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RESUMO

Uma abordagem de Elementos Finitos Galerkin Descontínuo (DG) para as equações de

Navier-Stokes com Média de Reynolds (RANS) complementadas pelo modelo Spalart-

Allmaras (SA) é implementada e validada para alguns casos de teste básicos. As variáveis

de campo do problema são interpoladas usando expansões modais com polinômios de

Jacobi. A comunicação entre os elementos é garantida pelo uso dos Ćuxos numéricos de

Roe e HLLC para os termos convectivos e BR1 para os dissipativos. A integração temporal

é realizada usando-se um esquema implícito Standard-Newton GMRES Backward Euler.

O software desenvolvido neste trabalho tem intensivamente usado e expandido o pacote

de aplicações para Ćuidodinâmica da plataforma de código aberto Manticore, de forma a

permitir a construção da infraestrutura dos modelos RANS.

Keywords: RANS; DG-FEM, Spalart-Allmaras, Soluções Manufaturadas.



ABSTRACT

A Discontinuous Galerkin Finite Elements (DG) approach for the Reynolds-Averaged

Navier-Stokes Equations (RANS) complemented by the closure model Spalart-Allmaras

(SA) is implemented and validated for some basic test cases. The problem Ąeld vari-

ables are interpolated using modal expansions of Jacobi polynomials. The communication

between the elements is enforced by using the numerical Ćuxes Roe and HLLC for the

convective terms and BR1 for the dissipative ones. The time-integration is performed by

using an implicit Standard-Newton GMRES Backward Euler scheme. The software devel-

oped in this work has extensively used and expanded the Ćuid dynamics toolbox of the

open-source framework Manticore in order to construct the infra-structure of the RANS

models.

Keywords: RANS; DG-FEM, Spalart-Allmaras, Manufactured Solutions.



Theories are nets cast to catch what we call the ’world’: to rationalize, to explain, and to

master it. We endeavour to make the mesh ever finer and finer.

Karl Popper
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1 INTRODUCTION

A noticeable obstacle for the union of the Computational Fluid Dynamics

(CFD) and the most traditional high order methods, such as the classical Finite Element

Method (FEM), is their difficulty to make compatible the continuity requirements of such

methods in the presence of shock propagation, a common phenomenon in the compressible

Ćow cases. In order to circumvent this issue, an alternative way has been developed in the

last decades, the Discontinuous Galerkin Finite Element Method (DG-FEM) (HESTHA-

VEN; WARBURTON, 2008).

The DG-FEM is a variation of the classical FEM, from where it inherits its

principal characteristics, such as the use of domain tessellation into sub-domains, weak

form relaxation and elementwise interpolation. However it differs of the original method

for not directly imposing the continuity element-to-element. The continuity between two

neighbours sub-domains is guaranteed by means of a numerical Ćux, a technique imported

from the Ąnite volume method (LEVEQUE, 2004). The numerical Ćux schemes available

in the literature ensure the required robustness and Ćexibility for detecting both continu-

ous and discontinuous solutions in the element interfaces, allowing to perform cases not

covered for the classical FEM due to its natural limitations.

The DG-FEM had important results in a number of applications in the last

decades, for linear and non-linear problems. SpeciĄcally for compressible Ćows, DG-FEM

has attracted attention due to its basic features, most part of them derived from the high

locality of the method, centering the operations in the element and its interfaced neigh-

bourhood. Some of these characteristics enable parallelization capability and Ćexibility in

the interpolation order, making simpler to have different regions of the simulation domain

with the necessaries hp-adaptivity.

However, in counterpart of these beneĄts, the DG-FEM also inherits the chal-

lenge of dealing with the co-existence of discontinuities and non-linearities in case of

higher interpolation orders, which may lead to the propagation of numerical oscillations.

In order to ensure stability, it is almost indispensable the application of oscillation control

schemes that fatefully imply in interference of the solution. However the high locality of

these schemes reduce the global interference and make the effect rather negligible.

Turbulence presents another usual numerical challenge due to its multi-scale

structure with a wide range of characteristic scale-lengths, consequently, it has a natural

difficulty to be described considering the current capacity of the computers available. In

this context, the RANS methods offer an achievable solution by replacing the complete

scale description by time-averaged variable Ćuctuations, quantiĄed by using additional



18

models (usually named closures). Surely, the scales condensing into mean values implies

in an unavoidable physical description loss of local phenomena, but still allows to outline

the behaviour of a complex Ćow and extract important aspects of it. No wonder RANS

still is one of the standard approaches in current industrial applications.

Although RANS makes use of assumptions for simplifying the turbulence si-

mulations, the technique has some numerical difficulties, such as the time-integration

stability and the emergence of non-physical values in the auxiliary variables. As the time-

discretization is a crucial for a accurate evaluation of the Ćuctuations, the time steps can

be something restrictive, mainly considering the conditions at the simulation start up.

In addiction, many non-realistic scenarios can arise, leading to non-physical responses of

the turbulence models. For controlling the time-instability is imperative the use of well-

conditioned implicit time-integration and the non-physical behaviour can be handled by

using additional limiting mechanisms.

The software here used has been developed based on Manticore, a free and

open-source DG-FEM framework implemented in Python 3 (https://bitbucket.org/cantao/

manticore/). The present work has contributed to the project Manticore on three ways:

testing the inviscid and laminar Navier-Stokes modules using the benchmarks of the lite-

rature, implementing the RANS modules (and the auxiliary infrastructure necessary for

that) and implementing the current post-processing tools available on the ManticoreŠs

repository.

The scope of the Ćow simulations is subdivided in three categories in this

work: inviscid (also named Euler) validation, laminar Navier-Stokes validation and RANS

models validation, all of them in subsonic conditions. Therefore, no shock discontinuity

is observed in the tests array. At Ąrst glance such approach may seem a contradiction

considering the DG-FEM numerical characteristics. However, it is necessary to highlight

that the method presents others important features (as previously cited), and the Ąeld

discontinuities handling is only one of those. Besides, even though this work does not

intend to cover the transonic and supersonic cases, it aims to be a basis step, validating

and implementing essential modules for enabling a continuous developing of the platform

Manticore, allowing others topics be approached in future works.

1.1 Purpose

This work intends to implement and validate a numerical software for Reynolds-

Averaged Navier-Stokes (RANS) simulation applied to basic validation cases. For a sake of

a complete consistency checking, inviscid and laminar cases are also validated. This work

uses the high-order numerical methods, instead of the most traditional methods (based

on low order methods, as the Finite Volume Methods) The capacity of the higher order
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methods to describe the complexity of the phenomenon can tightly outweigh their higher

computational costs.

1.2 Outline

The work is organized as follows. The Chapter 2 is a bibliographic review of the

fundamental theory in CFD and DG methods. In Chapter 3 it is introduced and explained

the basics physical theory about the phenomena considered in this work. Chapter 4 deals

with the numerical formulation employed in the software implementation. In Chapter

6, the validation tests are performed and compared to the benchmarks available in the

literature.
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2 BIBLIOGRAPHIC REVIEW

2.1 Fundamentals in Fluid Dynamics

A comprehensive explanation about any Ąeld of Fluid Dynamics requires the

establishment (or revision) of some basic concepts:

• Fluid and Flow characteristics:

Ű Continuum Hypothesis

Ű Compressibility

Ű Transport

Ű Viscosity

Ű Boundary Layer

Ű Flow Regime

• Fundamentals of the Mathematical Modeling :

Ű Control Volume

Ű Characteristic Variables

Ű Conservation Laws

Ű Differential Form

2.1.1 Continuum Hypothesis

The fundamental consideration in Fluid Mechanics is to suppose the Ćuid as a

continuous medium. This assumption is valid because in mesoscale, in absence of chemical

reactions, the molecular effects on Ćuid are negligible.

2.1.2 Transport

In the context of the Fluid Dynamics, pure transport is the transfer of mass

and energy by means the displacement of the Ćowing matter along non-intersecting tra-

jectories, named streamlines. The characteristic transport variable are the velocity Ąeld

and the terms regarding are denominated inertial terms. When the presence of viscosity,

the purely transport behaviour can be disturbed by the interaction between the two forces

and the consideration about the trajectories is violated.
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2.1.3 Viscosity

Viscosity is the measure of internal stickiness of a Ćuid (ÇENGEL; CIM-

BALA, 2010). Stickiness is, roughly speaking, the resistance of a Ćuid do motion. It can

be correlated with the shear stress in the Ćow sections. In a special class of Ćuids, deno-

minated Newtonian (such as air and water), the shear stress can be modelled as linearly

proportional to the rate of deformation of the Ćow section.

2.1.4 Boundary Layer

The Boundary Layer is the contact region between the Ćuid and a surface

where the viscous effects are signiĄcant in comparison with the inertial ones. Thus, there

are a transition between the pure transport region, where the inertial terms are prevailing,

and the a static condition, where the stickiness show up completely.

2.1.5 Flow Regime

Roughly speaking, the Ćow regime denotes the Ćuid motion behaviour in terms

of its smoothness level. The regime classiĄcation covers three subdivisions, laminar, tran-

sition and turbulent The regime is primarily distinguished by visual aspects, that are

correlated to quantiĄed indicators. In the laminar case, the Ćuid particles are disposed in

an organized and highly predictable motion whereby is possible to recognize a streamline

Ćow. The turbulent situation occurs when the interaction between the inertial and the vis-

cous forces in the boundary layer becomes unstable and a swirling structures arises along

the Ćow. In this state, the disordered motion becomes predominant. The transition is just

a intermediary situation between the laminar and turbulent state where characteristics

of both the extreme conditions are observed, but the turbulence still are not completely

evolved. The most traditional dimensionless parameter for quantifying the regime is the

Reynolds number (Re), that are given as following:

Re =
ρU l

µ
(2.1)

Where ρ is the density of the Ćuid, U is a characteristic velocity, l is a cha-

racteristic length (usually related to the geometry interacting with the Ćow) and µ is a

the dynamic viscosity. The Reynolds number represents the ratio between inertial (ρU l)

and viscous time scales (µ) and gives a notion about the Ćuid dynamical stability in the

Ćow. As the Reynolds number rises, the role of the viscous effects becomes decreasingly

signiĄcant and, at the limit case, negligible.
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2.1.6 Control Volume

A control volume is a delimited region in the space where a Ćow are studied. A

control volume is different of a closed system, because its boundary can exchange matter

and energy. The boundary of a control volume is usually denominated surface control.

2.1.7 Characteristic Variables

The analysis of a control volume is performed by means a set of conservative

or extensive variables. The extensive variables are dependent on the size of the control

volume, such as, mass , momentum and energy. Locally, it is possible to determine the

primitive or intensive variables. The intensive variables are independent of the control

volume dimensions, for instance, density, velocity, pressure and temperature.

2.1.8 Conservation Laws

The expressions derived from the global balances of the conservative variables

are denominated conservation laws. In a generic way, a conservation law can be enunciated

as following: The global balance applied to a extensive variable B in a static control volume

Ω surrounded by a surface control ∂Ω yields the conservation law of B:

d
d t

(∫

Ω
ρB̄ d V

)
+
∫

∂Ω
ρB̄U · nd S (2.2)

Where B̄ is the variable B per mass unit (that corresponds to its intensive vari-

able). The general form of the global balance to conservative variables is named Reynolds

Transportation Theorem.

2.1.9 Differential Form

The equations of the global conservation laws written so far are denominated

integral form. From the integral form is possible to derive the differential form by means

of the Divergence Theorem from Calculus. In the differential form, the conservation laws

are rewritten in terms of the intensive variables.

2.2 Turbulence Numerical Modelling

When talking about turbulence numerical issues it is necessary to introduce

some basic deĄnitions used in such matter with regard to the approaches employed to

model turbulence itself. We can subdivide the turbulence numerical simulation techniques

in three major categories:
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• DNS (Direct Numerical Simulation) - The Navier-Stokes equations are solved in

their original form and all the turbulent length scales are considered in the numerical

computation.

• LES (Large Eddy Simulation) - Extra schemes are used to separate the larger scales

from the smaller ones. The large length scales are computed and a mathematical

model is used to the smaller ones.

• RANS (Reynolds Averaged Navier-Stokes) - Approach based in the time-averaging

of the Navier-Stokes equations. The individual scales are condensed into a mean

value and computed at a time.

2.3 Turbulence Theory

Reynolds (KÁRMÁN, 1938) gave the fundamental step for constructing the

statistical approach of turbulence by introducing the concept of statistical mean values

on Ćuid dynamics. Reynolds also introduced the decomposition of the instantaneous Ąeld

variables into a time-averaged and a Ćuctuation components (MCDONOUGH J., 2007).

That basic concept, afterwards known as Reynolds decomposition, is the principle of the

Reynolds-averaged Navier-Stokes equations (RANS).

Taylor (TAYLOR, 1935) formalized the notion of turbulence eddy scale by

deĄning the scale length concept as an analogous for the turbulence modelling of the free

mean path from the kinetic gas theory. Taylor also introduced the concept of isotropic

turbulence, as a condition where the mean squares and mean products of the velocity Ąeld

components are invariant with respect to the coordinate system rotation and reĆection.

(TAYLOR, 1935), (KÁRMÁN, 1938).

Turbulence is qualitatively characterised as a multi-scale phenomenon (MC-

DONOUGH J., 2007). The KolmogorovŠs work conceives the energy cascade as a model

for describing the energy transfer throughout the energy spectrum (MCDONOUGH J.,

2007), according to this hypothetical system, the largest scale, named integral scale, takes

energy from the free Ćow and continuously transfers it from the larger to the smaller scales

and so on, until the molecular or KolmogorovŠs scale, in which the energy is dissipated as

the form of heat and vibration.

Kolmogorov models the energy transfer in the intermediary eddies as inviscid

(MCDONOUGH J., 2007), with energy dissipation only in the molecular scale. However,

in order to not violate the energy cascade chain, it is necessary to consider the complete

eddy scale range to accurately describe the turbulence phenomenon. It corresponds to

directly solve the Navier-Stokes equations in its non-modiĄed form for high Reynolds
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numbers, such approach is usually denominated Direct Numerical Simulation (DNS) on

the CFD community.

According to the KolmogorovŠs laws, which correlates the Ćow regime and

the eddy scale parameters, the characteristic length of the smallest scale rapidly decays

with the increase of the Reynolds number (MCDONOUGH J., 2007) making the DNS

domain discretization almost impractical for capturing all the phenomenon features. On

the scope of the numerical simulation, this feature can represent an insurmountable barrier

considering the current computational resources.

Due to the critical limitation of the DNS method, alternative ways have been

developed for achieving a good trade-off between accuracy and computational cost. The

alternative analytical and numerical approaches, such as RANS, basically describes all

scales together, ignoring their individual aspects. In this scenario, where the structural

approaches present limitations concerning to the numerical analysis, the statistical theory

becomes relevant as a way to comprehend the main features of the turbulence phenome-

non.

The RANS system is obtained by decomposing the Ćow Ąeld into mean and

Ćuctuating components following the Reynolds decomposition and, applying an integral

time-averaging operation over the Navier-Stokes equations (LANDMANN, 2008). The

Ąnal RANS equations describe the Ąeld variables in terms of their time-averaged values

in addition to a Ćuctuation component, whose momentum term is commonly referred

as Reynolds stress tensor. The RANS technique basically replaces the treatment of the

individual scales for an integral time-average of the entire spectrum. Thus, turbulence

scales are considered as a condensed entity.

Nonetheless, the RANS model itself does not supply a complete equation sys-

tem, since there are not an expression for direclty relating the Ćuctuations and the Ąeld

variables. This, it requires the use of an additional model, commonly named closure, for

the RANS equations (MCDONOUGH J., 2007).

The most difficulty aspect of closuring the RANS equations lies in dealing

with the non-linearity of the Reynolds stress tensor, where there are products between

Ćuctuation values. In order to circumvent this feature, Boussinesq proposed to model the

Reynolds stress tensor as a linear correlation between the viscous gradient tensor and a

parameter denominated turbulent or eddy viscosity (LANDMANN, 2008).

Based on the BoussinesqŠs approximation, algebraic and differential closure

models have been proposed in order to evaluate the eddy viscosity and its derived vari-

ables. In this work we follow the developments from the differential models in which the

eddy viscosity treatment is satisĄed by creating new partial differential equations to be

included on the RANS equations system.
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Although the BoussinesqŠs hypothesis had gained a large acceptance in de-

veloping the closure models, the validity and generality of such assumption has been

contested in more recent works. Schimitt (SCHMITT F, 2007) compared the correspon-

dence between the Reynolds stress tensor and the symmetric part of the viscous gradient

tensor using representative cases of DNS, LES and experimental datasets and demons-

trated weak correlations between the BoussinesqŠs hypothesis and the above-mentioned

baseline dataset for the most part of the simulation domains.

Jones and Launder proposed a two-equations system for low Reynolds num-

bers, so-called k − ǫ models, in which the eddy viscosity is modelled as a function of two

auxiliary variables, the turbulent kinetic energy (k) and the energy dissipation rate (ǫ)

(JONES; LAUNDER, 1972).

The original k − ǫ was applied in a large variety of Ćow situations and impro-

ved in subsequent works. Meanwhile, the technique presented a number of shortcomings

from the aerodynamic and numeric viewpoints, such as the lack of sensitivity to adverse

pressure gradients and the intrinsic numerical stiffness when treating the viscous sub-layer

(MENTER, 1994).

Wilcox proposed a two-equations model, referred as k − ω. Wilcox assumed

the eddy viscosity as an algebraic function of two extra variables and introduced a new

partial differential equation for each one of them together with some calibration constants

and functions (WILCOX, 1988).

Menter modiĄed the original k − ω eddy viscosity evaluation function by em-

bodying a limiter in order to reduce the turbulent shear-stress overprediciton and avoid

the instantaneous response of the Ćow shear-stress to the shear-strain rate observed in the

original model. The improved model was called Shear Stress Transport (SST) (MENTER,

1994).

Spalart and Allmaras proposed an one-equation method for indirectly mo-

delling the eddy viscosity by means of an auxiliary viscosity variable. The Spalart and

AllmarasŠs model (SA) makes use a set of parameters in order to calibrate the method

for aerodynamical purposes (SPALART; ALLMARAS, 1992)

Spalart and Allmaras subsequently modiĄed the original SA model in order

to enhance stability and robustness in dealing with adverse aerodynamical cases. One of

these modiĄcations was to introduce a limiting scheme for preventing negative values of

the modiĄed viscosity (S̃) in the near-wall region (ALLMARAS et al., 2012a).
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2.4 Advances in DG-FEM

DG-FEM was introduced by Reed and Hill (REED; HILL, 1973) to appro-

ximate the linear neutron transport equation using regular triangular meshes. In this

approach the Ćux terms are directly interpolated over the element interfaces using one-

dimensional Lagrange polynomials with no direct continuity imposition to the Ąeld va-

riables. This work started a new research thread for the development of new DG-FEM

techniques reaching a broad set of applications.

Cockburn et al. (COCKBURN; SHU, 1991) (COCKBURN et al., 1989)

produced the most prominent advances for adapting the DG techniques to non-linear

problems by constructing a framework to solve non-linear time-dependent systems of

equations using fundamental concepts from high order FEM and FV such as high order

polynomial interpolation within elements and exact or approximated RiemannŠs solvers to

evaluate the numerical Ćuxes at the element boundaries. The approach presented in these

works, called RKDG, employs explicit Total Variation Diminishing (TVD) Runge-Kutta

in order to perform the time discretization (LANDMANN, 2008).

Bassi and Rebay (BASSI; REBAY, 1997) (BASSI; REBAY, 2000) lead off

a new branch of techniques to treat elliptic operators, based on a mixed formulation

(OLIVER, 2008), in which the second-order system of equations is converted to a Ąrst-

order one and discretized via DG method. Bassi and Rebay constructed two versions of

their mixed formulation, known as BR1 and BR2. BR1 scheme performs contour integrals

along all the element interfaces whereas BR2 performs the same integration using just

the shared edge of two neighbour elements. Such feature of BR2 implies in a shorter

communicating stencil.

Cockburn and Shu (COCKBURN; SHU, 1998) proposed the local discontinu-

ous Galerkin (LDG) schemes as an extension and generalization of the original RKDG

method to convection-diffusion systems. The LDG methodology presented in this work

was devised to approach non-linear, time dependent convection-diffusion systems main-

taining the high parallelism capability, high order accuracy and easy handling of complex

geometries. LDG basically transforms the second-order system to a Ąrst-order one by

introducing auxiliary equations to approximate gradients. After that, the DG spatial dis-

cretization is performed by replacing the non-linear Ćux terms on the element boundaries

by numerical Ćuxes, that mimics the upwinding scheme which is done always in opposite

directions for the main and auxiliary variables (HESTHAVEN; WARBURTON, 2008, pp.

252).

Peraire et al. (PERAIRE; PERSSON, 2007) developed an alternative ap-

proach for solving elliptic problems by proposing the compact discontinuous Galerkin

(CDG) technique, very similar to the Cockburn and ShuŠs LDG approach. In this case
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the second-order equation is converted to a Ąrst-order system, but the new additional

auxiliary variables are substituted back in the original equation in a primal form scheme.

When dealing with multiple dimensions the CDG method is able to ensure more com-

pactness by eliminating connections between distant elements.

Warburton and Hesthaven (HESTHAVEN; WARBURTON, 2008) synthesized

the essence of the DG-FEM theory in their book in order to provide a complete conceptual

introduction and implementation guidelines, covering from fundamental ideas to complex

modelling problems. Despite of focusing on nodal interpolation methods, the book presents

a considerable degree of generality, and can be used as a guide for different approaches.

2.5 DG-FEM for Navier-Stokes and RANS equations

Birken (BIRKEN et al., 2012), studied the time-integration problem in 2D

simulation of Navier-Stokes equations using modal DG-FEM discretization. In the Bir-

kenŠs work the authors measured the stiffness of the Navier-Stokes system of equations

(for a Ćow with Reynolds number Re = 100) by evaluating the eigenvalues regarding the

linearized form of the right-hand side operator for a 4th-order interpolation . The large

spectrum of the real parts indicates the difficulty in ensuring the stability during the

time-integration process. In this case, the explicit integration showed a severe limitation

concerning to the time step choice. The implicit approaches have proved to be the most

suitable way for performing the Navier-Stokes and RANS steady-state cases, because they

can be contructed to have unbounded stability regions (BIRKEN et al., 2012).

Bassi et al. (BASSI et al., 2004) applied modal DG-FEM and a second-order

implicit Runge-Kutta time-integrator approach for solving a 2D incompressible RANS

system using the closure model k − ω. The formulation is tested simulating steady-state

Ćow over a zero pressure gradient Ćat plate with M = 0.2 and Re = 11.1 × 106, using a

polynomial interpolation order up to p = 2 using a grid with 110×80 elements, 96 elements

in the horizontal direction lying on the plate. The tests are validated by comparing the

solution to the reference law of wall available on the literature, highlighting the inĆuence of

the near-wall grid resolution and the polynomial order in capturing the viscous sub-layer

turbulent behaviour.

Nguyen et al. (NGUYEN et al., 2007) used a modal DG-FEM approach for a

modiĄed version of the 2D incompressible RANS-SA equations in which it is introduced

an artiĄcial viscosity stabilization scheme aimed at enabling high order approximations

even for coarse grids. The validation tests are performed for zero pressure gradient Ćat

plate, NACA0012 airfoil and Ćow over a cylinder. The Ćat plate tests use different grid

resolutions, the coarsest one being a triangularly split 10 × 16 mesh with p=1 and the

Ąnest one a triangularly split 145 × 241 mesh with p = 4. The values of the skin friction
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coefficient obtained from the numerical results are compared with experimental data and

the velocity proĄles are compared with both experimental and law of wall reference va-

lues. The results of coarsest grid presents a good agreement with the experimental and

theoretical benchmarks when using higher order (p = 4, 37 × 61 equivalent resolution).

Landmann (LANDMANN, 2008) implemented a modal DG-FEM approach in

order to study the Navier-Stokes equations for the inviscid, laminar and RANS-turbulent

cases. Employing the RANS models SA and k − ω the study achieved the interpolation

order p = 3 on the turbulent Ćat plate and airfoil-A cases. For the SA Ćat plate tests it

was used a triangularly split 44 × 13 H-grid with 24 elements along the plate (considered

coarse (LANDMANN, 2008, pp. 108))and for the k − ω tests a 88 × 38 grid with 48

elements along the plate, the test conditions are M = 0.3 and Re = 3×106. The Ćat plate

results revealed a good agreement with the theoretical skin friction proĄles (Blasius and

turbulent theory (LANDMANN, 2008, pp. 108)). The A-airfoil tests are performed using

the SA model and employ a C-grid with 64 × 16 quadrilateral elements. The p-reĄnement

showed a good agreement with the expected experimental results for the pressure and skin

coefficients (LANDMANN, 2008, pp. 115). Landmann observed that the closure models

can violate the positivity of the turbulent variables on part of the domain, leading to non-

physical and potentially unstable solutions. In order to avoid this, the author proposed

the usage of post-processing limiting techniques (LANDMANN, 2008, pp. 44) .

Oliver (OLIVER, 2008) purposed DG-FEM approach allied to a mesh adaptive

algorithm to solve RANS problems closed by the SA model and analyses the dual con-

sistence of the discretization. The work veriĄes that the mixed formulations are generally

asymptotically dual consistent, nevertheless, the fashion of weighting gradient-dependent

source terms by trial functions and integrating is revealed as dual inconsistent. The va-

lidation of the adaptive scheme is performed by using the zero pressure gradient with

M = 0.25 and Re = 1.0 × 107, the initial mesh has 234 elements and the Ąrst layer of

elements has a too large spacing for accurate boundary layer evaluations. According to

the work, by using this mesh the numerical implementation was not able of obtaining

p ≥ 1 convergence for steady-state problems, notwithstanding the unsteady adaptation

algorithm was successful even using a considerable coarse tessellation. Initializing the

problem with homogeneous Ąelds, using p = 3 and dual consistent discretization, the uns-

teady adaptations algorithm eventually converges to a steady-state solution that meets

the established error criteria of 0.2 drag counts.
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3 PHYSICAL MODELLING

Let us to consider Newtonian Ćuid in motion within a two-dimensional control

volume, in which there can be interchanging of mass and energy in the control surfaces.

The Ćuid is single-phase and does not undergo chemical reactions. The scale at which the

studied phenomena occurs and the order of magnitude of the the numerical discretization

are sufficiently large to assume the continuum hypothesis. Based on the aforementioned

assumptions and making use of the fundamental conservation laws, it is possible to deter-

mine the governing equations of a general compressible viscous Ćow for Newtonian Ćuids,

the Navier-Stokes equations, as can be seen next.

3.1 The Navier-Stokes Equations

The homogeneous Navier-Stokes Equations (NSE) in their vector form are

given3 by:

∂v
∂ t

+ ∇ · Fc(v) = ∇ · Fv(v,∇ v), (3.1)

v = v(x), x ∈ R
2.

Each vector term of the previous equations system is given by:

v =




ρ

ρU

ρE


 , (3.2)

Fc =




(ρU)T

(ρU)UT + pI

(ρE + p)UT


 , (3.3)

Fv =




0T

τ T

UT τ + q


 , (3.4)

τij = µ

(
∂ui

∂ xj

+
∂uj

∂ xi

−
2
3
∂uk

∂ xk

δij

)
, (3.5)

E =
1
2

UT U + U, (3.6)
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q = −λ
∂E

∂ x
, (3.7)

x ∈ R
2. (3.8)

Where ρ is the Ćuid density, U is the velocity Ąeld, E is the energy per mass unit, U is

the internal energy per mass unit, p is the pressure, q is the heat Ćux on the domain and

τ is the viscous stress tensor for the Newtonian Ćuids. The thermal conductivity (k) is

given by

k =
γ µ

Pr
, (3.9)

Where µ is the dynamical viscosity, γ is the gas compressibility and Pr is the Prandtl

number.

The NSE system given above is a general form that can describe any Ćow in

which the Ćuid can be modelled as an ideal gas or a mixture of such gases and its behavior

can be properly modelled using the tensor seen in 3.5. By disregarding the Ćuid viscosity,

the equations above take a purely hyperbolic form, known as inviscid transport equations

or Euler equations,

∂v
∂ t

+ ∇ · Fc(v) = 0, (3.10)

The Euler equations, despite being a non-realistic case, present interesting features from

the numerical viewpoint, given that the absence of viscous dissipation can enable the

emergence of discontinuities during the problem evolution, characteristic which has a

noticeable importance for testing the numerical solvers capability in dealing with severe

gradients. Notwithstanding this work does not cover the cases presenting sharp gradients,

the inviscid transport equations still provide a fundamental testing case for evaluating

the robustness of the numerical implementation in coping with the solution of non-linear

problems at high order of Ąeld interpolation and geometry.

The NSE are based on the continuum mechanics hypothesis, therefore it does

not make sense to consider the Ćow as composed by individual freely-moving molecules,

but as a deformable continuous domain, and the characteristic variables as continuous

maps for any point inside such region. For sufficiently low velocities, a two-dimensional

viscous Ćow is similar to a sequence of narrow Ćuid strips slipping one each other in

regular and smooth proĄles. Due to such visual aspects, this condition is named laminar

(see 2.1.5 for further explanations). In Ćows over rigid walls, the transition region between

the moving Ćuid and the stationary Ćow in contact with the wall is denominated laminar

boundary layer (see the section 2.1.4). Nonetheless, as the available kinetic energy on the

Ćow is increased, the laminar stability is disrupted and a new state is conĄgured, the

turbulent condition.
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3.2 The Physics of the Turbulence: A Basic Introduction

The turbulence phenomenon is characterized by the emergence of speciĄc struc-

tures in the viscous Ćow, denominated eddies. An eddy is basically a rotational structure,

similar to a swirl. The eddies are usually classiĄed according to the order of magnitude

of their action radius. However, even within the action region of an eddy, there can exist

other smaller scale eddies, given that these formations can present a wide spectrum of cha-

racteristic length, ranging from visible vortex formations to whirls in the molecular scale,

compounding a complex Ćow. Due to that, the turbulence is commonly denominated a

multi-scale phenomenon.

Such swirling structures arise from the struggle between the transport and the

Ćuid viscosity on the boundary layer. When there is high kinetic energy availability, this

strong interaction is unstabilized, triggering a process where kinetic energy is taken from

the mean Ćow and sequentially transferred in the eddy scales. The most traditional model

for understanding this process is the KolmogorovŠs theory for turbulence (MCDONOUGH

J., 2007), whose basic assumption is known as energy cascade. According to the cascade

hypothesis, for high Reynolds numbers the dominant direction of the energy transfer

occurs from the largest to the smallest scales (also named molecular scales), the large

eddies are responsible for injecting energy in the system and the smallest for dissipating

it (JOSSERAND et al., 2017), generating heat and vibration. Kolmogorov hypothesized

the intermediary scales transfer energy without dissipation and denominated them inertial

scales.

Following this theoretical framework, the eddies scales can be subdivided into

four fundamental categories (MCDONOUGH J., 2007). The large scale, whose size has

the same order of magnitude as the Ćow domain, here represented as L. The integral scale,

whose size is a Ąrst order fraction of the large scale. The Taylor microscale, which corres-

ponds to intermediary inertial scales of the KolmogorovŠs assumption. The Kolmogorov

scale, the smallest turbulence scales, in which the dissipation effectively occurs according

to the KolmogorovŠs theory.

Making use of the dimensional analysis, it is possible determine an estimative

for the turbulence lengths scale ratio as (MCDONOUGH J., 2007)

η

ℓ
∼ Re3/4, (3.11)

Where η represents the length of the Kolmogorov scale and ℓ of the integral

length scale.

The KolmogorovŠs theory reveals another important feature of the turbulence

phenomenon, there is not a hierarchy among the scales with regard to their relevancy for
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the model, since all of them have a role in the phenomenon description, therefore, it is not

not physically consistent simply to disregard some of them in an approximated approach.

As the size difference between the largest and the smallest scales can be very signiĄcant,

in a traditional numerical scheme, for embracing all of the scales, the discretization of a

Ćow domain must be sufficiently reĄned in order to capture the smallest eddies, whose

size can be microscopic.

From the numerical standpoint, let us to consider approaching the turbulence

modelling via Direct Numerical Simulation (DNS) 2.2 in which the Navier-Stokes equa-

tions are discretized in their natural form. Considering a three-dimensional case and as-

suming that the integral scale is one order behind the domain scale, the volume of the

mesh cell necessary for capturing the smallest scale is comparable to L3Re−
9

4 . In addi-

tion, given that the smallest scales also have the more elevated frequencies, a reĄned time

discretization is likewise necessary.

As the Reynolds number increases, to comprise all the turbulence spectrum

becomes technically impractical for a grid reĄnement taking into account the computa-

tional infrastructure currently available. That way, the DNS approach is suitable only

for certain cases in which the Reynolds number is sufficiently low for allowing practical

time-spatial discretizations.

On the other hand, the Reynolds-Averaged Navier-Stokes (RANS) methods

2.2, although perform a less detailed description of the phenomenon, are able to ensure a

good predictability for the general physical behavior and require less computational effort

if compared to the DNS approach. Currently, RANS is the standard choice for the most

part of the industrial simulation purposes and still has a great space in the academic

research.

3.3 The Reynolds-Averaged Navier-Stokes (RANS)

As aforementioned, the Navier-Stokes equations in their natural form are not

suitable for the numerical purposes due to the wide difference between the smallest and the

largest eddies scales, that will imply large grid size reĄnement and small simulation time-

steps (LANDMANN, 2008). In order to circumvent these limitations, it was purposed the

RANS approach, where the Navier-Stokes equations undergo a time-averaging process in

order to condense the information of the different time scales into a mean behavior. Such

approach allows to better deal with the wide spectrum of the turbulence scales enabling

more realistic mesh and time steps.

The Ąeld variables vector can be decomposed into a turbulent (∼) and a lami-
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nar (∧) components according to the Favre decomposition as (LANDMANN, 2008)

v = v̂ + ṽ, (3.12)

v̂ =
ρv
ρ
. (3.13)

Where the the notation denotes the Reynolds decomposition.

The Navier-Stokes equations can be written according to the FavreŠs decom-

position as

∂

∂ t
(v̂ + ṽ) + ∇ · Fc(v̂ + ṽ) = ∇ · Fv(v̂ + ṽ,∇(v̂ + ṽ)). (3.14)

Time-averaging both the sides.

1
T

∫ t+T

t

∂

∂ t
(v̂ + ṽ)+∇ · Fc(v̂ + ṽ) d t

=
1
T

∫ t+T

t
∇ · Fv[v̂ + ṽ,∇(v̂ + ṽ)] d t.

After simpliĄcations we can write (LANDMANN, 2008, p. 15)

∂v̂
∂ t

+ ∇ · Fc(v̂) = ∇ · Fv(v̂,∇v̂) + ∇ · F t(ṽ). (3.15)

Where

F t =




0

〈ρŨ ŨT 〉

k 〈ρ T Ũ〉


 . (3.16)

The term 〈ρŨ ŨT 〉 is commonly referred as the Reynolds stress tensor and k 〈ρ T Ũ〉 as

the turbulent heat transfer.

3.3.1 The Boussinesq’s Hypothesis

The Ćuctuations of the variables are unknown at principle. The way to deter-

mine them is to assume the BoussinesqŠs hypothesis (LANDMANN, 2008, p. 15), which

states that the Reynolds stress tensor is linearly related to the mean viscous tensor as

〈ρŨ ŨT 〉 =

(
µe

µ

)
τ (Ũ,∇ Ũ) −

2
3
ρK, (3.17)

In which K is denominated turbulent kinetic energy

K =
1
2

〈Ũ ŨT 〉 · I. (3.18)
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Thus, the viscous turbulent Ćux can be rewritten as

F t =




0(
µe

µ

)
τ (Û,∇ Û) + 2

3 ρK

UT
(

µe

µ

)
τ − ke ∇Û


 . (3.19)

µe is the eddy viscosity and ke is the turbulent thermal conductivity coefficient, that can

be related to the eddy viscosity according to the expression

ke =
γµe

Pre

, (3.20)

Where γ is the Ćuid compressibility, Pre is the turbulent Prandtl number, that

can be assumed as constant (LANDMANN, 2008).

Based on the RANS general model is possible to derive a set of turbulence

models for modelling the undetermined coefficients from the BoussinesqŠs hypothesis.

The RANS complementary models are usually referred as closure models.

The undetermined parameters, µe and K are estimated by introducing auxili-

ary equations in the RANS system. The general RANS structure take the form

∂v
∂ t

+ ∇ · Fc(v) = ∇ · Fv(v,∇v) + ∇ · F t(v,∇v) + St(v,∇v). (3.21)

The superscripts ̂ of the mean values will be omitted in the upcoming sections for a sake

of simplicity, thus, all the variables with the notation v are already considered in their

mean components. Each vector term seen in the equation 3.21 is now described. v is the

Ąeld variables vector and is given by

v =




ρ

ρU

ρE

. . .

vt




, (3.22)

Fc is the convective Ćuxes vector and it is as follows

Fc =




ρU

ρU UT + p I

(ρE + p)U

. . .

Fct




, (3.23)
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Fv is the viscous Ćux vector and can be seen below

Fv =




0T

τ T

UT τ + q

. . .

0




, (3.24)

Finally, the turbulent Ćuxes vector

F t =




0(
µe

µ

)
τ + 2

3 ρK

UT
(

µe

µ

)
τ − ke ∇Û

. . .

F t t




(3.25)

and the turbulent source vector

St =




0

0

0

. . .

St t




. (3.26)

In the expressions above vt, Fct, F t t and St t represents the turbulence auxiliary variables,

their convective Ćuxes, turbulent Ćuxes and source terms respectively.

3.4 The Spalart-Allmaras Model

The Spalart-Allmaras (SA) approach focuses in modelling the eddy viscosity

µe by introducing an extra Ąeld variable to be determined. Therefore,

µe = ρ ν̃ fν 1, (3.27)

where fν 1 is a parameter determined by the method. The variable ν̃ will be referenced

here as the eddy kinematic viscosity and modelled as follows (LANDMANN, 2008):

∂

∂ t
(ρ ν̃) + ∇ · (ρ ν̃U) = (3.28)

1
σ

{∇ · [(µ+ ρ ν̃)∇ ν̃] + ρ cb2 ∇ ν̃ · ∇ ν̃}

+ cb 1(1 − ft 2)ρ S̃ ν̃

−
(
cw 1 fw −

cb 1

κ2
ft 2

) 1
ρ

(
ρ ν̃

D

)2

+ ρ ft 1 ΔU2.
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The SA model is fundamentally an empirical approach, constructed with relations based

on Galilean invariance, dimensional analysis and calibration using experimental and direct

numerical simulation data (SPALART; ALLMARAS, 1992). The turbulent kinetic energy

modelling is not covered for the classical SA approach. The effect of the previous limitation

is compensated with the inclusion of a set of parameters experimentally calibrated. Each

parameter of the extra equation is described below.

For the sake of compactness, some terms in this equation will be rewritten.

Each source term can be described by its role in the behavior of the eddy viscosity and

the turbulence phenomenon. Therefore

P = cb 1(1 − ft 2)ρ S̃ ν̃, (3.29)

D =
(
cw 1 fw −

cb 1

κ2
ft 2

) 1
ρ

(
ρ ν̃

D

)2

, (3.30)

T = ρ ft 1 ΔU2. (3.31)

Substituting 3.29, 3.30 and 3.31 in 3.28

∂

∂ t
(ρ ν̃) + ∇ · (ρ ν̃U) = (3.32)

1
σ

{∇ · [(µ+ ρ ν̃)∇ ν̃] + ρ cb2 ∇ ν̃ · ∇ ν̃}

+ P − D + T ,

where P is the production term, D is the destruction term and T is the trip term. The

parameters cw 1, cb 1, cb 2 and κ and the functions ft 2, ft 2, fw and fν 1 are calculated or

set by means of the SA methodology correlations (ALLMARAS et al., 2012b). D is a

geometric measure and represents the distance to the nearest wall.

The term S̃ seen in the equation 3.28 is the given by:

S̃ = ||Ω|| +
ν̃

κD2
fν 2, (3.33)

where Ω is the vorticity

Ω = ∇ × U. (3.34)

The SA model also employs some auxiliary functions:

fw = g

(
1 + cw 3

6

g + cw 3
6

) 1

6

, (3.35)
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g = r + cw 2 (r6 − r), (3.36)

r = min
(

ν̃

S̃ κ2 D2
, 10

)
, (3.37)

fν 1 =
χ3

χ3 + cν 1
3
, (3.38)

fν 2 = 1 −
χ

1 + χ cν 1
, (3.39)

χ =
ν̃ ρ

µ
, (3.40)

ft 1 = ct 1 gt exp

[
−ct 1

Ωt
2

ΔU2 (D2 + gt
2 Dt

2)

]
, (3.41)

gt = min

(
0.1,

ΔU2

|Ωt| Δxt

)
, (3.42)

ft 2 = ct 3 exp
(
ct 4 χ

2
)
. (3.43)

where Ωt regards to the vorticity of the nearest trip point and Dt the distance to this

point. Besides the auxiliary functions, also there is a set of Ąxed parameters:

cb 1 = 0.1355, cb 2 = 0.622, (3.44)

σ =
2
3
, κ = 0.41, (3.45)

cw 1 =
cb 1

κ2
+

1 + cb 2

σ
, cw 2 = 0.3 cw 3 = 2.0, (3.46)

cv 1 = 7.1, ct 1 = 1.0, ct 2 = 2.0, ct 3 = 1.2, ct 4 = 0.5. (3.47)

The functions ft 2, ft 2, fw, fν 1 and fν 2 have the role of adjusting the model during the

transition to the turbulent regime.
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The functions ft 1 and ft 2 can be set to zero as performed in (NGUYEN et al.,

2007) and (OLIVER, 2008), in considering the Ćow as fully turbulent. Thus, equations

3.29 and 3.30 can be rewritten as follows:

P = cb 1ρ S̃ ν̃, (3.48)

D = cw 1 fw
1
ρ

(
ρ ν̃

D

)2

, (3.49)

The trip term vanishes and gt is no longer necessary.

The PDE system formed by the RANS equations in addition to the eddy

viscosity correlation is given by

∂v
∂ t

+ ∇ · Fc(v) = ∇ · Fv(v,∇v) + ∇ · F t(v,∇v) + St(v,∇v), (3.50)

v =




ρ

ρU

ρE

ρν̃



, (3.51)

Fc =




ρU

ρU UT + p I

(ρE + p)U

ρ ν̃ U



, (3.52)

Fv =




0T

τ T

UT τ + q

0



, (3.53)

F t =




0(
µe

µ

)
τ

UT
(

µe

µ

)
τ − ke ∇U

1
σ
(µ+ ρ ν̃)∇ ν̃



, (3.54)

St =




0

0

0
ρ cb2

σ
∇ ν̃ · ∇ ν̃ + P − D



. (3.55)
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3.5 Dimensionless RANS Equations

The different orders of magnitude of the RANS Ąeld variables can difficult

the attainment of a proper convergence. In order to avoid such issue, we introduce the

dimensionless form of the RANS equations, which is, a rescaling process that searches to

approximate the orders of magnitude. In order to accomplish it, let us to consider the

method for rescaling the independent and primitive variables such as

t̄ =
Uref t

Lref

, x̄ =
x

Lref

, ȳ =
y

Lref

, D =
D

Lref

, µ̄ =
µ̄

µref

, (3.56)

ρ̄ =
ρ

ρref

ū =
u

Uref

, v̄ =
v

Uref

, ¯̃ν =
ν̃

ν̃ref

, p̄ =
p

ρrefUref
2 ,

and the deĄnition of the Reynolds number in

Re =
ρrefUrefLref

µref

, (3.57)

which are the basis for rewriting the RANS PDE system.

The reference values (with subscripts ref ) are chosen accordingly the speciĄc

problem. Making use of the assumptions 3.56 and 3.57 we can rewrite each term of the

RANS equations, as

v̄ =




ρ̄

ρ̄U

ρ̄ E

ρ̄¯̃ν



, (3.58)

Fc =




ρ̄U

ρ̄U UT + p̄ I

(ρ̄E + p̄)U

ρ̄ ¯̃ν U



, (3.59)

Fv =
1
Re




0T

τ T

UT
τ + q

0



, (3.60)

F t =
1
Re




0(
µe

µ

)
τ T

UT
(

µe

µ

)
τ − ke ∇U

1
σ
(µ+ ρ ν̃)∇ ν̃,




(3.61)
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St =




0

0

0
ρ cb2

σ
∇ ν̃ · ∇ ν̃ + P − D



. (3.62)

The production and destruction terms of the eddy viscosity PDE are impacted

by the rescaling, in the following way (LANDMANN, 2008).

P = cb 1ρ S̃ ν̃, (3.63)

D =
1
Re

cw 1 fw
1
ρ

(
ρ ν̃

D

)2

. (3.64)

The dimensionless versions of the modiĄed vorticity and the adjusting para-

meter r are given, respectively, by (LANDMANN, 2008).

S̃ = ||Ω|| +
1
Re

ν̃

κD
2 fν 2, (3.65)

r = min

(
ν̃

ReS̃ κ2 D
2 , 10

)
. (3.66)

For the sake of simplicity, we will omit the superscripts when writing the

variables and consider them in their dimensionless form.

3.6 The general structure of the RANS equations

The structure of the general Reynolds-Averaged Navier-Stokes equations are

given by:

I︷ ︸︸ ︷
∂v
∂ t

+ ∇ · Fc(v) =

II︷ ︸︸ ︷
∇ · Fv(v,∇v) +

III︷ ︸︸ ︷
∇ · F t(v,∇v) + St(v,∇v) (3.67)

I - Euler terms.

II - Laminar Navier-Stokes term.

III - Turbulence terms.
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4 NUMERICAL ANALYSIS

4.1 An Overview

In the classical Finite Element Method (FEM) the original boundary value

problem is converted to a integral formulation, termed weak form, in which the problem

variables are approximated by expansions over a function space, usually polynomial. In

addition, the deĄnition domain of the boundary value problem is discretized onto subdo-

mains and the integral formulation is imposed in each of them individually. In principle,

there is no limitation regarding the rank of the basis function space, and the FEM is com-

monly referred as a high-order method. In order to ensure the consistency of the solution,

the FEM enforces the continuity of the BVP solution among elements directly equaling

the solution in the neighbors elemental boundaries. This technique, though seemingly

simple, presents difficulties from the computational standpoint, mainly concerning to the

computational parallelism. In addition, the continuity enforcement implies limitations for

the physical modelling, given its natural pitfall in dealing with discontinuities, such as the

shock phenomenon.

By contrast, the Finite Volume Method (FVM) is typically a low order appro-

ach, in which zero order interpolations are performed in each computational cell and the

solution is communicated each time step by using the numerical Ćuxes, a set of operations

executed in the element boundaries in order to ensure the consistency of the domain discre-

tization. Some variants of the classical FVM enable higher order approximation error, such

as the ENO and WENO approaches. However, these schemes are based on reconstruction

techniques rather than elementwise interpolation. The naturally non-coupled structure of

the classical FVM is interesting from the parallelism viewpoint and Ćexible enough for

capturing the continuous and the discontinuous proĄles on the elemental interfaces.

The Discontinuous Galerkin Finite Elements Method (DG-FEM) is a FEM

variation in which the elements are naturally uncoupled concerning to the solution appro-

ximation. The communication between two neighbors is performed by a numerical Ćux

rather than the classical FEM direct continuity imposition, being able to detect both the

discontinuous and the continuous solutions. In the numerical analysis scenario, DG-FEM

arises as a hybrid approach, binding the high order interpolation and domain description

typical of the classical FEM approaches, with the Ćexibility in performing elementwise

operations and information interchanging of the FVM.

Meanwhile, the increasing use of the DG-FEM for studying a wide range of

problems has revealed its limitations with respect to the compatibility between the high

order and discontinuities, leading to the developing of schemes for controlling numerical
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oscillations, that have acquired important results in the recent years. Despite of such

troubles, the DG capability in describing the features of complex phenomena allied to its

computational Ćexibility justify choosing it as numerical tool for this work.

4.2 Boundary Value Problem

Let Ω be a continuous domain and ∂Ω its closed boundary. Now, consider the

boundary value problem deĄned over Ω

∂v
∂ t

= −∇ · Fc(v) + ∇ · Fv(v,∇v) + ∇ · F t(v,∇v) + St(v,∇v), (4.1)

v = v(x, t), x ∈ Ω, t ∈ [0,∞), (4.2)

B(v) = g, x ∈ ∂Ω, (4.3)

where B represents a set of operations for imposing known conditions on the boundary.

Note that the system of equations here considered is the RANS PDE system, presented

in 3.6. We consider that it is sufficiently general for conveying the main characteristics of

the DG discretization process.

In order to simplify the notation, let the right-hand side of 4.1 be represented

as a residual operator such as following:

∂v
∂ t

= R(v,∇v). (4.4)

4.3 Domain Discretization

Consider a consistent tessellation of Ω into a set of Ne non-overlapping sub-

domains. Thus, let T (Ω) be a partition of the domain Ω, such as:

T :
Ne⋃

k=1

Ωk = Ω,
Ne⋂

k=1

Ωk = ∅, (4.5)

Ωh = T (Ω). (4.6)

The sub-domains Ωk are named elements. For practical purposes, we limit

the possible geometry of the elements by considering only simple meshes, triangular or

quadrilateral on R
2. In this way, the boundary ∂Ωk of each element is composed by a

determined number Nf of edges:

∂Ωk =
Nk

f⋃

f=1

∂Ωk
f (4.7)

Despite of referring to two or three-dimensional space, we usually refer to the boundaries

components ∂Ωk
f as faces and the elemental domains Ωk as volumes.
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Beyond the spatial discretization, let us consider the approximation solution

as direct a sum of elementwise solutions (HESTHAVEN; WARBURTON, 2008, p. 36):

vh(Ω) =
Ne⊕

k=1
vk

h(Ωk) (4.8)

The solutions vk
h can be continuous or discontinuous at the element interfaces

according to the problem requirements.

4.4 The DG-FEM weak form

Consider the PDE system given in 4.4 for each element Ωk ⊂ Ω from the

partition 4.5 and an approximated numerical solution vk
h for the vector variable v inside

the element. The approximation gives rise to an error term E :

∂vk
h

∂ t
= R(vk

h,∇vk
h) + E(vk

h,∇vk
h), (4.9)

vk
h = vk

h(x, t), x ∈ Ωk ⊂ Ω, t ∈ [0,∞), (4.10)

B(vk
h) = g, x ∈ ∂Ωk | ∂Ωk ⊂ ∂Ω. (4.11)

The presence of residual is an unavoidable aspect of any numerical solution,

however, making use of an suitable formulation it is possible to obtain an approximation

conditioned to enable the minimal error among the possible solutions.

In order to construct such formulation, we need make use of some fundamental

hypothesis. We take the assumption that the approximated solution vk
h inside Ωk can be

represented as an expansion over a function space Φk of dimension Nk

vk
h =

N∑

i=1

v̂k
i φ

k
i | v̂k

i ∈ R, i = 1, 2, 3, ..., Nk (4.12)

Φ : φk ∈ Φk, φk = φk(x),x ∈ Ωk. (4.13)

Notice that we assume the possibility of using expansion spaces with different

dimensions for each element k, or different maximum ranks in case of polynomial expansi-

ons. As second assumption, let Φk be a real function space endowed with an inner product

and a p-norm. The space of the real functions over a domain Ω have its inner product

deĄned as following:

〈u, v〉Ω =
∫

Ω
u v dx | (u, v) ∈ Φ. (4.14)

A p-norm for a real function deĄned over a continuous domain Ω is deĄned as

||u||p =
(∫

Ω
up dx

) 1

p

∈ ]0,∞] |u ∈ Φ, p ∈ N. (4.15)
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The norm determines if a space is measurable and establishes a metric to

indicate it. The set of functions which meet the condition 4.15 is represented as Lp.

Considering the aforementioned inner product deĄnition, we just need a second order

normed space for ensuring the integrability of 4.14. Hence, Φ ⊂ L2.

By deĄnition, the set L2 is the set of all real function second order normed

spaces, or second order Lebesgue measurable, over a continuous domain Ω, endowed with

a inner product as stated in 4.14. The elements of Φ are usually referred as expansion

basis, and we will name Φ basis space.

Let Ψk be a non-zero real function space deĄned over Ωk such as

Ψk : ψk ∈ Ψk, ψk = ψ(x), ψ 6= 0,x ∈ Ωk (4.16)

Considering Ψk ⊂ L2, it has the same functional properties of Φk. Ψk will be here named

trial space for the element Ωk.

Now, we will rewrite the BVP expression by multiplying the PDE system by

ψk ∈ Ψk and integrating over the domain Ωk

∫

Ωk
ψk ∂vk

h

∂ t
dx =

∫

Ωk
ψkR(vk

h,∇vk
h) dx +

∫

Ωk
ψkE(vk

h,∇vk
h) dx (4.17)

This expression is denominated variational formulation (KARNIADAKIS;

SHERWIN, 2004) of the BVP 4.1.

Through the orthogonality enforcement between the error and the trial space

Ψk, the integral error term 4.17 will vanish. Therefore,

∫

Ωk
ψk ∂vk

h

∂ t
dx =

∫

Ωk
ψkR(vk

h,∇vk
h) dx. (4.18)

In order to enable the orthogonality condition we must guarantee that the

chosen trial and basis spaces have the same dimension dim(Φk) = dim(Ψk) = Nk when

expanding the variables. Then

∫

Ωk
ψk

j

Nk∑

i=1

∂v̂k
i

∂ t
φk

i dx =
∫

Ωk
ψk

j R(vk
h,∇vk

h) dx 0 ≤ j < Nk, (4.19)

and
Nk∑

i=1

∫

Ωk

∂v̂k
i

∂ t
ψk

j φ
k
i dx =

∫

Ωk
ψk

j R(vk
h,∇vk

h) dx 0 ≤ j < Nk. (4.20)

Equation 4.18 is named weak form of the variational formulation (KARNI-

ADAKIS; SHERWIN, 2004). We will not make assumptions about R(vk
h,∇vk

h) at the

moment because it concentrates all the non-linearity of the problem and requires a more

detailed explanation, as it will be shown later. As we can see in 4.20, for ensuring the
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integrability of each term in the weak form expression is necessary that the basis and trial

spaces can be measured with a L2 norm.

For properly constructing our FEM-based formulation, we need make choices

for the trial (Ψk) and the basis (Φk) spaces. Here we adopt the Galerkin approach, which

deĄnes such spaces as equals. Therefore

Ψk = Φk. (4.21)

Replacing the trial space in accordance with the Galerkin approach, we have

Nk∑

i=1

∫

Ωk

∂v̂k
i

∂ t
φk

j φ
k
i dx =

∫

Ωk
φk

j R(vk
h,∇vk

h) dx 0 ≤ j < Nk. (4.22)

The left side can be rewritten in the form of a matrix operation. Let us deĄne

the elemental mass matrix Mk of the Galerkin formulation as:

Mk : Mk
ij =

∫

Ωk
φk

j φ
k
i dx, 0 ≤ i, j < Nk. (4.23)

Notice that when Φk is an orthogonal basis, Mk will be a diagonal matrix.

The weak form can be written such as following:

Mk ∂v̂k

∂ t
=
∫

Ωk
φk

j R(vk
h,∇vk

h) dx, 0 ≤ j < Nk. (4.24)

In which v̂k represents the vector of expansion coefficients for the Ąeld variables

vk
h at each element Ωk.

4.5 DG Weak Form of the original BVP

We obtain the DG scheme applied to the RANS PDE system by replacing the

operators notation with the original terms seen in the BVP deĄnition 4.1. The elemental

weak form for the RANS equations is given by

Mk ∂v̂k

∂ t
= −

∫

Ωk
φ k

j ∇ · Fk
c

dx +
∫

Ωk
φ k

j ∇ · Fk
v

dx (4.25)

+
∫

Ωk
φ k

j ∇ · Fk
t

dx +
∫

Ωk
φ k

j Sk
t

dx, 0 ≤ j < Nk.

The divergent terms can be rewritten making use of the Product Rule and

Divergence Theorem. Considering a closed domain V delimited by a boundary ∂V , a

vector Ąeld F and some function φ ∈ Φ ⊂ L2, the integral
∫

V

φ∇ · Fdx (4.26)
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Can be expanded using the Product Rule as
∫

V

φ∇ · Fdx =
∫

V

∇ · φFdx −
∫

V

F · ∇φdx. (4.27)

The Ąrst integral term of the right-hand side can be rewritten using the Divergence The-

orem as ∫

V

∇ · φFdx =
∮

∂V

n · φFdx, (4.28)

Finally, we obtain the equivalent expression
∫

V

φ∇ · Fdx =
∮

∂V

n · φFdx −
∫

V

F∇φdx. (4.29)

Using the relation 4.29 we can rewrite the expression 4.25, giving rise to Ćux contour

integral terms, as seen in

Mk ∂v̂k

∂ t
=
∮

∂Ωk
n · φ k

j Fk
c
dx +

∫

Ωk
Fk

c
· ∇φ k

j dx (4.30)

+
∮

∂Ωk
n · φ k

j Fk
v
dx −

∫

Ωk
Fk

v
· ∇φ k

j dx

+
∮

∂Ωk
n · φ k

j Fk
t
dx −

∫

Ωk
Fk

t
· ∇φ k

j dx

+
∫

Ωk
φ k

j Sk
t

dx 0 ≤ j < Nk.

Reorganizing the terms in 4.30 and condensing them according to similarity criteria, we

obtain

Mk ∂v̂k

∂ t
=
∫

Ωk

(
Fk

c
− Fk

v
− Fk

t

)
· ∇φ k

j dx (4.31)

+
∮

∂Ωk
n · φ k

j

(
−Fk

c
+ Fk

v
+ Fk

t

)
dx

+
∫

Ωk
φ k

j Sk
t

dx 0 ≤ j < Nk

4.6 Faces Communication

The elemental weak form 4.31 imposes no a priori restriction at the interfaces

of an element with its vicinity. In the classical FEM methods the solution consistency

over the computational domain is enforced by directly asserting the variables continuity

element to element. In the case of DG-FEM formulations, an ambiguous deĄnition of the

solution is allowed at the elemental boundaries. The consistency is achieved by means of

information interchanging between adjacent elements, which is accomplished via operati-

ons known as numerical Ćuxes, a scheme originated from the Ąnite volumes method. The

numerical Ćux deĄned over the face f of element k with regard to the neighbor face f ′ of

element l is deĄned such as

Fk
f = F(v(∂Ωk

f ),v(∂Ωl
f ′)) (4.32)
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For the Ąrst-order terms and

Fk
f = F(v(∂Ωk

f ),v(∂Ωl
f ′),∇v(∂Ωk

f ),∇v(∂Ωl
f ′)) (4.33)

For the second-order ones. Considering the reference over the face ∂Ωk
f , and making use

of the notation − for the interior of the element k and + for the exterior, we can write:

Fk
f = F(v(∂Ωk

f )+,v(∂Ωl
f )−). (4.34)

For the Ąrst-order terms and

Fk
f = F(v(∂Ωk

f )+,v(∂Ωl
f )−,∇v(∂Ωk

f )+,∇v(∂Ωl
f )−). (4.35)

As can be noticed, the numerical Ćux implicitly connect the elemental solutions

vk
h on both sides of the face. The numerical Ćux schemes seeks approximated solutions

for the RiemannŠs problem (the discontinuity propagation problem) in order to deal with

possible discontinuities at the element interfaces (HESTHAVEN; WARBURTON, 2008,

p. 22). In case of continuous solutions, the numerical Ćux schemes are intended to progress

for equaling the solutions at the elemental interfaces.

Considering the expression 4.31, we can introduce the numerical Ćux terms by

directly replacing the surface integrals of the convective and diffusive physical Ćuxes with

the numerical ones as can be seen below

Mk ∂v̂k

∂ t
=
∫

Ωk

(
Fk

c
− Fk

v
− Fk

t

)
· ∇φ k

j dx (4.36)

+
∮

∂Ωk
n · φ k

j

(
−Fk∗

c
+ Fk∗∗

v
+ Fk∗∗

t

)
dx

+
∫

Ωk
φ k

j Sk
t

dx, 0 ≤ j < Nk,

where the superscripts ∗ and ∗∗ refer to the convective and diffusive numerical Ćuxes

respectively. In the Manticore implementation, they are available the classical convective

numerical Ćuxes HLLC (TORO, 2008, p. 322) and Roe (TORO, 2008, p. 345), as well the

diffusive numerical Ćuxes BR1 (BASSI et al., 2004) and LDG (KIRBY; KARNIADAKIS,

2005).

As stated in 4.7, each element boundary ∂Ωk is composed by a Ąnite number

of faces, Nk
f . Therefore, we can split the closed contour integrals into a summation of

integrals over the elemental faces, as
∮

∂Ωk
nk · φ k

j

(
−Fk∗

c
+ Fk∗∗

v
+ Fk∗∗

t

)
dx = (4.37)

Nf∑

f=1

∫

∂Ωk
f

nkf · φ k
j

(
−Fkf∗

c
+ Fkf∗∗

v
+ F

kf∗∗

t

)
dx (4.38)
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In a general case, the faces domains ∂Ωf
k can be high-order curves, that way, we cannot

simply pull out the face normal nf from the face integrals, since this might depend on

the space. After such modiĄcations, the weak form can be written

Mk ∂v̂k

∂ t
=
∫

Ωk

(
Fk

c
− Fk

v
− Fk

t

)
· ∇φ k

j dx (4.39)

+
Nk

f∑

f=1

∫

∂Ωk
f

nkf · φ k
j

(
−Fkf∗

c
+ Fkf∗∗

v
+ F

kf∗∗

t

)
dx

+
∫

Ωk
φ k

j Sk
t

dx 0 ≤ j < Nk

4.7 Local DG-FEM Weak Form

Although considering simple meshes, composed by a single type of element

topology, the mesh generation process produces non-uniform cells, each of them with its

own shape and size. Moreover, the elements can have different curvature orders, making

more complex the evaluation of the operations given in 4.39. In order to avoid that, it is

usual to map all the physical elements to an ideal straight sided reference element Ω̄, also

named standard element.

The square reference element is deĄned such as (KARNIADAKIS; SHERWIN,

2004, p. 93):

Ω̄ : ξ = (ξ1, ξ2) ∈ Ω̄ | − 1 ≤ ξ1, ξ2 ≤ 1. (4.40)

And the triangular reference element (KARNIADAKIS; SHERWIN, 2004,

p. 93):

Ω̄ : ξ = (ξ1, ξ2) ∈ Ω̄ | − 1 ≤ ξ1, ξ2, ξ1 + ξ2 < 0. (4.41)

For integrating over each elemental region Ωk we must to convert it to the

reference region via some variables transformation, such as

T k(x, ξ) : x → ξ | x ∈ Ωk, ξ ∈ Ω̄, (4.42)

Likewise, let us consider the following mappings involved in the transformation

of the general-shaped elemental faces to the reference ones:

T kf (x, ξ) : x → ξ | x ∈ ∂Ωk
f , ξ ∈ ∂Ω̄. (4.43)

In order to integrate within a general-shaped element Ωk, which can be map-

ped to the reference element Ω̄ via the transformation T k, we proceed by evaluating

the integral in terms of the elemental coordinate system, ξ such as (KARNIADAKIS;
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SHERWIN, 2004, p. 157)
∫

Ωk
f(x) dx =

∫

Ω̄
f(ξ)|J k| dξ. (4.44)

In which |J k| is the determinant of the Jacobian matrix J k, due to the transformation

T k (KARNIADAKIS; SHERWIN, 2004, p. 158), deĄned as

J k =




∂x1

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ1

∂x2

∂ξ2


 (4.45)

Let us to consider some integral terms from the equation 4.39 and rewrite them in terms

of the local coordinates system. The mass matrix can be rewritten as

Mk : Mk
ij =

∫

Ωk
φk

j (x)φk
i (x) dx. =

∫

Ω̄
φk

j (ξ)φk
i (ξ) |J k|dξ. (4.46)

We should notice that even when the basis space Φ is orthogonal, the presence

of the Jacobian correction factor modiĄes the features of Mk, making it a dense matrix.

Orthogonality is preserved only when the element curvature id Ąrs-order, corresponding

to an affine mapping. The Ćux terms can be modiĄed likewise
∫

Ωk

(
Fk

c
(x) − Fk

v
(x) − Fk

t
(x)

)
· ∇φ k

j (x)dx = (4.47)
∫

Ω̄

(
Fk

c
(ξ) − Fk

v
(ξ) − Fk

t
(ξ)
)

· ∇φ k
j (ξ) |J k|dξ.

For the source terms, it is possible to easily rewrite the integral expression as

a local form: ∫

Ωk
φ k

j (x)Sk
t
(x) dx =

∫

Ω̄
φ k

j (ξ)Sk
t
(ξ) |J k|dξ. (4.48)

Making use of the face mappings deĄned in 4.43 we can evaluate the contour

integrals on the reference element faces:
∫

∂Ωk
f

nkf · φ k
j (x)

(
−Fkf∗

c
(x) + Fkf∗∗

v
(x) + F

kf∗∗

t
(x)

)
dx = (4.49)

∫

∂Ω̄
f

nkf · φ k
j (ξ)

(
−Ff∗

c
(ξ) + Ff∗∗

v
(ξ) + F

f∗∗

t
(ξ)
)

|J kf |dξ, (4.50)

where n̄f represents the normal of face f the reference element. As the reference element

is a straight sided polygon, the normal is a vector with constant direction. After these

considerations the form

Mk ∂v̂k

∂ t
=
∫

Ω̄

(
Fk

c
(ξ) − Fk

v
(ξ) − Fk

t
(ξ)
)

· ∇φ k
j (ξ)|J k|dξ (4.51)

+
Nf∑

f=1

∫

∂Ω̄
f

nkf · φ k
j (ξ)

(
−Fkf∗

c
(ξ) + Fkf∗∗

v
(ξ) + F

kf∗∗

t
(ξ)
)

|J kf |dξ

+
∫

Ω̄
φ k

j (ξ)Sk
t
(ξ) |J k|dξ 0 ≤ j ≤ Nk
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is obtained. For a sake of simplicity, the notation indicating the dependency to the coor-

dinate system is omitted in the further sections.

In order to obtain the approximations for the time-derivatives ∂v̂h

∂ t
, of the Ąeld

variables we should invert the mass matrix Mk for each element. In case of large meshes,

the storage of element information can represent a signiĄcant cost, given that the matrices

need be precomputed and stored in their decomposed form (CHAN et al., 2016).

4.8 Polynomial Expansion

In 4.12 we assumed that the Ąeld variables vk
h inside each element Ωk can

be approximated by an expansion over a function space. Thereafter, we constructed an

integral form based on this assumption in order to allow . However, no Considering the

reference element, each approximated Ąeld uh from vh can be expanded basically in two

ways:

• The modal approach

uk(ξ, t) =
Nk∑

i=1

ûk
i (t)φi(ξ), φi ∈ Φ,Φ ⊂ L2; (4.52)

• And the nodal approach:

uk(ξ, t) =
Nk∑

i=1

ûk
i (ξ, t)li, li ∈ N ,N ⊂ L2. (4.53)

In the modal approach, Φ is a hierarchical polynomial space, with all the

spatial information of the expansion term, the coefficients ui are purely time-dependent.

A usual polynomial basis employed on modal expansions is described in terms of Jacobi

polynomials. In the case of the nodal expansion, all the polynomials li have the same

rank and are deĄned based on points of the domain, denominated nodes. Usual choices

in nodal applications are the Lagrange and the Chebyshev polynomials.

In this work it is employed the modal basis which uses the Jacobi polynomials.

This choice lies in some convenient properties of this approach, mainly concerning the

numerical oscillations controlling, once the hierarchical functions spaces allow more easily

to limit the high order modes contribution and avoid unexpected behaviours.

On a two-dimensional expansion, the polynomial space is generated by ap-

plying tensor product between two one-dimensional hierarchical polynomial spaces, de-

Ąned over each reference coordinate axis (ξ1 and ξ2, deĄned in 4.40 and 4.41). Let us

consider the most general case, where the one-dimensional expansion spaces admit diffe-

rent maximum polynomial orders for each coordinate axis of the reference element. Hence,

we can deĄne the approximation space such as described below.



51

For the squared regions, we use the full expansion (KARNIADAKIS; SHERWIN,

2004, p. 89):

Φ : φpq = ξp
1ξ

q
2, (p, q) ∈ Y , (4.54)

Y : (p, q) | 0 ≤ p ≤ N1, 0 ≤ q ≤ N2.

For the triangular regions, the Serendipity expansion (KARNIADAKIS; SHERWIN,

2004, p. 89):

Φ : φpq = ξp
1ξ

q
2, (p, q) ∈ Y , (4.55)

Y : (p, q) | 0 ≤ p, q ≤ N, p+ q ≤ N

N = max(N1, N2)

The Serendipity expansion seeks to remove the higher-order modes by limiting

the rank of the polynomials Φpq. The tensor products can be visualized by using the Pascal

triangle (KARNIADAKIS; SHERWIN, 2004, p. 89-90).

4.9 Numerical Integration

The terms enclosed in the volumetric integrals of the weak form have been

handled in the continuous space, but it is just a theoretical treatment. In fact, for com-

putational purposes, all integral terms need to be discretized and evaluated by means of

a quadrature rule, more speciĄcally a Gaussian quadrature. In a general way, considering

a function f = f(ξ), the GaussŠ quadrature is given by (KARNIADAKIS; SHERWIN,

2004, p. 141):
∫

Ω̄
f(ξ) d ξ =

NQ∑

q=1

wq f(ξq) + R(f), (4.56)

where {wq} is a set of quadrature coefficients deĄned for weighting the values of the

integrand f evaluated on a set of points {ξq} of Ω̄. R is the integral residue of the appro-

ximation. The integral 4.56 will be exactly evaluated (considering the machine precision)

for a polynomial integrand if the number of quadrature points is properly chosen (KAR-

NIADAKIS; SHERWIN, 2004, p. 141).

Considering a one-dimensional element (basically a line segment), the set {ξq}

is usually chosen to be the roots of the Legendre polynomial of order NQ. That special

set is referred as Gauss-Legendre (GL) distribution and is represented here as {ξL}. The

Gauss-Legendre distribution is chosen because it offers the suitable numerical features

for avoiding interpolation error growth (HESTHAVEN; WARBURTON, 2008, p. 49).

Another usual choice is the Gauss-Legendre-Lobatto (GLL) distribution, which includes

the two extreme coordinates −1 and 1 of the one-dimensional reference element. A GL
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quadrature of order NQ can exactly integrate polynomials f ∈ P2NQ−1 and a GLL qua-

drature of order NQ polynomials f ∈ P2NQ−3 (KARNIADAKIS; SHERWIN, 2004, p. 60).

The non-linear terms from the right-hand side of the weak form 4.39 are composed by

products and sums between polynomial expansions, so, we are able to determine the cor-

rect number of quadrature terms NQ for accurately evaluating each of them in both the

quadrature rules.

Taking the assumption f ∈ P2NQ−1 and considering the use of the correct

number of expansion terms NQ for the integral, zeroing the integral residual R, it is

possible to rewrite the integral 4.56 as the matrix product:
∫

Ω̄
f(ξ) d ξ = wT F, (4.57)

where F is a column matrix containing the values of f evaluated on {ξq}.

For higher-dimensional geometry, the coordinates {ξq} are obtained by means

of the tensor product between the Legendre distributions along the reference coordinates

axis.

For square regions, the tensor product is equivalent to Cartesian product:

{ξq} : (ξLp, ξLq) | (p, q) ∈ X , (4.58)

X : (p, q) | 0 ≤ p ≤ NQ1, 0 ≤ q ≤ NQ2.

In case of triangular elements, we consider convenient to employ the collapsed

reference system (KARNIADAKIS; SHERWIN, 2004, p. 93) in order to use the quadra-

ture points described in 4.58.

In both the cases, the total number of quadrature points NQ is given by:

NQ = NQ1NQ2. (4.59)

There is no a priori reason for choosing different numbers of quadrature orders

for each reference axis, so, for the sake of simplicity, we will consider the same order for

both of them NQ1 = NQ2.

4.10 Discrete Local Weak Form

Now we will proceed with the construction of the computational structure used

in the Manticore implementation. The basic step consists in completely discretizating the

integral terms by using the quadrature rule and convert it into matrix form. For this

purpose, we need to deĄne some auxiliary operators. Let us deĄne the Vandermonde

matrix Vk for the element Ωk as follows (KARNIADAKIS; SHERWIN, 2004, p. 125):

Vk : Vk
ij = φk

i (ξj), 0 ≤ i < Nk, 0 ≤ j < NQ. (4.60)
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In matrix notation,

vk
h = Vkv̂k

h (4.61)

The derivative matrix for each element Ωk is deĄned as

Dkξl :
(
Dkξl

)
ij

=
∂ φi

∂ ξl

∣∣∣∣∣
ξj

, 0 ≤ i < Nk, 0 ≤ j < NQ, l ∈ {1, 2}. (4.62)

It should be noticed that D is deĄned for each reference direction (ξ1 and ξ2). We also

deĄne the auxiliary Jacobian matrix as:

J
k : J k

ij = |J k|, 0 ≤ i < NQ, j ∈ {1, 2}. (4.63)

In principle, we could consider that each integral term in 4.39 needs a speciĄc

number of quadrature terms in order to be properly evaluated and has its own weights

array w and integration points array. However, that can be unnecessary since we can

choose a Ąxed number of integration points in order to properly integrate every non-

linear term. Based on this assumption, we can rewrite the local weak form in matrix

notation as

Mk ∂v̂h

∂ t
=wT

k (Dkξ1 ◦ (Fkξ1

c
− Fkξ1

v
− F

kξ1

t
) ◦ J

k) (4.64)

+wT
k (Dkξ2 ◦ (Fkξ2

c
− Fkξ2

v
− F

kξ2

t
) ◦ J

k)

+
Nk

f∑

f=1

wT
kf (Vk ◦

(
−Fkf∗

c
+ Fkf∗∗

v
+ F

kf∗∗

t

)
nkf ◦ J

k)

+wT
k (Vk ◦ Sk

t
◦ J

kf ),

where the operation ◦ represents the Hadamard product:

C = A ◦ B = AijBij. (4.65)

As mentioned in 4.7, in case of curvilinear elements there is a signiĄcant com-

putational cost for inverting Mk and store its decomposed form for large tessellations.

In order to circumvent that issue, we can employ the approach proposed by Chan et al.

(CHAN et al., 2016), (Weight-Adjusted Discontinuous Galerkin, WADG) by approxima-

ting the inverse mass matrix as follows:

(
Mk

)−1
≈ M̂

−1
M

1

J k M̂
−1
, (4.66)

where M̂ is the mass matrix for the reference element and M
1

J k is deĄned as:

M
1

J k : M
1

J k

ij =
∫

Ω̄
φk

j φ
k
i

1
|J k|

dξ. (4.67)
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Based on 4.66 and 4.67, we can evaluate and store
(
Mk

)−1
during the program initiali-

zation and access it when necessary, reducing the processing and storage costs.

Expression 4.64 is evaluated for each element k in order to obtain the time-

derivatives of Ąeld variables for being used in the time-integration process. The state of

the neighbor elements and their communication faces are stored for each time-step and

accessed when the numerical Ćuxes from the right-hand side of 4.64 are estimated. Up to

now, we have ensured a considerable generality level when considering the possibility of

using basis spaces Φk speciĄcally chosen for each elemental domain Ωk.

Although such feature might be important in some speciĄc applications, the

validation tests performed in a further chapter of this work (6) uses a same basis space

for all the elements of the domain tessellations.

4.11 Time-Integration

There are fundamentally two ways for performing time-integration, the explicit

and the implicit techniques. The most conventional way is the explicit approach, where

the Ąeld variable vector is evaluated for the next instant just depending of the present

state. Therefore,

vj+1
h = I

(
vj

h,
∂v̂h

∂ t
, dt

)
, (4.68)

where I represents a generic explicit time integrator. In certain cases, such as well-behaved

laminar Ćows over low order geometric curvatures, it has been empirically veriĄed that

the explicit approaches are more convenient to the problem time-evolution. However, the

Navier-Stokes and the RANS equations present severe stiffness (BIRKEN, 2012) (CON-

TENT et al., 2013) as the number of DOFs is increased. This partly arises from the

multi-scale characteristic of the turbulence problem, given that for respecting the time-

integration stability region of the problem, the spatial and time discretization should be

reĄned in order to contain the fastest eddy scales, which can imply in a major compu-

tational barrier. Furthermore, when solving steady-state problems we are interested in

skipping intermediary states and as rapidly as possible to achieve the stationary solution.

In order to do that, we need to be able to use larger time-steps without undermining the

Ąeld variables accuracy. An approach developed to match this requirements is the fully

implicit time integration, which uses present and predicted information, which enables

unconditional stability with respect to the time step.

The implicit integration has the following general structure

vj+1
h = I

(
vj

h,v
j+1
h ,

∂v̂h

∂ t
, dt

)
. (4.69)
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It is worth noting that each integration step results in a nonlinear system. In

order to solve this, it is necessary to employ iterative algorithms, as the Newton-RaphsonŠs

varieties, as a GMRES (BIRKEN, 2012) and JFNK (Jacobian-Free Newton-Krylov)

(CONTENT et al., 2013) schemes.

The fully implicit approach has been used to solve steady-state problems,

(OLIVER, 2008) and (LANDMANN, 2008). Nevertheless, (BASSI et al., 2004) and

(NGUYEN et al., 2007) applied this strategy both for steady and unsteady problems.

At this point the question is mostly computational. Despite these, (BIGA-

RELLA, 2007) accomplished all the integrations using an artiĄcial viscosity aided explicit

addressing, but restricted to the low order domain.

The time-integration of the Ąeld and turbulence variables are performed in

a coupled way, that is, the approximated Ąeld vector vh also includes the turbulence

variables and all the residual evaluations are simultaneoulsy performed. Although the

literature mentions schemes to solve the uncoupled RANS equations, evaluating the Ąeld

and the turbulence variables separately, these methods ensure converged results just for

conditions which are close to the equilibrium, showing difficulties in dealing with unsteady

Ćows (CONTENT et al., 2013).

Manticore offers pre-implemented options of time-integrators, some of them,

used on this work, are brieĆy described in the following. For the explicit integration,

The strong-stability Runge-Kutta 54 (SSRKP54) (HESTHAVEN; WARBURTON, 2008,

p. 157), with Ąve steps and 4th-order error. For the implicit case, a standard Newton-

GMRES backward-Euler.

4.12 Positivity Limiting

Even though the imposition of conservation laws throughout of the RANS

solving process, the numerical approximation is not completely safe of arising non-physical

values for the turbulent variables during the time-integration. The eddy viscosity can

became negative in some regions, such as zero-valued regions and regions where the source

terms are very intensive, given that the production and destruction terms can achieve

high values for small wall distances. During the simulation start-up, the occurrence of

negativity in the turbulent variables becomes more frequent due to the great unbalance

produced by the bad Ąelds initialization (such as homogeneous initialization).

Considering the devastating impact of non-physical values propagation all over

the simulation domain, it is mandatory the positivity enforcement via some auxiliary

scheme. The approach adopted in this work is a reconstruction-type technique denomina-

ted hard limiting (LANDMANN, 2008) for the stepwise and the linear cases.
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The stepwise case corresponds to the interpolation order p = 0, either for the

quadrilateral and the triangular meshes, in which there is just one degree of freedom ν̃0

by Ąeld variable in each element, equivalent to the mean value over it. If ν̃0 ≤ 0, hard

limiting consists simply in limiting it by imposing some restriction ν̃0 = ǫ, where ǫ is a

small value chosen to avoid the negativity without adversely interfering in the vicinity

elements evaluation. The reference (LANDMANN, 2008) uses ǫ = 0, but in this work the

value of ǫ set up in the tests is 10−15.

It is necessary to notice that as the stepwise limiting interferes in the mean va-

lue of the element, it affects the elementwise conservation law. However, it is expected that

this interference be proportional to ǫ when the expected ν̃ is near to zero, or, otherwise,

it is assumed that the limiting scheme was able of conducing the solving process to the

proper values and is no longer active if the numerical implementation was properly done.

The linear limitation is applied to expansions with p ≤ 1 and consists of

adjusting the coefficients of the linear modes in order to avoid the negativity inside the

element, it corresponds to avoid the solution becomes lower than zero in the element

corners (LANDMANN, 2008). For the triangular elements, the positivity algorithm is

(LANDMANN, 2008, pp. 44)

if : ν̃0 < 0, set : ν̃0 = ν̃1 = ν̃2 = ǫ (4.70)

if : ν̃0 ≥ 0, set : ν̃0 ≤ ν̃0 and ν̃2 ≥ −
ν̃0

2
ν̃1 ≤ ν̃0 − ν̃2 and ν̃1 ≥ ν̃2 − ν̃0

and for the square regions (LANDMANN, 2008, pp. 44)

if : ν̃0 < 0, set : ν̃0 = ν̃1 = ν̃2 = ǫ (4.71)

if : ν̃0 ≥ 0, set : ν̃1 = sν̃1 and ν̃2 = sν̃2

s =
−ν̃0

min(−ν̃1 + ν̃2,−ν̃1 − ν̃2, ν̃1 − ν̃2, ν̃1 + ν̃2)
, 0 ≤ s ≤ 1.

In which the ν̃0, ñu1 and ν̃2 represents the coefficients of the modal expan-

sion, respectively the constant and the linear modes. For elements with modes ranks

higher than 1, the problem of correctly reconstructing the interior of the element avoi-

ding negativity becomes more cumbersome and requires more computationally expensive

approaches (LANDMANN, 2008), given that, the addressing chosen in this work is to

truncate the higher order modes and impose the hard limiting over the lower ones. Once

again, it is necessary to stress that the hard limiting does not substantially affect the

conservation laws in the linear case if the mean value be proportional to the tolerance ǫ

or becomes completely inactive in any time, as assumed beforehand.
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5 NUMERICAL SOFTWARE IMPLEMENTATION

5.1 Overview

The software developed in this work was implemented by using the framework

Manticore, a free and open-source numerical engine fully-developed in Python 3 and

devised to operate in FEM-based applications. Besides the DG-FEM approach for RANS

problems, it was necessary to implement specialized pre and post-processing operations

as well as auxiliary stabilization schemes in order to enable running the numerical tests.

This work have extended Manticore by a development branch specialized in CFD, but the

ManticoreŠs scope is a general purpose framework. This chapter intends to summarize the

stages of such implementations by exposing the modules organization whilst introduces

the ManticoreŠs architecture. It is important to notice that all the references to directories

paths are based in the main directory manticore, created in the local host when the software

is downloaded from the remote repository.

5.2 Manticore’s General Architecture

Manticore is object-oriented and its core is hierarchically organized in order to

maintain encapsulated the increasing complexity of the implementation stages. In other

words, we can handle any high-level operation by a set of lower level pre-constructed

objects. For instance, we can handle a numerical Ćux boundary integral without directly

dealing with polynomial expansions or quadrature rules, but just invoking the suitable

classes.

Such complexity level hierarchy allows to create new operators or terms in an

equation in a simple way: constructing dedicated classes for the speciĄc operations and

instantiating them in the proper places. Thus, implementing a problem in a framework

such as Manticore is most of time, comparable to assemble prefabricated parts according

to some established logic. Naturally, the software encapsulation can eventually hide the

fundamental operations at a level in which the code loses legibility and becomes difficult

to track origin and content of some objects. However, such matter can be bypassed by

properly employing some basic software engineering techniques.

5.3 Input Reading

Each problem simulated in Manticore at the current development state needs

three input Ąles in order to be executed, namely geometrical mesh Ąle, initialization Ąle

and set up Ąle. The mesh Ąle is originally written in ASCII format using a mesh generator
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program, after that is converted to a binary HDF5-based format before being read by

the simulation software. This work employed the software Gmsh as mesh generator and

implemented the scripts to convert the GmshŠs text format to the default MDF (Manticore

data format), a binary format built from HDF5 and already speciĄed when this work was

started.

The MDF format seeks to enforce generality by considering a wide scope of

possibilities. The input reading resources available in Manticore was constructed to cover

cases in which different regions of the problem domain could be modelled by speciĄc

systems of equations, for instance, multiphase Ćow combining solid, liquid and gaseous

Ćuids, each of them with a speciĄc nature and hence a given mathematical model, that

way, the mesh Ąle is subdivided in groups related to each modelling regions, which store

geometrical and physical information, at the set up time. All the tests performed in this

work are single phase, so, there is just one group in the mesh Ąles. The groups of the mesh

Ąles also can be split into partitions in order to be used in parallel executions, yet that is

not the case of this work, since all tests are serially performed. In other words, there is

just one partition per group whose elements are assessed at a time. The serial execution

was used since the MPI parallelism was not complete at the time of this work.

The initialization Ąle is a MDF Ąle which stores the initial state of the Ąeld

variable for each element and group in the problem domain. The set up Ąle is a Python 3

script which controls simulation workĆow, determining the mesh and initialization Ąles,

the name of the domain and boundary groups, the modelling system of equations, the

choice of the turbulence models, numerical Ćuxes and time-integrators. An example of set

up Ąle is available at manticore/models/turbulence/tests/manufactured_solution_setup.py,

where there are multiple test cases in terms of Python functions.

5.4 The Manticore’s Numerical Engine

After reading the input information the solver starts the construction of the

computational mesh, in which each geometrical element is enriched with an interpolation

ansatz and vicinity information. The Manticore numerical engine has been constructed

and tested following the philosophy of ensuring the locality at most when evaluating the

numerical operators, based on that, the fundamental entity, used as basis for constructing

the entire formulation, is the elementwise expansion and able of accessing the most part

of the information necessary during the solving process. The class ExpansionEntity deĄned

in the module manticore/lops/entity.py is the implementation of an elementwise expansion

and its communication vicinity, taking the role of the element entity itself. The block of

code in the Listing 5.1 shows an example of element class entity, in which the information

of some physical Ąelds is reconstructed and stored in temporary arrays.
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Listing 5.1 Ű A short block of code for showing the usage of the element entity class.

1 rho = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHO)

2 dnudx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDX)

3 dnudy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDY)

4

5 np . power ( dnudx , 2 , out=TurbModelWsp_v . flux_aux1 )

6 np . power ( dnudy , 2 , out=TurbModelWsp_v . flux_aux2 )

A more detailed view of the element entity class and its methods can be seen

in the Section A.1 of the Appendix A. From the physical modelling standpoint, the core

entities are the class Equation and its extensions, deĄned in manticore/models/compres-

sible/equations/equation.py. The classes based on Equation basically deĄnes the primitive

and conservative variables to be modelled and the characteristic right-hand side residue

used to describe the problem. The residue is deĄned in a speciĄc class and introduced as

an attribute of the equation class during the set up.

The equation terms operate over element entities sets in order to evaluate the

numerical residue of each element individually, since all the necessary information, inclu-

ding the face neighbourhood state, can be obtained from it. The characteristic equation

expressions, such as Ćuxes and forcing terms, are deĄned as dedicated Python classes, in

which the __call__ method (a method invoked when the class is executed as a function)

receives an element entity, evaluates the mathematical expressions for the integration

points and returns the values necessary to perform the time-integrations. A view of the

general structure for constructing the convective residue class can be seen in Listing 5.2.

Listing 5.2 Ű General structure of the factory for constructing the convective residue

1 def factory_weak_dg_convres ( conv_flux_t , turb_model_t ) :

2 " " " Factory f o r the r e s i d u a l o f the weak DG form of the Euler equat ion .

3 Args :

4 conv_flux_t : A template parameter on the kind o f c o n v e c t i v e

5 f l u x we are us ing (Lax−Friedr ich , Roe , HLLC, e t c ) .

6 " " "

7 Workspace_f = conv_flux_t . Workspace_f

8 InverseMassOperator = [ class_wadg_inverse_mas_op , class_rwadg_inverse_mas_op ]

9

10 TurbModel_v = turb_model_t . TurbModel_v

11 TurbModel_f = turb_model_t . TurbModel_f

12

13 class weak_dg_convective_residual (

14 EntityOperator ,

15 model_description_mixin ,

16 equation_domain_signature ,

17 expansion_numbers ) :

18

19 def __init__ ( s e l f , model_desc ) :

20 model_description_mixin . __init__ ( s e l f , model_desc )

21 equation_domain_signature . __init__ ( s e l f )

22 expansion_numbers . __init__ ( s e l f )

23 EntityOperator . __init__ ( s e l f )

24

25 # I n i t i a l i z i n g the c l a s s g l o b a l v a r i a b l e s



60

26

27 def setup ( s e l f , eqname , domain ) :

28

29 equation_domain_signature . setup ( s e l f , eqname , domain )

30 matname = s e l f . desc . get_equation ( eqname ) . mat

31 s e l f . f l u i d = s e l f . desc . get_mater ia l (matname)

32

33 S p e c i f i c t e s t case statements

34

35 def conta iner_operator ( s e l f , group , key , c o n t a i n e r ) :

36

37 # Recovering informat ion from the expansion

38 e n t i t i e s .

39

40 def __call__ ( s e l f , e ) :

41

42 # Evaluates the c o n v e c t i v e r e s i d u a l o f a s i n g l e element .

43 # Invoke the a u x i l i a r y methods and manages the e n t i r e process

44

45 def eval ( s e l f , e ) :

46

47 # Evaluates the r e s i d u a l wi thout the i n v e r s e mass matrix .

48 " " "

49 Note :

50

51 ∗ This r e s i d u a l e v a l u a t i o n ’ k e r n e l ’ i s u s e f u l f o r

52 combining with more complex r e s i d u a l s ( e . g . a r t i f i c i a l

53 d i s s i p a t i o n , v i s c o u s f low , e t c . )

54 " " "

55 # F i l l i n g the p r i m i t i v e v a r i a b l e s workspace

56 Primitive_v = PrimitiveWsp_v . get_instance ( s e l f .nQ)

57 Primitive_v . f i l l ( e , s e l f . f l u i d )

58

59 # Zeroing r e s i d u a l s

60 Residual_p = ResidualWsp_p . get_instance ( s e l f . nS )

61 Residual_p . ze ro ( )

62

63 # Volumetric opera t ions

64 s e l f . volumeContribution ( e )

65

66 # Facia l opera t ions

67 s e l f . f a c eCon t r i b u t i o n ( e )

68

69 def volumeContribution ( s e l f , e ) :

70

71 # Evaluat ion o f v a l u e s r e l a t e d to the vo lumetr i c f l u x and source i n t e g r a l s

72

73 def f a c eCo n t r i b ut i o n ( s e l f , e ) :

74

75 # I t access in format ion about the cho ice o f numerical f l u x e s

76 # in order to e v a l u a t e them .

77

78 for f f in range ( num_faces ) :

79

80 # Evaluates v a l u e s o f the boundary i n t e g r a l s f o r each

81 e l ementa l f a c e

82

83 # end of factory_weak_dg_convres . weak_dg_convective_residual

84
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85 return weak_dg_convective_residual

In the previous code, lines are suppressed in some parts and replaced by short

explanations in order to compress the original long Ąle and present just the main code

structure. The values of the Ćux terms are used to evaluate the domain and boundary

integrals using Gaussian quadrature, as seen in the code Listing 5.3, in which the method

volumeContribution of the Listing 5.2 is detailed.

Listing 5.3 Ű Volumetric contribution of the convective terms

1 def volumeContribution ( s e l f , e ) :

2 Primitive_v = PrimitiveWsp_v . get_instance ( s e l f .nQ)

3 Residual_p = ResidualWsp_p . get_instance ( s e l f . nS )

4 #Workspace f o r t u r b u l e n c e f a c i a l a u x i l i a r v a r i a b l e s

5 TurbModelWsp_v = TurbModel_v . get_instance ( s e l f . nS , s e l f .nQ)

6

7 J = e . get_jacobian ( )

8 IM = e . get_inv_jacobian_matrix ( )

9

10 #

11 # FIRST EQUATION: rho ∗ [ u , v ]

12 #

13 rho = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHO)

14 ConvectiveFlux_1_X ( rho , Primitive_v . u , s e l f . Fx )

15 ConvectiveFlux_1_Y ( rho , Primitive_v . v , s e l f . Fy )

16 # S operator , p h y s i c a l −> modal

17 s e l f . innerpg [ e . type ] ( J , IM, s e l f . Fx , s e l f . Fy , Residual_p . rho )

18

19 #

20 # SECOND EQUATION: [ rhou∗u+p , rhou∗v ]

21 #

22 rhou = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHOU)

23 ConvectiveFlux_2_X ( rhou , Primitive_v . u , Primitive_v . p , s e l f . Fx )

24 ConvectiveFlux_2_Y ( rhou , Primitive_v . v , s e l f . Fy )

25 # S operator , p h y s i c a l −> modal

26 s e l f . innerpg [ e . type ] ( J , IM, s e l f . Fx , s e l f . Fy , Residual_p . rhou )

27

28 #

29 # THIRD EQUATION: [ rhov ∗u , rhov ∗v+p ]

30 #

31 rhov = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHOV)

32 ConvectiveFlux_3_X ( rhov , Primitive_v . u , s e l f . Fx )

33 ConvectiveFlux_3_Y ( rhov , Primitive_v . v , Primitive_v . p , s e l f . Fy )

34 # S operator , p h y s i c a l −> modal

35 s e l f . innerpg [ e . type ] ( J , IM, s e l f . Fx , s e l f . Fy , Residual_p . rhov )

36 #

37 # FOURTH EQUATION: ( e+p ) ∗ [ u , v ]

38 #

39

40 aux = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHOE) + Primitive_v . p

41 ConvectiveFlux_4_X ( aux , Primitive_v . u , s e l f . Fx )

42 ConvectiveFlux_4_Y ( aux , Primitive_v . v , s e l f . Fy )

43 # S operator , p h y s i c a l −> modal

44 s e l f . innerpg [ e . type ] ( J , IM, s e l f . Fx , s e l f . Fy , Residual_p . rhoe )

self.innerpg is a list of wrapper methods for the classes deĄned in manticore.lops.modal_dg.phyops2d
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which performs inner product for Gaussian quadrature. The output of the self.innerpg

methods Ąlls the arrays of Residual_p, a Manticore workspace, basically a class contai-

ning sets of arrays used to store temporary values, for the right-hand side of each equation

in the modal coefficients space.

On the top of this scheme, there is a time-integrator class, which evaluates the

residue terms at each iteration and updates the values of the Ąeld variables. The explicit

time-integrators are deĄned in the module manticore/models/compressible/timeint/inte-

grator.py and the implicit time-integrators in manticore/models/compressible/timeint/im-

plicit.py. After updating the Ąeld variables state, the values of that are stored in attributes

arrays inside the elemental entity.

The choice for operating locally and distributing the processing is not man-

datory. The numerical engine is Ćexible enough to cover cases in which all the element

domains are grouped into a global system and the complete set of degrees of freedom sol-

ved at a time. The choice between distributed memory and shared memory ends up to the

classical trade-off between memory and CPU, being both of them valid according to the

goals of the implementation and viable from the ManticoreŠs numerical engine viewpoint.

5.5 The RANS Structure and Add-ons

The ManticoreŠs branch for Navier-Stokes simulations covers the evaluation

of convective (Fc) and viscous (Fv) Ćux terms. In order to construct a structure for

simulating RANS-turbulent problems it was necessary to implement modules for assessing

the turbulent Ćux (F t) and the turbulent source (St) terms.

The turbulent residue (the turbulent contribution in the form of Ćux and source

terms) is deĄned in manticore/models/turbulence/equations/turbres.py and works as a main

module for organising the evaluation of the turbulent residue terms by means of the class

weak_dg_turbulent_res.py. The turbulent Ćux term is evaluated by using the same struc-

ture of the viscous ones applied to the considered characteristic equations. The turbulent

residue class is shown in the Section A.3 of the Appendix A.

The source terms are deĄned in the module manticore/models/turbulence/equa-

tions/turbsource.py by the source_terms_res class. The problem deĄnition classes could be

modiĄed according to speciĄc conditions chosen at the simulation set up. A basic poly-

morphism should be ensured and it is done through factory functions. In this case, if-else

conditional statements are used in order to properly return the problem classes with the

necessary features required for the problem conditions. An example of factory function is

shown in the code Listing 5.4.

Listing 5.4 Ű General structure of a factory function used to construct the source terms

class.
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1 def factory_turbulent_source ( f e a t u r e ) :

2

3 i f f e a t u r e==’ t r ipped_evo lut ion ’ :

4

5 #For cases c ons ide r ing the t r a n s i t i o n a l s t a t e

6

7 class source_terms_res :

8

9 def __init__ ( s e l f , model_desc , f l u i d ) :

10 s e l f . model_desc = model_desc

11 s e l f . f l u i d = f l u i d

12 # o t h e r s i n i t i a l i z a t i o n commands

13

14 def _others_methods ( s e l f , ∗ args , ∗∗ kwargs ) :

15 # commands

16

17 e l i f f e a t u r e==’ f u l l y _ t u r b u l e n t ’ :

18

19 #For cases wi thout c o ns id er ing the t r a n s i t i o n a l s t a t e

20

21 class source_terms_res :

22

23 def __init__ ( s e l f , model_desc , f l u i d ) :

24 s e l f . model_desc = model_desc

25 s e l f . f l u i d = f l u i d

26 # o t h e r s i n i t i a l i z a t i o n commands

27

28 def _others_methods ( s e l f , ∗ args , ∗∗ kwargs ) :

29 # commands

30 else :

31 raise Asse r t i onErro r ( " Case not covered ! " )

The content of the Ćux and source terms classes is basically a transcription of

the expressions seen in the Chapter 3 to Python code using the Manticore structures, as

exempliĄed in the code Listing 5.5, in which the Ąrst source term (here named dissipation

term) of equation 3.28 is implemented.

Listing 5.5 Ű Source dissipation implementation

1 def __call__ ( s e l f , e , TurbModelWsp_v , TurbPrimWsp_v , PrimitiveWsp_v=None ) :

2

3 D = s e l f .D. get ( e . ID)

4 TurbPrimWsp_v . f i l l ( e , s e l f . f l u i d )

5

6 ### Source d i s s i p a t i o n

7

8 nu = TurbPrimWsp_v . nu

9

10 #( cb2/sigma )∗{ rho ∗ [ grad (nu ) . grad (nu ) ] }

11 rho = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHO)

12 dnudx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDX)

13 dnudy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDY)

14

15 np . power ( dnudx , 2 , out=TurbModelWsp_v . flux_aux1 )

16 np . power ( dnudy , 2 , out=TurbModelWsp_v . flux_aux2 )

17

18 np . add (TurbModelWsp_v . flux_aux1 , TurbModelWsp_v . flux_aux2 , \

19 out=TurbModelWsp_v . flux_aux3 )
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20 np . mul t ip ly ( rho , TurbModelWsp_v . flux_aux3 , out=TurbModelWsp_v . nu_diss ip )

21 TurbModelWsp_v . nu_diss ip ∗= ( s e l f . cb2 /( s e l f . Re∗ s e l f . sigma ) )

The values of the Ćux and source terms are evaluated for each integration point at the

element entity e, after that the integral terms of the weak formulation are calculated via

Gaussian quadrature. As mentioned in Section 4.12, the solving process can violate the

positivity of the turbulent variables when seeking the steady-state solution and in order

to control this issue it was purposed the use of positivity limiting. The limiting algo-

rithm is implemented in manticore/models/turbulence/equations/limiters.py and applied as

a post-processing operation over the computational mesh at each iteration of the time-

integration process. See the Section A.4 of the Appendix A to an in-depth view of the

limiter implementation.

5.6 Post-processing the Output

After the convergence has been achieved, the coefficient Ąelds stored in each

element are recovered and used to reconstruct the physical Ąelds in order to be employed

for visualization and error assessment purposes. Both the error evaluation and visualiza-

tion modules are implemented as complementary tools of this work and bequeathed to

the Manticore project. The error metric class, as well as other post-processing operati-

ons, is located in the module manticore/models/turbulence/manager/post_process.py. The

pointwise error in each element is evaluated for all the integration points and subsequently

integrated using the Gaussian quadrature rule, after that the values of all the elementwise

errors are summed. The visualization tool works in two ways, plotting the elementwise

Ąelds one at a time, thus allowing the highlighting of discontinuities between elements,

and the global plot, where the Ąeld is smoothed by the inter-elemental interpolation. This

second option in convenient when the computational mesh resolution is still too coarse to

ensure a good visualization. As all the examples tests in the validation section of this work

are smooth and regular, the choice between the two visualization approaches is not crucial.

All the visualization engine implementations are in manticore/visualization/PlotUtils.py.
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6 TESTS AND VALIDATION

6.1 Overview

In order to verify the correctness of the implementation accomplished in this

work, we should to incrementally validate the different mathematical components of the

RANS system, starting with the inviscid Euler equations and subsequently adding the

viscous and turbulent terms, thus checking the overall behavior. That way, the validation

of the framework here implemented is performed in three stages:

• Inviscid terms (Euler) validation.

• Viscous terms (Laminar Navier-Stokes) validation.

• Turbulent terms (Spalart-Allmaras RANS) validation.

The Inviscid validation is performed using two usual test cases: the isentropic

vortex and the smooth bump. Both the cases, despite being idealizations, are physically

grounded problems. The Viscous and turbulent validation are performed using manufac-

tured solutions (ROY et al., 2007), since the complexity of the realistic problems on this

matter demands hardware and software infrastructure still not available for this work.

6.2 Validation of the Convective Terms

6.2.1 Overview

The Ąrst step for testing the numeric implementation is to validate the evalua-

tion of the inviscid convective term (Fc). In order to accomplish that, were employed the

Euler equations for modelling two reference problems, the isentropic vortex (HESTHA-

VEN; WARBURTON, 2008, 209) and the inviscid Gaussian bump (GALBRAITH, 2011).

The main purpose was to verify the numerical approximation accuracy, robustness in de-

aling with mesh curvature and adverse boundary conditions.
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6.2.2 The Isentropic Vortex Test Case

The Ąrst validation test case is the time-dependent isentropic vortex problem,

which has the exact solution given by (HESTHAVEN; WARBURTON, 2008, p. 209).

u = 1 − β e(1−r2)
(
y − y0

2π

)
, (6.1)

v = β e(1−r2)
(
x− x0

2π

)
, (6.2)

ρ =

[
1 −

(
γ − 1
16γπ2

)
β2e2(1−r2)

]( 1

γ−1
)
, (6.3)

p = ργ, (6.4)

where r =
√

(x− t− x0)2 + (y − y0)2, x0 = 5, y0 = 0, β = 5, γ = 1.4. This test case alre-

ady was implemented in the Manticore framework and is presented here just for validation

purposes.

The problem domain is a square of side L = 10, whose boundaries are under

Dirichlet conditions based on the known solution. The time-integration is performed by

a Strong-Stability Runge-Kutta of Ąve steps and 4th-order accuracy ](HESTHAVEN;

WARBURTON, 2008, p. 157). A sequence of tests was performed in order to evaluate

the robustness of inviscid Ćow solver. The computational grids are composed of N × N

uniform elements with length of side h = L/N , where N ranges from 5 to 20.

Tables 6.1 and 6.2 present the continuous L2-normed error for each combina-

tion (h, p) (minimum element size and polynomial interpolation order) for the variables ρ

and ρu.

Table 6.1 Ű L2-error for the variable ρ

p
1 2 3 4 5

h
2 4.00 × 10−1 1.48 × 10−1 1.10 × 10−1 3.99 × 10−2 1.69 × 10−2

1 1.49 × 10−1 5.65 × 10−2 7.80 × 10−3 2.72 × 10−3 7.74 × 10−4

0.5 8.22 × 10−2 4.91 × 10−3 6.15 × 10−4 1.02 × 10−4 1.24 × 10−5

Table 6.2 Ű L2-error for the variable ρ u

p
1 2 3 4 5

h
2 6.36 × 10−1 2.81 × 10−1 1.51 × 10−1 6.19 × 10−2 2.80 × 10−2

1 2.72 × 10−1 8.79 × 10−2 1.44 × 10−2 5.71 × 10−3 9.56 × 10−4

0.5 4.75 × 10−2 9.15 × 10−3 1.50 × 10−3 1.32 × 10−4 2.76 × 10−5

It is possible to see that the error is reduced as the number of elements and

the order are increased for both the variables, validating the capability of the inviscid
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solver in dealing with the transient problem. The error regarding the variables ρ v and

ρE are not reduced by the hp-reĄnement. The reason for that cannot be inferred given

that the literature reference (HESTHAVEN; WARBURTON, 2008, p. 210) does not

present results for such variables.

6.2.3 The inviscid smooth bump problem

The second test case consists of a steady-state compressible inviscid Ćow over

a smooth bump inside a channel. Air moves into the channel at a Mach number M∞ = 0.5

coming from a non-disturbed freestream Ćow, where the pressure and temperature con-

ditions are stationary (see Figure 6.1). As there is no friction dissipation or heat transfer

in the system, the Ćow is ideally isentropic. The conditions at the inlet are summarized

in the Table 6.3.

Table 6.3 Ű Inlet Ćow conditions.

Inlet Pressure (p∞) 1, 01kPa
Inlet Temperature (T∞) 303K
Inlet Mach Number (M∞) 0.5

A slip wall boundary condition is imposed on the superior channel and the

bump surfaces. The stagnation pressure is Ąxed in the inlet based on the freestream Ćow,

and the conditions in the outlet are modelled based on a backward state criterion. The

density and momentum are equalled to that of the internal neighbour element face and the

energy are limited to be evaluated at a Ąxed static pressure in case of locally supersonic

Ćow.

In order to starting the solution procedure an uniform Ąeld initial condition is

set up and the implicit time integrator scheme is left to run until the achievement of the

convergence criterion.

The test has been performed employing the convective numerical Ćux of Roe.

An implicit Standard Newton-GMRES integrator is used for conducing the scheme to the

convergence, each time iteration is solved by using a matrix-free GMRES method pre-

conditioned by a diagonal block LU approach. The implicit time-integration is crucial on

such kind of problem, due the intrinsic numerical stiffness of that in accommodating the

steady-state solution to the curved slip boundary, mainly in the start from a non-physical

condition. Explicit approaches would require very limited CFL choices in order to enforce

stability.

6.2.4 Testing workflow

An interpolation order (p) reĄnement sequence of tests was performed using

a 48 quadrilateral elements mesh with 4th-order curvature. The test array was initiated
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p∞, T∞,M∞

Figure 6.1 Ű The inviscid Ćow testing domain.

using p = 0, similar by to a Ąnite volume implementation, and continued until p = 6. The

result of each p was used for initializing the next reĄnement, so, the stiffness observed on

the higher orders was reduced by the enhancement of the initial condition.

Figure 6.2 Ű Quadrilateral mesh used in the bump test case.

It is important to stress that using a quadrilateral mesh, the maximum rank of

the expansion modes is equal to 2p, therefore, in case of using p = 6, we have monomials

with rank at most 12 for the interpolation of the Ąeld variables. The CFL number was

ramping up as the numerical residue decreased, ranging from 50 to 150 (values empirically

determined). Results for p = 5 can be seen in Figure 6.3.

All the tests were performed using a workstation computer equipped with an

octa-core Intel i7 processor. Such feature enabled the native multithreading parallelism

of the Python library Numpy, extensively used by Manticore. Multithreading is specially

effective when running the higher interpolation and curvature orders, given that is set up

for processing computationally expensive matrix operations.

6.2.5 Validation

Considering that the bump test case does not have an exact solution, the

accuracy of the results were evaluated by using the dimensionless entropy error L2-norm

(YANO; DARMOFAL, 2018), deĄned as:

EL2 =

√√√√ 1
V

∫

Ω

[
p

p∞

(
ρ∞

ρ

)γ

− 1

]2

d V , (6.5)
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extra source term Sms is generated,

∂v
∂ t

+ ∇ · Fc(v) = ∇ · Fv(v,∇ v) + Sms. (6.7)

The numerical method is forced to search a solution vh in order to reduce the

right-hand side residue perturbed by the imposed solutions. In some sense, the manufac-

tured expression plays a role very similar to an exact solution. Although the manufactured

expressions have no physical consistency, their use can be valuable for validating the ca-

pability of the software implementation in dealing with the inconsistencies and to attain

the problem convergence, since that expressions exercise all the equation terms (ROY et

al., 2007).

6.3.3 Testing Workflow

The problem domain is a straight rectangle, over which a p-reĄnement array

of tests was performed using a 64 uniform quadrilateral and a 128 uniform triangular

meshes as can be seen in the Figure 6.5. The analytical expressions of the manufactured

solution are used to impose boundary conditions and the maximum values of them used

as reference values for the non-dimensionalization of the PDE system (see 3.5 for further

explanation).

Figure 6.5 Ű Meshes employed in the diffusive validation tests.

The Ćux terms on the faces are approximated using the Roe numerical Ćux

for the convective terms and the BR1 for the diffusive ones. The dynamical viscosity µ is

constant on the simulation domain and over time. The polynomial order p ranges from 0

to 4. The parameters of 6.6 used in the experiment are listed in Table 6.4 and were based

on the reference literature (ROY et al., 2007).
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immediate lower order for each case starting in p = 1,. The order p = 0 was initialized

using a homogeneous Ąeld and the problem of solving the higher orders from scratch was

circumvented. The CFL number ranges from 10 to 500. Large values are possible given

the regularity of the mesh used in the test and the good behaviour of the manufactu-

red solutions here used. The tests was performed in a machine equipped with a 40-core

processor Xeon-E5. The high interpolation order enabled the multithreading parallelism

available in Manticore.

6.3.4 Validation

For evaluating the solver accuracy, the L2-norm

EL2 =

√∫

Ω
(v − vms)

2 d V , (6.8)

was used and v represents each Ąeld variable. The way to the error norm should decre-

ase is related to conditions of the problem tested and the discretization type (SZABO;

BABUSKA, 2011, pp. 195). The manufactured solution 6.6 is continuous and analytic

on the domain simulation Ω and its boundaries, which implies that is a Category A pro-

blem of the Szabó and BabuškaŠs classiĄcation (SZABO; BABUSKA, 2011, pp. 170).

For problems in this category it is expected exponential convergence when p-reĄnement

is performed (SZABO; BABUSKA, 2011, pp. 195).

Figures 6.7 and 6.8 show the L2 error graphics and the respective angular

coefficients for each variable are given in Tables 6.6 and 6.7. L2 error is reduced for all

the variables, and the rate of convergence is grow, as expected in the literature.
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6.4 Turbulent Terms Validation

6.4.1 Overview

For the validation of the turbulent terms (F t and St), a similar scheme to that

used for the laminar terms is employed, the use of manufactured expressions. The smooth

and well-behaved manufactured expressions presented in 6.6 are here used given that the

main purpose of this work is to implement RANS schemes in a high order DG framework

for validating them and not to solve realistic turbulent cases. As previously stated, realistic

cases in turbulence demand mesh reĄnement and software infrastructure (such as MPI

parallelism, multi-grid, among others) currently not available in the Manticore numerical

engine.

6.4.2 Sinusoidal manufactured solution in a regular grid

The manufactured expressions have the form seen in 6.6 and are used as exact

solutions for the primitive variables of the array [ρ u v p ν̃]T . As previously stated, the

manufactured expressions 6.6 are not exact solutions for the RANS PDE system. When

the Ąeld variables are substituted by their corresponding expressions, an extra source term

Sms will be generated

∂v
∂ t

+ ∇ · Fc(v) = ∇ · Fv(v,∇v) + ∇ · F t(v,∇v) + St(v,∇v) + Sms. (6.9)

6.4.3 Testing Workflow

The test performed was to use the same manufactured expressions 6.6 (with

an extra equation for the eddy viscosity) and meshes 6.5 employed in the laminar tests

to observe the performance of the RANS implementation in conducing the problem to

convergence. The analytical expressions were used to impose boundary conditions. The

reference values for the non-dimensionalization corresponds to the maximum of the ma-

nufactured expressions.

The numerical Ćuxes used are the HLLC for the convective and the BR1 for

the diffusive and turbulent ones. The polynomial order p ranges from 0 to 3, and the

CFL number from 0.5 to 30 for all the tests. The dynamical viscosity µ is constant on

the simulation domain and over time. The parameters of 6.6 used in the experiment are

listed in Table 6.8.

The parameters values used for the four Navier-Stokes variables are the same

employed in the laminar tests and are based on the reference literature (ROY et al., 2007).

The values for the turbulent variable was chosen to have at most the same magnitude

order of the dynamic viscosity, seen in Table 6.5. The results for the triangular mesh with

p = 3 is seen in Figure 6.9.
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7 CONCLUSION

This work was focused on implementing the RANS approach Spalart-Allmaras

by extending the compressible Ćow engine implemented in the framework Manticore, a

numerical engine for DG-FEM applications, after which a sequence of validation tests

was performed. The tests validated each term of the Navier-Stokes and the RANS PDE

systems.

The convective validation using the simpliĄed problem of inviscid vortex de-

monstrated that the DG numerical approximation implemented in Manticore was able

to solve the EulerŠs equations and obtaining a consistent error reduction. The additional

and more challenging problem of the smooth bump conĄrmed the previous ascertainments

when verifying that the inviscid solver achieves the expected solution with a controlled

entropy creation, reduced as the reĄnement (in this case a pure interpolation order reĄ-

nement) is increased. In addition, the ability of the numerical engine in dealing with high

order mesh curvatures also was conĄrmed.

The diffusive and turbulent terms validation employed smooth and regular

manufactured problems for circumventing the computational requirements of the realistic

cases. Due to the software infrastructure limitations still presented in the ManticoreŠs

engine, the accomplishment of the tests set was extremely difficult, thereby inducing

the seek for a less demanding way of demonstrating the convergence of the numerical

methods implemented. The error curves for both diffusive and turbulent cases showed that

the L2 error decreases with the interpolation order reĄnement following an exponential

convergence. Such sequence of tests demonstrated that the implemented solvers are able

to achieve convergence for certain classes of problems derived from the Navier-Stokes

equations, conĄrming the correctness of the software infrastructure.

We intend to continue with the development based on the ManticoreŠs in-

frastructure in order to extend the set of test cases supported by the numerical engine.

Nonetheless, it is expected that some basic improvements will be necessary before we are

able to do it. First of all, the MPI paralellism must be concluded in order to simulate

cases with large meshes, since the multithreading paralellism native of the Python libra-

ries is not sufficient for dealing with the considered cases. We also have realized that the

implicit time-integration is taking a long time to evaluate the residue derivatives, due

to the technique currently implemented evaluates the residue for each Ąeld variable seri-

ally and calculates the derivatives via Ąnite differences. It can be enhanced by employing

multiprocess evaluation or automatic differentiation (which could be executed in GPU).

Also it is considered the construction of a full-implicit time-integration scheme, unlike the
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approach followed up to the moment, in order to construct a global system that could be

more easily solved with a multithreaded CPU or even in a GPU machine.
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Appendix A – SOFTWARE EXCERPTS

A.1 Elemental Entity Class

1 class ExpansionEntity ( CoGeometry ) :

2 " " " This c l a s s d e f i n e s a s i n g l e e l ementa l expansion ( a . k . a . f i n i t e element ) .

3

4 " " "

5

6 __slots__ = [

7 ’ _geotype ’ , ’ _type ’ , ’ _subtype ’ , ’_ID ’ , ’ _seqID ’ , ’ _role ’ , ’ _key ’ ,

8 ’ _fc_n1d ’ , ’ _vol ’ , ’ var ’ , ’ c t e ’ , ’ f i e l d ’ , ’ c t e _ f i e l d ’ , ’ vertex_var ’ ,

9 ’ v e r t e x _ f i e l d ’ , ’ vertex_map ’ , ’ op ’ , ’_gID ’ , ’DR’ , ’ _dof ’ , ’ _eqID ’

10 ]

11

12 def __init__ ( s e l f , geotype , volmap , facemap ) :

13 " " " Constructor o f ExpansionEntity o b j e c t s .

14

15 Args :

16 geotype (geom . StandardGeometry ) : type o f geometr ic i n t e r p o l a t i o n .

17

18 volmap ( CollapsedToGlobalMaps ) : s tandard reg ion to g l o b a l mapping .

19

20 facemap ( CollapsedToGlobalFaceMaps ) : s tandard reg ion to

21 g l o b a l mapping r e s t r i c t e d to f a c e s .

22

23 A t t r i b u t e s :

24 _geotype (geom . StandardGeometry ) : type o f geometr ic i n t e r p o l a t i o n .

25

26 _type ( dg types . StdRegionType ) : modal DG standard reg ion

27

28 _subtype ( dg types . RegionAdapter ) :

29

30 _ID ( np . uint64 ) : Ent i ty id , from mesh generator

31

32 _seqID ( np . uint64 ) : S e q u e n t i a l ID , f o r book keeping

33

34 _role ( dg types . Ent i tyRole ) : e n t i t y ’ s r o l e ( p h ys i ca l ,

35 ghost , comm_ghost )

36

37 _key ( ExpansionKey ) : expansion key a s s o c i a t e d to t h i s element .

38

39 _fc_n1d ( array ) : number o f i n t e g r a t i o n p o i n t s re q u i re d f o r face

40 communication between two elements with d i f f e r e n t expansions

41 max( _key . n1d , ng . n1d ) at each face .

42

43 _dof ( array ) : g l o b a l id ’ s o f the degrees o f freedom of t h i s element .

44 DOF’ s are s e q u e n t i a l a t each element : i t i s only necessary to

45 s t o r e the f i r s t and l a s t +1.

46

47 var ( l i s t ( Fie ldVarLis t ) ) : model/ problem names o f f i e l d s

48 i n t e r p o l a t e d by the DG polynomial expansion . These f i e l d s can

49 be : s t a t e v a r i a b l e s , r e s i d u a l v a r i a b l e s , a u x i l i a r y v a r i a b l e s .

50

51 c t e ( Fie ldVarLis t ) : model/ problem names o f f i e l d s t h a t are constant

52 by element .
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53

54 f i e l d ( l i s t ( Loca lF ie ld ) ) : model/ problem v a l u e s o f f i e l d s

55 i n t e r p o l a t e d by the DG polynomial expansion . These

56 f i e l d s can be : s t a t e v a r i a b l e s , r e s i d u a l v a r i a b l e s ,

57 a u x i l i a r y v a r i a b l e s .

58

59 c t e _ f i e l d ( np . array ) : model/ problem v a l u e s o f f i e l d s t h a t are

60 constant by element .

61

62 vertex_var ( Fie ldVarLis t ) : model/ problem names o f f i e l d s t h a t are

63 i n t e r p o l e d by v e r t e x nodal shape f u n c t i o n s .

64

65 v e r t e x _ f i e l d ( Loca lF ie ld ) : model/ problem v a l u e s o f

66 f i e l d s t h a t are i n t e r p o l e d by v e r t e x nodal shape

67 f u n c t i o n s .

68

69 vertex_map ( d i c t ) : map from g l o b a l v e r t i c e s IDs to l o c a l i n d i c e s

70 (V−>l o c a l v e r t e x index ) .

71

72 DR ( np . array ) : r e s i d u a l d e r i v a t i v e .

73

74 " " "

75

76 a s s e r t geotype in std_geometry_as_list ( )

77

78 s e l f . _geotype = geotype

79 s e l f . _type = RegionInfo . mesh_to_dg (geom( geotype ) )

80

81 s e l f . _subtype = RegionAdapter .WADG

82 s e l f . _ID = np . u int64 (0 )

83 s e l f . _seqID = np . u int64 (0 )

84 s e l f . _role = EntityRole .GHOST

85 s e l f . _gID = 0

86 s e l f . _key = None

87 s e l f . _fc_n1d = array ( ’ I ’ , [ ] )

88 s e l f . _vol = 0 .

89 s e l f . _dof = array ( ’ I ’ , [ 0 , 0 ] )

90 s e l f . _eqID = np . u int64 (0 )

91

92 s e l f . var = [ None for i in range ( F ie ldRole . s i z e ( ) ) ]

93 s e l f . c t e = None

94 s e l f . f i e l d = [ None for i in range ( F ie ldRole . s i z e ( ) ) ]

95 s e l f . c t e _ f i e l d = None

96 s e l f . vertex_var = None

97 s e l f . v e r t e x _ f i e l d = None

98 s e l f . vertex_map = None

99 s e l f .DR = np . z e r o s (0 )

100

101 #

102 # The StdBackward operator i s i d e n t i c a l to the PhysBackward

103 # one . No need f o r an e x t ra fu nc t i o n c a l l i n g overhead .

104 #

105 # s e l f . op [ 0 ] = factory_stdbackward1d (DG_Quadrangle )

106 # s e l f . op [ 1 ] = factory_stdbackward1d ( DG_Triangle )

107 s e l f . op = [ None , None ]

108

109 #

110 # Parents i n i t i a l i z a t i o n

111 #
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112 ExpansionNeighbourhood . __init__ ( s e l f , s e l f . _type )

113 CoGeometry . __init__ ( s e l f , volmap , facemap )

114

115 def i n i t _ v a r i a b l e s ( s e l f , stv , r sv = [ ] , axv = [ ] ) :

116 " " " I n i t i a l i z e the f i e l d s i n t e r p o l a t e d by the DG expansion

117 wi th in the element .

118

119 Args :

120 s t v ( l i s t ( F i e l d V a r i a b l e ) ) : S ta t e v a r i a b l e s

121

122 rsv ( l i s t ( F i e l d V a r i a b l e ) ) : Res idua l v a r i a b l e s

123

124 axv ( l i s t ( F i e l d V a r i a b l e ) ) : A u x i l i a r v a r i a b l e s

125

126 " " "

127

128 r o l e = s e l f . _role

129 key = s e l f . _key

130

131 i f ( r o l e == EntityRole .PHYSICAL) :

132

133 S = ExpansionSize . get ( s e l f . _type , key . order )

134 N = key . n2d

135

136 a s s e r t S > 0

137 a s s e r t N > 0

138

139 s tv_s i z e = len ( s tv )

140 s e l f . var [ F ie ldRole . State ] = Fie ldVarL i s t . get_instance (∗ s tv )

141 s e l f . f i e l d [ F ie ldRole . State ] = Loca lF i e l d ( stv_s ize , N, S)

142

143 r sv_s i z e = len ( r sv )

144 i f len ( r sv ) > 0 :

145 s e l f . var [ F ie ldRole . Res idua l ] = Fie ldVarL i s t . get_instance (∗ r sv )

146 s e l f . f i e l d [ F ie ldRole . Res idua l ] = Loca l F i e l d ( rsv_s ize , 0 , S )

147

148 axv_size = len ( axv )

149 i f len ( axv ) > 0 :

150 s e l f . var [ F ie ldRole . A u x i l i a r 1 ] = Fie ldVarL i s t . get_ins tance (∗ axv )

151 s e l f . f i e l d [ F ie ldRole . A u x i l i a r 1 ] = Lo ca l F i e ld ( axv_size , 0 , S )

152 s e l f . var [ F ie ldRole . A u x i l i a r 2 ] = Fie ldVarL i s t . get_ins tance (∗ axv )

153 s e l f . f i e l d [ F ie ldRole . A u x i l i a r 2 ] = Lo ca l F i e ld ( axv_size , 0 , S )

154

155 sz = rsv_s i z e ∗ S

156 s e l f .DR. r e s i z e ( ( sz , sz ) , r e f c h e c k=False )

157

158 e l i f ( r o l e == EntityRole .COMM_GHOST) :

159 S = ExpansionSize . get ( s e l f . _type , key . order )

160 N = key . n2d

161

162 a s s e r t S > 0

163 a s s e r t N > 0

164

165 s tv_s i z e = len ( s tv )

166 s e l f . var [ F ie ldRole . State ] = Fie ldVarL i s t . get_instance (∗ s tv )

167 s e l f . f i e l d [ F ie ldRole . State ] = Loca lF i e l d ( stv_s ize , N, S)

168

169 e l i f ( r o l e == EntityRole .GHOST) :

170 # We need the expansion from the neighbour ( p h y s i c a l elment )



89

171

172 kn = s e l f . get_neighbour (0 ) . key

173 N = kn . n1d + 1 # <−−− Note : the c o r r e c t s i z e i s n1d+1! K&S , p . 558

174

175 s tv_s i z e = len ( s tv )

176 s e l f . var [ F ie ldRole . State ] = Fie ldVarL i s t . get_instance (∗ s tv )

177 s e l f . f i e l d [ F ie ldRole . State ] = Loca lF i e l d ( stv_s ize , N)

178

179 else :

180 raise Asse r t i onErro r ( " Malformed Expansion e n t i t y ! " )

181

182 def i n i t _ c t e s ( s e l f , ctv ) :

183 " " " I n i t i a l i z e the constant f i e l d s wi th in the element .

184

185 Args :

186

187 c t v ( l i s t ( F i e l d V a r i a b l e ) ) : cons tant f i e l d s .

188

189 " " "

190 i f len ( ctv ) > 0 :

191 s e l f . c t e = Fie ldVarL i s t . get_instance (∗ ctv )

192 s e l f . c t e _ f i e l d = np . z e r o s ( len ( ctv ) )

193

194 def i n i t _ v e r t e x _ v a r i a b l e s ( s e l f , vtv ) :

195 " " " I n i t i a l i z e f i e l d s t h a t are i n t e r p o l e d by v e r t e x nodal

196 shape f u n c t i o n s .

197

198 Args :

199

200 v t v ( l i s t ( F i e l d V a r i a b l e ) ) : v e r t e x f i e l d s .

201

202 " " "

203 i f len ( vtv ) > 0 :

204 s e l f . vertex_var = Fie ldVarL i s t . get_instance (∗ vtv )

205 s e l f . v e r t e x _ f i e l d = Lo ca l F i e ld (

206 len ( vtv ) , s e l f . _key . n2d , number_of_edges ( s e l f . _geotype ) )

207

208 def init_vertex_map ( s e l f , v e r t i c e s _ l i s t ) :

209 " " " I n i t i a l i z e the map from g l o b a l v e r t i c e s IDs to l o c a l

210 i n d i c e s .

211

212 Args :

213 v e r t i c e s _ l i s t ( i t e r a b l e ( np . uint64 ) )

214

215 " " "

216

217 a s s e r t len ( v e r t i c e s _ l i s t ) == number_of_edges ( s e l f . _geotype )

218 loca l_ idx = 0

219 for ver tex in v e r t i c e s _ l i s t :

220 s e l f . vertex_map [ ver tex ] = loca l_ idx

221 loca l_ idx += 1

222

223 @property

224 def type ( s e l f ) :

225 return s e l f . _type

226

227 @property

228 def subtype ( s e l f ) :

229 return s e l f . _subtype
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230

231 @subtype . s e t t e r

232 def subtype ( s e l f , va lue ) :

233 a s s e r t va lue in RegionAdapter

234 s e l f . _subtype = value

235

236 @property

237 def geom_type ( s e l f ) :

238 return s e l f . _geotype

239

240 @geom_type . s e t t e r

241 def geom_type ( s e l f , va lue ) :

242 a s s e r t va lue in std_geometry_as_list ( )

243 s e l f . _geotype = value

244 s e l f . _type = base_to_std_region [ geom( value ) ]

245

246 @property

247 def ID( s e l f ) :

248 return s e l f . _ID

249

250 @ID . s e t t e r

251 def ID( s e l f , va lue ) :

252 s e l f . _ID = np . u int64 ( va lue )

253

254 @property

255 def seqID ( s e l f ) :

256 return s e l f . _seqID

257

258 @seqID . s e t t e r

259 def seqID ( s e l f , va lue ) :

260 s e l f . _seqID = np . u int64 ( va lue )

261

262 @property

263 def gID ( s e l f ) :

264 return s e l f . _gID

265

266 @gID . s e t t e r

267 def gID ( s e l f , va lue ) :

268 s e l f . _gID = int ( va lue )

269

270 @property

271 def r o l e ( s e l f ) :

272 return s e l f . _role

273

274 @role . s e t t e r

275 def r o l e ( s e l f , va lue ) :

276 a s s e r t va lue in EntityRole

277 s e l f . _role = value

278

279 @property

280 def key ( s e l f ) :

281 return s e l f . _key

282

283 @key . s e t t e r

284 def key ( s e l f , k ) :

285 a s s e r t type ( k ) i s ExpansionKey

286 s e l f . _key = k

287 s e l f . op [ 0 ] = class_quad_stdbackward1d ( k )

288 s e l f . op [ 1 ] = class_tr ia_stdbackward1d ( k )
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289

290 @property

291 def n1d ( s e l f ) :

292 return s e l f . _key . n1d

293

294 @property

295 def volume ( s e l f ) :

296 return s e l f . _vol

297

298 @volume . s e t t e r

299 def volume ( s e l f , va lue ) :

300 a s s e r t va lue > 0 .

301 s e l f . _vol = value

302

303 @property

304 def dof ( s e l f ) :

305 return s e l f . _dof

306

307 @property

308 def eqID ( s e l f ) :

309 return s e l f . _eqID

310

311 def init_face_comm_sizes ( s e l f ) :

312 " " " Number o f i n t e g r a t i o n p o i n t s on each face .

313

314 Notes :

315

316 ∗ According to K&S p .558 , the number o f i n t e g r a t i o n p o i n t s

317 on each face must be n1d+1 f o r o b t a i n i n g the c o r r e c t mesh

318 convergence .

319 " " "

320 n = s e l f . n1d

321

322 i f ( ( s e l f . r o l e == EntityRole .PHYSICAL)

323 or ( s e l f . r o l e == EntityRole .COMM_GHOST) ) :

324 for ng in s e l f . ne igh :

325 s e l f . _fc_n1d . append (max(n + 1 , ng . n1d + 1) )

326

327 def face_comm_size ( s e l f , f f ) :

328 return s e l f . _fc_n1d [ f f ]

329

330 @property

331 def face_comm_sizes ( s e l f ) :

332 return s e l f . _fc_n1d

333

334 def s e t _ v e r t i c e s ( s e l f , V) :

335 CoGeometry . s e t _ v e r t i c e s ( s e l f , V)

336

337 n f a c e s = number_of_edges ( s e l f . _geotype )

338

339 i f n f a c e s == 3 :

340 s e l f . s e t _ f a c e _ v e r t i c e s (0 , V[ 0 ] , V[ 1 ] )

341 s e l f . s e t _ f a c e _ v e r t i c e s (2 , V[ 1 ] , V[ 2 ] )

342 s e l f . s e t _ f a c e _ v e r t i c e s (1 , V[ 2 ] , V[ 0 ] )

343 e l i f n f a c e s == 4 :

344 s e l f . s e t _ f a c e _ v e r t i c e s (0 , V[ 0 ] , V[ 1 ] )

345 s e l f . s e t _ f a c e _ v e r t i c e s (3 , V[ 1 ] , V[ 2 ] )

346 s e l f . s e t _ f a c e _ v e r t i c e s (1 , V[ 2 ] , V[ 3 ] )

347 s e l f . s e t _ f a c e _ v e r t i c e s (2 , V[ 3 ] , V[ 0 ] )
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348 else :

349 raise Asse r t i onErro r ( " I n c o r r e c t number o f f a c e s ! " )

350

351 def eva l_jacobian ( s e l f ) :

352 CoGeometry . eva l_jacob ian ( s e l f , s e l f . _geotype , s e l f . _key , s e l f . _fc_n1d )

353

354 def eval_mass ( s e l f ) :

355 CoGeometry . eval_mass ( s e l f , s e l f . _type , s e l f . _key )

356

357 def eval_face_char_length ( s e l f ) :

358 pass

359

360 def normals_tangents ( s e l f , face_id , n , t ) :

361 # The c o r r e c t number o f i n t e g r a t i o n p o i n t s on f a c e s i s n1d+1,

362 # see K&S p . 5 5 8 .

363 k = Inte rpo la t i onKey . get_instance ( s e l f . _geotype , s e l f . _key . n1d + 1 ,

364 face_id )

365 s e l f . _fmap . normals_tangents (k , s e l f .C, n , t )

366

367 def g e t _ f i e l d ( s e l f , r o l e , f i e ld_type , v ) :

368 " " " Get f i e l d . " " "

369 return s e l f . f i e l d [ r o l e ] . get ( f i e ld_type , s e l f . var [ r o l e ] ( v ) )

370

371 def s t a t e ( s e l f , f i e ld_type , v ) :

372 r o l e = Fie ldRole . State

373 return s e l f . f i e l d [ r o l e ] . get ( f i e ld_type , s e l f . var [ r o l e ] ( v ) )

374

375 def r e s i d u a l ( s e l f , f i e ld_type , v ) :

376 r o l e = Fie ldRole . Res idua l

377 return s e l f . f i e l d [ r o l e ] . get ( f i e ld_type , s e l f . var [ r o l e ] ( v ) )

378

379 def a u x i l i a r 1 ( s e l f , f i e ld_type , v ) :

380 r o l e = Fie ldRole . A u x i l i a r 1

381 return s e l f . f i e l d [ r o l e ] . get ( f i e ld_type , s e l f . var [ r o l e ] ( v ) )

382

383 def a u x i l i a r 2 ( s e l f , f i e ld_type , v ) :

384 r o l e = Fie ldRole . A u x i l i a r 2

385 return s e l f . f i e l d [ r o l e ] . get ( f i e ld_type , s e l f . var [ r o l e ] ( v ) )

386

387 def copy_f i e ld ( s e l f , e ) :

388

389 i f ( ( s e l f . _role == EntityRole .PHYSICAL)

390 or ( s e l f . _role == EntityRole .COMM_GHOST) ) :

391

392 for r o l e in Fie ldRole :

393 s e l f . f i e l d [ r o l e ] . copy ( FieldType . ph , e . f i e l d [ r o l e ] )

394 s e l f . f i e l d [ r o l e ] . copy ( FieldType . tr , e . f i e l d [ r o l e ] )

395

396 def g e t _ f a c e _ f i e l d ( s e l f , f i e l d _ r o l e , v , face_id , face_values ) :

397

398 i f ( ( s e l f . _role == EntityRole .PHYSICAL)

399 or ( s e l f . _role == EntityRole .COMM_GHOST) ) :

400 # Returns v a l u e s at i . p . s on the face :

401 s e l f . op [ s e l f . _type ] . at_ips ( face_id ,

402 s e l f . g e t _ f i e l d ( f i e l d _ r o l e , FieldType . tr ,

403 v ) , face_va lues )

404

405 e l i f ( s e l f . _role == EntityRole .GHOST) :

406 # Values are a l ready s t o r e d at i . p . s on the face but , in
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407 # t h i s case , i t on ly makes sense f i e l d _ r o l e==Fie ldRo le . S ta t e

408 # and f i e l d _ t y p e==FieldType . ph ) .

409

410 a s s e r t f i e l d _ r o l e == Fie ldRole . State

411

412 np . copyto ( face_values , s e l f . g e t _ f i e l d ( f i e l d _ r o l e , FieldType . ph , v ) )

413

414 else :

415 raise Asse r t i onErro r ( " Malformed Expansion e n t i t y ! " )

416

417 def get_face_f ie ld_as_pass ive ( s e l f , f i e l d _ r o l e , v , actV , actF , actNIP ,

418 pasF , face_va lues ) :

419

420 a s s e r t ( ( s e l f . _role == EntityRole .PHYSICAL)

421 or ( s e l f . _role == EntityRole .COMM_GHOST) )

422

423 face_values = s e l f . op [ s e l f . _type ] . at_ips_as_passive (

424 actV , actF , actNIP , pasF ,

425 s e l f . g e t _ f i e l d ( f i e l d _ r o l e , FieldType . tr , v ) , face_va lues )

426

427 def get_cte ( s e l f , v ) :

428 return s e l f . c t e _ f i e l d [ s e l f . c t e ( v ) ]

429

430 def set_cte ( s e l f , v , va lue ) :

431 s e l f . c t e _ f i e l d [ s e l f . c t e ( v ) ] = value

432

433 def get_ver tex_f i e ld ( s e l f , f i e ld_type , v ) :

434 return s e l f . v e r t e x _ f i e l d . get ( f i e ld_type , s e l f . vertex_var ( v ) )

435

436 def get_vertex_value ( s e l f , v , node_global_id ) :

437 a s s e r t node_global_id in s e l f . vertex_map

438 return s e l f . v e r t e x _ f i e l d . get (

439 FieldType . tr , s e l f . vertex_var ( v ) ) [ s e l f . vertex_map [ node_global_id ] ]

440

441 def set_vertex_value ( s e l f , v , node_global_id , va lue ) :

442 a s s e r t node_global_id in s e l f . vertex_map

443 s e l f . v e r t e x _ f i e l d . get (

444 FieldType . tr ,

445 s e l f . vertex_var ( v ) ) [ s e l f . vertex_map [ node_global_id ] ] = value

446

447 def __repr__( s e l f ) :

448

449 msg = ’<{} ( ID : {} , seqID : {} , geo : {} , subtype : {} , r o l e : {}) ’ . format (

450 s e l f . __class__ , s e l f . ID , s e l f . seqID ,

451 geometry_name ( s e l f . geom_type ) , s e l f . subtype , s e l f . r o l e )

452 msg += ’ \n{} ’ . format ( s e l f . key . key )

453 msg += ’ \ nVer t i c e s : {} ’ . format ( s e l f . g e t _ v e r t i c e s ( ) )

454 msg += ’ \nNodal c o o r d i n a t e s : \ n{} ’ . format ( s e l f . g e t_c oe f f ( ) )

455 msg += ’ \ nNeighborhood ( [ ’

456

457 neigh = s e l f . get_neighbourhood ( )

458 for ng in neigh :

459 i f ng i s not None :

460 msg += ’ {} ’ . format ( ng . ID)

461

462 msg += ’ ] ) ’

463

464 msg += ’ \n>’

465
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466 return msg

A.2 Weak form of the convective residual

1 class weak_dg_convective_residual (

2 EntityOperator ,

3 model_description_mixin ,

4 equation_domain_signature ,

5 expansion_numbers ) :

6

7 def __init__ ( s e l f , model_desc ) :

8 model_description_mixin . __init__ ( s e l f , model_desc )

9 equation_domain_signature . __init__ ( s e l f )

10 expansion_numbers . __init__ ( s e l f )

11 EntityOperator . __init__ ( s e l f )

12

13 s e l f . innerpg = [ None , None ] # InnerProductGradient [ quad , t r i a ]

14 s e l f . innerp_t = [ None , None ] # InnerProduct1d [ quad , t r i a ]

15 s e l f . Fx = np . z e r o s (0 )

16 s e l f . Fy = np . z e r o s (0 )

17 s e l f . inner_temp = [ np . z e r o s (0 ) , np . z e r o s (0 ) ]

18

19 s e l f . temp = np . z e r o s (0 )

20 s e l f . aux = np . z e r o s (0 )

21

22 i f exec_dir==ExecDirec t ive .NS_VALIDATION:

23 s e l f . i n n e r p va l = [ None , None ] # InnerProduct2d [ quad , t r i a ]

24 s e l f . e v a l S r c = [ None , None ]

25

26 s e l f . eq_dir = model_desc . get_equat ions ( ) [ 0 ] . data . name

27

28 #RANS t u r b u l e n c e

29 #I n s t a n t i o n o f the t u r b u l e n c e model

30 s e l f . turb_model = turb_model_t ( model_desc )

31

32 i f s e l f . eq_dir==’ turbu l ent ’ :

33 s e l f . i n n e r p va l = [ None , None ] # InnerProduct2d [ quad , t r i a ]

34 s e l f . e v a l S r c = [ None , None ]

35

36 def setup ( s e l f , eqname , domain ) :

37 equation_domain_signature . setup ( s e l f , eqname , domain )

38 matname = s e l f . desc . get_equation ( eqname ) . mat

39 s e l f . f l u i d = s e l f . desc . get_mater ia l (matname)

40

41 i f exec_dir==ExecDirec t ive .NS_VALIDATION:

42 g = s e l f . f l u i d . thermo . gamma

43 cp = s e l f . f l u i d . thermo . Cp

44 cv = s e l f . f l u i d . thermo . Cv

45 mu = s e l f . f l u i d . t r a n s p o r t .mu

46 Pr = s e l f . f l u i d . t r a n s p o r t . Pr

47 k = mu∗cp/Pr

48

49 # Get a n a l y t i c a l e xpre s s ion

50 s e l f . f v a l = ns_va l idat ion ( g , mu, k , cv )

51

52 def conta iner_operator ( s e l f , group , key , c o n t a i n e r ) :

53 k = ExpansionKeyFactory . make( key . order , key . nip )

54

55 r e g i o n s = [ StdRegionType . DG_Quadrangle , StdRegionType . DG_Triangle ]
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56 for r in r e g i o n s :

57 expansion_numbers . eval ( s e l f , r , k ) # s e t nS and nQ=k . n2d

58 s e l f . inner_temp [ r ] . r e s i z e ( ( s e l f . nS , ) , r e f c h e c k=Fals e )

59

60 s e l f . innerpg [ r e g i o n s [ 0 ] ] = class_quad_physinnerproductgrad2d ( k )

61 s e l f . innerpg [ r e g i o n s [ 1 ] ] = c lass_tr ia_phys innerproductgrad2d ( k )

62

63 s e l f . innerp_t [ r e g i o n s [ 0 ] ] = class_quad_physinnerproduct1d

64 s e l f . innerp_t [ r e g i o n s [ 1 ] ] = c lass_tr ia_phys innerproduct1d

65

66 s e l f . Fx . r e s i z e ( ( s e l f .nQ, ) , r e f c h e c k=False )

67 s e l f . Fy . r e s i z e ( ( s e l f .nQ, ) , r e f c h e c k=False )

68

69 s e l f . temp . r e s i z e ( ( key . nip +1 ,) , r e f c h e c k=False )

70 s e l f . aux . r e s i z e ( ( key . nip +1 ,) , r e f c h e c k=False )

71

72 i f exec_dir==ExecDirec t ive .NS_VALIDATION or s e l f . eq_dir==’ turbu l ent ’ :

73

74 s e l f . i n n e r p va l [ r e g i o n s [ 0 ] ] = class_quad_physinnerproduct2d ( k )

75 s e l f . i n n e r p va l [ r e g i o n s [ 1 ] ] = c lass_tr ia_phys innerproduct2d ( k )

76

77 s e l f . e v a l S r c [ r e g i o n s [ 0 ] ] = class_quad_physevaluator2d ( k )

78 s e l f . e v a l S r c [ r e g i o n s [ 1 ] ] = c las s_tr ia_physeva luator2d ( k )

79

80

81 def __call__ ( s e l f , e ) :

82 " " " Eva luates the c o n v e c t i v e r e s i d u a l o f a s i n g l e element .

83

84 The usua l __call__ () i s prov ided to be used as a s tanda lone

85 r e s i d u a l e v a l u a t o r ( i t w i l l m u l t i p l y the r e s i d u a l s by the

86 i n v e r s e o f the mass matrix ) . I f you need to use i t as a par t o f

87 a b i g g e r r e s i d u a l e v a l u a t i o n ( Navier−Stokes , f o r ins tance ) , you

88 shou ld r e s o r t to e v a l ( ) .

89 " " "

90

91 # Check se tup was done

92 a s s e r t s e l f . domain

93

94 # Set nS and nQ f o r t h i s element

95 expansion_numbers . eval ( s e l f , e . type , e . key )

96

97 s e l f . eval ( e )

98

99 Residual_p = ResidualWsp_p . get_instance ( s e l f . nS )

100

101 # M^{−1} product

102 IM = e . get_inv_mass ( )

103 t r = FieldType . t r

104

105 InverseMassOperator [ e . subtype ] . s o l v e (

106 IM, Residual_p . rho , e . r e s i d u a l ( tr , F i e l d V a r i a b l e .RHO) )

107 InverseMassOperator [ e . subtype ] . s o l v e (

108 IM, Residual_p . rhou , e . r e s i d u a l ( tr , F i e l d V a r i a b l e .RHOU) )

109 InverseMassOperator [ e . subtype ] . s o l v e (

110 IM, Residual_p . rhov , e . r e s i d u a l ( tr , F i e l d V a r i a b l e .RHOV) )

111 InverseMassOperator [ e . subtype ] . s o l v e (

112 IM, Residual_p . rhoe , e . r e s i d u a l ( tr , F i e l d V a r i a b l e .RHOE) )

113

114 for name , var in s e l f . turb_model . f i e l d v a r i a b l e s :
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115 var_res = getattr ( Residual_p , name)

116 InverseMassOperator [ e . subtype ] . s o l v e (

117 IM, var_res , e . r e s i d u a l ( tr , var ) )

118

119 def eval ( s e l f , e ) :

120 " " " Eva luates the r e s i d u a l wi thout the i n v e r s e mass matrix .

121

122 Note :

123

124 ∗ This r e s i d u a l e v a l u a t i o n ’ k e r n e l ’ i s u s e f u l f o r

125 combining with more complex r e s i d u a l s ( e . g . a r t i f i c i a l

126 d i s s i p a t i o n , v i s c o u s f low , e t c . )

127 " " "

128 # F i l l i n g the p r i m i t i v e v a r i a b l e s workspace

129 Primitive_v = PrimitiveWsp_v . get_instance ( s e l f .nQ)

130 Primitive_v . f i l l ( e , s e l f . f l u i d )

131

132 # Zeroing r e s i d u a l s

133 Residual_p = ResidualWsp_p . get_instance ( s e l f . nS )

134 Residual_p . ze ro ( )

135

136 # Volumetric opera t ions

137 s e l f . volumeContribution ( e )

138

139 # Facia l opera t ions

140 s e l f . f a c eCo n t r i b u t i o n ( e )

A.3 Turbulent Residual

1 def factory_weak_dg_turbulent_res ( conv_flux_t , visc_f lux_t , turb_model_t ) :

2

3 weak_dg_viscous_res = factory_weak_dg_viscous_res ( conv_flux_t ,

4 visc_flux_t , turb_model_t )

5

6 i f turb_model_t == Spal lardAlmaras :

7

8 TurbModel_v = RANS_SA_Wsp_v

9 TurbModel_f = RANS_SA_Wsp_f

10 weak_dg_viscous_res = factory_weak_dg_viscous_res ( conv_flux_t ,

11 visc_flux_t , turb_model_t )

12

13 class weak_dg_turbulent_res ( weak_dg_viscous_res ) :

14

15 def __init__ ( s e l f , model_desc ) :

16

17 weak_dg_viscous_res . __init__ ( s e l f , model_desc )

18 s e l f . Re = model_desc . g e t _ r e f e r e n c e ( ) . Re # Reynolds

19 s e l f . r a n s _ s e t t i n g s = model_desc . get_rans_sett ings ( )

20 s e l f . f e a t u r e = s e l f . r a n s _ s e t t i n g s . f e a t u r e

21 s e l f . cv1 = s e l f . r a n s _ s e t t i n g s . cv1

22 s e l f . Pr_e = s e l f . r a n s _ s e t t i n g s . Pr_e

23 s e l f . sigma = s e l f . r a n s _ s e t t i n g s . sigma

24 s e l f .D = s e l f . r a n s _ s e t t i n g s .D

25

26 def setup ( s e l f , eqname , domain ) :

27

28 weak_dg_viscous_res . setup ( s e l f , eqname , domain )

29 matname = s e l f . desc . get_equation ( eqname ) . mat

30 s e l f . f l u i d = s e l f . desc . get_mater ia l (matname)
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31 s e l f . cp = s e l f . f l u i d . thermo . Cp

32 s e l f . gamma = s e l f . f l u i d . thermo . gamma

33

34 #I t c o n s t r u c t s the source terms e v a l u a t i o n f o r SA model

35 accord ing to the

36 #c o n s i d e r a t i o n o f t r a n s i t i o n s t a t e or not

37 turb_source = factory_turbulent_source ( s e l f . f e a t u r e )

38 s e l f . turb_sourceContr ibut ion = turb_source ( s e l f . desc , s e l f . f l u i d )

39 s e l f . turb_model . cp = s e l f . cp

40

41 def eval ( s e l f , e ) :

42 " " " Eva luates the r e s i d u a l wi thout the i n v e r s e mass matrix .

43

44 " " "

45 super ( ) . eval ( e )

46

47 # Volumetric terms opera t ions

48 s e l f . turb_volumeContribution ( e )

49

50 # Facia l terms opera t ions has been e v a lu a t e d t o g h e t e r with the

51 # laminar v i s c o u s f l u x because the regarded methods are d e f ined

52 # on TurbulenceModels . py

53

54 #Volumetric opera t ions f o r the t u r b u l e n c e models

55 def turb_volumeContribution ( s e l f , e ) :

56

57 Tau_v = TauWsp_v . get_instance ( s e l f .nQ)

58 p_wsp = PrimitiveWsp_v . get_instance ( s e l f .nQ)

59 Residual_p = ResidualWsp_p . get_instance ( s e l f . nS )

60 TurbModelWsp_v = TurbModel_v . get_instance ( s e l f . nS , s e l f .nQ)

61 RANS_SAPrimWsp_v = RANS_SAPrimitiveWsp_v . get_instance ( s e l f .nQ)

62

63 mu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .MU)

64 dudx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DUDX)

65 dudy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DUDY)

66 dvdx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DVDX)

67 dvdy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DVDY)

68

69 #Viscous Newtonian tensor e v a l a u t i o n

70 Tau11 ( mu, dudx , dvdy , Tau_v . t11 )

71 Tau12 ( mu, dudy , dvdx , Tau_v . t12 )

72 Tau22 ( mu, dudx , dvdy , Tau_v . t22 )

73

74 J = e . get_jacobian ( )

75 IM = e . get_inv_jacobian_matrix ( )

76 inner_temp = s e l f . inner_temp [ e . type ]

77 innerpg = s e l f . innerpg [ e . type ]

78 i nn e r p va l = s e l f . i n ne r p va l [ e . type ]

79 Reynolds = s e l f . Re

80

81 #

82 # FIRST EQUATION: Zero .

83 #

84

85 ### V i s c o s i t y r a t i o : mu_e/mu

86 mu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .MU)

87 rhonu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHONU)

88

89 #Cho = rhonu/mu
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90 np . d i v i d e ( rhonu , mu, out=TurbModelWsp_v . Cho)

91 #Cho^3

92 np . power (TurbModelWsp_v . Cho , 3 , out=TurbModelWsp_v . flux_aux1 )

93 #Cho^3+cv1 ^3

94 np . add (TurbModelWsp_v . flux_aux1 , s e l f . cv1 ∗∗3 , out=TurbModelWsp_v .

flux_aux2 )

95 #fv1 = Cho^3/(Cho^3+cv1 ^3)

96 np . d i v i d e (TurbModelWsp_v . flux_aux1 , TurbModelWsp_v . flux_aux2 ,

97 out=TurbModelWsp_v . fv1 )

98

99 #mu_e = rho ∗nu∗ f v1

100 np . mul t ip ly ( rhonu , TurbModelWsp_v . fv1 , out=TurbModelWsp_v .mu_e)

101

102 #

103 # SECOND EQUATION:

104 #

105 np . mul t ip ly (TurbModelWsp_v .mu_e, Tau_v . t11 , out=TurbModelWsp_v .

flux_aux1 )

106 np . mul t ip ly (TurbModelWsp_v .mu_e, Tau_v . t12 , out=TurbModelWsp_v .

flux_aux2 )

107

108 innerpg ( J , IM, TurbModelWsp_v . flux_aux1 , TurbModelWsp_v . flux_aux2 ,

inner_temp )

109 inner_temp /= Reynolds

110 Residual_p . rhou += inner_temp

111

112 #

113 # THIRD EQUATION:

114 #

115 np . mul t ip ly (TurbModelWsp_v .mu_e, Tau_v . t22 , out=TurbModelWsp_v .

flux_aux3 )

116

117 innerpg ( J , IM, TurbModelWsp_v . flux_aux2 , TurbModelWsp_v . flux_aux3 ,

inner_temp )

118 inner_temp /= Reynolds

119 Residual_p . rhov += inner_temp

120

121 ###Turbulent thermal c o n d u t i v i t y , k_e

122 np . mul t ip ly ( ( s e l f . gamma/ s e l f . Pr_e ) , TurbModelWsp_v . mu_e, out=

TurbModelWsp_v . k_e)

123

124 #

125 # FOURTH EQUATION:

126 #

127 np . mul t ip ly (p_wsp . u , TurbModelWsp_v . flux_aux1 , out=TurbModelWsp_v .

flux_tmp1 )

128 np . mul t ip ly (p_wsp . v , TurbModelWsp_v . flux_aux2 , out=TurbModelWsp_v .

flux_tmp2 )

129 np . mul t ip ly (p_wsp . u , TurbModelWsp_v . flux_aux2 , out=TurbModelWsp_v .

flux_tmp3 )

130 np . mul t ip ly (p_wsp . v , TurbModelWsp_v . flux_aux3 , out=TurbModelWsp_v .

flux_tmp4 )

131

132 np . add (TurbModelWsp_v . flux_tmp1 , TurbModelWsp_v . flux_tmp2 , out=s e l f .

Fx)

133 np . add (TurbModelWsp_v . flux_tmp2 , TurbModelWsp_v . flux_tmp3 , out=s e l f .

Fy)

134

135 dedx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DEIDX)
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136 dedy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DEIDY)

137

138 s e l f . Fx += np . mult ip ly (TurbModelWsp_v . k_e , dedx )

139 s e l f . Fy += np . mult ip ly (TurbModelWsp_v . k_e , dedy )

140

141 innerpg ( J , IM, s e l f . Fx , s e l f . Fy , inner_temp )

142 inner_temp ∗= −1./ Reynolds

143 Residual_p . rhoe += inner_temp

144

145 #

146 # FIFTH EQUATION:

147 #

148 mu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .MU)

149 dnudx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDX)

150 dnudy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDY)

151

152 TurbulentFlux_5_X (mu, rhonu , ( 1 . / s e l f . sigma ) ∗dnudx , TurbModelWsp_v .

flux_aux1 , s e l f . Fx )

153

154 TurbulentFlux_5_Y (mu, rhonu , ( 1 . / s e l f . sigma ) ∗dnudy , TurbModelWsp_v .

flux_aux1 , s e l f . Fy )

155 innerpg ( J , IM, s e l f . Fx , s e l f . Fy , inner_temp )

156

157 inner_temp /= Reynolds

158 Residual_p . rhonu += inner_temp

159

160 #

161 #SOURCE TERMS FOR THE TURBULENCE VARIABLES

162 #

163 s e l f . turb_sourceContr ibut ion ( e , TurbModelWsp_v , RANS_SAPrimWsp_v,

PrimitiveWsp_v=p_wsp)

164 i nn e r p va l (TurbModelWsp_v . rhonu_res , J , inner_temp )

165

166 Residual_p . rhonu += inner_temp

167

168 D = s e l f .D. get ( e . ID)

169

170 #In case o f the RANS v a l i d a t i o n

171 i f exec_dir==ExecDirec t ive .RANS_VALIDATION:

172

173 C = e . g e t_ co e f f ( )

174 geo = e . geom_type

175 vmap = e . vmap

176 f = s e l f . r a n s _ s e t t i n g s . f

177 f .D = D

178

179 inner_temp = s e l f . inner_temp [ e . type ]

180 e va l S r c = s e l f . e v a l S r c [ e . type ]

181 i nn e r p va l = s e l f . i n ne r p va l [ e . type ]

182

183 s r c = e v a l S r c ( f . src_rho , C, geo , vmap)

184 i nn e r p va l ( src , J , inner_temp )

185 Residual_p . rho += inner_temp

186

187 s r c = e v a l S r c ( f . src_rhou , C, geo , vmap)

188 i nn e r p va l ( src , J , inner_temp )

189 Residual_p . rhou += inner_temp

190

191 s r c = e v a l S r c ( f . src_rhov , C, geo , vmap)
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192 i nn e r p va l ( src , J , inner_temp )

193 Residual_p . rhov += inner_temp

194

195 s r c = e v a l S r c ( f . src_rhoe , C, geo , vmap)

196 i nn e r p va l ( src , J , inner_temp )

197 Residual_p . rhoe += inner_temp

198

199 s r c = e v a l S r c ( f . src_rhonu , C, geo , vmap)

200 i nn e r p va l ( src , J , inner_temp )

201 Residual_p . rhonu += inner_temp

202

203

204 else :

205 raise RuntimeError ( " Model not implemented ! " )

206

207 return weak_dg_turbulent_res

A.4 Positivity Limiter

1 #Hard l i m i t i n g based on Landmann (2008) .

2 #This approach i s s p e c i f i c f o r the Spa lar t −Allmaras t u r b u l e n c e mode l l ing .

3

4 #P o s i t i v i t y l i m i t i n g f o r q u a d r i l a t e r a l s

5 class hard_limit_quad :

6

7 def __init__ ( s e l f ) :

8 pass

9

10 def __call__ ( s e l f , rhonu_coef f ) :

11

12 #Truncate the high order modes

13 #Apply the l i n e a r i z a t i o n

14 # s = −u0/min(−u1+u2 , −u1−u2 , u1−u2 , u1+u2 )

15 u0 = rhonu_coef f [ 0 ]

16 u1 = rhonu_coef f [ 1 ]

17 u2 = rhonu_coef f [ 2 ]

18

19 rhonu_coef f [ 1 : ] . f i l l ( 0 )

20

21 aux1 = np . array ([ −u1+u2 , −u1−u2 , u1−u2 , u1+u2 ] )

22 aux2 = aux1 . min( )

23

24 s = np . minimum(1 , −u0/aux2 )

25

26 rhonu_coef f [ 1 ] = s ∗u1

27 rhonu_coef f [ 2 ] = s ∗u2

28

29 #P o s i t i v i t y l i m i t i n g f o r t r i a n g l e s

30 class hard_l imit_tr iang :

31

32 def __init__ ( s e l f ) :

33 pass

34

35 def __call__ ( s e l f , rhonu_ceoef f ) :

36

37 u0 = rhonu_coef f [ 0 ]

38 u1 = rhonu_coef f [ 1 ]

39 u2 = rhonu_coef f [ 2 ]

40
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41 #u2>=u0 && u2<=−u0/2

42 u2 = np . minimum( u0 , u2 )

43 u2 = np . maximum(−u0 /2 , u2 )

44

45 #u1<=u2−u0 && u1>=u0−u2

46 u1 = np . maximum( u0−u2 )

47 u1 = np . minimum( u2−u0 )

48

49

50 class hard_l imit ing :

51

52 def __init__ ( s e l f , model_desc , turb_model_t ) :

53

54 s e l f . desc = model_desc

55 s e l f . f l u i d = None

56 s e l f . i n t e g = [ None , None ]

57 s e l f . bw = [ None , None ]

58 s e l f . op = [ [ None , None ] , [ None , None ] ]

59 #Minimum a c c e p t a b l e va lue f o r the eddy v i s c o s i t y from the SA model

60 s e l f . eps = 1e−14

61 s e l f . turb_model_t = turb_model_t

62 #Choose the l i m i t e r according to the element type

63 s e l f . l i m i t e r s _ s w i t c h e r = {0 : hard_limit_quad ( ) , 1 : hard_l imit_tr iang ( ) }

64

65 def conta iner_operator ( s e l f , group , key , c o n t a i n e r ) :

66

67 k = ExpansionKeyFactory . make( key . order , key . nip )

68

69 s e l f . i n t e g [ 0 ] = class_quad_physintegrator2d ( k )

70 s e l f . i n t e g [ 1 ] = c l a s s _ t r i a _ p h y s i n t e g r a t o r 2 d ( k )

71

72 s e l f . bw [ 0 ] = class_quad_physbackward2d ( k )

73 s e l f . bw [ 1 ] = class_tria_physbackward2d ( k )

74

75 ctx = EntityOperator . context s

76

77 s e l f . op [ ctx [ 0 ] [ 0 ] ] [ ctx [ 0 ] [ 1 ] ] = class_quad_wadg_physforward ( k )

78 s e l f . op [ ctx [ 1 ] [ 0 ] ] [ ctx [ 1 ] [ 1 ] ] = class_quad_rwadg_physforward ( k )

79 s e l f . op [ ctx [ 2 ] [ 0 ] ] [ ctx [ 2 ] [ 1 ] ] = class_tria_wadg_physforward ( k )

80 s e l f . op [ ctx [ 3 ] [ 0 ] ] [ ctx [ 3 ] [ 1 ] ] = class_tria_rwadg_physforward ( k )

81

82

83 def setup ( s e l f , eqname , domain ) :

84

85 equation_domain_signature . setup ( s e l f , eqname , domain )

86

87 matname = s e l f . desc . get_equation ( eqname ) . mat

88

89 s e l f . f l u i d = s e l f . desc . get_mater ia l (matname)

90

91 def __call__ ( s e l f , e ) :

92

93 ###Volumetric v a l u e s l i m i t i n g

94 #Recovering the p h y s i c a l v a l u e s

95 rhonu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHONU)

96 rho = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHO)

97

98 rhonu_min = np . amin ( rhonu )

99
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100 #Gett ing the c o r r e c t l i m i t e r c a s e according to the element type

101 hard_limit = s e l f . l i m i t e r s _ s w i t c h e r . get ( e . type )

102

103 i f rhonu_min < s e l f . eps :

104

105 #Reconstruct ing the inner expansion

106 rho = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHO)

107 rhonu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHONU)

108 rhonu_coef f = e . s t a t e ( FieldType . tr , F i e l d V a r i a b l e .RHONU)

109 l o g g e r . debug ( ’RHONU:{} ’ . format ( rhonu ) )

110 l o g g e r . debug ( ’ L imit ing the turbu lence v a r i a b l e s on the e lement {} ’ .

format ( e . ID) )

111

112 #Limit ing when the element mean va lue i s lower than the accepted minimum

113 i f rhonu_coef f [ 0 ] < s e l f . eps :

114

115 #When the mean va lue on the element i s negat ive , a l l the

c o e f f i c i e n t s shou ld be

116 #n u l l e d .

117 rhonu_coef f . f i l l ( s e l f . eps )

118

119 #Updating the current s t a t e

120 np . copyto ( e . s t a t e ( FieldType . tr , F i e l d V a r i a b l e .RHONU) , rhonu_coef f )

121

122 #The new v a l u e s are conver ted to the p h y s i c a l space

123 s e l f . bw [ e . type ] ( rhonu_coeff , e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .

RHONU) )

124

125 l o g g e r . debug ( ’RHONU:{} ’ . format ( e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .

RHONU) ) )

126

127 i f rhonu_coef f [ 0 ] > s e l f . eps and rhonu_coef f . shape [ 0 ] > 1 :

128

129 l o g g e r . debug ( ’ Truncating the h igher order modes on the element {} ’ .

format ( e . ID) )

130 hard_limit ( rhonu_coef f )

131

132 #Updating the current s t a t e

133 np . copyto ( e . s t a t e ( FieldType . tr , F i e l d V a r i a b l e .RHONU) , rhonu_coef f )

134 #The new v a l u e s are conver ted to the p h y s i c a l space

135 s e l f . bw [ e . type ] ( rhonu_coeff , e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .

RHONU) )

136

137 l o g g e r . debug ( ’RHONU:{} ’ . format ( e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .

RHONU) ) )

138

139 rhonu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHONU)

140 nu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .NU)

141 np . d i v i d e ( rhonu , rho , out=nu )

142 np . copyto ( e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .NU) , nu )

143

144 s e l f . op [ e . type ] [ e . subtype ] (

145 e . get_jacobian ( ) , e . get_inv_mass ( ) , rhonu ,

146 e . s t a t e ( FieldType . tr , F i e l d V a r i a b l e .RHONU) )

147

148 ###Face v a l u e s l i m i t i n g

149 # Access workspace s t o r a g e f o r face r e c o n s t r u c t i o n

150 FaceReconstruct_f = FaceReconstructWsp_f . get_instance (

151 ∗( e . face_comm_sizes ) , turb_model=s e l f . turb_model_t )
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152

153 num_faces = len ( e . ne igh )

154

155 #I t searches the i n d i c e s o f the p o i n t s in which the p o s i t i v i t y i s v i o l e d

.

156 for f f in range ( num_faces ) :

157

158 FaceReconstruct_f . r e c o n s t r u c t _ i n t e r n a l ( f f , e , s e l f . f l u i d )

159 cases_fac ia l_rhonu = np . where ( FaceReconstruct_f . rhonuI [ f f ] < s e l f .

eps )

160

161 i f cases_fac ia l_rhonu :

162

163 l o g g e r . debug ( ’ L imit ing the turbu lence v a r i a b l e s on the e lement

{} , f a c e {} ’ . format ( e . ID , f f ) )

164 l o g g e r . debug ( ’RHONU: {} ’ . format ( cases_fac ia l_rhonu ) )

165

166

167 class Limite r Invoker :

168

169 def __init__ ( s e l f , model_desc , turb_model_t , l im i te r_type ) :

170

171 s e l f . l i m i t e r = ( globals ( ) [ l im i te r_type ] ) ( model_desc , turb_model_t )

172 s e l f . covered_cases = [ EqType .RANS_SA, EqType .RANS_SST]

173 s e l f . _desc = model_desc

174

175 def apply ( s e l f , cm) :

176

177 # Access l i s t o f PHYSICAL subdomains

178 subds = SubDomainRoleIterator (cm) . f i n d ( EntityRole .PHYSICAL)

179

180 for s in subds :

181 eqs = s e l f . _desc . get_data ( s . name) . equat ions

182

183 for eq in eqs :

184

185 eqtype = s e l f . _desc . get_data ( eq ) . type

186

187 i f eqtype in s e l f . covered_cases :

188 s e l f . l i m i t e r . setup ( eq , s . name)

189 foreach_entity_in_subdomain ( s , s e l f . l i m i t e r )
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