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Abstract

While in principle nonlinear gradient-based full-waveform inversion (FWI) is capable of han-

dling all aspects of wave propagation contained in the data, including full nonlinearity, in practice,

it is limited due to its notorious sensitivity to the choice of the starting model. To help addressing

model-convergence issues in FWI, we study a decomposition based on the scattering theory that

allows to break the acoustic-wavefield sensitivity kernels with respect to model parameters into

background and singular parts. The estimates for both background perturbation and/or singular-

part perturbation obtained with the subkernels’ adjoints are components of the estimate obtained

with the total kernel’s adjoint. Our numerical experiments shows the feasibility of our main claim:

the decomposition into subkernels allows to backproject the scattered-wavefield residuals only so

as to obtain reasonable background-model perturbation estimates. In an experiment with restricted

acquisition geometry (reflection data, narrow offset), the multiple-scattering subkernels take ad-

vantage of medium self-illumination provided by the scattered wavefields. This self- illumination

provides better estimates, with longer wavelengh content.

Key words: Inverse theory; Full waveform inversion; Wave scattering and diffraction; Computa-

tional seismology; Theoretical seismology; Wave propagation
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Resumo

A inversão de onda completa (FWI, do inglês “full waveform inversion”) nãolinear baseada

em gradientes (métodos de descida) é, a princípio, capaz de levar em conta todos os aspectos da

propagação de onda contida nos dados sísmicos. Porém, FWI baseada em gradientes é limitada

pela sua bem conhecida sensibilidade no que diz respeito à escolha do modelo inicial. Com o

intuito de melhor entender algumas questões relacionadas à convergência do modelo na FWI, nós

estudamos uma decomposição baseada na teoria de espalhamento que permite dividir os núcleos

de sensibilidade dos campos de onda acústica em função dos parâmetros do modelo em duas

partes: uma relativa ao componente de fundo, outra relativa à componente singular do modelo.

Estimativas para a perturbação de fundo, bem como para a perturbação da parte singular do modelo

obtidas com os adjuntos destes subnúcleos são componentes da estimativa obtida com o adjunto do

núcleo total de sensibilidade. Os experimentos numéricos suportam a tese de que a decomposição

em subnúcleos permite que se retroprojete somente os resíduos do campo de onda espalhado de

modo a obter estimativas razoáveis da perturbação de fundo do modelo. Em um experimento

com geometria de aquisição restrita (dados de reflexão com afastamento curto), os subnúcleos

baseados em espalhamento múltiplo se aproveitam da autoiluminação do meio devido às ondas

multiplamente espalhadas. A autoiluminação fornece estimativas melhores com conteúdo espectral

mais rico nas baixas frequências.

Palavras-chave: Problemas inversos; Inversão de onda completa; espalhamento de onda e difração;

Sísmica computacional; Teoria sísmica; Propagação de onda
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1. Introduction

For many years, the most common imaging techniques were based on ray theory, such as

Kirchhoff migration. Lately, as the industry has been facing geologically more complex areas,

migration methods based on wavefield extrapolation have been usually applied. This is because

in such areas the ray theory is not capable of describing the complexity of wavefield propagation.

The development started with one-way wave-equation migration and culminated more recently

with two-way wave-equation techniques. All this became possible because of new acquisition

techniques which give better illumination of the subsurface, and more powerful computational

resources.

Those new imaging methods require more and more refined earth models. Even though migra-

tion has advanced quickly with the raise of available computer power, constructing these models

is still mostly ray- and traveltime-based. However, in recent years, one model-building tool, based

on the two-way wave- equation, has been extensively studied and developed for Earth modelling:

full waveform inversion (FWI).

The basic idea behind FWI is optimisation: minimisation of an objective function1 that mea-

sures, somehow, the difference between the observed seismic data and synthetic data, numerically

modelled using an estimated earth model. In the last decades, many studies on FWI were carried

out. Something that was impractical for industrial applications some years ago is now becoming a

established element of the seismic processing flow in the exploration and monitoring stages of the

oil and gas production. For an overview and the state of the art, the reader is referred to the works

of Virieux and Operto (2009), Plessix (2012) and Asnaashari et al. (2013).

A series of papers published in the eighties (Lailly, 1983; Tarantola, 1984a, 1986) introduced

the gradient-based FWI method in applied geophysics. In essence, these methods rely on the

fact that a model can be updated iteratively with the help of so-called sensitivity kernels (Tromp

et al., 2005). The sensitivity kernels are the volumetric density of misfit function derivatives with

1Also known as misfit or objective functional.
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respect to the model parameters. These sensitivity kernels are related to the Fréchet derivatives of

the seismogram with respect to the model parameters. Under the framework of the adjoint state-

method (Tromp et al., 2005; Plessix, 2006; Fichtner and Trampert, 2011), the construction of these

sensitivity kernels involves the interaction between the forward wavefield from the survey sources

with the backward-modelled adjoint residuals.

Before outlining the decomposition proposed here and the reasons behind it we make a brief

overview on the main topics on FWI related to the subjects discussed in the coming chapters.

1.1 FWI overview

Two general approaches can be used when dealing with nonlinear inversion methods: global

optimisation or local iterative descent methods.

Global optimisation techniques, such as Monte Carlo, although able to avoid local-minima,

have limited application in solving seismic inversion problems due to the huge amount of parame-

ters to be determined (Gauthier et al., 1986). As a matter of fact, even with the great improvement

on the computational capabilities of the Oil and Gas Industry in the last thirty years, we are far

from seeing this methods applied successfully.

Lailly (1983) and Tarantola (1984a) presented a nonlinear gradient- based local optimisation

which is considered the cornerstone of the least- squares based inversion in the geophysics com-

munity. Besides the techniques itself, these works are important because they showed the relation

of gradient- based methods with the well known two-way wave equation reverse-time migration

(RTM). The main goal of nonlinear inversion is to deal with not only primary reflections but with

the full information content in the seismogram such as diving waves, supercritical reflections, re-

fractions and multiple-scattered waves.

While in principle capable of handling all aspects of wave propagation that influence the data,

including full nonlinearity, in practice nonlinear gradient-based FWI is limited by its notorious

sensitivity to the choice of the starting model. This is so because for short-offset acquisition of re-

flection data, the seismic wavefield is rather insensitive to high/intermediate wavelengths (Gauthier

et al., 1986; Mora, 1987) which prevents the gradient-based local optimisation from circumventing

the existence of innumerous local minima in the usual highly non-convex objective function. Thus,

the initial model, usually assumed to be smooth, must, at least, kinematically explain the obeserved

data.
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1.1.1 Forward Modelling

Modelling plays a key role in FWI. The main steps of gradient-based inversion rely critically

in the ability of the modelling scheme to predict all non-linear events taking place in a geologically

complex area. Two opposing forces come into play when choice must be made: accuracy and

computational cost.

Three main questions must be answered before choosing the modeller: which physics theory

behind wave equation will be used to approximate the real wave propagation phenomena in the

subsurface, which numerical discretisation method better fits the problem, and in which domain

we will implement the method. All three aspects are interconnected.

As FWI intent to use the full seismic information recorded, the physical theory describing the

modelled wavefield is very important. If, for instance, one chooses acoustic wave equation to de-

scribe the wavefield propagation, information about the subsurface carried by shear and converted

waves would not be put to use, not helping or even leading the inversion process to a wrong solu-

tion. On the other hand, the higher the complexity of the physical theory describing the wavefield

propagation (no doubt the visco-elastic model would do a better job than the acoustic approxima-

tion), the higher the number of variables. In Section 1.1.5, we comment on the challenges that

multiparameter inversion brings up. Nowadays, 2D elastic and 3D acoustic inversion are the most

common approach.

Among the main discretisation methods, finite-difference is, no doubt, the most popular one

although other more sophisticated methods such as finite-element or finite-volume may be used.

Marfurt (1984) quantitatively compares finite- difference and finite-element solutions of the scalar

and elastic hyperbolic wave equations for the most popular implicit and explicit finite-difference

and finite-element methods. Infrastructural criteria (such as computational cost, accuracy, avail-

able machine and memory, flexibility) and model-related criteria (Poisson’s ratio, medium and/or

mesh inhomogeneity, structural complex boundary conditions) must be taken into account when

choosing the discretisation to be used.

Time domain versus frequency domain

Along with the choice of discretisation method, we also must define its domain. Although

time-domain and frequency-domain methods are analytically equivalent – to some extent the non-

specialist (or end user) need not be concerned in which domain the results are obtained (Pratt,

1999) – this choice depends on the size of the problem and on the available computational power.

3



Introduction

Both early theoretical developments and practical applications were done in time domain (Taran-

tola, 1984a; Gauthier et al., 1986; Mora, 1987). Pratt and Worthington (1990) first brought the

development of inversion in the frequency domain, and Pratt et al. (1996) showed one of the first

real data application of this approach.

The frequency-domain implementation has shown important advantages over time-domain ap-

proach:

• It introduces a natural multiscale approach by progressing from the lowest frequencies to the

higher ones which helps to mitigate the notorious non-linearity of the inverse problem (Pratt

et al., 1996; Bunks et al., 1995; Virieux and Operto, 2009).

• It allows to decimate the data by performing the inversion with a limited number of fre-

quency components of wide-aperture/wide-azimuth surveys which helps to manage and pro-

cess smaller volumes of data with large number of sources (Pratt et al., 1996; Sirgue and

Pratt, 2004)

Beside these advantages which are independent of the discretisation method used, we can iden-

tify other advantages when finite-difference methods are applied in the frequency domain. Ac-

cording to Plessix (2007), in 2D problems the linear system resulting from the frequency-domain

scheme can be solved with a direct solver, and the frequency-domain multishot migration algo-

rithm is about one order of magnitude faster than its time-domain counterpart, because the LU

decomposition of the matrix of the system has to be performed only once per frequency.

On the other hand, with realistic 3D problems, the linear system from a frequency-domain

implementation may be difficult to solve with a direct solver, because of the high memory require-

ments. Plessix (2007) discuss many possible alternative approaches to solve large 3D problems in

the frequency domain and evaluate the result given by Helmholtz preconditioned iterative solver.

As a matter of fact, the 3D problems brought the time-domain implementations back into use.

The time-domain method is expensive: the forward and time- reversed wavefield propagation may

have high computational cost depending on the time interval needed to avoid dispersion and alias-

ing. However, as pointed out by Vigh et al. (2009), the fact that cluster computers are getting

more and more efficient for most processing steps, including time-domain RTM, indicates that it

is feaseble to perform time-domain waveform inversion of large 3D data sets on current hardware.

Preconditioning is another issue that influences the choice of the inversion domain. According

to the domain, specific methodologies can be applied to precondition either the data residuals or the
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gradient, so that they improve the convergence and/or the linearity of the inverse problem (Shipp

and Singh, 2002).

The main advantages frequency-domain implementations naturally introduce (multiscale ap-

proach and frequency decimation) can be achieved by time-domain approaches, if one, for instance,

extracts the monochromatic solution by discrete Fourier transform over the time steps (Sirgue et al.,

2008). This permits the data to be decimated by choosing an arbitrary number of frequencies, al-

lowing the multiscale approach to be applied.

1.1.2 Multiscale approach

It is well known that the main theoretical difficulty for nonlinear seismic inversion is the pres-

ence of numerous local minima in the objective function (Gauthier et al., 1986; Mora, 1987; Bunks

et al., 1995; Pratt et al., 1996; Clement et al., 2001; Virieux and Operto, 2009; Asnaashari et al.,

2013). These local minima prevent iterative techniques from finding the global minimum unless

the initial model for the inverted parameter is already near enough from the global solution.

Among the various approaches developed to circumvent this problem, the proposal by Bunks

et al. (1995) of decomposing the seismic inversion problem by scale proved itself very effective.

It is based on the observation that the complexity of the objective function is directly related to

the dominant length scale of the subsurface model. In other words, at smooth models where

long wavelengths are dominant there are fewer local minima and those that remain are further

apart from each other. Rough models with dominant short wavelengths generate rough objective

functions with numerous local minima (see Figure 1.1). Using iterative inversion methods, one

must start inverting with the long-period data used to constrain the long wavelength component of

the model. The final model of this first step is used as initial model for the next round of iterations

performed with higher frequency data, so that shorter wavelength structures are included in the

model updates. This process may go on until the data with the highest frequency have been used

in the inversion process.

Note that performing waveform inversion in a multiscale manner, lower frequencies can pro-

vide several scalable options, such as changing the shots in conjunction with incrementing the bin

sizes in all directions (Vigh et al., 2009). Beside this, the forward modelling can benefit with the

change of scale which also helps in decreasing the computational cost in the first stages of the

inversion process.

There is one important thing to note: the success of the multi-scale approach is empirical,
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(a)

(b)

(c)

(d)

(e)

Figure 1.1: [Extracted fromBunks et al. (1995)] Heuristic illustration of the multigrid method
applied to a nonlinear problem. Frame (a) illustrates a 1-D objective function and frames (b)-(e)
illustrate the same objective function at ever increasing scale lengths. A gradient method applied
to the shortest scale succeeds in finding the local minimum closest to the starting point, whereas
the gradient method applied to the longest scale finds the global minimum (at that scale) regardless
of the starting point. A fining up procedure helps find the estimate of the position of the global
minimum for the fine scale problem.
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meaning that there is no guarantee that it works under different circumstances. In other words,

there is no theoretical proof that the transitions from one scale length to the other have the property

that the global solution at one scale is in the convex neighbourhood of the global minimum at the

next scale (Bunks et al., 1995; Fichtner, 2010).

1.1.3 Optimisation methods

As pointed out before, due to the huge size of the seismic inversion problems, the nonlinear

minimisation of the objective function must rely on gradient- based iterative methods also known

as descent methods. We do not intent to make a detailed review of all the known descent methods

but to give a brief overview of some of them. For further, deeper references the reader is referred

to Fichtner (2010) and Luemberger and Ye (2010).

General descent method

For this brief overview we are going to use the notation found in Fichtner (2010). Let us

consider a model m and as objective function χ(m) that must be minimised. The idea behind

iterative optimisation method is, starting from the best known initial model m0, to successively

update the current model mi to a new model mi+1 such that

mi+1 = mi + γihi with χ(mi+1) < χ(mi), (1.1)

where the particular choice of the descent direction, hi, and the step length, γi > 0 depends on the

minimisation scheme and are not arbitrary. The condition χ(mi+1) < χ(mi) in necessary but not

sufficient to garantee convergence. In this matter the choice of the step length iss crutial.

In the general case, the descent direction hi is given by

hi = −A · ∇mχ(mi), (1.2)

where A is a positive definite matrix whose choice depends on the descent method. Therefore, the

key point of any descent method is the evaluation of the gradient ∇mχ(m). The most efficient

way of doing it is using the Adjoint-state method (see Section 1.1.4).
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Figure 1.2: Line search with three trial step lengths and a second-order polynomial interpolation.
The parabola vertex defines the efficient step length.

Step length and line search

Besides the gradient evaluation, finding an optimal/efficient step length is also very important.

It is this choice that ensures the convergence process and the correctness regarding unit dimension-

ality.

The optimal value for γi in a convex minimisation problem is given by

γi =
hi · ∇mχ(mi)

hi ·Hχ(mi) · hi

, (1.3)

where Hχ(mi) is the Hessian of the objective function χ.

An alternative way to evaluate the step length is usually used to avoid the expensive task of

evaluating the Hessian: the line search. The idea behind this procedure is simple (see Figure 1.2):

once given the current model mi and the descent direction hi at the i-th iteration, we must evaluate

the objective function χ(mi + γ
(k)
i hi) for some trial step lengths, γ(k)

i (k = 1, ..., n), and use this

points to interpolate a polynomial of degree n − 1 as an approximation of χ(mi + γihi). The

minimum of this polynomial defines the efficient step length γeff
i .

8



1.1 FWI overview

Some well-established descent methods

As said before, the main difference between descent methods is how the descent direction hi

is defined/evaluated.

Steepest descent. In the steepest descent method we define hi = −∇mχ(mi), i.e, the steepest

descent direction is in the opposite direction of the gradient of the objective function. Or, put in

another way, one must define the matrix A as the identity. The step length is defined through a line

search.

Newton’s method. In this method, both first- and second-derivative information are used to de-

fine the descent direction what significantly improving the convergence speed given that the initial

model is near enough of the (supposedly) global minimum. The descent direction is determined

by the solution of the linear system

Hχ(mi) · hi = −∇mχ(mi), (1.4)

where the Hessian Hχ(mi) brings the objective function second- derivative information. Note that

this is equivalent to choosing the matrix A from eq. (1.2) as

A = H
−1
χ (mi). (1.5)

The model update is, then, given by mi+1 = mi + hi (γi = 1).

Regularised Newton’s method. Usually, the Hessian is nearly singular what requires some kind

of regularisation for its inversion. Hence, the model update in regularised Newton’s method is

done by:

mi+1 = mi − [Hχ(mi) + βI]−1 · ∇mχ(mi), (1.6)

where the parameter β can be found through a line search. Note that for big values of β this

methods tends to behave as the steepest descent, while, for small values of β the Hessian tends to

be dominant which makes the method closer to Newton’s.

Gauss–Newton method. Variations on the Newton’s method are commonly used to avoid the

expensive cost of evaluating the full Hessian when dealing with non-linear least-square problems.
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One of these is the Gauss–Newton method which uses the approximate Hessian. For instance, as

seen in Fichtner and Trampert (2011), for the least-square objective function

χ(d(m)) =
1

2
(d(m)− d0)

T (d(m)− d0), (1.7)

with synthetic data d and observed data d0, the Hessian matrix is given by

Hχ = G
T ·G+ (d(m)− d0)

T · ∇mG, (1.8)

here G = ∇md is the jacobian matrix of d. In the Gauss-Newton method we use the inverse of

the approximate Hessian H̃χ = GT ·G to update the model in this method:

mi+1 = mi − H̃
−1
χ · ∇mχ(mi), (1.9)

Pratt et al. (1998) presents a very instructive comparison between three gradient- based op-

timisations techniques presented here: steepest descent, Gauss-Newton and Newton’s methods.

He developed the formulation of these methods in the discretised frequency-space domain using a

finite-difference approach.

Gauss–Newton method variations: Levenberg and Levenberg–Marquardt methods. We

can use regularised variations of the Gauss–Newton method. The Levenberg method uses the

identity matrix for regularisation:

mi+1 = mi −
[
H̃χ(mi) + βI

]−1

· ∇mχ(mi). (1.10)

In the Levenberg–Marquardt method the identity matrix is replaced by the diagonal of the approx-

imate Hessian:

mi+1 = mi −
[
H̃χ(mi) + β diagH̃χ(mi)

]−1

· ∇mχ(mi). (1.11)

Conjugate-gradient methods. The steepest descent method may suffer from slow convergence.

The successive descent directions may not be linear independent (or even parallel indeed) causing

the minimisation path to “zig-zag”, increasing the number of iterations in the minimisation process

to reach a point close enough to the minimum (see Figure 1.3). On the other hand, Newton’s
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1.1 FWI overview

Figure 1.3: Convergence in the steepest descent method for a quadratic objective function.

method can accelerate the convergence if the initial model is close enough to the minimal solution

but at the high expense of evaluating and storing the Hessian.

The conjugate-gradient (C-G) methods can be considered as being somewhat intermediate

between the steepest descent method and the Newton’s method. The C-G method was originally

designed and analysed for the quadratic problem where the Hessian is a constant positive definite

matrix, but extensions and approximations have been made to deal with more general nonlinear

problems (Hestenes and Stielfel, 1952; Fletcher and Reeves, 1964; Polak and Ribiere, 1969).

The idea behind this method is to build descent directions that satisfy the orthogonality condi-

tions below:

hi · ∇mχ(mj) = 0, (1.12)

hi ·Hχ · hj = 0, (1.13)

for any 0 ≤ i < j ≤ n, where n is the dimension of the model space. Eq. (1.12) states that the

gradient of the objective function at the current model has to be orthogonal to all previous descent

directions. Eq. (1.13) states that the current descent direction must be Hχ-orthogonal to all the

previous descent directions. In other words, the directions hi and hj are conjugate with respect to

Hχ. These relations guarantee that, in a pure quadratic problem, the solution would be found in,

at most, n iterations.

The C-G method is based on the update of the model according to eq. (1.1)

mi+1 = mi + γihi, (1.14)
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where the first descent direction is given by the steepest one, h0 = −∇mχ(m0). The step length

at each iteration is given by eq. (1.3) in the case of quadratic problem where the Hessian is known.

The key element, though, is how the next descent direction is evaluated. The next direction

hi+1 depends on the current direction hi and is given by

hi+1 = −∇mχ(mi+1) + βihi, (1.15)

where the parameter βi is given by

βi =
‖∇mχ(mi+1)‖

2
2

‖∇mχ(mi)‖
2
2

. (1.16)

In the more general case of a nonlinear objective function, the orthogonality relations stated in

eqs. (1.12) and (1.13) do not hold and convergence may be achieved in more than n iterations. The

process above can be applied in the general case with a line search to evaluate the step length γi

since the Hessian is not easily available. In this case, it is commonly referred as the Fletcher-Reeves

method (Fletcher and Reeves, 1964). One well-known variation of the method is the Polak-Ribiére

method (Polak and Ribiere, 1969) where βi is defined as

βi =
∇mχ(mi+1) · [∇mχ(mi+1)−∇mχ(mi)]

∇mχ(mi) · ∇mχ(mi)
. (1.17)

Another one is the Hestenes-Stiefel method (Hestenes and Stielfel, 1952) where βi is given by

βi =
∇mχ(mi+1) · [∇mχ(mi+1)−∇mχ(mi)]

hi · [∇mχ(mi+1)−∇mχ(mi)]
. (1.18)

1.1.4 Adjoint-state methods

As seen above, all the descent optimisations techniques require the computation of the gradi-

ent of the objective function with respect to the model parameters in order to define the descent

direction at each iteration.

Usually, the objective function depends on the model parameters via the state variables (in case

of wave propagation, the wavefield u), i.e, χ(m) = χ(u(m)). It means that, due to the chain

rule, the gradient of the objective function depends on the gradient of the wavefield with respect to

the model parameter, ∇mu. The latter gradient is known as the Fréchet derivatives, Jacobian or

12



1.1 FWI overview

Sensitivity matrix. The computation of this gradient may be very expensive.

The adjoint-state method is a mathematical tool that allows us to compute the gradient of an

objective functional with respect to the model parameters very efficiently without the need of ex-

plicitly building the sensitivity matrix (Virieux and Operto, 2009; Fichtner, 2010). Its formulation

can be developed with the help of the perturbation theory (Fichtner and Trampert, 2011) or with

the Lagrange multiplier method for constrained optimisation (Bunks et al., 1995). Plessix (2006)

presents a very good review of the adjoint state method and the development of its formulations.

It is not the scope of this introduction to develop the formalism of the adjoint state method.

But to clarify the relation of this method with the our proposed decomposition we summarise one

example of the application of time domain adjoint-state method for a constant-density acoustic

problem found in Plessix (2006). In this case the wave operator is L = 1
c2

∂2

∂t2
− ∇2. With initial

boundary conditions, the pressure wavefield p due to the source f satisfies:

p(x, 0) = 0, (1.19)
∂p(x, 0)

∂t
= 0, (1.20)

L[p(x, t)] = f(x, t). (1.21)

The objective function is defined

χ(m) =
1

2

∑

s,r

∫ T

0

(
Ss,rp(x, t)− pobs

s,r (x, t)
)2

dt, (1.22)

where T is the observed time, and Ss,r is the restriction operator onto the reciver position. The

model parameter is the squared slowness, m = 1
c2

.

The adjoint-state system reads

q(x, 0) = 0, (1.23)
∂q(x, 0)

∂t
= 0, (1.24)

L[q(x, t)] =
∑

r

ST
s,r

(
Ss,rp(x, T − t)− pobs

s,r (x, T − t)
)
. (1.25)

q satisfies the same wave equation that p, but with a different source term. In this case L is self-
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adjoint. Ss,rp(x, T − t)− pobs
s,r (x, T − t) is the residual in reverse time. The gradient of χ reads:

∂χ

∂m
(x) = −

∑

s

∫ T

0

q(x, T − t)
∂2p(x, t)

∂t2
dt. (1.26)

Generally speaking, the evaluation of the objective function gradient for waveform inversion

with the aid of the adjoint state method may be summarised in three steps (Tromp et al., 2005):

• Modelling the direct (regular) wavefield from the source with the current model.

• Time-reversed modelling (backpropagation) of the residual between observed and modelled

wavefield with the current model. The resulting wavefield is known as adjoint wavefield.

• Cross-correlate the appropriate temporal/spatial derivatives of the regular and adjoint wave-

fields.

Note that this procedure is very similar to that of RTM. The main difference is that the recorded

wavefield is backpropagated in RTM instead of the wavefield residuals. Lailly (1983) was the first

one to draw this connection between wave-equation migration and waveform inversion.

1.1.5 Challenges

Great theoretical and practical improvements have been achieved, since the first papers on FWI

in the 80’s. But many challenges still remain. If we could summarise all the challenges in just one

sentence it would be: "Perform a 3D elastic FWI in realistic data set from a not so accurate initial

model with reasonable time and computational cost."

3D

The main limitation regarding the 3D FWI is the the computational cost in processing and/or

memory requirements of the forward modelling.

Some successful studies with 3D cases were made both with time-domain finite- difference

methods (Sirgue et al., 2008) or frequency-domain finite-difference direct solvers (Ben-Hadj-Ali

et al., 2008) for synthetic data. Differently from the 2D case where frequency-domain solvers

proved to be the best option due to the smaller processing requirements, the extensive memory ne

of eds of the frequency-domain finite-difference modellers push towards the time-domain approach
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1.1 FWI overview

for 3D problems (Sirgue et al., 2008). Efforts to circumvent the high memory costs are being made

with the use of frequency-domain iterative solvers (Plessix, 2007, 2009).

Nevertheless, nowadays most of the 3D FWI implementations in industry are done in the time-

domain, at least when it comes to modelling, seizing all the expertise and infrastructure (software

and hardware) already avilable for RTM.

Monoparameter versus multiparameter FWI

Due to the current computational limitations, only monoparameter acoustic FWI is feasible

when dealing with real-sized 3D problems (Plessix, 2012).

Such underlying physical assumption definitely restrain all the potential high resolution that

FWI can offer. According to Barnes and Charara (2009), acoustic full-waveform inversion is

applicable only when the S-wave velocity and the density fields are smooth enough to reduce

the amplitude-versus-offset (AVO) effect, or when the near-offset seismograms are inverted with

a good starting model. This exclude the most realistic cases, specially marine reflection sur-

veys where wide-aperture seismic data is a common place and significant AVO and azimuthal

anisotropic effects should be observed in the data (Virieux and Operto, 2009). As mentioned be-

fore, the seismic modelling used in the FWI algorithm should, in principle, honour all the physics

of wave propagation because.

When dealing with more than one parameter class, the ill-posedness of the inversion problem

increases either because more degrees of freedom come into play, or because the sensitivity of the

inversion with respect to each parameter may vary, or still because these parameters can be more

or less coupled (Virieux and Operto, 2009). Studying the radiation pattern of each parameter class

as a function of the aperture angle (Wu and Aki, 1985; Tarantola, 1986) can help understanding the

parameters coupling in order to devise the best set of parameter class to be used in the inversion.

This will also help to design hierarchical strategies to reduce the ill-posedness of FWI.

Nevertheless, multiparameter FWI with extensions to elasticity, attenuation and anisotropy re-

mains challenging (Plessix, 2012; Virieux et al., 2009). Most of the successful examples of elastic

FWI found in the literature are 2D cases (see, e.g., Crase et al., 1990; Shipp and Singh, 2002; Sears

et al., 2008; Brossier and Operto, 2009). Either in acoustic or elastic assumption, density proved

itself a parameter difficult to reconstruct. Some works involving density inversion are found in

literature (Choi et al., 2008; Bae et al., 2012; Jeong et al., 2012). Reconstruction of anisotropic

parameters by FWI is probably one of the most undeveloped and challenging fields of investigation
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(Virieux and Operto, 2009). Some studies on this subjects were published very recently (Warner

et al., 2013; Kamath and Tsvankin, 2013).

New objective functions

Classically, the objective function in FWI is based on the least-squared norm. This norm as-

sumes that the noise distribution is Gaussian (Tarantola, 1987) which may not always be true.

Crase et al. (1990) was the first one to drive a study on using more robust minimisation criteria in

the inversion process to handle many types of noise. After that many others tried to use alterna-

tive minimisation criteria such as the Huber norm (Guitton and Symes, 2003; Ha et al., 2009) and

Logarithmic objective functions (Shin and Min, 2006; Shin et al., 2007; Bednar et al., 2007; Pyun

et al., 2007).

Initial model construction

The ultimate goal of FWI would be to obtain a high definition final model from a poorly de-

tailed initial model. Unfortunately, even with all the development in acquisition technology which

provide denser data, especially at low frequencies, we are far from that. In this way, an approach

that simultaneously inverts for the transmission, reflection and refraction data in complex terrains

without a good initial model is still under research (Plessix, 2012).

It implies that before performing the full waveform inversion itself, we must build a initial

model as accurate as possible. Nowadays, the most usual approaches to build a starting model

are reflection tomography (Woodward et al., 2008), migration-based velocity analysis (Sava and

Biondi, 2004; Symes, 2008), first-arrival traveltime tomography (Hole, 1992), stereotomography

(Lambaré, 2008), and Laplace- or Laplace-Fourier-domain inversion (Shin and Cha, 2008; Shin

and Ha, 2008; Shin and Ho Cha, 2009).

1.2 Kernel decomposition

To help addressing model convergence issues in FWI, we analyse the role of nonlinearity in the

sensitivity kernels. We demonstrate that the above-mentioned insensitivity to high/intermediate

wavelengths (Gauthier et al., 1986; Mora, 1987) is partly caused by the conventional choice of

smooth initial models, considering all singular parts of the model as unknown (see Figure 1.4).

16



1.2 Kernel decomposition

Distance (m)

D
e
p
th

 (
m

)

−1000 −500 0 500 1000

0

500

1000

1500

2000

m
/s

1500

2000

2500

3000

Distance (m)

D
e
p
th

 (
m

)

−1000 −500 0 500 1000

0

500

1000

1500

2000

m
/s

1500

2000

2500

3000

Distance (m)

D
e
p
th

 (
m

)

−1000 −500 0 500 1000

0

500

1000

1500

2000

m
/s

−200

−100

0

100

200

Figure 1.4: Conventionally, the exact model (top) is thought of as being decomposed into a smooth
background (bottom left), supposedly known, and a singular scattering part (bottom right), to be
determined under the assumption that it is small against the background.
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To do so, we use a scattering-based approach (Vasconcelos et al., 2009). Assuming an acoustic

medium, we reparameterise the subsurface model in terms of background and singular components

for both bulk modulus and density. This leads to a decomposition of the data into a background

wavefield that is sensitive only to the background model, and a singular wavefield sensitive to both

background and singular model components. Both the background and singular parts of the model

are then subject to perturbations that cause wavefield residuals (see Figure 1.5). This decompo-

sition is motivated by the fact that conventional initial models, for example obtained from tomo-

graphic or migration-velocity-analysis methods, are only imperfect estimates of the true smooth

background, but that initial estimates for the singular part are available, for example from migrated

images or a priori geologic information. Focusing on the model backprojections from the singular

data only, we provide expressions for the Fréchet-derivative sensitivity kernels for all four model

parameters (perturbations of both smooth and singular parts of compressibility and density).

We demonstrate that the forward decomposition is successful in bringing out subkernels that

unravel different levels of non-linearity with respect to data and model. This, in turn, can be trans-

lated into different levels of interaction between non-, single-, and multiple-scattered information

that otherwise would be hidden in the undecomposed sensitivity kernels. Moreover, we predict

that part of the answer to the problem of lacking low-frequency information on the model should

lie in utilising scattered wavefields, because these travel through the medium long enough to carry

this information (Snieder et al., 2002). Moreover, we show numerical results of using those sub-

kernels to backproject the scattered residual only into model space and obtain model perturbation

estimates.

We envision broad potential applications for the scattering-based FWI kernel decomposition

we propose in this work. These include devising multiscale FWI algorithms, and improving ve-

locity model building in the image domain using extended image (EI) gathers (Rickett and Sava,

2002; Sava and Fomel, 2003; Symes, 2008; Sava and Vasconcelos, 2009, 2011). As shown by

Vasconcelos et al. (2009, 2010), there is a connection between extended image conditions and

the interferometry formalism: the Extended Images behave like locally scattered wavefields in the

image domain.

Important to say that we do not present nor perform an inversion in this thesis. In a fully

iterative implementation, the gradient of the objective function is evaluated, a descent direction is

defined, a step length is computed that minimises the objective function when the parameters are

varied along the descent direction and, in this way a new model estimate is generated and used in

the next iteration. As done in Pratt and Worthington (1990), we restrict the calculations to a single
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Figure 1.5: Here, the exact model (top) is thought of as being decomposed into a slightly wrong
estimate of the smooth background (centre left), and a slightly wrong singular scattering part (bot-
tom left), both supposed to be known, plus perturbations to the background (centre right) and the
singular part (bottom right), to be determined under the assumption that they are small against their
known estimates.
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iteration only, evaluating and decomposing the sensitivity kernels which, as mentioned before, has

connections with the objective function gradient.

The thesis is organised as follows. In Chapter 2 we present the mathematical development of

the forward decomposition and discuss its physical meaning. We also present its adjoint formu-

lation in order to obtain expressions of the decomposed estimates of model perturbations. When

discussing the role of the scattering theory in our decomposition we developed a N -fold gener-

alised decomposition of the complete wave operator in N − 1 scattering potentials.

In Chapter 3, we perform numerical experiments to validate both the forward and the backpro-

jection decompositions. Using different models and acquisition geometries, we gain further insight

in the physical interpretation of the previous chapter which helped gaining insight in the possible

application of the proposed decomposition.

In Chapter 4 we present an application of the decomposed subkernels in a time-lapse problem.

In this examples we show how the enhanced illumination due to the backscattered waves can help

delineating the time-lapse change. Chapter 5 summarises our conclusions and presents our final

remarks.

Appendix A brings some mathematical definitions used in this thesis. Appendix ?? presents

the derivation of the secondary sources for the singular-wavefield residuals, a key concept to the

decompositions of the Fréchet derivatives kernels. In Appendix C, we developed the mathematical

expressions for components of the bulk modulus and density perturbation estimates. Appendix D

shows the result of the superposition of two related single-scattering subkernels and discuss its

physical meaning. Finally, in Appendix B, we present the relation of the N -fold generalised de-

composition in scattering theory with the one proposed here.
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2. Kernel Decomposition

In this chapter, we present the mathematical derivation and physical interpretation of the pro-

posed decomposition. Rather than a complex mathematical reinterpretation, our proposition re-

quires from the reader an exercise of change of perspective when using the scattering theory in

the inversion process. In an effort of making things clearer we avoided to use known terms with

meanings different from the established one. Therefore, unusual but meaningful terms are used

when referring to concepts and phenomena similar to well established ones (see Page xxix).

This chapter is organised as follows. In Section 2.1, we present the forward decomposition.

To do so we first briefly review the conventional formulation of Tarantola (1984a) and relate this

to the classical scattering theory (Section 2.1.1). Next, we generalise the conventional model and

wavefield decomposition to an N -fold decomposition (Section ??), before entering the topic of our

proposed sensitivity-kernel decomposition with two perturbed parts (Section 2.1.2).

Section 2.2 is devoted to the physical interpretation and discussion of the result from the pre-

vious section. We discuss the new insights our approach allows (Section 2.2.1), in particular re-

garding the role of multiple internal reflections/scattering in the decomposition (Section 2.2.2),

and we identify the individual contributions of background and singular perturbations to the total

singular-wavefield residual (Section 2.2.3).

In Section 2.3, we use the adjoint of the subkernels derived in the previous section to obtain

expressions for the model-perturbation estimates.

2.1 Full-waveform inversion and sensitivity kernels

Sensitivity kernels are the core of the iterative gradient-based FWI schemes. They are used to

backproject the difference between the observed and modeled data (residuals) into the model space

in order to obtain parameter estimates used to iteratively update from a starting model.
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2.1.1 Conventional formulation

In the conventional formulation of FWI, the residual is considered as a wavefield scattered by

unknown perturbations in the known reference model. If these perturbations are considered small,

linearisation is possible. In that case, one can find an expression for the Fréchet derivatives of the

wavefield with respect to the model parameters which leads to the sensitivity kernel.

Wave equation

The acoustic wave equation describes the propagation of a pressure wavefield throughout a

medium characterised by two model parameters, the bulk modulus, and density. For a point source

and given the initial conditions, the acoustic wavefield p is uniquely defined by

L [p(x, t;xs)] = δ(x− xs)S(t) , (2.1)

where the right-hand side is the source term, with xs denoting the source position and S(t) describ-

ing the source wavelet. On the left-hand side of eq. (2.1), the acoustic wave-equation differential

operator L, also simply referred to as the wave operator, is given by

L =
1

K(x)

∂2

∂t2
−∇ ·

(
1

ρ(x)
∇

)
. (2.2)

Here the bulk modulus K and the density ρ are the model parameters that constitute the model

parameter vector m. In most parts of the theoretical description we will use the closed form of

eq. (2.1). In this way, the general considerations apply in the same way to any other form of the

wave equation. For specific examples and the numerical tests, we will use the explicit form of the

acoustic wave equation.

The solution of eq. (2.1) constitutes a non-linear relation with respect to the model parameters

that can be represented as

p = f(m), (2.3)

where f denotes the functional relating the wavefield p and the model vector m. Ideally, f depends

on the model parameters only, but in practice, this functional also depends on the method used to

solve the forward problem.
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2.1 Full-waveform inversion and sensitivity kernels

Scattering theory: medium and wavefield decomposition

In the classical scattering theory (Rodberg and Thaler, 1967; Newton, 1982; Bleistein et al.,

2001; Stolt and Weglein, 2012), the total wavefield p propagating in a medium with bulk modulus

K and density ρ is interpreted as being composed of two components: a reference wavefield, p0,

and a scattered wavefield, ps, such that p = p0 + ps. The reference wavefield p0 is generated by

the original source δ(x− xs)S(t), but propagates in a known (usually assumed smooth) reference

medium, described by bulk modulus K0 and density ρ0. The scattered wavefield ps is generated

when the reference wavefield runs into the unknown (scattering) part of the medium, described

by Ks and ρs, satisfying K = K0 + Ks and ρ = ρ0 + ρs. In most practical applications, it

is assumed that the known part of the medium contains only low-frequency information, i.e., no

sharp contrasts, reflectors and/or diffractors. On the other hand, the unknown part contains the

complete high-frequency information.

This medium and wavefield decomposition transforms equation (2.1) into the following set of

differential equations,

L0 [p0(x, t;xs)] = δ(x− xs)S(t), (2.4)

L [ps(x, t;xs)] = −V [p0(x, t;xs)] , (2.5)

where

L0 =
1

K0(x)

∂2

∂t2
−∇ ·

(
1

ρ0(x)
∇

)
(2.6)

is the wave operator in the reference medium, and where the difference between the wave operators

in the total and reference models,

V = L − L0 , (2.7)

is known as the scattering potential. For brevity, we will refer to L and L0 as the total and reference

wave operators, respectively. Note that the source term in eq. (2.4) is the original one of eq. (2.1),

while the one in eq. (2.5) describes secondary sources excited by the reference wavefield p0. These

secondary sources are non-zero only at points where Ks 6= 0 and/or ρs 6= 0.

Alternatively, eq. (2.5) can be expressed as

L0 [ps(x, t;xs)] = −V [p0(x, t;xs) + ps(x, t;xs)] , (2.8)

with the physical interpretation that the illuminated contrasts that act as the scattered-wavefield
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sources are illuminated by the total wavefield to generate a scattered wavefield propagating in the

reference medium.

Eq. (2.8) is nothing more than a wave-equation describing the propagation of the scattered

wavefield. The secondary sources can be forward propagated with the help of the Green’s function

of eq. (2.4), G0(x, t;xs). In other words, with the knowledge of this Green’s function in the

reference medium, the scattered wavefield is described by

ps(x, t;xs) = −

∫

V

d3x′ G0(x, t;x
′) ∗ V [p0(x

′, t;xs) + ps(x
′, t;xs)] . (2.9)

Here, the symbol ∗ denotes time-convolution, and V is a volume that contains all scatterers.

Eq. (2.9) is an exact integral equation for the scattered wavefield ps. The assumption ps ≪ p0

at all points x′ within volume V leads to the Born approximation, which replaces the total wave-

field in the integrand by the reference wavefield to approximate ps(x, t;xs) by its single-scattering

contributions.

As mentioned above, in most practical applications the reference model is taken to be a smooth

background model. In that case, all high-frequency contributions to the model make part of the

scattering potential. Note, however, that other interpretations of p0 and ps are also possible without

changing the theory above. By no means we are constrained to considering the reference and

scattering potential as the low and high spatial frequency components of the subsurface model.

Actually, this decomposition can be completely arbitrary: once the reference model is defined,

the scattering potential is set by its definition – eq. (2.7) – and the wavefields are determined by

eqs. (2.4) and (2.5). In the same way, there are no restrictions regarding the order of magnitude

of the scattering potential with respect to the reference model and, therefore, of the scattering

wavefield with respect to the reference wavefield. Obviously, this is not true when approximations

are done (see Section 2.1.2).

Linearisation and sensitivity kernel representation

The most common way to make practical use of the classical medium and wavefield decom-

position described in Section 2.1.1 is to assume that the scattering parts of the medium can be

considered small perturbations to the known reference model. Then, ps ≪ p0 and the problem can

be linearised (Tarantola, 1984a; Bleistein et al., 2001). To describe this in terms of eq. (2.3), let us

denote these small perturbations in the model parameters by δm, i.e., m = m0 + δm. Then, we
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2.1 Full-waveform inversion and sensitivity kernels

can write according to eq. (2.3)

p = p0 + ps = f(m0 + δm) = f(m0) +Φ δm+O(||δm2||) , (2.10)

where Φ are the first derivatives of the wavefield with respect to the model parameters, also known

as Fréchet derivatives. If only first-order terms in the model perturbations are taken into account,

the scattered wavefield is approximately equal to the linearised wavefield perturbation, i.e.,

ps ≈ δp = Φ δm. (2.11)

The expression for Φ is obtained with the help of secondary or adjoint sources. These can

be understood as pseudo-sources that give rise to the wavefield residual, seen as a wavefield itself.

The secondary sources are, of course, functions of the perturbations in the model parameters. Their

expressions are obtained when small model parameter perturbations Ks ≈ δK and ρs ≈ δρ are

introduced in the wave operator L of eq. (2.2). As shown by Tarantola (1984a), introducing these

perturbations and retaining only first-order contributions yields

L0 [δp(x, t;xs)] = −δL [p0(x, t;xs)] , (2.12)

where the secondary potential, δL, is defined for the acoustic wave equation as

δL = −

{
δK(x)

K2
0(x)

∂2

∂t2
−∇ ·

(
δρ(x)

ρ20(x)
∇

)}
. (2.13)

Eq. (2.12) is nothing else but the linearised version of eqs. (2.5) or (2.8), i.e., δL of eq. (2.13) is

the linearised version of operator V in eq. (2.7). Thus, in full analogy to eq. (2.9), the linearised

wavefield perturbation can be represented using the Green’s function of eq. (2.4) as

δp(xg, t;xs) = −

∫

V

d3x′ G0(xg, t;x
′) ∗ δL [p0(x

′, t;xs)] , (2.14)

In other words, this equation represents the Born approximation mentioned above.

The discretised version of eq. (2.14) can be written in the frequency domain as

δ̂p = Φ̂ δm =
[
U V

] [ δK

δρ

]
= U δK + V δρ = δ̂pK + δ̂pρ . (2.15)
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This equation defines the Fréchet derivatives of the total wavefield with respect to bulk modulus

and density, U and V , respectively. Superscripts K and ρ denote the bulk-modulus and density con-

tributions. Moreover, a hat indicates that the variable is in the frequency domain and the overline

characterises a discretised scalar quantity (see Appendix A for further details).

The components of eq. (2.14) express the wavefield perturbation at a receiver at xg due to bulk-

modulus and density perturbations. For example, in the time domain the bulk-modulus contribution

reads explicitly

δpK(xg, t;xs) =

∫

V

d3x′

[
1

K2
0(x

′)
G0(x

′, t;xg) ∗
∂2p0
∂t2

(x′, t;xs)

]
δK(x′), (2.16)

where we have used the reciprocity property of the Green’s function. In eq. (2.16), we can identify

the expression in brackets as the integral-operator kernel of the bulk-modulus Fréchet derivative,

i.e., the bulk-modulus sensitivity kernel for the source-receiver pair (xsxg), which is defined as

volumetric density of the corresponding Fréchet derivative (Fichtner and Trampert, 2011)1. Its

Fourier transform is U in eq. (2.15). A similar procedure provides the corresponding expression

for the Fréchet derivative and sensitivity kernel with respect to density.

As mentioned before, the separation of the model and wavefields is completely arbitrary.

Therefore, the linearised treatment remains valid as long as the reference model is sufficiently

close to the true model. This means, however, that validity problems may arise in practice because

of the choice of the reference model. In complex geological settings, the conventional choice of

a smooth version of the model as the reference model and all high-frequency contributions as the

scattering part may fail, because these model parts, and consequently also the resulting wavefields,

may be of the same order. In such a situation, the above linearisation is no longer valid. To proceed

with a linearised inversion, we must decompose the model in other ways.

2.1.2 Decomposed perturbation

Note that the approach described above – considering the the unknown part of the model as

the scattering potential and linearizing it to obtain an expression for the scattered wavefield which,

1Actually Fichtner and Trampert (2011) define the sensitivity kernel as the volumetric density of the Fréchet deriva-
tive of the objective function w.r.t. the model parameters. But if the L

2-norm of the residual is used as objective func-
tion its Fréchet derivative has direct relation with the Fréchet derivatives of the wavefield w.r.t the model parameters
(Pratt et al., 1998). Thus, we extended the concept of sensitivity kernel to the volumetric density of the wavefield
Fréchet derivative w.r.t the model parameters.

26



2.1 Full-waveform inversion and sensitivity kernels

thus, become the residual – is not the only way to use the scattering theory in FWI. An alternative

way is to further decompose the reference and perturbation parts themselves. For the linearised

inversion this is the simpler procedure because it allows to start from the linearised equations.

Therefore, we will develop this type of decomposition in more detail below.

Actually, such a redecomposition could be done in as many parts as convenient. In Appendix B,

Section B.1, we show that the decomposition described by eqs. (2.4) and (2.5) can be immediately

generalised, because eq. (2.4) is of the same type as eq. (2.1) and can be decomposed in the same

way into two equations and so on. Of these, we consider the most basic one, i.e., a decomposi-

tion into two components each (see Figure 2.1). The components of the reference model are, in

principle, completely arbitrary for we fully known the reference model. For convenience, from

an application point of view, we think of them as representing a (smooth) background model and

an estimate of the singular part of the model. The two components of the perturbation part are

the perturbations of these two model components. Correspondingly, we will have four wavefield

components, being the background and singular-part wavefields and their respective perturbations.

For the purpose of linearised inversions, we will consider the perturbations small in comparison to

the reference components.

In principle, it is also possible to decompose the model into several parts according to eq. (B.8)

and consider perturbations to all model and corresponding wavefield contributions. Such a gene-

ralisation to a perturbation of all terms to an N -fold decomposition is conceptually straightforward,

but the resulting mathematical treatment is too extensive and will be left as a possible thesis follow

up.

Moreover, the case of two medium and wavefield components is the most practical one. We of-

ten have access to initial approximations for both a background and a singular part of the medium,

e.g., a smooth migration velocity model and the reflector positions in the corresponding migrated

image. Then, the appropriate procedure is to invert for perturbations of these two model parts using

the corresponding wavefield perturbations.

Therefore, we assume from now on that the reference model can be decomposed into back-

ground and singular parts as

K0 = KB +KS and ρ0 = ρB + ρS, (2.17)

which are of the same order. Correspondingly, the reference wavefield will be separated into

background and singular parts, i.e., p0 = pB + pS , also assumed to be of the same order. For
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Kernel Decomposition

Figure 2.1: A sketch of the proposed decomposition. The components of the reference model
are thought to represent a (smooth) background model and an estimate of the singular part of the
model (m0 = mB +mS). The two components of the perturbation part are the perturbations of
these two model components (δm = δmB + δmS).

brevity, we will refer to the background and singular parts of the reference model and wavefield as

the background and singular models and wavefields, respectively.

With decomposition (2.17), we are ready to investigate how perturbations of both parts of the

reference model affect the set of equations in Section 2.1.1. In other words, we are interested in

answering the following questions: Once perturbations are introduced in the background and/or

in the singular model, what will be the resulting residuals δpB and δpS of the background and

singular wavefields, pB and pS? What are the sensitivity kernels for these wavefields? And what is

the expression for the individual secondary sources for each of these wavefields?

After a similar analysis as outlined above for the perturbation of the undecomposed wavefield,

we find that the background and singular wavefield residuals as a function of the new background

28



2.1 Full-waveform inversion and sensitivity kernels

and singular model perturbations can be written in discretised form in the frequency domain as

[
δ̂pB

δ̂pS

]
=

[
UB V B 0 0

U
B

S V
B

S U
S

S V
S

S

]



δKB

δρB

δKS

δρS



. (2.18)

Here, δKB, δρB, δKS and δρS are the discretised versions of the perturbations of the background

model parameters δKB and δρB, and the perturbations of the singular model parameters δKS and

δρS , which are defined in such a way that

δK = δKB + δKS and δρ = δρB + δρS. (2.19)

Moreover, UB and V B are the discretised sensitivity kernels of the background wavefield with

respect to the background bulk modulus and density, U
B

S and V
B

S are the discretised sensitivity

kernels of the singular wavefield with respect to the background bulk modulus and density, and U
S

S

and V
S

S are the discretised sensitivity kernels of the singular wavefield with respect to the singular

bulk modulus and density, respectively.

Sensitivity subkernels

Let us now demonstrate how we arrive at eq. (2.18). In full analogy to subsection 2.1.1, the

decomposition of eq. (2.4) with p0 = pB + pS leads to the system

LB [pB(x, t;xs)] = δ(x− xs)S(t), (2.20)

L0 [pS(x, t;xs)] = −V0 [pB(x, t;xs)] , (2.21)

where V0 = L0 − LB is the reference scattering potential. Note that the background wavefield pB

excites the secondary sources for the singular wavefield pS . With the help of the Green’s function

G0 in the reference medium, the singular wavefield is

pS(x, t;xs) = −

∫

V

d3x′ G0(x, t;x
′) ∗ V0 [pB(x

′, t;xs)] . (2.22)

Each line of eq. (2.18) is a consequence of introducing medium parameter perturbations in

eqs. (2.20) and (2.21). Perturbing the former equation will lead us to the secondary sources of the
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background-wavefield residual which, in the end, will give us the first line of eq. (2.18). Perturbing

the latter will lead us to the secondary sources of the singular-wavefield residual which will give

us the second line of the same equation.

Secondary sources for the background-wavefield residual

We note that eq. (2.20), which describes the most basic component of the wavefield in any

decomposition, has the same functional form of that for the total wavefield, eq. (2.1). Therefore,

small perturbation of KB and ρB leads to the situation discussed in Subsection 2.1.1 with subscripts

0 replaced by B; δp by δpB; δK by δKB; and δL by δLB in eqs. (2.12) and (2.13). As a conse-

quence, the equation for the corresponding linearised residual δpB of the background wavefield

has the form of eq. (2.12), i.e.,

LB [δpB(x, t;xs)] = −δLB [pB(x, t;xs)] , (2.23)

where LB denotes the acoustic wave operator in the background medium. Moreover, the back-

ground secondary potential, δLB, is defined as

δLB = −

{
δKB(x)

K2
B(x)

∂2

∂t2
−∇ ·

(
δρB(x)

ρ2B(x)
∇

)}
. (2.24)

The solution to equation (2.23) can again be found by convolution with a Green’s function.

With the help of the Green’s function GB in the background medium, we can evaluate the background-

wavefield residual as

δpB(x, t;xs) = −

∫

V

d3x′ GB(x, t;x
′) ∗ δLB [pB(x

′, t;xs)] , (2.25)

of which the first line of eq. (2.18) is the discrete representation in the frequency domain.

Using the Green’s function’s reciprocity, the explicit expression for the bulk-modulus part of

the sensitivity kernel in eq. (2.25) becomes

δpKB (xg, t;xs) =

∫

V

d3x′

[
1

K2
B(x

′)
GB(x

′, t;xg) ∗
∂2pB
∂t2

(x′, t;xs)

]
δKB(x

′), (2.26)

where the expression in brackets is the sensitivity kernel of the background wavefield with respect

to the background bulk modulus for the source-receiver pair (xs,xg). In other words, its Fourier
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2.1 Full-waveform inversion and sensitivity kernels

transform is represented by UB in eq. (2.18). Correspondingly, an expression for V B in eq. (2.18)

can be obtained from the density part of δLB in eq. (2.25).

Secondary sources for the singular-wavefield residual

The derivation of the second line in eq. (2.18) starts from the linearised eq. (2.12). To derive

the secondary sources of the singular-wavefield residual, we decompose the perturbed wavefield

as δp = δpB + δpS , where δpB is the background residual which satisfies equation (2.23). From

the linearised equation (2.12), taking into account the wavefield decomposition, i.e., p = pB + pS ,

we find

L0 [δpB + δpS] = −δL [pB + pS] , (2.27)

L0 [δpB] + L0 [δpS] = −δL [pB]− δL [pS] , (2.28)

L0 [δpS] = −δL [pB]− δL [pS]− L0 [δpB] . (2.29)

Using the identity L0 = V0 + LB yields

L0 [δpS] = −δL [pB]− δL [pS]− V0 [δpB]− LB [δpB] . (2.30)

Upon the use of equation (2.23), this can be recast into the form

L0 [δpS] = −V0 [δpB]− δL [pB]− δL [pS] + δLB [pB] . (2.31)

Here, δL is the linearised secondary potential given by eq. (2.13), with the model parameters and

perturbations decomposed according to eqs. (2.17) and (2.19), respectively. Note that in linear

approximation, equations (2.30) and (??) are equivalent. However, since LB [δpB] and δLB [pB]

are different operators applied to different wavefields, practical results may slightly differ when

calculating one or the other. The size of the difference allows to assess the importance of nonlinear

effects.

An alternative, more tedious way to derive eq. (2.31) is to introduce the model perturbations

δKB, δKS , δρB, and δρS in eq. (2.21). Other possibility is shown is Appendix ??.

Eq. (2.31) allows us to evaluate the singular-wavefield residual, δpS , resulting in

δpS(x, t;xs) =

∫

V

d3x′ G0(x, t;x
′) ∗∆s(x′, t;xs) , (2.32)
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where G0(x, t;x
′) is the Green’s function of the reference wave operator L0 as before. Discreti-

sation of this expression under consideration of the contributions to ∆s leads to the second line of

eq. (2.18).

Decomposition of the singular-wavefield residual

Let us now make the contributions to these sensitivity kernels more explicit. For this purpose

we consider the Green’s function G0, too, as composed by background and singular-part wave-

fields, i.e. G0 = GB + GS , where GB satisfies eq. (2.20) with an impulsive point source, and

where GS satisfies eq. (2.21) for secondary sources excited by GB. In other words, GB is the

Green’s function in the background medium, and GS is its difference to the Green’s function in

the reference medium. We will refer to GB and GS as background and singular Green’s functions,

respectively.

With this notation, expression (2.32) can be decomposed into 8 terms as

δpS(xg, t;xs) =
n=8∑

i=1

δpS,i(xg, t;xs) = (2.33)

−

∫

V

d3x′GS(xg, t;x
′) ∗ V0 [δpB(x

′, t;xs)] (2.33.1)

−

∫

V

d3x′GB(xg, t;x
′) ∗ V0 [δpB(x

′, t;xs)] (2.33.2)

−

∫

V

d3x′GS(xg, t;x
′) ∗ δL [pB(x

′, t;xs)] (2.33.3)

−

∫

V

d3x′GB(xg, t;x
′) ∗ δL [pB(x

′, t;xs)] (2.33.4)

−

∫

V

d3x′GS(xg, t;x
′) ∗ δL [pS(x

′, t;xs)] (2.33.5)

−

∫

V

d3x′GB(xg, t;x
′) ∗ δL [pS(x

′, t;xs)] (2.33.6)

+

∫

V

d3x′ GS(xg, t;x
′) ∗ δLB [pB(x

′, t;xs)] (2.33.7)

+

∫

V

d3x′ GB(xg, t;x
′) ∗ δLB [pB(x

′, t;xs)] , (2.33.8)

where Green’s function reciprocity was used once again. The terms are provisionally numbered

from top to bottom, i.e., term δpS,1 is given in line (2.33.1) and so forth. In the next section, we
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2.2 Physical interpretation of the forward decomposition

will analyse and name these terms more appropriately based on their physical meaning.

2.2 Physical interpretation of the forward decomposition

2.2.1 Old information, brand new point of view

It is important to recognise that splitting the wavefield residual, δp, into separate background

and singular terms, δpB and δpS,i, does not add new contributions as compared to the classical form

of the undecomposed wavefield residual given by expression (2.14), if the unperturbed medium m0

is assumed to contain both a background and a singular part. The significance of the splitting lies

on the possibility to analyse the contributions individually, and to recognise the importance of

multiple-scattering contributions originating from the non-smooth part in the reference model.

First of all, we immediately recognise that the eighth term (2.33.8) of eq. (2.33) is the negative

of the background-wavefield residual, eq. (2.25). This leads to

δpS(xg, t;xs)− δpS,8(xg, t;xs) = δpS(xg, t;xs) + δpB(xg, t;xs)

= δp(xg, t;xs) =
n=7∑

i=1

δpS,i(xg, t;xs), (2.34)

where we have used that δp = δpB + δpS . In other words, the sum of the first seven terms above

yields the same total wavefield perturbation as the conventional formulation.

2.2.2 Multiple scattering/internal reflection uncovered

All of the contributions of eq. (2.33) have the very same structure that reveals the physics

and the importance of each one of these terms. They consist of a convolution of an extrapolator

term with a secondary-source term. The extrapolator describes the wave process that takes the

energy from the secondary sources to the receiver. The secondary sources are constituted by the

potential operator of the involved scattering mechanism and the source wavefield that excited this

mechanism in the first place.

The meaning and importance of the contribution depends on the specific model decomposi-
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(a) δpB (b) δpS,4

(c) δpS,6 (d) δpS,5

Figure 2.2: Different terms showing different levels of interaction of single- and multiple- scat-
tered/reflected information. The colour code is the one adopted in eqs. (2.35), (2.36), (2.37) and
(2.38). From top left, in clockwise direction: (a) and (b) show contribution from single-scattering
events, difference between them resting on which operator is used to generate the secondary source
to be extrapolated; (c) brings contribution from multiple-scattering events from receiver-side; (d)
shows the contribution of the strong multiple-scattering events.

tion. Here, we assume the decomposition to follow the classical approach, i.e., in a background

model carrying the low spatial-frequency components and a singular model carrying the high ones.

Then, the decomposition will make explicit the different levels of interaction between single- and

multiple-scattered/reflected information within the data. Below, we will analyse the respective

physics behind some of the individual terms (see also Figure 2.2).

It is worth noting that decomposing the linearised expressions means that there is still a single-

scattering assumption involved. While the decomposed approach considers full multiple scattering

in the (singular part of the) reference model, it considers only single scattering at the (unknown)

model perturbations. In other words, both in the conventional approach and in the one proposed

here, the wavefield residuals are evaluated with the help of the Born approximation, i.e., the extrap-

olators G0(xg, t;x
′), GB(xg, t;x

′), and GS(xg, t;x
′) = G0(xg, t;x

′)−GB(xg, t;x
′) in eqs. (2.14)
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2.2 Physical interpretation of the forward decomposition

and (2.33) are wavefields propagating in the unperturbed models. No higher-order interactions

among the model perturbations are taken into account.

We are now ready to analyse the individual terms of the wavefield residuals. Note that there

are terms based solely on single scattering at model perturbations without scattering at singular

parts of the reference model. Two examples are the background residual, δpB of eq. (2.25), and

the singular-residual contribution, δpS,4 of eq. (2.33.4). These are given by

δpB(xg, t;xs) = −

∫

V

d3x′

background-wavefield
extrapolator
︷ ︸︸ ︷
GB(xg, t;x

′) ∗

background-wavefield excited
background secondary source
︷ ︸︸ ︷
δLB [pB(x

′, t;xs)] (2.35)

and

δpS,4(xg, t;xs) = −

∫

V

d3x′

background-wavefield
extrapolator
︷ ︸︸ ︷
GB(xg, t;x

′) ∗

background-wavefield excited
total secondary source
︷ ︸︸ ︷
δL [pB(x

′, t;xs)] , (2.36)

respectively. Figures 2.2(a) and (b) display cartoons that graphically explain these single-scattering

phenomena, showing that for these terms both the source-side wavefield exciting the secondary

sources and the receiver-side extrapolator are wavefields that propagate in the unperturbed back-

ground model. These figures also highlight with a colour code the difference between them: the

operator involved in the scattering mechanism. For δpB, only the relative background perturbations
δKB

KB
and δρB

ρB
generate secondary sources, while for δpS,4, the relative total medium perturbations

δKB+δKS

K0

and δρB+δρS
ρ0

do so.

Parts (c) and (d) of Figure 2.2 represent examples of terms that are single scattered at the model

perturbations and multiple scattered at the singularities of the unperturbed model. The contribution

δpS,6 of term (2.33.6) has the form

δpS,6(xg, t;xs) = −

∫

V

d3x′

background-wavefield
extrapolator
︷ ︸︸ ︷
GB(xg, t;x

′) ∗

singular-wavefield excited
total secondary source
︷ ︸︸ ︷
δL [pS(x

′, t;xs)] . (2.37)

Here, multiple scattering is observed in the source-side wavefield as indicated in its graphical

representation in Figure 2.2c. The difference to the single-scattering term δpS,4 (Figure 2.2b) is
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that the wavefield that excites the secondary source at x′ now originates at the singularities in the

reference medium described by the operator difference V0 = L0 − LB.

An example of strongly multiple-scattered events is the term (2.33.5), i.e.,

δpS,5(xg, t;xs) = −

∫

V

d3x′

singular-wavefield
extrapolator
︷ ︸︸ ︷
GS(xg, t;x

′) ∗

singular-wavefield excited
total secondary source
︷ ︸︸ ︷
δL [pS(x

′, t;xs)] . (2.38)

Both the secondary source and the extrapolator are built up by unperturbed singular wavefields

(see Figure 2.2d) generated by the differences between the reference medium and its background

part.

Similar analyses can be done for the remaining terms to understand the physical meaning of

each contribution. However, before rewriting eq. (2.33) accordingly, we need to recognise that

terms δpS,i (i = 3, 4, 5, 6) can be further decomposed. We discuss this in the next section. In

Section 2.2.4, we will then be ready to rewrite eq. (2.33) in a form that allows to see all different

levels of interaction among the single and multiple scattered/reflected wavefield existing in each

one of the terms.

2.2.3 Background and singular-part contributions

Actually, the secondary potential δL, defined in eq. (2.13), consists of two components. Ex-

plicitly, it reads

δL = −

{(
δKB + δKS

(KB +KS)2

)
∂2

∂t2
−∇ ·

[(
δρB + δρS
(ρB + ρS)2

)
∇

]}
. (2.39)

In other words, the secondary potential can be written as δL = δB + δS , with

δB = −

{(
δKB

(KB +KS)2

)
∂2

∂t2
−∇ ·

[(
δρB

(ρB + ρS)2

)
∇

]}
(2.40)

and

δS = −

{(
δKS

(KB +KS)2

)
∂2

∂t2
−∇ ·

[(
δρS

(ρB + ρS)2

)
∇

]}
, (2.41)

where both δB and δS depend on both unperturbed parts of the model, but only on the perturbation

of one of them. Particularly, notice that δB 6= δLB (compare to eq. (2.24)). The operator δB
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2.2 Physical interpretation of the forward decomposition

Figure 2.3: Subkernels obtained from the decomposition of the sensitivity kernel U for bulk-
modulus perturbation. Kernel V for density perturbation is decomposed analogously.

is called background part of secondary potential, and δS is called singular part of secondary

potential.

Therefore, each of the terms δpS,3 to δpS,6 possesses two contributions, corresponding to the

parts δB and δS of δL. As an example, let us take the third contribution δpS,3. It can be written as

a sum of a background and a singular part, viz.,

δpS,3(xg, t;xs) = δpS,3B(xg, t;xs) + δpS,3S(xg, t;xs), (2.42)

where each of the two terms on the right side still consists of two contributions, corresponding to

the bulk-modulus and density perturbations. The background bulk-modulus contribution has the

form

δpKS,3B(xg, t;xs) =

∫

V

d3x′

[
1

(KB(x′) +KS(x′))2
GS(x

′, t;xg) ∗
∂2pB
∂t2

(x′, t;xs)

]
δKB(x

′) .

(2.43)

The term in brackets describes the δpS,3 part of the sensitivity kernel of the singular-wavefield

residual with respect to the background of the bulk modulus, the discretised Fourier transform of

which is U
B

S of eq. (2.18). Thus, we denote this contribution by U
B

S,3. Correspondingly, there

are parts of the sensitivity kernel of the singular-wavefield residual with respect to the singular

part of the bulk modulus, US , and therefore called U
S

S,3, and to the background and singular parts

of the density, V
B

S,3 and V
S

S,3. The terms δpS,4, δpS,5, and δpS,6 can be decomposed analogously,

giving rise to corresponding contributions to both sensitivity kernels. Note that in all four cases,

the contribution to the background sensitivity kernel is equal to that to the singular-part sensitivity

kernel, i.e., U
B

S,i = U
S

S,i = US,i and V
B

S,i = V
S

S,i = V S,i (i = 3, 4, 5, 6).

In this way, we arrive at thirteen subkernels (Figure 2.3) for each parameter of the model, i.e.,
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bulk modulus and density. These are one subkernel to evaluate the background-wavefield residual

and twelve subkernels to evaluate the singular-wavefield residual. Of the latter, eight depend on

perturbations of the smooth part of the model and four depend on perturbations of the singular part.

Therefore, eq. (2.18) can be rewritten as

[
δ̂pB

δ̂pS

]
=

[
UB V B 0 0

U
B

S V
B

S U
S

S V
S

S

]



δKB

δρB

δKS

δρS




=

[
UB V B 0 0

∑
i US,i

∑
i V S,i

∑
j US,j

∑
j V S,j

]



δKB

δρB

δKS

δρS



, (2.44)

with i = 1, 2, 3, 4, 5, 6, 7, 8 and j = 3, 4, 5, 6, the numbering referred to the one displayed in eq.

(2.33).

2.2.4 Physical interpretation of the kernels: naming the terms

The provisional numbered notation was useful to count the contributions to the wavefield resid-

uals, but it is not very helpful to identify them. For completeness, we even needed to introduce

another subscript to identify the individual contributions to δpS,i (i = 3, 4, 5, 6) as indicated in

eq. (2.42). For this reason, we rename all terms based on their physical meaning as δpS,αβγ , where

each of the three subscripts α, β, and γ stands for a physical action involved in the generation of

the contribution. The first subscript, α, represents the wavefield responsible for the propagation

of the contribution on the source side, the second subscript, β, stands for the potential operator

describing the secondary sources, and the third subscript, γ, designates the wavefield responsible

for the propagation of the contribution on the receiver side. The receiver-wavefield subscript γ

is either B for the background wavefield or S for the singular wavefield. The source-wavefield

subscript α can, in addition to B and S, also be b, representing the wavefield residual due to the

background perturbation, δpB. The potential index β can take the values L, B, S and V , repre-

senting the background secondary potential δLB, background part δB and singular part δS of the

secondary potential, and the scattering potential V0, respectively. For instance, the background

contribution δpS,3B to δpS,3, the bulk-modulus contribution of which is explicited in eq. (2.43),
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2.2 Physical interpretation of the forward decomposition

becomes δpS,BBS , indicating that the background wavefield (B) excites secondary sources at the

background perturbations of the reference medium (B), which are propagated to the receiver by

the singular Green’s function (S). Correspondingly, its singular-part contribution δpS,3S becomes

δpS,BSS .

Figure 2.4 shows cartoons representing the physical interpretation of all thirteen bulk-modulus

subkernels of eq. (2.33). The subcaptions state the new name of each term and its old one in the

previous, numbered nomenclature of eq. (2.33). We still need an additional index (for example, a

superscript K or ρ) to indicate whether the contribution originates from a perturbation of the bulk

modulus or density. However, in our numerical examples below, where we restrict ourselves to

bulk-modulus perturbations, we will omit this additional index for the sake of simplicity.

The subscripts of the Fréchet derivatives contributions US,i and V S,i to the sensitivity kernels

can be replaced accordingly. However, as seen in the previous section, what would be the contri-

butions US,BBS and US,BSS are the same, making the potential subscript β needless for this pair.

The same happens to the pairs: US,BBB and US,BSB; US,SBS and US,SSS; and US,SBS and US,SSS .

So, for these 4 pairs we simplify the notation dropping the potential subscript when referring to the

corresponding discretised Fréchet derivative. Therefore, we restate the following definitions from

(2.44):

U
B

S =
∑

i

US,i, (2.45)

U
S

S =
∑

j

US,j, (2.46)

where i = bVS, bVB,BS,BB, SS, SB,−BLS,−BLB, and j = BS,BB, SS, SB. By analogy,

the same can be done to the Fréchet derivatives V
B

S and V
B

S .

Two examples of the use of the new nomenclature are

δ̂pKS,bVS = US,bVSδKB, (2.47)

δ̂pρS,BSB = V S,BBδρS. (2.48)

Let us analyse the sub- and superscripts of the first example (2.47). There, we have one of the

contributions to the singular-wavefield residual (S,) due to perturbation in the bulk-modulus model

(K). The perturbation refers to the background model (b indicates dependence on the background-

wavefield residual which is present only if the background model is perturbed). the contribution is
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(a) δpB

(b) δpS,−BLB = δpS,8 (c) δpS,−BLS = δpS,7 (d) δpS,bVB = δpS,2 (e) δpS,bVS = δpS,1

(f) δpS,BBB = δpS,4B (g) δpS,BBS = δpS,3B (h) δpS,SBB = δpS,6B (i) δpS,SBS = δpS,5B

(j) δpS,BSB = δpS,4S (k) δpS,BSS = δpS,3S (l) δpS,SSB = δpS,6S (m) δpS,SSS = δpS,5S

Figure 2.4: Physical meaning of the subkernels. Each one of the cartoons shows three elements:
source-side wavefield; the operator generating the secondary source; and the receiver-side wave-

field extrapolator. Subcaptions indicate the new name and correspondence to the previous, num-
bered nomenclature.
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2.3 Inversion: backprojecting the residuals into model space

individualised by the subscript ,bVS which details the elements involved in its generation. Firstly,

we identify the source-side wavefield index (b) which indicates the wavefield that excites the sec-

ondary source. In this case, it is the background-wavefield residual. Secondly, the scattering

mechanism index (V) which represent the potential operator applied onto the source-side wave-

field. Here, it is the reference scattering potential. And finally, the extrapolator index (S) showing

the wavefield that propagates the secondary source to the receivers. In this example, we have the

singular Green’s function.

On the second example (2.48) we have again one of the contributions to the singular-wavefield

residual (S,), but now due to perturbation in the density model (ρ). The perturbation is done in

the singular model (the index S stands for operator δS which depends only on the singular- model

perturbation). The contribution is label with the subscript ,BSB. This indicates that the secondary

source is excited by the background wavefield (,B), the singular part of the secondary potential

operator δS as scattering mechanism operator, and the background wavefield as extrapolator (B).

2.3 Inversion: backprojecting the residuals into model space

The purpose of deriving expressions for the individual contributions to the wavefield residuals

is their use in linearised inversion in order to update the model. This is achieved by backproject-

ing the residuals into the model space with the help of the adjoint Fréchet derivatives (sensitiv-

ity kernels) and using them to obtain estimates of the perturbation with the technique known as

adjoint-state method (Tromp et al., 2005; Fichtner, 2010; Fichtner and Trampert, 2011).

2.3.1 Conventional formulation

From the total wavefield residual δp, estimates for the bulk-modulus and density perturbations,

δKest and δρest, respectively, are obtained by the adjoint operation to eq. (2.15). This is achieved

by backprojecting the wavefield residual according to

[
δKest

δρest

]
=

[
U

†

V
†

]
δ̂p, (2.49)

where superscript † denotes adjoint operator.
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2.3.2 Decomposed formulation

Under the separation into background and singular components proposed here, estimates of

background and singular model perturbations can be evaluated individually by backprojecting the

residuals. The perturbation estimates are given by the adjoint to eq. (2.44) as follows




δKest
B

δρest
B

δKest
S

δρest
S



=




δKest
B,B +

∑
i δK

est
B,i

δρest
B,B +

∑
i δρ

est
B,i∑

j δK
est
S,j∑

j δρ
est
S,j



=




U
†

B

∑
i U

†

S,i

V
†

B

∑
i V

†

S,i

0
∑

j U
†

S,j

0
∑

j V
†

S,j




[
δ̂pB

δ̂pS

]
, (2.50)

where the summation indices again take the values i = bVS, bVB,BS,BB, SS, SB,−BLS,−BLB

and j = BB, BS, SB, SS.

The explicit meaning of these expressions is analogous to the representation of the estimate in

Tarantola (1984a). At each point x of the model, each contribution to the perturbation estimate is

the cross-correlation between the direct wavefield from source with the backpropagated residual

from the receivers. For example, estimates δKest
B,BS and δKest

B,bVB reads explicitly (see derivation in

Appendix C)

δKest
B,BS(x) =

∑

s

∑

g

∫
dω

−ω2

K2
0(x)

direct wavefield︷ ︸︸ ︷
p̂∗B(x, ω;xs) Ĝ

∗
S(x, ω;xg)δ̂pS(xg, ω;xs)︸ ︷︷ ︸

back-propagation of δ̂pS

(2.51)

and

δKest
B,bVB(x) = −

∑

s

∑

g

∫
dω

−ω2

K2
B(x)

direct wavefield︷ ︸︸ ︷
p̂∗B(x, ω;xs)×

∫

V

d3x′ Ĝ∗
B(x, ω;x

′)︸ ︷︷ ︸
2nd back-prop.

scattering potential at x′

︷ ︸︸ ︷
−ω2

(
1

K0(x′)
−

1

KB(x′)

)
Ĝ∗

B(x
′, ω;xg)δ̂pS(xg, ω;xs)︸ ︷︷ ︸

1st back-propagation of δ̂pS to x
′

. (2.52)

Note that there are singular-wavefield residuals that must be backpropagated once, e.g., from xg

to x as for estimate δKest
B,BS , or twice, e.g., from xg to x′ and from there to x as seen for estimate

δKest
B,bVB. To get the explicit expressions of the other sensitivity kernels, one just needs to do the

proper substitutions of the wavefields and potentials.

It is to be noted in this context that in analogy to the wavefields p0 and G0 in the conventional
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2.3 Inversion: backprojecting the residuals into model space

approach, the wavefields pB, GB, pS , and GS in the decomposed approach are known, because all

of them are calculated in the known reference model. We stress once more that the decomposition

of reference model into background and singular parts is completely arbitrary, not relying on any

kind of approximation.

2.3.3 Residual information leakage

Ideally, one part of the model is perfectly known, so that only perturbations of the other part

need to be considered. However, backprojecting the wavefield residuals may lead to non-zero per-

turbation estimates for unperturbed parameters. We call this effect residual information leakage.

Generally speaking, when backprojected into the model space, data residuals caused by a pertur-

bation of the background model can leak to the estimates of the singular part and vice-versa. From

expression (2.50), it is clear that there will be non-zero estimates for both δKB and δKS indepen-

dently of whether only the singular-wavefield residual or both, background and singular residuals

are non-zero (there is no way to have only a non-zero background-wavefield residual). The only

way to avoid the leakage would be to use the inverse that would correctly distribute the power

among the estimates. Unfortunately this is not the usual scenario in practice when we are dealing

with non-invertible operators.

This matter is particularly important under the present decomposition. Since the sensitivity

subkernels related to the terms δpS,BBB and δpS,BSB are identical (US,BB), so will be the estimates

for both singular and background perturbations δKest
B,BB and δKest

S,BB , irrespective of whether the

backprojecting residuals are due to a perturbation of the background model alone or of both parts.

Additional criteria will be needed to decide which of these parameter perturbations really caused

the wavefield perturbations.
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3. Numerical Experiments and Discussion

We performed numerical experiments using the open-source software package Madagascar

to study and validate the proposed decomposition, and to better understand the individual contri-

butions, particularly when used to backproject residuals to build perturbation estimates. For this

purpose, we constructed a set of different models with different perturbations and used different

acquisition geometries (see Tables 3.1 and 3.2).

3.1 Experimental Procedure

For each of the models used in the numerical experiments we evaluated either the forward

decomposition (direct problem – Section 2.1.2) only, the backprojection of the residuals (inverse

problem – Section 2.3) only, or both.

All numerical experiments rely on bulk-modulus perturbations only and use a constant den-

sity of 2200 kg/m3. The wavefield modelling was carried out with staggered-grid vector-acoustic

time-domain finite difference second-order in time, fourth-order in space. The input medium pa-

rameters were bulk modulus and density. Thus, the displayed velocity values in all figures hereafter

were calculated from the bulk-modulus and density values used in the computations, using the re-

lationship vp =
√

K/ρ. We used monopole point-sources of volume density injection rate with a

Ricker signal with a peak frequency of 30 Hz as source signature.

3.1.1 Forward Decomposition

All forward-modelling decomposition experiments followed these basic steps:

i. We defined an unperturbed reference model and its background part, and modelled the

corresponding reference and background wavefields p0 and pB (the singular wavefield

was evaluated by its definition, pS = p0 − pB).
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ii. After model perturbation, we modelled the corresponding perturbed wavefields and de-

termined the true residuals δptrue, δptrue
B , and δptrue

S from the differences.

iii. Using the model perturbation, we calculated the linearised residuals δp, δpB, and δpS of

the total, background and singular wavefields according to eqs. (2.14), (2.25), and (2.33)

respectively, and compared them to the true ones.

In all forward experiments we performed single-shot simulations. The point-source position

is indicated in the corresponding model figures by a black star. The wavefields were recorded at

control receivers represented in the model figures by black triangles.

All the linearised wavefield residuals are result of Born approximation and have the general

format below: ∫

V

d3x′G(xg, t;x
′) ∗ s(x′, t;xs), (3.1)

where G(xg, t;x
′) is the Green’s function of the acoustic wave operator for a given set of known

model parameters, and s(x′, t;xs) is the secondary source, result of a differencial operator applied

onto a known wavefield. As an analytic solution of such integral is impossible, we evaluate this

expression numerically by modeller injection. In other words, whenever needed, we applied the ap-

propriate differential operator on the known wavefield to build the secondary source s and injected

it as source input at all grid points in the modeler with the appropriate set of model parameters

related to the Green’s function G(xg, t;x
′).

In the figures related to the forward-decomposition experiments (Experiments 1, 3, 4 and 6),

red lines represent the true residuals and blue lines the corresponding linearly approximated ones.

To the left of the wavefield comparisons, we place the associated cartoons of Figure 2.4 showing

the corresponding Green’s function and secondary source to help recall the physical meaning of

the studied residual. The modelling of the linearised wavefield residual introduces an amplitude-

error factor. For better comparison, we scaled the linearised residuals to match the amplitude of

the corresponding true wavefield residuals. We then used the same scale factor for the display of

all individual contributions.

3.1.2 Backprojecting residuals

Correspondingly, all the residual-backprojection experiments followed a procedure consisting

of the following steps:
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3.2 Model gallery

i. True-residual backprojection: By means of the proper extrapolator in the time domain,

we backpropagated (once or twice) the true total, background, and singular residuals (see

Section 3.1.1, item ii) for a given source from a given receiver into the target area.

ii. Cross-correlation with direct wavefield: We cross-correlated in the frequency domain the

backpropagated wavefield with the proper direct wavefield (reference, background, or

singular) from the corresponding source.

iii. Stack: We stacked the resulting wavefield over frequency, sources, and receivers.

In the backprojecting experiments we performed non-simultaneous multiple-shot experiments.

Source and receiver positions are marked in all models by white stars and triangles, respectively.

In the figures that depict the results of backprojecting experiments (Experiments 2, 5, 7 and

8) we employ variations of the cartoons of Figure 2.4 to indicate which (sub)kernel is used to

backproject the residuals and obtain the bulk-modulus estimates. Each cartoon exibits the kind of

source-side wavefield (reference, background or singular), the kind of receiver-side Green’s func-

tion used to backpropagate the residual (some of them are built with two backpropagations), and

the differential operator applied before the cross-correlation between wavefields. For better com-

parison, we normalised the total Bulk-modulus perturbation estimates to their maximum absolute

value. Individual contributions to the estimates are depicted using the same scale factor.

3.2 Model gallery

The numerical experiments presented in this chapter were performed departing from four dif-

ferent unperturbed models summarised in Table 3.1. This table also contains the description of the

discretisation in each model and the acquisition geometry used in each experiment involving such

model.

Figure 3.1 shows the unperturbed velocity Model I. It consists of a single planar reflector at

350 m depth, separating two homogeneous halfspaces with velocities 1500 m/s and 2500 m/s.

We chose a simple model for the first numerical experiment because, in this way, it is easy to

recognise and understand each of the decomposition components.

For our decomposition , we chose the background part of Model I to be a constant velocity

model with the first layer’s velocity. The unperturbed singular part is then a Heaviside step function

in the vertical direction with magnitude of 1000 m/s and step at 350 m. The vertical and horizontal
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Figure 3.1: Unperturbed velocity Model I (velocity in m/s).The first layer has a velocity of
1500 m/s, and the second layer a velocity of 2500 m/s. Density is kept constant (2200kg/m3).
The source and receiver positions are indicated by black star and triangle respectively.

Figure 3.2: Unperturbed velocity Model II (velocity in m/s) containing 40 randomly distributed
scatterers, with constant background velocity (2205 m/s) and density (2200 kg/m3). One source
(black star) and two control receivers (black triangles) – named as cr154 (top) and cr283 (bottom)
– were used in the forward decompositions experiments. The other sources and receivers (white
stars and triangles respectively) were used in the backpropagation experiment.
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3.2 Model gallery

Model Name References
Acquisition Sample Sampling
geometry number interval

I Single reflector Fig. 3.1 Single receiver
nx = 701 dx = 1.0
nz = 501 dz = 1.0
nt = 2151 dt = 0.2

II 40 scatterers Fig. 3.2 Surronding
nx = 651 dx = 2.0
nz = 701 dz = 1.0
nt = 4001 dt = 0.2

III 60 scatterers Fig. 3.3 Surronding
nx = 651 dx = 2.0
nz = 701 dz = 1.0
nt = 4001 dt = 0.2

IV 150 scatterers Fig. 3.4 Surface
nx = 651 dx = 2.0
nz = 701 dz = 1.0
nt = 4001 dt = 0.2

Table 3.1: Unperturbed model gallery. n# stands for the number of samples in the #-axis. d# is the
sampling interval in the #-axis; x- and z-axis are given in meters; t-axis is given in milliseconds.
the origin for all axis was always o# = 0.

grid spacing was 1 m, and the time-marching step 0.2 ms. The recorded wavefields were then

resampled to a 2 ms interval.

The next three models were set to see the role of multiple-scattering effect in the proposed

decomposition.

Figure 3.2 shows the unperturbed multiple-scatterers velocity Model II. It consists of a back-

ground part with a constant velocity of 2205 m/s, and a singular part composed of 40 randomly

distributed scatterers. Each of these scatterers consists of a 16 m ×16 m perturbation that was

smoothed horizontal and vertically to create a bell-shaped high-velocity zone with a maximum ve-

locity difference of 798 m/s (some of the scatterers overlap partially, possibly resulting in larger

velocity difference). The full acquisition geometry was used to study the effects of multiple scatter-

ing independently of the ones due to a lack of illumination. The vertical grid spacing was 1 m, the

horizontal one 2 m, and the time-marching step was 0.2 ms. We resampled the recorded wavefields

to a 6 ms interval. Sources were spaced by 55 m and the receivers by 4 m.

Figure 3.3 shows the unperturbed velocity Model III. It resembles the previous unperturbed

model, the only difference being the larger number of scatterers: 60. This is done to enhance the

multiple- scattering phenomena, increasing the amount of information on the background pertur-
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Figure 3.3: Unperturbed velocity Model III (velocity in m/s) containing 60 randomly distributed
scatterers, with constant background velocity (2205 m/s) and density (2200 kg/m3). For the
numerical experiments, we used the same acquisition geometry as in Model II.

Figure 3.4: Unperturbed velocity Model IV (velocity in m/s) containing 150 randomly distributed
scatterers, with constant background velocity (2205 m/s) and density (2200 kg/m3).
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3.3 Experiment gallery

Experiment Unperturbed model Perturbation Modality
1

Model I
Constant background Forward Decomposition

2 Lens-shaped background Backprojecting Residuals
3

Model II
Constant background Forward Decomposition

4
Scatterers’ positions

Forward Decomposition
5 Backprojecting Residuals
6

Model III Lens-shaped background
Forward Decomposition

7 Backprojecting Residuals
8 Model IV Lens-shaped background Backprojecting Residuals

Table 3.2: Experiment gallery.

bation carried by the singular wavefield. We used the same grid spacing, time-marching step and

resampling interval.

Finally, in Figure 3.4 we can see the unperturbed Model IV. It consists of 150 randomly

distributed scatterers with the same grid spacing, time-marching step, resampling interval as the

two previous models. The main difference between this and the previous ones lies in the acquisition

geometry: source and receivers are restricted to the top portion of the model, simulating a surface

acquisition. This was done to study the influence of the uneven illumination on our results.

3.3 Experiment gallery

Table 3.2 summarises all the experiments in the four models presented in this chapter. For

each experiment is indicated which model was used, the kind of perturbation imposed (details

will be seen in the coming sections) and which experiment modality was performed (forward

decomposition or residual backprojection). Each next subsection is devoted to one of the eight

experiments.

3.3.1 Experiment 1: Constant background perturbation of Model I,

forward decomposition

In Experiment 1, we kept the singular part of the model unperturbed and introduced a 10%

perturbation to the complete background part of Model I, i.e., δKB = 0.1KB = 150m/s and

δKS = 0m/s everywhere in the model. According to equation (2.44), this yields a perturbation in
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Figure 3.5: EXPERIMENT 1. True total wavefield residual δptrue = p − p0 at cr550. Observe two
distinct signals: the direct wavefield residual (peak at 0.27 s) and the reflected/scattered wavefield
residual (peak at 0.36 s).

both the background and singular wavefields,

[
δ̂pB

δ̂pS

]
=

[
UB∑
i US,i

]
δKB, (3.2)

where the subscript i takes the values BB, BS, SB, SS, −BLB, −BLS, bVB and bVS. These

contributions correspond to the terms represented graphically by Figures 2.4a to 2.4i.

We recorded the true and calculated wavefields at a receiver (hereafter called a control receiver)

named cr550 (black triangle in Figure 3.1). The true total wavefield residual can be seen in Fig-

ure 3.5. Two events can be clearly distinguished: the direct wavefield residual (peak at 0.27 s) and

the reflected/scattered wavefield residual (peak at 0.36 s).

We start by comparing the true and estimated values of the wavefield perturbations at the con-

trol receiver and their individual contributions according to the decomposed expression (3.2).

The first contribution to be studied is the background-wavefield residual δpB (Figure 3.6). We

observe a good match between both waveforms at the receiver.

Next, we address the singular-wavefield residual δpS at the control receiver. As shown in

eq. (2.33) and illustrated in Figure 2.4, δpS consists of twelve contributions, four of which are due

to perturbations of the singular part of the model (see Figures 2.4j to 2.4m). Since we have not

perturbed the singular part in Experiment 1, we have only eight non-zero contributions.

Based on the conventional practice of representing the reference model with the background

model alone, it might be expected that the single-scattering contributions δpS,−BLB and δpS,BBB

to the singular residual should be the most important ones. But when we inspect Figure 3.7 we

can see that they are closely related to the background residual rather than to the singular one.
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3.3 Experiment gallery

Figure 3.6: EXPERIMENT 1. Linearised background-wavefield residuals δpB (blue line) evaluated
at cr550 as compared to the true one (red line), δptrue

B .

Figure 3.7: EXPERIMENT 1. Terms related to single-scattering effects at the medium perturbations
(blue lines): δpS,−BLB (top), δpS,BBB (centre), and their sum (bottom). The red line true singular
residual δptrue

S . Separately, δpS,−BLB and δpS,BBB carry the largest energy. Their sum demonstrates
that they are approximately complementary.

Actually, as stated before, the term δpS,−BLB is the opposite of the background residual, δpB.
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Figure 3.8: EXPERIMENT 1. Multiple-scattering contributions (blue lines), from top to bottom:
δpS,BBS , δpS,SBB and δpS,SBS . In all figures, δptrue

S is depicted in red lines for comparison. The first
two terms carry most of the energy of the singular residual δpS .

From the mathematical expressions of δpS,−BLB and δpS,BBB, we know that both terms slightly

differ in the secondary-source potential operator applied to the source-side background wavefield.

Because of the negative sign of δpS,−BLB, they are almost complementary to one another and, in

this experiment, end up canceling almost completely their main contribution. In Appendix D we

show the resulting expression of the superposition of these terms, δpS,−BWB. The physical reason

for this behaviour is that the influence of the background perturbation is already accounted for

in the perturbation of the background wavefield δpB. As we going to see later in this chapter,

δpS,−BWB is non zero only when the background perturbation overlaps the singular component of

the model within the Fresnel zone of the total wavefield, which is not the case in this experiment.

The next terms we analyse are the multiple-scattering contributions δpS,BBS , δpS,SBB and

δpS,SBS . In Figure 3.8 we see that the first two terms are the ones that answer for most of the
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energy carried by the singular residual, δpS . The small contribution coming from the strong

multiple-scattering term δpS,SBS is explained by the lack of other scatterers/reflectors the single

reflector could interact with, leaving the very weak self-interaction of the reflector the only source

of energy to this term.

Finally, we analyse the remaining three non-symmetrical contributions δpS,−BLS , δpS,bVB and

δpS,bVS for which no corresponding contributions are present in eq. (2.33) and Figure 2.4. These

contributions are depicted in the Figure 3.9. At first view, they seem to bear no resemblance to each

other. The contribution δpS,−BLS carries about as much energy as the related contribution δpS,BBS ,

though with a different signal. Actually they have the same relation as terms δpS,−BLB and δpS,BBB

have with each other: both terms are almost complementary to each other, differing only slightly

in the secondary-source potential operator applied to the source-side singular wavefield. As in

the single-scattering situation above, the superposition term δpS,−BWS carries energy only if the

background perturbations overlap with the medium singularities (Appendix D). On the other hand,

the terms δpS,bVB and δpS,bVS (second and third plots in Figure 3.9) apparently carry no energy.

That being said, let’s take a closer look in these two terms: δpS,bVB and δpS,bVS . Their summa-

tion in the frequency domain yields (angular frequency ω omitted):

δ̂pS,bVB(xg;xs) + δ̂pS,bVS(xg;xs) = −

∫

V

d3x′
(
ĜB(xg;x

′) + ĜS(xg;x
′)
)
V0

[
δ̂pB(x

′;xs)
]
.

(3.3)

Recognising GB +GS = G0 and inserting δ̂pB from the Fourier transform of eq. (2.25) yields

δ̂pS,bVB(xg;xs) + δ̂pS,bVS(xg;xs) =

∫

V

d3x′ Ĝ0(xg;x
′)V0

[∫

V

d3x ĜB(x
′;x)δLB [p̂B(x;xs)]

]
.

(3.4)

Note that V0 acts on x′, so it can be brought into the integral on x and be applied only onto GB.

After changing the order of integration, we find

δ̂pS,bVB(xg;xs) + δ̂pS,bVS(xg;xs) =

∫

V

d3x

∫

V

d3x′Ĝ0(xg;x
′)V0

[
ĜB(x

′;x)
]

︸ ︷︷ ︸
−Ĝs(xg ;x)

δLB [p̂B(x;xs)] ,

(3.5)

where we recognise the inner integral highlighted by the curly braces to be the Fourier transform
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Figure 3.9: EXPERIMENT 1. Non-symmetrical contributions (blue lines), first four traces from
top to bottom: δpS,−BLS , δpS,bVB, δpS,bVS and δpS,bVB + δpS,bVS respectively. In these traces,
δptrue

S is depicted in red lines for comparison. The last trace show both −δpS,−BLS (black line) and
δpS,bVB + δpS,bVS (dark green line) contributions normalised to their respective maximum absolute
value.
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Figure 3.10: EXPERIMENT 1. Comparing δptrue (red line) with evaluated counter-parts. In black,
δp (evaluated with eq. (2.14)) and, in blue, δpB + δpS (evaluated with eq. (2.25) and all but the 1st,
2nd and 7th terms of eq. (2.33) respectively). See the perfect match between blue and black lines.

of −GS(xg, t;x) in full analogy to eq (2.22). Therefore, according to eq. (2.33.7) and Figure 2.4c:

δ̂pS,bVB(xg;xs) + δ̂pS,bVS(xg;xs) = −

∫

V

d3xĜs(xg;x)δLB [p̂B(x;xs)]

= −δ̂pS,BLS(xg;xs). (3.6)

How to explain the disagreement between the theoretical prediction above and the numerical

results depicted in Figure 3.9 (first and fourth traces)? The evaluation of the Born approximation

via modeller injection introduces an amplitude error. The contribution δpS,BLS is evaluated with

one injection of the secondary source from the source at the background perturbation position

x. On their turn, both contributions δpS,bVB and δpS,bVS are evaluated with the injection of two

secondary sources: the first is done at the background perturbation position x with the secondary

source generated by the wavefield coming from the source; the second at the scattering potential

position x′ with the secondary source generated by the wavefield coming from x. Thus, these

contributions suffer twice from the amplitude error of the modeller. To compare the contributions

without the influence of the amplitude error, the last part of Figure 3.9 shows both −δpS,−BLS

(black line) and δpS,bVB + δpS,bVB (dark gree line) normalised to their maximum value. We can

observe that the normalised contributions agree very well.

Another way to verify the result seen in eq. (3.6) is by comparing δptrue, δp (evaluated with

eq. (2.14)), δpB + δpS (evaluated with eq. (2.25) and all but the 1st, 2nd and 7th terms of eq. (2.33)

respectively). This is shown in Figure 3.10. When δpS,BLS , δpS,bVB and δpS,bVB are not taken into

account the match between δp and δpB + δpS is perfect.
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Figure 3.11: EXPERIMENT 2. Perturbation in the bulk-modulus background model, δKB. The
scalebar shows, in percentage, the perturbation magnitude.

3.3.2 Experiment 2: Lens-shaped background perturbation of Model I,

backprojecting residuals

In Experiment 2 we departed from the same unperturbed, single-reflector Model I as the previ-

ous one (see Figure 3.1) but introduced a spatially limited (lens-shaped) perturbation in its back-

ground as shown in Figure 3.11. As in the previous experiment, we kept the singular part unper-

turbed. Again, we have perturbations in both the background and singular wavefields according to

equation (3.2).

In this experiment, we are interested in the behaviour of the contributions in the backprojec-

tions. Therefore, we backproject both the true background and singular residuals, δptrue
B and δptrue

S

with the proper adjoint kernel as seen in eq. (2.50). Based on the result presented in eq. (3.6) we

can restate that equation as:

[
δKest

B

δKest
S

]
=

[
δKest

B,B +
∑

i δK
est
B,i∑

j δK
est
S,j

]
=

[
U

†

B

∑
i U

†

S,i

0
∑

j U
†

S,j

][
δ̂pB

δ̂pS

]
, (3.7)

where the summation indices take only the values i = BS,BB, SS, SB,−BLB and j = BB,

BS, SB, SS. Notice, as previouly determined, that the estimates δKest
B,bVS , δKest

B,bVB and δKest
B,−BLS
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cancel each other out.

Despite its simplicity, this is a most elucidative experiment which clearly exemplifies the de-

composition discussed here. The first result is displayed in Figure 3.12. There we can see the

bulk-modulus estimate δKest (top). Here and in the following residual-backprojection experiments,

δKest is always obtained with the backpropagation of the total wavefield residual δp according to

the first equation of (2.49), i.e., it is evaluated using the reference Green’s function in the adjoint to

equation (2.16). In this experiment, δKest is the estimate to be decomposed. After that, from left

to right, from top to bottom in Figure 3.12, we observe the six components of the background bulk

modulus estimate δKest
B expressed in the first equation of (3.7). In the upper-left corner we have

the bulk modulus estimate δKest
B,B result of backprojecting the background residual δpB followed

by the contributions resulting from the backprojection of the singular residual δpS with the five

adjoint sub- kernels: δKest
B,−BLB; δKest

B,−BS; δKest
B,−SB; δKest

B,−BB and δKest
B,−SS respectively. Com-

paring each contribution with the estimate δKest in the top figure one can clearly identify all the

different “pieces” that compose the complete estimate.

Analysing each one of the contributions shown in Figure 3.12, we can draw some conclu-

sions about their physical meaning. Term δKest
B,B is related to the direct-wave Fresnel zone. Both

δKest
B,−BLB and δKest

B,−BB are related to the RTM migration operator, their difference residing in

the presence or not of the singular part of the reference model, i.e., which of the factors, 1
KB

or 1
K0

,

is used in the scattering mechanism operator. The contribution δKest
B,−SB is related to the receiver-

side reflecting Fresnel zone; δKest
B,−BS to the source-side reflecting Fresnel zone; and δKest

B,−SS to

the reflector self-interaction Fresnel zone.

This simple example can be used to give more insight into the differences of three important

estimates:

• the conventional perturbation estimate δKest
conv obtained with the conventional approach, i.e.,

backprojecting the total residual δp with the adjoint kernel based on the background wave-

fields;

• the total perturbations estimate δKest obtained with aid of first line of eq. (2.49); and

• the background perturbation estimate δKest
B = δKest

B,B + δKest
B,S obtained as seen in the first

line of eq. (2.50).

Figure 3.13 shows these estimates for comparison. In the top, we can see the total estimate δKest.

In the upper-left corner we can see the conventional estimate δKest
conv obtained with the conventional
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Figure 3.12: EXPERIMENT 2. Top: Bulk modulus estimate δKest. The others are all back-
ground bulk-modulus-estimate contributions. From left to right, top to bottom: δKest

B,B; δKest
B,−BLB;

δKest
B,−BS; δKest

B,−SB; δKest
B,−BB and δKest

B,−SS . The first of them in the upper-left corner, δKest
B,B ,

is result of background residual backprojection; the rest of them are result of singular residual
backprojection. The subtraction of δKest

B,B (upper-left corner) with δKest
B,−BLB (upper-right corner)

yields the conventional estimate δKest
conv (Figure 3.13, upper-left corner).
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Figure 3.13: EXPERIMENT 2. Top: Bulk modulus estimate δKest. Upper-left corner: Bulk
modulus estimate δKest

conv obtained with the conventional approach. The others are all background
bulk-modulus-estimate contributions. Upper-right corner: the background estimate δKest

B =
δKest

B,B + δKest
B,S . Lower-left corner: δKest

B,B , result of background residual backprojection. Lower-

right corner: δKest
B,S , result of singular residual backprojection (sum of all five contributions).

approach. It is constructed by backprojecting the total residual δp with the adjoint kernel based on

the background wavefields, which, according to our definition, would be U †
B. Mathematically:

δK
est
conv = U

†

B δ̂p = U
†

B

(
δ̂pB + δ̂pS

)
= U

†

B δ̂pB − U
†

S,−BLB δ̂pS

= δK
est
B,B − δK

est
B,−BLB (3.8)
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Figure 3.14: EXPERIMENT 2. First four estimates are obtained by backprojecting the background
residual with the adjoint sub-kernels U

†

S,j , i.e., δK
est
j(B) (cross-terms). From left to right, top to

bottom: δK
est
BS(B) = US,BS δ̂pB; δK

est
BB(B) = U

†

S,BB δ̂pB; δK
est
SS(B) = U

†

S,SS δ̂pB; δK
est
SB(B) =

U
†

S,SB δ̂pB. The next two figures are each one of the sums seen in the right-hand side of eq. (3.11).

From left to right:
(∑

j U
†

S,j

)
δ̂pB and

(∑
j U

†

S,j

)
δ̂pS . At the lower-left corner is displayed the

summation of the previous sums, i.e. , δK
est

of eq. (3.11). At the lower-right corner, the bulk-
modulus estimate δKest for comparison.
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for we know that UB = −US,−BLB. It show that the conventional estimate is obtained with the

subtractions of the two contributions depicted in the second row of Figure 3.12. Definitely, there

is a lot of information missing in δKest
conv when compared to δKest. From this observation we can

already conclude that it is important to include an estimate of KS in the starting model.

Next, in the upper-right corner of Figure 3.13, we can see the background estimate δKest
B which

is the summation of the estimate δKest
B,B (lower-left corner) with the estimate δKest

B,S (lower-right

corner). The former is the result of background residual backprojection (seen also if Figure 3.12),

the last is the sum of all five contributions δKest
B,i with i = BS,BB, SS, SB,−BLB, result of the

singular residual backprojection. As the contributions δKest
B,BB and δKest

B,−BLB are almost comple-

mentary, almost all information of δKest
B,S comes from the estimates δKest

B,BS , δKest
B,SS , δKest

B,SB .

The most important difference between the conventional estimate δKest
conv and the background

estimate δKest
B (upper-left and -right corners of Figure 3.13) resides in the illuminated region by

each estimate. The conventional estimates practically does not see the subsurface. The only

information from deep region comes from the short-wavelength migration-related contribution

−δKest
B,−BLB. On the other hand, the estimate δKest

B benefits from the back-illumination provided

by the single reflector, which allows the estimate to see a broader, deeper area with a larger wave-

length.

As in this experiment only perturbation in the background was introduced, i.e., δK = δKB,

one might expect that δKest and δKest
B = δKest

B,B + δKest
B,S would give the same estimate which

is not true when we compare the first (top) and the last (lower-right) estimates of Figure 3.13.

To understand why these two estimates do not agree, we must go back to the forward problem

formulation. As δ̂p = δ̂pB + δ̂pS , from equations (2.15) and (3.2) we have that

δ̂p = δ̂pB + δ̂pS = U δKB = UB δKB + US,−BLB δKB +

(
∑

j

US,j

)
δKB, (3.9)

where j = BS,BB, SS, SB. Because UB = −US,−BLB, we have

U =
∑

j

US,j. (3.10)

Thus we obtain from δK
est

= U
†
(δ̂pB + δ̂pS) and δK

est
B = U

†

B δ̂pB +
(∑

i U
†

S,i

)
δ̂pS:

δK
est

=

(
∑

j

U
†

S,j

)
δ̂pB +

(
∑

j

U
†

S,j

)
δ̂pS (3.11)
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δK
est
B = U

†

B δ̂pB + U
†

S,−BLB δ̂pS +

(
∑

j

U
†

S,j

)
δ̂pS (3.12)

where i = BS,BB, SS, SB,−BLB and j = BS,BB, SS, SB. We see that, besides the terms

already known, some new cross-terms come into play in the expression of the estimate δK
est

:

U
†

S,j δ̂pB. We are going to refer to these cross-terms as δK
est
j(B) indicating that these are components

of the total bulk-modulus estimate (δK
est

) obtained by backprojecting the background residual

(thus, the index (B)) with the subkernel US,j .

In Figure 3.14, we analyse the components of δK
est

in eq. (3.11) (δK
est
B , in eq. (3.12), was

already displayed in Figure 3.13, lower-left corner). The first conclusion, comparing the last two

estimates, is that the decomposition in equation (3.11) correctly accounts for all components of

δK
est

: the first four estimates of Figure 3.14 correspond to the first sum in the right-hand side; and

the last four estimates of Figure 3.12 correspond to the second sum. Nevertheless, the one relevant

contribution among those resulting of background residual backpropagation – first four estimate of

the Figure – is δK
est
BB(B) = U

†

S,BB δ̂pB which, in this case, is exactly the same as δK
est
B,B = U

†

B δ̂pB.

Therefore the actual difference between δKest
B and δKest is the presence (or not) of the contribution

δK
est
B,−BLB which, if present, cancels the migration- related contribution δK

est
B,BB .

3.3.3 Experiment 3: Constant background perturbation of Model II,

forward decomposition

In the first experiment with this model, we kept the scatterers in place and introduced a 10%

perturbation to the complete background part of Model II, i.e., δKB 6= 0 and δKS = 0. As in the

previous experiment, this yields a perturbation in both the background and singular wavefields.

We fired a single source and recorded the calculated wavefields at two control receivers (black

star and triangles in Figure 3.2, respectively). The control receivers are named cr154 (above the

scatterers) and cr283 (below the scatterers).

First, we compare the true and estimated values of the wavefield perturbations and its compo-

nents at the control receiver. In this experiment, we are focusing our analysis on the response at

cr154.

The first contribution to be studied is the background-wavefield residual δpB. We observe a

very good match between waveforms at receiver cr154 (Figure 3.15) located relatively close to the

source. There are, though, some small fluctuation in the linearised residual δpB (blue line) at 0.15
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Figure 3.15: EXPERIMENT 3. Linearised background-wavefield residuals δpB (blue line) evalu-
ated at cr154 as compared to the true ones (red line), δptrue

B .

(right after the main signal), 0.50 and 0.70 s. These are none but the residual reflections at the top

border, bottom and right borders (overlapping), and left border, respectively, despite the absorbing

bondaries conditions used in the modeller.

Next, we address the singular-wavefield residual δpS and its eight components due to perturba-

tions of the background model.

We start by analysing the terms δpS,−BLB and δpS,BBB. An indication of the importance of

each contributing term is the energy it carries. Table 3.3 shows the energy carried by each of the

eight terms contributing to the singular residual observed at cr154 as measured by means of its

L2-norm. The table shows that the most energetic contributions correspond to single-scattering

terms represented by these two terms. But this is by no means a rule. Here, as in Experiment 1,

we can see that these terms are related to the background residual rather than to the singular one.

If, by any reason, the background residual carries little energy, so will these terms or, at least,

the estimate δpS,−BLB. However, differently from the previous forward experiment, their summa-

tion, δpS,−BWB, has small but non-negligible contribution (Figure 3.16, last trace). This happens

because in this example the background perturbation that overlaps the singular part of the model

(scatterers) lies within the Fresnel zone of the complete non-perturbed wavefield. Nevertheless, its

contribution is secondary.

As seen in Experiment 1, we expected the terms δpS,−−BLS and δpS,bVS + δpS,bVB (first two

traces of Figure 3.17) to cancel each other, although, due to numerical issues already discussed,

this does not happen. As before, we normalise both terms to their respective maximum value and

compare them (last trace of the same figure). The match, although good, is not as perfect as seen in

the last trace of Figure 3.9 indicating that numerically they do not cancel each other out completely.

However, in order to support that this fact is due to numerical issues rather than a theoretical flaw,

we can compare δptrue, δp (evaluated with eq. (2.14)), δpB + δpS (evaluated with eq. (2.25) and all
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Figure 3.16: EXPERIMENT 3. Terms related to single-scattering effects at the medium perturba-
tions evaluated at cr154 (blue lines): δpS,−BLB (top), δpS,BBB (centre), and their sum (bottom). The
red line true singular residual δptrue

S . Separately, δpS,−BLB and δpS,BBB carry the largest energy.
Their sum, δpS,−BWB, demonstrates that they are approximately complementary.

terms of eq. (2.33) respectively) and δpB + δpS (evaluated with eq. (2.25) and all but the 1st, 2nd

and 7th terms of eq. (2.33) respectively). This is shown in Figure 3.18. When δpS,BLS , δpS,bVB and

δpS,bVB are not taken into account the match between δp and δpB + δpS is close to perfect.

Therefore, hereafter, we refer only to the terms δpS,i with i = BBS,BBB, SBS, SBB,−BLB

as the background-dependent contributions to the singular residual.

That leaves the last three terms, δpS,BBS , δpS,SBS and δpS,SBB as the most important contribu-

tions to the total singular-wavefield residual δpS . The upper three parts of Figure 3.19 compare

these source-side multiple-scattering contributions (blue lines) individually to δptrue
S (red lines).

We see that the contributions δpS,BBS and δpS,SBB do similar jobs trying to match the true singular

residual. The strong multiple-scattering contribution δpS,SBS apparently plays a secondary role.
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Term L2-norm (×10−5) Term L2-norm (×10−5)
δpS,BBB 387.59

}
9.65

δpS,BBS 65.40
δpS,−BLB 386.67 δpS,SBS 17.27
δpS,SBB 80.32 δpS,bVB 2.38
δpS,−BLS 70.59 δpS,bVS 1.64

Table 3.3: Experiment 3: L
2-norm as a measure of energy of all observed terms at cr154. The

terms are sorted in descending order of energy. The terms related to single scattering effects are
the strongest, followed by the ones related to multiple-scattering. The braces with attached values
show the energy of the corresponding summed traces, indicating destructive interference of the
individual contributions (see also Figures 3.16).

Figure 3.17: EXPERIMENT 3.: First two traces from top to bottom: δpS,−BLS and δpS,bVB+δpS,bVS ,
respectively. In these traces, δptrue

S is depicted in red lines for comparison. The last trace show
both δpS,BLS (black line) and δpS,bVB + δpS,bVS (dark green line) contributions normalised to their
respective absolute maximum value.
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Figure 3.18: EXPERIMENT 3. Comparing δptrue (red line) with evaluated counter-parts at cr154.
In black, δp (evaluated with eq. (2.14)); in dark green, δpB + δpS (evaluated with eq. (2.25) and all
terms of eq. (2.33) respectively); and in blue, δpB + δpS (evaluated with eq. (2.25) and all but the
1st, 2nd and 7th terms of eq. (2.33) respectively). The blue and black lines are indistinguishable.

The last trace of Figure 3.19 demonstrates that the sum of the individual contributions δpS,BBS and

δpS,SBB carry practically all the information contained in the sum of all five contributions.

The main conclusion from this experiment is that the multiple-scattering contributions to the

perturbed wavefield can carry important information on the perturbation of the background model.

Therefore, it might be very helpful to include the singular-part information into the reference

model, even for an inversion of the background model only.

3.3.4 Experiment 4: Perturbing the scatterers’ position of Model II,

forward decomposition

Here, in opposition to the previous experiment, we kept the background of Model II unchanged

and perturbed the singular part by randomly dislocating the scatterers up to 6 m in both the vertical

and horizontal directions. Figure 3.20 shows the normalised values of the medium perturbations,

where a value of -1 indicates the strongest reduction in velocity and +1 the strongest increase. In

other words, in this experiment we have δKB = 0 and δKS 6= 0.

According to equation (2.44), this yields a perturbation only of the singular wavefield as

[
δ̂pB

δ̂pS

]
=

[
0(∑

j US,j

)
δKS

]
, (3.13)

with j = BSB,BSS, SSB, and SSS. These individual contributions correspond to the cartoons

in Figures 2.4j to 2.4m. Source and control receivers for the single-shot modelling are in the

same position as in the constant background perturbation experiment (black star and triangles in
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Figure 3.19: EXPERIMENT 3. Multiple-scattering contributions (blue lines), from top to bottom:
δpS,BBS , δpS,SBB and δpS,SBS . These are the terms that carry most of the energy of the singular
residual δpS . In the last trace we can see the summation of the first two traces depicted above
(dark green line) and the δpS evaluated with all five contributions (BBB, SBB, SBS, BBS and
−BLB). In all figures, δptrue

S is depicted in red lines for comparison.

Figure 3.2). In this experiment we analyse the wavefield residuals at cr154.

Figure 3.21 compares the decomposed singular-wavefield residual δpS (blue line) to its unde-

composed counterpart δp = δpS (black line) and to the true residual δptrue
S (red line) calculated by

the difference of the wavefields in the perturbed and unperturbed models. Since in Experiment 4
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Figure 3.20: EXPERIMENTS 4 AND 5. Only the singular part of the model is perturbed, i.e.,
δKS 6= 0. This is achieved by modifying the vertical and horizontal coordinates of the scatterers
randomly within a given range. The cool (blue) spots show the unperturbed positions, while the
hot (red) ones tell us the new positions. The intensity of the spots is related to the magnitude of the
perturbation. The green background corresponds to no perturbation.

the total model perturbation δK is equal to the singular-part perturbation δKS , we have δpB = 0

and, therefore, the true total residual δptrue equals the true singular residual δptrue
S . The good match

between δpS and δptrue
S indicates that the Born approximation is valid in this situation, as expected.

In Figure 3.22, we see all four terms that contribute to δpS at cr154. As we can see, in terms of

energy, all of them are of the same order, δpS,SSS being a little weaker than the other three. None

of the contribution cancels another one, and their sum yields a good match with the true singular

residual (Figure 3.21, blue line). The individual best match is doubtlessly achieved by the single-

scattering term δpS,BSB (Figure 3.22, top), but the importance of the other terms to improve the

match with the true residual is visible.
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Figure 3.21: EXPERIMENT 4. Traces evaluated at cr154. Total residual, δp, given by equa-
tion (2.14), in black, and singular-wavefield residual, δpS , equation (2.32), in blue, match almost
perfectly. Good match between linearised and true residual, δpS (in blue) and δptrue

S (in red) indi-
cates the good quality of the Born approximation in this case, which is a consequence of the small
perturbations in the model.

3.3.5 Experiment 5: Perturbing the scatterers’ position of Model II,

backprojecting residuals

In this experiment, using the same unperturbed and perturbed models of the previous exper-

iment, we estimate the total model perturbation δK which, as mentioned before, is equal to the

singular-part perturbation δKS . Therefore, we have δpB = 0 and the true total residual δptrue

equals the true singular residual δptrue
S . Thus, this is the residual we need to backproject in this

experiment. We simulated 44 shots and recorded the wavefields at a receiver array surrounding

the scatterers (white stars and triangles in Figure 3.2 respectively). According to eq. (3.7), the

bulk-modulus estimates are then given by

[
δKest

B

δKest
S

]
=

[ ∑
i U

†

B,iδ̂p
true
S∑

j U
†

S,j δ̂p
true
S

]
, (3.14)

where the summation indices i and j take the values explained in connection with equation (3.7).

Figure 3.23 compares δKest
S to the bulk-modulus perturbation estimate δKest obtained with the

undecomposed approach using the first equation of (2.49). As expected, the summation of the four

terms yielding δKest
S (Figure 3.23, bottom) almost exactly leads to the same result as the total bulk-

modulus perturbation estimate, δKest (Figure 3.23, top). This indicates that the decomposition was

successful in the sense that the summation of all components recovers the complete estimate. This

71



Numerical Experiments

Figure 3.22: EXPERIMENT 4. All four terms that contribute to the total singular residual at cr154.
From top to bottom: δpS,BSB, δpS,SSB, δpS,BSS , δpS,SSS . The single-scattering term, δpS,BSB,
accounts for almost all of the complete singular residual.

was expected since δpB = 0 which, from eq. (3.11), yields

δK
est

=

(
∑

j

US,j

)
δ̂pS = δK

est
S . (3.15)

But when we compare δKest
S (Figure 3.23, bottom) with the true perturbation δKS (Figure 3.20)
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Figure 3.23: EXPERIMENT 5. Backprojecting the total (singular) wavefield residual, δptrue =
δptrue

S . Cartoons indicate the (sub)kernels used. Top: Bulk modulus perturbation estimate, δKest,
obtained with the first equation of (2.49). Bottom: Singular part of bulk modulus perturbation
estimate, δKest

S , obtained with the second equation of (3.14). Colour scale clipped at 0.6 for better
comparison.

we see that the estimate is somewhat far from the true perturbation.

To better understand this issue, we must inspect each contribution separately. Figure 3.24

displays all four of them. Comparing δKest
S,BB with δKS (Figure 3.20), we see that the single- scat-

tering contribution alone gives a better perturbation estimate. In Figure 3.25, top, we can see the

the estimate δKest
conv which is traditionally used when performing conjugate gradient FWI. Compar-

ing this estimate with the single-scattering contribution δKest
S,BB (displayed also in Figure 3.25, top,

for better comparison) we can observe that the former gives an even better image when compared
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Figure 3.24: EXPERIMENT 5. Each one of the contributions to the singular perturbation estimate.
From top to bottom: δKest

S,BS , δKest
S,BB , δKest

S,SS and δKest
S,SB .
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Figure 3.25: EXPERIMENT 5. Top: Singular part of Bulk modulus estimate, δKest
S,BB , obtained with

the single-scattering related kernel.Center: Conventional Bulk modulus estimate, δKest
conv, obtained

with the background-wavefield related kernel. Note that these estimates are very similar to the true
perturbation observed in Figure 3.20, the convetional one being a little better. Bottom: Background
bulk-modulus estimate, δKest

B , obtained with first equation of (3.14) (residual leakage). Colour
scale clipped at 0.6 for better comparison.

75



Numerical Experiments

with the true perturbation δKS (Figure 3.20). This is not by chance. Many works (Mora, 1987,

1988; Jannane et al., 1989; Pratt, 1999) show that reflection data are able to properly resolve only

the high frequency information of the model with the single- scattering term. Results like this one

motivate the conventional choice of letting the background medium alone represent the reference

medium. Its high quality is expected for this example, because the assumption that the background

medium is fully known and all perturbations only affect the singular part, is exactly satisfied.

Finally note that in this experiment, only δKest
S should be non-zero. However, we see from

eq. (3.14) that δKest
B look quite similar to δKest

S . Numerical evaluation confirms that δKest
B is indeed

non-zero, too (see Figure 3.25b). This is a consequence of residual information leakage since δpS

is generated by a singular-part perturbation only. Surprisingly, this estimate is way more focussed

and clean from artefacts than all the other estimates, although its polarity is reversed.

Residual leakage occurs because the inversion uses the adjoint operation instead of the inverse.

In the estimate of δKB, the dominant contributions are δKest
B,BB (Figure 3.25, top) and δKest

B,−BLB.

They are constructed with background wavefields both in the source- and receiver-sides. These

contributions cancel each other except at scatterer positions, because in the former the scale factor

of the backscattering mechanism is 1
K2

0

and in the latter 1
K2

B

. Since in our example K0 ≥ KB,

the estimate values in δKest
B,−BLB are boosted at the scatterer positions which explains the polarity

and apparent focussing of the leakage estimate.What we actually see is basically the modified

scattering potential WK (see Appendix D).

3.3.6 Experiment 6: Lens-shaped background perturbation of Model III,

forward decomposition

For the next two experiments we kept the singular part unperturbed and introduced a spa-

tially limited (lens-shaped), relatively strong background perturbation, as shown in Figure 3.26.

Again, we have perturbations in both the background and singular wavefields according to eq. (3.2).

Source and control receiver distribution in this particularly experiment are the same used in Sec-

tion 3.3.3.

We are going to analyse the response at both control receivers. Receiver cr154 records almost

exclusively backscattered wavefields, because the Fresnel zone of the direct arrival does not cross

the lens-shaped perturbation (we say this control receiver is in the backscattering domain). Con-

versely, receiver cr283 records transmitted and forward scattered energy (it is in the transmission

domain).
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3.3 Experiment gallery

Figure 3.26: EXPERIMENTS 6 AND 7. Perturbation in the bulk-modulus background model, δKB.
The scalebar shows, in percentage, the perturbation magnitude.

Figure 3.27: EXPERIMENT 6. Comparison between the total wavefield residual, δp (black lines)
and sum of background and singular residuals, δpB + δpS (blue lines). Top: Evaluated at control
receiver cr154. Bottom: Evaluated at control receiver cr283.
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cr154 cr283

Term L2-norm (×10−6) Term L2-norm (×10−5)
δpS,SBB 339.28 δpS,SBB 147.34
δpS,BBS 262.27 δpS,BBS 175.72
δpS,SBS 214.88 δpS,SBS 100.91
δpS,BBB 55.21 }

53.21
δpS,−BLB 330.81 }

38.70
δpS,−BLB 26.48 δpS,BBB 294.00

Table 3.4: Experiment 6: L2-norm as a measure of energy at cr154 and cr283. The braces indicate
summation of the related traces, the value attached to them being the energy of the resulting trace.

Figure 3.27 compares total linearised wavefield residual (black lines) with the sum of all non-

zero contributions of its decomposed counterpart δpB + δpS (blue lines) and the true residual

δptrue (red lines) at control receivers cr154 and cr283. We see, at a first look, that at both control

receivers the summation δpB + δpS and the evaluated residual δp match nicely; and both are a

good approximation to the true residual. As expected at a receiver in the backscattering domain,

the amplitudes of the first arrivals at cr154 are of the same order of magnitude as coda. On the

other hand, at the transmission-domain receiver cr283 the first arrival is one order of magnitude

greater then the coda.

To see if Experiment 6 confirms the results of Experiment 3, we compiled Table 3.4 with the

wavefield energies for all contributions at both control receivers. As before, the negative interfer-

ence of the single-scattering terms reduces their combined importance, leaving δpS,SBB, δpS,BBS

and δpS,SBS as the most important contributions. To be noted is the different importance of the

single-scattering terms δpS,BBB and δpS,−BLB:

• At cr154, where only scattering information due to perturbation reaches the receiver, they

carry little energy. Moreover, their sum yields a value very close to the the energy carried

by δpS,BBB alone. This means that the small energy carried by th contributions is related

to the background residual; most of it is related to the interference term δpS,BWB (see also

Figure 3.28).

• At cr283, where transmitted energy is recorded, these are the most energetic terms. However,

most of the energy, which is related to the background residual, cancels when these terms

are summed, leaving only the part related to the interference term which is of the same order

of magnitude as at cr154 (see also Figure 3.29).
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Figure 3.28: EXPERIMENT 6. Single-scattering terms evaluated at control receiver cr154 (blue
lines): δpS,BBB (top), δpS,−BLB (centre), and their sum δpS,BWB, compared to the true singular-
wavefield residual δptrue

S (red lines). As expected, these terms are very small because the Fresnel
zone of the direct wavefield does not intersect with the lens-shaped perturbed area. Compare with
Figure 3.29.

In both cases, however, the combined term δpS,BWB is a order of magnitude smaller than the most

important terms δpS,SBB and δpS,BBS .

Figures 3.30 and 3.31 compare the most important multiple-scattering contributions δpS,SBB,

δpS,BBS and δpS,SBS (blue lines) individually to δptrue
S (red lines). We see that different parts of

the trace are matched by different contributions. However, it is not possible to infer a general rule

so as to which contribution will appear at which part of the trace. For instance, at cr154, the first

part of the trace is well matched by δpS,SBB; the central part by δpS,BBS; and the coda by δpS,SBS

(see Figure 3.30). At cr283, different contributions match different parts (see Figure 3.31). The

best guess is that the distribution is determined by the general disposition of the scatterers with
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Figure 3.29: EXPERIMENT 6. Single-scattering terms evaluated at control receiver cr283 (blue
lines): δpS,BBB (top), δpS,−BLB (centre), and their sum δpS,BWB, compared to the true singular-
wavefield residual δptrue

S (red lines). Each of these terms carries much energy, but their sum con-
tributes very little to the singular-wavefield residual. Compare with Figure 3.28.

respect to the sources and receivers. Due to its strong multiple-scattering nature, the contribution

δpS,BBS tends to determine the coda of the trace, while δpS,SBB or δpS,BBS usually define earlier

and stronger events.

3.3.7 Experiment 7: Lens-shaped background perturbation of Model III,

backprojecting residuals

Here, we backproject the true background and singular residuals, δptrue
B and δptrue

S generated

in the above forward decomposition experiment with a lens-shaped background perturbation only,

i.e., δK = δKB. As we will see, this perturbation yields the most significant result of our set of
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Figure 3.30: EXPERIMENT 6. Terms with the most important contributions to the singular residual
evaluated at cr154. From top to bottom: δpS,BBS , δpS,SBB and δpS,SBS .

experiments, namely that meaningful information on the background perturbation can be extracted

from the singular-wavefield residual. The perturbation estimates are calculated with the help of

equation (3.7).

Figure 3.32 displays, from top to bottom: the total perturbation estimate, δKest of equation

(2.49); the two contributions, δKest
B,B and δKest

B,S of equation (3.7); and finally their sum. The first

thing to be noted is that the sum δKest
B,B + δKest

B,S does not resembles the total perturbation estimate

δKest. This means that the cross-term contributions δKest
j(B) (first sum of the right hand-side of

eq. (3.11)) are not negligible. In Figure 3.33 we can see the sum of these cross-terms and how,

when taken into account, they lead to the exact total perturbation estimate δKest.

Secondly, we see in Figure 3.32 that both δKest
B,B and δKest

B,S fairly account for the true per-

turbation δKB. Doubtless, the estimate δKest
B,B from the background residual (second estimate of

Figure 3.32) is the one that best represents the true medium perturbation. The inversion done in
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Figure 3.31: EXPERIMENT 6. Terms with the most important contributions to the singular residual
evaluated at cr283. From top to bottom: δpS,BBS , δpS,SBB and δpS,SBS .

this case is basically a transmission waveform tomography, which is known to recover very well

the low-frequency information, specially when the target region is enclosed by both, sources and

receivers (see, e.g., Pratt and Shipp, 1999; Brenders and Pratt, 2007).

But the really important feature here is that a reasonable background perturbation estimate

δKest
B,S (Figure 3.32, bottom), even better that the total perturbation estimate δKest, can be obtained

from singular-wavefield residuals. When transmission tomography fails (surface acquisition, for

example) the background estimate obtained with the singular residual stands as a possible option

(see also Experiment 8, Section 3.3.8).

The most significant contributions to δKest
B,S are δKest

B,BS and δKest
B,SB , displayed in Figure 3.34.

Note that, except for the boundary regions close to sources and receivers, the terms δKest
B,BS and

δKest
B,SB give practically the same estimate. None of the other contributions alone provides an

image of similar quality.
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Figure 3.32: EXPERIMENT 7. Backprojecting residuals. From top to bottom: Bulk modulus
perturbation estimate, δKest, from the total wavefield residual, δptrue (equation (2.49)); Background
bulk-modulus perturbation estimate, δKest

B,B , from background residual, δptrue
B (first contribution in

first equation of (3.7)); Background bulk-modulus perturbation estimate, δKest
B,S , from singular

residual, δptrue
S (second contribution in first equation of (3.7)); and the sum δKest

B,B + δKest
B,S .
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Figure 3.33: EXPERIMENT 7. Backprojecting residuals. Estimates related to eq. (3.11). From top

to bottom:
∑

j δK
est
j(B) =

(∑
j U

†

S,j

)
δ̂pB,

∑
j δK

est
B,j =

(∑
j U

†

S,j

)
δ̂pS and their sum. The last is

the total perturbation estimate δKest, put here for comparison.
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Figure 3.34: EXPERIMENT 7. Backprojecting singular-wavefield residual δptrue
S . Top: Subkernel

UB,BS used for backprojection. Bottom: Subkernel UB,SB used for backprojection. Note the very
strong similarity between both estimates apart from the region delimited by the receiver and source
lines. It suggests a redundancy that might be explored.

The congruence of the two estimates in Figure 3.34 is a consequence of both the sources and

receivers completely enclosing the target region. For a single source-receiver pair, these two con-

tributions are actually complementary (see Figure 3.35). The source where the direct wavefield

originates from is marked with a star. The receiver where the residual is observed and backprop-

agated from is cr283, marked by the triangle in the bottom right corner. In Figure 3.35, top,

subkernel UB,BS is used to backproject residuals and the singularities can be seen as acting as re-

ceivers, i.e., the residuals seem to be backpropagated from there. On the other hand, in Figure 3.35,

bottom, subkernel UB,SB is used. There, the singularities act as sources, i.e., the wavefields seem
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Figure 3.35: EXPERIMENT 7. Backprojecting singular- wavefield residual δptrue
S recorded at cr283

from the source at 1000 m (black star). Top: Subkernel UB,BS used for backprojection. The singu-
larities act as receivers. Bottom: Subkernel UB,SB used for backprojection. Here, the singularities
act as sources. This gives us further insight into the congruence of the parts of Figure 3.34.

to originate from there. Full coverage of sources and receivers around the area of interest and the

proximity among them complete the congruence of the estimates shown in Figure 3.34. This anal-

ysis indicates that surrounding the target area partly with sources and partly with receivers might

be sufficient to recover the perturbations.
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3.3.8 Experiment 8: Lens-shaped background perturbation of Model IV,

backprojecting residuals

In this last example we restrict our analysis to the backprojection problem, for the results of the

forward decomposition problem resemble the ones obtained for cr154 as reported in the forward

decomposition experiment of the Section 3.3.6 (full acquisition geometry). In this experiment, we

restrict the acquisition geometry to investigate the role it plays in the inverse problem.

The next experiment uses the same perturbation as Experiments 6 and 7, i.e., lens-shaped

background perturbation (see Figure 3.26) and the unperturbed Model IV.

Experiment 8: backprojecting Residuals. Figure 3.36 shows the backprojection results together

with the acquisition geometry. Source and receivers are marked as white stars and triangles, re-

spectively. From top to bottom, the parts show the undecomposed result δKest from backprojecting

the total residual in the reference model, the estimate δKest
B,B obtained using only the background-

wavefield residual, and the estimate δKest
B,S using only the singular-wavefield residual.

The restriction of the acquisition geometry strongly affects the estimate from the total residual,

δKest (Figure 3.36, top), which is not as good as the one in Figure 3.32. But it is still better than the

estimate δKest
B,B from the background residual (Figure 3.36, centre) which fails completely. The

reason is that this estimate is based on transmission waveform tomography, where only residuals

of wavefields that originate at one far side and were recorded at the other far side contribute to

the estimate. In other words, in this acquisition geometry, there is not enough far offset for the

background residual to yield a good estimate. This is frequently the case in conventional prac-

tical inversions that operate with a smooth reference model only. Note, however, that estimate

δKest
B,S (Figure 3.36, bottom) from the singular residual provides much better quality even from

this geometry with rather short offsets when compared to δKest. The difference between them

is not explained by the cross-terms δKest
j(B) as seen in the previous experiment. Actually, both

∑
j δK

est
j(B) =

(∑
j U

†

S,j

)
δ̂pB (Figure 3.37) and δKest

B,B (Figure 3.36, centre) contribute almost

nothing to δKest and δKest
B respectively (see eqs. (3.11) and (3.12)). The contribution that make

them differ is δKest
B,−BLB (see Figure 3.38).

In the same way as in the last experiment, we inspect the contributions δKest
B,BS and δKest

B,SB

(Figure 3.39). Although at first sight, they are rather similar to each other, there are some small

but visible differences. They do not resemble each other as closely as the corresponding results in

Figure 3.34 for Experiment 2, because the spatial coverage of the sources differs slightly from that
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Figure 3.36: EXPERIMENT 8. Backprojecting residuals from “surface” receivers. Top: Bulk-
modulus perturbation estimate δKest from total wavefield residual δptrue, Center: Bulk-modulus
perturbation estimate δKest

B,B from background residual δptrue
B , Bottom: Bulk-modulus perturbation

estimate δKest
B,S from singular residual δptrue

S .
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Figure 3.37: EXPERIMENT 8. Cross-term estimate resulting from the sum
(∑

j U
†

S,j

)
δ̂pB.

Figure 3.38: EXPERIMENT 8. Single-scattering contribution δKest
B,−BLB.

of the receivers.

However, as before, the contributions δKest
B,BS and δKest

B,SB provide the best image of a single

contribution, the last being the best one (see Figure 3.39, top and centre top). We compare this

contribution to the single-scattering contribution, δKest
B,BB (see Figure 3.39, centre bottom). This

latter contribution is comparable to the result of the conventional approach (see Figure 3.39, bot-

tom), where the complete true residual δp is backpropagated with a Green’s function of a smooth

background initial model.

It is worthwhile to observe that Experiment 8 is an example where conventional inversion pro-

89



Numerical Experiments

Figure 3.39: EXPERIMENT 8. Bulk-modulus perturbation estimates. From top to Bottom: δKest
B,BS ,

δKest
B,SB , δKest

B,BB and conventional estimate δKest
conv (backpropagation of complete residual δp with

only background model).
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duces a fast-varying sensitivity kernel in the sense of Zhu et al. (2009). This happens because the

conventional approach is based on the assumption that the background is known and all perturba-

tions happen in the scatterers. Thus, the inversion tries to blame the scatterers for all necessary

model updates, even if, as in this example, the error is in the background model.

According to Zhu’s work, when dealing with reflection/scattered data, the occurrence of fast-

varying sensitivity kernels is more frequent for narrower offsets (or reflection angles), while slowly-

varying ones are more often observed in large-offset acquisitions. This is consistent with the results

of our numerical experiments. Fast-varying sensitivity kernels cause slower convergence of the in-

version procedure.

Why the multiple-scattering contribution δKest
B,SB (Figure 3.39, centre top) based in a surface

acquisition of reflection/scattered data is smoother and closer to the undecomposed estimate δKest

when compared to the conventional estimate (Figure 3.39, bottom)? This is an important observa-

tion, because it derives from the very purpose of the decomposition presented we mention before:

the singular wavefield when properly handled can provide information on background perturba-

tions. The singular wavefield origins at the singular component of the medium which acts as

sources enhancing the illumination of the perturbation. In other words, this experiment allows to

conclude that a medium can “illuminate” itself by means of scatterers, so that the need for long

offsets is reduced.

Figure 3.40 shows the contributions from a single pair source-receiver (black star and triangle)

of the same estimates seen in Figure 3.39. The self-illumination of the medium can be clearly

seen when we compare the conventional estimate (Figure 3.40, top) with the other three estimates.

While the perturbation estimates are distributed symmetrically around the Fresnel zone of the

direct source-to-receiver wavefield, in the other images the estimate perturbations are placed in the

scattering area preferably over the perturbed area.

91



Numerical Experiments

Figure 3.40: EXPERIMENT 8. From top to bottom: Single pair source-receiver contributions to
conventional estimate δKest

conv, δKest
B,BS , δKest

B,SB , and δKest
B,BB .
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4. Application: Scattering-based Sensitivity

Kernels for Time-lapse Differential

Waveform Inversion

Over the past few years, time-lapse seismic surveys have become a powerful tool used to mon-

itor the fluid-flow in a producing reservoir. Generally speaking, such a survey consists in acquiring

and analysing multiple seismic data, repeated at the same site over time in order to look for dif-

ferences from which one can infer the changes in the reservoir due to production. This is possible

because, as fluid saturations and pressures in the reservoir change, the seismic reflection properties

change accordingly.

A seismic image contains information on reflections that depends on both the geological struc-

ture and its fluid contents. On single-time images these contributions are coupled and difficult to

separate. The basic approach in time-lapse surveys is to image the changes in the reservoir by

subtracting subsequent time-lapse seismic images of the reservoir from one another. Assuming

that geology is time-invariant during production and that repeatability in the seismic data acqui-

sition is, in some way, assured, the image difference from a time-lapse survey would indicate the

changes due only to the fluid-flow since, to first order, the geology part subtracts out since it is time

invariant (Lumley, 2001).

Recently, full waveform inversion (FWI) has been used as an alternative time-lapse monitoring

tool (Queißer and Singh, 2013; Yang et al., 2011; Zheng et al., 2011). FWI allows the recon-

struction of high-resolution velocity models of the subsurface through the extraction of the full

information content of seismic data (Tarantola, 1984a; Virieux and Operto, 2009). Since the FWI

approach delivers high resolution quantitative images of the macro-scale physical parameter, it

ought to be a good candidate for monitoring applications to reconstruct the parameter variation

through time evolution (Asnaashari et al., 2012).
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Asnaashari et al. (2012) studied the robustness of three different FWI methods applied to

time-lapse problems: differential method, parallel difference method and the sequential difference

method. In the differential method, instead of minimising the difference between the observed

and modelled data, the difference of the data between two sets of data is minimised to obtain the

time-lapse change estimate (Watanabe et al., 2004). The parallel difference method considers inde-

pendent inversion of two subsequent data sets, the so called baseline and monitor data-sets, using a

similar starting model (Plessix et al., 2010). The sequential difference method uses the recovered

baseline model as a starting model for the monitor data inversion.

In this Chapter we apply our scattering-based decomposition to the time-lapse problem, con-

sidering the time-lapse change as a perturbation of the singular part of the model, i.e., perturbation

of the scattering potential. Under the differential-method framework, we demonstrate that the

scattering-based decomposition of the sensitivity kernels allows to take advantage of the illumi-

nation of the time-lapse change due to multiple-scattering phenomena in order to improve the

perturbation estimates from FWI.

4.1 Time-lapse survey as a FWI scattering problem

To apply the decomposition theory developed in this thesis to a time-lapse survey, we think

of the baseline model as decomposed into a background and a singular part. We consider both

parts of the baseline model as known. The background part could be, for instance, the best smooth

velocity model from a conventional inversion technique, and the singular part could be determined

by the reflector positions in the corresponding migrated image. Then, the time-lapse changes can

be considered as (unknown) perturbations to the singular and/or background parts.

The situation is the simplest, if we consider the time-lapse change as a perturbation of the

singular part only. According to equation (2.44), the data difference between baseline and monitor

is then the singular-wavefield residual, i.e., δp = δpS . It means that the data residual δptrue from

the difference between the baseline and monitor surveys is going to be backprojected as δptrue
S

according to eq. (3.7), that is, the model perturbation estimates are

δKest
S =

∑

j

δKest
S,j =

∑

j

U
†

S,j δ̂p
true
S , (4.1)

where j takes the values explained in connection with eq. (3.7).
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4.2 Numerical experiments

(a) B1 (b) B2

(c) M1 (d) M2

Figure 4.1: Center parts of the baseline (a and b) and monitor (c and d) models for Model Sets 1
(a and c) and 2 (b and d).

4.2 Numerical experiments

To test our approach, we have set up four synthetic time-lapse experiments with simple layered

models. These experiments used two sets of baseline and monitor models named as Set 1 (Fig-

ures 4.1a and 4.1c, respectively) and Set 2 (Figures 4.1b and 4.1d, respectively) and two types of

acquisition geometry. The two baseline models are identical except for the velocity contrast at the

deepest interface. In the first model, this interface is a weak reflector and in the second model,

a strong one. The monitor models differ from the baseline models in both sets by a 5% velocity

perturbation in a rectangular lens of 400 m width within the 4th layer. The density was considered

constant in all models (2200 kg/m3). We used two passes of a 20-point triangular moving-average

filter on the bulk-modulus baseline models to create the corresponding background models. The

singular models are the differences between the complete and background models. For each model
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set we performed two experiments with different acquisition geometry at the surface: long and

narrow offsets.

In this study we consider both the background and singular parts of the baseline velocity model

as fully known.

The numerical experiments consisted of the following basic steps:

1. Simulation of the seismic acquisition by modelling the wavefields in the baseline and mon-

itor models. We used the same modeller as in the numerical experiments of the previous

chapter. In the simulations the vertical grid spacing was 2 m, the horizontal grid spacing

was 4 m, and the time-marching step 0.2 ms. The recorded wavefields were then resampled

to a 6 ms interval.

2. Computation of the true singular-wavefield residual, which in this case is identical to the

true full-wavefield residual, i.e., the difference between the wavefields in the monitor and

baseline models.

3. Modelling the wavefield in the smooth background model.

4. Computation of the baseline singular wavefield, i.e., the difference between the wavefields

in the baseline and background models.

5. Backpropagation of the true singular-wavefield residual using the receiver-side reference and

singular wavefields.

6. Determination of the four contributions to equation (4.1) by crosscorrelation of the back-

propagated wavefield residual with the source-side reference and singular wavefields as ex-

emplified in equation (2.51).

7. Stack of the resulting contributions over sources and receivers.

As in Chapter 3, we normalised the total bulk-modulus perturbations estimates to their maxi-

mum absolute value. Other estimates, as also individual contributions, are depicted using the same

scale factor.

4.2.1 Large offset surveys

The first acquisition geometry consisted of 87 shot gather with 726 receivers each, placed at

10 m depth, spaced at 4 m, and covering the distance between 0 m and 2900 m. Sources were

placed at 40 m depth spaced at 32 m, and covering the distance between 80 m and 2832 m earth’s
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4.2 Numerical experiments

(a) δKest
S

(b) δKest
conv

Figure 4.2: SET 1 - LARGE OFFSET. Estimates for bulk-modulus perturbation in the absence
of a strong reflector. (a) Singular part estimate according to equation (4.1); (b) Conventional
perturbation estimate using wave propagation in the background model. The last is substantially
close to contribution δKest

S,BB (see Figure 4.4c, right). Both figures are normalised to their common
maximum for comparison

surface. In other words, the survey was positioned almost symmetrically over the rectangular

perturbation, centred at 1500 m. Figure 4.2 indicates the source positions by white stars and every

10th receiver position by a downward-pointing triangle.

Set 1

In Figure 4.2a, we show the estimate for the singular-part bulk-modulus perturbation in Model

Set 1 with all four contributions according to equation (4.1). For comparison, Figure 4.2b shows the

corresponding estimate from the conventional approach as in eq. (3.8), i.e., the result that would

be obtained from inversion with a smoothed background model. In Figure 4.2 both estimates

are normalised to the same factor which is the maximum value of δKest. We see, then, that the
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(a) δKest
S

(b) δKest
conv

Figure 4.3: SET 1 - LARGE OFFSET. The same estimates seen in Figure 4.2 (δKest
S and δKest

conv) but
now each one is normalised to their own maximum.

amplitude the perturbation estimates in δKest
conv are smaller giving the impression that the artefacts

there are weaker.

We see that in the absence of a strong reflector in the bottom of the model, the conventional

sensitivity kernel gives a satisfactory estimate. One can also argue that it is even better to the

one from the summed contributions. This last one has the time-lapse change better delineated but

shows artefacts (“wings”) connecting the acquisition surface to the time-lapse change.

However when we inspect Figure 4.3 we see that the artefacts are equivalent in both conven-

tional and singular part estimates. But in Figure 4.3 we depicted the very same estimates, each

one now normalised to their own maximum. In this way, we can see that, proportionally, they are

equivalent.

Aside the artefacts (we discuss the futher in the text) we can compare the estimates depicted in

Figure 4.3. Definitely, δKest
S is better than δKest

conv: the perturbation is better delineated, specially

at its top, where the conventional one has an non-desired oscillatory behaviour. As a matter of
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4.2 Numerical experiments

(a) δKest
S,BB (b) δKest

S,BB

(c) δKest
S,BS (d) δKest

S,BB + δKest
S,BS

(e) δKest
S,SB (f) δKest

S,BB + δKest
S,BS + δKest

S,SB

(g) δKest
S,SS (h) δKest

S,BB + δKest
S,BS + δKest

S,SB + δKest
S,SS

Figure 4.4: SET 1 - LARGE OFFSET. Individual contributions to δKest
S are shown in the left column.

In the right column we see the results of succesively summing up the contributions. Thus, the last
one is the result of summing up all four contributions.

99



Time-lapse DWI

fact, the combination of two individual contributions, δKest
S,BS and δKest

S,BB (Figure 4.4c, left) gives,

we believe, the best estimate. δKest
S,BB gives nice estimate of perturbation (format of the retan-

gle correctly recovered) and δKest
S,BS delineates top and bottom, consistent of being a scattering

contribution.

The artefacts in both estimates shown in Figure 4.3 are very similar. The actual difference is

that in δKest
S the artefacts show abrupt amplitude changes while in δKest

conv they are smoother. This

is easily explained by the weighting factors of the scattering operator: 1
K0

and 1
KB

. Let us compare

the estimates δKest
conv (Figure 4.2b) and δKest

S,BB (Figure 4.4a). The only difference between them is

the different factor used. Comparing the two estimates we can see the imprint of the 1
K0

in δKest
S,BB .

As expected, the intensity of the artefacts decreases as we go deeper because the factors get smaller.

The factor 1
KB

decreases in a smooth fashion, while 1
K0

contains the full layer information. Note

that their magnitude are comparable.

These artefacts are also present in the other contributions. In Figure 4.4 we see each of the in-

dividual contributions (left column) and the results of successively adding them up (right column).

We can see that these artefacts are comparable in δKest
S,BS and δKest

S,SB (Figures 4.4c and 4.4e) as in

the single scattering contribution.

The cause of the artefacts is the uneven illumination due to the combination of surface acqui-

sition and a horizontally stratified medium. In Figure 4.5 we can see the norm of the residual (as a

measure of the energy) at the receivers as a function of shots. As expected, due to horizontal strat-

ification of the medium, for shots at the left side of the model (around shot number 20) the most

energetic residuals are recorded between 2000 and 2500 m. In the reverse case, most energetic

residuals are recorded between 500 and 1000 m. These two ranges are the exact location of the

artefacts.

Set 2

The corresponding results for Model Set 2 with the strong bottom reflector are depicted in Fig-

ure 4.6. While the estimate from all contributions (Figure 4.6a) together looks similar to the one in

Figure 4.2a, the conventional estimate is visibly different (compare Figure 4.2b and 4.6b), indicat-

ing that in this situation, the use of a smooth background model to simulate the backpropagation

is insufficient. We conclude that in this case, multiple-scattering contributions carry important in-

formation that cannot be neglected. We may think of the scatterers contributing to the inversion by

back-illumination. There are two overlapping V-shaped features (see Figure 4.6c) with negative
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4.2 Numerical experiments

Figure 4.5: SET 1 - LARGE OFFSET. Top: the norm of the residual (as a measure of the energy)
at the receivers (horizontal axis) as a function of shots (vertical axis). Bottom: Result of stacking
(integrating) the above function over sources. The energy of the residuals concentrate between 500
to 1000 m and 2000 to 2500 m.

amplitude superimposed in the figure. These features are due to the background wavefield trying to

deal with the inverted-phase residual due to the deep reflection at the strong reflector. Since reflec-

tions are not accounted for in the smooth background model, they appear in the wrong place, with

the wrong sign. Note that they coincide nicely with the ray paths of the main primary reflections

(see Figure 4.6c).

These features are also present in the background contribution δKest
S,BB (see Figure 4.7a) which

is also single-scattering based. But the multiple-scattered based contributions (see Figures 4.7c,

4.7e and 4.7g) correct this problem. For in the same regions they show positive values which

cancel out the negative parts of δKest
S,BB . This become evident when we inspect the right column

of Figure 4.7 and see the effect of successive addition.

Here, even more than the previous example, the estimate resulting from the sum of δKest
S,BB and

δKest
S,BS seems to give the best estimate as we can verify in Figure 4.7d.

The artefacts are present in the estimates as before. In Figure 4.6a we can see that the width of

each wing of the artefact is larger then the previous example. However, the cause is still the same.

In Figure 4.8, the perturbation illumination is increased with the aid of the strong bottom reflector
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(a) δKest
S

(b) δKest
conv

(c) δKest
conv with reflection ray paths

Figure 4.6: SET 2 - LARGE OFFSET. Estimates for bulk-modulus perturbation in the presence
of a strong reflector. (a) Singular part estimate according to equation (4.1); (b) Conventional
perturbation estimate using wave propagation in the background model. The last is substantially
close to contribution δKest

S,BB (see Figure 4.7c, right); (c) Same as before, but with dashed ray paths
indicating the back-illumination from the strong reflector.
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(a) δKest
S,BB (b) δKest

S,BB

(c) δKest
S,BS (d) δKest

S,BB + δKest
S,BS

(e) δKest
S,SB (f) δKest

S,BB + δKest
S,BS + δKest

S,SB

(g) δKest
S,SS (h) δKest

S,BB + δKest
S,BS + δKest

S,SB + δKest
S,SS

Figure 4.7: SET 1 - LARGE OFFSET. Individual contributions to δKest
S are shown in the left column.

In the right column the result of summing up the current contribution with all the previous ones.
which makes, for instance, the first estimate in the left to be no more than δKest

S,BS; on its turn, the
last one is the result of summing up all four contributions.
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Figure 4.8: SET 2 - LARGE OFFSET. Top: the norm of the residual (as a measure of the energy)
at the receivers (horizontal axis) as a function of shots (vertical axis). Bottom: Result of stacking
(integrating) the above function over sources.

indicated by the enlargement of the “bright spots” in the graphic.

4.2.2 Narrow offset surveys

It is known in the literature on FWI that the acquisition geometry has a strong influence on the

inversion result. When inversion is done with enclosing source and receiver arrays, it behaves as in

transmission tomography, which is known to recover very well the low-frequency information (see,

e.g., Pratt and Shipp, 1999; Brenders and Pratt, 2007). On the other hand, according to Zhu et al.

(2009), when dealing with reflection/scattered data, narrower offsets (or reflection angles) may lead

to fast-varying sensitivity kernels, in opposition to slow-varying ones in large-offset acquisitions.

Fast-varying sensitivity kernels cause slower convergence of the inversion procedure.

To investigate this effect in the case of the decomposed inversion, we repeated the above ex-

periments with a shorter survey. The new acquisition geometry consisted of 48 shot gathers with

251 receivers each, and covering the distance between 0 m and 1000 m. Sources were spaced at

20 m and covering the distance between 48 m and 948 m earth’s surface, Thus, the survey was po-

sitioned almost symmetrically over the rectangular perturbation, now centred at 500 m. All other
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(a) δKest
S

(b) δKest

Figure 4.9: SET 1 - NARROW OFFSET. Narrow-offset estimates of the perturbation in the absence
of a strong reflector. (a) Singular estimate with all contributions; (b) conventional estimate.

parameters were the same as in the first survey. Figure 4.9 indicates the source positions by white

stars and every 10th receiver position by a downward-pointing triangle.

Figure 4.9 shows the resulting perturbation estimates for the model with the weak bottom

reflector. To avoid problems with inversion near the sources we muted down to a depth of 90 m.

105



Time-lapse DWI

(a) δKest
S,BB (b) δKest

S,BB

(c) δKest
S,BS (d) δKest

S,BB + δKest
S,BS

(e) δKest
S,SB (f) δKest

S,BB + δKest
S,BS + δKest

S,SB

(g) δKest
S,SS (h) δKest

S,BB + δKest
S,BS + δKest

S,SB + δKest
S,SS

Figure 4.10: SET 1 - NARROW OFFSET. From top to bottom, left column: contributions to singular
perturbation estimate δKest

S,BS , δKest
S,BB , δKest

S,SS and δKest
S,SB . Right column: Cumulative summation

of individual contributions.
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Figure 4.11: SET 1 - NARROW OFFSET. Summation of the multiple-scattering contributions
δKest

S,SS and δKest
S,SB.

Set 1

Figure 4.9a shows the narrow-offset estimate for the singular-part bulk-modulus perturbation

in the absence of strong reflector. Figure 4.9b depicts the corresponding conventional estimate. As

expected, the figures display fast-varying estimates due to the narrow-offset illumination. In the

time-lapse perturbation area, the conventional estimate is rather similar to the four-contributions

estimate. Actually, it can be considered a better estimate because it presents fewer artefacts than

the four-contribution estimate.

In Figure 4.10 we see in the left column the four individual contributions to the singular esti-

mate, δKest
S,BS , δKest

S,BB , δKest
S,SS , δKest

S,SB and their successive sums (right column). We see that the

dominant term is the single-scattering based contribution δKest
S,BB . This characterises the narrow-

offset case. We can compare this result with Figure 4.4, left column, where we can see the in-

dividual contributions in the long-offset case. There, in contrast, we see that the weight of each

contribution is more balanced.

Although much weaker than the dominant contribution, the multiple-scattering based contri-

butions yield estimates that will definitely lead to a better convergence in the inversion. In Fig-

ure 4.11, we see the sum of two multiple-scattering based contributions: δKest
S,SS and δKest

S,SB .

There we see that the top and bottom of the time-lapse perturbation are nicely delineated. More-

over, the overall estimate does not present the fast-varying behaviour commonly seen in surveys
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(a) δKest
S

(b) δKest
conv

Figure 4.12: SET 2 - NARROW OFFSET. Narrow-offset estimates of the perturbation in the presence
of a strong reflector. (a) Singular estimate with all contributions; (b) conventional estimate.

like this.

The drawback of the multiple-scattering contributions is the introduction of artefacts not present

in the conventional result.

Set 2

Figure 4.12a shows the narrow-offset estimate for the singular-part bulk-modulus perturbation

for the model with the strong bottom reflector. Figure 4.12b depicts the corresponding conventional

estimate. The latter, in the same way as in the previous example, displays fast-varying estimates

due to the narrow-offset illumination. However, the four-contributions estimate is a bit better with
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Figure 4.13: SET 2 - NARROW OFFSET. Summation of the multiple-scattering contributions
δKest

S,SS and δKest
S,SB.

the strong reflector present, indicating the importance of self-illumination. The multiply-scattered

information improves the perturbation estimates, providing a less varying and more delineated

response. This indicates that the multiple-scattering contribution perceives both the low- and high-

frequency content of the perturbation.

But the best result is seen in Figure 4.13, which shows the summation of the contributions to

the singular estimate calculated with the source-side singular wavefield: δKest
S,SB and δKest

S,SS . We

see that these contributions alone do a better job then the conventional estimate of Figure 4.12b,

nicely delineating the top and bottom of the medium perturbation. The reason is that in this case

not the source array alone, but also the singularities contribute to the source-side wavefield in the

kernel. Physically, this can be interpreted as the strong reflector illuminating the time-lapse change

from bottom to top.

Again, the drawback is the introduction of artefacts that come from the multiple-scattering

contributions as can be verified inspecting Figure 4.14.

These narrow-offset experiments demonstrate that it is even more important than for long offset

surveys to include the singular part into the model used for backpropagation, since it enhances the

self-illumination due to scattering and leads to better perturbation estimates.
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(a) δKest
S,BB (b) δKest

S,BB

(c) δKest
S,BS (d) δKest

S,BB + δKest
S,BS

(e) δKest
S,SB (f) δKest

S,BB + δKest
S,BS + δKest

S,SB

(g) δKest
S,SS (h) δKest

S,BB + δKest
S,BS + δKest

S,SB + δKest
S,SS

Figure 4.14: SET 2 - NARROW OFFSET. From top to bottom, right column: contributions to
singular perturbation estimate δKest

S,BS , δKest
S,BB , δKest

S,SS and δKest
S,SB . Left column: Cumulative

summation of individual contributions.
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5. Final Remarks

We have presented a decomposition of standard full-waveform inversion (FWI) sensitivity ker-

nels into several sub-kernels. We understand as standard FWI the least-square gradient-based

nonlinear iterative local optimisation of the full recorded data where the sensitivity kernels are

used to evaluate the gradient of the objective function in order to define the descending direction

in the minimisation process. For this purpose, we have developed a scattering formulation that

decomposes the model parameters into a background and a singular component. We assume that

the model decomposition is based on its spatial-frequency content, that is, the smooth background

model carries the low-frequency content while the singular component carries the high-frequency

information. Both model parts are then perturbed instead of considering the scattering potential

as a perturbation of the background and inverting for it. As a consequence, the single sensitivity

kernel of the standard formulation of FWI is decomposed into a sum of subkernels.

By including a singular part in the unperturbed reference model, the present approach de-

scribes multiple-scattering phenomena. Nonetheless, the resulting subkernels are still based on

the Born approximation, in the sense that the residuals are predicted based on single-scattering of

the unperturbed wavefields at the model perturbations, which thus must be small compared to the

unperturbed model parts. Once the model component perturbations lie in the range of validity of

the decomposition approximation, the superposition of all our sub-kernels yields the total Fréchet

gradient as in the standard formulations of FWI. The asset of the decomposition is that it uncovers

the underlying different levels of interaction between the model components within the data that

else are hidden in the sensitivity kernel for the total wavefield, allowing to select the most useful

ones depending on the problem and/or model decomposition used. We have used the decomposi-

tion to analyse the interplay of the background wavefield and the internally multiple-scattered or

reflected wavefield in each subkernel to understand their role in the forward problem.

The forward-problem numerical experiments showed that the linearised total-wavefield resid-

ual δp can be accounted as a summation of ten different contributions: one component to the
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background wavefield residual and nine components to the singular-wavefield residual from which

five depend on background perturbations and four depend on singular-part perturbations. Each

contribution is symmetrical to another one or to itself. In our mathematical development of the

decomposition we found three non-symmetrical contributions which, latter, turned out to cancel

each other.

The importance of each component of the singular-wavefield residual varies from case to case.

But, in general, we verified that when the background perturbations are present, the main contri-

butions come from the multiple- scattering term δpS,BBS and δpS,SBB. The single-scattering term

δpS,BBB carries information, though not only, on the background-wavefield residual already ac-

counted for by the term δpB. This information is cancelled by the component δpS,−BLB and the

remaining information is carried by the superposition term δpBWB. This last term is relevant only

when the background perturbation overlaps the singular component of the model within the Fres-

nel zone of the total wavefield. When it does, it usually has the same order of magnitude than the

strong multiple-scattering term δpS,SBS . When singular-part perturbations are present, there is not

a most dominant component in term of energy (as a matter of fact the strong multiple-scattering

component carries a little less energy than the others as it might be expected). But the single-

scattering component is the single most representative in term of waveform.

The backprojection numerical experiments helped us to understand the role and importance

of including an estimate of the singular part of the model in the starting model. The smooth

starting model that are usually used in the conventional approach leads to estimates that do not

incorporate deep- subsurface information, or at least, not with the desired long wavelength. the

shallow part of the subsurface is illuminated by diving waves: the broader the acquisition offset

is, the deeper the subsurface is illuminated. The only information from deep region comes from

the short-wavelength migration-related contribution. When singular estimates are included in the

starting model the back-illumination provided by the scattered/reflected waves allows the estimate

to see a broader, deeper area with a larger wavelength. And the estimates evaluated using the

subkernels from the decomposition allow us to individualise the most important contribution for a

particular problem.

When there are perturbations only in the singular part of the model the summation of the

estimates obtained with the adjoint of subkernels correspond to the estimate obtained with the

adjoint of the undecomposed kernel. This is not true when there are background perturbations

involved. This is so because we are dealing with adjoint and not with inverse operations. The

estimate from the undecomposed kernel exhibits cross-terms that are not present in the background
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perturbation estimate obtained with our formulation.

The backprojection numerical experiments have shown the feasibility of our main claim: the

decomposition into subkernels allows to backproject only the singular-wavefield residuals so as to

obtain reasonable background-model perturbation estimates. In our numerical experiments with

background perturbation, we obtained the single best estimates with multiple-scattering subker-

nels. This was particularly important in an experiment with a restricted acquisition geometry

(reflection data, narrow offset). In this case, the multiple-scattering subkernels take advantage of

medium self-illumination provided by the singular wavefields. These results are in clear connec-

tion with the ones of the forward problem experiments. In those with background perturbations,

the multiple-scattering based terms give the most relevant contribution to the evaluated singular-

wavefield residual. This points towards the possibility that FWI can be successfully applied to

short-offset data, if a reasonable estimate of the singular part of the model is available and in-

cluded in the reference model.

On the other hand, we observed that multiple-scattering based subkernels do a poorer job than

their undecomposed counterpart when used to update the singular part of the model alone. If the

assumptions of undecomposed FWI are satisfied (known smooth reference model, unknown small

scatterers), then it is superior to decomposed inversion.

An immediate application of the proposed decomposition of the reference model is as a follow-

up of standard model building in connection with imaging. Classically, the initial reference model

used in the FWI process is the best, yet smooth, velocity model obtained from some sort of mi-

gration velocity analysis and tomography. In the decomposed inversion, this model could play the

role of the smooth background part of the initial reference model. However, in conventional FWI,

the information provided from the migrated image with this smooth model is not made use of. The

positions of key reflectors in this image (possibly with reflectivity estimates from true-amplitude

migration) could be taken as the singular part of the initial reference model. Under that framework,

our formalism provides an explicit method for jointly using velocity models and migrated seismic

images in FWI as well as for understanding their interplay in the model-building process. The

analysis we made here indicates that such a procedure should have better convergence properties

than the conventional approach.

Another possibility that arises with the discussed decomposition regards the use of selected

kernel contributions instead of their complete sum. Synthetic data studies may help to decide

which subkernels carry the most significant information for a given data set, so that contributions

that carry no or even misleading information can be eliminated from the inversion.
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It is important to observe that the initial model decomposition based on the spatial-frequency

content done here is not, by all means, the only possible choice. Being completely arbitrary as

long as the initial model is fully known, the decomposition allows for a problem-based decision on

which features will be part of the background model and which will be considered by means of the

singular part. Different decompositions lead to different interpretation of each of the subkernels.

This implies a broad range of possible applications of the proposed approach, e.g., frequency-band

or layer-stripping-based decompositions.

As an example, we have applied the scattering decomposition of the sensitivity kernels to the

time-lapse problem, considering the time-lapse change as a perturbation of the singular part of the

model, i.e., perturbation of the scattering potential. Under the differential-method framework, we

have demonstrated that the scattering-based decomposition of the sensitivity kernels allows to take

advantage of the illumination of the time-lapse change due to multiple-scattering phenomena in

order to improve the perturbation estimates from FWI.

We employed the FWI differential method. By considering the baseline model fully known,

the data difference between baseline and monitor surveys is the residual to be minimized in order

to obtain time-lapse change estimates using the baseline as starting model. Considering the time-

lapse change as a perturbation of only the singular part of the model, we circumvented the problem

of separating the reference wavefield from the scattered field.

Our numerical experiments demonstrated that it is beneficial to include the singular part into

the model used for the necessary back propagations. In the presence of a strong reflector below

the time-lapse change, the use of the multiple-scattering-based sensitivity kernels yielded better

estimates in both large- and narrow-offset surveys compared to estimates obtained with the con-

ventional sensitivity kernel. In the large-offset case, it better handled the backscattered informa-

tion coming from the deep reflector which would, otherwise, give rise to spurious estimates. In the

narrow-offset case, the scattering-based sensitivity kernels help to bring out the low-frequency spa-

cial information carried by the back-scattered wavefield coming up from the deep reflector. In other

words, in the subkernels (e.g., US,SB) where the scattered wavefield acts as source-side wavefield,

the singularities or reflectors that originate the scattered wavefield act as sources of illumination,

enhancing and broadening the spatial spectral content of the estimate.
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5.1 Thesis’ follow-ups

This thesis helped to understand the role of scattering information within one iteration. A nat-

ural next step is to test the effectiveness of the proposed decomposition is a full inversion process.

Obviously, it is not practical to use all the subkernels at each iteration. The cost of evaluating each

individual contribution is prohibitive, and would overcome any possible gain in the convergence

velocity. The idea is to choose one of the scattering-based subkernels and use it instead of the

single-scattering conventional subkernel. The choice would be case-dependent but the illumina-

tion study done in every survey design could also be used to help the decision of with subkernel

would be more suitable for each case.

One case that can benefit from the multiple-scattering subkernels are the complex velocity

models with strong shadow areas. In this situation the back- illumination provided by such subker-

nels could help to individualize the updates in the shadow areas coming from the scattered waves

in the reference model that would be otherwise blinded out by the strongest contributions coming

from the single-scattering based subkernels.

Another path that can be undertaken is to combine the single-scattering conventional approach

with the proposed multiple-scattering decomposition. Ideally, the first iterations should update the

long-wavelength component and gradually including higher and higher wavelength information as

the process goes on. But as we know, in the conventional approach, the iterations apart from the

first generates velocity models components with potential of generating scattered waves. With the

use of multiple-scattering subkernels, this drawback can be used in our favour. The first update,

may be seen as the singular part for the next iteration. In the second iteration we can use the

one of the subkernels proposed in our decomposition to use the scattered waves generated by

this components just included in the reference model to update the background model. In the

third iteration with the new background component added we can use the conventional kernel to

update the singular part. Alternating the updates of the singular part of the model with the ones of

background component, we believe better results could be achieved.

The formalism we presented here was based a a twofold decomposition of the reference model.

As seen, it is also possible to decompose the model into several parts and consider perturbations to

all model and corresponding wavefield contributions. Such a generalisation to a perturbation of all

terms to an N -fold decomposition is conceptually straightforward and should be more explored.

The threefold decomposition, as next logical step, could be used to explore the relations between

the intermediate wavelength spectral content of the model, to which the seismic waves are rather
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insensitive, with the low and high wavelength components of the model.

This study was based in the formalism developed in Tarantola (1984b). We decomposed the

kernel resulting from the minimization of a L2-norm objective function of the full wavefield. An-

other way perform the decomposition is to design objective functions with residuals, regularisation

and pre-conditioning terms that take into account the reference wavefield decomposition form the

start. With these new objective functions the decomposition can be extended the the Hessian ker-

nels that will open the perspective of a resolution analysis and inversion that take into consideration

the multiple-scattering information.

Finally, with the recent developments on the acquisition technology, now we can access high

quality vector-acoustic data. Extending the decomposition to the vector-acoustic formalism will

allow us to take advantage on the natural decoupling of the influence of bulk-modulus and density

perturbations have on the pressure and velocity wavefield residuals.
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A. Mathematical Definitions

Fourier Transform. The fourier transform convention used here is defined as follows.

ĝ(ω) = F [g(t)] =

∫ ∞

−∞

g(t)e−iωtdt. (A.1)

g(t) = F−1 [ĝ(ω)] =
1

2π

∫ ∞

−∞

ĝ(ω)eiωtdω. (A.2)

Scalar and vector quantities. Bold letters indicate vector or discretized quantities, for instance,

m(x). Scalar discretized quantities were denoted by overlined symbols, for instance, δKB(xi).

Matrix are denoted by a bold capital letter, for instance, M1.

Diferential Operators. Caligrafic letters indicate differential operators, as in L(K(x′), ρ(x′))[ · ].

Here the diferential operators are composed by time and spatial derivatives and can be applied onto

any wavefield. The spatial derivatives are done with respect to the spacial variable inherited from

the model parameters the operator are function of. In this example, x′. The time derivatives are

done with respect to the time variable inherited from the wavefield the operator are applied onto.

When the derivative is neither with respect to space nor time, the subscript used with operator

∇ indicates which vector variable the derivative are done with respect to as, for instance, in ∇mχ.

Time Convolution. Time convolution operation is indicated with the symbol ’∗’ and defined as

g ∗ f(t) =

∫ ∞

−∞

g(t− τ)f(τ)dτ (A.3)
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Mathematical Definitions

Delta function. The function1 δ(x− x′) is defined as follows

δ(x− x
′) = 0 for x 6= x

′ (A.4)

and

g(x′) =

∫

R3

g(x)δ(x− x
′)d3x. (A.5)

Adjoint operators, conjugate transpose matriz. The symbol † indicates the adjoint of an operator

or the conjugate transpose of a matrix.

1Actually this is a distribution.
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B. Generalised decomposition and its

relation to the proposed decomposition

In this appendix, we generalise to a N -fold decomposition the one seen in eqs. (2.4) and (2.5)

(See Section B.1). In Sections B.2 and B.3, we show that the Expression for the secondary sources

in the proposed decomposition presented in this thesis can be derived from appling Born approxi-

mation in a fourfold decomposition.

B.1 Generalised decomposition

The twofold decomposition can be immediately generalised, because eq. (2.4) is of the same

type as eq. (2.1) and can be decomposed in the same way into two equations.

Denoting ps by pN and L0 by LN−1 in eqs. (2.4) and (2.5), we can write

LN−1 [p0N(x, t, ;xs)] = δ(x− xs)S(t), (B.1)

L [pN(x, t;xs)] = −VN [p0N(x, t;xs)] , (B.2)

where VN = L − LN−1 and p0N = p − pN is the remainder of the wavefield after separation of

part pN . Decomposing eq. (B.1) again with ps denoted by pN−1, L by LN−1, and L0 by LN−2 in

eqs. (2.4) and (2.5) leads to

LN−2 [p0N−1(x, t, ;xs)] = δ(x− xs)S(t), (B.3)

LN−1 [pN−1(x, t;xs)] = −VN−1 [p0N−1(x, t;xs)] , (B.4)

where now VN−1 = LN−1 − LN−2 and p0N−1 = p0N − pN−1 = p− pN − pN−1. In the same way,
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eq. (B.3) can be decomposed again to yield the system

LN−3 [p0N−2(x, t, ;xs)] = δ(x− xs)S(t), (B.5)

LN−2 [pN−2(x, t;xs)] = −VN−2 [p0N−2(x, t;xs)] , (B.6)

where VN−2 = LN−2 − LN−3 and p0N−2 = p0N−1 − pN−2 = p − pN − pN−1 − pN−2. It is not

difficult to observe that this decomposition principle can be applied N times to finally yield the

following system of N + 1 equations,

L0 [p0(x, t, ;xs)] = δ(x− xs)S(t), (B.7)

Lj [pj(x, t;xs)] = −Vj

[
j−1∑

i=0

pi(x, t;xs)

]
(j = 1, . . . , N), (B.8)

where p =
∑N

i=0 pi. The wave operators Lj are given by

Lj =
1∑j

i=0 Ki(x)

∂2

∂t2
−∇ ·

(
1∑j

i=0 ρi(x)
∇

)
, (B.9)

with LN = L. Moreover, the scattering potentials are

Vj = Lj − Lj−1; (B.10)

and K =
∑N

i=0 Ki and ρ =
∑N

i=0 ρi.

Being completely arbitrary, such N + 1-fold decomposition could be used, for instance, to

describe a complex geological model one layer at a time or to decompose it into contributions

from several frequency bands.

B.2 Four-fold decomposition of a perturbed model and wave-

field

From Section ?? we have the N -fold decomposition represented by:

L0 [p0(x, t;xs)] = δ(x− xs)S(t), (B.11)
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Lj [pj(x, t;xs)] = −Vj

[
j−1∑

i=0

pi(x, t;xs)

]
(j = 1, . . . , N). (B.12)

where

K =
N∑

i=0

Ki, (B.13)

ρ =
N∑

i=0

ρi, (B.14)

p =
N∑

i=0

pi, (B.15)

Lj =
1∑j

i=0 Ki(x)

∂2

∂t2
−∇ ·

(
1∑j

i=0 ρi(x)
∇

)
, (B.16)

Vj = Lj − Lj−1 (B.17)

Note that from (B.17) we can write that

Lj = Vj + Vj−1 + · · ·+ V1 + L0. (B.18)

Suppose we want to decompose a perturbed model K (we are considering perturbation only in

bulk modulus) in four parts superimposed in such order: at the “bottom” a background model KB;

over it the background perturbation δKB; on top of it, a singular model KS; and on the top most

the corresponding perturbation δKS , such that

K = KB + δKB +KS + δKS. (B.19)

Comparing eqs. (B.19) and (B.13) we can consider K0 ≡ KB, K1 ≡ δKB, K2 ≡ KS , and

K3 ≡ δKS and perform a fourfold decomposition of K. Setting ρ0 ≡ ρ and ρi ≡ 0 for i = 1, 2, 3,

we have (dependency of the wavefields on (x, t;xs) is omitted for simplicity)

LB [pB] = δ(x− xs)S(t), (B.20)

(LB + VB) [δp
′
B] = −VB [pB] , (B.21)

(LB + VB + V ′
0)
[
pS + δp′S,B

]
= −V ′

0 [pB + δp′B] , (B.22)
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(LB + VB + V ′
0 + VS)

[
δp′S,S

]
= −VS

[
pB + δp′B + pS + δp′S,B

]
,

(B.23)

with (omitting the x-dependency for simplicity)

LB =
1

KB

∂2

∂t2
−∇ ·

(
1

ρ
∇

)
, (B.24)

VB =

(
1

KB + δKB

−
1

KB

)
∂2

∂t2
, (B.25)

V ′
0 =

(
1

KB + δKB +KS

−
1

KB + δKB

)
∂2

∂t2
, (B.26)

VS =

(
1

KB + δKB +KS + δKS

−
1

KB + δKB +KS

)
∂2

∂t2
, (B.27)

which imply

LB + VB =
1

KB + δKB

∂2

∂t2
−∇ ·

(
1

ρ
∇

)
, (B.28)

LB + VB + V ′
0 =

1

KB + δKB +KS

∂2

∂t2
−∇ ·

(
1

ρ
∇

)
, (B.29)

LB + VB + V ′
0 + VS =

1

KB + δKB +KS + δKS

∂2

∂t2
−∇ ·

(
1

ρ
∇

)
, (B.30)

It is important to note that no approximation has been made at all, i.e., KB, δKB, KS , and

δKS can hold any magnitude relation among them as long they sum up to K. The prime symbol ′

indicates the non-linearised version of the corresponding wavefields and/or operators.

The Physical interpretation of eqs. (B.20) to (B.23) is as plain as the twofold decomposition:

Eq. (B.20) A background wavefield pB propagates in a background medium KB excited by a

point-source at xs.

Eq. (B.21) A perturbation δKB in the background medium is introduced; when the background

wavefield pB runs into the background perturbation it excites a wavefield perturbation δp′B
(a wavefield itself) that propagates in the perturbed background medium KB + δKB.

Eq. (B.22) A singular component of the reference medium1 KS is introduced in the perturbed

1The unperturbed reference medium K0 is defined as KB +KS .
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background medium; when the perturbed background wavefield pB + δpB runs into the

singular component it excites a background-perturbed singular wavefield pS + δp′S,B that

propagates in the background-perturbed reference medium KB + δKB +KS .

Eq. (B.23) A perturbation δKS on the singular component of the background-perturbed reference

medium is introduced; when the background-perturbed reference wavefield2 pB + δpB +

pS + δp′S,B runs into the singular-component perturbation it excites a singular-wavefield

perturbation δp′S,S that propagates in the perturbed reference medium KB+δKB+KS+δKS .

B.3 Linearisation of the fourfold decomposition

Now let us consider that δKB, δKS ≪ KB, KS . This allows us to use linear approximations in

the set of eqs. (B.20) to (B.23).

From (B.25) we can write

VB ≈ −

(
δKB

K2
B

)
∂2

∂t2
= δLB, (B.31)

also seen at eq. (2.24). From eq. (B.26) we have

V ′
0 ≈

(
1

KB +KS

−
δKB

(KB +KS)2
−

1

KB

+
δKB

K2
B

)
∂2

∂t2
,

≈

(
1

KB +KS

−
1

KB

)
∂2

∂t2
− δKB

(
1

(KB +KS)2
−

1

K2
B

)
∂2

∂t2
,

≈

(
1

KB +KS

−
1

KB

)[
1− δKB

(
1

KB +KS

+
1

KB

)]
∂2

∂t2
,

≈ V0

[
1− δKB

(
1

KB +KS

+
1

KB

)]
,

≈ V0 − δKB W (B.32)

where we have used eq. (D.4) with the superscript K dropped. Finally, from (B.27) we can write

VS ≈

(
1

KB +KS

−
δKB + δKS

(KB +KS)2
−

1

KB +KS

+
δKB

(KB +KS)2

)
∂2

∂t2
,

2The unperturbed reference wavefield p0 is defined as pB + pS .
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VS ≈ −

(
δKS

(KB +KS)2

)
∂2

∂t2
= δS (B.33)

Using eqs. (B.31), (B.32) and (B.33) we can restate eqs. (B.21) to (B.23) as

(LB + δLB) [δpB] = −δLB [pB] , (B.34)

(LB + δLB + V0 − δKBW) [pS + δpS,B] = −(V0 − δKBW) [pB + δpB] , (B.35)

(LB + δLB + V0 − δKBW + δS) [δpS,S] = −δS [pB + δpB + pS + δpS,B] . (B.36)

Note we dropped the primes on the wavefields denoting that these are the their linearised versions.

Hereafter we are going to neglect all second order terms denoted by a perturbation operator,

such as δLB, applied onto a wavefield perturbation, such as δpB. Doing so eq. (B.34) becomes

LB [δpB] = −δLB [pB] . (B.37)

This equation describes the propagation of the (linearised) background residual. Corresepondingly,

considering LB + V0 = L0, eq. (B.35), on its turn, becomes

L0 [pS] + L0 [δpS,B] + δLB [pS]− δKBW [pS] = −V0 [pB]− V0 [δpB] + δKBW [pB] . (B.38)

In a two-fold decomposition where there were no model perturbations, i.e. , δKB, δKS = 0

but only the two components of the reference medium such that K0 = KB +KS the equation that

describes the progation of the singular wavefield pS is given by eq. (2.21):

L0 [pS] = −V0 [pB] . (B.39)

As a Born approximation we can consider the perturbed wavefield as a linear superposition of

the unperturbed singular wavefield pS and its residuals. This allows us to subtract eq. (B.39) from

eq. (B.38) which yields

L0 [δpS,B] = −δLB [pS] + δKBW [pS]− V0 [δpB] + δKBW [pB] . (B.40)

Finally, eq. (B.36) can be written as

L0 [δpS,S] = −δS [pB]− δS [pS] (B.41)
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We know that

δKBW − δLB = δKB

[(
1

(KB +KS)2
−

1

(KB)2

)
+

1

K2
B

]
∂2

∂t2

=

(
δKB

(KB +KS)2

)
∂2

∂t2
= −δB (B.42)

according to eq. (2.40). Using this in eq. (B.40) leads us to

L0 [δpS,B] = −δB [pS]− V0 [δpB] + δKBW [pB] . (B.43)

From (B.42) we have δKBW = δLB − δB. So, the previous equation becomes

L0 [δpS,B] = −V0 [δpB]− δB [pB]− δB [pS] + δLB [pB] . (B.44)

Summing up eqs. (B.41) and (B.44) we arrive at

L0 [δpS,B + δpS,S] = −V0 [δpB]− (δB + δS) [pB]− (δB + δS) [pS] + δLB [pB] . (B.45)

upon doing that δpS,B + δpS,S = δpS and δB + δS = δL.

In summary eq. (B.37) correspond to (2.23) and describes the linearised background-wavefield

residual propagation. Eq. (B.45) correspond to eq. (??) and describes the linearised singular-

wavefield residual propagation.
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C. Estimates for the Model Perturbations

In this appendix, we derive the expressions for some of the contributions to the model pertur-

bation estimates based on the adjoint subkernel seen in equation 2.50. For each one of the model

parameters KB and ρB, we choose one estimate based on single-backpropagation (δKest
B,BS and

δρest
B,BS) and one based on a double-backpropagation (δKest

B,bVB and δρest
B,bVB).

To arrive at the expression for the other estimate contributions, we have only to perform the

proper substitution of the source- and receiver-side wavefields and the potential operator. In all

derivations below, the dependency on ω is omitted for simplicity, since all quantities in the fre-

quency domain are easily identified by a hat over the symbol.

C.1 Estimate of the background perturbation δKest
B,BS

In the frequency domain, the contribution due to perturbation on the background model of the

term (2.33.3) is

δ̂pS,BBS(xg;xs) = −

∫

V

d3x′ ĜS(x
′;xg)δB [p̂B(x

′;xs)] . (C.1)

Considering only bulk-modulus perturbations, we have

δ̂pKS,BBS(xg;xs) =

∫

V

d3x′ −ω2

K2
0(x

′)
ĜS(x

′;xg)p̂B(x
′;xs) δKB(x

′), (C.2)

which is equation (2.43) in the frequency domain. Discretising the volume integral in this equation
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yields

δ̂pKS,BBS(xg;xs) =




−ω2

K2
0(x

′
1)
ĜS(x

′
1;xg)p̂B(x

′
1;xs)

︸ ︷︷ ︸
kernel of UB,BS

· · ·







δKB(x
′
1)

...

δKB(x
′
N)


 , (C.3)

where UB,BS is the one of the components of the Fréchet derivative of the singular-wavefield with

respect to the medium perturbations δKB at x′.

Therefore, the adjoint to equation (C.3) constitutes, for each pair (xg,xs), the vector

δK
est
B,BS(xg,xs) =




δKest
B,BS(x

′
1|xs,xg)

...

δKest
B,BS(x

′
N |xs,xg)


 ≈




−ω2

K2
0(x

′
1)
Ĝ∗

S(x
′
1;xg)p̂

∗
B(x

′
1;xs)

...
−ω2

K2
0(x

′
N)

Ĝ∗
S(x

′
N ;xg)p̂

∗
B(x

′
N ;xs)



δ̂pS(xg;xs).

(C.4)

Finally, summation over all sources and receivers and integration over all frequencies yields, at

each point x in the target area, the overall estimate of the medium perturbation as represented in

equation (2.51).

C.2 Estimate of the background perturbation δρest
B,BS

Correspondingly, we can also derive the expressions for the density subkernel V B,BS and the

perturbation estimate δρest
B,BS(x). The equation corresponding to expression (C.1) for density reads

δ̂pρS,BBS(xg;xs) = −

∫

V

d3x′ ĜS(x
′;xg)∇ ·

(
δρB(x

′)

ρ20(x
′)

∇x
′ p̂B(x

′;xs)

)
. (C.5)

Upon the use of the identity

α(x)∇ · v(x) = − [∇α(x)] · v(x) +∇ · [α(x)v(x)] , (C.6)

with

α(x) = ĜS(x;xg) and v(x) =
δρB(x)

ρ20(x)
∇p̂B(x;xs), (C.7)
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C.2 Estimate of the background perturbation δρest
B,BS

equation (C.5) can be recast into the form

δ̂pρS,BBS(xg;xs) =

∫

V

d3x′
[
∇x

′ĜS(x
′;xg) · ∇x

′ p̂B(x
′;xs)

] δρB(x′)

ρ20(x
′)

−

∫

V

d3x′∇x
′ ·

[
ĜS(x

′;xg)∇x
′ p̂B(x

′;xs)
δρB(x

′)

ρ20(x
′)

]
. (C.8)

Using Gauss’ Theorem, the last term can be written as an surface integral over the earth. Con-

sidering homogeneous bondary conditions this term becomes

∫

V

d3x′ ∇x
′ ·

[
Ĝs(x

′;xg)∇x
′ p̂B(x

′;xs)
δρB(x

′)

ρ20(x
′)

]
=

∮

S

d2x′

[
ĜS(x

′;xg)∇x
′ p̂B(x

′;xs)
δρB(x

′)

ρ20(x
′)

]
· n̂ = 0, (C.9)

where n̂ is the unitary normal vector to the surface S pointing in the outward direction. Therefore

δ̂pρS,BBS(xg;xs) =

∫

V

d3x′
[
∇x

′ĜS(x
′;xg) · ∇x

′ p̂B(x
′;xs)

] δρB(x′)

ρ20(x
′)

. (C.10)

After discretisation of the volume integral, we obtain

δ̂pρS,BBS(xg;xs) =




1

ρ20(x
′
1)
∇x

′ĜS(x
′
1;xg) · ∇x

′ p̂B(x
′
1;xs)

︸ ︷︷ ︸
kernel of V B,BS

· · ·






δρB(x
′
1)

...

δρB(x
′
N)


 . (C.11)

Thus, the adjoint provides, for each pair (xg,xs), the vector

δρ
est
B,BS(xg,xs) =




δρest
B,BS(x

′
1|xs,xg)

...

δρest
B,BS(x

′
N |xs,xg)




=




1
ρ2
0
(x′

1
)
∇x

′Ĝ∗
S(x

′
1;xg) · ∇x

′ p̂∗B(x
′
1;xs)

...
1

ρ2
0
(x′

N
)
∇x

′Ĝ∗
S(x

′
N ;xg) · ∇x

′ p̂∗B(x
′
N ;xs)


 δ̂pS(xg;xs). (C.12)
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Finally, summation over all sources and receivers and integration over all frequencies provides,

at each point x in the target area, the density-perturbation estimate contribution

δρest
B,BS(x) =

∑

s

∑

g

∫
dω

1

ρ20(x)

source-side
wavefield

︷ ︸︸ ︷
∇p̂∗B(x, ω;xs) · ∇Ĝ∗

S(x, ω;xg)δ̂pS(xg, ω;xs)︸ ︷︷ ︸
backpropagation of δ̂pS

. (C.13)

C.3 Estimate of the background perturbation δKest
B,bVB

Since the wave phenomena for δ̂ps,bV0 involve two different scattering mechanisms, the deriva-

tion of the expression for the contribution δKest
B,bVB and the corresponding subkernel UB,bBB is

slightly more complicated. Substituting equation (2.25) in expression (2.33.2), we have

δ̂pS,bVB(xg;xs) =

∫

V

d3x′ ĜB(x
′;xg)V0

[∫

V

d3x′′ ĜB(x
′′;x′)δLB [p̂B(x

′′;xs)]

]
,(C.14)

the bulk-modulus contribution of which reads

δ̂pKS,bVB(xg;xs) =

∫

V

d3x′ ĜB(x
′;xg)V

K
0

[∫

V

d3x′′ ω2

K2
B(x

′′)
ĜB(x

′′;x′)p̂B(x
′′;xs) δKB(x

′′)

]
,

(C.15)

Here, the bulk-modulus part of the scattering potential is

VK
0 = −ω2

(
1

K0(x)
−

1

KB(x)

)
. (C.16)

Discretising the bulk-modulus part of equation (2.33.2) yields

δ̂pKS,bVB(xg;xs) =
[
ĜB(x

′
1;xg)V

K
0 · · · ĜB(x

′
N ;xg)V

K
0

]

︸ ︷︷ ︸
M1




δ̂pB(x
′
1;xs)

...

δ̂pB(x
′
N ;xs)


 . (C.17)
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Correspondingly, discretisation of equation (C.15) yields

δ̂pKS,bVB(xg;xs) = M1M2︸ ︷︷ ︸
UB,bVB




δKB(x
′′
1)

...

δKB(x
′′
N)


 , (C.18)

in which

M2 =




ω2

K2

B
(x′′

1
)
ĜB(x

′′
1;x

′
1)p̂B(x

′′
1;xs) · · · ω2

K2

B
(x′′

N
)
ĜB(x

′′
N ;x

′
1)p̂B(x

′′
N ;xs)

...
. . .

...
ω2

K2

B
(x′′

1
)
ĜB(x

′′
1;x

′
N)p̂B(x

′′
1;xs) · · · ω2

K2

B
(x′′

N
)
ĜB(x

′′
N ;x

′
N)p̂B(x

′′
N ;xs)


 . (C.19)

From equation (C.18) follows its adjoint vector

δK
est
B,bVB(xg,xs) =




δKest
B,bVB(x

′′
1|xs,xg)

...

δKest
B,bVB(x

′′
N |xs,xg)


 = M

†
2M

†
1 δ̂pS(xg;xs) , (C.20)

in which

M
†
2 =




ω2

K2

B
(x′′

1
)
Ĝ∗

B(x
′′
1;x

′
1)p̂

∗
B(x

′′
1;xs) · · · ω2

K2

B
(x′′

1
)
Ĝ∗

B(x
′′
1;x

′
N)p̂

∗
B(x

′′
1;xs)

...
. . .

...
ω2

K2

B
(x′′

N
)
Ĝ∗

B(x
′′
N ;x

′
1)p̂

∗
B(x

′′
N ;xs) · · · ω2

K2

B
(x′′

N
)
Ĝ∗

B(x
′′
N ;x

′
N)p̂

∗
B(x

′′
N ;xs)


 . (C.21)

and

M
†
1 =




Ĝ∗
B(x

′
1;xg)V

K
0

...

Ĝ∗
B(x

′
N ;xg)V

K
0


 . (C.22)
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Therefore, the complete contribution for this Fréchet subkernel reads

δKest
B,bVB(x) = −

∑

s

∑

g

∫
dω

−ω2

K2
B(x)

direct wavefield︷ ︸︸ ︷
p̂∗B(x, ω;xs)×

∫

V

d3x′ Ĝ∗
B(x, ω;x

′)︸ ︷︷ ︸
2nd back-prop.

scattering potential at x′

︷ ︸︸ ︷
−ω2

(
1

K0(x′)
−

1

KB(x′)

)
Ĝ∗

B(x
′, ω;xg)δ̂pS(xg, ω;xs)︸ ︷︷ ︸

1st back-propagation of δ̂ps to x
′

.

(C.23)

This result is shown in equation (2.52).

C.4 Estimate of the background density perturbation δρest
B,bVB

Finally, we derive the corresponding expression for the background density perturbation δρest
B,bVB

and the associated sub-kernel V B,bBB. Analogously to equation (C.16), we , considering only per-

turbations in the density model, we define

Vρ
0 = −∇ ·

[(
1

ρ0(x)
−

1

ρB(x)

)
∇

]
. (C.24)

With this notation, we have from equation (C.14)

δ̂pρS,bVB(xg;xs) =

−

∫

V

d3x′ ĜB(x
′;xg)V

ρ
0

[∫

V

d3x′′ 1

ρ2B(x
′′)

[
∇x

′′ĜB(x
′′;x′) · ∇x

′′ p̂B(x
′′;xs)

]
δρB(x

′′)

]
.

(C.25)

where we substituted δ̂pB(x
′;xs) by the expressing corresponding to equation (C.10). Discretisa-

tion of the volume integrals in equation (C.25) leads to

δ̂pρS,bV0(xg;xs) = M3M4︸ ︷︷ ︸
V B,bBB




δρB(x
′′
1)

...

δρB(x
′′
N)


 , (C.26)

140



C.4 Estimate of the background density perturbation δρest
B,bVB

where

M3 =
[
ĜB(x

′
1;xg)V

ρ
0 · · · ĜB(x

′
N ;xg)V

ρ
0

]
(C.27)

and

M4 =




− 1
ρ2

B
(x′′

1
)
∇x

′′ĜB(x
′′
1 ;x

′
1) · ∇x

′′ p̂B(x
′′
1 ;xs) · · · − 1

ρ2

B
(x′′

N
)
∇x

′′ĜB(x
′′
N ;x′

1) · ∇x
′′ p̂B(x

′′
N ;xs)

...
. . .

...

− 1
ρ2

B
(x′′

1
)
∇x

′′ĜB(x
′′
1 ;x

′
N ) · ∇x

′′ p̂B(x
′′
1 ;xs) · · · − 1

ρ2

B
(x′′

N
)
∇x

′′ĜB(x
′′
N ;x′

N ) · ∇x
′′ p̂B(x

′′
N ;xs)


 .

(C.28)

Thus, the adjoint operation to equation (C.26) provides

δρ
est
B,bVB(xg;xs) =




δρest
B,bVB(x

′′
1|xs,xg)

...

δρest
B,bVB(x

′′
N |xs,xg)


 = M

†
4 M

†
3 δ̂pS(xg;xs), (C.29)

which, after summation over all sources and receivers and integration over all frequencies, yields

δρest
B,bV0(x) = −

∑

s

∑

g

∫
dω

∫

V

d3x′ 1

ρ2B(x)

direct wavefield︷ ︸︸ ︷
∇p̂∗B(x;xs) · ∇Ĝ∗

B(x;x
′)︸ ︷︷ ︸

2nd back-prop.

Vρ
0

[
Ĝ∗

B(x
′;xg)δ̂pS(xg;xs)

]

︸ ︷︷ ︸
1st back-propagation of δ̂pS to x

′

.

(C.30)
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D. Superposition of Subkernels of the

Singular-wavefield Residual

In this appendix, we derive and analyse the superposition of the contributions δpS,BBB and

δpS,−BLB to the singular-wavefield residual. This is motivated by the destructive interference be-

tween these terms observed in the Experiments 3 and 6. For simplicity, we will carry out the anal-

ysis in the frequency domain for the bulk-modulus estimate components δ̂pKS,BBB and δ̂pKS,−BLB.

The two contributions in question are given by the background part of equation (2.33.4) and by

equation (2.33.8). Their bulk-modulus parts read in the frequency domain

δ̂pKS,BBB(xg;xs) = −

∫

V

d3x′ ω2

K2
0 (x

′)
ĜB(x

′;xg)p̂B(x
′;xs) δKB(x

′) (D.1)

and

δ̂pKS,−BLB(xg;xs) =

∫

V

d3x′ ω2

K2
B(x

′)
ĜB(x

′;xg)p̂B(x
′;xs) δKB(x

′) . (D.2)

Thus, their sum defines the combined contribution

δ̂pKS,BWB(xg;xs) = δ̂pKS,BBB(xg;xs) + δ̂pKS,−BLB(xg;xs)

= −

∫

V

d3x′ ω2

(
1

K2
0(x

′)
−

1

K2
B(x

′)

)
ĜB(x

′;xg)p̂B(x
′;xs) δKB(x

′)

=

∫

V

d3x′ ĜB(x
′;xg)W

K [p̂B(x
′;xs)] δKB(x

′) , (D.3)

where WK is the bulk-modulus part of a modified scattering potential. It is defined as

WK = −ω2

(
1

K2
0(x

′)
−

1

K2
B(x

′)

)
= VK

0

(
1

K0(x′)
+

1

KB(x′)

)
, (D.4)
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where VK
0 is given by equation (C.16). Analogous considerations lead to the definitions of the

combined contributions δ̂pρS,BWB(xg;xs) as well as δ̂pKS,BWS(xg;xs) and δ̂pρS,BWS(xg;xs).

Equation (D.3) demonstrates that these combined contributions carry scattered energy only

from that part of V where background perturbations overlap the singularities within the reference

model. Consequently, we can conclude from this property that the background perturbation esti-

mate obtained with the adjoint kernel of equation (D.3) will be non-zero only at the singularities in

the reference model. In other words, if the reference model is chosen as the smooth background,

these parts do not contribute at all.
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