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Resumo

A matriz de homografia define uma relação que surge quando um plano é observado a
partir de dois pontos de vista diferentes. Estimar essa matriz é uma tarefa fundamental
em muitas aplicações da robótica e pode ser formulada como um problema de registro de
imagens. Ele é definido como uma busca pelos parâmetros que melhor definem uma trans-
formação entre duas imagens. Métodos de estimação visual dividem-se em duas classe:
baseados em primitivas ou intensidade. Por um lado, métodos baseados em primitivas tem
um domínio de convergência grande, mas baixa precisão. Por outro lado, aqueles basea-
dos em intensidade possuem propriedades complementares: um domínio de convergência
menor, com alta precisão. Esse trabalho apresenta um método que possui o domínio de
convergência dos métodos baseados em primitivas e a precisão daqueles baseados em in-
tensidade. Ele unifica a informação geométrica e fotométrica advinda de cada classe em
um único método de otimização, combinando suas funcões custo por meio de pesos cuida-
dosamente selecionados e executando rejeição de outliers. A otimização utiliza o método
de Minimização de Segunda-ordem Eficiente porque ele permite uma aproximação de se-
gunda ordem da série de Taylor sem a realização de cálculos custosos da matriz Hessiana.
Adicionalmente, dois métodos são apresentados como passos intermediários: um baseado
em intensidade capaz de tratar robustamente oclusões desconhecidas e outro baseado
em primitivas que implementa o a Minimização de Segunda-ordem Eficiente. Todos os
métodos desenvolvidos nessa dissertação são disponibilizados para uso pela comunidade
acadêmica.

Palavras-chave: Robótica, Visão Computacional, Matriz de Homografia



Abstract

The homography matrix defines a relation that arises when a plane is observed from
two different viewpoints. Estimating it is a fundamental task in many robotic applica-
tions and can be formulated as an image registration problem. It is defined as a search
for the parameters that best define the transformation between a pair of images. Vision-
based algorithms are generally divided in two classes: feature-based and intensity-based.
Feature-based methods have a large convergence domain with relatively low precision.
Intensity-based methods have complementary properties: a smaller convergence domain
with better precision. This work presents a method that has the convergence domain of
feature-based methods with the precision of the intensity-based ones. It unifies the pho-
tometric and geometric information from each classes into a single optimization method,
combining their cost functions with carefully selected weights and performing outlier re-
jection. The optimization uses the Efficient Second-order Minimization (ESM) because it
allows for a second-order approximation of the Taylor series without performing any com-
putationally expensive Hessian calculations. Additionally, two methods are also presented
as intermediate steps: a intensity-based one that is able to robustly handle unknown oc-
clusions and a feature-based method that implements the same ESM optimization frame-
work. All the methods developed in this work are made available for use by the research
community.

Keywords: Homography estimation, Computer vision, Robotics
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14

1 INTRODUCTION

1.1 Motivation

In the last decade, the number of real-world applications where robots can be useful has
exploded. One of the many factors that help explain this phenomenon is the continuous
miniaturization of sensors and computing power, coupled with a decrease in their price.
For instance, it is common knowledge that a single modern smartphone surpasses the
processing power that was necessary to take mankind to the moon, for a fraction of the
cost. Additionally, smartphones now come with a multitude of sensors such as inertial
measurement units, infrared lasers, and cameras. In particular, the miniaturization of
camera sensors has made it almost ubiquitous in our society.

Among all the sensors that are customarily used in robotics, cameras stand out because
of their high information density with relatively low price points. They can provide
important information to a robotic system, and are used in a variety of applications.
Some examples are: object recognition, 3D reconstruction and motion estimation. In
some scenarios, a camera can replace other common and more expensive sensors, such as
light detection and ranging (LIDAR) and inertial measurement units (IMU). For instance,
some self-driving car companies have dispensed with the use of LIDARs in favor of a
camera-oriented approach (HAWKINS, 2018).

As it moves around the environment, a robot’s camera produces a sequence of images.
This sequence often portraits the same scene structure for an extended period of time,
from different viewpoints. The need arises for these images to be related to each other,
in order to understand the relative motion between scene and robot. The homography
matrix is an important way of describing this motion when a plane is observed from two
different viewpoints.

The plane-induced homography encodes the scene structure and the camera motion,
and has been used in a variety of vision-based applications, such as image mosaick-
ing (FAUGERAS; LUONG; PAPADOPOULO, 2001), visual servoing (BENHIMANE;
MALIS, 2007), and visual tracking (SILVEIRA; MALIS, 2010). Homographies arise in
urban environments, where the Manhattan world assumption (COUGHLAN; YUILLE,
1999) holds. In this case, billboards and traffic signs may be observed by a self-driving car.
Another instance is in the industrial robotics area, where packages and objects that need
to be manipulated by an robotic arm have one or more planar surfaces (NEUBERGER et
al., 2019). Finally, they are also present in the field of Unmanned Aerial Vehicles (UAV),
specially when the ground is observed from a distance in such a way that it is perceived
as a plane (PLINVAL et al., 2011).

The field of augmented reality (AR) also makes extensive use of the homography ma-
trix. It consists of overlaying virtual data onto a video sequence in a manner that is con-
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sistent with the real world data. To accomplish this task, planar object tracking(LIANG
et al., 2018; WU et al., 2019) is commonly used and usually involves an homography
estimation step (VALOGNES; DASTJERDI; AMER, 2019). In particular, the methods
in this work could enable a markerless AR system.

1.2 Image Registration

Figure 1.1: Inputs to the Image Registration Problem. Left: Reference Image and Tem-
plate; Right: Current Image

The homography estimation task can be formulated as an image registration problem.
This problem is defined as a search for the parameters that best define the transforma-
tion between corresponding pixels in a pair of images. The first and second images are
typically referred to as the reference and current image, respectively, as shown in Fig. 1.1.
Initially, a region of interest in the reference image is selected, which creates a reference
template. In these terms, the image registration problem tries to find where in the current
image is the reference template. Solutions to this problem involve the definition of four
important characteristics (BROWN, 1992): the transformations models; the information
space; the similarity measures; the search strategy; and optionally of a robust method.
In particular, a homography estimation task can be seen as an image registration prob-
lem where the transformation model uses a homography to explain the geometric part
of the transformation. In addition, the model can contain other components, such as a
photometric one.

Regarding the information space, the vast majority of vision-based algorithms use a
feature-based approach. In this approach, first an extraction algorithm searches each
image for some form of geometric primitive (e.g., point, lines, ellipses, etc) and selects
the best candidates, which are referred to as features. These features are then encoded
as a feature vector by a feature description algorithm. Then, a matching algorithm
is responsible for finding correspondences between features in different images. After
these correspondences are found, the actual estimation takes place. The convergence
domain of these algorithms is usually very high, because the entire image is searched for
features. However, both the extraction and matching steps are error-prone and can create
correspondence outliers that affect the quality of the estimation, leading to a decrease in
precision. Additionally, it can be noted that the intermediate steps throw away useful
information.

In contrast, intensity-based methods have no extraction, description and matching

Lucas Afonso Casanova de Oliveira Nogueira



Image Registration 16

steps. These methods are also referred to as direct methods, because they exploit the
pixel intensity values directly. This allows the estimation algorithm to work with more
information than feature-based methods. In turn, it leads to more precise estimation
results. It also eliminates the errors from bad correspondences. In a way, the extraction
and matching steps are done implicitly by the estimation process. However, one drawback
from direct methods is that they require a small interframe displacement, i.e. sufficient
overlap between two images. Additionally, unknown occlusions in the image have the
potential to lead the estimation to completely erroneous result, if not treated correctly.
Table 2.1 summarises the differences between these two classes.

Table 1.1: Comparison of Feature-Based and Intensity-based methods

Property Feature-Based Intensity-Based

Intermediate Steps Feature extraction and matching None
Outliers Bad Correspondences Occlusions
Information Space Feature Coordinates Pixel Intensities
Precision Lower Higher
Convergence Basin Large Small

The algorithms presented in this work use multidimensional optimization methods
as the main search strategy for the image registration problem. When formulated as
such, an initial solution is iteratively refined using a nonlinear optimization method.
Specifically, the algorithms presented here are derived from the Efficient Second Order
Minimization (ESM) algorithm. As will be explained, this algorithm is particularly suited
to this application domain, and its advantages include both a higher convergence rate
and a larger convergence domain than standard iterative methods. It allows for a second-
order approximation of the Taylor series while dispensing with the need to perform any
computationally expensive Hessian calculations.

The use of the ESM framework has shown great results for intensity-based methods.
However, its has not been applied in a feature-based setting. As discussed, the two classes
of estimation methods have complementary strengths. This observation naturally leads
for the search of a hybrid method that has the precision of intensity-based algorithms with
the larger convergence domain of feature-based ones. This work presents such a method.
As intermediate steps, two methods are developed: a intensity-based method that is able
to robustly handle unknown occlusions and a feature-based method that implements the
same ESM optimization framework as the intensity-based one. Finally, we present the
hybrid method that unifies the approaches.

The proposed method estimates a homography that relates two images using pho-
tometric (IB) and geometric (FB) information. It unifies these categories under a single
non-linear optimization. This is accomplishing by considering a unified cost function with
carefully selected weights for each component. A coarse-to-fine scheme is used to achieve
better convergence properties. Additionally, this unified result is used iteratively to reject
outliers in the feature correspondence set.

All the methods developed in this thesis are made available as ready-to-use ROS
packages and a C++ library. These implementations make it possible to easily deploy the
estimation algorithms in a variety of real-time applications. Two type of applications will
also be presented in this dissertation. First is the visual tracking application, which is

Lucas Afonso Casanova de Oliveira Nogueira
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possibly the most direct use of the image registration algorithms. The second application
is visual servoing, which consists of controlling a robot using feedback provided by a
camera sensor.

1.3 Related Works

This work focuses on the estimation of the homography matrix, and solves this problem
by formulating it as an image registration (IR) problem. It consists of finding the trans-
formation parameters that best align different images. Most modern IR algorithms can be
traced back to the Lucas-Kanade (LK) algorithm (LUCAS; KANADE, 1981). According
to (BROWN, 1992), an IR algorithm can be characterized by analysing four components:
information space; transformation model; similarity measure; and search strategy.

The information space considers the inputs of the algorithm. In this category, there
are two main classes of approaches. The first one is feature-based (FB). It requires the
extraction and association of geometric primitives in different images before the actual es-
timation can occur (HARTLEY; Andrew ZISSERMAN, 2003; HUA et al., 2018). These
primitives can be points (HARRIS; STEPHENS, et al., 1988), lines (SMITH; REID;
DAVISON, 2006), or even more complex structures. The second approach is intensity-
based (IB). It uses the photometric information, i.e. the intensity of the pixels. It si-
multaneously solves for the estimation problem and pixel correspondences, without any
intermediate steps (IRANI; ANANDAN, 1999; BENHIMANE; MALIS, 2007; ENGEL;
SCHÖPS; CREMERS, 2014).

The transformation model dictates which parameters are estimated. For example, the
original LK algorithm only estimated translations in the image space. This was later
extended to more sophisticated warp functions (BERGEN et al., 1992). Simultaneous
Localization and Mapping (SLAM) algorithms commonly use IR to estimate a 3D pose
(J. ZHANG; S. SINGH, 2015). The homography matrix is often used as a transformation
model when dealing with predominantly planar regions of interest (SILVEIRA; MALIS;
RIVES, 2008; MUR-ARTAL; MONTIEL; TARDOS, 2015; LIU; G. ZHANG; BAO, 2016;
DETONE; MALISIEWICZ; RABINOVICH, 2016), and is used in all the algorithms
proposed in this dissertation. Additionally, illumination parameters can be considered as
a component of the transformation model (SILVEIRA; MALIS, 2007; SILVEIRA, 2014;
BARTOLI, 2008).

The quality of the IR estimation can be defined by a similarity measure. When an
optimization method is used, this measure is often used as a cost function. Some algo-
rithms use the Sum of Squared Differences (SSD) (LUCAS; KANADE, 1981; SILVEIRA;
MALIS, 2010). Other possibilities include correlation-based metrics (EVANGELIDIS;
PSARAKIS, 2008; FONSECA; MANJUNATH, 1996; YAN et al., 2014) and mutual in-
formation (VIOLA; WELLS III, 1997).

The last component of IR algorithms is the search strategy. Most real-time applica-
tions use a multidimensional optimization approach, based on Gradient Descent search.
They use the first and second derivatives of the similarity measures with respect to the
transformation parameters. The ESM algorithm (BENHIMANE; MALIS, 2004) is one

Lucas Afonso Casanova de Oliveira Nogueira
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example. Alternative optimization approaches include Gauss-Newton and Levenberg-
Marquardt (BAKER; MATTHEWS, 2004). These techniques are most suited to appli-
cations with small interframe displacements. Some algorithms overcome this issue using
sampling-based methods such as RANSAC (FISCHLER; BOLLES, 1981) to cover a larger
portion of the search space. It is also possible to use additional information about the
robot to improve the estimation. For instance, (HUA et al., 2018) uses partial velocity
information in a temporal filter to narrow the search space and make the estimation more
robust. A thorough review and comparison of image registration algorithms can be found
in (ZITOVA; FLUSSER, 2003) and (A. K. SINGH, 2017).

This work develops an approach that merges two different information sources into
a single optimization framework, by creating a unified cost function. Namely, it merges
feature-based and intensity-based informations. Some algorithms in the literature have
proposed similar hybrid methods. For instance, (GEORGEL; BENHIMANE; NAVAB,
2008) merges point correspondences with photometric information, but estimates a 3D
pose, instead of the homography matrix. In (MEILLAND; COMPORT; RIVES, 2011),
two techniques are also unified: a model-based tracking that suffers when dealing with
large illumination changes; and a visual odometry that compares consecutive image
frames. This technique is better at handling illumination changes, but accumulates drifts.
The techniques are merged to produce an algorithm that handles large illuminations
changes without accumulating drift. In this method, both techniques use intensity-based
information and a 3D pose is estimated, which contrasts to the method proposed in this
work. The method proposed in (MORENCY; DARRELL, 2002) unifies Normal Flow
Constraint (intensity-based) and Iterative Closest Point (feature-based) methods into a
single optimization framework, similar to the methods in this work. However, it estimates
a 3D pose and consider stereo cameras whilst we consider monocular ones. Finally, (YAN
et al., 2014) uses a Maximum Likelihood approach to create a unified IB/FB cost function.
The enhanced cross-correlation is used as the IB similarity measure and it uses RANSAC
for robust optimization.

Most recently, deep learning algorithms have been proposed to tackle the homography
estimation problem. (DETONE; MALISIEWICZ; RABINOVICH, 2016) propose an end-
to-end supervised learning approach with convolutional neural networks. The algorithm
requires an offline learning step that takes as input image pairs labeled with ground truth.
The process of obtaining such datasets is either costly because it requires manual labeling
of images, or it is restricted to synthetic datasets. In turn, (NGUYEN et al., 2017) propose
the use of a intensity-based metric as a loss function in order to enable a unsupervised
learning approach. In (RANFTL; KOLTUN, 2018), an iteratively reweighted least squares
problem is used to robustly estimate a fundamental matrix, with the robusts weights
estimated using deep networks. These methods, as deep learning methods in general,
require an extensive offline training step and the use of GPUs, while those presented in
this work require neither.
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1.4 Objectives

In summary, the objective of this work is the development of a vision-based estimation
algorithm that:

• Robustly estimates the homography matrix between two images.

• Unifies the intensity-based and feature-based approaches under a single optimization
framework with a unified cost function and a coarse-to-fine strategy.

• Is computationally efficient enough to be applied in real-time applications, such as
visual tracking and visual servoing.

Additionally, the algorithms are made available to the research community as a C++
library and ROS (QUIGLEY et al., 2009) package.
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2 THEORETICAL BACKGROUND

This chapter introduces the basic theory concepts neessary to understand the proposed
methods. In Section 2.1, the special properties that arise from observing the same scene
in multiple images are presented. Then, Section 2.2 presents an overview of the Efficient
Second-order Minimization algorithm. Finally, Section 2.3 details each of the individual
components that are part of an image registration algorithm and how our algorithms
approach each of them.

2.1 Two-view Geometry

This section aims to present the mathematical framework that explains the spatial re-
lations between corresponding scene points in two different images and their 3D world
coordinates. For this purpose, it presents an overview of projective geometry theory and
the pin-hole camera model. Additionally, the homography matrix properties and some of
its practical applications are also presented.

2.1.1 Projective geometry

Projective Geometry is an extension of Euclidian Geometry that makes it possible to
model not only rotation and translations, but also the peculiar phenomena that occur
when the 3D world is projected onto a 2D image, such as:

• Any set of parallel lines in the 3D world converge to a single point when projected
to a 2D image. This point is referred to as the vanishing point ;

• Points that are very far away in the 3D world, also known as points at infinity,
are projected to the same point even as the observer moves around locally. This
explains to how the mooon is perceived as in the same place as a person moves
around in a city.

This dissertation applies the convention that a geometric object is in normal type and
its coordinate vector is in bold type, such as point p and its coordinate vector p.

Consider a point p ∈ R
2 that belongs to a plane. Its Euclidian coordinates are [u, v]⊤,

and its homogeneous projective coordinates are obtained by adding a third element equal
to 1 at the end, such that

p = [u, v, 1]⊤ ∈ P
2, (2.1)
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with the property that all triples that differ only by a scale factor represent the same
image point:

p ≡ λp = [λu, λv, λ]⊤, ∀λ 6= 0. (2.2)

In order to convert from projective coordinates to Euclidian coordinates, it suffices to
divide every element in the representation by the last one and drop the last element.

p = [λu, λv, λ]⊤ ∈ P
2 → [u, v]⊤ ∈ R

2 (2.3)

Besides the usual points from the Euclidian space, the Projective space also contains
the so-called points at infinity. These are points in which the last projective coordinate is
equal to zero. They have no Euclidian equivalent, as can be observed from (2.3). However,
they are regular points in Projective space.

In the Projective space, a line has the same representation as a point. Given a point
p with projective coordinates p = [x, y, z] that belongs to a line l, the following relation
holds:

l⊤p = p⊤l = ax+ by + cz = 0, (2.4)

where l = [a, b, c]⊤ is the projective representation of line l. This property induces a
duality between lines and points in the projective space that can be observed by the
following properties.

• If a line l contains points p and p∗, then their projective representations satisfy:

l ≡ p× p∗ (2.5)

• If a point p is at the intersection of two lines l and l′, then their projective repre-
sentations satisfy:

p ≡ l× l′ (2.6)

From the equations above, it is possible to observe that the cross product is a specially
important operator when dealing with the projective space. Its advantage is that it can
be written as a linear operator, replacing it by the following matrix multiplication.

v × x = [v]×x, (2.7)

with v = [v1, v2, v3] and x = [x1, x2, x3] and [v]× being the skew-simmetric matrix such
as:

[v]× =




0 −v3 v2
v3 0 −v1
−v2 v1 0


 . (2.8)

The concept of line at infinity is also present in the projective space. It is composed
of all points at infinity and has the representation:

l∞ = [0, 0, 1]⊤. (2.9)
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2.1.2 Pinhole camera model

The relation between the coordinates of a point in the 3D world and its projection in a
2D image can be explained with the pinhole camera model, as shown in Fig. 2.1. The
basic components of this model are:

• A camera center C, which also acts as the origin for the camera reference frame;

• A retinal plane R that is parallel to the xy plane of the camera frame and located at
a distance f from C. Therefore, the z axis crosses the retinal plane at the principal
point c, which has Euclidian coordinates c = [0, 0, f ]. f is called the focal length of
the camera. Without loss of generality, it is chosen as the unit.

C

c

p

~zθ

P

f R

F∗

t

R

Figure 2.1: The pinhole camera model

Given a 3D point P with coordinates [X, Y, Z]⊤ ∈ R
3, its projection to the retinal

plane p is [u, v] ∈ R
2 and their relation is obtained with the following equations:

u = f
X

Z
, v = f

Y

Z
; (2.10)

It can be observed that (2.10) and (2.3) are quite similar. From this similarity stems
the applicability of projective geometry to the study of computer vision. Also, it is clear
that the projection loses information, since there are multiple points in a line passing
through the camera center that map to the same point in the image. By consequence,
it is impossible to recover depth information using only the geometry of a single image.
Humans are able to induce depth information from a single image by using semantic
reasoning alongside geometrical relations.
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The nonlinear equations (2.10) can be converted to linear using tools from projective
geometry. Consider the projective coordinates of 3D point P :

P = [X, Y, Z, 1]⊤ ∈ P
3, (2.11)

and the following relation holds:

p =



x
y
z


 =



1 0 0 0
0 1 0 0
0 0 1 0







X
Y
Z
1


 = P0P, (2.12)

where the matrix P0 is called the projection matrix. When the pinhole camera model
is perfect, it has this simple structure. However, for real-world cameras, its components
depend on physical properties of the device and has the general form:

P ≡



αu γ u0

0 αv v0
0 0 1


P0

[
R t

0 1

]
= A[R t], (2.13)

where its components can be split in two groups:

1. Intrinsic parameters are related to the construction process of the camera. Its
components are:

• αu and αv represent the focal length expressed in pixel units. They are related
to the focal distance f and the width and height of the image in pixels. Their
ratio is called aspect ratio;

• γ represents the skew between the axes of the image such that γ ∝ tan(θ) ≈ 0,
where θ is the angle between the image axes. In modern cameras its value is
very close to zero, which means the ~u and ~v are nearly perfectly perpendicular;

• u0 and v0 represent the coordinates of the principal point. Because pixels are
usually counted from the corner of the image, they are usually not equal to
zero. Instead, they are roughly half the image resolution.

2. Extrinsic parameters are related to the camera’s relative pose w.r.t. to the world
reference frame F∗. Its components are:

• R ∈ SO(3) represents the rotation of the camera frame w.r.t to the world
frame;

• t ∈ R
3 represents the translation of camera frame w.r.t to the world frame.

The process of obtaining the intrinsic parameters of a given camera sensors is com-
monly called intrinsic calibration. It is a common challenge in computer vision and re-
quired whenever Euclidean information has to be recovered from the images. The visual
estimation methods that are the core of this master thesis require no calibration whatso-
ever, as will be shown. The visual servoing algorithms that use these estimation results
only need coarse calibration.
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Finally, it is possible to define the image function as the mapping between discrete
pixel coordinates and its intensity.

I :
Ω ⊂ Z

2 → R+

p 7→ I(p),
(2.14)

where Ω = [0, L−1]× [0, C−1] defines the size of the image grid, commonly known as the
image resolution. The intensity can be thought of as the color of the 3D point P that is
projected onto the point p in the retinal plane. In this work, only black-and-white images
will be considered, so a single intensity value is produced by the image function. Colored
images, by contrast, typically produce three intensity values (red, green and blue).

2.1.3 Homographies

Consider a point P ∈ P
3 that lies in a plane Π and consider that the world reference

frame is attached to this plane such that its xy plane coincides with Π. Therefore, in this
reference frame, P has the following coordinates:

P =




X
Y
0
1


 (2.15)

The projection of P on the retinal plane is obtained with the aid of (2.12):

p =



uλ
vλ
λ


 =



P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34







X
Y
0
1


 =



P11 P12 P14

P21 P22 P24

P31 P32 P34





X
Y
1


 , (2.16)

which can be further simplified to:

p =



λu
λv
λ


 = H



X
Y
1


 (2.17)

The (3×3)-matrix H encodes a transformation between two P
2 projective spaces, that

are the planes themselves. H has eight degrees of freedom and requires a minimum of 4
correspondences between points in each space to be calculated.

Now, consider the case where the same plane Π is observed from two different view-
points with the same camera, as shown in Fig. 2.2. In this case, a point P in this plane
will have a projection p in the first image I and a projection p∗ in the second image I∗.
I and I∗ are commonly referred throughout this work to as current and reference image,
respectively. The following relation holds:

PP ∝ p (2.18)

P∗P ∝ p∗ (2.19)
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p
I

tR

n

P

p∗

I∗

C∗ C

d∗

Π

Figure 2.2: Epipolar geometry.

where P and P∗ are the projection matrices for the first and second image, respectively.
Without loss of generality, it can be considered that both images were captured with the
same camera sensor. In this case, the projection matrices will differ only by their extrinsic
parameters, i.e. rotation and translation of the camera w.r.t to the world frame.

It has been established that there is a homography between plane Π and the retinal
plane of the first camera. Likewise, there is another homography between Π and the
retinal plane of the second camera. By composition, it is clear that there should also be
a homography between the two retinal planes. This is called a planar homography and is
said to be induced by the plane Π. This relation can be written as:

p ∝ Hp∗. (2.20)

As before, four point correspondences are necessary to fully define a homography
between the two retinal planes. A traditional method for calculating it from these cor-
respondence set is the Direct Linear Transformation (DLT) as explained in Chapter 4 of
(HARTLEY; Andrew ZISSERMAN, 2003). Additionally, it can be shown that the same
relation also holds if the camera undergoes a pure rotational movement. This phenomenon
is exploited in smartphone applications where a panoramic image is constructed by the
user carefully moving the device.

2.1.4 Examples of operations with homographies

This section presents some of the operations that can be achieved using homographies.
The intent here is to develop intuition about the structure of the homography and how
images are transformed by it. First, consider (2.20). It gives rise to an operation called
warping.
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Formally, the warping operator is defined as follows:

w :
SL(3)× P

2 → P
2

(H,p∗) 7→ p = w(H,p∗) =
[

h11u
∗+h12v

∗+h13

h31u∗+h32v∗+h33

, h21u
∗+h22v

∗+h23

h31u∗+h32v∗+h33

, 1
]⊤ (2.21)

where H ∈ SL(3) is the projective homography matrix, {hij} comprise its elements,
p∗ = [u∗, v∗, 1]⊤ ∈ P

2 is the projective coordinates of the source pixel.

It is said that point p is the result of the warping of point p∗ with homography H. For
example, let point p∗ = [100, 100, 1]⊤ and the homography

H =



1 0 10
0 1 20
0 0 1


 (2.22)

Then, by applying the warping operation to p∗, the warped point p is obtained, and
its converse is also possible:

p = [110, 120, 1]⊤ = w(H,p∗), (2.23)

p∗ = [100, 100, 1]⊤ = w(H−1,p). (2.24)

The warping operation first multiplies the projective coordinates p∗ by the homog-
raphy H and then divides every element of this new vector by its third element, always
maintaining the last element equal to 1. For instance, applying the warping operator with
the homography in (2.22) to the following set of four points that form a square, we obtain:

p∗
1 = [0, 0, 1]⊤ →[10, 20, 1]⊤;

p∗
2 = [0, 100, 1]⊤ →[10, 120, 1]⊤;

p∗
3 = [100, 0, 1]⊤ →[110, 20, 1]⊤;

p∗
4 = [100, 100, 1]⊤ →[110, 20, 1]⊤.

It is easy to verify that this simple homography parametrizes a translation operation.
Now, we will consider how a homography can be applied to a entire image I(p), instead
of just a single point. Warping every pixel pi in the domain of I maps the pixels to its
corresponding location in the warped image I∗. For illustration purposes, consider the
following homography that parametrizes a translation of 1 pixel in the ~u direction and its
inverse:

H =



1 0 −1
0 1 0
0 0 1


 ;H−1 =



1 0 1
0 1 0
0 0 1


 (2.25)

Figure 2.3 shows the warping of a very simple image of resolution 3 × 3. Starting
from the first pixel p in image I, the corresponding location p∗ on the warped image
is obtained by applying the warping operation to the coordinates of that pixel with the
inverted homography. The first pixel correspondences are marked with a green circle.

After obtaining this correspondence, the destination pixel receives the intensity value
of the origin pixel. The following equation summarizes the attribution.

I∗(w(H−1,p))← I(p). (2.26)
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(a) The original image.

(b) A scaled down image.

Figure 2.5: Scaling down an image with warping.

The goal of this section is to present the ESM method. In order to understand the
method, it is first presented as a root-finding algorithm. Later, it is shown how it can be
reformulated as a method to solve nonlinear least squares problems.

2.2.1 Root-finding algorithms

This section considers the problem of finding the root of an equation. The goal is to find
the solution x∗ that satisfies:

f(x∗) = 0. (2.30)

Iterative methods solve this problem starting from an initial approximation x0. Then, it
seeks to find a sequence of approximations x̂n such that:

lim
n→∞

x̂n = x∗. (2.31)

The next approximation x̂n+1 is obtained by calculating an increment x̃n that is added to
the current one x̂n:

x̂n+1 = x̂n + x̃n (2.32)

It is important to note that at the true solution x∗, the following equations hold:

f(x∗) = 0 (2.33)

f ′(x∗) 6= 0 (2.34)

The first root-finding method presented is Newton-Raphson’s algorithm. It is used
here as a reference to which the ESM can be compared. Each algorithm mainly dictates
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how the increment x̃n is calculated. The idea is to find one that brings the current
approximation x̂n closer to the ideal solution x∗:

x̂n + x̃n = x∗. (2.35)

Applying function f to both sides of (2.35), using (2.30) and the Taylor series expansion
up to first order terms, it becomes:

f(x̂n + x̃n) = f(x∗) = 0 (2.36)

f(x̂n) + x̃nf
′(x̂n) ≈ 0 (2.37)

and an expression for the increment is obtained:

x̃n ≈ −
f(x̂n)

f ′(x̂n)
(2.38)

From this expression, it is clear that, in the Newton-Raphson method, each increment
is calculated using only information about the function f at the current evaluation point
x̂n. This is a key difference to the ESM method, as will be shown. The ESM considers
the second-order terms of the Taylor expansion. Therefore, (2.37) is replaced by:

f(x̂n) + x̃nf
′(x̂n) +

x̃2
n

2
f ′′(x̂n) ≈ 0 (2.39)

Now, consider the first order Taylor expansion of the first derivative of f .

f ′(x̂n + x̃n) ≈ f ′(x̂n) + x̃nf
′′(x̂n) (2.40)

Rearranging the terms:

x̃nf
′′(x̂n) ≈ f ′(x̂n + x̃n)− f ′(x̂n) (2.41)

Replacing in (2.39)):

f(x̂n) + x̃nf
′(x̂n) +

x̃n

2
[f ′(x̂n + x̃n)− f ′(x̂n)] ≈ 0 (2.42)

f(x̂n) +
x̃n

2
[f ′(x̂n + x̃n) + f ′(x̂n)] ≈ 0 (2.43)

And now, the ESM increment is obtained:

x̃n ≈ −
2f(x̂n)

f ′(x̂n) + f ′(x̂n + x̃n)
(2.44)

≈ −
2f(x̂n)

f ′(x̂n) + f ′(x∗)
(2.45)

Note that the presence of the f ′(x∗) term implies that the ESM increment depends
on the ability of calculating the first-order derivative of function f at the root solution
point x∗ where f(x∗) = 0. Also, since the formulation stems from a Taylor expansion that
considers the second-order terms, this formulation is a second-order approximation that
does not require the calculation of any second derivatives of f (MALIS, 2008).

For higher-dimensional systems of nonlinear equations, the ESM increment is defined
as:

x̃n = −2(J(x̂n) + J(x∗))+f(x̂n), (2.46)

where J(x̂) = f ′(x) = ∇f(x) is the Jacobian matrix of function f . The ESM Jacobian
can thus be defined as:

JESM =
1

2

[
J(x̂n) + J(x∗)

]
. (2.47)
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2.2.2 Nonlinear optimization formulation

The root-finding problems presented in the previous section can be reformulated as a
minimization problem. Likewise, the methods for solving one can be used to solve the
other. For instance, consider the problem of finding x such that:

f(x) = b. (2.48)

This is equivalent to the root-finding problem

f(x)− b = 0. (2.49)

Which, in turn, can be formulated as an minimization problem by choosing:

min
x
‖f(x)− b‖ , (2.50)

since the minimum value of f(x)− b is zero.

If a system with m nonlinear equations and n unknowns is considered, finding f(x) = 0

may be an overdetermined problem that is impossible to solve exactly, due to errors in
the measurement points. In this case, it is useful to convert the problem to a least-squares
problem in the form of:

min
x

c(x) =
1

2
f(x)⊤f(x), (2.51)

where c(x) is the cost function to be minimized. A local minimum of it is found when

∇c(x) = 0. (2.52)

Again, the method starts from an initial solution x0 and applies an increment such that
the sequence of solutions converges to the local minimum. A similar process as the one
in the previous section can be applied to obtain each algorithm’s increment. Table 2.1
summarizes the increments for Newton-Raphson and ESM methods. In the least squares
case, the increments are calculated using pseudo-inverses (·)+, since the problem is overde-
termined.

Table 2.1: Nonlinear Least Squares Increments

Method Increment

Newton-Raphson −J(x̂n)
+f(x̂n)

ESM −2(J(x̂n) + J(x∗))+f(x̂n)

2.3 Image Registration

This work solves the homography estimation problem by formulating it as an image regis-
tration task. The goal of the image registration problem is to estimate the transformation
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that optimally aligns two images of the same scene. Pixels in different images that cor-
respond to the same scene point are then mapped to each other. The first image is
commonly referred to as the reference image, and the second one as the current image.
According to (BROWN, 1992), existing methods to solve this problem can be viewed as
a combination of four components:

1. information space;

2. transformation model;

3. similarity measure;

4. and search strategy.

The following sections describe each one of these components.

2.3.1 Information space

The information space dictates what information from the images is exploited, i.e. what
information is the input to the registration process. In this sense, most existing methods
can be classified into two categories, and their processing pipelines are shown in Fig. 2.6:

The first category is composed by feature-based methods. In it, geometric primitives
(e.g., points, lines, ellipses, etc.), also known as image features, are extracted from each
image. The information space regards the parametrization of these features in the images.
Primitives from different images are compared and matched to obtain correspondences
between them. The set of image coordinates of corresponding features is the input to
the image registration algorithm. In general, each feature contributes two equations to
the estimation procedure. These methods thus depend heavily on the accuracy of the
extraction and matching steps. They can even fail due to the outliers in these steps.

The second category contains the intensity-based methods. In this category, the image
registration algorithm directly exploits the pixel intensities, with no intermediate steps.
The information space is composed of the intensity values of the pixels in the image. They
are also known as direct methods, appearance-based, and texture-based. Intensity-based
methods can achieve high levels of accuracy due to the fact that they can exploit all image
information. In general, each pixel in the region of interest contributes one equation to
the estimation procedure. These methods often assume a sufficient overlapping between
the two images. This is a reasonable condition when dealing with robotics applications.

2.3.2 Transformation models

This component defines the admissible transformations to the images that will be con-
sidered by the algorithm. The more complex the model, more parameters are needed to
completely define the transformation. Parameters that are defined by the transformation
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Reference image

Current image

Feature extraction

Feature extraction

Feature matching
Feature-based
registration

(a) Feature-based

Reference image

Current image

Intensity-based
registration

(b) Intensity-based

Figure 2.6: Feature- vs intensity-based registration pipeline.

model are the output of the image registration algorithm. The guiding principle when
choosing a transformation model is to have one that is flexible enough to account for
the likely changes that occur in the image, while also balancing the complexity involved.
This is a key tradeoff in the solution design. This thesis uses mainly two models: one
that parametrizes the changes that are due to geometric motion and another for the
photometric, i.e., lighting changes in the image.

Geometric transformation

The geometric transformations model image changes due to variations in the scene struc-
ture and/or the camera motion. For this purpose, this work considers the homography
matrix. For a given pixel in the reference frame, its change of position in the current one
is modeled as

p ∝ Hp∗ (2.53)

=

[
h11u

∗ + h12v
∗ + h13

h31u∗ + h32v∗ + h33

,
h21u

∗ + h22v
∗ + h23

h31u∗ + h32v∗ + h33

, 1

]⊤
, (2.54)

where H ∈ SL(3) is the projective homography matrix, {hij} comprise its elements,
p∗ = [u∗, v∗, 1]⊤ ∈ P

2 is the homogeneous pixel coordinates in the reference image, and p

is its corresponding coordinates in the current image. This is, clearly, the same warping
operation warping presented in (2.21). Equation (2.54) is appropriate to model geometric
transformations when at least one out of the three conditions below is true:

• Planar surfaces: The observed object is planar, with no constraints on the camera
motion;

• Objects at infinity: The scene is far from the camera, with no constraints on the
scene geometry or on the camera motion;
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• Purely rotational motion: The camera undergoes a pure rotation between images,
with no constraints on the scene geometry.

The homography matrix H is related to the scene structure and camera motion via

H ∝ K

(
R+

1

d∗
tn∗⊤

)
K−1, (2.55)

where K ∈ R
3×3 contains the camera intrinsic parameters; R ∈ SO(3) and t ∈ R

3 are the
rotation matrix and translation vector associated with the camera motion, respectively;
and d∗ > 0 and n∗ ∈ R

3 : ‖n∗‖ = 1 are, respectively, the distance to the surface plane
and its normal vector with respect to the reference frame, as described in Fig. 2.2. The
decomposition of H into those Euclidean components is out of the scope of this work. A
standard method for this decomposition has been proposed by (MALIS; VARGAS, 2007)
and an open-source implementation is available inside the OpenCV library (BRADSKI,
2000). Additionally, a step-by-step guide to the homography decomposition can be found
in (MA et al., 2012).

It is possible to vary the number of degrees of freedom in a homography, creating
different categories. Three of them are most relevant:

1. Full: This is the most general homographic transformation. Thus, it contains eight
d.o.f.;

2. Affine: This homography contains six d.o.f., which are related to the two image
translations (vertical and horizontal), the two image scalings, a 2D image rotation
and a shear transformation;

3. Stretch: This homography contains four d.o.f., which are related to the two image
translations and the two scaling transformations.

Examples of each homography category are shown in Fig. 2.7. Depending on the applica-
tion at hand, the methods proposed here may use a different category of homography that
suits its problem domain better. The correct choice eliminates unnecessary calculations
and increases the algorithms performance. This is enabled in the computational package
that is publicly available. The rest of this work will consider only the “Full” case, which
is the most generic.

Photometric transformation

This transformation model aims to explain the changes in the image due to variations in
the lighting conditions of the scene. This work models only global illumination changes,
i.e., changes that apply equally to all pixels in the images. This model can be defined as

I ′(p) = α I(p) + β, (2.56)

where I(p) is the intensity value of the pixel p in image I, I ′(p) denotes its transformed
intensity, and the gain α ∈ R and the bias β ∈ R are the parameters that fully define the
transformation. These parameters represent the adjustments in the image contrast and
brightness, respectively.
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(a) The original image (b) A full warping example

(c) An affine warping example (d) A stretch warping example

Figure 2.7: Examples of different homographic transformations applied to Van Gogh’s
Starry Night.

2.3.3 Similarity measures

Similarity measures give an indication of the registration quality. They are important
because they allow different solutions to the optimization problem to be compared to
each other. This work uses two of these measures, as described below.

The first similarity measure is the Sum of Squared Differences (SSD) over the pixel
intensities:

SSD(I ′, I∗) =
∑

i

[
I ′(pi,x)− I

∗(p∗
i )
]2
, (2.57)

where I∗(p∗
i ) is the intensity value of p∗

i in the reference image, I ′(pi,x) is the intensity
value of the current image photogeometrically transformed using the parameters x =
{H, α, β}. The SSD is used in the registration as the cost function to be minimized.
Because the optimal transformation results in a minimal value, the SSD is technically a
dissimilarity measure.

The other similarity measure used to assess the registration quality is the Zero-mean
Normalized Cross Correlation:

ZNCC(I∗, I ′) =

〈
I∗v − Ī

∗
v∥∥I∗v − Ī∗v
∥∥ ,
I ′v − Ī

′
v∥∥I ′v − Ī ′v
∥∥

〉
, (2.58)
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where (·)v denotes the vectorized form of an image, (̄·) represents its mean value, and
〈 ·, ·〉 is the inner product. This similarity measure varies between −1 (very bad) and
+1 (perfect). Especially because of such normalizations, the ZNCC is useful both for
evaluating the final quality of the estimation and as a sliding window predictor.

2.3.4 Search strategy

The algorithms developed in this work formulate the search strategy as a nonlinear opti-
mization problem. To solve the nonlinear Least Squares optimization problem (2.57), the
Efficient Second-order Minimization method is applied, as presented in Section 2.2. Its
advantages when registering images include both a higher convergence rate and a larger
convergence domain than standard iterative methods, without any costly Hessian calcu-
lations (SILVEIRA; MALIS, 2010). The use the ESM method is possible here because
the image at the solution is known beforehand: it is the reference image. Its first order
derivatives are obtained by calculating the gradient of the image in the ~u and ~v direction.

All proposed methods in this work also make use of a multiresolution pyramid. This
strategy consists of creating a sequence of smaller templates until a predefined minimum
size is reached. Two pyramids are built, one for the current template and another one for
the reference template. The algorithms solve the optimization from the lowest resolution
templates to the highest ones. The benefits of this coarse-to-fine strategy include an
increase in the computational efficiency, avoidance of spurious local minima, and a larger
domain of convergence (IRANI; ANANDAN, 1999).

2.3.5 Working conditions

The presented theory leads to a set of conditions that have to be respected for the proposed
algorithms to work correctly and efficiently. These conditions are summarized below:

• the inter-frame displacement is relatively small;

• for unknown camera motion, the observed object is planar or is at infinity;

• for pure rotational camera motion, the observed object can be of any shape and
distance;

• the observed object is sufficiently textured;

• the observed object is subject only to global illumination changes;

• the observed object is mostly unoccluded.
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3 ROBUST INTENSITY-BASED

HOMOGRAPHY ESTIMATION

Intensity-based methods can exploit all image pixels, and can thus attain high levels of
accuracy and versatility. They are also referred to as direct methods, because they skip
intermediate steps that are required in the feature-based approach. A possible challenge of
direct methods is handling large illumination changes. (L. CHEN et al., 2017) tackle this
problem by considering gradient orientations as dense image features and solving the ESM
optimization with multidimensional images. (ALISMAIL; BROWNING; LUCEY, 2016)
use the Lucas-Kanade method coupled with illumination-invariant binary descriptors.

In this chapter, the idea proposed in (SILVEIRA; MALIS, 2010) is used, but only
global illumination changes are modeled. Therefore, in order to robustly handle illumi-
nation changes, the proposed method considers a photogeometric transformation model.
The geometric part is composed of the homography matrix and can be considered the
main goal of the estimation process. The photometric part is composed of a gain and a
bias values that parameterize a global affine transformation. By considering both pho-
tometric parameters jointly with the geometric ones, the estimation is made robust to
global illumination changes. Figure 3.1 shows examples of such changes.

Figure 3.1: Example of an image with varying illumination and occlusions

The parametric direct estimation process is here formulated as a multidimensional
optimization problem. Given two images, the objective consists of finding the optimal set
of photogeometric parameters that minimize the Sum of Squared Differences (SSD) over
the pixel intensities of an region of interest. Typically, an initial solution is iteratively
refined using a nonlinear optimization method. However, if a partial occlusion, as shown
in Fig. 3.1, is present in the images, then the SSD may lead to a completely erroneous
result. In this chapter, a suitable M-estimator is proposed to treat unknown occlusions in
intensity-based efficient methods. This technique involves defining a robust function to
reduce (or eliminate) the effects of large residuals. The Talwar function (HINICH; TAL-
WAR, 1975) is used because the homography is estimated jointly with photometric values
and the algorithm needs to reach real-time performance whilst being able to completely
eliminate the perceived outliers (AHMED et al., 2016; IKAMI; YAMASAKI; AIZAWA,
2018). (MEILLAND; COMPORT; RIVES, 2011) use a similar robust technique to an
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intensity-based visual estimation method. However, they estimate the 3D camera pose,
not a homography, and apply the Huber robust function. (TORR; A. ZISSERMAN, 1998)
do use the Talwar robust function, but in a feature-based setting.

3.1 Problem Modelisation

The homography estimation is formulated as an image registration problem. Two images
are considered: the reference image I∗ and the current image I. Both images observe the
same planar region. This region undergoes a photogeometric transformation that can be
completely parametrized via a homography matrix H, a gain α and a bias β. If the region
of interest, i.e. the reference template, has m pixels, the goal is to find such parameters
that transform each pixel p∗

i , i ∈ {1, . . . ,m} of the reference image into its correspondent
pi in the current image, such that:

αI(w(H,p∗
i )) + β = I∗(p∗

i ), ∀i = 1, . . . ,m (3.1)

Since there are 10 parameters to be estimated, and m is typically higher than 10, the
problem is overdetermined. Therefore, it can be reformulated as a nonlinear least squares
problem:

min
x={α,β,H}

1

2

m∑

i=1

[
αI(w(H,p∗

i ) + β − I∗(p∗
i )

]2
. (3.2)

3.2 Variable Parametrization

For simplicity, consider just the geometric part of the transformation, i.e. the homography
matrix. Also, that an approximation Ĥ of the solution homography H∗ is given. The
problem then becomes of finding the incremental homography H̃ such that the difference
between the current image warped by the homography ĤH̃ and the reference image is
zero for every pixel i in the region of interest. The residual yi can be defined as:

yi(x) = I(w(ĤH̃,p∗
i ))− I

∗(pi
∗) = 0 (3.3)

As seen previously, the homography H̃ ∈ SL(3) is a 3 × 3 matrix with only eight
degrees-of-freedom. In general, this situation leads to the need of adding a reprojection
step after each iteration of the minimization algorithm to bring the estimated matrix back
into the Special Linear Group. To avoid this problem, the proposed algorithm uses the Lie
Algebra formulation that parametrizes the incremental homography using its tangential
space (BENHIMANE; MALIS, 2007). This is accomplished via the matrix exponential
function, which maps a region around the identity matrix I ∈ SL(3) to a region around
the nul matrix 0 ∈ sl(3) in its Lie Algebra. With it, a matrix A(v) ∈ sl(3) can be written
as:

A(v) =
8∑

i=1

viAi, (3.4)
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where the matrices Ai, i = {1, 2, . . . , 8} form a base of the Lie Algebra and vi, i =
{1, 2, . . . , 8} are the components of vector v. And an homography is thus parameter-
ized using the exponential map:

H(v) = exp(A(v)) =
∞∑

i=0

1

i!
(A(v))i (3.5)

The matrices that compose the base of the Lie Algebra used in this work are the same
as the ones presented in (BENHIMANE, 2006), which are:

A1 =



0 0 1
0 0 0
0 0 0


 ,A3 =



0 1 0
0 0 0
0 0 0


 ,A5 =



1 0 0
0 −1 0
0 0 0


 ,A7 =



0 0 0
0 0 0
1 0 0




A2 =



0 0 0
0 0 1
0 0 0


 ,A4 =



0 0 0
1 0 0
0 0 0


 ,A6 =



0 0 0
0 −1 0
0 0 1


 ,A8 =



0 0 0
0 0 0
0 1 0




(3.6)

Using this tool, the photogeometric image transformation model defined by x =
{H, α, β} can be replaced by an incremental parameter vector z = {v, α̃, β̃}, with v

comprising the eight Lie Algebra elements of the homography reparametrization. If
x̂ = {Ĥ, α̂, β̂} is an approximation of the true solution x∗, then:

x = x̃(z) ◦ x̂ (3.7)

where ◦ denotes the composition operation. For α and β the composition operation is
addition; for the homography, it is matrix multiplication. With this parametrization, the
incremental transformation to an image is:

I ′(p∗
i , x̃(z) ◦ x̂) = (α̂ + α̃)I(w(ĤH̃(v),p∗

i )) + (β̂ + β̃) (3.8)

Now, it is possible to rewrite the minimization problem from (3.2) as:

min
z={v,α̃,β̃}∈R10

1

2
‖I ′(p∗

i , x̃(z) ◦ x̂)− I
∗(p∗

i )‖
2 (3.9)

3.3 The Jacobian Matrices

Usage of the Efficient Second-order Minimization algorithm requires the calculation of
two Jacobian matrices in order to obtain the increment vector, as shown in Table 2.1.
The first Jacobian matrix is called the current Jacobian, and is evaluated at the current
evaluation point x = xn. The second Jacobian is called the reference Jacobian and is
evaluated at the solution point x = x∗. Using the Lie Algebra parametrization presented
in the previous section it is also possible to say that the current Jacobian is evaluated at
point z = 0 and the reference Jacobian matrix at the point z = z∗.
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Each pixel i in the region of interest contributes to one equation in the least-squares
formulation. Therefore, it will also contribute to one line to the Jacobian. The residual
yi(z) associated with the i-th pixel can be written as:

yi(z) = (α + α̂)I(w(ĤH̃(v),p∗
i )) + (β + β̂)− I∗(p∗

i ) (3.10)

(BENHIMANE, 2006) shows that the geometric components of these Jacobian matri-
ces are the composition of three separate Jacobians:

∇vyi(v) = JIJwJH, (3.11)

where

1. JI : This Jacobian is a (1 × 3) matrix that corresponds to the partial derivative of
the image function w.r.t. its projective coordinates. This is also known as the image
gradients. Figure 3.2 shows an example of these gradients.

2. Jw: This Jacobian is a (3× 9) matrix that corresponds to the partial derivative of
the warping function w.r.t. the 9 elements of the homography matrix. Therefore,
it defines how the projective coordinates of a point change due to small changes in
the elements of the homography that is used in the warp function.

3. JH: This Jacobian is a (9× 8) matrix that corresponds to the partial derivative of
the Homography matrix w.r.t to its Lie Algebra parametrization vector v.

An important result from (BENHIMANE, 2006) is the multiplication invariance prop-
erty, defined as:

JH

∣∣
z=z∗

z∗ = JH

∣∣
z=0

z∗. (3.12)

where JH

∣∣
z=z∗

is the Jacobian JH calculated at the reference; JH

∣∣
z=0

is the same Jacobian,
but calculated at the current image.

This result implies that it suffices to calculate the JH for one case, so it can be
considered invariant for both the reference and current Jacobians. The Jw is also constant
in both cases. Therefore, the difference is only in the JI component. On one hand, for
the reference, it only needs to be calculated once during the optimization process, since
the reference image does not change, and neither do its gradients. On the other hand,
this component needs to be recalculated at every iteration for the current Jacobian.

Now, considering also the photometric part of the Jacobian matrix, it is possible to
write:

∇zyi(z) =
[
∂yi
∂I

JIJwJH
∂yi
∂α

∂yi
∂β

]
(3.13)

For the complete current Jacobian, Eq. 3.13 is extended to vector form and thus
becomes:

J(0) = ∇zy(z = 0) =
[
αJIJwJH I 1

]
, (3.14)

where I is the current image and JI its gradient. Likewise, the complete reference Jaco-
bian is:

J(z∗) = ∇zy(z = z∗) =
[
αJI∗JwJH I∗ 1

]
, (3.15)

where I∗ is the reference image and JI∗ its gradient. The ESM Jacobian for the intensity-
based case can then be defined as:

JIB =
1

2

[
J(0) + J(z∗)

]
(3.16)
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(a) The original image.

(b) ~u gradient. (c) ~v gradient.

Figure 3.2: Image gradients.

3.4 Sliding Window Prediction

Intensity-based methods require relatively small interframe displacements. This means
that the approximation to the solution that initializes the optimization needs to be close
enough to the true solution for the algorithm to converge. Different solutions exist that
perform an initialization step to refine this initial estimate before passing it on to the
optimization. This work implements a simple sliding window (SW) predictor for this
purpose.

The SW algorithm consists of generating multiple candidates solutions, evaluating
them according to a given metric, and choosing the best one. A common method to
generate these candidates in Computer Vision is done by translating a window, i.e. a
region of interest, across a bigger image. Each position of the window is therefore a
candidate solution.

In this case, the algorithm is based upon the Homography matrix parametrization.
Consider that the estimation has already been initialized and therefore a reference tem-
plate of resolution (p × q) has been stablished. Then, it receives a current image I and
an initial approximation of the solution x̂ = {Ĥ, α̂, β̂}. It is possible to use I and x̂ to
build a current template of same size. However, the SW predictor actually uses a modified
version of x̂ to build a sliding window template, which is slightly bigger than the reference
template, i.e. a resolution of (⌊Np⌋ × ⌊Nq⌋), with N > 1.
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Hpred

Ĥ

HSW

Figure 3.3: The sliding window algorithm

The modified version of the initial approximation is obtained by applying a transla-
tion matrix operation to Ĥ. This is done by building a homography Ht that encodes a
translation operation, such as:

Ht =



1 0 δu
0 1 δv
0 0 1


 , (3.17)

where the translational elements are calculated as such:

δu =
(Np− 1)

2
(3.18)

δv =
(Nq − 1)

2
(3.19)

where N is the multiplication factor, which is 1.2 in this case. A bigger value for N
allows for bigger interframe displacement, but also entails a higher computational cost.
This is specially important because correlation-based methods are very costly. In the
presented method, the sliding window prediction occurs only in the highest level of the
multiresolution pyramid, i.e. the lowest resolution. This allows for faster computing, at
the cost of precision.

The sliding window homography is obtained by matrix multiplication:

HSW = ĤHt (3.20)

Once HSW is obtained, a warping operation is performed to obtain the sliding window
template from the current image. Then, the smaller reference template is superimposed
over a region of the SW template and sequentially translated in ~u and ~v directions. For
each position it assumes, the reference template is compared to the corresponding region
in the sliding window template. For this purpose, the Zero-Mean Normalized Cross-
Correlation is used to assign a score. This process is similar to performing a convolution
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of the sliding window template section with the reference template. It generates a ma-
trix that contains the ZNCC scores associated with each position. The position (u, v)
that generates the best score is then used to produce another translation homography
that is composed with HSW . This resulting homography Hpred replaces Ĥ as the initial
approximation to the optimization procedure.

Figure 3.3 showcases the three “windows” that are created by the algorithm. Each one
can be generated by warping the current image with the appropriate homography. The red
dash-and-dotted window is associated with the initial approximation H. The blue with
longer dashes line is created from HSW and can be seen as a stretching of the previous
window in the translational directions. Finally, Hpred is the predicted homography, chosen
because it will have the biggest ZNCC value among all candidates.

3.5 Robust Method

Real-world applications often require the use of a robust estimation method to deal with
model uncertainties and measurement errors (outliers), such as unknown occlusions. Least
Squares algorithms are not robust since in theory a single outlier can lead to an estimate
arbitrarily far from the true solution. In an intensity-based algorithm, outliers are often
the result of an occlusion. An strategy to make the estimation robust to occlusions is
presented in the sequel.

The robust equivalent of the Least Squares family are the M-estimators. In this case
the cost function to be minimized is modified to

∑

i

ρ
(
ri(x)

)
, (3.21)

where ri is the i-th normalized residual from (2.57), and ρ(·) is a robust function (at least
C0) that penalizes the largest residuals (HUBER, 1981). Specifically, the Talwar robust
function is chosen:

ρ(z) =

{
z2/2 if |z| ≤ c,

c2/2 if |z| > c,
(3.22)

with its constant c = 2.795, because of its hard redescending property and its low compu-
tational cost (C. CHEN, 2009). That constant is obtained for 95% asymptotic efficiency
on the standard normal distribution. Its discontinuous first derivative is not an issue as
will be shown next. As a remark, note that for ρ(ri(x)) = r2i (x) with an unnormalized
residual ri, it becomes the original (nonrobust) Least Squares cost function (2.57).

An important advantage of M-estimators is that they can be implemented using a
simple Iteratively Reweighted Least Squares procedure. The weights reflect the confidence
of each datum and are computed as

wi =
1

ri

∂ρ(ri)

∂ri
. (3.23)

The procedure hence estimates x by solving a weighted Least Squares system, and reit-
erates until convergence. In any case there still exists a trade-off between efficiency and
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robustness. Relatively small interframe displacements or a suitable predictor should thus
always be applied.

3.6 Operation Modes

Considering the methods presented in this chapter, it is possible to define four modes of
operation for the algorithm:

1. Regular (IBG): This mode performs the optimization without the robust method
presented in this chapter. Therefore, it always considers all pixels in the template
to obtain its increment. Additionally, it does not use any predictor method to aid
the initialization of the algorithm.

2. Robust (RIBG): This mode performs the otimization with the robust method pre-
sented in this section. Thus, it will constantly try to estimate the occlusions that
might be present in the template. Additionaly, it does not use any predictor method.

3. Regular + Predictor (IBG_P): This mode uses the Regular optimization method
in conjunction with the ZNCC-based sliding window predictor method presented in
Section 3.4.

4. Robust + Predictor (RIBG_P): This modes uses the Robust optimization method
in conjunction with the ZNCC-based sliding window predictor method presented in
Section 3.4.
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4 FEATURE-BASED HOMOGRAPHY

ESTIMATION

The vast majority of computer vision estimation algorithms are based on the extraction
and matching of features in different images. These features are geometric primitives that
can be easily detected in an image, such as points belonging to the corner of a physical
structure; or lines that correspond to walls or windows.

In these methods, each image is processed in order to extract its most prominent
features. Then, the set of features from different images are compared to each other, with
the goal of matching features that correspond to the same physical entity. Finally, this
set of matches is then used as an input to the parametrical estimation procedure.

4.1 Feature Detectors and Descriptors

Figure 4.1: Example of the feature matching process.

Ideally, the feature extraction step has two important properties: repeatability and
precision. The first means that the same feature can be extracted from different images
independently of the geometric and/or photometric transformations that might have been
applied to them. The second is related to the error between the detected feature position in
the image and its actual position. This is specially important because the error introduced
in this step is never corrected in subsequent steps.

Once a feature is detected, a descriptor is generated for it. In general, it consists
of a vector that encodes information about the feature. For instance, some descriptors
analyze the surrounding pixels of the feature and compute important metrics that help to
characterize it, such as gradients and histograms. After a descriptor has been calculated
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for each feature detected, the feature matching step begins. In general, a similarity
measure is calculated between the descriptors in order to find those that correspond to
the same observed object. A threshold value is traditionally used in this step. If the
similarity measure is bigger than the threshold, the features are matched. Table 4.1
lists a few of the most important feature extraction and matching algorithms in modern
computer vision. Note that some algorithms provide both a detector and a descriptor,
while others focus only on one of these steps. A thorough review and evaluation of feature
extraction methods is available in (CANCLINI et al., 2013).

Method Detector Descriptor Reference

SIFT X X (LOWE, 2004)
HARRIS X (HARRIS; STEPHENS, et al., 1988)
SURF X X (BAY; TUYTELAARS; VAN GOOL, 2006)
ORB X X (RUBLEE et al., 2011)
FAST X (ROSTEN; DRUMMOND, 2006)

Table 4.1: Feature Detectors and Type

The feature extraction and matching steps produce a set of feature correspondences.
They relate the coordinates of a feature in an image with its coordinates in another image.
These correspondences are then used to estimate the transformation parameters that best
describe the changes in the coordinates. Therefore the feature coordinates are used as the
information explored by the estimation algorithms, which differs from the intensity-based
methods.

This work is not focused on feature extraction and matching algorithms. Indeed, here
they are used in a black-box approach. Instead, the focus is on the estimation procedure
that happens after those steps have been performed. In particular, the SURF method has
been used for feature detection and description. Investigating which methods provide the
best results in relevant scenarios is a research problem that remains open, as is highlighted
in the Conclusion chapter.

4.2 Problem Modelisation

As in the previous chapter, the homography estimation is formulated as an image registra-
tion problem. Again, a nonlinear least squares approach will be proposed. An important
difference is that the feature-based method considers only a geometric transformation. It
ignores illumination changes. This occurs because the information space, i.e. the feature
coordinates, does not contain any type of photometric property. Therefore, in this case,
the transformation space is composed only of the homography matrix H.

Consider that the estimation algorithm has been initialized with a reference template.
This is usually a region of interest with predefined resolution inside a larger reference
image. Then, a second image, referred to as current image is given to the estimation
algorithm. The goal is to find the transformation parameters that, when applied to the
current image, results in a current template that is, ideally, equal to the the reference
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template. The detection algorithm scans the reference template for features, and does the
same with the current image. Then, these two sets of features are matched in order to
create a correspondence set. Consider that these steps have provided n correspondences.
Then, the goal is to find an homography H∗ such that

w(H∗,p∗
i ) = pi, ∀i = 1, . . . , n. (4.1)

If the feature extraction produced four perfect correspondences between the reference and
the current image, it would be possible to calculate H∗ perfectly. However, this is not the
case. Traditionally, an over-complete set of correspondences is provided. Therefore, the
problem is reformulated as a nonlinear least squares problem.

min
x={H}

1

2

n∑

i=1

[
w(H,p∗

i )− pi

]2
(4.2)

Using the same Lie Algebra parametrization from Equ 3.5, it is possible to replace the
transformation parameter vector x = {H} with z = {v} such that x = x̃ ◦ x̂, where x̂

is an approximation to the true solution. Now, it is possible to rewrite the minimization
problem as:

min
z={v}∈R8

1

2

n∑

i=1

[
w(ĤH̃(v),p∗

i )− pi

]2
(4.3)

where Ĥ is an initial approximation of the homography matrix. An equivalent formulation
is then:

min
z={v}∈R8

1

2
‖w(x̃(z) ◦ x̂,p∗

i )− pi‖
2 (4.4)

4.3 The Jacobian Matrices

In the Efficient Second-order Minimization framework, there are two important Jacobian
matrices that need to be calculated. They are referred to as the current and reference
Jacobians. However, due to the Lie Algebra formulation presented in (BENHIMANE,
2006), a special result is achieved that makes it unnecessary to calculate both.

Each feature i contributes with two equations in the least-squares formulation. There-
fore, it will also contribute with two lines to the Jacobian. The residual yi(z) associated
with the i-th feature correspondence can be written as:

yi(z(v)) = w(ĤH̃(v),p∗
i )− pi (4.5)

Note that yi is a 3× 1 vector, but the last element is always zero and so it is discarded.

The feature-based Jacobian matrix is the composition of two separate Jacobians:

∇vyi(v) = JwJH, (4.6)

where
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1. Jw: This Jacobian is a (3× 9) matrix that corresponds to the partial derivative of
the warping function w.r.t. the 9 elements of the homography matrix. Therefore,
it defines how the projective coordinates of a point change due to small changes in
the elements of the homography that is used in the warp function. This Jacobian
is the same for both the current and reference images.

2. JH: This Jacobian is a (9× 8) matrix that corresponds to the partial derivative of
the Homography matrix w.r.t to its Lie Algebra parametrization vector v.

For the current and reference Jacobians, (4.6) becomes:

J(0) = ∇zyi(z = 0) = JwJH

∣∣
z=0

= JwJH0
(4.7)

J(z∗) = ∇zyi(z = z∗) = JwJH

∣∣
z=z∗

= JwJH∗ (4.8)

,

The Taylor expansion of the cost function y(z) using the ESM formulation can be
written as:

y(z∗) ≈ y(0) +
1

2
(J(0) + J(z∗))z∗ (4.9)

Using (4.7) and (4.8), it becomes:

y(z∗) ≈ y(0) +
1

2
(JwJH0

+ JwJH∗)z∗ (4.10)

This equation can then be simplified using (3.12).

y(z∗) ≈ y(0) + JwJH∗z∗ (4.11)

This result shows that, in the feature-based case, the ESM Jacobian can be greatly
simplified by using only the reference Jacobian. At the same time, it maintains its second-
order properties. This is specially useful because throughout the minimization process,
the coordinates of the features in the reference image do not change, while for the current
image they change at every iteration. Therefore, it is possible to compute the Jacobian
once for the entire estimation process. In summary, the ESM Jacobian for the feature-
based case is defined as:

JFB = JwJH∗ (4.12)

4.4 Local versus Global Feature Search

ZNCC > ǫ

Yes

NoInitial

Approx. Global Local
Final

Approx.

Figure 4.2: Global and Local Initialization
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In this section, a method for improving the estimation speed is presented. This method
tackles an issue that arises in the feature detection step. Recall that this work uses
SURF, but the issue is common to all feature detectors. The problem is that searching
the complete current image for features can be computationally expensive. The proposed
solution is to use the initial approximation Ĥ to narrow the feature detection search space.

The first step is the ZNCC test. The idea is to use Ĥ to warp the current image I into
a tentative current template. This template is then compared to the reference one using
the ZNCC similarity measure. If the ZNCC between them is higher than a threshold
ǫ, the approximation is deemed to be close enough. In this case, the feature detection
method searches only this current template. Otherwise, if the ZNCC is lower than ǫ, the
entire image is searched, as it would normally be. In the first case, the feature search is
referred to as local while in the second, global. Figure 4.2 illustrates this algorithm.

(a) Local estimation case: Features are detected in the current template.

(b) Global estimation case: Features are detected in the current image.

Figure 4.3: Local versus global feature detection and matching.

If the local feature search is used, then the current template is searched for features,
and matched with those found in the reference template, as shown in Fig. 4.3a. The
correspondence set obtained is used to calculate a homography using the DLT algorithm,
which becomes the initial approximation passed onto the actual optimization method.

If the global feature search is used, then the complete current image is searched for
features and matched with the reference template, as shown in Fig. 4.3b. The correspon-
dence set, after an outlier rejection process (described in Section 4.5), is used to obtain
a new approximation Ĥ, also using the DLT method. With this approximation, a new
current template is generated, and the estimation resumes with the local feature search.

The goal of this preprocessing step is to speed up the estimation process. This is
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important for real-time applications. If the estimation is used in a visual tracking setting,
for instance, then it is a reasonable assumption that a previous result can be used to
better set up the feature detection. However, one of the advantages of the feature based
methods is that they do not require such small interframe displacements between the
images as direct methods do. Therefore, it is important to maintain the ability to search
the entire image when the initial approximation is far from the actual solution.

4.5 Outlier Rejection

(a) The original set of matches.

(b) A set of matches after outlier rejection.

Figure 4.4: Example of outlier rejection in feature matches.

The treatment of outliers in the feature matching process requires careful considera-
tion. These outliers occur when the matching algorithm pairs two features in different
images that do not correspond to the same scene point. In theory, a single outlier can
move the estimated solution arbitrarily far from the true solution. Therefore, treating
outliers is an important step to ensure that the optimization method does not use bad
inputs. This section presents an outlier rejection method that is used in both the global
and local feature searches before the DLT method is applied. Additionally, it is also
applied at each iteration of the optimization procedure.

The outlier rejection method here is very similar to the method presented in section 3.5.
It modifies the feature-based cost function yFB using a robust function and recalculates
weights at every iteration. Since the Talwar robust function is used, the weights are either
0 or 1. This allows for an implementation where lines with weights 0 are removed from
the Jacobian and cost vector, instead of multiplying the weights by the corresponding
lines in those matrices.
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The method for computing the outliers is as follows. Given an initial approximation
of the solution homography Ĥ, the Euclidian distance between each feature match j ∈
1, . . . , n is computed:

dj(Ĥ) =
∥∥∥w(Ĥ,q∗

j)− qj

∥∥∥
2

(4.13)

Then, two important metrics are calculated using the series dj. The first one is the
median:

d̃ = median(d) (4.14)

where d is the vector composed of the elements dj. The second metric is the median
absolute deviation (MAD):

MAD(d) = median(|d− d̃|) (4.15)

With these metrics, it is possible to filter out the outliers by choosing a range of
acceptable distance values. For a given feature match j, it is considered an inlier if its
distance to the median is less than k ·MAD(d), where k = 1.4826 is a constant scale
factor chosen for the case where the data is normally distributed. Thus, the following
condition should be true:

|dj − d̃| < k ·MAD(d) (4.16)

The features matches that satisfy the condition above are kept, while those that do not
are considered outliers and are removed from the feature-based cost function. Figure 4.4
demonstrate the matches before and after outlier rejection.
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5 UNIFIED HOMOGRAPHY ESTIMATION

This chapter presents an approach that unifies the intensity-based and feature-based meth-
ods using the Efficient Second-order Minimization framework. Its goal is to obtain a
method that can provide the advantages of both methods while trying to mitigate the
effects of their disadvantages. This is the main contribution of this dissertation.

5.1 Problem Modelisation

Consider that the estimation algorithm has been initialized with a reference template.
This is tipically a region of interest with predefined resolution inside a larger reference
image. Then, a second image, referred to as the current image, is given to the estimation
algorithm. The goal is to find the transformation parameters that, when applied to the
current image, results in a current template that is equal to the reference template. In
turn, these parameters allows us to align the images according to a common reference
frame.

The transformation space considered in this case will be similar to the intensity-based
case, composed of a geometric and a photometric part. This is because using the photo-
metric transformation is crucial to the success of a intensity-based method where lighting
conditions change.

Consider that the reference template is composed of m pixels. Also, consider that
the feature matching algorithm provides n feature correspondences between the reference
template and the current image. Ideally, it would be possible to find a vector x∗ ∈
SL(3)× R

2 = {H∗, α∗, β∗} such that:

α∗I(w(H∗,p∗
i )) + β∗ = I∗(p∗

i ), ∀i = 1, . . . ,m (5.1)

w(H∗,q∗
j) = qj, ∀j = 1, . . . , n (5.2)

where I and I∗ are the current and reference image functions, respectively; w is the
warping operator; p∗

i ∈ P
2 contains the projective coordinates of the i-th pixel of the

reference template; and qj,q
∗
j ∈ P

2 are the projective coordinates of the j-th feature
correspondence set in the current image and reference template, respectively.

The perfect calculation of x∗ is, in practice, impossible due to a variety of reasons,
including noise in the camera sensor and outliers in the feature matching. This leads to
the reformulation of this problem as a nonlinear least-squares problem.

First, two separate cost-functions are defined: the Intensity-Based (IB) and the Feature-
Based (FB) ones. These cost functions are the same as the ones that have been presented
in the previous chapters. Each pixel i of the reference template contributes to the following



Jacobian Matrices 53

residual to the IB cost function:

yi(x) = αI(w(H,p∗
i )) + β − I∗(p∗

i ), (5.3)

or in compact vectorial form:

yIB(x) = αI(w(H,p∗)) + β − I∗(p∗), (5.4)

where p∗ contains the projective coordinates of all points of the reference template, with
abuse of notation.

The FB cost function receives the contribution of the distance between the features
coordinates in each image:

yj(x) = w(H,q∗
j)− qj =



yuj
yvj
0


 (5.5)

where yuj , y
v
j are distance between the features in the u and v directions, respectively. The

third element is disregarded since it is always zero. Concatenating all yj, it is possible to
write:

yFB(x) = w(H,q∗)− q. (5.6)

Using (5.4) and (5.6), the nonrobust unified nonlinear least squares problem can be
compactly written as

min
x={H,α,β}

1

2

(
wIB ‖yIB(x)‖

2 + wFB ‖yFB(x)‖
2
)

(5.7)

where wIB, wFB are carefully selected weights given to the intensity-based and feature-
based components of the cost function, respectively. In this case, the weights respect the
constraint wIB + wFB = 1.

Using the same Lie Algebra parametrization from (3.5), it is possible to reparametrize
the transformation model into x = x(z) with z = {v, α̃, β̃} as described in Section 3.2.
Consider that an initial approximation x̂ = {Ĥ, α̂, β̂} of the actual solution is given. Now,
it is possible to rewrite the nonrobust unified minimization problem as:

min
z={v,α̃,β̃}

1

2

(
wIB ‖yIB(x(z) ◦ x̂)‖

2 + wFB ‖yFB(x(z) ◦ x̂)‖
2
)

(5.8)

Given that a normalization factor is included, a unified residual vector can thus be
defined as:

yUN =

[
wIB

m
yIB

wFB

2n
yFB

]
(5.9)

and a more concise formulation is achieved:

min
z={v,α̃,β̃}

1

2
‖yUN(x(z) ◦ x̂)‖

2 . (5.10)
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5.2 Jacobian Matrices

The derivation of the Jacobian matrices used in the unified case are greatly simplified
because most of the work has already been presented in the previous chapters. These
matrices are naturally the combination of those used in the intensity- and feature-based
cases, which can be found in (3.16) and (4.12).

∇zyUN = JUN =

[
wIB

m
JIB

wFB

2n
JFB

]
(5.11)

5.3 Weight Choices

The weights wIB and wFB should be carefully selected to ensure the best convergence
properties for the algorithm. The proposed method used in this work is one of many
possibilities, and the best choice is still an open research problem. Recall that the following
constraint applies to the weights:

wIB + wFB = 1;wFB > 0;wIB > 0. (5.12)

It is clear that only one of the weights needs to be defined, as the other one can be
obtained from this constraint. The idea behind the proposed method for determining the
weights is to let the feature-based error be more important to the optimization when the
current solution is far from the solution point. As the FB error decreases, then the IB
component becomes more important. This is consistent with the idea that the FB method
is better suited to handle large displacements, while IB methods have better precision, but
only work when the solution is close enough. Consider the root mean squared deviation
(RMSD) associated with the feature-based error:

RMSD(yFB) =

√∑n

j=1
d2j

n
= dFB (5.13)

where dj is as defined in 4.13, and n is the number of feature matches. The proposed
weight function is:

wFB = 1− e−dFB (5.14)

This function allows for a continuous transition where the feature-based weight decreases
as it gets lower, and the intensity-based component becomes gradually more important
in the optimization.
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5.4 Local versus Global Feature Search

The unified case also requires a method for improving the estimation speed, similar to the
one presented for the feature-based case. It is necessary because a feature detection step
is also present in the unified case. First, a current template is generated by warping the
current image with the initial approximation Ĥ. Then, this current template is assigned a
score by comparing it with the reference template using the Zero-mean Normalized Cross-
Correlated. If this score is higher than a predefined threshold, then the feature detection
algorithm searches only this current template. Otherwise, the current template and Ĥ

are discarded. In this case, the feature detection algorithm searches the entire current
image for features. The first scenario is referred to as a local search and the second as a
global search.

When the global search is used, it is necessary to recalculate an initial approximation
Ĥ. This is done by calculating the homography solely from the features matches between
the current image and the reference template. The outlier rejection algorithm presented
in Section 4.5 is also used here.
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6 EXPERIMENTAL RESULTS

In this chapter, the homography estimation algorithms presented in Chapters 3, 4 and 5,
and their variants, are tested and evaluated. They are also compared to existing algo-
rithms. Section 6.2 explains the testing procedure used to generate the results presented
in this chapter. Then, Section 6.3 demonstrates how the intensity-based algorithm pre-
sented is robust to large illumination changes. In Section 6.4, it is shown how the robust
version of the intensity-based algorithm handles occlusions. Next, a general comparison
the convergence domain of all algorithms is presented in Section 6.5. It is followed by an
analysis of the rate of convergence of each algorithm presented here. Section 6.7 com-
pares the processing speed that each algorithm is able to achieve, in order to verify their
applicability in real-time applications. Finally, in Section 6.8 a discussion of the best
algorithms is presented.

6.1 List of Algorithms Evaluated

The following algorithms are evaluated in this chapter. They are divided among intensity-
based; feature-based and unified categories.

1. Intensity-based (IB) Methods:

(a) IB_0: The classic version of the intensity-based ESM algorithm. It does
not estimate the photometric transformation. It is provided as a precompiled
library in (MALIS, 2011).

(b) IBG: The IBG version of the algorithm presented in Chapter 3.

(c) IBG_P: This is the “Regular + Predictor” version of the algorithm presented
in Chapter 3.

(d) RIBG: The “Robust” version of the algorithm presented in Chapter 3.

(e) RIBG_P: This is the “Robust + Predictor” version of the algorithm presented
in Chapter 3.

2. Feature-based (FB) Methods:

(a) OPENCV: An algorithm is based on the open-source implementation of the
cv::findHomography function in the OpenCV library (BRADSKI, 2000). It
uses the same feature detection and extraction steps as the algorithm imple-
mented in Chapter 4, but replaces the actual estimation algorithm with the
aforementioned OpenCV function. Additionally, it uses the RANSAC robust
method (FISCHLER; BOLLES, 1981) to handle outliers.
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(b) FB_0: The estimation method presented in Chapter 4.

3. Unified Methods:

(a) UNIF: The estimation method presented in Chapter 5.

(b) UNIF_P: The estimation method presented in Chapter 5 with a ZNCC Slid-
ing Window predictor.

6.2 Validation Setup

"Teatro Amazonas Atualmente 01" by Karine Hermes is licensed
under CC BY 4.0 | Modified

Figure 6.1: The image used for the validation procedure, with the reference template
annotated.

To validate the algorithm, the same testing procedure used by (BAKER; MATTHEWS,
2001) is implemented. It consists of generating progressively larger known perturbations
to an image, and feeding the perturbed images to the estimation algorithms. This per-
turbation can be in any of the transformation parameters, but isn’t restricted to them.
Since the actual transformation is always known, it can be compared to the result given
by the estimation algorithm.

To generate perturbations in the geometric transformation space, the procedure is as
follows. First, a reference image is chosen and a region of size 100×100 pixels is selected
as the reference template, as shown in Fig. 6.1. This template size is used in all the
experiments shown in this chapter, unless otherwise stated. The set of coordinates of the
four reference template corners p∗ is separately perturbed in the −→u and −→v direction with
a zero mean Gaussian noise and standard deviation of σ pixels, obtaining a perturbed set
of corners p. The relation between p∗ and p defines a test homography H.

The reference image is then transformed using H. Figure 6.2 shows some sample of
perturbed images with varying σ. The algorithm receives the reference template and
the transformed image with the zero element z = {v, α, β} = 0 as the initial guess for
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(a) Examples of images perturbed with σ = 1.

(b) Examples of images perturbed with σ = 5.

(c) Examples of images perturbed with σ = 10.

Figure 6.2: Different geometric perturbation levels showcase.

the photogeometric transformation. Recall that the zero element from the Lie Algebra
v = 0 maps to the identity element H = I. From this input, the estimation algorithm
produces an estimated homography Ĥ. This is used to transform each reference template
corner point to evaluate the quality of this result. If the average residual error in pixels
between the actual perturbed corner points and the estimated perturbed ones is less than a
predefined value, the result is considered to have converged. 1,000 test cases are randomly
generated for each value of the perturbation σ ∈ [0, 20] and used as input for each version
of the algorithm that is evaluated.

A similar procedure is used to generate perturbations in the photometric parameters
α and β. In this case, however, the perturbations are generated directly on their values.
The perturbations levels for these parameters are defined by the standard deviations σα

and σβ. Whenever only σ is used, it refers to the geometric component.

6.3 Robustness to Illumination Changes

In Chapter 3, an intensity-based algorithm was proposed that is able to handle large illu-
mination changes. In order to test this claim, an experiment was designed that generated
different perturbations levels in three dimensions: geometric (H), gain (α) and bias (β).
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(a) Examples of images perturbed with σα = 0.05.

(b) Examples of images perturbed with σα = 0.25.

(c) Examples of images perturbed with σα = 0.45.

Figure 6.3: Different contrast perturbation levels showcase.

The perturbations were zero mean Gaussian noise with standard deviation σα or σβ added
to the default values of α = 1 and β = 0. The standard deviation value σα was increased
in steps of 0.05, therefore it varied from 0 to 0.45. For σβ, a step of 0.5 was used, and its
value varied from 0.0 to 4.5. Figures 6.3 and 6.4 display some examples of perturbations
the contrast (gain) and brightness (bias) levels, respectively.

The test mixed perturbations in α, β and H equally. 10 perturbations levels were
used for all variables totaling 1,000 possible combinations for each σα, σβ, σH . For each
combination, 10 test cases were generated. This implies that for each perturbation level
in any of the variables, there are 1,000 test cases. Algorithm 1 shows how the experiment
was structured. In these tests, 3 levels of the multiresolution pyramid are used. In each
level, a maximum of 3 iterations of the algorithm are allowed to execute. The threshold
for convergence was 1 pixel.

Two algorithms were tested in this experiment. The first one is IB_0, that does not
estimate the photometric parameters jointly with the homography matrix. The second
one is IBG. This algorithm does estimate the gain and bias parameters for each image.

Figure 6.5 displays the results of this experiment. In 6.5a, the frequency of convergence
of both algorithms is shown for each magnitude of the perturbation σ that was applied to
the corners of the template. There are 1000 test cases for each magnitude of perturbation.
Note that the IB_0 algorithm has a consistently lower frequency of convergence than the
IBG version of the algorithm proposed in this work. This value decreases for both cases
as the geometric perturbation increases, which is expected.
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(a) Examples of images perturbed with σβ = 0.5.

(b) Examples of images perturbed with σβ = 2.5.

(c) Examples of images perturbed with σβ = 4.5.

Figure 6.4: Different brightness perturbation levels showcase.

Figure 6.5b shows the frequency of convergence for varying levels of the perturbation
in the gain α. Note that the default value of this parameters is 1.0 and it multiplies the
entire image. Again, the IBG algorithm consistently outperforms the IB_0 version. In
this case, for both algorithms the frequency decreases as the magnitude of perturbation
in the gain increases.

Finally, Fig. 6.5c presents an interesting result. While it confirms once again that
the IBG algorithm is better than the IB_0 version, it also shows that both algorithms
are insensitive to increases in the magnitude of perturbation in the bias parameter. This
indicates that the contrast in images is more decisive than brightness for the success of
the intensity-based algorithm.

Algorithm 1 Arbitrary Illumination Test

1: procedure TestIllumination

2: for σ ← 0, . . . , 9 do
3: for σα ← 0, 0.05, . . . , 0.45 do
4: for σβ ← 0, 5, . . . , 45 do
5: for i← 1, . . . , 10 do
6: T ← GENERATE_TEST (σ, σα, σβ)
7: for every method do
8: RUN_TEST (T )
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Figure 6.5: Frequency of convergence for different photogeometric perturbation levels.

6.4 Robustness to Unknown Occlusions

In Chapter 3, a version of the intensity-based algorithm was presented that implemented a
robust optimization using M-estimators in order to handle occlusions. This was considered
the robust mode of the algorithm. This section shows how this algorithm performs better
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(a) Reference image annotated with reference template.

(b) Unoccluded reference
template

(c) Transformed 10%-
occluded template

Figure 6.6: Images and Templates used for Occlusion Testing.

than the regular mode when the current image contains occlusions.

In order to test the robustness to occlusion of the algorithm, the testing procedure is
enhanced. In additional to the perturbation described in section 6.2, synthetic occlusions
are also added to the current image. Two different occlusion sizes are used. Both cases
use an all-black occluder and a rectangular shape. The first one has 20× 50 pixels, whilst
the second, 40× 50 pixels. They correspond to 10% and 20% occlusions of the reference
template, respectively. These occlusions are applied before transforming the reference
image with the test homography, and are randomly positioned around the center of the
reference template. The estimation procedure then receives the unnocluded reference
template and the transformed occluded image as an input. Figure 6.6 shows an example
of this template pair for a perturbation of σ = 20 pixels with 10% occlusion. In these
tests, 3 levels of the multiresolution pyramid are used. In each level, a maximum of 5
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Figure 6.7: Frequency of convergence for different setups and occlusion levels.

iterations of the algorithm are allowed to execute. The threshold for convergence was 1
pixel.
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6.5 Convergence Domain

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

Magnitude of perturbation

P
er

ce
nt

ag
e

of
co

nv
er

ge
nc

e IB_0
IBG

IBG_P
OPENCV

FB_0
UNIF

UNIF_P

Figure 6.9: Frequency of convergence versus magnitude of perturbation for different ho-
mography estimation algorithms.

This section compares the algorithms developed in this work with regards to their
convergence domain. The convergence domain dictates how the algorithm handles in-
creasingly large perturbations. The same testing method presented in Section 6.2 is used.
In this test, no perturbation was generated in the photometric parameters α and β. 3
pyramid levels with 2 iterations in each level are used. In this case, the convergence thresh-
old was 1.5 pixels. This slight increase in value was necessary because the FB algorithms
are not precise enough. All algorithms presented in Section 6.1 are compared, except for
the robust to occlusion versions (RIBG and RIBG_P). They were not considered because
this experiment does not involve occlusions.

The results of the experiment can be seen in Figure 6.9. It shows that the unified
algorithms have a larger convergence domain than the FB or IB versions. It can also
be observed that the IB_0 and IBG algorithm have very similar performance. This is
expected because in this experiment there are no lighting changes, which would make
IB_0 suffer since it does not estimate the photometric parameters.

The use of the ZNCC predictor in the unified case effectively decreases its frequency
of convergence. This observation seems counter-intuitive, but is explained by looking at
the convergence rate analysis. However, the UNIF_P is still the second-best algorithm
when considering only the frequency of convergence.
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Figure 6.10: Rate of convergence after each optimization iteration for different homogra-
phy estimation algorithms with a magnitude of perturbation σ = 10.

6.6 Convergence Rate

Figure 6.10 compares the rate of convergence for the homography estimation algorithms
under a perturbation of magnitude σ = 10. This rate is displayed as the progression of the
root mean squared (RMS) error between the coordinates of the 4 corners of the reference
template and the estimated transformed current template. Out of the 1000 test case,
only those where the estimation converged are considered here. Note that the OPENCV
algorithm is omitted because it was used as a black-box and therefore the sequence of
homographies in each iteration cannot be accessed.

The x-axis of Figure 6.10 contains each important step in the optimization. The
first step, labeled “predictor” is the result of the ZNCC prediction step. The second
step, labeled “global” is the step where the algorithm decides to search the entire current
image for feature and obtains a new approximation. The next step, “local”, refers to
the local feature search. These last two steps are described in Section 4.4. They are
not always present in all the algorithms. The following steps are regular steps in the
iterative optimization method. They are separated by pyramids level. In these cases, the
designation “X-Y” means: pyramid level X, iteration Y.

The convergence rate graph allows several observations regarding the algorithms pre-
sented in this work. First, the FB_0 performance is very dependent on the “global” step.
After this step, it is the algorithm with the best RMS value. However, it is incapable
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of decreasing this value too much in the subsequent optimization steps. By the time the
other algorithms reach the third level of the pyramid, they surpass the RMS of the FB_0
algorithm.

The behaviour of IB_0, IBG and IBG_P are very similar and showcases the second-
order nature of the optimization methods. A small difference between them is that the
IBG_P does use the “predictor” step. Thus, it is able to converge even for cases with a
slightly higher initial RMS error. After the prediction step, however, the three algorithms
are very similar.

From the graph, it can also be observed how the Unified methods have a behaviour
that mixes the FB and IB methods, as expected. The use of the ZNCC predictor stage
in the unified (UNIF_P) method leads decreases the number of occasions where the
“ ‘global” step is actually used, when compared to the UNIF method. This is observed by
the higher error value in global step of the the UNIF_P method. It explains why the use
of the predictor actually decreases the frequency of convergence, as seen in the previous
section. However, this decrease in the usage of the global step also lead to a improvement
in the processing time, as shown in the next section.

6.7 Timing Analysis
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Figure 6.11: Processing time variation with respect to increasing perturbation levels.

Figure 6.11 shows how the average time needed to run the estimations algorithms
varies depending on the magnitude of perturbation. This time was measured in a Intel
i7-6700HQ processor. This time is averaged over the subset of the 1000 cases where
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the estimation converged. The most noticeable aspect of this graph is that pure IB
algorithms have nearly constant time, independent of the perturbation level. In constrast,
the algorithms that have a feature-based component need more time to process images
with higher perturbation levels.

This phenomenon can be explained by considering the effect of the global and local
feature searches. As the perturbation level increases, the number of occasions where the
algorithm decides to use the global search also increases. The global step, however, is
very computationally expensive. The UNIF_P manages to have a lower processing time
because the prediction step increases the probability that the local search will be used
instead of the global one. Therefore, the UNIF_P can be seem as a compromise between
having the advantage of being capable of performing global search, without taking a big
penalty in processing time.

However, the results in this graph ultimately show that more work is needed to create
a method that is able to reliably perform in real-time settings even for large perturba-
tions. The IB methods are already capable of that, requiring less than 0.02 seconds per
image. However, the FB and Unified methods may need up to 0.1 seconds, which in some
applications may be unnacceptable.

6.8 Comparison Discussion

Considering the three criteria presented in previous sections, some of the algorithms
emerge as better options than others. In particular, the UNIF_P and IBG_P stand
out. First, the UNIF_P has the precision level of pure intensity-based methods, with
a larger convergence basin. Considering the processing time, it is a better option than
the UNIF method because the predictor decreases the probability that the global feature
search will be necessary, with a small loss in the convergence basin size.

If the application domain guarantees a smooth camera-scene relative motion and a
good initialization, then the IBG_P is an appropriate option because its processing time is
much lower than any of the methods involving a feature-based component. The processing
time is also independent of the perturbation level. Considering also the frequency of
convergence, it is possible to conclude that IBG_P is the best method in its class of
intensity-based methods and suitable to several robotic applications, as will be shown in
the next chapter.
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7 USE CASES

The algorithms developed in this project are available as a ready to use C++ library and
as a ROS package. The ROS package is available at the link below:

https://github.com/lukscasanova/vtec_ros

An accompanying technical report can be found in (NOGUEIRA; PAIVA; SILVEIRA,
2019). This distribution and documentation allows the algorithms to be used in different
applications and by different researchers. This section presents some of these applications.

7.1 Intensity-Based Visual Tracking Robust to Global

Illumination Changes

This application uses the intensity-based homography estimation algorithm presented in
Chapter 3 (IBG_P) to track a planar surface in a video sequence. The result is available
at the link:

https://www.youtube.com/watch?v=FFRPL2mo0f0

This experiment shows how the visual tracking is able to handle large and abrupt illu-
mination changes that arise when the lights in the room are switched on and off. It also
undergoes relatively large translational and rotational movements in order to show the
robustness of the algorithm.

Figure 7.1 shows some sample screenshots of the tracking application. The first one
is before the initialization of the algorithm. A white square indicates to the user the
area that will be tracked if tracking starts at that moment. The user then presses the
“S" key and tracking starts. The larger image shows the current image annotated with
a black rectangle that indicates the location of the tracked region. The top-left image
shows the current template and the mid-left image shows the reference template. The
remaining screenshots show different poses where the algorithm successfully tracked the
planar region. Note that the last screenshot shows a situation where the lights are off,
and the target is almost indiscernible, but the visual tracking succeeds nonetheless.
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Figure 7.1: Visual tracking robust to illumination changes.

7.2 Direct Visual Tracking Robust to Unknown Occlu-

sions

The results of visual tracking using a nonrobust and a robust version of the intensity-based
algorithm are compared using the same video stream. It is available at the link:

https://youtu.be/qhAFe8IbIHc.

On one hand, Fig. 7.2 shows that the nonrobust algorithm (IBG_P) fails quickly even
if the occlusion is small. On the other hand, Fig. 7.3 shows that the robust algorithm
(RIBG_P) performs that task even with increasing occlusion levels. Two types of occlu-
sion are present in this video: A synthetic occlusion composed of an all-black square that
is added to each image frame always at the same coordinates; and physical occlusions in
the form of real coins that are progressively added to the tracked image.

7.3 Unified Visual Tracking

The UNIF_P algorithm was used to create a visual tracking application. A prediction
step was used, as is recommended for all real-time tracking application. Results are
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Figure 7.2: Visual tracking not robust to partial occlusions.

Figure 7.3: Visual tracking robust to partial occlusions.

available at the link:

https://youtu.be/oArw449qp1E

.

Figure 7.4 shows some samples of the tracking results. An interesting result is that
this visual tracker can recover from complete failure. Even after completely removing the
tracked region from the current image, the tracker later recovers, due to the feature-based
component ability to perform the “global” feature search. Additionally, it can be seem
that the algorithm is robust to large illumination changes, and that in some cases it can
recover from complete failure even under severe illumination changes.
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Figure 7.4: Samples of unified visual tracking.

7.4 Direct Visual Servoing

This application is developed at the V4R group at the Vienna University of Technology
(TUW) in Austria. A target is tracked using the intensity-based IBG setup. The esti-
mated homography is used for controlling a 7-DoF industrial arm with a variant of the
visual servoing technique proposed by (SILVEIRA; MIRISOLA; MORIN, 2018). The
video is available at

http://tinyurl.com/vs-tuw

This experiment shows that the servoing is robust to global illumination changes, and
to errors of 50% in the camera intrinsic parameters (NEUBERGER et al., 2019). In
this application, the camera is mounted on the robot end-effector, and the reference pose
is completely defined by a reference image. Afterwards, the arm is repositioned at a
different initial pose and then visual servoing is performed to drive the camera pose back
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to reference one.

(a) Reference and initial camera poses with respect to the observed object/scene, respectively.
Corresponding images are shown in their bottom left corner.

(b) Excerpts of the robot evolution towards its convergence.

Figure 7.5: Example of visual servoing application.
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8 CONCLUSIONS AND FUTURE WORKS

This dissertation investigated the problem of homography estimation using a image
registration paradigm. The goal was to build a hybrid method that was capable of unifying
the intensity-based and feature-based approaches. In the path to accomplishing this goal,
each of these approaches were considered separately in order to better understand them
and their most glaring challenges. The contributions to each class of algorithms are
summarised here.

In Chapter 3, a refinement for existing intensity-based algorithms based on the Efficient
Second-order Minimization framework was proposed. Namely, two improvements were
verified: robustness to global illumination changes and to occlusions. The former was
accomplished by introducing photometric parameters into the optimization cost function,
in addition to the standard geometric parameters. The latter required the use of
M-estimator in order to calculate which pixels were statistical outliers, and therefore
considered as occluded.

In Chapter 4, a reformulation of the feature-based approach was proposed in order
to accomodate it in the ESM framework. This was a necessary step in the process of
creating a unified algorithm. An important result of this formulation is that the Jacobian
matrix in the feature-based case is greatly simplified using the Lie algebra formulation.
It accomplishes a second-order approximation using only information from the reference
image for the Jacobian, which is constant throughout the optimization procedure.

Finally, Chapter 5 presented a unified intensity- and feature-based approach for
homography estimation, based on the approaches devised in the previous chapters. It
was shown that this method was able to achieve a higher convergence domain among
the algorithms proposed in this work. Its precision level was comparable to the IB
approaches. When used in visual tracking, it displayed the property of being capable
of recovering from complete failure, which was not possible natively using only the IB
approach. However, the processing time for this unified approach is highly dependent on
the interframe displacement, which may be an impediment for some robotic applications.

The body of work presented in this dissertation is intended as a first step towards
building a unified approach for homography estimation, and visual estimation more
generally. Some of the results point towards future research directions. One possibility
is further investigating the feature-based approach in order to improve its performance.
A better outlier rejection method, for instance, could greatly increase the stability of the
unified algorithm. A traditional method that could be used for this purpose is RANSAC,
which is used in the OpenCV implementation of the homography estimation function.

Still regarding the feature-based approach, a more systematic approach can be
used in order to evaluate different feature detectors and descriptors. The validation
setup proposed in Section 6.2 will facilitate this comparison analysis. The currrent
implementation could also be enhanced to provide a modular approach that would allow
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the user to set different descriptor/detection algorithms at runtime. This philosophy could
also be applied in exposing more of the hyperparameters to the application developers.
This would allow them to better tailor the algorithm towards their domain.

Other future works include extending the proposed methods to handle different image
types, such as color images and those created by omnidirectional camera. In addition,
the extension of the transformation model from global illumination changes to arbitrary
illumination changes is yet another implementation possibility.

Regarding the robotics research community, an interest application of the proposed
method is to use them in a sensor-fusion context. For instance, using a inertial
measurement unit could help provide a better initialization for the optimization
algorithms. This would in effect work as a predictor for the algorithm, and therefore
further increase its convergence domain.

In conclusion, the work done towards this Masters dissertation is a first step in the
development of a efficient and robust unified approach for visual estimation. There are
promising results and immediate applications, but also several improvements that can
be achieved in the short and mid term. The algorithms proposed and its validation
framework will hopefully be used as a platform for future research, specially as they are
made available to the global community.
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