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Resumo

Este trabalho aplica conceitos de redes neurais artificiais para identificar os parâmetros de um

modelo matemático baseado em campos de fase para dano e fratura. A mecânica do dano é a

parte da mecânica do contínuo que modela os efeitos da formação de micro-defeitos usando

variáveis de estado no nível macroscópico. As equações que definem o modelo são derivadas de

leis fundamentais da física e fornecem relações importantes entre as variáveis de estado. Simu-

lações utilizando o modelo considerado neste trabalho produzem bons resultados qualitativos

e quantitativos, mas muitos parâmetros devem ser ajustados para reproduzir um determinado

comportamento material. Considera-se a identificação dos parâmetros do modelo por meio da

resolução de um problema inverso que emprega dados pseudo-experimentais para encontrar

valores que produzem o melhor ajuste aos dados. Aplica-se uma rede neural informada por leis

físicas e são combinados alguns métodos clássicos de estimativa para identificar os parâmetros

materiais que aparecem na equação de dano do modelo. A estratégia aplicada é composta por

uma rede neural que atua como uma função aproximadora da evolução do dano com sua saída

regularizada utilizando o resíduo da equação diferencial. Três estágios de otimização buscam os

melhores valores possíveis para os parâmetros materiais e da rede neural. O treinamento alterna

entre o ajuste de apenas os dados pseudo-experimentais ou da perda total que inclui os termos

de regularização. A robustez do método na presença de ruído nos dados de treinamento e a

capacidade de generalização desta metodologia são testadas usando um caso físico simples para o

modelo de dano. Este procedimento lida melhor com a presença de ruído em comparação com um

método de otimização restrito para a equação diferencial e também fornece boas aproximações

dos parâmetros materiais e a evolução do dano.

Palavras-chave: Identificação de parâmetros, Modelo de dano, Redes neurais artificiais, Rede

neural informada por leis físicas.



Abstract

This work applies concepts of artificial neural networks to identify the parameters of a mathe-

matical model based on phase fields for damage and fracture. Damage mechanics is the part of

the continuum mechanics that models the effects of micro-defect formation using state variables

at the macroscopic level. The equations that define the model are derived from fundamental

laws of physics and provide important relationships between state variables. Simulations using

the model considered in this work produce good qualitative and quantitative results, but many

parameters must be adjusted to reproduce a certain material behavior. The identification of model

parameters is considered by solving an inverse problem that uses pseudo-experimental data to

find the values that produce the best fit to the data. We apply a physics informed neural network

and combine some classical estimation methods to identify the material parameters that appear

in the damage equation of the model. Our strategy consists of a neural network that acts as an

approximating function of the damage evolution with its output regularized using the residue

of the differential equation. Three stages of optimization seek the best possible values for the

neural network and the material parameters. The training alternates between the fitting of only

the pseudo-experimental data or the total loss that includes the regularizing terms. We test the

robustness of the method to noisy data and its generalization capabilities using a simple physical

case for the damage model. This procedure deals better with noisy data in comparison with a

PDE-constrained optimization method, and it also provides good approximations of the material

parameters and the evolution of damage.

Keywords: Parameter identification, Damage model, Neural networks, Physics informed neural

network.



List of Figures

Figure 3.1 – Architecture of a feedforward artificial neural network. . . . . . . . . . . . . . . 34

Figure 3.2 – Convolutional neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.3 – Architecture of a recurrent neural network. . . . . . . . . . . . . . . . . . . . . 36

Figure 3.4 – Multilayer feedforward architecture used in this work. . . . . . . . . . . . . . . 38

Figure 3.5 – Non-linear activation functions and their first derivatives. . . . . . . . . . . 40

Figure 4.1 – Random distributed data in collocation loss. . . . . . . . . . . . . . . . . . 58

Figure 4.2 – PINN for parameter identification of the damage equation. . . . . . . . . . . 59

Figure 4.3 – Bar under constant normal strain. . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.4 – Initial damage for the bar with the constant strain. . . . . . . . . . . . . . . 60

Figure 4.5 – Damage approximation for a bar under a constant strain. . . . . . . . . . . . 62

Figure 4.6 – Learning curve for the first optimization stage. . . . . . . . . . . . . . . . . 63

Figure 4.7 – Learning curve for the second optimization stage. . . . . . . . . . . . . . . 64

Figure 4.8 – Learning curve for the third optimization stage. . . . . . . . . . . . . . . . 64

Figure 4.9 – Initial conditions considered for case 1 with ϕ0 = 0.4. . . . . . . . . . . . . 69

Figure 4.10–Case 1 with initial condition ϕmax
0 at x0 = 0.25. . . . . . . . . . . . . . . . 71

Figure 4.11–Case 1 with initial condition ϕmax
0 at x0 = 0.5. . . . . . . . . . . . . . . . . 71

Figure 4.12–Case 1 with initial condition ϕmax
0 at x0 = 0.75. . . . . . . . . . . . . . . . 72

Figure 4.13–Case 2 : Initial condition ϕmax
0 at x0 = 0.25. . . . . . . . . . . . . . . . . . 74

Figure 4.14–Case 2 : Initial condition ϕmax
0 at x0 = 0.5. . . . . . . . . . . . . . . . . . . 74

Figure 4.15–Case 2 : Initial condition ϕmax
0 at x0 = 0.75. . . . . . . . . . . . . . . . . . 75

Figure 4.16–Case 3 : Initial condition ϕmax
0 at x0 = 0.25. . . . . . . . . . . . . . . . . . 76

Figure 4.17–Case 3 : Initial condition ϕmax
0 at x0 = 0.5. . . . . . . . . . . . . . . . . . . 77

Figure 4.18–Case 3 : Initial condition ϕmax
0 at x0 = 0.75. . . . . . . . . . . . . . . . . . 77

Figure 4.19–Case 4 : Initial condition ϕmax
0 at x0 = 0.25. . . . . . . . . . . . . . . . . . 78

Figure 4.20–Case 4 : Initial condition ϕmax
0 at x0 = 0.5. . . . . . . . . . . . . . . . . . . 79

Figure 4.21–Case 4 : Initial condition ϕmax
0 at x0 = 0.75. . . . . . . . . . . . . . . . . . 79



List of Tables

Table 4.1 – Classical numerical solution for the bar with the constant strain. . . . . . . . 61

Table 4.2 – Hyperparameters of the PINN for the bar under constant strain. . . . . . . . . 61

Table 4.3 – Percentage errors in the identification using the PINN for the bar under con-

stant strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 4.4 – Percentage error in the identification using FEniCS for a bar with constant strain. 66

Table 4.5 – Parameters estimated for different levels of noise using a PINN. . . . . . . . 67

Table 4.6 – Influence of noise in the estimation of the parameters for a PINN. . . . . . . 67

Table 4.7 – Influence of noise in the estimation of the parameters for constrained optimiza-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 4.8 – Parameters estimated for different levels of noise in FEniCS . . . . . . . . . 68

Table 4.9 – Classical numerical solution for the cases with displacement evolution. . . . 69

Table 4.10–Hyperparameters of the PINN for case 1. . . . . . . . . . . . . . . . . . . . 70

Table 4.11–Percentage errors in the identification for case 1. . . . . . . . . . . . . . . . 70

Table 4.12–Hyperparameters of the PINN for case 2. . . . . . . . . . . . . . . . . . . . 73

Table 4.13–Percentage error in the identification for case 2. . . . . . . . . . . . . . . . . 73

Table 4.14–Hyperparameters of the PINN for case 3. . . . . . . . . . . . . . . . . . . . 75

Table 4.15–Percentage errors in the identification for case 3. . . . . . . . . . . . . . . . 76

Table 4.16–Percentage error in the identification for case 4. . . . . . . . . . . . . . . . . 78



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Parameter Identification of a Damage Model . . . . . . . . . . . . . . . . . 18

2.1 Parameter identification in differential equations . . . . . . . . . . . . . . . . . 18

2.1.1 Methods to estimate parameters using function approximations . . . . . 20

2.2 Damage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Pseudo-experimental data : Numerical solution of the governing equations . . . 23

2.3.1 Solution of the damage equation . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Solution of the displacement equation . . . . . . . . . . . . . . . . . . 28

3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 General model of a neuron and network architectures . . . . . . . . . . . . . . 33

3.1.1 Multilayer feedforward neural networks . . . . . . . . . . . . . . . . . 33

3.1.2 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . 34

3.1.3 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Learning paradigms and tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Multilayer feedforward networks for function approximation tasks . . . . . . . 37

3.4 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Sigmoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Hyperbolic tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.4 ReLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Mean squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.2 Mean absolute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.3 Huber loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.4 Log hyperbolic cosine . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Backward propagation and automatic differentiation . . . . . . . . . . . . . . . 43

3.7 Optimization algorithms in neural networks . . . . . . . . . . . . . . . . . . . 45

3.7.1 Gradient descent method . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7.2 Adam method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7.3 L-BFGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



3.8 Physics informed neural network . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8.1 Types of physics informed network models . . . . . . . . . . . . . . . 50

3.8.1.1 Continuous PINN . . . . . . . . . . . . . . . . . . . . . . . 51

3.8.1.2 Discrete PINN . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8.2 Solution of differential equations using a continuous PINN . . . . . . . 52

3.8.3 Discovery of differential equations using a continuous PINN . . . . . . 54

4 Identification approach and results . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Physics informed neural network for identification of parameters . . . . . . . . 55

4.1.1 Hyperparameters and optimization strategy . . . . . . . . . . . . . . . 56

4.1.2 General methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Identification considering a constant strain in the bar . . . . . . . . . . . . . . . 59

4.2.1 PDE constrained optimization in FEniCS . . . . . . . . . . . . . . . . 65

4.2.2 Noise robustness of the methods . . . . . . . . . . . . . . . . . . . . . 66

4.3 Identification considering the displacement evolution . . . . . . . . . . . . . . 68

4.3.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.4 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Conclusions and suggestions for future research . . . . . . . . . . . . . . 80

5.1 Suggestions for future works . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



12

1 Introduction

Many mathematical models have been developed to describe the mechanical effects of

progressive micro-crack formation using continuum damage modeling (HAKIM; KARMA,

2009; MIEHE; HOFACKER; WELSCHINGER, 2010; BORDEN et al., 2014). In order to

represent this complex phenomenon, different approaches can be followed, but the framework

and assumptions taken can restrict the generality and applicability of the models. Nowadays,

different deterministic approaches have been applied to model damage and fatigue in materials,

but few works have followed a thermodynamically consistent framework. Boldrini et al. (2016)

addressed some mathematical deficiencies that have not been considered in previous works.

Their model applies the phase field methodology to avoid limitations when dealing with crack

initiation or branching and is based on the use of the basic principles of continuum mechanics.

Although this model has achieved good qualitative and quantitative results, one of its difficulties

is the appearance of some materials parameters, with not necessarily a clear physical meaning,

that needs to be found in order to reproduce a particular material behavior.

The estimation of material parameters is intrinsically an inverse problem. According to

Ghaboussi (2010), inverse problems are categorized into two classes. In the first class, the model

and the output of the system are known and the objective is to find the input causing that response.

In the second class, the input and the output of the model are defined and the aim is to find

the system model (or the parameters that define it). This last class of analysis is called system

identification and is the type of inverse problem that needs to be solved in this research work.

As stated by Vogel (2002), there is a large mathematical literature on inverse problems divided

into deterministic and non-deterministic approaches. In non-deterministic methodologies, the

treatment of statistical aspects is prominent to fit a model using a set of data. On the other hand,

in deterministic approaches, the methods disregard the intrinsic uncertainty in the model or the

data used.

In this work, we treat the parameter identification problem using a deterministic approach.

The identification is based on the construction of an objective function that measures differences

between pseudo-experimental data and results obtained using a neural network. Though few

consistent mathematical theories explain the suitability of neural networks for inverse problems,

many applications have achieved good results even for ill-posed problems (ADLER; ÖKTEM,

2017; SEO et al., 2019; LI et al., 2020). We formulate an optimization problem where the

minimization of an objective function leads to optimal parameters that reproduce the principles

of a physics model. Instead of using costly approaches, such as the computation of forward

solutions for each optimization step, we propose here the use of physics informed neural networks.

With this alternative method, the solution is approximated using artificial neural networks and

the parameters are estimated from the residue of a partial differential equation.
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1.1 Literature review

As presented previously, this dissertation aims to solve a model parameter identification

applying neural networks. However, the methodology applied in this work is concerned with

the use of neural networks to solve differential equations as part of the identification strategy.

Hence, the literature review starts with some articles that explored that topic and later describes

contributions more related to the identification problem.

In one of the first studies in this area, Meade and Fernandez (1994) presented a method

for the solution of ordinary differential equations with an interesting interpretation of the

function approximation capability of feedforward neural networks. The authors took advantage

of some similarities with basis expansions to constrain and assign certain roles to the inputs and

parameters of a shallow network. In addition, the method of weighted residuals was applied to

determine the output weights of the network and the problem was reduced to the solution of

a system of algebraic equations. They applied a non-iterative approach to solving two simple

problems and showed the accuracy of the approximation. Later, Lagaris, Likas and Fotiadis

(1998) exploited the approximation capabilities of a neural network instead of transforming it into

an explicit basis expansion. The authors introduced the residue of a differential equation into the

learning process and removed the constraints of the objective function, adopting a mathematical

expression that automatically satisfied the initial or boundary conditions. An algorithm minimized

the loss function of the neural network and, in consequence, provided the learned parameters that

allow an accurate approximation using the solution proposed. Examples of ordinary and partial

differential equations were solved with good accuracy and some generalization advantages were

observed when the proposed method was compared with the interpolation results of a finite

element solution.

The ideas developed in Meade and Fernandez (1994) and Lagaris, Likas and Fotiadis

(1998) inspired many other works and found applications in fields including quantum mechanics

(LAGARIS; LIKAS; FOTIADIS, 1997; MANZHOS; CARRINGTON, 2009), simulation of

biodegradation process (VINOD; KUMAR; REDDY, 2009), atomic and molecular physics

(CAETANO et al., 2010), thin plate bending problems (LI et al., 2013), movement of contami-

nants in the subsurface (YADAV; YADAV; KIM, 2016), and different studies of control systems

(HE; REIF; UNBEHAUEN, 2000; ALLI; UÇAR; DEMIR, 2003; EFFATI; PAKDAMAN, 2010;

MASMOUDI et al., 2011). Those works also promoted other fronts of research concerned with

the construction of hybrid methods (SMAOUI; AL-ENEZI, 2004; MALEK; BEIDOKHTI, 2006;

TSOULOS; GAVRILIS; GLAVAS, 2009; DUA, 2011), improvement of optimization algorithms

(AARTS; VEER, 2001; RUDD; FERRARI, 2015; BERG; NYSTRöM, 2018), quantification

of errors (FOJDL; BRAUSE, 2008; FILICI, 2010; GROHS et al., 2019) and other important
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contributions (MALL; CHAKRAVERTY, 2013; MALL; CHAKRAVERTY, 2014; MALL;

CHAKRAVERTY, 2015; MALL; CHAKRAVERTY, 2016).

The review presented in the last paragraphs gives the basic support for the solution of

differential equations through neural networks used in this dissertation. Before presenting the

application of neural networks in the area of parameter estimation, it is important to introduce

some concepts and methods regarding this problem. Parameter estimation is an important step

in the development of accurate models on natural sciences, physics, engineering, and many

other disciplines. Mathematical models developed to approximate dynamic processes often

involve differential equations with unknown parameters. In a parameter identification problem,

a measure of error is minimized to fit the model prediction with observed data. As described

in Mehrkanoon, Falck and Suykens (2012), there are two main categories of methods used to

estimate the parameters in the governing equation of a model. In the first category of methods,

the differential equations are solved adopting random initial values for the parameters and their

predictions are compared with experimental data. An objective function is defined to quantify

the difference between the expected and obtained results and the model parameters are updated

applying an optimization procedure. According to Moles (2003), this approach requires a high

computational cost and almost 90% of the computation time is required to solve the model

equations.The second category of methods substitute the solution of the governing equations

adopting a functional approximation. Using this approximation, the required derivatives are

calculated and the residue of the differential equation is constructed. Subsequently, this residue

is minimized by adopting an optimization algorithm and the model parameters are estimated

(MEHRKANOON; FALCK; SUYKENS, 2012).

Dua (2011) proposed a novel methodology for parameter estimation with the introduction

of artificial neural networks as model approximators. This work is part of the second category

presented in the last paragraph and can be defined as a decomposition algorithm (DUA; DUA,

2011). The author divides the problem into two steps, first an artificial neural network approx-

imates the model after a process of training with measured data, and then the residue of the

differential equation is defined through derivatives of the neural network. The parameters are

part of the expression defining the residue and estimated employing an optimization procedure.

The author presents some examples considering the estimation of parameters for kinetic models.

Most of the examples are from models of chemical reactions and are given by systems of ordinary

differential equations. In a subsequent work, the ideas described in Dua (2011) research were

generalized. Dua and Dua (2011) introduced a simultaneous approach where the solution of

ordinary differential equations and determination of the model parameters is performed at the

same time. The objective function of the optimization process for this methodology is composed

of a term that relates the differences between the predictions and observed data and the residue

to satisfy the governing equations of the model. The method showed good results for different
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examples solved with only one hidden layer and a small number of nodes.

More recently, Raissi, Perdikaris and Karniadakis (2017b) proposed a data-driven discov-

ery algorithm for estimation of parameters in partial differential equations. Their methodology is

called physics informed neural networks (PINNs) and the main differences with the work of Dua

and Dua (2011) is the possibility to include boundary and initial conditions in the loss function of

the neural network and the adoption of automatic differentiation to compute the derivatives of the

network. These physics informed neural networks (PINNs) were applied in benchmark problems

using a relatively small amount of data (system’s solutions) and regularizing the system with the

physics laws represented by differential equations. Similarly, in Tartakovsky et al. (2018), a PINN

was applied to approximate the space-dependent coefficient in a linear diffusion equation and the

constitutive relationship in a non-linear diffusion equation. Other successful applications can

be found in Raissi, Perdikaris and Karniadakis (2018), Raissi, Yazdani and Karniadakis (2018),

Raissi, Ramezani and Seshaiyer (2019), Tartakovsky, Barajas-Solano and He (2019), Tipireddy

et al. (2019), Meng and Karniadakis (2020), where the inclusion of differential equations or

constitutive equations as part of the loss function in neural networks have demonstrated to be

efficient, accurate and suggest great promise for future applications.

This methodology has also inspired new flexible approaches where even the differential

operators of the models are estimated from data. Long et al. (2017) proposed a novel method

where the differential and nonlinear operators of a governing equation are learned without

the definition of a fixed equation. The use of a feedforward neural network, called PDE-net,

allowed the discovery of a hidden model using observational data and was also able to predict its

dynamical behavior. Some examples using convection-diffusion equations uncovered the hidden

equations from simulated data and provided good approximations for the dynamic behavior.

Subsequently, in Rudy et al. (2019), a general method to identify the governing equations of a

given model was proposed. This work is called a PDE-FIND data-driven model and the terms

of the governing equations are selected from a library with linear, nonlinear, time and space

differential operators. The method was tested in the identification of four canonical models and

produced accurate approximations.

The starting point for the parameter estimation performed in this dissertation is the work

developed by Raissi, Perdikaris and Karniadakis (2017b). We apply their methodology to identify

the material parameters of the damage equation considering that the differential operators were

derived with mathematical consistency following the basic principles of continuum mechanics.

In addition, we consider that the parameters of the model are identifiable and that the neural

network approximation is suitable in the case of ill-posed problems.
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1.2 Motivation

The identification of material parameters is essentially an inverse problem where the

output of a model is known and the aim is to find the parameters that produce these results.

Parameter identification problems are common in different disciplines and play a significant

role in the calibration and validation of physics models. Some of the difficulties of these type of

inverse analyses are their dependence on expensive computations of forward solutions for the

optimization process and the existence of non-unique solutions. On the other hand, application

of neural networks to inverse problems has demonstrated many advantages in the reduction of

computational cost and the solution of ill-posed problems.

1.3 Objectives

The main purpose of this work is the solution of a parameter identification problem for a

damage model using an alternative approach that employs neural networks and enforces physics

laws.

The specific objectives are listed as follows:

1. Consider a basic physical case for the application of the damage model;

2. Generate pseudo-experimental data implementing a numerical solution of the governing

equations for the damage model;

3. Explore the use of neural networks in the solution of material estimation problems;

4. Implement a physics informed neural network to identify the material parameters of the

damage equation.

1.4 Outline

This work is divided into 5 chapters. In this chapter, the introduction, followed by

a literature review, motivation, and objectives were presented. Chapter 2 describes how the

parameter identification can be formulated as an optimization problem, summarizes some

classical estimation techniques and presents an overview of the damage model and the numerical
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methods applied in the forward solution of their governing equations. Chapter 3 provides some

fundamental concepts for neural networks and explains the physics informed methodology. In

chapter 4 the estimation strategy proposed is detailed and the robustness and generalization

capabilities of the method are evaluated. Finally, chapter 5 presents the conclusions and some

suggestions for future research.
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2 Parameter Identification of a Damage Model

The forward problem of solving the governing equations of a model has been extensively

studied in mathematics and applied in engineering fields. However, to obtain realistic results from

the solution of governing equations, physics models have to be validated and calibrated using

experimental data. The process of validation and calibration requires the solution of an inverse

input-output mapping and it is necessary to find the causes that lead to that state (BULJAK,

2012).

Partial differential identification problems are a class of inverse problems where the

unknown inputs of a model are parameters entering into the governing equations. Identification

problems arise in fields such as geophysics, fluids, structural mechanics, electromagnetics,

biomedical and thermal sciences and there has been a steady interest in developing efficient

estimation approaches for different applications.

This chapter presents a brief description of parameter identification in differential equa-

tions and introduces the damage model considered in the inverse analysis proposed.

2.1 Parameter identification in differential equations

As previously introduced, an important step in the formulation of a model is the connection

of its governing equations with the experimental data that comes from observations. A general

mathematical form used to represent several phenomena is

F (x1, ..., xj, u,
∂u

∂x1

, ...,
∂u

∂xj

, ...,
∂2u

∂x1∂xj

, λ) = 0, (2.1)

where u(x) is the state variable, x are the input variables (x1, ..., xj)
T and λ is the vector of

parameters (λ1, ..., λk)T . These parameters can be values defining a physical entity directly

or coefficients in relationships that describe a physical process (ASTER BRIAN BORCHERS,

2019; FRASSO; JAEGER; LAMBERT, 2016).

The data collected from experimental observations is represented by

û(x) = u(x) + ǫ (2.2)



Chapter 2. Parameter Identification of a Damage Model 19

where ǫ is assumed to be an independent normally distributed measurement error with mean zero

and constant variance.

The objective of parameter identification in a model described by Eq. (2.1) is to find

a set of parameter estimates λ̂ , that leads to minimal differences between the observed data

û(x) and the solution of the differential equation u(x, λ̂). Some important issues that need to

be considered in this type of problem are the model suitability to represent the experimental

data and if it is possible to uniquely identify the parameters with the observations available. As

presented in Jadamba, Khan and Sama (2011), inverse problems are frequently ill-posed in the

sense of Hadamard. Some of the causes of ill-conditioning are an insufficient approximation of

models, data affected with noise and the lack of additional constraints.

The methods to estimate parameters in differential equations are divided into two major

categories. The first category groups deterministic approaches where it is assumed that the state

variable of the model is completely defined by its parameters, boundary conditions, and initial

conditions. In this case, possible disturbances that can arise in the mathematical formulation of

the model, the approximate solution of the governing equations and the observations are not

directly accounted for in the estimation of the parameters. Conversely, in the second category,

the use of stochastic methods systematically includes these uncertainties using frequentist or

Bayesian approaches (VARZIRI; MCAULEY; MCLELLAN, 2008).

Several methods to estimate parameters in models described by ordinary or partial

differential equations (ODEs or PDEs) have been developed through years (MüLLER; TIMMER,

2004; RAMSAY et al., 2007; VARZIRI; MCAULEY; MCLELLAN, 2008; CAO; HUANG; WU,

2012; XUN et al., 2013; FRASSO; JAEGER; LAMBERT, 2016) . Despite their different degrees

of complexity, methods initially developed for identification of parameters in ODEs have been

adapted and applied for models described by PDEs.

The first step common in any estimation method is the selection of the criterion to

fit the data. A prominent criterion in inverse problems is the least square method which is

adequate in cases where the uncertainties can be modeled using Gaussian distributions. This

is the preferred standard because it simplifies the calculations in the optimization process but

has difficulties dealing with outliers in the data. An alternative to avoid that problem is the

least absolute value criterion which reduces the sensitivity to errors introduced by unlikely

observations (TARANTOLA, 2005). After the selection of fitting criteria, the next step is to pose

the identification of parameters as an optimization problem. The first option is to propose the

constrained optimization presented in the following expression:
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min
λ

N
∑

i=1

(u(x)− û(x))2

s.t. F (x1, ..., xj, u,
∂u

∂x1

, ...,
∂u

∂xj

, ...,
∂2u

∂x1∂xj

, λ) = 0,

(2.3)

where the objective is to fit the experimental data û(x) to the state variable of the model u(x)

using a least square criterion and with the differential equation as the constraint. In many sit-

uations governing equations cannot be solved analytically, so, in addition to the data fitting

procedure, it is necessary to introduce a numerical method to approximate the solution of the

model equations and the sensitivity of the state variable to the parameters of the model. This in-

creases the computational complexity of the problem and requires the implementation of parallel

optimized low-level code and high-level abstraction frameworks for automatic differentiation

that only some software libraries such as PETSc (BALAY et al., 2019), DOpElib (GOLL; WICK;

WOLLNER, 2017) and dolfin-adjoint (FUNKE; FARRELL, 2013) have developed.

A second option, widely implemented in identification problems, is the use of function

basis expansions to approximate the output of the model. This approach was introduced in the

work of Varah (1982) and its main advantage is the decrease in the computational cost of directly

solving the differential equation. Furthermore, it also reduces the propagation of errors and

prevents some stability issues. The non-parametric approximation using a linear combination of

basis functions φ(x) is given by

ũ(x) =
K
∑

i=1

φi(x)ci, (2.4)

where ci are the basis coefficients and K is the number of collocation points necessary to fit the

data.

2.1.1 Methods to estimate parameters using function approximations

The simplest procedure to estimate parameters using basis expansion is known as the

two-step method (VARAH, 1982; DUA, 2011). In this methodology, the coefficients of the base

ci are approximated considering only the fitting criteria

min
ci

N
∑

i=1

(ũ(x)− û(x))2, (2.5)

and then in a separated stage, the parameters λ are estimated using the residue of the differential

equation evaluated in N collocation points as
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min
λ

N
∑

i=1

(F (x1, ..., xj, ũ,
∂ũ

∂x1

, ...,
∂ũ

∂xj

, ...,
∂2ũ

∂x1∂xj

, λ))2, (2.6)

where the evaluation of the residue in collocation points is equivalent to use a Monte Carlo

integration method and only the values of λ are approximated maintaining fixed the coefficients

of the basis expansion (MEER, 2019).

One difficulty of this procedure is that the function has to capture the behavior of the

system without including the noise and uncertainties present in the observations. This issue can

be solved by refining the number and position of the collocation points or including a penalty

term in Eq. (2.5) to set a balance between overfitting and underfitting of the experimental data.

The penalty term can be a high order derivative or, in methods such as principal differential

analysis (POYTON et al., 2006), the residue of the differential equation as expressed in the

following equation

min
ci

N
∑

i=1

(ũ(x)− û(x))2 + αr

N
∑

i=1

(F (x1, ..., xj, ũ,
∂ũ

∂x1

, ...,
∂ũ

∂xj

, ...,
∂2ũ

∂x1∂xj

, λ))2, (2.7)

where the weight αr controls the amount of regularization and the residue of the model is

computed using initial estimates of the parameters λ. In this case αr can be also interpreted as

an smoothing parameter that manages the fidelity of the approximation to the model (ZHANG;

CAO; CARROLL, 2017). Poyton et al. (2006) developed a refined principal analysis, a method

that employs Eq. (2.7) to estimate the coefficients of the basis functions and also the parameters

of the model. This procedure is executed iteratively between the estimate of the coefficients and

the parameters of the model until their estimates converge.

The work of Ramsay et al. (2007) provides important ideas to be considered in the

development of other approximation strategies. They divide the variables estimated into two

classes, one for the parameters of the model and the other for the coefficients of the basis function.

This distinction is important because the optimization problem is directly concerned with the

parameters of the model which the authors called as structural for their main importance. On

the other hand, the coefficients of the function basis are designated as nuisance parameters due

to their secondary role in the overall identification of the model. Another relevant difference

between these two classes is that the number of nuisance parameters exceeds the structural

parameters by a significant amount. The last argument is one of the reasons for the authors

to avoid the estimation of both parameters at the same time. They use two different levels of

optimization, in a similar way as explained before. In the inner level, the optimization only

searches for better nuisance parameters and in the outer level, the structural parameters are

refined using a different criterion. A third level in the optimization is possible to find the best
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value of the weight in the penalized term but the authors adjusted it using some heuristics (CAO;

RAMSAY, 2007).

Finally, we close our revision of the methods to estimate parameters in differential

equations mentioning that the function basis expansion can be substituted for any function

approximation procedure desired. In this work, we are interested in the application of neural

networks as an approximator of the state variables of a model. Dua (2011) was one of the first

works to introduce artificial neural networks using the two-step estimation approach and in Dua

and Dua (2011), Raissi, Perdikaris and Karniadakis (2017b) were implemented simultaneous

searches of structural and nuisance parameters in models described by ODEs and PDEs, respec-

tively. In Chapter 4, we present an estimation methodology that combines some of the ideas

presented in this subsection and employs the general structure proposed in Raissi, Perdikaris and

Karniadakis (2017b).

2.2 Damage Model

Damage mechanics is a part of solid mechanics that allows a better understanding of the

deterioration of materials and tries to predict its implication for mechanical integrity. Although

damage involves the creation of microvoids and microcracks, discontinuities at a large scale of

the medium, it has been introduced as a continuous variable that represents these volume and

surface defects (LEMAITRE; DESMORAT, 2005).

Different strategies have been used in the development of models of damage, fracture and

fatigue in elastic solids but few works have followed thermodynamically consistent frameworks.

This study uses the damage and fatigue model developed by Boldrini et al. (2016), which

addresses some mathematical deficiencies that have not been considered in previous works.

Boldrini et al. (2016) proposed a general thermodynamically consistent non-isothermal

continuum framework for the evolution of damage, fatigue and fracture in materials under the

hypothesis of small deformation. The approach followed is based on the use of conservation of

mass, the principle of virtual power (PVP) and the first and second law of thermodynamics. In

addition to the classical principles, it uses the phase field methodology to introduce fatigue and

damage behavior. The kinematic descriptor for damage is a dynamic variable and its evolution

is obtained from the PVP. The constitutive relations that define the governing equations of the

model are expressed in terms of the free energy potential and the associated pseudopotential of

dissipation for any given material (BOLDRINI et al., 2016; HAVEROTH et al., 2018).
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The mentioned general framework is described below for a one-dimensional domain

Ω = [a, b], linear elastic isotropic material, displacements only in the axial direction x, isothermal

case and including only the effects of damage in the model. In such a situation, the model

developed in Boldrini et al. (2016) consists of a coupled system of dynamic equations with the

evolution of displacement u and damage phase field ϕ given by

ρ
∂2u

∂t2
=

∂

∂x

(

(1− ϕ)2E
∂u

∂x

)

+ fr(x), (2.8)

λc

∂ϕ

∂t
=

∂

∂x

(

gcγc

∂ϕ

∂x

)

+ (1− ϕ)E
(∂u

∂x

)2 − gc

ϕ

γc

. (2.9)

In these equations, gc is the Griffith fracture energy, γc is a parameter associated to the width

of the damage phase field layers, λc is related to the rate of damage change, E represents

the Young’s modulus and fr(x) is body load function. Eq. (2.8) describes the evolution of

displacement u and Eq. (2.9) is the governing equation of the phase field damage. The variable

ϕ represents the volumetric fraction of damaged material such that ϕ = 0 for virgin material, ϕ =

1 for fractured material and 0 < ϕ < 1 for damaged material.

There are many possibilities for the boundary conditions of the governing equations.

For the first equation, the displacement or the stress are given on the boundary. In the damage

equation, the standard boundary condition is a homogeneous Neumann condition (null flux for ϕ

at the boundary) (CHIARELLI et al., 2017).

2.3 Pseudo-experimental data : Numerical solution of the

governing equations

In this work, we use pseudo-experimental data to validate the estimation procedure that

will be proposed. The pseudo-experimental data provides the evolution of the state variables

of the model, ϕ and u , from the solution of the governing equations with known parameters.

The damage model is described by the system of governing differential equations Eq. (2.8) and

Eq. (2.9) of hyperbolic and parabolic types, respectively. In both equations, the finite element

method replaces the differential operator in space by a system of ordinary differential equations

(RAGAB S. A., 2018). The assembled system is dependent on time and initial conditions in

terms of u , u̇ and ϕ at time t = 0 in the domain. At future times, the variables are approximated

using the α-Method for the parabolic equation and the Newmark method for the hyperbolic

equation.
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The governing equations are coupled and therefore a strategy to relate their evolution

progressively is necessary. An iterative semi-implicit scheme is implemented to accomplish this

requirement. The damage ϕ at time step n is used to solve Eq. (2.8) for the displacement u at

time step n+1 ; after that, the displacement u is used to calculate the strain
∂u

∂x
and then Eq. (2.9)

is solved. If the maximum damage in the model is less than 1, then the algorithm returns to the

first step. The iterations start with the initial damage ϕ0 (at time t = 0) as the first input to solve

the displacement equation. Algorithm 1 resumes this procedure.

Algorithm 1 Iterative scheme to solve the governing equations
ϕ← ϕ0

t← 0
while max(ϕ) < 1 do

u← Solve Eq. (2.8) using the FEM and the Newmark method
ϕ← Derive u and solve Eq. (2.9) using the FEM and the α- method
t← t + ∆t

end while

In the next subsections, we explain how to solve the governing equations of the damage

model following the steps and notation presented in Ragab S. A. (2018).

2.3.1 Solution of the damage equation

Consider a domain a < x < b and the following initial and boundary conditions:

ϕ = ϕ0, at t = t0, (2.10)

∂ϕ

∂x
= 0, at x = a, (2.11)

∂ϕ

∂x
= 0, at x = b. (2.12)

Multiplying Eq. (2.9) by a test function v(x) and integrating over the domain, we obtain

∫ b

a
v
(

λc

∂ϕ

∂t

)

dx =
∫ b

a
v

[

∂

∂x

(

gcγc

∂ϕ

∂x

)

+ (1− ϕ)E
(∂u

∂x

)2 − gc

ϕ

γc

]

dx. (2.13)

After integrating by parts the first term of the right side, Eq. (2.13) is rewritten as

∫ b

a
v
(

λc

∂ϕ

∂t

)

dx =

[

v
(

gcγc

∂ϕ

∂x

)

]x=b

x=a

−
∫ b

a

∂v

∂x

(

gcγc

∂ϕ

∂x

)

dx

+
∫ b

a
v

[

(1− ϕ)E
(∂u

∂x

)2 − gc

ϕ

γc

]

dx. (2.14)
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Consider the following definitions:

Ra = gcγc

(∂ϕ

∂x

)

x=a
, (2.15)

Rb = gcγc

(∂ϕ

∂x

)

x=b
. (2.16)

Eq. (2.14) can be rewritten using Eqs. (2.15) and (2.16) as

0 =
∫ b

a
v
(

λc

∂ϕ

∂t

)

dx− v(b)Rb + v(a)Ra +
∫ b

a

∂v

∂x
gcγc

∂ϕ

∂x
dx

−
∫ b

a
v

[

(1− ϕ)E
(∂u

∂x

)2 − gc

ϕ

γc

]

dx. (2.17)

Using the boundary conditions in Eqs. (2.11) and (2.12), the weak form of the damage

equation is given by

∫ b

a
v
(

λc

∂ϕ

∂t

)

dx +
∫ b

a

∂v

∂x
gcγc

∂ϕ

∂x
dx−

∫ b

a
v

[

(1− ϕ)E
(∂u

∂x

)2 − gc

ϕ

γc

]

dx = 0. (2.18)

In an element level, the weak form is given by (2.17) without prescribed boundary

conditions and with the integrals and derivatives evaluated at the coordinates of the element

boundary xe
0 and xe

n as

0 =
∫ xe

n

xe
0

v
(

λc

∂ϕ

∂t

)

dx− v(xe
n)Rxe

n
+ v(xe

0)Rxe
0

+
∫ xe

n

xe
0

∂v

∂x
gcγc

∂ϕ

∂x
dx

−
∫ xe

n

xe
0

v

[

(1− ϕ)E
(∂u

∂x

)2 − gc

ϕ

γc

]

dx. (2.19)

The approximation of ϕ(x, t) in an element with m nodes and at any instant of time is

given by

ϕ(x, t) ≈ ϕ̄e(x, t) =
m
∑

j=1

ϕ̄e
j(t)N

e
j (x) =

[

N e(x)
] {

ϕ̄e(t)
}

, (2.20)

where ϕ̄e
j(t) represents the nodal values of ϕ at time t and

[

N e
]

is the matrix of shape functions.

The dependence of the trial solution on x is given by N e
j (x) and the variation with time is given

by ϕ̄e
j(t).

Consequently, the time derivative and the gradient of the trial solution ϕ̄e(x, t) are

expressed, respectively, by
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∂ϕ̄e(x, t)

∂t
=
[

N e(x)
] {

˙̄ϕe(t)
}

, (2.21)

∂ϕ̄e(x, t)

∂x
=
[

Be
] {

ϕ̄e(t)
}

. (2.22)

where
[

Be
]

is the matrix of the derivatives of the shape functions.

Now using the Galerkin method, the test function is defined as the linear combination

of the basis functions Nj(x). Following that, the approximation of v(x) and its derivative in an

element are written as

v(x) =
{

d
}T [

N e(x)
]T

, (2.23)

∂v(x)

∂x
=
{

d
}T [

Be
]T

. (2.24)

Substituting Eqs. (2.20) to (2.24) into the weak form of the element in Eq. (2.19), and factoring

out the terms
{

ϕ̄e
}

,
{

˙̄ϕe
}

and
{

d
}T

, we have

{

d
}T
[

∫ xe
n

xe
0

λc

[

N e
]T [

N e
]

dx

]

{

˙̄ϕe
}

+
{

d
}T
[

∫ xe
n

xe
0

gcγc

[

Be
]T [

Be
]

dx

]

{

ϕ̄e
}

+
{

d
}T
[

∫ xe
n

xe
0

gc

γc

[

N e
]T [

N e
]

dx +
∫ xe

n

xe
0

E
[

N e
]T (∂u

∂x

)2 [

N e
]

dx

]

{

ϕ̄e
}

+
{

d
}T
[

N e(xe
0)

T Rxe
0
−N e(xe

n)T Rxe
n
−
∫ xe

n

xe
0

E
[

N e
]T (∂u

∂x

)2

dx

]

= 0. (2.25)

The element matrices are defined as

[

Ke
]

=
∫ xe

n

xe
0

gcγc

[

Be
]T [

Be
]

dx, (2.26)

[

M e
]

= λc

∫ xe
n

xe
0

[

N e
]T [

N e
]

dx, (2.27)
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[

M e
u

]

=
∫ xe

n

xe
0

E
[

N e
]T ([

Be
] {

ūe
})T([

Be
] {

ūe
}) [

N e
]

dx, (2.28)

[

Ae
]

=
[

M e
u

]

+
gc

γcλc

[

M e
]

+
[

Ke
]

, (2.29)

and the element vectors are expressed by

{

F e
u

}

=
∫ xe

n

xe
0

E
[

N e
]T ([

Be
] {

ūe
})T([

Be
] {

ūe
})

dx, (2.30)

{

Re
}

=
[

N e(xe
n)
]T

Rxe
n
−
[

N e(xe
0)
]T

Rxe
0
. (2.31)

In terms of these matrices Eq. (2.25) can be rewritten as

0 =
{

d
}T ([

M e
] {

˙̄ϕe
}

+
[

Ke
] {

ϕ̄e
}

+
gc

γcλc

[

M e
] {

ϕ̄e
}

+
[

M e
u

] {

ϕ̄e
}

−
{

Re
}

−
{

F e
u

})

. (2.32)

Since the test function v(x) and consequently
{

d
}

are arbitrary, the element equation

using the auxiliary matrix from Eq. (2.29) can be finally written as

[

M e
] {

˙̄ϕe
}

+
[

Ae
] {

ϕ̄e
}

=
{

Re
}

+
{

F e
u

}

. (2.33)

The assembled global system is an arrangement of coupled ordinary differential equations in

time. The initial condition provided at t = 0 gives ϕ(0) at all nodes, but for future times it is

necessary to solve the assembled system given by the superposition of Eq. (2.33).

Considering the first order equation Eq. (2.33) and using the α-method, a weighted

average of the derivatives at times steps k + 1 and k is related with the slope of the chord as

follows:

1

∆t

[

{

ϕ̄e
}k+1 −

{

ϕ̄e
}k
]

= α
{

˙̄ϕe
}k+1

+ (1− α)
{

˙̄ϕe
}k

. (2.34)

Using this relation for the first term in Eq. (2.33) , expressing
[

M e
] {

˙̄ϕe
}

at times k and k + 1

and considering the mass and auxiliary matrices to be independent of time, we get
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[

1

∆t

[

M e
]

+ α
[

Ae
]

]

{

ϕ̄e
}k+1

=
[

1

∆t

[

M e
]

− (1− α)
[

Ae
]

]

{

ϕ̄e
}k

+

[

α
{

F e
u

}k+1

+ (1− α)
{

F e
u

}k
]

+
[

α
{

Re
}k+1

+ (1− α)
{

Re
}k
]

. (2.35)

Introducing the following expressions:

[

He
]

=
1

∆t

[

M e
]

+ α
[

Ae
]

, (2.36)

[

T e
]

=
1

∆t

[

M e
]

− (1− α)
[

Ae
]

, (2.37)

{

Qe
}

= α
{

F e
u

}k+1

+ (1− α)
{

F e
u

}k
+ α

{

Re
}k+1

+ (1− α)
{

Re
}k

, (2.38)

the algebraic equation for an element is

[

He
] {

ϕ̄e
}k+1

=
[

T e
] {

ϕ̄e
}k

+
{

Qe
}

. (2.39)

The element equations are assembled into a global system enforcing continuity of damage at

common nodes on the boundary of all elements and balance of derivatives given by Eqs. (2.15)

and (2.16) in all the interior global nodes. Additionally,
{

F e
u

}k
is considered only for the time k.

Finally the global system after application of boundary conditions is

[

H
] {

ϕ̄
}k+1

=
[

T
] {

ϕ̄
}k

+
{

Fu

}

. (2.40)

The α-method is unconditionally stable for 0.5 6 α 6 1 and take the values α = 0 for Euler

explicit, α = 1 for Euler implicit and α = 0.5 for Crank-Nicholson time marching schemes

(RAGAB S. A., 2018).

2.3.2 Solution of the displacement equation

The approximated solution of Eq. (2.8) is obtained similarly to the damage equation. First,

the finite element method is applied for the space operators and after that the coupled system of

second-order ODEs is solved using a time marching scheme.
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The approximation of u(x, t) in an element with m nodes and at any instant of time is:

u(x, t) ≈ ūe(x, t) =
m
∑

j=1

ūe
j(t)N

e
j (x) =

[

N e(x)
] {

ūe(t)
}

, (2.41)

where ūe
j(t) represents the nodal values of u at time t and N e

j (x) are the shape functions. The

dependence of the trial solution on x is given by N e
j (x) and the variation with time is given by

ūe
j(t) following the same arguments used in Eqs. (2.21) and (2.22).

Eqs. (2.28) and (2.30) already included the approximation of u in the term
∂u

∂x
in a given

element.

The following element equations are obtained after the determination of the weak form,

use of Lagrange interpolation polynomials for the space approximation and application of the

Galerkin method. Therefore,

[

M e
u

] {

¨̄ue
}

+
[

Ke
ϕ

] {

ūe
}

=
{

Re
u

}

+
{

F e
}

. (2.42)

The mass matrix of the inertia term is

[

M e
]

=
∫ xe

n

xe
0

ρ
[

N e
]T [

N e
]

dx. (2.43)

The stiffness matrix is given by

[

Ke
ϕ

]

=
∫ xe

n

xe
0

E
(

1−
[

N e
] {

ϕ̄e
})2 [

Be
]T [

Be
]

dx. (2.44)

The forcing vector is

{

F e
}

=
∫ xe

n

xe
0

fr(x)
[

N e
]T

dx (2.45)

and the vector Ru is written as

{

Re
u

}

=
[

N e(xe
n)
]T

Rxe
n

u −
[

N e(xe
0)
]T

Rxe
0

u , (2.46)
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where the terms R
xe

j
u are

Rxe
0

u =

[

E(1− ϕ)2
(∂u

∂x

)

]

x=xe
0

, (2.47)

Rxe
n

u =

[

E(1− ϕ)2
(∂u

∂x

)

]

x=xe
n

. (2.48)

The assembling of the global system of equations is developed following the same considerations

described in the solution of the damage equation. The system of ODEs is given by

[

Mu

] {

¨̄u
}

+
[

Kϕ

] {

ū
}

=
{

Ru

}

+
{

F
}

. (2.49)

In order to solve the system of ODEs in time, the Newmark time marching scheme is applied.

Considering the Taylor series expansion of the function ū(t) about time level k, we have the

approximation

ū(k + 1) ≈ ū(k) + ˙̄u(k)∆t +
1

2
¨̄u(k + γ)(∆t)2, (2.50)

where

¨̄u(k + γ) = (1− γ)¨̄u(k) + γ ¨̄u(k + 1). (2.51)

Combining Eqs. (2.50) and (2.51) and using them in the displacement vector, we obtain

{

ū
}k+1

=
{

ū
}k

+
{

˙̄u
}k

∆t +
(1− γ)

2

{

¨̄u
}k

(∆t)2 +
γ

2

{

¨̄u
}k+1

(∆t)2. (2.52)

Following a similar approach for the velocity approximation, we have

{

˙̄u
}k+1

=
{

˙̄u
}k

+ (1− α)∆t
{

¨̄u
}k

+ α∆t
{

¨̄u
}k+1

, (2.53)

where α and γ are parameters not equal necessarily.

Writing Eq. (2.49) at time step k + 1 and solving for the acceleration, we find

{

¨̄u
}k+1

=
([

Mu

])

−1
[

{

Ru

}

+
{

F
}

−
[

Kϕ

] {

ū
}k+1

]

. (2.54)
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Substituting Eq. (2.54) into Eq. (2.52),

{

ū
}k+1

=
{

ū
}k

+
{

˙̄u
}k

∆t +
(1− γ)

2

{

¨̄u
}k

(∆t)2

+
γ

2
(∆t)2

([

Mu

])

−1
[

{

Ru

}

+
{

F
}

−
[

Kϕ

] {

ū
}k+1

]

. (2.55)

Finally rearranging terms, we arrived at

([

Mu

]

+
γ

2
(∆t)2

[

Kϕ

]) {

ū
}k+1

=
[

Mu

] {

ū
}k

+
[

Mu

] {

˙̄u
}k

∆t

+
(1− γ)

2

[

Mu

] {

¨̄u
}k

(∆t)2 +
γ

2
(∆t)2

(

{

Ru

}

+
{

F
}

)

. (2.56)

With displacement and acceleration at time k, the solution at time step k + 1 can be

determined as follows:

1. Solve Eq. (2.56) for
{

ū
}k+1

;

2. Solve the system Eq. (2.54) equation for
{

¨̄u
}k+1

;

3. Compute
{

˙̄u
}k+1

using Eq. (2.53).

The parameters α and γ have an important role in the stability and accuracy of the

Newmark time marching scheme. For second-order accuracy, the values recommended are

α = 0.5 and γ = 0.5 (RAGAB S. A., 2018).
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3 Artificial Neural Networks

Artificial neural networks are a popular subset of machine learning methods in realizations

of artificial intelligence, i.e., broader range of tasks that requires human cognition, such as object

detection, pattern recognition, and image analysis. Some of the reasons that explain the rapid

growth of this technique, in comparison with other machine learning algorithms, are its simplicity,

continuous improvement when the volume of data increases and the new hardware resources

available for its application.

Neural networks are mathematical constructs that are inspired by the brain capacity of

humans and animals to perform complex tasks without much effort. However, this machine

learning system only has some similarities with the actual functioning of the brain that resembles

the behavior and structure that humans have developed. A network is organized in layers

made up of interconnected processing units where each connection is weighted and receives a

transformation by an activation function. The learning process is developed through experiences

that are presented as training examples and the strength of the connections consolidates the

knowledge acquired by the neural network. Although this method is conceptually simple, it

is possible to approximate non-linear relationships and complex patterns found in diverse

applications (MEER, 2019; CHAKRAVERTY; MALL, 2017).

This work solves an identification problem based on the application of a feedforward

neural network as a function approximator. The feedforward architecture has been explored

in the solution of differential equations due to the possibility to compute analytic expressions

of its derivatives using backward propagation. Recent advances in computational techniques,

such as automatic differentiation, have expanded this potential because now it is possible to

define networks with multiple hidden layers, i.e., deep learning, and automatically compute

their derivatives using the record of their operations. As will be presented in this chapter, the

simplicity of the feedforward architecture and the use of automatic differentiation allow an

intuitive implementation of physics informed neural networks for solution and identification

of differential equations. This paradigm reduces the amount of training data required to solve

forward and inverse problems and it produces solutions that follow physical laws trough a

mathematical model.

This chapter presents some fundamental concepts about neural networks, such as the

general model of a neuron and the basic neural network architectures. In addition, conventional

definitions from machine learning systems are used to contextualize the learning paradigms

and tasks that a neural network can perform. Most of the content involves the description of

important components of feedforward neural networks to finally introduce the new paradigm

that enforces physics laws during the learning process.
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3.1 General model of a neuron and network architectures

An artificial neuron is the basic processing unit that transforms a set of inputs into a

single output. In a general neuron model, the inputs k connected to the neuron j are multiplied

by a weight ωjk, then this linear map is shifted using a constant bj known as bias and finally,

an activation function σ applies a transformation on the whole term (see Eq. (3.1)). Several

models of neurons, such as perceptron and sigmoid, use the same basic elements to compute

their output. The differences between these models are in the activation function employed and

the interpretation given to the bias. The structure used to connect the neurons is defined through

the architecture of the network. Although many architectures are applied in research and practice,

there are three general categories for neural networks architectures: multilayer feedforward,

convolutional and recurrent. These structures are described in the next subsections.

3.1.1 Multilayer feedforward neural networks

In this architecture the layers are typically fully connected, which means that every neuron

in a layer is connected to every other neuron in the contiguous layer. Connections between the

same or previous layers in the block are not allowed which means that there is no feedback

communication during the forward computation of an output. The simplest feedforward structure

is a single-layer network where the input layer directly feed their signals in the output.

Multilayer feedforward networks add blocks of neurons between the input and output

layers that are typically known as hidden layers. These layers help to detect relationships and

patterns during the training. However, it is necessary to balance their number against the training

time of the network. Fig. 3.1 illustrates a feedforward neural network referred to as 2-3-4-1

because it has 2 inputs, 3 neurons in the first hidden layer, 4 neurons in the second hidden layer

and finally 1 output.





Chapter 3. Artificial Neural Networks 35

usually smaller than the size of the input.

A pooling layer also applies a filter over its input, but with the objective of discovering

invariant features through dimensionality reduction. Pooling layers return the average (Average-

Pool) or the maximum (Max-Pool) value over each local region traversed by its filter. This

layer forces the learning of relevant patterns independently of their positions in the input. In

max-pooling layers, filters do not have learnable parameters and they only change the size

without affecting the number of channels.

Fully connected layers, also known as dense layers, are usually employed in the final

part of the convolutional networks. A dense layer takes its input from a higher-level layer and

discovers the relations to perform an accurate classification in the network output.

Figure 3.2 – Convolutional neural network.

3.1.3 Recurrent neural networks

This architecture differs from the feedforward networks in that connections among

neurons permit feedback communication in the network as presented in Fig. 3.3. The forward

propagation in recurrent networks takes into account information perceived previously in time,

developing a certain type of memory. The activation of a hidden state at a given time depends

on a weighted sum of the inputs in the current state and additionally includes a weighted sum

of the hidden state of previous steps. Recurrent networks are suitable to recognize patterns in

sequences of data, such as numerical time series data, music generation, sentiment classification,

machine translation, and other important applications.
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network.

In recent years, neural networks have been successfully applied in tasks of association,

clustering, pattern recognition and predictions in areas such as science, engineering, agriculture,

finance, energy, marketing, and other important fields. The diverse areas of applications show the

potential and universality of neural networks to solve different kinds of problems (ABIODUN et

al., 2018). The learning tasks are commonly classified as pattern association, pattern recognition,

and function approximation, where the last two groups have the largest number of applications in

engineering and science. In pattern recognition tasks, a neural network takes input information

and produce a discrete output that assigns it to a category or class. Function approximation tasks

are useful in applications that require a nonlinear mapping between an input and a continuous

output (HAYKIN; HAYKIN, 2009). The ability to produce nonlinear continuous mappings

is exploited in system identification problems, inverse modeling and solution of differential

equations as will be explained at the end of this chapter.

3.3 Multilayer feedforward networks for function approxima-

tion tasks

In this work, we are interested in a supervised learning process for function approximation

of one or more continuous outputs that describe the behavior of a physical variable. The basic

structure of the neural networks selected for our application consists of an input layer that

communicates with a block of one or more hidden layers using a system of weighted connections

and biases. At the end of the network, the last hidden layer links to an output layer that provides

an approximated value of the expected response. There are two simple operations applied to each

neuron. The first operation is a weighted sum for all the incoming values and an addition of a

bias. Following that, an activation function σ applies a nonlinear transformation which gives the

actual output of the neuron. The strength of connections among neurons is defined by parameters

θ (weights and biases) that are learned after a training process using labeled data.

In this work, we use a feedforward fully connected architecture as presented in Fig. 3.4.

Neurons in a given layer l receive input from all the neurons in the previous layer l − 1 and feed

their output to all the neurons in the next layer l + 1.
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3.4 Activation functions

Each neuron can have a different activation function, but it is common to use the same

function for all the neurons in a given layer. Non-linearity is the main characteristic desired in an

activation function because it allows the representation of complex trends in data and is the basis

of the universal approximation capabilities of neural networks. The only requirement that an

activation function has to satisfy is differentiability, but other aspects as the range and behavior of

the derivatives are also important for the stability and learning speed of the method (GULIKERS,

2018; HAYKIN; HAYKIN, 2009). In the following subsections, some of the common activation

functions used to solve function approximation tasks are described.

3.4.1 Sigmoid

The sigmoid function is given by

σ(z) =
ez

1 + ez
(3.2)

provides an activation with a range between 0 and 1, has continuous derivatives and gives a

smooth relation between the input and output of a neuron. However, the values assigned to

the weights can drive their response to a saturated region where the derivative is very small.

Consequently, if the activation is in this region, the learning will be slow (NIELSEN, 2015).

3.4.2 Hyperbolic tangent

This function is considered as a rescaled and symmetric version of the sigmoid activation

and given by

σ(z) =
e2z − 1

e2z + 1
. (3.3)

In this case, the amplitude of output lies inside the range -1 and 1 and is centered about 0. Despite

having larger derivatives than the sigmoid function, the hyperbolic tangent function may also

lead to saturation problems.





Chapter 3. Artificial Neural Networks 41

3.5 Loss functions

In Section 3.2, we described how in supervised learning, inputs and label outputs are

given as training data and the learning process is basically concerned with the adjustment of

differences between desired outputs ŷ and values computed for the neural network y. The loss

function can be interpreted as a measure of how good is a prediction model and its formulation

defines how these differences or errors are calculated.

The loss of a neural network model is the objective function in the optimization process

and, in order to use backpropagation, two conditions are recommended for its selection: First,

it is necessary to write the function as an average of the training samples. Second, it should

be possible to establish a relationship between the output y and the parameters ω and b of the

network (NIELSEN, 2015).

Different functions can be implemented depending on the type of the problem addressed.

In the next subsections, some common options used in regression tasks are briefly described.

3.5.1 Mean squared

The mean square function is the most common selection in regression tasks, and given by

L = f(ŷi, yi) =
1

N

N
∑

i=1

(ŷi − yi)
2, (3.6)

where N is the number of samples or points considered. This function sums the square distance

of the predicted and target value and returns an average of this accumulated error.

3.5.2 Mean absolute

This loss function is the sum of the absolute difference of target values and outputs

computed in the network, i.e,

L = f(ŷi, yi) =
1

N

N
∑

i=1

|ŷi − yi|. (3.7)
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Although the mean absolute is considered more robust to outliers in data sets, constant values of

the gradient near the minima create difficulties during the learning process.

3.5.3 Huber loss

Huber loss can be considered as a smoothed version of the mean absolute function that

becomes a mean square when the difference of the target and the predicted values are small.

Therefore,

L =
1

N

N
∑

i=1

Li (3.8)

where

Li =















1

2
(ŷi − yi)

2, if |ŷi − yi|6 δ

δ|ŷi − yi|−
δ2

2
, otherwise.

, (3.9)

As the mean absolute, the Huber loss function has a better sensitivity to outliers than mean

square; its disadvantage is the inclusion of the smoothing hyperparameter δ that needs to be

tuned.

3.5.4 Log hyperbolic cosine

This function can be considered as an improved version of the Huber loss function, and is

written as

L =
1

N

N
∑

i=1

log(cosh(ŷi − yi)). (3.10)

It computes the loss using the logarithm of the hyperbolic cosine of the prediction error. The

log hyperbolic cosine function has the advantages of the Huber loss function but, additionally,

it is twice differentiable which makes possible to use optimization methods that need second

derivatives.



Chapter 3. Artificial Neural Networks 43

3.6 Backward propagation and automatic differentiation

The learning process of a neural network takes place when an algorithm tries to minimize

an objective function that measures the difference between target and computed outputs. In this

optimization process, the computed output is adjusted until the loss function reaches a defined

tolerance or the algorithm stops after a maximum number of iterations.

As presented in Section 3.3, the predicted output is an implicit result of the propagation of

previous activations and is dependent on the weights and bias that define the network. Therefore,

to solve the optimization problem is important to find the effect of these parameters on the

computed output. From calculus, we know that this information is given by the gradient of the

loss function and backpropagation is an easy way to go back from the output to the input and

obtain these derivatives using the chain rule (NIELSEN, 2015).

Consider a single-layer network with only one neuron j in the output. We can rewrite the

loss function in terms of the difference between the label and predicted output as follows:

L = f(ej), (3.11)

ej = ŷj − yj, (3.12)

yj = ao
j = σ(zo

j ), (3.13)

zo
j =

∑

k

ωo
jkao−1

k + bo
j =

∑

k

ωo
jkai

k + bo
j , (3.14)

where f is one of the loss functions described in Section 3.5, k represents the number of inputs

in the single-layer network, the superscript o symbolizes the output layer and in this case the

layer (o− 1) is the input layer i.

According to the rules for differentiating compositions of functions, the derivative of the

loss function L in terms of the neural network parameters is expressed as

∂L

∂ωo
jk

=
∂L

∂ej

∂ej

∂yj

∂yj

∂zo
j

∂zo
j

∂ωo
jk

= δo
j ai

k, (3.15)

∂L

∂bo
j

=
∂L

∂ej

∂ej

∂yj

∂yj

∂zo
j

∂zo
j

∂bo
j

= δo
j , (3.16)
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where the term δo
j , known as the local gradient, is

δo
j =

∂L

∂ej

∂ej

∂yj

∂yj

∂zo
j

=
∂L

∂yj

σ′(zo
j ). (3.17)

Similarly, in the case where j is a hidden node in a multilayer network with one hidden layer

and only one neuron in the output , we have the following forward propagation:

zl
j =

∑

k

ωl
jkai

k + bl
j, (3.18)

al
j = σ(zl

j), (3.19)

zo
m =

∑

j

ωo
mja

l
j + bo

m, (3.20)

ym = ao
m = σ(zo

m), (3.21)

em = ŷm − ym, (3.22)

L = f(em), (3.23)

where k are the number of inputs in the layer i, j is a neuron in the hidden layer l and m is the

neuron in the output.

The derivative of the loss function L with respect to ωl
jk is computed using the chain rule as

∂L

∂ωl
jk

=
∂L

∂em

∂em

∂ym

∂ym

∂zo
m

∂zo
m

∂al
j

∂al
j

∂zl
j

∂zl
j

∂ωl
jk

. (3.24)

The previous expression is rewritten in a compact form

∂L

∂ωl
jk

= δo
mωo

mjσ
′(zl

j)a
i
k = δl

ja
i
k, (3.25)

using the following relations:
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δo
m =

∂L

∂em

∂em

∂ym

∂ym

∂zo
m

, (3.26)

∂zo
m

∂al
j

= ωo
mj, (3.27)

∂al
j

∂zl
j

= σ′(zl
j), (3.28)

∂zl
j

∂ωl
jk

= ai
k, (3.29)

δl
j = δo

mωo
mjσ

′(zl
j). (3.30)

It is possible to define the gradient of the loss function following the implicit relations

of weights, bias, and previous activations. The same steps can be easily extended for any

configuration due to the simple mathematical structure of neural networks. Backpropagation is

based on a recursive approach where each layer is considered separately and then is linked with

the derivatives inside of a neuron and the activations of previous layers (HAYKIN; HAYKIN,

2009).

Automatic differentiation is a family of similar techniques to backpropagation used in

physics and engineering fields and in recent years have been also applied to machine learning

implementations. This methodology follows the standard computations of a given program and

calculates their derivatives using an overall composition of the basic derivatives and the chain

rule. There are two principal accumulation modes and different implementations available which

are covered and explained in more depth in Baydin et al. (2015).

3.7 Optimization algorithms in neural networks

The optimization algorithm searches for better learnable parameters θ using an iterative

procedure where small changes improve the predicted outputs. Some of the difficulties in this

process arise when a loss function is non-convex and problems such as local minima and saddle

points are encountered during the training time.



Chapter 3. Artificial Neural Networks 46

Most of the algorithms used in practical applications are based on the gradient descent

method and have been inspired to cope with the problems previously described. Apart from the

first-order optimization algorithms, there is another category based on the use of second-order

derivatives. These methods are faster when the derivatives are easily calculated but also have

trouble dealing with local minima and saddle points. In the following subsections, three important

optimization algorithms extensively used in machine learning are summarized.

3.7.1 Gradient descent method

Considering that the loss function L is continuously differentiable, making possible to

compute its gradient ∇L, the unconstrained optimization problem is defined as

min
θ∈Rn

L(θ). (3.31)

We are interested in a stationary point of L, that is, an argument θ∗ at which the condition of

optimality ∇L(θ∗) = 0 is satisfied.

In gradient descent methods, the direction vector vi = −∇L(θi) is selected as the search

direction, which is the direction of steepest descent.

A variable η is introduced as the step-size (known as the learning rate) and the parameters

at iteration i + 1 can be expressed by

θi+1 = θi − η∇L(θi). (3.32)

If we define the correction

∆θ = θi+1 − θi, (3.33)

we have,

∆θ = −η∇L(θi). (3.34)

The loss function at L(θi+1) is approximated using a first-order Taylor series, as

L(θi+1) = L(θi) +∇LT ∆θ. (3.35)

Substituting Eq. (3.34) in Eq. (3.35), we finally arrive at
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L(θi+1) = L(θi)− η||∇L||2. (3.36)

Eq. (3.36) shows that for a positive learning rate η, the loss function is decreasing (HAYKIN;

HAYKIN, 2009) .

As mentioned previously, some of the challenges of optimization procedures come from

the existence of local minima solutions and saddle points. For first-order methods, a proper

selection of the learning rate is the key in the optimization process, but it is not enough to avoid

these complications. As a result, alternative algorithms have included ideas as the division of

data and training using subsets, the inclusion of previous gradient information and adaptive

learning rates.

The following subsection presents a gradient-descent based method that merges some of

the best ideas considered for alternative gradient descent optimization algorithms.

3.7.2 Adam method

The adaptive moment estimation method combines different gradient descent algorithms

(Momentum and RMSprop) using the history of gradients to move faster in the relevant direction

and also to adapt the learning rate of the optimization process.

This method computes the weighted averages of gradients mi and squared gradients qi as

mi = β1mi−1 + (1− β1)gi, (3.37)

qi = β2qi−1 + (1− β2)g
2

i , (3.38)

where gi represents the gradients of the loss function L(θi) and the hyperparameters β1 and β2

control the exponential decay rates of these moving averages.

A correction for the bias during the initial iterations is added as

m̂i =
mi

1− β1

, (3.39)

q̂i =
qi

1− β2

. (3.40)
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Finally , the Adam optimization rule is given by

θi+1 = θi −
η√

q̂i + ǫ
m̂i, (3.41)

where a fixed term ǫ is included to avoid division by zero and it is necessary to tune two additional

hyperparameters β1 and β2.

3.7.3 L-BFGS

In Newton methods, second-order derivatives of the objective function give a better

understanding of the function topology and allow the selection of a more efficient path for the

search procedure.

Consider a second-order Taylor series expansion of the loss function,

L(θi+1) = L(θi) +∇LT ∆θ +
1

2
∆θT∇2L∆θ. (3.42)

The change in the loss function is defined by

∆L = L(θi+1)− L(θi) = ∇LT ∆θ +
1

2
∆θT∇2L∆θ. (3.43)

To minimize ∆L, we differentiate the last expression with respect to ∆θ, i.e,

∇L +∇2L∆θ. (3.44)

From this expression, we update θ in the next step i + 1 using

∆θ = −(∇2L)−1∇L, (3.45)

and

θi+1 = θi − (∇2L)−1∇L. (3.46)

Newton’s method has a long execution time and requires large storage space to compute

the Hessian matrix∇2L. In contrast, quasi Newton methods circumvent this problem by directly
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approximating the inverse of the Hessian matrix using the first order derivatives. Although these

methods have good convergence rates and in many applications outperform gradient descent

algorithms, in large-scale optimization problems, such as neural networks, quasi Newton methods

also need significant storage space (ROBITAILLE et al., 1996).

There are different strategies for the estimation of the Hessian matrix in quasi-Newton

methods and one of the most popular is the Broyden–Fletcher–Goldfarb–Shanno algorithm

(BFGS). The BFGS Hessian approximation can be based on the full history of gradients or

only on more recent gradients. The last case is known as limited memory BFGS, abbreviated as

L-BFGS, which significantly reduces the storage requirement.

At the ith iteration, the BFGS method computes a new iterate by the formula

θi+1 = θi − αiHi∇L(θi), (3.47)

where αi is the step size,∇L is the gradient of the loss function and Hi is the inverse approxima-

tion of the Hessian matrix.

This matrix is approximated at each step using the following equation:

Hi+1 = (I − cisiy
T
i )Hi(I − ciyis

T
i ) + cisis

T
i , (3.48)

where

si = θi+1 − θi, (3.49)

yi = ∇L(θi+1)−∇L(θi), (3.50)

ci =
1

yT
i si

. (3.51)

In the L-BFGS method instead of storing the entire matrix Hi, the set of m most recent

curvature pairs (sk, yk) are saved and used to update Hi. As a result, it is not necessary to

construct and store the dense inverse Hessian approximation at each time step (BERAHAS;

JAHANI; TAKáč, 2019; NOCEDAL; WRIGHT, 2006).
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3.8 Physics informed neural network

A physics informed neural network (PINN) is a methodology that employs physics laws

to reduce the amount of data needed in the learning process of a neural network model (RAISSI;

PERDIKARIS; KARNIADAKIS, 2017a; RAISSI; PERDIKARIS; KARNIADAKIS, 2017b).

This method can be used to solve partial differential equations (PDEs) but is also very useful in

the solution of inverse problems.

In the general case, the governing equations of a dynamic system are given in the following

form:

∂u

∂t
= L (u, λ), (3.52)

subject to the Dirichlet and Neumann boundary conditions

u(x, t) = g(x, t), x ∈ ∂ΩD, (3.53)

K
∂u

∂x
= q(x, t), x ∈ ∂ΩN , (3.54)

and with initial condition

t = 0 : u(x, 0) = u0(x), x ∈ Ω. (3.55)

Here u(x, t) denotes the solution of the PDE, L is a function or differential operator parametrized

by λ, Ω is the domain and K comes from a given constitutive relation.

It is also important to define the residue of the PDE, which plays an important role in the

training process, by

R :=
∂u

∂t
−L (u, λ). (3.56)

3.8.1 Types of physics informed network models

Raissi, Perdikaris and Karniadakis (2017a) proposed two types of approximations, a

continuous PINN where space and time are inputs of the neural network, and a discrete time

model, where space is the only input and the time derivative is expressed using a classical time

integration method.
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3.8.1.1 Continuous PINN

In this model, time and space (t, x) are inputs of the PINN and the key elements common

in any Artificial Neural Network (ANN) model are also used in the construction of the continuous

PINN:

� Training data: in forward problems (solution of PDEs), the data used to train the network

come from boundary and initial conditions, Eqs. (3.53) to (3.55), and is complemented with

the physics laws given by the PDE. These principles are incorporated through evaluation

of the residue, Eq. (3.56), in a set of collocation points randomly selected in the domain.

In an inverse problem (discovery of PDEs), data of the solution is available in a space-time

domain and used with Eq. (3.56) to approximate the solution u(x, t) and estimate the

parameters λ of the operator L (RAISSI; PERDIKARIS; KARNIADAKIS, 2017a).

� Activation function: hyperbolic tangent or sigmoid functions are commonly used as

activation in all hidden layers and an identity activation in the output layer. The hyperbolic

tangent easily captures nonlinear trends and has a symmetric range and the identity function

is strategically used in the last layer to restore the range and scale of the approximated

function u(x, t).

� Loss function: any function written as an average of the individual cost of the training

samples can be used. The loss function of PINNs not only depends on the output value of

the network, but also on the residue, boundary and initial conditions in the case of forward

problems.

� Training algorithm: First-order or second-order methods can be used to optimize the loss

expression of the model as described in Section 3.7.

� Hyperparameters: Some settings considered in the algorithm developed for the PINNs

are the ANN architecture, the initialiser of weights and biases and the normalization of

the inputs. There is no rule to tune these hyperparameters but their selection can certainly

affect the performance of the PINN.

PINNs approach using continuous models for data driven solution and discovery of PDEs

can be summarized as follows:

1. Define hyperparameters: initializer, input normalization, ANN architecture, number of

samples for training, optimization methods, and other relevant settings.

2. Generate the training data:
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� forward solution: use boundary and initial conditions.

� inverse solution: take samples from the available solution in the spatio-temporal

domain.

3. Select collocation points to evaluate the residue.

4. Forward propagation.

5. Loss function:

� forward solution: using the output of the network u(x, t), evaluate initial and Dirichlet

conditions and calculate the residue and the Neumann boundary conditions.

� inverse solution: construct the loss function using computed outputs, sample solutions

and the evaluation of the residue.

6. Learning with automatic differentiation or backpropagation: optimize the PINN model

using the sensitivity of the loss in terms of learnable parameters.

3.8.1.2 Discrete PINN

In this PINN is possible to introduce a numerical method to approximate the partial time

derivative of Eq. (3.52). Consequently, in a discrete PINN, there is only a spatial dependence in

the construction of a neural network.

The Runge-Kutta (RK) implicit scheme was the numeric method adopted by Raissi,

Perdikaris and Karniadakis (2017a) and the number of RK stages becomes an important hyper-

parameter for the construction of the multioutput neural network. Although the key elements

explained for the case of continuous PINNs are similar, there are some minor differences due to

the introduction of the RK method, the use of multioutput networks (to approximate the stages

of RK) and other considerations taken in the construction of a discrete time model.

3.8.2 Solution of differential equations using a continuous PINN

As presented in the literature review, the work of Lagaris, Likas and Fotiadis (1998) was

one of the first papers to propose the solution of differential equations using neural networks.

Following their approach, the solution of a PDE is constructed considering a trial solution that

satisfies the initial and boundary conditions.



Chapter 3. Artificial Neural Networks 53

Consider the following trial solution:

utr = G(x, t) + F (x, t, N(x, t, θ)), (3.57)

where the term N(x, t, θ) represents the output of the neural network model and the terms G(x, t)

and F (x, t, N) are defined to satisfy the boundary and initial conditions by construction.

In this approach the loss function L of the neural network is computed in a set of random

collocation points (xi, ti) inside the domain , and is defined in terms of the PDE residue as

Ri(u
tr) =

∂utr(xi, ti, θ)

∂t
−L (utr, λ). (3.58)

L = f(R̂i, Ri) =
1

Nc

Nc
∑

i=1

f(R̂i, Ri), (3.59)

where f represents one of the functions described in Section 3.5 and Nc is the number of

collocation points. In order to approximate the solution of the differential equation, the label

values R̂i are zero in all the Nc collocation points.

Nowadays, the terms in Eq. (3.58) are automatically computed in machine learning

frameworks, but without the help of these tools, it was necessary to derive the expressions to

evaluate the residue.

The physics informed methodology takes the trial solution directly from the output of the

neural network model,

utr = N(x, t, θ), (3.60)

and constructs the loss L of the model considering terms for the residue Lr, boundary conditions

Lb and initial conditions Li, i.e,

L = Lr + Lb + Li, (3.61)

where

Lr =
1

Nc

Nc
∑

i=1

f(R̂i, Ri), (3.62)

Lb =
1

Nb

Nb
∑

i=1

f(ûi, utr
i ) +

1

Nb

Nb
∑

i=1

f
( ˆ∂ui

∂x
,
∂utr

i

∂x

)

, (3.63)
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Li =
1

Ni

Ni
∑

i=1

f(ûi, utr
i ), (3.64)

Nb and Ni are the boundary and the initial conditions points, respectively. The label values in

equations Eqs. (3.63) and (3.64) are computed using the Eqs. (3.53) to (3.55).

3.8.3 Discovery of differential equations using a continuous PINN

The PINN methodology is also employed in the discovery of the parameters λ in the dif-

ferential operator L (u, λ) of Eq. (3.52). Using some observations of the variable ûi (distributed

in the spatial-temporal domain) and the partial differential equation (from a physics model), it is

possible to estimate the parameters λ that reproduces the physical behavior given by the data.

The physics informed model uses the same trial solution given in Eq. (3.60) but now the

residue of the PDE is a function of the output of the neural network and also of the unknown

parameters λ as

Ri(u
tr, λ) =

∂utr(xi, ti, θ)

∂t
−L (utr, λ). (3.65)

The parameters λ that define the PDE equation of the model are learnable parameters similar to

θ, but they are external to the neural network. The loss function of the physics informed model is

given by two contributions,

L = Lr + Lc, (3.66)

where Lr is the residue loss and Lc is the collocation loss. In identification problems, the solution

of the governing equations is partially known and the collocation loss can be interpreted as

the criterion to fit the output of the neural network model to the pseudo-experimental data. Its

training points Nc are usually adopted as the same collocation points used for the residue loss

and this loss is evaluated as follows:

Lc =
1

Nc

Nc
∑

i=1

f(ûi, utr
i ). (3.67)

An important aspect of this formulation is that the collocation loss only affects the learning

process of the parameters θ. Conversely, the residue loss has influence in the adjustment of

parameters θ and λ.
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4 Identification approach and results

The previous chapters presented some fundamental concepts to identify the material

parameters of the damage model. We described some estimation methods in differential equations,

gave an overview of the damage model, outlined the methods to obtain the pseudo-experimental

data and finally summarized the artificial neural networks and the physics informed methodology.

This chapter collects all this information for a gradual identification of the damage model

parameters and presents the results obtained with this approach. It also includes an explanation of

how a physics informed neural network is used to solve this specific problem, some considerations

taken and the discussion of results.

4.1 Physics informed neural network for identification of pa-

rameters

The governing equations presented in Section 2.2 give the evolution of displacement and

damage for a linear elastic material. In order to explore the use of neural networks in this model

identification problem, different physical cases are considered following the assumptions taken

for the final equations of the model. The identification is primarily based on the damage evolution

given that all the parameters from the phase field methodology appear in this expression. This

consideration also reduces the complexity of the neural network model to only one parabolic

partial differential equation.

We define our data-driven methodology using a feedforward neural network that takes

space and time values as inputs and returns a continuous function of damage in the space-time

domain. This output is employed to compute the residues of the partial differential equation and

the boundary and initial conditions.

As we presented in chapter 2, there are different approaches to estimate parameters in

differential equations. In most of these approaches, authors have considered the fitting of the

experimental data as the main objective of the problem and penalized the residue of the governing

equations. We treat the identification of the parameters as a multi-objective optimization problem

where it is necessary to achieve a good balance among each of the terms that appear in the loss

function of our neural network model. In the physics informed methodology, the terms in the

loss function are simultaneously minimized without consideration of its role in the identification.

This can increase the difficulty of material parameter estimation since the number of learning

parameters in the neural network exceed by far the material parameters of the physics model. On
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the other hand, our implementation use weights αj for each term Lj in the total loss expression

L stated as,

L = αrLr + αiLi + αbLb + αcLc, (4.1)

where Lr, Li, Lb and Lc are the residue, initial, boundary and collocation losses, respectively.

It is natural to assume that the residue loss is more relevant in the estimation of the material

parameters by its mathematical definition. While the residue loss is written from the governing

equations of the model, the collocation loss is defined using the output of the neural network.

This means that the corrections of the neural network parameters are directly affected by Lc and,

on the other hand, the material parameters depend heavily on Lr.

We use a few training simulations to tune the weights αj considering their current

contribution to the total loss. In most cases, this process is straightforward and produces good

results. Other works based on the PINN classical model have already proposed the introduction

of parameters to represent this relative importance of the loss function terms and observed

significant improvements in their results (MEER, 2019). Another difference with the classical

PINN methodology is that we include the boundary and initial conditions of the model because

in some cases it facilitates the search of the neural network parameters.

4.1.1 Hyperparameters and optimization strategy

In neural network models, learnable parameters θ are progressively adjusted using the

backpropagation algorithm. Hyperparameters, in contrast, are chosen using expert intuition. A

typical search of hyperparameters includes the number of neurons and layers, loss and activation

functions, amount of training data, methods for weight initialization, batch size and learning rate

of gradient descent, number of iterations kept in memory for the L-BFGS optimization, among

others. The selection of hyperparameters defines the set of configurations that maximize a metric

associated with the accuracy of a neural network model. We know from previous works that the

order of the residue loss function is a metric closely related with the capacity of the network to

approximate a PDE solution. However, in identification problems a low value of this metric does

not guarantee a good estimation of the material constants λj .

After some tests using different configurations, we tune the hyperparameters using

literature recommendations and practical experiences. We use the mean absolute function for the

collocation loss Lc and the mean square function for the residue Lr, boundary conditions Lb and

initial condition Li losses. We employ a tangent hyperbolic function as the default activation

and the Glorot normal method to initialize the learnable weights of the model (GLOROT;
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BENGIO, 2010). In contrast to common activation functions, the hyperbolic tangent is preferred

because its non-linearity is complemented with a symmetrical distribution and greater derivatives.

Furthermore, the Glorot initialization helps to avoid vanishing and exploding gradient problems.

For the optimization algorithms, we set the following hyperparameters:

� Adam: α = 1× 10−3, β1 = 0.9, β2 = 0.999.

� L-BFGS: 50 corrections for the limited memory and the convergence criterion to stop the

iterations is (Lk − Lk+1)/max(|Lk|, |Lk+1|, 1) ≤ ftol , where k is a given iteration and

ftol = 1× 10−12.

During the tuning process, it was observed that the inclusion of the residue demands

the use of networks with many layers and neurons to avoid poor estimates of the material

constants. Possible reasons for this situation are local minima solutions, initial values defined for

the search, bounds given in the optimization algorithms and hyperparameters used during the

minimization. Although the penalizing constants regularize the search (RAMSAY et al., 2007),

we combine some of the ideas of the two-step method (DUA, 2011), the principal differential

analysis (POYTON et al., 2006) and the generalized smoothing approach (RAMSAY et al.,

2007) to address these difficulties. Our implementation employs the following three stages in the

training:

� First stage: we use an initial L-BFGS algorithm with a maximum of 1000 iterations. In

this stage, only the collocation loss Lc is optimized and the aim is to refine the initial

values of learnable parameters using the pseudo-experimental data available.

� Second stage: the second stage is a batch gradient descent optimization of L using the

Adam algorithm with a number of steps between 5000 and 20000. In this stage, we explore

a combination of Adam and L-BFGS methods to reduce the occurrence of local minima

solution. The strategy consists of training the network using the Adam algorithm, and after

a defined number of iterations, performing the L-BFGS optimization of the collocation

loss Lc with a small limit of executions.

� Third stage: the training is complemented with a stage of simultaneous optimization

using the L-BFGS method but this time with a maximum of 20000 iterations and a small

tolerance for the convergence criterion.

We observed that in some cases this strategy allowed the use of networks with a smaller number

of layers and neurons, and consequently, this approach is applied in all cases.
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as

∂ϕ

∂t
=

(

λ1λ3

λ2

)

∂

∂x

(

∂ϕ

∂x

)

+

(

E∗

λ2

)

(1− ϕ)−
(

λ1

λ2λ3

)

ϕ, (4.2)

where E∗ represents the product of Young’s modulus E and the squared strain u2

x.

The pseudo-experimental data for this identification was obtained from a forward solution

using the methods and parameters given in Table 4.1.

Table 4.1 – Classical numerical solution for the bar with the constant strain.

Space discretization Interpolation order Nodes Time marching ∆t tf

FEM 1 1000 Crank-Nicolson 2× 10−4 s 0.303 s

The neural network was implemented using the open-source framework TensorFlow

(ABADI et al., 2015) with the Python application software interface (API). The methodology

implemented for material identification is based on a simple mathematical and computational

structure that takes advantage of the tools and comprehensive libraries available in TensorFlow.

Table 4.2 presents the configurations that provided the best results. The architecture of

the neural network is given by 2 inputs, 3 hidden layers with 13 neurons in each layer and

an output layer with 1 neuron. Each stage of the optimization process has a defined number

of maximum iterations and a total of 5000 (x, t) pairs are used to compute the residue and

collocation losses. The penalizing weights in the total loss function L are αr = 20 , αi = 10,

αb = 2, αc = 1. The first optimization stage employs the L-BFGS method, with a limit execution

of 1000 iterations, to minimize the collocation loss. Then, in the second stage, a loop of 10000

iterations trains the total loss with the Adam method. Within this loop, each 500 iterations the

collocation loss is minimized with an L-BFGS method with 80 executions at most. In the last

stage the total loss is trained again with the L-BFGS method. The iteration limits of the first and

second optimization stages are chosen empirically. These limits are lower considering that when

the method alternates between the total and collocation losses there will be repetitive variations

with a general decreasing trend. Thus, the role of these initial stages is to provide better estimates

for the final optimization stage due to their trade-off in the search of the nuisance and structural

parameters.

Table 4.2 – Hyperparameters of the PINN for the bar under constant strain.

Layers and neurons Samples L-BFGS Batch Size Adam + L-BFGS L-BFGS
[2,13,13,13,1] 5000 1000 2000 10000-80(500) 20000

The percentage errors for the identification of the material parameters are presented in

Table 4.3 and the neural network approximation of damage at different times using this material
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4.2.1 PDE constrained optimization in FEniCS

As part of verification and validation, an identification in the FEniCS system was im-

plemented using the same considerations previously stated. This framework has an intuitive

mathematical interface, express problem solution using a high-level syntax and maybe its most

important feature is that its code generation technology generates parallel optimized low-level

C++ code for the solution of forward and adjoint systems. As a consequence of this optimization

in the code, it is possible to compute functional and gradient information easily and pass this

information to the optimization algorithm.

The computation of the gradient using functional perturbations, finite differences, and

other approximation methods are affected by the propagation of errors or expensive computations.

Alternatively, the adjoint method computes the gradient of a scalar function with a cheaper pro-

cedure similarly to automatic differentiation and requires only one PDE evaluation. As presented

in Funke and Farrell (2013), the user describes the forward model, the control parameters and

the objective function using a high-level syntax called UFL. The optimization framework then

repeatedly re-executes the tape (record of operations used in the solution of the equations ) to

evaluate the functional value, solves the adjoint PDE to compute the functional gradient, and

modifies the tape to update the control parameters until an optimal solution is found. Details

about how the adjoint equation is derived using the first-order optimality conditions for a PDE

constrained optimization problem can be found in Funke and Farrell (2013).

The identification with FEniCS adjoint employs the damage evolution in terms of param-

eters λ∗

1, λ∗

2 and λ∗

3 as

∂ϕ

∂t
= λ∗

1

∂

∂x

(∂ϕ

∂x

)

+ λ∗

2(1− ϕ)− λ∗

3ϕ, (4.3)

where,

λ∗

1 =
λ1λ3

λ2

(4.4)

λ∗

2 =
E∗

λ2

(4.5)

λ∗

3 =
λ1

λ3λ2

, (4.6)
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and the results of the estimation are presented in Table 4.4 using λ1, λ2, λ3 for comparison. The

running time was about 15 minutes in a computer with processor Intel(R) Core(TM) i5-8300H

CPU with memory of 12GB RAM.

Table 4.4 – Percentage error in the identification using FEniCS for a bar with constant strain.

Parameter Label value Estimated value Percentage error
λ1 3.90× 103 3.89× 103 0.025%
λ2 5.00× 105 4.99× 105 0.020%
λ3 6.00× 10−2 5.99× 10−2 0.017%

In this case, the pseudo-experimental data was obtained using a mesh with 1000 nodes

and the functional was constructed with samples in the time domain and considering all the

spatial values for a given sample. 5 time steps of a total of 1527 were randomly selected and

used to construct the objective function that was minimized.

The identification using this framework gave significant smaller errors for the material

parameters in comparison with the PINN methodology. However, the automated PDE constrained

optimization required all the spatial information for each time step sample used in the estimation

and was performed in terms of linear parameters λ∗

1, λ∗

2, λ∗

3 . In this respect, the neural network

approach is more general and can be easily adapted to experimental settings where all the spatial

information is not available. Another important remark is that the use of function approximators

has proven to be better to estimate non-linear parameters in differential equation models and also

has good performance in the presence of noise. On the other hand, in solutions with classical

numerical methods, such as the finite element method, the number of material parameters

increases with the refining of the mesh in non-linear problems and some numerical issues can be

developed in the presence of noisy data (BERG; NYSTRöM, 2017).

4.2.2 Noise robustness of the methods

One of the advantages of neural networks as function approximators is that they have

shown to be robust in the presence of noise (RAISSI; PERDIKARIS; KARNIADAKIS, 2017b;

BORODINOV et al., 2019). To asses this, we perform the identification of the parameters using

20 different values of uncorrelated noise between 0 and 10% similar to the systematic study

presented in Raissi, Perdikaris and Karniadakis (2017b). The parameters estimated for different

levels of noise are in Table 4.5 and Table 4.6 presents the mean, the standard deviation and the

relative standard deviation of the identification to evaluate the robustness of the implementation

to the noise.
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Table 4.5 – Parameters estimated for different levels of noise using a PINN.

Level of noise % λ1 λ2 λ3

0.0 3772.955 501054.931 0.058
0.5 3913.628 501067.868 0.060
1.0 3757.971 503823.802 0.065
1.5 3771.606 500928.572 0.058
2.0 3663.080 503543.274 0.063
2.5 3765.409 503434.252 0.065
3.0 3861.293 500984.546 0.059
3.5 3805.192 503100.513 0.064
4.0 3856.346 502600.354 0.063
4.5 4116.996 500612.807 0.061
5.0 3855.899 502553.604 0.063
5.5 3625.063 500640.227 0.054
6.0 3891.068 502382.433 0.063
6.5 3596.138 500395.233 0.053
7.0 4186.175 500603.370 0.063
7.5 3520.839 500572.652 0.053
8.0 3913.673 502100.357 0.063
8.5 3866.172 502254.003 0.063
9.0 3945.199 501774.604 0.062
9.5 3971.563 500254.033 0.058

10.0 3453.295 500429.881 0.051

Table 4.6 – Influence of noise in the estimation of the parameters for a PINN.

Parameter Label value Mean value Relative standard deviation Mean error
λ1 3.90× 103 3.81× 103 4.57% 3.77%
λ2 5.00× 105 5.02× 105 0.23% 0.33%
λ3 6.00× 10−2 6.01× 10−2 7.06% 6.02%

We let the same settings to all the levels of noise but we know that it could exist a better

combination of hyperparameters for each of them. From the quantitative results in Table 4.6

we see that the estimation of the parameter λ2 is very accurate and the results for the other

parameters are within an acceptable range.

We applied the same test of robustness for the solution using constrained optimization in

FEniCS and the results are shown in Tables 4.7 and 4.8. Despite having some good estimates for

mean values, we observe that the relative standard deviation and the mean error are higher in

contrast to the results of the neural network methodology.
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Table 4.7 – Influence of noise in the estimation of the parameters for constrained optimization.

Parameter Label value Mean value Relative standard deviation Mean error
λ1 3.90× 103 3.25× 103 12.82% 16.66%
λ2 5.00× 105 5.01× 105 0.05% 0.08%
λ3 6.00× 10−2 5.02× 10−2 12.58% 16.34%

Table 4.8 – Parameters estimated for different levels of noise in FEniCS

Level of noise λ1 λ2 λ3

0.0 % 3899.963 499999.990 0.060
0.5 % 3841.518 500037.703 0.059
1.0 % 3782.259 500075.429 0.058
1.5 % 3722.152 500113.166 0.057
2.0 % 3661.160 500150.915 0.056
2.5 % 3599.243 500188.677 0.055
3.0 % 3536.359 500226.450 0.055
3.5 % 3472.442 500264.313 0.054
4.0 % 3407.519 500302.095 0.053
4.5 % 3341.461 500339.888 0.052
5.0 % 3274.204 500377.696 0.051
5.5 % 3205.683 500415.521 0.050
6.0 % 3135.826 500453.362 0.048
6.5 % 3064.554 500491.217 0.047
7.0 % 2991.255 500529.097 0.046
7.5 % 2916.964 500566.998 0.045
8.0 % 2841.060 500604.904 0.044
8.5 % 2763.269 500642.795 0.043
9.0 % 2683.043 500680.681 0.042
9.5 % 2600.532 500718.606 0.040

10.0 % 2515.914 500756.562 0.039

4.3 Identification considering the displacement evolution

After exploring the use of PINNs without considering the displacement evolution, now

we return to the coupled system of equations for the identification. In this case, the evolution

of displacement is given as an input to the neural network making the inverse analysis more

consistent with the real behavior.

We propose a total of four cases with three distinct initial conditions for damage in

each of them. The neural network identifies a different set of material parameters in problems

with several boundary and initial conditions. With these cases, we evaluate the generalization

capabilities and robustness of the implemented methodology.
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ρ
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∂t2
=

∂

∂x
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∂u
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)
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The use of both state variables u and ϕ required some minor changes in the depth and width

of the neural network. The hyperparameters adopted for the neural network are presented in

Table 4.10, the penalizing weights used in L are αr = 10 , αi = 8, αb = 2, αc = 10, and the

same configuration is used for the three initial conditions.

Table 4.10 – Hyperparameters of the PINN for case 1.

Layers and neurons Samples L-BFGS Batch Size Adam + L-BFGS L-BFGS
[2,25,25,25,25,1] 5000 1000 2000 10000-80(500) 20000

The estimation of the material parameters was performed using an exponential scale

and defining bounds with enough range for the parameter search. The percentage errors for the

parameters are given in Table 4.11 and the PINN approximation is presented in Figs. 4.10, 4.11

and 4.12.

Table 4.11 – Percentage errors in the identification for case 1.

Parameter Label value Estimated value Percentage error

ϕmax
0 at

x0 = 0.25

λ1 4.00× 103 3.76× 103 5.95%
λ2 1.60× 105 1.69× 105 5.40%
λ3 2.00× 10−2 2.14× 10−2 6.93%

ϕmax
0 at

x0 = 0.5

λ1 4.00× 103 3.87× 103 3.25%
λ2 1.60× 105 1.64× 105 2.41%
λ3 2.00× 10−2 2.06× 10−2 2.88%

ϕmax
0 at

x0 = 0.75

λ1 4.00× 103 3.78× 103 5.50%
λ2 1.60× 105 1.67× 105 4.26%
λ3 2.00× 10−2 2.09× 10−2 4.48%
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The hyperparameters adopted for the neural network are presented in Table 4.12. The

first row has the configurations for the initial conditions centered at x = 0.25 and x = 0.5. It

was necessary to increase the amount of neurons for the initial condition centered at x = 0.75 as

presented in the second row. For this and the following two cases, the penalizing weights used in

the total loss function are αr = 20 , αi = 8, αb = 2, αc = 15.

Table 4.12 – Hyperparameters of the PINN for case 2.

Layers and neurons Samples L-BFGS Batch Size Adam + L-BFGS L-BFGS
[2,14,14,14,14,14,1] 8000 1000 2000 10000-80(500) 20000
[2,18,18,18,18,18,1] 8000 1000 2000 10000-80(500) 20000

The percentage errors of the parameter identification are presented in Table 4.13. For

this physical case, we had a larger error in λ3 and a smaller error in λ1 for all the initial

conditions proposed. This could be associated with the sensitivity of the damage response to

these constants. In contrast to the previous case, we employed more neurons for the last initial

condition considered to have an acceptable percentage error for λ3.

Table 4.13 – Percentage error in the identification for case 2.

Parameter Label value Estimated value Percentage error

ϕmax
0 at

x0 = 0.25

λ1 8.00× 103 7.99× 103 0.06%
λ2 2.00× 105 2.09× 105 4.50%
λ3 1.00× 10−2 1.06× 10−2 6.40%

ϕmax
0 at

x0 = 0.5

λ1 8.00× 103 7.94× 103 0.72%
λ2 2.00× 105 2.10× 105 4.82%
λ3 1.00× 10−2 1.06× 10−2 6.29%

ϕmax
0 at

x0 = 0.75

λ1 8.00× 103 8.17× 103 2.08%
λ2 2.00× 105 2.10× 105 5.18%
λ3 1.00× 10−2 1.10× 10−2 9.66%

In Figs. 4.13, 4.14 and 4.15, we perceive the same smoothing effect for the last time step

of damage evolution and only slight differences in previous steps for all the initial conditions

considered.
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5 Conclusions and suggestions for future research

This work addressed the estimation of parameters in the governing equations of the

damage model proposed in Boldrini et al. (2016). We implemented the identification of three

material parameters applying a physics informed neural network and combining some ideas of

the two-step method, the principal differential analysis, and the generalized smoothing approach.

Initially, the identification strategy was tested using only the evolution of the damage and

afterward, it was included an additional input in the neural network model with information

from the solution of the displacement equation. We examined the robustness of the method in

the presence of noisy training data and also their generalization capabilities in different physical

cases.

At the beginning of the dissertation, we presented a literature review with works that have

applied neural networks in the solution of differential equations and also in the estimation of

parameters in models. Then we introduced the formulation of the material identification as an

optimization problem and described some popular techniques that have been used over the years.

There are different levels of classification for the methods to solve this type of inverse problem,

but it seems that exists a trend towards the adoption of function approximators to fit the models

using Bayesian inference. These choices are popular because they work well in the presence of

noise and also can introduce prior information in the solution to the problem. In this work, we

used a neural network as function approximator and a deterministic approach to estimate the

parameters.

We adopted the physics informed methodology as the base for our neural network model

because it has been proved in different identification problems with good results. However, we

decided to make some modifications in the formulation of the optimization process because we

observed that when the term that fits the observations and the residue of the governing equation

of the model have the same importance, the neural network demands a higher number of neurons

and layers. We also now from the work of Ramsay et al. (2007) that the simultaneous search for

the parameters of the neural network, i.e., nuisance parameters, can complicate the estimation

of the material parameters, i.e., structural parameters. In order to avoid this and local minima

trouble, we proposed three stages of optimization. First, we optimize the collocation loss which

means that in this stage only the parameters of the network are refined. In the second stage, we

alternate between a simultaneous search of all the parameters using a gradient descent method,

and the optimization of only the neural network parameters using an L-BFGS algorithm. Finally,

we complemented the estimation of the parameters implementing a simultaneous search with a

high execution limit.

The equations of the model for the hypothesis presented in Chapter 2 give the evolution
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of the displacement and damage and were applied in a simple physical case. We used a bar with

the left extreme fixed and diverse boundary conditions for the right end. With the purpose of

exploring different approaches, we simplified the identification problem considering only the

damage equation with a constant strain in the bar. We tested the robustness of the implementation

using various levels of noise in the training data. Although the mean errors for the different

levels of noise were larger than those of the clean data, the quantitative results were within

an acceptable range considering that we kept the same hyperparameters tuned for the original

(clean) training data. In addition, we presented the results of the estimation using a method that

constrains the optimization using the numerical solution of the differential equation. Despite

that the results for the clean data were superior, we found that the mean error in the presence

of noise was higher for the constrained method. In this case, the neural network methodology

had better performance when dealing with noisy data which is a property desired to work with

experimental observations.

Finally, we proposed four physical cases to evaluate the generalization capabilities of the

strategy proposed. These cases had different boundary conditions, initial conditions and some

included distributed loads. We used a random search to tune one of the configurations in each

case and only introduced minor changes in the number of neurons and layers to maintain the

error controlled when it was necessary. In general, just slight modifications were needed and the

quantitative and qualitative results were satisfactory.

5.1 Suggestions for future works

Some possible ideas for future works to continue with this line of research are summarized

in the following list:

� Propose other physical cases for the application of the damage model and generalize the

estimation process using directly the terms from the free energy and the pseudo-potential

of dissipation as physics regularization.

� Consider the evolution of the displacement using an additional neural network or a new

output in the same network.

� Explore the use of a global optimization algorithm to avoid local minima solutions and

poor approximations. An interesting alternative could be to create a surrogate convex

loss to improve the performance of local optimization methods without increasing the

computational cost.
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� Refine the selection of the collocation points using information from the loss during the

training process. This can be achieved using another machine learning system.

� Implement cross-validation to select the penalization weights of the terms in the loss

function.
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