
UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Mecânica

JOSÉ LUIS DÁVILA SÁNCHEZ

Rheological studies and 3D extrusion-based
printing of nanocomposite hydrogels

Estudos reológicos e impressão 3D baseada em
extrusão de hidrogéis nanocompósitos

CAMPINAS
2018



JOSÉ LUIS DÁVILA SÁNCHEZ

Rheological studies and 3D extrusion-based
printing of nanocomposite hydrogels

Estudos reológicos e impressão 3D baseada em
extrusão de hidrogéis nanocompósitos

Thesis presented to the School of Mechanical Engi-
neering of the University of Campinas in partial ful-
fillment of the requirements for the degree of Doctor
in Mechanical Engineering in the area of Materials
and Fabrication Processes.

Tese apresentada à Faculdade de Engenharia Mecâ-
nica da Universidade Estadual de Campinas como
parte dos requisitos exigidos para a obtenção do tí-
tulo de Doutor em Engenharia Mecânica, na Área de
Materiais e Processos de Fabricação.

Supervisor: Prof. Dr. Marcos Akira d’Ávila

ESTE EXEMPLAR CORRESPONDE À VERSÃO
FINAL DA TESE DEFENDIDA PELO ALUNO
JOSÉ LUIS DÁVILA SÁNCHEZ, E ORIENTADO
PELO PROF. DR. MARCOS AKIRA d’ÁVILA

...............................................................
ASSINATURA DO ORIENTADOR

CAMPINAS
2018





UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ENGENHARIA MECÂNICA

COMISSÃO DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

DEPARTAMENTO DE ENGENHARIA DE MANUFATURA E

MATERIAIS

TESE DE DOUTORADO

Rheological studies and 3D extrusion-based
printing of nanocomposite hydrogels

Estudos reológicos e impressão 3D baseada em
extrusão de hidrogéis nanocompósitos

Autor: José Luis Dávila Sánchez
Orientador: Marcos Akira d’Ávila

A Banca Examinadora composta pelos membros abaixo aprovou esta Tese:

Prof. Dr. Marcos Akira d’Ávila
DEMM/FEM/UNICAMP

Profa. Dra. Rosário Elida Suman Bretas
DEMa/UFSCar

Prof. Dr. Jorge Vicente Lopes da Silva
NT3D/CTI

Profa. Dra. Maria Helena Andrade Santana
DEMbio/FEQ/UNICAMP

Profa. Dra. Eliana Aparecida de Rezende Duek
DEMM/FEM/UNICAMP

A ata da defesa com as respectivas assinaturas dos membros encontra-se no processo de vida
acadêmica do aluno.

Campinas, 13 de Dezembro de 2018.



Dedication

To my dear parents, Miguel Ángel and María Elena, who taught me never to give up.

To my sisters, Marthy and Silvi, for their love and support at all times.

To my nephews, Gabriel and Daniel, the little men who motivate me to be better every day.

To Bruna, who came to my life with love and happiness,

José Luis



Acknowledgments

I would like to express my sincere gratitude to all the people and institutions who have

contributed to the completion of this thesis:

To my parents, Miguel Ángel and María Elena, and to my sisters, Marthy and Silvi, for affection,

continuous support, and motivation throughout my life.

To Prof. Dr. Marcos Akira d’Ávila, for the guidance and contributions to this research.

To Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT-Ecuador)

for the Ph.D. scholarship N∘AR2Q-8590.

To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) for the fi-

nancial support from the projects N∘401297/2014-4 and N∘421745/2016-9.

To Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) and to

Fundo de Apoio ao Ensino, à Pesquisa e Extensão (FAEPEX-Brazil) for the financial support

for the divulgation of this research.

To Agência de Inovação INOVA-Unicamp for its support in depositing the patent INPI BR 10

2017 025903 0.

To Prof. Dr. Jorge Vicente Lopes da Silva and Paulo Inforçatti Neto from the Nucleus of Three-

Dimensional Technologies (NT3D) of the CTI Renato Archer, I am grateful for all the kno-

wledge that I acquired as a result of our partnership.

To Prof. Dr. Maria Helena Andrade Santana and Carla França, for making available the use of

the Zetasizer equipment, the lyophilizer, and the texture analyzer of the Laboratório de Desen-

volvimento de Processos Biotecnológicos.

To my uncles, aunts, and cousins. Principally, I would like to thank my cousin Marcelo for being

like a brother to me.

To Bruna, Mrs. Marimil, and Malu, thanks for the affection and support.

To Carlos Alvarez for his friendship and support at all times.

To my friends and labmates Nicolao, Rosemeire, Gabriel, Eronildo, Ana Flávia, Jéssica, Taís,

Geraldine, Vicente, Peterson and Hernandes, for the discussions and their valuable suggestions

and criticisms.

To the laboratory technicians Claudenete Vieira Leal and José Luis Lisboa.



πάντα ρ̀ε̃︀ι
“Everything flows”

Heraclitus

“I can do all things through Christ

who strengthens me”

Philippians 4:13



Abstract

Hydrogels are natural or synthetic polymeric materials that maintain a three-dimensional

structure. They can absorb and retain large amounts of water, making them suitable for several

applications. Together with additive manufacturing (AM), the field of applications is broad.

Hence, the evaluation of the rheological properties of ink and bio-inks plays an important role

in defining their composition and establishing the parameters of the process. In this research,

the rheological properties of ink for 3D extrusion-based printing were studied. Initially,

alginate aqueous solutions were analyzed. The Cross viscosity model successfully described

the steady-state shear behavior of this polysaccharide. Moreover, the scaling behavior was

analyzed for the entangled regime and is in good agreement with polyelectrolyte solutions

(Ge ∼ c
3/2
p ). Next, mixtures Laponite/alginate were analyzed as a case study. Laponite is a

synthetic hydrophilic nanosilicate used as a rheology modifier of waterborne solutions. When

dispersed in water, it takes the form of disk-like particles with negative charges in the faces and

positive in the rims if the pH ≤ 11. Then, electrostatic interactions between Laponite and the

anionic alginate significantly influence the rheological behavior. Higher alginate concentrations

hindered the rheology modifier effect of Laponite. Soft physical gels were obtained at low

alginate concentrations. After that, the printability was evaluated in a second case study and

a suitable concentration for 3D printing defined. A strong shear-thinning behavior described

by the Ostwald-de Waele power-law model was obtained for higher Laponite concentrations.

The viscosity recovery test demonstrated an instantaneous structure recovery, which did not

present shear rate dependence. Amplitude and frequency sweep tests demonstrated that the

optimal ink behaves as a solid-like. 3D printing tests were performed in a piston-driven

system that was developed to be compatible with open source 3D printers. The optimal ink

was successfully dispensed, and 3D printed gels were crosslinked to obtain single (SN) and

double network (DN) hydrogels through ionic and ionic-covalent crosslinking, respectively.

The set of characterizations performed constitutes a protocol that can be applied to evaluate the

printability of inks and bio-inks.

Keywords: Rheology, hydrogel, 3D printing, alginate, Laponite.



Resumo

Hidrogéis são materiais poliméricos naturais ou sintéticos que mantêm uma estrutura

tridimensional. Eles podem absorver e reter grandes quantidades de água, tornando-os ade-

quados para uma grande variedade de aplicações. Aliado aos processos de manufatura aditiva,

o campo de aplicações é amplo. Assim, a avaliação das propriedades reológicas de tintas

e biotintas desempenha um papel importante para definir sua composição e estabelecer os

parâmetros do processo. Nesta pesquisa, elas foram estudadas para impressão 3D baseada

em extrusão. Inicialmente, soluções aquosas de alginato foram analisadas. O modelo de

viscosidade de Cross descreveu adequadamente o comportamento de cisalhamento no estado

estacionário deste polissacarídeo. Além disso, os resultados obtidos estão em concordância

com o comportamento de soluções de polieletrólitos (Ge ∼ c
3/2
p ). Em seguida, as misturas

Laponite/alginato foram analisadas como um estudo de caso. Laponite é um nanosilicato

hidrofílico sintético usado como um modificador reológico de soluções à base de água. Quando

disperso em água, assume a forma nanodiscos com cargas negativas nas faces e positivas nas

bordas se o pH ≤ 11. Portanto, interações eletrostáticas entre o Laponite e o alginato aniônico

influenciam significativamente o comportamento reológico. Concentrações mais elevadas de

alginato impediram o efeito modificador de reologia do Laponite. Géis reticulados fisicamente

foram obtidos em baixas concentrações de alginato. Seguidamente, em um segundo estudo

de caso, foi avaliada a capacidade de impressão e definida a concentração adequada. Um

comportamento pseudoplástico descrito pelo modelo de lei das potências de Ostwald-de Waele

foi obtido para as maiores concentrações de Laponite. O teste de recuperação da viscosidade

demonstrou recuperação instantânea da estrutura, que não apresentou dependência da taxa de

cisalhamento. Testes de varredura da amplitude e da frequência demonstraram que a tinta ótima

tem um comportamento solid-like. Os testes de impressão 3D foram realizados em um sistema

acionado por pistão, que foi desenvolvido para ser compatível com impressoras 3D de projeto

aberto. A tinta ótima foi depositada com sucesso. Os géis impressos em 3D foram reticulados

para obter hidrogéis de rede simples (SN) e dupla (DN) através de reticulação iônica e iônica-

covalente respectivamente. O conjunto de caracterizações realizadas constitui um protocolo

para avaliar a capacidade de impressão de tintas e biotintas.

Palavras-chave: Reologia, hidrogel, impressão 3D, alginato, Laponite.
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1 INTRODUCTION

In the introductory chapter, is presented a general overview of the rheological properties

of hydrogels, mainly oriented to applications through additive manufacturing. Subsequently,

the objectives of this research were defined. Finally, the thesis outline is shown to depict the

research scope.

1.1 Overview of the rheological properties associated with the additive manu-

facturing (AM) of hydrogels

Hydrogels are natural or synthetic polymeric materials that maintain a three-dimensional

structure. They can absorb and retain large quantities of water due to hydrophilic groups in the

polymer chains (Barbucci, 2009; Gulrez et al., 2011). Hydrogels have been extensively stu-

died for biomedical applications, drug delivery, separation technology, biosensors, agriculture,

contact lenses, food packaging, cosmetics, enhanced oil recovery, among others (Ullah et al.,

2015).

Together with additive manufacturing (AM) processes, hydrogels are attractive for bio-

fabrication and biomedical applications. The 3D printing by robotic dispensing is commonly

used to deposit inks or bio-inks in layers to obtain a 3D object. A variation of this AM tech-

nique is the 3D extrusion-based process, where the material flow is generated by a pneumatic

system, a piston or a screw. The limitations of the process are mainly related to the properties of

the material being printed (Highley et al., 2015). Concretely, the rheological properties are of

relevance and have a fundamental role to obtain a good resolution and printing fidelity (Malda

et al., 2013).

Different approaches have been used to print soft materials like hydrogels. They can be

tailored to overcome the associated limitations. A soft material must have a gel-like behavior or

must be gelled/crosslinked in situ during the 3D printing process to prevent its collapse due to

its own weight (Hinton et al., 2015; Highley et al., 2015). In the 3D extrusion-based process, the

material is extruded through nozzle tips. During extrusion, filaments should be formed instead
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of drops (Schuurman et al., 2013). Consequently, the viscosity of the material is a fundamental

property for the process.

Low viscosity enables efficiently dispensing the material through the nozzle tip. Neverthe-

less, once deposited, the material spreads and collapses. On the other hand, with high viscosity,

the material can retain its shape, which makes it difficult to dispense, requiring higher pressures.

Hence, the shear-thinning behavior is attractive for this kind of application (Guvendiren et al.,

2012; Schmieg et al., 2018). High viscosity is desirable at low shear rates and low viscosity at

high shear rates. The latter is generated in the walls of the nozzle tips. Therefore, low viscosity

will lead to the easy deposition of the material. Subsequently, viscosity recovery will generate

the capability to retain the shape, taking into account that the deposited material should main-

tain its structural integrity over the lifetime of the printed object (Ouyang et al., 2016; Echalier

et al., 2017).

During the 3D printing process, flow initiation also plays an essential role (Paxton et al.,

2017). The yield stress defines it; a printable material should behave as solid-like under the yield

point and as liquid-like above it. Concentrated polymer samples commonly exhibit yield stress

due to their chains interactions. When a shear load is applied, the chains tend to align, and the

material flows. Contrariwise, the material experiences a recovery when the shear load is remo-

ved. This recovery is also associated with a thixotropic behavior, through which the structure

can be recovered several times after a shear load application (Bretas & d’Ávila, 2005). Thixo-

tropy constitutes an attractive behavior for 3D printing, taking into account that the material is

submitted to shear load conditions during the process.

Different hydrogel systems have been studied to enhance rheological properties. Rheo-

logy modifiers, such as ethylene glycol, nanosilicates, nanocellulose crystals (CNC), nanocel-

lulose fibers (CNF), among others, tailor the viscosity profile and other rheological properties

for 3D printing (Bakarich et al., 2013; Peak et al., 2017; Shin et al., 2017; Siqueira et al.,

2017). Moreover, other approaches include pre-crosslinked hydrogels, UV crosslinking between

layers, thermoreversible crosslinking, and thermoreversible support baths (Chung et al., 2013;

He et al., 2016; Hinton et al., 2015; Yang et al., 2017).
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As established, the evaluation of the rheological properties of inks and bio-inks is crucial

to defining their compositions and to setting the parameters of the process. However, according

to Malda et al. (2013), the importance of rheology in this field is commonly underestimated. As

observed in different research studies, printability is usually analyzed only as a function of vis-

cosity, where a shear-thinning behavior is desirable. Therefore, a clear correlation between the

rheological properties and the process is lacking. Taking into account that printability depends

on a set of properties, this research proposes to apply different rheological characterizations as

a tool to obtain inks with suitable properties from their conception to their use in 3D extrusion-

based printing.

1.2 Objectives

After identifying the scenario in which the 3D printing of hydrogels is being carried out,

this research focuses on developing appropriated protocols to evaluate the printability of inks.

Hence, associating the rheological properties involved in each stage of the process will allow ob-

taining optimal ink formulations for 3D extrusion-based printing, where crosslinking methods

may be applied after printing to obtain hydrogels. Specifically, this thesis proposes the following

objectives:

1.2.1 General objective

Establish a methodology to evaluate the printability of inks through rheological studies

and to develop a dispositive to print them using the 3D extrusion-based process to obtain nano-

composite hydrogels subsequently.

1.2.2 Specific objectives

∘ Analyze the rheological behavior of sodium alginate solutions and mixtures, including

the nanosilicate Laponite XLG as a rheology modifier.
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∘ Evaluate the interactions between the Laponite disk-like particles and the alginate chains,

and examine how their concentrations influence their shear-thinning and the solid-

like/liquid-like behaviors.

∘ Establish a methodology to test inks, in which each stage of the 3D extrusion-based pro-

cess is related to the rheological behavior of the ink.

∘ Validate the methods defined by obtaining and testing an optimal printable ink.

∘ Develop and test a modular 3D extrusion-based printing head compatible with open

source (firmware/hardware/software) 3D printers.

∘ Crosslink the deposited ink after printing by ionic and ionic-covalent bonds and charac-

terize the obtained single (SN) and double network (DN) hydrogels.

1.3 Outline of the thesis

This thesis is structured in five chapters. Initially, Chapter 1, showed a general introduc-

tion to hydrogels, their applications, and the limitations of their use for 3D printing through

the extrusion-based process. Chapter 2 exposed a literature review deepening the details of the

additive manufacturing process and the rheological properties associated. Moreover, Chapter 2

presented the fundamentals of hydrogels and crosslinking mechanisms. Details of the materials

used throughout this work are also shown. Chapter 3 presented a rheological study of the sys-

tem Laponite/alginate, in which the physical gelation and the aging evolution were analyzed.

Chapter 4 explained the rheological evaluation of Laponite/alginate inks to define the methodo-

logy to investigate their printability. Jointly, the details of the development of a modular printing

head are described. Then, printing tests were performed. Ionic and ionic-covalent crosslinking

were carried out to obtain single (SN) and double network (DN) hydrogels. Finally, the general

conclusion of this research is shown in Chapter 5. Figure 1 illustrates the thesis outline.
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2 LITERATURE REVIEW

This chapter presents the additive manufacturing processes. The 3D extrusion-based pro-

cess and the rheological properties associated are mainly addressed. Furthermore, the funda-

mentals of hydrogels and the crosslinking mechanisms are described. Finally, the polymers used

in this work and the rheology modifier (Laponite XLG) are presented in more detail.

2.1 Additive manufacturing (AM)

Additive manufacturing, frequently denominated 3D printing is defined as the set of pro-

cesses of joining materials to make objects from 3D model data, layer upon layer. The standar-

dized AM process categories are presented in Fig. 2.1 (ISO/ASTM 52900, 2015; Conner et al.,

2014).

Fig. 2.1: AM process categories.
AM illustrations were obtained from https://www.3dhubs.com.
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These processes allow fabricating complex objects with different types of materials. In

the case of biomaterials, AM has been widely used to obtain biomedical devices, substitutes,

and scaffolds for tissue engineering (Chia & Wu, 2015). Open source projects as RepRap and

Fab@Home have been made possible to expand the applications in this field, mainly through

material extrusion processes. The RepRap 3D printer, observed in Fig. 2.2a, arises as a self-

replicating machine that uses Fused Deposition Modeling (FDM) (Mueller, 2012). On the other

hand, the Fab@Home 3D printer was initially developed to print cold-cure materials (Malone &

Lipson, 2007). Taking into account that these projects are hardware and firmware open source,

they have been modified over time. The modifications are generally focused on the 3D printing

head, where the design mainly depends on features as the material, its form, its properties,

among others. Fig. 2.2b shows the evolution of the RepRap project; the 3DCloner Lab printer

was the RepRap-based printer used in this research. Furthermore, it is proper to highlight that

these 3D printers and its components are low-cost systems.

Fig. 2.2: (a) First version of the project RepRap; Darwin model and (b) the RepRap-based 3D
printer 3DCloner Lab. The photos a and b were obtained from (Malone & Lipson, 2007) and
http://3dcloner.ind.br respectively.

The firmware is a program embedded on the motherboard of a 3D printer. Marlin is a

recent open source firmware to control 3D printers. It was created in 2011 and has some ad-

vantages as the efficient movements of the extruder, which results in a higher precision for the

material deposition. Moreover, it allows a better temperature control for the extruder and the

heatbed (Evans, 2012). Since the RepRap project was released, many people around the world

have worked to improve the firmware, hardware, and software.
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The control system of a 3D printer is composed of two parts: (i) the firmware, which is

used to send the signals to the components of the 3D printer and (ii) the software, which is

a program installed in a computer (Wijnen et al., 2016). This latter sends the instructions (g-

code) to the firmware. The g-code is a file containing the operations and the printing path; it

can be generated by a slicing software or a path generator. In Fig. 2.3 is observed a pictorial

scheme of the software-firmware-hardware interaction and some examples of these elements.

As observed, there is an extensive quantity of tools for 3D printing available. Hence, the process

can be adapted according to the application.

Fig. 2.3: Current electronics, firmware, and software for open-source 3D printers.
(*This software requires a commercial license.) Sources: https://reprap.org and (Wijnen et al., 2016)

The most common electronics of a 3D printer usually combines an Arduino MEGA 2650

and the RepRap shield denominated RAMPS (RepRap Arduino Mega Pololu Shield). The

RAMPS shield is plugged on the top of the Arduino microcontroller. This shield is specifi-
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cally designed for 3D robotic systems and allows switching up to five stepper motors, three

thermistors, and six end-stop connections. It has three high-power switched loads fused at 5 A

and 11 A for the extruders and the printing platform (heatbed). Moreover, a Pololu stepper dri-

ver is frequently used to control each stepper motor (Evans, 2012). In Fig. 2.4 is illustrated a

3D printer electronics scheme. The stepper motors are used to generate the movement in the

X, Y, Z axes and to deposit the material from the extruder. It is necessary at least one end-stop

by axis to define the homing position of the 3D printer. The thermistors are used to sense the

temperature of the extruder and the heatbed.

Fig. 2.4: 3D printer electronics map - Arduino/RAMPS.

The Polulu stepper driver A4988 observed in Fig. 2.4 can be configured to define the step

and microstep size. Higher resolutions can be obtained allowing intermediate steps, which can
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be achieved by energizing the coils of the motor with intermediate current levels. The RAMPS

shield has three resolution selector inputs: MS1, MS2, and MS3. The MS1 and MS3 have

100 kΩ pull-down resistors and the MS2 a 50 kΩ pull-down resistor. The full step mode is

obtained leaving disconnected the three selector inputs. In Table 2.1 are shown the configurati-

ons of the selector inputs to obtain different microstepping resolutions.

Table. 2.1: Step and microstep configuration for the A4988 stepper driver.

MS1 MS2 MS3 Microstep resolution

Low Low Low Full step

High Low Low Half step

Low High Low Quarter step

High High Low Eighth step

High High High Sixteenth step

Low (disconnected selector); High (connected selector)
Source: https://www.pololu.com

The current limit of the stepper driver should be correctly defined to avoid the skip of

microsteps. For the A4988 driver, the current limit can be calculated by

IMAX =
VREF

8RCS

(2.1)

where VREF is the reference voltage and RCS the current sense resistance of the driver. The

current limit can be set using the trimmer potentiometer of the driver. The full step mode should

be used, and the current through one of the motor coils measured by plugging the ammeter in

series with one of the motor wires. Pulses should not be sent to the stepper motor during the

measurement. When the motor is standby, the board reduces the current to 70%. Hence, the

measured current will be 70% of the desired limit. This fact should be taken into account to do

not exceed the current limit of the stepper motor. For microstepping modes, it is not necessary

to limit the current (Allegro, 2018).

Recent researches are focused in the 3D printing of inks and bio-inks through material

extrusion processes, which are compatible with a wide range of materials, including biocompa-
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tible polymers, gels, cell-laden spheroids, and cell-laden hydrogels (Habib et al., 2018; Murphy

et al., 2018). Inks 3D printing based on the deposition of colloidal, nanoparticle or organic-

based materials. The direct-write assembly technique includes the droplet jetting and the fi-

lament writing (Lewis & Gratson, 2004; Barry et al., 2009). This latter is well known as 3D

extrusion-based process (Highley et al., 2015; Bakarich et al., 2013; Kirchmajer et al., 2015),

which according to the standardized terminology for AM is included in the material extrusion

category (ISO/ASTM 52900, 2015).

The 3D extrusion-based process variations are illustrated in Fig. 2.5. As shown, the mate-

rial is selectively dispensed from a reservoir (generally a syringe), where the flow is controlled

by a pneumatic system, a piston or a screw. The material flows through a nozzle tip and should

form a continuous filament, jointly, a 3D robotic system controls the deposition path. In pneu-

matic systems, there is a compressed gas volume delay. Contrariwise, piston-driven systems al-

low direct control over the material flow. Screw systems are commonly used to dispense highly

viscous materials (Malda et al., 2013).

Fig. 2.5: Graphical illustration of the dispensing systems for 3D extrusion-based printing.

The rheological properties are fundamental to develop inks with suitable characteristics

for 3D printing. As illustrated in Fig. 2.6, and proposed in this thesis, the rheological behavior

can be analyzed in three stages:

∘ (i) Before printing - rest and flow initiation.

∘ (ii) During printing - high shear rate in the nozzle tip walls.
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∘ (iii) After printing - viscosity recovery.

Fig. 2.6: Graphical illustration of the 3D extrusion-based process stages (γ̇w-wall shear rate).

The fundamentals of the required rheological behaviors for each stage of the process are

presented in greater detail in the next section.

2.2 Rheological behavior

2.2.1 Shear-thinning behavior

The shear-thinning behavior is a nonlinear phenomenon that commonly occurs in polymer

melts, in concentrated polymer solutions, and in colloidal dispersions. As illustrated in Fig. 2.7,

a dramatic viscosity decrease takes place as a result of a shear load increase (shear rate or shear

stress). This phenomenon can be explained at a molecular level. During the shear process, the

molecules are more or less oriented in the shear direction. Therefore, the resistance to flow

decreases when the orientation is more significant. Polymers are macromolecules; when they

are at rest, their chains are entangled (Bretas & d’Ávila, 2005). The shear load application

disentangles the polymer chains, and at a high degree of orientation, the macromolecules are

no longer in touch with each other. For colloidal dispersions, the shear load causes particles

orientation in the flow direction. Moreover, a shear load can also disintegrate agglomerates or
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change the particles form. These scenarios also result in less resistance to flow (Macosko, 1994;

Mezger, 2006).

Fig. 2.7: Power-law-like viscosity curve showing a shear-thinning behavior (η-viscosity, γ̇-shear
rate and γ̇w-wall shear rate. The Roman numerals represent the stages of the 3D extrusion-based
process: (i) rest and flow initiation and (ii) high shear rate in the nozzle tip walls).

In Table 2.2 different mathematical models widely used to describe viscosity curves

showing a shear-thinning behavior are presented. For the 3D extrusion-based process, fluids

that behave as described by the Ostwald-de Waele model are desirable; this power-law-like mo-

del is associated with a strong shear-thinning behavior that allows an easy deposition of the

material.

Table. 2.2: Mathematical models for viscosity curves fitting.

Model Equation Reference Parameters

Ostwald-de Waele η(γ̇) = mγ̇n−1 (Mezger, 2006)
m consistency index

n power-law index

Carreau η(γ̇)−η∞
η0−η∞

=
[︁
1 + (λγ̇)2

]︁n−1

2

(Carreau, 1972)
η0 zero-shear viscosity

η∞ infinite shear viscosity

Carreau-Yasuda η(γ̇)−η∞
η0−η∞

= [1 + (λγ̇)a]
n−1

a (Yasuda et al., 1981)
(η∞ = 0, simplified model)

λ time constant of the fluid

Cross η(γ̇)−η∞
η0−η∞

= 1 + (λγ̇)−n (Cross, 1965) a transition parameter1

1Defines the curvature of the transition from a zero shear rate plateau to the power-law-like region.
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2.2.2 Thixotropic behavior

The viscosity of a shear-thinning fluid may decrease as a function of the time when a shear

load is applied. Hence, an equilibrium viscosity is reached. When the shear load is removed,

the material viscosity increases also as a function of the time. This viscosity increase occurs as

a result of the molecules and/or particles reorganization. This phenomenon is known as thixo-

tropic behavior. A fluid is considered thixotropic if the initial structural strength is completely

recovered. Contrariwise, when an incomplete recovery occurs, even after longs periods at rest,

the appropriated term is partial regeneration, which is usually expressed as the ratio between the

final and initial viscosities (Mezger, 2006; Dullaert & Mewis, 2005). In Fig. 2.8 it is observed

the typical response of a thixotropic material submitted to the step test with three intervals. In

the first interval, a very low shear rate is applied to simulate the behavior at rest. Then, in the

second interval, a high shear load is suddenly applied to simulate the structural breakdown of

the sample. In the case of the 3D extrusion-based process, this interval is related to the high

shear rate produced in the nozzle tip walls. Next, in the third interval, the low shear rate is ap-

plied again by a higher period o time. In this latter, it is simulated the structural recovery at rest

(Özkan et al., 2017).

Fig. 2.8: Viscosity recovery test (η-viscosity, γ̇w-wall shear rate and t-time. The Roman nume-
rals represent the stages of the 3D extrusion-based process: (i) rest and flow initiation, (ii) high
shear rate in the nozzle tip walls and (iii) viscosity recovery).
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2.2.3 Viscoelastic character

Oscillatory tests are useful to define the viscoelastic character of a soft material. The

elastic behavior is associated with the storage modulus (G′) and the viscous behavior with the

loss modulus (G′′). These material functions can be analyzed through amplitude and frequency

sweep tests. In the amplitude sweep test, illustrated in Fig. 2.9, the angular frequency remains

constant while the strain or stress amplitude increases as a function of the time. The strain and

stress sweeps are defined as follows:

γ (t) = γAsin (ωt) (2.2a)

τ (t) = τAsin (ωt) (2.2b)

where γ and τ are the strain and stress respectively. The subscript “A” represents the amplitude,

ω is the angular frequency and t the time.

Fig. 2.9: Stress amplitude sweep plot illustrating the linear viscoelasticity range (LVE), the yield
stress (τy) and the transition from the solid-like to the liquid-like behavior, which takes place
at the flow point (τf ). The Roman numerals represent the stages of the 3D extrusion-based
process: (i) rest and flow initiation and (ii) high shear rate in the nozzle tip walls).

With the amplitude sweep test can be defined the linear viscoelasticity range (LVE), the

yield stress (τy) and the flow point (τf ). Within the LVE range G′(γ) and G′′(γ) exhibit a

constant plateau. The LVE range defines the region where the material can be tested without
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destroying its structure. The limiting value of the LVE range is defined as the yield stress. Below

this point, no significant structural changes are generated. The flow point can be obtained for

a dominated solid character (G′ > G′′), which is better known as solid-like behavior. This

crossover (G′ = G′′) defines the transition to the liquid dominated character or liquid-like

behavior (G′′ > G′).

The solid-like behavior is desirable before the flow initiation and after printing. The vis-

coelastic behavior can be analyzed through frequency sweep tests, specifically with the Small-

Amplitude Oscillatory Shear (SAOS) test, which should be performed within the LVE range.

As illustrated in Fig. 2.10, the flow is generated under shear conditions.

Fig. 2.10: Scheme of the oscillatory shear using parallel plates.
Source: based on Morrison (2001).

The shear rate is time-dependent (γ̇(t)) and periodic. The kinematics for SAOS is defined

as follows:

v
−
=

⎛
⎜⎜⎜⎝

γ̇(t)y

0

0

⎞
⎟⎟⎟⎠

xyz

(2.3)

where v
−

is the vector velocity and

γ̇(t) = γ̇0 cos ωt, (2.4)
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γ̇0 is the constant amplitude of the shear rate, and ω is the angular frequency. As shown in the

scheme of Fig. 2.10, the displacement of the upper plate is time-dependent. Then, for small

strains:

γyx(0,t) =
b(t)

h
, (2.5)

and for a general shear flow:

γyx(0,t) =

∫︁ t

0

γ̇yx(t
′)dt′ (2.6a)

γyx(0,t) =
γ̇0
ω

sin ωt (2.6b)

γyx(0,t) = γ0 sin ωt (2.6c)

Therefore, the motion of the upper plate is also a sine function, given by

b(t) = hγ0 sin ωt, (2.7)

where h is the gap between the parallel plates and γ0 is the constant strain amplitude.

A linear velocity profile will be produced only for sufficiently low frequencies or high

viscosities. In this scenario, the shear stress produced will be a sine wave of the same frequency

as the input strain wave. Nonetheless, the shear stress is out of phase. The phase difference is

represented by δ, and the shear stress is given by (Morrison, 2001)

− τyx(t) = τ0 sin(ωt+ δ) (2.8a)

− τyx(t) = τ0(sin ωt cos δ + sin δ cos ωt) (2.8b)

− τyx(t) = (τ0 cosδ) sin ωt+ (τ0 sinδ) cos ωt (2.8c)
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where τ0 is the constant stress amplitude. As observed, a component of the stress is in phase

with the strain (sin ωt - elastic behavior), and the other component is in phase with the strain

rate (cos ωt - viscous behavior). Then, the material functions for SAOS are given by

−τyx
γ0

= G′ sin ωt+G′′ cos ωt (2.9a)

G′(ω) ≡
τ0
γ0

cos δ (2.9b)

G′′(ω) ≡
τ0
γ0

sin δ (2.9c)

tan(δ) =
G′′

G′
(2.9d)

where G′ is the storage modulus, G′′ the loss modulus and tan(δ) the damping factor. The

SAOS test provides important information of viscoelastic materials, which are defined as solid-

like when tan(δ) < 1 and liquid-like when tan(δ) > 1. Polymer solutions, suspensions, and

hydrogels usually present a viscoelastic behavior. In the next section, the fundamental details

associated with hydrogels are presented.

2.3 Hydrogels

Hydrogels are water-swollen polymeric materials defined by a crosslinked three-

dimensional network. Their structure is formed by hydrophilic groups present in the polymer

chains. These materials can absorb and retain water, in some cases up to thousands of times

their dry weight (Hoffman, 2012). In the literature, the terms gel and hydrogel are often used

as synonymous. Nevertheless, they are physically distinct. Gels are semi-solid systems contai-

ning small amounts of solids in a large quantity of liquid. They have a solid-like behavior also

called gel-like behavior (Gupta et al., 2002). On the other hand, hydrogels, by being crosslin-

ked have limited solubility in water as illustrated in Fig. 2.11. A hydrophilic polymer dissolved

in an aqueous solution is also known as hydrosol before the crosslinking. Depending on the

concentration, these materials behave as liquid-like or gel-like. They cannot retain the shape as

hydrogels do, in which the polymer chains movement is restricted due to intermolecular cross-
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links (Peppas, 2010). The crosslinked network results in a viscoelastic behavior that provides a

degree of flexibility, which in some cases is similar to the natural tissues (Gulrez et al., 2011).

Fig. 2.11: Polymer chains forming a gel and a hydrogel.
Source: based on (Gupta et al., 2002)

The physical gels easily degrade, disintegrate and dissolve. They are formed by molecu-

lar entanglements, and/or secondary forces. In these latter are included the ionic crosslinking,

the hydrogen bonding or hydrophobic interactions. These gels can form hydrogels when the

secondary forces restrict the polymer chains movement. Nonetheless, they are denominated re-

versible, because these interactions are weak and crosslinking points can be easily broken. On

the other hand, chemical gels are formed by covalent crosslinking, which is stronger and stable.

Hydrogels can be obtained from synthetic or natural sources. The main advantage of

synthetic hydrogels is related to their chemistry and properties, which can be easily controlled,

tailored and reproduced. Alternatively, naturally derived materials such as agarose, alginate,

chitosan, collagen, fibrin, gelatin, hyaluronic acid (HA), among others, are attractive for the

biomedical field. They have suitable properties for this kind of applications, taking into account
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that are similar to the natural extracellular matrix (ECM). Hyaluronic acid (HA) is found in

several tissues. Similarly, collagens are the main ECM protein in mammalians. Linear poly-

saccharides, like HA, alginate, and chitosan are frequently used in Tissue Engineering (TE)

because they promote tissue regeneration and interact properly in vivo (Barbucci, 2009; Shi-

mojo et al., 2015). Below are presented the characteristics and main details of alginate and

poly(acrylamide) (PAAm), materials used throughout this research.

2.3.1 Alginate

Polysaccharides are carbohydrate macromolecules formed by monosaccharide units lin-

ked by glycosidic bonds (Radhakrishnan et al., 2016). Among the naturally derived polysac-

charides, alginate from brown seaweed is extensively used in biomedical applications. This

material is approved by the Food and Drug Administration (FDA) agency for applications in

the food industry and the medical field (Zilberman, 2011). As observed in Fig. 2.12, alginate is

composed by guluronic (G) and mannuronic (M) acids. The M/G ratio influences the alginate

properties. With high mannuronic acid content, hydrogels are softer and have more elasticity.

On the other hand, with high guluronic acid content, hydrogels are strong but brittle (Farrés &

Norton, 2014). The hydrogel stiffness is defined as follows: GG>MM>MG.

Fig. 2.12: Alginate structure and ionic crosslinking mechanism.
Source: based on Gacesa (1988); Zilberman (2011).
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Physical and chemical properties of alginates depend on the composition and sequence of

the polymer chain (Russo et al., 2007). G blocks are linked diaxially, and M blocks have die-

quatorial links, for this reason, G blocks are stiffer than alternating blocks (Augst et al., 2006).

Alginate can be crosslinked physically by divalent or trivalent cations. As shown in Fig. 2.12,

the egg-box structure is formed due to electrostatic interactions between the polyguluronate

groups and the cations. Calcium ions from calcium chloride (CaCl2) aqueous solutions are

commonly used to crosslink alginate due to the fast rate of crosslinking (Kuo & Ma, 2001).

2.3.2 Poly(acrylamide) (PAAm)

Poly(acrylamide) is a highly hydrophilic and bio-inert material. For these reasons, it is

attractive for biomedical applications, contact lenses, sorbents, soil improvement agents, adhe-

sives, paints, oil salvaging agents, among others (Fernández et al., 2005; Darnell et al., 2013).

This material is formed by the polymerization of the acrylamide units, illustrated in Fig. 2.13

Fig. 2.13: Acrylamyde unit (AAm).
Source: Sigma-Aldrich datasheet.

Acrylamide is typically crosslinked using N,N’-methylenebisacrylamide (MBAA) to

form hydrogels. One method to crosslink AAm is by a chemical reaction using ammonium

persulfate as the initiator, MBAA as the crosslinker, and the accelerator N,N,N’,N’ tetramethy-

lethylendiamine (TEMED) (Fernández et al., 2005; Semwal et al., 2016). On the other hand,

AAm could be also crosslinked by photopolymerization. In this case, MBAA is also used as

a crosslinker. The photoinitiator 2-hydroxy-4’-(2-hydroxyethoxy)-2-ethylpropiophenone (Irga-

cure D-2959) is used to start the crosslinking process in a UV light chamber of 365 nm wave-

length (Selen et al., 2016; Kaastrup & Sikes, 2016).
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2.4 Rheology modifiers

Rheology modifiers or rheological additives have been developed to tailor the flow beha-

vior mainly of aqueous dispersions. Legislative restrictions associated with industrial products

are oriented to the reduction of volatile organic compounds. Hence, aqueous dispersions to-

gether with rheology modifiers are attractive for different applications, including the food and

pharmaceutical industries, cosmetic creams, lotions, cleaners, inks, paints, among others (Mez-

ger, 2006; Braun & Rosen, 2013). These additives can be classified as shown below:

2.4.1 Polymers

Hydrophilic polymers are commonly used as rheology modifiers. The capability of poly-

mers to influence the rheological behavior is associated with the formation of coils at rest.

Depending on the concentration, a more or less entangled network is formed. Besides, physical

interactions of anionic or cationic polymers or the formation of hydrogen bonds generate struc-

tures that contribute to the viscosity increase. The viscosity profile created is shear-thinning

with a Newtonian plateau in the case of unlinked polymers. Contrariwise, for high concentrati-

ons, or when physical interactions link the polymer chains, the viscosity profile is defined by a

strong shear-thinning behavior, and the material behaves as gel-like at rest (Glass et al., 1991;

Mezger, 2006).

2.4.2 Associative thickeners

Associative thickeners are water-soluble or water-dispersible polymers. They have hy-

drophilic and hydrophobic moieties within the same macromolecule. Hydrophobic molecular

groups create connections between the polymer chains. These connections are non-permanent

secondary bonds. Hence, at rest it is formed a non-permanent network maintained due to

physical-chemical secondary forces. Moreover, hydrophobic segments are also capable of ad-

sorbing on the surface of dispersed particles in the system. Then, at small shear rates, the vis-

cosity can be tailored depending on the concentration of the components. This kind of rheology
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modifiers is commonly used to obtain a moderate shear-thinning behavior (Braun & Rosen,

2013).

2.4.3 Colloidal particles

Colloidal particles are the disperse phase of a two-component system. They can be sus-

pended in a fluid phase (continuous phase), and their size is commonly in the range from na-

nometers to several micrometers. They are small enough to be suspended, and their motion is

affected by thermal forces (Lu & Weitz, 2013). Colloidal particles are used as rheology modifi-

ers of liquids. The viscosity profile is directly influenced by the shape of the particle and their

chemical structure. Colloidal platelets and rod-like particles are more efficient in the construc-

tion of a shear-thinning profile than spherical particles (Mewis & Wagner, 2012).

Cellulose nanocrystals (CNC) and cellulose nanofibers (CNF) are rod-like particles com-

monly used to tailor the rheology of aqueous solutions. They are obtained from cellulosic ma-

terials, wherein the dimensions of the rods depend mainly on the source (wood pulp, bacteria,

hemp, among others) and the hydrolysis process (Liu et al., 2011). The rheological behavior is

influenced by transitions that are directly related to the concentration. In dilute suspensions, the

rods are randomly oriented (isotropic phase). Then, when the concentration increases, a transi-

tion to an anisotropic phase occurs. At this point, the rods adopt a unidirectional self-orientation.

Next, a transition to a chiral nematic anisotropic phase occurs. Stacked planes of rods are alig-

ned along a vector, which is characteristic of liquid crystals. Highly concentrated suspensions

can exhibit an arrested gel-like glassy behavior (Habibi et al., 2010). Hence, the viscosity pro-

file can be tailored from moderated shear-thinning to strong shear-thinning depending on the

concentration. Similarly, the viscoelasticity is highly influenced; dilute suspensions behave as

liquid-like, and a transition to solid-like takes place progressively.

Inorganic particles of clays have the form of thin platelets. At rest, these particles form

a house of cards structure due to interactions between their surfaces and edges. The faces are

negatively charged while the edges are positive depending on the pH of the suspension. If

the clay is appropriately incorporated is obtained a strong-shear thinning profile and a gel-
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Fig. 2.14: (a) Laponite platelet (∼ 0.92 nm in thickness and ∼ 25 nm in diameter) and (b)
idealized structural formula of Laponite.

Source: based on Laponite datasheet (Technical Information B-RI 21).

like structure at rest. The yield stress is characteristic of this kind of suspensions. For high

shear rates is exceeded the yield point, therefore, the house of cards structure collapses and

the viscosity decreases. In Fig. 2.14 is illustrated a platelet (disk-like) of the clay Laponite

and its structure. This additive is a layered silicate obtained from natural inorganic mineral

sources. It is frequently used as a rheology modifier or as a film former. Laponite is available

in sol and gel-forming grades. Sol grades form low viscosity colloidal dispersions while gel

grades are used to produce high viscosity colloidal dispersions. These latter disperse readily in

water, creating a clear colorless gel. The viscosity profile generated depends on the components

concentration and the electrolyte content of the water used. Highly thixotropic gels are obtained

with a concentration of at least 2 wt.%. Laponite XLG, the nanosilicate used in this research

has high purity, low heavy metal and microbiological content. Its applications include personal

care products, cosmetics, lotions, creams, among others (Braun & Rosen, 2013).
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3 LAPONITE AS A RHEOLOGY MODIFIER OF ALGINATE SOLUTI-

ONS: PHYSICAL GELATION AND AGING EVOLUTION †

In this chapter, the rheological behavior of alginate and Laponite/alginate solutions was

studied. It was observed that the Cross viscosity model successfully describes the steady-state

shear behavior of this polysaccharide. The scaling behavior analyzed for the entangled regime

is in good agreement with polyelectrolyte solutions (Ge ∼ c
3/2
p ), with interactions generated

between the alginate and the charged surfaces of the Laponite platelets. Therefore, the effect

of Laponite as a rheology modifier is influenced by the alginate concentration. Higher alginate

concentrations hindered the formation of the house of cards microstructure. Frequency sweep

tests were performed to analyze the transition from solid-like to liquid-like behavior in a solid-

like dominated domain. Soft physical gels were obtained at low alginate concentrations. The gel

point was determined (1.65 wt.% of alginate and 2 wt.% of Laponite) through the Kramers-

Krönig damping factor, and time sweep tests revealed the evolution of the storage (G′) and

loss modulus (G′′) as functions of the waiting time (tw). The growing elasticity revealed that

Laponite/alginate solutions undergo aging.

3.1 Introduction

Alginate is an anionic polysaccharide that can be extracted from macroalgae or bacterial

cultures. It is a copolymer of (1 − 4)-linked β-D-mannuronate (M) and α-L-guluronate (G)

residues (Gacesa, 1988; Percival, 1979). The ratio of guluronic to mannuronic acid depends on

the source. Alginates are block polymers; they are linear unbranched copolymers containing

similar or strictly alternating blocks: MM, GG or GM. M and G acids are covalently linked,

forming different sequences or blocks. Two adjacent G blocks can be cross-linked with mul-

tivalent cations: divalent cations such as Ca2+, Ba2+, Fe2+ or Sr2+ or trivalent cations such

as Al3+. Hence, a gelling mechanism occurs when those cations take part in ionic binding zo-

nes between G blocks (Augst et al., 2006; Rezende et al., 2009). Thereby, a three-dimensional

network is formed. Binding zones are often called “egg boxes” (Percival, 1979; Papajová et al.,

† The original publication is available at Carbohydrate Polymers
https://doi.org/10.1016/j.carbpol.2016.09.057, (Dávila & d’Ávila, 2017)
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2012; Venkatesan et al., 2015; Larsen et al., 2015).

Alginate is characterized by its hydrophilicity. It can easily form aqueous solutions in

which the viscosity increases with the alginate content and its molar mass. Aqueous alginate

solutions are non-Newtonian fluids, presenting shear-thinning behavior (Rezende et al., 2009).

Due to its biocompatibility, non-toxicity and gelling mechanism, alginate has been widely used

in tissue engineering applications, cell encapsulation, drug and protein delivery, and as pharma-

ceutical excipients, among other functions (Rodríguez-Rivero et al., 2014). Moreover, alginate

is commonly used as a gelling agent in the food industry, textile/paper industry, and for dental

impressions and wound dressings (Augst et al., 2006; Fu et al., 2011).

Laponite is a layered nanosilicate with the empirical formula

Na+0.7 [(Mg5.5Li0.3)Si8O20 (OH)4]
−0.7 (Perkins et al., 1974; Thompson & Butterworth,

1992; Xavier et al., 2015). It is a synthetic material obtained from a combination of salts of

sodium, magnesium and lithium with sodium silicate. One of the applications of Laponite is as

a rheology modifier (Ruzicka & Zaccarelli, 2011). It is an additive that promotes shear-thinning

and thixotropic behavior in waterborne products (Willenbacher, 1996). In recent studies,

Laponite was used to reinforce hydrogels for biomedical applications (Shen et al., 2014; Hong

et al., 2015). Moreover, as reported by Xavier et al. (2015), nanocomposites reinforced with

Laponite can support cellular adhesion and enhance in vitro mineralization and physiological

stability, which expands the applications in the tissue engineering (TE) field. Laponite platelets

are nanoscale disk-like particles with an aspect ratio of 1 : 25. They are formed in layers:

two parallel sheets of tetrahedrally coordinated silica and a sheet of octahedrally coordinated

magnesium oxide between them. Oxygen and OH− groups are also present in the Laponite

structure (Zulian et al., 2008). Furthermore, some magnesium atoms are substituted by lithium

atoms. Therefore, a negative charge is on the platelet surfaces, whereas positive charges are

on the rim due to the interlayer cations. In this case, the sodium ions balance the charges

(Ruzicka & Zaccarelli, 2011). Conversely, when Laponite is dispersed in water, sodium ions

are released, and the charges are unbalanced. Thus, the platelets adopt a negative charge on

their faces, while the rims can adopt a positive or negative charge depending on the pH of the

solution (Sun et al., 2012; Morariu et al., 2014; Mongondry et al., 2005; Tawari et al., 2001;

Joshi et al., 2008; Kumar et al., 2016).
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Aqueous Laponite dispersions undergo physical aging because they are out of thermody-

namic equilibrium. Hence, the microstructure of these dispersions progressively evolves to a

lower level of energy (Shahin & Joshi, 2010; Jatav & Joshi, 2014). Thermal motion and particle

aggregation due to the electrostatic forces between them influence physical aging (Jatav & Joshi,

2014; Labanda & Llorens, 2008), as do the Laponite concentration and the addition of polymers,

salts or other components. It is reported in the literature that the intensity of the positive charges

on the rims decreases as the pH increases; the rim is positively charged at pH ≤ 11 (Shahin &

Joshi, 2010; Sun et al., 2012). With positive rims, a “house of cards"microstructure is formed by

the platelets due to the electrostatic interactions between them and the faces (Mongondry et al.,

2005; Liu & Bhatia, 2015). This microstructure is also responsible for the viscosity increase and

the shear-thinning effect of aqueous Laponite dispersions (Mongondry et al., 2005). Under low

shear rates, the house of cards structure is adopted, but it collapses at high shear rates. In this

case, the platelets are oriented in the flow direction, and the viscosity decreases. Contrariwise,

the negative charges on the rims have an influence on the elastic behavior of the dispersion due

to the repulsion between platelets.

The electrostatic interaction between Laponite platelets and the mechanism of the for-

mation of the microstructures are yet a matter of debate. The Laponite concentration plays an

important role in the dispersion microstructure. Below a 2 wt.% Laponite concentration, the

house of cards microstructure is suggested. Conversely, above this concentration, two proposals

are suggested in the literature: (i) a house of cards or (ii) a Wigner repulsive glass micros-

tructure. This latter takes into account the repulsion between Laponite platelets (Zulian et al.,

2008; Jatav & Joshi, 2014). These microstructures evolve due to aging and can be destroyed by

applying a deformation onto the sample, in a process called rejuvenation. The applied deforma-

tion should generate a stress greater than the yield stress of the sample (Jatav & Joshi, 2014).

To perform rejuvenation, pre-shear or shear melting processes are carried out before the rheo-

logical studies. Sun et al. (2012) studied the aging phenomena in aqueous Laponite dispersions

containing polyethylene glycol (PEG) and NaCl. To rejuvenate the samples to set a reference

initial condition for the tests, a uniform shear field was applied. As observed in the dynamic

time sweep test, a reproducible liquid state was achieved. Nevertheless, it is observed that the

aging is partially irreversible, as described by Jatav & Joshi (2014); a shear melting process was

previously applied to the rheological characterization of aqueous Laponite dispersions. In this
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case, an oscillatory shear stress was applied to rejuvenate the samples. As demonstrated, the

shear melting rejuvenates the sample, although not completely; a slight difference is observed

in comparison with a freshly prepared sample (Shahin & Joshi, 2010; Jatav & Joshi, 2014).

As previously described, the addition of salts and polymers modifies the aging of dis-

persions. Salt reduces the electrostatic repulsion between Laponite platelets, accelerating the

aggregation for low concentrations of Laponite because the surface charge is screened (Sun

et al., 2013). The addition of salt also modifies the microstructure from glass-like to gel-like.

The gel state has a fractal network, while the glass state does not have an ordered microstructure

(Joshi et al., 2008). Moreover, the pronounced shear-thinning and solid-like behaviors provide

interesting results for additive manufacturing (AM) applications in tissue engineering. Soluti-

ons rheologically modified could easily flow through nozzle tips due to the shear rate generated

along their walls. Once out of a nozzle, the material could maintain its shape as result of the high

viscosity (Barry et al., 2009; Hong et al., 2015). Subsequently, a crosslinking process can be

applied to form hydrogels, thereby improving the geometric accuracy. In this chapter, the rhe-

ological behavior of alginate aqueous solutions and Laponite/alginate solutions was studied. A

steady-state shear master curve for alginate solutions was obtained. When Laponite was added

to the alginate solutions, a pronounced shear-thinning behavior was observed in steady-state

shear tests. Then, frequency sweep tests were performed to analyze the physical gelation due to

the electrostatic interactions between the Laponite platelets and alginate chains. The damping

factor of the solutions was analyzed as a function of the alginate concentration, where the gela-

tion mechanism, which arises due to the dispersed Laponite platelets, was studied. Finally, time

sweep tests were performed to analyze the aging evolution of the Laponite/alginate samples

under the gel point concentration.

3.2 Experimental

3.2.1 Material and solution preparation

Medium-viscosity sodium alginate from brown algae was purchased from Sigma-Aldrich

Corp., USA. Its molar mass ranges between 80,000 and 120,000 gmol−1, and it is composed of
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approximately 61% mannuronic acid and 39% guluronic acid. Laponite XLG was obtained from

Southern Clay Products, Inc., USA. Sodium chloride was purchased from Labsynth, Brazil.

0.1 M NaCl was added to the dilute alginate solutions to determine the viscosity-average

molar mass using the Mark-Houwink-Sakurada correlation, which is given by

[η] = KMv
α (3.1)

where [η] is the intrinsic viscosity, K = 7.3 × 10−3 g.ml−1 and α = 0.92 for an M/G ratio of

1.56 (Thu et al., 1996). The specific and reduced viscosities are given by Eq. (3.2) and Eq. (3.3),

respectively,

ηsp =
η0 − ηs

ηs
(3.2)

ηred =
ηsp
cp

(3.3)

where η0 is the zero shear viscosity, ηs the solvent viscosity (ηs = 0.001003 Pa.s at 20 ∘C) and

cp the polymer concentration. The intrinsic viscosity is given by

[η] = lim
cp→0

(︂
ηsp
cp

)︂
(3.4)

All solutions were prepared using deionized water (Type II, conductivity < 1 µS cm−1)

without added NaCl, except that to determine the viscosity-average molar mass. Alginate so-

lutions and Laponite/alginate solutions were prepared using a magnetic stirrer for 6 hours with

a plate temperature of 60 ∘C to ensure homogeneity. All samples were stored for 16 hours

before the rheological tests. The Laponite/alginate solutions were prepared using 2 wt.% Lapo-

nite. The alginate concentration was varied in the range of 0.25 to 4 wt.% for the steady-state
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shear and frequency sweep tests. For the time sweep tests, alginate concentrations with a solid-

like behavior (0.25 to 1 wt.%) were analyzed. To prepare the solutions, it was necessary to

completely disperse and hydrate the Laponite before the addition of the alginate. Laponite was

dispersed in deionized water using a vortex agitator. It was added gradually into the water over a

period of 10 to 30 s to reduce the dispersion time, and a clear colorless solution was obtained in

approximately 20min. The pH of the solutions was measured using samples of approximately

10 ml in a Tecnal TEC-5 pH meter.

3.2.2 Rheological characterization

The rheological characterization of the solutions was performed using an Anton Paar

MCR-102 Modular Compact Rheometer. Tests were conducted using a cone-plate geometry

(CP50-1) with a 50 mm diameter, a cone angle of 0.9815∘ and a truncation of 0.97 µm. To

determine the viscosity-average molar mass, steady-state shear tests were performed at 20 ∘C,

while all the other experiments were performed at 25 ∘C. The rheological characterizations

were carried out using a solvent trap to prevent water evaporation. Before each test, a constant

pre-shear of 200 s−1 was applied for 300 s to avoid any memory effect and rejuvenate the

samples. Measurements of the shear rate in the steady-state were performed in the range of

0.001 to 700 s−1. Amplitude sweep tests were carried out at an angular frequency of 10 rads−1

to obtain the linear viscoelasticity (LVE) range (γLV E = 1% for all samples). Next, frequency

sweep tests were conducted in the range of 0.1 to 200 rad s−1. Finally, time sweep tests were

performed to study the aging evolution. Each time sweep test was carried out for 1000 s, and

the angular frequency was varied from 10 to 100 rad s−1.

3.3 Results and discussion

3.3.1 Steady-state shear characterization

Initially, the intrinsic viscosity was obtained by a linear fit of the curve of reduced vis-

cosity versus alginate concentration (Fig. 3.1). Then, using the Mark-Houwink-Sakurada cor-
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relation, a viscosity-average molar mass of 99,986 g mol−1 was calculated, which is inside the

range of molar mass provided by the supplier (80,000 - 120,000 g mol−1).

Fig. 3.1: Reduced viscosity (ηred) versus alginate concentration (cp).

Next, different concentrations of alginate solutions were studied. As observed in Fig. 3.2a,

when the alginate concentration increases, the viscosity of the solution also increases. Shear-

thinning behavior can be observed for all cases, even in low-concentration solutions. In the

range of shear rates studied, all compositions, except for the one with 4 wt.% of alginate, exhi-

bit a Newtonian plateau. The shear-thinning is associated with an entangled network and is the

typical behavior of polymer solutions (Yu et al., 2014). Next, using the steady-state shear visco-

sity data obtained, a master curve was constructed. This method has been applied successfully

in other polysaccharide solutions (Payet et al., 2010; Gorret et al., 2003). The vertical and hori-

zontal shift factors were calculated using as references a 1 wt.% alginate concentration, the zero

shear viscosity for the vertical axis and the initial point of shear-thinning behavior for the hori-

zontal axis. As observed in Fig. 3.2b, the viscosity master curve shows that the superimposed

data have a common mechanism that governs the alginate viscoelasticity. The shear-thinning

behavior is generated due to the disentanglement of the polymer chains. These chains need time

to relax, and then the transition from the Newtonian plateau to shear-thinning behavior occurs

at a critical shear rate equal to the inverse of the relaxation time. In addition, Fig. 3.2b shows
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Fig. 3.2: (a) Viscosity (η) curves for aqueous alginate and Laponite/alginate solutions. Open
symbols correspond to experimental data. Solid lines correspond to the Cross model fitting for
alginate. Inset schemes describe the mechanisms that contribute to the shear-thinning behavior,
(b) alginate viscosity master curve (reference concentration 1 wt.%), (c) and (d) horizontal (ax)
and vertical (ay) shift factors vs. concentration and (e) plateau modulus (Ge) as a function of
the alginate concentration (cp) (results were scaled for the entangled regime). “A” represents the
alginate concentration.

the fitted master curve using the Cross model, which successfully describes the shear-thinning

behavior of polysaccharide solutions (Roger et al., 2015). This model is given by
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η(γ̇) = η∞ +
η0 − η∞

1 + (γ̇/γ̇c)
n (3.5)

where η∞ is the infinite shear viscosity, η0 the zero-shear viscosity, γ̇ the shear rate, γ̇c the

critical shear rate, and n the power-law index. As observed in Fig. 3.2(b-d), the Cross model fits

the experimental results quite well, especially for the lower shear rates. The Carreau model also

describes the shear-thinning behavior, but as reported by Payet et al. (2010), the Cross model

fits better, especially at high shear rates. Table 3.1 summarizes the experimental and fitting

parameters and the mean relative deviations (MRD) of the fitted curves.

Table. 3.1: Shift factors for the experimental viscosity master curve and fitting parameters for
the Cross model.

Experimental

cp(wt.%) 0.25 0.5 0.75 1 2 3

ax 16 4.5 2 1 0.15 0.075

ay 0.0574 0.178 0.473 1 14.072 47.607

Fit

cp(wt.%) η∞ (Pa s) η0 (Pa s) γ̇c
(︀
s−1

)︀
n MRD(%)

0.25 0.0039 0.0165 1111.1 0.9999 0.4

0.5 0.0143 0.0517 384.6 0.9999 0.6

0.75 0.0319 0.1327 200.0 0.9998 0.8

1 0.0413 0.2806 166.7 0.9164 0.5

2 0.0169 3.9892 32.7 0.7415 0.5

3 0 13.5352 15.6 0.7094 1.5

Master curve 0.0036 0.2847 204.08 0.7484 1.9

The scaling behavior of the plateau modulus, which describes the chain entanglement

effects (Yu et al., 2014) in the alginate solutions, was determined by rheological data. This

modulus can be calculated by

Ge =
η0
λ

(3.6)
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where λ is the relaxation time, calculated as the inverse of the shear rate at which the transition

from Newtonian to shear-thinning behavior occurs. In Fig. 3.2e are shown the scaled results for

entangled solutions. As observed, they are consistent with the scaling law for polyelectrolyte

solutions (Ge ∼ c
3/2
p ) (Yu et al., 2014; Colby, 2010). Nevertheless, a recent study reported that

the exponential value of the scaling behavior could be higher than (3/2); an exponent between

2− 3 is suggested due to the monomers’ dipolar interactions through counterions (Roger et al.,

2015). For high polymer concentrations, the electrostatic interactions of the polyelectrolytes

can be neglected, and the behavior could be similar to that of a good solvent scaling exponent

(2.25) (Dou & Colby, 2006).

Charged surfaces cause the adsorption of polyelectrolytes. Therefore, the anionic polye-

lectrolyte behavior of the alginate solutions generates interactions with the charged Laponite

particles. As previously observed in Fig. 3.2a, the viscosity curves of Laponite/alginate solu-

tions show the influence of Laponite on the rheological behavior. In all cases, the viscosity

decreases when the shear rate increases. At low shear rates, a high viscosity is observed in

comparison to that of the alginate solutions. Conversely, a low viscosity is observed for high

shear rates. In Laponite/alginate solutions, the shear-thinning effect would be associated with

the disentanglement of polymer chains and the Laponite platelet orientation in the flow direction

(Aalaie, 2012). As a result, at high shear rates, these solutions exhibit little resistance to flow.

When the shear rate is reduced, the alginate chains become entangled. Moreover, the Laponite

platelets form a house of cards structure, considerably increasing the viscosity in comparison

to that of alginate solutions. This structure is formed due to electrostatic interactions (Mongon-

dry et al., 2005). At low shear rates, a gel structure forms if Laponite is properly incorporated

into the solution. Contrariwise, at high shear rates, the house of cards structure completely

disappears due to shear forces. Hence, a pronounced shear-thinning behavior is observed. Ad-

ditionally, as observed in Fig. 3.2a, higher alginate concentrations hinder the effect of Laponite

as a rheology modifier due to polymer adsorption on the Laponite surfaces. This is associated

with the polyelectrolyte behavior previously described. Therefore, in Laponite/alginate soluti-

ons, for high alginate concentrations, the viscosity curves differ slightly from those of alginate

solutions.
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3.3.2 Physical gelation

To analyze the physical gelation generated due to the interactions between Laponite and

alginate, frequency sweep tests were performed. Fig. 3.3 shows the results for alginate solutions

in the entangled regime. For all cases, a crossover point defines the transition from a liquid-like

dominated domain (G′′ > G′) to a solid-like dominated domain (G′ > G′′). As shown, the

crossover frequency (ωx) is higher for lower alginate concentrations. This frequency is often

associated with the longest relaxation time of the material, which is calculated as the inverse

of the crossover frequency. Hence, the relaxation time increases as a function of the alginate

concentration. This time defines the period in which the polymer chains can disentangle as a

result of the oscillating shear applied. Longer chains cannot disentangle, which causes the tran-

sition from liquid-like to solid-like behavior (Yu et al., 2014). Fig. 3.4 shows the damping factor

(tan(δ) = G′′/G′) as a function of the alginate concentration. As shown, at high frequencies,

the solid-like behavior is dominating (tan(δ) < 1). Moreover, the damping factor decreases

when the alginate concentration increases. This is, larger amounts of polymer contribute to the

solid-like behavior, thus decreasing tan(δ).

Fig. 3.3: Dependence of the storage modulus (G′) (solid symbols) and the loss modulus (G′′)
(open symbols) on the angular frequency (ω) for alginate solutions in entangled regime. Data
are vertically shifted to avoid overlapping, ωx is the crossover frequency and “A” represents the
alginate concentration (cp).
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Fig. 3.4: Damping factor (tan(δ)) plotted against the alginate concentration (cp) for different
angular frequencies (ω).

On the other hand, Fig. 3.5 shows the storage and loss moduli as functions of the angular

frequency for Laponite/alginate solutions. As shown, soft gels were obtained at low alginate

concentrations. Taking into account that aqueous alginate solutions are polyelectrolytes, algi-

nate could adsorb on an oppositely charged surface, in this case, the charged surfaces of Lapo-

nite. Table 3.2 shows the pH values for alginate and Laponite/alginate solutions; as observed,

pH ≤ 11 for all cases. Hence, it is suggested that alginate, which is an anionic polymer, is

being adsorbed on the positively charged surface of the Laponite, in this case, the rim of the

platelets. As a result, when the alginate concentration increases, a transition from solid-like to

liquid-like behavior is observed. At low alginate concentrations, physical gelation occurs as a

result of Laponite-alginate interactions. Conversely, alginate adsorption on Laponite surfaces

at higher alginate concentrations hinders the rheology modifier effect because the formation

of the house of cards structure is difficult. Fig. 3.6a shows the damping factor plotted against

the angular frequency. This curves were superimposed by horizontal and vertical shifting, as

illustrated in Fig. 3.6b, revealing that the transition from a dominant solid-like behavior to a

liquid-like behavior follows a similar route when the alginate concentration increases and the

Laponite concentration is maintained fixed at 2 wt.%.
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Fig. 3.5: Dependence of the storage modulus (G′) (solid symbols) and the loss modulus (G′′)
(open symbols) on the angular frequency (ω) for 2 wt.% Laponite in the presence of different
alginate concentrations (“A”). Data are vertically shifted to avoid overlapping.

Table. 3.2: pH values for Laponite/alginate solutions (cL is the Laponite concentration and “A”
represents the alginate concentration (cp)).

cL(wt.%) 0.25A 0.5A 0.75A 1A 2A 3A 4A

0 6.86 6.85 6.87 7.51 7.34 7.52 7.94

2 9.99 9.82 9.63 9.74 9.51 9.18 9.12
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Fig. 3.6: (a) Damping factor (tan(δ)) plotted against angular frequency (ω) and (b) damping
factor superimposed curve for Laponite/alginate solutions (inset table shows the horizontal (ax)
and vertical (ay) shift factors. Reference concentration: 3 wt.% alginate. “A” represents the
alginate concentration (cp)).

The transition from solid-like to liquid-like behavior can be analyzed through the damping

factor. This transition is defined by the gel point. The damping factor from Kramers-Krönig is

defined by Eq. (3.7) (Liu et al., 2003), which has no dependence on the angular frequency at
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the gel point:

tan (δ) =
G′′

G′
= tan

(︁nπ
2

)︁
(3.7)

The gel point is defined by the relaxation modulus G(t) of a critical gel. This modulus

was proposed by Winter & Chambon (1986), as a power-law described by

G (t) = St−n (3.8)

where S is the gel strength and n the relaxation exponent (0 < n < 1). The gel strength can be

determined by Eq. (3.9) at the gel point (Jatav & Joshi, 2014),

G′ =
G′′

tan
(︀
nπ
2

)︀ = SωnΓ (1− n) cos
(︁nπ

2

)︁
(3.9)

where Γ() is the gamma function. Therefore, the gel strength can be calculated by obtaining n

from Eq. (3.7) and G′ or G′′.

Fig. 3.7 shows plots of the damping factor against the alginate concentration for different

frequencies. Fig. 3.7a reveals that the solid-like behavior dominates at small frequencies for

alginate concentrations under 1 wt.%, while, Fig. 3.7b and c show no frequency dependence

at cp = 2.61 wt.% and cp = 3.32 wt.%. At these concentrations, transitions from solid-like to

liquid-like behavior occur in a liquid-like dominated domain (tan(δ) > 1). Moreover, Fig. 3.7d

shows no frequency dependence at cp = 1.65 wt.% and tan(δ) = 0.73. At this concentration,

a transition from solid-like to liquid-like behavior occurs in a solid-like dominated domain

(tan(δ) < 1). Therefore, at this concentration, the gel point is defined, below which, soft gels

were obtained. When the alginate concentration increases, a progressive increase in the damping

factor is observed, suggesting a reduction in the elasticity. This fact explains the considerable

reduction of the shear-thinning effect of Laponite when the alginate concentration increases.
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Fig. 3.7: Damping factor (tan(δ)) plotted against the alginate concentration (cp). The angular
frequency (ω) increases from (a) to (d).

Furthermore, as observed in Fig. 3.7, the plotted data are mainly in the region tan(δ) < 1.

That is, the solid character of the material prevails over the viscous (G′ > G′′). In contrast,

the damping factor of alginate solutions previously shown in Fig. 3.4b shows that plotted data

are mainly in the region tan(δ) > 1. Moreover, when the alginate concentration increases,

the elasticity also increases for the alginate solutions and decreases in the Laponite/alginate

solutions. For this reason, soft gels are formed mainly at lower alginate concentrations.

3.3.3 Aging evolution

Fig. 3.8a shows the storage modulus (G′) and the loss modulus (G′′) obtained through

time sweep tests carried out at different angular frequencies for the composition of 0.25 wt.%
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Fig. 3.8: Aging evolution: (a) dependence of the storage modulus (G′) (solid symbols) and the
loss modulus (G′′) (open symbols) on the waiting time (tw) for angular frequencies (ω) in the
range of 10 to 100 rad s−1 for the composition 0.25 wt.% alginate and 2 wt.% Laponite and
(b-e) reconstructed frequency dependence of G′ for different waiting times.

alginate and 2 wt.% Laponite. As observed, G′ increases as a function of the waiting time (tw)

and the angular frequency (ω). Similar behavior was observed for the other compositions (for

clarity, only one composition was depicted, while the other compositions are illustrated in the

Appendix A). G′′ also increases with the frequency, but slightly decreases at low waiting ti-



61

mes and remains constant at high waiting times. G′ is higher than G′′, corroborating a solid-like

behavior when the aging was analyzed in compositions under the gelling point. Hence, the dam-

ping factor decreases with the waiting time, which demonstrates a growing Hookean elasticity

(Sun et al., 2012). Moreover, the frequency dependence of G′ was reconstructed, which is de-

picted in Fig. 3.8(b-e) for different compositions and waiting times. In these curves, there can

be clearly observed a growing elasticity as a function of the waiting time and frequency. The

storage modulus also increases with the alginate concentration due to the structural interactions

generated between the polymer chains and the Laponite platelets over time. Then, the evolution

of the elastic behavior demonstrates that Laponite/alginate solutions undergo aging.

3.4 Summary

Rheological studies performed in alginate and Laponite/alginate solutions allowed the

analysis of the mechanism that influences the transition from a shear-thinning behavior in algi-

nate solutions to a pronounced shear-thinning behavior when Laponite is added. Electrostatic

interactions between charged Laponite platelets generate a house of cards structure when the

shear rate tends to zero. Therefore, at low shear rates, the entangled alginate chains and the

house of cards structure contribute to increasing the viscosity considerably. In addition, a solid-

like dominated behavior arises due to interactions between the alginate chains and Laponite

platelets. As demonstrated, alginate solutions have a polyelectrolyte behavior (Ge ∼ c
3/2
p ).

Therefore, taking into account that alginate is an anionic polysaccharide and the rim of the La-

ponite platelets is positively charged at pH ≤ 11, it is suggested that the alginate adsorbs on the

positive surfaces of Laponite, which hinders the increase in viscosity at high alginate concen-

trations. Frequency sweep tests revealed that Laponite produces physical gelation in alginate

solutions. Moreover, the damping factor from Kramers-Krönig allowed the determination of

the gel point. This last factor defines the transition from solid-like to liquid-like behavior, which

follows a similar route, as revealed by a superimposed curve. As observed, at the gel point,

the damping factor has no dependence on the frequency. Finally, time sweep tests revealed a

growing elasticity as a function of the waiting time. Hence, Laponite/alginate solutions undergo

aging. Furthermore, it is anticipated that Laponite/alginate solutions together with AM proces-

ses have potential for biomedical applications.
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4 RHEOLOGICAL EVALUATION OF LAPONITE/ALGINATE INKS

FOR 3D EXTRUSION-BASED PRINTING‡

The 3D printing of soft materials is challenging mainly due to their rheological behavior.

The 3D extrusion-based printing was correlated with the rheological properties for each stage

of the process. A protocol to obtain an optimal ink was defined and Laponite/alginate mixtures

were analyzed. All mixtures exhibited a pronounced shear-thinning behavior. Higher alginate

concentrations partially hindered the rheology modifier effect of Laponite. The filament forma-

tion during extrusion and good printability were observed for Laponite concentrations of at

least 5 wt.%. The optimal ink was defined as a function of the viscosity profile, the filament

formation ability, the flow-point and the solid-like/liquid-like behaviors. The viscosity recovery

test demonstrated an instant structure recovery for the optimal ink, which did not present shear

rate dependence. Jointly, an extrusion-based modular printer head was developed and tested to

be compatible with open source 3D printers. Finally, the 3D printed gels were crosslinked to

obtain single (SN) and double network (DN) hydrogels. In these latter, a second network precur-

sor of poly(acrylamide) was used. As established, the rheological characterizations constitute

a powerful tool to analyze the printability of soft materials.

4.1 Introduction

Laponite is a nanosilicate commonly applied as a rheology modifier of waterborne pro-

ducts. It is a synthetic additive obtained from salts of sodium, magnesium, and lithium with

sodium silicate. It has a layered structure, and when dispersed in water, it forms disk-like par-

ticles with approximately 1 nm in thickness and 25 nm in diameter. It is commonly used as a

film-forming agent, emulsifier and gelling agent in surface coatings, cleaners, personal care pro-

ducts, inks, among others (Cummins, 2007; Perkins et al., 1974). Laponite has high purity, it is

non-toxic and enhances biological activities like cell adhesion and proliferation (Ghadiri et al.,

2013a). On the other hand, sodium alginate is a natural polysaccharide; specifically, it is an

amorphous copolymer with a linear unbranched chain composed of mannuronic (M) and gulu-

‡ The original publication is available at The International Journal of Advanced Manufacturing Technology
https://doi.org/10.1007/s00170-018-2876-y, (Dávila & d’Ávila, 2018)



63

ronic (G) acids. It is frequently used as a gel-former in different industrial applications (Ertesvåg

& Valla, 1998; Fu et al., 2011). The combination of these materials, starting from aqueous so-

lutions, allows obtaining a pronounced shear-thinning behavior. This fact is of great interest

in additive manufacturing applications. Moreover, the rheological behavior of these mixtures

is strongly influenced by the alginate concentration. The interactions generated between the

anionic alginate and the charged surfaces of the Laponite platelets hinder the effect of Lapo-

nite at high alginate concentrations (Dávila & d’Ávila, 2017). Then, the composition should

be carefully defined in order to dispense the material accurately and to obtain a good printing

fidelity.

Different approaches have been proposed to produce inks for AM. Then, rheological stu-

dies are fundamental in this field. A shear-thinning behavior is desirable because an inadequate

viscosity hampers the formation of filaments and the deposition of the material. Therefore, the

deposited structures can easily collapse, regarding that the printing accuracy increases as a func-

tion of the viscosity (Malda et al., 2013). Barry et al. (2009) developed acrylamide-based inks

to fabricate hydrogels by the direct-write assembly technique. The rheological properties of the

inks were studied to obtain a satisfactory viscosity and to monitor the polymerization process.

Duan et al. (2013) fabricated alginate/gelatin inks to encapsulate cells and to produce 3D bio-

printed heart valves. Bakarich et al. (2013) obtained ionic-covalent hydrogels. The rheological

behavior of the hydrogel precursor was evaluated to determine the suitability for extrusion prin-

ting. The inks with a low consistency index were not suitable for the additive manufacturing

process due to unacceptable sagging and deposition of the material. Larsen et al. (2015) stu-

died the rheological behavior of an injectable alginate system. An internal gelation method was

applied to crosslink alginate chains. Boere et al. (2015) developed inks consisting of a thermo-

responsive polymer and poly(ethylene glycol) or a hyaluronic acid crosslinker. In this case, the

ink was partially crosslinked, which was completely crosslinked after the bioprinting process.

Xavier et al. (2015) developed nanoengineered hydrogels using Laponite to obtain higher vis-

cosities, which provides injectability to the ink. Ahlfeld et al. (2017) developed a bio-ink using

alginate, methylcellulose, and Laponite to obtain scaffolds with good printing fidelity.

Other approaches to overcome the rheological limitations include the use of a soft material

as a support, which also allows fabricating samples of complex shapes. Bhattacharjee et al.
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(2015) developed a granular gel medium to provide additional support for the ink during the

printing process. Gentle agitation can easily remove the support bath. Similarly, Hinton et al.

(2015) used a thermoreversible support bath of gelatin microparticles, which can be removed by

heating the printing media at 37 ∘C. Furthermore, Markstedt et al. (2015) used nano-fibrillated

cellulose with alginate to obtain a shear-thinning behavior to bioprint living soft tissue. Yang

et al. (2017) fabricated 3D printed double network (DN) hydrogels with mechanical properties

greater than those of cartilage. They used a two-step method in which UV light crosslinked each

network.

As previously detailed, different approaches have allowed overcoming limitations related

to the hydrogel precursor properties. Moreover, the crosslinking mechanisms can be controlled

to guarantee a better accuracy of the morphology and to fabricate DN hydrogels. These latter

emerge as an innovative choice to enhance the mechanical properties, which are improved due

to the formation of interpenetrating networks. In this kind of materials, the first network is rigid

and brittle and the second soft and ductile. As a result of the combination of these characteristics,

DN hydrogels are stiff and ductile because the energy dissipation contributes to toughen the

material (Nonoyama & Gong, 2015; Shin et al., 2012).

This research describes the rheological evaluation of Laponite/alginate inks to define an

appropriated methodology to characterize and obtain printable inks. A 3D extrusion-based prin-

ting head was developed and tested using the optimal Laponite/alginate composition. This lat-

ter was used as the first network of a DN system. The second network is poly(acrylamide)

(PAAm), a non-resorbable bio-inert material widely used in biomedical applications. Then,

Laponite/alginate-PAAm double network hydrogels were obtained through an ionic-covalent

two-step method. The results here reported provide a viable route to define the region of printa-

bility and to crosslink the printed materials to obtain single and double network hydrogels.
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4.2 Experimental

4.2.1 Material

Medium-viscosity sodium alginate from brown algae (the molar mass ranges between

80,000 and 120,000 g mol−1 and the M/G ratio is 1.56), acrylamide (AAm), the

crosslinker N,N’-methylenebisacrylamide (MBAA) and the photoinitiator 2-hydroxy-4’-(2-

hydroxyethoxy)-2-methylpropiophenone (Irgacure D-2959) were purchased from Sigma-

Aldrich Corp., USA. Laponite XLG was obtained from Southern Clay Products, Inc., USA.

Anhydrous calcium chloride (CaCl2) was purchased from Inlab, Brazil.

4.2.2 Hydrogel precursors formulation

The first network precursor is a mixture of Laponite and alginate. Initially, Laponite was

dispersed in deionized water (Type II, conductivity < 1 µS cm−1) using a vortex agitator. Next,

alginate was added and dissolved using a magnetic stirrer with a plate temperature of 60 ∘C.

Then, mixtures were stirred in a vortex agitator to ensure homogeneity. The Laponite concentra-

tion was varied from 1 to 6 wt.% and the alginate concentration was fixed at 1 wt.%. Afterward,

the Laponite concentration was fixed at 6 wt.% and alginate varied from 0.5 to 2.5 wt.%. The

best composition was determined by rheological studies, the filament formation test by optical

microscopy and printability tests. The second network precursor is an AAm solution containing

calcium ions to crosslink the first network. Then, 20 wt.% of AAm was dissolved in a 0.1 M

CaCl2 aqueous solution with 0.90 or 2.25 mM MBAA. Finally 0.1 wt.% of photoinitiator was

added and dissolved. All procedures for the second network were performed in the dark.

4.2.3 Rheological characterizations

The rheological characterizations were performed using an Anton Paar MCR-102 Modu-

lar Compact Rheometer. Tests were conducted at 25 ∘C using a plate-plate geometry (PP50-1)



66

with a 50 mm diameter and a gap of 1 mm unless stated otherwise. A solvent trap was used

to prevent water evaporation. To evaluate the printability of the inks, the rheological proper-

ties, and the printing process were correlated in three stages: (i) before printing - rest and flow

initiation, (ii) during printing - high shear rate in the nozzle tip walls and (iii) after printing -

viscosity recovery. Before printing the material is resting. At this moment, high viscosity and a

solid-like behavior guarantee that the flow will be generated only under the application of exter-

nal forces. Hence, it is desirable a strong shear-thinning viscosity profile. During printing, the

material should be capable to flow through the nozzle tip easily, a transition from the solid-like

behavior to liquid-like should occur as a function of the strain magnitude. The flow point defines

this transition. At this stage, the shear-thinning behavior allows reaching low viscosities when

the material is being dispensed. After printing, the object should retain its shape. Therefore, a

viscosity recovery is fundamental when the material is already deposited on the platform of the

3D printer. The thixotropic behavior is ideal for this case. Besides, a solid-like behavior is also

desirable to avoid the material collapse.

Then, viscosity measurements were carried out in the range of 0.01 to 700 s−1 after a

constant pre-shear of 200 s−1 applied for 300 s followed by a rest period of 300 s. Amplitude

sweep tests were performed at a constant angular frequency of 10 rad s−1 with a shear strain in

the range from 0.01 to 100%. With the results of this test was defined the linear viscoelasticity

(LVE) range (γ0 = 1% for the inks and γ0 = 0.5% for the crosslinked hydrogels) and the flow

point for the solid-like samples. This point is defined by the crossover where the storage (G′)

and loss (G′′) moduli are equal. Next, frequency sweep tests were performed for the inks and

in the crosslinked samples (disc shape hydrogels were 3D printed with 50 mm in diameter and

2 mm in thickness) in the range of 0.1 to 240 rad s−1. Viscosity recovery tests were carried

out to analyze the structure recovery after a shear load (Peak et al., 2017). To simulate the 3D

printing conditions, the viscosity recovery test was carried out using three intervals. In the rest

interval a low shear rate (1 s−1) was applied for 25 s. Then, a constant high shear rate (50-

700 s−1) was suddenly applied for 50 s. The regeneration interval was carried out with a shear

rate of 1 s−1 for 250 s. The viscosity recovery percentage is given by

ηrec =
ηtrec
ηi

× 100 (4.1)
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where ηtrec is the viscosity at a recovery time t and ηi is the initial viscosity at the rest interval.

All rheological characterizations were triplicated. In Fig. 4.1 is shown the flowchart for the inks

printability evaluation.

Fig. 4.1: Flowchart of the printability evaluation.
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4.2.4 Zeta potential

The zeta potential was measured in a Malvern Zetasizer Nano series equipment. The sam-

ples were previously diluted and sonicated for 5 min. All measurements were done in triplicate.

4.2.5 Design of the extrusion-based modular 3D printing head*

The extrusion-based modular printer head is shown in Fig. 4.2. It was planned to be

compatible with open source 3D printers controlled by the Marlin firmware working with

RAMPS1.4/Arduino electronics.

Fig. 4.2: Modular system for 3D extrusion-based printing: (a) computer-aided design (CAD)
and (b) photo of the printer head mounted in the 3D printer.

The system uses a linear actuator stepper motor (per module) controlled by the A4988

stepper driver. The linear actuator resolution is 0.01 mm step−1 with a 1.8∘ step angle. The

microstepping resolution was defined to obtain sixteenth steps (1/16). As a result, the sys-

tem resolution is 1/1600 mm step−1. The internal diameter of the disposable syringe used

is 22 mm, therefore, the extruded volume resolution is 2.376 × 10−4 ml step−1. The Marlin

firmware was modified to allow two extruders and the system is compatible with open source

∗ Patent INPI BR 10 2017 025903 0, Sistema modular para impressão 3D de géis, (Dávila et al., 2017)



69

software’s as Repetier-Host, MatterControl, Cura, Slic3r, Pronterface, among others. In Appen-

dix B are attached the results for the extrusion tests, which were performed to determine the

force required to dispense the material.

4.2.6 Filament formation test

The filament formation was examined using an optical microscope coupled to the 3D

printing head. The software Repetier-Host V2.1.3 was used to generate a piston speed of

0.526mmmin−1 (flow rate of 0.2ml min−1). In this test, a small flow rate guarantee that the

filament is formed due to the material properties and not due to a high flow rate. The extrusion

was realized through a 22G nozzle tip of 25 mm in length purchased from Injex, Brazil.

4.2.7 3D printing and hydrogels crosslinking

Initially, the 3D extrusion-based printing head was tested using the optimal

Laponite/alginate ink. Piston speeds of 0.526, 1.052 and 1.578 mmmin−1 and printing speeds

in the range from 10 to 30 mm s−1 were tested using the software Repetier-Host V2.1.3. The

g-code files containing the printing paths were generated using the software BioScaffoldsPG

(Dávila et al., 2016). All samples were centrifuged at 4000 rpm for 5 min in a Kasvi K14-4000

centrifuge to eliminate air bubbles before printing. Then, one layer of material was deposited

(using a dosing distance of 0.24 mm) and subsequently observed in a stereo microscope Olym-

pus SZ-CTV. The width of the deposited material was measured using the software ImageJ.

Furthermore, samples with 1 wt.% of alginate and different concentrations of Laponite were

tested to illustrate the effect of the composition over the process. A hollow hexagon was fabri-

cated at a printing speed of 10 mm s−1 and a piston speed of 0.526 mmmin−1. Additionally,

scaffolds with the number of layers in the range from 10 to 100 were fabricated to validate the

material and the printing head.

After 3D printing, the ionic and ionic-covalent crosslinking were performed for single

(SN) and double (DN) network hydrogels respectively. The ionic crosslinking was realized
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Fig. 4.3: Synthesis scheme of the 3D printed single (SN) and double network (DN) hydrogels.

immersing the printed samples in a 0.1 M CaCl2 aqueous solution for 24 h. For the ionic-

covalent crosslinking the samples were immersed in the second network precursor for 24 h.

The schematic procedure is illustrated in Fig. 4.3. The calcium ions crosslink the G groups

of alginate forming an egg-box structure. Moreover, in DN hydrogels the AAm monomer, the

MBAA and the photoinitiator diffuse in the Laponite/alginate network. In this case, the sample

was removed from the solution and washed in deionized water. The water excess was removed

using a paper towel. The samples were crosslinked in a UV chamber of 365 nm wavelength and

36 W for 30 min. Hydrogels were soaked in deionized water for at least 72 h to remove the

unreacted photoinitiator for further characterizations. The deionized water was replaced once

per day.

4.2.8 Fourier transform infrared spectroscopy (FTIR)

The chemical structure of alginate, Laponite and single and double network hydrogels was

analyzed by FTIR. The attenuated total reflectance (ATR) mode was applied using an Agilent

Cary 630 FTIR spectrometer. Hydrogels were lyophilized before tests. The transmittance was

evaluated over the wavenumber range of 4000 - 450 cm−1.
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4.2.9 Mechanical characterization

The mechanical properties were analyzed by compression test using a universal testing

machine MTS (Model 810-FlexTest 40) equipped with a 1500 N load cell. A constant strain

rate of 1 mm min−1 was applied to five fully hydrated 3D printed samples of 10 mm in

diameter and 15 mm in height. The test was performed up to 90% strain.

4.3 Results and discussion

4.3.1 Rheology and printability of the first network

In this chapter is presented the rheological optimization of Laponite/alginate inks for 3D

extrusion-based printing. Previously, it was demonstrated that Laponite significantly enhances

the shear-thinning behavior of aqueous alginate solutions (Dávila & d’Ávila, 2017). Laponite

XLG is a gel grade layered silicate capable of forming low or high viscosity colloidal disper-

sions. The viscosity profile depends on the electrolyte content of the water used, pH changes

and the addition of salts and/or polymers (Peak et al., 2017). Laponite platelets develop elec-

trostatic interactions with polymers; adsorption or desorption depend on the charged sections

on the molecules of the polymer. In the system Laponite/alginate a bonding mechanism could

be generated between the Laponite platelets and the anionic alginate. Therefore, by varying the

components concentration it is possible to obtain custom rheological profiles. Higher alginate

concentrations saturate the positive rims of Laponite platelets and affect the shear-thinning and

solid-like behaviors (Dávila & d’Ávila, 2017).

The printability of the inks was initially evaluated through steady-state shear viscosity

measurements. In Fig. 4.4a are shown viscosity curves for different mixtures and an alginate

sample. As observed, the viscosity for the alginate sample exhibits a shear-thinning behavior

after a Newtonian plateau. On the other hand, the mixtures containing Laponite platelets exhibit

a strong shear-thinning behavior. This latter meet an important requirement for 3D extrusion-

based printing: high viscosity at small shear rates and low viscosity at high shear rates. Ac-
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cording to Malda et al. (2013), a high viscosity impedes the surface tension-driven droplet

formation and the collapse of the printed object. In Fig. 4.4b is shown the viscosity at low shear

rate (γ̇ = 0.01 s−1), which is defined by a power-law. As observed, the Laponite platelets

significantly increase the viscosity.

Fig. 4.4: (a) Viscosity (η) as a function of the shear rate (γ̇) (cL is the Laponite concentration
and the alginate concentration is 1 wt.%) and (b) low shear rate viscosity as a function of the
Laponite concentration.

Next, oscillatory shear tests were performed to analyze the viscoelastic behavior of the

inks. In Fig. 4.5a are shown the amplitude sweep results. At a constant angular frequency of
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Fig. 4.5: Storage modulus (G′) (solid symbols) and loss modulus (G′′) (open symbols) as a
function of the: (a) strain (γ) and (b) angular frequency (ω). Data are vertically shifted to avoid
overlapping (cL is the Laponite concentration and the alginate concentration is 1 wt.%), (c)
optical microscopy images showing the extrusion of a mixture containing 1 wt.% of alginate
and different Laponite concentrations. The scale bar represents 1 mm.

10 rads−1, the alginate solution behaves as liquid-like. This behavior is also experienced by the

mixture containing 1 wt.% of Laponite. Contrariwise, Laponite concentrations above 2 wt.%

behave as solid-like, which would be associated with the physical gelation generated between

the Laponite platelets and the alginate chains. For these mixtures, the flow point is clearly ob-

served. This point guarantees the flow initiation during the printing process, which is associated

with the transition from the solid-like to liquid-like behavior at the crossover strain. Further-

more, in Fig. 4.5b are shown the frequency sweep results. It is corroborated that the alginate
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sample behaves mainly as liquid-like. Nonetheless, a crossover point defines a transition to the

solid-like behavior. This could be associated with the longer alginate chains, which cannot com-

pletely disentangle at high frequencies (Yu et al., 2014). For the sample containing 1 wt.% of

Laponite, a solid-like behavior is observed at small frequencies. On the other hand, the samples

above 2 wt.% of Laponite behave as solid-like in all the range analyzed. These samples ap-

parently have suitable properties for 3D extrusion-based printing. Then, the filament formation

during extrusion was also evaluated to guarantee that the material could be dispensed in layers.

As observed in Fig. 4.5c, a continuous filament is only formed above the 5 wt.% of Laponite

concentration.

Next, the Laponite concentration was fixed at 6 wt.% and the viscosity profile was analy-

zed for different alginate concentrations. The viscosity curves are shown in Fig. 4.6a. As ob-

served, the viscosity increases when alginate is added, nonetheless, higher concentrations of

alginate partially hinder the rheology modifier effect of Laponite due to electrostatic interacti-

ons (Dávila & d’Ávila, 2017). The zeta potential shown in Fig. 4.6b is one of the factors that

define the rheological properties and the stability of dispersions. For Laponite, the zeta potential

is around −38.9 mV . In the presence of alginate, the negative magnitude of the zeta potential

increases, this would be associated with the presence of anionic charges and the alginate adsorp-

tion. Above an alginate concentration of 1.5 wt.%, the negative magnitude of the zeta potential

decreases, suggesting a reduction in the stability of the dispersion. This fact corroborates the

decrease in the low shear rate viscosity. As reported by Yang et al. (2017) the viscosity of a

mixture containing Laponite is significantly affected by the changes in the ionic strength. The

viscosity curves fitted well with the Ostwald-de Waele viscosity model, which is given by

η(γ̇) = mγ̇n−1 (4.2)

where m is the consistency index and n the power-law index; m is associated with magnitude of

the viscosity and n defines the viscosity behavior: (i) shear-thickening if n > 1, (ii) Newtonian

if n = 1 or (iii) shear-thinning if n < 1 (Morrison, 2001). In Table 4.1 is observed that n

increases with the alginate concentration for all the cases. Nevertheless, the consistency index

reaches a maximum with 1.5 wt.% of alginate and then decreases significantly.
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Fig. 4.6: (a) Viscosity (η) as a function of the shear rate (γ̇) for Laponite/alginate mixtures (cp
is the alginate concentration) and (b) zeta potential; the inset plot depicts the zeta potential as a
function of the alginate concentration.
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Table. 4.1: Ostwald-de Waele viscosity model fitting parameters (“A” represents the alginate
concentration).

Sample m (Pa sn) n (−) R2

0A 209.31± 15.44 0.020± 0.0024 0.9999

0.5A 267.50± 11.44 0.064± 0.0002 0.9996

1.0A 305.85± 11.55 0.069± 0.0020 0.9995

1.5A 364.97± 7.80 0.116± 0.0017 0.9990

2.0A 192.78± 10.14 0.305± 0.0250 0.9982

2.5A 168.69± 13.96 0.334± 0.0270 0.9949

The composition for the optimal ink was defined as 6 wt.% of Laponite and 1 wt.%

of alginate, in which m and n ensure an appropriate viscosity to dispense the material. Up to

this alginate concentration mixing the components did not present difficulties. In the case of

concentrations above 1 wt.% of alginate, a longer time in the vortex stirrer was required to

solubilize it completely. Throughout the literature, it has been reported suitable consistency and

power-law indexes for different inks and bio-inks. Bakarich et al. (2013) reported consistency

indexes in the range from 20 to 150 Pa sn and power-law indexes between 0.32 and 0.45

for alginate-acrylamide inks, where ethylene glycol was used as a rheology modifier. In another

study, the same research group fabricated 3D printed fiber reinforced hydrogel composites using

an Epoxy based UV curable adhesive (Emax 904 Gel-SC), an alginate-ethylene glycol ink as

support and an alginate-acrylamide ink. Consistency indexes of 41, 50 and 80 Pasn and power-

law indexes of 0.44, 0.38 and 0.37 were reported for the Emax, the support ink and the alginate-

acrylamide ink respectively (Bakarich et al., 2014). Peak et al. (2017) defined an optimal ink

containing PEG (10%wt./vol) and Laponite (4%wt./vol). The consistency and the power-law

indexes are 60 Pa sn and 0.2 respectively. In contrast, our optimal ink has a higher consistency

index of approximately 306 Pa sn and a power-law index of 0.069, which defines a strong

shear-thinning profile.

The results for the viscosity recovery test are presented in Fig. 4.7. It can be observed that

the ink needs a short time to recover the initial structure. When the material flows through the

nozzle tip, Laponite platelets and alginate chains tend to become oriented in the flow direction.
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Fig. 4.7: Viscosity (η) as a function of the time (t) for the recovery test. The shear rate (γ̇)
increases from 50 to 700 s−1. The inset plot depicts the viscosity recovery percentage (ηrec) as
a function of the shear rate.

Then, the viscosity decreases and stays constant in the load interval. When the high shear load is

removed, the viscosity recovery occurs almost instantaneously, which would be associated with

the regeneration of the house of cards structure and the elastic energy stored by the alginate

chains. According to our findings, the viscosity recovery has no dependence on the shear rate

undergone during the process. Statistical significance was determined by one-way ANOVA (p <

0.05). The viscosity recovery is around 90% after 10 s. This capability to quickly rebuild the

structure is ideal to increase the stability of the printed object, what in turn improves the printing

quality. After 250 s the viscosity recovery is in the range between 95 and 100%. Peak et al.

(2017) reported that an initial viscosity recovery of 80% is significant for 3D printing.

4.3.2 3D extrusion-based printing

According to the power-law generalized Newtonian fluid, the velocity profile along a tube

(nozzle tip) is defined by (Morrison, 2001)
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where ∆p is the is the pressure difference between the inlet and outlet of the nozzle tip (extrusion

pressure), r is the radial coordinate and R and L the nozzle tip radius and length respectively.

The flow rate is given by (Morrison, 2001)
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and the wall shear rate (Macosko, 1994)
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The nozzle tip diameter influences over the shear rate. For higher nozzle tip diameters, the

wall shear rate decreases while the printing viscosity increases. On the other hand, small nozzle

tip diameters require a higher pressure to dispense the material. With a high length nozzle tip,

the material has more time to align in the flow direction, which benefits the material dispensing.

As shown in Fig. 4.8a, the extrusion velocity profile inside the nozzle tip is flat, which is directly

associated with the strong shear-thinning behavior of the ink. In Fig. 4.8b is observed that the

wall shear rate increases significantly as a function of the piston speed. Hence, the printing

viscosity decreases and the material can be readily dispensed. Then, the extrusion and printing

speeds directly influence over the material deposition. In Fig. 4.8c is illustrated the filament

width obtained after measurements of printed samples under different conditions. The ratio

between the extrusion and the printing speeds should be appropriated to deposit the material

continuously. For a low extrusion speed and a high printing speed, the material will be stretched,

and the width of the deposited line will be lower. In some cases, the material deposition could

be interrupted. Contrariwise, for high extrusion speeds and small printing speeds, the filament

width will be higher. Therefore, taking into account the mass conservation, it is desirable that

the extrusion speed must be higher than the printing speed.
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Fig. 4.8: Printing parameters for the optimal ink: (a) extrusion velocity profile inside the nozzle
tip, (b) printing viscosity (ηp) and wall shear rate (γ̇w) as a function of the piston speed (vps)
and (c) filament width as a function of the printing speed (vp) for different extrusion speeds
(ve).

Afterward, printing tests were performed with different Laponite concentrations. As

shown in Fig. 4.9(a,b), it was possible to correctly dispense the material with a Laponite con-

centration of at least 5 wt.%. With 3 wt.% of Laponite the printed structure collapsed and after

the first layers it was no longer possible to dispense the material continuously. The shape fi-

delity increased as a function of the Laponite concentration. Then, scaffolds were printed with

the optimal ink using different numbers of layers. As illustrated in Fig. 4.9(c-g), the material
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Fig. 4.9: Printed samples: (a,b) influence of the Laponite concentration over the printability, (c)
10 layers scaffold, (d) 50 layers scaffold, (e) 100 layers scaffold, (f) sample during the printing
process, (g) scaffold superior view, (h) 30 layers scaffold using two extruders, each extruder
printed 15 layers in two intervals, (i) 40 layers scaffold, each extruder print 10 layers in four
intervals. Food coloring was used to identify the extruder 1 (blue) and the extruder 2 (red). Scale
bars represent 10 mm.

was continuously dispensed. Once deposited in the platform, the viscosity recovery and the

solid-like behavior guarantee the printing stability. In these tests was used an extrusion speed of

41.6 mms−1, a printing speed of 15 mms−1 and a layer height 0.24 mm. A video file showing

the fabrication of a 100 layers scaffold is available online (electronic supplementary material,

https://doi.org/10.1007/s00170-018-2876-y). Subsequently, dual extrusion was performed. As

observed in Fig. 4.9(h,i), the material was correctly dispensed. The firmware calibration and

configuration works properly after modified. The dual extrusion expands the applications for

the use of different materials, which includes the use of a support material.

4.3.3 Hydrogels crosslinking: chemical structure and swelling behavior

In Fig. 4.10 it is observed the FTIR spectra of the powder raw materials and the dried

samples of single and double network hydrogels. For the sodium alginate, it is shown the cha-
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Fig. 4.10: FTIR spectra of alginate, Laponite, and the dried SN and DN hydrogels.

racteristic peaks for this material. The band between 3600 and 3200 cm−1 is associated with the

stretching vibration of O − H bonds of alginate. At 2934 cm−1, a peak attributed to the over-

lapping symmetric and asymmetric stretching vibration of C −H aliphatic chains is observed.

At 1592 cm−1 and 1408 cm−1 peaks associated to the symmetric and asymmetric stretching vi-

bration of the C−O bond of COO− can be observed (Li et al., 2008a). At 1298 and 951 cm−1,

peaks corresponding to the C−O stretching are observed (Kanti et al., 2004; Mahmoodi, 2013).

The peaks at 1082 and 1028 cm−1 correspond to the stretching vibrations of the C −O bond of

the glycosidic linkage (Voo et al., 2015). In the spectra for the Laponite/alginate dried hydrogel,

the peaks of sodium alginate were shifted from 1592 to 1599 cm−1 and from 1408 to 1423 cm−1

due to the ionic crosslinking with Ca2+ ions and the formation of the egg-box structure (Voo

et al., 2015). At 1012 cm−1 it is observed a peak related to the Si − O stretching of Laponite

(Du et al., 2015; Jun et al., 2015). Moreover, the peak corresponding to the C −O stretching of

alginate was shifted from 951 to 949 cm−1. The peak at 650 cm−1 correspond to the vibration

of the Mg − O bond of Laponite (Ghadiri et al., 2013b; Sudha et al., 2011). In the DN hydro-

gels, it is clearly observed the presence of the first network components. Moreover, in the range

from 3400 to 3200 cm−1, peaks associated with the stretching vibration of N−H are observed.
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Around 1655 cm−1 it can be observed the stretching of the C = O group of the AAm unit (Li

et al., 2008b). At approximately 1605 cm−1 it is observed the N −H bending vibration of the

amide group. The peaks between 1441 and 1411 cm−1 would be associated to C −H bending

(Şolpan et al., 2008). The peak at 1348 cm−1 corresponds to the C −N stretching (Lim et al.,

2016). For Laponite it is observed a peak at 1631 cm−1 associated to the H −OH bending. At

962 cm−1 a peak related to the Si− O stretching and at 650 cm−1 the Mg − O vibration (Cai

et al., 2016).

The swelling behavior of hydrogels is associated with the crosslinking density (Zhang

et al., 2014). The swelling kinetics could be well described by a pseudo-second-order model

based on the swelling capacity on solid phase (Li et al., 2017),

t

Qt

=
1

k2Q2
e

+
1

Qe

t (4.6)

where Qe is the swelling ratio at the equilibrium and k2 the rate constant of sorption. Moreover,

r0 is the initial rate of swelling, defined as Qt/t when t → 0,

r0 = k2Q
2
e (4.7)

As shown in Table 4.2 and Fig. 4.11 the swelling ratio at equilibrium is greater for the

DN hydrogels. In an initial stage, the group DN-2.25 mM MBAA presented a faster rate of

water absorption, which is reflected in the initial rate of swelling. Nevertheless, after 8 h the

group DN-0.09 mM MBAA starts to present a higher swelling ratio, which would be associated

with their lower crosslinking density. On the other hand, for the SN hydrogels it is observed a

limited capacity of absorbing water. The swelling ratio is significantly lower than the DN hy-

drogels. In these latter, the presence of poly(acrylamide), which is highly hydrophilic improves

considerably the water absorption.
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Table. 4.2: Swelling kinetics parameters.

Sample r0 (h
−1) k2 (h

−1) Qe (g g
−1) R2

SN 0.9795 0.811 1.099 0.9837

DN-0.09 mM MBAA 1.2625 0.004938 15.99 0.9952

DN-2.25 mM MBAA 1.3379 0.006381 14.48 0.9900

Fig. 4.11: Swelling ratio of single and double network hydrogels in deionized water.

4.3.4 Hydrogels mechanical properties

The mechanical properties of the hydrogels were evaluated by frequency sweep and com-

pression tests. Hydrogels have a viscoelastic behavior defined by the storage (G′) and the loss

moduli (G′′). In Fig. 4.12a it is observed that G′ > G′′ for all cases, which is related with a

solid-like behavior. Before the ionic crosslinking, the Laponite/alginate samples behave as a

soft gel. The physical gelation generated by the interactions between alginate chains and La-

ponite platelets allows maintaining the shape after printing. Nonetheless, these interactions are

weak and can be easily broken by applying mechanical forces. When the samples are soaked in
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Fig. 4.12: (a) Storage modulus (G′) (solid symbols) and loss modulus (G′′) (open symbols) as
a function of the angular frequency (ω) and (b) compression stress–strain curves.

an aqueous CaCl2 solution, calcium ions diffuse inside the material and crosslink the G blocks

of alginate. Junctions are formed between adjacent chains, and an egg-box structure defines a

three-dimensional network (Liu et al., 2016). Therefore, G′ and G′′ increased significantly and

the mechanical stability was improved. When the second network is added, an interpenetrating

network is formed. The covalent crosslinking generates a chemical hydrogel. As observed, a
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higher amount of MBAA is associated with better mechanical properties due to the increase

of the crosslinking density. This fact is also observed in Fig. 4.12b. The compressive stress

at a strain of 90% increases from 0.44 ± 0.05 MPa to 1.08 ± 0.07 MPa for a 0.90 mM

MBAA second network. Furthermore, using a 2.25 mM MBAA second network increases the

compressive stress to 2.41± 0.28 MPa.

The formation of the egg-box structure compacts the alginate network due to the presence

of calcium ions, when a compressive load is applied, the crosslinked zones of alginate are un-

zipped, which contributes to the energy dissipation mechanism (Yang et al., 2013). The ionic

interactions are a physical crosslinking and are commonly used to obtain the reversible cros-

slinking mechanism (Zhao, 2014). To stabilize the deformation, the poly(acrylamide) network

was added. Therefore, in the DN hydrogel, each network contributes to dissipate the mechanical

energy (alginate) and maintain high elasticity (PAAm). The SN hydrogels presented a perma-

nent deformation after the compression test. On the other hand, the DN network hydrogels have

the ability to recover the shape when the compression force is removed.

4.4 Summary

The rheological studies performed in Laponite/alginate mixtures allowed to analyze their

viscosity profiles and define an optimal ink for 3D extrusion-based printing. Evaluate the printa-

bility is of high importance to set the process parameters and to correctly dispense the material.

The Laponite and alginate concentrations have significant influence over the shear-thinning

behavior and the printability of the ink. The flow initiation, the fast viscosity recovery after a

high shear rate and the solid-like behavior guarantee that the ink is capable of being dispen-

sed and subsequently retain the shape of the printed object. These set of rheological properties

analyzed together with the filament formation test allow evaluating the printability. Then, the

modular 3D extrusion-based printing head was tested, and single (SN) and double network

(DN) hydrogels were successfully crosslinked after the printing process. The chemical struc-

ture analyzed by FTIR revealed the ionic crosslinking of alginate and the covalent crosslinking

of poly(acrylamide), which together form an interpenetrated network. This fact is reflected in

the enhanced mechanical properties evaluated by the frequency sweep test and the compression
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test. Finally, future perspectives are oriented to apply the methodology here reported to bio-inks

or other biocompatible soft materials to print scaffolds or substitutes for tissue engineering ap-

plications with good printing fidelity. Moreover, the system Laponite/alginate could be further

studied as the basis to obtain bio-inks.
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5 CONCLUSIONS

This work has shown that rheological characterizations constitute a powerful tool to

analyze inks for 3D printing. Initially, alginate aqueous solutions were studied. As observed,

the anionic behavior was in good agreement with the scaling laws reported in the literature.

Then, when the rheology modifier was added, the electrostatic interactions generated with the

polymer chains significantly influenced the rheological behavior as a function of the concentra-

tion. Alginate could be adsorbed in the positively charged rims of Laponite. In this way, the inks

were planned since their initial conception. Transitions from solid-like to liquid-like behaviors

were observed and reported, which enabled the appropriate definition of the composition of the

inks.

After the initial findings of the rheological behavior of the system Laponite/alginate, dif-

ferent concentrations were evaluated, targeting an optimal ink concentration. Then, taking into

account the characteristics of the 3D extrusion-based process, the ink evaluation was realized

based on three stages: (i) rest and flow initiation, (ii) high shear rate in the nozzle tip walls, and

(iii) retain the shape at rest. This proposal was evaluated by steady-state shear tests, viscosity

recovery tests, amplitude sweep, and frequency sweep tests (SAOS). The filament formation

was assessed using an optical microscope, and the printability, using different concentrations

in the 3D printer. As a result of the consolidation of all these characterizations, a protocol to

develop inks for 3D printing was established. All mixtures evaluated exhibited a pronounced

shear-thinning behavior. Nonetheless, higher alginate concentrations partially hindered the rhe-

ology modifier effect of Laponite. The Ostwald-de Waele viscosity model described well the

viscosity curves of the samples. Moreover, it was reported that after a high shear rate, the visco-

sity is rapidly recovered. This recovery has no dependence on the shear rate undergone during

the process.

Jointly with the inks evaluation, was developed a 3D extrusion-based printing head com-

patible with an open source, RepRap 3D printer. This device is in the technical field of accesso-

ries for molding and printing of three-dimensional objects. Specifically, it is a syringe head for

the deposition of gels and hydrogels by extrusion generated by a piston system. This printing

head was planned as a modular device, where more syringes can be added according to the re-
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quirements of the application. The main advantages of the system are the low number of parts,

which can be fabricated by Fused Deposition Modeling (FDM) or other additive manufactu-

ring processes. It uses disposable syringes to store the material; they also serve as structural

support, reducing the weight and size. The loading of the gel/hydrogel into the syringe is also

simplified. As tested, it works correctly in the 3DCloner Lab printer, which operates with the

Marlin firmware and RAMPS1.4/Arduino electronics. The open source firmware was modified

to work with two extruders. Hence, the system was considered innovative and was patented

with the process number BR 10 2017 025903 0 of the National Institute of Industrial Property

(INPI-Brazil).

After 3D printing, the materials were capable of retaining the shape before the crosslin-

king process. Next, they were ionically crosslinked to obtain single network (SN) hydrogels.

Furthermore, a two-step method that combines ionic and covalent crosslinking was performed

to obtain double network (DN) hydrogels. The results reflect that the mechanical properties

were significantly enhanced when an interpenetrating network is formed. In summary, the con-

tributions presented in this thesis constitute a set of tools for the 3D extrusion-based process,

from planning to the crosslinking of hydrogels.

Future works can be oriented to:

∘ Evaluate the behavior of other formulations and rheological modifiers.

∘ Print complex shapes using support materials; including thermoreversible and granular

materials.

∘ Obtain multi-material 3D printed objects to create a properties gradient.

∘ Test bio-inks to fabricate scaffolds and perform in vitro and in vivo studies.

∘ Print cell-laden artificial tissues and substitutes.

∘ Use the dual extrusion printing head to print biocompatible inks and deposit cells in spe-

cific regions.
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APPENDIX A – Aging curves

Fig. A.1: Aging evolution: dependence of G′ (solid symbols) and G′′ (open symbols) on the
waiting time (tw) for frequencies in the range of 10 to 100 rad s−1 for the compositions 0.5,
0.75 and 1 wt.% alginate and 2 wt.% Laponite.
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APPENDIX B – Printing head extrusion force

The extrusion force was obtained using a TA.XTplus Texture Analyser with a 500 N load cell.

Piston speeds of 0.526, 1.052 and 1.578 mm min−1 were tested using a disposable syringe

of 20 ml and a 22G nozzle tip of 25 mm in length. These latter were purchased from Injex,

Brazil. All tests were triplicated using the optimal ink concentration. In Fig. B.1 are observed

the obtained results.

Fig. B.1: Extrusion force for different piston speeds (vps).

Then, for the printing head design, the linear actuator was selected taking into account its ma-

ximum load force, which was calculated using the power screw equations (Mischke & Shigley,

1996):

F =
2TR

dm

(︂
πdmβ − µtLT

πµtdm + LTβ

)︂
(B.1a)

dm = d−
p

2
(B.1b)

LT = p ns (B.1c)
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tan (λL) =
LT

πdm
(B.1d)

tan (αm) = tan (αF ) cos (λL) (B.1e)

β = cos (αm) (B.1f)

where TR is the raising torque, dm and d the mean and the nominal diameters of the threaded

shaft respectively, LT the thread lead, p the thread pitch, ns the number of thread starts, λL

the lead angle, αF and αm the flank and the normalized flank angles respectively, β the thread

geometry parameter, and µt the coefficient of thread friction. The data from the linear actuator

and its threaded shaft is shown below:

TR = 0.21 N m d = 5 mm ns = 2 p = 1 mm αF = 4.046∘ µt = 0.16,

then, the maximum load force is:

F = 302.2 N,

which ensures that the material can be extruded through the nozzle tip.
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