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Resumo

Uma metodologia numérica para construção de modelos de ordem reduzida, ROMs, de

escoamentos de fluidos através da combinação de decomposição modal de escoamentos e

análise de regressão é apresentada. A decomposição espectral ortogonal própria, SPOD, é

aplicada para reduzir a dimensionalidade do modelo e, ao mesmo tempo, filtrar os modos

temporais de POD. A etapa de regressão é realizada por uma rede neural profunda,

DNN, para obter um sistema de equações diferenciais ordinárias, EDOs, que representam

a dinâmica dos modos temporais de POD. A metodologia numérica é implementada em

um contexto semelhante ao algoritmo de identificação esparsa de sistemas não-lineares,

SINDy. Uma discussão sobre a otimização dos hiperparâmetros da DNN é fornecida para

obter os melhores ROMs e uma avaliação desses modelos é apresentada para um oscilador

não linear e um escoamento compressível ao redor de um cilindro. Em seguida, o método

é testado na reconstrução de um escoamento turbulento obtido por uma simulação de

grandes escalas de um aerofólio em condição de estol dinâmico. O modelo de ordem

reduzida é capaz de capturar a dinâmica do vórtice de estol sobre o extradorso do

aerofólio. Para os casos analisados, a abordagem numérica permite a predição dos campos

de escoamento além da janela de treinamento, utilizando incrementos de tempo maiores

que os empregados pelo modelo de ordem completa. Demostrou-se também a robustez

dos ROMs obtidos através de redes neurais profundas por meio de uma comparação

com os métodos de regressão esparsa. A abordagem usando DNNs é capaz de aprender

características transientes do escoamento, além de apresentar previsões de longo prazo

mais acuradas e estáveis em comparação com o algoritmo SINDy.

Palavras-chave: Modelos de ordem reduzida, redes neurais profundas, decomposição

espectral ortogonal própria, dinâmica dos fluidos computacional



Abstract

A numerical methodology for construction of reduced-order models (ROMs) of fluid

flows through the combination of flow modal decomposition and regression analysis

is presented. Spectral proper orthogonal decomposition (SPOD) is applied to reduce

the dimensionality of the model and, at the same time, filter the proper orthogonal

decomposition (POD) temporal modes. The regression step is performed by a deep

feedforward neural network (DNN), in order to obtain a system of ordinary differential

equations (ODEs) which represents the dynamics of POD temporal modes. The

current framework is implemented in a context similar to the sparse identification of

nonlinear dynamics algorithm (SINDy). A discussion on the optimization of the DNN

hyperparameters is provided for obtaining the best ROMs and an assessment of these

models is presented for a canonical nonlinear oscillator and the compressible flow past a

cylinder. Then, the method is tested on the reconstruction of a turbulent flow computed

by a large eddy simulation of a plunging airfoil under dynamic stall. The reduced-order

model is able to capture the dynamics of the leading edge stall vortex and the subsequent

trailing edge vortex. For the cases analyzed, the numerical framework allows the

prediction of the flowfield beyond the training window using larger time increments than

those employed by the full-order model. We also demonstrate the robustness of the

current ROMs constructed via deep feedforward neural networks through a comparison

with sparse regression. The DNN approach is able to learn transient features of the flow

and presents more accurate and stable long-term predictions compared to the SINDy

algorithm.

Keywords: Reduced-order models, deep neural networks, spectral proper orthogonal

decomposition, computational fluid dynamics
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1 INTRODUCTION

1.1 Motivation and previous work

Current supercomputers allow the application of high fidelity numerical simulations

of turbulent flows over large-scale industrial configurations. The results from these

simulations certainly improve the understanding of complex physical phenomena such

as mixing enhancement, drag reduction, heat transfer and noise generation, to name a

few. Such simulations may lead to discretizations with billions of degrees of freedom in

order to resolve the energetically relevant spatial and temporal flow scales. In these cases,

data is generally obtained for long periods using small time steps to compute meaningful

converged statistics of the flow with sufficient accuracy.

The analysis of unsteady flows by time-resolved simulations and experiments require

the acquisition and treatment of large datasets. In recent years, data-driven algorithms

have been developed and applied to perform statistical post-processing of such datasets

of unsteady fluid flows allowing the investigation of complex physical mechanisms in

turbulent flows and improving their analyses. For example, one can cite techniques

of flow modal decomposition such as proper orthogonal decomposition (POD) and its

variations (Lumley, 1967; Sieber et. al, 2016; Ribeiro and Wolf, 2017; Towne et. al,

2018), dynamic mode decomposition (DMD) and variations (Schmid, 2010; Tu et. al,

2014; Clainche and Vega, 2017), Lagrangian coherent structures (LCS) (Haller, 2015;

Green et. al, 2007; Rockwood et. al, 2016) and resolvent analysis (Luhar et. al, 2014;

Sharma et. al, 2016), among others. Such techniques applied in the context of fluid flows

are summarized in a review by Taira et. al (2017). Recently, a sequel to this previous

paper was published by Taira et. al (2019), in which the applications and perspectives of

flow modal decomposition techniques are discussed.

The previous techniques of modal analysis can also be employed for the construction

of reduced-order models (ROMs) which are appealing since they can be used in the

preliminary stages of design due to their inherent reduction in the computational costs

compared to large-scale simulations. Such techniques should also be useful in the context

of optimization analyzes and studies of flow control which bring potential benefits for

energy and transportation. For example, increasing lift and reducing drag due to the

transition delay of a laminar boundary layer into a turbulent one, and flow separation
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control, would improve the energetic efficiency of aircraft, road vehicles, trains and ships

(Brunton and Noack, 2015). Since transportation accounts for a large percentage of global

energy consumption, a small enhancement in efficiency would have a significant impact

on worldwide economy and emissions of air pollutants (Kim, 2011).

During the last decades, significant developments have been made in the field of

feedback flow control of fluids. For example, one can cite studies on flow control for

wall flows (Moin and Bewley, 2001; Lumley and Blossey, 1998), for turbulent mixing

(Dimotakis, 2005; Aamo et. al, 2003), for bluff bodies (Choi et. al, 2008), for cavity flows

(Rowley and Williams, 2006) and for actuators (Cattafesta and Sheplak, 2011; Koizumi et.

al, 2018; Rabault et. al, 2019). In most applications, the goal is to design an active flow

control strategy to alter the flow in some way, for instance, to control flow seperation over

aerodynamic bodies or delay transition to turbulent flow in the boundary layer. Although

these closed-loop control studies are successful, they are applied for simple geometries.

The high dimensionality and computational cost of high fidelity numerical simulations of

turbulent flows over large-scale industrial configurations signify that such simulations are

unfeasible for real-time feedback flow control (Brunton and Noack, 2015). To address this

issue, reduced-order models must be employed as low-dimensional approximation models

to these large-scale simulations for prior testing of flow control strategies.

In order to be employed for flow control and optimization applications, ROMs should

be able to reproduce the main physical aspects of the full scale models. Several ROM

techniques have been discussed in the literature such as Galerkin projection (Rowley et.

al, 2004), least-squares Petrov-Galerkin projection (Carlberg et. al, 2011), eigensystem

realization analysis (Juang and Pappa, 1985) and sparse regression of nonlinear dynamics

(Brunton et. al, 2016). The previous techniques can be used to reduce the original

sets of partial differential equations (PDEs) to sets of ordinary differential equations

(ODEs). Sparse regression has also been applied for discovering sets of partial differential

equations through spatio-temporal data collection (Rudy et. al, 2017). These techniques

have mostly been applied for canonical problems and their application to more complex

turbulent flows is still a challenging task.

In some cases, ROMs constructed using some of the above techniques may exhibit

unstable behavior (Carlberg et. al, 2011). For example, ROMs developed based on

Galerkin projection employ POD to rewrite the Navier-Stokes equations as sets of

dynamical systems for the evolution of POD temporal modes. Due to the basis truncation

typical of such methods, numerical instabilities can be created from imbalance in the

turbulent kinetic energy budget in the ROM. This issue may be addressed using turbulence

models (Cazemier et. al, 1998; Östh et. al, 2014; Protas et. al, 2015), however, this
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approach can destroy consistency between the original PDEs and the ODE system of the

ROM. Other alternatives have been also proposed to deal with this problem via minimal

rotation of the projected subspace (Balajewicz et. al, 2016). This approach is able to

account for the contribution of the truncated modes while keeping the consistency between

the full- and reduced-order models. Recently, San and Maulik (2018) employed machine

learning via neural networks to compute optimal coefficients for an eddy viscosity model

which is able to stabilize a POD-Galerkin ROM.

The application of reduced-order modelling techniques in large-scale CFD problems

is limited to few cases in literature. Carlberg et. al (2013) demonstrated the ability

of the Petrov-Galerkin projection associated with gappy POD (Everson and Sirovich,

1995) to reduce the dimension and complexity of an incompressible turbulent flow

around the Ahmed body. In another work, Carlberg et. al (2017) applied least-squares

Petrov-Galerkin projection (LSPG) to generate a reduced-order model of a turbulent

compressible flow past an open cavity. In this study, the authors also compared

the accuracy and stability of Galerkin and least-squares Petrov-Galerkin approaches.

They have shown that LSPG techniques generate stable ROM solutions for turbulent

compressible flow problems where standard Galerkin techniques have failed. However,

accuracy is a problem of the LSPG method since phase mismatches are often found in

numerical solutions.

1.2 Machine learning in fluid mechanics

Machine learning is a field that has applications in several areas from data classification

to pattern recognition and nonlinear function approximation. Several groups have applied

machine learning for investigations concerning fluid flows. Ling and Templeton (2015)

used support vector machine, decision trees and random forest to classify regions of high

uncertainty in RANS calculations. Ling et. al (2016) presented a novel deep neural

network (DNN) architecture to improve RANS turbulence models. In a similar context,

Wang et. al (2017) developed a machine learning approach based on random forests for

predicting discrepancies in Reynolds stresses obtained by RANS calculations. Ströfer et.

al (2019) employed convolutional neural networks (CNNs), a machine learning technique

well suited for image pattern recognition, to identify features in fluid flows. Fukami et. al

(2019) employed CNNs to reconstruct unsteady laminar and turbulent flows from spatially

low-resolution data. Koizumi et. al (2018) and Rabault et. al (2019) presented the first

applications of deep reinforcement learning to perform active flow control.
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Machine learning is also a natural candidate for the development of ROMs of

large-scale dynamical systems, typical of numerical simulations of unsteady flows. A

discussion on the application of deep learning in the context just described was presented

by Kutz (2017). Recently, several authors have proposed algorithms for the prediction

of high-dimensional complex dynamical systems using neural networks and their variants

(Rudy et. al, 2018; San and Maulik, 2018; Pan and Duraisamy, 2018; Wan et. al, 2018;

Vlachas et. al, 2018). Rudy et. al (2018) presented a methodology that is able to learn

the dynamics of a particular system and estimate the noise from measurements using

feedforward neural networks (FNN). Pan and Duraisamy (2018) performed a comparison

between FNNs and sparse regression for modeling of dynamical systems and demonstrated

the benefits of the former in terms of adaptability. They computed the Frobenius norm

of the Jacobian of the neural network as the regularization term of the cost function to

improve the accuracy and robustness of the framework.

Wan et. al (2018) developed a ROM methodology capable of modeling extreme events

occurring in dynamical systems. These authors employed a long short-term memory

(LSTM) approach to regularize a recurrent neural network (RNN) which obtains the

complementary dynamics of a non-linear Galerkin projection of the dynamical system.

Vlachas et. al (2018) combined a LSTM neural network with a mean stochastic model

to propose a data-driven algorithm which has desirable short and long-term prediction

capabilities. Raissi et. al (2019) introduced the physics-informed neural networks, a

framework for solving and discovering nonlinear partial differential equations. They

use automatic differentiation techniques, same as employed in the back-propagation

algorithm, to have a direct connection with the physics of the problem by taking their

derivatives with respect to space and time where the physics is described by partial

differential equations. They also observed that this approach introduces a regularization

mechanism in the neural network.

1.3 Overview and accomplishments

The goal of the current study is to develop a data-driven methodology for construction

of reduced-order models for unsteady compressible flows. The numerical approach

combines flow modal decomposition via spectral proper orthogonal decomposition

(SPOD) (Sieber et. al, 2016) and regression analysis using DNNs. The framework is

implemented in a context similar to that of the sparse identification of nonlinear dynamics

(SINDy) algorithm (Brunton et. al, 2016). In order to improve the regression step in the

current approach, SPOD is employed to extract a low-dimensional representation of the
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full-order model. This method filters the POD temporal modes while preserving the

information of the FOM by a energy redistribution of the system to higher POD modes.

The regression step is performed by a DNN in order to obtain a system of ODEs that

represents the dynamics of the POD temporal modes. The current method is applied

for the construction of ROMs of unsteady compressible flows. First, we test the method

for a simple two degree of freedom nonlinear dynamical system. Then, we evaluate the

capability of the method to reproduce the compressible flow past a cylinder including its

noise generation. In this case, we show that the current DNN approach is also able to

reproduce the transient stages of the flow. Finally, the method is tested for a turbulent flow

involving dynamic stall of a plunging airfoil. We present a discussion on the optimization

of hyperparameters for obtaining the best models for the deep neural networks. For both

the cylinder and plunging airfoil cases, a comparison between DNN and sparse regression

techniques is presented in terms of their predictive capability. The approach presented in

this work allows us to predict the flow field beyond the training window and with larger

time increments than those used by the full order model, demonstrating the robustness

of the current ROMs constructed via deep feedforward neural networks. The current

numerical tool for the construction of reduced-order models via DNNs can be downloaded

from <http://cces.unicamp.br/software/>.

The principal contributions and findings of the current study are:

• Development and implementation of a data-driven methodology for construction

of reduced-order models for unsteady compressible flows. The current numerical

capability allows the construction of reduced-order models of complex turbulent

flows. The method is tested for two compressible flow cases: a compressible flow

past a cylinder and a turbulent flow involving dynamic stall of a plunging airfoil.

• For the first flow evaluated, the ROM shows an excellent agreement with the FOM,

being stable and accurate beyond the training region. In this case, the ROM

captures most of the dynamics of the von Karman vortex shedding and its respective

sound wave propagation.

• For the turbulent flow involving dynamic stall of a plunging airfoil, the complex flow

dynamics exhibit unpaired POD modes with high frequency noise that degrades the

training of DNNs. We show how the SPOD approach modifies the POD temporal

modes allowing their better identification. Reduced-order models are constructed

both for full 3-D and spanwise-averaged flow solutions. In both cases, the ROMs are

able to capture the dynamics of the leading edge stall vortex, including its formation,

transport and ejection, and of the trailing edge vortex.
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• Deep learning is still emerging in the field of fluid mechanics. Therefore, simple

questions remain open for researchers in this area as addressed by Kutz (2017): (i)

How many layers are necessary for a given data set? (ii) How many nodes at each

layer are needed? (iii) Can we actually predict data outside of our training data (iv)

How to choose the hyperparameters?. A discussion regarding the optimization of

hyperparameters for obtaining the best ROMs via DNNs is provided in this study.

We also present a description of the effects of individual hyperpameters on model

performance. For the cases analyzed, we also demonstrate that ROMs obtained

using DNNs present good long-term predictive capabilities with stable and accurate

solutions beyond the training window.

• A substantial portion of this work was published in the international leading journal

in the field of fluid mechanics as: Lui, H., and Wolf, W. (2019). “Construction

of reduced-order models for fluid flows using deep feedforward neural networks”,

Journal of Fluid Mechanics, 872, pp. 963-994. doi:10.1017/jfm.2019.358

With this work, we expect to provide a contribution to the development of

reduced-order models of fluid flows for flow control and optimization applications.

1.4 Work organization

The work is organized as follows: chapter 2 provides the theoretical and numerical

formulations for compressible flows simulations. Chapter 3 describes the proposed

numerical methodology for construction of reduced-order models of fluid flows. In chapter

4, numerical results for ROMs are presented and compared against those obtained

by FOMs. Finally, conclusions of the present work and some suggestions for future

investigations are presented in chapter 5.
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2 FULL ORDER MODEL

In this chapter, the governing equations of fluid mechanics and the numerical

formulation to solve these equations are described. First, we introduce the compressible

form of the Navier-Stokes equations, which consist of a set of PDEs that govern mass and

energy conservation beyond Newton’s second law. To simulate an airfoil undergoing a

prescribed motion for the dynamic stall case, these equations are solved in a non-inertial

frame. Here, the Navier-Stokes equations are presented in contravariant form. Then,

the full numerical methodology employed for the compressible simulations is described.

Schemes used for spatial and temporal discretization, as well as boundary conditions, are

discussed in the following subsections.

2.1 Governing equations of compressible flows

The equations governing the unsteady motion of a compressible viscous fluid are

known as the Navier-Stokes equations. This set of equations is derived on the basis

of the continuum hypothesis and from the conservation principles of mass, momentum

and energy. These equations can be written in the following conservative differential form

as

Continuity equation:
∂ρ

∂t
+ ∂ρuj

∂xj

= 0 ,

Momentum equations:
∂ρui

∂t
+ ∂

∂xj

[ρuiuj + pδij − τij] = ρfi , (2.1)

Energy equation:
∂E

∂t
+ ∂

∂xj

[(E + p)uj − τijui + qj] = ρfiui ,

where t is the time, xj is the j-th direction coordinate, ρ is the fluid density, ui is the i-th

component of the velocity vector, p is the pressure and fi is an external force term . The

total energy per unit of volume, E, the viscous stress tensor, τij, for a Newtonian fluid,

and the heat flux for a fluid obeying Fourier’s law, qi, are defined by

E = ρ(e + 1
2
uiui) , (2.2)
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τij = µ(∂ui

∂xj

+ ∂uj

∂xi

− 2
3
∂uk

∂xk

δij) , (2.3)

qi = −κ ∂T

∂xi

, (2.4)

where e is the internal energy, µ is the dynamic viscosity, δij is the Kronecker delta, κ is

the thermal conductivity of the fluid and T is the temperature.

At this point, the Navier-Stokes equations are not closed; i.e, there are more unknown

variables than available equations. In order to close the system of equations it is necessary

to establish a relation between thermodynamic variables (p, ρ, T, e) as well as to relate

them to the transport properties (µ,κ). Assuming the fluid to be a calorically perfect

gas, the equation of state is defined by

p = ρRT , (2.5)

where R stands for the gas constant. In a calorically perfect gas, the specific heat at

constant volume cv, the specific heat at constant pressure cp, and the ratio of specific

heats γ all remain constant, and the following relations exist

e = cvT, γ = cp

cv

, cv = R

γ − 1
, cp = γR

γ − 1
. (2.6)

The dynamic viscosity, µ, can be related to temperature, T , using kinetic theory. This

relations is given by Sutherland’s law, and provides accurate results for temperatures

ranging from 100K to 1900K (Ames Research Staff, 1953). Sutherland’s law can be

expressed as

µ = µ∞ ( T
T∞
)

3

2 T∞ + S
T + S , (2.7)

where µ∞ and T∞ are reference values taken from a standard atmosphere condition, and

S = 110.4K for air. The Prandtl number

Pr = cpµ

κ
(2.8)

is used to determine the thermal conductivity once µ is known. For air at standard

conditions, Pr = 0.72.
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2.2 Numerical methodology for compressible flow

simulations

2.2.1 The contravariant form of the Navier-Stokes equations

For the following investigations of the flow past a cylinder and the dynamic stall

of a plunging SD7003 airfoil, the system dynamics are modeled by the compressible

Navier-Stokes equations in two dimensions and three dimensions, respectively. To simulate

the airfoil undergoing a prescribed motion, the equations are solved in a non-inertial frame.

In this form, source terms emerge from the grid curvature and frame movement. Here, all

terms are solved in the full contravariant form to allow the use of a curvilinear coordinate

system {ξ1, ξ2, ξ3}. For a frame of reference with varying linear velocity, the equations

reduce to
∂

∂t
(√gρ) + ∂

∂ξi
(√gρui) = 0 , (2.9)

∂

∂t
(√gρui) + ∂

∂ξj
[√g (ρuiuj − τ ij + gijp)] + { i

jk
}√g(ρukuj + gjkp − τ kj) = √gρḧi ,(2.10)

and

∂

∂t
(√gE) + ∂

∂ξj
{√g [(E + p)uj − τ ijgiku

k − µ

RePr
gij ∂T

∂ξi
]} = ρ√g(hj + uj)gjiḧ

i . (2.11)

The set of equations above represents the continuity, momentum and energy equations.

In order to close the system of equations the following relations are employed

E = p

γ − 1
+ 1

2
ρuigiju

j + 1
2
ρḣigijḣ

i , (2.12)

τ ij = µ

Re
(gjkui

∣k + giku
j

∣k
− 2

3
gijuk

∣k) , (2.13)

and

h = ho sin(kt) . (2.14)

Here ui the i-th component of the contravariant velocity vector and the term h is the

frame position (cross-stream motion of the plunging airfoil). The dots represent temporal

derivatives of the frame position, i.e., frame velocity and acceleration. In the above

equations, physical velocity components are normalized by the freestream speed of sound
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c∞, density is normalized by the freestream density ρ∞, pressure is normalized by γρ∞c2
∞

and temperature by (γ−1)T∞. When appropriate, length scales are made non-dimensional

by the cylinder diameter or airfoil chord. The aforementioned terms, gij and gij are the

covariant and contravariant metric tensors,
√
g is the Jacobian of the covariant metric

tensor and { i

jk
} represents the Christoffel symbols of the second kind. Further details

regarding the present formulation can be found in Aris (1989).

2.2.2 Spatial discretization

The numerical scheme for the spatial discretization of the system of governing

equations is a high-resolution sixth-order accurate compact scheme (Nagarajan et. al,

2003) implemented on a staggered grid. For any quantity f , a tridiagonal system is

solved as

αf ′i−1 + f ′i + αf ′i+1 = bfi+3/2 − fi−3/2

3∆
+ afi+1/2 − fi−1/2

∆
, (2.15)

where f ′ represents the derivative of f at node i, ∆ is the spacing between nodes, α = 9/62,

a = 3

8
(3−2α) and b = 1

8
(−1+22α). To minimize errors from unresolved scales and preserve

stability of numerical schemes, a sixth-order compact low-pass filter is applied according

to

ᾱf̄i−1 + f̄i + ᾱf̄i+1 = āfi + b̄2(fi+1 + fi−1) + c̄2(fi+2 + fi−2) + d̄2(fi+3 + fi−3) . (2.16)

In the equation above, f̄ is the filtered quantity, ā = 1

16
(11 + 10ᾱ), b̄ = 1

32
(15 + 34ᾱ),

c̄ = 1

16
(−3+ 6ᾱ) and d̄ = 1

32
(1− 2ᾱ). The filtered coefficient ᾱ ranges from [−0.5,0.5]. The

lower limit, ᾱ = −0.5, represents to maximum filtering while the filter has no effect at

ᾱ = 0.5.

Due to the staggered grid, interpolations are necessary to evaluate properties at specific

grid locations. To maintain schemes with high-order, a sixth-order interpolation based on

finite differences is used according to

α̃f̃i−1 + f̃i + α̃f̃i+1 = b̃2(fi+3/2 + fi−3/2) + ã2(fi+1/2 + fi−1/2) , (2.17)

where α̃ = 3/10, ã = 1

8
(9+10α̃) and b̃ = 1

8
(6α̃−1). Additional details on the finite-difference

schemes used for derivation, filtering and interpolation can be found in (Lele, 1992;

Nagarajan, 2004). A complete description of the numerical schemes at boundary and
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near boundary nodes is presented by (Nagarajan, 2004).

Near the far-field boundaries, a numerical sponge is used to damp acoustic waves and,

at the inlet and outlet boundaries, a Riemann invariant transformation is implemented as

far-field condition. No-slip adiabatic wall boundary conditions are applied along the solid

surfaces. Derivatives of inviscid fluxes are obtained by forming fluxes between grid nodes

on the staggered grid and differentiating each component. Viscous terms are obtained

by first computing the derivatives of primitive variables at their respective locations (see

Nagarajan (2004) for details). Components of viscous fluxes are then constructed at each

node and differentiated by a second application of the compact scheme. For the study of

dynamic stall, the airfoil movement is added through source terms and periodic boundary

conditions are applied along the spanwise direction of the airfoil.

2.2.3 Time integration

After the spatial discretization, the Navier-Stokes equations become a set of ordinary

differential equations that can be expressed in the form

dQ

dt
= F (Q, t) , (2.18)

where Q is the vector of flow variables. An explicit third-order Runge-Kutta scheme is

used for time advancement of the equations in flow regions far away from solid boundaries.

The third-order Runge-Kutta scheme is given by

Qn+1/3 =Qn + 8
15

∆tF (Qn, tn)
Qn+2/3 =Qn + 1

4
∆tF (Qn, tn) + 5

12
∆tF (Qn+1/3, tn+1/3) (2.19)

Qn+1 =Qn + 1
4

∆tF (Qn, tn) + 3
4

∆tF (Qn+2/3, tn+2/3) ,

where the intermediate time levels are tn+1/3 = tn + (8/15)∆t and tn+2/3 = tn + (2/3)∆t.
The time integration of the fluid equations is carried out by the fully implicit

second-order scheme of Beam and Warming (1978) in the near-wall region in order to

overcome the time step restriction due to the usual near-wall fine-grid numerical stiffness.

The second-order implicit method is given by

3Qn+1 − 4Qn +Qn−1

2∆t
= F (Qn+1, tn+1) . (2.20)
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The right hand side is solved through approximate factorization followed by diagonal-

ization of the implicit matrix in the x and z directions. More details about the

approximate factorization are presented by Nagarajan (2004).

The low-pass compact filter is applied after each time-step of both schemes. More

details about the numerical framework employed can be found in Nagarajan (2004).

The numerical tool has been previously validated for several simulations of unsteady

compressible flows (Wolf, 2011; Wolf et. al, 2012a,b; Ramos et. al, 2019).
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3 REDUCED-ORDER MODEL

This chapter presents the numerical methodologies for construction of reduced-order

models (ROMs) of fluid flows through the combination of flow modal decomposition and

regression analysis. First, we introduce the sparse identification of non-linear dynamics

(SINDy) method developed by Brunton et. al (2016). The reduced-order model approach

presented in this work is based on the SINDy algorithm; howerver, in the proposed

methodology, SPOD and DNNs are introduced for reduction of model dimensionality and

regression, respectively. Spectral proper orthogonal decomposition (SPOD) is applied to

reduce the dimensionality of the dynamical system and, at the same time, filter the POD

temporal modes. The regression step is performed by a deep feedforward neural network

in order to obtain a system of ODEs that represents the dynamics of the POD temporal

modes. A discussion on the optimization of the DNN hyperparameters for obtaining the

best ROMs is provided. Finally, a discussion of ROMs based on the problem physics and

data-driven ROMs is presented at the end of this chapter.

3.1 Sparse regression of non linear dynamics

(SINDy)

Recently, Brunton et. al (2016) introduced the SINDy algorithm which identifies

ordinary differential equations from data. SINDy follows the assumption that there are

only a few important terms that define the dynamics of a system, so that the equations

are sparse in the space of candidate functions. Sparse regression is then used to determine

the features required to accurately reproduce the system dynamics.

Here, we consider a dynamical system of the form

dχ(t)
dt
= f(χ, t) . (3.1)

where χ(t) is the state of a system at time t and the function f(χ, t) represents the

features that define the system dynamics. To determine the function f from data, we

collect a time history of state χ(t) and its derivative χ̇(t). The derivatives χ̇(t) can be

obtained numerically using the data χ(t). The data are stored into two matrices X and
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Ẋ:

X =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χT (t1)
χT (t2)
⋮

χT (tm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ1(t1) χ2(t1) ... χn(t1)
χ1(t2) χ2(t2) ... χn(t2)
⋮ ⋮ ⋱ ⋮

χ1(tm) χ2(tm) ... χn(tm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.2)

Ẋ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ̇T (t1)
χ̇T (t2)
⋮

χ̇T (tm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ̇1(t1) χ̇2(t1) ... χ̇n(t1)
χ̇1(t2) χ̇2(t2) ... χ̇n(t2)
⋮ ⋮ ⋱ ⋮

χ̇1(tm) χ̇2(tNm
) ... χ̇n(tm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.3)

where m is the number of time samples and n the dimension of the system. Next, we

construct a library Θ(X) of candidate non linear functions. Each column of Θ(X)
represents a candidate function for the right-hand side of (3.1). Brunton et. al (2016)

suggest that Θ(X) may consist of constant, polynomial, exponential and trigonometric

terms. The choice of candidate functions normally requires some prior knowledge about

the dynamical system. An example of Θ(X) is shown below:

Θ(X) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 χ1(t1) χ1(t1)χ2(t1) ... χ2

2
(t1) ... sin(χn(t1))

1 χ1(t2) χ1(t2)χ2(t2) ... χ2

2
(t2) ... sin(χn(t2))

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 χ1(tm) χ1(tm)χ2(tm) ... χ2

2
(tm) ... sin(χn(tm))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.4)

Now, one can set up a regression problem to determine the unknown parameters Ξ.

Ẋ =Θ(X)Ξ . (3.5)

By using sparse regression, we are able to find what right-hand side terms are small

(close to zero), resulting in sparse models. There are a number of algorithms for computing

sparse regression. At the present time, the least absolute shrinkage and selection operation

(LASSO) (Tibshirani, 1996) is the most popular technique for this type of regression. It

performs both feature selection and regularization based on ℓ1 penalty. An alternative

algorithm is proposed by Brunton et. al (2016), the sequential thresholded least-squares

algorithm. In this algorithm, one starts with a least-squares solution for the unknown

parameters Ξ and then threshold all parameters that are smaller than some cutoff value.

Next, we compute another least-squares solution for the remaining non-zero parameters.

These new parameters are again thresholded, and the sequential thresholded least-squares

procedure is continued until some stopping criteria.







34

vector and p is the pressure.

Here, we consider that a dynamical system given by Eq. 3.6 is solved at each mesh

point. To determine the nonlinear operator F from data, we follow the ideas of the SINDy

algorithm developed by Brunton et. al (2016) with some modifications. First, we collect

snapshots of the variables which will be our training data. The data set is then arranged

into a matrix Q as

Q =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(x1, t1) q(x2, t1) ... q(xNp
, t1)

q(x1, t2) q(x2, t2) ... q(xNp
, t2)

⋮ ⋮ ⋱ ⋮
q(x1, tNT

) q(x2, tNT
) ... q(xNp

, tNT
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.7)

where Np is the number of grid points in the computational domain and NT is the number

of snapshots. Because of the high dimensionality of the input data Q, we first reduce the

dimension of the dynamical system using the snapshot POD method (Sirovich, 1986).

Proper orthogonal decomposition has been widely applied to obtain optimal bases that

represent the most energetic content of the system dynamics with as few basis functions as

possible (Lumley, 1967). The snapshot POD approach starts with a decomposition of the

vector quantities q(x, t) into the mean flow, q(x), and fluctuations, q′(x, t). The latter

can be further expanded into a combination of spatial modes φi(x) and their temporal

coefficients ai(t) for a defined number of N modes as

q(x, t) = q(x) + q′(x, t) = q(x) + N∑
i=1

ai(t)φi(x) . (3.8)

To calculate the POD correlation matrix of the data set Q some specific norm must

be used. For an incompressible flow, a kinetic energy norm provides an optimal result,

however, for a compressible flow, other norms can be employed (Rowley et. al, 2004).

Hence, we define a vector η = [η1 η2 η3 η4 η5]T that determines which norm should

be used to compute the correlation between two snapshots. For example, a pressure-based

norm uses η = [0 0 0 0 1]T and a kinetic energy norm uses η = [0 1 1 1 0]T . The

correlation between two snapshots is computed using the L2 inner product. Therefore,

considering q′(x, ti) = q′i and q′(x, tj) = q′j, the elements of the correlation matrix C are

given by

Cij = ∫
Ω

[η1ρ
′
iρ
′
j + η2(ρu)′i(ρu)′j + η3(ρv)′i(ρv)′j + η4(ρw)′i(ρw)′j + η5p

′
ip
′
j]dΩ , (3.9)

where Ω is the fluid region of interest for the reconstruction and the matrix C is of size

N ×N . For the problems studied in this work, we employ norms based on kinetic energy
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and pressure. Despite the changes in the POD modes computed for the different norms,

we observed that the ROMs obtained by either kinetic energy or pressure norms were

similar. In both cases, stable and accurate models could be reconstructed by the DNNs

and further comments are provided in the results chapter.

In turbulent flows, the POD temporal modes may contain contributions from several

frequencies, including high-frequency noise. For such cases, in order to provide a better

identification of the individual modes and to smooth out the temporal coefficients, we

employ the spectral proper orthogonal decomposition (SPOD) described by Sieber et. al

(2016). The SPOD technique is able to filter the temporal modes while preserving the

information of the FOM by a redistribution of the energy of the system to higher POD

modes. The technique consists of applying a filter function to the POD correlation matrix

which results in a matrix C̃ with elements given as

C̃ij =
Nf /2∑

k=−Nf /2

gkCi+k,j+k . (3.10)

Here, gk is the filter function and Nf is the size of the filter window. We consider a periodic

temporal series and assume that the correlation matrix is also periodic (see Ribeiro and

Wolf (2017) for details). Hence, Nf = fsnap/NT , where fsnap is the number of snapshots

used in the SPOD filter. Following this notation, if we apply 50% of filter to the correlation

matrix, it means that we are filtering 50% of the total number of snapshots. Several filter

functions can be applied to the POD correlation matrix and their effects are reported

by Ribeiro and Wolf (2017). The filter function employed in this work is the box filter

represented by gk = 1/(2Nf + 1).
The temporal coefficients ai = [ai(t1) ... ai(tNT

)]T and the POD eigenvalues λi are

determined from the filtered correlation matrix C̃ as

C̃ai = λiai . (3.11)

Singular value decomposition (SVD) can be employed to compute the eigenvalues λi and

eigenvectors ai of C̃ since the matrix is real symmetric positive-definite. The spatial

modes are obtained from the projection of the fluctuation quantities onto the temporal

coefficients (see Cordier and Bergmann (2008) for details).

φi(x) = 1
λi

N∑
j=1

ai(tj)q′(x, tj) . (3.12)

Finally, the temporal coefficients and spatial modes can be stored in matrices A and Φ
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as

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aT (t1)
aT (t2)
⋮

aT (tNT
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1(t1) a2(t1) ... aN(t1)
a1(t2) a2(t2) ... aN(t2)
⋮ ⋮ ⋱ ⋮

a1(tNT
) a2(tNT

) ... aN(tNT
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.13)

and

Φ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(x1) φ1(x2) ... φ1(xNp
)

φ2(x1) φ2(x2) ... φ2(xNp
)

⋮ ⋮ ⋱ ⋮
φN(x1) φN(x2) ... φN(xNp

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.14)

where the temporal coefficients are the columns of A and the spatial modes are the rows

of Φ. Hence, the matrix of fluctuation quantities can be written as

Q ′ = A Φ . (3.15)

Taking the time derivative of Eq. 3.8, we arrive at the following set of equations

dq(t)
dt
= N∑

i=1

φi(x)dai(t)
dt

. (3.16)

The last term of Eq. 3.16 represents the temporal evolution of coefficients ai(t) associated

with the N modes retained in the SPOD modal basis. We can express this system of

coupled ODEs as
da(t)
dt
= ȧ(t) = F (a(t)) . (3.17)

Next, we compute the derivative ȧ(t) numerically using the data a(t) for each

temporal mode. Different numerical schemes are tested for the computation of the

temporal derivatives and a discussion of the application of explicit schemes and compact

schemes will be provided in the results section. For now, let us consider that the

numerical scheme employed for the temporal derivatives is a 10th-order accurate compact

scheme (Lele, 1992) which provides high spectral resolution being non-dissipative and

low-dispersive. The derivative ȧ(t) is then obtained as

δ1ȧi−2 + δ2ȧi−1 + ȧi + δ2ȧi+1 + δ1ȧi+2 = δ3

ai+3 − ai−3

6h
+ δ4

ai+2 − ai−2

4h
+ δ5

ai+1 − ai−1

2h
. (3.18)

In the equation above, h is the time step and the coefficients of the numerical scheme

are set as δ1 = 1/20, δ2 = 1/2, δ3 = 1/100, δ4 = 101/150 and δ5 = 17/12 for a 10th-order

discretization. The system of Eqs. 3.18 written for each temporal mode can be solved

as a pentadiagonal linear system for the unknown derivatives ȧ(t). The boundary data
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points can be computed from the interior points as follow

• at i = 4 and i = NT − 3

δ1 = 0.451390625
9.38146875

, δ2 = 4.63271875
9.38146875

, δ3 = 2
6.66984375
9.38146875

, δ4 = 4
1.53

9.38146875
, δ5 = 6

0.015
9.38146875

.

• at i = 3 and i = NT − 2

δ1 = 0.2964375
10.67175

, δ2 = 4.7435
10.67175

, δ3 = 2
7.905

10.67175
, δ4 = 4

1.23515625
10.67175

, δ5 = 0 .

• at i = 2 and i = NT − 1

δ1 = 0, δ2 = 1
4
, δ3 = 3

2
, δ4 = 0, δ5 = 0 .

• at i = 1 and i = NT

ȧ1 + 2ȧ2 = 1
h
(−5

2
a1 + 2a2 + 1

2
a3) .

ȧNT
+ 2ȧNT−1 = 1

h
(5
2

aNT
− 2aNT−1 − 1

2
aNT−2) .

(3.19)

The derivatives ȧ(t) are then arranged into a matrix Ȧ

Ȧ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ȧT (t1)
ȧT (t2)
⋮

ȧT (tNT
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ȧ1(t1) ȧ2(t1) ... ȧN(t1)
ȧ1(t2) ȧ2(t2) ... ȧN(t2)
⋮ ⋮ ⋱ ⋮

ȧ1(tNT
) ȧ2(tNT

) ... ȧN(tNT
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.20)

3.2.2 Regression step

Once the matrix of temporal derivatives is computed, we can set up a regression

problem to find the weights W and biases b that determine the function F (a(t)) presented

in Eq. 3.17

Ȧ =W Θ(A) + b , (3.21)

where Θ(A) is the matrix of features. In the SINDy algorithm, Brunton et. al (2016)

suggest that Θ(A) may consist of constant, polynomial, exponential and trigonometric

functions. However, in many cases, it is difficult to know what set of features should

be extracted from the data. Hence, we use machine learning to circumvent the problem

of finding the functions which represent the dynamics of the problem. Therefore, the

methodology can discover not only the weights W and biases b but also the features
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Θ(A). The “learned” features often result in a better performance when compared to

those obtained using “engineered” features. A learning algorithm can find a proper set

of features in minutes or hours, depending on the task complexity. On the other hand,

manually engineered features would require a great amount of human time and effort for

complex tasks (Goodfellow et. al, 2016).

Deep learning methods are feature learning algorithms that can find a proper set of

features using multiple layers, from higher layer features defined in terms of lower layer

features. Automatically learning features at multiple processing layers allows the learning

of complex functions through mapping the input to the output directly from a given data

(Bengio, 2009). In the present work, a deep feedforward neural network (DNN) is used to

learn the weights W , biases b and features Θ(A) of the dynamical systems investigated.

Figure 3.3 shows a sample DNN architecture where the input X of the DNN is the matrix

A and the target Y is the matrix Ȧ. The DNN calculation procedure is presented in

the following algorithm form 1. In the current work, the open source machine learning

framework Tensorflow (Abadi et. al, 2016) is used for training the DNN.

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮
⋮

a1

a2

a3

aN

˙̂a1

˙̂a2

˙̂a3

˙̂aN

Input
layer

Hidden
layer

Hidden
layer

Hidden
layer

Hidden
layer

Ouput
layer

. . .

. . .

. . .

. . .

. . .

Figure 3.3: An example of a deep feedforward network with N inputs, several hidden
layers (HL), and one output layer with N outputs.
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Algorithm 1: Deep feedforward network (DNN).
Input : Training data X , Target Y , network depth L, activation function σ,

number of hidden units n[l] for layer l, learning rate α, regularization
parameter λ, maximum number of iterations niter, exponential decay
rate for the 1st moment estimates β1, exponential decay rate for the
2nd moment estimates β2, and small constant for numerical stability ǫ

Output: W [l], b[l], Ŷ

1 Initialization of parameters: All the weights W [l] are initialized using
Xavier’s initialization (Xavier and Yoshua, 2010). The biases b[l] are initialized
to zero. The matrix W [l] is of size n[l+1]×n[l] and the vector b[l] is of size n[l]×1;

2 Initialization of Adam parameters: Adam parameters VdW [l] , V db[l] , SdW [l]

and Sdb[l] are initialized to zero. They have the same dimensions as W [l] and
b[l];

3 for iter = 1 to niter do
4 Forward propagation ;
5 G[0] = X ;
6 for l = 1 to L do

7 Z [l] =W [l]G[l−1] + b[l];
8 G[l] = σ(Z [l]); ▷ for the last layer L: G[L] = Z [L]

9 end

10 Ŷ = Z [L];

11 Cost function: J = 1

2NT
[ N∑

j=1

NT∑
i=1
(Ŷi,j − Yi,j)2 + λ L∑

l=1

n[l]∑
k=1

n[l+1]∑
j=1
(W [l]

j,k)2];
12 Backward propagation ;
13 dG[L] = dZ [L]; ▷ as G[L] = Z [L] then dZ [L] = Ŷ −Y

14 dW [L] = 1

NT
[dZ [L] ⋅ (G[L−1])T ];

15 db[L] = 1

NT

NT∑
i=1
dZ [L];

16 for l = L − 1 to 1 do

17 dG[l−1] = (W [l+1])T ⋅ (dZ [l+1]);
18 dZ [l] = dG[l] ∗ σ′(Z [l]);
19 dW [l] = 1

NT
[dZ [l] ⋅ (G[l−1])T ];

20 db[l] = 1

NT

NT∑
i=1
dZ [l];

21 end
22 Adam optimization (Kingma and Ba, 2014) ;
23 for l = 1 to L do

24 VdW [l] = β1SdW [l] + (1 − β1)dW [l]; V db[l] = β1Sdb[l] + (1 − β1)db[l];
25 SdW [l] = β2SdW [l] + (1 − β2)(dW [l])2; Sdb[l] = β2Sdb[l] + (1 − β2)(db[l])2;
26 VdW [l] ∶= V

dW [l]

1−βiter
1

; V db[l] ∶= V
db[l]

1−βiter
1

; SdW [l] ∶= S
dW [l]

1−βiter
2

; Sdb[l] ∶= S
db[l]

1−βiter
2

;

27 W [l] ∶=W [l] − α
V

dW [l]√
S

dW [l]
+ǫ

;

28 b[l] ∶= b[l] − α
V

db[l]√
S

db[l]
+ǫ

;

29 end

30 end
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Once we have learned the parameters W [l] and b[l] of our model 3.21, we can use them

to predict the temporal coefficients a(t) given the initial conditions a(t1). The system of

coupled ODEs 3.17 can now be given by

dâ(t)

dt
=W [L]G[L−1] + b[L] = F (a(t)) , (3.22)

where L is the index of the last layer, G[L−1] is the activation function matrix of the

penultimate layer, W [L] is the weight matrix of the last layer, and b[L] is the bias vector

of the last layer.

This system of coupled ODEs is integrated using an explicit 5 stage 4th-order

Runge-Kutta scheme derived by Kennedy et. al (1999). As we can see in algorithm 1,

G[L−1] depends on the weigths W and biases b from previous layers. Thus for each stage

of the 4th-order Runge Kutta, we need to perform forward propagation to obtain F (a(t)).

As we have the temporal coefficients a(t), one can reconstruct the flow field using Eq.

3.8. However, we are interested in using a reduced-order model in circumstances other

than simply reproducing the training data. The approach presented in this work allows

us to predict the flow field beyond the training window because q(x) and φ(x) depend

only on the spatial coordinates x and they are calculated using only the training data.

3.2.3 Hyperparameter Optimization

The performance of the DNN described in algorithm 1 depends dramatically on the

selection of hyperparameters such as the network depth, L, number of hidden units for

each layer, n[l], regularization parameter, λ, and learning rate α. Indeed, finding an

optimal set of hyperparameters which minimizes the loss function over a hyperparameter

space is a challenging task given the substantial number of free parameters involved.

The manual search, grid search, random search (Bergstra and Bengio, 2012) and

Bayesian optimization (Brochu et. al, 2010) are the most widely used procedures for

the hyperparameter optimization. The manual search consists of a direct human trial

and error procedure in the search for an optimal configuration of hyperparameters. This

procedure is entirely based on prior experience of the user and there is a high probability

that an optimal set of hyperparameters is not found. However, a manual search is still

useful if the effect of a specific hyperparameter on the model performance can be monitored

on the fly. In the grid search method, several combinations of hyperparameter values are

tested in a range evenly spaced. This method is extremely time-consuming because the

number of trials increases exponentially with the number of hyperparameters. In a random
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search, one randomly selects each hyperparameter from a defined range and evaluates

the model performance. It is time-consuming when a high-dimensional hyperparameter

space is analyzed, however, Bergstra and Bengio (2012) empirically show that a random

search outperforms a grid search for the hyperparameter optimization both in terms of

computational time and model performance.

One of the recent strategies to find an optimal set of hyperparameters is the Bayesian

optimization. It is a technique that involves constructing a probabilistic surrogate model

to the data in order to determine the most promising hyperparameters to evaluate.

Snoek et. al (2012) showed that Bayesian optimization was able to find optimal

hyperparameters for a three-layer convolutional neural network considerably faster than

previous approaches and outperformed the state of the art performance at selecting the

set of hyperparameters on the CIFAR-10 data set (Krizhevsky, 2009).

In this work, we use two hyperparameter optimization strategies: random search and

Bayesian optimization. For random search, the model generation procedure is presented

in the following algorithm form 2. Likewise, Bayesian optimization has the same inputs

as random search. To report the performance of each model from a set of candidates, we

compute the mean absolute error (MAE) over the training data. The candidate models

with lower MAE values are most likely those which will provide the “best” models. It is

possible, however, that the model with the lowest MAE suffers from overfitting.

The current metric does not assess the generalization of the model. However, it is the

only one available since we cannot split our data into training and validation sets. The

validation data set should provide an unbiased evaluation of the ROM. In our case, we

employ the temporal coefficients of the POD modes for the training stage of the model.

These modes are computed using a correlation of different snapshots and if we construct

the ROM using POD modes obtained with data including the validation set, our model

would use a biased set for the training stage. This occurs because the POD correlation

matrix would be computed for snapshots of both the training and validation sets. In

order to overcome this issue, we reconstruct the flow field of the candidate models with

lowest MAEs and then compute Er = ∣∣qF OM −qROM ∣∣ over the validation set to select the

best candidate model. This procedure could even be improved if Er were computed for

all models. However, the computational cost would considerably increase if such metric

were employed.

An alternative to the current MAE procedure is to use Akaike’s information criterion

(AIC) (Akaike, 1973) or the Bayesian information criterion (BIC) (Schwarz, 1978) as the

model selection criteria. These methods try to balance the quality of the fit and model

complexity and the main advantage is that there is no need for a validation set. The
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Hyperparameter Improves
performance
if

Reason Warning

Number of
hidden units,
nhidden

Increased Increasing the
number of hidden
units augments the
capacity of the model
to represent more
complex functions

Increasing this
parameter may
cause overfitting to
the training data

Number of
layers, nlayers

Increased Same as above Same as above. One
should also be aware
that a DNN with a
large number of layers
and a very small
number of hidden
units will not work
properly.

Regularization
parameter, λ

Reduced Reducing the
regularization
parameter allows
larger weights for the
model features. One
should expect that
some of these features
are the most relevant
for the model.

Reducing the
regularization
parameter causes
the model to be more
prone to overfitting to
the training data

Learning rate, α Tuned If α is too small,
the optimization
process can be slow.
If α is too high, the
optimization method
may lead to overshoot
of local minima. This
parameter is chosen
by monitoring the
learning curve.

If α is too large,
the learning curve
will show strong
oscillations. If it is
too small, the learning
curve may stuck with
a high value of the
cost function.

Number of
iterations, niter

Tuned The number of
iterations is strictly
related to the learning
rate. It is chosen
by monitoring the
learning curve.

As the number of
iterations increases,
the model goes
from underfitting to
optimal and, then,
to overfitting the
training data.

Table 3.1: Effects of hyperparameters on model performance.
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Algorithm 2: Model generation procedure
Input : Number of candidate models nmodels, minimum number of layers

nlayersmin
, maximum number of layers nlayersmax

, number of inputs
ninputs , minimum number of hidden units nhiddenmin

, maximum number
of hidden units nhiddenmax

, minimum order of magnitude of the
regularization parameter θmin, and maximum order of magnitude of the
regularization parameter θmax.

Output: Network depth L, number of hidden units for each layer n[l] and
regularization parameter λ

1 for i = 1 to nmodels do
2 λi = 10−rand(θmin,θmax); ▷ Regularization parameter

3 Li = int(rand(nlayersmin
, nlayersmax

)) ; ▷ Network depth

4 n
[1]
i = ninputs ; n[L]i = ninputs ; ▷ Number of units for the input and output layers

5 for l = 2 to Li − 1 do

6 n
[l]
i = int(rand(nhiddenmin

, nhiddenmax
)) ; ▷ Number of hidden units for layer l

7 end

8 end

downside is that AIC and BIC impose a penalty for model complexity which is related

to the number of parameters. This can be a problem when dealing with deep neural

networks due to their large number of parameters.

In our experiments, we noticed that a few of the hyperparameters employed in

algorithm 1 need to be tuned for the best performance of the DNN. These are listed

in algorithm 2. The remaining hyperparameters are determined according to the

following procedures in order to reduce the hyperparameter search space. For instance,

hyperparameters related to the Adam optimization, such as the exponential decay rates

β1 and β2, and the constant for numerical stability ǫ, are set as described by Kingma

and Ba (2014). The learning rate α and the number of iterations niter are chosen by

monitoring the loss function. For instance, we train a fraction of the models, selected

randomly, with a initial learning rate and number of iterations, and then we plot the

loss function. Next, we reduce the learning rate by a factor of 10, and train the models

while still monitoring the loss function. We repeat this step until the loss function drops

drastically and approaches 10−6 with gentle oscillations as can be seen in figure 3.4. One

should note that automated approaches such as learning rate decay and adaptive learning

rate are more robust strategies to configure the learning rate (Goodfellow et. al, 2016).

As can be observed in the results section, we use the same values of the learning rate

and number of iterations for all flow simulations studied in this work and these values

should serve as references for other flows. Following Goodfellow et. al (2016), we provide

table 3.1 with information of the hyperparameters presented in algorithm 2 based on
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their effects on model performance. This table also presents a similar discussion for the

hyperparameters chosen via manual search. We expect that it serves as a guideline for

choosing the range of values to be explored for the hyperparameters presented in algorithm

2.
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Figure 3.4: Cost function for different models.

Here, we consider that the activation function is also a hyperparameter since it plays

a key role in the DNN performance. There are several available activation functions such

as sigmnoid, hyperbolic tangent (tanh), rectified linear unit (ReLU) (Nair and Hinton,

2010), exponential linear unit (ELU) (Clevert et. al, 2015), to name a few. For general

regression problems, tanh and ELU are the most popular functions since they possess

nonlinear properties and are continuously differentiable. Clevert et. al (2015) show that

the ELU function reduces the vanishing gradient effect since its positive part returns the

identity. Thus, in the positive part, the derivative is unitary and it is not contractive. On

the other hand, tanh is contractive almost everywhere. Furthermore, in our experiments,

the ELU function provided results with fewer iterations than a corresponding tanh network

and, therefore, we use ELU as the activation function.

3.3 Data-driven ROMs

As previously discussed, the construction of reduced-order models is an active area of

research in fluid mechanics and different methodologies for the development of ROMs are

available. For example, POD-Galerkin based methods are directly related to the physics
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of the problem through the projection of the Navier Stokes equations into a system of

ordinary differential equations. Galerkin projection methods require the treatment of

the linear and nonlinear spatial terms appearing in the full order model. Another issue

with these methods relates to their expensive application for dynamical systems with

strong nonlinearities where one should employ, for example, hyper-reduction techniques

(Chaturantabut and Sorensen, 2010; Carlberg et. al, 2011; Zimmermann and Willcox,

2016).

In the current approach, we employ DNNs for the regression step in a context similar to

the SINDy algorithm. Both the DNN and the original SINDy approaches are data-driven

methods and, instead of having a direct connection with the physics of the problem, these

techniques learn from data. An advantage of these methods is that the nonlinearities of

the problem are considered in the temporal derivatives of the primitive variables, which

are obtained from the full order model. Therefore, neither the SINDy nor the DNN

method require the treatment of spatial derivatives.

In general, the resulting reduced-order models constructed via DNNs are not (directly)

physically interpretable due to the nonlinearity of the matrix of features and their weights

and biases, which are not sparse. We hope that interpretability of complex models can be

improved by new topics of research such as “accountable machine learning” (Navarro et.

al, 2018). The physics of systems with complicated models can also be interpreted by the

structure of the state space, e.g., fixed points, Lyapunov exponents, fractal dimensions,

bifurcations, and DNN models can also be useful for computing such measures. Learning

from models simply uses the fact that many realizations of the physical system can be

computed very quickly to explore parts of the state space which are not contained in

the training data. In some cases, such as the flow past a cylinder, models constructed

using sparse regression could directly lead to physically interpretable results (Brunton

et. al, 2016). As expected, the application of DNNs for the regression step adds a

penalty cost compared to sparse regression. However, it is shown in this work that,

for the cases analyzed, models obtained using neural networks present better long-term

predictive capabilities compared to sparse regression. Both these issues will be discussed

in the results chapter.
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4 RESULTS

In this chapter, the proposed ROM methodology is first tested in the reconstruction

of the dynamics of a damped cubic oscillator. Then, we evaluate the capability of

DNN-ROMs to reproduce the dynamics of a compressible flow past a cylinder including

its noise generation. A comparison between the current DNN technique against sparse

regression is also presented for the transient regime of an incompressible flow past a

cylinder. Finally, the method is employed to create a ROM of turbulent flow involving

dynamic stall of a plunging airfoil. Again, the DNN solution is compared against that

obtained by sparse regression. We also evaluate the reconstruction of SPOD temporal

modes using different finite difference schemes and times steps. In each example, we

show the ability and limitations of the methods to identify the dynamics of the different

nonlinear systems comparing the ROM and full order model (FOM) solutions.

4.1 Nonlinear oscillator

For this first example, we consider a canonical problem in system identification

(Brunton et. al, 2016; Rudy et. al, 2018): the two-dimensional nonlinear oscillator.

The system dynamics are given by

d

dt

⎡⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

−0.1 2

−2 −0.1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

x3

1

x3

2

⎤⎥⎥⎥⎥⎦
. (4.1)

with initial conditions [x1 x2]T = [2 0]T .

We generate 4000 snapshots from t = 0 to t = 40 by integrating equation 4.1 using an

explicit 5 stage 4th-order Runge-Kutta scheme (Kennedy et. al, 1999) with a time step

of h = 0.01. The training window spans the period 0 ≤ t ≤ 10 and the remaining data

is used as the test set. The system reconstruction is obtained following the procedures

defined in section 3.2. For this first example, it is not necessary to use POD due to the

low dimensionality of the system. The parameters employed in algorithm 2 are presented

in table 4.1 and the best set of hyperparameters obtained via random search is listed in

table 4.2.

Figure 4.1 presents the solutions obtained by the FOM (true model) and ROM for the
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Table 4.1: Model generation parameters for ROM of nonlinear oscillator

nmodels nlayersmin
nlayersmax

nhiddenmin
nhiddenmax

θmin θmax

300 3 10 8 36 2 6

Table 4.2: Best set of hyperparameters for ROM of nonlinear oscillator

DNN architecture σ α λ niter β1 β2 ǫ

2 − 10 − 2 ELU 0.001 1.4062 × 10−6 20000 0.9 0.999 1.0 × 10−8

damped cubic oscillator. Results show that the proposed algorithm accurately reproduces

the system dynamics during the training window and beyond, for the test set.
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Figure 4.1: Comparison between true model (solid black line) and ROM prediction
(dashed cyan line) for nonlinear oscillator.

4.2 Flow past a cylinder

In this case, the full order model (FOM) is obtained by solving the compressible Navier

Stokes equations as detailed in section 2.2. The numerical simulations are conducted for

Reynolds and Mach numbers Re = 150 and M = 0.4, respectively. These dimensionless

parameters are computed based on freestream quantities. The grid configuration consists

of a body-fitted O-grid with 421 × 751 points in the streamwise and wall-normal directions,

respectively.

The flow is recorded for 1120 snapshots with dimensionless time steps of h = 0.05.

The snapshots are collected after an initial transient period of the simulation is discarded.

The reduced-order model (ROM) is obtained following the procedure described in section
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Table 4.3: Model generation parameters for ROM of compressible flow past a cylinder

nmodels nlayersmin
nlayersmax

nhiddenmin
nhiddenmax

θmin θmax

500 6 10 10 64 2 6

Table 4.4: Best set of hyperparameters for ROM of compressible flow past a cylinder

DNN architecture σ α λ niter β1 β2 ǫ

10 − 31 − 51 − 25 − 32 − 42 − 51 − 27 − 26 − 10 ELU 0.001 4.4085 × 10−5 10000 0.9 0.999 1.0 × 10−8

3.2 using the pressure norm for the POD correlation matrix. It is important to mention

that the use of a kinetic energy norm produced similar results for this case. The training

data comprises the first 280 snapshots of the FOM and the remaining data is employed

as the test set. The set of hyperparameters employed in algorithm 2 is listed in table 4.3

and the best set of these parameters obtained via random search is presented in table

4.4. For this case, Bayesian optimization was also able to produce accurate models but

at a higher computational cost compared to random search. One can see that the best

architecture of the neural network for this case has 10 layers. However, we also found

several other stable and accurate models with six layers, for example. The fact that the

best model was found with 10 layers is a coincidence.

Figures 4.2 to 4.5 show contours of density, x-momentum, z-vorticity, and divergence

of velocity, respectively, along the cylinder and wake regions at time t = 410, which is

beyond the training window. The snapshots allow a comparison of the results between

the FOM and ROM using 2 and 10 POD modes out of 280 modes. Hence, the flow is

reconstructed using 0.7% and 3.5% of the total information available from the full order

model. Although the current simulation is performed for a compressible flow at M = 0.4

and Re = 150, we could verify that the POD spatial eigenfunctions are almost identical

to those from Noack et. al (2003), which were obtained for an incompressible flow and

Re = 100. Reconstruction of the individual flow variables with 2 POD modes could recover

between 50 and 80% of the total modal energy, depending on the variable. For example,

density is reconstructed using 50% of the total energy of the system dynamics while

y-momentum is reconstructed with 80% of the total modal energy. Here, we use the term

“modal energy” to refer to the ratio between the sum of N POD eigenvalues used in a

particular reconstruction over the entire range NT of eigenvalues available, ∑N
i=1 λi/∑

NT

i=1 λi.

For 10 POD modes, the reconstructions could recover 99% of the energy for all variables

and, therefore, should lead to an accurate flow representation. For this particular case,

the spectral proper orthogonal decomposition technique is not required since the modes

are almost monochromatic and, hence, do not require filtering.

One can observe from the figures that the computations of the flow using the ROM
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Figure 4.2: Contours of density, t = 410.

framework show good agreement compared to those obtained by the FOM. For the current

Reynolds number, the flow develops a typical von Kármán vortex street along the cylinder

wake. The periodical pattern of the vortex shedding can be observed in the contours

of z-vorticity. Noise generation also occurs in the current unsteady compressible flow

simulation. In this case, pressure fluctuations along the cylinder surface are scattered to

the far-field and can be observed in the contours of dilatation shown in figure 4.5. Both

the near-field hydrodynamics and the far-field acoustics are recovered by the ROM. The

reconstruction using 10 POD modes show an excellent agreement with the FOM. When

2 POD modes are employed in the flow reconstruction, discrepancies between the ROM

and FOM are evident from the figures. However, the main features of the flow are still

recovered by the model. One should note that, despite the use of only two modes, the

dynamical system is still stable beyond the training region.

In order to show a more qualitative evaluation of the model reconstructions, the density

and x-momentum fluctuation time histories are presented for the FOM and ROMs in

figures 4.6 and 4.7, respectively. The figures on the left column show results for a probe

located just behind the cylinder, close to the surface, at (x, y) = (0.55,−0.06). The

cylinder has radius 0.5 and its center is positioned in the origin of the Cartesian system.

On the right column, results are obtained for a probe downstream the cylinder wake, at

(x, y) = (1.1,−0.06). Results are shown for both the training window period and beyond.

When 2 POD modes are employed, the solutions show a less accurate representation of
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Figure 4.3: Contours of x-momentum, t = 410.

Figure 4.4: Contours of z-vorticity, t = 410.
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Figure 4.5: Contours of divergence of velocity, t = 410.

the dynamics observed in the FOM. The density reconstruction is that with the highest

discrepancy and that is attributed to the lower energetic content achieved by the first

2 POD modes. One can notice that the reduced-order model accurately reproduces the

full order model results during and beyond the training window when 10 POD modes are

employed in the reconstruction.

In order to test the robustness of the method, we employ the DNN approach for the

reconstruction of the transient regime of an incompressible cylinder flow. For this study,

the 2 most energetic POD modes containing both the transient and limit cycle dynamics of

the flow are obtained from Brunton et. al (2016). These modes contain both the transient

and limit cycle dynamics of the flow. Figure 4.9 shows the POD temporal modes used

for training and testing the DNNs. The first 5000 temporal instants are used to train

the models and one can see this data set represented by the black line to the left of the

vertical line marking the end of the training window. To the right of the training window,

the black line represents the test data which is the correct solution for the temporal

dynamics. Figure 4.9 also shows the results obtained by the current DNN approach and

by sparse regression. In the case of sparse regression, we employ the same model obtained

by Brunton et. al (2016) in table 11 of the Supporting Information report. As one can

observe, the DNN is able to recover accurately both the transient and limit cycle solutions

of the test data for both POD modes. On the other hand, sparse regression reconstructs

the transient portion of the dynamics but not the long term prediction of the limit cycle.

Several models obtained by the DNNs presented similar results compared to those shown

in figure 4.9 and some had similar neural network architectures compared to that of table
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Figure 4.6: Fluctuation time history of density.
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Figure 4.7: Fluctuation time history of x-momentum.
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Figure 4.8: Fluctuation time history of y-momentum.
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Table 4.5: Model generation parameters for ROM of plunging airfoil in deep dynamic
stall

nmodels nlayersmin
nlayersmax

nhiddenmin
nhiddenmax

θmin θmax

700 6 12 10 64 2 6

airfoil is rounded in the current simulations with an arc of radius r/L = 0.0008. This

procedure is required for retaining the smoothness of the metric terms computed by the

high-order compact scheme. The spanwise domain is set as z/c = 0.4 similarly to Visbal

(2011) and the dimensionless time step of the simulation is set as ∆t∗ = ∆tU∞
L
= 0.00008.

The plunge motion occurs with an effective angle of attack in the range of −6 deg.

≤ α ≤ 22 deg. Defining ψ as the angular position in the plunging cycle, we say that at ψ = 0

deg. the airfoil has no velocity in the y-direction and is at the top-most position of the

plunging motion. At ψ = 90 deg. it has the highest velocity in the y-direction downwards

and, at ψ = 180 deg., it has no velocity and is at the bottom-most position of the plunging

motion. Finally, at ψ = 270 deg. it has the highest velocity in the y-direction upwards.

In summary, during the down-stroke, instabilities begin to form in the suction side of the

airfoil, growing and eventually breaking into finer structures. While this takes place, the

dynamic stall vortex forms along the leading edge and is transported through the airfoil

suction side increasing the overall lift and creating a nose-down pitching moment. As the

leading-edge vortex (LEV) approximates the trailing edge, a trailing-edge vortex (TEV)

forms pushing the LEV away from the airfoil. A more complete discussion of the flow

dynamics can be found in Visbal (2011) and Ramos et. al (2019).

Figure 4.10 shows iso-surfaces of Q-criterion colored by pressure and it is possible to

observe the main flow features described above. In figures 4.10(c) and (d), it is possible

to compare the 3-D solutions of the FOM and ROM, respectively, for the leading edge

vortex formation. Figures 4.10(e) and (f) show a similar comparison for the instant where

the trailing edge vortex forms. For both instants, one can observe that the ROM is able

to reconstruct the larger scale features of the 3-D flow. The ROM is trained using the first

2 cycles of the plunging motion and the solutions presented in figure 4.10 are computed

for the fourth cycle, showing that the model is able to reproduce the 3-D flow dynamics

beyond the training window. For this study, the parameters employed in algorithm 2 are

presented in table 4.5 and the best set of hyperparameters, obtained via random search,

is listed in table 4.6. It is important to mention that, for this case, Bayesian optimization

was unable to produce stable and accurate models.

The first 16 SPOD modes are employed to reduce the dimensionality of the input data

in the 3-D flow reconstruction. Other POD reconstructions were tested with a different
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Table 4.6: Best set of hyperparameters for ROM of plunging airfoil in deep dynamic
stall (3D flow)

DNN architecture σ α λ niter β1 β2 ǫ

16 − 19 − 52 − 50 − 31 − 16 ELU 0.001 8.0938 × 10−5 10000 0.9 0.999 1.0 × 10−8

(a) Flow at ψ = 30 deg. (FOM) (b) Flow at ψ = 30 deg. (ROM)

(c) Flow at ψ = 100 deg. (FOM) (d) Flow at ψ = 100 deg. (ROM)

(e) Flow at ψ = 160 deg. (FOM) (f) Flow at ψ = 160 deg. (ROM)

Figure 4.10: Iso-surfaces of Q criterion colored by pressure at different instants of the
plunge motion for the fourth cycle. The ROM was trained using only the first 2 cycles.
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number of modes and it was observed that the first 16 modes contained the main features

of the leading and trailing edge vortex formation. For example, adding 10 more modes

did not improve significantly the solution and, beyond mode 26, the SPOD temporal

modes presented complex behavior, being composed of several frequencies and difficulting

the training stage of the DNNs. This issue could be improved running the simulation

for a longer period with a lower time step to improve convergence of the POD modes.

One should note that the spectral proper orthogonal decomposition allows an energy

shift of the modes to obtain frequency filtered temporal dynamics. In this sense, the

high-frequency noise observed in the POD temporal modes is not discarded but is shifted

to higher SPOD modes. This procedure allows a better pairing of POD modes if the

coherent structures have periodicity. In the present study, due to the unsteady boundary

conditions and the lack of symmetry in the flow, we do not expect pairing of the SPOD

modes.
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Figure 4.11: Characteristics of POD and SPOD temporal modes for 3D flow past airfoil
under plunging motion.
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Table 4.7: Best set of hyperparameters for ROM of plunging airfoil in deep dynamic
stall (spanwise-averaged flow)

DNN architecture σ α λ niter β1 β2 ǫ

10 − 46 − 23 − 17 − 19 − 10 ELU 0.001 2.3365 × 10−5 10000 0.9 0.999 1.0 × 10−8

For the present turbulent flow, the temporal modes of the standard snapshot POD

are composed by several frequencies and, moreover, contain some noise that degrades the

training of the DNNs. The SPOD provides the most energetic modes for specific frequency

bands, allowing a better identification of the individual modes and smoothing out the

temporal coefficients. Here, a box filter is applied to 25% of the POD correlation matrix.

We observed that filter values in the range of 20% to 40% provide good results for the

model reconstructions. If a lower filter window is employed, noise can still be present in the

temporal modes. On the other hand, higher filter windows may considerably modify the

temporal modes transforming them into quasi-sinusoidal signals. This is undesirable since

the relevant dynamics of the flow can be lost and too many SPOD modes may be required

for the construction of the ROM. An example of the impact of SPOD on the characteristics

of temporal modes 2 and 16 can be seen in figure 4.11. In this example, the second POD

mode exhibits high-frequency noise which is filtered by the SPOD. Meanwhile, POD

mode 16 shows a complicated pattern due to the contribution of several frequencies.

This temporal coefficient is considerably simplified by the application of SPOD as can be

observed in the figure. It is clear that, different from the cylinder case, for the plunging

airfoil, the POD modes contain more complex dynamics which are composed of multiple

Fourier modes.

In order to further evaluate the present DNN approach, the ROM reconstructions are

also performed for spanwise-averaged solutions of the flow and the ROM is constructed

following the procedures defined in section 3.2. We employ 6 plunging cycles (2244

snapshots) for computing the models, discarding initial flow transients. The training data

contains the first two cycles (748 snapshots) of the FOM and the remaining data is used

as the test set. The parameters employed in algorithm 2 are the same as those presented

in table 4.5 and the best set of hyperparameters, obtained via random search, is listed in

table 4.7. Here, we apply the box filter to 25% of the POD correlation matrix and employ

the first 10 SPOD modes for the ROM construction, which was sufficient to recover the

most important features of the dynamic stall solution for the spanwise-averaged study.

Figures 4.12 and 4.13 present snapshots of density and x-component of momentum,

respectively, for the FOM and ROM. The flow features of the dynamic stall can be

observed for different stages of the plunging cycle, given by different values of ψ in the
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figures. It is possible to track the LEV over the suction side of the airfoil. The current

ROM is able to recover the important dynamics of the leading edge vortex formation,

its transport and ejection, besides the trailing edge vortex formation and ejection. One

should note that the results presented in these figures are obtained for a plunging cycle

beyond the training region. Therefore, the current ROM is capable of reproducing the

flow dynamics for the test set. The high wavenumber features shown in the FOM are not

present in the SPOD modes and, hence, they are not recovered by the ROM. If additional

SPOD modes were employed in the model reconstruction, these features would appear.

However, the overall cost of the simulations would increase considerably if accurate higher

POD modes were required. For the present study, we observed that the fine scale flow

dynamics are related to higher modes since most of the energetic content is related to the

airfoil plunging motion represented by the first POD modes.

Fluctuation time histories are presented in figure 4.14 for density and x-momentum.

These properties are computed by the FOM and ROM at probe locations in the proximity

of the leading and trailing edges, at (x, y) = (0.07,0.07) and (x, y) = (0.97,0.07),

respectively. It is important to mention that the airfoil leading edge is at the origin

of the Cartesian system. The plots show the training and test regions demonstrating

that the ROM is stable beyond the training set and can accurately reproduce the main

dynamics of the flow. The fast oscillations resolved by the FOM are not represented due

to the SPOD basis truncation. However, all the relevant features of the flow fluctuations

are captured by the DNN model obtained with the first 10 SPOD modes.

In figure 4.15, one can observe a comparison between ROMs built using the current

DNN approach and sparse regression. For this case, both the LASSO and Ridge regression

techniques were tested with the original SINDy algorithm. Although the LASSO presented

a higher computational cost, it provided better models compared to the Ridge regression.

For this case, the computational cost of the DNN regression is, on average, 40 times

higher than that of SINDy. However, as shown for SPOD modes 1 and 8, the SINDy

algorithm was not able to provide stable models. The same can be said for the other

SPOD modes. Sparse regression can learn the dynamics during the training window and

also for a few cycles in the test set but its solution is not stable for long-time predictions.

On the other hand, despite the higher cost, the DNN approach presents good long-time

predictive capabilities with stable and accurate solutions beyond the training window.

In order to evaluate the robustness of the present framework, we test the capability

of the ROM in reconstructing the flow field using a time step different than that of

the simulation. Figure 4.16 shows the reconstruction of SPOD temporal modes using

different finite difference schemes and time steps. The derivatives of the temporal modes
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(a) FOM, ψ = 30○. (b) ROM, ψ = 30○.

(c) FOM, ψ = 60○. (d) ROM, ψ = 60○.

(e) FOM, ψ = 90○. (f) ROM, ψ = 90○.

(g) FOM, ψ = 120○. (h) ROM, ψ = 120○.

(i) FOM, ψ = 150○. (j) ROM, ψ = 150○.

Figure 4.12: Density contours at several phase angles for the fifth plunging cycle.
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(a) FOM, ψ = 30○. (b) ROM, ψ = 30○.

(c) FOM, ψ = 60○. (d) ROM, ψ = 60○.

(e) FOM, ψ = 90○. (f) ROM, ψ = 90○.

(g) FOM, ψ = 120○. (h) ROM, ψ = 120○.

(i) FOM, ψ = 150○. (j) ROM, ψ = 150○.

Figure 4.13: Contours of x-component of momentum at several phase angles for the fifth
plunging cycle.
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(c) Fluctuations of x-component of momentum.
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(d) Fluctuations of x-component of momentum.
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(e) Fluctuations of y-component of momentum.
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(f) Fluctuations of y-component of momentum.

Figure 4.14: Fluctuation time histories computed by the FOM and ROM for probe
locations in the proximity of the leading edge (left column) and trailing edge (right

column).





63

20 30 40 50 60 70 80 90

t

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

a
1

POD

Second-order: ∆t

Sixth-order: ∆t

Tenth-order: ∆t

End of training window

(a) Mode 1 obtained using ∆t as in the simulation.
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(b) Mode 1 obtained using 5 ×∆t.
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(c) Mode 4 obtained using ∆t as in the simulation.

20 30 40 50 60 70 80 90

t

−0.1

0.0

0.1

0.2

a
4

POD

Sixth order: 5∆t

Tenth order: 5∆t

End of training window

(d) Mode 4 obtained using 5 ×∆t.
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(e) Mode 8 obtained using ∆t as in the simulation.
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(f) Mode 8 obtained using 5 ×∆t.

Figure 4.16: Reconstruction of SPOD temporal modes using different finite difference
schemes and time steps.
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for both POD norms and the aerodynamic coefficients obtained for the best models are

compared in the figure. As one can see, the present ROM solutions show good comparisons

to the current large eddy simulation and Visbal (2011). The total simulation cost of the

FOM for this case was 100,000 hours. On the other hand, the full cost of the ROM,

including the optimization of the hyperparameters, plus the training and evaluation of 700

models, required approximately 7 hours. Hence, the computational cost for the training

procedure is around 100 models per hour in a single GPU. Once a ROM is chosen, the

cost of the simulation is reduced to a few seconds.
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(a) Lift coefficient CL.
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(b) Drag coefficient CD.
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(c) Moment coefficient CM .

Figure 4.17: Phase-averaged aerodynamic coefficients computed by Visbal (2011), the
current LES (FOM), and the DNN approach with POD norms based on pressure (P)

and kinetic energy (KE).
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5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

We present a methodology for constructing ROMs combining flow modal

decomposition and regression analysis via DNNs. The framework is implemented in a

context similar to that of the SINDy algorithm recently proposed in literature. The

details of the methodology are described including algorithm charts which facilitate the

understanding and implementation of the proposed framework. The source code can be

downloaded from <http://cces.unicamp.br/software/>.

The method is tested for different problems involving nonlinear dynamical systems:

the canonical nonlinear damped oscillator, the flow past a circular cylinder at a low

Reynolds number and the turbulent flow past a plunging SD7003 airfoil under deep

dynamic stall. For the previous two cases, the compressible Navier Stokes equations

are solved in full contravariant form and additional non-inertial terms are added to the

equations to simulate the airfoil plunging motion. Numerical simulations are performed

using a high-order compact finite difference flow solver. Then, high fidelity results from

the simulations are used as the input data for the construction of the ROMs.

To create stable and accurate ROMs of more complex flows, the application of the

SPOD was found necessary. Hence, in order to filter high frequency content present in

the temporal modes of the classical snapshot POD, we apply a filter function to the

correlation matrix (SPOD approach). The proposed numerical framework allows the

prediction of the flow field beyond the training window using larger time increments than

those employed by the FOM, which demonstrates the robustness of the current ROMs

constructed via DNNs. The resolution of the numerical schemes used for computation of

the POD temporal mode derivatives is shown to have an important role when larger time

increments are employed in the construction of the ROMs. In this case, the higher POD

modes are composed by a broad range of frequencies and the accurate representation of

the temporal derivatives is crucial for obtaining ROMs via regression analysis.

A discussion regarding the optimization of hyperparameters for obtaining the best

ROMs via DNNs is provided together with a description of the effects of individual

hyperparameters on model performance. Here, we test the random search and the

Bayesian optimization, which are the most widely used procedures for hyperparameter
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optimization. To report the performance of each model from a set of parameters, we

compute the MAE over the training data and choose the candidate models with lower

MAE values. Then, the best model is chosen based on the differences between ROM

and FOM solutions over the validation set. Following this approach, the random search

produced the best models at lower computational costs for all cases investigated in

this work. It is worth mentioning that, in order to reduce the set of parameters for

optimization, we first selected the hyperparameters related to the optimization step, such

as the learning rate and the number of iterations, by manual search. We also chose the

exponential linear unit activation function over the hyperbolic tangent function for the

current problems since it provided results with fewer iterations.

Using 10 POD modes, 99% of the flow energy is recovered in the cylinder flow study.

The ROM obtained for this case shows an excellent agreement with the FOM. Even

when 2 POD modes are employed in the reconstruction, the ROM is still stable beyond

the training set and captures most of the dynamics of the vortex shedding and sound

wave propagation. Both the DNN and the original SINDy approaches are tested for the

reconstruction of the transient regime of an incompressible flow past a cylinder. In this

case, regression is performed for the 2 most energetic POD modes of the flow, obtained

from Brunton et. al (2016). The DNN model is able to recover both the transient and limit

cycle solutions of the test data for both POD modes. On the other hand, sparse regression

reconstructs the transient portion of the dynamics but not the long term prediction of

the limit cycle.

In the dynamic stall configuration, the flow is turbulent along the airfoil suction side,

mostly during the downstroke motion. The complex flow dynamics of this case exhibit

unpaired POD modes with high frequency noise. We show how the SPOD approach

modifies the temporal modes for this study. Reduced-order models are constructed both

for the full 3-D and the spanwise-averaged flow solutions. In both cases, the ROMs are able

to capture the dynamics of the leading edge stall vortex, including its formation, transport

and ejection, and of the trailing edge vortex. The total simulation cost of the FOM for this

case was 100 000 hours. On the other hand, the full cost of the ROM was approximately

7 hours in a single GPU. This cost already includes the optimization of hyperparameters,

plus the training and evaluation of 700 models. When the best model is chosen, the cost

of the simulation is reduced to a few seconds. The data obtained by the DNN-ROMs were

used to compute aerodynamic coefficients of the dynamic stall and good agreement was

found compared to the LES used as the FOM. Again, we compare models obtained by

DNNs and sparse regression and show that, despite the higher computational cost, the

DNN approach presents good long-time predictive capabilities with stable and accurate

solutions beyond the training window. On the other hand, the best model obtained from
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sparse regression could learn the dynamics during the training window and also for a few

cycles in the test set but its solution was not stable for long-time predictions. We expect

that, in a future work, the current methodology can be further improved for applications

in flow control and extrapolation of flow configurations other than those used for training.

5.2 Recommendations for future work

The following improvements in the current methodology would significantly enhance

the ability to construct reduced-order models useful for applications in flow control and

optimization.

• Further analyses need to be made for a better understanding of how to link

POD-based reduced-order models with flow control techniques.

• Use of convolutional neural networks (CNNs) in the regression step may allow

the construction of reduced-order models directly connected with flow variables as

dimensionality reduction via POD would no longer be necessary.

• ROMs lack robustness with respect to parameter changes and therefore must be

rebuilt for each new configuration. Use of an interpolation method based on

Grassmann manifolds may allow the construction of reduced-order models to new

set of physical parameters such as Reynolds and Mach numbers.

• Proper orthogonal decomposition can be expressed as a neural network, called an

autoencoder. It is a nonlinear alternative to the POD. Autoencoders may be able to

adequately capture the highly non-linear features present in turbulent flows which

can lead to significant improvements for reduced-order modeling of fluid flows.

• Improvement in the hyperparameter optimization process may lead to a speed up

in training time.
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APPENDIX A : TRIDIAGONAL SYSTEMS

Here, we present the tridiagonal matrix algorithm, also known as the Thomas

algorithm. It is designed to solve tridiagonal system of equations using O(n) operations

instead of O(n3) required by Gaussian elimination. A tridiagonal system for n unknowns

may be expressed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1

a1 b2 c2

a2 b3 c3

⋱ ⋱ ⋱

ai−1 bi ci

⋱ ⋱ ⋱

an−2 bn−1 cn−1

an−1 bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⋮

xi

⋮

xn−1

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

⋮

di

⋮

dn−1

dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.1)

The forward elimination phase consists of modifying the c and d coefficients as follows

c′i =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ci

bi
i = 1

ci

bi−aic
′
i−1

i = 2,3, . . . , n − 1
(A.2)

and

d′i =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

di

bi
i = 1

di−aid
′
i−1

bi−aic
′
i−1

i = 2,3, . . . , n .
(A.3)

The back substitution step solves for xn, xn−1, . . . , x1 as follows

xi =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

d′n i = n
d′i − c

′
ixi+1 i = n − 1, n − 2, . . . ,1 .

(A.4)

Further details regarding the present algorithm can be found in Cheney and Kincaid

(2007).
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APPENDIX B : PENTADIAGONAL SYSTEMS

Here, we present the pentadiagonal matrix algorithm. It is designed to solve

five-diagonal system of equations. A pentadiagonal system for n unknowns may be written

as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 c1 f1

a1 d2 c2 f2

e1 a2 d3 c3 f3

e2 a3 d4 c4 f4

⋱ ⋱ ⋱ ⋱ ⋱

ei−2 ai−1 di ci fi

⋱ ⋱ ⋱ ⋱ ⋱

en−4 an−3 dn−2 cn−2 fn−2

en−3 an−2 dn−1 cn−1

en−2 an−1 dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

⋮

xi

⋮

xn−2

xn−1

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

⋮

bi

⋮

bn−2

bn−1

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.1)

The forward elimination phase consists of modifying the a, d and c coefficients, and

the vector b as follows

d′i = di −
ai−1

di−1

ci−1 i = 2,3, . . . , n − 1 (B.2)

c′i = ci −
ai−1

di−1

fi−1 i = 2,3, . . . , n − 1 (B.3)

b′i = bi −
ai−1

di−1

bi−1 i = 2,3, . . . , n − 1 (B.4)

a′i = ai −
ei−1

di−1

ci−1 i = 2,3, . . . , n − 1 (B.5)

d′i+1 = di+1 −
ei−1

di−1

fi−1 i = 2,3, . . . , n − 1 (B.6)

b′i+1 = bi+1 −
ei−1

di−1

bi−1 i = 2,3, . . . , n − 1 (B.7)

(B.8)
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The back substitution step solves for xn, xn−1, . . . , x1 as follows

d′n ∶= d′n − a
′
n−1

d′n−1

c′n−1 (B.9)

xi =
⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b′n−
a′n−1

d′
n−1

b′n−1
)

d′n
i = n

(b′n−1
−c′n−1

xn)

d′
n−1

i = n − 1
(b′i−f ′ixi+2−c′ixi+1)

d′
i

i = n − 2, n − 3, . . . ,1 .

(B.10)

Further details regarding the present algorithm can be found in Cheney and Kincaid

(2007).
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APPENDIX C : LOW-STORAGE RUNGE-KUTTA

Here, we consider an initial value problem

dU

dt
= F (U , t) ; U(to) = U o . (C.1)

The discrete approximation can be made with an explicit five-step fourth-order

Runge-Kutta method Kennedy et. al (1999). The scheme is

dU η =∆tF (U η, tη) +AηdU η−1 η = 1, . . . ,5 (C.2)

U η = U η−1 +BηdU η (C.3)

where ∆t is the time step, η is the RK4 stage, and Aη and Bη are constants defined below.

Only the dU and U vector must be stored, which results in a low-storage algorithm.

A1 = 0

A2 = −6234157559845/12983515589748

A3 = −6194124222391/4410992767914

A4 = −31623096876824/15682348800105

A5 = −12251185447671/11596622555746

B1 = 494393426753/4806282396855

B2 = 4047970641027/5463924506627

B3 = 9795748752853/13190207949281

B4 = 4009051133189/8539092990294

B5 = 1348533437543/7166442652324 .

The time tη for which the solution advances after each substep is

tη = t +Cη∆t (C.4)

where Cη is
C1 = 494393426753/4806282396855

C2 = 4702696611523/9636871101405

C3 = 3614488396635/5249666457482

C4 = 9766892798963/10823461281321

C5 = 1 .


	Introduction
	Motivation and previous work
	Machine learning in fluid mechanics
	Overview and accomplishments
	Work organization

	Full order model
	Governing equations of compressible flows
	Numerical methodology for compressible flow simulations
	The contravariant form of the Navier-Stokes equations
	Spatial discretization
	Time integration


	Reduced-order model
	Sparse regression of non linear dynamics (SINDy)
	Numerical framework of proposed approach
	Flow modal decomposition
	Regression step
	Hyperparameter Optimization

	Data-driven ROMs

	Results
	Nonlinear oscillator
	Flow past a cylinder
	Deep dynamic stall of plunging airfoil

	Conclusions and Recommendations
	Summary
	Recommendations for future work

	References
	APPENDIX : Tridiagonal systems
	APPENDIX : Pentadiagonal systems
	APPENDIX : Low-storage Runge-Kutta

