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Abstract 

 

The development of lighter, thinner, stiffer or smarter structures is a constant challenge 

among engineers and scientists of all fields. Tensegrity systems, which are formed by rigid 

bodies under compression and cables under traction, are likely to be largely used by the space, 

civil, mechanical, aeronautical and biomedical industries. The designer of a tensegrity can 

control its stiffness and shape by changing the tension in the cables, these behaviours are 

explored in this work via prototypes and simulations. A model was suggested to optimize 

mass and volume of a satellite antenna, a tensegrity mechanism was created to be launched in 

a reduced shape, saving volume in the launcher, and expanded in space by pulling specific 

tendons. Secondly, the tensions of a tensegrity prism's cables were varied and the change in 

stiffness was assessed through modal analysis. Finally, a 2D tensegrity tower was put under 

large deformations, its nonlinear static analysis was implemented and the natural frequencies 

of the deformed configurations were calculated. All the three methodologies have been 

implemented and, later, validated through experiments designed to highlight each property of 

concern. The objective of this work is to propose procedures to develop and build a tensegrity 

structure that carry those three methodologies: defining its expansion from a compact 

configuration, its stiffness control once the expansion is finished and its new shape if any load 

generates large displacements. Thus, beyond the practical end of the first topic, the goal of 

this work is to provide a general document of solutions related to tensegrity structures and 

mechanisms.  
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1 INTRODUCTION  

 

 

The term “tensegrity” is considerably recent, it was suggested by Fuller (1975), 

combining the words “tension” and “integrity”. Despite having created the name, the history 

of the invention itself is cloudy and can be shared with Kenneth Snelson and David Georges 

Emmerich. Furthermore, in 1920 Karl Ioganson patented a structure with three bars and eight 

cables, which may be seen as a first step for the other inventors’ configurations (JAUREGUI, 

2009). 

Briefly, a tensegrity is formed by compressed rigid bodies suspended by a continuous 

network of cables under pure tension (PUGH, 1976). A tensegrity configuration is an unstable 

set of rigid bodies that can be stabilized by a combination of cables, without external forces. 

After connecting a tensegrity configuration to the referred combination of cables, it may be 

called a tensegrity system (SKELTON and DE OLIVEIRA, 2009). The class of a tensegrity is 

given by the maximum number of rigid bodies in contact, and the class is 1 if the rigid bodies 

do not touch. Snelson’s needle tower (Figure 1) is an example of a class 1 tensegrity.  

 

 

Figure 1. Needle tower. 
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The elements of a tensegrity system are designed to stress in only one direction each, 

cables must be under traction and bars under compression (ASHWEAR and ERIKSSON, 

2014), which allows a more efficient material selection and simplifies the equations. Simpler 

equations lead to precise models and a better material selection leads to a higher structural 

efficiency. Both benefits are important for a number of fields in engineering, for example, 

aerospace engineers always seek lighter structures and accurate simulations, as they have 

limited payload and any miscalculation can be extremely expensive. These advantages are 

convenient for civil engineering applications too, the Kurilpa bridge (Figure 2) is an example 

of a hybrid tensegrity structure. 

 

 
Figure 2. Kurilpa bridge in Brisbane, Australia. 

      

A third advantage of tensegrities is the ability to change its shape and stiffness by 

changing the pre-stresses in the cables. By proportionally changing the tension of all tendons, 

the shape will keep and the stiffness will change, but by asymmetrically varying the tension, 

the shape will transform. Additionally, regarding control, traditional beams and trusses are 

forced to show an unnatural behaviour when actuated, while a tensegrity can have its 

equilibrium changed. In other words, the designer can change the nature of the system instead 

of forcing against a fixed equilibrium, as done nowadays with traditional structures. An 

illustration of this application is the rolling system of the Demoiselle (Figure 3), a cable 

connects the tip of the wing and the bottom of the fuselage, once pulled, the wing changes its 

shape and therefore its lift, making the airplane roll, performing the function of ailerons in 

later airplanes.   
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Figure 3. Santos Dumont's Demoiselle. 
 

This work contains three main topics: the expansion of a deployable tensegrity, modal 

analysis of a tensegrity prism with variable pre-stress and a nonlinear static analysis on a 2D 

tensegrity tower. Three prototypes were built so the models could be validated, one for each 

study: prototype 1 reduces or expands by relaxing or pulling the cable (Figure 4), prototype 2 

can be tensioned or relaxed according to the torque applied on the screws (Figure 5) and  

prototype 3 is subjected to large deformations (Figure 6).  

 

 

Figure 4. Prototype 1. 
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Figure 5. Prototype 2. 
 
 

 

Figure 6. Prototype 3. 

 

The first model was created to support the reflector antenna of a satellite so the 

mechanism could be launched in its compacted shape, saving volume in the launcher, and 

expanded only in space. The second prototype does not have an immediate application, but 
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the phenomenon has, and that configuration was chosen to simplify its assessment. The last 

prototype is a possible manipulator, as the position and angle of the tip nodes change with the 

loads, this tensegrity could perform the functions of light robotic arms or mobile camera 

stands in space missions, for example.  

 

 

1.1 Objectives 

 

  

Each model has an individual application and highlights a different tensegrity 

characteristic, so the specific objectives of this work consist in: 

 

 Developing a tensegrity mechanism and defining its kinematics and dynamics. 

 Calculating the stiffness of a tensegrity and assessing its sensitivity to the pre-stresses. 

 Solving the nonlinear static analysis of a long and flexible tensegrity tower. 

 Validating the methodologies with experiments.  

 

The general goal of this study, however, is to document an introductory guide (Figure 

7) on structural and dynamic analyses of tensegrities, by combining the methodologies 

described in this work.  

For example, starting from a compact shape, the kinematic analysis is performed to 

define the transformation into the expanded form. Once fully deployed, the mechanism 

becomes a static structure. Then, given an external load, a static analysis is required to 

calculate the final shape and internal stresses of the tensegrity. If the loads are relatively 

small, the linear analysis based on Skelton’s work is applied, otherwise Euler’s method is 

combined to solve the nonlinear analysis. Finally, the stiffness of the structure can be 

controlled through stressing or relaxing the tendons. 
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Figure 7. Guide. 
 

 

1.2 Dissertation Structure 

 

 

Chapter 2 reviews the literature about tensegrities in general and then focuses on each 

model studied in this work. Chapters 3, 4 and 5 relate to prototypes 1, 2 and 3 respectively, 

detailing the numerical and experimental methodologies, highlighting their specific 

characteristics and showing the comparison between practical and mathematical results. 

Finally, chapter 6 shows the main conclusions, limitations of the procedures, future steps and 

supports the importance of studying tensegrity structures and mechanisms.    
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2 LITERATURE REVIEW  

 

 

 Tensegrity systems have a high interdisciplinary potential. Friesen (2016) suggested 

and prototyped a tensegrity robot to climb ducts, its features are advantageous to dodge 

obstacles and overcome corners and diameter variations in a pipe. Jensen (2007) proposed the 

use of tensegrity beams for aquaculture installations and simulated them using a finite element 

software. Health professionals have also seen usefulness related to tensegrities, either by 

suggesting innovative prostheses (JUNG, LY, et al., 2019) and simulating parts of the body, 

such as a spine (LEVIN, 2002). Biologists have replicated animals’ features 

(FRANTSEVICH and GORB, 2002) and modelled the mechanical behaviour of living cells 

(INGBER, 1997) and (WANG, SRBOLJUB, et al., 2001).  

In the field of civil engineering, the use of tensegrity structures in roofs, domes and 

towers (GILEWSKI, KLOSOWSKA and OBARA, 2015) can be simply justified by their 

high structural efficiency, but the ability to deploy has been essential for some projects. For 

example, the retractile bridge for pedestrians of Rhode-Barbarigos (2010) do not limit the 

height of vehicles of the road. Also, structures that adapt their shape or stiffness, instead of 

remaining static and passive, are attractive to civil engineers because the external loads (or 

constraints)  may not be always constant, and tensegrities have this adaptive property (ADAM 

and SMITH, 2008). 

In aerospace engineering, however, the deployment capacity brings even greater 

advantages, such as the possibility of sending a compressed structure to space to be expanded 

only on orbit, saving volume inside the launcher. A growing demand on larger reflector 

antennas supports the application of tensegrity systems in space structures (ZHANG and 

OHSAKI, 2015). A tensegrity-membrane antenna called Astromesh (THOMSOM, 1999) had 

its dynamic behaviour studied and verified through a prototype by Moterolle (2015). 

Analogously, a hexagonal prism designed to perform the same purpose was analysed by Fazli 

(2011) in terms of dynamics and by Kurka (2018) in terms of deployment. Teixeira (2018) 

verified the impact of the membrane on the stiffness of the system, which performs the 

function of a reflector surface or an energy harvesting mechanism (SUNNY, SULTAN and 

KAPANIA, 2014).  



24 
 

 This work contains three main topics which are addressed by sections 2.1 Expansion 

of retractile structures and deployable tensegrities, 2.2 Stiffness Control and 2.3 Long 

and flexible structures. These three topics are related but were studied separately to better 

highlight each property: deployment, controlling stiffness through pre-stressing and large 

deformations taking the pre-stresses into account. Retractile structures were not explored in 

this work but were considered in the literature review because they may have the same 

applications as deployable tensegrities.  

 

 

2.1 Expansion of retractile structures and deployable tensegrities 

 

 

 A literature review of retractile structures, concerning space applications, is relevant to 

analyse the existing alternatives and indicate their limitations (PELLEGRINO, 2001) and 

(TIBERT, 2002). Just as tensegrities, retractile structures may transform their shape from a 

compact to an expanded configuration, reaching longer lengths. During launch, retractile 

structures can sustain the loads in the compact shape, which saves mass considering how 

heavier the structure would be if the loads had to be sustained by the geometry of the 

expanded shape. The small size of the compact form and the precision of the expanded shape 

give the retractile structures a high cost-performance ratio. 

 Tubular retractile structures of thin wall made of steel, copper-beryllium alloys or 

polymers strengthened with carbon fibre were pioneer in the space industry, taking advantage 

of the elastic behaviour of these materials. STEM (storable tubular extendible member) and 

CMT (collapsible tubular mast) are the two main kinds. Telescopic structures are concentric 

cylinders stored inside of each other, largely used as camera stands in transmission vehicles or 

mobile watch towers. 

 Retractile trusses were developed to help with the problems associated to storing and 

attaching big space structures during launch. Zhang (2014) built retractile trusses of high 

reliability with glass fibre composites and shape memory polymers. These articulated bar 

structures appear in numerous configurations and a few eventually converge into something 

similar to a tensegrity system, such as the cable strengthened pantograph. In other words, 
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retractile structures are proper for space applications because they deploy, but tensegrities 

might be one step further in terms of lightness and accuracy.  

There are numerous possibilities concerning the expansion of a tensegrity structure. 

Pellegrino (2001) suggested varying the length of a cable or strut and calculating by geometry 

the new nodes positions. Arsenault and Gosselin (2009) replaced six tendons of a prism by 

springs, added actuators to the bars so their length could be changed and used the Jacobian 

matrix to calculate the kinematics of the structure analytically.  

 Russel and Tibert (2008) replaced the elements under traction by inflatable films, so 

the system could be deployed by filling them with air. The kinematic analysis was performed 

by LS-DYNA with a finite element model created in Ansys. Zolesi (2012) simulated the 

expansion of a 12m diameter deployable antenna through a numerical model and commented 

about the form-finding property. A similar structure had its expansion process analysed by 

Rhode-Barbarigos (2012), but through a variation of the dynamic relaxation method.  

As described and used by Bel Hadj Ali (2011), this method of dynamic relaxation 

applies fictitious masses and damping in the equations of motion, making the static problem 

become dynamic, and solves the motion equations as a function of time through finite 

differences. The nodes positions are calculated every instant and the fictitious damping leads 

them to rest statically in the end. The properties of the strings (or the power of the actuators) 

required to activate the expansion can be calculated by the energy method used by Bel Hadj 

Ali and described by Moored (2009).    

 Given the pre-stresses of a tensegrity, the designer may find its respective shape 

through a form-finding method (ZHANG and OHSAKI, 2015), this feature can be useful for 

the expansion analysis and for the stiffness control. The force density algorithm departs from 

an initial guess for the set of pre-stresses, calculates its closest feasible set of pre-tensions 

given the geometry of the structure and finally finds the nodes positions for that calculated set 

of pre-tensions. 

 Schenk (2006) placed a tensegrity prism prototype in many static and symmetric 

positions by varying the lengths of its members. In this study, a similar system was 

developed, but the contribution relies in producing a continuous movement. The contraction 

of a determined set of cables enables this steady transformation, which also allows the 

movement to happen in a physical model. Its kinematics was calculated by geometry and the 

prototype was analysed through image processing by tracking the interesting spots of the 
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structure, analogous to what Lessard (2016) and Baltaxe-Admony (2016) designed for their 

works in biomechanics.  

Yang (2019) suggested a foldable tensegrity-membrane system, which unfolds the 

membrane during the deployment process. In this work, the compact shape of the proposed 

mechanism may occupy a larger area, but the membrane could be attached to its top base, 

perform the function of the reflector surface and would not have to fold or unfold anytime.  

Additionally, the deployable characteristic of tensegrities can also be used to produce  

walking robots (PAUL, VALERO-CUEVAS and LIPSON, 2006) and (SUNSPIRAL, 

AGOGINO and ATKINSON, 2015). Tensegrity robots for space exploration withstand 

impact loads better than regular probes, so when it comes to landing, structural efficiency and 

deployment, tensegrities are preferred. 

 High structural efficiency and controllable stiffness are essential advantages of 

tensegrities, but may not be enough to motivate engineers to move from their comfort zone: 

traditional and established beams or trusses. On the other hand, the possibility of deployment 

turns the table regarding the range of applications, and tensegrities may be massively used 

once this ability becomes well established. Documenting experiments and producing research 

material are necessary steps for making tensegrities reliable, this work aims to support 

achieving this objective.  

 

 

2.2 Stiffness Control 

 

 

 One of the main advantages of tensegrities is the possibility to change the stiffness by 

varying the pre-stresses of the cables. Furuya (1992) was probably the first to verify the 

stiffness control through modal analysis of a tensegrity tower, confirming that the natural 

frequencies increase with the pre-stresses. Bel Hadj Ali (2010) converged to the same 

conclusion more recently, but combining experiments and simulations. Working with 

different excitation frequencies, they managed to alter the pre-stress so the natural frequency 

of the structure avoided the excitation’s, controlling the amplitudes of vibration. Finally, Yang 

and Sultan (2016) sequenced the deployment of a tensegrity-membrane system and modelled 

a control strategy.  
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 With simulations and physical experiments on a 9 cables and 3 bars tensegrity, Motro 

(1986) showed that the nonlinear behaviour of simple structures can be reasonably 

approximated by a linear model. However, Yang and Sultan (2014) concluded from a 4 bars 

and 4 cables membrane-tensegrity that a linear elastic model is not accurate when the 

displacements of the membrane are large enough.  

 The stiffness of a cable depends on its pre-stress and geometrical orientation, which is 

given by the shape of the tensegrity. The shape can be found through a form-finding method, 

and its inputs include the pre-stresses of the cables as well (PAGITZ and TUR, 2009) and 

(ZHANG and OHSAKI, 2006). Therefore, controlling the global stiffness of the structure 

through pre-stressing requires attention as it may affect the geometry. Furthermore, the pre-

stresses can be used to redesign the geometry so the structure shows a greater stiffness in a 

certain direction, not only because the members are more stressed but also because their 

orientations contribute (SKELTON, ADHIKARI, et al., 2001). 

 This work contains a stiffness study, similar to Furuya’s (1992), but with a 3D 

tensegrity prism. The contribution lies in validating a methodology based on Skelton’s work 

(which calculates stiffness given the pre-stresses) with a prototype, using an image processing 

software to acquire the natural frequencies. Despite not having much impact in terms of 

innovation, this step is vital for serving as basis to the development of the next model. A 

future work could involve adding actuators to the prototype and implementing an active 

control methodology (DJOUADI, MOTRO, et al., 1998).  

 

 

2.3 Long and flexible structures 

 

 

Manipulators and robotic arms usually need to be precise and engineers end up having 

to design them stiff and heavy to guarantee their accuracy. Heavy mechanisms lead to slow 

movements or extremely powerful and expensive engines. However, regardless of the price, 

heavy structures are not suitable for space applications, challenging the community to design 

light and accurate manipulators. 

Holland (2008) studied large deflections and vibrations of a long beam to support its 

application on solar sails, whose highly flexible booms may buckle. A long and flexible beam 
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with a camera attached to its tip was suggested by Kurka (2016) to acquire images from the 

top of an outdoor exploration vehicle. It is interesting to keep the probe as high as possible to 

reach a farther horizon, the vibrations are H∞ controlled by an actuator cable that connects the 

tip of the beam to the base. Furthermore, when the vehicle comes to terrain slopes, the beam 

can bend (pulled by the cable) and move the camera to acquire images from different 

positions and inclinations (KURKA, IZUKA, et al., 2014). In this work, a 2D tensegrity tower 

(Figure 6) replaces the beam, therefore combining the advantages of tensegrities with the 

applications considered for the long and flexible beam. Feng (2018) modelled a tensegrity 

beam and applied an active control technique to mitigate its vibration, but seems to lack 

experimental results, designing a similar control technique to the proposed 2D tower or a 

prototype to Feng’s model can be a future step.  

Kebiche (1999) modelled a tensegrity beam made of several 4 struts prisms in 

sequence and analysed its geometrical nonlinearities. Dalilsafaei (2012) also modelled a 

tensegrity boom, but with 3 struts prisms instead, and attempted to improve its bending 

stiffness. Moored (2007) designed a tensegrity beam as well, but with morphing abilities, in 

three dimensions and without a prototype. Its shape shifting condition was initially proposed 

to control the core of a morphing wing and imitate a manta ray, but it can be easily adapted to 

work as a camera stand in a space probe as well. 

Skelton’s method for tensegrities cannot be directly applied to this case because the 

displacements are too large, making the static analysis nonlinear, so the contribution of this 

study relies in combining the incremental loads (or Euler’s) method (CRISFIELD, 2000) for 

nonlinear finite element analysis with Skelton’s method for tensegrity structures. Struts that 

are not perfectly straight lead to a nonlinear behaviour when compressed (CAI, YANG, et al., 

2019). The buckling effect creates this nonlinearity and was studied by Ashwear (2014), who 

used beam (instead of bar) elements to model the struts and therefore managed to analyse 

their resistance to bending.   

Zhang (2013) also used increments for solving static analyses of tensegrities, but 

combined with a self-adaptive methodology to increase the robustness of the method as a 

whole. Tran (2011) developed a similar study, but instead of the incremental loads method for 

nonlinearities, they used both total and updated Lagrangian formulations to establish the 

equations and a variation of Newton-Raphson’s method to solve them, similar to Murakami’s 

(2001) work. Their model had a high number of elements, making those more complex 

methods convenient, however, in this work, the 2D tower under analysis contains a small 
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number of elements, minimizing the impact of Euler’s method’s lower efficiency and 

highlighting its simplicity.  

 Kan (2018) designed a tensegrity framework, studied its movement and highlighted 

the roughness generated by cables that keep switching between slack and taut states. In this 

study, these transitions create discontinuities in the natural frequencies from one static 

position to the other. Therefore, the tendons should be pre-stressed before the analysis to 

postpone the occurrence of slack cables.  

 The trade-off involving length, lightness, stiffness and accuracy challenges the 

designers of a long and flexible structures since high aspect ratio and low stiffness bring a low 

accuracy that is not convenient. Therefore, tensegrity structures can be helpful in this context, 

since they are highly mass efficient and their stiffness and shape can be controlled by the 

stresses of their cables, which inspires the analysis of a flexible tensegrity tower in this work.   
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3 KINEMATICS OF A TENSEGRITY IN EXPANSION 

 

 

 The reflector surface of a satellite antenna is supported by a stiff cone that keeps it on 

a minimum distance from the wall of the satellite (Figure 8). This distance is necessary 

because the part of the signal that misses the surface could reflect on the wall of the satellite 

and come to Earth generating noise. The diameter of this antenna is around 0.5 m and the 

stand is approximately 0.2 m tall. 

The aim of this chapter is to develop a tensegrity system to replace these stiff and 

heavy stands of reflector antennas. Such system must be deployable, so the structure can be 

sent to space in its compact form, saving volume in the rocket, and expanded only on orbit, 

where volume ceases to be an issue. Furthermore, the stiffness of a tensegrity can be 

controlled by the stresses in the cables, which adds one more feature in favour of this 

innovative design.  

 

 
Figure 8. Antenna. 
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  [                                                                       ] (1) 

 

 

 The length of a strut b is the distance between nodes 1 and 6, 2 and 7, 3 and 8 or 4 and 

6, from this information the height h can be defined in function of the twist angle ψ (equation 

(2)). Similarly, the distance between nodes 1 and 5, 2 and 6, 3 and 7 or 4 and 8 is the length v 

of the inclined cables (equation (3)), finally defined in function of ta and h (which has just 

been defined in function of ψ). 

          [                 ] (2) 

         [                 ] (3) 

  

 

3.3 Kinematics 

 

 

The length of the inclined cable v and the height h were given in function of the twist 

angle ta. However, the only truly controllable variable is v, and the main objective in seeing 

how the height h changes with v, so this solution is not so useful yet, the idea for this section 

is calculating v and h for 0 < ta < π/4 rad, then h vs. v can be plotted (Figure 11). Also, given 

a velocity for v of -0.01m/s, time t can be calculated, showing how the twist angle and the 

height change over time (Figure 12).  

Finally, as h and ta are defined over time, the nodes positions N can be obtained 

(equation (1)) for all instants of time. With red lines representing the struts and black lines 

standing for the cables, an animation can be produced (Figure 13). There is a small 

displacement in the lower base between the struts and the wires, but that was inserted on 

purpose to reproduce the prototype (Figure 4). These results were obtained using b=0.35m 

and l=0.1237m. 
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Figure 11. h vs. v. (PAIVA, KURKA and IZUKA, 2018) 

 

 

Figure 12. ta and h vs. t. (PAIVA, KURKA and IZUKA, 2018) 
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Figure 13. Expansion.  
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3.4 Discussion 

 

 

A small pull in v, from 0.26m to 0.2m, causes a significant growth in h, from 0.02m to 

0.14m (Figure 11), so the first relevant characteristic of this mechanism is the high sensitivity 

of h to v. Another interesting feature is seeing the structure grow higher as the cables are 

pulled downwards, this can be considered counterintuitive, as people usually expect to see 

things become smaller after pulling it down. 

The inclined cable was set to decrease linearly (-0.01m/s) over time, as v reduced 

approximately 0.06m, the elapsed time should be around 6s, which has been verified (Figure 

12). Height increases with this reduction in v, the behaviour of h over time is just expected to 

be similar to v’s, but increasing instead, as confirmed in Figure 12. The same thought is valid 

to the twist angle, its variation from 0 to π/4 rad obeys equation (23) and follows a similar 

path over time comparing to h. 

These characteristics match the expansion process detailed in Figure 13. By 

comparing the first and the last frame, the increase in height and twist angle and the decrease 

in the inclined cable are clear. 

  

 

3.5 Validation 

 

 

 The movement of the structure was recorded by a 30fps camera and analysed through 

the image processing software Kinovea (Figure 14). From a side view, the height and the 

pulling cable were tracked, and from the top view, the twist angle and the pulling cable were 

acquired. The positions acquired in pixels were converted to meters to plot the height (Figure 

15), but since the twist angle ψ is dimensionless, this calibration was not necessary to 

calculate ψ from the top view and plot it versus v (Figure 16).   
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Figure 14. Kinovea. (PAIVA, KURKA and IZUKA, 2018) 

 

 

Figure 15. Height validation. (PAIVA, KURKA and IZUKA, 2018) 
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Figure 16. Twist angle validation. (PAIVA, KURKA and IZUKA, 2018) 

 

The experimental points do not appear on the left hand side of the charts, this happens 

because the minimum height (and therefore the twist angle) of the prototype is never zero 

since the struts hit each other before hitting the ground, but in the simulation the bars trespass, 

enabling h=0. However, after reaching this minimum feasible height and twist angle, the 

simulations can be considered validated as more than 80% of the experimental points matched 

precisely with the curve.  

There is a noticeable difference between experimental points and simulation curve in 

the right hand side of the height chart. That deviation appeared because a small buckling of 

the bars happened in the end of the experiment due to the force required to lift the tensegrity, 

while in the simulations the struts were assumed to be 100% rigid. These deformations lead to 

a greater displacement of the marker on the pulling cable, which is accidentally read as a 

reduction of v by the methodology, shifting the experimental points to the right. Furthermore, 

depth is not considered in the images analysis, as the twist angle grows a bit more sharply in 

the end, this approximation of a 3D structure in a 2D environment becomes less accurate from 

the side view, as objects look bigger when closer to the camera. 
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 On the other hand, the effect of depth is less relevant when looking from the top view 

because all four tips of the struts are lifted at the same rate and the angle between them is not 

affected if all bars look bigger. So the twist angle data could be acquired more accurately, 

leading to an almost perfect match between the experiment and the expected results.   

  

 

3.6 Energy Analysis 

 

 

 As there is no weight in space, the force required to lift the tensegrity is not so 

relevant, but the power of the engine may be important for other applications of this system. 

Given its symmetry, the traction necessary to lift the whole system is four times the force 

needed to lift one strut only. Neglecting the mass of the wires, the potential energy gained by 

the bar EP (plus losses by friction EF) equals the energy provided by the engine EE (equation 

(4)), where m is the mass of a bar, F is the required force to lift the tensegrity (equation (5)) 

and FF is the friction force. Finally, for a total time t and assuming the force is constant during 

the expansion process, the power    of the engine can be defined (equation (6)). 

                          (4) 
 

              (5) 

  ̇              (6) 

 

 Some conclusions can be reached just from the equations, for example, tensegrities 

with more struts will have greater mass and height and lower Δv, leading to a higher engine 

power. To validate these definitions of engine force and power, known masses (15g each) 

were attached to the struts and a scale was attached to the pulling cable, so the required force 

to hold the tensegrity up could be acquired (Figure 17). However, friction is helping the 

tensegrity to stand up in this case, so the sign of FF in equation (5) must be inverted. 
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Figure 17. Force experiment. (PAIVA, KURKA and IZUKA, 2018) 
 

 One of the main challenges in this subsection is estimating the friction of the contact 

between clip and wire. Known masses were hanged by the wire through a clip, forming an 

acute angle, and the required force (W - FF) to equilibrate the system was acquired by the 

scale (Table 1). When the angle formed by the wire around the clip is not acute, the friction 

forces can be neglected. 

 

Table 1. Friction. 

W [kgf] W - FF [kgf] FF/W 

0.09 0.06 0.33 

0.17 0.13 0.24 

0.20 0.13 0.35 

0.31 0.21 0.32 

0.36 0.25 0.31 

0.40 0.27 0.33 

0.47 0.34 0.28 

0.51 0.37 0.27 

0.57 0.42 0.26 
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  The friction forces bear an average of 29.8% of the weight. In the prototype, 2 cables 

form only one contact clip wire that form an acute angle, so the force transmitted to the scale 

is 70.2% of the traction before the clip. The other two cables are deformed by an acute angle 

twice, so the force transmitted to the scale is (70.2%)
2 of the force before the first clip. The 

total force acquired by the scale (0.04 kgf) is the sum of all 4 cables after passing through the 

last clip (equation (7)). 

          [                 ]   

                                             
(7) 

 

 

3.7 Conclusions 

 

 

 A 4 struts class 1 tensegrity had its expansion process simulated, verified and studied. 

The experimental data was acquired by a 2D image processing software, but the experiment is 

3D with clearly large displacements, so a small portion of the experimental results was 

compromised because objects closer to the camera look bigger. Still, more than 80% of the 

experimental points matched perfectly with the numerical results. The analysis lead to a better 

understanding of the experimental process and highlighted certain characteristics, such as the 

high sensitivity of the height to the pull of the inclined cable, or how the twist angle changes 

as the structure grows taller. 

The engine force and power were defined by an energy analysis, which was also 

validated through an experiment. Known masses were attached to the bars so they had 

relevant inertias and the force to keep the structure up was acquired by a scale. Some 

assumptions and approximations regarding the friction forces were necessary, but the results 

matched in the end, endorsing the assumptions and the energy analysis overall.  

The reflector surface could also be replaced by a membrane made of a reflective 

material, this would reduce the mass of the system. Future steps for this study include the 

definition of a tensegrity-membrane model and the characterization of the behaviour of the 



42 
 

membrane itself. Another possible extension of this work could be a class 2 tensegrity tower 

made of several modules of the mechanism shown in this chapter on top of each other, to be 

used as a manipulator arm. 

Finally, the system studied in this chapter can be sent to space in a compact 

configuration, easily sustaining the loads of the launch and saving volume in the rocket. Then 

the tensegrity is expanded on orbit, reaching its maximum height after a small pull of the 

inclined cables, putting the reflector surface as far as it needs to be from the satellite’s wall to 

avoid the generation of noise. When comparing to the traditional solid cone that supports the 

antennas nowadays, the mass of this system is lower and, after completely expanded, its 

stiffness can be controlled as studied in chapter 3, adding one more useful feature to this 

potential stand of a satellite antenna.  
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4 PRE-STRESS AND STIFFNESS 

 

 

 The stiffness of a tensegrity structure can be controlled without altering the shape if 

the pre-stresses of all cables are proportionally changed. This property was analysed on a 3 

bars and 9 cables tensegrity prism. Firstly the stiffness of a member was found given its pre-

stress and then the global stiffness of the structure is calculated using the methodology based 

on Skelton’s (2009) work. Then, a modal analysis was performed on the structure and finally 

the sensitivity of the natural frequencies to the pre-stress was checked. A prototype (Figure 5) 

was built to validate the methodology.  

 Despite not having an immediate application, the design suggested in this chapter is 

valuable as a first step into calculating the stiffness of a tensegrity. This initial stage is 

recommended to better understand the methodology (which will be used again in chapter 5) 

with a simple and easy to visualize model. 

 

 

4.1 Finding the pre-stresses 

 

 

 Assuming the pre-stress does not deform the members and the structure is static, the 

pre-stresses of the members can be found through nodes method (HIBBELER, 2004). As if 

the tensegrity were a truss: the sum of forces in each node is equal to zero (equation (8)). 

 ∑    ∑    ∑     

 

(8) 

 

 This method is convenient for this study because the structure is symmetric, so one 

single node is enough to find the forces. The pre-stress σk and the force density sk of the 

members are defined in equations (9) and (10), where Fk is the axial force, Ak is the cross-

section area and Lk is the length of the element k. 
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         (9) 

         (10) 

 

 

4.2 Stiffness of a member 

 

 

 Based on the model suggested by Skelton (2009), the position ni of the ith node of the 

structure is defined in equation (11) and the nodes matrix N in equation (12), where n is the 

number of nodes of the structure: 

    {      } (11) 

   [       ] (12) 

 

  The connectivity ck of a member k that connects nodes i and j is given by equation 

(13), where ei is a vertical vector filled with zeros except in the ith position, whose value is 1. 

The connectivity matrix C is formed by the connectivity vectors of all members (equation 

(14), where m is the number of members) and the members matrix is shown in equation (15).  

          (13) 

    [       ] (14) 

       [       ] (15) 

 

The stiffness Kk (equation (16)) of a member k can be obtained from the connectivity 

vectors ck and the matrix Sk (equation (17)) through a Kronecker product (Appendix B). Sk is 
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     [                    ] (20) 

 

Solving equation (19), the mass matrix of an element (equation (21)) is obtained:  

 

          *                + 

 

(21) 

 

The global mass matrix HG is obtained through superposition of the elements’ mass 

matrices Hk. Then, the natural frequencies ω and their respective modes of vibration {d} can 

be calculated (equation (22)) (BATHE, 1996). 

  [  ]     [  ]  { }    (22) 

  

 

4.4 Definition of the model 

 

 

 A tensegrity prism with 3 struts (thick lines) and 9 cables (thin lines) is analysed in 

this chapter (Figure 19). The lower base is formed by nodes 1, 2 and 3, while the upper base is 

formed by nodes 4, 5 and 6. The geometrical parameters of the model are h=0.12m of height 

and l=0.12m of base side. The cross section of the strut is square with 6mm side and the cross 

section of the cable is round with 0.33mm diameter. Density is 1200kg/m³ for both materials 

and Young modulus is 3GPa for the bar and 2GPa for the cable. 
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[  
   
   
   
                                                                                    ]  

   
   
   
   
                                                            

 (26) 

 

 By symmetry, all the 6 horizontal cables are under the same pre-tension τH, the 3 

cables connecting both bases are under τV and the bars under τB. From equation (8), by 

assuming one of those three pre-tensions (τH, τB or τV), the other two can be found. Then the 

stiffness can be calculated from equation (17) for each combination of tensions and, finally, 

the natural frequencies and modes of vibration (Figure 35, Figure 36 and Figure 37 in 

Appendix (A) can be found from equation (22). The mass matrix does not change with the 

pre-stresses.  

  

 

4.5 Validating the model with a FEA software 

 

 

 Using the inistate command for the pre-stresses and the link180 element on Ansys 

APDL, the same model was analysed (Figure 21) and the results were compared to those 

obtained from the methodology described in this chapter (Table 2). The rigid body modes are 

not available in the table or in Figure 35, Figure 36 and Figure 37.  

The stiffness increases with the pre-stresses. As the natural frequencies are positively 

related to the stiffness, it is just expected that the natural frequencies should increase with the 

pre-stresses too, this behaviour was confirmed with the simulations. Additionally, the values 

matched with the commercial software, enhancing the reliability of the methodology 

described in this chapter and qualifying the study to advance to the experimental procedures.  
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Table 2. Natural frequencies [Hz]. 

 
τH = 0 [N] τH = 10 [N]  τH = 20 [N]  

Mode Ansys Model Ansys Model Ansys Model 

1 1.96E-05 1.88E-05 57.5 57.5 81.3 81.3 

2 117.8 117.8 126.5 126.5 134.3 134.3 

3 117.8 117.8 126.5 126.5 134.3 134.3 

4 149.6 149.6 154.3 154.3 158.8 158.8 

5 149.6 149.6 154.3 154.3 158.8 158.8 

6 217.5 217.5 221.7 221.7 225.8 225.8 

7 245.0 245.0 242.1 242.1 239.5 239.5 

8 245.0 245.0 242.1 242.1 239.5 239.5 

9 293.9 293.9 286.4 286.4 278.7 278.7 

10 3944.4 3944.4 3945.0 3945.0 3945.5 3945.5 

11 3944.4 3944.4 3945.0 3945.0 3945.5 3945.5 

12 3953.8 3953.8 3953.8 3953.8 3953.9 3953.9 

 

 The normal force of the other cables τV and bars τB were found through equilibrium of 

forces as shown in equation (8) and the pre-stresses of the cables and bars were calculated 

given the cross-section areas of the elements. 
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Figure 21. Ansys model. 

 

 

4.6 Prototype and tensiometer 

 

 

 With h=0.13m and l=0.12m, the prototype (Figure 5) was built with steel struts 

(approximately 200GPa of Young modulus, 8400kg/m
3 of density and square cross section of 

6.3mm side) and nylon cables (approximately 3GPa of Young modulus, 1200kg/m
3 of density 

and round cross section of 0.4mm diameter). The magnified detail (Figure 22) shows how the 

pre-stresses can be manipulated by the torque applied on the screws. 

 A relevant complication with this experiment was measuring the tension to which the 

cables were subjected, to solve this issue a wire tensiometer was built (Figure 23). The force 

P required to transform the cable into the shape of the instrument is acquired by the scale, as 

that geometry is known, the traction of the cable can be calculated. Using the symbols shown 

in the scheme (Figure 24), the angle ϴ is given in function of a and b in equation (27) and the 

traction T is found in terms of force P in equation (28). 
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                   (   ) (27) 

                       (     (   )) (28) 

 

 

Figure 22. Detail of the prototype 1. 
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Figure 23. Wire tensiometer. 
    

However, the cable had to be deformed to shape that triangle in Figure 24, generating 

some extra traction due to the elongation of the cable. Given the area A of the cross section, 

the total length LT and the Young modulus E, the extra traction τE is defined in equation (29), 

and the correction is applied in equation (30). 

  

   √          

              (√         )       

(29) 

 

         (     (   ))  (√         )       (30) 
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Figure 24. Tensiometer scheme. 

  

This result is valid when both ends of the cable are fixed and the only way to form the 

triangle is by stretching the wire. However, in the prototype, the ends are not fixed, an 

effective approach to minimize this error is selecting values for a and b that make τE 

irrelevant. Using the estimated properties of our cable, a=0.007m, b=0.09m and LT=0.12m, 

the influence of this additional traction is small enough (Figure 25) compared to the actual 

traction. The least count and maximum weight the scale can acquire are 10g and 50kg 

respectively.  
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Figure 25. Tractions. 

 

 

4.7 Experimental modal analysis 

 

 

The inaccuracies related to the concentrated mass of the screws were minimized by 

positioning the prototype with the screws close to the ground. A 30fps camera recorded the 

vibration of the structure after an external step input in one of the struts, the video was 

analysed in the image processing software Kinovea (Figure 26) to obtain the position of the 

tip of a bar every 33ms. The frequency response was obtained through discrete Fourier 

transform using the fft() command in MATLAB.  

The experiment was repeated for three different sets of pre-tension: τH1=1.8N, 

τH2=3.3N and τH3=4.3N (Figure 27). The displacements were measured in pixels and were not 

converted to meters because the focus of this chapter is finding the natural frequencies, 

therefore calibration is not necessary in this section. The numerical model was adapted to 

reproduce the dimensions and restrictions of the prototype, the results are available in Table 3. 
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Figure 26. Kinovea. 
 

 

Figure 27. First natural frequencies. 
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Table 3. First natural frequencies comparison. 

Traction τH [N] 1.8 3.3 4.3 

Prototype [Hz] 7.07 8.52 10.1 

Model [Hz] 7.16 9.69 11.07 

Error 1.3% 12.1% 9.2% 

 

 

4.8 Conclusions 

 

  

Based on Skelton’s (2009) results, a methodology was suggested to calculate the 

stiffness of a pre-tensioned tensegrity and determine its vibrational behaviour. A prototype 

was built with metallic struts and nylon cables and subjected to modal analyses under 

different pre-stresses to compare with the numerical results, which agreed overall.  

Many challenges appeared regarding the construction, for example, screws had to be 

attached to the tips of the bars so the pre-stresses could be controlled and an instrument was 

built to measure the traction forces in the tendons.  

The inaccuracy is more relevant with greater tensions (Table 3), that happens mainly 

because the prototype is not perfectly symmetric, and these asymmetries are enlarged with 

greater pre-tensions. However, the purpose of verifying that increased pre-stresses lead to a 

higher stiffness was achieved, as well as validating the methodology, so the main targets of 

this chapter were reached. 
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5 NONLINEAR STATIC DEFORMATION 

 

 

The use of a long mast on top of a space exploration probe assists the acquisition of 

data from a higher spot (thus allowing the observation of a farther horizon), and a bendable 

structure enables the investigation of unreachable places such as holes. The design suggested 

in this chapter is an alternative to the long and flexible beam proposed by Kurka (2014), with 

adapted methodologies to perform similar static and modal analyses on tensegrities.  

The stiffness matrix found by the methodology described in the previous chapter may 

be used to find the deformation {x} of the structure given a load vector {F} (equation (31)).  

 { }    { }  { }      { } (31) 

 

However, for large deformations, the nodes matrix N changes and so does the stiffness 

matrix KG, therefore the problem becomes nonlinear. There are several ways for calculating 

large displacements, the incremental loads (or Euler’s) method (CRISFIELD, 2000) is not the 

most efficient, but was chosen for being simple and suiting the requirements of this analysis. 

The objective of this chapter is to define a methodology for tensegrities under large 

deformations by combining Euler’s method for large displacements with the methodology 

based on Skelton’s (2009) work for linear tensegrities. Finally, a prototype (Figure 6) was 

built to validate the experiments and the natural frequencies of the deformed positions were 

calculated and analysed. 

   

 

5.1 Incremental loads 

 

 

 For a given force F that causes large deformations on the structure, Euler’s method 

consists in applying p small increments of F/p so the deformations are small enough to make 

the analysis linear. However, the stiffness has to be updated every step with the new positions 

of the nodes. In this work, the stiffness is updated considering not only the new nodes 

positions, but the new stresses of the members as well.  
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The cross section areas A, the incidence of the members and the materials properties E 

and ρ and are assumed to be always constant, represented by dotted lines in Figure 28. The 

incremental load stays in a dashed box because its module F/p is constant, but the direction 

may change, and the other parameters are squared by solid lines because they vary every step. 

 

Figure 28. Incremental loads flow chart. 

   

 

5.2 Description of the system 

 

 

 A bi-dimensional tensegrity tower (Figure 29) is the focus of this chapter. As the 

maximum number of rigid bodies in contact is 2, it is a class 2 tensegrity. The six levels 

structure has its base fixed and the top right tip attached to a point close to the base by a cable, 

which is pulled making the system bend likewise a fishing rod. The thick lines represent the 

bars and the thin lines represent the cables.  

 Subjected to different loads, a goal of this chapter is predicting the behaviour of the 

structure with the presented methodology and comparing with the results of the prototype. 

Gravity is considered but the prototype had to be hanged upside down to remain bi-

dimensional, so the weight points upwards in Figure 29.  
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Figure 29. 2D tensegrity tower. 

 

 

5.3 Materials properties 

 

 

 The struts and hinges of the prototype shown in Figure 6 are made of steel 

(approximately 210GPa of Young modulus), the cables are made of silicone rubber and the 

hinges are connected to the struts. When completely assembled, the structure was weighted 

and the total weight was divided by the number of bars. The cables are assumed to be 

massless and the struts to concentrate 0.01kg/bar approximately.  
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Silicone was selected to be the material of the tendons because of its great elastic 

range and low Young modulus, so the structure can be put under large deformations with a 

small load without failing. An experiment was executed to estimate the tendon’s Young 

modulus: four 0.34m long and 1mm diameter rubbers were pulled and the force was acquired 

every 10mm displacement by a hook scale (Table 4). The stress strain curve of this material is 

not linear, therefore it is convenient to focus on the range that matches the displacements of 

the prototype, which never exceed 20%, leading to 19.9MPa of Young modulus within the 7 

first data points (Figure 30).  

   

Table 4. Silicone experiment. 

ΔL [m] F [kgf] Ε σ [MPa] 

0.00 0.00 0.00 0.00 

0.01 0.08 0.03 0.39 

0.02 0.15 0.06 1.46 

0.03 0.20 0.09 1.95 

0.04 0.27 0.12 2.63 

0.05 0.32 0.15 3.12 

0.06 0.37 0.18 3.61 

0.07 0.40 0.21 3.90 

0.08 0.44 0.24 4.39 

0.09 0.46 0.26 4.49 

0.10 0.50 0.29 4.98 
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Figure 30. Stress strain curve. 

 

 

5.4 Force density’s relevance 

 

 

The importance of the pre-stresses in chapter 3 becomes clear when looking at the 

results, but, in this chapter, the tension is created by external loads on the system, so the 

reader might question the relevance of the force density to the global stiffness in this case 

(equation (17)). A simple way to investigate the contribution of this force density term is by 

analysing the stiffness of a horizontal member (Figure 31). 
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Figure 32. Relevance of sk. 

 

 

5.5 Static results and comments 

 

 

A grid behind the prototype permits an accurate acquisition of the displacements. The 

loads to which the prototype is subjected are 0, 0.03, 0.044, 0.052, 0.061 and 0.066 kgf 

(Figure 33). The prototype’s behavior is represented by dashed black lines with circles 

representing the 10 mm tolerance on the nodes positions, the thick red lines are the struts, the 

solid black lines are the cables and the thin blue lines show the natural position of the 

tensegrity. 

In the first solution, the highlight is the behavior of the structure when subjected to 

self-weight only, without any loads on the cable. Each level sustains the weight of the upper 

ones, so the lower levels are stretched more than the others. The other five solutions follow 

the expected pattern: greater loads leading to greater displacements.  
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Figure 33. Validation. 
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5.5 Natural frequencies and comments 

 

 

The 8 first natural frequencies were extracted for 200 deformed positions, the loads 

responsible for these displacements are indicated as a function of the total weight of the 

structure (Figure 34).  

 

 

Figure 34. Natural frequencies for all deformed positions. 

 

In most modes, the natural frequency increases with a higher load, as expected. In this 

analysis, slack cables were simply removed from the mesh, so there is an abrupt reduction in 

the stiffness matrix every time a cable becomes slack. Analogously, whenever a slack cable 

becomes taut, there is a sudden increment in KG. These abrupt changes in stiffness cause the 

shifts in natural frequencies in Figure 34. These discontinuities can be avoided by initially 

pre-stressing the cables so they do not become slack during the analysis, this procedure will 

be incorporated in a future work.  

 Furthermore, the state of a certain cable may not affect all modes of vibration. For 

example, when the load reached approximately 25% of the weight of the structure, there was 

an increment in stiffness because all modes (except the third) shifted to a higher natural 

frequency. This means that a previously slack cable is under traction now, but the degrees of 
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freedom to which it is responsible do not affect the shape of the third mode of vibration 

considerably. 

 

 

5.6 Conclusions 

 

 

 In this chapter, Skelton’s (2009) methodology for calculating the stiffness of a pre-

stressed tensegrity was combined with Euler’s (incremental loads) method for solving 

nonlinear static analyses. This combination of methods was verified with a lightweight and 

flexible 2D tensegrity tower subjected to large deformations. The loads were applied through 

a pulling cable attached to the tip of the tower and the self-weight of the structure was 

considered.  

A parallel experiment was executed to define the stress strain curve of the cable, 

which was found to be nonlinear in the elastic range. This nonlinearity is increased when the 

cable is greatly deformed, which explains why some experimental points do not match 

perfectly with simulations in the last two graphs of Figure 33. However, the vast majority of 

the results stayed within the tolerance, enhancing the reliability of the method. 

The modal analysis for all static positions confirmed the conclusions of the previous 

chapter and highlighted an issue related to cables switching between slack and taut states. The 

future steps include avoiding this issue by pre-stressing the cables (before performing the 

static analysis) to postpone the occurrence of slack cables (KAN, PENG and CHEN, 2018).  

Other possible extensions are the development of a vibration control strategy, driving 

the displacements with the tower’s own tendons instead of an external pulling cable or 

modeling a three dimensional tower.  

  



68 
 

6 CONCLUSIONS 

 

 

 Tensegrity systems offer many advantages over traditional structures, such as 

controllable stiffness and deployable geometry, this work aimed to analyse each characteristic 

separately. For that, three experiments about tensegrities were executed, the first one focused 

on showing the relation between pre-stress and stiffness, the second involved large 

deformations and the third highlighted the expansion process of a deployable tensegrity.  

 Firstly, a four struts tensegrity prism was suggested to replace the solid cones used 

nowadays to support reflector antennas on satellites. This structure would be sent to space in 

its compact configuration to save volume and to bear the loads more easily, its expansion 

would happen only when in orbit following the characteristics studied in chapter 5. After 

completely expanded, the designer can control its stiffness as in the first prototype, so the 

final structure would be lighter (not only by nature, but because the loads during launch are 

endured in the compact shape), stiffer (or not, according to the designer’s will) and would 

save volume in rocket. Although not a problem in space, the forces required to lift this system 

on Earth was also assessed in case other applications appear. 

 Secondly, a three struts tensegrity prism was built with metallic bars and nylon 

tendons, each bar had a screw to which the tendon was attached so the designer could apply 

torque to increase or decrease the tension in the tendons. This change in tension leads to a 

change in stiffness, which was assessed through modal analysis. As expected, the natural 

frequencies increased with the tension, confirming that the structure becomes stiffer with 

greater pre-stresses. A numerical model was implemented and validated with the results of the 

prototype. 

 Secondly, a four struts tensegrity prism was suggested to replace the solid cones used 

nowadays to support reflector antennas on satellites. This structure would be sent to space in 

its compact configuration to save volume and to bear the loads more easily, its expansion 

would happen only when in orbit following the characteristics studied in chapter 5. After 

completely expanded, the designer can control its stiffness as in the first prototype, so the 

final structure would be lighter (not only by nature, but because the loads during launch are 

endured in the compact shape), stiffer (or not, according to the designer’s will) and would 
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save volume in rocket. Although not a problem in space, the forces required to lift this system 

on Earth was also assessed in case other applications appear. 

Finally, a bi-dimensional class 2 tensegrity tower with 6 storeys was built with 

metallic bars and elastic cables and put under large deformations. The methodology used to 

calculate the stiffness of the first prototype is accurate for small displacements only, so it was 

combined with Euler’s method for nonlinear static analysis to simulate the condition of this 

second prototype. The contribution to the field of this second experiment lies in the 

methodology, therefore its conclusion showing a good match between numerical and 

experimental results is the chapter’s highlight. 

 With these three models, this work can be an initial guide to calculating tensegrity 

structures and mechanisms, from its kinematics and dynamics to its structural behaviour after 

applying either small or large loads and varying pre-tension. This last chapter involved a 

practical application for a tensegrity mechanism, but after completely expanded, the stiffness 

could be controlled as seen in chapter 3 so the natural frequency would shift from a certain 

excitation, or a static analysis could predict the new shape of the structure if external loads 

were applied, as in chapter 4.  

 A critical limitation of this work lies in the quality of the prototypes, especially 

regarding the materials properties, which were hard to approximate. A better estimative of the 

properties and more symmetric prototypes would have brought a better indication of the 

methods’ accuracy. Finally, a limitation of the methodology for nonlinear analysis is the low 

efficiency of Euler’s method, which requires a high number of steps to reach an accurate 

result and may be inconvenient for a model with too many elements. Nevertheless, the actual 

prototypes satisfied the purposes of validating the methodologies. 

Tensegrities pay the price for being highly mass efficient with a slightly lower 

stiffness, which makes them more sensitive to vibrations. Vibration control was not appraised 

in this study, what comes closest is the first model with variable natural frequencies, but a 

more complex study with excitations and real time control would suit the future steps neatly, 

adding a significant argument in favour of these innovative structures.  

The future steps regarding the reflector antenna improvements could be focused on the 

reflector surface, studying its replacement by a membrane and therefore reducing the total 

mass of the system. A tensegrity-membrane model would have to be defined and the 

behaviour of the membrane itself characterised. Furthermore, an addition to the tensegrity 

tower study could involve the development of a vibration control strategy, pre-stressing the 
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tendons to postpone the occurrence of slack cables or modeling a three dimensional tower by 

stacking several 4 struts mechanisms on top of each other. This combination would generate a 

class 2 tensegrity tower mechanism capable of transforming its shape without the action of an 

external pulling cable.  

 One aspect that keeps tensegrities from being largely used is lack of acceptance as 

they are recent when compared to trusses or beams. However, as the advantages are numerous 

and useful, it becomes a matter of establishing the reliability of the term tensegrity to make 

them be better availed in the future, and documenting experiments is a key step to bring this 

future closer.  
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Appendix A – First modes and natural frequencies  

 

 

Figure 35. τH =0. 
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Figure 36. τH =10N. 
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Figure 37. τH =20Hz. 
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Appendix B – Kronecker product  

 

 If H is a i x j matrix and G is a α x β matrix, the Kronecker product (HORN and 

JOHNSON, 1994) H G of dimensions iα x jβ is defined in equation (35): 

 

    [  
                                            ]  

   

      
[  
   
  [  
                                                              ]  

 [    ]  [    ]
[    ] [    ]  [    ]    [    ] [    ]  [    ]]  

   
  
 

 

(35) 

 

 
 
 
 
 
 
 
 
 

 


