engine, rated with 2, 500 bhp at 250 rpm, and the crankshaft of a reciprocating

scavenge pump. This damper was able to eliminate a strong 7th order resonance.

None of the absorbers produced by Sulzer suffered any noticeable wear or needed re-

placement after tens of thousands of hours in service. Similar excellent results were obtained

by other engine manufacturers, enforcing the belief that if the parameters of the pendu-

lum were correctly set, the performance of this device was superior to that of contemporary

devices for torsional vibration control.

The popularity of the CPVA began to decline during the latter part of the 1950s. It

occurred due to the successful development of a viscous damper from 1946 on, using silicone

fluid for energy dissipation, which was suitable for all engine sizes. This device was usually

larger and heavier than a pendulum damper, but it was sealed and required low to zero

attention during service life. One must notice that, at that time, there were much less

concerns with fuel consumption, emissions and efficiency than there is today.

A similar situation was faced in 1940, when CPVAs were tried experimentally in research

laboratories on automobile industry. The results shew that it was the most efficient of all

devices tested, but it was not chosen to be used because cheaper rubber-in-shear absorbers

were available. These were replaced after some years by the silicone dampers, because vehicle

manufacturers were seeking for standardization for mass production.
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This has been the status quo of the automotive industry regarding torsional dampers

up to current days. However, it may possibly be changed due to the laws ans constraints

mentioned on the beginning of this chapter, which motivates the study of these vibration

absorption devices.

At this point, all the technical features about powertrains, NVH and CPVAs, necessary

for a clear understanding of the motivations and objectives of this work have been presented.

On the next sections, motivations, objectives and an outline of this work are presented.

1.3 Motivations

As it has been mentioned on previous sections of this work, in some cases the amount of

torsional friction provided by the clutch disk is not capable of attenuating some amplification

conditions, leading to still undesirable rattle noise. It usually happens on trucks and buses.

The standard solution for these cases is to use a dual mass flywheel, which has elevated cost.

A still unusual alternative solution to this problem is the use of CPVAs on the clutch

disk. Its effectiveness has not been tested yet, but this solution is potentially less expensive

than a dual mass flywheel and has shown to be effective on a large number of cases.

Additionally, it is known that European and South-American consumers of truck and

buses are not as demanding in terms of sound comfort as the consumers of passenger vehicles.

Hence, even if the use of CPVAs show to be less effective than the use of dual mass flywheels,

but more effective than torsional friction, this solution would still be considered acceptable.

Therefore the motivation of this work is to verify if the use of CPVAs on a clutch disk

is a suitable solution for the drive rattle problem on heavy commercial vehicles, and if so, to

build a prototype for field tests and further investigations.

1.4 Objectives

This work has five main objectives, which are listed below:
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1) Build a simple and representative torsional model of the powertrain of the vehicle under

investigation.

2) Make a complete analysis on the linear and nonlinear dynamics of general path CPVAs.

This analysis must comprise:

a) The derivation of a nonlinear model in terms of the swing angle of the pendulum,

which is unavailable on the literature.

b) The analysis of the influence of gravity on tuning and stability.

c) The representation of paths as polynomial functions in terms of the swing angle

of the pendulum bob.

d) The derivation of shape functions for the most usual pendulum paths.

e) The application of the Multiple Scales Method, instead of the limited Krylov-

Bogoliubov Method of Averaging, the most used method on the literature on this

subject.

3) Derive two different design techniques for CPVAs based on the existence of the No-

Resonance Zone, still unavailable on the liteature.

4) Design pendulums to be installed on the clutch disk of the vehicle under investigation

based on project limitations.

5) Perform simulations and assess the suitability of such solution.

1.5 Outline of the Work

This work is composed of five chapters as described in the following.

The first chapter of this work is an introductory chapter, and presents basic features

about vehicle powertrains, NVH and CPVAs, and also the objectives, motivations and outline

of this work.

The second chapter is devoted to the presentation of the powertrain and some tests

performed on it in order to obtain necessary data to build a mathematical model. The

mathematical model that represents the dynamics of the powertrain is also built on this

chapter.
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On the third chapter, all the technical aspects on the dynamics of general path cen-

trifugal pendulum vibration absorbers are presented. It was chosen not to devote a chapter

to the bibliography review on this work, but to present it continuously as the theoretical

features are explored. This is done extensively in this chapter.

Chapter four is devoted to the application of the CPVA on the powertrain. Hence, the

design techniques and project limitations are shown in this chapter. Simulations using the

previously built model of the powertrain and the recently designed CPVA are performed and

results are commented and explored.

The last chapter is devoted to the conclusions of this work, the consolidation of the

contributions and the perspectives for future research.
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2 The Powertrain: Recognition and Modeling

The goal of this chapter is to introduce all the relevant technical features of the power-

train under investigation and to generate a reliable mathematical model of its torsional

dynamics. This model is necessary for the design and simulation of the pendulums that are

going to be placed on its clutch disk. For this reason, it is composed of four parts described

below:

• Part I: Vehicle Data and Technical Specifications. On this part, the vehicle is

introduced and its the technical features are described in detail.

• Part II: Experimental Estimation of Torsional Stiffness of Axles. On the

second part, results from an experiment involving two vehicles are presented. The goal

of this experiment was to estimate the torsional stiffness of the axle shafts, Cardan

joints and propeller shafts.

• Part III: Drive Rattle Measurements. The powertrain has been subjected to tests

that capture the worst case scenarios for the generation of rattle noise. These tests were

performed with four different clutch disks and the results are presented in the third part

of this chapter.

• Part IV: Mathematical Modeling and Model Validation. Using data provided

by the vehicle manufacturers and results from the previous parts of this chapter, a

torsional model of the powertrain is presented and validated for further use.

It is really important to emphasize that all the data presented in this chapter were

obtained from a prototype vehicle designed to accentuate key undesired behaviors of the

powertrain, such as generation of rattle noise, for better investigation. End user vehicles of

the same brand and model do not exhibit the same behavior.
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2.1 Part I: Vehicle Data and Technical Specifications

The vehicle under investigation is a ultra heavy duty truck, shown in Fig. 2.1. It has a

12.88 liters, four stroke 6 cylinder Diesel engine, capable of delivering 412kW1 of maximum

power at 1,900 rpm and 2,500 Nm of maximum torque between 1,000 and 1,550 rpm. The

maximum engine speed recommended by the manufacturer is of 2,400 rpm and the emissions

law considered for its design is Euro V.

Figure 2.1: Vehicle under investigation.

These are valuable information. For being a four stroke 6 cylinder engine, it is known

that the firing frequency is three times the rotating speed of the engine, i.e. it is at the third

order. Hence, the main order of excitation must be the third. For being an engine designed

according to Euro V law of emissions, it is also known that the second harmonic of the firing

frequency may also be critical. This is due to the fact that these engines are designed so that

the efficiency of the combustion is increased, and this induces the torque pulses generated by

the engine to be sharper, increasing the importance of the higher harmonics. Therefore, the

sixth order must also be taken into account.

The torque transmission between the engine and the gearbox is done through a single

clutch disk which has an external diameter of 430 mm. The increased diameter of the disk

1Equivalent to 560cv or 553hp
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Figure 2.3: Tandem axle configuration.

For this reason, an experimental procedure was adopted in order to estimate the stiffness

of each of these axles. This procedure is explained in the following section.

2.2 Part II: Experimental Estimation of Torsional Stiffness of Axles

The experiment to be explained in this section has already been performed in previous

cases at ZF, and good results have been obtained.

The objective of this experiment was to estimate the torsional stiffness of the side shafts,

propeller shafts and cardan joints aiming to build a representative mathematical model of

the torsional dynamics of the vehicle. Hence, it consisted in basically applying torque and

measuring deflections of each element. What turned it into a complex task was that the

vehicle could not be disassembled, some parts were not accessible, the amount of torque

needed to induce relevant deflection on the system was considerable and the clutch and the

gearbox were not controllable when the engine was off, because they were all automated.

Each of these issues have been circumvented as explained below.

As the vehicle could not be disassembled and torque had to be applied on the system,

the only alternative left was to apply torque on its wheels. Needless to say that applying

torque directly to the wheels would not be feasible, because the amount of torque had to be

high and it would have to be applied equally and simultaneously on the four driving wheels.

Instead, it was chosen to use another truck of the same capacity to pull the one being studied

backwards. It was then able to offer the necessary amount of torque to deflect all the parts

and it would also apply torque on the wheels equally, as desired.

The vehicle being studied had to be off during the test. After all, its brakes could not
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actuate on the system, because they would balance the torque on the wheels and hence there

would be no torque acting on the powertrain, resulting in no measurable deflection. On the

other hand, as the vehicle would be pulled, if there was no reaction on the powertrain it

would move and the inner parts would not be deflected, which were both undesirable. Hence,

it was necessary to lock the flywheel and keep the clutch and also one of the speeds engaged.

The lower the speed left engaged, the lower the reaction on the flywheel would be, which was

favorable to its structural integrity.

In order to lock the flywheel, an existing window on the bell housing was used. It

allowed access to some of the teeth of the flywheel, which are usually connected to the

engine starter. A metal part that fits this window and locks the flywheel teeth has been

manufactured and was able to lock it successfully. However, keeping the clutch and one of

the gears engaged required a more sophisticated solution.

As the vehicle has an automated manual transmission, when the engine is turned off,

the neutral gear is automatically selected. When the engine is on and some gear is selected,

the clutch is kept disengaged until the driver releases the brake pedal and presses the throttle

pedal. The objective was then to force the gearbox to do what it is programmed not to do:

keep a gear engaged while turning the engine off and then engage the clutch.

The actuation on the gearbox, differentials and brakes is all pneumatic, and hence,

simply disconnecting a hose could cause the whole system to lose pressure and if it happened

the brakes could lock the wheels, which was undesired. The solution was to install a valve on

the pneumatic intake of the gearbox and clutch actuators. With the engine on, a low gear

was selected an then this valve was shut. After that, the hose on the gearbox actuator intake

was disengaged, disabling this actuator. The pressure on the clutch actuator was kept and

it would be disengaged until the engine was off. When the driver turned the engine off, the

pressure on the clutch actuator decreased because the compressor was turned off, and the

clutch automatically engaged back. The pressure on the brake system was kept, and hence

the brakes remained open during the tests.

The last issue to be dealt with was the observability of the side shafts. In the case of

the propeller shafts, it was possible to install levers on its ends. These levers would actuate

displacement sensors that were placed on the chassis of the vehicle. Once the displacements

on this test were small, this system was able to measure the angular deflection of these axles.

One of the levers and one of the displacement sensors are shown in Fig. 2.4
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Figure 2.4: Left: One end of the longest propeller shaft with auxiliary lever.
Right: Displacement sensor touching auxiliary lever.

The ends of the side shafts, however, are not observable for being placed inside a case,

as in Fig. 2.3. For this reason, on both rear axles the procedure was to measure the angle at

the differential gear input, which will always be one end of a propeller shaft, and the angle at

the wheel. Using the gear ratio of the differential gear it is possible to estimate the angular

position of its crown, which is at the end of both side shafts. Using the angle at the wheel,

it is then possible to estimate the deflection of each side shaft.

With all these considerations, nine sensors were necessary to carry this experiment.

Eight displacement sensors have been used, one at each driving wheel and one at each end of

the two propeller shafts. The ninth sensor is a load cell that was installed on the band that

was used to pull the vehicle, so that the tractive force could be measured and the torque at

each wheel could be estimated. Figure 2.5 shows the experiment. The truck at the back is

the one being investigated while the one closer to the camera was used to pull it.

Once the data was collected, the angles at each sensor were calculated, and so was

the torque acting on each shaft. The resulting samples were plotted on a torque versus

deformation diagram, and, as expected, they correlated well with an affine function. The

slope of such function was calculated using least squares approximation, and it represents

the stiffness of each shaft. The results are shown in Figs. from 2.6 to 2.11.

The results from the data fitting are presented on Table 2.1. On this table the first
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Figure 2.5: Left: Band used to pull vehicle.
Right: Experiment setup.
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Figure 2.6: Data fit to calculate the stiffness of the long propeller shaft.
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Figure 2.7: Data fit to calculate the stiffness of the short propeller shaft.
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Figure 2.8: Data fit to calculate the stiffness of the front right side shaft.
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Figure 2.9: Data fit to calculate the stiffness of the front left side shaft.
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Figure 2.10: Data fit to calculate the stiffness of the rear left side shaft.
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Figure 2.11: Data fit to calculate the stiffness of the rear right side shaft.

data column has the value obtained for the stiffness of each shaft while the second one is the

correlation coefficient of each set.

Table 2.1: Estimated stiffness and correlation coefficient for each shaft.

Shaft
Stiffness rx,y
[Nm/◦] [%]

Long Prop. Shaft 3611.89 99.0557
Short Prop. Shaft 1309.67 99.0268
Front Right Side Shaft 1236.49 99.0055
Front Left Side Shaft 1406.96 98.8416
Rear Left Side Shaft 1613.16 98.8494
Rear Right Side Shaft 1271.51 99.1163

The correlation coefficients obtained shows that the six sets of samples can be well

represented by an affine function, once the lowest one is of 98.8416%. Consequently, the

values obtained for the stiffness of each shaft are considered to have low error. It is also

possible to depict different values for the stiffness of each side shaft. Although the powertrain

is symmetric, for constructive reasons the side shafts may have different stiffnesses. In this

case, the right ones are more compliant than the left ones. This difference tends to be much

higher in lightweight vehicles. However, it does not bring unexpected vibrational behavior
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to the powertrain.

2.3 Part III: Drive Rattle Measurements

The rattle noise is an NVH phenomenon that may occur in many different operating

regimes. It is related to high levels of torsional vibration inside the gearbox, which induce

impacts between the teeth of the unloaded gear pairs, producing undesirable noise. The aim

of using the CPVA on this system is to reduce the level of torsional vibration, mainly in the

gearbox, so that the rattle noise becomes less relevant on the subjective analysis.

As explained in earlier sections of this work, high levels of vibration may be induced

mainly by intense torsional vibration on the flywheel or by system amplification, being the

latter the most usual. Given all the operating regimes, the one that makes rattle noise more

evident is the drive condition, because it is the case in which the engine produces the highest

levels of torsional vibration and it is possible to cross critical speeds very slowly, if there is

any.

Hence, the drive condition is the operating regime chosen to be analyzed throughout

this work. In this section, the measurements that are going to be presented were carried out

aiming to expose the main reasons why rattle noise occurs. With these pieces of information,

it will be possible to develop a representative model of the torsional dynamics of the vehicle

and to tune the CPVA to achieve the best performance.

Four sets of measurements have been performed, and they are referred to as Run 1 to

4. On each set of measurements, a different clutch disk was used, and their characteristics

are shown in Table 2.2.

The disk used on Run 2 had lower drive stiffness than the default value for this appli-

cation and the lowest possible friction torque. The disk used on Run 1 also had the lowest

amount of friction torque, but its drive stiffness was the default for this application. The

combination of two disks with different stiffnesses and the lowest possible amount of energy

dissipation capability is used to highlight system amplification on the measurements. This

makes it easier to spot critical speeds and, as the drive stiffness of the clutch disk is a known

parameter, these measurements can also be used for model updating.
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Table 2.2: Torsional characteristics of clutch disks used on recognition measurements.

Run
Drive Stiffness Drive Friction

[Nm/◦] [Nm]
1 393.9 21.9
2 318.8 15.2
3 386.3 77.0
4 379.8 194.9

The disks used on Run 3 and 4 have the default value of drive stiffness. The difference

between them is that the one used on Run 3 has the lowest recommended amount of friction

torque, while the other one has the maximum recommended friction torque. These values

are usually tested because on the design of the clutch disk this parameter is prescribed as

a range of values. This happens because the properties of the device that provides friction

torque, inside the clutch disk, vary along time because of wear, thermal loads and due to

stabilization of the friction surface. Furthermore, the necessary tolerances to manufacture

a disk with a single value of friction would be so tight that it would make the process too

expensive. Hence, the designers have to ensure that, during the clutch disk’s service life, the

friction torque must lie inside the prescribed range. Additionally, when the friction torque is

low, it is known that some amplification conditions can still be spotted. On the other hand,

if it is excessively high, vibration attenuation on high frequencies can be affected. Hence the

need for testing these configurations.

In order to measure torsional vibrations, proximity sensors are placed close to gears.

As the teeth crosses its magnetic field, it generates an oscillatory tension signal, and the

instantaneous frequency of this signal is the teeth crossing frequency. This signal is used

as input to a comparator circuit. Then, if the input signal is above a certain voltage, the

comparator’s output is a constant nonzero tension signal, and zero otherwise. The output

from the comparator is acquired by a digital acquisition system from Rotec Gmbh with 10

GHz of clock frequency.

For this reason, the acquired signals have synchronous sampling, instead of a constant

sampling rate. Furthermore, the measurement points can be actual gears, which is the case

of the flywheel and gearbox input, or gears manufactured for measurement purposes only,

which is the case of the gearbox’s output and the input of both differentials. On the left

image of Fig. 2.4, it is possible to see the link between a cardan joint, at the end of the longest
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propeller shaft, and the output of the gearbox. Between these parts there is a gear with short

teeth that is not used to transmit torque. This is one of the gears used for measurement

purposes only, and it is not an original part of the vehicle. At the left of the auxiliary lever

there is a screwed cylindrical part which has one end close to the teeth of the aforementioned

gear and has a white wire on the other end. This is one of the proximity sensors used for the

measurements.

The layout of the gearbox is shown in Fig. 2.12. It is basically a four speed transmission

which has a splitter group on its input and a range change group on its output, resulting

in 16 speeds forward plus two reverses. The gear used for the measurements is the gear

K2, indicated in the figure. In order to place the proximity sensor near this gear, a hole

was drilled on the gearbox housing. This modification did not affect structural integrity or

acoustic behavior of the system.

Figure 2.12: Layout of the ZF 16AS 2631 TO gearbox.

Five measurement points were chosen: the flywheel, the gearbox’s input, the gearbox’s

output, the front differential’s input and the rear differential’s input. Measurement noise
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was found in some of the measurements on the channel of the gearbox’s output, and for this

reason, results from this signal will be suppressed in some graphics. However, it did not

intervene the conclusions to be presented in this work.

The results of the measurements are presented below in the following way: for each

gear, from the 7th to the 14th , the third order of the angular acceleration of each channel of

Run 1 and Run 2 are compared. In the cases where it applies, the 6th order is also exhibited

and compared. Then, the same procedure is adopted for Runs 3 and 4.

2.3.1 Analysis of the Torsional Behavior at 7th Gear

The results shown in this section have been obtained in a drive rattle test at 7th gear.

The results for Run 1 and 2 are shown in Figs. 2.13 and 2.14 respectively. The amplitude

of vibration of the flywheel is the black curve, and remains around 500 rad/s2 in the whole

range of engine speeds.
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Figure 2.13: Results of the 3rd order obtained in Run 1 at 7th gear.

The first important feature to be spotted in both graphics is the huge amplification that
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Figure 2.14: Results of the 3rd order obtained in Run 2 at 7th gear.

occurs between 700 and 1, 100 rpm, mainly on the gearbox input. This happens because the

disks used for Run 1 and 2 have minimum friction torque, and hence system amplifications

are able to reach high amplitudes. It is shown in the work of Steinel (2000) and Drexl (1999)

that, in most cases, linear models of powertrain have a mode which has the highest amplitude

of vibration on the gearbox and is highly influenced by the energy dissipation capability of

the clutch disk. Therefore, this amplification was expected to occur.

The frequency at which the peak of this amplification occurs is also very important. In

Run 1, the disk used had default stiffness while in Run 2 the drive stiffness was nearly 16%

lower than the design specification. For this reason, the peak found in Fig. 2.13 is around

950 rpm while the one found in Fig. 2.14 is close to 850 rpm. In the works of Drexl (1999)

and Steinel (2000), it is also shown that the torsional stiffness of the clutch disk can influence

significantly the natural frequency of the mode related to rattle noise.

The signals from the gearbox output and both differentials also present amplification

in the same range of the gearbox input, but with relatively lower amplitude. Regarding the

gearbox output signal, noise was found in Run 2, and hence this signal was omitted.
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In Figs. 2.13 and 2.14 it is possible to verify that, for this order, the rear differential

vibrates with greater amplitude than the front one. In the first graphic, specifically, it is

possible to spot a region between 1, 300 and 1, 500 rpm where the gearbox seems to vibrate

very little, and some amplification dominates the dynamics of the differentials. Subjectively,

no objectionable noise was found in this range. This behavior seems to repeat on Run 2.

The sixth order from the same measurements is shown in Figs. 2.15 and 2.16.
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Figure 2.15: Results of the 6th order obtained in Run 1 at 7th gear.

The amplitude of the 6th order at the flywheel is very close to the one found in the

3rd order for the whole range of speeds. This was expected, because as previously explained,

it seems to be a trend on Euro V engines and above. Although the excitation level is still

significant, both Figs. 2.15 and 2.16 shown that this system is not sensitive to 6th order

excitation. In all the forthcoming cases, if the behavior of the system in this order is the

same, these graphics are going to be omitted.

All the relevant features of Runs 1 and 2 for the 7th gear have been presented. The 3rd

order results for Runs 3 and 4 are shown in Figs. 2.17 and 2.18, respectively.

Although the clutch disk used in Run 3 already had a significant amount of friction
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Figure 2.16: Results of the 6th order obtained in Run 2 at 7th gear.

400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Engine Speed [rpm]

A
n
gu

la
r
A
cc
el
er
at
io
n
[r
ad

/s
2
]

Run 3 - Gear 7 - Order 3

Flywheel
Gearbox In.
Gearbox Out
Front Diff.
Rear Diff.

Figure 2.17: Results of the 3rd order obtained in Run 3 at 7th gear.
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Figure 2.18: Results of the 3rd order obtained in Run 4 at 7th gear.

torque, it was shown not to be enough to control the amplification exhibited by the system

at 950 rpm. However, the amount of friction torque in Run 4 successfully controlled this

amplification. On the other hand, comparing Figs. 2.17 and 2.18 around 1, 500 rpm, it is

possible to observe that the more friction torque the clutch disk has, the more the amplifi-

cation on the differentials becomes noticeable. At the same time, for higher engine speeds,

the gearbox input tends to vibrate more than in cases where the friction torque was lower.

During the tests, the subjective evaluators felt a great decrease on the rattle noise around

1000 rpm and no significant worsening at higher engine speeds.

There are also important features to be exposed on the 6th order found in these two

Runs. They are shown in Figs. 2.19 and 2.20

Figure 2.19 shows that there is a little increase on the amplitude of vibration of the

gearbox input with the amount of friction torque used on the disk for Run 3. Even though

it happened, such increase was not significant enough to overcome the level of vibration of

the flywheel or cause rattle noise to occur.

In Fig. 2.20, however, it is possible to see that the amount of friction torque on the
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Figure 2.19: Results of the 6th order obtained in Run 3 at 7th gear.
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Figure 2.20: Results of the 6th order obtained in Run 4 at 7th gear.
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disk caused the 6th order of the gearbox input to have nearly the same amplitude of the

flywheel in almost the entire range of speeds. It just did not happen near 1, 400 rpm, where

the vibration at the gearbox suddenly ceases. Although this behavior is of academic interest

and will be explained later in this work, it is not relevant in terms of acoustics.

These are the most relevant features found on the measurements performed using the

7th gear. All the forthcoming results and conclusions from measurements will be an extension

of the ones shown in this section.

2.3.2 Analysis of the Torsional Behavior at 8th Gear

The next results to be shown are the 3rd order of the angular acceleration of the mea-

surement points obtained in Runs 1 and 2 at 8th gear. These graphics are shown in Figs.

2.21 and 2.22.
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Figure 2.21: Results of the 3rd order obtained in Run 1 at 8th gear.

Regarding the first amplification, in Run 1 it happens around 800 rpm while in Run 2 it

happens around 750 rpm. In the latter it is not possible to distinguish whether there are two
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Figure 2.22: Results of the 3rd order obtained in Run 2 at 8th gear.

close peaks or if this distortion is caused by the shape of the excitation. At this frequency,

the differentials seem to vibrate much more than the gearbox output, yet the latter signal

had to be omitted for Run 2 because of measurement noise.

In both runs it is possible to spot some amplification near 1, 500 rpm. In Run 1 it is

possible to see that there is some amplitude of vibration on the front differential and an even

greater amplitude on the rear differential. The same behavior is found on the results from

Run 2. Finally, there seems to be another amplification around 1, 900 rpm, which is a little

more visible in Fig. 2.22, although it is still not possible to assure whether it is or not a

system amplification based on these results.

In the 6th order results for Runs 1 and 2 there was no important system amplification.

The results were very close to what was found using the 7th gear, and hence these results are

not going to be shown here. The results for Runs 3 and 4 are shown in Figs. 2.23 and 2.24.

In Run 3, the amplitude found on the gearbox input was even greater than the amplitude

found in Run 1, for the same gear. Once it is known that the clutch disk used for Run 3 has

greater energy dissipation capability, this difference is explained by the fact that the tests
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Figure 2.23: Results of the 3rd order obtained in Run 3 at 8th gear.
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Figure 2.24: Results of the 3rd order obtained in Run 4 at 8th gear.
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may not have good repeatability in a strict sense. It does not mean that in different tests the

vehicle would have behaved in totally different ways. If there is a system amplification in some

range of engine speeds, it will always be possible to detect it in the measurements and the

noise produced in this critical range will be subjectively identical. However, the amplitude

of the peak of acceleration is strongly influenced by the driver’s capability of controlling the

vehicle load, which is a very difficult task when testing vehicles with elevated levels of torque,

as it is the case of the vehicle under investigation.

An important difference between Runs 1 and 3 is on the amplitude of the gearbox

output. While in Run 1 the gearbox output vibrated with very little amplitude at the

amplification, in Run 3, its amplitude was similar to the on found in both differentials.

In Run 4, once more the amount of friction torque in the clutch disk was able to control

the main resonance, resulting in no significant amplification up to 1, 300 rpm. However, once

more the amplification found near 1, 500 rpm could be verified. Besides, it became more

intense with more friction torque at the clutch disk. Once more, in this range it is possible

to see that the gearbox output vibrates very little, while the front differential has a greater

amplitude of vibration and the greatest intensity is found on the rear differential. Once more,

the subjective evaluations revealed no relevant rattling noise in this range.

Regarding the 6th order, the only result that is qualitatively different from the results

found using the 7th gear are the ones from Run 4, shown in Fig. 2.25.

These results show that, although the amount of friction torque is elevated on the clutch

disk used for this run, the system was still mostly not sensitive to 6th order excitation. A small

amplification is found near 700 rpm, and it is exactly the same one found near 1, 500 rpm

in the 3rd order. No other important feature was found in the results for the measurements

performed at 8th gear.

2.3.3 Analysis of the Torsional Behavior at 9th Gear

The results shown in this section have been obtained on tests at the 9th gear. Figures

2.26 and 2.27 contain the results for Runs 1 and 2, respectively. In both of these 2 runs, the

signal from the gearbox output was corrupted by noise, therefore it is suppressed in these
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Figure 2.25: Results of the 6th order obtained in Run 4 at 8th gear.
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Figure 2.26: Results of the 3rd order obtained in Run 1 at 9th gear.
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Figure 2.27: Results of the 3rd order obtained in Run 2 at 9th gear.

When at the 7th and 8th gears, in the first amplification in Run 1, between 800 and

1, 000 rpm, the amplitude of the gearbox input was much higher than the amplitude of the

differentials. At the 9th gear, however, this amplitude in Run 1 reached a maximum of 2, 000

rad/s2, while the peak amplitude of the differentials raised to approximately 1, 250 rad/s2.

Both peaks occurred at 800 rpm. In Run 2 the same trend can be observed, but the peaks

occurred at 750 rpm due to the lower torsional stiffness of the clutch disk used in this run.

The second amplification found between 1, 400 and 1, 600 rpm could not be identified

on the results from Run 1. On Run 2, however, this amplification becomes evident, but in

this case, differently from the previous ones, both the rear differential and the gearbox input

have similar amplitudes, while the front differential vibrates with lower intensity.

The 6th order results for Runs 1 and 2 do not exhibit any significant amplification, and

hence these graphics are going to be suppressed. The 3rd order results for Runs 3 and 4 are

shown in Figs. 2.28 and 2.29, respectively.

The amount of friction torque in the clutch disk used for Run 3 was once more not

enough to control the first resonance, yet the peak amplitude of the gearbox input was
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Figure 2.28: Results of the 3rd order obtained in Run 3 at 9th gear.
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Figure 2.29: Results of the 3rd order obtained in Run 4 at 9th gear.
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lowered to 1, 500 rad/s2. It is not possible to spot an amplification near 1, 400 rpm, but the

behavior of the gearbox output and differentials is the same found in previous cases: while

the gearbox output vibrates very little, there is some amplitude on the front differential and

the greatest intensity is found on the rear differential.

Major differences are found on Run 4, in which it is possible to see that the amplitude

of vibration of the rear differential is very close to the amplitude of excitation from 900 rpm

on. There is no significant difference on the amplitudes of the other measurement points

when compared to previously presented tests. The 6th order results for this gear on Runs 3

and 4 were similar to the ones found when using the 7th gear, therefore these results will be

suppressed.

The qualitative differences found on this gear, related to the previous ones, mainly at

the first amplification range, are explained by the fact that from the 1st to the 8th gears the

range-change group is set to the position L (Low), and from the 9th to the 16th gears, it is

set to the position H (High), what alters the dynamic behavior of the system4.

2.3.4 Analysis of the Torsional Behavior at 10th to 14th Gears

The torsional behavior of the powertrain for gears from the 10th to the 14th was qual-

itatively similar to the behavior found at the tests using the 9th gear. The only differences

lied in the first amplification range. As the gear increased, the engine speed at which the

amplification would occur decreased. Also, the amplitude at the rear differential increased

from lower to higher gears, when compared to the amplitude at the gearbox input. These

trends can be seen in Figs. from 2.30 to 2.34, where the 3rd order results from Run 1 are

shown for these gears, although in Fig. 2.34 the first amplification is not well represented

because it occurs too close to the engine idle speed.

With these measurements it is now possible to understand the behavior of this power-

train at drive condition when gears from the 7th to the 14th are selected. The next step is to

build a mathematical model that is able to represent the torsional dynamics of such system.

4The powerflow diagram of the gearbox, extracted from the manufacturer’s maintenance manual is shown
in Appendix A.1.
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Figure 2.30: Results of the 3rd order obtained in Run 1 at 10th gear.
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Figure 2.31: Results of the 3rd order obtained in Run 1 at 11th gear.
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Figure 2.32: Results of the 3rd order obtained in Run 1 at 12th gear.
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Figure 2.33: Results of the 3rd order obtained in Run 1 at 13th gear.
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Figure 2.34: Results of the 3rd order obtained in Run 1 at 14th gear.

2.4 Part IV: Mathematical Modeling and Model Validation

At this stage of the investigation, much is known about the order content in torque

provided by the engine, the dynamic behavior of the system and also important parameters

that were not available at first. It is now possible to build a mathematical model that is able

to represent the dynamics of the powertrain under investigation properly, so that the CPVA

to be installed on it can be designed and virtually tested.

In this section, two models are going to be built for the powertrain, being the first for the

condition when the eighth gear is shifted, and the second for when the ninth gear is shifted.

These two gears have been chosen because they represent extremely different configurations

in the gearbox. The fact is that one design of pendulum must be robust enough to diminish

vibration no matter what gear is selected. However, it is shown in Chapter 3 that the

tuning of the pendulum depends only on geometrical parameters that do not change when

different gears are shifted. Hence, the tests with two different models aim at showing that

the pendulum must work for different conditions.
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The drive rattle measurements play an important role on the modeling process, because

the results provide important information to update or validate the model. The first feature

to be taken into account is that, although several tests were performed in different conditions,

such as different gears, slightly different road surfaces, different clutch disks and so on, the

vibration generated by the engine has shown no relevant difference. This can be seen in Figs.

2.35 and 2.36.
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Figure 2.35: Angular acceleration of the flywheel at third order for different gears.

Regarding the third order, the greatest difference between the flywheel acceleration on

different tests is found between 1, 100 and 1, 500 rpm. Yet there seems to be a difference of

nearly 300 rad/s2, from practical experience it is known that this difference is not capable of

generating noticeable subjective change on the acoustic behavior of the powertrain, specially

in this range. Furthermore, the critical speeds that could induce gear rattle lie between 600

and 850 rpm. In this range, the engine behaved equivalently in all tests.

The sixth order angular acceleration at the flywheel has shown an even more uniform

behavior than the one found in third order. Besides, it was not possible to detect any noise or

undesired amplification on the tests that could have been caused by the sixth order content.

These results have an important impact on the modeling of the powertrain. Once the
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Figure 2.36: Angular acceleration of the flywheel at sixth order for different gears.

dynamics of the powertrain is not significantly relevant to cause change on the dynamic

behavior of the flywheel, it means that if measurements of the torsional behavior of the

flywheel are available, the angular displacement, speed and acceleration of the flywheel can

be imposed on the model. The direct consequence is that it is not necessary to estimate the

inertia of the flywheel, the clutch cover, pressure plate and the part of the clutch disk which

remains stuck to the flywheel during the tests.

Evidently, there is a part on the dynamics of the flywheel that is influenced by the dy-

namics of the powertrain. It becomes more evident when studying low frequency phenomena,

such as shuffle, as in the work of Simionatto (2011). For this phenomenon, which happens

usually between 2 and 8 Hz, the motion of the flywheel is extremely relevant. For higher

frequencies, however, as the flywheel is a huge inertia, in comparison to the other components

of the system, it isolates the engine dynamics from the powertrain dynamics and vice versa,

acting as a low pass filter.

The reduced need for data in order to perform torsional simulation of powertrains, yet

at the cost of some simplifications, can be considered an advantage. This happens because

the parts that compose a powertrain are usually produced by different industries which strug-
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gle to protect their knowledge. Yet a system approach is the only way to deal with torsional

vibrations in these systems, many of the necessary data to make a detailed approach are sim-

ply not made available by the manufacturers, for being considered confidential information.

This is also the case of the gearbox in the vehicle under investigation.

The manufacturers of this gearbox only allowed the access to some information about

their product. Among the information they could provide, the only data that were relevant

for the simulation of the powertrain were the gear ratios and the equivalent inertia of the

gearbox at each gear, taking the input shaft as reference. Once the calculations of the inertias

does not take into account any possible deformation of the shafts of the gearbox, the use of

these data imply that the transmission, in this model, is considered to be a rigid body.

In Figs. from 2.13 to 2.34, where the results of torsional vibration experiments are

shown, in the graphics where there are both the gearbox input (blue) and output (red)

signals, it is possible to see that the transmission cannot be considered a rigid body in the

whole range of engine speeds. However, for rotating speeds up to 1000 rpm, this is a good

approximation, i.e., it behaves as a rigid body in the rattle noise range.

The fact that the gearbox behaves as a rigid body in this range is known. It is found

on the works of Miyasato (2011), Miyasato et al. (2011a), Miyasato et al. (2011b), Miyasato

et al. (2013) and Lemes (2015 planned). Therefore, it is expected that the gear rattle phe-

nomenon is well represented by this model. Yet this is not the best approximation for higher

frequencies, in this range the amplitude of vibration of the differentials is much more signif-

icant than the amplitude of vibration of the gearbox output. Hence, good results are still

expected for the second amplification range, between 1400 and 1600 rpm.

The modeling technique is also worth mentioning. The powertrain, apart from some

nonlinearities, can be modeled through inertia, damping and stiffness matrices, i.e. it can be

represented by a second order linear model, similarly to what is done in structural dynam-

ics. The difference, however, is that even these linear matrices may account for kinematic

constraints, like gearings, and this may complicate the visualization of the mode shapes.

One way to eliminate the gear ratios is to simply apply a coordinate transformation

on the mode shape, so that the gear ratios are eliminated. This method is valid but it

does not apply to the case of this work, because some of the data, such as the equivalent

inertia of the gearbox, has been calculated taking as a reference the input shaft. There is
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another method, however, shown in the work of Ligier et al. (2002), in which the inertias and

stiffnesses of the powertrain components are calculated in such a way that the eigenfrequencies

of the equivalent system are equal to the ones from the original one, and the mode shapes

are the same that would have been obtained from the original system, after making the

coordinate transformation in order to eliminate the gearing effects. This method is introduced

in Appendix A.2.

The inertia of the differentials has been made available in the same way of the gearbox,

i.e. the manufacturers provided an equivalent inertia taking the input shaft as reference.

Once the differentials do not have inner shafts, they can be considered as rigid bodies in the

whole working range. The inertia of the wheels and of the vehicle have been estimated. Yet

the estimation was performed carefully, these parameters have shown not to influence the

eigenfrequencies of interest.

Regarding the stiffness of the components of the powertrain, all of them have been

measured with relatively high precision, except for the torsional stiffness of the tires. As

shown in the work of Drexl (1999), this parameter influences a mode whose eigenfrequency

is below the eigenfrequency related to rattle noise. Apart from being below the idle speed of

the vehicle, this mode is usually very damped and hence not very influent for this analysis.

In fact, there is a lot of knowledge and experience on the torsional modeling and sim-

ulation of commercial vehicle powertrains. This is due to the fact that, yet different, they

exhibit some similarities that make their dynamic behavior very alike. Subjectively, it is

possible to notice that in some vehicles the presence of rattle noise, for instance, is more

critical than in others. However, apart from the torsional dynamics, the acoustic sensitivity

and sound insulation play very important roles on the propagation and isolation of noise,

respectively.

As has already been mentioned, the inertias and stiffnesses available are enough to

model the powertrain and obtain a good estimation of its eigenfrequencies and mode shapes,

with a conservative model. However, this model is still not representative for calculating the

final amplitudes of response for the main orders of vibration. This happens because, apart

from the inner friction on the clutch disk, there are other sources of energy dissipation, such

as oil in the gearbox and differentials, roller bearings, hysteresis of shafts and others, which

are the key to determine the amplitude of vibration of the several parts of the powertrain,

specially at amplification conditions, which must be well represented in order to make good
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simulation of the behavior and performance of the CPVA.

The model of energy dissipation for the powertrain can be very complicated to describe,

and the models that are available usually represent a single source of energy dissipation

(usually drag torque in the gearbox) for very specific conditions. Furthermore they depend

on several parameters which are usually not available. On the other hand, energy dissipation

is usually avoided in the powertrain, because it leads directly to efficiency loss and increased

fuel consumption. Hence, usually the greatest source of energy dissipation is the friction in

the clutch disk, yet the other sources cannot be considered negligible.

One of the first attempts of representing the energy dissipation on the powertrain would

be to simply neglect all the other energy dissipating features and consider that there is only

dry friction in the clutch disk. The disadvantage of doing so is that the Coulomb friction

is not capable of keeping the amplitude of the system from growing indefinitely on resonant

conditions. Hence, when amplifications are reached, the model would not be representative

(Duque et al. (2004)). Additionally, the friction in the clutch disk is sensitive to wear,

temperature, relative speed and other factors, what makes of the choice of Coulomb friction

only a too simplistic approach.

A simple approach for representing energy dissipation in such systems, which has

brought good results in practice, is proposed in this work. It makes use of the tests with

clutch disks whose inner friction is as low as possible, and the task is to represent the energy

dissipation in the powertrain for low and high levels of friction in the clutch disk.

The first part of this procedure is to perform measurements using a clutch disk with

minimal inner friction. From this procedure it will no only be possible to obtain the angular

displacement, speed and acceleration to be imposed on the model, but also to obtain the

levels of vibration of each measurement point of the powertrain over the whole range. These

are referred to as “measurement curves”.

The second step is to build a conservative model of the powertrain which is capable of

representing the eigenfrequencies as well as possible. Even if all the inertia and stiffness data

are available, sometimes it is necessary to adjust some parameters to attenuate the effect of

some simplifications.

The third step is to diagonalize this linear conservative model and to insert a damping
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factor for each mode separately. The calculation of the damping factors is done through

least squares minimization, and the cost function is the difference of the amplitudes from the

measurement curves and from the simulated ones.

The use of this kind of damping is not usually recommended. For torsional powertrain

dynamics, however, this model is very representative. This happens because, apart from the

friction in the clutch disk, there is too few energy dissipation in the rest of the powertrain.

Because of this, in tests with clutch disks with low friction, it is possible to observe that the

phase between the measurement points is very close to 0◦ or 180◦. This effect can be seen in

Fig. 2.37.

In Fig. 2.37 are plotted the oscillating parts of the angular speeds in the time domain of

the five measurement points. In the upper graphic, the system had still not passed through

the gear rattle amplification, while in the lower one, the system had just passed through it.

If the system were to vibrate with phases different from 0◦ or 180◦, then it would be easier

to spot it in these conditions. However, yet it is not possible to tell precisely how much

the phase between the measurement points is, it is evident that they are close to the two

theoretical values.

This makes of the classical damping a good candidate to represent the small amount of

energy dissipation there is in this system, when the clutch disk’s energy dissipation capability

is reduced to its minimum. If the powertrain has to be simulated with higher amount of

friction in the clutch disk, the procedure is then to insert dry friction on it in order to

complement the amount that is not represented by the classical damping.

For instance, if one has to simulate a powertrain with 200Nm of friction torque in

the clutch disk, and a real clutch disk with a minimum of 10Nm of friction is available,

the first step is to perform measurements with the 10Nm disk. Then, they have to adjust a

conservative model and perform the optimization with classical damping, so that it represents

all the intrinsic losses of the powertrain plus the 10Nm of friction torque. Finally, they have

to include the remaining 190Nm of dry friction in the clutch disk and then perform the

simulation.

With all these considerations, it is now possible to build a model that represents the

dynamics of the powertrain under investigation. This model is shown in the next section.
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Figure 2.37: Time response of the measurement points immediately before and after the
first amplification (Run 1 - 8th gear).
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2.4.1 Development of Linear Conservative Model of the Powertrain

An important feature to consider on the modeling of powertrains is the balance between

stiffnesses and inertias. If each shaft is modeled as a stiffness and each rotor (a gear or a

disk) is modeled as an inertia, there is a huge chance that the resulting model will have

many degrees of freedom, and more importantly, eigenfrequencies that are far from what is

observed in practice.

The eigenfrequencies for this application are expected to be all below 200Hz. If there is

an extremely high eigenfrequency, it means that there must be more degrees of freedom than

the necessary to represent the powertrain in its operating range. At this point, reasonable

kinematic constraints are a good choice to reduce the model and obtain a smaller and still

representative one. As a matter of fact, frequency range model reduction is also a good

technique, and in general leads to the same results.

Taking into consideration that the technique presented on Appendix A.2 was used, the

idealization of the powertrain is shown in Fig. 2.38.
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Figure 2.38: Idealization of the powertrain.

The flywheel is represented in the model shown in Fig. 2.38, but as it has already been

mentioned, its motion is going to be imposed. The link between the flywheel and the gearbox

is a linear torsional spring that represents the drive stiffness of the clutch disk. It can be

represented as a linear spring because, during the tests, although the stiffness of the clutch

disk has multiple stages, the vehicle operated only at the drive stiffness.

The gearbox is accounted for as a single inertia. In this inertia there is also part of

the inertia of the long propeller shaft, which links the gearbox to the front differential and is
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represented by a torsional spring. It must be reinforced here that the gearings have already

been accounted for due to the modeling technique that has been used, and hence they do not

need to be represented in this illustration.

The front differential is linked to the rear differential through the stiffness that repre-

sents the short propeller shaft and also to a single inertia, that represent the wheels, through

a stiffness that represents the combined stiffness of the front side shafts. The rear differential

is also linked to the inertia that represents the wheels through a stiffness that represents the

combined stiffness of the rear side shafts. The combined stiffnesses of the side shafts and the

wheels represented by a single inertia are all due to a kinematic constraint better explained

in the following.

One must notice that this vehicle has four driving wheels, each one connected to a

side shaft of slightly different stiffness. The presence of these bodies on the model would

lead to some modes with near eigenfrequencies but few physical meaning (e.g. wheels going

to opposite directions while the rest of the powertrain does not move). Furthermore, these

modes are hardly excitable by an oscillating torque that acts on the flywheel.

In order to eliminate this undesired feature, it is considered that the vehicle moves

on a straight line and that the deformation of the chassis is negligible, so that the wheels

move together as if they were a single body, the aforementioned kinematic constraint. This

simplification allows the wheels to be represented by a single inertia and the side shafts from

each differential to be represented by a single stiffness. Also, as the vehicle is moving on a

straight line, only the final ratio of the differential gear has to be considered, i.e. the bevel

gear remains locked.

The wheels are connected to the inertia that represents the vehicle through the torsional

stiffness of the tires. The latter inertia is calculated by simply multiplying the mass of the

vehicle by the square of the dynamic radius of the driving wheels, as shown in the work of

Simionatto (2011).

With this model, it is now possible to compare its response to the measurements in

order to calculate an equivalent amount of modal damping, which represents all the inner

energy losses of the powertrain. This is an essential step in order to obtain a representative

model, and it is performed on the next section.
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2.4.2 Calculation of Equivalent Damping for the Linear Model of the Powertrain

The goal to be achieved in this section is to calculate an equivalent amount of (linear)

damping in order to make the linear model of the powertrain more representative. To do so,

it was chosen to attribute a modal damping ratio to every one of the modes of the system, in

the following way: let a linear time-invariant conservative system be represented in the form:

Mẍ+Kx = f(t) (2.1)

Also let the modal matrix5 of such system be named Φ and a diagonal matrix where

every nonzero element is an eigenfrequency of the system be named ωi. Using the coordinate

transformation x = Φq, where q is the vector of generalized coordinates, it is possible to

diagonalize Eq. (2.1) as follows:

ΦTMΦq̈+ΦTKΦq = ΦT f(t)

q̈+ ωi
2q = ΦT f(t) (2.2)

The next step is to define a diagonal matrix which has a modal damping ratio at each

element of its diagonal, called ζi. With this matrix it is possible to insert damping on Eq.

(2.2) as follows:

q̈+ 2ζiωiq̇+ ωi
2q = ΦT f(t) (2.3)

Now, using the transformation q = Φ−1x, it is possible to go back to the physical

coordinates and obtain an equation with a damping matrix, such as:

Mẍ+Cẋ+Kx = f(t) (2.4)

,being C given by:

C = 2(ΦT )−1ζiωiΦ
−1 (2.5)

It is known that the system represented on Eq. (2.4) is not always diagonalizable. It

is only possible to diagonalize it for some special forms of the matrix C. In these cases, this

5In this case it is normalized by the mass matrix.
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type of damping is called classical damping6, and it has some drawbacks to be mentioned.

A direct consequence to the fact that the system is diagonalizable is that the mode

shapes of the dissipative system are exactly equal to the ones from the conservative system.

It means that the phase of the degrees of freedom is constrained to be either 0 or 180◦

regardless of the amount of damping. For many applications, this constraint does not apply,

and hence results are poor.

In this work, however, this constraint represents well what happens in the system,

specially considering the fact that for the test of interest, energy dissipation was as low as

possible for this system. An example of the phase between the degrees of freedom for critical

conditions is shown in Fig. 2.37. The graphics in this figure shows the time response of the

system right before and right after the first amplification. If there was to be some phase far

from 0 or 180◦, it should be more visible in these conditions.

Yet the modal damping approach is not the best model of damping, it has shown

to bring good results to linear powertrain modeling, leading to good representativeness of

the models, once the damping ratios have been calculated. In order to calculate them, the

motion of the flywheel was imposed7 on the model, and then the amplitude of the angular

acceleration of the model was simulated and compared to the measurements. The square of

the difference between the simulation and the measurement was used as a cost function for

the nonlinear least squares problem of finding the damping rations that minimize it. The

least squares method used to solve this problem was the “trust region reflective”, available

in Matlab 2010 R© as the routine lsqnonlin.

The results for the 8th gear model are shown in Fig. 2.39. In the upper graphic are

shown the 3rd order amplitudes of the measured angular acceleration, while in the lower one

are shown the same results, but simulated instead of measured.

In the range of measurement, there are two relevant modes, one of them near 40Hz

and the other near 74Hz. The first one is related to the gear rattle phenomenon, and the

damping ratio calculated to it is of 6.9%. This mode shape is represented in Fig. 2.40 in

two ways. The graphic entitled “Physical mode” shows the mode from the physical system,

considering the gear ratios. In this graphic one can observe the real amplitudes found in

6Proportional damping is one type of classical damping, but there are others.
7In order to impose the motion of the flywheel, a simple yet generic procedure is proposed. It is shown in

details in Appendix A.3.
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Figure 2.39: Measured and simulated amplitude responses for 8th gear - Run 1.

this mode shape in the real system. However, once it considers the gearings, it is difficult to

know if the difference of amplitude between two degrees of freedom is because some element

is being deflected or if it is just because of the gear ratio. In order to visualize this, it is

better to analyze the graphic entitled “Mode w/o gearings”, where gearings are suppressed

and then it is possible to visualize the deflection of the elements only. However, it does not
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represent the physical amplitudes of vibration at that mode.
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Figure 2.40: Physical mode and mode without gearings for gear rattle at 8th gear.

Regarding the first amplification, the simulated peak amplitude of the gearbox ap-

proached well the measured one (the blue curves in Fig. 2.39), while the peak amplitude

at the differentials is slightly higher than the one found in the measurements. This must

happen due to the fact that the theoretical mode shape differs a little from what is found in

the experiment, because of simplifications, and also because the damping model chosen may

not be accurate for that configuration. Also, the engine speed is varied under a quasi-static

hypothesis, which is difficult to assure. Therefore, given the small difference between the

amplitudes and the factors that could have caused it, it is possible to conclude that this

model represents well the dynamics of the powertrain in the first amplification.

The second amplification is related to a mode shape shown in Fig. 2.41, and its damping

ratio is of 8.2% in the model. The second amplification itself is not related to any noise or

vibration that could possibly be subjectively evaluated as a problem, in this vehicle. As it
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is possible to see in Fig. 2.41, it is related to a mode where the shafts twist, and twisting

usually does not cause strong teeth impact. Nevertheless, both amplitudes of the gearbox

and of the differentials are well represented, and match the relationships found in the mode

shape.
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Figure 2.41: Physical mode and mode without gearings for second amplification at 8th gear.

Hence, the model proposed for the powertrain at the eighth gear is considered repre-

sentative and is going to be used for further simulations. The results for the simulation of

the powertrain at the ninth gear are shown in Fig. 2.42.

The mode shape related to the first amplification, around 800 rpm is shown in Fig. 2.43.

Yet the amplitude found on the differentials is smaller in the simulation, compared to the

experiment, the same ratio of the simulated is found on the rattle mode shown in this picture.

Hence, this difference os amplitudes is due to some simplification, possibly for considering

the gearbox as a rigid body. Even though, the amplitude at the gearbox is well represented,

and this is important because high amplitudes in the gearbox may lead to undesirable rattle
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Figure 2.42: Measured and simulated amplitude responses for 9th gear - Run 1.

noise. The damping ratio calculated for this mode is of 9.9%.

The second amplification is related to a mode shape whose natural frequency is near

71Hz. The calculated damping ratio is of 14.2% and the mode shape is shown in Fig. 2.44.

In this case all the amplitudes have been well represented by the theoretical model. The
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Figure 2.43: Physical mode and mode without gearings for gear rattle at 9th gear.

amplitude of the gearbox is a little underestimated above 1,500 rpm, but at this engine speed

gear rattle is subjectively not present.

Therefore, the ninth gear model is also considered representative for the tests with the

CPVA, and is going to be used for further simulations. The goal of this chapter, which

was to recognize the powertrain and build representative models for further simulations has

been achieved. In the next chapter, the reader will find theoretical aspects regarding passive

vibration absorbers, mainly of the centrifugal pendulum type.
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Figure 2.44: Physical mode and mode without gearings for second amplification at 9th gear.
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3 Theoretical Aspects of Passive Vibration Absorbers

Passive Vibration Absorbers are auxiliary devices designed to be linked to a specific

structure in a way that the dynamic behavior of the new system (original structure with the

vibration absorber) becomes more favorable to its desired operating regime.

Although passive absorbers are designed to improve the system’s performance in terms

of vibration, care must be taken when selecting the type of vibration absorber to be used.

Depending on its working principle, some types of vibration absorbers may be considered

more appropriate for specific applications. However, the tuning of its parameters must also

take into account the operating regime of the carrier structure, once there are also some

drawbacks to be considered.

In the case being studied in this work, the goal is to install a centrifugal pendulum

vibration absorber (CPVA) in an automotive powertrain in order to reduce the torsional

vibration of the system, avoiding impact noises in the gearbox. Once the type of vibration

absorber has already been selected, it is necessary to perform a deep and progressive theo-

retical investigation in order to understand its dynamic behavior and also to come up with

parameter tuning techniques.

For this reason, this chapter starts with a brief review of the well-known theory of

tuned mass dampers (TMD). This is due to the fact that some of the dynamic features of

the CPVA bear some resemblance with the ones found in TMDs, what makes of it a good

starting point.

3.1 Review on Tuned Mass Dampers

The theory regarding tuned mass damper absorbers is based on a carrier structure

with one degree of freedom, to which a TMD is installed. Both structure and absorber are

conservative. A schematic representation is found in Fig. 3.1.

69



mt

kt
2

kt
2

ka

ma

xt

xa

F (ω, t)

Figure 3.1: A one degree of freedom carrier structure with a TMD.

In this case, both of the degrees of freedom are chosen to be absolute, and both origins

are at the static equilibrium positions of the respective inertias. Therefore, xa(t) is the

vertical displacement of the center of mass of the TMD and xt(t) is the vertical displacement

of the mass of the carrier structure, both positive upwards. The mass and stiffness of the

carrier structure are given by mt and kt while the same parameters for the absorber are ma

and ka. Finally, the carrier structure is subjected to a sinusoidal effort F (ω, t).

The equations of motion for this system are given by:

[

mt 0

0 ma

]{

ẍt

ẍa

}

+

[

kt + ka −ka
−ka ka

]{

xt

xa

}

=

{

F (ω, t)

0

}

(3.1)

The parameters of the equations of motion as shown in Eq. (3.1) are the physical ones,

and carrying analyses through these would lead to unintelligible results, once they are neither

independent nor dimensionless. Considering the relationships given below,

ωa =

√

ka
ma

; ωt =

√

kt
mt

; µ =
ma

mt

; β =
ωa

ωt

; τ = ωtt;
∂xi
∂τ

= x′i (i = a, t); r =
ω

ωt

where:

ωa is the natural frequency of the TMD,

ωt is the original natural frequency of the carrier structure,

µ is the mass ratio,

β is the natural frequency ratio,
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τ is the dimensionless time,

r is the frequency ratio.

then the equations of motion reduce to:

{

x′′t

x′′a

}

+

[

1 + β2µ −β2µ

−β2 β2

]{

xt

xa

}

=

{
F (r,τ)

kt

0

}

(3.2)

Although the right hand side of Eq. (3.2) still depend on a physical parameter, it is

merely a scaling factor for the force, which is now represented in the dimensionless time τ . The

eigenvalues, eigenvectors and eigenfrequencies, however, are functions of the aforementioned

dimensionless parameters β and µ.

For being a conservative system, its eigenvalues are of the form:

s1,2 = ±jr1,2 , r1,2 ∈ R (3.3)

where ri is the i-th eigenfrequency of the system on the dimensionless time scale, and is given

by:

r21,2 =
1

2

(

1 + β2(1 + µ)∓
√

(1 + β2(1 + µ))2 − 4β2
)

(3.4)

The first feature to check is for which values of the dimensionless parameters, the term

inside the square root is real and nonnegative. It is proven1 that this is true for β ∈ R and

µ ∈ R+. It is also proven2 that the square of each dimensionless eigenfrequency is a real

nonnegative number. Both facts indicate that for any value of mass and stiffness, the system

will have two real dimensionless eigenfrequencies (r1 and r2), and hence two eigenfrequencies

in the time domain.

An important feature regarding the value of the dimensionless eigenfrequencies3 is that

the smallest one is always less than or equal to β, while the greatest one is always greater

than or equal to β. Besides, they will only be equal to β for non physical conditions (e.g.

β = 0 or µ = 0).

1Proof is shown in Appendix B.1
2Proof is shown in Appendix B.2
3Proofs are shown in Appendix B.3 and Appendix B.4.
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From the design point of view, once there is a frequency gap between the dimensionless

eigenfrequencies, it is important to know how this gap behaves for different values of β and

µ. One must notice that while the original system had one eigenfrequency, the new one with

the tuned mass damper has two. Typically, the TMD design is such that the operating range

of the system lies inside this frequency gap, for reasons that are better explained when the

steady state response of the system is analyzed.

For a fixed value of µ, the value of the dimensionless frequency gap as a function of β

is shown in Fig. 3.2.
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4

β(1 + µ)

r 2
−
r 1

r2 − r1
1− β

β
√
µ+ 1− 1/

√
µ+ 1

Figure 3.2: Dimensionless frequency gap as a function of β.

It is possible to see4 that it starts at the value of 1 with a slope of −1 and reaches a

minimum at β = 1/(µ + 1). From this point on, as β tends to the infinity, the gap follows

the asymptote:

lim
β→∞

(r2 − r1) → β
√

µ+ 1− 1√
µ+ 1

(3.5)

For a fixed value of β, the value of the dimensionless frequency gap as a function of µ

is shown in Fig. 3.3.

4Proof is shown in Appendix B.5
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Figure 3.3: Dimensionless frequency gap as a function of µ.

For small values of µ, which is often desirable, the curve follows the asymptote5:

lim
µ→0

(r2 − r1) →
β2

2|β − 1|µ+ |β − 1| (3.6)

For greater values of µ, however, no asymptotic behavior is found.

Further analyses on the mode shapes of this simple system are chosen not to be carried

out, because the conclusions in this case wouldn’t be relevant for this work. There are

important results to be shown regarding the steady state response of this system, though.

The normalized frequency response function of this system for the carrier structure is given

by:
|xt(τ)|

|F (r, τ)|/kt
=

β2 − r2

r4 − r2(1 + β2(1 + µ)) + β2
(3.7)

A straightforward conclusion to draw from Eq. (3.7) is that the amplitude of vibration

of the carrier structure vanishes when r = β. This is the only value for which it happens,

because r is considered positive for this analysis and the denominator of this fraction is a

biquadratic polynomial in r with finite coefficients, and hence it will only tend to the infinity

if r → ∞. The value of the denominator goes to zero when r = r1 or r = r2, because the

5Proof is shown in Appendix B.6
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system under investigation has no damping, and at resonance condition the amplitude of the

response must increase indefinitely.

It is also important to consider the normalized frequency response function for the

absorber mass, shown in Eq. (3.8).

|xa(τ)|
|F (r, τ)|/kt

=
β2

r4 − r2(1 + β2(1 + µ)) + β2
(3.8)

In this case there is no real value for r at which the absorber would not vibrate.

Furthermore, both resonant conditions are also present in the motion of this body. Yet these

facts must be carefully considered, it is of great importance to understand what happens to

the vibration absorber when the carrier mass does not vibrate (i.e. r = β). In this case, the

normalized frequency response function is given by:

|xa(τ)|
|F (β, τ)|/kt

=
−1

β2µ
(3.9)

This equation brings useful information about the amplitude of vibration of the tuned

mass damper, which is usually limited. If this amplitude is to be reduced, the designer has

two options: either β should be increased, which is less usual, or µ should be increased. The

increase of the latter parameter not only leads to reduction of the amplitude of vibration

of the TMD, but also widens the frequency range for which the carrier mass would vibrate

with lower amplitudes. However, it is usually done through the increase of the inertia of the

vibration absorber, which must also be limited.

At this point, a brief yet useful review on tuned mass dampers has been introduced.

On the next section, theoretical aspects of a one degree of freedom with multiple tuned mass

dampers will be introduced.

3.2 Dynamics of a system with multiple tuned mass dampers

Tuned mass dampers are a good practical solution for many applications in engineering.

For some of them, generally in Civil Engineering, where inertias are huge and vibration must
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be controlled, if one single TMD were to be used, its inertia would be tremendous, making

it difficult to build6. An alternate solution to this problem is to use several tuned mass

dampers, all of them tuned to the same frequency. An example of such application is shown

in Fig. 3.4.
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Figure 3.4: One degree of freedom structure with n tuned mass dampers.

For the sake of simplicity, all the tuned mass dampers are considered conservative,

and the parameter µ is also the same for each absorber. The goal of this analysis is to

demonstrate what happens to the dynamics of the system if multiple TMDs are chosen to

be used, and hence it was decided not to account for mistuning at this point. Therefore, if

the mass of each TMD is called m
(p)
a = ma, its stiffness is called k

(p)
a = ka and its absolute

vertical displacement is given by x
(p)
a (t), with p ∈ {1, ..., n}, then the equations of motion are

given by:

mtẍt + ktxt +
n∑

p=1

ka(xt − x(p)a ) = F (ω, t) (3.10)

maẍ
(p)
a + ka(x

(p)
a − xt) = 0 , p ∈ {1, ..., n} (3.11)

Once the system is undamped, it suffices to calculate the steady state response of the

system in order to compare it with the previous case, where a single TMD was used. It will

bring the information about the eigenfrequencies and vanishing frequencies for the carrier

mass. In this case, it is given by7:

|xt(τ)|
|F (r, τ)|/kt

=
β2 − r2

r4 − r2(1 + β2(1 + nµ)) + β2
(3.12)

6There are some successful applications, however, where a single TMD is still chosen to be used, which is
the case of the Taipei Tower, in Taiwan

7Proof is shown in Appendix B.7
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where β is the ratio between the eigenfrequency of each TMD isolated from the carrier

structure and the eigenfrequency of the original structure, and µ is the ratio between the

mass of a single absorber and the mass of the carrier structure.

Comparing Eq. (3.12) to Eq. (3.7) makes clear that, in this case, the use of multi-

ple TMDs brings exactly the same effect of using a single absorber with a larger inertia.

Therefore, all the conclusions from the previous analysis are valid for this case. If, on the

other hand, the carrier structure has more degrees of freedom, further analyses must be

carried out in order to understand the several effects of using multiple tuned mass dampers.

3.3 Centrifugal Pendulum Vibration Absorber: a thorough analysis

The main goal of this work is to use a centrifugal pendulum vibration absorber (CPVA)

in order to control torsional vibration in a vehicular powertrain. Therefore, it is of utmost

importance to perform a very deep theoretical analysis in order to exhibit every single aspect

of the dynamic behavior of such device and also of the torsional system containing it.

For this reason, this section is going to be divided as follows: on the first part linear

analysis is performed on a system composed of a disk spinning at constant speed and a

pendulum attached to this disk, which is free to oscillate. This analysis is divided in two

parts: the first one neglecting gravity and the second one taking it into consideration.

On the next part, a system with two disks is analyzed. One of them spins at constant

speed and is linked to a second one, which is free to oscillate, through a linear torsional spring.

The latter rotor also has a pendulum attached to it. Linear analyses are performed firstly

without gravity and then considering it. All these linear analyses are performed considering

a circular path for the pendulum, because the features from non-circular paths vanish after

linearization.

For this reason, on the third part of this section, general paths are considered and non-

linear analyses are performed on the same systems which have been previously analyzed after

linearization. On this part, firstly a mathematical procedure for calculating the coefficients

of the power series that represents the path under consideration is shown. This procedure

allows the nonlinear analysis to be performed. Then, the method used for calculating the
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approximate solutions for the nonlinear problems is shown. Finally, the same systems with

one and two disks are analyzed and stability and detuning due to the presence of gravity and

external excitation are assessed.

3.3.1 Single torsional disk with a Circular Path CPVA

In this section a single torsional disk with a circular path centrifugal pendulum vibration

absorber is modeled and analyzed. The schematic representation of this system is shown in

Fig. 3.5. The angular displacement of the carrier disk is represented by the absolute degree

of freedom θt, while the angular displacement of the pendulum bob is represented by the

degree of freedom θa, which is relative to θt.

θt

θa

ǫ a

R
p

Figure 3.5: Scheme of a single torsional disk with a CPVA attached to it.

The distance between the geometric center of the carrier disk and the point to which

the pendulum is pinned is Rp. The polar moments of inertia of the disk and the pendulum

about their own centers of mass are It and Ia, respectively. The distance between the point

at which the pendulum bob is pinned and its center of mass is ǫa, and its mass is ma. There

is an important detail about this system: in vehicle applications, the shafts are usually

placed horizontally, and hence, the disks are in the vertical position, which means that the

acceleration of gravity (g) is always parallel to the plane defined by the carrier disk. For this

reason, in this problem the influence of the gravity must be accounted for.

With these parameters it is possible to calculate the equations of motion 8, which are

8Derivation is shown in Appendix B.8
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given by:

(It +maR
2
p +maRpǫa cos θa)θ̈t +maRpǫa(θ̈a + θ̈t) cos θa + · · ·

−maRpǫa(θ̇t + θ̇a)
2 sin θa +maRpg cos θt = 0

(3.13)

for the motion of the disk and:

(Ia+maǫ
2
a)θ̈a+(Ia+maǫ

2
a+maǫaRp cos θa)θ̈t+maǫaRpθ̇

2
t sin θa+maǫag cos(θt+θa) = 0 (3.14)

for the motion of the pendulum bob.

As they are, the equations of motion describe a nonlinear autonomous system, and they

contain all the terms without any simplification. The first analysis to be performed is for the

condition where the carrier disk spins at constant speed and gravity is neglected.

3.3.1.1 Linear analysis at constant angular speed and zero gravity

In this case, the degree of freedom θt is going to be imposed, and then Eq. (3.13)

is of no use. As the system now has only one degree of freedom (θa), only Eq. (3.14) is

necessary to describe its dynamics. However, the degree of freedom θt must be replaced by

the appropriate time-dependent expression so that the disk spins at constant angular speed.

Hence, θt and its derivatives are replaced by:

θt = Ωt+ δ; θ̇t = Ω; θ̈t = 0 (3.15)

where Ω is the constant angular speed of the disk and δ is an angle reference.

Regarding the acceleration of gravity, the consideration of such terms will lead to im-

portant consequences. However, relevant conclusions are drawn in the analysis without these

terms, and hence they are chosen to be neglected at this point, and considered in further

steps.

With all these considerations, Eq. (3.14) reduces to:

(Ia +maǫ
2
a)θ̈a +maǫaRpΩ

2 sin θa = 0 (3.16)
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Considering that the angle θa is small, which is desirable, then it is possible to linearize

this equation, resulting in:

(Ia +maǫ
2
a)θ̈a +maǫaRpΩ

2θa = 0 (3.17)

Once this equation is linear, homogeneous, time invariant and has positive coefficients,

the response from this system is bounded if the initial conditions are so. Also, in case of

harmonic excitation, in all conditions but resonance the system response is also bounded.

Through simple eigenvalue analysis, the eigenfrequency of the system for this case is given

by:

ωa =

√

maǫaRpΩ2

Ia +maǫ2a
= Ω

√

ǫaRp

r2ga + ǫ2a
= Ωv (3.18)

where rga is the radius of gyration of the pendulum bob.

Equation (3.18) brings important facts to be kept in mind in the analysis of systems

with centrifugal pendulums: firstly, the eigenfrequency of the pendulum, when attached to a

system spinning at constant speed, varies linearly with the angular frequency, according to

a constant (v). Secondly, this constant depends only on the geometry of the pendulum (ǫa,

rga) and the distance between the point where it is pinned on the disk and the center of mass

of the latter (Rp). It does not depend on the inertia or mass of the pendulum bob.

These conclusions bring some qualitative aspects of the behavior of the pendulum bob

when its swing angle is small and when no gravitational terms are considered. On the

next analysis, the acceleration of gravity is taken into account for small swing angles of the

pendulum bob and constant angular speed.

3.3.1.2 Linear analysis at constant angular speed considering gravitational terms

In this case, as in the previous one, the angle θa is considered small and the degree of

freedom θt is going to be imposed using the same constraints as in Eq. (3.15). The only

difference is that at this point, gravity is not neglected. Hence, this time Eq. (3.14) reduces

to:

(Ia +maǫ
2
a)θ̈a +maǫa(RpΩ

2 − g sin(Ωt+ δ))θa = −maǫag cos(Ωt+ δ) (3.19)
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It now refers to a non-homogeneous linear time varying system, and at this point

new concerns arise about the system stability, which in this work is directly related to the

boundedness of its solutions.

It is important to mention at this point that, although parameters are time-varying and

there is excitation already, linearity still holds, and hence zero-state and zero-input responses

can be analyzed separately before boundedness properties are stated.

It is also of great importance to carry analyses using dimensionless parameters. For this

reason, Eq. (3.19) must be rewritten considering some rearrangements and also time scaling,

which at this point deserve some special attention. The relationship between physical time

and dimensionless time in this case is given by:

Ωt+ δ = τ + π/2 (3.20)

The constant terms δ and π/2 are chosen so that the final equation is in a convenient

form, but they do not imply in loss of generality in any sense. When the change of variables

is performed, it is important not only to change the functions of t for proper functions of

τ , but also to replace the derivatives, which were originally with respect to t, to the proper

ones, with respect to τ . This can be done through the chain rule relationship shown below:

θ̇a(τ(t)) =
d

dt
(θa(τ(t))) =

∂

∂τ
(θa(τ))

dτ

dt
= θ′a(τ)Ω (3.21)

where Ω comes from the Eq. (3.20).

When the change of independent variables is performed, the resulting equation repre-

sents the dynamics of the system in the dimensionless time-scale τ , which happens to have

a physical meaning in this case: once the left-hand side of Eq. (3.20) represents the time

evolution of the angular displacement of the carrier disk, the dimensionless time τ represents

an angle, i.e., the system goes from time-domain to the angular domain representation.

Considering this, Eq. (3.19) reduces to:

θ′′a + (κ+ η cos τ) θa = η sin τ (3.22)

80



where κ and η are given by:

κ =
maǫaRp

Ia +maǫ2a
= v2; η =

−maǫag

(Ia +maǫ2a)Ω
2
=

−v2g
RpΩ2

(3.23)

The homogeneous part of Eq. (3.22) is precisely the homogeneous Mathieu equation,

which is a special case of Hill’s equation, first published in the work of Hill (1886)9. Hill

studied equations of the form:
d2y(τ)

dτ 2
+ f(τ)y(τ) = 0 (3.24)

where f(τ) is a periodic function.

The solution of such equation can be expressed in terms of Hill’s (or infinite) determi-

nants, or by the Floquet theory, which is devoted to the study of linear time-varying systems

with periodic coefficients.

The Mathieu equation is a special case of Hill’s equation, where the function f(τ) is

given by the sum of a sinusoidal function of period 2π in τ with a constant. In order to

infer the stability of the homogeneous solution of this equation, it is necessary to observe the

following concept from Floquet theory10: it is not true that all homogeneous solutions θa of

Eq. (3.22) are periodic. However, it is true that these solutions can be written in the form:

θa(τ) = eατϕ(τ) (3.25)

where ϕ(τ) is periodic with period 2π and α is not necessarily real. The value of α is strictly

related to the boundedness of the solution, i.e. if Re [α] ≤ 0, the solution is bounded. For

the case where the latter equality holds, if e2πα = 1 (i.e. α = n | n ∈ Z), then the solution

θa is 2π-periodic, and if e2πα = −1 (i.e. α = j/2 + n | n ∈ Z), then θa is 4π-periodic.

The stability character of the solutions of Eq. (3.22), i.e. the value of α, is exclusively

defined by the parameters κ and η, and it is not influenced by the initial conditions. If a pair

(κ, η) leads to a stable solution, these values are called stable values. If, on the other hand, it

would lead to an unstable solution, the values are called unstable values. Finally, if the pair

results in at least one periodic solution, they are called transition values. The other solution

9It was named after G. W. Hill and was firstly used to infer lunar stability. However, it has been used on
the modeling of quadrupole mass spectrometer, as the one dimensional Schrödinger equation of an electron
in a crystal and in accelerator physics, among other applications.

10A brief introduction to this theory applied to one-degree-of-freedom systems is shown in Appendix B.9.
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is usually unstable (because the roots are repeated), but this point is at the limit of stability.

According to Haupt (1918), in a κ, η-plane, the points that define a purely periodic

solution (|e2πα| = 1) are the stability limits of the system, i.e. they separate stable and

unstable regions of the plane. Hence, in order to infer stability, it suffices to calculate the

transition values, which lead to periodic homogeneous solutions. The proposed solution

must be a 4π-periodic Fourier series, because includes 4π-periodic and 2π-periodic terms,

both mentioned by Floquet theory. It is then written in the following form:

θa(τ) = a0 +
∞∑

n=1

an cos
(nτ

2

)

+ bn sin
(nτ

2

)

(3.26)

Using this solution to calculate the homogeneous response of Eq. (3.22) leads to the

following recurrence relations:

• For n even:
For n = 0

κa0 +
η
2
a2 = 0

For n = 2






(

κ− 22

4

)

a2 + η
(

a0 +
a4
2

)

= 0
(

κ− 22

4

)

b2 + η

(
b4
2

)

= 0

For n ≥ 4






(

κ− n2

4

)

an +
η

2
(an−2 + an+2) = 0

(

κ− n2

4

)

bn +
η

2
(bn−2 + bn+2) = 0

(3.27)

• For n odd:
For n = 1







(

κ− 12

4

)

a1 +
η

2
(a1 + a3) = 0

(

κ− 12

4

)

b1 +
η

2
(b3 − b1) = 0

For n ≥ 3






(

κ− n2

4

)

an +
η

2
(an−2 + an+2) = 0

(

κ− n2

4

)

bn +
η

2
(bn−2 + bn+2) = 0

(3.28)
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One may notice that equations for even and odd values of n are uncoupled. This

happens because the 2π-periodic part of the solution is represented by the even terms of the

Fourier series, while the odd ones represent the 4π-periodic part.

As there are infinite recurrence relations and all of them are homogeneous, the calcu-

lation of the coefficients ai and bi involve the solution of an infinite homogeneous algebraic

system of equations. Nontrivial solutions are found through setting the determinant of the in-

finite matrix that represents this system to zero, which provides relationships between η and

κ. These relationships are the loci formed exclusively by transition values on the κ, η-plane.

Such class of determinants is called Hill’s determinants.

With these loci, it suffices to find points for which the solution is stable (for example,

if η = 0, the system would be linear and time invariant, and stability inference is direct).

When such point is found, all the points in its neighborhood will also be stable values until

some loci from Hill’s determinant is reached. From this point on, the stability character is

reversed, and so forth. This is better shown in Fig. 3.6. The values in blue are stable, while

the ones in white are unstable and the ones in black are transition values.

−5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

κ

η

 

 

Stable values

Figure 3.6: Stability diagram for homogeneous Mathieu equation.

Once the parameters η and κ are calculated in terms of the physical parameters of the

system, it is now possible to obtain important information about some characteristics of the
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pendulum bob and its assembly that would contribute for greater stability. The term stability

in this case refers to the fact that the equilibrium position of the pendulum bob must be the

one at which its tip points outwards, related to the carrier disk, and also to the fact that

the pendulum must swing only (in a small angle), and not rotate completely, otherwise the

nonlinearity would be too strong.

From the diagram in Fig. 3.6, it is readily noticeable that in order to increase the

chances of obtaining a stable response, one must design a pendulum with positive and high

values for κ and small values for |η|. From Eq. (3.23), it is possible to conclude that, the

higher the parameter v, which is directly related to the natural frequency of the pendulum,

the higher is the chance of obtaining a stable pendulum. On the other hand, if v is too large,

then the absolute value of η would increase and the chances of obtaining stable behavior

would decrease. According to the latter parameter, once the acceleration of gravity in this

work is constant, then the pendulum should be installed in a position Rp as far as possible

from the center of the carrier disk. Furthermore, as Ω increases, the chances of obtaining

stable behavior increase significantly. It means that, in practice, the lower the ratio between

the acceleration of gravity (g) and the mean centripetal acceleration (Ω2Rp), the better.

These conclusions are valid for the homogeneous response of Eq. (3.22). Once the

equation is linear, then these conclusions will hold independently from the input that acts

on the system. However, it is still necessary to infer stability for the response to the input in

Eq. (3.22), and the stability of this system will obviously hold if and only if the zero state

and zero input responses are simultaneously bounded.

In order to address this problem, useful information is found on the work by Slane and

Tragesser (2011). The authors propose an extension to the Floquet theory11, that originally

dealt only with homogeneous systems, making it possible to analyze nonautonomous ones.

This extension is valid if the input is periodic with the same period of the system’s coefficients,

which is precisely the case of Eq. (3.22). Table 3.1 summarizes the results for the both cases.

It is clear from the results shown in this table that the response of the pendulum will

be stable when all the multipliers lie inside the unit circle and when multipliers on the unit

circle are not 1 but are semisimple. The first case refers to a naturally stable system while

the second one refers to a system whose response is periodic and not at resonance. When the

11The comprehension of such extension requires knowledge of the general Floquet theory. Hence, the
general theory is shown in Appendix B.10 and its extension on Appendix B.11
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Table 3.1: Stability results from general and extended Floquet theory for homogeneous and
inhomogeneous systems.

Magnitude of Largest Floquet
Multiplier (ρ [σi])

Homogeneous
Stability

Inhomogeneous
Stability

ρ [σi] < 1
Semisimple

Asymptotic
stability

Bounded

ρ [σi] = 1
One is the only multiplier on the
unit circle and is semisimple

Lyapunov
stability

Unbounded

ρ [σi] = 1
Multipliers, other than one, on the

unit circle are semisimple

Lyapunov
stability

Bounded

ρ [σi] = 1
Multiple eigenvalues not semisimple

Unstable Unbounded

ρ [σi] > 1
Multipliers outside the unit circle

Unstable Unbounded

multiplier is precisely 1, the system is at resonance. Multiple and not semisimple multipliers

on the unit circle or multipliers outside the unit circle are natural the causes of instability12.

A direct consequence of the results brought by Slane and Tragesser (2011) is that the

blue area in the diagram shown in Fig. 3.6, that indicates stable behavior for the homogeneous

solution, is also valid for inhomogeneous systems whose input is periodic with the same period

of the system’s coefficients, i.e. if the parameters η and κ are stable values, then the response

of the pendulum will be bounded for the case where the carrier disk spins at constant angular

speed.

At this point, all the relevant aspects of the dynamics of a system composed by a

12The multipliers σi are eigenvalues of a special matrix defined in Appendix B.10. The algebraic multiplicity
of an eigenvalue is the number of times it is repeated as a root of the characteristic polynomial defined by
that matrix. The geometrical multiplicity of an eigenvalue is the number of linearly independent eigenvectors
associated to it. A simple eigenvalue has both multiplicities equal to one, while a semisimple eigenvalue is an
eigenvalue whose algebraic and geometric multiplicities are equal. A simple eigenvalue is always semisimple,
but not conversely.
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pendulum bob attached to a carrier disk spinning at constant speed for this work have been

presented. The discussion will now focus on systems with more spinning disks that are

allowed not only to spin at constant speed but also to oscillate with small amplitudes.

3.3.2 Elastic two-disk system with a Circular Path CPVA

In the previous section a single disk spinning at constant rotating speed with a CPVA

attached to it is analyzed. The next step of the analysis would be to allow the disk to spin at

constant speed and also to oscillate with small amplitudes. However, this analysis would be

really close to the one which considers a system with two elastically coupled disks where one

of them spins at constant speed, the other is allowed to oscillate torsionally while spinning at

the same constant speed of the first one, and also has a CPVA attached to it. Therefore, it

was chosen to present the relevant aspects of both analyses making use of the latter system

only. Its schematic representation is shown in Fig. 3.7.

Kt

Angular speed: Ω

Angular speed: Ω +
˙̃
θt

Figure 3.7: Two elastically coupled disks, one of them with a CPVA.

As there are two disks and one of them has a pendulum, then this system would have

three degrees of freedom. However, it is imposed that the disk without the CPVA must rotate

at constant rotating speed Ω. Consequently, there will be only two equations of motion: one

for the dynamics of the carrier disk and another for the torsional dynamics of the pendulum

bob. They are:

(It +maR
2
p +maRpǫa cos θa)θ̈t +maRpǫaθ̈a cos θa −maRpǫa(θ̇t + θ̇a)

2 sin θa + · · ·
· · ·+maRpg cos θt +Kt(θt − Ωt− δ) = 0

(3.29)
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and:

(Ia+maǫ
2
a)θ̈a+(Ia+maǫ

2
a+maǫaRp cos θa)θ̈t+maǫaRpθ̇

2
t sin θa+maǫag cos(θt+θa) = 0 (3.30)

respectively.

One must notice that Eq. (3.30) is identical to Eq. (3.14), while the only difference

between Eq. (3.29) and Eq. (3.13) is the term Ktθt. The next step is to perform an analysis

which allows the carrier disk to have an angular speed with small fluctuations.

3.3.2.1 Linear analysis with zero gravity and small oscillations on the carrier

disk’s angular speed

For this analysis, gravitational terms are neglected and the carrier disk is allowed to

have oscillating angular speed, given that such oscillation is small enough so that a linear

system would still be able to describe most of the system’s dynamics. Additionally, the swing

angle of the pendulum bob is also considered to be small. Mathematically, it is represented

as follows:

θt = Ωt+ δ + θ̃t ; θ̃t → 0 ; θa → 0

with δ and Ω constants.

After linearizing Eqs. (3.29) and (3.30) and replacing the terms described in the con-

straints above, it is possible to find the following set of equations of motion:

[

It +maR
2
p +maRpǫa maRpǫa

Ia +maǫ
2
a +maRpǫa Ia +maǫ

2
a

]{
¨̃θt

θ̈a

}

+

[

Kt −maǫaRpΩ
2

0 maǫaRpΩ
2

]{

θ̃t

θa

}

=

{

0

0

}

(3.31)

After introducing the dimensionless parameters shown below:

a =
It +maRpǫa +maR

2
p

It
; b =

Ia +maǫ
2
a

Ia
; µ =

Ia +maǫ
2
a

It +maR2
p +maRpǫa

=
bIa
aIt

;

p =
ǫa
Rp

; v =

√

b− 1

bp
; ωt =

√

Kt

It
; ωa = vΩ ; β =

ωa

ωt

; τ = Ωt+ δ ;
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ḟ(τ) =
d

dt
f(τ(t)) = Ω

∂

∂τ
f(τ) = Ωf ′(τ)

the equations of motion become:

[

µ−1 v2

1 + v2 1

]{

θ̃′′t

θ′′a

}

+

[
v2

β2µa
−v2

0 v2

]{

θ̃t

θa

}

=

{

0

0

}

(3.32)

As there is no excitation or gravitational terms, this system of equations is homoge-

neous, and hence its eigenproblem must be analyzed. The square of the eigenvalues of this

system is given by:

s21,2 =
v2

2q



−
(
1− q

v2
+ 1 +

1

β2a

)

±

√
(
1− q

v2
+ 1 +

1

β2a

)2

− 4q

β2a



 (3.33)

where q is given by:

q = 1− µv2(v2 + 1) (3.34)

The first thing to check is whether the eigenvalues of the system are purely imaginary

(i.e. if their squares are always negative) or not. Once there is no energy dissipation involved,

if s2i is anything other than a real negative number, this could be an evidence of instability.

The only constraint that must be obeyed13 so that the response of this system remains

bounded is that µ ≤ 1/v2(v2 + 1), which draws a direct relationship between the natural

frequency of the pendulum and the inertia added to the system.

The eigenvalues of the system will then be of the following form:

s1,2 = ±jχ1,2

where it is emphasized that χi are eigenfrequencies in the dimensionless time τ , and not in the

physical time t. It is important to mention that the relationship between an eigenfrequency

on the physical time domain (ωi) and its corresponding in the dimensionless time domain

(χi) is ωi = Ωχi. In order to avoid ambiguity, once the physical meaning of the dimensionless

time τ is an angle, then, from this point on, the eigenfrequencies in the physical time domain

will be referred to as eigenfrequencies, while the eigenfrequencies in the dimensionless time

domain will be referred to as eigen-orders.

13Proof shown in Appendix B.12
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while the latter five are focused on rotating blade array dynamics.

The work of Wilson (1941) deserves special attention because it brings a method for

tuning the CPVA based on the existence of such zone. This method is called Inertia Tuning

and is going to be presented in chapter 4. Another important aspect is brought by the work

from Gozen et al. (2012). Instead of a no-resonance zone, the authors were able to find a

resonance suppression zone, i.e. while some resonances would be out of the zone created

by the CPVA, others would still cross such zone, so that they could still be excited by

excitations lying on it. The reason why the existence of this zone is of great importance for

the professionals who aim at reducing NVH issues related to torsional vibrations, such as

rattle noise, lies on the nature of generation of impact-induced noise.

From practical experience and literature, as seen on the works of Seaman et al. (1984)

and Steinel (2000), it is known that undesirable levels of noise are achieved when the torsional

vibration in the gearbox is above a certain limit which differs from one transmission to

another. In the operating regime studied in this work, once the engine torque oscillation is

not critical, the main factor that would increase torsional vibration in the gearbox is system

amplification, which is closely related to resonance. Hence, if there is a way to suppress the

most relevant resonances, then the system would be less prone to produce rattle noise.

It is also important to understand the behavior of the modes of this system, once they

also vary with the rotating speed. As the system has only two degrees of freedom, if the

modes are normalized so that the first component is always unitary, then the second one,

which is a ratio, is capable of representing that mode. More precisely, it is the ratio between

the torsional amplitude of the carrier disk and the angular amplitude of the pendulum bob,

and it is given by:

Γ1,2 =
Θ̃t(1,2)

Θa(1,2)

=
−(s21,2 + v2)

s21,2(v
2 + 1)

(3.36)

where Θ̃t(i) and Θa(i) are the amplitudes of the carrier disk and the pendulum bob at the i-th

mode, respectively. These ratios are represented in Fig. 3.10.

In mode 1, represented by the blue line in Fig. 3.10, both carrier disk and pendulum bob

are in phase, and as the rotating speed increases, the amplitude of the pendulum bob tends

to decrease when compared to the amplitude of the carrier disk. Also, it tends to zero for

lower speeds. In mode 2, the red line in Fig. 3.10, the carrier disk and the pendulum bob are

opposite in phase, and as the rotating speed increases, the ratio Γ2 tends to (q−1)/(1−q+v2),
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Figure 3.10: Modal ratios of a two disk system with a CPVA.

which means that for this mode, if the amplitude of the carrier disk is limited, so is the

amplitude of the pendulum bob.

With these information, the analysis of the homogeneous response of this system, apart

from gravitational terms is complete. As there is no excitation in this system, a hypothetical

oscillating torque (T (nΩ, t)) is assumed to be acting on the carrier mass. Its oscillates at the

n-th order of the rotating speed and can be included on Eq. (3.32) as follows:

[

µ−1 v2

1 + v2 1

]{

θ̃′′t

θ′′a

}

+

[
v2

β2µa
−v2

0 v2

]{

θ̃t

θa

}

=







T (n, τ)

Ω2bIa
0






(3.37)

Although in the time domain, such excitation would have variable frequency, in the

angle domain its frequency is constant, and hence T (n, τ) is a sinusoidal function. The

calculation of the steady state response of the system in Eq. (3.37) for any order n results

in the order response functions (ORF), which are basically the frequency response functions

of this system in the order domain. Their normalized forms are given by:

|θ̃t|
|T (n,τ)|
Ω2bIa

=
µ(v2 − n2)

n4q − n2v2
(

1−q
v2

+ 1 + 1
β2a

)

+ v4

β2a

(3.38)
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for the carrier disk and:

|θa|
|T (n,τ)|
Ω2bIa

=
µn2(v2 + 1)

n4q − n2v2
(

1−q
v2

+ 1 + 1
β2a

)

+ v4

β2a

(3.39)

for the pendulum bob.

The formulae shown in Eqs. (3.38) and (3.39) are represented in Fig. 3.11. The

normalized amplitude of the carrier disk starts at µβ2a/v2 for low values of n, and has major

amplifications at the eigen-orders χ1 and χ2. It has a zero at n = v and the no resonance

zone starts at this point and ends at the point where the line µβ2a/v2 crosses the ORF, at

n =
√

1−q+v2

q
. The normalized amplitude of the pendulum bob starts at zero and has two

major amplifications at the eigen-orders χ1 and χ2. More importantly, the pendulum bob’s

normalized amplitude has no other zero but the one at n = 0. Hence, the pendulum responds

to any order of excitation of this system.

The graphics shown in Fig. 3.11 have been calculated for a given value of Ω which

would improve the visualization of all the features shown. It has already been shown in Fig.

3.8 that χ1 tends to v for low rotating speeds and to zero for the high ones, while χ2 tends

to infinity if Ω is low and approaches
√

1−q+v2

q
for increasing values of Ω. From Eq. (3.38), it

is evident that the amplitude of the carrier disk will be zero whenever n = v, independently

of the rotating speed.

3.3.2.2 Linear analysis considering gravity and small oscillations on the carrier

disk’s angular speed

Differently from the analysis performed in the previous section, in this case the gravi-

tational terms are included. The amplitude of vibration of the carrier disk is still considered

small, and so is the amplitude of vibration of the pendulum bob.

Once the gravitational terms are considered, a new dimensionless parameter must be

defined. It is:

gǫ =
g

Ω2ǫa
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The system is still linear, but it has time varying coefficients, which are 2π-periodic

in the angle domain. There are some special cases in which it is possible to find a closed

formula for the response of this system. This case, however, does not fit into this category.

Hence, the Floquet theory must be used.

It is important to mention that the analysis to be performed in this case, where gravita-

tional terms are considered, focuses on asserting whether these terms are capable of making

the pendulum unstable or not. From previous analyses, it was shown that for certain com-

binations of parameters, the behavior of the pendulum could be unstable. In that case,

however, the carrier disk was not allowed to vibrate.

In order to apply the Floquet theory, once the system does not have an analytical

solution, the monodromy matrix18 was calculated using the numerical integrator ode4519

available in Matlab R2010a R©. The integrator’s parameters have been set to optimize pre-

cision of the results. The monodromy matrix was calculated using the homogeneous part of

Eq. (3.40) only. Extension of these results to the non-homogeneous case is done through the

results from the work of Slane and Tragesser (2011).

These matrices were calculated based on different values for the rotating speed of the

system (Ω) and the tuning parameter of the pendulum v. For each point (Ω, v), the mon-

odromy matrix was calculated up to τ = 2π, as required by the Floquet Theory, and then the

eigenvalues of this matrix were computed. The maximum absolute value of the eigenvalues

found for each point (Ω, v) is shown in Fig. 3.12.

In this graphic, the system will be stable (i.e. has a bounded response) on the dark blue

points. For low rotating speeds, there is a region at the left of the graphic where the system

is likely to be unstable. Above a certain rotating speed, the centripetal forces become much

more relevant than the gravitational forces, and from this point on the system is stable up

to a certain value of v. There is a well defined line on the top of Fig. 3.12, where the system

turns from stable to unstable. This happens because the parameter v reaches a value where

the constraint µ ≤ 1/v2(v2 + 1) cannot be obeyed. Hence, the parameter q will be negative

and consequently the system will be unstable.

18Defined in Appendix B.10.
19Further information about this integrator can be found in the work of Dormand and Prince (1980). In

this work, this integrator is referred to as RK5(4)7M.
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Figure 3.12: Maximum absolute value of the eigenvalues of the system for several (Ω, v)
points.

3.3.3 Systems with General Path CPVA

All the analyses carried so far in this chapter were performed on linear systems with

a Circular Path CPVA. Nonlinear analyses were chosen not to be presented in the previous

sections because pendulums with other than circular paths are an extension of the pendulums

of the first kind. Hence, the results of the linear and nonlinear analyses shown for the general

path pendulums apply for the circular path ones, and this eliminates the need for performing

these analyses on previous sections.

Basically, all the inertia and distance parameters are the same from the previous anal-

yses. The only parameter that is not going to be used directly is ǫa, because the pendulum’s

path is not necessarily circular. Its radius is actually a function of the pendulum bob’s swing

angle θa, called ra(θa) and expressed in terms of a power series:

ra(θa) = ᾱ0 +
∞∑

k=1

ᾱkθ
k
a (3.41)

One must notice that if ᾱk = 0 | k ∈ Z
∗
+ and ᾱ0 = ǫa, then the path is circular. The
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equations of motion for such system are20:

(It +maR
2
p)θ̈t +maRp

d2ra(θa)

dθ2a
(θ̇2a sin θa) + · · ·

+maRp
dra(θa)

dθa

(

θ̈a sin θa + 2θ̇a(θ̇a + θ̇t) cos θa

)

+ · · ·

+maRpra(θa)
(

(θ̈a + θ̈t) cos θa − (θ̇a + θ̇t)
2 sin θa

)

+maRpg cos θt = 0

(3.42)

for the disk and:

(
Ia +mar

2
a(θa)

)
(θ̈a + θ̈t) + 2ma

dra(θa)

dθa
ra(θa)θ̇a(θ̇a + θ̇t) + · · ·

+mara(θa)
(

Rp(θ̈t cos θa + θ̇2t sin θa) + g cos(θt + θa)
)

= 0
(3.43)

for the pendulum.

The difference between these equations of motion and Eqs. (3.13) and (3.14) are the

terms multiplied by the first and second derivatives of ra(θa) with respect to θa. Among them

are the terms related to the Coriolis acceleration, which were not present before because of

the constant radius of the pendulum’s path.

At this point a series of works has to be mentioned. They are the works from: Denman

(1992), Chao et al. (1997), Lee and Shaw (1997), Chao and Shaw (2000), Alsuwayian and

Shaw (2002), Alsuwayian and Shaw (2003), Haddow and Shaw (2003), Nester et al. (2003),

Nester et al. (2004), Olson et al. (2005), Olson and Shaw (2008), Olson and Shaw (2009)

and Gozen et al. (2012). In all of these works, the degrees of freedom used to model the

pendulum dynamics are different from what is done in the present thesis.

All these authors have chosen to describe the motion of the pendulum’s center of mass

using an arc-length coordinate. This coordinate is zero at the vertex of the pendulum’s path

and describes the distance run by the center of mass of the pendulum bob along this path.

For this reason, it requires the path to be symmetric and also the radius of curvature of the

path has to be described as a function of the arc-length variable. The use of this formulation

allows one to simulate a family of circular, cycloid and epicycloid paths through the variation

of a single parameter, and is brought by Denman (1992). The formula is shown in Eq. (3.44).

ρi =
√

ρ2i0 − λ2S2
i (3.44)

20Derivations are shown in Appendix B.17
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Equation (3.44) is shown as it is in the work of Alsuwayian and Shaw (2002). The

variable ρi is the radius of curvature of the i-th pendulum at a given position Si, which is the

arc-length of the path described by the center of mass of the pendulum bob. The constant

ρi0 is the radius of curvature of the path at its vertex and λ is the parameter to be varied.

For λ = 0, the path is circular, while for λ = 1 it is cycloidal and for λ =
√

ñ2
i /(ñ

2
i + 1) it

is an epicycloidal of order ñi. The relationship between this parameter and the parameters

used in the present thesis is: ñi = 1/
√
p.

In their work, the authors mention that this parameter sets the eigen-order of the

pendulum to be ñi. Comparing their results to the ones found in the present thesis, it is not

possible to confirm this statement, once the tuning parameter found is shown to be v, which

depends on p and b, while ñi depends only on p.

There are, however, some disadvantages to be mentioned. The first one is that if the

pendulum’s path is not on the family mentioned above, then this formulation will not handle

it conveniently. Secondly, the direct result from simulations is an arc-length and not the

pendulum’s swing angle, which is an important feature to be analyzed as mentioned by

Wilson (1941). Thirdly, it restricts the path to be symmetric. For this reason, in the present

thesis the dynamics of the pendulum is described by the angle θa and the radius of the path

is given by the function ra(θa). In order to ease further calculations and analysis and make

this work more general, the function ra(θa) is defined in the following way:

ra(θa) = ǫafa(θa)

∣
∣
∣
∣
∣
fa(θa) = 1 +

∞∑

k=1

αkθ
k
a (3.45)

The function fa(θa) is a shape function for the path of the pendulum. Once it can be

defined as a power series, any path can be handled with the same formulation. Besides, this

function is dimensionless, and hence it does not depend on parameters of the system to be

calculated. It means that, if for instance one wants to test a system with a cycloidal path

pendulum, the function fa(θa) will be exactly the same for any system. Another advantage is

that it makes possible to run optimization routines in order to find paths that bring specific

features to the dynamics of the pendulum.

Although pendulum paths are usually symmetric about their vertexes, it does not

assure that the pendulum’s trajectory is symmetric. In the case being studied in this work,

the pendulum is going to be installed in a rotor that is subjected to both small oscillations
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and changes on its mean rotating speeds. The angular acceleration that induces the change

on the mean speed of the rotor has a very low frequency content. However, it forces the

pendulum to oscillate about a point which is not the vertex of the path. Hence, in case of

non-circular paths there will be some extra terms in the equation of motion that represent

this non-symmetry which may detune or harm stability of the pendulum. Detuning terms

also appear when using circular paths.

In order to illustrate this concept, the rotor of the system studied in this section is

thought to be spinning at a speed Ω while it accelerates in such a way that the pendulum

is forced to oscillate about an angle θa = ι . If θa = θ̃a + ι and θ̃a is very small, then it is

possible to linearize Eq. (3.43) about this point. The dimensionless linearized equation that

describes the motion of the pendulum bob is given by:

(
1

b
+

(

1− 1

b

)

f 2
a (ι)

)

θ̃′′a + 2

(

1− 1

b

)
dfa
dθa

(ι)fa(ι)θ̃
′
a + · · ·

+v2
(
dfa
dθa

(ι) sin ι+ fa(ι) cos ι

)

θ̃a = 0

(3.46)

where constant terms have been neglected.

If the path is circular, then fa(ι) = 1 and dfa
dθa

(ι) = 0. This reduces Eq. (3.46) to:

θ̃′′a + v2 cos(ι)θ̃a = 0 (3.47)

The difference between this equation and Eq. (3.17) is that the eigen-order for this

case is v
√

cos(ι) and not v as previously demonstrated. The term
√

cos(ι) is then a detuning

term.

If the path is not circular, Eq. (3.46) has to be analyzed more carefully. Regarding

the inertial term, b is real and greater than one, and fa(ι) is also always real and greater

than one, because on the work of Olson and Shaw (2008) it is shown that the performance

of the pendulum is improved if the path is softening, what requires fa(ι) to be greater than

one. Hence, the inertia of this system is always positive. If the path is symmetric about its

vertex, then dfa
dθa

(ι) is an odd function, and when multiplied by sin(ι), the result is an even

nonnegative function. If −π/2 ≤ ι ≤ π/2, then the product fa(ι) cos ι is also positive, and

hence the stiffness term is always positive.
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The same, however, cannot be said about the term that multiplies θ̃′a. The shape

function fa(ι) is even and continuous and has continuous derivatives. Hence, the derivative

of this function for ι = 0 is zero, and it is an odd function. Therefore, if ι is negative,

this term is negative and the motion of the pendulum bob is unstable in this example. Of

course the stability of the pendulum itself depends on other parameters that have not been

considered in this illustrative example.

The shape of the pendulum’s path is then a crucial parameter to determine its tun-

ing and stability for large amplitude motion or nonzero equilibrium position. In the work

of Alsuwayian and Shaw (2002), the authors analyze the stability of general path CPVAs

focusing on the three most classical paths: the circular, the cycloidal and the epicycloidal or

tautochronic. Among their conclusions are the facts that for large amplitude motions, paths

other than circular have not shown significant improvements. Furthermore, the authors make

the point that for any path considered, small amplitude motions always lead to less detuning,

better stability and better performance.

According to Wilson (1941) and all the subsequent works in this area, the higher the

effective inertia of the pendulum and the higher the radius at which it is installed, the

smaller is the pendulum swing angle. However, both of these parameters would increase the

inertia of the input shaft of the gearbox, leading to worse shiftability or increased wear of

the synchronizers. Hence, it is desirable to obtain a pendulum with good performance that

would add the least possible inertia to the input shaft, and at this point non-circular paths

are desirable.

Before heading to the shape function for other paths, it is important to present a

mathematical procedure that is fundamental for the calculation of the coefficients of fa(θa).

Because it is defined as a power series, it is necessary to calculate its coefficients using Taylor

Series approach, what means that, if the resulting polynomial is to be truncated at a given

order n, then the n-th derivative of the function fa(θa) must be calculated, and this brings

some mathematical difficulties to be dealt with.

It is usually difficult to describe cycloids or epicycloids as a function of the angle θa. It is

more convenient to describe these paths using a rolling angle θr, which is defined differently

for each of them. However, it is always possible to describe a point (xp(θr), yp(θr)) as a

function of the rolling angle and also to write the angle θa as a (usually non-invertible)

function of θr, i.e. θa = θa(θr).
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The radius of the path ra(θa) is now written as a function of the rolling angle. Therefore,

ra(θa) = ra(θr(θa)) =
√

xp(θr)2 + yp(θr)2. In order to differentiate this function with respect

to θa, the chain rule must be applied, leading to the following relationship:

d

dθa
(ra(θr(θa))) =

∂ra
∂θr

dθr
dθa

(3.48)

The partial derivative from Eq. (3.48) is easily obtained, because xp and yp are direct

functions of θr. The latter derivative is obtained implicitly from the relationship between θa

and θr. This relationship can always be defined as:

θa = arctan

(
xp(θr)

yp(θr)

)

(3.49)

Through performing implicit differentiation with respect to θr, it is possible to find the

desired derivative, given by:
dθr
dθa

=
r2a(θr(θa))

dxp
dθr

yp −
dyp
dθr

xp

(3.50)

The partial derivative on Eq. (3.48) is directly calculated, and it is given by:

∂ra
∂θr

=
1

ra

(
dxp
dθr

xp +
dyp
dθr

yp

)

(3.51)

Combining Eqs. (3.50) and (3.51) makes possible to write an analytical expression for

the result of Eq. (3.48):

d

dθa
(ra(θr(θa))) =







dxp
dθr

xp +
dyp
dθr

yp

dxp
dθr

yp −
dyp
dθr

xp






ra(θr(θa)) = g(θr(θa))ra(θr(θa)) (3.52)

The most important fact about this procedure is that the derivative of ra(θr(θa)) with

respect to θa is, for any path, the product between a given function and ra(θr(θa)). This fact

eases the calculation of the coefficients on the following way: given the function ra(θr(θa)),

its first derivative with respect to θa is given by g(θr(θa))ra(θr(θa)). The second derivative of
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ra(θr(θa)) with respect to θa is then given by:

d2ra(θr(θa))

dθ2a
=

∂g(θr(θa))

∂θr

dθr
dθa

ra(θr(θa)) + g(θr(θa))
dra(θr(θa))

dθa

=

(
∂g(θr(θa))

∂θr

dθr
dθa

+ g2(θr(θa))

)

ra(θr(θa)) (3.53)

i.e., if the derivative of ra(θr(θa)) is a product between this function and another one, namely

g(θr), then all the higher derivatives of this functions will be products between ra(θa) and

functions of g(θr) and its derivatives. Consequently, in order to calculate the derivatives of

ra(θr(θa)), it is only necessary to calculate the derivatives of g(θr). The expressions for the

first up to the eighth derivatives of ra(θr(θa)) in terms of g(θr) and its derivatives are shown

in Appendix B.18.

Although the calculations may still be tiresome, the function g(θr(θa)) is essentially

composed by the functions xp(θr) and yp(θr), which are simple functions, whose derivatives

are rather easy to calculate. Therefore, in order to define the derivatives of ra(θr(θa)) or

fa(θa), it suffices to define g(θr(θa)), i.e., it suffices to define the functions xp(θr) and yp(θr).

The problem of writing the radius of the path as a power series is then overcome.

One must notice that, an outstanding feature from this procedure is that, although it is

not possible to write ra(θa) analytically, the power series fa(θa) is written as a function of

θa directly, eliminating the need for calculating θr(θa) numerically, once this function is not

invertible.

3.3.3.1 Shape function for the cycloidal path

The cycloid is a curve generated by the path of a point at the edge of a circle which

rolls on a straight line without slippage. It was first formally studied by Galileo Galilei and

for causing lots of quarrels between 17th century mathematicians, it is sometimes referred to

as “The Helen of Geometers”. Apart from lots of history of Mathematics, in 1696 the swiss

mathematician John Bernoulli found this curve as a solution to the brachistochrone problem,

whose aim was to find the expression of the path on which a particle would slide, under the

influence of the gravity, from a point A to a lower point B, not immediately below A, in the

shortest time.
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Before the results achieved by Bernoulli, the dutch physicist and horologist Christiaan

Huygens, the inventor of pendulum clock, had had some problems on the synchronism of his

clocks, because he was able to detect that, as the amplitude of his pendulum decreased, its

frequency of oscillation would also change. This fact led to the isochrone problem, whose

goal was to find a path for which the period of oscillation of the pendulum would be the

same, regardless of its amplitude. Huygens found the solution to this problem as being the

cycloidal path.

These facts motivated the use of this path on the problem being studied in this work.

Figure 3.13 shows the geometric features that are necessary to generate the cycloidal path.

y

x

P •
P•

Base line

ra(θa)

θr

θa

R
p
−

ǫ
a

ǫa

Figure 3.13: Geometry for the generation of the cycloidal path.

The position of the point P, on the edge of the rolling circle, can be described by the

functions xp(θr) and yp(θr), being the first the position of this point along the x-axis and the

latter the position of this point along the y-axis, considering that its origin is at the center

of the rolling circle when it is at the position x = 0. These functions are defined as follows:

xp(θr) = ǫa(θr + sin θr) (3.54)

yp(θr) = ǫa cos θr (3.55)

Also, the implicit relationship between θa and θr is:

θa = arctan

(
xp(θr)

yp(θr)

)

= arctan

(
θr + sin θr
cos θr

)

(3.56)
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This relationship is graphically represented in Fig. 3.14. It has some important features

to be mentioned: firstly, it has no local minima on this interval, what makes it an invertible

function within this domain. Secondly, both angles are coincident at the boundaries of the

domain. Thirdly and more importantly, θr(θa = 0) = 0. The last fact is important because

this angle is going to be the center of the Taylor series to be computed. One must notice that

although the center of the Taylor series is at θa = 0, many of the functions are calculated in

terms of θr(θa). As θr(θa = 0) = 0 by definition, then there will be no error on the calculation

of θr(θa).
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θr(θa) - Cycloidal Path

θa
θr

Figure 3.14: Graphical representation of the implicit relationship θr(θa) for the cycloidal
path.

With these definitions it is now possible to define the function g(θr). With this function

it is possible to calculate the derivatives of fa(θa) with respect to θa. For being an even

function, the odd derivatives of ra(θa) with respect to θa are null at θa = 0, and consequently,

so are the odd coefficients αi, i ∈ {1, 3, 5, ...} . The even derivatives of the radius of the path

and the even coefficients21 of fa(θa) are shown on the Table 3.2.

As previously mentioned, the coefficients of the function fa(θa) do not depend on any

parameter of the system. Obviously the power series must be truncated at a given order. For

this reason, the following notation is going to be used: given that the whole series is defined

21Refer to Eq. (3.45).
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Table 3.2: First coefficients of fa(θa)

k 0 1 2 3 4

ǫ−1
a

d2k

dθ2ka
(ra(θr(θa))) 1 3

4
35
16

1325
128

2199
256

α2k 1 3
8

35
384

1325
92160

2199
10321920

as:

fa(θa) = 1 +
∞∑

k=1

αkθ
k
a (3.57)

then the truncated series is termed as:

f (n)
a (θa) = 1 +

n∑

k=1

αkθ
k
a , n ∈ Z

∗
+ (3.58)

Once the first term of the shape function fa(θa) is one, f
(0)
a (θa) is, for any path, the

circular path that approaches it best. The even approximations from f
(2)
a (θa) to f

(8)
a (θa) are

shown in Fig. 3.15. The thick black line represents the original cycloid, while the thin ones

represent the truncated series approximations. The black dashed line represents the circular

path 22. In this picture it is evident that the circular path approaches the cycloidal path for a

rather small amplitude of the swing angle of the pendulum. The second order approximation

is more representative for an amplitude higher than the circular path, but it is still limited

to a small angle. The fourth order approximation approaches the cycloid very well, while the

two higher ones also do, and are almost superposed.

The percent error of the estimation is shown in Fig. 3.16, where only positive values of

θa are shown because the curves are symmetric about the y axis. In this figure it becomes

evident that the circular path approximation provides very much error. If the swing angle

of the pendulum is of at most ±15◦, then the second order series would already be a good

approximation. The eighth order polynomial does not bring great advantage over the sixth

order one. Both provide less than 1% of error for swing angles up to ±75◦.

Concluding this section, one must notice that the geometric functions xp(θr) and yp(θr)

do not depend on the distance Rp for the case of the cycloidal path. For this reason, the

coefficients of fa(θa) are purely numeric. Furthermore, once the series is centered at zero, all

22It looks elliptical because the axes are in different scales.
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Figure 3.15: Second, 4th , 6th and 8th order approximations for the cycloidal path.
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Figure 3.16: Percent estimation error for the 2nd , 4th , 6th and 8th order approximations for
the cycloidal path.
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the coefficients are rational numbers, therefore they can be defined precisely. On the next

section, the shape function for the epicycloidal path is going to be defined.

3.3.3.2 Shape function for the epicycloidal path

An epicycloid is a curve generated by the path performed by a point on the edge of a

circle that rolls, without slip, on the surface of another circle. The main motivation to adopt

an epicycloidal path instead of a cycloid is related to the detuning of the pendulum.

For the case of a simple pendulum, whose base is fixed, under the acceleration of gravity,

the tautochronic23 path is a cycloid. However, if the gravitational field is represented by means

of lines of field, then all the lines are going to be parallel, considering the application is close

enough to the surface of the Earth.

When a centrifugal field is considered, i.e. the pendulum is installed on a rotor, then

the lines of field are originated at the geometrical center of the rotor and point radially

outwards. For small displacements, the effect of both accelerations is the same. However, for

large displacements the effects differ, and the tautochronic path in this case is not a cycloid,

it is an epicycloid (Wedin (2011)).

The geometrical features for the mathematical description of the epicycloid are shown

in Fig. 3.17. Based on these variables, it is possible to write the geometric functions xp(θr)

and yp(θr), which are given by:

xp(θr) = ǫa

(
1

p
sin

(
θrp

1− p

)

+ sin θr

)

(3.59)

yp(θr) = ǫa

(
1

p
cos

(
θrp

1− p

)

+ cos θr −
1

p

)

(3.60)

As in the previous case, the angle θa is defined as:

θa = arctan

(
xp(θr)

yp(θr)

)

(3.61)

23The term tautochronic refers to a path that allows the pendulum to have the same period of oscillation,
regardless of its amplitude.
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Figure 3.17: Geometry for the generation of the epicycloidal path.

Although this angle does not depend on any physical parameter but, of course, the

angle θr, it depends on a dimensionless parameter p, which is given by p = ǫa/Rp. This

is in line with what is shown in the work of Alsuwayian and Shaw (2002). In their work,

the authors describe the epicycloid in terms of a parameter ñi and say that it results in an

epicycloid of the same order. This parameter is related to the parameter p from this work as

follows: ñi = 1/
√
p. It is worth mentioning that this parameter is calculated at the project

of the pendulum for low amplitudes. Once this parameter is defined, the path is defined.

Once again the relationship between the angles θr and θa is implicit. It is graphically

represented for some values of p in Fig. 3.18 and it is also limited so that −π/2 < θa < π/2.

Although at the boundaries of the domain the values of θr and θa are not coincident, θr(θa =

0) = 0 regardless of the value of p by definition, which is important because this point is the

center of the Taylor series to be calculated. Also, through Eqs. (3.59) and (3.60) it is easy

to see that when p→ 0 the epicycloid tends to a cycloid.

For being a symmetric function about θa = 0, all the odd coefficients of the polynomial

fa(θa) are null. The even coefficients are either real numbers or functions of p. For this

reason, the derivatives of the function ra(θr(θa)) are defined in the following way:

ǫ−1
a

d2k

dθ2ka
(ra(θr(θa))) = E2k(p) , k ∈ Z+ (3.62)
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Figure 3.18: Graphical representation of the implicit relationship θr(θa) for the epicycloidal
path.

Therefore, the coefficients of the polynomial fa(θa) become:

α2k =
E2k(p)

(2k)!
, k ∈ Z+ (3.63)

The functions from E0(p) to E8(p) are defined in Appendix B.19. One must notice that,

if p = 0, then the coefficients are the same of the cycloid, and when p = 1, all the coefficients

but E0(p) are null.

The forthcoming analyses are going to be performed assuming that p = 1/4. The results

found for this value are also valid for smaller value of p. If p = 0, the epicycloid becomes

a cycloid, which has already been analyzed in the previous section. Higher values for p are

not usual in practice, because one of the design goals is to maximize Rp, which reduces the

value of p. However, if p = 1, then the path becomes circular and the first term of the Taylor

series is precisely the expression of the path. Hence, higher values of p, up to the unity, lead

to smaller approximation error24.

24Values of p greater than the unity are of no practical use.
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The approximations of the epicycloid up to the eighth order are shown in Fig. 3.19.

As in the case of the cycloid, the circular path and the second order approximation provide

good estimation of the path for small swing angles. The fourth order approximation provides

a good estimation for the whole path, and the sixth and eighth order approximations also

do. However, the two latter ones are almost superposed.

−3 −2 −1 0 1 2 3
0

0.5

1

xp(θr)/ǫa

y p
(θ

r
)/
ǫ a

Approximations for fa(θa) - Epicycloid - p = 1/4

Epicycloid
Circular

f
(2)
a (θa)

f
(4)
a (θa)

f
(6)
a (θa)

f
(8)
a (θa)

Figure 3.19: Second, 4th , 6th and 8th order approximations for the epicycloidal path.

The percent error of estimation of the epicycloidal path is shown in Fig. 3.20. The

estimation error obtained is very close to what was obtained for the cycloidal path. If the

swing angle is less than ±45◦, f
(4)
a (θa) is a good approximation. For swing angles below ±75◦,

f
(6)
a (θa) is shown to provide less than 1% of error.

With these approximations it is possible to analyze the behavior of approximate solu-

tions for the nonlinear equations of motion, in order to evaluate stability and performance

of the pendulum with the cycloidal and epicycloidal paths. This is done in the following

sections.

3.3.3.3 Multiple Scales Method

Before heading to the analysis of the nonlinear equations of motion, the method cho-

sen to obtain the approximate solutions of the nonlinear equations of motion is presented.

Additionally, the choice of this method instead of the most usual one in the recent works on
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Figure 3.20: Percent estimation error for the 2nd , 4th , 6th and 8th order approximations for
the epicycloidal path.

centrifugal pendulums is justified.

One of the main contributions of this work, on the study of centrifugal pendulum

vibration absorbers, is to develop the equations of motion in terms of the spinning angle of

the rotor and the swing angle of the pendulum. These coordinates have not been chosen by

recent authors on this field because it leads to mathematical obstacles they could avoid by

the choice of different coordinates.

Yet mathematically convenient, these coordinates do not allow for direct physical in-

terpretation of the results. Furthermore, the same mathematical convenience may not be

achieved, unless the path of the pendulums belongs to the family of circular-epicycloid-cycloid

family.

The choice of angular coordinates is proposed to deal with these disadvantages. They

lead directly to nonlinear equations of motion with trigonometrical functions of the coordi-

nates, which is an obstacle, and also require the knowledge of the radius of the pendulum’s

path25 in terms of the swing angle of the pendulum, which is usually not easy to describe

25Not to be confused with the radius of curvature of the path.
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mathematically.

The latter disadvantage has been overcome earlier in this chapter, where a mathematical

procedure was developed and it was shown that it is possible to represent the radius of the

path as a function of the swing angle with high degree of precision. The first one, however,

demanded additional effort to be overcome.

In the recent works on centrifugal pendulum vibration absorbers, the convenient choice

of coordinates led to equations of motion on the form:

z′′i + n2zi = ǫf(zi, zj, zk, ...z
′
i, z

′
j, z

′
k, ...; p) (3.64)

, which makes them suitable for the application of Krylov-Bogoliubov technique or its vari-

ants, the former being usually referred to as the Method of Averaging.

This method belongs to the family of perturbation methods, and basically consists of

proposing that the response for equations such as Eq. (3.64) is of the form:

zi(τ) = a(τ) cos(nτ + β(τ)) (3.65)

, where, instead of being constant, a(τ) and β(τ) are slowly varying functions of τ , a given

independent variable, usually a given dimensionless time scale.

Although this is a widespread method, it has shown to be limited, as in the work of

Nayfeh (1981). Even in a very simple case, such as the linear oscillator, this method fails

to compute the correction on the frequency response of free oscillation of the system. The

generalized method of averaging or the Krylov-Bogoliubov-Mitropolsky method of averaging

are able to handle this flaw, at the cost of an increased amount of algebra.

Even though a variant of the most usual method for obtaining approximated solutions

for the nonlinear equations is more precise than what is being currently used, the latter

methods also require the equations to be on the form of Eq. (3.64). The equations on this

work, mainly Eqs. (3.42) and (3.43) can be manipulated to be represented in such form, but

this would lead to a very complicated right hand side of the equation, because inertial terms

are not constant. This is undesirable because this class of methods requires the right hand

side to be integrated, and hence it should be simple to allow integrals to be solvable.
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Regarding perturbation methods, one of the simplest ones is the straightforward ex-

pansion. In order to present a comprehensive explanation with direct examples, the Duffing

equation is introduced:

ü+ u+ ǫu3 = 0 (3.66)

, where the dot (̇) represents differentiation with respect to t and ǫ is a small parameter.

In order to perform a straightforward expansion, the solution of this equation is pro-

posed to be of the form:

u = u(t; ǫ) = u0(t) + ǫu1(t) + ǫ2u2(t) + · · · (3.67)

This expansion must be replaced on Eq. (3.66). One must notice that if ǫ = 0, then the

solution to Eq. (3.66) is u0 = a cos(t+β) 26. The other terms on the expansion are considered

corrections to this first order approximation due to the presence of the nonlinearity.

The next step is to replace Eq. (3.67) into Eq. (3.66) and equal the coefficients of equal

powers of ǫ on both sides. This procedure results in a set of linear differential equations to

be solved:

ü0 + u0 = 0 (3.68)

ü1 + u1 = −u30 (3.69)

ü2 + u2 = −3u1u
2
0 (3.70)

ü3 + u3 = −3u2u
2
0 − 3u0u

2
1 (3.71)

...
...

It is evident that this system can be solved iteratively. From Eq. (3.68) it is possible to

obtain u0, which is used to calculate the response u1 and so on. Once every single equation

in this set has the same eigenvalues, the homogeneous response has to be calculated only for

u0. For all the other terms, the inhomogeneous response is needed only.

26In this case, a and β are not the parameters of the pendulum, but constants to be determined using
initial conditions.
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Beginning with the iterative process, the term u0 is given by:

u0(t) = a cos(t+ β) (3.72)

For the solution of the next equation, u30 must be calculated. This term is conveniently

represented in the form:

u30(t) = a3 cos3(t+ β) =
a3

4
(cos(3t+ 3β) + 3 cos(t+ β)) (3.73)

, which results in:

u1(t) = −a
3

32
cos(3t+ 3β)− 3a3

8
t sin(t+ β) (3.74)

The term u1(t) is composed of an oscillatory term (cos(3t + 3β)) and an indefinitely

growing one (t sin(t + β)), usually referred to as secular term or mixed secular term. This

denomination is derived from the French word siécle, which means century. In astronomical

applications, ǫ is very small and secular terms become noticeable only after very long times

of the order of a century.

Equation (3.66) represents a weakly nonlinear unforced oscillator with no unstable

equilibria, and hence secular terms are not physically representative. The only condition

that could make the secular term vanish would be a = 0, leading to the trivial solution.

In this expansion, the correction terms should be smaller than the main one (u0). Once

this is consistent only if t < O(ǫ−1), the series is called nonuniform because it breaks down

for a long time. This kind of expansion is usually referred to as pedestrian expansion.

In fact, it happens because the expansion does not account for a nonlinear frequency, i.e.,

corrections on the frequency of oscillation of the system due to the presence of nonlinearities.

According to Nayfeh (1981), any expansion that does not account for this frequency correction

is doomed to failure.

An expansion that takes this frequency correction into account is present in the method

of Lindstedt-Poincaré. This method, however, is not suitable for systems with first order

derivatives, as is the case of Eqs. (3.42) and (3.43). Therefore, a more general method based

on the straightforward expansion must be used. One must notice that such expansion does
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not demand the equations to be in any specific form.

This is the case of the Multiple Scales Method, which is going to be applied on Eq.

(3.66). Firstly, the solution is thought to be of the form:

u(t; ǫ) = u(t, ǫt, ǫ2t, ...; ǫ) = u(T0, T1, T2, ...; ǫ)

u(t; ǫ) = u0(T0, T1, T2, ...) + ǫu1(T0, T1, T2, ...) + ǫ2u2(T0, T1, T2, ...) + · · ·
(3.75)

The terms in the expansion are thought to depend on more than one time scale. As ǫ

is a small parameter, t is a fast time scale while ǫt is a slower one and so on. Also, the time

scales Tn = ǫnt are independent. Hence, differentiation with respect to time must now obey

to the chain rule:

d

dt
=

∂

∂T0
+ ǫ

∂

∂T1
+ ǫ2

∂

∂T2
+ · · · =

∞∑

k=0

ǫk
∂

∂Tk
(3.76)

d2

dt2
=

∞∑

l=0

ǫl
∂

∂Tl

( ∞∑

k=0

ǫk
∂

∂Tk

)

(3.77)

The next step is to replace Eqs. from (3.75) to (3.77) into Eq. (3.66) and equate

the coefficients of like powers of ǫ on both sides. This leads to a set of partial differential

equations to be solved:

∂2u0
∂T 2

0

+ u0 = 0 (3.78)

∂2u1
∂T 2

0

+ u1 = −u30 − 2
∂2u0
∂T0∂T1

(3.79)

∂2u2
∂T 2

0

+ u2 = −3u1u
2
0 − 2

∂2u0
∂T0∂T2

− ∂2u0
∂T 2

1

− 2
∂2u1
∂T0∂T1

(3.80)

...
...

Similarly to the case of the simple straightforward expansion, this set of equations can

be solved iteratively. The difference is that, for being a set of partial differential equations,

the task is now to define the dependence of the solution on each time scale as follows: the
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solution for Eq. (3.78) is given by:

u0(T0, T1, T2, ...) = a(T1, T2, ...) cos(T0 + β(T1, T2, ...)) (3.81)

By solving the first equation it was possible to determine the dependence of u0 on T0.

For this reason, the functions a and β are constant on the time scale T0, but their dependence

on the other time scales is still to be determined. Taking into account the knowledge of the

term u0, it is possible to rewrite Eq. (3.79) on the more convenient form:

∂2u1
∂T 2

0

+ u1 = −a
3

4
cos(3T0 + 3β) +

(

2a
∂β

∂T1
− 3a3

4

)

cos(T0 + β) + 2
∂a

∂T1
sin(T0 + β) (3.82)

The first term on the right-hand side of Eq. (3.82) is a uniform term, because it will

lead to a bounded response. The other two terms are secular ones and must be eliminated.

Unlike Eq. (3.74), the trivial solution is not the only alternative for eliminating secular

terms, because in this case, different time scales have been considered. A simple analysis of

Eq. (3.82) yields to the following conditions for the vanishing of secular terms:

∂a

∂T1
= 0 (3.83)

2a
∂β

∂T1
− 3a3

4
= 0 (3.84)

The first condition says that the amplitude a is constant on the time scale T1, and the

second condition provides a first correction to the frequency of oscillation of the system in

terms of the amplitude:

β(T1, T2, ...) =
3a2

8
T1 + β1(T2, T3, ...) (3.85)

, and the solution for the term u1 is:

u1(T0, T1, T2, ...) = −a
3(T2, T3, ...)

32
cos(3T0 +

9a2

8
T1 + 3β1(T2, T3, ...)) (3.86)

If the process is stopped at the current order, then the approximate solution for Eq.
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(3.66) is:

u(t; ǫ) = a cos(ϕ)− ǫ
a3

32
cos(3ϕ) +O(e2) ; ϕ = (1 + ǫ

3a2

8
)t+ β1 (3.87)

The resulting series for this method is uniform, and the conditions for the elimination

of secular terms allow for the calculus of corrections of frequencies, which is found on this

example, and also amplitudes, to capture transient responses.

There are some cases where there is no explicit small parameter on the equations of

motion. In these cases, the expansion of the response can be though to be of the form:

u(T0, T1, T2, ...; ǫ) = ǫu0(T0, T1, ...) + ǫ2u1(T0, T1, ...) + · · · (3.88)

, where ǫ, the small parameter, can be though of as a bookkeeping parameter or a crutching

device (Nayfeh (1981)), and can be equal to the unity if the amplitude is taken to be small.

Although this method transforms the problem of solving one nonlinear differential equa-

tion into solving a truncated set of linear partial differential equations, it still generates less

algebra than the averaging methods, and leads to a complete uniform expansion. Therefore,

the problem described on the beginning of this section, of having equations of motion on non

usual forms is overcome by the choice of this method.

On the next section analyses are performed considering that the rotor spins at constant

speed in order to infer stability of the pendulum.

3.3.3.4 Nonlinear analysis at constant angular speed and zero gravity

In this section, the multiple scales method is applied to the simplest case studied in this

work: a pendulum absorber is installed on a rotor which spins at constant angular speed.

The difference is that the path of the pendulum is a generic one, constrained to be symmetric

with respect to its vertex.

The equation of motion that describes this problem is given by Eq. (3.43). It is defined

in terms of the physical parameters of the system. However, because of the definition of

fa(θa), the same dimensionless parameters that were used on the linear analysis can be
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used on the nonlinear one. Equation (3.43) is then written in terms of the dimensionless

parameters27:

(b−1 + v2pf 2
a (θa))(θ

′′
a + θ′′t ) + 2v2p

dfa(θa)

dθa
fa(θa)θ

′
a(θ

′
a + θ′t) + · · ·

+v2fa(θa)(θ
′′
t cos(θa) + θ′2t sin(θa)) + v2pgǫfa(θa) cos(θt + θa) = 0

(3.89)

Due to the constraints imposed by the problem and to the dimensionless time scale

being used τ = ωt, in this equation, θ′′t = 0, θ′t = 1, θt = τ and gǫ = 0. Hence, this equation

becomes28:

(1 + v2p(f 2
a (θa)− 1))θ′′a + 2v2p

dfa(θa)

dθa
fa(θa)θ

′
a(θ

′
a + 1) + v2fa(θa) sin(θa) = 0 (3.90)

This equation is a function of the parameters v, p and the coefficients αk, k = 2, 4, 6...

of the shape function fa(θa). Once there is no explicit small parameter on this equation, the

expansion for the solution is proposed to be of the form:

θa(t; ǫ) =
∞∑

k=1

ǫkθak(T1, T2, T3, ...) ; Ti = ǫi−1τ , i ∈ {1, 2, 3, ...} (3.91)

The next step proposed by the method is to replace the expansion on Eq. (3.90)

and equate the like powers of ǫ. For this equation to be suitable for such expansion, the

trigonometric term sin(θa) is expanded in its Taylor series. Then, it leads to the following

set of partial differential equations:

∂2θa1
∂T 2

1

+ v2θa1 = 0 (3.92)

∂2θa2
∂T 2

1

+ v2θa2 = −2
∂2θa1
∂T1∂T2

− 4α2pv
2θa1

∂θa1
∂T1

(3.93)

∂2θa3
∂T 2

1

+ v2θa3 = −2
∂2θa1
∂T1∂T3

− ∂2θa1
∂T 2

2

− 2
∂2θa2
∂T1∂T2

+ v2
(
1

6
− α2

)

θ3a1 + · · ·

−2α2pv
2θ2a1

∂2θa1
∂T 2

1

− 4α2pv
2θa2

∂θa1
∂T1

+ · · ·

27The prime denotes differentiation with respect to τ .
28Notice that b−1 + v2p = 1.
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−4α2pv
2θa1

((
∂θa1
∂T1

)2

+
∂θa1
∂T2

+
∂θa2
∂T1

)

(3.94)

...
...

The solution of these equations has been calculated up to the third order. Considering

powertrain applications, this is more than enough, taking into account that in such applica-

tions only the two most significant orders (i.e. the two first ones) are analyzed. The solution

is then of the form:

θa(τ ; ǫ) = ǫa cos(ϕ)− 2ǫ2a2α2pv

3
sin(2ϕ) + · · ·

−ǫ
3a3

192
(1− 6α2 + 36α2pv

2 + 96α2
2p

2v2) cos(3ϕ) +O(ǫ4) (3.95)

ϕ(τ) = v

(

1 +
ǫ2a2

48

(
−3 + 18α2 − 12α2pv

2 − 32α2
2p

2v2
)
)

τ + β(T4, T5, ...) (3.96)

There are some important features to be discussed about this solution. The first one

is that the amplitude a is always multiplied by the parameter ǫ in any of the terms, i.e.

there are always products of equal powers of these two constants (ǫa,ǫ2a2,ǫ3a3,...). This is a

direct result of the proposed expansion. In this case, instead of determining the value of the

amplitude a and the phase β through the initial conditions of the system, one must determine

the value of the product ǫa and the phase β through the initial value problem.

Secondly, the first correction to the frequency of free-oscillation of the system (ǫ2a2vc)

was found from the conditions for vanishing secular terms on the calculation of the third

order term. Apart from all the parameters of the system, it also depends on the square of

the amplitude of oscillation of the pendulum. However, this correction is a product between

the square of the amplitude of oscillation of the system (ǫ2a2) and a function of the system

parameters only(vc). This factor is given by:

dϕ

dτ
= v(1 + ǫ2a2vc) +O(e4) ; vc =

1

48

(
−3 + 18α2 − 12α2pv

2 − 32α2
2p

2v2
)

(3.97)

For the family of paths circular-epicycloid-cycloid, α2 either a constant or a function of
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p. In fact, α2 can be represented as a direct function of p as:

α2(p) = − 3(p− 1)

2(p− 2)2
(3.98)

In this expression, if p = 0 the path is a cycloid, while if p = 1 the path is circular and

if 0 < p < 1 the path is an epicycloid. The parameter vc is then a function of v and p:

vc =
−(18v2 + 1)p4 + (18v2 − 1)p3 + (24v2 + 21)p2 − (24v2 + 40)p+ 20

16(p− 2)4
(3.99)

Once detuning is caused by this term, at least up to order three, it is desirable that

this term vanishes. Once v is a design parameter, and v and p can be varied independently,

because v also depends on b, one should look for values of p(v) so that the term vc vanishes,

avoiding third order detuning. As p usually lies on the range 0 < p << 1, the denominator

is a bounded value, and hence it is necessary to find the roots of the numerator of vc. These

roots pi(v), i ∈ 1, 2, 3, 4 are shown in Fig. 3.21.

For being a 4th degree polynomial, its roots may have a very complicated closed formula.

For small values of v, this polynomial has two real roots and a pair of complex conjugate

roots. For values of v above approximately 2.256, the polynomial has four real roots. It is

also possible to infer how these roots behave for high values of v. Dividing the numerator of

vc by v
2 and taking the limit with v → ∞ leads to the following polynomial:

lim
v→∞

num(vc)

v2
= −3p4 + 3p3 + 4p2 − 4p = 0 (3.100)

Through direct inspection, it is possible to state that 0 and 1 are roots of this polyno-

mial. Hence, the other two roots can be calculated analytically, and they are±2
√
3

3
. Therefore,

for high values of v, the roots of vc tend asymptotically to these four values, as shown in Fig.

3.21.

Due to the fact that p must be positive and much lower than one, the only root of this

polynomial that brings realizable values for project is p1(v). Some values of this root for

specific values of v are given on Appendix B.20.
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Figure 3.21: Roots of the numerator of vc

The next step on this analysis is to include gravity in order to verify its influence on

the frequency of oscillation and also on the stability of the system. This is done on the next

section.

3.3.3.5 Nonlinear analysis at constant angular speed considering gravitational

terms

The equation of motion that represents the problem considered on this section is Eq.

(3.89) with θ′′t = 0, θ′t = 1 and θt = τ . In this case, evidently, the gravitational term is

not neglected. However, it is represented on the system as a perturbation of the previous

equation by introducing the parameter g
(0)
ǫ = gǫ/ǫ. Hence, the equation of motion for this

case reads:

(1 + v2p(f 2
a (θa)− 1))θ′′a + 2v2p

dfa(θa)

dθa
fa(θa)θ

′
a(θ

′
a + 1) + v2fa(θa) sin(θa) + · · ·

+ǫv2pg(0)ǫ fa(θa) (cos(τ) cos(θa)− sin(τ) sin(θa)) = 0 (3.101)

Like the previous cases, the trigonometric functions of θa are expanded on their respec-
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tive Taylor series forms. The proposed expansion for the solution is, once more:

θa(t; ǫ) =
∞∑

k=1

ǫkθak(T1, T2, T3, ...) ; Ti = ǫi−1τ , i ∈ {1, 2, 3, ...} (3.102)

Substituting Eq. (3.102) into Eq. (3.101) and equating the like powers of ǫ results in

the following set of linear partial differential equations to be solved29:

∂2θa1
∂T 2

1

+ v2θa1 = −g(0)ǫ pv2 cos(T1) (3.103)

∂2θa2
∂T 2

1

+ v2θa2 = g(0)ǫ pv2θa1 sin(T1)− 2
∂2θa1
∂T1∂T2

− 4α2pv
2θa1

∂θa1
∂T1

(3.104)

∂2θa3
∂T 2

1

+ v2θa3 =
θa1

3 v2

6
− ∂2θa1

∂T 2
2

− 2
∂2θa2
∂T1∂T2

− 2
∂2θa1
∂T1∂T3

− α2 θa1
3 v2 + · · ·

−2α2
∂2θa1
∂T 2

1

p θa1
2 v2 − 4α2

∂θa1
∂T1

2

p θa1 v
2 + g(0)ǫ p θa2 v

2 sin(T1) + · · ·

+
g
(0)
ǫ p θa1

2 v2 cos(T1)

2
− 4α2

∂θa1
∂T2

p θa1 v
2 − 4α2

∂θa2
∂T1

p θa1 v
2 + · · ·

−4α2
∂θa1
∂T1

p θa2 v
2 − α2 g

(0)
ǫ p θa1

2 v2 cos(T1) (3.105)

...
...

The solution has been calculated up to the third order and is given on the form:

θa(t; ǫ) = ǫθa1 + ǫ2θa2 + ǫ3θa3 +O(ǫ4) (3.106)

The first order approximation θa1 is given by:

θa1 = a cos(ϕ)− g
(0)
ǫ pv2

v2 − 1
cos(T1) (3.107)

The instantaneous phase ϕ(τ) is going to be defined later on the text in order to keep

a solid line of analysis. The system being studied in this section does not have an excitation

acting on it, but the parameters related to gravity oscillate in time. This variation causes

29Remembering that the homogeneous response has to be calculated only for the first equation. From the
second equation on, only the inhomogeneous response must be calculated.
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the system to be unstable for some conditions, which is found at the very first term of the

approximated solution.

The amplitude of response of this term is divided by a function of v, which has zeros at

v = ±1. Once this parameter is always positive, if v = 1 then the first order approximation

shows a parametric resonance. If v = 1, it is known that the solution presented above

is mathematically not valid, but this term would certainly lead to a resonance, hence the

conclusion.

Proceeding to the second order approximation, the term θa2 is given by:

θa2 = Θ
(s)
T1+ϕ sin(T1 + ϕ) + Θ

(s)
T1−ϕ sin(T1 − ϕ) + Θ

(s)
2T1

sin(2T1) + Θ
(s)
2ϕ sin(2ϕ) (3.108)

, where the terms Θ are all constants.

The amplitude of the first two terms of Eq. (3.108) are given by:

Θ
(s)
T1+ϕ = −ag

(0)
ǫ pv2(4α2pv

2 − v + 1)

2(v − 1)(v + 1
2
)

(3.109)

Θ
(s)
T1−ϕ = −ag

(0)
ǫ pv2(4α2pv

2 + v + 1)

2(v + 1)(v − 1
2
)

(3.110)

These first terms of the second order approximation show that there is a harmonic

parametric resonance (Eq. (3.109)) and a subharmonic parametric resonance (Eq. (3.110))

for v = 1
2
. The amplitudes of the latter two terms are given by:

Θ
(s)
2T1

=

(

g
(0)
ǫ

)2

p2v4(4α2pv
2 − v2 + 1)

2(v + 1)2(v − 1)2(v + 2)(v − 2)
(3.111)

Θ
(s)
2ϕ = −2a2α2pv

3
(3.112)

The amplitude of the third term, shown in Eq. (3.111) shows harmonic parametric

resonance and also superharmonic parametric resonance for v = 2. The amplitude of the

fourth term is the same amplitude found on the previous case, where gravity had not been

taken into consideration. Analyzing the amplitude of all the terms, it is possible to infer

that the first two ones are a result of the interaction between the homogeneous response
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(considering zero gravity) and the response due to parametric excitation. The third term

does not depend on the amplitude of free oscillation of the system (a), and the fourth term

is not affected by the presence of gravity.

On the numerator of the terms affected by gravitational field, there are polynomial

factors that depend on the system parameters only. One possible way to avoid parametric

resonance would be to find values of p as a function of v so that these polynomials vanish.

This investigation is chosen not to be carried out on this work.

Secular terms found on this approximation led to no correction of the oscillation am-

plitude. Hence, it is possible to proceed to the next order.

The third order approximation term is given by:

θa3 = Θ
(c)
ϕ+2T1

cos(ϕ+ 2T1) + Θ
(c)
ϕ−2T1

cos(ϕ− 2T1) + Θ
(c)
T1+2ϕ cos(T1 + 2ϕ) + · · ·

+Θ
(c)
T1−2ϕ cos(T1 − 2ϕ) + Θ

(c)
T1

cos(T1) + Θ
(c)
3T1

cos(3T1) + Θ
(c)
3ϕ cos(3ϕ) (3.113)

The amplitude of each of the seven terms that compose θa3 is listed below:

Θ
(c)
ϕ+2T1

= −
a
(

g
(0)
ǫ

)2

p2v4(6v4 − 13v2 + 4)

32(v + 1)(v2 − 1)2(4v2 − 1)
+ · · ·

+α2

a
(

g
(0)
ǫ

)2

p2v4(88pv2 − 292pv4 + 122pv6 − 8pv8 + 30v2 + 9v4 − 4v6 − 8)

16(v − 1)2(v + 1)3(4v2 − 1)
+ · · ·

−5α2
2

a
(

g
(0)
ǫ

)2

p4v8(v4 − 6v2 + 2)

16(v − 1)2(v + 1)3(4v2 − 1)(v2 − 4)
(3.114)

Θ
(c)
ϕ−2T1

=
a
(

g
(0)
ǫ

)2

p2v4(6v4 − 13v2 + 4)

24(v2 − 1)2(v − 1)(3v − 1)(4v2 − 1)
+ · · ·

−α2

a
(

g
(0)
ǫ

)2

p2v4(88pv2 − 292pv4 + 122pv6 − 8pv8 + 30v2 + 9v4 − 4v6 − 8)

16(v − 1)2(v + 1)3(4v2 − 1)
+ · · ·

+α2
2

a
(

g
(0)
ǫ

)2

p4v8(v4 − 6v2 + 2)

16(v − 1)2(v + 1)3(4v2 − 1)(v2 − 4)
(3.115)

Θ
(c)
T1+2ϕ = −

a g
(0)
ǫ p v2

(

4 g
(0)
ǫ p v5 − 4 g

(0)
ǫ p v3 − 4 a v2 + a

)

96 (v + 1)2 (v − 1)(v2 − 1
4
)(v + 1

3
)

+ · · ·
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+α2

(
ag(0)ǫ pv2

(
g(0)ǫ p2v5(−96v4 + 228v2 + 84)+ · · ·

+ap(48v10 + 80v9 − 180v8 − 404v7 − 126v6 + 336v5 + 330v4 + 4v3 − 72v2 − 16v) + · · ·
+a(−24v8 + 114v6 − 63v4 − 39v2 + 12)

))
×

(

144(v − 1)2(v + 1)3(v2 − 4)(v2 − 1

4
)(v +

1

3
)

)−1

+ · · ·

+α2
2

(
4ag(0)ǫ p3v5

(
3g(0)ǫ pv4(−2v4 + 11v2 + 3)+ · · ·

+a(12v8 + 20v7 − 59v6 − 105v5 + 42v4 + 105v3 + 9v2 − 20v − 4)
))

×
(

48(v − 1)2(v + 1)3(v2 − 4)(v2 − 1

4
)(v +

1

3
)

)−1

(3.116)

Θ
(c)
T1−2ϕ = −

a g
(0)
ǫ p v2

(

4 g
(0)
ǫ p v5 − 4 g

(0)
ǫ p v3 − 4 a v2 + a

)

96 (v − 1)2 (v + 1)(v2 − 1
4
)(v − 1

3
)

+ · · ·

−α2

(
ag(0)ǫ pv2

(
g(0)ǫ p2v5(−96v4 + 228v2 + 84)+ · · ·

+ap(−48v10 + 80v9 + 180v8 − 404v7 + 126v6 + 336v5 − 330v4 + 4v3 + 72v2 − 16v) + · · ·
+a(24v8 − 114v6 + 63v4 + 39v2 − 12)

))
×

(

144(v + 1)2(v − 1)3(v2 − 4)(v2 − 1

4
)(v − 1

3
)

)−1

+ · · ·

−α2
2

(
4ag(0)ǫ p3v5

(
3g(0)ǫ pv4(−2v4 + 11v2 + 3)+ · · ·

+a(12v8 − 20v7 − 59v6 + 105v5 + 42v4 − 105v3 + 9v2 + 20v − 4)
))

×
(

48(v + 1)2(v − 1)3(v2 − 4)(v2 − 1

4
)(v − 1

3
)

)−1

(3.117)

Θ
(c)
T1

= −g(0)ǫ pv2
(
a2(8v8 − 50v6 + 84v4 − 50v2 + 8) + · · ·

+
(
g(0)ǫ

)2
p2v4(28v4 − 47v2 + 10)

)

×
(

32(v2 − 1)4(v2 − 4)(v2 − 1

4
)

)−1

+ · · ·

−α2

(
g(0)ǫ pv2

(
a2p(48v10 − 321v8 + 576v6 − 408v4 + 96v2) + · · ·

+a2(−32v10 + 184v8 − 236v6 + 32v4 + 68v2 − 16) + · · ·
+
(
g(0)ǫ

)2
p2v4(16pv6 − 68pv4 + 16pv2 − 24v4 + 102v2 − 24)

))

×
(

32(v2 − 1)4(v2 − 4)(v2 − 1

4
)

)−1

+ · · ·

−α2
2

(
g(0)ǫ pv6

(
a2p2(128v8 − 832v6 + 1536v4 − 1088v2 + 256)+ · · ·

+
(
g(0)ǫ

)2
p4v2(−128v2 + 32)

))

×
(

32(v2 − 1)4(v2 − 4)(v2 − 1

4
)

)−1

(3.118)
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Θ
(c)
3T1

=

(

g
(0)
ǫ

)3

p3v6 (8v4 − 23v2 + 18)

24(v2 − 1)3(v2 − 4)(v2 − 9)
+ · · ·

+α2

(

g
(0)
ǫ

)3

p3v6 (40pv2 − 22pv4 + v2 − 4)

4(v2 − 1)3(v2 − 4)(v2 − 9)
+ · · ·

+α2
2

(

g
(0)
ǫ

)3

p5v10

(v2 − 1)3(v2 − 4)(v2 − 9)
(3.119)

Θ
(c)
3ϕ = − a3

192
(1− 6α2 + 36α2pv

2 + 96α2
2p

2v2) (3.120)

It is known that, in case small divisors are found (i.e. resonant terms appear), if one

desires to know the amplitude of the system near these critical frequencies, then special

treatment must be given to these equations. Once gravity induced instability is not the core

subject of this work, this analysis is not being performed in this section.

Analyzing the denominator of the amplitude terms of the third order approximation

term, it is possible to find harmonic parametric resonances, subharmonic parametric reso-

nances for v = 1
2
and v = 1

3
and also superharmonic parametric resonances at v = 2 and

v = 3. Further order terms have not been calculated, but it is possible to notice a trend on

the occurrence of subharmonic and superharmonic parametric resonances for values of 1
i
and

i for i ∈ Z
∗
+.

For the terms at which there is an interaction between the acceleration of gravity and

the amplitude of free oscillation of the system, sub and superharmonic parametric resonances

are found. However, once there is an interaction with the amplitude of free oscillation of the

system, a small amount of damping should help to make these terms decrease along time.

On the other hand, there are terms generated purely by the presence of gravity, with no

influence of the transient response of the system. These terms present superharmonic para-

metric resonances only, and ways to make these terms less significant should be investigated.

On the process of eliminating secular terms from the third order approximation term,

considering the system is not near any resonant condition, a correction for the frequency of

oscillation is found. The instantaneous phase is, for this case:

ϕ(τ) = v(1− ǫ2a2vc − ǫ2gc)τ (3.121)
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, where vc is exactly the same as given by Eq. (3.99) and gc is given by:

gc = −

(

g
(0)
ǫ

)2

p2v2 (32α2
2p

2v6 + α2 (16pv
6 − 12pv+8pv2 − 8v4 − 14v2 + 4)− 2v4 + 5v2)

8(v2 − 1)2(4v2 − 1)
(3.122)

This brings an important conclusion about the detuning. Although on the response

of the system there is an interaction between the amplitude of free oscillation a and the

amplitude of the terms brought by the gravitational field, these two amplitudes act separately

on the detuning of the system. An important feature about the dimensionless gravitational

constant gǫ is that it is inversely proportional to the square of the rotating speed of the

system. Hence, the higher the rotating speed the less influent this term is, and consequently

less detuning and parametric resonances are expected.

From this investigation including gravity, the main conclusion to be drawn is that, one

must avoid integer values of the parameter v, especially the unity. Additionally, the system

parameters must be chosen so that the value of gǫ is as low as possible (e.g. high rotating

speeds and highest possible distance from the pendulum’s pin to the center of the rotor, so

that the radius of the pendulum bob can be increased.). On further analyses, gravity is not

being considered.

3.3.3.6 Nonlinear analysis with zero gravity and small oscillations on the carrier

disk’s angular speed

In this section, a system with two rotors is considered. One of the rotors spins at

constant angular speed and is attached to the second one through a torsional spring. The

latter rotor has a centrifugal pendulum vibration absorber installed on it. Basically, the

system is the same one shown in Fig. 3.7. Additionally, the latter rotor is subjected to the

actuation of an oscillating torque.

The Multiple Scales Method is also suitable for the analysis of systems with more than

one degree of freedom. However, the amount of algebra resulting from the application of this

method is so extensive that it would be humanly impossible to perform it without the help of

a symbolic mathematics toolbox. Therefore, calculations have been carried up to the second
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order.

The first step for the application of the method is to write the equations of motion on

their dimensionless forms. In this case, the equations are:

(
1

µ
− v2

)

θ̃′′t + v2
d2fa(θa)

dθ2a
θ′2a sin θa + v2

dfa(θa)

θa

(

θ′′a sin θa + 2θ′a(θ
′
a + θ̃′t + 1) cos θa

)

+ · · ·

+v2fa(θa)
(

(θ′′a + θ̃′′t ) cos θa − (θ′a + θ̃′t + 1)2 sin θa

)

+
v2

β2aµ
θ̃t = G cos(nτ) (3.123)

, for the disk and:

(
1 + v2p(f 2

a (θa)− 1)
)
(θ′′a + θ̃′′t ) + 2v2p

dfa(θa)

dθa
fa(θa)θ

′
a(θ

′
a + θ̃′t + 1) + · · ·

+v2fa(θa)
(

θ̃′′t cos θa + (θ̃′t + 1) sin θa

)

= 0 (3.124)

, for the pendulum.

Regarding the excitation term of Eq. (3.123), n is the order of the oscillating torque

and its amplitude G is given by:

G =
T

(Ia +maǫ2a)Ω
2

(3.125)

, where T is the physical amplitude of the oscillating torque.

The amplitude of the excitation is a small parameter. In order to represent its smallness

explicitly, the parameter G0 is introduced, so that:

G = ǫG0 (3.126)

, and Eq. (3.123) reads:

(
1

µ
− v2

)

θ̃′′t + v2
d2fa(θa)

dθ2a
θ′2a sin θa + v2

dfa(θa)

θa

(

θ′′a sin θa + 2θ′a(θ
′
a + θ̃′t + 1) cos θa

)

+ · · ·

+v2fa(θa)
(

(θ′′a + θ̃′′t ) cos θa − (θ′a + θ̃′t + 1)2 sin θa

)

+
v2

β2aµ
θ̃t = ǫG0 cos(nτ) (3.127)

Once the equations are in the appropriate form, it is necessary to propose an expansion
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for both of the variables. The expansions are proposed in the following forms:

θa(T1, T2; ǫ) = ǫθa1 + ǫ2θa2 +O(ǫ3) ; T1 = τ , T2 = ǫτ (3.128)

θ̃t(T1, T2; ǫ) = ǫθ̃t1 + ǫ2θ̃t2 +O(ǫ3) ; T1 = τ , T2 = ǫτ (3.129)

The next step is to replace Eqs. (3.128) and (3.129) into Eqs. (3.127) and (3.124) and

to equate the like powers of ǫ. This, as seen before, leads to a series linear partial differential

equations to be solved.

Interestingly, the left-hand side of the i-th equation on this series is given by:

[

µ−1 v2

(1 + v2) 1

]

︸ ︷︷ ︸

Mφ

{

∂2θ̃ti
/
∂T 2

1

∂2θai
/
∂T 2

1

}

︸ ︷︷ ︸

∂2
1θi

+





v2

β2aµ
−v2

0 v2





︸ ︷︷ ︸

Kφ

{

θ̃ti

θai

}

︸ ︷︷ ︸

θi

(3.130)

, where the dimensionless mass and stiffness matrices Mφ and Kφ are the same ones found

on the linear analysis performed at section 3.3.2.1. In order to obtain a shorthand notation,

the array of variables {θ̃ti θai}T is denoted θi, and the second derivative of such array with

respect to the timescale T1 is denoted ∂21θi.

The series of equations to be solved, up to the second order, is then:

Mφ∂
2
1θ1 +Kφθ1 =

{

G0

0

}

cos(nτ) (3.131)

Mφ∂
2
1θ2 +Kφθ2 =

{

2v2 − 4α2v
2

−4α2v
2

}

θa1
∂θa1
∂T1

+

{

2v2

−2v2

}

θa1
∂θ̃t1
∂T1

+ · · ·

+

{

−2v2

−2

}

∂2θa1
∂T1∂T2

+

{

−2µ−1

−2(v2 + 1)

}

∂2θ̃t1
∂T1∂T2

(3.132)

...
...

Before solving the equations, it is important to keep in mind that the solutions to be

calculated are responses of a two-degree-of-freedom system. Hence, if they are represented

in terms of the dimensionless parameters, these terms are usually long, and equations may

become too long and with poor readability. In order to avoid this, once the linear system
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with mass and stiffness matrices Mφ and Kφ has already been studied, the responses are

written in terms of its modal parameters.

Recalling the parameters, the system is undamped and consequently has two pairs of

complex conjugate eigenvalues ±jχ1 and ±χ2, being χ1 the lowest eigen-order and χ2 the

greatest. Each pair of complex conjugate eigenvalues ±jχi is related to an eigenvector ψi,

which is of the form:

ψi =

{

Γi

1

}

(3.133)

, where Γi is the ratio between the amplitude of the carrier disk and the amplitude of the

pendulum bob for the i-th mode.

These parameters are all represented by long expressions when written in terms of the

dimensionless parameters, and hence they help to shorten equations. A latter parameter to

be introduced is the following determinant:

∆ = det
(
Kφ −Mφn

2
)

(3.134)

When calculating the inhomogeneous response of the system to an oscillating torque

of order n, the matrix Kφ −Mφn
2 has to be inverted, and hence this determinant has to be

calculated. The definition of this parameter also helps to shorten the equations. Additionally,

the inverse of this matrix is:

Λ =
(
Kφ −Mφn

2
)−1

= ∆−1

[

(v2 − n2) v2(n2 + 1)

n2(v2 + 1) µ−1( v2

β2a
− n2)

]

(3.135)

With these parameters it is possible to write the solution for the first order approxima-

tion θ1:

θ1 = A1

{

Γ1

1

}

cos(χ1T1 + β1) + A2

{

Γ2

1

}

cos(χ2T1 + β2) +Λ

{

G0

0

}

cos(nT1) (3.136)

, where A1, A2, β1 and β2 are constants to be calculated from the initial value problem.

According to the method, the solution of the first equation must be full, i.e. it must

contain both the homogeneous and the inhomogeneous responses. From the second equation
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on, only the inhomogeneous response has to be calculated.

This solution brings the knowledge on the orders for which the system has primary

resonances, which are, as expected, n = χ1 and n = χ2. The tuning of the dimensionless

parameters must be performed so that n lies in a special zone which none of the eigen-orders

can reach. Therefore, primary resonances can be easily avoided and must not be investigated.

Once Eq. (3.136) is composed by three terms, when substituted into Eq. (3.132), the

right-hand side of the resulting equation will be composed by 18 terms, and calculating the

responses for each of them takes a lot of work. Once detuning and gravity induced instability

have been investigated through simpler models, it is chosen to use the current two-degree-of-

freedom model to study the presence of primary and secondary resonances only30.

The advantage of studying the resonant conditions only is that it is not necessary to

calculate the response of the system to all the terms, but only to the ones that may lead to

small divisor terms when resonant orders are reached. Through experience with the method,

thirteen independent circular terms31 are expected on the right-hand side of Eq. (3.132).

The frequency32 of these terms is: χ1, χ2, 2χ1, 2χ2, 2n, χ1+n, χ1−n, χ2+n, χ2−n, χ1+χ2

and χ2 − χ1.

Among these terms, the ones with frequency of χ1 and χ2 are the terms that generate

secular terms and must be eliminated. For frequencies far from resonant frequencies, these

terms are the only ones that generate secular terms. However, the same cannot be said if the

frequency of another a given term tends to χ1 or χ2. The method of multiple scales handles

this case, and a short example is presented below.

Imagine that, for a given expansion, one of the equations to be solved is:

Mφ∂
2
1θ1 +Kφθ1 = A1{Γ1 1}T cos(χ1T1) + {F 0}T cos(ωT1) ; ω → χ1 (3.137)

The first term on the right-hand side of this equation would generate a secular term

and hence it must be eliminated. The second term, however, will have a small divisor for the

condition ω → χ1. If ω is away from χ1 or χ2, the method follows as before. On the other

30Being the secondary resonances calculated from the second order term only
31A circular term is a sinusoidal function, i.e. a sine or a cosine.
32Remembering that, in this case the frequency is in the τ -domain, and not in the physical time domain.
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hand, if it is close to χ1, then the following term is introduced:

ω = χ1 + ǫσ (3.138)

, where σ represents the proximity of ω to χ1 and ǫ is used to represent the smallness of σ

explicitly.

With this constraint for ω, the second term on the right-hand side of Eq. (3.137) reads:

{F 0}T cos(ωT1) = {F 0}T cos((χ1 + ǫσ)T1)

= {F 0}T cos(χ1T1 + σǫT1)

= {F 0}T cos(χ1T1 + σT2)

= {F 0}T (cos(χ1T1) cos(σT2)− sin(χ1T1) sin(σT2)) (3.139)

Once the time scales T1 and T2 are independent, the terms with instantaneous phase

of σT2 are constant on the time scale T1. Therefore, the term on Eq. (3.139) also generates

secular terms and must be eliminated. Notice that a small divisor term has been replaced

by another that generates secular terms.

From the condition for the vanishing of secular terms it is possible to find dependency

relationships between A1 and F . Considering the case of a steady state response, these

relationships are usually referred to as frequency response equations. From these equations

it is possible to infer stability of response and important phenomena, such as jumping.

Going back to Eq. (3.132), it is possible to define which terms may lead to small

divisor ones. Remembering that n is defined to be positive, and χ1 < χ2, then the four

conditions where secondary resonances may appear are: 2n → χ1, 2n → χ2, χ1 + n → χ2

and χ2 − n → χ1. These cases are referred to as case 1 to 4, respectively, and are analyzed

separately.

An information that is going to be used on all four cases is the terms that would generate

secular terms on the original equation. They are:

θ
(2)
sec = Θ

(c)
χ1 cos(χ1T1 + β1) +Θ

(s)
χ1 sin(χ1T1 + β1) + · · ·

+Θ
(c)
χ2 cos(χ2T1 + β2) +Θ

(s)
χ2 sin(χ2T1 + β2)

(3.140)
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From the analysis of the terms in Θ
(c)
χ1 , Θ

(s)
χ1 , Θ

(c)
χ2 and Θ

(s)
χ2 , if n is far from any resonant

condition, then:
∂A1

∂T2
=
∂A2

∂T2
=
∂β1
∂T2

=
∂β2
∂T2

= 0 (3.141)

With these information it is now possible to analyze the four secondary resonances.

Case 1: 2n→ χ1

In this case, the term that generates a small divisor term on the response of Eq. (3.132)

is:

Θ
(s)
2n sin(2nT1) = Θ

(s)
2n (sin(χ1T1) cos(σT2) + sin(σT2) cos(χ1T1)) (3.142)

The term in this equation must be added to the term from Eq. (3.140) and this result

must vanish. Therefore:

θ
(2)
sec +Θ

(s)
2n (sin(χ1T1) cos(σT2) + sin(σT2) cos(χ1T1)) = 0 (3.143)

From the conditions for sin(χ2T1) and cos(χ2T1) to vanish, the following equations are

obtained:

2A2χ2µ
−1∂β2
∂T2

(
Γ2µv

2 + 1
)

= 0 (3.144)

2A2χ2
∂β2
∂T2

(
v2 + Γ2 + 1

)
= 0 (3.145)

2χ2µ
−1∂A2

∂T2

(
Γ2µv

2 + 1
)

= 0 (3.146)

2χ2
∂A2

∂T2

(
v2 + Γ2 + 1

)
= 0 (3.147)

From these equations, ignoring the case of trivial response for A2, the resulting condition

is:
∂A2

∂T2
=
∂β2
∂T2

= 0 (3.148)

This result was expected, because the small divisor term did not introduce any new

secular terms with frequency χ2. The conditions for vanishing sin(χ1T1) and cos(χ1T1) lead
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to more complicated equations:

G2
0

∆2

(
(2α2 − 1− n2)nv6 + (2α2 + v2)n5v2 + (1− 4α2)n

3v4
)
sin(σT2 − β1) + · · ·

+2A1χ1
∂β1
∂T2

(µ−1 + v2Γ1) = 0 (3.149)

G2
0

∆2

(
(2α2p+ n2)nv6 + (2α2p− v2 − 1)n5v2 + (1− 4α2p)n

3v4
)
sin(σT2 − β1) + · · ·

+2A1χ1
∂β1
∂T2

(1 + v2 + Γ1) = 0 (3.150)

G2
0

∆2

(
(2α2 − 1− n2)nv6 + (2α2 + v2)n5v2 + (1− 4α2)n

3v4
)
cos(σT2 − β1) + · · ·

+2χ1
∂A1

∂T2
(µ−1 + v2Γ1) = 0 (3.151)

G2
0

∆2

(
(2α2p+ n2)nv6 + (2α2p− v2 − 1)n5v2 + (1− 4α2p)n

3v4
)
cos(σT2 − β1) + · · ·

+2χ1
∂A1

∂T2
(1 + v2 + Γ1) = 0 (3.152)

Although Eqs. from (3.149) to (3.152) represent conditions for the vanishing of secular

terms, they are written in terms of sin(σT2 − β1) and cos(σT2 − β1), sinusoids in terms

of other time scales. This is undesirable, because this system of four equations becomes

nonautonomous.

In order to avoid it, the following change of variables if proposed:

γ1 = σT2 − β1 (3.153)

∂β1
∂T2

= σ − ∂γ1
∂T2

(3.154)

Furthermore, in order to find the steady state response of the system, the amplitudes

and phases may not vary in any time scale. Hence, it is necessary that:

∂A1

∂T2
=
∂γ1
∂T2

= 0 (3.155)

Substituting Eqs. from (3.153) to (3.155) into Eqs. from (3.149) to (3.152) leads directly

to cos γ1 = 0, therefore sin γ1 = ±1. From these results it is possible to find four conditions

for A1:
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A
(1)
1 = ±G

2
0

∆2

(
(2α2 − 1− n2)nv6 + (2α2 + v2)n5v2 + (1− 4α2)n

3v4

2χ1σ(µ−1 + v2Γ1)

)

(3.156)

A
(2)
1 = ±G

2
0

∆2

(
(2α2p+ n2)nv6 + (2α2p− v2 − 1)n5v2 + (1− 4α2p)n

3v4

2χ1σ(1 + v2 + Γ1)

)

(3.157)

From the first order approximation term, it is known that the parameter A1 dictates

the amplitude of vibration of the first mode shape while A2 dictates the amplitude of the

second one. Once the resonant condition being achieved is the eigen-order χ1, then the

system imposes conditions for A1 only, i.e. A2 is defined exclusively through the initial value

problem.

The first important feature to be noticed is that in both cases, A1 is a product between

the fraction G2
0/∆

2 and a function of the order of excitation and system parameters. Once

Γ1 is always positive, A1 will have zeros at n = χ1 and n = χ2. As in this case n → χ1/2,

the function A1 does not have poles in both cases, i.e. it is limited.

Additionally, the parameter σ, which represents the nearness of 2n to χ1, multiplies the

denominator of A1 in both cases. Hence, it is possible to normalize A1 using σ, G0 and ∆

for further analysis.

There are two key dimensionless parameters to be varied. The first one is β. One

must remember that β is proportional to the rotating speed of the system. Hence, analyzing

the variation of A1 along β provides knowledge on how the system may behave in different

rotating speeds. The second one is q, a parameter which is linked directly to the stability of

the system. Lower values of q (near zero) imply on higher inertias of the pendulum, while

greater values of this parameter (near the unity) imply on lower inertia of the pendulum bob.

One must remember that, from the linear analysis, a key condition for stability is 0 < q ≤ 1.

Therefore, on the following analysis, a normalized version of the parameter A1 is varied

along β. These graphics are generated for different values of q and results are discussed.

In Figs. 3.22 and 3.23, these results are shown for q = 0.003125. Besides, the curves are

generated for three cases: the epicycloidal, the cycloidal and the circular paths.

In both conditions it is possible to see that the system may present higher amplitudes

135



0 2 4 6 8 10 12 14
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

β

∣ ∣ ∣
A

1
∆

2
σ

G
2 0

∣ ∣ ∣

Case 1: A
(1)
1 - q =0.003125

Epicycloid
Cycloid
Circular

Figure 3.22: Normalized variation of A1 from Eq. (3.156) along β with q = 0.003125
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Figure 3.23: Normalized variation of A1 from Eq. (3.157) along β with q = 0.003125
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for low values of β, below β = 3, which mean low rotating speeds. For higher values of β,

all the curves tend to zero. For the condition A
(1)
1 , the epicycloid and the cycloid (which are

superposed on the figure) have shown to provide lower amplitudes than the circular path.

For the condition A
(2)
1 epicycloid and the cycloid have shown to provide low, but the lowest

amplitudes have been generated on the circular path. Also, in this case both values for A1

are lower than one, because the pendulum bob has high inertia.

The results for q = 0.32031 are shown in Figs. 3.24 and 3.25. In this case, higher

amplitudes are found on A
(1)
1 for β < 7 and on A

(2)
1 for β < 3. For higher values of β, all the

curves tend to zero. For the condition A
(2)
1 , the performance of both paths is similar. For

the condition A
(1)
1 , however, for low values of beta the non-circular paths have shown to be

way better than the circular path.
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Figure 3.24: Normalized variation of A1 from Eq. (3.156) along β with q = 0.32031

The results for different values of q have shown to evolve progressively, and hence it is

possible to proceed to q = 0.95469 without omitting any important feature. The results for

this condition are shown in Figs. 3.26 and 3.27. For the condition A
(1)
1 the epicycloid and

the cycloid have shown to generate comparatively lower amplitudes than the other paths.

However, although the inertia of the pendulum for this case is low, the amplitude of both

responses is also low. Furthermore, they tend to zero as β increases.
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Figure 3.26: Normalized variation of A1 from Eq. (3.156) along β with q = 0.95469

138



For the condition A
(2)
1 , shown in Fig. 3.27, high amplitudes are noticed for β < 3 and

both paths produced comparatively equivalent results. For higher values of beta, the curves

tend to zero.
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Figure 3.27: Normalized variation of A1 from Eq. (3.157) along β with q = 0.95469

For the case when 2n → χ1, the conditions A
(1)
1 and A

(2)
1 exist for any combination of

the parameters except for σ = 0. Hence, both responses are possible for any rotating speed,

and the mechanism that allows for the system to “choose” which response is being followed

is still to be studied, yet it is known that it depends strongly on the initial conditions of the

system.

Also, in this case the condition A
(1)
1 has shown greater amplitudes than A

(2)
1 for lower

values of q, i.e., for pendulums with high inertia. For greater values of q, the condition A
(2)
1

has shown greater amplitudes. In all the cases, higher rotating speeds are desirable to reduce

the amplitude of the terms generated by this secondary resonance.

Case 2: 2n→ χ2

On the previous case, the whole mathematical procedure necessary to get to the fre-

quency response equations Eqs. (3.156) and (3.157) was shown. In this case and on the

following two ones the mathematical procedure is exactly the same, and hence in these cases
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it is chosen to proceed directly to the frequency response equations.

Analogously to the previous case, the resonant condition being achieved is χ2, and

hence the system imposes conditions for the amplitude A2 only. The term A1, in this case,

is exclusively defined by the initial conditions. The conditions imposed for A2 are:

A
(1)
2 = ±G

2
0

∆2

(
nµv2(n2 − v2)(n2v2 + 2α2n

2 − 2α2v
2 + v2)

2σχ2(Γ2v2µ+ 1)

)

(3.158)

A
(2)
2 = ±G

2
0

∆2

(
nv2(n2 − v2)(n2v2 + n2 + 2α2pv

2 − 2α2pn
2)

2σχ2(v2 + Γ2 + 1)

)

(3.159)

Once 2n→ χ2, the term ∆ is not null. Furthermore, although the term Γ2 is negative,

as shown in Fig. 3.10, it is not capable of creating a pole on either A
(1)
2 or A

(2)
2 . However,

the eigen-order χ2 tends to the infinity for low rotating speeds, as seen in Fig. 3.8. Once

the numerator of both conditions for A2 is O(χ5
2) while the denominator is O(χ2), large

amplitudes are expected for low rotating speeds.

The results for q = 0.003125 are shown in Figs. 3.28 and 3.29. In both cases, all

the paths produced comparatively similar results, with high amplitudes on the whole range

ob values of β and even higher amplitudes for low values of β. Because of the asymptotic

behavior of χ2 along Ω, the amplitudes do not tend to zero as β increases. Instead, they tend

to a constant value, which is lower than the one found at lower rotating speeds but also very

critical.

Decreasing the inertia of the pendulum bob makes possible to reach q = 0.32031. The

results for this value of q are shown in Figs. 3.30 and 3.31. Once more, in both cases

the three paths produced comparatively similar results, with higher amplitudes for lower

values of β and the amplitudes tending asymptotically to lower but nonzero values as β is

increased. However, in this case the amplitudes are much less critical than the ones found

for the pendulum bob with high inertia.

Reducing even more the inertia of the pendulum bob leads to the value of q = 0.95469

and the results are shown in Figs. 3.32 and 3.33. In the condition A
(1)
2 , the values for the

amplitude found for β > 2 are not critical, even though they are not null. Also, in this

case the epicycloidal and the cycloidal paths produced slightly smaller amplitudes than the

circular path. In the condition A
(2)
2 , the results from both paths are comparatively equivalent,
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Figure 3.28: Normalized variation of A2 from Eq. (3.158) along β with q = 0.003125
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Figure 3.29: Normalized variation of A2 from Eq. (3.159) along β with q = 0.003125
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Figure 3.30: Normalized variation of A2 from Eq. (3.158) along β with q = 0.32031
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Figure 3.31: Normalized variation of A2 from Eq. (3.159) along β with q = 0.32031
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and their amplitude is significantly smaller than for smaller values of q.
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Figure 3.32: Normalized variation of A2 from Eq. (3.158) along β with q = 0.95469
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Figure 3.33: Normalized variation of A2 from Eq. (3.159) along β with q = 0.95469

For the case where 2n → χ2 a much more critical condition was found. In this case
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it was shown that pendulum bobs with lower inertia tend to make this secondary resonance

less prominent. Also, lower rotating speeds, directly associated to lower values of β tend to

make this secondary resonance much more critical.

Case 3: χ1 + n→ χ2

This case differs from the previous ones because the secondary resonance is caused by a

term resulting from the interaction between the response to excitation and the free oscillation

response of the system. Hence, the system must impose conditions for both of the terms A1

and A2. The mathematical procedure is the same from case one, what allows one to proceed

directly to the frequency response equations:

(
A2

A1

)

1

= ±G0

∆

(
µv2 ((v2 − n2)(1 + Γ1(1− 2α2(1 + n)))χ1 + nv2Γ1(n

2 + 1))

2σχ2(Γ2µv2 + 1)

)

(3.160)
(
A2

A1

)

2

= ±G0

∆

(
v2 ((v2 − n2)(χ1 + 2Γ1α2p(n+ χ1)) + n3Γ1(v

2 + 1))

2σχ2(v2 + Γ2 + 1)

)

(3.161)

In this case the procedure led to a relationship between A1 and A2 in the form of a

ratio. Hence it is not possible to determine stability based on these conditions, because they

depend strongly on the initial value problem. However, the terms on the right-hand side of

Eqs. (3.160) and (3.161) are capable of providing information on how strong this secondary

resonance be if the initial conditions allow the existence of nonzero A1.

As done in the previous cases, this ratio can be normalized through the parameters G0,

∆ and σ. Also, this normalized ratio has been analyzed for many different values of q an

the result is qualitatively the same. Hence, for this analysis an intermediate value of q is

adopted. For q = 0.54688, the results for the two conditions for the ratio A2/A1 are shown

in Figs. 3.34 and 3.35.

In both cases, the ratio has a singularity at β = 0, but right after this singularity the

value of the ratio is low, but increases very rapidly with β. In all the cases the different

paths were not able to produce comparatively different results. Therefore, in case the initial

conditions allow for the presence of the term A1 with significant amplitude, then A2 may

reach high amplitudes. Additionally, a small amount of damping may avoid the term A1

to have significant amplitude for a long period, hence avoiding this secondary resonance to
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occur.

Case 4: χ2 − n→ χ1

Analogously to the previous case, in this case the secondary resonance is also generated

by the interaction between a free oscillation response and a forced response. Hence, the

conditions from the frequency response equation must also involve both A1 and A2. These

conditions for the case 4 are:

(
A1

A2

)

1

= ±G0

∆

(
µv2 ((v2 − n2)(Γ2(2α2(1− n)− χ2)− χ2) + Γ2nv

2(n2 + 1))

2σχ1(1 + Γ1v2µ)

)

(3.162)
(
A1

A2

)

2

= ±G0

∆

(
v2 ((v2 − n2)(2α2pΓ2nv

2(1− χ2)− χ2) + Γ2n
3(v2 + 1))

2σχ1(v2 + Γ1 + 1)

)

(3.163)

Like in the previous case, the relationship provided by the frequency response equations

is a ratio between A1 and A2, and hence stability cannot be inferred from these equations.

However, in case the initial conditions lead to significant amplitude of A2, the right-hand

side term of Eqs. (3.162) and (3.163) allows for the investigation of the behavior of A1.

Additionally, the parameters G0, ∆ and σ can once more be used to normalize the ratio

being studied. For a given pendulum bob with high inertia, it is possible to achieve the value

of q = 0.003125, and the results for this value are shown in Figs. 3.36 and 3.37

The results show a similar behavior for both conditions stated for the ratios between

A1 and A2. For low values of beta the ratio has high values, but as β increases, it rapidly

decreases, tending to zero asymptotically. It means that even if there is a certain amplitudeA2

due to initial conditions, if the rotating speed is high enough, then this secondary resonance

becomes less relevant.

For lower values of the inertia of the pendulum bob, this behavior did not change

significantly. Hence, it was chosen to proceed for a very small inertia for the pendulum bob,

leading to a high value of q near the unity. This value is of q = 0.95469, and results are

shown in Figs. 3.38 and 3.39
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For this condition, the behavior found for both ratios is the same. However, the value

of the ratios is much smaller, indicating that if secondary resonances occur, reducing the

inertia of the pendulum bob may help make them less relevant.

Collecting the results from all four cases there are then two important conclusions to

be drawn: one of them about the rotating speed of the system and another one regarding

the inertia of the pendulum bob.

Yet this conclusion already shows up from the linear analysis, on the analysis of the

secondary resonances for the two-degree-of-freedom system, it becomes very clear that, re-

gardless of the path being used, instability problems may occur if the system operates below

a certain rotating speed. Most of the secondary resonances of the second order term approxi-

mation have shown lower amplitudes in case the rotating speed is sufficiently high. Therefore,

centrifugal pendulums may not be suitable to applications where the rotating speed is low.

Still about the rotating speed, in practical terms, if centrifugal pendulums are to be

installed on a gearbox, it is recommended that it is installed on the end which has the greatest

rotating speed, which is often the input shaft.

The second conclusion has a rather antagonistic meaning. From the literature it is

known that, in order to obtain better behavior and performance from CPVAs, the amplitude

of the swing angle must be kept as low as possible. It can be done through increasing

the distance from the pinning point of the pendulum to the center of the rotor or through

increasing the inertia of the pendulum.

The first alternative does not bring any undesirable effect to the system, but it is

limited by the system’s geometry. The second alternative brings good results on the linear

case. However, as shown in all the four cases, high values for the inertia of the pendulum bob

may turn the secondary resonances more significant, and hence the stability of the system

may be harmed.

Therefore, increasing the inertia of the pendulum bob is possible, but it brings the risk

of creating relevant secondary resonances. On the other hand, reducing the inertia of the

pendulum bob may reduce its performance, but make it less prone to secondary resonances.

Yet bifurcations have not been investigated, these results are in agreement with some
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of the conclusions of the work of Alsuwayian and Shaw (2002). The authors mention that

paths other than the circular one dot not present significant improvements compared to the

easily manufactured circular path, yet in some circumstances the cycloidal path produces

better behavior. The results shown in this section show precisely the same trend.
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4 Application of the CPVA on the Clutch Disk of the Powertrain

The goal to be achieved on this chapter is to gather the knowledge from the analysis on

chapters 2 and 3 to design a proper CPVA to be installed on the clutch disk of the powertrain

under investigation.

On chapter 2 the powertrain is analyzed under static and dynamic conditions. From

these tests it was possible to obtain the required data to make a linear representative model

of the torsional dynamics of the driveline. On chapter 3, a deep analysis of the CPVA is

performed, including different paths, linear and nonlinear analyses of many subjects including

performance, detuning and stability.

Therefore, there is plenty of knowledge on the powertrain itself and on centrifugal

pendulums, making it possible to design CPVAs and to test their effectiveness through

simulations using the dynamic model developed in chapter 2.

In order to achieve this goal, this chapter is organized in the following order: on the

first part two design techniques for the CPVA are presented. Then, on the second part,

simulations are performed using the linear models of the powertrain and the nonlinear models

of the pendulum absorbers. The results are analyzed and the effectiveness and suitability of

the centrifugal pendulum vibration absorber for this application is discussed.

4.1 Design Techniques for CPVAs

On this section, two design techniques for CPVAs are presented. Both of them have

been developed based on the linear analysis of a rotor with a CPVA installed on it.

The linear analysis represents well the dynamics of this system for small displacements,

what is said on the literature (Wilson (1941), Alsuwayian and Shaw (2002), Chao et al.

(1997)) to be an essential condition for the good behavior of the pendulum. Furthermore,

stability of the system can be better inferred on nonlinear analyses, where large displacements
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are considered. From these analyses in which are found on the literature and have been

performed on section 3.3.3 of this work, there are two ways of controlling instabilities: the

choice of noncircular paths or the reduction of inertia of the pendulum bob. For some cases,

the use of an epicycloidal path may help to attenuate certain secondary resonances. However,

the use of pendulum bobs with less inertia made secondary resonances less critical.

Therefore, if secondary resonances are found, two actions can be taken: either the path

of the pendulum must be changed, which requires any further computation of parameters, or

the pendulum must be redesigned so that the inertia of the bob is reduced. In both cases the

design techniques to be presented are still suitable. Besides, design techniques for CPVAs

have not been found on the literature and the ones presented in this work can be a starting

point for the development of more advanced techniques in the future.

Before heading to the techniques, the No-Resonance Zone or Resonance Suppression

Zone is a central feature of the application of centrifugal pendulum vibration absorbers, and

careful analysis of this feature lead to robust design of the CPVA. Hence, the importance

and the usage of this feature is discussed separately, on the next section.

4.1.1 Resonance Tuning vs. Inertia Tuning

Both of the terms on the title of this section are proposed by Wilson (1941), and refer

to different types of tuning of the CPVA that are presented and discussed below.

From the various applications of tuned mass dampers on vibrating structures, it is well

known that, if such structure vibrates with high amplitudes on a specifically narrow range

of frequencies, or in a single frequency, a tuned mass damper should be installed on this

structure and its resonant frequency, when isolated from other structures, should be exactly

the same frequency for which the original structure presents problems.

Once the CPVA is the analogous of a tuned mass damper but for orders of vibration

instead of frequencies themselves, the obvious idea is to tune the pendulum absorber to the

target order that presents excessive amplitude of vibration. This type of tuning is referred to

as Resonance Tuning, and yet theoretically perfect, it presents several difficulties for practical

implementation.
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One of them is related to detuning of the pendulum. Once the centrifugal pendulum

is essentially a nonlinear device, the frequency of oscillation of the pendulum is expected to

be slightly different for different amplitudes of oscillation of the pendulum. Therefore, its

tuning may be harmed because of the amplitude of vibration, and undesired amplitudes may

appear. Other factors that may cause such detuning are the manufacturing tolerances and

wear. Some cases may require tolerances to be too tight, while in other cases detuning caused

by wear (due to change on the radius of the pendulum) may cause the system to vibrate after

short usage.

An alternative to this inconvenience is brought by Wilson (1941). In his work, the

author replaces the pendulum by an equivalent inertia for the pendulum bob, which varies

according to the frequency of oscillation. This approach may be considered simplistic when

compared to recent research, but it was very elegant considering the resources available at

the time this work was published.

After calculating the natural frequencies of the system in terms of this equivalent inertia,

the author found out that, for some values of such inertia, the system would have no natural

frequency. This result is one of the first expressions found on the literature for the No-

Resonance Zone.

Then, the author suggests that the pendulum must be designed so that the value of

this equivalent inertia lies on the range of values for which the system does not have any

natural frequency, and refers to this procedure as Inertia Tuning. Once the values for the

physical parameters of the pendulum must assure its tuning frequency lies on a zone instead

of a single value, it enables one to make a design that compensates for detuning caused by

high amplitudes, manufacturing tolerances and wear. In some cases, the performance of the

pendulum may improve with wear, up to the design limits.

This idea is adapted to this work through the use of the parameters derived in chapter

3. A scheme to improve visualization of the parameters to be proposed is shown in Fig. 4.1.

The first known parameter is the target order, referred to as nt. This order must

lie inside the No-Resonance Zone of the system. The width of such zone depends on the

parameters of the pendulum and of the rotor at which it is installed only. It is possible to see

at Fig. 4.1 that it starts at n = v and ends at n =
√

(1− q + v2)/q. Hence, the parameter
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Figure 4.1: Parameters for tuning of CPVAs considering the No-Resonance Zone.

Bw, the bandwidth of the No-Resonance Zone can be written as:

Bw =

√

1− q + v2

q
− v (4.1)

The parameter Bw is a design parameter that can be chosen by the designer, and the

choice of wider or narrower band has direct impact on some parameters of the pendulum.

This impact is discussed later on the text.

The position of the order nt on the order axis is given by nt = v+ δBw, therefore v can

be written as:

v = nt − δBw (4.2)

where the parameter δ must lie between zero and the unity, and places nt on a desired position

inside the No-Resonance Zone. This parameter must also be chosen by the designer and also

has direct consequences on the parameters of the pendulum. One must notice that δ = 0

leads to Resonance Tuning.

Through simple manipulation of Eq. (4.1), it is possible to isolate q as:

q =
1 + v2

1 + (Bw + v)2
(4.3)
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As Bw and v are real, q will always be positive and lower than the unity, as it should

be. The influence of δ, Bw and nt on v is pretty simple and clear, as shown in Fig. 4.1.

However, their influence on µ gives important information on the choice of the parameters

for the tuning of the pendulum, and hence it must be studied carefully. The parameter µ

can be written in terms of Bw and v through the use of Eqs. (4.3) and (3.34):

µ =
(Bw + v)2 − v2

(1 + (Bw + v)2)v2(v2 + 1)
(4.4)

If Bw → 0, then according to Eq. (4.2), v → nt, therefore:

µmin = lim
Bw→0

µ = 0 (4.5)

The expression on Eq. (4.5) provides prior knowledge on which is the minimum value for

µ in order to design a pendulum which is capable of deal with the desired order. Furthermore,

the use of the parameters δ and Bw will not lead to unacceptable values of µ. Also, when

Bw → 0, the parameter q becomes:

qmax = 1 (4.6)

Hence it is also possible to know beforehand that the maximum achievable value for q

for a given application will not be greater than one for positive values of Bw. If Bw tends to

high values, then these parameters have to be analyzed more carefully.

The lower bound for the No-Resonance Zone is v, a parameter that must be at least

positive. Therefore, the maximum allowable value for Bw would force v to tend to zero. This

would force µ to tend to the infinity, according to Eq. (4.4), and q to tend to 0, according

to Eq. (4.3). However, these conditions are all subjected to nt = δBw. Once nt is constant,

this implies that these conditions are valid for δ → 0, i.e. the Resonance Tuning case.

These conditions are contradicting, because Resonance Tuning requires that nt = v,

and in this case v = 0 6= nt. Therefore, the project of the pendulum must always consider

a finite width for Bw. Consequently, in order to understand the influence of Bw on µ, it is

necessary to analyze the derivative of µ with respect to Bw, which is given by:

∂µ

∂Bw

=
(
2B3

wδ(4v +Bw)(2v
2 + 1) + 2B2

wδ(11v
4 + 8v2 + 1) + 2Bwvδ(5v

4 + 6v2 + 1) + · · ·
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+2v(v +Bw)(v
2 + 1)2

)
×
(
v3(v2 + 1)2((Bw + v)2 + 1)2

)−1
(4.7)

Through simple inspection of Eq. (4.7), once Bw, δ and v are always positive, then

the derivative of µ with respect to Bw is always positive, indicating that wider bandwidths

require necessarily larger µ. On the other hand, the derivative of the parameter q with respect

to Bw is given by:

∂q

∂Bw

= −2v3 + 2Bw(δ + 1)v2 + 2(δB2
w + 1)v + 2Bw(1− δ)

(1 + (Bw + v)2)2
(4.8)

As Bw and v are positive and 0 < δ ≤ 1, the derivative of q with respect to Bw is

always negative, and hence wider bandwidths tend to reduce the value of q. The value of

the parameter q also has a minimum, which has already been proven in this work to be zero.

This sets a maximum value for the parameter µ in terms of v. However, v is maximum if δ

or Bw equals zero, what sets v = nt, and it is minimum when δ = 1, what sets v = nt −Bw.

This leads to the following relationship:

1

n2
t (n

2
t + 1)

≤ µmax ≤
1

(nt − Bw)2((nt − Bw)2 + 1)
(4.9)

If the value of δ has already been set, then the maximum value for µ is:

µmax =
1

(nt − δBw)2((nt − δBw)2 + 1)
(4.10)

It is also important to verify the behavior of µ along δ, which can be done by analyzing

the derivative of µ with respect to this parameter. It is given by:

∂µ

∂δ
=

2Bw
2 (B2

w(Bw + 4v)(2v2 + 1) + Bw(11v
4 + 8v2 + 1) + 5v5 + 6v3 + 1)

v3 (v2 + 1)2
(
Bw

2 + 2Bw v + v2 + 1
)2 (4.11)

Through inspection of Eq. (4.11), it is direct to see that if Bw and v are positive, which

is always true, then the derivative of µ with respect to δ is always positive, and hence greater

values of δ lead to greater values of µ.
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Consequently, on the design of a CPVA, the designer must have the a priori information

on the target order to be dealt with, i.e. the parameter nt. The next step is to choose values

for δ and Bw, taking into account that the increase on any of these values leads to an increase

on the value of µ, and a decrease on any of these values generates a decrease on µ.

An important point to be discussed on this section is the dependence of µ on the value

of the target order to be dealt with. The smallest maximum (Eq. (4.9)) value for µ depends

only on such order and is suitable for a first analysis on any application. These values are

presented on Table 4.1.

Table 4.1: Values of min (µmax) for usual values of nt.

nt min (µmax)
0.5 3.20000000
1.0 0.50000000
1.5 0.13675214
2.0 0.05000000
2.5 0.02206897
3.0 0.01111111
3.5 0.00616095
4.0 0.00367647
4.5 0.00232389
5.0 0.00153846
5.5 0.00105785
6.0 0.00075075

Firstly, the value min (µmax) refers to the term on the left of Eq. (4.9). Hence, if the

parameters Bw and δ are chosen, then the maximum value for µ can be increased. For low

values of the target order, the value of µ may be too large. This may turn the application

of the centrifugal pendulum unsuitable for some applications, once system modifications are

often required to be small.

The target orders from 1.5 to 3.0 are the firing frequencies for four stroke engines with

3, 4, 5 and 6 cylinders, the most usual engines running on worldwide vehicle applications.

For these orders the maximum value of µ may vary between 1.11% and 13.67%, depending

on the target order. For these orders, these values are small enough to be considered small

modifications, and at the same time large enough to allow the absorber to have good perfor-

mance and low amplitudes. For higher orders, the maximum permissible values for µ tend

to be smaller and the range of permissible values becomes narrower. For these orders and
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above, suitability must be analyzed.

It is also possible to analyze the influence of the bandwidth on manufacturing tolerances.

From Eq. (3.18), it is possible to isolate the parameter ǫa as follows:

ǫa =
1

2

(

Rp

v2
+

√

R2
p

v4
− 4r2ga

)

(4.12)

The value of ǫa is replaced on this expression by the sum of its nominal value ǭa and

the manufacturing error ̺. Also, the parameter v is replaced by nt − δBw. Therefore:

ǭa + ̺ =
1

2

(

Rp

(nt − δBw)2
+

√

R2
p

(nt − δBw)4
− 4r2ga

)

(4.13)

In this case it is assumed that Rp and rga do not contain error. If Bw = 0, then the

right-hand side of Eq. (4.13) tend to ǭa, because in this case v = nt. Hence, the tolerance

̺ goes to zero. On the other hand, if Bw 6= 0 and δ = 1, the target order nt would be

at the right-hand limit of the No-Resonance Zone, causing the error ̺ to be the maximum

acceptable error. Hence, the maximum tolerance margin must be the half of it, i.e.:

̺max = ±1

2

(

Rp

2(nt − Bw)2
− ǭa +

√

R2
p

4(nt − Bw)4
− r2ga

)

(4.14)

From Eq. (4.14) it is direct to see that the wider the No-Resonance Zone, the less

the manufacturing or wear tolerances must be tight, showing the huge advantage of Inertia

Tuning against Resonance Tuning.

With the introduction of the parameters Bw, δ and nt, it is now possible to propose

two different design techniques, which are shown on the next two sections.
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4.1.2 Design Technique 1: Design for Tuning

The design technique presented in this section is sought to reduce the detuning caused

by high amplitudes of vibration of the pendulum bob. The inertia of the carrier disk (It)

and the radius at which the pendulum is pinned (Rp) are considered to be known. Also, the

parameters Bw and δ are considered to be chosen by the designer, and the target order nt is

also known a priori. An important condition is that the path to be used in this case is the

epicycloid.

The first two parameters to be calculated are µ and v, which follow directly from the

value of the target order nt and the choice of the parameters δ and Bw. Their formulae are:

v = nt − δBw (4.15)

µ =
(Bw + v)2 − v2

v2(v2 + 1)(1 + (Bw + v)2)
(4.16)

For the next steps, the value of the parameter p, the ratio between the effective length

of the pendulum (ǫa) and the radius at which the pendulum is pinned (Rp) is required. At

this point the detuning reduction is considered on this procedure. For the case at which

the carrier disk spins at constant angular speed, nonlinear analyses performed on chapter 3

have shown that a detuning term shows up on the calculation of the third order term of the

approximated response of the system. This detuning term is shown to vanish if the value of

p is the root of the following polynomial1:

−(18v2 + 1)p4 + (18v2 − 1)p3 + (24v2 + 21)p2 − (24v2 + 40)p+ 20 = 0 (4.17)

where v is given by Eq. (4.15). More specifically, the polynomial from Eq. (4.17) has four

roots, but only one of them lies between 0 and 1, and this root is the value to be used for p.

With this value it is possible to calculate the effective length of the pendulum bob ǫa

and also the parameter b, using the following expressions:

ǫa = Rpp (4.18)

b =
1

1− v2p
(4.19)

1Refer to Eq. (3.99)
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The parameter b is the ratio between the inertia of the pendulum bob about its pinning

point (Ia +maǫ
2
a) and its inertia about its center of mass (Ia). Depending on the values of p

and v, it may be difficult to find a geometry that generates a suitable value for b. One must

notice that:

b =
Ia +maǫ

2
a

Ia
= 1 +

ǫ2a
r2ga

(4.20)

where rga is the radius of gyration of the pendulum bob. Therefore, the parameter b is purely

defined by geometry.

With these parameters, it is possible to calculate the mass and inertia of the pendulum

bob about its center of gravity through the following expressions:

ma =
µIt(b− 1)

ǫ2a +R2
p(p

2 − µ(1 + p))(b− 1)
(4.21)

Ia =
maǫ

2
a

b− 1
(4.22)

4.1.3 Design Technique 2: Design for Geometry

Although the previous design technique is proposed to minimize detuning due to large

amplitude vibration, it has two main drawbacks: it demands the path of the pendulum to

be epicycloidal and it forces the designer to create a certain geometry to suit the value of

b. Once this parameter is always greater than one, if the calculations demands that b is

very close to 1 it may be difficult to create such geometry, because in this case the radius of

gyration of the pendulum must be large, leading to a large pendulum bob. In such cases, if

detuning due to large amplitudes is not a relevant problem, one can impose a value for b and

calculate p instead, as it is shown along the text.

The application of this technique demands that It, Rp and nt are known. Also, the

designer must choose suitable values for Bw, δ and b, and they are free to choose among the

circular, cycloidal or epicycloidal paths.

Similarly to the previous case, once the values of nt, δ and Bw are available, it is possible
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to directly calculate v and µ using the formulae:

v = nt − δBw (4.23)

µ =
(Bw + v)2

v2(v2 + 1)(1 + (Bw + v)2)
(4.24)

Once p is not available, but v and b are, it is possible to calculate p through the

expression:

p =
b− 1

bv2
(4.25)

Then, all the parameters of the pendulum can be calculated as follows:

ǫa = Rpp (4.26)

ma =
µIt(b− 1)

ǫ2a +R2
p(p

2 − µ(1 + p))(b− 1)
(4.27)

Ia =
maǫ

2
a

b− 1
(4.28)

At this point, both techniques for the design of CPVAs have been presented. It is

now possible to use them to make different designs of pendulum absorbers and to test them

through simulations.

4.2 Simulations

In this chapter simulations are performed using the linear model of the powertrain at

8th and 9th gears and the nonlinear equations of motion for the CPVA. Before performing the

simulations, it is necessary to design the pendulum. Furthermore, some project limitations

must be taken into account for this design.

These limitations are basically generated by the prototype layout designed by ZF en-

gineers. Therefore this layout and the project limitations are presented on the following

section.
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4.2.1 Layout of The Clutch Disk with a CPVA and Project Limitations

One of the main goals of this work is to assess the suitability of the use of a CPVA on a

clutch disk for the reduction of torsional vibration in a gearbox, leading to possible reduction

of the rattle noise. For this reason, the author of this work, together with the ZF engineers,

were required to design a prototype of a clutch disk where it would be possible to install

CPVAs for field tests.

The starting point for the prototype was a clutch disk that currently equips the vehicle

under investigation. The design chosen for the pendulum absorber was the bifilar suspension

design, because it does not require parts to roll and the tuning of the pendulum depends

on the mass of the pendulum bob only, and not on its inertia. The digital drawing of the

prototype is shown in Fig. 4.2.

Figure 4.2: ZF prototype layout of clutch disk with bifilar CPVAs.

Because of the position of the springs, this is the layout that allows the pendulum bobs

to be as far as possible from the center of the clutch hub. However, this distance is not as

large as desired, providing the pendulums with an Rp of approximately 71, 88mm. As it has

been shown in this work, small Rp lead to large amplitudes of the pendulum and increased

mass of the pendulum bob.

On the drawing shown in Fig. 4.2, the clutch disk is equipped with three pendulums,

and this was though so that the effective inertia of the pendulum bob could be increased by
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adding more pendulums, based on the linear analysis performed on section 3.2. Non unison

responses may occur, as shown in Chao et al. (1997), but the use of a single CPVA is not

possible for imbalance reasons.

The mass of each pendulum bob is controlled by its thickness, which is limited because

excessively thick pendulums would touch the flywheel, leading to poor performance of the

system. With the thickness limit, the greatest mass that can be achieved by combining the

three pendulums is of 315g.

With these values in mind, it is possible to analyze the model of the powertrain and to

perform a linear estimation of the amplitude of vibration of the pendulum bob. It is known

that these estimations are not realistic if amplitudes grow large, but once the amplitude of

vibration of the pendulum bob should be kept small, as literature says, it provides good

estimations for the amplitude of vibration of the pendulum, that can be directly linked to

the mass of the pendulum bob.

This analysis is done as follows: on the first step it is necessary to obtain a linearized

model of the powertrain with the pendulum bob installed on it. The next step is to suppose

a maximum acceptable amplitude of vibration at a given rotating speed of the engine. It is

advisable to notice that this amplitude is the one after the installation of the pendulum, and

not the peak amplitude found on the measurements. The rotating speed, on the other hand,

must be directly related to critical rattling speeds found on the original vehicle. In this case,

the amplitude is chosen to be of 700rad/s2 of torsional acceleration at 800 rpm.

Although there is a linear model to be analyzed and a given condition of amplitude and

frequency, the parameters of the pendulum are still unknown. However, in order to design

the pendulum, two parameters must be set: δ and Bw. The first parameter must lie between

zero and one, and the second one has to be positive. Once it is known that a bandwidth of

one order is a very high value, both of the parameters can be varied from zero to one leading

to a complete analysis.

Hence, the amplitude of the swing angle of the pendulum can be estimated for each

pair (Bw, δ), leading to a surface. Also, for each pair (Bw, δ) the mass of the pendulum bob

with bifilar suspension design can be defined, leading to a second surface. These surfaces are

shown in Figs. 4.3 and 4.4, respectively.
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Figure 4.3: Contour levels of the surface of swing angles through (Bw, δ) for 8
th gear.
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Figure 4.4: Contour levels of the surface of mass of bifilar pendulum bob through (Bw, δ)
for 8th gear.
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Analyzing both graphics, it is possible to verify that the thicker the bandwidth Bw,

the greater is the swing angle of the pendulum, and the lighter the pendulum bob has to be.

Large values of δ tend to increase the swing angle of the pendulum bob and also to increase

its mass. Therefore, greater values for Bw and lower values for δ are preferable.

It is also very clear that, given the project constraints, through this analysis the pen-

dulum would not be suitable for this application. In order to obtain a swing angle of ±40◦,

for instance, which is already considered high, a pendulum bob of at least 10kg is required.

However, one must consider that this analysis is being carried out considering a worst case

scenario, i.e. high amplitude at a considerably low rotating speed.

Another important fact to bear in mind when designing pendulums for powertrains is

that for different gears the equivalent inertia of the gearbox is different, and the design of

the pendulum should assure stability and good performance for all gears. For this reason,

the same graphics found in Figs. 4.3 and 4.4 are plotted for the 9th gear in Figs. 4.5 and 4.6.
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Figure 4.5: Contour levels of the surface of swing angles through (Bw, δ) for 9
th gear.

Once the equivalent inertia of the gearbox is increased when higher gears are shifted,

as the parameter µ is constant given a pair (Bw, δ), the inertia of the pendulum is required

to be greater in order to keep the same performance. Hence, if a given inertia is suitable for

a low gear pair, it may have decreased performance for high gear pairs. On the other hand,
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Figure 4.6: Contour levels of the surface of mass of bifilar pendulum bob through (Bw, δ)
for 9th gear.

a value of inertia that is suitable for a high gear pair may generate a value for µ which is

higher than the maximum acceptable for a low gear pair, becoming unstable for low gears.

A pendulum suitable for all gear pairs is not being designed in this work because it

would need 16 linear models to be equalized, one for each available speed of the gearbox.

Furthermore, due to project constraints the mass of the pendulum bob would never be as

high as possible for this layout, making this design pointless.

From the project constraints, the pendulum bob with the maximum allowed mass is

still expected to be unstable. However, the conditions for which it will become unstable

are still unknown. If the pendulum becomes unstable and increases vibration on noncritical

speeds, or raise some amplitudes to noncritical levels, but it reduces amplitudes on critical

speeds, it would still be a solution for the torsional vibration problem, once the goal is to

reduce the amplitude of vibration on the gearbox to a level which generates no subjectively

unpleasant noise.

These facts guide the simulation planning to be executed, and a detailed discussion

about which simulations are to be performed and what results are to be analyzed from them
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is presented on the next section.

4.2.2 Simulation Planning

As it was shown in the last section, the project limitations are very tight, and allow for

an inertia of the pendulum bob that would not be able to cause any benefit to the system.

However, this analysis was done based on the assumption that the system behaves linearly,

which is not true for high amplitudes. Therefore, the simulations performed on this chapter

are divided in three sets.

On the first set, two simulations are performed considering the powertrain models for

8th and 9th gears without any pendulum. These simulations are the control simulations, and

are used as a reference for comparison with the upcoming simulations in which pendulums

are going to be considered.

On the second set, the project limitations are obeyed. The parameters of two pendu-

lum bobs are calculated, one for the eighth gear and another for the ninth, both with the

maximum allowable mass. Then simulations with the circular path are performed, because

great amplitudes are expected and this path is defined for any angle of the pendulum2. On

the results, pendulum stability and amplitude attenuation are observed.

On the third set, project limitations are neglected and the circular, cycloidal and epicy-

cloidal paths are tested. For the circular and the cycloidal paths the design for geometry

is used, while for the epicycloidal path, the design for tuning is used. On the results, the

amplitude of the swing angle of the pendulum bob and the amplitude of vibration of the

gearbox are observed. Table 4.2 has the summarized information about all the simulations.

The input for all the simulations is the measurement response of the flywheel obtained

in Run 4, at the desired gear. The measurements from this run were chosen because in this

case the torsional friction was capable of eliminating the first resonance of the system. Hence,

the dynamics of the flywheel is much less influenced by the powertrain in this Run than on

the first ones at which clutch disks with much less friction had been used.

2The cycloid and the epicycloid are defined for ±90◦ only.
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Table 4.2: Summarized information about the simulations.

Set Simulation Gear Path Bw δ b
1 1 8 — — — —
1 2 9 — — — —
2 1 8 Circular 0.00975 0.5 40000
2 2 9 Circular 0.01014 0.5 40000
3 1 8 Circular 0.5 0.5 40000
3 2 8 Cycloid 0.5 0.5 40000
3 3 8 Epicycloid 0.5 0.5 —
3 4 9 Circular 0.5 0.5 40000
3 5 9 Cycloid 0.5 0.5 40000
3 6 9 Epicycloid 0.5 0.5 —

Another important detail about the simulations is that, in all cases a single pendulum

is considered. The use of more than one pendulum is usual, mainly for balancing purposes,

but it may generate non-unison responses, which are chosen not to be studied in this work.

Regarding the numerical method for integration, all the simulations are performed

using the ode45 routine from Matlab R2010a R©. The parameters of this integrator are set

to maximize accuracy.

4.2.3 Simulation Results

The simulations from Set 1 are used for reference only. Therefore, the first results to

be presented are the ones obtained from the simulations from Set 2, at which all the design

constraints have been obeyed. The results for the first simulation of the second set are shown

in Figs. 4.7 and 4.8.

The first feature to be noticed is the fact that the high amplitude peak related to gear

rattle phenomenon occurred on a slightly lower engine speed than was found on the measure-

ments. As this is an approximated model, small divergences were expected. Although this

frequency imprecision occurred, the model still represents well the behavior of the powertrain,

and this feature does not invalidate further analyses and conclusions.

From Fig. 4.7 it is possible to verify that the pendulum designed to this case was not
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Figure 4.7: Angular acceleration from Simulation 1 from Set 2.
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Figure 4.8: Swing angle of the pendulum bob from Simulation 1 from Set 2.
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capable of providing any improvement to the dynamics of the system. Great and unacceptable

amplification still occurs between 600 and 1000 rpm, and the 3rd order amplitude of angular

acceleration of the gearbox is the same for all engine speeds. From Fig. 4.8 it is also possible

to verify that for low engine speeds, at the beginning of the simulation, the pendulum became

unstable. After that, for higher engine speeds it started to oscillate about a given position,

but no improvement on the system response was found. The results for the 6th order are

similar.

The results of simulation 2 from the second set are shown in Figs. 4.9 and 4.10.

Regarding the reduction of amplitude of angular acceleration on the gearbox, the results are

similar to what is found for the eighth gear, i.e., no amplitude reduction was found for all

engine speeds. In Fig. 4.10 it is possible to see that, in this case, the pendulum did not

become unstable, but the amplitudes of its swing angle are up to ±80◦, which is prohibitive.

As for the previous case, the results for the sixth order ate similar.
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Figure 4.9: Angular acceleration from Simulation 2 from Set 2.

All the designs tested on Set 2 have been designed considering that the mass of the

pendulum bob has its maximum value of 315g. In order to reach this mass, the bandwidth

Bw had to be chosen to be very low, nearly of 1% of an order of vibration. As a result, this

tuning is very close to resonance tuning, which should force the amplitude of vibration of the
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Figure 4.10: Swing angle of the pendulum bob from Simulation 2 from Set 2.

gearbox to become very low.

However, as the maximum allowable mass of the pendulum bob, and also the maximum

radius of pinning Rp are very low, the amplitude of vibration of the pendulum bob became

very large, leading to the instability found in Fig. 4.8. In this case, stability was not able to

contribute for amplification of the original amplitude of vibration.

On the other hand, the pendulums were not able to reduce the amplitude of vibration

of the gearbox, even in the case where no instability was found. This is due to the detun-

ing caused by large amplitudes of swing of the pendulum bob, which made this solution

ineffective.

These first conclusions are in accordance with the literature, which mentions that, for

good performance, the amplitude of the swing angle of the pendulum bob must be kept as

low as possible, avoiding detuning and instability.

At this point the results from the Set 2 of simulations have already been presented.

The discussion is now turned to the results from the Set 3. Simulations 1 to 3 from set 3 are

performed in 8th gear while simulations 4 to 6 are performed in 9th gear. In Fig. 4.11, the
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amplitude of vibration of the gearbox for simulations 1 to 3 is presented.
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Figure 4.11: Angular acceleration from Simulations 1 to 3 from Set 3.

In both cases, where the CPVA was applied, the gear rattle peak, shown at the original

blue curve disappears. However, in the case where the circular path CPVA was applied,

another peak shows up in a higher rotating speed, with amplitude of nearly 1700rad/s2,

which according to experience, is very likely to induce rattle noise.

The cycloidal path CPVA has exactly the same parameters of the circular path CPVA,

and its performance is shown to be a lot better. There is not any peak of vibration on the

gearbox for this case and the maximum amplitude found is below 1000rad/s2, which is known

not to induce subjectively unacceptable rattle noise, although it can still induce wear.

It is possible to say that even better results were obtained using the epicycloidal path

CPVA. However, its design is different from the previous two cases, and as it is going to

be shown further on the text, its inertia is almost twice the inertia of the pendulums of the

previous cases, what explains the even lower amplitudes.

The third and sixth order amplitudes of the swing angles of the pendulums are shown

in Figs. 4.12 and 4.13. The most relevant part of the amplitude of the pendulums is found in
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the 3rd order response. Yet their parameters are different, the cycloidal and the epicycloidal

pendulums have nearly the same performance. Swing angles are most of the time below

±30◦, which is acceptable, and no peak is found, indicating few detuning.
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Figure 4.12: 3rd order swing angle response of the pendulums from Simulations 1 to 3 from
Set 3.

The circular path pendulum has the worst behavior. It presents amplitudes above

±30◦ for engine speeds below 1000rpm, the most critical region. Furthermore, it presents a

peak of vibration which has the same shape of the one seen in Fig. 4.11 on the response of

the gearbox. The shape of this peak suggests a jump phenomenon due to a softening-like

nonlinear stiffness and requires further investigation.

The results for the amplitude of vibration at the gearbox for simulations 4 to 6 from

set 3 are shown in Fig. 4.14. In all cases where the CPVA has been applied, once more the

peak related to gear rattle, shown in the original blue curve, vanishes. Both the cycloidal

and epicycloidal path pendulums have better performance than the circular path one, but in

this case no instability was found on the circular path one.

The third and sixth order amplitudes of the swing angle of both pendulums are shown

in Figs. 4.15 and 4.16. In this case, once again the most relevant part of the amplitude of

the swing angles is at the third order.
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Figure 4.13: 6th order swing angle response of the pendulums from Simulations 1 to 3 from
Set 3.
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Figure 4.14: Angular acceleration from Simulations 4 to 6 from Set 3.
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Figure 4.15: 3rd order swing angle response of the pendulums from Simulations 4 to 6 from
Set 3.
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Figure 4.16: 6th order swing angle response of the pendulums from Simulations 4 to 6 from
Set 3.
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Unlike the previous case, in this case the circular path pendulum did not become

unstable, and therefore its performance is worse but close to the one of the cycloidal and the

epicycloidal pendulums. The swing angle of both pendulums remained below ±30◦ most of

the time.

In all six simulations from Set 3, the design parameters of the circular and cycloidal

path pendulums are the same. Different parameters are chosen for the epicycloidal path

pendulum because its design technique is different from the one used on the other cases. All

the design and physical parameters can be found in Tables 4.3 and 4.4.

Table 4.3: Design and physical parameters for simulations 1 to 3 from Set 3.

Simulation 1 2 3
δ 0.5 0.5 0.5
Bw 0.5 0.5 0.5
Rp[mm] 71.88 71.88 71.88
b 40000.0 40000.0 4.1
a 1.3504 1.3504 1.5001
µ[%] 0.40 0.40 0.40
Ia[kg.m

2] 4.186.10−8 4.186.10−8 4.536.10−4

ma[kg] 18.532 18.532 27.228
ǫa[mm] 9.74 9.74 6.90
̺max[mm] 1.76 1.76 2.90
mbif [kg] 18.533 18.533 36.011

Table 4.4: Design and physical parameters for simulations 4 to 6 from Set 3.

Simulation 4 5 6
δ 0.5 0.5 0.5
Bw 0.5 0.5 0.5
Rp[mm] 71.88 71.88 71.88
b 40000.0 40000.0 4.1
a 1.3504 1.3504 1.5001
µ[%] 0.40 0.40 0.40
Ia[kg.m

2] 4.013.10−8 4.013.10−8 4.349.10−4

ma[kg] 17.768 17.768 26.105
ǫa[mm] 9.74 9.74 6.90
̺max[mm] 1.76 1.76 2.90
mbif [kg] 17.769 17.769 34.526

In all cases, the parameters δ and Bw are fixed and Rp is a design limitation, also

constant for all cases. The parameter b is chosen for simulations 1, 2, 4 and 5, because in
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these cases the design for geometry is used. The higher this parameter, the closer the ideal

pendulum is to a particle mass attached to a massless rod. On simulations 3 and 6, the value

of b is defined by the no detuning constraint.

All the other parameters are a result from the values of the first four ones. Because µ

depends on the choice of the target order nt(which is obviously 3 in this case), Bw and δ,

this parameter is constant for all cases.

The parameter a indicates how much the inertia of the gearbox is increased by the use of

CPVAs. For circular and cycloidal paths it is increased on nearly 35%, while for simulations

3 and 6 it is increased on almost 50%.

The parameters Ia and ma refer to the parameters of an ideal pendulum. However,

ǫa is the radius of the ideal and of the real pendulum. In both cases, it reached acceptable

values. Also, the parameter ̺max indicates the manufacturing and wear tolerance for those

radii. In all cases the tolerances are very loose, which eases manufacturing and allows for

good performance in the presence of wear.

Finally, the parameter mbif is the mass of the bifilar pendulum bob resulting from this

project. In both cases, these masses have elevated values, and the design for tuning, used on

simulations 3 and 6 provided a mass which is nearly twice the mass for the other cases. The

increased value for the pendulum mass is due to the fact that the radius Rp is too small for

this application.

On Tables 4.5 and 4.6, the same parameters are recalculated for Rp = 200mm. As Rp

is increased, ǫa and ̺max also increase, but still remain in acceptable values. The mass of the

pendulum bob mbif decreases considerably, indicating that, with proper values for Rp, this

solution may be suitable. The parameter a, however remains unaltered for all simulations,

showing that, yet the mass of the pendulum bob has decreased, its increase on the inertia

of the gearbox does not depend on Rp. The parameter a is an important parameter for the

design of the synchronizers.

These are the results obtained from the simulations performed in this work. On the

next chapter the conclusions of the present thesis, contributions and perspectives for future

research are presented.
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Table 4.5: Recalculated design and physical parameters for simulations 1 to 3 from Set 3.

Simulation 1 2 3
δ 0.5 0.5 0.5
Bw 0.5 0.5 0.5
Rp[mm] 200.00 200.00 200.00
b 40000.0 40000.0 4.1
a 1.3504 1.3504 1.5001
µ[%] 0.40 0.40 0.40
Ia[kg.m

2] 4.186.10−8 4.186.10−8 4.536.10−4

ma[kg] 2.394 2.394 3.517
ǫa[mm] 27.11 27.11 19.19
̺max[mm] 4.89 4.89 8.08
mbif [kg] 2.394 2.394 4.651

Table 4.6: Recalculated design and physical parameters for simulations 4 to 6 from Set 3.

Simulation 4 5 6
δ 0.5 0.5 0.5
Bw 0.5 0.5 0.5
Rp[mm] 200.00 200.00 200.00
b 40000.0 40000.0 4.1
a 1.3504 1.3504 1.5001
µ[%] 0.40 0.40 0.40
Ia[kg.m

2] 4.013.10−8 4.013.10−8 4.349.10−4

ma[kg] 2.295 2.295 3.372
ǫa[mm] 27.11 27.11 19.19
̺max[mm] 4.89 4.89 8.08
mbif [kg] 2.295 2.295 4.460
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5 Conclusion

At this point, all the relevant methods, analyses and results have already been presented.

Therefore, the goal of this chapter is to present the conclusions of this work, as well as the

contributions and innovations and perspectives for future research.

5.1 Discussion and Conclusions

At the first chapter, an introduction of the main NVH phenomena related to powertrain

dynamics and also an introduction to the history and the basic features of CPVAs is presented.

One of the most important facts presented in this chapter is that CPVAs are one of the

most effective solutions for mitigation of torsional vibration.Besides, its usage on vehicle

powertrains has only been discontinued due to its cost.

It is true that its usage in the late 1940s had the objective of eliminating crankshaft vi-

bration, and was not related to rattle noise. However, the latter has become a very important

issue, and this solution was rarely applied for the reduction of rattle noise for historical rea-

sons. Other solutions such as the dual mass flywheel have been developed, but have shown

to be very expensive, and its usage is limited to critical or high budget applications.

Centrifugal pendulums have shown to be very effective, and the simplicity of its concep-

tion suggests a potentially cheaper solution, when compared to the complexity of dual-mass

flywheels. However, the cost analysis must not be focused on a single solution, mainly due

to the results shown in chapter 3.

On the third chapter of this work, a very deep analysis of the dynamic characteristics of

the CPVA is presented. One of the most important features of this solution is that it creates

a zone at which few or no natural frequencies are present. This eliminates undesirable

amplifications that occur at some critical speeds, which lead to rattle noise. On the results

shown in chapter 4, it is very clear that the result of the application of well tuned CPVAs

with the correct paths is the complete mitigation of vibration peaks at the gearbox that led
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to gear rattle.

Once amplification regions are no longer present, it is no longer necessary to produce

clutch disks with torsional friction. Furthermore, there are many parameters on the design

of the gearbox such as placement of bearings, gear lashes and shape, tolerances, and others,

which are designed for the reduction of noise intensity when teeth impacts occur. Once

resonances that affect the gearbox are no longer present, these parameters can be relaxed,

leading to possible reduction of the cost of the gearbox.

The point of the powertrain at which the CPVA is installed is also of great importance.

Regarding the gearbox, the pendulums could be installed on the input shaft or on any

secondary shaft. Installing the pendulum at the input shaft lead to an important advantage

and an important drawback.

The advantage is that after the coupling of the clutch set, the input shaft has the

same rotating speed as the engine. This means that the order of excitation, related to the

firing frequency, is constant regardless of the shifted gear, and hence the pendulum must be

designed for a single order. On the other hand, the working principle of the gearbox requires

the inertia of the input shaft to be as low as possible, in order to improve service life of the

synchronizers and shiftability, i.e., to reduce the effort the driver needs to make to shift a

given gear. The use of CPVAs on the input shaft would increase this inertia.

In contrast, the CPVAs could be installed on the output shaft of the gearbox. This

would lead to no increase of the inertia of the input shaft. However, because of the different

gear ratios available at the gearbox, the order of excitation on the output shaft varies and

the design of the CPVAs may become very difficult.

Another possibility would be to install the CPVAs on the engine flywheel. It allows

for a greater distance between the pendulum and the geometric center of the rotor, which is

good. However, as the inertia of the flywheel is large, the inertia of the pendulums would

have to be high, which is undesirable. A possibility that must be studied is the reduction

of the inertia of the flywheel parallel to the use of CPVAs on it. It would be the same of

exchanging a simple inertia by an dynamically active one.

There is still a fourth possibility mentioned in the work of Wilson (1941), which is to

replace the crankshaft counterweights by CPVAs. It would potentially eliminate the need for
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viscous dampers on engines, allow for reduction of the inertia of the flywheel, eliminate the

need for torsional friction at the clutch disk and possibly allow for a cheaper gearbox design.

An important fact on this discussion is that car manufacturers usually buy different

parts, like engines, gearboxes and clutch sets, from different companies, and lots of politics

and negotiation are involved on the decision of the point at which the CPVAs must be

installed. However, this discussion is kept into the academic scope.

On chapter 3, linear and nonlinear analyses are performed on systems with one and

two rotors and centrifugal pendulums. On the linear analyses, once small displacements

are an assumption, it is possible to verify the existence of the No-Resonance Zone or the

Resonance Suppression Zone. Its parameters are verified to be independent from all the

system parameters, except for the inertia of the disk at which it is installed.

Nonlinear analyses performed on the same chapter were able to show that, if the rotating

speed of the system is not excessively low and the amplitude of the pendulum is kept low,

then the project of the pendulum can be based on the existence of such zone. However,

the path of the pendulum plays an important role on the tuning of its parameters, and the

cycloidal and epicycloidal paths have shown to reduce the effect of detuning and hence to be

more effective than the circular one.

On chapter 4, two design techniques for centrifugal pendulums are presented. One

of them allows for the choice of the pendulum geometry, while the second allows for the

elimination of a given detuning term. Also, a prototype of a clutch disk with CPVAs is

presented.

From simulation results it was possible to verify that, if the design constrains are obeyed,

then the maximum permissible inertia of the pendulum, which is very low for this application,

makes this solution unsuitable for this case, once no improvements on the amplitude of

vibration of the gearbox are found. Low inertia of the pendulum bobs led to high amplitude

of vibration and consequently detuning, which annihilated the performance of the CPVA.

If the inertia of the pendulums is increased, then the amplitude of the swing angles are

lowered and all paths can be tested. The design for the circular and cycloidal paths is exactly

the same, while the design for the epicycloidal path took detuning into consideration.
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In all the results, it is clear that pendulums with cycloidal paths are less prone to detun-

ing, and their performance for high amplitudes is definitely much superior to the pendulums

with circular paths. The lowest amplitude of vibration of the gearbox was obtained using the

pendulum with epicycloidal path. However, its design led to a pendulum which has twice as

much inertia as the cycloidal path one, and the reduction of amplitude of vibration of the

gearbox is not as significant. Therefore, either the cycloidal or epicycloidal paths are better

choices than the circular paths.

It is very clear that a pendulum bob of nearly 18kg is impracticable for this application.

The high value of its mass is simply due to the fact that the maximum radius at which the

pendulum can be pinned on the disk is still too small. If it is raised to 0, 2m, then the inertia

of the pendulum bob required to obtain exactly the same result drops to 2, 4kg, which is

much more realistic. Additionally, the advantage of the designs proposed in this work is

that, as predicted by Wilson (1941), the manufacturing tolerances are very loose even when

such radius is low, and apart from cheaper manufacturing, it results in good performance

even in the presence of wear.

Consequently, taking into account the prototype layout available, the use of CPVAs for

the reduction of gear rattle is unsuitable for this application. However, it may be suitable if

a new layout of clutch disk is proposed, allowing the radius of installation of the pendulum

to be greater. Also, the use of non-circular paths is reinforced.

Regarding the objectives of this work, the five stated goals have been achieved success-

fully, and the execution of this work led directly to experience and knowledge gain for all the

parts involved.

5.2 Contributions

Due to the nature of this work and its organization, the contributions are grouped in

chapters 3 and 4. The most relevant contributions and their motivation are described in the

following.

The literature on centrifugal pendulums is composed of works that date from the be-

ginning of the twentieth century up to works from the current days. Therefore, it is possible
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to find many different theoretical and experimental studies on these devices. However, as in

any research field, it was possible to find some problems that this thesis tries to address.

The first one is related to the choice of the degrees of freedom used to describe the

motion of the pendulum. On the most current works, almost all published on the present

century, the coordinate used to describe the motion of the pendulum bob is the arc-length

traveled by the center of mass of the pendulum bob. Based on this choice, the equations of

motion of the system can be written in a more convenient form. The convenience of this form

is due to the fact that, through varying a single parameter, the equation is able to represent

a pendulum with circular, cycloidal or epicycloidal path. Furthermore, the final form of

the equations of motion makes them suitable for the application of the Krylov-Bogoliubov

Method of Averaging (KB-Averaging), a method for the calculation of approximate responses

of a nonlinear system.

However, there are some drawbacks involved on this choice. The first and simplest one

is that the arc-length provides an indirect measure of the swing angle of the pendulum bob.

In fact, the calculation of the swing angle based on the arc-length traveled by the pendulum

bob is simple, but is an unnecessary step to be performed.

The second one is that this approach allows for the choice of a circular, cycloidal or

epicycloidal path through the variation of a single parameter. However, it does not allow for

any other trajectory to be tested with the same convenience, and there is not a work on the

literature that proves that optimal paths belong to this family of paths. If other types of

path are to be tested, this formulation leads to mathematical inconvenience.

The third disadvantage related to the choice of this coordinate is actually about the

application of the KB-Averaging. This choice is made in a way that the equations of motion

are in a suitable form for the application of this method. However, this method is shown in

the work of Nayfeh (1981) to lead to incomplete expansions, where frequency correction terms

are absent. Furthermore, the same author affirms that this method leads to an unnecessary

amount of algebra.

In order to address these issues, in this work, the coordinate chosen to describe the

motion of the pendulum bob is its own swing angle. Therefore, the results from any analysis

bring direct data on the angle domain, without intermediate steps.
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In order to address the problem of the paths, a dimensionless shape function for each

path is proposed. This shape function is described as a power series, allowing for the test

of any path with no increased mathematical complexity. Furthermore, these shape functions

are application-independent, i.e., once calculated, they are valid for any application.

With this proposal, another mathematical difficulty had to be addressed. The cycloidal

and epicycloidal paths are described in terms of an angle which is not the swing angle of

the pendulum. There is a function that describes the swing angle in terms of the secondary

angle, but it is not invertible, which increases the difficulty to calculate the desired power

series.

This obstacle has been overcome by the use of implicit differentiation, which allowed for

the calculation of the power series directly in terms of the swing angle, without the need for

inverting a non invertible function. The coefficients of the shape functions for the circular,

cycloidal and epicycloidal paths are shown to be rational, therefore, with infinite precision.

The third issue has been overcome by the choice of the Method of Multiple Scales,

instead of the KB-Averaging. It is a more precise method, generates less algebra and has the

advantage of not requiring the equations of motion to be in any specific form. Furthermore,

the use of this method, not used in the literature on centrifugal pendulums, led to a set

of linear differential equations to be solved, which were of the same form of the equations

analyzed on the linear analysis of this work, what made the calculations much more direct.

Another subject which has not been explored in the literature is the presence of gravity

on horizontal rotors with CPVAs. This subject is studied in this work, and depends on the

linearity assumption it may lead to a linear time-varying system or a nonlinear autonomous

one.

The linear time varying cases can be studied using the Floquet Theory, which addresses

linear time varying systems with periodic coefficients. The case at which the rotor spins at

constant speed, after convenient adimensionalization leads to the Mathieu equation, which

has been exhaustively studied. The two degrees of freedom case can also be studied using the

Floquet Theory. In both cases, it was shown that stability is achieved if the angular speed

of the rotor is above a certain limit.

The nonlinear autonomous case could be studied using the Method of Multiple Scales.
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The results show that the presence of gravity may lead to sub or super harmonic secondary

resonances, which tend to be less influent as the rotating speed of the system increases.

Finally, the last contribution of this work are the two design techniques proposed for

the project of CPVAs. One of them is suitable for circular, cycloidal or epicycloidal paths,

and allows for the choice of different geometries for the pendulum bob. The second one is

designed exclusively for the epicycloidal path, and aims to vanish the detuning term found

on the third order approximation of the nonlinear response of the system.

5.3 Future Research

Although there are significant contributions in this work, there are still many subjects

related to powertrains and CPVAs that deserve special attention. The most relevant ones

are listed below:

• Improve the modeling of the powertrain. Although a representative model was

obtained in this work, some imperfections led to imprecision, mainly on the placement

of the peak related to gear rattle. Therefore the modeling of the powertrain must

be improved. Special attention must be given to the model of damping, which is

fundamental on the representativeness of the model.

• Calculate higher approximations for nonlinear response. The Method of Mul-

tiple Scales was applied in this work and good results were obtained. However, most

analyses were truncated at the second or third order. Higher order terms should be

calculated to increase accuracy of the approximations.

• Try other paths. One of the main advantages of the formulation shown in this work

is that paths which are not circular, cycloidal or epicycloidal can be tested with no

increased difficulty. Therefore, further paths should be tested. Furthermore, optimiza-

tion algorithms can be applied to calculate the coefficients of the shape function of a

supposedly unknown optimal path.

• Apply CPVA on other points of the powertrain. It is known that it is possible

to apply the CPVA on the engine flywheel, for example, exchanging simple inertia by
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dynamically active inertia. Further studies should be performed to assess the suitability

of this solution.

• Propose and build suitable prototypes. The prototype proposed in this work

is shown not to be suitable for this application due to project limitations. However,

once the CPVAs are an effective and potentially low cost solution, different prototypes

should be proposed, allowing for the application of this technology on vehicles.
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Appendix A -Auxiliary information from the powertrain

Extra information about the powertrain of the vehicle under investigation is shown in

this appendix.

A.1 Powerflow Diagram of the ZF 16AS 2631 TO Gearbox

The powerflow diagram of the gearbox used on the vehicle was obtained from its main-

tenance manual, and is shown in Fig. A.1.

A.2 Energy Equivalence Approach for powertrain modeling

The goal of this appendix is to introduce the Energy Equivalence Approach, shown in

the work of Ligier et al. (2002).

The main objective of this method is to represent a system with gearings such as the

one shown in Fig. A.2, namely “system A”, using the equations of motion of a simpler

system, such as the one shown in Fig. A.3, namely “system B”. The main advantage is that

the equations of motion of system “B” are considered easier to derive.

As indicated in Fig. A.2, system “A” has six rotors with inertias I1 to I6 respectively.

Bodies 1 and 2, 3 and 4, and 5 and 6 are linked to each other through the springs K12, K34

and K56 respectively. Inertias 2 and 3, and 4 and 5 are constrained to each other with the

condition that there is no slipping between the surfaces of the disks (they act like gearings),

therefore, four degrees of freedom are enough to describe the dynamics of such system. The

gear ratios are called n23 and n45, defined as following:

n23 = −θ̇2/θ̇3 (A.1)
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Figure A.1: Powerflow diagram of ZF 16AS 2631 TO Gearbox
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K12

K34

K56

I1,θ1 I2,θ2

I3,θ3 I4,θ4

I5,θ5 I6,θ6

Figure A.2: Example of system to be simplified (System A).

K̂12 K̂23 K̂34

Î1 Î2 Î3 Î4

α1 α2 α3 α4

Figure A.3: Simplification of torsional system (System B).

n45 = −θ̇4/θ̇5 (A.2)

Hence, in Fig. A.3 there is a simplified version of system “A”, also with four degrees

of freedom, but with equivalent inertias, Î1 to Î4, and equivalent springs K̂12, K̂23 and K̂34.

In system “A”, the displacements of the inertias 1 to 6 are named θ1 to θ6, while in

system “B”, the displacements of the bodies 1 to 4 are called α1 to α4. As both systems

behave statically differently, there is a relationship between the degrees of freedom αi and

θj. In this case, the primary shaft of the gearbox is taken as reference (bodies 1 and 2 of

system “A”). Hence, if a displacement αi represents a degree of freedom θj that is not on

the primary shaft, it must be converted, using the appropriate gear ratios, to the equivalent

displacement of the primary shaft.

Considering this, and the fact that the displacements α1, α2, α3 and α4 represent the

degrees of freedom θ1, θ2, θ4 and θ6, the relationships between them are:

α1 = θ1 (A.3)

α2 = θ2 (A.4)
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α3 = θ4n23 (A.5)

α4 = θ6n23n45 (A.6)

Given the relationships, the first step is to calculate the equivalent inertias, and this is

done by identically equaling the kinetic energies E
(k)
A and E

(k)
B of the systems “A” and “B”

respectively. The expression for E
(k)
A is:

E
(k)
A =

1

2

6∑

i=1

Iiθ̇
2
i (A.7)

Applying the gearing constraints, this equation becomes:

E
(k)
A =

1

2

[

I1θ̇
2
1 +

(

I2 +
I3
n2
23

)

θ̇22 +

(

I4 +
I5
n2
45

)

θ̇24 + I6θ̇
2
6

]

(A.8)

On the other hand, the expression for the total kinetic energy of system “B” is:

E
(k)
B =

1

2

4∑

i=1

Îiα̇
2
i (A.9)

Replacing Eqs. from (A.3) to (A.6) on Eq. (A.9), it becomes:

E
(k)
B =

1

2

[

Î1θ̇
2
1 + Î2θ̇

2
2 + Î3n

2
23θ̇

2
4 + Î4n

2
23n

2
45θ̇

2
6

]

(A.10)

Now, given that all θ̇i(t) are functions of time, if one states that the functions E
(k)
A and

E
(k)
B are simply equal, it would be possible to find solutions that are valid for some values

of t and not for all t, which is desired. Hence, to find a valid solution for the entire time

domain, it must be stated that both functions are identically equal, i.e.:

E
(k)
A ≡ E

(k)
B (A.11)
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From this statement, it is possible to obtain:

Î1 = I1 (A.12)

Î2 = I2 +
I3
n2
23

(A.13)

Î3 =

(

I4 +
I5
n2
45

)
1

n2
23

(A.14)

Î4 =
I6

n2
23n

2
45

(A.15)

The second step is to calculate the equivalent stiffnesses, which is done by identically

equalling the total elastic potential energies for systems “A” and “B”, given by E
(p)
A and E

(p)
B

respectively. The expression for E
(p)
A is:

E
(p)
A =

1

2

3∑

i=1

K<2i−1><2i>(θ2i − θ2i−1)
2 (A.16)

After replacing Eqs. (A.1) and (A.2) on Eq. (A.16) and rearranging the terms, it

follows that:

E
(p)
A =

1

2

[

θ21(K12) + θ22

(

K12 +
K34

n2
23

)

+ · · ·

· · ·+ θ24

(

K34 +
K56

n2
45

)

+ θ26(K56)+ · · ·

· · ·+ θ1θ2(−2K12) + θ2θ4

(

−2K34

n23

)

+ · · ·

· · ·+ θ4θ6

(

−2K56

n45

)]

(A.17)

On the other hand, the expression for E
(p)
B is:

E
(p)
B =

1

2

3∑

i=1

K̂<i><i+1>(αi+1 − αi)2 (A.18)
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Replacing Eqs. from (A.3) to (A.6) on Eq. (A.18) and reordering terms results in:

E
(p)
B =

1

2

[

θ21(K̂12) + θ22(K̂12 + K̂23)+ · · ·

· · ·+ θ24(K̂23 + K̂34)n
2
23 + θ26(K̂34n

2
23n

2
45)+ · · ·

· · ·+ θ1θ2(−2K̂12) + θ2θ4(−2K̂23n23)+ · · ·
· · ·+ θ4θ6(−2K̂34n

2
23n45)

]

(A.19)

At this point, and for the same reasons as for the calculus of the inertias, it must be

stated that:

E
(p)
A ≡ E

(p)
B (A.20)

Finally, the equivalent values for stiffness are obtained:

K̂12 = K12 (A.21)

K̂23 =
K34

n2
23

(A.22)

K̂34 =
K56

n2
23n

2
45

(A.23)

It must be reinforced here that the equivalent values of inertia and stiffness calculated

so far are valid when the system is described in the coordinates αi. In order to obtain the

matrices that describe the equivalent system in the physical coordinates θi, a coordinate

transformation must be performed. Once it is done, it is possible to verify that, for the

example given in this section, the matrices for systems A and B are identical.

On the other hand, one may choose to simply calculate the eigenvalues and eigenvec-

tors from the system represented in the coordinates αi, knowing that the eigenvalues are

exactly the same from the original system, and the eigenvectors must undergo a coordinate

transformation (given by Eqs. from (A.3) to (A.6)) in order to be equal to the ones from the

original system, if necessary.
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A.3 Generalized method to impose motion of known degrees of freedom on

linear time invariant systems

The goal of this appendix is to show a general way to impose the motion of some known

degrees of freedom on a linear time-invariant model. Let the LTI system be of the form:

Mẍ+Cẋ+Kx = f(t)

As the time response of some of the degrees of freedom of the system are known, these

time responses are grouped on an array g(t), while the unknown variables are grouped in xu.

The matrices Ak and Au are defined so that:

x = Akg(t) +Auxu

One must notice that, once the known degrees of freedom are going to be imposed,

their part on the array f(t) is of no use. In order to eliminate it, it suffices to left multiply

the whole equation by Au
T . After making it and replacing the terms in x and its derivatives

by the terms shown in the previous equation, the system becomes:

M̄ẍu + C̄ẋu + K̄xu = f̄(t)

, where:

M̄ = Au
TMAu

C̄ = Au
TCAu

K̄ = Au
TKAu

f̄(t) = Au
T f(t)−Au

TMAkg̈(t)−Au
TCAkġ(t)−Au

TKAkg(t)

The order of the system is reduced, because the known degrees of freedom are eliminated

from the left-hand side, and the known array g(t) becomes part of the excitation array.
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Appendix B -Auxiliary results for the Review on Tuned Mass Dampers

All the relevant mathematical deductions for the review on tuned mass dampers are

shown in this appendix.

B.1 Proof: Radicand real and nonnegative

In this section it is necessary to show that the term inside the square root in the equation

below is greater or equal to zero:

r21,2 =
1

2

(

1 + β2(1 + µ)∓
√

(1 + β2(1 + µ))2 − 4β2
)

Hence, the following inequality is to be proven:

(1 + β2(1 + µ))2 ≥ 4β2

Once both sides of the inequality are squared, it leads to the analysis of two inequalities.

The first inequality is:

1 + β2(1 + µ) ≥ 2β

Reordering the terms, it is easy to verify that:

(β − 1)2 ≥ −β2µ

, which is always true for real values of β and real nonnegative values of µ.

The second inequality is:

−(1 + β2(1 + µ)) ≤ −2β
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, which is obviously the same as the first one, and hence the result is the same.

�

B.2 Proof: Square of dimensionless eigenfrequency is always real and positive

In this section it is necessary to show that the smallest dimensionless eigenfrequency r1

from the expression:

r21,2 =
1

2

(

1 + β2(1 + µ)∓
√

(1 + β2(1 + µ))2 − 4β2
)

is a real nonnegative number. It will happen if and only if:

1 + β2(1 + µ) ≥
√

(1 + β2(1 + µ))2 − 4β2

, because it has already been proven that the radicand in this inequality is nonnegative.

Assuming that µ is nonnegative, it is possible to square both sides of the inequality and

obtain:

0 ≥ −4β2.

, which is always true for real values of β, and the equality only holds if β = 0.

�

B.3 Proof: Smallest dimensionless eigenfrequency is less than or equal to β

In this section it is necessary to show that the dimensionless eigenfrequency r1 is always

less than or equal to β. In this case, it will be easier to start from the square of r1, which

must be less than or equal to β2:

r21 =
1

2

(

1 + β2(1 + µ)−
√

(1 + β2(1 + µ))2 − 4β2
)

≤ β2
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After some rearrangements it is easy to obtain:

1 + β2(1 + µ)− 2β2 ≤
√

(1 + β2(1 + µ))2 − 4β2

Squaring both sides leads to:

−4β2(1 + β2(1 + µ)) + 4β4 ≤ −4β2

And after some simplifications, the inequality reduces to:

β2µ ≥ 0

, which is true for real values of β and real nonnegative values of µ, and the equality only

holds if β = 0.

�

B.4 Proof: Greatest dimensionless eigenfrequency is greater than or equal to β

In this section it is necessary to show that the dimensionless eigenfrequency r2 is always

greater than or equal to β. In this case, it will be easier to start from the square of r2, which

must be greater than or equal to β2:

r22 =
1

2

(

1 + β2(1 + µ) +
√

(1 + β2(1 + µ))2 − 4β2
)

≥ β2

After some rearrangements it is easy to obtain:

1 + β2(1 + µ)− 2β2 ≥ −
√

(1 + β2(1 + µ))2 − 4β2

It has already been proven that the term on the right hand side of this inequality is

real and nonpositive (the radicand is nonnegative, and the result from the square root is
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multiplied by minus one). If the term on the right hand side is proven to be nonnegative,

then the inequality will be confirmed.

For such term to be nonnegative, considering that β and µ are real and the latter is

nonnegative, the necessary and sufficient condition is:

1 + β2(1 + µ) ≥ 2β2

Reordering the terms leads to:

(β − 1)2 ≥ −β2µ

, which is always true for the conditions stated for β and µ.

�

B.5 Proof: Asymptotic behavior of gap between dimensionless eigenfrequencies

as a function of β

In this section the asymptotic behavior of the gap between the dimensionless eigenfre-

quencies as a function of the parameter β is demonstrated.

Firstly, the formula for such gap is given by:

r2 − r1 =

√

1
2

(

1 + β2(1 + µ) +
√

(1 + β2(1 + µ))2 − 4β2
)

+ · · ·

−
√

1
2

(

1 + β2(1 + µ)−
√

(1 + β2(1 + µ))2 − 4β2
)

Differentiating this formula with respect to β would be prohibitive. Hence, before that,

meaningful simplification is achieved by simply squaring both sides of this equation and then

taking the square root of the result. Once it has already been shown that r2 > r1 the result
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of this procedure will be a positive number as is the expression r2 − r1:

√

(r2 − r1)2 = |r2 − r1| =
r2 − r1 =

√

(β − 1)2 + β2µ

The first derivative of this expression with respect to β is given by:

∂(r2 − r1)

∂β
=

β(µ+ 1)− 1
√

(β − 1)2 + β2µ

In order to verify asymptotic behavior, the limit of such derivative must tend to a

constant value, which is verified below for β tending to zero and to the infinity:

lim
β→0

∂(r2 − r1)

∂β
= −1

lim
β→∞

∂(r2 − r1)

∂β
=
√

µ+ 1

Once both asymptotes exist and their slopes have already been calculated, the limit of

the difference between the actual value of the gap and the slope of the asymptote multiplied

by β must be constant and equal to the independent term on the function that describes the

asymptote. Hence:

lim
β→0

(r2 − r1)− (−β) = 1

lim
β→∞

(r2 − r1)− β
√

µ+ 1 =
1√
µ+ 1

With these results, the following asymptotes are defined:

lim
β→0

(r2 − r1) → 1− β

lim
β→∞

(r2 − r1) → β
√

µ+ 1 +
1√
µ+ 1
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Also, the minimum of this curve is reached when its derivative equals zero, i.e.:

∂(r2 − r1)

∂β
= 0 ⇔ β =

1

1 + µ
⇒ r2 − r1 =

µ

1 + µ

�

B.6 Proof: Asymptotic behavior of gap between dimensionless eigenfrequencies

as a function of µ

In this section the asymptotic behavior of the gap between the dimensionless eigenfre-

quencies as a function of the parameter µ is demonstrated.

Firstly, the formula for such gap is given by:

r2 − r1 =

√

1
2

(

1 + β2(1 + µ) +
√

(1 + β2(1 + µ))2 − 4β2
)

+ · · ·

−
√

1
2

(

1 + β2(1 + µ)−
√

(1 + β2(1 + µ))2 − 4β2
)

Differentiating this formula with respect to µ would be prohibitive. Hence, before that,

meaningful simplification is achieved by simply squaring both sides of this equation and then

taking the square root of the result. Once it has already been shown that r2 > r1 the result

of this procedure will be a positive number as is the expression r2 − r1:

√

(r2 − r1)2 = |r2 − r1| =
r2 − r1 =

√

(β − 1)2 + β2µ

The first derivative of this expression with respect to µ is given by:

∂(r2 − r1)

∂µ
=

β2

2
√

(β − 1)2 + β2µ
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For small values of µ, it is possible to verify that:

lim
µ→0

∂(r2 − r1)

∂µ
=

β2

2|β − 1|

lim
µ→0

(r2 − r1)−
β2

2|β − 1|µ = |β − 1|

And hence, the following asymptote is defined:

limµ→ 0(r2 − r1) →
β2

2|β − 1|µ+ |β − 1|

For higher values of µ, however, the limit of the derivative of the gap with µ tending

to the infinity is undefined:

lim
µ→∞

∂(r2 − r1)

∂µ
→ ∞

, and hence no asymptotic behavior is verified.

�

B.7 Proof: Normalized FRF for a 1-DOF system with multiple similar TMDs

In this section, it is necessary to show the derivation of the normalized frequency re-

sponse function for a system with one degree of freedom which has n similar tuned mass

dampers attached to it.

The mass of the carrier structure is mt, its stiffness is kt, and its vertical displacement

is described by the degree of freedom xt. The mass of the p-th TMD is m
(p)
a = ma, its

stiffness is k
(p)
a = ka and its vertical displacement is described by the degree of freedom x

(p)
a .

Furthermore, a sinusoidal force, given by F (ω, t), acting on the carrier structure is considered.

Hence, the n+ 1 equations of motion are given by:







mtẍt + ktxt +
n∑

p=1

ka(xt − x
(p)
a ) = F (ω, t)

maẍ
(p)
a + ka(x

(p)
a − xt) = 0 , p ∈ {1, ..., n}
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The steady state response must be calculated, and therefore, in order to ease the cal-

culations, the proposed solutions and the excitation are expressed in terms of a complex

exponential function. Consequently, the following relationships are assumed:

xt(t) = Re [x̌te
jωt] ; x

(p)
a (t) = Re

[

x̌
(p)
a ejωt

]

; F (ω, t) = Re
[
F̌ ejωt

]

, where x̌t, x̌
(p)
a and F̌ are complex constants.

Replacing these relations on the equation of motion for the p-th tuned mass damper

leads to:

−maω
2x̌(p)a + kax̌

(p)
a − kax̌t = 0

, from which it is possible to isolate x̌
(p)
a :

x̌(p)a =
kax̌t

ka −maω2
, p ∈ {1, ..., n}

Now, replacing the complex exponential relations on the equation of motion for the

carrier structure leads to:

−mtx̌tω
2 + ktx̌t +

n∑

p=1

ka(x̌t − x̌(p)a ) = F̌

But, from the other n equations it was possible to isolate the term x̌
(p)
a . Hence, it can

be replaced in this equation, leading to:

−mtx̌tω
2 + ktx̌t +

n∑

p=1

ka(x̌t −
kax̌t

ka −maω2
) = F̌

The argument in the summation term does not depend on the variable p, and hence

the result of this operation is n times this argument. With this and some simplifications, it

is possible to calculate the following ratio:

x̌t

F̌
=

ka −maω
2

(kt −mtω2)(ka −maω2)− nkamaω2
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It is now possible to calculate this ratio in terms of the dimensionless parameters:

β = ωa

ωt
; ωa =

√
ka
ma

; ωt =
√

kt
mt

; µ = ma

mt
; r = ω

ωt

It must be taken into account that when these dimensionless parameters are considered,

specially r, a change in the time base from t to τ = ωtt is implicit. Hence, after some

simplifications, taking the absolute value on both sides of the equation leads directly to the

normalized frequency response function for the carrier structure, given by:

|xt(τ)|
|F (r, τ)|/kt

=
β2 − r2

r4 − r2(1 + β2(1 + nµ)) + β2

�

B.8 Derivation: Equations of motion for a single torsional disk with a CPVA

In this section, the equations of motion for a purely torsional disk with a CPVA attached

to it are shown. The free body diagram for the disk and for the pendulum are shown in Fig.

B.1.

Ft

Fc
R
p

θt

a)

ǫ a

Ft

Fc

mag

θt + θa

b)

Figure B.1: Free body diagrams for disk and pendulum.

The summation of moments on the disk about its center of mass (
∑
Mt) must me equal

to its polar moment of inertia (It) multiplied by its absolute angular acceleration(θ̈t). Hence:

∑

Mt = Itθ̈t = −FtRp
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In order to eliminate the term Ft, which is an inner effort, from this equation, the

summation of the forces on the tangential direction of the pin trajectory (
∑
Ftd), acting on

the pendulum is calculated, and it must be equal to the product between the acceleration of

its center of mass on the same direction (atd) and its mass (ma). Therefore:

∑

Ftg = maatd = Ft −mag cos θt = ma(Rpθ̈t + ǫa(θ̈t + θ̈a) cos θa − ǫa(θ̇
2
t + θ̇2a) sin θa)

Isolating Ft in this equation and replacing it on the first one leads to the first equation

of motion, which describes the dynamics of the disk:

(It +maR
2
p +maRpǫa cos θa)θ̈t +maRpǫaθ̈a cos θa −maRpǫa(θ̇t + θ̇a)

2 sin θa +maRpg cos θt = 0

In order to obtain the second equation of motion, one merely has to obtain the summa-

tion of the moments acting on the pendulum about the point where it is pinned to the disk

(
∑
Mp). This summation term equals to the product between the polar moment of inertia of

the pendulum bob about its center of mass (Ia) and its absolute angular acceleration (θ̈a+ θ̈t)

plus a correction term due to the fact that the summation is not obtained about its center of

mass. This term is the product between the mass of the pendulum bob (ma), the acceleration

of its center of mass on its tangential direction (atp) and the distance between its center of

mass and the pin (ǫa). Consequently:

∑

Mp = Ia(θ̈a + θ̈t) +maatpǫa = −maǫag cos(θt + θa)

, where:

atp = (θ̈t + θ̈a)ǫa + θ̈tRp cos θa + θ̇2tRp sin θa

Replacing this term on the previous equation leads to the second equation of motion,

which describes the dynamics of the pendulum bob:

(Ia +maǫ
2
a)θ̈a + (Ia +maǫ

2
a +maǫaRp cos θa)θ̈t +maǫaRpθ̇

2
t sin θa +maǫag cos(θt + θa) = 0

�
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B.9 A brief introduction to the Floquet theory applied to one-degree-of-freedom

systems

In this section a brief introduction to the Floquet theory for one-degree-of-freedom

systems is shown. It is based on the work by Stoker (1950).

The goal is to study the solutions for linear time varying equations of the following

form:
d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0 ,

∣
∣
∣
∣
∣

p(z) = p(z + ζ)

q(z) = q(z + ζ)

, i.e. p(z) and q(z) are periodic in z with period ζ.

Once it is a homogeneous differential equation of second order, it must have two linearly

independent solutions w1 and w2, and the final solution must be a linear combination of them,

whose coefficients are to be determined by the initial values for z. The couple (w1, w2) is

called the fundamental solution set.

If the set of solutions (w1, w2) is a fundamental set, then the wronskian:

∆(z) =

∣
∣
∣
∣
∣
∣

w1 w2

dw1

dz

dw2

dz

∣
∣
∣
∣
∣
∣

:=

∣
∣
∣
∣
∣

w1 w2

w′
1 w′

2

∣
∣
∣
∣
∣
≡/ 0

, must not identically vanish. If it did, then the pair (w1, w2) would not be linearly indepen-

dent, and hence not a fundamental set of solutions.

As a consequence of the periodicity of p(z) and q(z), if (w1(z), w2(z)) is a fundamental

set, then (w1(z + ζ), w2(z + ζ)) also is. This does not imply, however, that w1 and/or w2 are

periodic.

As any solution can be written as a linear combination of w1(z) and w2(z), so can the

solutions w1(z + ζ) and w2(z + ζ), and consequently:

[

a11 a12

a21 a22

]{

w1(z)

w2(z)

}

=

{

w1(z + ζ)

w2(z + ζ)

}
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, where:

det([aij]) =

∣
∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
∣
6= 0

It is not always true that the solutions wi(z) are periodic, although p(z) and q(z) are.

However, there are some solutions that are simply multiplied by a constant factor σ when

there is a shift of ζ ∈ R, i.e. there are solutions where:

wi(z + ζ) = σwi(z)

As a consequence of this, from the relationship between the fundamental sets (w1(z), w2(z))

and (w1(z+ζ), w2(z+ζ)), it is possible to obtain the following homogeneous algebraic system:

[

a11 − σ a12

a21 a22 − σ

]{

w1(z)

w2(z)

}

=

{

0

0

}

Clearly, the only nontrivial solutions for this problem are the roots of the polynomial

in the equation below, namely the characteristic equation:

σ2 − (a11 + a22)σ + det([aij]) = 0

Once [aij] is nonsingular, its determinant will never be zero, and hence the values of σ

can be determined. Furthermore, if the roots are simple (i.e. not multiple), then there are

two linearly independent solutions of the form:

wi(z) = eαizϕ(z)

, being αi ∈ C
∗ and ϕ(z + ζ) periodic with period ζ in z.

Applying a one period shift, it is possible to obtain:

σiwi(z) = wi(z + ζ) = eαi(z+ζ)ϕ(z + ζ) = eαiζeαizϕ(z) = eαiζwi(z)

Consequently, the assumption of ϕ(z) as a periodic function with period ζ in z leads
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to:

σi = eαiζ

, with σi and αi not necessarily real.

These constants are closely related to the boundedness of the normal solutions w1

and w2. For this reason, σi is called a Floquet multiplier and αi is a Floquet exponent.

Boundedness is given by |σi| ≤ 1 or Re [αi] ≤ 0, where the equalities represent the limit of

the boundedness. Otherwise, the solutions are unbounded.

Another important consequence of the form assumed for the normal solutions is that

once αi may be complex, the exponential eαiz may be a periodic function. Particularly, if

σi = −1, then the period of the normal solution wi(z) is 2ζ, and not ζ as firstly expected.

The conclusions obtained so far are valid if the roots of the characteristic equation σ1

and σ2 are different. If there is only one root σ with multiplicity 2, then the normal solutions

are given by:







w1(z) = eαzϕ1(z)

w2(z) = eαz
(
az

σζ
ϕ1(z) + ψ1(z)

)

| ψ1(z + ζ) = ψ1(z)

B.10 Introduction to the general Floquet theory

The goal of this section is to introduce the main features from the general Floquet

theory. It is based on the work by Slane and Tragesser (2011).

The object of study are homogeneous and autonomous systems defined by:

ẋ = A(t)x

, where the matrix A(t) is n× n time varying and periodic with period ζ in t.

The first step is to define the fundamental matrix X(t), which is a matrix function

whose columns are linearly independent solutions of ẋ = A(t)x. It is non singular and
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not unique. If X(t0) = I, where I is the identity matrix, then X(t) is called the principal

fundamental matrix.

From this definition it follows directly that:

• If X(t) is a fundamental matrix, then Y(t) = X(t)B for any nonsingular constant

matrix B.

• If A(t) is ζ-periodic and X(t) is a fundamental matrix, then so is X(t + ζ), and there

exists a nonsingular constant matrix B such that X(t+ ζ) = X(t)B.

Since the matrix B is constant, it can be easily calculated by setting t = 0, and then:

B = X−1(0)X(ζ)

Especially, if X(t) is the principal fundamental matrix, then:

B = X(ζ)

From the Floquet-Lyapunov theorem, any fundamental matrix of the aforementioned

system must be of the form:

X(t) = Φ(t)eKt

, where Φ(t) is a nonsingular continuous ζ-periodic n × n matrix function, and K is some

constant matrix.

From the previous definitions, it is possible to say that:

X(t+ ζ) = Φ(t+ ζ)eK(t+ζ) = Φ(t)eKteKζ = X(t)eKζ = X(t)B

, from which it is directly concluded that:

B = eKζ
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Furthermore, if X(t) is the principal fundamental matrix, then:

B = eKζ = X(ζ)

The eigenvalues of K are called the characteristic Floquet exponents (αi), while the

eigenvalues of B are the Floquet multipliers (σi). The matrix B is called the monodromy

matrix. The relationship between the exponents and the multipliers is:

αi =
ln σi
ζ

Once αi and σi need not be real, carrying analyses considering the multipliers is more

convenient than through the exponents, for avoiding the calculation of a complex logarithm.

The main advantage brought by this theory is that, just by determining the monodromy

matrix, it is possible to infer the system’s stability beforehand.

B.11 Introduction to the extended Floquet theory

The goal of this section is to introduce the results brought by the work of Slane and

Tragesser (2011) on the analysis of inhomogeneous systems with periodic coefficients.

The system to be studied is of the form:

ẋ = A(t)x+ g(t)

, where the matrix A(t) and the array g(t) are ζ-periodic.

The solution to this equation is readily expressible in terms of the principal fundamental

matrix X(t) as follows:

x(t) = X(t)



x(0) +

t∫

0

X−1(τ)g(τ)dτ




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The same solution after precisely n periods (n ∈ Z
∗
+), is given by:

x(nζ) = Xn(ζ)x(0)
︸ ︷︷ ︸

Homogeneous

+

summation
︷ ︸︸ ︷(

n∑

i=1

Xi(ζ)

)

integral
︷ ︸︸ ︷
ζ∫

0

X−1(τ)g(τ)dτ

︸ ︷︷ ︸

Inhomogeneous

The boundedness of the homogeneous solution is given by the existence of the limit

lim
n→∞

Xn(ζ), which is defined by the following theorem:

Theorem 1 (Limits of Powers Theorem). Given a complex square matrix X, the limit

lim
n→∞

Xn exists if and only if ρ [X(ζ)] < 1 or ρ [X(ζ)] = 1, where 1 is the only eigenvalue on

the unit circle and is semisimple.

When it exists, this limit is the projector onto the null space of (I−A) along its range

space.

This theorem is complemented by the following one:

Theorem 2 (Cesàro summability). Given a complex square matrix X, such matrix is Cesàro

summable if and only if ρ [X(ζ)] < 1 or ρ [X(ζ)] = 1 where each eigenvalue on the unit circle

is semisimple.

If the Cesàro limit exists, it is given by:

lim
n→∞

1

n

(

I+
n−1∑

i=1

Xi

)

= G

, where G is the projector onto the null space of (I−A) along its range space, the very same

from the Limits of Powers Theorem, in case it exists. The matrix G will not be null if and

only if 1 is an eigenvalue of X.

It is important to notice that if lim
n→∞

Xn exists, it implies that G exists, but the converse

is not true, once the Cesàro sum is the limit of the arithmetic mean of the n partial sums

of a series with n tending to the infinity. In other words, if a series does not converge but

oscillates around a mean value, the limit does not exist but the Cesàro sum does.
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With these results it is now clear that the homogeneous response of this system will

only be unbounded in case there are eigenvalues on the unit circle that are not semisimple

or in case there are eigenvalues outside it.

Now, turning the discussion to the boundedness of the inhomogeneous solution, it turns

out that the integral term is calculated over a single well defined period, and hence it is con-

stant. Consequently, the boundedness of this term depends exclusively on the boundedness

of the summation term, given by the following theorem:

Theorem 3 (Neumann series). Given a complex square matrix X, if the Neumann series

I+
∞∑

i=1

Xi converges, both statements hold:

• ρ [X] < 1

• lim
n→∞

Xn = 0

and if they do, the Neumann series converges.

It is important to mention that if lim
n→∞

Xn = 0, then (I−X)−1 exists and

lim
n→∞

I+
n∑

i=1

Xi = (I−X)−1

.

If the eigenvalues of X(ζ) all lie inside the unit circle, or if there are some semisimple

ones on the unit circle that are other than 1, then the summation term converges. If 1 is the

only multiplier on the unit circle, even if it is semisimple the summation term will diverge.

Obviously, divergence also occurs when there are non semisimple eigenvalues on the unit

circle or when they lie outside it.

The results from this extension are then summarized on Table 3.1.
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B.12 Proof: s2i from Eq. (3.33) is negative

The goal of this section is to prove that the parameter s21,2 shown in Eq. (3.33) is always

negative.

In order to ease further analyses, the following parameters are defined:

q = 1− µv2(v2 + 1) ; r = µ(v2 + 1) + 1 +
1

β2a

, so that:

s21,2 =
v2

2q

(

−r ±
√

r2 − 4q

β2a

)

The first thing to prove is that the radicand is in R+. Hence, it is necessary to prove

that: (

µv2(v2 + 1) + 1 +
1

β2a

)2

− 4(1− µv2(v2 + 1))

β2a
≥ 0

This expression can be rearranged to:

(

1− 1

β2a

)2

+

(

2 + µv2(v2 + 1) +
6

β2a

)

µv2(v2 + 1) ≥ 0

Once a and µ are real and positive, and β and v are real, then this inequality will always

hold and the radicand will always be greater than or equal to zero.

It is easy to see that r is positive, but nothing can be said about q. Once the radicand

is proven to be positive, this directly constraints q to:

q ≥ 0

On the other hand, if the result of the square root is greater than r, one of the squared

eigenvalues will be real and positive, leading directly to instability. Hence, the parameter q

must be positive.
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The positiveness of q is assured by the relationship:

µ >
1

v2(v2 + 1)

�

B.13 Proof: Asymptotic behavior of eigen-order χ1

The goal of this section is to prove the asymptotic behavior of χ1 when Ω tends to zero

and to the infinity.

Firstly, the following parameters are introduced:

q = 1− µv2(v2 + 1) ; βΩ =
β

Ω

Then, the eigen-order χ1 can be written as:

χ1 =
v√
2q





(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)

−

√
(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)2

− 4q

β2
ΩΩ

2a





1/2

After squaring both sides and rearranging some terms, it is possible to obtain:

2qχ2
1

v2
=

(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)

−

√
(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)2

− 4q

β2
ΩΩ

2a

Performing more rearrangements and squaring both sides again leads to:

−2

(
2qχ2

1

v2

)(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)

+

(
2qχ2

1

v2

)2

= − 4q

β2
ΩΩ

2a

From this point on it is possible to apply both limits, with Ω tending to zero and to
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the infinity. For the first limit, it is convenient to multiply both sides of the equation by Ω2,

which leads to:

−2

(

Ω2

(
1− q

v2
+ 1

)

+
1

β2
Ωa

)(
2qχ2

1

v2

)

+ Ω2

(
2qχ2

1

v2

)2

= − 4q

β2
Ωa

Applying the limit with Ω → 0 on both sides provides the following expression:

(

lim
Ω→0

Ω2
)(−4(1− q)q

β2
Ωv

4a
lim
Ω→0

χ2
1 +

4q2

v4
lim
Ω→0

χ4
1

)

− 4q

β2
Ωv

2a
lim
Ω→0

χ2
1 = − 4q

β2
Ωa

If lim
Ω→0

χ1 exists, then this expression reduces to:

1

v2
lim
Ω→0

χ2
1 = 1

, and hence:

lim
Ω→0

χ1 = v

This proof is completed by Appendix B.15, where it is shown that χ1 ≤ v if q ≤ 1.

Returning now to the following expression:

χ1 =
v√
2q





(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)

−

√
(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)2

− 4q

β2
ΩΩ

2a





1/2

It is rather direct to see that if Ω tends to the infinity, then χ1 tends to zero. Hence,

the asymptotic behavior of χ1 is proven.

�
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B.14 Proof: Asymptotic behavior of eigen-order χ2

The goal of this section is to prove the asymptotic behavior of χ2 when Ω tends to zero

and to the infinity.

Firstly, the following parameters are introduced:

q = 1− µv2(v2 + 1) ; βΩ =
β

Ω

Then, the eigen-order χ2 can be written as:

χ2 =
v√
2q





(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)

+

√
(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)2

− 4q

β2
ΩΩ

2a





1/2

Applying the limit with Ω → ∞ on both sides, the result is straightforward:

lim
Ω→∞

χ2 =

√

1− q + v2

q

Now, for the case where Ω → 0, some rearrangements must be performed. In the

expression for χ2, it is possible to rewrite it putting the factor 1/Ω in evidence:

χ2 =

(
v

Ω
√
2q

)

︸ ︷︷ ︸

Part: I





(

Ω2

(
1− q

v2
+ 1

)

+
1

β2
Ωa

)

+

√
(

Ω2

(
1− q

v2
+ 1

)

+
1

β2
Ωa

)2

− 4qΩ4

β2
Ωa





1/2

︸ ︷︷ ︸

Part: II

When Ω tends to zero, it is very clear that part II of this expression tends to a constant,

while part I tends to the infinity. Hence, it is straightforward to conclude that:

lim
Ω→0

χ2 → ∞
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Therefore, the asymptotic behavior of χ2 is proven.

�

B.15 Proof: Maximum value of eigen-order χ1

The goal of this section is to prove that the eigen-order χ1 is always lower than or equal

to v. Once χ1 is given by:

χ1 =
v√
2q





(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)

−

√
(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)2

− 4q

β2
ΩΩ

2a





1/2

, the inequality to be solved is:

v√
2q





(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)

−

√
(
1− q

v2
+ 1 +

1

β2
ΩΩ

2a

)2

− 4q

β2
ΩΩ

2a





1/2

≤ v

It is possible to square both sides and perform some rearrangements to obtain:

(
1− q

v2
+ 1 +

1

β2a

)

−

√
(
1− q

v2
+ 1 +

1

β2a

)2

− 4q

β2a
≤ 2q

In order to eliminate the square root, it is isolated and both sides are squared once

more. After some rearrangements it is possible to achieve the interesting expression:

−q(1− q) ≤ 0

, which is true if and only if:

0 < q ≤ 1

Hence,

χ1 ≤ v ⇔ 0 < q ≤ 1 ⇒ v ∈ R; µ ∈ R+
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B.16 Proof: Minimum value of eigen-order χ2

The goal of this section is to prove that the eigen-order χ2 is always greater than or

equal to
√

1−q+v2

q
. Once χ2 is given by:

χ2 =
v√
2q





(
1− q

v2
+ 1 +

1

β2a

)

+

√
(
1− q

v2
+ 1 +

1

β2a

)2

− 4q

β2a





1/2

, the inequality to be solved is:

v√
2q





(
1− q

v2
+ 1 +

1

β2a

)

+

√
(
1− q

v2
+ 1 +

1

β2a

)2

− 4q

β2a





1/2

≥
√

1− q + v2

q

It is possible to square both sides and perform some rearrangements to obtain:

(
1− q

v2
+ 1 +

1

β2a

)

+

√
(
1− q

v2
+ 1 +

1

β2a

)2

− 4q

β2a
≥ 2(1− q + v2)

v2

In order to eliminate the square root, it is isolated and both sides are squared once

more:
−4q

β2a
≥ 4

(
1− q

v2
+ 1

)2

− 4

(
1− q

v2
+ 1

)(
1− q

v2
+ 1 +

1

β2a

)

, which reduces to

q ≤ 1

Hence,

χ2 ≥
√

1− q + v2

q
⇔ q ≤ 1

�
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B.17 Derivation: Equations of motion for a single torsional disk with a General

Path CPVA

The goal of this section is to exhibit the derivation of the equations of motion of a single

torsional disk with a General Path CPVA. A pendulum with general path is represented in

Fig. B.2.

P

Circular path

General path

θa

ra(θa)

θt

Figure B.2: Representation of a general path pendulum.

The mass of the pendulum is represented by a point that is free to slide on the rod,

that is pinned to the point P . Although this mass is free to slide, it is constrained to remain

on the General path indicated in the figure. One must notice that this path is not circular.

The circular one is indicated by the dashed circumference around the point P . In order to

locate the center of mass of the pendulum with respect to the point P , the relative angle θa

is used. The distance of the center of mass of the pendulum bob to the point P is then given

by ra(θa).

The position of the center of mass of the pendulum bob, considering that the point P

is at a distance Rp from the center of the disk is:

Px = Rp cos θt + ra(θa) cos(θa + θt)

Py = Rp sin θt + ra(θa) sin(θa + θt)

The speed of this point is given by the first derivative Px and Py with respect to time
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in the respective directions, and is given by:

Ṗx = −Rpθ̇t sin θt − ra(θa)(θ̇a + θ̇t) sin(θa + θt) +
dra(θa)

dθa
θ̇a cos(θa + θt)

Ṗy = Rpθ̇t cos θt + ra(θa)(θ̇a + θ̇t) cos(θa + θt) +
dra(θa)

dθa
θ̇a sin(θa + θt)

Its acceleration in x and y directions is then given by:

P̈x = −Rp

(

θ̈t sin θt + θ̇2t cos θt

)

+ · · ·

−ra(θa)
(

(θ̈a + θ̈t) sin(θa + θt) + (θ̇a + θ̇t)
2 cos(θa + θt)

)

+ · · ·

+
dra(θa)

dθa

(

θ̈a cos(θa + θt)− 2θ̇a(θ̇a + θ̇t) sin(θa + θt)
)

+ · · ·

+
d2ra(θa)

dθ2a
θ̇2a cos(θa + θt)

P̈y = Rp

(

θ̈t cos θt − θ̇2t sin θt

)

+ · · ·

+ra(θa)
(

(θ̈a + θ̈t) cos(θa + θt)− (θ̇a + θ̇t)
2 sin(θa + θt)

)

+ · · ·

+
dra(θa)

dθa

(

θ̈a sin(θa + θt) + 2θ̇a(θ̇a + θ̇t) cos(θa + θt)
)

+ · · ·

+
d2ra(θa)

dθ2a
θ̇2a sin(θa + θt)

The free body diagrams for this system are shown in Fig. B.3.

The summations of efforts in x and y directions for the pendulum body are then:

maP̈x = Fx

maP̈y = Fy −mag
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P

Fx Fy

a)

θt

b)

P Fx

Fy

θa

mag

Figure B.3: Free body diagrams for disk with general path CPVA.

The summation of moments at the disk about its center of mass is:

Itθ̈t = Rp(Fx sin θt − Fy cos θt)

Replacing the two previous equations on this one makes possible to fins the equation

of motion for the disk, given by:

(It +maR
2
p)θ̈t +maRp

d2ra(θa)

dθ2a
(θ̇2a sin θa) + · · ·

+maRp
dra(θa)

dθa

(

θ̈a sin θa + 2θ̇a(θ̇a + θ̇t) cos θa

)

+ · · ·

+maRpra(θa)
(

(θ̈a + θ̈t) cos θa − (θ̇a + θ̇t)
2 sin θa

)

+maRpg cos θt = 0

The equation of motion of the pendulum can be obtained directly by making the sum-

mation of the moments about the point P :

∑

MP = Ia(θ̈a + θ̈t) +ma

(

P̈y cos(θa + θt)− P̈x sin(θa + θt)
)

ra(θa)

Replacing all the terms on this equation leads to the equation of motion for the pen-

dulum:
(
Ia +mar

2
a(θa)

)
(θ̈a + θ̈t) + 2ma

dra(θa)

dθa
ra(θa)θ̇a(θ̇a + θ̇t) + · · ·

+mara(θa)
(

Rp(θ̈t cos θa + θ̇2t sin θa) + g cos(θt + θa)
)

= 0
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B.18 List of derivatives of the radius of the general path in terms of the function

g(θr)

In this appendix the derivatives of ra(θa) with respect to θa as functions of g(θr) are

shown up to the eighth order. The first one has already been shown in section 3.3.3, and is

given by:

d

dθa
(ra(θa)) =







dxp
dθr

xp +
dyp
dθr

yp

dxp
dθr

yp −
dyp
dθr

xp






ra(θa(θr)) = g(θr)ra(θa)

The higher ones, up to the eighth order are listed below. In this appendix only, the

notation g′ means differentiation with respect to θa:

d2

dθ2a
(ra(θa)) =

(
g2 + g′

)
ra(θa)

d3

dθ3a
(ra(θa)) =

(
g3 + 3g′g + g′′

)
ra(θa)

d4

dθ4a
(ra(θa)) =

(
3g′2 + 6g′g2 + g4 + 4g′′g + g′′′

)
ra(θa)

d5

dθ5a
(ra(θa)) =

(
15g′2g + 10g′g3 + 10g′′g′ + g5 + 10g′′g2 + 5g′′′g + gIV

)
ra(θa)

d6

dθ6a
(ra(θa)) = (10g′′2 + 60g′′g′g + 20g′′g3 + 15g′3 + 45g′2g2 + 15g′g4 + 15g′′′g′ + · · ·

+g6 + 15g′′′g2 + 6gIV g + gV
)
ra(θa)

d7

dθ7a
(ra(θa)) = (70g′′2g + 105g′′g′2 + 210g′′g′g2 + 35g′′g4 + 35g′′′g′′ + 105g′3g + · · ·

+105g′2g3 + 21g′g5 + 105g′′′g′g + 21gIV g′ + g7 + 35g′′′g3 + · · ·
+21gIV g2 + 7gV g + gV I

)
ra(θa)

d8

dθ8a
(ra(θa)) = (280g′′2g′ + 280g′′2g2 + 280g′′g′′′g + 840g′′g′2g + 560g′′g′g3 + · · ·

+56g′′g5 + 56gIV g′′ + 35g′′′2 + 210g′′′g′2 + 420g′′′g′g2 + 70g′′′g4+ · · ·
+105g′4 + 420g′3g2 + 210g′2g4 + 28g′g6 + 168gIV g′g + 28gV g′+ · · ·
+g8 + 56gIV g3 + 28gV g2 + 8gV Ig + gV II

)
ra(θa)
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B.19 List of functions from E0(p) to E8(p) for the epicycloid

In this appendix the functions from E0(p) to E8(p) are defined for the polynomial

approximation of the epicycloid. Only the functions with even subscripts are not identically

null.

E0(p) = 1

E2(p) = −3(p− 1)

(p− 2)2

E4(p) =
(p− 1)

(p− 2)5
(
15p3 + 13p2 − 103p+ 70

)

E6(p) =
(p− 1)

(p− 2)8
(
63p6 + 1607p5 − 6577p4 + 6301p3 + 3341p2 − 7378p+ 2650

)

E8(p) =
(p− 1)

(p− 2)11

(

255p9 + 38325p8 + 34809p7 − 1195927p6 + 3926985p5 + · · ·
−5681495p4 + 4083785p3 − 1314990p2 + 90652p+ 17592

)

B.20 Table of values of p1(v) for given values of v

In this section a table of values for the root p1(v) are provided for vanishing the 3rd

detuning term. Results are shown in Table B.1.
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Table B.1: Some values of p1(v)

v p1(v) v p1(v)
0.0 0.8541019662 4.1 0.0473131498
0.1 0.8525478078 4.2 0.0451807130
0.2 0.8476795230 4.3 0.0431875773
0.3 0.8388182755 4.4 0.0413219965
0.4 0.8246073691 4.5 0.0395734251
0.5 0.8026277710 4.6 0.0379323753
0.6 0.7690045650 4.7 0.0363902932
0.7 0.7193477645 4.8 0.0349394517
0.8 0.6538332015 4.9 0.0335728566
0.9 0.5814012026 5.0 0.0322841662
1.0 0.5123060889 5.1 0.0310676196
1.1 0.4512515101 5.2 0.0299179745
1.2 0.3988581452 5.3 0.0288304527
1.3 0.3542515219 5.4 0.0278006920
1.4 0.3162477087 5.5 0.0268247038
1.5 0.2837377878 5.6 0.0258988355
1.6 0.2557807170 5.7 0.0250197372
1.7 0.2316043011 5.8 0.0241843328
1.8 0.2105815757 5.9 0.0233897931
1.9 0.1922040714 6.0 0.0226335128
2.0 0.1760581689 6.1 0.0219130899
2.1 0.1618057625 6.2 0.0212263067
2.2 0.1491689128 6.3 0.0205711134
2.3 0.1379177989 6.4 0.0199456133
2.4 0.1278612778 6.5 0.0193480488
2.5 0.1188394746 6.6 0.0187767900
2.6 0.1107179403 6.7 0.0182303235
2.7 0.1033830215 6.8 0.0177072427
2.8 0.0967381705 6.9 0.0172062387
2.9 0.0907009872 7.0 0.0167260927
3.0 0.0852008334 7.1 0.0162656682
3.1 0.0801768991 7.2 0.0158239049
3.2 0.0755766251 7.3 0.0153998124
3.3 0.0713544112 7.4 0.0149924649
3.4 0.0674705510 7.5 0.0146009962
3.5 0.0638903514 7.6 0.0142245952
3.6 0.0605833998 7.7 0.0138625015
3.7 0.0575229520 7.8 0.0135140021
3.8 0.0546854197 7.9 0.0131784277
3.9 0.0520499380 8.0 0.0128551494
4.0 0.0495980006 8.1 0.0125435761
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