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RESUMO

Saber o comportamento do sistema de freio é essencial para simular as forcas em uma com-
posicao ferrovidria (locomotiva + vagoes). Detalhar o seu funcionamento € particularmente util
para a andlise de seguranca, otimizacdo de performance, investigacdo de acidentes, eficiéncia
da malha, etc. A valvula de freio automatica é um fundamento da infraestrutura ferroviaria e
o componente principal usado durante a frenagem. Em composi¢des longas, sua acdo € crucial
para garantir que o tempo de frenagem dos veiculos € curto para evitar choques excessivos nos
aparelhos de choque-tracdo. Em simuladores ferrovidrios de tempo real o tempo de execugdo
¢ importante e a complexidade da resposta da vdlvula é um desafio para os desenvolvedores
de programa. A inten¢do deste trabalho € criar um modelo que possa representar 0 compor-
tamento da vdlvula de freio automadtica de forma precisa e rdpida. Para atingir este objetivo
sdo investigados a linearidade do sistema e métodos para a sua adequada representacdo. Para a
abordagem nao linear, o trabalho explora redes neurais NARX como caixa preta e o impacto na
alteracdo de seus parametros. Um programa que representa a valvula ABDX de freio € elabo-
rado e sua precisao ¢ avaliada em relacao ao objetivo e o tempo de execugdo ¢ comparado com
os algoritmos atualmente disponiveis, mostrando uma redu¢do de mais de trés vezes no tempo

de processamento.

Palavras—chave: Vilvula de freio automatica; simulacdo ferrovidria; ARX; NARX; Redes

Neurais



ABSTRACT

Knowing the behaviour of the brake system is essential to properly simulate the forces within a
railway composition (locomotive + freight cars). Detailing how it works is particularly useful
on the safety analysis, performance optimization, accident investigation, network efficiency,
etc. The automatic brake valve is the mainstay of the rail brake infrastructure and the main
component used during the braking. In long compositions, its action is crucial to guarantee that
the time until the last car to brake is short enough to prevent shocks in the draft gears. In real-
time train simulators, the processing time is important, and the complexity of the valve response
is a challenge for the software developers. The intent of this work is to create a model that can
represent the automatic valve behaviour in a fast and accurate way. To achieve this objective
the linearity of the system and the adequate representation methods are investigated. For the
nonlinear approach, the work explores a black box NARX Neural Network and the impact of
changing its parameters. A program that represents the ABDX valve is concocted, the accuracy
against the target is assessed and the running time is compared with a model currently used in

simulators, showing a reduction of more than three in the processing times.

Keywords: Automatic Brake Valve, Rail Simulation, ARX, NARX, Neural Networks
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1 INTRODUCTION

Rail transport is characterised by two main factors: It is guided, i.e. the rails guide
the vehicle and the consist tend to be long and interconnected. In the specific case of heavy
haul transport, compositions tend to have more than 50 vehicles with one or more traction units,
or locomotives.The cost of building a rail network is very high. However, once the tracks are
laid the challenge is to improve efficiency by transporting the largest amount of cargo with less
energy and time.

The travel of the vehicles over the track is quite tricky and complicated. Wagons
-that are unpowered vehicles - have very peculiar damping and dynamics and, specially on grain
applications, the centre of gravity can be quite high, particularly for metre gauge tracks. There
are other concerns as well, such as considerations of maximum (and minimum) turn speeds due
to superelevation, forces on the shock absorption apparatus, power required to increase or to
reduce speed, braking performance, etc.

In order to improve the capacity of cargo transported on the same infrastructure, rail
operators rely on the increase of the number of compositions on the network and the increase of
their speed. Though studies can be done using the compositions themselves - what is popular
among some professionals - they are safer if done using simulators.

A proper simulator for the longitudinal dynamics must contain several sub-modules
such as the shock apparatus behaviour, inertia of the system, energy balance for acceleration,
deceleration, etc. One of such modules is the brake behaviour, that can be divided into two
parts, the brake valve and the pressure flow on the consist.

Current state of art in this area uses complex Navier-Stokes equations to describe
the pressure and volume flows (Teodoro, 2016). This approach yields good results. Nonewith-
standing the fact that the Navier-Stokes equations do not have analytical solutions, the model
had to resort to numerical integration. In order to maintain the numerical stability and assure
convergence, the time steps have to be quite short, what with current technologies, implies on a
long running time.

The extra time required to run the brake performance algorithm increases the time
required for optimisation running the simulator and thus reduce its usability. Therefore, there is

an opportunity to reduce the running time by using a mathematical model to replace the Navier-
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Stokes model. If the longitudinal dynamics models can run faster with comparable precision,
there are more opportunities to try different optimization techniques or even try to improve the
model further. A longitudinal dynamics simulation that runs faster can also be used to train
conductors, among other applications.

This trend in machine learning and making the models more nimble and suited to
specific applications is part of a broader revolution. At the time of this writing, there are two
competitive models for autonomous train conduction. Neither applies the brakes without the
engineer input. An addition such as the one presented may help in improving such commercial
models.

Moving forward, models can be done to take into account the wear and tear of the
systems and/or assessing each consist with a particular behaviour based on each individual con-
sisting vehicle. Further, the models can learn and adapt to different conditions on the fly. Cases
such as rain, difficult adhesion and even cold weather air leaks could potentially be identified
and modelled by a system that not only is aware of its environment and components but also
improves without external inputs.

Locomotives and circulation could also benefit from machine learning models. The
vehicle flow depending on the different boundary conditions - such as neighbouring traffic, rain,
the proximity of a school to the tracks, etc. - could be learned and the schedule could be nudged
to improve safety and efficiency. On the locomotives, models for the wear of components and
technologies such as digital twins or sensor fusion to improve performance could be using to
run them cheaper and for longer, reducing maintenance and fuel consumption.

This work presents a small part of a set of tools that promise to change the railways
and other applications in the near future.

A brief history of the railways in Brazil can be found on appendix 1. It tells the
conditions that allowed its growth and points some possibilities to explain its reduction in size

- but not importance.

1.1 Objective

This work aims to develop a fast and accurate mathematical approach to overcome
the current Navier-Stokes method for applications in simulators, employing artificial intelli-

gence tools.
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1.2 Structure of the Work

This work starts with an introduction to the subject and an overall panorama of the
the relevance and the objective.

The second chapter reviews the basic concepts what are going to be used, back-
ground and the physical implementation of the problem

Chapter three presents the inputs considered for the linearity evaluation as well as
reviews the methods to be used on the problem modelling. It also presents the results of the
model application and selects the proper method to be used on the rest of the work.

Chapter four redefines the inputs for the ADBX valve instead of the AB used on the
previous chapter and explores the impact of the number of delays and neurons on the training
results of an open neural network.

Chapter five closes the neural network and prepares for its deployment as well as
addresses the issues that have risen with closing the artificial neural network.

Chapter six implements the service brake simulator and solves issues with the model
when the individual parts are assembled. The chapter also contains the comparison between the
original model and the proposed model.

Chapter seven updates the models with the emergency brakes and again compares
the performance of the different models.

Chapter 8 contains the conclusion and next possible works.
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2 BASIC CONCEPTS

Consists consist in two main types of vehicles, wagons and locomotives. The loco-
motives are the powered vehicles that provide the force to start the movement, keep it and also
provide part of the braking effort. Trains have three main braking means, two on the locomotive
and one on the wagons. For braking, the locomotive can use the Dynamic Brake - when it turns
the traction motors into generators and exerts a torque contrary to movement. This is used to
control and adjust the speed during travel and is the preferred way to do so because it not only
reduces the wear on the brake shoes but also allows for a finer speed adjustment. The other
brake system on the locomotive is the air brake on the wheels, that acts similarly to the ones
on the wagons - that will be explained shortly - and is seldom used during normal travel, being
reserved for when the locomotive is alone or for parking.

Wagons consist of a container - where goods are transported-, wheel base assembly
- wheels, suspension, damping, etc. - shock apparatus, and the pneumatic brakes - our main
interest on this work. The standard brake system on the heavy haul freight wagon consists on a
brake pipe (EG) that acts as pressure connection between the vehicles on the consist. It acts as
both communication - for an increase or decrease in pressure will activate the automatic brake
valve - and as pressure source to feed the system. The brake pipe is connected at each end to
the other vehicle on the composition via flexible hose and a cut out cock. In general, these pipes
are made of schedule pipe of 1 1/2". The Automatic Brake Valve is connected to the brake pipe,
the auxiliary reservoir (RA), the emergency reservoir (RE), the brake cylinder (CF), the relief
retention valve and the load/unloaded valve. A basic topology is presented on figure 2.1

There are many types automatic brake valves, henceforth called valve. Its basic
functionality is to compare the pressure of the brake pipe and the aux reservoir and allows
pressure to flow from the former to the brake cylinder, actuating the brake pad and causing an
extraction of power from the wheel in case the brake pipe has a lower pressure than the aux
reservoir. This is called service brake application. If the pressure on the brake pipe raises more
than 2 psi, the valve releases the pressure of the brake cylinder, removing the force, and starts
to fill the aux reservoir. This is called brake release. If the valve sensed the rate of pressure
drop on the brake pipe to be higher than a designated threshold, it then applies the maximum

force to the cylinder in what is called "emergency application". The particularities of the types
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of automatic brake valves are going to be discussed on a specific section.

The cylinder then exerts force in a set of levers that in turn force the brake shoe
into the wheel. This system has some peculiarities, such as the resilience of the lever assembly
that may reduce or increase the force applied or the course of the cylinder, altering its internal

volume and thus pressure. A representation of this system can be seen on figure 2.2

Brake Pipe (BP)

to other vehicles to other vehicles

Relief retention
Automatic

brake Valve
Emergency
Reservoir
Load/unloaded

valve

Brake Cylinder

Figure 2.1 — Basic topology of heavy haul freight wagon brake system

Brake Cylinder
—
—e-
— @\
—e-
Prgssure g \
inlet \
Brake A\
Wheel lever A
Fulerum

Brake
shoe

Figure 2.2 — Basic topology of heavy haul freight wagon brake system

The brake pipe responds to the command of the conductor. The contemporary brake

systems are in most part computer aided and have a similar function as the 26L system from
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NYAB - New York Air Brake Co. The automatic brakes lever is integrated on the control stand
- that control the brake on the wagons via brake pipe. The independent brake lever is located on
the lower position on the control stand and commands the air brakes for the locomotive.

The conductor positions the automatic brake lever at the desired service position and
though a set of valves, actuators, control volumes and sensors, the computer sets the pressure
of the brake pipe at the pressure commanded by the lever. So, the locomotive brake system
translates a STEP input into a pressure decrease on the brake pipe. There are cases where
locomotives are remotely controlled. In such, the leader locomotive sends signals to properly
set other locomotives in the consist that apply the brakes accordingly. Figure 2.3 shows the

basic topology of the locomotive automatic brake system.

Air [T A Secondary 26L Brake Lever on the
Brake Pipe
To other vehicle To other vehicle b

Figure 2.3 — Basic topology of locomotive automatic brake system

The pressure then travels through the pipe and the consist - what can be a quite long
travel, from 50 to 100 wagons, what translates to about 1000 m and, at each vehicle or couple
of vehicles, the automatic brake valve senses the pressure difference between the brake pipe
and the brake cylinder. The valve then applies the pressure from the aux reservoir to the brake
cylinder, depleting the former and increasing the pressure on the latter, as mentioned before.

Though very important, the effect of the delay caused by the travel time of the
pressure wave and associated chocks will not be part of this study at this point in time. It is
believed that such effects can be addressed at a later date with little change to the program and

the method chosen.

2.1 Typical brake commands

This commands represent positions on the valve 26-C (or equivalent on the CCBII

- Electronic brake system) that is the handle on the control stand (figure 2.4).
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Figure 2.4 — 26-C valve that commands the 26-L brake system (NYAB, 1964)

e Release / Running: when the system starts and the locomotive(s) provide air to the various
reservoirs and equalise all pressures at the designated running pressure - typically 90 psi.
Once charged, the brakes will be ready for operation and will be on the release position.
Note: When the brake system reservoirs are at ambient pressure the brake shoes are not
applied and the consist is on a non brake position. On the absence of pressure on the
brake system reservoirs, the consist must be on a plane and/or the parking brakes must be

applied.

e Minimum Reduction position: minimum brake pressure is obtained on the brake pipe and
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a minimum application of pressure on the cylinder, typically, 6 psi.

Service position: Increase on the pressure reduction on the brake pipe and increase on
the applied force on the brake shoe by the brake cylinder. Once the pressure decrease is
achieved on the brake valve, lapping occurs and there is no more air flow between the
brake pipe and the reservoirs and brake cylinder, keeping the pressure stable. This occurs

when the brake pipe pressure and aux reservoir pressure are the same.

Suppression position: It applies full service brake - typically 64 psi on the brake pipe -

there is also a suppression of the overspeed control and safety application.

Handle-off position: the handle can be removed on this position (or locked in place using
a pin). It is the position to be used on trailing units on a multi unit consist or locomotives
being towed "dead". This apply full service brakes. In Brazil, the brake handle shall be
placed in this position when the conductor leaves the cabin. Brazil uses a single person

operation regimen, i.e. there is no helper, just the conductor.

Emergency position: this applies the emergency brake to the consist. Emergency ap-
plication commands higher pressure to the cylinder. Care shall be taken to prevent the
wheel from locking, in which case, the braking effort will be reduced due to wheel slip.
There are other events that may cause the application of the emergency brakes, such as
the conduction companion, when present, may activate the valve located in the cabin or if
there is a break on the train that causes the pressure on the brake pipe to fall at a velocity

sufficiently high to apply the emergency brakes.

Types of automatic brake valves

There are three main automatic brake valve models in use in Brazil.: AB, ABD and

ABDX. The DB60 valve is equivalent to the ABDX. Figure 2.5 shows a typical location of an

automatic brake valve on a freight car.

2.2.1

AB

The AB valve is the most simple of those that work with the pressure difference

between aux reservoir and brake pipe (figure 2.6). It connects the brake pipe with the freight car

components (reservoir and brake cylinder) and has three sections. The centre section that acts
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Figure 2.5 — Typical location of the valve on a freight car.

as inlet and outlet and contains the emergency equalising reservoir. The emergency portion that
monitors the pressure gradient comparing with the rate of pressure decrease of the emergency
equalising reservoir to decide if the pressure change is an emergency application and also iden-
tify the relief by the increase in pressure. This is done by the movement of the internal parts
of emergency control valve and its internal pressures. The service portion controls the service
brake applications as well as the brake relief by the movement caused by the pressure differ-
entials on the service control valve. The service portion also has the relief retention valve that

assures the release of the brakes

222 ABD

The ABD valve is the evolution of the AB valve (figure 2.7). The control valves are
now on the vertical position rather than on the horizontal. This has greatly reduced unwanted
applications - especially of emergency brakes - due to longitudinal pressure shocks. The basic
functions of the valve were kept the same with the exception of the relief assurer that was altered
to connect the emergency reservoir to the brake pipe, increasing the pressurisation speed of the

later and thus increasing the propagation speed of the relief signal on the consist

223 ABDX

Again the ABD valve has evolved into the ABDW and then the ABDX valve. The
ABDW valve was not well received in Brazil and all were replaced or converted to ABD or

ABDX. The main improvement of the ABDX valve (figure 2.8) is to enhance the pressure drop
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Figure 2.6 — Cross section of the AB automatic brake valve (Corréa, a). On the left is the
emergency portion and on the right the service portion.

Figure 2.7 — Cross section of the ABD automatic brake valve (Corréa, b). On the left is the
emergency portion and on the right the service portion

on the brake pipe during the brake application. The emergency control valve was modified to
allow the brake pipe to be connected to the atmosphere for a brief moment reducing the time to
achieve the desired pressure and thus improving the pressure signal propagation speed through

the train
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Figure 2.8 — cross section of the ABDX automatic brake valve (Corréa, c). On the left is the
emergency portion and on the right the service portion

2.3  Current Works on Brake Simulation

The understanding of the brake system improves the reliability and precision of the
train calculations, allowing new conduction routines, accident investigation, reduction of transit
time and other desirable investigations

The current state of the art of longitudinal train simulation models uses an automatic
brake valve algorithm based on orifices. The model simulates the pressurisation of the system
assuming atmospheric air to be a perfect gas and uses orifices to control and represent the mass
movements on the system and adjusting the model to reflect reality.

In previous works, Ribeiro (Ribeiro, 2017) adopted an orifice model based on mass
flow and pressure drop between reservoirs and valves and the system, initially proposed by Pugi
(Pugi et al., 2015). Teodoro (Teodoro, 2016) has proposed an improvement on the previous
method using finite volumes to model the compressed air flow through the system on a more
precise and detailed simulation with less simplifications.

Both methods use iterative numerical models and require time steps to be suffi-
ciently small in order to achieve stability, what may lead to long execution times. Teodoro et
al (Teodoro et al., 2019), have been working on reducing the calculation time by implementing
parallel computing both on the CPU and GPU.

The actual implementation of the algorithms for high performance simulation pur-
poses is done by calculating tables offline and porting these into the overall code. This way,

there is no substantial time impact. However, this workaround reduces the versatility of the sys-



38

tem and also creates a cumbersome maze of conditional statements that is not optimal and may
also increase the computational time. Nonetheless, the current methods present a good agree-
ment with the benchmark data provided by VALE, that sponsor the projects for the development
of brake models at UNICAMP.

An alternative to this approach is to create a mathematical concoction, that describe
the automatic brake valve behaviour. This way, it is possible to combine the speed of the
simplified model from Ribeiro (Ribeiro, 2017) and the precision of the finite volume model
from Teodoro (Teodoro, 2016) avoiding the tangle of conditional programming and the time
step limitation of the iterative numerical solvers, improving stability and allowing the codes to
run faster and precise.

For this, several seminal papers are listed on the reference section and serve as guid-
ance for the task of building this model (YOUNG; JAKEMAN, 1980) for the transfer function
estimates, (Ljung, 1987) and (Ljung; Soderstrom, 1983) for the overall knowledge of system
identification, (Forssell; Ljung, 1999) for the closed loop identification used on the linear mod-
els. These, however these may not be adequate for the problem of interest for they approach the
matter in a linear fashion.

Thus, in order to correctly represent the automatic air brake valve, one may have
to resort to non linear strategies. Though there are many options, NARX models based on
neural networks have been chosen for they seem to yield good results on these contexts. This
decision is based on the material available and proximity with the ARX method, as well as the
availability of the techniques

Also, the NARX applied to a non linear time series (Jr.; Barreto, 2006) and as a
black/grey box modelling strategy (Barbosa et al., 2011) and its parent method NARMAX are
quite versatile and may serve as a stepping stone for the modelling of locomotive parameters,

such as turbocharger speed, water pump pressure, etc. that shall be subject of future works

2.4 Trends on Machine Learning Applications on the Railway and Related Areas

In the last years, work has been done on the application of the latest techniques of
machine learning to rail applications. The field is by no means consolidated and there is still
a lot of development happening at universities and businesses. However, the machine learning
approach as well as other system identification techniques are sufficiently mature to be applied

to real life problems and their results to be evaluated in terms of pertinence and accuracy.
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One such work has done by Li et al (Li ef al., 2014) to improve travel speed and
predictive maintenance.

In terms of rail operation, neural networks are being used to foresee delays and al-
low for the traffic controllers to reorganise schedules to reduce overall impacts (Martin, 2016).
An interesting study by Prokhorchenko et al. (Prokhorchenko et al., 2019) uses artificial neural
networks to predict the time of arrival of cargo dispatched by rail in a non schedule system -
what is quire common in the Brazilian rail networks. Wen et al (Wen et al., 2019b) use Long
Term Short Memory (LTSM) model - a Recurring Neural Network (RNN) with limited memory
to predict delays on a Dutch railway line. On a subsequent paper, the same author investigates
data driven models for train dispatch (Wen et al., 2019a) and concludes that machine learning
shows potential in the field There are also studies that use Feed Forward Back Propagation Neu-
ral Networks (FFBNN) associated with Artificial Bee Colony (ABC) algorithms to predict the
position of moving vehicles (BabyAnitha; Duraiswamy, 2014) that could be used on intricate
rail networks or could be simplified to be used on reduced complexity networks

Carvalho et al. (Carvalho et al., 2019) provide an interesting and contemporary
overview of the use of machine learning in predictive maintenance. Coraddu et al. (Coraddu et
al., 2015) uses artificial intelligence and sensor fusion in the maintenance of complex machines
and overall CBM (Condition Based Maintenance). This could be applied to the locomotives
engines and motors in rail service. Sysyn et al. (Sysyn et al., 2019) uses inertial sensors on
the bogies to assess the remaining life of the components Black box modelling is being used to
asses abnormal noises on permanent magnet motors used on electric vehicles (Ma; Zuo, 2014).
This could be potentially used to identify premature bearing failures using the already installed
wayside infrastructure. Also, if modified could be used to assess locomotive traction motor
health using either on board sensors or the wayside instrumentation.

Another application of machine learning on the railways is the use of 2D convolu-
tion neural networks and vector support machines to identify wheel defects (Krummenacher et
al., 2018).

There are also several applications of machine leaning vision based strategies. On
a paper the author proposes a visual identification setup to inspect the rail and crossties using a
multitask learning framework and find defects on the various hardware with a limited training
set (Gibert et al., 2017). Several papers followed, focusing on the identification of defective or

missing fasteners - that may pose a serious danger to the operation of a railway - an inadequate
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fastener may cause a derailment that, depending on the conditions or the transported goods may
cause large scale accidents. One such paper uses machine vision to identify the fasteners and the
missing ones (Prasongpongchai et al., 2017) . Taheri et al (Taheri et al., 2019) uses successfully
an expert system to identify the fasteners, though with less efficiency than the machine vision
approach. Liu et al. (Liu et al., 2019) propose an approach with minimum annotated fastener
templates. They use a special a convoluted set of cameras to achieve excellent results.

Machine vision has also been used to increase user safety on platforms with the use
of cameras and lasers to engage alerts or even brake trains when the tracks are violated (Scholz,
2016).

There are works focused on the rails, specifically the geometry, the Lasisi and Attoh-
Okine uses a neural network to evaluate the TQI - track quality index - and another neural
network to identify defect predictors (Lasisi; Attoh-Okine, 2018). On a more recent work, they
propose the use of an unsupervised learning framework to connect the TQI with safety indexes
(Lasisi; Attoh-Okine, 2019).

Defect prediction on the tracks is one aspect of the machine learning application,
another is the scheduling of the repair as proposed by Gerum et al. (Gerum et al., 2019)

Consilvio et al.(Consilvio et al., 2020) propose a generic framework based on ma-
chine learning to manage the upkeep of assets of the railways - in their case study, earthworks
and track circuits.

There is also an interesting trend on using machine learning to simulate multi
body dynamics (MBD). Taheri and Ahmadian used a stochastic model to improve the dynamic
simulation of a rail vehicle with interesting results (Taheri; Ahmadian, 2016). Tsunashima
(Tsunashima, 2019) dynamic simulations, instrumentation and machine learning to detect track
defects using car-body vibrations.

As it can be seen by the extract of papers, there are several interesting applications of
machine learning techniques on rail problems and it is expected that, as the knowledge evolves,

more applications will arise.
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3 MATERIALS & METHODS

Current train air brake models use Navier-Stokes equations that have to be solved
using small step numerical integrations. This hinders the speed of current simulators and in-
crease the time to run, what reduces the usability of certain iterative optimisation methods such
as genetic algorithms. Also, another important use of simulators is to guarantee that safety is
achieved during the travel of new train models or on permanent ways with different character-
istics. Speed is also desirable in this case, for several iterations have to be run in order to create
"safety envelopes" for the various parameters.

The brake topology for this study is comprised of three main models. The one
that converts the step pressure commanded on the brake lever and is translated to a pressure
drop on the brake pipe by the 26-L system. A second model from the automatic brake valve
that correlates the pressure on the brake pipe to the auxiliary reservoir and a third model that
correlates the pressure drop on the brake pipe and on the aux reservoir to the increase in pressure
on the brake cylinder. Figure 3.1 shows the proposed topology. At this point, the model does not
take into account the position of the vehicle on the consist nor the pressure on the emergency
reservoir. Once the application of the methods is stablished, there will be little to no trouble in
adding these features to the model and training it again.

Brake handie Model Brake Pipe Aux Reservoir
command (STEP) STEP->BP Pressure (BP) > Pressure (AR)

Brake Cylinder Pressure
(BC)

Figure 3.1 — problem topology and required models

The strategy to address the problem is as follows (figure 3.2): first the problem will
be tested with two linear system identification approaches - ARX and Transfer Function esti-
mate - and a non linear machine learning approach - NARX. The results will then be evaluated
and the most appropriate method will be further investigated through permutations and evaluat-
ing what best parameter combination is the most suitable for the problem. Later, a program to

simulate the overall problem will be crafted and tested against the current model for speed and
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accuracy. Initially, in order to expedite the evaluations, the third model - between brake pipe
(BP) and auxiliary reservoir (AR) and the brake cylinder (BC) - will be used as a benchmark
in the assumption that it is the most complex - two inputs and one output (MISO). The other
models have a single input and output (SISO). Once the appropriate models and parameters
are chosen, the two remaining models will be made, deployed and compared with the current

Navier-Stokes solution

Input Current Navier-Stokes
definition model
i
linear
Results
[AR)(][TFBT] [NAR}(]
1 l l Resultevaluation Il
Preliminary result evaluation —
Problem simulation comparer i
1 and model deployment conclusion
—
Most suitable
identification strategy Model 1
(STEP > BP)
Model 2 Results
(BP -> AR)

Strategy definition

Model 3
(BP +AR > BC)

Figure 3.2 — overall strategy to address the problem

The first task at hand is to determine whether the system is linear or not - or if it can
be linearized with sufficient complexity.

A linear system is one that the output is a superimposition of the inputs. In nature -
and engineering by extension - no system is purely linear when seen close enough. Nevertheless,
most systems may be represented as linear, what makes most calculations easier and the results
acceptable.

A possible way to verify if a system is linear is to identify its gorverning equations
and then run with a subset of the data and see if it responds accordingly - within a margin of
error. If the the system equations are able to properly represent an envelope of data and values
properly but not data outside of it, one can still use and assume the model to be linear for that
envelope. However, if the boundaries of the area of interest cannot be properly represented by
the same model, the system cannot be assumed linear.

The first data set used to describe the system was made with the AB valve repre-
senting the pressure of the brake cylinder (BC) with the brake pipe (BP) and auxiliary reservoir

(AR) as inputs. This input and output combination was chosen for it is assumed to be more
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complex than the models described earlier.

The first linearization attempt was made using Auto Regressive eXogenous (ARX)
linear models. After this assessment, transfer function models based on Ljung’s article (Ljung,
2009) were used to try to improve the system identification - and check if the linearization
results were model related or problem related.

Since it is necessary to understand the space one is working on in regards to the
identification methods, a parameter sweep was performed using these two techniques. The
upper boundary is proposed as the limit where the computational effort of this approach is
deemed too long.

With the proposed boundary conditions - linear, sufficiently complex and computa-
tionally nimble - the purpose is to check which model can more accurately represent the physical
system at hand and identify if it is linear.

For the non linear attempts, the same rationale is used varying the number of neu-
rons. A more detailed outline will be shown on the next section

Errors are presented in relation to the estimated pressures.

3.1 Inputs for Linearity Assessment

The initial dataset was provided VALE and is based on their resident legacy software
called TOS, from Alion Science (Ribeiro, 2017) and is assumed to have been validated several
years ago. The same dataset was used at the work of Teodoro (Teodoro, 2016). This data was
obtained by tracing the graphs plotted by the program into paper and measuring the points with
aruler.

The AB automatic brake valve was chosen with the rationale that if the model is
able to comply with the behaviour of this configuration, it will also be able to comply with the
other - valves and vehicle numbers - provided properly instructed. The AB valve is still quite
popular on the freight fleet. If the model behaves accordingly, more modern valves will be used
on the latter part of this work

The normal operation of the brake valve consists into the translation of the pressure
signals into braking force on the car wheel. The valve compares the pressure of the BP with the
AR ( Auxiliary Reservoir) and applies the brakes according to the pressure difference. If the
pressure of the brake pipe is increased by at least 1.5 psi, the valve releases the pressure on the

brake cylinder and fills the aux reservoir with the pressure from the brake pipe.
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For the evaluation of the linear identification methods proposed at this stage, a
"training - or modelling- data package" was concocted. This consists of several brake appli-
cations and releases of both maximum and minimum intensity. The original pressure plateaus
were expanded in order to assess the model stability. Initially, the applications were very brief.
This expansions were made respecting the system transient and dynamic behaviour, i.e. only
the fully developed and stable plateaus were lengthened.

Figure 3.3 demonstrates the datasets used for the modelling. The top portion of the
figure is the output and the bottom are the two inputs. Note the relation between both inputs.
Though they have an intrinsic relation between themselves, it was decided that they will be kept

independent for the time being.
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Figure 3.3 — Modelling data : Brake Cylinder (top) Brake Pipe & Auxiliary Reservoir (bottom)
horizontal values are time [ds] and vertical values are pressure [psi]

In addition to this, several other datasets were concocted for model validation.
VALOLI is analogous to the modelling data, on different order of applications and releases. Data
VALO2 and VALO4 are minimum brake applications with different plateau lengths. The aim of
this is to train the system for different applications and assess if the system stabilises adequately
after applications. Finally, VALO3 is a single maximum brake application. The comparison
between VALO2 and VALO3 is crucial in the evaluation of ability of the proposed methods to
linearize the problem at hand. In other words, to assess if the identified model is sufficiently
complex to linearly represent a possibly non linear system.

Initially, the data available did not contain equally spaced steps in time. i.e. on the

transitions, the steps had an interval of seconds, whereas on the plateaus the steps were several
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seconds apart. This is a telltale of the graphic tracing method used to obtain this data. Though
the values are constant on the plateaus by definition, the methods require that the step time
difference to be constant. Therefore, the time series was rearranged around this requirement
by extending the plateaus with constant pressure values for the missing steps, assuming them
constant. The nature of the available data is discrete and the time step chosen was 1s. Figures
3.4 to 3.7 are the graphical representation of the additional test cases. Note that the application

varies in intensity - the scales change from picture to picture.
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Figure 3.4 — Validation VALO1- Top, output: Brake Cylinder - bottom, Input: Brake Pipe &
Auxiliary Reservoir. Horizontal values are time [ds] and vertical values are pres-
sure [psi]
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Figure 3.6 — Validation VALO3- Top, output: Brake Cylinder - bottom, Input: Brake Pipe &
Auxiliary Reservoir. Horizontal values are time [ds] and vertical values are pres-
sure [psi]
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Figure 3.7 — Validation VALO4- Top, output: Brake Cylinder - bottom, Input: Brake Pipe &
Auxiliary Reservoir. Horizontal values are time [ds] and vertical values are pres-
sure [psi]

3.2 Methods Used

Since the aim is to build a mathematical model that represents the automatic brake
valve and runs faster than the current physics based model, it is important to understand the
nature of the problem at hand. So, an investigation on wether the model is linear or non linear
1S paramount.

The use of linear systems to represent non linear systems is commonplace in me-

chanical engineering. An example that comes to mind is the description of the movement of a
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pendulum. For small angles, it is possible to replace the sine with the angle itself. However, for
large displacements, the error between the angle and the sine of the angle increases and yield
different results. The linear approach is not perfect and error free, nonetheless, the expectation
is that the error are so minimum in terms of the outputs, that they are acceptable.

Initially, two methods were selected, polynomial regression with exogenous values
(ARX) and a transfer function estimation model.

The ARX is one of the earlier and simpler models and is considered as a bench-
mark. The transfer function estimation is more complex and was chosen for there is a vast
mathematical toolbox developed within control engineering that uses the transfer functions as
a starting point. It is important to note, however, that the latter is frequency based. The NARX
was chosen as a starting point on the neural network class of models. It is a well developed

classical model that tend to be versatile and generally yields good results.

3.2.1 ARX (Auto Regressive eXogenous)

A straight forward way to find a relation between an input and output could be
though modelling of the equation errors, on an equation similar to eq 3.1. In this equation one
alters the variables a and b in order to minimize the error.

In this case, the AR is the Autoregressive part of the model or A(q)y(t) and the
eXogenous part is B(q)u(t). The parameters for the ARX model may be estimates using the
least squares linear regression.

Assuming the model,

y(t)+ary(t—1)+- -+ any(t—na) = byu(t —nk)+- - -+ bppu(t —nb—nk+1)+e(t), (3.1)

where:

y(t) - output at time t;

n, - number of poles;

ny, - number of zeros +1;

ny - number samples before the outputs are affected by the input. Also known as
dead time;

y(t)---y(t — n,) - outputs dependent of the current input;

u(t —ng) -+ - y(t — ng — npy1) - delayed inputs that the current input depend upon;



48

e(t) - Error ;

Or in compact form,

A(q)y(t) = B(q)u(t — ny) + e(t), (3.2)

where ¢ is the delay operator.

Separating the equations,

Alg) =1+ alq_1 + -t ang " (3.3)

B(q) = b1 +bog™ + -+ 4 bug ", (3.4)

In the case of a MISO (Multiple Inputs, Single Output) system, nk and nb are

vectors. The Algorithm then solves a least square problem similar to,

(JT )0 =J"y, (3.5)

In equation 3.5, € is the parameter vector from the ARX method, .J is the regressors

matrix and y is the measured output,

0= (J'J)—1J"y, (3.6)

The ARX method was implemented using MATLAB native algorithm.

3.2.2 Transter Function Estimates

Alternative to the ARX, the transfer function estimate method was also explored.
The native MATLAB function "tfest" was used as standard implementation The algorithm is as

follows:

1. Perform Bilinear mapping to transform the domain into the transfer function domain;
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2. Use the S-K iteractions (Drmac et al., 2015) to solve the non linear least squares problem
- assuming several inputs and a single output. The non linear least square loss function

problem is as

ny zn

minimizep,, n, Z (W (wr) (y(wr) — Z

k=1 =1

Ni (wk)D(wk)

” i(wk))|2, (3.7)
where:

W = frequency independent weight;

D = Transfer Function denominator to be estimated;

N; = i-th numerator referent to the ¢-th input;

Yy = system output;

u = system input;

ny = number of frequencies;

n,, = number of inputs;

w = frequency;

Making the S-K iterations, the algorithm minimizes using iterating methods,

nf W Ny
minimizep,, v, . Z |%(Dm(wk)y(wk) — Z Ni(wp )i (wi )% (3.8)
k=1 7 =1

where:
m 18 the current iteration;
D,,,—1(w) is the denominator identified on the previous iteration;

Each step is a linear problem of least squares. where the identified parameters are the

solutions D,, (w) and N, ,,(w) fori =1,2,---  n,.
The iteration is initialized with Dy = 1. The actions of each iteration are described below.
e The first iteration identifies D;(w). D;(w) and N, ,,,(w) are polinomials expressed
on the monomial base;

e The second and subsequent iterations express D,,(w) and N; ,,,(w) in terms of ratio-
nal orthogonal base functions on the unit circle and are of such form:

By nfe0) = (Vo By L= D 20l (3.9)

q— >\j.m71 r—0 Q(W) - )\r,mfl ’
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where:

Aj.m—1 1s the j-th pole identified at the previous step m — 1;
Aj,m—1* is the complex conjugate of \; ,,,_1

q 1s the frequency domain variable on the unity disk;

e The algorithm run a maximum of 20 iterations that may be ended before that if there

is no significant change on the loss function (>0.001 on the last 3 iterations);

3. Perform linear refinements - The S-K iterations, even when converge, not always trans-
late on a local optimal solution. To find the critical point of the system, a second batch
of iterations are performed. The critical points are solutions to the non linear equation
groups. The algorithm searches for the critical point building linear approximations for
the non-linear equations solving successively the resulting linear equations on the least

squares sense. The equations are

e Equation for the j-th parameter of the denominator

AW @) B; o N (wr)u; (w)

0=2 Re
D T (KN T NCEN
(3.10)
(D(wi)y(wi) = > Nigm(witts(wi))},
i=1
e Equation for the j-th parameter of the numerator
’W wk |2B* *(wk) T
Z { |D 71((*)]@)‘2 ( (wk)y<wk) ; ) (wku (wk))}
(3.11)

The first iteration is initiated with the best solution found for the numerator /V; and de-
nominator D;, using the S-K iterations. Different from the S-K, the base function B; (w)
do not change at each iteration and the functions that yielded the best results are used. As

before, the algorithm runs for 20 iterations and the stop criteria is the same.

4. Return the transfer function parameters corresponding to the optimum solution within the

S-K iterations and linear refinement;

5. Invert the bilinear mapping from step 1;
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6. Perform an iterative refinement of step 5, in case it is not stable - we have chosen to
enforce the model stability - using a non-linear least square search. In other words, with
the flag activated, the algorithm will proceed with a search for a stable version of the

system - if it is available;

This methodology was adapted from MATLAB help on TFEST function. (YOUNG; JAKE-
MAN, 1980) (Ljung, 2009)

3.2.3 Model search algorithm for TFEST and ARX

Given the nature of the problem, its complexity and process instability it has been
chosen to perform a sweep on various pole and zero and delay values. The other option would
be to run manually the algorithm for each step. The various identified parameters should provide
a fair evaluation of the space we are working on and assess wether this is a suitable method or
not for the problem at hand.

The program runs all cases according to figure 3.8, comparing the model with the
estimation data and validation, from 1 to 4, averaging the adherences and calculating the stan-
dard deviation and record the 4 top models so far.

A total 30 poles and zeros is identified as well as delays from 0 to 4 seconds (the
data is organised in discrete steps, 1 second apart) on each of the input variables. The results do
not improve with the increased complexity and the computational times grow larger.

For the transfer function models, np > nz, i.e. the number of poles is larger than of

Z€1o08.
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Calculate top model and
print comparison and
pole location

np = numero de polos

npd = numero max. De polos
& = goodness of fit

m = estimated model

Ze = estimation data

2Zv = validation data

— =]

Rank and record 4 top
models

np+1

I

Estimate

Record AVG g(ll,Z\M-cJ)
Std S(m Zvirs )

T

Record &(m,Zvi< )

Figure 3.8 — Decision tree rationale for the search algorithm

3.2.4 NARX

The NARX models are a particular case of the NARMAX family. NARMAX stands
for Nonlinear autoregressive with moving average and exogenous variables, whereas, NARX
are Nonlinear autoregressive models with exogenous variables. Menezes (Jr.; Barreto, 2006)
proposes an interesting implementation of the NARX based on artificial neural networks or
ANN for short. This recurrent dynamic network has feedback connections on several of its
neurons.

The defining equation is
yn+1) = fly(n), - ,y(n —dy);u(n),u(n —1),--- ,u(n — d,)], (3.12)

where:

u(n) and y(n) are real and denote the input and output respectively;

n is the time (in this case, discreet );
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It can be written in the vector form as

y(n+1) = fly(n), u(n)), (3.13)

The function f is the one that needs to be approximated.
Figure 3.9 is a representation of the topology of the artificial neural network with the

input layer with its delays, the middle layer and the output layer. Once set, the ANN have to be

Lfn)

vinj

un-d,)

vin le%‘

vin-2) E J
B/
yvin-1) i j

[ e
L=

Figure 3.9 — A NARX network (Jr.; Barreto, 2006)

trained. The standard iterative back propagation algorithm can be used. There are, however, two
options for this training, parallel mode and Series-Parallel (SP) mode. The first uses estimated
regressors to train the output, making it less accurate. In the case at hand, we fill feed the actual
data to the training of the feedforward network. The equation for the SP training mode is as

follows

?/\(t) = A[ysp(t - 1)7 T 7y(t _ny);u(t>?u<t_ 1)7' o 7u<t_ du)]

-~

= [lysp(t = 1);u(t —1)],

For the training, initially, the Levenberg-Marquardt algorithm was chosen. Though

(3.14)

it requires more memory compared to the methods currently available on MATLAB artificial
neural network toolbox for time series, it is faster compared to the alternative methods. Al-
ternatively, Bayesian verification will also be used to tackle more complex cases, such as the
closed loop trainings later in this work. This technique uses the code implemented on MATLAB

(Foresee; Hagan, 1997) (MacKay, 1992)
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No result normalization was done for the ANN other than those on the already

implemented algorithms.

3.3 Method Selection

The algorithms performed accordingly and yielded results that are presented below
have been selected among the several created during the investigations. They present the best
achievable adherence with the given methods and implementations.

There is indication that the problem is not linear and may not be represented by
a linear model with reasonable complexity. Therefore, the non linear methods may be more

adequate to describe the problem at hand.

3.3.1 ARX

More than 252301 iterations were searched for the best ARX based model. The best
candidate has na = 1, nb = [30 30] and nk = [1 1} , where na is the order of the output
polynomial nb the input (Brake Pipe and Aux. Reservoir respectively) and nk, the delay. A
discrete time system was used with z as operator - in lieu of the continuous time s variable -
in other words, the study was done on using the discrete Z operator instead of the continuous
Laplace operator. The figures show the adherence of the estimated model in comparison to the
identification data. At first glance, one might consider the fit of 89.72% as adequate notwith-
standing, at a more careful inspection, it is possible to see on the figure 3.10 that the results are
not as expected, specially at the lower pressure levels of the minimum brake application.

The same undesirable effect can be seen on the validation 1 data (VALO1) - figure
3.11, where a good fit is found for the maximum applications - high pressures - and an unac-
ceptable fit on the lower pressures. It is clear from the results that the ARX with the selected
parameter set has not been able to properly represent the physical model or the legacy data
behaviour accordingly.

The same effect is seen on the individual applications. Figures 3.11, and 3.12 show
that the model can properly represent the maximum service pressure and fails at the minimum
service applications, at times provoking an instability that render the model useless for its in-
tended use.

For the ARX, a maximum order of 30 has used. It is assumed that above this, the

complexity is high and there would be little benefit in using the proposed model rather than the
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Simulated Response Comparison
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Figure 3.10 — Comparison between output of the model and legacy output.
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Figure 3.11 — Comparison between output of the model and legacy output - Validation data 1
& 2.

legacy approach.
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Figure 3.12 — Comparison between output of the model and legacy output - Validation data 4 &
3.

3.3.2 Transfer Function

For this method, the maximum number of poles was 20. No investigation of delays
was done for this method - it is more complex and takes more time to calculate, what goes
against the purpose of reducing the take taken to obtain the results. Same as previously, as
the data is organised in discreet steps, it was chosen to consider the time as discreet and the z
operator, rather than s was used (for the data is discrete and the computer, digital).

The best fit model has [19 16] and [14 11} poles for the brake pipe (BP) and
the aux reservoir (AR) inputs respectively. Although up to 20 poles were allowed, the more
complex model was not the one with better adherence. This seems to indicate that the physical
model might be within the designated number of poles. Figure 3.13 shows the model response
to the identification data and to validation data 1, that is purposely similar. The fit is 94.% for
the estimation data and 93% for the validation. The more complex method is more accurate
than the ARX. Nevertheless, there are still issues on the lower pressures or minimum brake
applications, what might indicate that the system is indeed non-linear.

Again, the model has a good representation of the problem, but accuracy lacks for
real use. On the validation data 02 to 04, figures 3.14 and 3.15 show the difficulty of the model
in representing the minimum brake applications. The figures show the overshoots and swings
the model goes through to represent the behaviour

For the maximum application, figure 3.15, the model does an excellent job with
minimum oscillations and a fit of 98% whereas on figure 3.14, though the fit is very good at

more than 80%, there are oscillations and the graph shows that there is not a good agreement
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Figure 3.13 — comparison between output of the model and legacy data- Estimation data & val-

idation data 1

between the model and the target.
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Figure 3.14 — Comparison between output of the model and legacy data - Validation data 2 and
4

3.3.3 Discussion

As it was observed on the results for the two first proposed methods of system
identification, they were not adequate. The models were not able to correctly represent and
simulate both the maximum application and minimum application on the automatic brake valve.

Therefore, from the obtained results, it is possible to infer that linear models may

not be adequate for the problem at hand, with the proposed complexity, so the need to evolve to

nonlinear models.
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Figure 3.15 — Comparison between output of the model and legacy data - Validation data 3

3.3.4 NARX

Using some already implemented toolboxes on MATLAB, it was possible to assess
the potential of using artificial neural networks

Figure 3.16 shows the overall interface to the neural network toolbox on MATLAB.
Figure 3.17 shows the adherence of the estimation by a 10 neurons open network of the given

data with 2 delays on the input and output
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(®) Nonlinear Autoregressive with External (Exogenous) Input (NARX)
Predict series y(t) given d past values of y(t) and another series x(t).

x(t) Y = f(x(t-1),...x(t-d),
yit-1), .. y(t-d))

Neural Network

Algorithms

Data Division: Random (dividerand)

Training: Levenberg-Marquardt (trainim)
Performance: Mean Squared Error  (mse)
Calculations: MEX

Progress
Epoch: 0 151 iterations 1000
Time: 0:00:02

Performance:  1.30e+03 [ENNO0309 N | 0.00
Gradient: 6.70e-03 [INNNNNOZ08 N | 1.00e-07
Mu: 0.00100 | 0.00100 | 1.00e+10
Validation Checks: o e s

Figure 3.16 — NARX implementation and training on MATLAB
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4 OPEN LOOP MODEL EXPLORATION

On the previous chapter, NARX artificial neural network appears to be the most
adequate method to identify the the problem at hand, among those explored. In this chapter we
will investigate the method further, create the model and train it as well as exploring different
parameters to achieve better results.

Traditionally, the neural network is trained in open loop - i.e. the input y(n) is
taken from the target rather then the calculated data. This is a fast and efficient way to train the
ANN. Once the model has been trained, the loop is then closed and the y(n) is calculated from
y(n — 1). Open loop ANN cannot be deployed for they require target information that is not

present, closed loop ANN can.

4.1 Redefining the Inputs

Having chosen the NARX and artificial neural network approach, the work proceeds
to the exploration of this strategy. At first, the perceived more complex model will be addressed,
the brake cylinder pressure output from the brake pipe and auxiliary reservoir input A new set
of inputs was created based on the previous work by Teodoro (Teodoro, 2016). In a similar
manner, five datasets were created for the first freight car in the consist and instead of using the
AB valve, the simulations were done using the contemporary ABDX. The data for the Brake
Pipe and the Auxiliar Reservoir were used as inputs and the pressure at the brake cylinder was
the output.

The data represents the second vehicle (first wagon after the locomotive) on a 101
vehicle train comprised of 50 wagon pairs and 1 locomotive.

The data was constructed using the numerical solution of the Navier-Stokes equa-
tions and the time interval was 0.001s. There are numerical variations on the signal that are not
physically real, i.e the hight frequency sharp edged fluctuations in the results. The fluid inertia
would not allow for this fluctuations to persist and would promote the decay and smoothing of
the curve quite fast. Figure 4.1 shows the general form of the brake pipe and the aux reservoir
pressures. It also shows a zoom of the aforementioned perturbations

Two additional modifications are necessary to the input before proceeding, the con-

version from Pascal to pounds per square inch (psi) and the reduction of the number of time
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Figure 4.1 — New Brake Pipe and Aux Reservoir inputs for ESTO1 - detail of fluctuations.

steps. A simple algorithm was wrot e to perform this changes. For the decimation strategy,
it was chosen to average the ten data points into a single value and write on the new vector.
However, the averaging did not stabilise the signal sufficiently, so the high frequency was dealt
by rounding off the signal - what was only done on the brake pipe and brake cylinder. The aux
reservoir did not require the rounding. Attempts were made to use filters however, they did not
preserve the signal adequately, creating several artifacts, mainly due to the abrupt chances the
signal undergoes at some regions.

In the same manner as previously, there is an input for model estimation - ESTOI,
that consists of several full, minimum and intermediary service applications and four validation
datasets - VALO1, that mimics the same as ESTO1 with sequential applications and releases,
VALOQ?2 that has a full service application, VALO3 has an intermediate service application and

VALO4 has a minimum service application. The plots for these are on figure 4.2.
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Figure 4.2 — Training and validation data.

4.2 Changing the Parameters

Having defined that the non linear ARX neural network is the most adequate strat-

egy within those presented, an exploration shall be done on how the neural network (NN) be-
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haves when the parameters are altered for this specific problem

To achieve this, a variable sweep was created. The parameters to be altered are:

e id: input delay - or the number of steps previous to current are used on the estimation.

The explored range varies from 1 to 5, i.e. the estimation uses from z(n) to x(n — 5);

e od: output delay - same as previous, instead of considering different input steps, the

network will consider different output steps and this shall vary from 1 to 5, i.e. from y(n)

to y(n — 5) considering the estimation output as y(n + 1);

e n/: number of neurons - this determines the number of hidden neurons on the neural

network. The explored values range from 1 to 20.

In total there will be 500 different possibilities explored. The parameters recorded

for the evaluation will be

4.3

mper f: the average accuracy - measured as the mean square error (mse) for each of the

validation cases and the estimation case. The smaller the better;

mtempo: the average time for the execution of the estimation for each of the validation

cases and the estimation case;

per f: the accuracy as mse (mean square error) for each of the individual validation cases

and the estimation case. This is a 1x5 vector that when averaged yields mper f;

tempo: is the time required to run the estimation of each validation case and the estima-
tion case. This is also a 1x5 vector. Times shall not be considered absolute and shall be

treated as a comparison. The computer load was kept constant throughout the execution;

tT'rain :this is the time required for the training process to occur. This metric will be

used to understand the training process only and shall not bear indication on the decision.

Training Function

Based on MATLAB functions an algorithm was devised to perform the set up and

training of the NARX network as follows. This function has as inputs the delay on the input

data, the output data delay, the number of hidden neurons , the training function - for this case,

all iterations use the Levenberg-Marquardt function for faster results, the traindata - a vector that
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contains the training, validation and testing ratios, the input vector- in this case a nx2 matrix
indicating the two inputs - brake pipe and auxiliar reservoir, the target output - an nx1 vector
with the brake cylinder pressures and a counter for the figure generation

The function output is the trained neural network, the counter for figure generation
and the training time.

Inside the function, it unpacks the information and translate the input variable to the
internal variables. This is not required however, it was done so for clarity (lines 1..10).

The function then creates the artificial neural network (ANN) structure according
to the inputs. Note that it was chosen to use an open network, i.e. it used the y(n), y(n — 1)....
from the targets and the final calculation, rather than the internal values on the last layer, before
the final neurons (line 11).

The inputs are then prepared and organised in the way MATLAB expects (line 12).
The train, validation and test dataset is separated in a random manner with the prescribed pa-
rameters. We shall use 70% of the data for training, 15% of the data for validation and 15% of
the data for testing (lines 13..17). These seem to be common practice. As the network training
process occurred as planned, no different ratios were tested.

The function then instructs that the accuracy metric is the mean square error (mse)
(line 18). Some function flags are activated to allow graphics (line 19) and finally the training

happens (line 21).

function [outl, fout,tTrain]l=

=funNet (inDly, fdbkDly, 1Size, trainFunc, traindata,Xin, Tin, fin)

1 trainFcn=trainFunc;

2 inputDelays=inDly;

3 feedbackDelays=fdbkDly;
4 hiddenLayerSize=1Size;

5 trainratio=traindata(l);
6 valratio=traindata (2);

7 testratio=traindata (3);
8 X=Xin;

9 T=Tin;
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10 f=fin;

% creates the neural network structure according to parameters -
% has not trained it just yet
11 net=narxnet (inputDelays, feedbackDelays,

...,hiddenLayerSize, " open’,trainFcn);

$prepareing the inputs

12 [x,x1,ai,t]=preparets(net,X, {},T);

%dividing the data for training, validation and testing
13 net.divideFcn=’'dividerand’; %random divide the data
14 net.divideMode='"time’;

15 net.divideParam.trainRatio=trainratio;

16 net.divideParam.valRatio=valratio;

17 net.divideParam.testRatio=testratio;

18 net.performFcn="mse’; %accuracy metric— mean square error

19 net.plotFcns = {’plotperform’,’plottrainstate’, ...

"ploterrhist’, ’'plotregression’, ’'plotresponse’,

"ploterrcorr’, ’'plotinerrcorr’,’plotwb’};

¥train
20 tic;
21 [net,tr]=train(net,x,t,xi,ai);

22 tTrain=toc;

23 outl=net;

24 fout=f;

end
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Note that the ¢ic and toc commands at the train command line give the training time.

4.4 Assessing Accuracy

Once the artificial neural network (ANN) has been trained, it will be run for the
estimation data and validation data. This validation shall not be confused with the internal
validation used to train the ANN. Assessing the model with a different data set helps to spot
overtraining

The inputs are the neural network obtained on the previous function (¢n0) the input
data (inl), the target data (in2) and the figure counter (¢n3). The outputs are the accuracy, the
model estimated output for the input data (yout) and the figure counter (fout).

Similarly to the previous, the first part is the transposing of the inputs (lines 1..4).
Then the data is conditioned in the way MATLAB expects to receive it (line 5). The model run
command is quite simple and is on line 7. Note that there are no targets as inputs. Note that the
command uses as input the simulated output (y) and the target data (¢) as well as the NN.

The simple error is computed by subtracting the simulated output y with the tar-
get output ¢ (line 9). The accuracy is calculated based on the accuracy metric that was used

previously, the mean square error (line 10).

function [performancel,yout,tn, fout]=funcO01l(in0,inl, in2,in3)

1 f=in3;

2 net=in0;

3 X=tonndata (inl, false, false);

4 T=tonndata(in2, false, false);

5 [x,xi,ai,t]=preparets(net,X,{},T);
6 tic;

7 y = net(x,xi,ai);

8 tn=toc;

9 e = gsubtract(t,vy);
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10 performance = perform(net,t,y);
11 performancel=performance;

12 yout=y;

13 fout=f;

end

4.5 Parameter Sweep

Using the previous functions, a series of iterations was constructed to try and assess
several neural networks. The program is organised in sections. First basic clean up and data
conditioning (lines 1..19). This section loads the input data described at the beginning of this
section. It then initiate the variables that will be used on the program. Then it defines the
validation/train/test ratios and conditions the input data for the estimation. The sweep iterations
are from line 20 onwards. The training function is run on line 27. A new network is trained
for every combination of parameters. Lines 28..31 indicate a general accuracy assessment. The
accuracy and time to run are organised into vectors. This step is repeated for all the input cases -
estimation and validation - until line 47. The vector with the execution time and the accuracy are
then averaged over the estimation and validation cases and the results structure is constructed.
This structure contains the input and output delays and the number of neurons used to define
the neural network as well as the number of the run (c), the average accuracy, average running
time, the accuracy and time vectors and the time it took to train the NN. The hardware used
is on appendix 2 After the result structure is filled, the program searches for the best accuracy,
fastest execution and best combination of both (BB). Lines 53 to 96 outline this search. When
a better network than the currently in store is found, a vector is constructed with its information

and the trained NN is saved. Finally, line 97 saves the results for later assessment.

01 clear all
02 close all
03 clc

04 load (’input data’)



%% Data conditioning

$Estimation data

05
06
07
08
09
10

11
12
13

14
15
16

17
18
19

f=1;

n=1;
bestTempo=1;
bestPerf=1;
bestTP=1;

c=1;

trainratio=70/100;
valratio=15/100;

testratio=15/100;

traindata(l)=trainratio;
traindata (2)=valratio;

traindata (3)=testratio;

X=tonndata (ABDX_ESTO01_EG_RA_1, false, false);
T=tonndata (ABDX_ESTO01_CF_1, false, false);

trainFunc='trainlm’;

%using the Levenberg-Marquardt training,

)
°

others are ’trainbr’ and ’'trainscg’

%begin the sweep:

20
21
22
23
24
25

for id=1:5
for od=1:5
for nl1=1:20
inDly=1:1id;
fdbkDly=1:0d;

1Size=nl;
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n=1;

[net, f,tTrain]=funNet (inDly, fdbkDly, 1Size, trainFunc, ...

..traindata, X, T, £);

28

[perfESTO01, yESTO01l, tnESTO01, £f]=funcO01 (net, ...

. .ABDX_ESTO01 EG_RA_1,ABDX_ESTO1 CF _1,f);

29
30
31

32

perf (n)=perfESTO01;
tempo (n)=tnESTO01;

n=n+1l;

[perfvalll,yvalOl, tnvalOl, £f]=funcO01 (net, ...

. .ABDX_VALOl_EG_RA_1,ABDX_VALO1l_CF_1,f);

33
34
35

36

perf (n)=perfvalll;
tempo (n)=tnvalOl;

n=n+1;

[perfvall2,yvVall02,tnval02, f]=func01 (net, ...

...ABDX_VALO2_EG_RA_1,ABDX_VALO2 CF_1,f);

37
38
39

40

perf (n)=perfvall2;
tempo (n)=tnval02;

n=n+1;

[perfvall3,yval03,tnval03, £f]=funcO01 (net, .

. .ABDX_VALO3_EG_RA_1,ABDX_VALO3 _CF _1,f);

41
42
43

44

perf (n)=perfvall3;
tempo (n)=tnval03;

n=n+1;

[perfvall4d,yvValO4,tnvall4d, £f]=funcO01l (net, ...

...ABDX VALO4_EG_RA 1,ABDX_VALO4_CF_1,f);

45

perf (n)=perfvall4;
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477

48
49

50

tempo (n)=tnval(04;

n=n+1;

mtempo=mean (tempo) ;

mperf=mean (perf) ;

Resul (c, :)={id, od,nl, c, mperf, mtempo, ...

..perf,tempo, tTrain};

51

52

53
54
55
56
57
58
60
61
62
63
64
65
66
677
68
69
70
71
72

Resul (c,1:6)

c=c+1

if bestPerf>mperf
best (1) =1id;
best (2) =0d;
best (3)=nl;
best (4)=c;
best (5) =mperf;
best (6)=mtempo;
best (7)=tTrain;
bestPerf=mperft;
best
netBest=net;
save netBest;

end

if bestTempo>mtempo
fast (1)=1id;
fast (2)=0d;
fast (3)=nl;
fast (4)=c;

fast (5)=mpertf;

71
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73 fast (6)=mtempo;
74 fast (7)=tTrain
75 bestTempo=mtempo;
76 fast

777 netFast=net;

78 save netFast;
79 end

80 bestTPl=mtempoxmperf;

81 if bestTP>bestTP1

82 BB (1)=id;

83 BB (2) =o0d;

84 BB (3)=nl;

85 BB (4)=c;

86 BB (5) =mperf;

87 BB (6) =mtempo;
88 BB(7)=tTrain
89 bestTP=bestTP1;
90 BB

91 netBB=net;

92 save netBB;

93 end

94 end

95 end

96 end

97 save _Results_

4.6 Parameter Sweep Results

Here we present the results of the parameter sweep. They are divided into 3 sections,

accuracy, execution time and the best combination of both.
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4.6.1 Best Accuracy

As outlined on the program presented on the previous section, the sweep has recorded
the best performance network on a vector. For the problem and the run at hand the most accu-
rate arrangement is 4 inputs deep, i.e. the model considers z(x),z(n—1),--- ,z(n —3) as well
as 4 output delays or y(n),y(n — 1),--- ,y(n — 3) to calculate y(n + 1) on a 20 layer neural
network. This arrangement took 40s to train and an average of 0.3351s over all validation and
estimation cases. Run times shoulf not to be taken in absolute terms for they depend on the
hardware the program is run. The average mse (mean square error) between the output and the

target is 2.517E-5. The values of accuracy and time for each of the cases are outlined on 4.1

Error (mse) 10E-4 | run time
EstO1 0.2239 0.6859
ValOl 0.2729 0.6501
Val02 0.0974 0.1195
Val03 0.2410 0.1511
Val04 0.4235 0.069

Table 4.1 — Accuracy (error) and time results for the lowest error neural network

4.6.1.1 ESTO1

The figure (4.3) shows the processed output of the model, note that the response
match the target with very good accuracy and as mentioned earlier, the main errors are located
at the transitions. However, the error is not larger than 0.2% at any condition. It can be noted
that though the model is able to estimate the target accurately, there are small perturbations
when the target has abrupt changes - specially at the plateaus. Also, it can be noted some
minor difficulties following some of the target data. The correlation plot shows the estimation
at one axis and the model at the other axis. As expected, it is a diagonal line showing the
correlation mentioned earlier the regression is 1 (or higher than 0.999, MATLAB’s precision
for this parameter).

Since this is the best model and the overall mse (mean square error) is quite low, all

these results are expected, in spite of the minor bumps and inaccuracies.
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T T T T

60 -
mmmmmm

a
8

Output ~= 1*Target + 4.8e-05

‘‘‘‘‘‘‘‘‘‘‘‘‘

Error

Figure 4.3 — Targets, outputs, error and response for estimation data & correlation (ESTO1).

4.6.1.2

Validation data

The same plots are presented for the estimation data are presented for the validation

data. Validation 1 (VALOI) is similar to the estimation data and yield equally similar results.

Was the model overfitted, it would not have been able to simulate VALO1 properly. The results

are presented in the same order as previously, a comparison between the target (dotted line) and

the model (solid line) and the simple error (magenta). On figure 4.4, the overall results shows a

good agreement from the model to the target data. The correlation shows the model and target

plotted on each axis, forming the desired diagonal line. The R for the model is higher than

0.999.
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Figure 4.4 — Targets, outputs, error and response & correlation for validation data (VALO1).

Validation 2, 3 and 4 (VALO2, VALO3 and VALO4) are individual brake applica-
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tions and show some interesting data. Similar to what happened to the other models on the
second chapter of this work, the higher pressures yielded better results than the lower cylinder
pressures. The results again will be presented in the same order as previously.

On the results for validation 2 model (VALO2) versus target, one can see the excel-
lent agreement between the model and the target outputs. This good agreement between target
and model explains the very low mean square error of 9.74E-6, the smallest among the valida-
tion examples. Figure 4.5 shows the output response. Note that the error is no larger than 0.7%.

The correlation shows the model vs target plot with very good agreement and the R=1.

Response of Output Element 1 for Time-Series 1
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Figure 4.5 — Targets, outputs, error and response & correlation for validation data (VAL02).

Validation 3 is the intermediary application, as such, and as expected, it shows
result performance in between validation 2 and 4. The same presentation scheme is used. The
transition to the top cylinder pressure is not as smooth as previously, what creates an overshoot
of 0.3%. The beginning also have higher instability compared the VALO2 (figure 4.6). The

model x target plot show the expected diagonal behaviour.
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Response of Output Element 1 for Time-Series 1
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Figure 4.6 — Targets, outputs, error and response for validation data (VALO3).

Validation 4 has yielded the worst mean square error of all datasets: 4.235E-5.
Possibly, this result is related to the higher weight of the higher pressures at the estimation
data. Also, the model seems to tend toward the higher pressures at the brake cylinder (VALO2
vs VALO4), what seems to also have been a trend on the linear models presented aon chapter
2. Figure 4.7 shows the model response. The variations in the direction of the target data, i.e.
derivate changes that are abrupt cause any continuous model would have difficulties adhering
to the targets. This model does a good job in reducing the error at the expense of having some
high frequency components, what is indicated by the fluctuations at the beginning of the brake
cylinder pressure ascent. The correlation between target and model is, as expected, a diagonal

line.
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Figure 4.7 — Targets, outputs, error and response & correlation for validation data (VALO4).
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All in all, the model that came out as best performer does a good job at predicting
the response of the targets, specially when compared with the non-linear approach and also the

other neural networks trained.

4.6.2 Assessing for Run Speed

The main proposed objective of this work is to investigate if a model would improve
the run time of the current algorithm for brake cylinder pressure estimation. For this, the search
sweep also recorded the fastest trained neural network. The table bellow 4.2 shows the summary
of the accuracy and run time for the fastest trained neural network. Note that the error is an order
of magnitude higher than the previous model with best accuracy - 10E-3 against 10E-4. The
overall average error is 5.2177E-4 (mean square error) and the average time it takes to run is
0.1917s, or about 42% less than the ANN that exhibited the best accuracy trained network. The
training time was 11.34s, lower than the previous model by about 3.5 times. It is important to
be noted that the previous neural network finished training by having hit the max iteration count
not by having achieved the desired accuracy. The results for each case will be presented and
discussed in a similar manner to the other cases. The fastest network uses no delay on the input

nor output, i.e. it uses z(n) and y(n) and 5 hidden neurons.

Error (mse) 10E-3 | time
Est01 0.5884 0.3760
ValO1 0.5025 0.3715
Val02 0.1980 0.0753
Val03 0.5454 0.0924
Val04 0.7746 0.0435

Table 4.2 — Accuracy (error) and time results for the fastest running neural network.

4.6.2.1 ESTOl

The accuracy of the fastest run time is not as good as the neural network that had the
best accuracy and this difference will be clear on the result figures. The overall plot of the target
over the model output seems to indicate a good agreement between the two parameters. At
closer inspection, it is visible that the model is off at the minimum pressure application on the
brake cylinder. There is also some error at the pressure rise (figure 4.8). The error is also double
of the previous trained network, specially at the pressure changes. The target x estimation plot

show a certain distribution around the correlation between the model and the target.
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Response of Output Element 1 for Time-Series 1
T T T

T T
-+ Targets
+  Outputs
60 Enors
R

tesponse

60

a
8

Output and Target

Output ~= 1*Target + -0.00015

Figure 4.8 — Targets, outputs, error and response & correlation for estimation data (ESTO1).

4.6.2.2 Validation Datasets

The validation results tell a story similar to the estimation dataset. Again, the best
performing is validation 2 (VALOQ2), that is the highest pressure at the brake cylinder - the same
bias demonstrated previously on the linear models. This effect may be due to the makeup of the
estimation data - with more full brake application than minimum brake application.

The Neural Network topology and training has the peculiarity of presenting an over-
shoot at the end of the application, as seen on figure 4.9 and there is some fluctuation at the
beginning of the pressure change slope. Errors for the VALO1 data are in line with ESTOI.

Correlation pictures show the expected results.
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Figure 4.9 — Targets, outputs, error and response for estimation data (VALO1).

The other validation datasets show similar results telling the same story, speed over
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accuracy. Yet, the reduction in accuracy is offseted by the decrease in running time. Figures
4.10 to 4.12 show the target vs model results and the errors on the response. The correlation

figure shows a good agreement between the model and target.
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Figure 4.10 — Targets, outputs, error and response & correlation for estimation data (VALO2).
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Figure 4.11 — Targets, outputs, error and response & correlation for estimation data (VALO3).
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Response of Output Element 1 for Time-Series 1
T T T T T

5

~

Output and Target
®

"o =+ N © & o o ~N ® ®©

Output ~= 1*Target + 0.0048
IS o

©

T T T T T T T T .
l +  Targets - Outputs 2

I I f I I I I I I
200 400 600 800 1000 1200 1400 1600 1800 2000
Time

Figure 4.12 — Targets, outputs, error and response & correlation for estimation data (VAL04).

4.6.3 Best Combination between speed and accuracy

The sweep algorithm also had provisions to record a third topology/training combi-
nation. It multiplied the mean accuracy parameter with the mean running time and recorded the
lowest value. In this sweep, the best accuracy combination of topology and training had also

the lowest combination of both parameters.

4.6.4 Other results
4.6.4.1 Overall Performance

As mentioned, the sweep resulted in 500 iterations. These are organised on groups
of delays on the input and output and on layer depth. Nonetheless, one can plot the accuracy
over the whole exercise (figure 4.13). The lowest error, and therefore highest accuracy is itera-
tion 380 (input delay: 4; output delay: 4, layer depth: 20) that was discussed earlier. There are

other combinations that provided good results are on the table 4.3

input | output | hidden Average mean Mean . .
. . 1teration
delay | delay | layer | square error (mse) | Running time [s]
1 4 4 20 2.5176E-5 0.3351 380
2 3 4 20 2.6821E-5 0.3350 280
3 3 3 17 2.7214E-5 0.3181 257
4 2 4 17 2.7311E-5 0.3702 177
5 2 3 18 2.7931E-5 0.3520 158

Table 4.3 — Best mean accuracy combination.
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Figure 4.13 — Accuracy over the sweep.
4.6.4.2 Overall running time

The running timer over the iterations is plotted on figure 4.14. There is a clear
discontinuity on the mean running time when the delay is larger than 1. This is due to the
fact that the model has to wait for the other results. This phenomenon appears on the other
sweep sets as well, every centennial iteration, that marks the reset of the layer quantity. At
the beginning of the hundred iteration package, the way the sweep is constructed, there is an
increase on the delay of the output, i.e. the more the delay on the output, the longer the running
time - what is understandable. Also, there is another trend on the time the model takes to run
and it is related to the number of hidden neurons. The lowest running times are located at the

lowest delays and these are presented on table 5.2. The hardware used is on appendix 2
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input | output | hidden Average mean Mean ) .
. . 1teration
delay | delay | layer | square error (mse) | Running time [s]
1 1 1 5 5.2177E-4 0.1917 5
2 1 1 9 3.544E-4 0.1935 9
3 1 1 13 1.857E-4 0.1940 13
4 1 1 8 4.8008E-4 0.1945 8
5 1 1 12 2.1426E-4 0.1950 12

Table 4.4 — Fastest mean running time combination.
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Figure 4.14 — Accuracy over the sweep.
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5 MODEL DEPLOYMENT

Having chosen the most adequate method and determined the process to find the
best parameter combination, it is time to build the other models outlined on the brake topology

(figure 5.1) and continue on the strategy outlined previously (figure 5.2).

Brake handle Model
command (STEP) STEP->BP Pressure (BP) " Pressure (AR}

Brake Cylinder Pressure

Figure 5.1 — Problem topology and required models.

Current Navier-Stokes
model
Results

Problem simulation o i =
parer
and model deployment > conclusion

Most suitable
identification strategy Model 1
(STEP > BP)
Strategy definition
Model 3

(BP +AR -> BC)

Input
definition

Parameter exploration

Result evaluation I

linear

Preliminary result eval

Model 2
(BP -> AR)

Figure 5.2 — Overall strategy to address the problem.

5.1 Brake Pipe + Aux. Reservoir to Brake Cylinder: BP + AR -> CF

On this section, the model between the brake pipe and the auxiliary reservoir pres-

sure and the brake cylinder pressure will be explored.

5.1.1 Closing the Neural Network

As standard procedure, the artificial neural network is to be trained in the open state.
This training uses the target output as the input for the trained model. Training the network on
the open state allows for faster training times. However, for the deployment of the ANN, it must
be closed - it would not be interesting to require the target output for every new model - what

defeats the purpose.
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Assuming the most accurate network trained on the previous chapter (figure 5.3).

The command

net=closeloop (net)

x(t) Hidden

Figure 5.3 — Most accurate ANN for BP+AR->BC.

Hidden

Output

Figure 5.4 — Most accurate ANN for BP+AR->BC on the closed version.

The results obtained with the closed network are not usable. After the loop has been
closed and the model is forced to use the calculated outputs y(n) to predict y(n + 1), it loses the
ability to predict the phenomenon. Therefore, for the problem at hand, a different approach has
to be employed in order to obtain proper results. Figure 5.5 show the graphs for the estimation
data. Figures 5.6 to 5.9 show the results for the rest of the validation cases the closer case is

VALO4, but still none of the results are usable.
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Figure 5.5 — Targets, outputs, error and response for estimation data & Target x estimation cor-

relation (ESTO1).
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5.1.2 Training the Network Closed BP + AR -> BC

Since the model that is being worked on is the one the predicts the brake cylinder
pressure from the brake pipe and auxiliary reservoir pressure this will be the first to be trained
in the closed loop form. The same combination of delays (4 for input, 4 for output) and number
of neurons (20) was used. The only difference on the training scheme is that the network is
closed before the training takes place and that the training method is different.

The training in the close loop mode takes longer - the same network that took 40s
to train in the open mode now took 4500s to train. The Levenberg-Marquardt brackpropaga-
tion training scheme has not yelded good results, so alternatively, the Bayesian regularization
backpropagation was used (trainbr on MATLAB instead of ¢rainlm). The closed loop also
has higher error in relation to the open loop model that uses the target to find y(n + 1) , but
that was expected. A good side effect was that the running time was reduced compared with
the open loop model. Table 5.3 shows the value comparison for error and run time between the
models. Figures 5.10 to 5.14 shows the various graphs for the cases generated by the model
output. Though not as good as the previous open model, the results are usable.

Unfortunately, as the training times are very long on the current hardware (single
processor) it is not feasible to do a parameter sweep with the closed loop model. It might
be possible to employ such technique with gpu multithreading or server grade installations,

however, those are not available at this point in time.

Error - mse (10E-3) run time [s]
case | close loop (retrained) | open loop | close loop (retrained) | open loop
ESTO1 4.149 0.0223 0.203 0.686
VALO1 5.656 0.0272 0.165 0.650
VALO02 2.742 0.0097 0.036 0.119
VALO3 3.012 0.0241 0.059 0.151
VAL04 15.865 0.0423 0.024 0.069

Table 5.1 — Open and close loop comparison.
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5.2 From Brake Handle to Brake Pipe: STP -> BP

On this section the model between the brake handle of the 26L style brake system
to the pressure on the brake pipe will be explored. The first part of this endeavour is to build the
step signal. It starts with the matrix that originated the inputs that are being used since chapter
3 and a simple algorithm to transform the discrete points into a time series. Figure 5.15 shows

the graphical representation of the matrixes.

5.2.1 Command Matrix
5.2.1.1 ESTO1

vector_ESTO01=[ 0 90
100 84.2
500 64.2
1100 90
4100 84.2
4500 70
4800 64.2
5300 90
7800 84.2
8300 90
10000 64.2
10700 90
13500 74
14100 90
20000 9071;

5.2.1.2 VALOI1

vector_VALOl=[ 0 90
1100 64.2
1700 90
4700 84.2



5100 90
6300 84.2
6600 64.2
7200 90
9800 84.2
10300 90
12050 64.2
12750 90
15550 74
16150 90
20000 907;

5.2.1.3 VALO2

vector_VALO2=[ 0 90
300 64.2
1000 90
3600 907;

5.2.14 VALO3

vector_VALO3=[ 0 90
200 74
800 90
4650 907;

5.2.1.5 VALO0O4

vector_ VALO4=[ 0 90
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100 84.2
600 90
2050 9071;
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5.2.2  Algorithm to Build Step Time Series

The following algorithm was used to transform the isolated matrix points into a time

series

01 function output=step (input)
02 vector=input
03 [b cl=size(vector);

04 for id=1l: (b-1)

05 al=vector(id, 1) +1;

06 az=vector (id+1,1);

07 bl=vector (id, 2);

08 for ik=al:a2

09 output (ik, 1)=bl;
10 end

11 end

12 end

5.2.3  STP -> BP Model Exploration - Open Loop

The same was that was done with the previous model, the training and permutations
were done for the model that correlates the STEP commands and the brake pressure pipes. The
most accurate model to arise from that training is the one with 2 delays on the input, 5 delays
on the output and 15 neurons. It took 3.562s to train the model in the open loop configuration
using the Levenberg-Marquardt strategy (trainlm). The model representation is shown on
figure 5.16. Table 5.2 shows the values for error (mean square error) and run time for each
case. Figure 5.17 to 5.21 show the results of the model over the target. The model does well for
all cases except VALO4, where it overshoots on the recovery going above 90 psi. Should this

persist, actions can be taken to prevent this from happening.



EstO1
Val01
Val02
Val03
Val04

Error (mse) 10E-3 | run time [s]
4.632 0.575
6.595 0.577
4.206 0.108
2.969 0.135
6.015 0.066

97

Table 5.2 — Accuracy (error) and time results for the most accurate neural network (STP->BP -
Open).
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Figure 5.16 — Model representation for STP -> BP (open loop).
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5.2.4 Closing the Loop

On this step, the operation (net) = closeloop(net) is performed on the trained open
network model for STP -> BP. The result summary is on table 5.3. The overall format of the
model output has been preserved, however, the best accuracy now is VALO4. The model strug-
gles at the slopes and the error has deteriorated greatly. The correlation shows some scattering
on the results, though the R squared seem to be in good shape. Similarly to what was done on
the previous model a new training on this new topology will be done and the results assessed.
Figure 5.22 to 5.27 show the model output over target as well as the correlation. The running

times have improved from due to the topology change.

Error - mse (10E-3) run time [s]

case | close loop | open loop | close loop | open loop
ESTO1 | 124.287 4.632 0.2454 0.575
VALO1 | 128.228 6.595 0.1487 0.577
VALO2 | 76.191 4.206 0.0331 0.108
VALO3 194.73 2.969 0.0441 0.135
VALO4 | 41.001 6.015 0.0264 0.066

Table 5.3 — Accuracy (error) and time results for the most accurate neural network (STP->BP -
Closed).

Hidden

Figure 5.22 — Model representation for STP -> BP (closed loop).
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5.2.5 Retraining the Closed loop Model

For the retraining of the artificial neural network, the Levenberg-Marquardt with
Bayesian regularization backpropagation (trainbr) was used instead of the standard Levenberg-
Marquardt (trainlm). The former was not wielding good results in terms of training. Table 5.4
shows the improvement on the accuracy with the retraining in comparison to the closed loop
keeping the open training. The closed loop retraining took 954.47 s compared with the 3.52 s
of the open loop training. It would not be feasible with the current hardware/strategy to run a
parameter sweep for the closed loop topology. The results shown on figures 5.28 to 5.32 shows
the model response compared with the target. The issue on the VAL0O4 overshoot persists. One
way to deal with this on the model implementation - if it causes adverse effects - would be
to add an i f line preventing the pressure to be above 90 psi. The 26L system could send the
pressure of the brake pipe above 90 psi for the minimum normal pressure at the locomotive
main compressed air reservoir is 120psi. So far, the results are acceptable for this model and

we shall proceed to the last one - BP -> AR.

Error - mse (10E-3) run time [s]
case close loop close loop | open loop close loop close loop | open loop
retrained retrained
ESTO1 6.500 124.287 4.632 0.156 0.245 0.575
VALO1 8.571 128.228 6.595 0.150 0.149 0.577
VALO2 4.996 76.191 4.206 0.033 0.033 0.108
VALO3 6.412 194.730 2.969 0.041 0.044 0.135
VALO04 8.423 41.001 6.015 0.021 0.026 0.066

Table 5.4 — Accuracy (error) and time results for the most accurate neural network (STP->BP -
Closed & Retrained).
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5.3 Brake Pipe & Auxiliary Reservoir Interaction: BP -> AR

Finally, the last model will describe the interaction between the brake pipe and the
auxiliary reservoir pressure. As described previously, the ABDX valve compares the pressure at
the auxiliary reservoir and the brake pipe and injects the difference in the brake cylinder. When
releasing the brakes, the valve also uses the emergency reservoir to reestablish the pressure on
the auxiliary reservoir and the brake pipe. In this study, the emergency reservoir pressure level
is not considered directly. For the service brake model, the emergency reservoir is assumed to
be full at all times. On the model identified in this study, this will be implicit on the behaviour
of the auxiliary reservoir and the brake pipe. There would be a difference in the behaviour if
the emergency reservoir is not full when the application starts. On the model with the emer-
gency brake application added to the service brake, the emergency reservoir pressure will be

addressed.

5.3.1 BP -> AR Model Exploration - Open Loop

The same method of parameter searching was used for this model. The most ac-
curate model has 5 delays on the input, 4 delays on the output and 20 neurons. It sits uncom-
fortably close to the maximum prescribed values of 5 delays on the input and output and 20
neurons, however, the fit of the model is excellent as can be seen on table 5.5. Figure 5.33
shows the representation of the model. Figures 5.34 to 5.38 show the impressive agreement

between model and target.

Error (mse) 10E-3 | run time [s]
Est01 0.00153 0.709
Val01 0.00183 0.602
Val02 0.00082 0.111
Val03 0.00129 0.142
Val04 0.00337 0.078

Table 5.5 — Accuracy (error) and run time results for the most accurate neural network (BP ->
RA - Open Loop).
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Figure 5.33 — Model representation for BP -> AR (open loop).
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5.3.2 Closing the loop

Again, the same command was used to close the loop and obtain the results pre-
sented on table 5.6. The error increased by several orders of magnitude - the open loop had
error in the order of 10E-6 and closing the loop, the errors increase to the order of 10 - ex-
pect on the minimum service application, were errors were compatible. Figure 5.39 shows the
representation of the model with the closed loop. Figures 5.40 to 5.44 show that closing the
model has effected its results severely. The only validation data set that retained a resemblance
of matching the target was VALO4 - the minimum service application. Therefore, the network

will be retrained on the closed topology.

Error - mse (10E-3) run time [s]
case | close loop | open loop | close loop | open loop
ESTO1 | 1.449E4 | 0.00153 0.202 0.709
VALO1 | 1.3392E4 | 0.00183 0.139 0.602
VALO2 | 1.912E4 | 0.00082 0.031 0.111
VALO3 | 1.959E4 | 0.00129 0.037 0.142
VALO4 | 0.0036 0.00337 0.022 0.078

Table 5.6 — Accuracy (error) and time results for the most accurate neural network (BP -> AR -
Closed).

Hidden

Figure 5.39 — Model representation for BP -> AR (closed loop).
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5.3.3 Retraining the Closed Loop Model

The retraining helped reduce the error greatly and presented a slight decrease in
running time. Table 5.7 shows the comparison between the open loop, the closed loop and
retrained closed loop. The model topology was not changed. Figures 5.45 to 5.49 show the
model fitness to the target. The minimum service application has a substantial detachment on

the brake release curve between the model and the target.

Error - mse (10E-3) run time [s]
case close loop close loop | open loop close loop close loop | open loop
(retrained) (retrained)
ESTO1 16.352 1.449E4 | 0.00153 0.172 0.202 0.709
VALO1 24.900 1.3392E4 | 0.00183 0.147 0.139 0.602
VALO2 8.008 1.912E4 | 0.00082 0.030 0.031 0.111
VALO3 15.716 1.959E4 | 0.00129 0.038 0.037 0.142
VALO4 80.478 0.0036 0.00337 0.025 0.022 0.078

Table 5.7 — Accuracy (error) and time results for the most accurate neural network (BP -> AR -
Closed; retrained).

Response of Output Element 1 for Time-Series 1
T T i

: R=0.99983

Targets 90

O Data
Erors Fit
%0 —— Response I &
85 85

Output and Target

o
5

Output ~= 1*Target + 0.031
=
3

‘
‘ ‘
- Targets - OL
.u’L 70

L L 1
10000 14000 18000

Time

L
6000

2000 4000 8000 12000 16000

Figure 5.45 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (ESTO1).



117

- Response of Output Element 1 for Time-Series 1
T T T

A

1 : R=0.99972
.+ Targets :

+  Outputs
Errors.
Response M

Output and Target
®
3

Output ~= 1*Target + 0.17

:
+ Targets - Outputs

Error

L L I L I L I
2000 4000 6000 8000 10000 12000 14000 16000 18000
Time
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5.3.4 Closed Loop Retraining 2

As observed on the previous section, the VAL(04 dataset had a non ideal fit. There-
fore, instead of training the ANN with the ESTO1 dataset - that has a single minimum service
brake application, an alternative training dataset was concocted by joining VALO1 and VAL04,
creating a training dataset with more minimum applications. Figure 5.50 shows the new training
dataset. Table 5.8 shows that though improvements were made on the error of VALO4, figure

5.55 shows a slight improvement on the VALO4 fitness.

- Estimation data based on VALO1

pressure [psi]

80 L L L L |

time [ds] <104

Figure 5.50 — Training dataset based on the portmanteau of VALO1 and VALO4. Blue line is the
BP pressure and red line is the Aux. Reservoir.



Error - mse (10E-3)

run time [s]

case close loop | close loop open loop close loop | close loop open loop
(retrained 2) | (retrained) (retrained 2) | (retrained)
ESTO1 23.008 16.352 0.00153 0.203 0.172 0.709
VALO1 23.310 24.900 0.00183 0.149 0.147 0.602
VALOQ2 14.832 8.008 0.00082 0.031 0.030 0.111
VALO3 14.357 15.716 0.00129 0.039 0.038 0.142
VALO4 57.387 80.478 0.00337 0.022 0.025 0.078

Table 5.8 — Accuracy (error) and time results for the most accurate neural network (BP -> AR -

Output and Target

Closed; retr

ained 2).
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Figure 5.53 — Targets, outputs, error and response for estimation data & Target x estimation
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5.3.5 BP -> AR Closed Loop Model Exploration

Possibly, this lack of fitness is due to the absence of the emergency reservoir infor-
mation. A different dataset was tried for the training but this has not yielded good results. It
seems that in this model, the parameter sweep done with the open loop was not effective. It
is important to note that the most accurate model was near the edges of the search space. A
closed loop parameter sweep with current hardware is not practical, so an empirical search will
be conducted for alternative models, changing the input and output delays. Tables 5.9 and 5.10
show some of the best networks. The run time did not change substantially, however, model D
presented the most accurate responses, followed by model F. The best combination of parame-
ters was 6 delays on the input, 10 delays on the output and 20 neurons. These fall outside the
open parameter sweep. However, the closed model behaves quite differently than the open one,
especially on the brake release, were the emergency reservoir would have a high influence. It is
uncertain if there would be any benefit in broadening the parameter search scope. Figure 5.56
shows the model representation. Figures 5.57 to 5.61 show the model output and the target. On
the minimum service application, there are some disturbance on the pressure drop. Also, on
the release of the VALO3 data there is some disagreement between the model and the targets.
However, it is not believed that such fitness issues will be relevant enough to cause problems to

the train simulation overall.

Error - mse (10E-3)

model A B C D E F
input delays 2 4 2 6 8 5
output delays 2 9 12 10 10 12
neurons 20 20 20 20 25 20

ESTO1 49.86 | 13.30 | 32.21 | 8.20 | 24.50 | 10.92
VALO1 61.60 | 830 | 1520 | 6.56 | 9.67 | 7.81
VALO2 3542 | 435 | 7.14 | 291 | 490 | 4.34
VALO3 35.02 | 21.15 | 21.43 | 19.20 | 18.87 | 20.96
VALO4 154.09 | 2.53 | 2653 | 1.71 | 847 | 2.50
fitness --- - - - + o +

Table 5.9 — Accuracy (error) for candidate artificial neural network (BP -> AR - Closed).
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run time [s]
model A B C D E F
input delays 2 4 2 6 8 5
output delays 2 9 12 10 10 12
neurons 20 20 20 20 25 20

ESTO1 0.158 | 0.155 | 0.163 | 0.157 | 0.182 | 0.157
VALO1 0.152 | 0.158 | 0.162 | 0.152 | 0.165 | 0.157
VALO2 0.033 | 0.031 | 0.035 | 0.034 | 0.035 | 0.32
VALO3 0.034 | 0.037 | 0.045 | 0.040 | 0.040 | 0.41
VALO0O4 0.024 | 0.021 | 0.023 | 0.022 | 0.024 | 0.23
fitness --- - - - + 0 +

Table 5.10 — Run time for candidate artificial neural network (BP -> AR - Closed).

Hidden

Figure 5.56 — Model representation for BP -> AR (closed loop).
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correlation (ESTO1).
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6 SIMULATION

Now that all the ANN models are trained and refined, one can continue on the initial
path and create the model fusion to simulate the problem at hand. The topology of the problem

(figure 6.1) and the strategy outlined previously (figure 6.2) are the same.

Brake handle Model
command (STEP) STEP->BP Pressure (BP) " Pressure (AR}

Brake Cylinder Pressure

Figure 6.1 — Problem topology and required models.

Current Navier-Stokes
model
Results

Problem simulation o i =
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(STEP > BP)
Strategy definition
Model 3

(BP +AR -> BC)

Input
definition

Parameter exploration

Result evaluation I

linear

Preliminary result eval

Model 2
(BP -> AR)

Figure 6.2 — Overall strategy to address the problem.

6.1 Model Implementation

To joint all models and take care of the required services, a MATLAB program was
created. It uses the following functions and is organised per outlined on the next sections.
6.1.1 Functions
6.1.1.1 Matrix to Step

The function to transform the command matrix into a step time series is the same as

used previously.

function output=step (input)
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01 wvector=input;
02 [b c]=size (vector);

03 for id=1l: (b-1)

04 al=vector (id, 1)+1;

05 az2=vector (id+1,1);

06 bl=vector (id, 2);

07 for ik=al:a2

08 output (ik, 1)=bl;
09 end

10 end

end

6.1.1.2 ANN execution

The function to run the artificial neural network is very similar to the one used
previously. There is a difference that there is no target function, since the network is being run
to simulate the problem. However, the target values are still necessary to construct the delays
y(0); y(—1);--- ;y(n), so, the input is repeated in order to obtain these values. The target values
at the start are similar to the input values, so this strategy has no problem at this moment. Line
06 is where the ANN is run. On line 08 the output is converted from a cell format to a more
usable vector format. The time counting parameters were removed for the time will be assessed

on the program as a whole.

function [yout,tn]=RunNN(in0,inl)
01 net=in0;
02 X=tonndata(inl, false, false);

03 T=tonndata(inl, false, false);

04 [x,x1,ai,t]=preparets(net,X, {},T);

06 y = net(x,xi,ai);

07 yout=y;

08 yout=cellZmat (yout) ;
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09 tn=NaN

end

The function used to run the CF model is very similar with a crucial difference - the
addition of line 03. In this case, the expected output is the brake cylinder, and its pressure is
supposed to be 0 at the start of the simulation. If the initial pressure were to be considered the

same as the input (as was done on the previous function) there would be an error.

function [yout,tn]=RunNN2 (in0, inl)
01 net=in0;

02 [a b]=size (inl);

03 inl_1l=zeros(a,l);

04 X=tonndata (inl, false, false);

05 T=tonndata(inl_1, false, false);

06 [x,xi,ail,t]=preparets (net,X,{},T);

07 vy = net(x,xi,ai);

08 yout=y;
09 vyout=cellZmat (yout) ;
10 tn=NaN;

end

6.1.1.3 Performance Evaluation

To maintain consistency with the performance evaluations performed on the other
stages of this work, the same method was used. Previously, the performance evaluation was
built into the ANN execution function, however, for the simulation implementation, there is
no reason for this to be so. Moreover, the performance calculation takes a bit of time and on
the simulation, there is no target to check the performance against, at least in theory. The final

deployment of the simulation will suppress this specific function.

function [performance,e, f]=Perf (net,target, output, f)
01 XR=tonndata (output, false, false);

02 TR=tonndata (target, false, false);
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03 [xr,xir,air,tr]=preparets (net,XR, {},TR);
04 figure(f), plotregression(tr,xr), f=£f+1;

05 figure(f), plotresponse(tr,xr), f=£f+1;

06 performance = perform(net,tr,xr);

07 e=gsubtract (target, output) ;

08 figure(f);plot(e,’LineWidth’, 3);

09 title(’error between target and output’)
10 xlabel('time [ds]’)

11 vylabel ('pressure [psi]’)

12 f=f+1;

end

6.1.2 Main Program

The main program uses the previously trained ANNs and the functions presented.
It consists of an input in form of matrix commands, similar to the current program by Teodoro
(Teodoro, 2016), in order to allow a seamless integration with the current longitudinal dynamics
simulator. The output is a vector with the brake cylinder pressures, that can be used on the
simulator as well. When the ANN is run, the delays on the inputs "consume" part of the time
series. In order to align with the other inputs, the input time series has to be reconstituted (for

example, lines 13 .. 28).

01 Clear all
02 load(’trained_models’) %file with the trained neural networks

03 load(’'Targets’)%target file for performance evaluation
04 target_EG=ABDX_VALOl_EG_01;
05 target_RA=ABDX_VALO1_RA_01;

06 target_ CF=ABDX_ VALOl_CF_1;

07 input=VALXX; %command matrix



08
09
10

11

12

13
14

15
16
17
18
19
20
21
22
23
24
25
26
277
28
29

30

%$the neural networks
netl=net_STP_EG;
net2=net_EG_RA;

net3=net_EG_RA_CF;

tic %starting timer
$STP
ABDX_STP=step (input) ;
$STP —-> BP
[ABDX_EG, t_STP_EG]=RunNN (netl, ABDX_STP) ;
ABDX_EG=ABDX_EG.’;

%the model "consumes" the delays - hence we have

%to reconstitute the time series
clear a b g h al bl u
al=size (ABDX_EG) ;
bl=size (ABDX_STP);
a=al(l,1); b=bl(1,1);
g=b-a;
ABDX_EG2=ABDX_EG;
ABDX_FEG = lagmatrix (ABDX_EG, [g]);
for h=l:g

ABDX_FEG (h)=ABDX_EGZ2 (h) ;
end
u=a-gj
for h=l:g
ABDX_EG (a+h)=ABDX_EGZ2 (u+h) ;

end
output_EG=ABDX_EG;

%$BP —-> AR

[ABDX_RA, t_EG_RA]=RunNN (net2, ABDX_EG) ;
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31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

477
48

49

50
51
52
53
54
55
56
57
58
59

ABDX_RA=ABDX_RA.’;

clear a b g h al bl u
al=size (ABDX_RA);

bl=size (ABDX_EG) ;

a=al(l,1); b=bl(1,1);

g=b-a;

ABDX_RAZ2=ABDX_RA;

ABDX_RA = lagmatrix (ABDX_RA,

for h=l:g

[(g1);

ABDX_RA (h)=ABDX_RAZ (h);

end
u=a-gjy

for h=l:g

ABDX_RA (ath)=ABDX_RAZ2 (u+h) ;

end
output_RA=ABDX_RA;

% BP + AR —-> BC
ABDX_EG_RA(:,1)=ABDX_EG(:);

ABDX_EG_RA(:,2)=ABDX_RA(:);

[ABDX_CF,t_CF]=RunNN2 (net3,ABDX_EG_RA) ;

ABDX_CF=ABDX_CF.’;

clear a b g h al bl u
al=size (ABDX_CF);

bl=size (target_CF);
a=al(l,1); b=bl(1,1);

g=b-a;

ABDX_CF2=ABDX_CF;

ABDX_CF = lagmatrix (ABDX_CF,
for h=l:g

ABDX_CF (h)=ABDX_CF (h);

(g]);
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6.2

end
u=a-gjy
for h=l:g
ABDX_CF (a+h)=ABDX_CF2 (u+h) ;
end

output_CF=ABDX_CF;

TotalTime=toc

$From now on images and performance calculations
figure (f)
hold on
plot (ABDX_STP,’b’,’LineWidth’,2);
plot (ABDX_EG,’g’,’'LineWidth’,2);
plot (ABDX_RA,’r’,’LineWidth’, 2);
plot (ABDX_CF,’'m’,’ LineWidth’, 2);
title (/! ANN model output’)
xlabel ("time [ds]’)
ylabel ('pressure [psi]’)
legend (' STEP’, ’'BP’,"AR’, ’'BC’)
hold off; f=f+1;

figure (f); plot (ABDX_CF,’k’,’LineWidth’,2),; f=f+1;

[performance_EG, e, f]=Perf (netl, target_EG, output_EG, f);
[performance_RA,e, f]=Perf (net2,target_RA,output_RA, f);

[performance_CF,e, f]=Perf (net3,target_CF,output_CF, f);

Simulation Results
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Using the same datasets as previous - ESTO1, VALO1 to VALO4 - the performance

evaluation was run for the simulation program. The results were not as expected as it can be

seen on table 6.1. The values for the ESTO1, VALO1 and VALO4 are not as intended with errors

as high as 14.6 (mse). Errors on the order of 10E-3 were desired. Apparently, there seems to

be a problem with model BP-> AR. Figures 6.3 to 6.26 show the various graphs generated by
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the program. From the graphs, it is possible to assess that the model for BP -> AR, specially on
the minimum service application is not working as it should. Possibly, the model is not stable
enough and, although having presented good results on its own, the noise generated by the STP

-> BP model was sufficient to make it not behave adequately.

Error - mse (10E-3) | Run time [s]

BP 6.500

ESTO1 | AR 1316.5 1.354
BC 2557.6
BP 8.571

VALO1 | AR 2200.1 0.825
BC 3877.7
BP 4.996

VALO2 | AR 5.456 1.050
BC 19.252
BP 6.412

VALO3 | AR 20.655 0.739
BC 125.609
BP 8.424

VALO4 | AR 10079.5 0.612
BC 14655.7

Table 6.1 — Simulation results - performance & run time for simulation program.
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Figure 6.3 — Overall simulation outputs for ESTO1 - STP, BP, AR, BC



135

of Output Element 1 for Time-Series 1
T T

T
. Targets
+  Outputs

i

Output and Target

Eros  m
Response

Output ~= 1*Target + 0.013

:
+ Targets - Outputs

5
£l | | | . i
o+ t rr—: TT d—t ;—}
2 L i L L L
2000 4000 6000 8000 10000 12000 14000 16000 18000
Time

Target

Figure 6.4 — Targets, outputs, error and response for estimation data & Target x estimation cor-

relation (BP - ESTO1).

95 T

Output and Target

Response of Output Element 1 for Time-Series 1
T T

T
-+ Targets
+  Outputs
Erors
Response M

: R=0.98754

Output ~= 0.98*Target + 1.6

T )
+ Targets - Outputs

L
il 2 1 L4
2 I L I I . I
2000 4000 6000 8000 10000 12000 14000 16000 18000
Time

Figure 6.5 — Targets, outputs, error and response for estimation data & Target X estimation cor-

relation (AR - ESTO1).



136

Response of Output Element 1 for Time-Series 1
T T T

! ! : R=0.99718
+ Targets
+  Outputs
Enors

60

Response

50 =

40 =

30 - —

20 =

Output and Target

Output ~= 0.99*Target + 0.52

i
+ Targets - Outputs

Error

15 L I I I
2000 4000 6000 8000 10000 12000 14000 16000 18000
Time

Figure 6.6 — Targets, outputs, error and response for estimation data & Target x estimation cor-
relation (BC - ESTO1).

ANN model output

90

80 -

70

pressure [psi]
(93]
£
:

40 -
30 -
20 -
I \ [\,J l’\,v._J
0 | . . | | | . .
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [ds] «10%

Figure 6.7 — Overall simulation outputs for VALO1 - STP, BP, AR, BC.



137

©
&

of Output Element 1 for Time-Series 1
T T

90— '
8 ﬁ
°
£
= 80 — Bl
T°
c g
Lo =)
‘a"_ 75 q +
g -
3 8
° 5
70 I'-
-« Targets !
L +  Outputs il -
- Ko - =i 5
Response 5
<]

3
3

Error

H i i i

- Targets - Outputs

b © N & @

e
g T Hr T

|
T

2000 4000 6000 8000 10000 12000 14000

Time

16000 18000

Figure 6.8 — Targets, outputs, error and response for estimation data & Target x estimation cor-

relation (BP - VALO1).

a5 Response of Output Element 1 for Time-Series 1
T T T

: R=0.97882
- Targets
+  Outputs
Errors
Quq F Response M
B 85

g
i

] ©

£ 80 o

§ 3

)

o5 F

8

o

]

70 @

I k H

g

5

L o

Error

T )
+ Targets - Outputs

L L
10000 12000

Time

L L
6000 8000

L
4000

2000 14000

Y
A4

L
16000 18000

Figure 6.9 — Targets, outputs, error and response for estimation data & Target x estimation cor-

relation (AR - VALO1).



. [ I
50 -
40 -

30 -

20 -

Output and Target

Response of Output Element 1 for Time-Series 1
T T T

+ Targets
+  Outputs
Enors
Response

i
- Targets - Outputs

Error
&b o
~+
7

15 L
2000 4000 6000 8000

T
[
y_fﬁ -
I I I
10000 12000 14000 16000 18000
Time

: R=0.99569

Output ~= 0.99*Target + 0.86

138

Figure 6.10 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (BC - VALO1).
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Figure 6.18 — Targets, outputs, error and response for estimation data & Target x estimation

correlation (BC - VALO2).
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Figure 6.20 — Targets, outputs, error and response for estimation data & Target x estimation
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6.2.1 Revisiting STP-BP

Given the inadequate performance with the proposed model, instead of fixing the
BP -> AR model, a new, more stable STP ->BP model will be verified. During the training
process, another model was promising it has 4 delays on the input, 4 delays on the output and
25 neurons - again, more than the initial search scope. Figure 6.27 shows the representation of
this new model. The performance is only slight better on most validations (it is actually worse
on VALO4). However, it is hoped that the mode stable output will prevent undesired behaviours
as observed previously. Figures 6.28 to 6.32 show the output and correlation for the new model.

The autocorrelation values for the new model are narrower than the old model (now shown)

Error - mse (10E-3) run time [s]

Case | new model | old model | new model | old model
ESTO1 5.213 6.500 0.1745 0.1560
VALO1 7.734 8.571 0.2983 0.1500
VALOQ2 4.336 4.996 0.0386 0.0326
VALO3 3.195 6.412 0.0338 0.0410
VALO4 10.046 8.423 0.0198 0.0209

Table 6.2 — Comparison between the new STP -> BP model and the old.

Hidden

Figure 6.27 — Model representation for the new version of STP -> BP.




of Output Element 1 for Time-Series 1
T T

i

T
. Targets
+  Outputs
Emors
Response

Output and Target

:
+ Targets - Outputs

5
E
L 3 + e }
—s —+ —t
2 . . I I
2000 4000 6000 8000 10000 12000 14000 16000 18000
Time

Output ~= 1*Target + 0.012

148

: R=0.99995

Figure 6.28 — Targets, outputs, error and response for estimation data & Target x estimation
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6.2.2 Simulation Results Redux

Having changed the old trained ANN for the the STP -> BP with the new, the model
is run again. Table 6.3 shows the improvements on most or the errors. There are some errors
that increased, such as VALO4 BP, but this was compensated by the improved stability on the
interaction between models STP -> BP and BP -> AR. The values are still close to 10E-2 mse,
however, the real effects of this errors can only be seen on the overall longitudinal simulation
- that is outside the scope of this work. Figures 6.33 to 6.56 show the model outputs. The
change in the STP -> BP has been successful in suppressing the instability seen on the original

simulation model.

Error - mse (10E-3) Run time [s]
New Model | Previous Model | New Model | Previous Model

BP 5.213 6.500

ESTO1 | AR 12.392 1316.5 1.349 1.354
BC 67.390 2557.6
BP 7.734 8.571

VALO1 | AR 9.845 2200.1 1.436 0.825
BC 32.815 3877.7
BP 4.336 4.996

VALO2 | AR 5917 5.456 0.762 1.050
BC 15.242 19.252
BP 3.195 6.412

VALO3 | AR 18.581 20.655 0.732 0.739
BC 73.963 125.609
BP 10.046 8.424

VALO4 | AR 11.513 10079.5 0.624 0.612
BC 33.471 14655.7

Table 6.3 — Results of the new simulation and previous simulation.
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Figure 6.33 — Overall simulation outputs for ESTO1 - STP, BP, AR, BC.
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Figure 6.35 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (AR - ESTO1).
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correlation (BC - ESTO1).
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Figure 6.37 — Overall simulation outputs for VALO1 - STP, BP, AR, BC.
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Figure 6.39 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (AR - VALO1).
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Figure 6.41 — Overall simulation outputs for VALO1 - STP, BP, AR, BC.
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Figure 6.42 — Targets, outputs, error and response for estimation data & Target x estimation

correlation (BP - VALO1).
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Figure 6.47 — Targets, outputs, error and response for estimation data & Target x estimation
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Figure 6.49 — Overall simulation outputs for VALO3 - STP, BP, AR, BC.
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correlation (BP - VALO3).
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Figure 6.55 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (AR - VAL04).
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6.3 Comparing the Proposed with the Original Model

A model that agrees with the target data was developed with reasonable accuracy.
Now, the question to wether it is faster than the current model remains.

It was possible to get hold of a version of the previous program to solve the pressure
of the brake system. The program is capable of handling a multi vehicle composition and
service & emergency applications. At the present chapter, only the service brake feature was
explored. The next chapter explores the combined emergency and service brake model Also,
the number of vehicles on the composition was set to the minimum that the program is capable
- 1 locomotive and a pair of ore freight cars.

A transcript of the program is on appendix 3. The program is comprised of three
elements: a data conditioner called "Run_ Freio", a processing part made on simulink (Freio)
and a plot program for the output (Plot_ Freio). The program is time based, so one has to
manually inform the program how long each case is to be run. The middle processing part is
what is going to be timed. To assess the timing, a simple line on matlab was used when running
the program. The command is called as tic; sim('Simulink_FREIO_V02'); toc as only the
processing is done on this bit, it is believed that the time assessment is accurate. The commands
tic and toc record the time it takes to run the function in between The original program, as
commented earlier ,outputs the pressure values in Pa rather than the usual psi unit. Also, the
output is in ms and the proposed model outpus in ds.

Five runs for each program were made. The pressures and run times were recored
to allow comparisons to be made. The run time distribution is assumed to be normal. The value
interval assumes a confidence level of 2 sigma (96%). Table 6.4 shows the time differences
between the original and proposed model. The proposed model has an advantage over the
original in terms of run time. For the cases studied, there was a reduction in run time from 3.5x
to 15x, depending on conditions. All runs were made on the same hardware and with the same

programs open. Hardware specifications can be found on appendix 2.



Run time interval [s] simulation
Case | original model | proposed model | length [s]
ESTO1 | 19.97 | 22.30 | 1.37 1.48 2000
VALOI | 19.41 | 22.46 | 1.40 1.49 2000
VALO2 | 3.21 | 5.36 | 0.76 0.86 360
VALO3 | 4.67 | 5.60 | 0.77 0.88 465
VALO4 | 223 | 2.62 | 0.66 0.79 205

Table 6.4 — Run time for original model and proposed model.
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Additionally, one can also evaluate the run time per simulation length (table 6.5),

where the simulation length is divided by the time it takes to run. The run time of each simula-

tion second is quite consistent on the original model, whereas, on the proposed model, the time

per simulation second increases with the decrease in simulation time. On the proposed model,

for the small simulations, the time per simulated second increases substantially, indicating that

other service functions are taking more time that the simulation itself. On a long simulation

with several vehicles, the time taken on the service functions will diluted on the overall time.

time per simulation second [ms]

. simulation
interval length [s]
Case | original model | proposed model
ESTO1 | 998 | 11.15 | 0.68 0.74 2000
VALO1 | 970 | 11.23 | 0.70 0.74 2000
VALO2 | 890 | 1491 | 2.12 241 360
VALO3 | 10.05 | 12.05 | 1.66 1.89 465
VALO4 | 10.85 | 12.68 | 3.22 3.87 205

Table 6.5 — Run time for original model and proposed model.
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7 EMERGENCY RESERVOIR AND BRAKE

The current models also allow for the application of the emergency brakes. These
are commanded by the emergency reservoir and the rate of decrease of the brake pipe pressure.
When an emergency is triggered, the brake pipe goes to zero psi. The fact that the pressure drops
to the same as ambient pressure is not the triggering of the emergency brakes but rather the
depressurisation rate. To allow for this, the implementation of the system has valves distributed
on the freight cars that helps the depressurisation. The brake valves open the brake pipe to
ambient to further allow the pressure to drop.

The emergency brake application can be commanded by the conductor or by the
train itself, in the case of a "break in two" or if the consist is severed, separating the brake pipe
in two parts and leading its pressure to zero. .

As a side note, the brake can be applied only if there is pressure on the reservoirs. A
consist that is left without pressure on the air brake systems is free to move. This feature is cru-
cial when assembling a train and moving the carts and locomotives, but can also be dangerous
when vehicles are left on a grade unattended and the parking brakes are not properly engaged.

On this section the features of emergency brake and reservoir will be added to the
model. The new proposed topology is presented on figure 7.1

First, the new inputs will be presented and discussed. A new version of the estima-
tion data will be concocted as well as a new version for validation 1 and a new validation case,
5. The emergency reservoir has to be added to the validation and estimation cases. New models
for the step input and the brake pipe outputs (STP -> BP) have to be trained (the pressure now
goes to zero with the emergency application), a model for emergency reservoir pressure from
brake pipe inputs (BP -> ER). The auxiliary reservoir pressure now is a function of the brake
pipe and the emergency reservoir (BP + ER -> AR). This is assumed this way for on the ABDX
valves, the emergency reservoir helps equalize the auxiliary reservoir on the recharging phase.
The final model is the brake cylinder output - that takes into account the other pressure inputs
(except the step that has already been converted to brake pipe pressure) - (BP + AR + ER ->
BC). The new models have more inputs than those used on the service brake model.

As the training and the models were addressed in detail on the previous chapters,

the training outputs will be presented on tables for the various options and graphs are presented



for the option chosen to move forward.

Pressure (ER)

Brake handle Model Brake Pipe Model Aux Resarvoir
command (STEP) STEP->BP Pressure (BP) BP +ER -> AR Pressure [AR)
Model Madel
BP ->ER BP+AR+ER->BC
Emergen.r:.f Brake Cylinder Pressure
Reservoir

(8C)

Figure 7.1 — Proposed topology with emergency reservoir.

7.1 Inputs

On this part, the new inputs will be explored and explained.

7.1.1 VALOS - Emergency Brake
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A new set of training data was received from the lumped parameter model. These

data will be henceforth be called Validation 5 or VALOS for short.

The data set contains a

pressure drop from 90 psi to O psi (STEP) and the pressures for the brake pipe (BP), auxiliary

reservoir (AR), emergency reservoir (ER) and brake cylinder (BC). Figure 7.2 shows the time

series plot.

The STEP vector for VALOS is

vector VALO5=]

7.1.2 ESTO1 - Estimation Data

0 90
151 0
601 90
3000 907;

The estimation/training data has also been updated by adding the emergency brake

at the end of the previous estimation data. This new time series will be called ESTO1_v2.

Also, the emergency reservoir was added to the estimation data. Figure 7.3 shows the new

estimation/training data.
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VALOS5 - Emergency brake
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Figure 7.2 — Emergency brake validation data

ESTO1 v2 - Estimation data
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Figure 7.3 — Estimation data (ESTO1 v2) with the added emergency brake and reservoir.

The new STEP vector is

ESTO1 =[ 0 90
100 84.2
500 64.2
1100 90
4100 84.2
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4500 70
4800 64.2
5300 90
7800 84.2
8300 90
10000 64.2
10700 90
13500 74
14100 90
17150 0O
17600 90
20000 907;

7.1.3 VALOI1 - Validation Data

On the same way, the contents of VALOS were add to the VALO1 dataset, creat-
ing VALO1 v2. The emergency brakes were added before the other validations and after the
composed brake applications. Also, the emergency reservoir pressure was added to the dataset.

Figure 7.4 shows the time series plots.

100 VALO1 v2 - Validation data

TV TT

— — STEP
BP
AR
ER
BC

60 -

50 -

pressure [psi]

40 -

30 -

20 -

it

1 1.5 2 2.5
time [ds] x10*

Figure 7.4 — Validation (VALO1 v2) with the added emergency brake and reservoir.
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VALOLl =[ 0 90

1100 64.2
1700 90
4700 84.2
5100 90
6300 84.2
6600 64.2
7200 90
9950 O
10401 90
12900 84.2
13400 90
15150 64.2
15850 90
18650 74
19250 90
23096 90];

7.1.4 Other Validation Data

As for the other validation datasets, the emergency reservoir had to be added to
allow for the proper estimation and description of the phenomena. The STEP vectors were not

changed. Figure 7.5 shows the pressures for the other validation datasets.
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o Emergency reservoir

-
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Figure 7.5 — Emergency reservoir pressure for VALO2, VALO3 and VALO4.

7.2 Training the Models

As outlined on the beginning of this chapter, a new set of models has to be trained
in order to represent the new features of emergency brakes and reservoir. The next sections
will show the trained models, their performance and the graphs of the best candidates to build
the overall simulator model at the end of this chapter. The training of the parts were somewhat
more complicated than previously. The approach was to train all the ANNs as closed loop,
since previously, the open loop training did not work as intended when closed. The Levenberg-
Marquardt training scheme with bayesian validation was used again. The trainings took longer

than the service application models

7.2.1 STEP ->BP

Several combinations were run for the model that translates the discrete input to
the pressure of the brake pipe. Table 7.1 shows the combinations. The main parameter is the
performance and the secondary parameter is the run time. All run times were quite similar, so
the best performance model was selected to compose the system simulation contraption. Figures
7.6 to 7.11 shows the model response against the targets as well as the regression plots. The
model struggles with some of the transitions - especially on the emergency brake command.

Each model took approximately 60 to 80 min to run.
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STP->BP | Case A B C D E F G
input delays 4 4 4 4 4 6 4
output delays 4 4 4 4 4 6 4
hidden neurons 10 15 20 25 30 20 40
Error (mse) | Average | 0.068 0.026 | 0.019 0.048 0.109 0.124 0.152
ESTO1 | 63.443 | 25.312 | 17.604 | 38.072 | 107.036 | 109.222 | 143.746
Error VALO1 | 58.368 | 23.799 | 18.620 | 37.454 | 99.294 | 102.170 | 127.693
(mse) VALO2 | 51.734 | 21.245 | 20.010 | 20.598 | 118.541 | 70.531 | 108.698
1.00E-03 VALO3 | 34.839 | 9.634 | 6.493 | 14.811 | 40.782 | 58.978 | 99.524
VALO4 | 44.997 | 40.622 | 25.505 | 40.649 | 91.850 | 96.693 | 118.444
VALOS | 156.396 | 35.332 | 22.953 | 134.189 | 197.494 | 307.434 | 315.162
Average | 0.163 0.149 | 0.182 0.150 0.154 0.149 0.152
ESTO1 0.362 | 0.325 | 0.300 0.306 0.316 0.323 0.327
VALO1 0.209 0.196 | 0.239 0.206 0.195 0.201 0.200
Run time [s] | VALO2 | 0.121 0.112 | 0.181 0.118 0.131 0.114 0.112
VALO3 | 0.065 0.050 | 0.073 0.055 0.057 0.545 0.055
VALO4 | 0.186 | 0.177 | 0.246 0.177 0.189 0.169 0.185
VALOS | 0.037 0.032 | 0.054 0.036 0.035 0.031 0.035
0 ++ +++ + - -- ---

Table 7.1 — Results of the STP -> BP model.
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Figure 7.6 — Targets, outputs, error and response for estimation data & Target x estimation cor-
relation (BP - ESTO1) - time in [ds] and values in [psi].
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Response of Output Element 1 for Time-Series 1
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Figure 7.8 — Targets, outputs, error and response for estimation data & Target x estimation cor-

relation (BP - VAL02) - time in [ds] and values in [psi].
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of Output Element 1 for Time-Series 1
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Figure 7.9 — Targets, outputs, error and response for estimation data & Target x estimation cor-
relation (BP - VALO3) - time in [ds] and values in [psi].
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Figure 7.10 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (BP - VALO4) - time in [ds] and values in [psi].
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. Response of Output Element 1 for Time-Series 1
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correlation (BP - VALOS) - time in [ds] and values in [psi].
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7.2.2 BP->ER

This was perhaps the most challenging model to train. In the physical world the
pressures of the aux. and emergency reservoir are linked with the brake pipe and the brake
cylinder. The previous model addresses this by calculating all the parameters on a time step,
allowing for their interactions. However, the approach taken on this work was to calculate the
time series of the pressures of each of the elements separately. An additional feature of the
model is that it acts on the pressure raise for the service brake application and on the pressure
fall for the emergency application. There is no way to inform this peculiarity to the artificial
neural network that is being used, other than separate the model in two - on for the service and
other for the emergency applications - what is not a desirable approach in terms of versatility.
The model training times took between 360 and 480 min - among the longest experienced on
this work. Table 7.2 shows the best cases and combinations. Runs that yielded error higher than
1 mse are not reported. The best model combination is model D - 15 delays on the input and
output and 20 hidden neurons. An alternative model is C with 18 delays and 20 neurons. Model

E shows that increasing the number of neurons does not increase the performance for this case.

BP->ER | Case A B C D E
input delays 5 2 18 15 18
output delays 5 2 18 15 18
hidden neurons 38 20 20 20 40

Error (mse) | Average | 0.111 0.427 0.008 | 0.002 | 0.025
ESTO1 | 93.326 | 321.890 | 5.781 | 2.547 | 29.339
VALO1 | 100.335 | 937.613 | 6.749 | 2.422 | 26.824

Fm’r) VALO2 | 111.298 | 202.472 | 4.438 | 2.932 | 32.265
101826_03 VALO3 | 131.723 | 678.417 | 3.460 | 2.405 | 26.604

VALO4 | 43.596 | 81.626 | 19.096 | 1.310 | 17.620
VALOS | 187.147 | 336.998 | 6.320 | 1.689 | 19.679
Average | 0.069 0.069 | 0.105 | 0.070 | 0.079
ESTO1 0.135 0.136 | 0.179 | 0.141 | 0.161
VALO1 0.161 0.156 | 0.247 | 0.158 | 0.169
Run time [s] | VALO2 | 0.030 0.032 | 0.051 | 0.031 | 0.036
VALO3 | 0.041 0.038 0.064 | 0.038 | 0.044
VALO4 | 0.022 0.021 0.039 | 0.022 | 0.028
VALOS | 0.027 0.031 0.053 | 0.028 | 0.035
-- --- + +++ 0

Table 7.2 — Results of the BP -> ER model.

Figures 7.12 to 7.17 show the response and the regression for the model over the

validation data sets. At first glance, figure 7.16 may cause alarm. The model regression is
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among the lowest among accepted and presented models at an R squared of 0.899 (other models
with worst performances were trained and are not presented). However, the absolute values are
quite low - the emergency reservoir does not play an important part on the minimum brake
application and the absolute errors are lower than 1psi, in line with the other data sets. Effort
was made to try to align the model with the VALO4 data but, in general, models that presented a
good result for this case were not acceptable for the other validation cases. This is an important
point to be noted when deploying the model on the simulator. If it plays an important part on
the longitudinal dynamics, it will have to be reassessed. Nonetheless, it is not believed that this
parameter plays an important role on the train simulator for the main input - brake pipe pressure
- and the main output - brake cylinder pressure - are well aligned with the target values and
the emergency reservoir plays an important role on the emergency brake application and on the

pressure recovery after maximum service brake applications.
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Figure 7.12 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (ER - ESTO1) - time in [ds] and values in [psi].
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Response of Output Element 1 for Time-Series 1
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Figure 7.13 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (ER - VALO1) - time in [ds] and values in [psi].
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Figure 7.14 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (ER - VALOQ2) - time in [ds] and values in [psi].
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of Output Element 1 for Time-Series 1
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Figure 7.15 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (ER - VALO3) - time in [ds] and values in [psi].
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Figure 7.16 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (ER - VALO4) - time in [ds] and values in [psi].
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Response of Output Element 1 for Time-Series 1
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Figure 7.17 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (ER - VALOS) - time in [ds] and values in [psi].
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7.2.3 BP+ER -> AR

Differently from the service application model, for the ANN with the emergency
brake, the auxiliar reservoir will be a function of the brake pipe and the emergency reservoir.
The ABDX valve uses the pressure stored on the latter to fill the brake pipe and the aux. reser-
voir and to allow for a faster reestablishment of the proper system pressures. Table 7.3 shows
the models that had an error lower than 1 mse. The best model is B, with six delays on the
input, 10 delays on the output and 20 hidden neurons. The results for this model are presented

on figures 7.18 to 7.23

BP +ER ->AR | Case A B C D E
input delays 4 6 8 8 8
output delays 4 10 10 6 8
hidden neurons 20 20 40 30 80

Error (mse) | Average | 0.010 | 0.005 | 0.006 | 0.019 | 0.013
ESTO1 | 27.452 | 6.134 | 5.865 | 26.419 | 14.119
VALO1 | 7.444 | 5.160 | 7.103 | 19.635 | 14.360

Frmr) VALO2 | 6958 | 5.085 | 6.184 | 13.365 | 15.974
L 00b03 | VALO3 | 1616 | 4824 | 4.106 | 20.804 | 11444

VALO4 | 4.696 | 2.590 | 7.319 | 27.164 | 12.625
VALOS | 3.715 | 3.869 | 4.761 | 5.853 | 6.594
Average | 0.080 | 0.163 | 0.174 | 0.163 | 0.168
ESTO1 | 0.153 | 0.339 | 0.392 | 0.350 | 0.368
VALO1 | 0.185 | 0.232 | 0.253 | 0.226 | 0.243
Run time [s] | VALO2 | 0.038 | 0.140 | 0.121 | 0.125 | 0.119
VALO3 | 0.045 | 0.058 | 0.058 | 0.059 | 0.061
VALO4 | 0.025 | 0.172 | 0.184 | 0.179 | 0.179
VALOS5 | 0.033 | 0.039 | 0.038 | 0.038 | 0.039
+ +4++  ++ - 0

Table 7.3 — Results of the BP + ER -> RA model.
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Response of Output Element 1 for Time-Series 1
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Figure 7.20 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (AR - VALO2) - time in [ds] and values in [psi].
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Figure 7.21 — Targets, outputs, error and response for estimation data & Target x estimation
correlation (AR - VALO3) - time in [ds] and values in [psi].
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7.2.4 BP+ AR +ER ->BC
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As for the last model, it is the one with most inputs on this whole work. The training

times were comparable with the model for service application only. Model A presents the best

adherence to the target, followed by model C. Both have four delays on the inputs and outputs.

The running time is very similar to all models, E and G being the highest. Moving forward,

model A will be used for the combined (service & emergency) brake simulator. Table 7.4

summarises the results.

Table 7.4 — Results of the BP + AR + ER -> BC model.

BP+AR+ER ->BC \ Case A B C D E F G
input delays 4 4 4 4 5 6 6
output delays 4 4 4 4 5 6 6
hidden neurons 20 40 10 30 30 45 50
Error (mse) Average | 0.007 | 0.041 | 0.008 0.022 0.014 | 0.010 | 0.044
ESTO1 | 5.326 | 3.032 | 6.331 4.078 | 12.823 | 10.779 | 42.984
Error VALO1 | 6.160 | 3.587 | 6.189 | 16.366 | 12.319 | 7.893 | 38.313
(mse) VALO2 | 2.774 | 1.792 | 2.476 1.787 7.956 | 3.734 | 31.940
1 00E-03 VALO3 | 2.839 | 1.785 | 5.401 2.312 8.896 | 7.588 | 32.745
VALO4 | 18.206 | 9.101 | 15.856 | 100.174 | 24.758 | 17.130 | 30.606
VALO5 | 8.022 | 5.055 | 8.635 6.557 | 14.040 | 10.067 | 86.038
Average | 0.780 | 0.081 | 0.076 0.077 0.102 | 0.083 | 0.097
ESTO1 | 0.183 | 0.174 | 0.162 0.163 0.218 | 0.169 | 0.188
VALO1 | 0.160 | 0.179 | 0.165 0.174 0.229 | 0.185 | 0.226
Run time [s] VALO2 | 0.033 | 0.034 | 0.034 0.036 0.047 | 0.038 | 0.047
VALO3 | 0.040 | 0.046 | 0.039 0.039 0.055 | 0.050 | 0.056
VALO4 | 0.023 | 0.024 | 0.023 0.023 0.027 | 0.024 | 0.029
VALO5 | 0.030 | 0.031 | 0.030 0.028 0.033 | 0.034 | 0.039
++ + -- ++ - 0 + - -

Figures 7.24 to 7.29 shows the model outputs and targets for model A. It has a very

good performance and regression towards the targets.
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7.3 Combined Brake Model

By combining the models presented previously on this chapter, one can concoct a
service and emergency brake simulator that will predict the brake pipe pressure as well as the
reservoir - aux. and emergency - and the brake cylinder. The first model is comprised of the
most adherent sub-models using a structure that is similar to the one presented for the service
brake simulator. Table 7.5 shows the results of the various cases. The combination of the best
models will be called assembly 1 - or assy 1 for short. This combination presents instability
on the ER model, with values of error quite high, in the order of 1 mse. Figure 4.10 shows the
model output for VALO1 and the model and target comparison for the BC pressure. Note that
both the ER and the BC pressures behave differently than expected.

The models for STP -> BP and BP -> ER work well and will not need to be changed.
Assembly 2 (assy 2) changes the model for BP +ER -> AR from B to C and there is an improve-
ment on both the adhesion of the aux. reservoir and the brake cylinder from model to target,
with only the maximum service application being the main culprit of the error. On figure 7.31
the error on the maximum application is visible on the magenta brake cylinder response - that
obscures the black aux. reservoir pressure signal.

Assembly 3 (assy 3) changes again the model BP + ER -> AR from C to D and the
values become acceptable. The other cases change the brake cylinder model to slight improve-
ments on the overall performance results. Figures 7.32 to 7.37 show the model results and the
comparison to the brake cylinder. Although model D for BP +ER -> AR is not as precise as the
others, it has shown more resilience. The run times between the models are within the expected

statistical distribution without any outliers.



190

Simulator assy_l1 assy_2 assy_3 assy_4  assy_5
STP ->BP C C C C C
Model BP ->ER D D D D D
BP+ER->AR B C D D D
BP+AR+ER->BC A A A C G
ESTO1 BP 17.605 17.605 17.605 | 17.605 | 17.605
Error mse ER 14.924 14.924 14.924 | 14.924 | 14.924
1E-3 AR 4641.600 1545.000 33.597 | 33.597 | 33.597
BC 72026.100 | 31067.000 | 395.692 | 369.633 | 388.704
Run time [s] 1.779 1.852 1.797 1.828 1.722
VALOL BP 51.493 51.493 51.493 | 51.493 | 51.493
Error mse ER 13.878 13.878 13.878 | 13.878 | 13.878
B3 AR 4030.400 2418.000 24.463 | 24.463 | 24.463
BC 84637.000 | 48862.000 | 273.564 | 261.283 | 264.024
Run time [s] 1.556 1.507 1.602 1.567 1.483
VALO? BP 20.010 20.010 20.010 | 20.010 | 20.010
Error mse ER 20.097 20.097 20.097 | 20.097 | 20.097
1E-3 AR 85509.000 8558.700 27.536 | 27.536 | 27.536
BC 106520.000 | 172050.000 | 247.663 | 252.807 | 284.909
Run time [s] 0.332 0.333 0.318 0.324 0.323
BP 6.493 6.493 6.493 6.493 6.493
EzlgrLI?ie ER 9.201 9.201 9.201 9.201 9.201
B3 AR 47.733 6.326 25.302 | 25.302 | 25.302
BC 396.809 77.361 297.839 | 278.346 | 254.543
Run time [s] 0.421 0.389 0.381 0.383 0.367
VALO4 BP 25.506 25.506 25.506 | 25.506 | 25.506
Error mse ER 5.293 5.293 5.293 5.293 5.293
1E-3 AR 8.887 7.413 29.622 | 29.622 | 29.622
BC 74512.000 109.670 329.526 | 357.223 | 255.180
Run time [s] 0.237 0.245 0.250 0.236 0.236
VALOS BP 22.954 22.954 22.954 | 22.954 | 22.954
Error mse ER 6.563 6.563 6.563 6.563 6.563
B3 AR 106.718 7.469 14.191 | 14.191 14.191
BC 1561.500 158.001 416.107 | 323.211 | 385.033
Run time [s] 0.290 0.301 0.287 0.330 0.285
0 0 ++ ++ +++

Table 7.5 — Summary of results for the combined model with different sub-models.
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Figure 7.30 — Assembly 1 (assy 1) model results for VALOI and comparison between model
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Figure 7.31 — Assembly 2 (assy 2) model results for ESTO1 and VALOI.
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Figure 7.36 — Assembly 3 (assy 3) model results for VALO4 and comparison between model
output and target for BC.
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7.4 Alternative Combined Brake Model

The acceptance criteria for the model is twofold as mentioned earlier. It has to run
faster than the current one and it has to keep an acceptable adherence to the targets

The best average mean square error for the combined model representing the brake
cylinder pressure shown on the previous section was of the order of 0.250 psi. To assess what
the effect of this error would be, one has to implement this model on the longitudinal dynamics
simulator and compare the train behaviour, what falls outside the scope of this work.

Nonetheless, should the model not be sufficiently adherent, there is an alternative to
assure that the error is minimised, train the artificial neural network input with the output of the
previous models, rather than the baseline target data sets as inputs and keep the output target as
the objective external dataset.

This experiment was done with the assembly 3 that will be called the baseline hith-
erto. The new BP + AR + ER -> BC was trained using the ESTO1 data generated from the
trained ANN and, as can be seen on table 7.6, there is an improvement on all cases, most of
them improving an order (except VALO3 and VALOS that show only minor improvements).
Figures 7.38 to 7.43 show the model response and comparison to the brake cylinder targets.

There is no major run time difference between the baseline model assembly and the
retrained.

If need be, further retraining using the previous model outputs may be used to in-

crease model adherence to targets.
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Figure 7.38 — Assembly 3 (assy 3) model results for ESTO1 and comparison between model
output and target for BC.



195

Simulator Baseline assy_3x

STP ->BP C C
BP >ER D D
Model BP+ER->AR D D
BP+AR+ER->BC A X1
BP 17.605 | 17.605
Eﬁifgllse ER 14924 | 14.924
B3 AR 33.597 | 33.597
BC 395692 | 11.386
Run time [s] 1797 | 1.783
BP 51.493 | 51.493
EYrArLil ER 13.878 | 13.878
1‘;5 ; s¢ AR 24463 | 24.463
- BC 273.564 | 38.889
Run time [s] 1.602 | 1.495
BP 20.010 | 20.010
EVAL02 ER 20.097 | 20.097
“fg r;se AR 27536 | 27.536
) BC 247.663 | 36.935
Run time [s] 0.318 0.351
BP 6493 | 6493
EVALO3 ER 9201 | 9.201
rrloé ‘;Se AR 25302 | 25.302
) BC 297.839 | 243.112
Run time [s] 0.381 0.232
BP 25506 | 25.506
EXArLI?f ER 5293 | 5.293
1"E ; s¢ AR 29.622 | 29.622
) BC 329.526 | 31.022
Run time [s] 0250 | 0279
BP 22.954 | 22.954
Eﬁf&i . ER 6563 | 6.563
B3 AR 14.191 | 14.191
- BC 416.107 | 194.149
Run time [s] 0287 | 0293

Table 7.6 — Summary of results for the combined model with different sub-models with retrain-
ing.
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Figure 7.40 — Assembly 3 (assy 3) model results for VALO2 and comparison between model

output and target for BC.
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Figure 7.42 — Assembly 3 (assy 3) model results for VALO4 and comparison between model
output and target for BC.
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7.5 Combined and Service Model Run Time Comparison

The same methods to assess the run time were used. The combined model (service
and emergency brake) results are presented on 7.7. For the estimation and VALOI1 cases, the
combined model takes longer for it has to calculate an additional model. On the individual
applications, the combined models were more efficient and had a reduced run time when com-
pared with the previous models. Regardless, both models run faster than the original model

currently implemented on the simulator and transcribed on appendix 3.

Run time interval [s]

Case | Original model | Service Brake model | Combined model
ESTO1 | 19.97 | 22.30 | 1.37 1.48 1.70 1.88
VALO1 | 19.41 | 22.46 | 1.40 1.49 1.44 1.63
VALO2 | 3.21 536 |0.76 0.86 0.31 0.35
VALO3 | 4.67 | 5.60 | 0.77 0.88 0.23 0.49
VALO4 | 2.23 2.62 | 0.66 0.79 0.21 0.28
VALOS5 0.26 0.33

Table 7.7 — Summary times for the various models presented on this work
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8 CONCLUSION

We start the conclusion by going back to the stated objective: "Explore the possi-
bility of creating a mathematical model to replace the current model by Ribeiro (Ribeiro, 2017)
and Teodoro (Teodoro, 2016) evaluating the accuracy and running time. To this, the work can
be considered successful. The mean square error between the the target and the service brake
model was within 10E-2 and for the combined emergency and brake models, the error was
within 0.1 psi. The effect of this error has to be evaluated on the longitudinal dynamics sim-
ulator, a possible future work. It is believed that the effect will be minimum, if any. In the
unlikely case that the error cause an adverse effect that hinder the usability of the longitudinal
dynamics simulator further tweaking can be done on the ANN model to improve the accuracy,
as demonstrated on the end of the last chapter.

Another difference between the original model and the proposed model is that the
code is much smaller and leaner than the original which is transcribed on appendix 3.

Alternatively, at the time of the writing of this work, there are efforts to test actual
automatic brake valves and acquire their practical responses. Once these are available, the
artificial neural networks can be trained with the new data and should perform accordingly. The
training process is quite straightforward and efficient.

For the automatic brake simulation, linear models have not been successful. Also,
for this specific problem, the neural networks that were trained open and closed later on have
not yielded good results also. Only the ANNs that were trained closed were able to solve the
problem accordingly.

The final networks presented were handcrafted and took time and experience to find
a good combination of parameters.

This work demonstrated that the problem of the automatic brake system pressure
simulation can be solved with a reasonably small training dataset with a manageable size model
that does not require large server infrastructure. On the future, practical data should be used to
build a stochastic model that takes into consideration the actual variations of a physical valve.

The emergency brake and reservoir were added to the model, showing its flexibility
and the worthiness of this approach.

Other features should be added to the model in future works, such as the effects of
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multiple vehicles on the composition. Also, the simulation model can be made modular to show
the effects on the consist separately, increasing flexibility.

In the future, other parts of the longitudinal dynamics simulator, as well as a cou-
pled lateral dynamics simulator can be done using machine learning techniques in general and
artificial neural networks, in particular to improve speed of the simulations, keeping a reason-
able accuracy. Also, as has been indicated on the bibliography research, machine learning has
been applied with success to several railway applications such as infrastructure monitoring,
circulation control, etc.

Having addressed the objective and demonstrated that it is possible to create a model
to replace the current automatic brake valve simulator that runs faster with reasonable accuracy

and also demonstrated the flexibility of the techniques employed, this work is concluded.
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APPENDIX A - INTRODUCTION TO THE HISTORY OF
RAILWAYS

Railways play an important role in a country’s development. The combination of
the type of cargo, region topology and local solutions are a very powerful indicator of history,
degree of development and society interests and decisions. When railways are mentioned, some
examples come to mind, such as the USA and Europe, as well as Japan and China. These
countries have taken very different decisions regarding to their choices and their current rail
infrastructure - both rolling stock and permanent way. This have lead heavier and slower net-
works and to lighter and faster. For example, the European network system favours passenger
traffic, i.e. light and fast, whereas the North American system favours heavy haul with slower
and heavier trains

The modern rail history is credited to Stephenson and Son in England, 1825. Steam
engines and rail guided vehicles vehicles already existed, their contribution and reason for fame
is the creation of a system for intercity people transport system. This has shrink the world
and was one of the pillars of the industrial revolution. The rail system has allowed factories to
access raw materials over land in high quantities and little time, compared with the previous
transportation method - horse drawn carriages. The system also allowed the spread of finished
goods and most importantly, people and information. Before, most people spent their life in
their county and most journeys were as far as walking distance. For the wealthy and well to
do, that could afford travel, it was a dangerous and complicated matter, most likely by horse or
carriage and prone to assaults and bandits. The railway changed this reality, for it allowed for
long distance travel and communication to happen within a day.

The railway was and still is an important tool in war, revolution and country inte-
gration. The continental U.S.A could only be controlled and pacified by a central government
with the completion of the transcontinental railway (figure A.1) in 1869 - after que civil war.
The Franco-Prussian war of 1870, that ended the french second empire, exiled Napoleon III,
consolidated the German Reich and laid the foundations of the contemporary Europe was won
by the Prussian superior capacity of mobilisation allowed by the clever use of railways. On
the other hand, the Great War of 1914 entered a stalemate that costed millions of lives by the

incapacity of the Schliffen Plan to cope with the train delays and schedule changes due to the
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failure in commandeer the Belgian rail infrastructure in due time and thus deploy the German
troops ahead of France’s and England’s. Such importance the railway has that the armistice of
1918 was signed on a passenger car in Compiegne and the same passenger car was used to sign

France’s surrender in 1941

Figure A.1 — Encounter at Promotory, or the Golden Spike Cerimony - the competion of the
transcontinental railway (US...,)

With all of this, it is not surprising that railways are darlings of governments and
populations as harbingers of progress and development and are desired by the public since the
XIX century.

The European railways were built on the XIX century tracks and on the middle of
the XX century were slowly converted to high speed rail. The topography of Europe west of
the Alps is mostly flat, what helps greatly on the rail transportation. Also, the excess resources
from reconstruction and from the European economies have allowed for great improvements
on the rail networks. The largest companies are state owned (SNCF - France; Deutsch Bahn
- Germany; Trenitalia - Italy, etc.) and the network is highly subsidised. For example, the
German railway received 17 billion euros in 2014 (Die..., ), the French, 13.2 billion euros
(Crozet, 2014), quite a substantial sum and the tariffs are most time on par with air tickets,
with the advantage of departing from city center and arriving at city center. Another peculiarity
of the European set up is the distance between the major capitals and population centres, that
tend to be within 1000 km. The European railways transport passengers in their majority with
electrical locomotives and passenger cars

The United States experience tend to be different. There are only 10 cities in the

USA with more than 1 million people (City..., ) and the topography does not favor high speed
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rail. Also, on the United States, the major expansions happened after the invention of the
automobile and the second large expansion after airplanes were developed and viable. So,
passenger use of the rail declined with the advent of the aforementioned technologies. The
USA, on the other hand, excels at heavy haul for the transportation of goods - finished and raw.
The locomotives tend to run on Diesel instead of electricity and the current ownership of the
tracks by the heavy haul companies and the lack of subsidies to the passenger transport seem to
be the major forces preventing the expansion of the passenger service.

The Chinese case is quite an interesting one. The expansion of the passenger rail
networks are quite recent fuelled by the financial surplus generated by the transfering of manu-
facturing to that country. Though coal, grain and ore are the majority of the cargo transported,
the high speed system is focused on passengers. China has the world largest population, con-
centrated on the eastern most part of the country. In China, the railways are also political tools
for country integration and control, specially in Xinjiang and Tibet, where there is a push for
population relocation and military material transportation.

There are other cases of railway use - transport of large quantities of raw materials
for export - especially in Brazil, Australia, Chile, Mozambique, etc. In these cases, passenger
transport is an afterthought. The network connects not population centres but the mine - or the

farm - to the port in a clear raw material export driven economy

A.1 The Brazilian Case

The next sections outline the railway history in Brazil in chronological order and
will analyse the motivations and desired objectives as well as the background for the events and

their consequences.

A.1.1 The Empire

The incentives to build a railway in Brazil started during the short first empire in
1828, to no avail. An Anglo-Brazilian company was created in 1832 with the intent of connect-
ing the city of Porto Feliz to Santos, in order to reduce the logistical costs of export products.
When the plans were presented, they were considered ahead of their time for the technology
was not yet ready to transpose Serra do Mar - a 700 m steep hill between Brazilian coast and
its highlands. In the meantime, there was a government change and the political backing was

no longer present. In 1835, the regent Diogo Feij6 issue imperial law 101, that would allow
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whoever was capable to connect the Brazilian capital of Rio de Janeiro to the provincial capital
of Minas Gerais, Rio Grande do Sul and Bahia to explore the service for 40 years. However,
the cost of such endeavour was high compared to the projected gains and the project again was
not implemented.

A new law goes into effect in 1852, bill 641, that increased the exploration right
to 90 years, improved financing and it prevented railways to be installed within 33 km of each
other (what would hamper the network later that century on the path to Santos). The bill limited
the profits to 8%, still not attractive enough and no railway was build.

Finally, in 1854, Bardao de Maud builds EFM- Estrada de Ferro Maud - on Rio de
Janeiro, between his port (Praca XV) and Serra do Mar. The track and pinion infrastructure
to overcome the hill was never constructed. It had 3 locomotives with Indian Gauge tracks
(5°6"/1.676 m) and lasted until 1888, when it was absorbed by other systems.

In 1859, construction began on Recife & Sao Francisco Railway Company between
Recife and Vila do Cabo - a 31.5 km distance with broad gauge (1.6 m). In 1901, the gauge was
reduced to 1m.

On late 1859, work began on perhaps the most important railway of Brasil, Estrada
de Ferro D. Pedro II - later called Estrada de Ferro Central do Brasil (EFCB). In the hight of
its importance, it connected the provincial capitals of Sdo Paulo, Rio de Janeiro and Minas
Gerais. In 1877 EFCB connected with EFSP - Estrada de Ferro Sao Paulo - effectively linking
the imperial capital to the financial capital of the Empire. This connection was particularly
important on the machinations of Sdo Paulo oligarchy to rule over the country

The city of Belo Horizonte, the new capital of the province of Minas Gerais, a
planed city, was built around the EFCB station, where to this day lies the zero milestone for the
city.

A law from 1873 created an incentive for the track construction. It would pay 30
contos de reis to each kilometre built. As good deeds don’t go unpunished in Brazil, this led
to tracks to be built with extra curves, a lack of structure standardisation, multiple gages and
sometimes, the longest route was preferred rather than the direct one. Some effects of this law
persist today, as most of the tracks use the paths opened in the XIX century.

At the time of the Republic proclamation, Brazil had 9583 km of tracks. During
the first years of the regime 3383 km were added. However, the economic crisis that would

eventually lead to the great depression has halted the expansion.
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A.1.2 The economics of rail

Building railways is expensive. Not only the tracks, that are made of steel, had to
be imported (for most of the XIX century and some of the XX century), but also, geography is
not smooth and Serra do Mar, the hill that divides the coastline to the rest of the country is quite
impressive, standing at 700m. Not to mention the locomotives, signaling instruments, coal,
cars, wagons, etc. Most of railway growth in Brazil was financed by British money. When we
take a look at the other side of the proverbial pond, there was an “economic mechanism” called
Railway Mania at play. In short, people perceived tracks and locomotives as a “secure way’” of
investing money and the initial returns of some operations promised profits, however, as dotcom
mania of the last decade of the XX century, the Rail Mania proved to be a fad and the bubble
burst in 1846. Nevertheless, the bubble by mid XIX century had acquired a chronic behaviour
and came back from time to time. With the maturing of the rail system in the UK (there is
a limited space for railway implementation), the investment turned elsewhere, i.e. overseas.
British money was not limited to railways, nonetheless, the rail mania seemed to be very much
alive when examining the proportion of the money directed to railways in Brazil.

This investment has a close relation to the track expansion - with a few years shift
- railways take some time to build. Figure A.2 shows the investment and track length. On the
same figure, it is possible to see that 1960 was a turning point for the Brazilian rail network,
something that will be explored later on this introduction. Also, it is possible to see on the
investment, the effect of the Great War, the depression of 1929 and finally the Second World
War.

The American rail expansion example can also teach us some lessons. After the
American Civil War of 1861-1865 the Reconstruction era came. Later, on what was known
as the Gilded Age, Cornelius Vanderbilt started the consolidation of the American railways in
1863. Most of the money came from the financial markets. As in England, the business of
transporting people was not profitable. The great breakthrough (or break even) for the vast
rail empire came with the contract to transport kerosene (for lighting) from Standard Oil (John
D. Rockefeller). This steady flow of income allowed the railway to plan and expand. Today,
American Class I railways are among the most important in the world, transporting mostly
cargo. There are little or no subsidy to passenger transport, hence the lack of viable passenger
trains in the USA to this day - except between Boston, NYC and Washington, DC (Amtrak

receives US$1.4 Billion yearly). In Europe, on the other hand, there is a large passenger high
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speed network, that comes at approximately 73 billion Euro of early subsidies. In short, the
economics that existed on rail transport at the time of Commodore Cornelius Vanderbilt are still
at play, and passengers on rails require subsidy & state run companies (like SNCF, Deutsch

Bahn, Thallys, etc) to be viable.

A.1.3 Revolution

In 1907, President Campos Sales advocated the privatisation of the railways. At the
time, Brazil was fuelled primarily by coffee exports, what made the rail companies profitable.
This explains how the rail network has expanded despite the lack of external (British) funds
after the 1914-1918 conflict, though at a more modest pace per chart on figure A.2. Electric
locomotives started replacing steam as early as 1930 (it was planed to start in 1922) and in
1936, the Diesel Electric locomotives appeared, however, the alternative to steam would only
gain traction after the World War of 1939-1945. The revolution of 1930 - that marked the

collapse of the so called Old Republic and was mainly caused by the fall of commodity prices



212

due to the crash of 1929 in Wall Street did not change much of the overall expansion panorama.
It is to be noted that rail was still the best transportation method for people and cargo in general
for there were very few cars, busses and trucks and there were even fewer good roads and
highways. Nonetheless, it was loosing steam. The revolution and subsequent counter revolution
also proved the importance of the rail as means of policy and war. In order to take power, the
liberator Getulio Vargas took a train in his home state after having lost the popular vote for
the government and his allies used the rail network to mobilise troops and take the capital.
Later, in 1932, when S. Paulo became insurgent against the now dictator Vargas, again he used
the rail network to mobilise the loyal troops from the rest of the country, crush the revolt and
guarantee the unity of the country. Given that the economics have not changed and the rise of
the automobile and the lower investment required by the tire transport, by 1940 most railways

were bankrupt and, in a common movement by governments, they were nationalised

A.1.4 Nationalization

By 1956, the deficit in Brazil of the nationalised railway companies was about 14%
of the total tax revenue of the country. To try to contain the deficit a state run company, RFFSA
- Rede Ferrovidria Federal Sociedade Andnima, was created - with the task of rationalising
the system i.e. cutting down costs and network. From 1964 onward, synchronous with yet
another military rule, RFFSA started closing lines that were deemed uneconomical. By this
time, the automotive industry was firmly instituted and large highway projects had been done
or were underway. The railway was not longer the passenger transport of choice, cars and
busses had taken that role. Perhaps this was backed by the lack of participation of the railway
on the “Redeeming revolution”, marking its decline as a political and revolutionary tool. The
State of S. Paulo organised FEPASA in 1971 with 5000 km of tracks within its borders and
one of the most electrified networks in the nation. As time went by, and as government goes,
the electrification has proven to be much more expensive than initially anticipated and the theft
of equipment plagued the system until its demise. The situation on the RFFSA was so dire in
the end of the 1980s that its budget was only 19% that of the end of 1970s. By the end of the
military regime most of the railway network and its parts were left for scrap and inoperable.
However, during the period known as “Economic Miracle” spanning from1969 to 1973 (and
the oil crisis of 1974) the government focus was on other type of rails, the underground one.

The Metro systems of Sao Paulo dates from 1974 and Rio’s from 1979 other capitals followed
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in later years and though the network is still small compared to international benchmarks, it
is difficult to fathom a city the size of Sdo Paulo without a mass transport system such as the

underground.

A.1.5 Privatisation & Ressurgence

FEPASA was merged with RFFSA in 1991 and in 1995 RFFSA was divested by the
state and split into several parts. The major players today are MRS, VLI (FCA), RUMO (former
ALL) and VALE, who was awarded Estrada de Ferro Vitéria Minas (EFCM) and Estrada de
Ferro Carajas (EFC) that are a vital part of their iron ore export system.

While some of these companies thrived, such as Vale (former CVRD), some faced
dire economic situations. ALL was encamped by RUMO, its major client.The main cargo
transported in Brazil is iron ore (VALE and MRS) and general cargo (VLI and Rumo) - mostly
soy, sugar and paper pulp. VALE transports passengers on EFC and EFVM as part of their
concession agreements, not making much profit on these operations.

By the middle of the first decade of this century, business started to improve, mainly
due to the improvement of the ore business. Also, there was an increase on the iron ore prices
and exports, that can be linked with the increase of sector activity, with the construction of
wagons and locomotives - most of them financed by the Brazilian investment bank. Indeed,
figure A.3 shows the relation between the iron ore prices and the locomotives built in Brazil,
specially after privatisation. The locomotives referenced on the figure were delivered for MRS,

RUMO/ALL and VLI

A.1.6 Future perspectives

The Brazilian heavy haul rail market is mostly geared to exports, mostly ore and
agricultural products, that seem to provide fair compensation, depending on the international
commodity prices. The rail companies are battling to renew the concessions and the government
is eager to use the money to invest on infrastructure. Rumo has recently completed the first
contract for the Sdo Paulo tracks and has recently won the concession for Ferrovia Norte Sul -
centre and south. The events on a VALE mine in 2019 however have decreased the transported
volume for MRS, that relies mostly on the ore mines of Minas Gerais. As the second period

of the rail revolution in Brazil starts, the companies are investing in rationalisation and cost
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cutting measures do ensure profitability, as well as new technologies and techniques, as will be

presented in this work.

For more information please refer to (Georgiou, 2009); (Ribeiro, 2017); (Teodoro,

2016); (Abreu, 2000); (Hobsbawm, 1996); (ANTT...,); (ANTF...,); (Sanchiz, 2018); (Histérico.. .,
)
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APPENDIX B - COMPUTER CHARACTERISATION

Computer Characterisation

The calculations were run using MATLAB 2019b (9.7.1190202) of 64 bit (maci64)
The computer is a MacBook Pro mid 2015 with a 17 Quad-Core Intel processor running @
2.5GHz. It has 16GB of DDR3 RAM memory running at 1.6GHz. It also has a discrete digital
video card (AMD Radeon R9 M370X 2 GB) and an integrated video card (Intel Iris Pro 1536
MB). It is an of the shelf model MacBookProl11,5



216

APPENDIX C - ORIGINAL PROGRAM LISTING

The original model is comprised of 3 parts, the data pre-conditioner, the simulink
file and the plot program.

The program listing be reproduced here. This program was not made by the author
and was partially done by Ribeiro ((Ribeiro, 2017)) and Teodoro ((Teodoro, 2016)). For clarity,

the commented command lines were suppressed from the transcript.

C.1 Run_Freio V01

VALV = 0 % ABDX

\

% Comprimento da locomotiva [m] VERIFICAR
Lloc=22.30;

% Comprimento do vagao [m] VERIFICAR
% Lvag=19.40;

Lvag=9.75;

Legvag = 10.5;

o)

% Posicao do ACT [mm]

% Lcti =0

Lcti = 80E-03

% Lcti = 75E-03
% Lcti = 70E-03

o)

% Numero de pares de vagoes
Nvag = 1;

(o)

% Nvag = 60;

$Nloco = [1 2
% 12 71;
Nloco = [1



NLOC = Nloco (l,end);

Nco = Nvag*2+NLOC;

COMPP = zeros (Nco,1);
COMPP (Nloco(2,:),1) =1
FZ = zeros(Nco,1);
FACTi = zeros(Nco+1,1);
DXi = zeros (Nco+l1l,1);

Xi = zeros(Nco,1);

XPLOT = [1:1:Nco+1]

PP = size (COMPP) ;
P = PP(1,1);
y=1.4;

R=287;

T=298;

convPF = 0.03; %ICARO

conv 6894.76;

Patm=1.01325e5;

PBi = (90*«conv+Patm) xones (PP (1,1),PP (1,2))
PRA1I = (90*xconv+Patm)*ones (PP (1,1),PP(1,2))
PREi1 = (90%conv+Patm) *ones (PP (1,1),PP(1,2))
PSRi = (90*conv+Patm) rones (PP (1,1),PP(1,2))
PLOCi = (90%conv+Patm) *ones (PP (1,1),PP(1,2))

PFi = Patm*ones (PP (1,1),PP(1,2));

PCFi = Patmxones (PP (1,1),PP(1,2))
ACFi = zeros (PP (1,1),PP(1,2))
VCFi = zeros(PP(1,1),PP(1,2))

AlICFi = zeros(PP(1,1),PP(1,2))
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Xmin = 0.091;

Xst = 0.2122;

XCFi = Xmin* ones (PP (1,1),PP(1,2))

mc =0.25 ;
ke = 1;
cc = 1;
Fc = 100 ;

ACF =0.06477;

VOLCF = ACF#*Xst*xones (PP (1,1),PP(1,2));

cont 1;

for k = 1: Nvag+NLOC

if coMPP (k,1) == 1
PRAi (k,1) = 0;
PREi (k,1) = 0;
PCFi(k,1) = 0;
PSRi (k,1) = 0;

VCFi (k,1) =0;
PFi(k,1) =0;
cont = cont+1;
else
PRAi (cont,1l) = 0
PREi (cont,1l) = 0
PCFi(cont,1l) = 0;
PSRi (cont,1l) = 0
VCFi (cont, 1) =0;
PFi(k,1) =0;

cont = cont+2;
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end
end
PFmin = 10*conv+Patm;
Ploco = 90xconv+Patm;

Pegq = 90xconv+Patm;

AlocoI = 9.5e-05;

AlocoO

8E-5;

AEG = 8E-04;

Vaux 0.041;
Vemg = 0.057;
Vesr = 0.015;

AegAX = 2E-06;

AegEM = 2E-06;
AEGCFEF = 3.5e-06;
Ascf = 3E-06;

Aesr = 8.5E-06;

AegPSR = 1E-06;

APSRatm =9E-07;

AEGatmPSR =2E-07;

AegaATMEM = 8E-04; % EG atm emergencia

ACFEG = 8.5E-6;

DAC = 7000;
DAL = 10000;
DPE = 180000;

DSRatm = 1000;

DPcEG = 20000;

S = size (COMPP) ;



SS

S(1,1);

if COMPP (end,1l) ==1

els

end

e

X

X

= Lloc/2;

= Lvag/2;

X =18E3;

Xo (Ss,1) = X;

for k

end
MXO

Xo;

o)

VO

IO

rEG

Veg

VAG = COMPP (end+1-k,1) + COMPP (end-k,1);

i

e

e

= 1:55-1

f VAG ==

X = X + Lvag+tLcti;
lseif VAG ==

X = X + Lloc+Lcti;

lse

X = X + (Lvag+Lloc) /2+Lcti;

end

X

0(SS-k,1) =X

max (Xo) ;

% return

0;

[VOxones (Nco, 1) ;Xo];

0.015875;

pix (2+«rEG) "2/4+Legvag;
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AM = 84;
AMe = 15;
SV = 78
SVe = 33;
VCloco = [ 0 90
20 74
80 90
465 907;
SS = size(VCloco);

S =SS(1,1);
cont = 1;
difKM = 1E-10;
for k=1:5-1
Vcontrol (cont, :) = VCloco(k, :);
Vcontrol (cont+1l,:) = [VCloco(k+1l,1)-difKM

cont =cont+2;

end
Vcontrol (cont, :) = VCloco(end, :);
Tcontrol = Vcontrol(:,1);

FREIO = Vcontrol (:,2);

save Tcontrol.mat Tcontrol

save FREIO.mat FREIO

load (' CMCQ.mat’)

load (' DPv.mat’)
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C.2 Freio V02

This is the main program. It runs on simulink. The best attempts were made to
translate the simulink program to here. Figure C.1 shows the general organisation of the pro-

gram. The functions are described after the main program flow.

EO=oig
aas B

Figure C.1 — Program flow (simulink) for main original brake program



function [DeltaEG,DeltaRA,DeltaRE,DeltaREG,DeltaRACF, ...

...DeltaRECF,DeltaCFatm,DeltaPSREG,DeltaPSRatm, ...
...DeltakEGatmPSR,DeltaCFEG,DeltalOC]

SPP = size (PB);

SP = SPP(1,1);

DeltaEG = zeros(SPP(1,1),SPP(1,2));
DeltaRA = zeros(SPP(1,1),SPP(1,2));
DeltaRE = zeros(SPP(1,1),SPP(1,2));
DeltaREG = zeros (SPP(1,1),SPP(1,2));
DeltaRACF = zeros(SPP(1,1),SPP(1,2));
DeltaRECF = zeros (SPP(1,1),SPP(1,2));
DeltaCFatm = zeros(SPP(1,1),SPP(1,2));
DeltaPSREG = zeros(SPP(1,1),SPP(1,2));
DeltaPSRatm = zeros (SPP(1,1),SPP(1,2));
DeltaEGatmPSR = zeros (SPP(1,1),SPP(1,2));
DeltaCFEG = zeros(SPP(1,1),SPP(1,2));
DeltalOC = zeros (SPP(1,1),SPP(1,2));

for k = 1:5P(1,1)-1

Pl = PB(k,1);

P2

PB(k+1,1); Pra = PRA(k+1,1);
Pre = PRE (k+1,1); Pcf = PCF(k+1,1);...

Psr = PSR (k+1,1); Ploc = PLOC(k,1);

if P1>P2

DeltakG(k,1) = P2/P1;
else

DeltakG(k,1) = P1/P2;
end
if P2>Pra

DeltaRA (k+1,1) = Pra/P2;
else

DeltaRA (k+1,1) = P2/Pra;

end
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if Pra>Pre

DeltaRE (k+1,1) = Pre/Pra;
else
DeltaRE (k+1,1) = Pra/Pre;
end
if P2>Pre
DeltaREG (k+1,1) = Pre/P2;
else
DeltaREG(k+1,1) = P2/Pre;
end
if Pra>Pcf
DeltaRACF (k+1,1) = Pcf/Pra;
else
DeltaRACF (k+1,1) = Pra/Pcft;
end
if Pre>Pcf
DeltaRECF (k+1,1) = Pcf/Pre;
else
DeltaRECF (k+1,1) = Pre/Pcf;
end
if Patm>Pct
DeltaCFatm(k+1,1) = Pcf/Patm;
else
DeltaCFatm(k+1l,1) = Patm/Pcf;
end
if Patm>Psr
DeltaPSRatm(k+1,1) = Psr/Patm;
else
DeltaPSRatm(k+1l,1) = Patm/Psr;
end
if P2>Psr

DeltaPSREG (k+1,1) = Psr/P2;
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else
DeltaPSREG(k+1,1) = P2/Psr;
end

if P2>=Patm

DeltaEGatmPSR (k+1,1) = Patm/P2;
else
DeltaEGatmPSR (k+1,1) = P2/Patm;
end
if P2>=Pcf
DeltaCFEG(k+1,1) = Pcf/P2;
else
DeltaCFEG (k+1,1) = P2/Pcf;
end
if P1>=Ploc
DeltalOC(k,1l) = Ploc/P1l;
else
DeltalOC(k,1) = P1l/Ploc;
end
end
function [PF,PB,PRA,PRE,PCF,PSR,PLOC] = fcn (VALV,VLOCO, ...

.dt, COMPP, Nvag, Patm, CFREIO, CMCQ, CMPRA, CMPRE, . ..

.CMPREG, CRACF, CRECF, CRCFATM, CPSREG, CPSRATM, ...
.CPSREGatmPSR, CPCFEG, CPLOC,NLOC, R, T, AEG,Alocol, ...
.AlocoO,Ploco, Peqg, AegAX, AegEM, AEGCF ,Ascf,Aesr, AegPSR, ...
.APSRatm, AEGatmPSR, AegaATMEM, ACFEG, Vaux,Veng, ...

.Veg, DAC, DAL, DPE, DSR, DPcEG, VOLCF, Vpsr, PFI,PBI,P3i, ..

.PRAI,PREI,PCFI,PSRI,PLOCI)



PB = PBI;
PF = PFI;
PRA = PRATI;
PRE = PRETI;
PCEF =PCFI;
PSR = PSRI;
PLOC = PLOCI;
if VALV ==
cont = 1;
for k = 1:Nvag+NLOC
if cont ==

if CFREIO>Peq
if PB(cont,1l)<=Peq
PB(cont,1l) = Ploco;

else

PB(cont, 1) Peqg;
end
else
if VLOCO<=0.01
PB(cont,1l) = Ploco;

else

if PB(cont+1l,1)>CFREIO

PB(cont,1l) = Patm;
else
PB(cont,1l) = CFREIO;
end
end
end
cont = cont+1;

elseif COMPP (cont,1l)==1

Pl = PBI (cont-1,1);

&& cont >=2
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P2

PBI (cont, 1) ;
P3 = PBI(cont+1,1);
if cont ==

if P1>P2

A = AlocoI;

else
if CFREIO == Patm
A = 2xAloco0;
else
A = AlocoO;
end
end
else
A = AEG;
end
if P1>P2
VM1l = A*CMCQ (cont—-1,1)*P1/sqgrt(T);
else
VM1l = —-A*CMCQ (cont-1,1)*P2/sqgrt (T);
end
if P2>P3
VM2 = AEG*CMCQ (cont,1)*P2/sqgrt (T);
else
VM2 = —-AEG*CMCQ (cont,1)*P3/sqgrt (T);
end

if CFREIO>Peq
if PB(cont,1l)<=Peq
PLOC (cont,1l) = Ploco;

else



228

PLOC (cont, 1) = Peqg;
end
else

if VLOCO<=0.01

PLOC (cont,1l) = Ploco;
else
if PB(cont+1,1)>CFREIO
PLOC (cont,1l) = Patm;
else

PLOC (cont, 1)

CFREIO;
end
end

end

if PLOC (cont,1)>P2

ALOC = AlocoI;

else
if CFREIO == Patm
ALOC = 2%AlocoO;
else
ALOC = AlocoO;
end
end

if P2>PLOC (cont, 1)

VMlocT = —-ALOC*CPLOC (cont, 1) *P2/sqrt (T);
else

VMlocT = ALOC*CPLOC (cont, 1) *PLOC (cont, 1) /sqrt (T);
end
PB(cont,1l) = P2 +(R*T)/Veg* (VM1-VM2+VMlocT) =dt;

cont = cont+1;
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else

P1

PBI (cont-1,1);

P2 PBI (cont, 1) ;

P3

PBI (cont+1,1);
if k == Nvag+NLOC

P4

PBI (cont+1,1);

else

P4 PBI (cont+2,1);

end

PAX PRAI (cont+1,1);

PEX

PREI (cont+1,1);

Pcf

PCFI (cont+1,1);

Psr PSRI (cont+1,1);
if cont ==
if COMPP (cont-1,1)== 1
if P1>P2
A = AlocoI;
else
if CFREIO == Patm
A = 2xAloco0;
else
A = AlocoO;
end
end
else
A = AEG;
end
else
A = AEG;

end
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if PI>P2

VM1 = A*CMCQ (cont-1,1)«*P1/sqgrt (T);
else

VM1l = —-AxCMCQ (cont-1,1)*P2/sgqrt (T);
end
if P2>P3

VM2 = AEG*CMCQ (cont, 1) *P2/sqgrt (T);
else

VM2 = —-AEG+*CMCQ (cont, 1) *P3/sqrt (T);
end
PB(cont,1l) = P2 +(R*T)/Veg* (VM1-VM2) xdt;
if P3>PAX

VMPAX = AegAX+CMPRA (cont+1,1) «*PAX/sqrt (T);
else

VMPAX = 0;
end

if PAX>PEX

VMPEX

AegEM*CMPRE (cont+1, 1) *PEX/sqgrt (T) ;
else

VMPEX

0;

end

if P3>=Psr

VMPSRin = AegPSR+CPSREG (cont+1,1)*«Psr/sqrt (T);
else

VMPSRin = 0;

end

if Psr-P3>=DSR && Psr—P3<=DPE



if Psr<=Patm
VMPSRATM = —-APSRatmx*
*CPSRATM (cont+1, 1) *Patm/sqgrt (T) ;
else
VMPSRATM = APSRatmx
*CPSRATM (cont+1, 1) *Psr/sqgrt (T) ;
end
if Psr—-P3>=DSRx*x2
if P3<=Patm

VMEGATM = —-AEGatmPSR*
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*CPSREGatmPSR (cont+1, 1) *Patm/sqgrt (T) ;

else

VMEGATM = AEGatmPSRx*

*CPSREGatmPSR (cont+1,1)*P3/sqgrt (T) ;

end
else
VMEGATM =0;
end
else
VMPSRATM = 0;
VMEGATM =0;

end

if P3>P4

VM3 = AEG*CMCQ (cont+1,1)«P3/sqrt (T) ;

else

VM3 = —-AEG*CMCQ (cont+1,1)*P4/sqgrt (T);
end
if k == Nvag+NLOC

VM3 =0;

end
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if PAX-P3>DAC

if PAX>=Pcf

VMAXCF AEGCF*CRACF (cont+1, 1) *PAX/sqrt (T) ;
else

VMAXCEF

—AEGCF*CRACF (cont+1, 1) «Pcf/sqrt (T) ;
end

else
VMAXCF = 0;

end

if (P3 - CFREIO) > 7000
if VLOCO<=0.01
VMEGATM =0;
else
VMEGATM = AegPSRx*
x*CPSREGatmPSR (cont+1,1) *P3/sqgrt (T) ;
end
else
VMEGATM =0;

end

if Psr-P3>DPE
if VLOCO<=0.01
VMEGATM =0;
else
if P3<=Patm
VMEGATM = —-AegaATMEMx*
*CPSREGatmPSR (cont+1,1)*Patm/sqrt (T) ;
else
VMEGATM = AegaATMEMx*
*CPSREGatmPSR (cont+1,1)*P3/sqgrt (T) ;

end
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if Psr<=Patm
VMPSRATM = —-APSRatmx
*CPSRATM (cont+1,1) *Patm/sqrt (T) ;
else
VMPSRATM = APSRatmx
*CPSRATM (cont+1, 1) *Psr/sqgrt (T) ;
end
end
if PEX>=Pcf
VMEXCE = AEGCF*
*CRECF (cont+1, 1) *PEX/sqgrt (T) ;
else
VMEXCE = —-AEGCFE~*
*CRECF (cont+1, 1) xPcf/sqgrt (T);
end
else
VMEXCF = 0;
if P3<=Patm && CFREIO<Peqg && VLOCO>0.01
if P3<=Patm
VMEGATM = —-AegaATMEMx*
*CPSREGatmPSR (cont+1, 1) *Patm/sqrt (T) ;
else
VMEGATM = AegaATMEMx*
*CPSREGatmPSR (cont+1,1)*P3/sqgrt (T) ;
end
end

end

if P3-DAL>=PAX
VSATM = Ascf+CRCFATM (cont+1,1)*«Pcf/sqrt(T);
if PEX>=P3

VRERA = Aesr*CMPREG (cont+1, 1) «PEX/sqgrt (T) ;
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else
VRERA = 0;
end
if P3<PAX
VMPAX = —-AegAX*CMPRA (cont+1,1)*«PAX/sqrt (T);
end
else
if VLOCO<=0.01 | |P3>=P31i(cont+1,1)
VSATM = Ascf+CRCFATM (cont+1,1)«Pcf/sqrt(T);
else
VSATM =0;
end

if P3>=CFREIO-DPcEG && P3<=CFREIO+2*

*DPCcEG || P3<=11E4
VSATM =0;
end
VRERA =0;

end

if Pcf> P3 && P3> Psr

VCFEG = ACFEG*CPCFEG (cont+1,1)«Pcf/sqgrt (T);
else

VCFEG = 0;
end
PB(cont+1,1) = P3 +(R+T)/Vegx*

* (VM2-VM3-VMPAX-VMPEX-VMPSRin-VMEGATM+. . .

. . . tVRERA+VCFEG) *dt;

PCF (cont+1,1) = Pcf +(RxT)/VOLCF (cont+1,1) *

* (VMAXCF+VMEXCF-VSATM-VCFEG) xdt;
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PRA (cont+1,1) = PAX +(R*T)/Vauxx* (VMPAX-VMAXCEF) xdt;

PRE (cont+1,1) = PEX +(RxT)/Vemgx (VMPEX-VMEXCF-VRERA) xdt;

PSR (cont+1,1) Psr +(R«T)/Vpsr* (VMPSRin-VMPSRATM) xdt;

PF (cont,1l) = PCF(cont+1l,1);
PF (cont+1l,1) = PCF (cont+1,1);
cont = cont+2;

end

end

end

Plot_Freio V01

o

% clear all
close all

clc

load (' RES.mat’)

Nco = 3

VFI = 4;

VFF =VFI+Nco-2;

figurel = figure(’Color’,[1 1 1], ’'position’, [40 550 600 300]);
axesl = axes (’'Parent’,figurel,’Layer’,’top’,’XAxisLocation’, ...
..."bottom’ ,’"FontSize’, 12, FontName’,’ Times New Roman’);

box (axesl,’on’);

hold (axesl,"all’);

hold on
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box on

grid on

set (plot (RES(1,:),RES(2,:),'k’),{"linewidth’}, {3});

set (plot (RES(1,:),RES(VFI:VFF,:)),{’linewidth’},{1});

% set (plot (RES(1,:),RES(VFI:VFI+2,:)),{’linewidth’}, {1});
xlabel (' Tempo [s]’,’FontSize’,12,’FontName’,’Times New Roman’);
ylabel (' Pressao EG [Pa]l]’,’FontSize’,12,’FontName’,’ Times New Roman’);
% return

VI = VFF+1;

VE =VI+Nco-1;

figurel = figure(’Color’,[1 1 1], ’'position’, [650 550 600 300]);
axesl = axes (’'Parent’, figurel,’Layer’,’top’,’XAxisLocation’, ...
..."bottom’, "FontSize’,12,’FontName’,’ Times New Roman’);

box (axesl,’on’);

hold(axesl,"all’);

hold on

box on

grid on

set (plot (RES(1,:),RES(VI:VF,:)),{’linewidth’}, {1});

set (plot (RES(1,:),RES(VI,:),’k’),{’1linewidth’}, {2});
xlabel (' Tempo [s]’,’FontSize’,12,’FontName’,’Times New Roman’);
ylabel (' Pressao Reservatario auxiliar [Pa]’,’FontSize’,12,7...

...FontName’,’'Times New Roman’);

XI = VF+1;

XF =XI+Nco-1;

figurel = figure(’'Color’,[1 1 1], ’'position’, [1260 550 600 3001]);
axesl = axes (’'Parent’, figurel,’Layer’,’top’,’XAxisLocation’, ...

..."bottom’,"FontSize’,12,’FontName’,’ Times New Roman’);
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box (axesl,’on’);

hold(axesl,’all’);

hold on

box on

grid on

set (plot (RES(1,:),RES(XI:XF,:)),{’linewidth’}, {1});
set (plot (RES(1,:),RES(XI,:),’k’),{’1linewidth’}, {1});
xlabel (' Tempo [s]’,’FontSize’,12,’FontName’,’ Times New Roman’) ;
ylabel (' Pressao Reservatorio emergencia [Pa]’,’FontSize’,12,...

..."FontName’,’Times New Roman’);

DI = XF+1;

DF =DI+Nco-1;

figurel = figqgure(’Color’,[1 1 1], ’"position’, [40 150 600 300]);
axesl = axes (’'Parent’, figurel,’Layer’,’'top’,’XAxisLocation’, ...
..."bottom’,"FontSize’,12,’FontName’,’Times New Roman’);
box (axesl,’on’);

hold(axesl,’all’);

hold on

box on

grid on

set (plot (RES(1l,:),RES(DI:DF,:)),{’linewidth’}, {1});
xlabel (' Tempo [s]’,’FontSize’,12,’FontName’,’ Times New Roman’);
ylabel ('Pressao Cilindro freio [Pal]’,’FontSize’,12,...

...'’FontName’,’ Times New Roman’);
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