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Resumo

Rossetto, Gustavo Dalben, Contribuicdo & teoria e prdtica da andlise modal aciistica experimental,
Faculdade de Engenharia Mecénica, Universidade Estadual de Campinas, 2001. 121 p. Dissertagiio
{Mestrado)

Neste trabalho uma geometria simples (cavidade retangular) é usada para o estudo da
metodologia aplicada na analise modal aclstica. Modelos analitico e numérico sio desenvolvidos
para a comparacdo com 0s resultados experimentais. Trés tipos de dispositivos de excitagio do
sistema acustico foram construidos. Um baseado num pistiio conectado a um shaker, e outros dois
usando um alto-falante do tipo driver. O primeiro atuador usando o driver € similar ao modelo
desenvolvido por um projeto europeu, onde um tubo flexivel com uma terminagio instrumentada
com um microfone € usado para a condugfio da excitagio acustica. O segundo atuador baseado no
uso do driver também usa um tubo flexivel, mas este é instrumentado com dois microfones em sua
terminag@o. O comportamento destes dois ltimos atuadores em termos de aceleracio de volume
(essencial para a andlise modal actstica experimental) e de poténcia ativa (necesséria para Analise
Estatistica de Energia Experimental) sendo injetados no meio sfo investigados. A analise modal
experimental da cavidade retangular ¢ realizada e um método que utiliza a transformada de Fourier
espacial multidimensional do campo de pressdo medido € proposto para-a construgio do campo de

deslocamento de particula para a visualizagdo do modo acistico.

Palavras Chave
- Cavidade, atuadores acusticos, Transformada de Fourier Discreta espacial, visualizagiio do modo

acustico



Abstract

Rossetto, Gustavo Dalben, A contribution to the theory and practice of experimental acoustic modal
analysis, Faculdade de Engenharia Mecéanica, Universidade Estadual de Campinas, 2001. 121 p.
Dissertagao (Mestrado)

In the present work, a simple geometry (rectangular shallow cavity) is used to investigate the
acoustic modal analysis methodology. Analytical and numerical models are developed for the
comparison with the experimental results. Three types of excitation devices were constructed. One
based on a shaker-driven piston and the other two using a driver loudspeaker. The first actuator
based on a driver loudspeaker is similar to a model developed by an EEC project, where a flexible
tube with a socket, instrumented with one microphone, at its termination is used to conduct the
sound excitation. The second actuator based on a driver loudspeaker alse uses a flexible tube, but it
is instrumented with two microphones in its socket instead of one. The behavior of these last two
actuators in terms of volume acceleration (essential in the acoustic modal analysis) and active power
(necessary for the Experimental Statistical Energy Analysis) being injected into the medium are
investigated. The experimental modal analysis of the rectangular cavity is performed and a method
using multi-dimensional spatial Fourier transforms of the array of pressure measurements is
proposed for the construction of the particle displacement field for acoustic mode shape

visualizationt.

Key Words

- Cavity, acoustic actuators, spatial Discrete Fourier Transform, acoustic mode shape visualization
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Capitulo 1

Introducéao

A importancia prética da andlise modal aciistica tem aumentado nos dltimos anos. No campo
experimental, algumas dificuldades ainda ndo foram superadas e o presente trabalho apresenta
um estudo sobre algumas delas. Sio elas: correcdes de unidades que permitam a comparagio
entre resultados analitico, numérico e experimental; a realiza¢go da excitagfo acistica calibrada;
e a visualizacfo dos modos acisticos.

Na atual literatura envolvendo sistemas actisticos, pouca atengdo tem sido dada na
definicdo de varidveis acuUsticas de excitagio e resposta, fundamentais na andlise modal
experimental. Augusztinovicz ¢ Sas (1996) trataram este assunto e apresentaram uma formulagio
onde a aceleracdo de volume € a varidvel de entrada e a pressfio a varidvel de resposta nas
equacdes dindmicas de sistemas aclsticos. A pressdo é facilmente medida com microfones,
enquanto qué a acelerac@o de volume pode ser produzida por um fonte sonora calibrada, tal como
um alto-falante em configuracio especial.

Nieter e Singh (1982} desenvolveram uma metodologia para a andlise modal acistica onde
as mesmas ferramentas aplicadas na mecanica dos sélidos (analisadores de Fourier, métodos de
extracdo de parimetros modais, etc.) s3o usadas. A técnica no apresenta ivroblemas COTn respeito
as medidas de pressdo, que podem ser feitas com microfones ou transdutores de pressio bastante

sensiveis, mas tem que lidar com a excitac@o acistica (aceleracio de volume do fluido) que ndo



possui medi¢do direta devido a falta de um transdutor de velocidade de particula’ confidvel e
preciso numa larga faixa de fregiiéncia. A solucio encontrada foi o uso de um pistao
movimentado por um shaker, sendo que a medida de aceleragio de volume ¢ obtida pelo sinal de
aceleragdo (dado por um acelerbmetro conectado ao pistdo) multiplicado pela drea do pistio. Um
-trabatho posterior de Singh e Kung (1985) prop&e uma outra solugio que utiliza um alto-falante
do tipo driver, onde a aceleracio de volume é monitorada por um microfone montado numa
pequena cavidade de volume conhecido na parte traseira do driver. Este dispositivo de excitacio
foi entdo aplicado diretamente no ponto de excitacio do sistema aciistico testado.

O problema relacionado com a visualizag@io dos modos actsticos foi tratado por Whear e
Morrey (1996), que usaram uma sonda com trés microfones alinhados para, a partir do calculo de
diferencas finitas de segunda ordem, obterem a derivada espacial de segunda ordem da pressdo.
Como a primeira derivada espacial relaciona-se (equagfo de Euler) diretamente com a aceleragio
de particula, a derivada espacial de segunda ordem ird exibir 0 mesmos nés e anti-nés da
distribuicéo de pressdo. A desvantagem deste método é o efeito de amplificacdo do ruido gerado
pela dupla diferenciagdo do campo de pressdo medido. Outra metodologia é apresentada por
Byme (1985), que usa a pressio medida numa sequéncia de pontos no dominio acistico
experimental para extrair fungdes aproximadas formadas por polindmios para calcular o gradiente
de pressdo numa determinada direcfo. Tendo o gradiente de pressdo, a aceleragio de particula é
calculada aplicando-se a equagdo de Euler. )

No presente trabalho, uma geometria simples (cavidade retangular) é usada no estudo da
metodologia da analise modal acustica. Modelos analiticos e numéricos sero desenvolvidos para
posterior comparagio com resultados experimentais, que serfio obtidos com o uso de trés
diferentes dispositivos de excitacfo. O primeiro consiste de um pistio, movimentado por um
shaker, que desloca uma membrana eldstica, como feito por Arruda e Huallpa (1999). O segundo
utiliza um alto-falante do tipo driver ¢ € similar a um modelo desenvolvido por um projeto
europeu (Van Tol e Verheij, 1993). Esta configuragio possui uma vantagem sobre a aplicacdo do
driver diretamente no ponto de excitagdo que € o uso de um tubo conduzindo a excitacio sonora,
permitindo que o atuador seja facilmente posicionade em diferentes pontos de um espaco

confinado. Este atuador possui um bocal, instrumentado com um microfone, que € instalado na

' Muito recentemente um transdutor de velocidade de particula comercial para aplicagBes acdsticas se tornou

disponivel (Bree et al., 2000), mas sua faixa de freqiiéncia é ainda muito limitada. Veja os comentdrios do capitulo 2.
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terminacdo do tubo. Sua calibragdo baseia-se na hipdtese de que a impedéncia acustica do atuador
¢ muito maior do que a impedancia do meio em que ele atua. O terceiro atuador possui a mesma
estrutura deste dltimo, mas usa dois microfones em seu bocal. A impedancia do meio ndo é mais
ignorada, mas a técnica dos dois microfones utilizada possui alguns problemas intrinsecos (i.e.,
defasagem entre os microfones) que serdo discutidos (as referéncias utilizadas serdio apresentadas
no capitulo 3).

A questdo relacionada & visualizacio dos modos acisticos € discutida e um método que
uriliza a transformadas espaciais multi-dimensionais de Fourier do campo de pressdo medido €
proposto para a construgdo do campo de deslocamento de particula.

Uma segunda aplicaciio dos atuadores actsticos que usam um ou dois microfones € a
medida de poténcia aciistica ativa que € injetada no meio. Este assunto € de grande importéncia
em Anéalise Energética Estatistica Experimental (ESEA) e € tratado nos capitulos 4 e 5. O
principal objetivo do presente trabalho com relacdo ao desenvolvimento de atuadores acusticos €
a correta medi¢do de aceleracdo de volume que € injetada no meio. Dos resultados preliminares
das medidas de poténcia actstica ativa foi possivel entender este problema que estd em aberto e
propor solucdes para trabalhos futuros.

A seguir, uma breve descri¢c@o do contetido de cada capitulo € apresentada.

Capitulo 2

Este capitulo apresenta o primeiro passo dado neste trabalho, que foi a compreensédo das
caracterfsticas e peculiaridades do estudo de sistemas actisticos. Uma analogia mecinica € usada
para melhor-compreensdo das variaveis acisticas utilizadas na excitagio ¢ na resposta do sistema.
A equacdo ndo-homogénea da onda e o termo fonte sdo estudados € uma discussdo sobre a
visualizaco dos modos aciisticos é feita. O apéndice D apresenta o desenvolvimento matematico
do método proposto e o capitulo 6 sua aplica¢@o em um campo de pressdo experimental.
Capitulo 3

Os modelos analitico e numérico da cavidade actstica retangular sdo desenvolvidos neste
capitulo. A-Func¢do de Resposta em Freqiiéncia (FRF) para cada modelo ¢ deduzida ¢ as
corregbes de unidades necessdrias para a comparagio com as FRFs experimentais sio

apresentadas.



Capitulo 4

Este capitulo inicia-se com uma breve revisdo da teoria de dutos, que seri de grande
importincia no estudo e desenvolvimento dos atuadores que usam um tubo conectado a um alto-
falante. A formulac8o matemadtica para o atuador que usa um microfone é dada e os resultados
experimentais, obtidos numa sala onde as paredes foram tratadas para simular um campo livre,

sdo apresentados.

Capitulo 5

O desenvolvimento do atuador que usa dois microfones ¢ apresentado neste capitulo. Como
mencionado acima, alguns problemas intrinsecos 4 técnica dos dois microfones sio estudados e
as referéncias apresentadas. Resultados experimentais obtidos numa sala onde as paredes foram

tratadas para simular um campo livre sdo mostrados e discutidos.

Capitulo 6

Os resultados da aplicagdo dos trés atuadores acisticos na cavidade retangular sio
apresentados e a andlise modal € realizada. As FRFs analiticas so comparadas com os resultados
experimentais e numeéricos. Finalizando este capitulo, o método apresentado no capitulo 2 e no

apéndice D € aplicado num campo pressdo experimental da cavidade retangular e o campo de

velocidade de particula obtido € analisado.

Capitulo 7

Este capitulo apresenta as conclusdes e perspectivas.



Chapter 2

Acoustic systems

2.1 —~ Introduction

The description of an acoustic system can be easily understood when an analogy with a
mechanical system is made. Nevertheless, attention must be paid when defining excitation and
response variables as the nature of the problem is different. In this chapter a simple acoustic
model — supposing that frequency is low enough — is discretized into lumped elements and
compared to its mechanical analog. As shown in (Augusztinovicz, 2000), this analysis is very
insightful and the extension to the study of acoustic systems with distributed parameters (were
the dimensions of the acoustic system are not small compared to the wavelength of interest) is
straightforward. After the choice of input and output acoustic variables is understood, an analysis
over the inhomogeneous wave equation will be carried out in order to understand the physical
meaning of different types of acoustic excitations and the type of excitation suitable for modal
analysis. The chapter ends with a discussion on the mode shape visualization in an acoustic

system.

2.2 — Mechanical Analogy

A very insightful way of understanding what the acoustic variables represent in an acoustic

system is the development of a mechanical analogy. This is possible when the frequency range of
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analysis is low enough (wavelengths much bigger than the dimensions of the system or
subsystem) to allow the use of concentrated (or lumped) acoustic parameters. The following
formulation is developed as in (Arruda and Huallpa, 1999), where the impedance for two acoustic
elements of interest (pipes and cavities) are found. In the case of the pipe (Figure 2.2.1), the
excitation will be the volume velocity ¢ and the response the pressure p. If an oscillating piston is
put at the pipe termination, the air volume inside the pipe will move as a rigid body and,
according to the Newton's law, the force exerted by the piston can be written:

2
F:pA:p{)AL% (2.2.1)

and the pressure 1s readly calculated:

du

— (2.2.2)

p=pyL

where u is the particle velocity.

A
Y

2

Figure 2.2.1 — Pipe element

In the frequency domain, assuming a harmonic oscillation, the pressure can be expressed

as:
p=iwp,Lu (2.2.3)
The pressure p is finally written in terms of volume velocity § (particle velocity times
area):
I ~ ~ L . ~ A °
Gg=Au — p=pf’4 iw§ or p:p;Lq (2.2.4)



£ L

The term is called acoustic inertance and will be represented here by the letter M.

In the case of a cavity (figure 2.2.2), the displacement x produced by the piston will cause a

change in the volume V" and, consequently, a condensation:

dp AV _Ax

§ = e

p = (2.2.5)

Figure 2.2.2 — Cavity element

From equation (A.5) and the definition of sound speed (¢ =4/y B,/ p, ), the pressure can be
written as:

p=c’p,s (2.2.6)

The force exerted by the piston is readily calculated:

2 AZ
F=pa=£ 2 (227
V
Combining the two last equations, it results:
. Peci A, . pociAd
b= 8 o p= “ (2.2.8)
V V iw



The volume velocity as function of the pressure is finally written:

G=iw——p (2.2.9)

where the term is known as acoustic compliance, which in a mechanical analogy would

2

o X
represent the inverse of the spring stiffness (1/%).

To complete the mechanical analogy, a dissipative term (generated by the friction between
the fluid and the boundaries, an opening to the free-field, or the absorption by some material
present in the acoustic domain) apalog to the mechanical damping is defined as acoustic

resistance. It 1s represented by a constant ratio between pressure and volume velocity.

A simple example of the application of the theory showed above is an exhaust system
consisting of three acoustic inertances and 2 acoustic compliances. Figure 2.2.3 shows
schematically this acoustic system with its mechanical analog. The real part of the impedances at

the open ends was neglected and thus the system is undamped.

a) T Gr ; Cz |
J v v

M; M; M3

k k
b) 7 7]

Figure 2.2.3 ~ Automotive exhaust system

a} Acoustic model b) Mechanical analog



Introduction

The practical importance of the acoustic modal analysis has increased in recent years. In the experimental domain, some
difficulties are still to be solved and the present work addresses some of them, namely the unit corrections which are necessary 1o
allow the comparison between analytical, numerical and experimental results, the acoustic excitation realization, and the mode
shape visualization.

In the current literature on acoustical systems, litile attention is paid to defining excitation and response acoustic
variables such that an experimental modal analysis is feasible. Augusztinovicz and Sas (1996} have addressed this problem. They
have proposed a formulation where volume acceleration is the input variable and pressure the response variable in the dynamic
equations of the acoustic system. Pressure may be easily measured with microphone, while volume acceleration can be produced
by calibrated sound sources such as loudspeakers in specially designed configurations.

Nieter and Singh (1982) developed a methodology for acoustical modal analysis where the same tools applied in solid
mecharics (Fourier analyzers, modal parameter extraction methods, etc.} ave used, The technigue faces no problem with respect
to the pressure measurement, which can be done with microphones or very sensitive pressure transducers, but has to deal with the
accustic input (volume acceleration of the fluid) that has no direct measurement due to the lack of a reliable and accurate broad-
band particle velocity transducer’. The solution found was the use of piston driven by a shaker with an accelerometer attached.
Later work by Singh and Kung (1983) proposes another solution, based on a driver loudspeaker, where the volume velocity is
monitored by a microphone mounted on a small enclosure of known volume at the back of the driver. The acoustic driver was
mounted directly at the point of excitation in the acoustic system being tested.

The problem related to the acoustic mode visualization is reated by Whear and Morrey (1996) where a probe with three
aligned microphones gives, using a second-order finite difference calculation, the second-order derivative of the pressure relative
to the space. Given thal, the first-order derivative is related (Euler's equation} to the particle acceleration, the second-order
derivative, while being directional, will still exhibit the same rodes and antinodes as the pressure distribution. The disadvantage
of this method is the noise amplification effect of differentiating rwice the measured pressure field. Another approach is given by
Byrne (1985) who uses the pressure measured at an array of points in the acoustic experimental domain to extract approximating
Sunctions formed by polynomials to calculate the pressure gradient in one specific direction. Given the pressure gradient, the
particle acceleration is readily calculated by applying the Euler's relation.

In the present work, a simple geometry (rectangular shallow cavity) is used to investigate the acoustical modal analysis
methodology. Analytical and numerical models are developed for the comparison with the experimental results, which are
constructed using three different excitation devices. The first one consists of shaker-driven piston which thrusts against a thin
elastic membrane as done by Arruda end Huallpa (1999). The second one is based on a driver loudspeaker and is similar 1o a
model developed by an EEC project (Van Tol and Verheij, 1993). It presents an advantage over the direct use of the driver
located at the excitation point which is the use of a tube conducting the sound excitation, allowing the actuator 1o be easily placed
at different locations in a confined space. This actuator has a socket which is instrumented with one microphone and placed at the
tube termination. Its calibration is supported by the hypothesis that the actuator acoustic impedance is much higher than the
impedance of the surrounding medivwm where it acts in. The third actuaior has the same structure as this last one, but uses two
microphones at the socket. The surrounding impedance is no longer ignored, but the use of the wo microphone technique has
some inirinsic problems (ie., phase mismatch between the microphones) which will be discussed (the references used are
presented in Capitulo 5).

The question related to the mode shape visualization is discussed and a method using multi-dimensional spatial Fourier
transforms of the array of pressure measurements is proposed for the construction of the particle dispiacement field.

A secondary application of the acoustic actuators using one or two microphones is the measurement of the active acoustic
power being Injected into the medium. This subject is of significant importance in Experimental Statistical Energy Analysis
(ESEA) and is iréated in Capitulos 4 and 5. The main objective of the present work concerning the actuator development is the
correct measurement of the volume acceleration being injected into the medium. From the preliminary results on the active
acoustic power measurement it was possible 10 understand this open problem and to propose solutions for future works.

Following, a brief description of the contents of each Capiiulo is presented,

Capitulo 2

This Capitule presents the first step given in this work, which is the understanding of the characteristics and
particularities of the study of acoustic systems. A mechanical analogy is used in order 10 make the definitions of input and output
acoustic variables more clear. The inhomogeneous wave equation and the source term are studied and the discussion on the mode
shape visualization 1s done. Apéndice D presents the mathematical development of the proposed method and Capitulo 6 its
application to an experimental pressure field.

Capitulo 3

The analytical and numerical models of the rectangular acoustic cavity are developed in this Capitulo. The Frequency
Response Functions (FRF) for each model are derived and the unit corrections needed for the comparison with the experimental
FRFs are given. -

! Very recently a commercial particle velocity transducer for acoustic applications has become available (Bree er al., 2000} but
its frequency range is still quite limited. See comments in Capitulo 2.



Capitulo 4

This Capiiulo starts with a brief review on the duct theory that will be of great importance in the study of the actuators
using a tube attached 1o a driver loudspeaker. The maihematical formulation for the actuator using one microphone is given and
the experimental results, obtained in a room where the walls were treated to simulate a free-ficld, are presented.
Capitulo 5

The development of the actuator using two microphones is presented in this Capitude. As mentioned above, some intrinsic
problems related 1o the use of the two-microphone technique are investigated and references presented. Experimental results
obtained in a room simulating a free-field are shown and discussed.
Capitulo 6

The results of the application of the three acoustic actuators into the rectangular cavity are presented and the modal
analysis performed. Analytical FREs are compared with experimental and numerical results. Finalizing the Capitulo, the method
presented in Capitulo 2 and Apéndice D is applied 1o an experimental pressure field and the particle velocity field obtained is
analyzed.
Capitulo 7

This Capitulo presents the conclusions and perspectives,



The inertances are given by M, =£i-£ and the compliances by C, = > . The dynamic

PoC

set of equations will be obtained in two ways: in the first case the pressure will be used as the
excitation variable and the volume velocity will be the response; in the second case the volume
velocity will be the excitation variable and pressure the response variable. In the first case, the

dynamic set of equations are found by application of the equilibrium of pressures (the mechanical
analog of this dynamic formulation is shown in figure 2.2.4 (a)):

. - 1 1 . 1 1.
ioM g + ——-E-q oC =4, =p,
" 1 i 1 1 1 1. R
ioM —_ | e — —_—g, = 2.2.10
242 C o C J iaJ C, q: =P, ( )
. n 1 . 1 1 g ”
ioM,q, ~ —C——q C =Ps

where g, are the volume velocities in the pipes, and p,,; the excitation pressures at the left

side of each pipe. These equations are grouped and result in what would be called an impedance
matrix system:

1 1 0
M, 00 1 Cll 1C11 1 @l [P
liof 0 M, 0 |+—|-—=— |=—+—=—| —=1|lg, =15, (2.2.11)
] iwm| C \C C, G/ 1 [N B
0 0 M, 1 1 4 P,
0 - =
{ i C, C, 1]

The second formulation uses the mass conservation to write the dynamic set of equations

(analog to the mechanical dynamic system shown in figure 2.2.4 (b)):

111 1 1. 1 1 .
o C, P:“‘“m T e Pl“"‘;."”“'mpz q,

M, M, oM
: (2.2.12)
. - 1 1 . 1 1 1 "
iwC, p, TR F+~A¢T D=4,
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Its matrix form can be expressed as:

11 1
—_—t e s - "
ol GO L M, M, M, Pl _ )4 (2.2.13)
0G| io _1 L Lile.) 4.
Mz Mz MS

Multiplied by iw, an accelerance matrix system is constructed:

I 1 1

—_— —

R W N
_ 1 + 0C, ] 2 iwg, q,

1 1
M, M, M,

In (Arruda and Huallpa, 1999), this simple system is tested and this analytical solution

(equation (2.2.13)) is compared to numerical and experimental results. Good agreement was

obtained. A particularity of this accelerance formulation is that it "loses" the rigid body mode,

which appears in the impedance formulation, as shown in (Augusztinovicz and Sas, 1996). This

resulted from the decreasing of one degree of freedom.

N
N

k k
4 FAAA—

w

j%
—H 3

%
H e

Fi Kk Fr  ka

’ _t_,MI -‘T\‘jﬁ' m{, ﬂ _|_,m3
Xl Xi Xkt Xm2 X2 X2 X3

Figure 2.2.4 — Exhaust system mechanical analog

a) Force as excitation variable and displacement as response variable

b) Displacement as excitation variable and force as response variable
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It should be noted that this last matrix formulation is more suitable for experimental
validation as pressure (response variable) is easily measured with a microphone and volume
acceleration (excitation variable) can be produced by loudspeakers in a specially designed
configuration. The measurement of particle velocity has had great development in recent years
and the development of a sensor called Microflown (Bree, 2000) is a proof of that. Although it
still presents limitations in its frequency range, further developments can envisage the use of
particle velocity probes as response and microphones as excitation fransducers. Current practice
of using the accelerance formulation in acoustic modal analysis would change to the impedance
formulation, with the advantage of the miniaturization sensors such as the Microflown, leading to
a transducer measuring particle velocity in the three directions with minimum interference on the
acoustic field.

The analysis of an acoustic system with distributed parameters can be done using the finite

element theory were the matrix dynamic system (Augusztinovicz and Sas, 1996) can be written:

[[H#)+iolc]+0*[E]] {p}= {4} (22.15)

where [H], [C] and [£] are usually referred as acoustic mass matrix, acoustic damping matrix and
acoustic stiffness matrix, respectively, and their developments are shown in chapter 3. It must be
clear that, as "force" (pressure) is the response variable and "displacement" (volume acceleration)
the excitation variable, the analogy with mechanical systems, where these variables are used in an
inverse way, is not direct. Therefore the use of "mass matrix", "damping matrix" and "stiffness
matrix" make it easier the understanding of each term of the dynamic matrix system, but have

poor physical meaning when direct analogy with mechanical systems is made.

2.3 — Inhomogeneous wave equation

In Appendix A, the linear homogeneous acoustic wave equation is developed for regions not

containing acoustic sources. To take into account the presence of a source it is necessary to
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include a source term in the fluid dynamic equations, There are several types of sources and three

types (Fahy, 1995) will be considered here:

1) Fluctuating volume (or mass) source — in a certain region of the acoustic domain, an
unsteady volume outflow of fluid is generated. The produced effect is a mass injection which is

introduced into the linearized mass conservation equation (A.9):

,ocv.h%i:-mc;(i',z) (2.3.1)

kg 1
R

where G(F,t) is the rate of mass introduced per volume unit (
s m

j . The inhomogeneous

wave equation becomes:

18° OGIF,t

The classical example of this type of source is the monopole point source (figure 2.3.1),
where an omnidirectional sound field is generated. For any physical source to be an
approximation of a monopole it has to produce an unsteady volume outflow from a region that is
very small in comparison with the wavelength. Examples (Dowling, 1997) of sources working

nearly as a monopole are: pulsating bubbles, sirens and unsteady combustion.

Figure 2.3.1 — Monopuole oscilation

2) Fluctuating force sources — when there is a mechanism by which an external force acts

on the fluid. In the linearized momentum equation (A.17) a new term is added:

ev-¥V - .
Vip+p, " F(7.t) (2.3.3)
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where F (7 ,t) represents the external force vector per unit volume. The inhomogeneous wave

equation becomes:

& p
ot

2

1
T2

=V.F(F.t) (234

The most common examples of this type of source (Fahy, 1995) is an unsteady flow of
fluid over a rigid surface, such as a turbulent boundary layer, or the impingement of an air jet on

a solid body - being particularly the edges of such bodies effective sources.

3) Fluctuating excess momentum sources — it is a source associated with unsteady fluid
flow in the absence of solid bodies (i.e., turbo-jet exhausts) (Fahy, 1995). It is a phenomenon not
comprised in the basis of linearized fluid dynamic equations and has the particularity of being a
very inefficient acoustic source.

Concemning the acoustic modal analysis, a punctual source is needed. Therefore, when
dealing with experiments the source should present a monopole-like behavior in the frequency
range of interest. As the subject is not a closed one, one of the aims of this work is the

development of this type of source, and chapter 4 and 5 will discuss further this question.

2.4 — Mode shape visualization in acoustic systems

The acoustic mode shape visualization can be made using either the pressure or the particle
displacement fields. In the three-dimensional case, the use of orthogonal plane slices allows the
visualization of the entire volume. The particle displacement mode shape can be computed from
the pressure mode shape in the wave number domain using the spatial Discrete Fourier
Transform (two-dimensional DFT for two-dimensional fields and three-dimensional DFT for
three-dimensional pressure fields). In the wave number domain it is straightforward to compute
the pressure gradient which is related to the particle displacement by the Euler's relation. The
difficulty with using the DFT is that its implicit periodization introduces high-frequency

components that account for the sharp edges present in the wrapped-around data. This

13



phenomenon is known as leakage. In the data smoothing process, leakage is prejudicial, as it
causes distortion of the low-pass filtered data. When dealing with acoustic modes this problem
does not exist for rigid boundaries, but may become critical depending on the type of boundaries
present. The usual way to reduce leakage is windowing, but this technique is not suitable in the
case of finite length, spatial domain data. To overcome the leakage problem, a technique which
consists of representing the data by a two-dimensional regressive discrete Fourier series (RDFS),
proposed by Arruda (1992) can be used. In the application of this technique in chapter 6 and
appendix D, the presence of rigid boundaries allowed the use of a simpler technique to avoid
leakage. It was applied a data mirroring to achieve a periodic field, which is very efficient but has
the disadvantage of doubling the data to be processed. Good references on the subject are
(Mitchell et al., 1991) and (Sun and Mitchell, 1991).

Appendix D presents the application of the spatial DFT for one-, two- and three-
dimensional acoustic fields. When using particle displacement mode shapes, there is no difficulty
in visualizing modes in three-dimensions using a wire-frame representation, as it is usually done

in structural modal analysis.
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Chapter 3

Numerical and analytical modal analysis of a rectangular cavity
3.1 — Introduction

A classical, simple, and yet important case in the study of acoustics is the rectangular cavity
(figure 3.1.1). The hypothesis of rigid boundaries leads to a well-known formulation, which is
valuable in basic studies like the present work. This chapter is consecrated to the development of
the analytical solution and to the development of a finite element model for a rectangular shallow
cavity. Results of both approaches will be compared to experimental results and will be of great

importance in the discussion of acoustic actuators performed in chapters 4 and 5.

Figure 3.1.1 — Rectangular cavity
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3.2 — Analytical solution

The departure hypothesis for the analytical formulation of the present problem is the rigid
boundaries. In this case the normal particle velocity is null at the boundaries, and using the

linearized Euler's relation (A.16) it results:

\OX /g OX Jgur,

(.‘?E_} - QRJ -0 | (3.2.1)
\ a‘y y=0 @ y=I.j,

(@?_j - /?E) =0

N oz g} Gz z=L,

The general solution can be written as a linear combination of each mode r (7,m,n):

p,=Y 44 - (3.2.2)

where ¢, = cos(k,, x) cos(k},m y) cos(k,, z) is found from the variable separation method (Kinsler

et al., 1982) and the boundary conditions, and A, is the mode amplitude contribution. The /, m
and n variables are integers representing the number of half wavelengths of the modes in x, y and

z directions, respectively. The wave numbers are also determined by the boundary conditions:

=2 1=012,
L,
mir
k=7 m=012,.. (3.2.3)
¥
k, =% n=0,1,2, ]

Substitution of the analytical expression of the pressure,

p{mn = Almu cos(kxl x) cos(kym y)COS kzn Z)eim (3.2.4)
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into the homogeneous wave equation (A.19) gives the natural frequencies of vibration:

2 2 2
w,, = c\/(i’i} + [1”5} + (;’?i’.-J (3.2.5)
L L L

The terms of the homogeneous wave equation can be written as:

&'p &? &° w?
Vzp = axf + ay'f + &f =“"(ij +k§m 'i'kzzn )p[rmz = — sz DPin (32.6)
and
62
a:f =9 Py (3.2.7)

The general solution will be found by solving the inhomogeneous wave equation, The
source term (a monopole excitation) in equation (2.3.2) is placed in the coordinates (x,,,,z,)

and is mathematically written as:
d =D &(x,,1,,2, )& (3.2.8)

Combination of equations (2.3.2), (3.2.2), (3.2.6) and (3.2.7) gives the modal superposition

equation fora certain circular frequency @ :

¥ C

2 _ 2
> [m L ]Ar 8, = D8(xy. 5, 2,) (3.2.9)

Multiplication of both sides of this equation by ¢, and integration in the three directions

(x,y,2) results:

A x Y e

w? - Li,L Ll
}:[ f}A,Ojojoj@ ¢ndxdydsz;!;5(x0,yo,zg)¢ndxdydz (3.2.10)

Z
p c
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Application of the orthogonality property,

L L,L
({16, 8, dxdydz=0 if r=n
00

¢

leads to a simplified equation:

Ll

o L,
[¢2 dxdydz =D Hjcs (x4, ¥0,2, )8, dx dy dz
00

e
| |
e
T
M
P,
..
D e
OL,..._.._‘.:"
01.,,_,._."“

where

LdyL LlyL,
¢ dxdydz= | | cosz(kx,x)cosz(ky,y)cosz(kz,z) dxdydz
(U]

0

For the x direction, this integration results:

1+c082[£—7—r—x) L, if I=0
dx

L. ; L L
!cos{f—x]dxx (! > =,

= if 70
2

The source term integral is developed:

Ll
D [ [ [6(x. 70,20 )8, dxdydz =D 8, (x,, 95,2, )= Q[ t, ke
co0

(3.2.11)

(3.1.12)

(3.2.13)

(3.2.14)

(3.2.15)

The pressure amplitude for each mode r is finally calculated for a certain frequency o :

1
4 QT(co —a?)

where

mj” dxdy dz
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The pressure in a point (x, y,z) of the acoustic domain is rewritten in a frequency notation:

pxy.z0)=3 4.6 (x.2) (3.2.18)

r=1

For afi unit excitation of each mode r [D 1 k3 2) in a point (x,,¥,,2,), the
m’s

reconstructed pressure equation becomes the Frequency Response Function (FRF), and is written

as:
FRF(x,,2,0)= Z¢ (0 20:20) (3, ,2) (3.2.19)
r=i A, (CO —a, )
where u, = present though suitable units if experimental or

numerical data are to be compared with. A multiplication by the fluid density is necessary for this
sake:

= @’ -ol) kg/s® m

FRF(LM,@)Ei¢,(x0,yo,zo)¢,(x,y,z){ Pa }p[kg] FRF[ B/S]

(3.2.20)

This model represents the undamped case, and dissipation can be taken into account using

the hypothesis of proportional damping (Ewins, 1984). The complex eigenvalues become:

o, = Jl+in, , (3.2.21)
where 77, is the damping loss factor (twice the viscous damping factor £ ) associated to each

mode r. It must be clear that the assumption of proportional damping when comparing analytical
results to experimental data is a good approximation for this case because, as shown in chapter 6,
the constructed cavity walls are rigid and the dissipation caused by the friction with these walls

can be considered equally distributed.
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3.3 — Finite Element model

The construction of the finite element model will be based on (Kwon and Bang, 1997) and the
central hypothesis here is that one dimension of the rectangular cavity is much smaller than the
other two. The problem becomes two-dimensional for the range frequency below a cut-off
frequency related to the first mode. in the direction with smaller dimension. The chosen element is
the linear triangular element for its simplicity.

The two-dimensional wave equation in the Cartesian system is:

o’p o'p_10p

e e md(x,y) in the two - dimensional domain Q (3.3.1)

The boundary conditions in £2are:

p=p onl, (3.3.2)
and -

_6£ g onl, (3.3.3)

on

where p and g express the pressure and partial derivative of pressure (proportional to particle

velocity) in the normal direction, and » the normal vector pointing outward at the boundary. I,

and I, are boundaries for essential and natural boundary conditions, and are related by the

following relations:

Lul,=T and I, =0 (3.3.4)

The integrated weighted residuals of the differential equation and boundary condition are:

*p d'p 18%p ou
I= jﬂw[ax"— Y3y e —d(x,y)|d2- | wo—dr (3.3.5)
R P

=0
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The second term of the integrated weighted residual is null due to the boundary conditions

(null normal particle velocity at the boundaries) for the rectangular cavity problem. The

development of the weak formulation begins with the integration by parts of the first term inside
integral:

& p

L’waxz

4o (3.3.6)

In the two-dimensional domain, this integration is written:

f[ [ ngf de dy (33.7)

where y; and y; are the minimum and maximum value of the domain in the y-axis as the strip dy

(figure 3.3.1) along x moves in the y-axis.

y A
y2 § ?i(nx,ny) R
N
Y @ dy |9\ dr
i 2
X7 X2 .7>C

Figure 3.3.1 — Two-dimensional domain

From figure 3.3.1 it can be written:

dy=cos(8)dl" =n,dl’” (3.3.8)
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The integration by parts in x results:

O0x Ox

- -ﬁz fm%ﬁdxdy+ E{w%:lxzdy (3.3.9

Using "the integration limits from the domain and the boundaries from figure 3.3.1, it

results:

owdp
Lax axd.Q wa Lop dr- J;_w—n ar (3.3.10)

where #; is the x-component of the unit normal vector which is assumed positive in the outward

direction. Combining the boundary integrals:

ow &p '
b= axdg+<{r —ndl" (3.3.11)

where the boundary integral is in the counter-clockwise direction. The second term in the integral

of (3.3.5) is developed in the same way as the first, giving:

iy""gyp .Q+<{rw n,dl’ (3.3.12)

The integrated weighted residual is rewritten:

[= L[awap+awap)dg+i apdrh—.[}

5% 0x By oy . pye L 40~ Lwd(x y)de

(3.3.13)
where

»_ %, .2, (3:3.14)
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The linear triangular element (figure 3.3.2) has three nodes (one in each vertice) and its

variable interpolation within the element is linear in x and y:

pP=a, +ax+a,y (3.3.15)
or
a;’
pm[l x y] a, (3.3.16)
!

where ay 2 3 are the constants to be determined.

Y a
(x3 »y3) 23
y23
Pz
(x1,y1)
(x2.52) -

X

Figure 3.3.2 — Linear triangular element

The interpolation function (3.3.15) must represent the nodal variables in the three nodes.

Substituting the x and y values at each nodal point gives:

Fo 1 x » ||
Prp=| 1 x ¥, 4 (3.3.17)
Ps lx, v |las
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Inversion of this matrix gives:

a; XYy =Xy XY =Xy XY, =X | P
1
ay :'2‘:4‘ Y2V YW Y=Y, P (3.3.18)
a; Xy ™ Xy Xy Xy Xy =X P
where
. 1 x »
A=~j~det 1x, y, (3.3.19)
1 x, y,

The magnitude of 4 is equal to the triangular element area. However its value is positive if
the node numbering is in the counter-clockwise direction and negative otherwise.

Substitution of equation (3.3.18) into (3.3.16) gives:
p="SH,(x,y)p, + SH,(x,y) p, + SH,(x,¥) p, (3.3.20)

where SHi(x,y) is the shape function for the linear triangular element and is given by:

1
SH, = E“Z[(xzys '"xsyz)'f‘(yz —y3)x+(x3 "xz)y]
1
SH, ='§Z[(x3y1 "“XIJ’3)+ (ys "“yl)x+ (xz ""xs))"] - (3.3.21)

1
SH, 25"“:1“[(3‘1}’2 ‘szﬁ)“*‘ (yl ‘yz)x‘*‘(xz —xl)y}

The shape functions satisfy the following conditions: -

SH(x,.y,)=86, ; (3.3.22)
and )

3
> SH, =1 (3.3.23)

i=l
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where & is the Kronecker delta:

Lifimi
ij = 1 1 }. (3.3.24)
Qifi=]

The following approximation made by the finite elements will be based on the Galerkin

method, where the weighting function w; behaves as:

op (3.3.25)

With this assumption, the weighting function w; will be equal to the element shape function

SH; . The element acoustic mass matrix [ H°], related to the term L[aaw gp + gyw g]dﬂ , 18
x Ox

constructed:
b aH,
o &
[ e} L{zwgp GWBPJd,Q L %{%%%}4_ 5_;; {%}_%’_%} o
x Ox Oy Oy M ;3
& &
(3.3.26)
ky Ky ks
el o (3.3.27)
k31 k32 k33
y
(0.1) )
3
1 ) .
0.0) (1,0} x

Figure 3.3.3 — Triangular element
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Considering the triangular element as shown in figure 3.3.3, the constants are calculated:

1
ky, :Z:"I”[(% —x2)2 ""(yz "'3’3)2] (3.3.28)
fr =70 = 2) (5 =52+ (- 23) 05 - )] (3329)
=2l =) (=) (- 33) (-9, (3330)
by =Ky, . (3.3.31)
1 { 2 2
b=l =) + (- 0] (3332)
=22l =) G =3 )+ (= ) (0433 (333)
ky = ks (3.3.34)
kyy =k (3.3.35)
1 2
kss =-a[(xz —x) +(3 - ,)?] (3.3.36)

2
The time-dependent term in the integrated weighted residue [L waétf d.Q] will generate

the element acoustic stiffness matrix [ £°]. The variable p = p(x,y,1) is interpolated in the same

way as done in the construction of the element acoustic mass matrix:

plxyt)=3 5H,(x3)p,¢) (3337)

fux]

It is important to note that the shape function is used to interpolate the spatial variation over

the element while the temporal variation is related to the nodal variable:

H, b,
[Ee]= [ &, A, B, B, }aad p, (3.3.38)
H, Ds
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Solving this integral, it results:

211
[E]=4i 121 (3.3.39)
112

The global acoustic stiffness and mass matrices are constructed from the grouping of the
element matrices, so the mode shapes and natural frequencies can be determined. The constructed

dynamic matrix system is:
[z {pt+[Elp}={D} (3.3.40)
The mode shapes are obtained from the homogenous system,

{D}=1{0} | (3.3.41)

assuming an harmonic variation of the pressure:

{p}={Ple™ (3.3.42)
Combination of (3.3.40), (3.3.41) and (3.3.42) produces:
([H]- 0?[E]){B Je = {0} (3.3.43)

The trivial solution of this system is:
{p}=1{0} (3.3.44)
The natural frequencies (Ef) are found from the determination of the non-trivial solution,

given by:
[H]-w*[E]|=0 (3.3.45)
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Substitution of these natural frequencies into (3.3.45) determines the mode shape matrix
[#,] for each node of the system. The FRF is calculated from the non-homogeneous matrix

system. Pressure and source harmonic variations are considered:

{p}={P e (3.3.46)
and ) '
{(D}=1{D Je™ (3.3.47)
Substitution of (3.3.46) and (3.3.47) into (3.3.40) gives
([]-w[E]) {8}= 1D} (3.3.48)
or
{p}=([#]-o*[£])" (B} (3.3.49)
The FRF is finally calculated:
5 . _
FRE, = === ([H]-’[£]); (33.50)
or
£=3([z]-[E]); D, ) (3.3.51)

This way of calculating the FRF demands a matrix inversion which can be strongly time-
consuming if the number of nodes are high and the frequency range of interest is large (an

inversion is needed for each analyzed frequency). An alternative method is presented in (Ewins,

1984) and exposed as follow.
Initially the matrices [e,] and [4,] are calculated:

rTE]lF]=]e, ] (3.3.52)
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and

T HF]=4] (3.3.53)

These matrices can be called as modal (or generalized) acoustic mass and stiffness of mode

r, respectively. The natural frequency matrix (a diagonal matrix) relates these matrices:

@2)=le.1' %] (3.3.54)

A normalization of (3.3.53) and (3.3.54) is performed in what would be called an acoustic

mass-normalization:

[@][elle]=[1] (3.3.55)
and

[V e ]0]=a?] (3.3.56)
The normalized eigenvector matrix is calculated:

[0]=[#]e] (3.3.57)
From (3.3.51) it can be written:

FRF(0)" =([#]-»*[E]) (3.3.58)
Premultiplying both sides of this equation by [@]7 and posmultiplying it by [@], it results:

[@] FRE(0) "' [@]=[@] [{-{E@]— o’ [@f [{fl@] (3.3.59)

{w?} (]
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Premultiplication of (3.3.59) by [cof - @? }'l gives:

[0? - ['[@ FRE(w) ' [@] = 1] (3.3.60)

Premultiplication of the last equation by [ @] results:

[@]0? - 0*]'[@] FRE(w) ' [@]=[@] | (3.3.61)

Finally, posmultiplicating (3.3.61) by [@ ]T, it produces:
[@]w? -0 ][0 FRE(w) " [@]o] =[e]o] (3.3.62)
7] ]

The calculation of the FRF is simplified as the only inversion needed is of a diagonal

matrix:

FRF()=[@]|0? - &[] (3.3.63)
Still, this FRF is not suitable for comparison with experimental results because their units

are not the same. Below it is showed that the numerical FRF has the unit [ m ™ ] and should be

multiplied by the fluid density to be corrected.

In the inhomogeneous wave equation,
v? ~—~;2-—ﬁ=d (3.3.64)

an area integration is done over the source term 4, leading to the following unit:

} dSxh= }if&%] (3.3.65)

s

4
where £ is the dimension of the smaller dimension of the cavity.
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In the same way, the matrices [E ] and [H ] are also integrated over the area and should be

multiplied by the length 4. The numerical FRF unit is readily calculated:

MQEE]——&FRF[M]] (3.3.66)
d {kg/ sz]
. . P kg . . .
To match the experimental units v—~37——z—m——; , the fluid density should multiply the
m/s* m _

numerical FRE:

FRF = p, {%} x FRF[m™" = [f‘n;%-] (3.3.67)

The approximated solution found with the finite element method was derived for the

undamped case and, as in the analytical solution, a proportional damping will be assumed and

numerical eigenvalues will be modified as in (3.2.21) to account for the energy dissipation.
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Chapter 4

One-microphone actuator development

4.1 - Introduction

The development of two acoustic actuators is the focus of this and the next chapter. Both are
constructed using a high impedance loudspeaker connected to a calibrated socket by a flexible
tube. In the first case (figure 4.1.1), only one microphone is used for the calibration. This type of
actuator is already commercially available and was developed by an European project (Van Tol

and Verheij, 1993). In the second case, the use of two microphones in the calibration is proposed.

microphone

Spectral
. Analyzer |
yd S
Random
Generator |
afrivezf'/<

loudspeaker

F g‘g%e 4.1.1 — Acoustic actuator calibrated with one microphone

AR AR
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This chapter starts with a brief revision of the duct theory for a better comprehension of the
physics involved with the use of the tube — some analytical formulation will be of great
importance in the development and validation of the actuator principles. The theoretical
development of the two actuators is presented and their relative advantages and disadvantages are

discussed.

4.2 — Duct theory revision

In the present application of the duct the main interest lays in a frequency range where only plane
waves can propagate. In this condition an omnidirectional behavior of the acoustic radiated field
from an open-ended tube is obtained for wavelengths much higher than the tube radius (Morse
and Ingard, 1986). In (Kinsler et al., 1982) it is shown that the first non-planar mode of a rigid-

walled circular waveguide has the following frequency:

ot
a

i (4.2.1)

where ¢ is the radius of the tube (i.e., for a diameter of lcm, as in the actuators developed here,
this frequency is 20.2kHz).

If the termination of the tube is rigid, it can be considered that the specific acoustic
impedance z (= p/u ) is infinite and the incident wave is totally reflected. For an open-ended tube
the common simplification of null impedance at the termination is not correct since the tube
radiates sound into the surrounding medium. From the calculation of a baffled piston (Kinsler,
1982), the radiation impedance of a flanged open-ended tube (figure 4.2.1) for A >> a (ka << 1)

can be written:

1 . 8
Z fanged — pOC{E (ka)z +3§—};ka} (422)

UNiICamp
BIBLIOTECA CENTRAL
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where 8a/37 (= 0.85a) is known as the end correction and it manifests itself as a mass loading
(the termination appears to be loaded by a cylindrical fluid volume with the tube cross-section

and a effective height of 0.854). For higher frequencies (ka>>1), the reflection coefficient (ratio

between the reflected and incident waves), which is nearly -1 for very low frequencies, tends to 0.

Figure 4.2.1 — Flanged open-ended tube

The complete expression for the impedance of a flanged open-ended tube is written
{Kinsler et al., 1982) as:

2ka 7l 3 3.5 3%.5%.7

2 punged = ’Gocli[} MM] +ii[2ka B (2ka)’ + (2kay _ H (4.2.3)

In figure 4.2.2 it 1s plotted the real (resistance) and the imaginary (reactance) of this

impedance for a tube diameter of lem, and a comparison is done with the low frequency

assumption — equation (4.2.2). It is shown that for a wide frequency range (0-6.4kHz) the low

frequency assumption is a good approximation for this diameter.
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Figure 4.2.2 — Specific acoustic impedance
{— — Reactance (low frequency assumption), — - ~ Reactance

- - ~ Resistance (low frequency assumption), — Resistance)

The impedance for the unflanged open-ended tube (figure 4.2.3) for ka << 1 is given in
(Kinsler et al., 1982} as:

Zotanged = pch (ka)’ +i0.6133ka:l (4.2.4)

The complete formulation (for any ka) is developed in (Levine and Schwinger, 1948),
where the exact end correction value of 0.6133a was for the first time calculated.

11
/ /
Figure 4.2.3 — Unflanged open-ended tube %
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An important detail when dealing with open-ended tubes at low frequencies (relative to the
tube radius) is that the reflection coefficient is nearly -1 at the opened termination. When using
two microphones for the determination of the incident and reflected wave amplitudes, small
errors in this measurement can lead to wrong results for the pressure. As these waves have a
phase difference of almost 180°, when calculating pressure a small value is found and may be of
the order of the error of the instrumentation. The calculation of the particle speed from these
amplitudes is less affected by the measurement errors as the incident and reflected amplitudes are
almost in phase. It is interesting to note the fact that, while the particle velocity at the tube end is
nearly doubled, the value of the pressure is very small, leading to a low transmitted power to the

medium.

4.3 — One-microphone actuator

The use of cone loudspeakers in acoustic modal analysis has been a current practice for a long
time. As the frequency range of interest is increasing in the recent years (i.e., high frequency
analysis using statistical methods like SEA), the use of simple loudspeakers has become a factor
that limits the experimental analysis (as they do not behave as rigid pistons at higher
frequencies). At higher frequencies, the loudspeaker cone mode shapes make it difficult to
characterize it as a calibrated sound source. In this context, a new generation of acoustic actuators

appears (Van Tol and Verheij, 1993) in an attempt to fulfill the following requirements:

1. The source has o produce enough acoustic power;

2. Its frequency range must be much larger than that of the former actuators;

3. It has to behave as a monopole (i.c., ominidirectional directivity pattern) in this
frequency range;

4. The source should be as much as possible independent of the surrounding medium it

acts in. Thus requiring an acoustic impedance much higher than that of this medium.

The solution found was the use of high impedance loudspeakers called drivers in a special

configuration. These units do not have good efficiency at low frequencies and are normally used
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with a horn attached for a better performance in this frequency range. As acoustic actuators, the
idea is to connect this loudspeaker to an instrumented socket by a flexible tube. The requirement
of large power by the source in this case is fundamental, as it has to overcome the tube
impedance and inject enough acoustic power into the medium.

The main advantage of this configuration is that an effective acoustic source behaving as
monopole (remember from the previous discussion on ducts that the monopole behavior is
dependent upon the relation between wavelength and duct radius) in larger frequency range is
constructed with a tube with a cross-sectional area much smaller than the loudspeaker radiation
area. Problems should be expected at low frequencies where both loudspeakers and radiation
from a duct are inefficient. The solution for this problem may be the use of cone loudspeakers 1f
the analyzed frequencies are low enough to match the frequency range where this loudspeaker
behaves as a piston, or the use of large tube diameters working with a driver as described above.
It is important to notice that the pressure measured in the socket will present peaks and dips
related to the natural frequencies of the tube, but this behavior will be canceled out when the
Frequency Response Functions are constructed.

One of the major concerns related to the one-microphone actuator application 1s the
required independence of the surrounding impedance. In (Van Tol and Verhey, 1993) some
critical situations were tested (i.e., the actuator was put close to a hard wall) and this requirement
was fulfilled. A situation that can be seen as limit is that of a small reverberant cavity. In this case
the cavity acoustic impedance may be of the order of the actuator impedance and this type of
instrumentation (one microphone) may not be suitable. This is exactly what will be studied in this
work: a small rectangular cavity with rigid walls will be tested and the performance of this
actuator analyzed.

The constructed actuator makes use of a driver (figure 4.3.2) from NOVIK (model ND
2500}, which has a nominal impedance of 842 at 1.24Hz with power of 50/ RMS above 500H:z
and 700 RMS above 1.2kHz, Tts frequency range of response is between 330Hz and 7.6kHz.

A reinforced flexible tube 3m long and with a diameter of 12.7mm was used, and the socket
(figure 4.3.1) had an inner diameter of lcm and was instrumented with a 1/4" microphone from
The Modal Shop Inc. put in a channel parallel to the main channel. The scheme showing the

dimensions of this actuator is shown in appendix E.
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Figure 4.3.1 — Consiructed socket

In what follows, the mathematical formulation is presented and the tests performed in an
anechoic® room are discussed. These tests have the objectives of proving the monopole behavior

and checking the analytical expressions for an unflanged tube radiating in a free-field.

Figure 4.3.2 — Driver loudspeaker connected to the flexible tube

* The anechoic room is actually just a normal room of approximately 3x3x3m with foam glued to the walls, ceiling,

and floor, It is effective above approx. 400Hz in terms of sound absorption, but it is not mechanically isolated.
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4.4 — Mathematical formulation
The pressure free field generated by a monopole (Kinsler et al., 1982) is:
plrt)= ipockwgwei(”"h) 44.1)
dmr

The complex source strength (), which represents the volume velocity at the mouth of the
actuator, can be written as a function of the complex pressure amplitude at a distance » from the
source:

4

0 =plr) (4.4.2)

ip,ck

As the directivity pattern of the radiation from a monopole is omnidirectional, a complex

transfer function relating the pressure at » and the pressure at the source (r = 0) can be

constructed:
H = A(") (4.4.3)
p(0)
The source strength is rewritten:
~ dnr
0=5(0) 8-~ p(0) A - (4.44)
zpoc!c 0@
The volume acceleration is readily calculated:
L, dmy -
O=ioQ=—H p(0) (4.4.5)

o

The monopole behavior is verified using the auto power spectral densities at the source

(GGO =< p0) - p(O))) and at the distance (Gr, m( ) ﬁ(r)}), and the cross power spectral

density between these two points |G ( < {0y - plr )>)
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The ransfer function can then be writien:

(O

H= GO'” (4.4.6)

I

The complex pressure amplitude at 7 is:

I

plr)=H p(0) (4.4.7)

The autc power spectral density at 7,

G, ={pr)  plr))=|A] Gio (4.4.8)

will be compared to the direct measurement at r, and the agreement between these two values

will indicate whether the source behaves as a monopole or not.

4.5 — Experimental validation

The experiments took place in a small anechoic room (figure 4.5.1), behaving as a free-field

above 400Hz approximately.

Figure 4.5.1 — Experiment in a room simulating a free-fleld
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In the present work, all measurements were acquired using a measurement system from HP

(model 35650). The source was excited with a continuous random noise output type and the

signal was acquired using a Hanning window, 3200 frequency lines and 30 averages.

Figure 4.5.2 shows schematically the locations were measurements were made. The odd

locations are 21.8¢cm far from the source and the even locations 40cm.

Figure 4.5.2 — Measurement locations

Figure 4.5.3 shows the results for the response of one microphone located 21.8cm from the

from the source.

source. Figure 4.5.4 presents the power spectral densities for five different locations far 21.8cm

: L
1600 1300 20;90
Freguency fHz]

3500

Figure 4.5.3 — Auto power speciral densities (21.8cm far from the source)

{— measured, — — calculated from the source measurement)
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Figure 4.5.4 ~ Auto power spectral densities in 5 points (all located 21.8cm far from the source)

In all measurements there was good agreement between the power spectral densities
calculated from the source measurement and the direct measurement. The coincident curves
(figure 4.5.4) for different locations equally spaced from the source prove the monopole behavior
(the same results were obtained for a distance of 40cm from the source). The bad resulis at
frequencies lower than 4004z are due to the room’s cut-off frequency (400Hz) and the poor
efficiency of the actuator below 300Hz. The transfer function A was constructed using a
microphone placed (0.2m from the socket mouth and it is showed in figure 4.5.5. This result will

be used in chapter 6 where the one-microphone actuator is applied to the rectangular cavity.

Trangfer furclion i (aty

s 1 L L | L L
Q fieo e 1300 2060 2300 Eied isn

Fregquency [Hz]

Figure 4.5.5 — Transfer function H constructed (v = 0.2m)
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Using the acoustic impedance for unflanged tube (4.2.2) applied to the pressure measured

at the socket in a free-field, it is, in principle, possible to calculate the volume acceleration:

0= iw:é@-)-mS (4.4.9)

z unflanged

where S is the cross-sectional area of the socket. From (4.4.2) the volume acceleration for a

monopole depends on the distance r to the source and the pressure at #:

0= dm 2(r) (4.4.10)

o

Also, the active power injected (the derivation of the following equation can be found in

appendix B) can be calculated:
P = %Re{pu‘}s (4.4.11)

where S denotes area (7a’ for the tube throat, and 477° for the distance r from the source) and *
the complex conjugate. Figures 4.5.6 and 4.5.7 show the comparison between volume
acceleration and active power calculated from the pressure measured 40cm (use of the monopole
theory. Appendix C presents the deduction of the acoustic specific impedance for a spherical
wave diverging from a point source, used to find the particle speed at ») from the source and from

the pressure at the socket (use of the radiation impedance for unflanged tube).

43



T T T

——=  Uing the radiation impedance applied to p{0)
——  Using the monopole theory apphed to p(r}

[
=]
T

Volume aﬁcelefmian [m'r/s‘,] & ref £ 5 mis’

. i :
2 350 R {32 200 200 finer) B
Frequency [Hzf

Figure 4.5.6 — Volume acceleration comparison (v = 0.40m)
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Figure 4.3.7 — Active power comparison (v = 0.40m)

1t can be seen from these last two figures that the curves are very similar but shifted by a
constant. This is due to the position of measurement microphone inside the tube (figure 4.5.3),
which is 4.5mm (if it is considered that the measured pressure is located at the center of the hole
connecting the microphone channel to the main channel) far from the termination. As the
pressure decreases very fast in this region (almost a pressure antinode), even a small distance as

the one used will not give the correct pressure. For this configuration (tube length and diameter,
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and position of measurement inside the tube) it was found that the pressure should be divided by
two in order to have a better estimation of the real pressure at the tube termination. Figures 4.5.9

and 4.5.10 show the results using this correction

Figure 4.5.8 — Microphone positioning inside the socket
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Figure 4.5.9 — Volume acceleration comparison (v = (.40m) with correction
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Figure 4.3.10 — Active power comparison {r = 0.40m) with correction

Applying the correction, the curves present excellent agreement and it is important to note
that the use of the radiation impedance leads to a better result at low frequencies. This is an
important result since it shows that the use of the radiation impedance is possible when the

medium is approximately a free-field. This procedure has also the advantage that it does not

require the construction of the complex calibration transter function H . The need for this transfer
function is disadvantageous since it depends on the quality of the anechoic room used in the
calibration of the source and normally it will present poor results at low frequencies. Also, it
should be measured again if the tube length or the diameter is changed, thus decreasing the
flexibility of utilization of this device.

The use of the radiation impedance in a medium presenting a very reverberant behavior will

be discussed in chapter 6. It will be shown that the use of the radiation impedance gives the same

results as the use of the transfer function A, with the advantages discussed in the precedent
paragraph. Nevertheless, both results are inaccurate, and the development of a more reliable

actuator using two microphones presented in the next chapter is of great importance.
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Chapter 5

Two-microphone acoustic actuator development

5.1 — Intreduction

The development of the one-microphone actuator presented in the precedent chapter was based in
the principle that the acoustic impedance of this type of actuator is so high that any practical
surrounding it would act in can be treated as a free-field. This is true for many cases and the wide
spread use of this type of actuator nowadays can be considered as a proof of it. However, if a
more general application is required, an actuator with a more robust conception must be
developed. In this sense, the use of two microphones can be a good idea if the physical principles
working in this device are carefully analyzed. The basic concept of the following development
derives from the fact that there can only exist plane waves in the acmator tube for a quite large
(depending on its diameter) frequency range. In this case, the pressure can be considered constant
along the tube cross-section and the use of two microphones would, in principle, allow the
calculation of the amplitudes of the waves going outward and inward the socket. If this
calculation is made successfully, a method for the calculation of the volume acceleration can be
derived with the important advantage of not depending upon the strc;ng assumption that the

surrounding impedance can be ignored.
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The same sequence adopted in the development of the one-microphone actuator will be
followed here. The mathematical formulation is presented and then results from the anechoic’
room tests are shown and discussed. Also, the capability of measuring the active acoustic power
(active intensity times area) injected into the surrounding, which is of interest for experimental
SEA, for example, is explored. It will be shown that the active acoustic power calculation using

two microphones presents problems and has a limited frequency range

5.2 — Mathematical formulation
If the frequency range of analysis does not allow the existence of modes in the cross-section
plane of the tube, only plane waves can exist. So, the pressure can be split into two components
related to the inward (with amplitude B) and outward (with amplitude 4) waves. In the frequency
domain it can be written:

plo)=Al®)e™ + Blw)e™ (5.2.1)

Supposing the reference (x=0) at the microphone 1 (figure 5.2.1): _
p.(0)= o)+ Blw) : (5.2.2)

;c')z (@)= A(®)e™ + B(w)e ™ - (5.2.3)

'The wave amplitudes are then calculated:

Blw)=£2 (0’2);:(];3: (@) (5.2.4)

> The anechoic room is actually just a normal room of approximately 3x3x3m with foam glued to the walls, ceiling,

and floor. It is effective above approx. 400Hz in terms of sound absorption, but it is not mechanically isolated.
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where 4, is distance between the microphones.

T 625

Figure 5.2.1 -~ Traveling waves and microphone positioning in the socket

The pressure at the socket mouth is readily deduced:
Pe(@)= Al0)e™ + Blw)e™ - (5.2.6)

Applying the Euler's relation into (5.2.1), the particle velocity is found:

u(w)=;};{A(w)e'”“wB(w) o] (52.7)

The volume acceleration at the socket mouth becomes:

0 =22 [g(w)e™ - B(w)e*] s (5.2.8)

0

where S is the cross-sectional area of the socket.
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The Auto and Cross Power Spectral Densities related to 4 and B can be found from
equations (5.2.4) and (5.2.5):

s - (A* -A> _S5,+8, —2cos(kA, )RelS,, }+ 2sin(kA, VIm{S,,} (5.2.9)
Ad 4sin®(kd,) a
Spw=(B"-B)= S, +8,, ~ 2cos(kA, YRe{S,, } - 2sin{kA ) Im{S,, } (5.2.10)

5 = 4sin’(kA) -
. S,€% — S, —2ie™ Im{S
S, m(A ~B> s 4;;2(]54) 8} (5.2.11)

Using the equations (5.2.1) and (5.2.7), and the three relations above, the Auto and Cross
Power Spectral Densities related to pressure and particle velocity at a position x inside the tube

are written:

Sp =(P(x) - P(x)) =8 1+ 85, +2cos(2hx)Re{S ,p }- 25in(2kx)Im{S 5} (5.2.12)
S o + S5 —2cos(2x)RelS 1+ 2sin(2kx ) Im{S ,, }

4 (5.2.13)
(Poc)

Suu = <M(X)‘ 'u(x)> =

)= S i = Sgp — 2isin(2kx)Re{S ,, }- 2i cos(2kx ) Im{S , }
PoC

(5.2.14)

S, ={p(x) ulx)

The main problem associated with the use of the two-microphone technique (Jacobsen,
1989) 1s the phase mismatch between the two filtered and amplified signals. Since volume
acceleration and, as will be seen later in this chapter, the intensity depend on 4 and B, they will
be affected by this phase mismatch between the two chains of measurement. The method used
here for the bhase correction is the microphone switching technique. This technique requires an
extra measurement made where the microphones have their positions switched for the phase

mismatch correction and is described below. It is a technique specially suited for the present case
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as it can be guaranteed that the positions of the inverted microphones correspond exactly to the
microphones positions before the inversion. The disadvantage of the technique in this case is that
it is necessary to double the number of measurements, In (Sas, 2000) an alternative approach
called transfer function method which avoid the necessity of doubling the number of
measurements is presented. The methodology consists basically on exposing the two
microphones to the same acoustic field and measuring directly the phase shift between them.
However, this method relies on a perfectly behavior of the microphones and do not compensate
for different environmental conditions and non-linearities. In (Chung, 1978) it is shown a
technique which in principle eliminates the phase mismatch when calculating the active intensity
based on the finite difference method by taking the geometric average of the Cross Spectral
Density between the microphones. In the present work this methodology was used to correct S;7
and, with this new value, the correct active acoustic power (section 5.5) was calculated. The
result (figure 5.5.11) is in agreement with the results from arithmetic average, proving the
validity of this last technique.

Below, the microphone switching technique using the arithmetic average is described. It
will be shown that if the phase shift between the two chains of measurements is small, the
arithmetic average of the waves amplitudes (4 and B) calculated with the original microphone
and switched positioning gives the correct phase angle.

The phase difference between the two measurement chains (of p; and p2) is written as:
4, =4, " (5:2.15)

where ¢ and @2 are the phase shift introduced by the measurement chains of microphones 1 and

2, respectively. Taking microphone 2 as a reference (¢, = 0), it can be written:

p =R (5.2.16)
D=5 (5.2.17)

The measurement with the switched microphones gives:

P =h (5.2.18)
pi=Pe* (5.2.19)
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The wave amplitude B (equation (5.2.4)) is calculated using the original and switched

microphone configuration measurements:

~ P ef(k»dﬁ-ﬁf) ~P,
- 2isin(k4,)

ik, i,
s_Be”-Fe

2isin{k4, )

(5.2.20)

(5.2.21)

Application of the arithmetic average between these two amplitudes results:

B+B _ (e"ﬁ' +1) B e™ - B,

2 2 2isin(k4)

(5.2.22)

For small phase shift between the two measurement chains e’ is approximately 1 and a

corrected amplitude is found:

B+B° _PBe™_Pp

corrected 2

h 2isin(k4, )

(5.2.23)

For the outward wave amplitude, the same procedure can be followed. Taking the two

measurements,

_B-P gf-ka+d,)
— 2isin(k4,)

. P, e ~B P

2isin(kA, )

and applying the arithmetic average,

Av 45 e* +1) B —p ™
2 2 2isin(kd,)

(5.2.24)

- (5.2.25)

(5.2.26)
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it can be found a corrected amplitude if the phase shift between the two microphones is small:

y _A+A™ P -Pe’™
corrected 2 2len ( k A])

(5.2.27)

An experimental estimate of the phase shift between microphones 1 and 2 was made in
order to verify the error when using the arithmetic average. Taking the Cross Spectral Density

between the two microphones in the original and switched configurations it can be written:

8, = Srecgitéi—h) (5.2.28)
and

S, = Sgrecelhi=a) (5.2.29)

Dividing this two equations,

Sp _ 2-s) (5.2.30)
Si )

and the phase shift can be estimated:

b -6 = %mn“[—i—”—} (5.2.31)
12

Figure 5.2.2 shows the phase shift for a large range of frequency (0-6.4kHz).
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Figure 5.2.2 — Estimate of phase shift between microphones I and 2

The amplitude (e“" +1)/2 that appears in the arithmetic average of 4 and B is plotted in

figure 5.2.3 using the estimate of the phase shift presented above. Excep in the very low
frequency range and in a region of approximately 3kHz, the results approximate unity and prove
that the use of the arithmetic average is reasonable. At 2.8%H?z, the phase difference between the
microphones is 90° and, as the amplitude difference is maximum, the calculation is sensitive to

small errors in the sensors. -

. )
- ) 1000 2000 3000 000 5000 5000 7500
Frequency {FHx]

Figure 5.2.3 — Amplitude (€*+1)/2 using the estimate of the phase shift
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5.3 — Experimental validation

The constructed socket (figure 5.3.1) has the following dimensions:

o  Microphone separation distance A;

When the phase difference approaches 180°, the calculation of 4 and B becomes highly
sensitive to small phase and amplitudes measurements errors as the denominator tends to
zero. Regarding this question, the microphones should be as close as possible.
Nevertheless, when measuring low frequencies the phase difference between the
microphones is small and if they are too close to each other small phase measurement
errors become very important. The compromise found was a distance of 30mm. For the
lower frequency of 3004z the phase difference is 5° and for a maximum frequency of
SkHz it is 80°. With this separation distance, the phase difference becomes 180° at
3717Hz and this is the critical frequency of analysis.

a  Socket diameter
The tube used has an inner diameter of 12.7mm and the socket an inner diameter of
10mm. The first non-planar (equation (4.2.1)) mode will occur at 20.2k#Hz and the

hypothesis of plane waves in the frequency range of analysis is fulfilled.

a Distance A;to the socket mouth
The microphone 1 was put 56mm far from the socket mouth. This was done in an

attempt to avoid edge effects influencing the calculation of 4 and B.

Figure 5.3.1 — Two-microphone actuator socket constricited
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The same tube and driver used in the one-microphone actuator are used here. The
microphones in this new configuration were put perpendicular to the socket and the measured
pressure is considered to be related to the center of the microphones. The scheme showing the

dimensions of this actuator is presented in appendix E.

Following, the analysis of volume acceleration and active acoustic power will be carried
out separately. Both values will be compared to a measurement made in a distance » from the

source, as done for the one-microphone actuator.

5.4 — Volume acceleration

In this section the experimental results for the volume acceleration obtained using 4 and B
(equation (5.2.8)) are compared to the results of the monopole theory applied to a pressure
measured at a distance r from the source (equation (4.4.10)). Figure 5.4.1 shows this comparison

for the frequency range of 0 to 3.2kHz.

——  Usinz A and B - arithmetic average
-------- Using the monopole theory applied to p(r)

Volume acceleration {mj/sz] @R ref 10 s
o w

B
1

3 ) . L L ;
2 g e 1303 2000 2560 300 2500
Frequency [Hz]

Figure 5.4.1 — Comparison between volume accelerafion calculated from 4 and B (arithmetic average) and from the

monopole theory applied to pir = 0.40m) — 0 to 3.2kHz
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There is a very good agreement between the curves, but it can be noticed that in some very
localized points the difference can be of the order of 24B. Figure 5.4.2 shows a zoom of the
precedent figure and these localized points where there are some differences can be notice more
clearly. The origins of this error are very difficult to identify and can be related to the quality of
the microphones and the anechoic room, which could introduce excessive noise in the
measurements, or even to random errors associated to the estimation of the Cross Power Spectral

Densities.
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Figure 5.4.2 — Compavison between volume acceleration calenlated from A and B farithmelic average) and from the

monopole theory applied to pfr = 0.40m) — 300 1o 2500Hz

Figure 5.4.3 shows, for a wide range of frequencies (0-6.4kHz), the volume acceleration
calculated without making the arithmetic average. The results from the original configuration and
with the switched microphones agree quite well below 3kHz, but start to diverge from this
frequency. The more the frequency grows and approximates to a value where k4; equals 180°
(5.7kHz), the more equations (5.2.4) and (5.2.5) are sensitive to small errors in phase and
amplitude. It is interesting {0 note that the result at a distance » seems to be the arithmetic average
between the two configurations for most of this perturbed region. Figure 5.4.4 shows the result
from the arithmetic average and, with the exception of the region close to 5.7kHz, it is in good

agreement with the measurement at r.

57



T T

Using A and B - original configuration
al- ~-——  Using A and B -~ switched microphones
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Figure 5.4.3 — Comparison between volume acceleration calculated from A and B (arithmetic average) and from the

monopole theory applied to p(r = 0.40m) — 0 to 3. 2kHz
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Figure 5.4.4 - Comparison between volume acceleration calculated from A and B (arithmetic average) and fron: the

monopole theory applied to p(r = 0.40m) - 0 io 6.4kHz

A guestion that will arise in the next section is related to the distance A; (from p; to the
socket mouth). All the microphone area was exposed in the measurement and it was supposed

that the pressure measured was the pressure at the center of this area. Considering this hypothesis,
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A and B were constructed and figure 5.4.5 shows the variation of the volume acceleration near the

socket mouth {from 4r= 0.060m to 4; = 0.063m, position of the socket mouth).
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Figure 5.4.5 — Volume acceleration calculated from A and B (arithmetic average) varying 4; from 0.060m to 0.065m
-~ 0 to 6.4kHz

It is shown that the volume acceleration has little variation at the socket mouth,
demonstrating that this parameter presents small sensitivity to the fact that all the area of the

microphone is exposed to the tube channel

5.5 — Active acoustic power

A possible use for the two-microphone actuwator is its application in ESEA (Experimental
Statistical Energy Analysis). A procedure based on the one-microphone actuator may lead to
erroneous results as it calculates the acoustic power injected under the assumption of monopole
in a free-field. The two-microphone actuator can take into account the surrounding impedance
and, in principle, caiculate in a more accurate fashion the pressure and particle velocity at its
termination. Nevertheless, the calculation of the active intensity being injected can also lead to
bad results when using the two microphones. The problem that arises is that 4 and B (figure 5.5.1

presents the results from the free-field experiment) have a very close magnitude, specially at low
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frequencies (in the case of the used diameter it can be considered that this low frequency range is
0-2.5kHz). From equation (5.2.14) it can be seen that the active intensity (/2 Re{Sp.}) is
expressed by the difference of the magnitudes of 4 and 5:

1 1 ImdS.,
{,= (S.M _SBB} "'?'T'?';{“‘I‘—‘}‘

2p,¢ - 2p,¢ sinlkA,)

(5.5.1)

The last equation shows that the calculation of the active intensity by using the two-
microphone technique is highly sensitive to: the phase-mismatch between the sensors, the
precision of amplitude measurement, and the distance between the microphones (when k4, tends

to 180°, the result is highly sensitive to small imprecision of the sensors).

Fressure [Paj (dB) ref 2107

. ; : .
[ 1000 e o000 Rk edd SO0 4000 000
Frequency [Hz]

Figure 5.53.1 — Magnitudes of 4 and B for a free-field experiment

When the two-microphone actuator is placed in a medium that can not be considered a free-
field, the magnitudes of 4 and B may change, but they are still close to each other (specially at
low frequencies) and the calculation of the difference between S;4 and Sgp is critical. Figure 5.5.2
shows the magnitudes of 4 and B from the application of the two-microphone actuator to the
small rectangular cavity studied in chapter 6. The curves are very close to each other, even in
some regions of high frequency, and the identification of the active intensity becomes very

imprecise in a very large range of frequencies.
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Figure 5.5.2 — Magnitudes of 4 and B for the rectangular cavity experiment

As seen in the precedent section, the volume velocity calculation presents good precision.
So, using the radiation impedance for an unflanged tube applied to the particle velocity found at

the tube mouth, the active acoustic power {active intensity times area) was calculated:

P = —;—Re{—fﬁ—~u23 }S (5.5.2)

Z unflanged

where u,p is the particie velocity calculate at the tube mouth using 4 and B from arithmetic
average, and § is the tube cross-section area. Figure 5.5.3 shows the comparison of this active

acoustic power to the one measured at a distance 7 (using the monopole theory for the particle

velocity calculation) from the actuator termination.
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Figure 5.5.3 ~ Comparison of the active acoustic power calculated from the radiation impedance applied to w.g and

Jrom the monopole theory applied to pir=0.4mj — 0-6.4kHz

Figure 5.5.4 shows the comparison between the active acoustic power calculated from A4

and B, and from the monopole theory applied to the pressure measure at a distance 7.

T T

——  Using A and B - anthinetic average ‘
——  Using the monocpole theory apphed to p(r) i

™
&

©
5 ]

Astive qeousiic power [WT WB) ref 100 W

et L : L .
o 200 000 2000 4000 5000 £000 7000
Frequency {Hzf

Figure 3.5.4 — Comparison of the active acoustic power calculated from A and B and from the monopole theory

applied to plr=0.4m} — 0-6. 4kHz
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The curves seem to be shifted by a constant above 2.5kHz. Analyzing the pressure at the

socket mouth (figure 5.5.5) it ¢can be noticed that the use of 4 and B over-predicts this pressure.

53

} ——  Using A and B - arithmetic ave
il

—  Using the mmpedance radxatzoﬂ?gghed ton,,

3

=)
3

T
Jﬁ‘# jﬂfﬁ

Hressare (Paj @) v, 2167

: L : L
& plaaid 2000 40:'0 3000 900 70K
F?equem,y FE}

Figure 5.3.5 — Comparison of the pressure at the socket termination calculated from A and B with correction and

Jrom the radiation impedance applied to 1.y — 0-6.4kHz

The probable cause of this error is the microphone mounting in the socket, which has all its
area exposed to the inner cylinder. Supposing the pressure measured as the pressure in the center
of the microphone may lead to erroneous results. Figure 5.5.6 shows the pressure obtained
considering the distance from p; to the socket mouth (4,) equal to 0.062m. As opposed to the
particie velocity, the pressure varies a lot in the region near to the mouth due to the fact that the
incident and reflected waves are almost in opposition of phase and that the socket mouth is
almost a pressure node.

A procedure similar to what was done with the one-microphone actuator is done here.
Taking the pressure that results from the application of the radiation impedance to 4 as
reference, a constant which the pressure calculated from 4 and B should be divided for is found.

Iis value is approximatelly 2 and figure 5.5.7 shows that this leads to a reasonable result.

63



JF

e Using A and B - arithunietic average,
s ——— Using the impedance radiation applied to u

AB

.

Pressure [Paf (dB) ref 2267

! L : : .
2600 3000 <00 000 a0 7000
Freguency [Hz}]

Figure 5.5.6 - Comparison of the pressure at the socket termination calculated from A and B using 4; = 0.062m and

from the radiation impedance applied to 1p — 0-6.4kHz
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Figure 5.5.7 — Comparison of the pressure at the socket termination calculated from A and B with correction and

from the radiation impedance appiied to typ — -6 4kHz

Applying the correction proposed above to the pressure at the socket mouth, it can be

noticed (figure 5.5.8) that the active acoustic power presents a better agreement when compared
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to the measurement at a distance r. It is interesting to note that the results present better

agreement after 2.5kHz, which is approximately the frequency (figure 5.5.1) that 4 seems to
differ significantly from B.

————  Iking A and B - arithmetic average
20 —= Using the monopole theory appled to p(r)
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Figure 5.5.8 — Comparison of the active acoustic power calcuiated from A and B with correction and from the

monopole theory applied to p(r=0.4m) — 0-6.4kHz

As a verification, the reactive acoustic power (//2 Im{p-u }S) was calculated. Figure 5.5.9
shows the original results and figure 5.5.10 the results with the corrected pressure. It is observed

a very good agreement when the correction is applied.
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Figure 5.5.9 — Comparison of the reactive acoustic power calculated from A and B and from the radiation

impedance applied to g — 0-6.4kHz
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Figure 5.5.10 ~ Comparison of the reactive acoustic power calculated from 4 and B with correction and from the

radiation impedance applied o u,5 — 0-6.4kHz

The technique of Chung, 1978, based on the geometric average of S, measured in the
original and with the microphones switched was tested. Figure 5.5.11 shows its comparison with

use of the arithmetic average of 4 and B and the results present good agreement.
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Figure 5.5.11 ~ Comparison of the active acoustic power calculated from A and B and from the geomeltric average of

S]g ~ 0-6.4kHz

The general conclusion that can be made is that the two-microphone actuator constructed is
able to measure correctly the volume acceleration it is injecting into the medium in a very large
frequency range, but presents problems when measuring the acoustic power being injected. This
is due basically to the strong impedance mismatch between the tube and the surrounding
impedance, which leads to a very reflexive boundary at the socket mouth at low frequencies. In
this frequency range 4 and B become very close to each other and the calculation of the active
intensity is very sensitive to small amplitude and phase errors. For the actuator constructed (inner
diameter of lem and microphone separation of 3cm) the range of frequency it is capable to
measure active intensity is 2.5-5kHz (if the correction proposed is applied). If the active intensity
is required for lower frequencies another actuator with higher inner diameter and microphone

separation is needed.
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Chapter 6

Results and discussions

6.1 — Introduction

This chapter presents the results of the acoustic modal analysis performed in a rectangular
shallow cavity of small dimensions. As one of the dimensions was taken much smaller than the
other two, the problem becomes two-dimensional in a wide frequency range. The walls were
rigid, resulting in a strongly reverberant acoustic field.

Three acoustic actuators were used in this modal analysis:

o  Shaker-driven piston actuator

The shaker-driven piston actuator (figure 6.1.1) was composed of a small shaker, a
21.5mm diameter PVC piston, a thin rubber membrane stretched flush to one of the
cavity side walls covering a cylindrical hole, and a piezoelectric accelerometer. The air
volume acceleration is given by the accelerometer signal times the piston area.

This device was used in the first experiments and its results served as a reference to the
following development of the actuators based on the driver loudspeaker. Nevertheless,
its use imposes some practical difficulties as the positioning — the piston has to be

parallel to the stretched membrane — and the limited acoustic power it delivers.
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Figure 6.1.1 —Shaker-driven piston actuator assembly

a  One-microphone actuator
The developments of chapter 4 are analyzed with the application of this device (figure
6.1.2) into a cavity presenting high acoustic impedance. In this case, the basic
assumption made in the development of the one-microphone actuator, that its impedance

is much higher than the swrrounding it acts in, becomes fragile and will be investigated.
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Figure 6.1.2 — One-microphone actuator
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o Two-microphone actuator
The use of two microphones showed (chapter 5) that the volume acceleration can be
calculated correctly without assuming a condition for the surrounding where the actuator
is placed. The experiment with the small rectangular cavity will verify if the two-
microphone actuator can deal with a high impedance medium in terms of volume

acceleration.

The box containing the cavity (figure 6.1.3) was built in wood, except for its upper wall,
made of plexi-glass to facilitate the microphone positioning. One concern of this construction
was the stiffness of the walls. A small cavity (254x199x30mm) with relative thick walis avoided
the vibroacoustic coupling in the range of frequencies analyzed, leading to the study of the
uncoupled acoustic modes only. The experimental scheme of the cavity instrumentation is
presented in figure 6.1.2, where a 1/4" electret microphone has its positioning made by thin nylon

strings.

Figure 6.1.3 — Constructed cavity

The measurement points coincide with the nodes of the FEM mesh constructed (figure
6.1.4), with 10 elements in each direction, resulting in 121 measurement points.

Following, the results of the application of the three acoustic actuators are presented. The
Frequency Response Functions are compared to the analytical solution, which takes into account
a damping value of 0.01 (77 = 0.02). This value was taken from table 6.5.2 and represents
approximately the average of the modal damping of the first seven modes for the shaker-driven

piston and two-microphone actuator experiments. The excitation point corresponds to the point
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112 of figure 6.1.4 and for the analysis two points were chosen: one near to the excitation
location (point 80 in figure 6.1.4) and another far from the excitation location (point 33 in figure
6.1.4). The other 119 points present the same behavior when compared to the analytical solution

as these two points that will be analyzed.
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Figure 6.1.4 — Rectangular cavity FEM mesh
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6.2 — Shaker-driven piston actuator experiment

As mentioned above, the experiment with the shaker-driven piston (figure 6.2.1) served as a

reference. This actuator has the advantage that it has a good response at low frequencies.

Figure 6.2.1 — Shaker-driven piston (left) and the experimental setup (vight)
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Figure 6.2.2 shows the comparison between the analytical and experimental FRFs for the
points 53 and 80 in the frequency range of 0-3.2kHz. 1t can be observed an excellent agreement
between the curves over all the frequency range. For point 80, near to the excitation, the first
antiresonance presents some perturbation and it is probably due to the difficult positioning of the

piston parallel to the elastic membrane.
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Figure 6.2.2 ~ Comparison between the analytical and experimental FRFs at the points 33 (left) and 80 (vight)

The coherence between the microphone inside the cavity and the accelerometer attached to

the piston (figure 6.2.3) is quite good outside the antiresonance regions, which is expected.

T '“"‘%If’%? P 1oy | ] g
: L :
| . m i *
&/A AA E pA . a
3 y VA ™y g, A b
5 Y NSV e E] AN
g :y Ew : Y \’ g'/\f'\vf \f\( \\ s
& e pro ‘lﬁg e ,??i';,(?n };w 3600 a«loé e e e t;oo [";?j pos 2000 2306
4} £ Prequency fHz,

Figure 6.2.3 — Coherence (between the microphone inside the cavity and the accelerometer mounted on the piston)

and FRFs at the points 53 {left} and 80 (right)
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6.3 — One-microphone actuator experiment

The experimental setup for this experiment is presented in figure 6.3.1. The experimental FRFs

will be constructed using both the transfer function H and radiation impedance for a flanged

tube (the actuator was placed flush to the surface of the side wall of the cavity).

Figure 6.3.1 — Experimental setup for the application of the one-microphone actuator

Figures 6.3.2 (point 53) and 6.3.3 (point 80) show the comparison between the
experimental FRFs constructed using H and the radiation impedance. The use of the correction
proposed in chapter 4 (division of the pressure of the socket by a constant, which was

approximately 2 for the constructed actuator} demonstrates its validity and can be considered as a

good option as it eliminates the need for the transfer function.
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Figure 6.3.2 — Comparison between the FRFs constructed using H and the radiation impedance without correction

flefij and with correction (vight) at the point 33
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Figure 6.3.3 — Comparison between the FRFs constructed using H and the radiation impedance without correction

(left) and with correction (right} at the point 80

The comparison of the experimental data with the analytical solution (figure 6.3.4)
indicates that the basic assumption of this type of actuator can be misleading in a case where

acoustic impedance of the medium is not negligible in relation to the actuator impedance.
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Figure 6.3.4 — Comparison between the analvtical and experimental {using the radiation impedance with correction)

FRES at the points 33 (left) and 80 (right}

The coherence between the microphones, in the cavity and inside the actuator, is excellent.
The inefficiency below approximately 300Hz is expected and is due to the driver limitation and to

the poor efficiency of the radiation from the tube at low frequencies.
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Figure 6.3.5 — Coherence between the microphones, and FRFs at the points 33 (left) and 80 (vight)
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6.4 — Two-microphone actuator experiment

The use of the two-microphone actuator (figure 6.4.1) is an attempt to measure correctly the

volume acceleration being injected into the medium and the case of the rectangular cavity used

can be considered an extreme case for the performance evaluation of this actuator.

Figure 6.4.1 —~ Experimental setup for the application of the two-microphone actuator

Comparison between the experimental and analytical results (figure 6.4.2) shows good

agreement and proves the efficiency of this new actuator in taking into account the surrounding

impedance.
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Figure 6.4.2 — Comparison between the analytical and experimental FRFs at the points 53 (left) and 80 (right)
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In figure 6.4.2 (left) it can be noticed that in the antiresonance near 2.5kHz the experimental
FRF presents a strange behavior. It appears also in the one-microphone experiment results and its
origins are still to be investigated. Anyway, it happens in a region where the FRF reaches a very
low value and does not weigh much in the modal parameter extraction process.

Another detail is that an "extra” resonance appears at approximately 2.7kHz. It appears also
in the FRFs using the shaker-driven piston and the one-microphone actuators, and the reason why
it is no appearing in the analytical FRF may be due to a node exactly at this location or to some

small imperfection in the constructed cavity that is not foreseen in the analytical model.

Figure 6.4.3 shows the coherence between the microphone in the cavity and the one (p;)
inside the socket closest to the tip. There is an excellent coherence with exception of a region
near 3kHz, where the radiation efficiency of the ensemble tube and socket is poor. Nevertheless,

the small coherence in this region does not seem to strongly influence the FRFS.
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Figure 6.4.3 - Coherence between the microphones, and FRFs at the points 33 (left) and 80 (right)
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6.5 — General analysis

A two-dimensional FEM model using linear triangular elements (chapter 3) was implemented in
MATLAB® language in order to analyze the behavior of the numerical solution. The model
consisted of 10 elements in each direction (figure 6.1.4) and the excitation was put in node 112.
Following the criteria of a minimum number of 10 elements per wavelength, the maximum
frequencies aflowed for the analysis from the numerical model are 1350Hz (in the longer
dimension - x) and 1724Hz (in the shorter dimension - ). Figure 6.5.1 shows a comparison

between the numerical and analytical FRFs and there is excellent agreement until approximately

1500Hz, which obeys the criteria exposed above.
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Figure 6.5.1 — Comparison between the analytical and numerical(FEA) FRFs at the points 33 (lefi) and 80 {right)

Table 6.5.1 compares the natural frequencies of the undamped analytical and numerical
models and presents the error committed in the numerical result. As expected, the error tends to

grow with frequency due to the chosen discretization.
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Table 6.5.1 — Errors in the numerical natural frequencies with respect to the analytical value

mode Jn (Hz) S (Hz) error (%)
Analytical FEM
1 675.2 677.9 0.40
2 861.8 865.3 0.41
3 1094.8 1108.0 1.21
4 1350.4 1372.4 1.63
5 1602.0 1645.9 2.74
6 1723.6 17515 1.62
7 1851.1 1898.9 2.58

Figures 6.5.2 and 6.5.3 show the comparison between FRFs obtained using the two-

microphone actuator and the other two actuators. The use of the one-microphone actuator in this

cavity is problematic and the FRFs are distorted. The results from the shaker-driven piston

actuator is in accordance with the two-microphone actuator results, but this last one fitted better

the analytical solution.
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Figure 6.5.2 — Comparison between the experimental FRFs using the shaker-driven piston actuator and the two-

microphone actuator af the points 33 (left) and 80 (right)
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Figure 6.5.3 — Comparison between the experimental FRFs using the one-microphone actuator (using the radiation

impedance) and the two-microphone actuator af the points 53 (left) and 80 (right)

For the modal parameter extraction, the Exponential Complex Method (Ewins, 1984) was
used and table 6.5.2 shows the comparison between the results obtained with the three actuators.
The damping exiracted from the experiments with the shaker-driven actuator and with the two-
microphone actuator agrees very well, and the use of the one-microphone actuator seems to

overestimate the damping.

Table 6.5.2 — Modal parameters from the application of the three actuators

mode s | Am s | AED s | A
Shaker-driven piston One-microphone actuator | Two-microphone actuator
1 0.0138 676.8 0.0172 695.2 0.0099 678.0
2 0.0111 857.1 0.0161 875.0 0.0105 860.4
3 0.0166 10943 0.0172 1128.1 0.0121 1099.0
4 0.0100 13594 0.0130 1368.9 0.0086 1361.9
5 0.0101 1608.7 0.0109 1623.5 0.0108 1613.4
6 0.0081 1719.0 0.0088 1731.3 0.0072 1726.7
7 0.0110 1858.2 0.0095 1875.9 0.0104 1858.7

Table 6.5.3 presents the errors in the extracted natural frequencies with respect to the
analytical ones. For the shaker-driven piston and the two-microphone actuators, the errors are

smaller than 1%. For the one-microphone actuator, the errors are greater as expected.
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Table 6.5.3 — Errors in the experimental natural freguencies with vespect fo the analvtical value

mode Shaker-driven piston One-microphone actuator | Two-microphone actuator

(%) (%) %)
1 0.24 2.96 0.41
2 0.55 1.53 0.16
3 0.05 3.04 0.38
4 0.67 1.37 0.85
5 6.42 1.34 0.71
6 0.27 0.45 0.18
7 (.38 1.34 0.41

6.6 — Pressure and particle velocity fields visualization

In this section the idea presented in chapter 2 and developed in appendix D is applied to the
experimental pressure field of the third mode (1100Hz). Figure 6.6.1 (left) presents this field and
figure 6.6.1 (right) presents a "mirrored” field, which avoided the leakage in both directions when

applying the DFT.
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Figure 6.6.1 — Origiral (left) and mirrored (right) experimental pressurve field for the 39 mode (1100Hz)

The analytical solution for the particle velocity field (6.6.2) is presented in appendix D and
serves as a reference for the particle velocity field calculated from the application of the DFT to

the experimental pressure field.
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Figure 6.6.2 —Analytical particle velocity fleid in x-(left) and y-(right) directions for the 3" mode (1100Hz)

The particle velocity field that resulted from the experimental data (figure 6.6.3) agrees
well with the analytical field, but presents excessive distortions due to the influence of high wave
number noise. When calculating the derivatives, each line in the wave number space must be

multiplied by ¢ £, so small distortions in high wave numbers are amplified in this procedure.

¥imj xfmf yimf z fm}

Figure 6.6.3 — Particle velocity field from DFT in x-(lefi} and y-(right) directions for the 3 mode (1100Hz)

To avoid the presence of high wave number distortions, a simple filtering technique was
used. The amplitudes of the higher wave number terms, which is very small in this case (figure
6.6.4 (left)), were taken to zero (figure 6.6.4 (right)).
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Figure 6.6.6 shows the wire-frame representation of the particle displacement field, which

is an alternative way of visualizing the acoustic field.
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Figure 6.6.6 — Wire-frame representation of the particle displacement fleld for the 3" mode (1100Hz);
analytical (left) and experimental with filtered data (right) fields

The agreement between the experimental (with filtered data) and analytical results in figure
6.6.6 is excellent. An important remark is that the simple filtering technique used was possible
because the pressure field was mirrored in a way that leakage was avoided. When boundary
conditions are not as simple as the one present in the studied case, a surface smoothing technique,

lile the RDFS proposed by Arruda (1992) is necessary in order to control the leakage effects.
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Capitulo 7

Conclusoes e perspectivas

A andlise modal acistica de uma cavidade retangular foi realizada. Para isto, quatro questdes
bésicas foram tratadas: i} a definigio de varidveis de entrada e saida em sistemnas actisticos, ii) as
corre¢bes de unidade nos modelos analitico e numérico necessédrias para a comparacdo com as
FRFs experimentais, i) a visualizagdo de um campo acdstico, e iv} o desenvolvimento de
atuadores actisticos calibrados.

Depois de responder as questdes i (capitulo 2), ii (capitulo 3) e iii (capitulo 2 e apéndice D),
o problema do dispositivo calibrado de excitag3o foi tratado nos capitules 4 e 5. Um atuador que
J4 estd comercialmente disponivel (atuador com um microfone) foi construido, mas apresentou
sérias limitagbes quando aplicado num meio onde a impedincia acdstica é alta (cavidade
pequena). Uma alternativa baseada no uso de dois microfones foi proposta e sua aplicagio na
analise mocial apresentou bons resultados (capitulo 6). Entretanto, sua aplicacdo na Andlise
Estatistica de Energia Experimental (ESEA), que requer a intensidade ativa injetada no meio, é
ainda um problema em aberto. O maus resultados no célculo da intensidade ativa se deveram a
problemas intrinsecos associados ao uso dos dois microfones (capitulo 3). Por outro lado, quando
o meio se aproxima de um campo livre, o uso da impedéncia de radiacio em tubos apresenta bons
resultados. Sua aplicacdo nos atuadores com um e dois microfones numa sala anecdica
demonstrou excelente concordéncia com relagfo 2 aceleracfo de volume e poténcia acistica ativa
em comparag;io com medidas feitas a uma disténcia r do bocal do atuador.

Para futuros trabalhos, uma modificacdo na montagemn do microfone é sugerida. Como

discutido no capitulo 5, a exposicdo de toda drea do microfone ao interior do tubo n%o € um fator
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limitante para o cilculo de aceleragfio de volume, mas pode influenciar as medidas de intensidade
ativa usando a técnica dos dois microfones. A figura 7.1 (esquerda) mostra como os rnicrofones
foram montados no atuador com dois microfones e a figura 7.1 (direita) apresenta a montagem
proposta, que permite uma medida mais precisa da distAncia entre os dois microfones e entre os
microfones e a terminacio do tubo. O atuador com um microfone teve a montagem como a

exposta na figura 7.1 (direita) e a coeréncia ndo parece ser afetada por esta opco geométrica.

NRAN NN NN

i

Figura 7.1 — Montagem do microfone na parede do tubo

Uma opgdo interessante para a medida de intensidade ativa é o uso de sensores de
velocidade de particula como o Microflown (Bree et al., 2000). Em publicacdes da empresa
Microflown (podem ser obtidas no sitio www.microflown.com), uma sonda p-u que associa um
microfone a um sensor de velocidade de particula é testada e calibrada num tubo de ondas
estacionarias e 0s resultados sdo bastantes encorajadores. Entretanto, este sensor de velocidade de
particula apresenta uma faixa de freqiiéncia limitada e, neste momerito, parece que medidas
confidveis seriam limitadas 2 faixa de 500-3000Hz. A figura 7.2 mostra esquematicamente um
atuador acudstido aperfeicoado que incorpora o sensor de velocidade de particula e que, em
principio, permite a medida da aceleracio de volume na terminacgio do tubo e da intensidade ativa

sendo injetada no meio. -
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Figura 7.2 — Atuador acistico aperfeicoado
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Conclusions and perspectives

The experimental acoustic modal analysis of a rectangular shaliow cavity was performed. For this, four basic issues were
addressed: /) the definition of input and output varables in an acoustic system, i) the unit corrections in the analytical and
mumerical models needed for the comparison with the experimental FRF, &} the visualization of an acoustic field, and iv) the
development of & calibrated acoustic actuator.

After answering the questions { {Capitulo 2), # (Capitulo 3) and & (Capitulo 2 and Apéndice D), the problem of the
calibrated excitation device was tackled in Capitulos 4 and 5. An actuator which is already commercially available (the one-
microphone acteator) was built, but it presented serious limitations when applied to a medivm where the acoustic impedance i3
high (small shallow cavity). An alternative based on the use of two microphones was proposed and its application in the modal
analysis was very successful (Capitule 6). Nevertheless, its application in ESEA {Experimental Statistical Energy Analysis),
which requires the active intensity being injected into the medium, is still an opened problem. The bad resuits in calculating the
active intensity were due to the intrinsic problems associated with the use of the two microphones (Capitulo 5). When the medium
approximates a free-field, the use of the radiation impedance for tubes can yield good results. Its application in the one-
microphone and in the two-microphone actaators in an anechoic room demonstrated excelient agreement n volume acceleration
and active acoustic power when compared to the measurement at a certain distance .

For future works, one modification in the microphone mounting can be suggested. As discussed in Capftulo 3, the
exposition of all the microphone area to the interior of the mbe is not a limiting factor to the caleulation of the volume
acceleration, but it can influence the measurement of active intensity using the two-microphone technique. Figure { {left) shows
how the microphones were mounted in the two-microphone actuator and figure 1 (right) presents the proposed mounting, which
leads to a more reliable distance measured between the microphones and between the microphones to the tube termination. The
one-microphone actuator had a microphone mounting as exposed in figure 7.1 (right) and the coherence does not seems to be
affected by this geometrical choice.

= | \_\ K ;

Figure 7.1 — Microphone mounting in the tube wall

An interesting option for the measurement of active intensity is the use of particle velocity sensors as the Microflown
(Bree et al., 2000). In (Bree et al., downicaded paper) and (Van der Eerden et al., downloaded paper) a p-u probe associating a
microphone io the particle velocity sensor is tested and calibrated in a standing wave tube and the resulis are very encouraging.
However, this particle velocity sensor presents a limited frequency range and, for the moment, it seems that a reliable
measurement would be limited to the 500-3000Hz range. Figure 7.2 shows schematically an improved acoustic actuator that
incorporates the velocity particle sensor and would, in principle, allow the measurement of volume acceleration at the tube
termination and the active intensity being injected.

Particle velocity probe Microphone

Active intensity

\ Volume acceleration at
A ——————

the termination

YOIIIITIIL '/%ft///// 7777

IEIL {/ /_Y////////

Figure 7.2 — Improved acoustic acruator
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Appendix A

Acoustic wave equation

The physical phenomenon of sound waves in fluids (i.e., gases or liquids) is related basically to
the normal stresses, or pressures, since shear stresses can not be sustained statically in fluids.
Sound in gases is, instead of an isothermal process, nearly an adiabatic phenomenon. That is to
say that there is insignificant exchange of thermal energy from one péﬁicle of fluid to another.

For a gas under this condition, its behavior may be described by the adiabatic equation of state:

P_(pY _ Al
£ (pe} -1

where 7 is the ratio of the specific heats, P and p are the instantaneous pressure and density, Py
and pp the mean pressure and density (the difference between P and Py represents the acoustic
pressure p). For fluids in general, the adiabatic equation of state is more complicated and the

Taylor expansion for the compression and expansion of the fluid about its equilibrium density

can be written:

() VL (FR) (o
Pma{ap]%(p po)+2(apzlo(p oo+ (a2)

If the fluctuations are small, only the lowest term in (p — o) need to be retained. To give an
idea of how this approach is valid for air, for a pressure level of 100 dB the ratio p/Py is 2x10 N

and the non-linearity represented by the higher order terms of the Taylor expansion are only
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needed to be accounted for pressure levels above 135 dB. The present study is concerned with the
analysis of the acoustics of cavities filled by air with zero mean velocity field and pressure levels
under 100 4B, which has many applications (i.e., aircraft and automobile cabins). The linear

relationship between pressure and density fluctuations becomes:

P—awpﬁ[-gﬂ (o- po) (A3)

T

Here the concept of ‘bulk modulus’ is introduced. It is a coefficient relating pressure

changes to small volumetric (dilatational) strains of a fluid (= p,(8P/8p), ). For adiabatic

changes, P/p”is constant and the bulk modulus can be rewritten:

P
p{-—-—} =y B (A4)
a'o Po

and the acoustic pressure is simplified:

(P;po)mms _ (A.S5)

p=rvk

where s is called condensation.
The wave equation is a result of mass and momentum conservation. Figure A.1 shows the
mass flux in x direction with the velocity being expanded only in one term (linear in the control

volume). For all directions, the rate of mass flow into the control volume is:
(pu,)dydz+(pu, )dxdz +(pu. ) dxdy (A.6)

and the rate of mass flowing out is:

(pux +‘(M]dx]dydz-§-(puy +[a(puy))dy]dxdz+[puz +[M]dszxdy
ox cy Oz

(A7)

92



P — -8 (U +EU/Bx dx)

X

Figure A.1 — Mass flux through a fluid control volume in the x direction

The net mass outflow must be balanced by a decrease in the density of the volume:

a(pux)+a(9uy)+a(9uz) de‘“ _@E_ dV (A 8)
ax 6_)7 83 at '

where dV = dx dy dz. Assuming that the density fluctuations are very small, the previous non-

linear equation can be linearized:

~ dp
Veg+=0 - A9
Py VU o (A.9)

where #=u_i+u,j+u, k. Considering the fluid inviscid (no viscosity effects) and a small
element dV (figure A.2) moving with the fluid, the net force df on the element will accelerate it

according to the Newton's second law (df = 4 dm ). In the x direction, the resulting force is:

af, =924y ] (A.10)
ox

For the complete force vector:

df ==Vpdv (A.11)
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The particle acceleration is a function of time and space and a small increment in both

variables gives the acceleration by the following relation:

ii(x+ux dt,y+u,dt,z+u, dt,r+dt)-ii(x,y,z,t)

G 3}3{% - (A.12)
A Tayior expansion (taking into account only the first terms),
iz’(x+u dt,y+u dz‘,z+uzdt,t+dt)= z?(x,y,z,z)+§£ux a'miu dt+§~£u dt+—~8-£dr
¥ 7 Ox gy 7 oz °© ¢
(A.13)
leads to the acceleration equation:
a=% 4y %%, 0%, 08 0% Gv); (A.14)
ot ox oy 0z 0Ot

Substitution into the Newton's second law equation gives the well-known non-linear Euler's

equation:

vpm—p[%+(ﬁ.v)ﬁ) - (A.15)

Supposing |s|(( 1 and |(@-V)i#|(( |9ii/d¢|, p can be approximated by pp and the term

(V)i dropped in (A.15). The linearized Euler's equation can then be written:

out
Vp =~p, —— A.l6
f4 o Py ( )

The wave equation is the result of some manipulations between (A.5), (A.9) and (A.16).
Application of the divergent operator in (A.16) produces:

ov-u
ot

Vip=-p, (A.17)
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Figure A.2 — Pressure gradient in the x direction

The combination of equations {A.5) and (A.9) gives:

v.i=-— 9P (A.18)
y b o1

which, applied to (A.17), results in the wave equation;

Vip—-— =0 (A.19)

where c=.yP,/p, is the speed of propagation of sound in all regions where the linear

approximation holds good.
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Appendix B

Acoustic intensity
B.1 — Acoustic intensity in plane wave fields

The study of acoustic intensity in plane wave fields is made here due to the insightful results it

may lead when analyzing active and reactive fields. Fahy (1995) treats the problem in detail and

some of his ideas will be summarized here.

The instantaneous intensity,
1(t)= ple) () B.1.1)

in all time-stationary acoustic fields may be split into two components: )

 Active: which the time-average (mean) value is non-zero, corresponding to local net

transport of sound energy;

* Reactive: which the time-average value is zero, corresponding to local oscillatory

transport of energy.

As an example, the active and reactive intensity will be derived for an one-dimensional

plane interference field represented by the following pressure expression:

px,7)= Px)e’r ) (B.1.2)
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where P(x) is real (the dependence on x of P and ¢ will by dropped for typographical clarity).

Using the Euler's relation, the particle velocity can be written:

d ;
w(rr)=l P o 1| p& P | (s (B.1.3)
wp, OX WP, dx dx

The active component of intensity is given by the product of the components of pressure

and particle velocity that are in phase:

1 g, .dP
I (xt)=——u PP222 i 7 lcost ot + B.1.4
() wpi — ldx:| (@1+4, () (B.14)
and its mean value is
- d
I, (x,t)=~ L | p299p 4P . (B.1.5)
2ep, dx  dx

The reactive component of intensity results from the product of the components of pressure

and particle velocity that are in quadrature:

I (x,t)=- ! {diz}sz’nll(cot+¢p(x)) ] (B.1.6)

4ap,

From these intensity equations, we can see that the active component is related to the
spatial gradient of phase, and the reactive component to the spatial gradient of mean square
pressure. A very useful example in this study is the standing wave or impedance tube, which is
used to measure the sound absorption of materials, Keeping the analysis below the lowest cut-off

frequency of the tube leads to a one-dimensional plane wave problem. The material put at the end
of the tube is modeled as having a complex pressure reflection coefficient represented by R e .

The pressure field is represented in complex exponential form by:

p(x,t)= A[ei(cut—kx} +Re:‘9€i(cot+kx)] (817)
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This pressure field may be expressed by:

plx,t)= Pe' e (B.1.8)
where

b et
and

P*= 4?1+ R +2Rcos(2kx +6)] | (B.1.10)

The spatial gradients of these quantities are:

g, kR -1)4°

B.1.11
n 7 ( )
and
2
%: ~4 A kR sin(2kx + @) (B.1.12)

Substitution of these gradient expressions in (B.1.5) and (B.1.6) gives the intensity

equations for the impedance tube:

L(x)= f—zc—(l—-Rz)cosz(cngﬁp (x)) : (B.1.13)

I(xt)= 2‘;26 (-7 (B.1.14)
[

J,Q(x,r):—“fgksm(zkﬂa)sinz(wz+¢p (x)) (B.1.15)

0
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Three important conclusions can be drawn from these equations: (i) the mean active
intensity is independent of x and uniform along the tube length, relating clearly this variable to
the net transport of sound energy; (ii) the mean reactive intensity is zero, characterizing the local
oscillatory transport of energy; and (iii) the ratio of the magnitudes of active and reactive
intensities vary with position: a maximum value of R/(1-R’} at the position of maximum and
minimum square particle velocity, and a minimum value of zero at the maximum and minimum

of square pressure, respectively.

B.2 — Complex intensity for harmonic acoustic fields

A generalized formulation for a complex harmonic acoustic field is easily found by introducing a

complex harmonic pressure and particle velocity field,
plx,t)=Pe™ (B.2.1)

ulx,t)=U &'@+?) (B.22)

where ¢ is the phase shift between pressure and particle velocity as shown in figure B.2.1, with P

and U real positives.

Figure B.2.] — Phase shift berween pressure and particle velocity
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The instantaneous acoustic intensity (B.1.1) can be written:

1(t)= PUlcos*(wt) cos(@ )+ cos(wt) sin(wt) sin(4)] (B.2.3)

which leads to

I(t)= figm[(cosﬁa) t)+1)cos($ )+ sin( 201t ) sin{ ¢ )] (B.2.4)

The term in cosines of ¢ has its average equal to:

PU
Icos(gb) = TCOS(¢) (B.2.5)

and it is pulsating from an amplitude of zero to PU with the double of the excitation frequency. It
is usually referred as active acoustic intensity, and it is related to the net energy transport

represented by its average.

Averaging over the sinus term results zero, not contributing to the net energy transport and
representing only the energy balance between potential and kinetic acoustic energy. This intensity
component pulses from ~PU/2 to PU/2 with the double of the excitation frequency and is usually

referred as reactive acoustic intensity. Acoustic intensity is generally written as:

I=T e ¥ e = fzgcos( ¢)+ %qsin( ¢) sin(2wt) (B.2.6)

Interesting to note is that when ¢ is 90° there is a pure reactive field and the active intensity
equals zero. In real cavities there is always some dissipation and the phase shift between pressure
and particle velocity never reaches exactly 90°, leading always to the injection of active intensity

by the source(s), even if it is small.
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From the following complex notation,

PU" = (Pcos(g,)+i Psin(g,) U cos(@,) ~iUsin($,))= PU cos(@)+i PU sin(g)

B.2.7)
where ¢ = ¢, - ¢, the acoustic intensity can be written in a complex notation:
I=1_..+1, .. =Re UL imdEY (B.2.8)
2 2
B.3 — Monopole intensity
The pressure field generated by a monopole can be written as:
plr )= etors) (B.3.1)
r
Applying the Euler’s relation, the particle velocity field is found:
ulr,t)= 4 (k _iJ g'(@r-kr) . (B.3.2)
: @pyF r
The active and reactive intensities are then calculated:
A '
1(rt)= ———[1+cos 2(wt — kr))] (B.3.3)
2rip,o
AZ
IL(r,t)=————sin2(wt ~kr) (B.3.4)
2rip,@
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The relation between active and reactive intensities becomes:

gf—;[ =kr (B.3.5)

This last relation-shows that the reactive intensity dominates in the near field (kr << 1)

while the active intensity dominates in the far field (& >> 1).

102



Appendix C

Acoustic specific impedance for a spherical wave diverging from
a point source

The complex representation of a spherical wave diverging from a point source (monopole
behavior) can be written (Kinsler, 1982) as:

(C.1.1)

The particle velocity is obtained by applying the Euler's relation to the pressure expression:

i=Vo {1“__{_)“3“,: . (C.1.2)
' kr ) p,c

It is clear from (C.1.1) that pressure and particle velocity are not in phase. The specific

acoustic impedance is:

2= pye— it (C.1.3)
1+ (k)
or
z= p,ccos(f)e” (C.1.4)
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where

cot(0) = kr (C.1.5)

Splitting (C.1.3) into real and imaginary parts, it becomes:

1+ (kr)?

z= PoC +ip,c (C.1.6)

1+ (kr Y

Both the specific acoustic resistance (real part) and the reactance (imaginary part)
approach zero for small values of k. For large values of k7, the real term tends to py ¢ (behavior

of a plane wave) and the imaginary tends to zero. Whan & = 1, both terms are equal to py¢/2 and

the specific acoustic reactance has its maximum value.
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Appendix D

Spatial Discrete Fourier Transform
D.1 — One-dimensional problem

The spatial Fourier transform of a continuous signal f{x) is expressed as:

Flk )= ?f(x)e“f*:*dx (D.1.1)

The Fourier Transform of the discretized signal f, = f(x=ndx) can be calculated by
N1 )
approximating the integral by the sum Z multiplied by 4k, (=1/L=1/N4x), and dx becomes
2]

the interval Ax between the discretized points (N is the number of sariz_laled points). The spatial

frequency (wave number) k. is written:

2 2z
k =— ff = =0,...,N-1 . D.1.2
F=7 B N g B (D.1.2)
The one-dimensional Discrete Fourier Transform (DFT) becomes:
1 Ne]
F, =-§Zﬁ, w*  p=0,.,N-1 (D.1.3)

n=0
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where

W, =e¥ (D.1.4)

The steps followed above do not represent a rigorous proof of the DFT formulation and a

more strict development can be found in (Brigham, 1974).

Equation (D.1.3) can be written in matrix notation:

1
F=—Wf L5
Y (D.1.5)
where
Nl N~|
W, =D > W# (D.1.6)
f=0 a=0
F,=F, B=0,..,N-1 D.L.7)
X, =1, n=0,. ,N-1 (D.1.8)

Due to the orthogonality property of the complex exponential, it can be written:

W W = N1 - (D.1.9)

where I is the identity matrix and the superscript H the complex conjugate transpose. The Inverse
Discrete Fourier Transform (ZDFT) is calculated with the combination of (D.1.5) and (D.1.9):

f =W¥*F (D.1.10)

106



The first spatial derivative of f{x),
f(x)= IF(kI)e”‘*"dkx (D.1.11)
can be found-from the IDFT of F(K,) multiplied by iK,::
-‘3%{1 = :[z‘kxF(kx Ye*“dk_ (D.1.12)
The expression of the first derivative of f{x) in matrix notation is:
df

[};}:f[F(kxn[dfag(kxmwr (®.113)

As an example, the first derivative of the following function (Figure D.1.1) will be

calculated.

= A sin] 22 s sin YE L E i OB 37
f(x)mA[Sm[ 7 j—%sm( 7 +4)+sm( 7 + 5 ﬂ N (D.1.14)

The analytical expression of its first derivative is:

I _ | 2 cos( e o I L | SR
dx L L L L 4 L L 2

and figure D.1.2 shows (for 4 = 1 and L = 3) the comparison between the results from the
analytical expression and with use of the DFT and IDFT.

It is important to notice that some care must be taken to avoid distortions in the Fourier
Transform of a sampled function (Brigham, 1974). The problem associated with the sampling

frequency is called aliasing and it is avoided if the sampling spatial frequency (1/4x) is higher or
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equal the double of the maximum spatial frequency analyzed. The necessary truncation of the

signal introduces an effect called leakage as discontinuities in the spatial domain generate side-

lobes in the frequency domain. This problem can be controlled if appropriated windowing or a

smoothing technique as proposed in (Arruda, 1992) is applied.

|

E
ly

|

i
/

Figure D.1.1 —Function f{x) for A =1 and L = 3

Figure D.1.2 — Analytical (—) and from DFT/IDFT () first derivative of f{x)
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D.2 - Two-dimensional problem

The two-dimensional DFT in rectangular coordinates is obtained in a similar manner as the one-

dimensional DFT applied to the x and y directions:

A-i B-1 .
Plkok,) =5 3.3 f(bdraty)e™ (D2.1)

a=0 b=

where 4 and B are the number of points in y and x, respectively. The wave numbers are defined

as:
2
k=g =2k k=0,..B-1 (D.2.2)
L, BAx
and
27 2r :
k,=—k,=—Fk, k,=0,..,4-1 (D.2.3)
7 L, AAx
In matrix notation the two-dimensional DFT becomes:
11
[F (kx’ ky )} P ’E'E [WA ]AxA [f(x> y )}AxB [WB ]ﬁxa 7 (D'2'4)
where
Bl B~ 2akb
AENE (D.2.5)
k=0 b=0
and

A=l A= 2Fa

Wl=22e* (D.2.6)

ky=0aq=0
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The first spatial derivatives are found from the same procedure as followed in the one-

dimensional case. For the x direction the DFT becomes:

B-]

Flkoy) =~ Y f(bAx,y)e™ D27)

B=0

Its matrix notation is:

[F (k..» )]AxB = '}é’[f(xsy )]Axﬂ [WB ]Bxa (D.2.8)

The first derivative is readily calculated:

R B IO P2 A ©29)

In the y direction the same procedure is developed. The DFT in y is:

Af fx,ady)e™™* (D.2.10)

F(xk,)= —;—
a=0

In addition, its matrix notation becomes:.
1
[F(x’ ky )]AxB = :2. [WA ]Ax,{ [.f(xs y)]AxB (D‘?“ 1 1)

The first derivative in y is readily calculated:

[_af(x,y)

5 Jm ilw, I ldiagk ) ][F (x.k,)] (D.2.12)
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Following, two examples of the application of the two-dimensional DFT to find the first
derivative in two directions will be presented: a problem in rectangular coordinates and a

problem in cylindrical coordinates.

This first case is related to the study of a rectangular acoustic cavity (L = 25.4cm x L, =
19.9¢cm x L, = 3cm) with rigid walls and the third dimension (3¢m) much smaller than the others

two. This leads to a two-dimensional problem with the following solution for the pressure field:

Pon = Anm Cos(kxmx)cos(kyny) (Dz 1 3)

The particle velocities are linked (linear acoustics) to the pressure gradient field by the

Fuler's relation,

1

iwp,

i =— Vp (D.2.14)

and the analytical expressions for the particle velocities in x and y directions are

u, = '—A’-”-”——km Sin(kmx)cos(kw y) (D.2.15)
iwp,c
and
A?’Hﬂ H
u, = %c—ky" cos(kmx)sm(kyﬂy) (D.2.16)

The wave numbers for each mode are found by application of the condition of null normal

particle velocity at the boundaries:

¥
k. = D.2.17
“ T (D.2.17)
nmw
ky" ﬂ'z— (D218)
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Figure D.2.1 (left) shows the pressure field (4., = 1) for the 8" mode (1850Hz ~m=1,n=
2). It is clear that the application of the DFT in y will offer no problem as the it is perfectly
periodic, but in x a spatial leakage will be present. To solve this problem the surface was mirrored
(figure D.2.1 (right) ) in the x direction and the spatial discontinuity was avoided.

The analytical particle velocity field for the x and y components is compared to the results
obtained from the application of the DFT and IDFT to pressure field in figures D.2.2 and D.2.3.

There is an excellent agreement.

» inif x mf ¥ fmf = fm]

Figure D.2.1 - Pressure field for the 8" mode (1850Hz)
(left) Original field right) Original + Mirrored field

Farticle velooily in x finis)
L E s b s

Lomom
I

¥ fsf « fmf ¥ fmf x fmf

Figure D.2.2 — x-component of the particle velocity for the 8* mode
fleft) Analytical (right) From DFT and IDFT

112



o o

w
o e

=} a
[ O S O Y
L

a
n

Porticle velorlty i 3 fness)
6B on
:

Purticle velatity in y fmi

oo

2imf ©im] ¥ imf

Figure D.2.3 — y-component of the particle velocity for the §* mode
fleft) Analviical right) From DFT apd IDFT

An interesting application of DFT is the treatment of problems in cylindrical coordinates.
These problems have generally solutions based on Bessel functions, and, as these functions are
constructed with sines and cosines, they are well fitted for Fourier Transforms application.

The same procedure adopted for the rectangular coordinates case is made for cylindrical

coordinates case. For the angular direction 8, which is periodic, the DFT becomes:

A1
Fir k)= %2 F(r@)e (D.2.19)
a=0
where
2
ky=Sk=ky k=0, Al (D.2.20)

Its matrix notation is;

1

[F b s == s [f 0] s (D.2.21)

where

ZAED YN (D.2.22)
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Its first derivative is calculated:

40

= ]=$ﬂfhma%ﬂﬁ&3a] (D:2.23)

i

The DFT in the radial direction # becomes:

B-1
F(k,,0)= %Z f(bdr,@ye ™ (D.2.24)
h=0
where
2 2
k ="k, = k k,=0,...,B~1 D.2.25
"L Y Bar ¢ + ( )

Its matrix notation is:

[ s = 1O, Lo 0226)

where

wl=>>e® (D.2.27)
Its first derivative is readily calculated:
[g%@}#ﬁmﬁﬂﬁ@@mmf (D.2.28)
¥

As an example, the DFT will be applied to the interior pressure field of an infinite rigid-

walled, circular waveguide of radius a (= 1m). The pressure field (Kinsler, 1982) is given by:

Pon = Ay ok, Jc0s(m0) (D.2.29)
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The wave numbers for each mode are found from the condition of null normal particle

velocity at the boundaries:

L (D.2.30)
a

where ;. are the zeros of dJ (z)/dz. Application of the Euler's relation (D.2.14) to the

pressure field gives the particle velocities in the fand » direction:

u, = :—&‘LJ; (k,,.r)cos(m@) (D.2.31)
ey
uy =2 ™ s ( F)sin(m) (D.2.32)
kancpﬂ

The following relations related to the Bessel function were used in the construction of the

analytical solution of the particle velocity in the r direction:

éJL’—(—Qm.,fnnl(z:)—n;:“IJ”(z) (D.2.33)
dz
J_ (2)=(-1"J(2) (D.2.34)

Figure D.2.4 shows the pressure field {(4,,, = 1) for the 12” mode (438Hz ~m=3,n=2).In
the angular direction & the field is periodic and the DFT can be applied directly. In figure D.2.5
(left) it can be seen that in the » direction there will be a discontinuity when the field is periodized
by the DFT. If a mirror is done (figure D.2.4 (right)) in this direction, leakage is suppressed and
the DFT can be applied.

Results from the analytical formulation and from the application of the DFT and IDFT for
the particle velocity field in the two directions is shown in figures 1D.2.5 and D.2.6, and they are

in excellent agreement.
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Figure D.2.4 — Pressure field for the 12" mode (438Hz)
fleft) 3D view (right) Top view
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Figure D.2.5 — Pressure field for the 12" mode (438Hz)
(left} Original field (right) Original + Mirrored field
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Figure D.2.6 — 8-component of the particle velocity for the 12 mode
(left) Anaiviical (vight) From DFT and IDFT

Particie velocity in v fris]
5 ] o e
3

&

w
.

¥ {mf ’ ¥ fmj

Figure D.2.7 — r-component of the particle velocity for the 1 2% mode
(feft) Analytical iright} From DFT and IDFT
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D.3 — Three-dimensional problem

The three-dimensional case is a natural extension of the two-dimensional problem. Below an
example similar to the first example given in the two-dimensional case is tested. The 43" mode

(1964Hz) of an acoustic box of 0.5x0.4x0.3m is analyzed (figure D.3.1).

¥ imf i i

Figure [).3.1 — Pressure field for the 43" mode (1964Hz)

Figure D.3.2 shows the comparison between the analytical solution and the solution from

the application of the DFT and IDFT for the x-component of the particle velocity for this mode.

¥ im? B =}

¥ imi » frf

Figure I).3.2 — x-component af the particle velocity for the 43" mode
fleft) Analytical (right} From DFT and IDFT

118



The use of the wire-frame representation, as mentioned in chapter 2, is very interesting and

figure D.3.3 shows the two possibilities of visualizing the acoustic field.

Figure D3.3.3 — Particle displacement (lefi) and pressure (right) fields for the 43" mode
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Appendix E

Actuators’ scheme

One-microphone actuator (units in mm)
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T'wo-microphone actuator (units in mm)

\______-'-'m._:j;

_ o.mE
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