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“Heard joke once: Man goes to doctor. Says he’s depressed. Says life seems harsh

and cruel. Says he feels all alone in a threatening world where what lies ahead is

vague and uncertain. Doctor says, "Treatment is simple. Great clown Pagliacci is in

town tonight. Go and see him. That should pick you up." Man bursts into tears.

Says, "But doctor...I am Pagliacci.”

Alan Moore, Watchmen



Abstract

Large intelligent surfaces (LIS) is a promising technology for the sixth generation

(6G) of mobile communications due to its potential to improve the signal to noise ratio

(SNR), increase spectral efficiency, and even make it possible to reduce energy consumption

in the radio base station (BS) during transmission. The LIS is a panel formed by cells that

can reflect electromagnetic waves to make beamforming and cancel the channel phase, the

surface is formed by metamaterials that can change the phase of the incident waves with a

quantized angle that can be controlled digitally by software allowing that the signal resulting

from the sum of all components reflected by the LIS has a phase adapted to nullify the effect

of the channel phase. The channel information is estimated by machine learning algorithms

and more efficient phase estimations implies better phase adjustments at the LIS, but due to

the system’s non-idealities, we have a residual phase error that in this work is modeled by the

Von Mises distribution. We divided our study into two chapters, the first referring to systems

with a single antenna at the BS considering the existence of a straight and unobstructed

line for electromagnetic wave propagation a.k.a. line of sight (LoS) with Nakagami-m

fading and we ignore the possibility of a direct link between the user, in the second part

we consider an antenna array at the base station and including a direct link between the

user and the BS but neglecting the LoS by considering Rayleigh fading channels. For the

single antenna BS scenario, we derive the exact bit error probability considering quadrature

amplitude modulation (M -QAM) and binary phase-shift keying (BPSK) when the number

of LIS elements, n, is equal to 2 and 3 considering that the channel fading coefficients

are Nakagami-m. Also, based on the central limit theorem (CLT), and considering a large

number of reflecting elements, we present an accurate approximation and upper bounds

for the bit error rate. Through several Monte Carlo simulations, we demonstrate that all

derived expressions perfectly match the simulated results. In the antenna array scenario,

we consider Rayleigh flat fading for each subchannel between the BS, the LIS, and the

user and we apply a precoder at the base station to have the maximum ratio transmission

(MRT). Based on the CLT, we conclude that the overall channel has an equivalent Gamma

fading whose parameters are derived from the moments of the channel fading between the



antenna array and LIS, and also from the LIS to the single user. Assuming that the equivalent

channel can be modeled as a Gamma distribution, we propose very accurate closed-form

expressions for the bit error probability and a very tight upper bound. For the case where

the LIS is not able to perform perfect phase cancellation, that is, under phase errors, it is

possible to analyze the system performance considering the analytical approximations and

the simulated results obtained using the well known Monte Carlo method. The analytical

expressions for the parameters of the Gamma distribution are very difficult to be obtained

due to the complexity of the nonlinear transformations of random variables with non-zero

mean and correlated terms. Even with perfect phase cancellation, all the fading coefficients

are complex due to the link between the user and the base station that is not neglected in this

study.



Resumo

Large Intelligent Surfaces (LIS) é uma tecnologia promissora para a sexta geração (6G) de

comunicações móveis devido ao seu potencial para melhorar a relação sinal-ruído (SNR),

aumentar a eficiência espectral e ainda possibilitar a redução do consumo de energia no

estação rádio base (BS) durante a transmissão. O LIS é um painel formado por células que

podem refletir ondas eletromagnéticas para fazer beamforming e remover a fase do canal, a

superfície é formada por metamateriais que podem alterar a fase das ondas incidentes com

um ângulo quantizado que pode ser controlado digitalmente por software permitindo que

o sinal resultante da soma de todas as componentes refletidas pelo LIS possua uma fase

adaptada para cancelar o efeito da fase do canal. Esta fase é estimada por algoritmos de

aprendizado de máquina e quanto mais eficiente a estimativa melhor será o processo de

ajuste de fase, mas devido às não idealidades do sistema, temos um erro de fase residual que

neste trabalho é modelado pela distribuição de Von Mises. Dividimos nosso estudo em dois

capítulos, o primeiro referindo-se a sistemas com apenas uma antena na BS, considerando a

presença de uma linha direta de propagação de ondas eletromagnéticas a.k.a. line of sight

(LoS) com desvanecimento Nakagami-m e nós ignoramos a possibilidade de um link direto

com o usuário, já na segunda parte consideramos um arranjo de antenas na estação base e

incluindo um link direto entre o usuário e a BS, mas negligenciando a LoS ao considerar

canais com desvanecimento Rayleigh. Para o cenário da BS de uma antena, derivamos

a probabilidade de erro de bit exata considerando modulação M -QAM e BPSK quando

o número de elementos do LIS, n , é igual a 2 e 3 considerando que os coeficientes de

desvanecimento do canal são Nakagami-m e o LIS tem um erro de fase com distribuição de

Von Mises. Além disso, com base no teorema do limite central, e considerando um grande

número de elementos refletores, apresentamos uma aproximação precisa e limites superiores

para a taxa de erro de bit. Por meio de várias simulações de Monte Carlo, demonstramos

que todas as expressões derivadas correspondem perfeitamente aos resultados simulados.

No cenário de matriz de antenas, consideramos o Rayleigh flat fading para cada

subcanal entre a BS, o LIS e o usuário e aplicamos um precoder na estação base para ter

a transmissão de razão máxima (MRT). Com base no teorema do limite central (CLT),

concluímos que o canal total tem um desvanecimento Gamma equivalente cujos parâmetros



são derivados dos momentos estatísticos do canal entre o arranjo de antenas e LIS, e

também do LIS para o usuário. Assumindo que o canal equivalente pode ser modelado

como uma distribuição Gama, propomos expressões de forma fechada muito precisas para

a probabilidade de erro de bit e um limite superior muito restrito. Para o caso em que o

LIS não é capaz de realizar o cancelamento de fase perfeito, ou seja, sob erros de fase, é

possível analisar o desempenho do sistema considerando as aproximações analíticas e os

resultados simulados obtidos pelo método de Monte Carlo. As expressões analíticas para os

parâmetros da distribuição Gama são muito difíceis de serem obtidas devido à complexidade

das transformações não lineares de variáveis aleatórias com média diferente de zero e

termos correlatos. Mesmo com o cancelamento de fase perfeito, todos os coeficientes de

desvanecimento são complexos devido à ligação entre o usuário e a estação base que não é

negligenciada neste estudo.
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1 Introduction

The future of mobile digital communications in the age of the internet of things (IoT)

requires to optimize the energy consumption for transmission, improve the signal to noise ratio

(SNR) at the receiver, increase the spectral efficiency, and propose communication protocols,

channel estimation methods and beamforming strategies suitable for the adopted system model.

Many solutions have been proposed as alternatives to the sixth generation of mobile commu-

nications. Zhang et al. [3] make an excellent review of the literature on these emerging techniques,

citing among them large intelligent surfaces (LIS), holographic beamforming (HBF), angular

orbital momentum (OAM) multiplexing, laser and visible-light communications (VLC) [4] and

the advent of quantum computing which is increasingly present in large technology companies

like Google and allows unmatched performance and security for quantum communication sys-

tems. Nawaz et al. [5] investigate the use of quantum machine learning strategies to improve

the performance of the processes involved in the network structure since we mess with many

parallel operations involving large arrays and tensors with data loaded and that through quantum

computing can be mapped into large tensors product spaces where operations are handled by

quantum processors that take advantage of the phenomenon of quantum superposition to achieve

large communication rate and encryption security.

The demand for data rate has increased exponentially in the last years, mainly due to

the emergence of new services such as the internet of things (IoT) and the video on demand.

Sensors, objects, and everyday items can communicate, generate, exchange, and consume data

with minimal or no human intervention. One of the solutions to support this new increasing data

rate relies on solutions such as antenna arrays and electromagnetic mirrors. However, they can

be expensive and present high power consumption at the transmitter [6].

Since then, there are already some variants of this technology [7]. Intelligent reflecting

surfaces (IRS) are composed of reflecting elements capable of changing the incident signal in fre-

quency, amplitude, or polarization [8]. Large intelligent meta-surfaces (LIM) are reconfigurable
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surfaces composed of projected meta-materials that can change the incident signals based on

their physical properties[9]. On the other hand, software-defined surfaces (SDS) are capable of

being configured by software solutions [10]. Passive intelligent surfaces (PIS) reflect the incident

signals without applying any power gain to the reflected signal[11].

As an attempt to deal with this design compromise between increasing spectral efficiency

and minimizing transmission power consumption, several methods involving large intelligent

surfaces (LIS) have been proposed. A LIS, which is an array composed of a massive number

of low-cost reflecting elements, is capable of reflecting the incident signals with adjustable

phase-shifts [12]. As they leverage ultra-reliability, high spectral, and power efficiency of the

digital communication systems, LIS-equipped systems meet the requirements posed by various

emerging application scenarios such as the industrial IoT [13].

The proposal to make use of large intelligent surfaces to improve transmission quality in

massive MIMO systems is recent and has been gaining visibility in the literature as a concrete

solution for the sixth generation (6G) of mobile communications and has presented a competitive

performance in comparison with classic methods like relaying switches. A concept, similar to

LIS, was first mentioned in 2015 at the University of California Berkeley project [14]. The general

idea consists of wallpapers that are electromagnetically active and have built-in processing power.

There is a compact integration of large numbers of tiny antennas with reconfigurable processing

networks.

One of the great challenges for the implementation of the LIS is to estimate the channel

and obtain the distribution of the fading coefficients. Wang et al. [15] propose channel estimation

methods for multiuser massive MIMO systems assisted by LIS and present alternatives to

decrease the training time necessary to have complete knowledge of the channel coefficients.

Tataria et al. [16] discuss practical aspects of real-time implementation of LIS, especially in terms

of processing and applications in radio frequency (RF) communications. Elbir et al. [17] present

a deep learning framework for channel estimation, considering the massive MIMO scenario

using mm-Wave.

Yu et al. [18] propose the use of LIS to improve the coverage of a cellular IoT in the so-
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called beyond fifth-generation (B5G). The LIS project aims to minimize the energy consumption

and study the impact of channel parameters on spectral efficiency.

The work of Hum et al. [19], for example, proposes a solution very similar to LIS

technology. It discusses, from a theoretical point of view, the future challenges and the possibility

of using array lenses, micro-electro-mechanical systems (MEMS), and reconfigurable reflect-

arrays to make electronic beamforming by changing the polarization, amplifying signals and

increasing the signal to noise ratio. The use of reflecting surfaces to perform beamforming has

emerged in the last three years as an alternative to the sixth generation of mobile communications.

Hu et al. [20] use adjacent surfaces, covered with a magnetic and active material capable of

being electronically and intelligently manipulated, to solve wireless communication tasks [21].

LIS technology can be divided into two types, passive and active. Although both of

them can constructively combine the signals, minimizing the noise effect, there are fundamental

differences. The LIS with passive elements can only reflect the incident signals, modifying

their phases without any reflection amplitude control. On the other hand, active LIS achieves

better signal to noise ratio due to reflection amplitude control. It is necessary to perform power

allocation at the reflectors, which requires high computational complexity [22].

Despite recent proposals in the literature to tackle all these challenges [23], achieving the

optimal power allocation for active LIS beamforming is a complex optimization problem for

itself. The search for the precoder vector and the design of the matrix with phase-shifts involves

the optimization of non-convex functions, which is an intricate task [24].

Regarding the phase adjustments common to the two types of LIS, they are designed

for two reasons. To cancel the channel phase, improving the SNR or even destructively at the

non-intended receiver to avoid interference and enhance security/privacy. According to [25], the

LIS can control and optimize the refraction and reflection towards anomalous directions, thus

altering the spatial distribution of the intended and interfering signals. But, it is worth mentioning

that this process is susceptible to phase errors.

According to Zhang [26] the matrix of reflectors operates by controlling diodes on each

LIS element alternating between the states on and off to control the bias voltage. Since the
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diodes are digitally controlled, there is a limited amount of bits to represent the reflection angles.

Therefore the phase is quantized, and there are random phase errors.

Considering that such errors do not exist, the framework investigated in [22, 27] takes

into account a LIS composed of passive antenna elements with reconfigurable characteristics.

They do not require any dedicated energy source for either decoding, channel estimation, or

transmission. The authors came across some non-convex problems that are solved through the

use of optimization techniques. Based on majorization-maximization alternated by fractional

programming, it is possible to optimize energy efficiency.

Taha et al. [28] propose a training process based on deep learning. Using a massive

number of passive reflectors and a small number of active ones, the LIS can learn the channel

parameters and autonomously optimize the data transmission.

Following this idea, Basar et al. [8] present closed-form solutions for optimization

problems. Parameters related to LIS design, power allocation, precoder, and phase shift matrix

are derived and influence the performance of the system directly.

Besides, LIS can also be useful in smart radio environments employing millimeter-

wave band (frequencies around 30-100 GHz). In the absence of line of sight (LoS) paths,

systems operating at such bands cannot work correctly due to the high attenuation caused by the

absorption of atmospheric gases. Then, LIS-equipped systems can create LoS paths connecting

the base station to devices [29]. These and other advantages are evident in [30], in which the

authors present a comparative performance study between classic relaying and reflecting surfaces

at high-frequency bands when there is no LoS path.

Yang et al. [31] proposed a transmission protocol for a system that combines LIS and

orthogonal frequency division multiplexing (OFDM) with channel estimation, the reflectors

were divided into clusters, and the adopted methodology considers that adjacent reflectors share

the same reflection coefficient. Only the channel resulting from the combination of the clusters

needs to be estimated.

Ye et al. [32] propose techniques to minimize the symbol error rate (SER) by optimizing

the phase shifts and the precoder for a MIMO reconfigurable intelligent surface (RIS) considering
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a finite alphabet of symbols. Among the strategies proposed are to fix the phase shifts and obtain

the optimal precoder or to fix the precoder and find the phase shifts, that solution is useful to

reduce the dimensionality of the optimization task and also the performance of the proposed

RIS strategy is compared with a relay system and we see the advantage of using the techniques

proposed by the authors.

Wu et al. [33] develope a mmWave point-to-point communication system assisted by

multiple intelligent subsurfaces with passive reflecting elements, and antenna arrays on the

transmitter and receiver. The authors derived the system achievable rate and have found the

optimal precoding and power allocation for the LIS phase shift design. He et al. [34] investigate

the theoretical limits and Cramér-Rao bounds for the LIS performance in a MIMO 5G system

dealing with mmWave and considering the existence of a direct path (NLoS and LoS).

Dardari [35] derives analytical expressions for the channel gain and the spatial degrees-

of-freedom (DoF) for the optimal LIS design considering MIMO systems. The analysis is based

on electromagnetic theory and employs only geometric arguments. Jung et al. [36] consider that

a MIMO system assisted by LIS can be modeled as an LoS after phase cancellation. The authors

also analyze the theoretical limitations of the practical system’s performance considering spatially

correlated Rician channels and demonstrate that the NLoS component can be neglected when

the number of antennas increases.

Yan et al. [37] present a multiuser MIMO (Mu-MIMO) system in which intelligent

electromagnetic reflectors perform passive beamforming. The authors also propose to design a

receiver with two estimation modules. One for the signal transmitted by the base station and the

other, to estimate the additional On/Off information associated with the reflectors that modulate

the digital signal arriving at them.

Badiu et al. [38] shows that the perfect estimation of the reflection angles at the LIS array

is unfeasible, so we have to model the phase errors due to the estimation and discretization errors.

The authors claim that the overall channel, including the LIS, can be modeled as Nakagami-m

distributed, for phase errors having a generic distribution.

Cavers [39] defines maximal ratio transmission (MRT), establishing that the base station
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applies a vector of complex weights to compensate the downlink channel by canceling the phase

and perform a signal reinforcement. He also shows a generalization for the effects of fading

when the system has multiple users, although there is no exact generic solution for the optimal

precoder in this scenario.

Makarfi et al. [40] propose to apply reconfigurable intelligent surfaces to expand coverage

and improve the signal-to-noise ratio of a vehicular network, which can be seen as a case study

of the IoT area using this new massive MIMO solution. The authors explore the idea of using

smart radio environments for IoT problems and discuss some relevant aspects beyond 5G to

establish communication between vehicles.

Qian et al. [41] present a MIMO system that uses LIS and has an array of antennas on

the transmitter and receiver. The signals suffer uncorrelated Rayleigh fading in each channel.

The authors obtain good approximations and performance studies based on analytical derivations

of the statistical moments associated with the largest eigenvalues of the Wishart matrices related

to the LoS and NLoS component. Without losing generality, they assume that the largest

eigenvalues have a Gamma distribution and their moments are a function of the number of LIS

elements and the number of antennas in the array.

Björnson et al. [42] discuss how the correlation matrix of the LIS elements can be

computed under certain conditions, considering Rayleigh fading channels with a direct path

between the signal and the final user. In this study, the authors make a more geometric analysis

of the problem considering a rectangular panel formed by several reflectors and their constructive

parameters, thereby establishing a relationship between the degrees of freedom of the LIS

and the rank of the autocorrelation matrix of the reflector panel. Asymptotic analyzes of the

SNR variation and channel hardening are also performed when the number of antennas and

reflectors increase.

Note that the phase estimation errors is modeled as zero mean Von Mises distribution [38],

which has a concentration parameter, κ, that helps us model the accuracy of the estimation.

Large values of the Von Mises κ implies small errors, when κ → ∞ the zero mean Von Mises

probability density function is impulsive at zero, and for κ = 0 the probability distribution is the



21

uniform distribution.

Analytically obtaining the equivalent fading distribution and the bit error probability

is quite intricate due to the considerable sums and transformations of random variables with

distinct distributions.

Some authors have employed a similar approach to the one used here, but most of them

adopt restrictive models. In [43], the authors have used the central limit theorem (CLT) to

obtain an approximate probability distribution and calculate the outage probability in scenarios

involving many reflectors and only one antenna at the base station. The authors only consider a

phase error with uniform distribution (worst case of phase estimation) and a channel subjected to

the Rayleigh fading. They do not provide any expression for a small number of reflectors.

In most previous research, it is assumed that the channel fading is Rayleigh distributed.

Of course, the Rayleigh-fading model is known to be a reasonable assumption for the fading

encountered in many wireless communications systems. However, many measurement campaigns

[44, 45] show that the Nakagami-m distribution provides a much better fitting for the fading

channel distribution. Since the Nakagami-m distribution has one more free parameter, it allows

for more flexibility. It moreover contains the Rayleigh distribution (m = 1), the one-sided

Gaussian distribution (m → 0.5), and the uniform distribution on the unit circle1 (m → 1)

as special (extreme) cases. The Nakagami-m distribution is a general, but an approximate

solution to the random phase problem [46]. The exact solution involves the knowledge of the

distribution and the correlations of all of the partial waves composing the total signal. It becomes

infeasible due to its complexity. This has been circumvented by Nakagami [46], who, through

empirical methods based on field measurements followed by a curve-fitting process, obtained the

approximate distribution.

In the first part of this study, we consider passive elements and focus on the bit error rate.

Our main contribution is the derivation of exact expressions for the BPSK and M -QAM bit error

probability for an arbitrary number of reflectors n. The expressions derived here allow us to

predict how the channel parameters and the phase error distribution impact the performance of

the communication between the base station and the end-user. One of the main problems solved
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here is true of a very general statistical application that can be used in countless applications.

In particular, we find an exact solution to the problem of obtaining the distribution of the sum

of random vectors whose amplitudes follow the product of two Nagakami-m distributions and

whose phases follow the Von Mises distribution. Note that the literature solves this problem but

for a very limited scenario, namely vectors with fixed amplitudes and uniform phases. Certainly,

our solution is much more general than this. Of course, in both cases, as the number of vectors

increases the CLT can be used. But, for an arbitrary finite number of vectors, our solution is

much more general.

In the second part of the study, we investigate the performance of a system employing

LIS, also known as large reflective surfaces (LRS), taking into account Rayleigh channels and

phase errors due to imperfect channel phase cancellation. This work is very general since it

considers a direct link between the base station with multiple antennas and the single user. We

investigate the system performance and quality of the proposed approximations for channel

distribution in terms of the Kullback-Leibler divergence metric. We also present analytical

expressions for the bit error probability and very tight upper bounds for different scenarios in

terms of the Von Misses parameter.

This study is divided into two papers [2], [1] trying to cover some gaps in the literature,

with regard to obtaining analytical solutions in the form of simple algebraic expressions involving

the channel parameters and the Von Mises parameter for the single antenna transmitter in

Nakagami-m fading channels scenario and for the antenna array transmitter in Rayleigh fading

scenario, in this way we were able to simplify the analysis of a very generalist system model

that may include the direct link with the user, may have one or more antennas at the base

station and we maintain the validity of the analysis even when the phase correction algorithm

is not efficient. Badiu et al. [38] use the central limit theorem to solve a simpler scenario

with one Rayleigh NLoS channel and a Rician LoS channel, but considering a single antenna

transmitter. Björnson et al. [42] propose asymptotic approaches in a scenario that takes into

account the correlation of the LIS elements but is also restricted to the context with a single

antenna transmitter which simplifies the analytical solutions.

The remainder of this study is organized as follows, in the second chapter we talk about
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the single transmitter case, where the Rayleigh fading environment includes channels between

the single user, single transmitter, and several reflector panels between them. The second chapter

considers multiple transmitters sending the same symbol and a Nakagami-m fading channel

between the LIS and the user and transmitters. The sections present the system model, the fading

distribution of each subchannel, we model the LIS phase correction errors and present the overall

fading distributions and the bit error probability. Several calculations are left for the appendix to

simplify the reading.
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2 Error probability for BPSK systems with Large

Intelligent Surfaces communicating through

double-Nakagami Fading channels

2.1 Large reflecting surfaces, a brief introduction

According to Gong et al. [47], the LIS is an array composed of two-dimensional

scattering (near to zero thickness) cells, these cells can be metallic or dielectric metasurfaces

with some electromagnetic properties, that depend on the design parameters and allows us to

control the phase of the reflected signals. The reflected and diffracted electromagnetic waves

follow the Fresnel equations and Snell’s law and the special arrangement of the LIS cells causes

a shift of the resonance frequency and thus a change of boundary conditions, this mechanism

causes the phase changes.

There are digitally controlled chips inside the structure of the metasurface of each cell,

and each one of them interacts with a scattering element communicating with a controller

programmed by software. The tunning of the controller allows us to design the LIS according to

the needs, giving great versatility to this technology.

2.2 System Model

As shown in Fig. 3.1, we consider a single-input single-output (SISO) system formed by

a base station (BS) with a single antenna sending signals to LIS. The array is composed of n

reflector elements, in which the incident signals are reflected with a calculated phase-shift. Only

a single-antenna user is considered.

The system is composed of two channels. The single-input multiple-output (SIMO)

channel between BS and LIS is modeled by the fading coefficient H1k ∈ C
1×n. The multiple-

input single-output (MISO) channel between LIS and the user is modeled by the coefficient
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random angles since the concentration parameter is related to the distribution variance and

models how closely the angle is from the mean.

Let θk be the phase error modeled by a Von Mises random variable Θ and concentration

parameter κ, In other words, Θ ∼ Von Mises(κ). The Von Mises distribution has the following

PDF [49]

fΘ(θ) =
1

2πI0(κ)
eκ cos(θ), (2.3)

in which I0(κ) is the modified Bessel function of first kind and order 0. The parameter κ indicates

the spread of the distribution. Large κ means that the phase error is concentrated in a small

interval. When κ = 0, the phase errors are equally probable and follow the uniform distribution.

Consider that θH1k
= arg(H1k) is the phase of the channel between BS and the LIS

elements and θH2k
= arg(H2k) is the phase of the link between each LIS element and the user.

The LIS attempts to perform phase cancellation with respect to the composite channel H1kH2k,

by rotating the incident signal by a phase shift φk, in such a way that θH1k
+ θH2k

+ φk = 0. In

practice, the phase correction is not perfect and residual errors are left, that is

θk = φk + θH1k
+ θH2k

. (2.4)

Isolating the variable φk in (2.4) and substituting in (2.1), we have that

Y =
√
γ0

n
∑

k=1

ejφkH1kH2kX +W =
√
γ0

n
∑

k=1

ejθke−j(θH1k
+θH2k)H1kH2kX +W

=
√
γ0

n
∑

k=1

ejθke−j(θH1k
+θH2k) |H1k| |H2k| × ej(θH1k

+θH2k)X +W

=
√
γ0

n
∑

k=1

ejθk |H1k| |H2k|X +W. (2.5)

We can define the composite fading coefficient H as

H =
1

n

n
∑

k=1

ejθk |H1k||H2k|, (2.6)

and therefore, the output at the receiver (2.5) can be written as

Y = n
√
γ0HX +W, (2.7)
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The distribution of H , given in (2.6), is of fundamental importance to our problem.

Since we have sum of terms |H1k| |H2k|, we have to derive the distribution of the product

of two Nakagami-m distribution. Fortunately, from [46], we know that the distribution of

Z = |H1k| |H2k|, is given by

fZ(z) =

4zm1+m2−1Km1−m2

(

2z
2
∏

i=1

√

mi

Ωi

)

2
∏

i=1

Γ(mi)
(

Ωi

mi

)

m2+m1
2

, (2.8)

in which Γ(.) represents the Gamma function, Z is a random variable with Double-Nakagami

distribution, while mi and Ωi are the parameters of each Nakagami-m coefficient.

It is important to highlight that the phase distribution of the complex fading coefficients

is not relevant in our analysis, but only the magnitude.

2.3 Fading Distribution

In this section, we derive the distributions of |H| using the channel parameters and the

characteristic function associated with the random phase error for n = 2 and n = 3. Moreover,

it is also proposed an approximate distribution for large values of n.

It is possible to rewrite (2.6) as H = 1
n

∑n

k=1 |H12k|ejθk , in which |H12k| = |H1k||H2k|

is the magnitude of the combined fading coefficients. The squared fading coefficient magnitude

can be written as:

|H|2 =
(

n
∑

k=1

Rk cos θk

)2

+

(

n
∑

k=1

Rk sin θk

)2

, (2.9)

in which Rk = 1
n
|H12k|, θ1 . . . θn are independent Von Mises random variables. Rk is the k-th

sample direction, and the resultant direction is |H|. Note that (2.9) can be written as

|H|2 = C2 + S2, (2.10)

in which C and S are the in-phase and quadrature components given by

C =
n
∑

k=1

Rk cos θk, (2.11)

and

S =
n
∑

k=1

Rk sin θk. (2.12)
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2.3.1 Exact Distribution of |H| for n = 2 and n = 3

The general solution to the computation problem of R =
∣

∣

∑n

i=1 Rie
jθi
∣

∣, i.e., the magni-

tude of a linear combination of complex variables with constant magnitudes and random phases

uniformly distributed, was obtained by Maghsoodi [50]. However, our problem requires that

R1, R2 · · · , Rn be random variables, so we need to remove the conditioning (considering that

the magnitudes are given) and apply the law of total probability to obtain the complete solution.

Therefore, in order to apply this result to our problem, we multiply the solution given in [50]

by the distribution of the product of two Nakagami-m distributions, i.e., the double-Nakagami

distribution given in (2.8). Then, we perform the integration with respect to the variables

R1, R2 · · · , Rn.

The exact PDF of |H| for n = 2 and n = 3 is given by (2.13) and (2.14), respectively.

The symbol U(·) denotes the Heaviside unit step function, and r̄2(φ) =
√

r21 + r22 + 2r1r2 cosφ.

f|H|(r) =
2

π

∫ ∞

0

∫ ∞

0

U (4r21r
2
2 − (r2 − r21 − r22)

2)
√

4r21r
2
2 − (r2 − r21 − r22)

2
. . .

×
2
∏

k=1









4rm1+m2−1
k Km1−m2

(

2rk
√

m1m2

Ω1Ω2

)

Γ
(

m1

Ω1

)

m1+m2
2

Γ
(

m2

Ω2

)

m1+m2
2









drk, n = 2. (2.13)

f|H|(r) =
2

π2

∫ π

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

U (4r23 r̄2(φ)
2 − (r2 − r̄2(φ)

2 − r23)
2)

√

4r23 r̄2(φ)
2 − (r2 − r̄2(φ)2 − r23)

2
. . .

×
3
∏

k=1

(

4r
m1+m2−1
k

Km1−m2(2rk
√

m1m2
Ω1Ω2

)drk

Γ(m1
Ω1
)
m1+m2

2 Γ(m2
Ω2
)
m1+m2

2

)

dφ, n = 3. (2.14)

Fig. 2.1 shows a comparison between the exact and simulated PDF for m = 1, 2, 3. As

can be seen, as the value of m increases, the mean of the distribution also increases, that is, the

larger the m parameter, the better the condition of the channel.

2.3.2 Approximated Distribution of |H| For Large n

Unfortunately, the exact distribution for large n is very intricate and its evaluation

becomes computationally prohibitive. However, as n increases, the distributions of C and S,
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in which E[.] is the expected value of a random variable and αp is the real part for the character-

istic function ϕp that can be defined as

ϕp = E
[

ejpθ
]

= αp + jβp. (2.18)

Note that βp = 0, because the imaginary part of the characteristic function is associated

with a sine function, which is an odd function and the PDF is symmetrical. Then, ϕp is a real

number and can be given as ϕp = αp =
Ip(κ)

I0(κ)
.

The mean of S is given by

µS = µ1µ2E[sin θk] = µ1µ2β1 = 0. (2.19)

Using (5.10) and (5.16), the variance of C and S can be calculated as

σ2
C = σ2

S =
σ2
12 + µ1µ2

2n
. (2.20)

For these values of mean and variance, (2.16) simplifies to

fU
P,Φ(ρ, φ) =

ρ

2πσ2
C

e
− ρ2

2σ2
C . (2.21)

2.4 Bit Error Probability

The bit error probability for the M -QAM and BPSK modulations can be found according

to [53, 54] respectively as

PQAM
e (γ̄) = 1−

(

1− 2

(

1− 1√
M

)

Q

[
√

3γ̄log2M

(M − 1)

])2

, (2.22)

and

PBPSK
e (γ̄) = Q

(√
γ̄
)

, (2.23)

in which Q(·) is the Gaussian error function, γ̄ = Eb

2σ2
W

, Eb is the energy per bit, and M is the

number of symbols.

Under multipath propagation, the mean probability of error can be written as

P̄QAM
e (γ̄) =

∞
∫

0

PQAM
e (n2γ̄r2)f|H|(r)dr, (2.24)
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P̄BPSK
e (γ̄) =

∫ ∞

0

PBPSK
e (n2γ̄r2)f|H|(r)dr, (2.25)

in which f|H|(r) is given by (2.13) and (2.14) for n = 2 and n = 3, respectively.

When n is large and from some assumptions, we can derive elegant expressions for the

bit error probability as follows.

2.4.1 Bit Error Probability for Large n

Considering that C and S are Gaussian distributed, then the error probability can be

calculated as

P̄QAM
e (γ̄) =

∫ π

−π

∫ ∞

0

PQAM
e (n2γ̄ρ2)fP,Φ (ρ, φ) dρdφ. (2.26)

The same way, the bit error probability for BPSK can be written as

P̄BPSK
e (γ̄) =

∫ π

−π

∫ ∞

0

PBPSK
e (n2γ̄ρ2)fP,Φ (ρ, φ) dρdφ. (2.27)

Considering the Chernoff bound Q(x) ≤ 1
2
e−

1
2
x2

, then the upper bound of the error

probability can be calculated by (2.28) on the next page. Here, k1 = M + 3γ log2(M)n2σ2
S − 1,

k2 = M + 6γ log2(M)n2σ2
S − 1, and σmin = min (σC , σS).

P̄QAM
e (γ̄) ≤ −



k1

(√
M − 1

)

e

(M−1)(µ2
C+µ2S)

2k2σ
2
min − 2k2

√
Me

(M−1)(µ2
C+µ2S)

2k1σ
2
min



 . . .

×

(√
M − 1

)2 (√
M + 1

)

e
−µ2C+µ2S

2σ2
min

k1k2M
(2.28)

Following the same reasoning in (2.27), and defining σmin = min (σC , σS), we obtain

an upper bound for the BPSK modulation as

P̄BPSK
e (γ̄) ≤ e

−
γn2(µC

2+µS
2)

2γn2σ2
min

+1

2 (2γn2σ2
min + 1)

. (2.29)
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2.4.2 Uniform Phase Distribution

The worst case for the phase error is the uniform distribution, in which all angles are

equally likely. Considering BPSK modulation, the bit error probability can be written as

P̄BPSK
e (γ̄) = 2π

∫ ∞

0

PBPSK
e (n2γ̄ρ2)fU

P,Φ(ρ, φ)dρ, (2.30)

where fU
P,Φ(ρ, φ) is defined in (2.21). Its closed-form resembles the channel under Rayleigh

fading presented in [53]. For the sake of clarity, it is repeated here as

P̄BPSK
e (γ̄) =

1

2



1− n
√
γ̄

√

n2γ̄ + 1
σ2
C



 . (2.31)

For the general M -QAM modulation, the error probability considering uniform phase

error is given as

P̄QAM
e (γ̄) = 2π

∞
∫

0

PQAM
e (n2γ̄r2)fU

P,Φ(ρ, φ)dρ. (2.32)

Unfortunately, there is no closed-form solution to (2.32). However, we can neglect the

terms Q(.)2 and then obtain an approximation for the M -QAM bit error probability as

P̄QAM
e (γ̄) ≈

2
(√

M − 1
)

σ2
C

(√

(M−1) log(8)

n2γ̄σ2
C
log(M)

+ 9− 3
)

√
M
√

(M−1) log(8)

n2γ̄σ2
C
log(M)

+ 9
. (2.33)

2.5 Numerical Results

In this section, we present some numerical results to validate the Monte Carlo simulations

obtained from 106 realizations. For simplicity, the variables σ2
1 and σ2

2 assume unitary value.

Fig. 2.1 shows the probability density function of |H| for κ ∈ {0, 1, 2} and n = 128. We

can observe that the simulated curves match very well the approximated results.

Table 2.1 presents the mean squared error (MSE) between the approximate the simulated

distributions for different values of n. It is evident that the accuracy of the proposed approach

becomes higher as n increases. For example, the error is less than 5% for n ≥ 32 and practically

zero for n > 128.
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3 Large Intelligent Surfaces Communicating

Through Massive MIMO Rayleigh Fading

Channels

3.1 System Model

In this section, we describe the mathematical model adopted in this paper and present the

rationale to justify the models used for the channel, the distribution of the fading coefficients in

the direct (LoS) and indirect (NLoS) links, in addition to the probability distribution associated

with the error of phase accomplished by the LIS when performing the beamforming.

This paper considers a multiple-input single-output (MISO) system between a base

station (BS) equipped with an antenna array composed of M antennas and a single-antenna

user as shown in Figure 3.1. The signal path passes through the LIS environment dividing

the system fading in an LoS component between the BS and the user. There are two indirect

paths, between each antenna and the LIS reflector, and between each reflector and the user, these

indirect links form a composite channel between the base station and the user.We suppose that

the LIS is far from the BS, and the user is also far from the LIS. So, the fading coefficients are

modeled as uncorrelated Rayleigh.

...

...

...

...

BS equipped with 
M antennas Single-antenna UE

LIS equipped
with N elements

 ெ×ଵ ெ ଵଶ ெ

ୗ ெ×ଵ ெ ଷଶ ெ
୍ୗ ே×ଵ ே ଶଶ ே⋮ ⋮ ⋮ ⋮

Figure 3.1: System Model.
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In this formulation the signal received by the user can be written as

y =
(

hH
LISΦ

HGH + hH
BS

)

x+ ζ, (3.1)

where hLIS ∈ C
N×1 is the Rayleigh channel between the LIS and the user, G =

[g1 . . .gN ] ∈ C
M×N is the Rayleigh channel between the BS and the LIS, hBS ∈ C

M×1 is the

complex normal fading of the direct path between the antenna array and the user (LoS compo-

nent), x ∈ C
M×1 is the transmitted symbol after precoding and Φ = diag(

[

e−jφ1 . . . e−jφN
]

) ∈

C
N×N is a diagonal matrix representing the response of the LIS where φn ∈ [0, 2π], ∀n is the

adjustable phase-shift produced by the nth LIS’s element. The variable ζ ∼ CN (0, 1) is the

additive white Gaussian noise (AWGN) term. The Tx signal x is defined as x = us where

u ∈ CM×1 is the precoding vector and s ∼ CN (0, 1) is the data symbol. The precoding vector u

is applied by the antenna array at the BS before the transmission.

Considering the MRT criterion, the optimal precoder is given as [56]

u =
√
p
wH

‖w‖ (3.2)

where
√
p is the precoder gain and w is the overall channel defined as

w = hH
LISΦ

HGH + hH
BS. (3.3)

Let ηki and θi be the phases of gki and hLIS
i , respectively. Therefore, we can rewrite each

channel fading coefficient as

wk =
N
∑

i=1

|gki|
∣

∣hLIS
i

∣

∣ ej(φi−θi−ηki) + hBS
k (3.4)

From (3.4), we see that the best situation occurs when the composite fading coefficient is

perfectly corrected by the LIS and we can state that φi = θi + ηki. But this scenario is unfeasible

because perfect channel state information is not a very realistic assumption. Therefore, both

cases are approached: (i) the case where the LIS is able to perform perfect phase cancellation,

and; (ii) the case where imperfect cancellation is assumed.

Considering the first case, the composite channel can be written as

wk =
N
∑

i=1

|gki|
∣

∣hLIS
i

∣

∣+ hBS
k . (3.5)
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Let CBS,k = Re{hBS
k } and = SBS,k = Im{hBS

k }. Then, the square of the fading vector

norm can be written as ‖w‖2 = wHw and

‖w‖2 =
M
∑

k=1





(

N
∑

i=1

|gki|
∣

∣hLIS
i

∣

∣+ CBS,k

)2

+ S2
BS,k



 . (3.6)

To evaluate the system performance and understand the relationship between the bit

error rate and the energy per bit applied by the transmitter, we need to know how the fading

coefficients of the overall channel are distributed. Therefore, we need to obtain the statistical

moments and the distribution of ‖w‖2.

3.2 Von Mises Distributed Continuous Phase Estimation Errors

Since the phase adjustments performed by the intelligent reflectors are imperfect and

cannot completely cancel the channel phase, a term associated with the phase error appears in

the equation of the composite channel phase.

Consider that φi = θk + ηki + δki is the phase correction performed by the LIS, so the

fading coefficients for each antenna is

wk =
N
∑

i=1

|gki|
∣

∣hLIS
i

∣

∣ ejδki + hBS
k (3.7)

where the term δki is the phase error, here supposed as Von Mises distributed with probability

density function

f∆(δ) =
1

2πI0(κ)
eκ cos δ. (3.8)

Therefore, we have that

w = (|G| ◦∆) |hLIS|+ hH
BS, (3.9)

This error model considers a matrix ∆ ∈ C
M×N in which we have the Von Mises phase errors

and the Haddamard product is an elementwise product between the phase errors and each channel

fading magnitude.

In this case, the moment generating function (MGF) of the Von Mises distribution is

useful to obtain the trigonometric moments that are needed to obtain the mean and variance of the
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fading coefficients. For a random variable δ Von Mises distributed, the MGF can be calculated

by

E
[

ejpδ
]

= αp + jβp, (3.10)

where αp = Ip(κ)

I0(κ)
and βp = 0 are defined in terms of the modified Bessel function of

first kind.

3.3 Approximated Gamma Fading Distribuition

Since each fading coefficient wk is the summation of independent and equally probable

random variables, we can apply the central limit theorem (CLT). So, for large values of N each

wk is approximately complex Gaussian.

The term ‖w‖2 is the sum of squared Gaussian random variables whose generalized

distribution is the Gamma distribution. Let V ∼ Γ(α, β) be a Gamma-distributed variable with

shape parameter α and rate parameter β, therefore its probability density function is given as

fV (v;α, β) =
βαvα−1e−βv

Γ(α)
(3.11)

Note that the mean of the Gamma random variable V is given by E[V ] = α
β

, and the

variance as var[V ] = α
β2 [52]. We can compute the mean and variance of ‖w‖2, denoted here

as µ‖w‖2 and σ2
‖w‖2 , respectively, and match with E[V ] and var[V ]. Using this rationale, the

following can be written: µ‖w‖2 =
α
β

and σ2
‖w‖2 =

α
β2 .

Solving this linear equation system, we get that

α‖w‖2 =
µ2
‖w‖2

σ2
‖w‖2

, β‖w‖2 =
µ‖w‖2

σ2
‖w‖2

(3.12)

therefore, with the mean and variance of ‖w‖2, we can generate its Gamma approximated

probability density function. Although the idea might seem very simple, the mean and variance

of the channel norm are very difficult to be obtained. For the sake of clarity, we detail these

calculations in Appendix 5.2, for the case where there are no phase errors. For this case, the mean

µ‖w‖2 and variance σ2
‖w‖2 , are given in (5.39) and (5.67), respectively. In the same way, for the
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case where phase error occurs, Appendix 5.3 presents the mean µ‖w‖2 and variance σ2
‖w‖2 as in

(5.98) and (5.113), respectively.

The trigonometric moments needed to perform the calculations are in the Appendix 5.4.

3.3.1 Kullback–Leibler Divergence

To evaluate the accuracy of approximating ‖w‖2 as a Gamma random variable, we can

use Kullback-Leibler divergence [57]. The Gamma distribution will be compared with the

simulation obtained by the Monte Carlo method.

Although the distribution of the fading coefficient is continuous, for purposes of numeri-

cal calculation, we estimate the PDF with a finite number of points and thus we also sample the

Gamma distribution and calculate the Kullback-Leibler divergence in its discrete form [57]

DKL (D1||D2) =
∑

x∈χ
d1(x) log

(

d1(x)

d2(x)

)

, (3.13)

where D1 and D2 are the simulated and the theoretical distributions, respectively, whose proba-

bility distribution functions are d1(x) and d2(x) respectively and χ is the set of points available

to represent the distributions.

3.4 Error Probability Calculations

The error probability for the M -QAM modulation can be approximately obtained by

[53]

PQAM
e (γ) = 1−

(

1− 2

(

1− 1√
M

)

Q

[
√

3γlog2M
(M− 1)

])2

. (3.14)

where M is the size of the M -QAM constellation. Under Gamma fading, the mean error

probability can be calculated as

P̄QAM
e (γ) =

∞
∫

0

PQAM
e (γv)f‖w‖2(v)dv, (3.15)

where γ = pγ0 and γ0 is the SNR at the receiver while P̄QAM
e is the mean error probability

considering the fading coefficient v and the Gamma pdf f‖w‖2(v).
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4 Conclusion

In this work, we have proposed an approximated and upper bound expressions for

calculating the bit error probability of LIS-assisted systems. We have considered BPSK and

M -QAM modulations under the effect of Nakagami-m and Rayleigh fading channels. We have

analyzed different scenarios regarding the Nakagami m parameter, the concentration parameter

κ, the number of antennas at the base station M and the number of reflecting elements n. In

short, the BER decreases when at least one of these parameters increases. All the results were

validated by numerical simulations and have shown an excellent agreement. We have obtained

the exact distribution of the channel coefficient for n < 4. However, as the exact formula gets

too intricate for large values of n, we have employed a Gaussian approximation for the in-phase

and quadrature components. The approximation for the PDF of |H| converges very fast, and

even for low values of n, the mean square error is small.

The fading coefficients of the overall channel involved in the massive MIMO scenario,

considering the antenna array and the LIS can be modelled as a Gamma random variable even

for a small number of antennas. We have proved the accuracy of our approximation through

the Kullback-Leibler divergence even when the phase error follows either the uniform or the

Von Mises distribution with arbitrary concentration parameter. In the absence of phase error,

the divergence between the simulated distribution and the proposed analytical approach decreases

even faster with the increase of the number of reflectors at the LIS.

Future works may include the analysis of the LIS operating in Nakagami-m fading

channels in a multiuser case or antenna array scenario, and also is possible to explore the

performance of the LIS aided system by means of the spectral efficiency. The existence of

eavesdropper links can be considered to evaluate the secrecy rate and secrecy outage probability,

these measures can improve the contribution for the LIS design.
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5 Appendix

5.1 Error probability for BPSK systems with Large Intelligent

Surfaces communicating through double-Nakagami Fading chan-

nels

5.1.1 Mean and Variance of C

The mean value of C is given by

µC = E[C] = E

[

n
∑

k=1

1

n
|H12k| cos θk

]

. (5.1)

Assuming that all coefficients are independent and have the same statistics, the following

can be written

µC = n× 1

n
× E [|H12k| cos θk]

= µ1µ2

(

I1(κ)

I0(κ)

)

, (5.2)

in which µ1 = E[H1k] and µ2 = E[H2k]. The variance of C is given by

σ2
C = var

(

n
∑

k=1

1

n
|H12k| cos θk

)

. (5.3)

Note that the variance computation in (5.3) involves the product of two independent

variables. Let the variables u and v be independent. Therefore, the variance of the product is

given by var(uv) = var(u)var(v) + var(u)E[v]2 + var(v)E[u]2 [52]. Additionally, since all the

variables are independent, the following can be written

σ2
C =

1

n
var (|H12k| cos θk)

=
1

n

(

σ2
12σ

2
Ck

+ σ2
12µ

2
Ck

+ σ2
Ck
µ2
12

)

, (5.4)

whose parameters can be calculated as follows

σ2
12 = σ2

1σ
2
2 + µ2

1σ
2
2 + µ2

2σ
2
1, (5.5)
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in which σ2
1 = var(H1k) and σ2

2 = var(H2k),

σ2
Ck

= E
[

cos2θk
]

− E2 [cos θk] , (5.6)

µCk
= E [cos θk] = α1 =

I1(κ)

I0(κ)
, (5.7)

E
[

cos2θk
]

=
1

2
+

1

2
E [cos 2θk] =

1

2
+

1

2
α2. (5.8)

and

σ2
Ck

=
1

2
+

1

2

I2(κ)

I0(κ)
+

(

I1(κ)

I0(κ)

)2

. (5.9)

Therefore, the variance of C is defined as

σ2
C =

1

2n
σ2
12

(

1 +
I2(κ)

I0(κ)
+ 4

[

I1(κ)

I0(κ)

]2
)

+ . . .

· · ·+ µ1µ2
1

2n

(

1 +
I2(κ)

I0(κ)

)

.

(5.10)

5.1.2 Mean and Variance of S

The mean value of S can be written as

µS = E[S] = E

[

n
∑

k=1

1

n
|H12k| sin θk

]

=
1

n
× n× µ1µ2E[sin θk], (5.11)

Using the same assumptions as in the previous case, the mean value of S can be calculated

as

µSk
= E [sin θk] = β1 = 0. (5.12)

Therefore,

µS = 0 (5.13)

On the other hand, the variance of S can be computed as

σ2
S = var

(

n
∑

k=1

1

n
|H12k| sin θk

)

=
1

n

(

σ2
12σ

2
Sk

+ σ2
12µ

2
Sk

+ σ2
Sk
µ2
12

)

, (5.14)

whose parameters can be calculated as follows

σ2
Sk

= E
[

sin2θk
]

− E2 [sin θk]
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=
1

2
− 1

2

I2(κ)

I0(κ)
(5.15)

E
[

sin2θk
]

=
1

2
− 1

2
E [cos 2θk] =

1

2
− 1

2
α2.

Therefore, the variance of S is defined as

σ2
S =

1

2n
σ2
12

(

1− I2(κ)

I0(κ)

)

+
1

2n
(µ1µ2)

2

(

1− I2(κ)

I0(κ)

)

. (5.16)

5.1.3 Mean of the product of C and S

This appendix shows that C and S are uncorrelated. Considering a possible correlation

between C and S, the bivariate Gaussian joint distribution can be written as

fC,S(x, y) =
1

2πσCσS

√

1− ρ2
e
− 1

2
√

1−ρ2

(

(x−µC)2

σ2
C

+
(y−µS)

2

σ2
S

− 2ρ(x−µC )(y−µS)

σCσS

)

(5.17)

where ρ is defined as [52]

ρ =
E [CS]− E [C]E [S]

σCσS

(5.18)

As it has been calculated from (5.13), the term E[S] = 0, that is, the second term of the numerator

of (5.18) is zero. Therefore in order to prove that ρ = 0, we need to compute the mean of the

product between C and S and show that is also zero.

Departing from (2.11) and (2.12), the mean of the product between C and S can be

written as

E [CS] = E

[

n
∑

i=1

n
∑

j=1

RiRj cos (θi) sin (θj)

]

(5.19)

Since Rk is independent of θk for all k, then

E[CS] = 2
n
∑

i=1

n
∑

j>i

E [RiRj]E [cos (θi) sin (θj)] +

n
∑

k=1

E
[

R2
i

]

E [sin (θi) cos (θi)]

(5.20)

In the sequel, the following equalities will be proven E [cos (θi) sin (θj)] = 0 and

E [sin (θi) cos (θi)] = 0, and therefore (5.20) will be null.

Using the very definition of the mean, the term E [cos (θi) sin (θj)] can be computed as
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E[cos(θi) sin(θj)] =
∫ 2π

0

∫ 2π

0

cos(θi) sin(θj)
eκ cos(θi)

2πI0(κ)

eκ cos(θj)

2πI0(κ)
dθidθj = 0, (5.21)

in the same way, the mean with respect to θi in the second term of (5.20), can be calculated as

E[cos(θi) sin(θi)] =

∫ 2π

0

cos(θi) sin(θi)

2πI0(κ)
eκ cos(θi)dθi = 0, (5.22)

therefore E[CS] = 0 and consequently ρ, given in (5.18)), will be ρ = 0. From this, (5.17) can

be written as in (2.15).

5.2 Large Intelligent Surfaces Communicating Through Massive

MIMO Rayleigh Fading Channels

5.2.1 Mean of wk Given in (3.5)

Departing from (3.5), the mean of the each total fading coefficient can be calculated as

E[wk] = E

[

N
∑

i=1

|gki|
∣

∣hLIS
i

∣

∣+ hBS
k

]

(5.23)

since |gki| and |hLIS
k | are independent and equally probable on the summation variable.

So,

E[wk] = N × E [|gki|]E
[∣

∣hLIS
i

∣

∣

]

+ E
[

hBS
k

]

(5.24)

Since E
[

hBS
k

]

= 0,

E[wk] = N × E [|gki|]E
[∣

∣hLIS
i

∣

∣

]

(5.25)

The terms |gki| and
∣

∣hLIS
i

∣

∣ are Rayleigh distributed, since the variables gki and hLIS
i are

zero mean with variances σ2
1 and σ2

2 , respectively. Therefore

E [|gki|] = σ1

√

π

2
, E

[∣

∣hLIS
i

∣

∣

]

= σ2

√

π

2
. (5.26)

Let wk = ck + jsk, where ck and sk are the in-phase and quadrature components of the

fading coefficient with respect to the antenna k. Also, let µck = E[ck] and µsk = E[sk] = 0.

Then,

E [wk] = µck = N
π

2
σ1σ2. (5.27)
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5.2.2 Variance of wk Given in (3.5)

The variance of wk is given by

var(wk) = E [(ck + jsk)(ck − jsk)] − (E [(ck + jsk)])
2 = var(ck) + var(sk), (5.28)

where

var(ck) = var

(

N
∑

i=1

|gki|
∣

∣hLIS
i

∣

∣+ CBS,k

)

, (5.29)

and can be expanded as

var(ck) = var

(

N
∑

i=1

|gki|
∣

∣hLIS
i

∣

∣

)

+ var (CBS,k) + 2

(

E

[

CBS,k

N
∑

i=1

|gki|
∣

∣hLIS
i

∣

∣

])2

, (5.30)

The first term of (5.30) can be written as

var

(

N
∑

i=1

|gki|
∣

∣hLIS
i

∣

∣

)

= Nvar
(

|gki|
∣

∣hLIS
i

∣

∣

)

(5.31)

Note in (5.31) that it is necessary to compute the variance of the product of two random

variables. Let X and Y , two independent random variables, then var(XY ) = var(X)var(Y ) +

var(X)E[Y ]2 + var(Y )E[X]2 and then.

var
(

|gki|
∣

∣hLIS
i

∣

∣

)

=

var (|gki|)× var
(∣

∣hLIS
i

∣

∣

)

+ var (|gki|)
(

E
[∣

∣hLIS
i

∣

∣

])2
+ var

(∣

∣hLIS
i

∣

∣

)

(E [|gki|])2 (5.32)

Since |gki| and
∣

∣hLIS
i

∣

∣ are Rayleigh distributed,

var (|gki|) =
4− π

2
σ2
1, var

(∣

∣hLIS
i

∣

∣

)

=
4− π

2
σ2
2 (5.33)

and so, after some simplifications, we have that

var
(

|gki|
∣

∣hLIS
i

∣

∣

)

=
16− π2

4
(σ1σ2)

2 (5.34)

Since E [CBS,k] = 0 and the terms CBS,k and
N
∑

i=1

|gki|
∣

∣hLIS
i

∣

∣ are independent, then

var(ck) = N
16− π2

4
(σ1σ2)

2 + σ2
3 (5.35)

therefore the variance of wk is given as

var(wk) = N
16− π2

4
(σ1σ2)

2 + 2σ2
3. (5.36)
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5.2.3 Expected Value of ‖w‖2

The expected value of ‖w‖2 can be calculated by

E
[

‖w‖2
]

= E

[

M
∑

k=1

|wk|2
]

= ME
[

|wk|2
]

(5.37)

With E[wk] and var(wk), we can calculate E [|wk|2] as E [|wk|2] = var(wk) + (E [wk])
2.

Therefore, we have

E
[

|wk|2
]

= N
16− π2

4
(σ1σ2)

2 + 2σ2
3 +

(

N
π

2
σ1σ2

)2

, (5.38)

so the mean of the overall channel fading coefficient is

µ‖w‖2 = E
[

‖w‖2
]

= M

(

N
16− π2

4
(σ1σ2)

2 + 2σ2
3 +

(

N
π

2
σ1σ2

)2
)

(5.39)

5.2.4 Correlation between the Fading Coefficients

Since the real and imaginary parts of the fading coefficients, without phase errors, are

uncorrelated, we analyze only the correlation between the real parts as follows.

ρci,ck =
E[cick]− E[ci]E[ck]
√

var(ci)var(ck)
. (5.40)

Since var(ci) = var(ck) and E[ci] = E[ck],

ρci,ck =
E[cick]− µ2

ck

var(ck)
(5.41)

where

E[cick] = E

[(

N
∑

l=1

|gil||hLIS
l |+ CBS,i

)

×
(

N
∑

m=1

|gkm||hLIS
m |+ CBS,k

)]

, (5.42)

and simplifies to

E[cick] = E

[

N
∑

l=1

N
∑

m=1

|gil||gkm||hLIS
l ||hLIS

m |

]

+ E[CBS,iCBS,k] + E[CBS,i]

(

N
∑

m=1

|gkm||hLIS
k |+ CBS,k

)

+

E[CBS,k]

(

N
∑

l=1

|gil|
∣

∣

∣
h
LIS
i

∣

∣

∣
+ CBS,i

)

. (5.43)
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Since E[CBS,i] = E[CBS,k] = 0, E [|gil|] = E [|gkm|], E
[

|hLIS
l |

]

= E
[

|hLIS
m |

]

so

E[cick] =
N
∑

l=1

N
∑

m=1

E
[

|gil||gkm||hLIS
l ||hLIS

m |
]

+ E[CBS,iCBS,k] (5.44)

Since |gil| and |gkm| are independent, therefore

E
[

|gil||gkm||hLIS
l ||hLIS

m |
]

= E [|gil|]E [|gkm|]E
[

|hLIS
l |

]

E
[

|hLIS
m |

]

∀l 6= m (5.45)

and

l = m ⇒ E
[

|gil| |gkm|
∣

∣hLIS
l

∣

∣

∣

∣hLIS
m

∣

∣

]

= E [|gil|]E [|gkm|]E
[

|hLIS
m |2

]

(5.46)

since

E
[

∣

∣hLIS
m

∣

∣

2
]

= var
(

|hLIS
m |

)

+
(

E
[

|hLIS
m |

])2
, (5.47)

so, we have that

E
[

∣

∣hLIS
m

∣

∣

2
]

=
4− π

2
σ2
2 +

π

2
σ2
2 = 2σ2

2 (5.48)

Therefore

N
∑

l=1

N
∑

m=1

E
[

|gil||gkm||hLIS
l ||hLIS

m |
]

= Nπσ2
1σ

2
2

(

1 +
(N − 1)π

4

)

(5.49)

Since

E[CBS,iCBS,k] =















0 k 6= i

E[C2
BS,k] = σ2

3 k = i

Therefore

E[cick] =















Nπσ2
1σ

2
2

(

1 + (N−1)π
4

)

k 6= i

Nπσ2
1σ

2
2

(

1 + (N−1)π
4

)

+ σ2
3 k = i

Since E [ck] = E [wk] = N π
2
σ1σ2, we only need to consider the case i 6= k, because for

i = k we have that ρci,ck = ρck,ck = 1 therefore

ρci,ck =
Nπσ2

1σ
2
2

(

1 + (N−1)π
4

)

−
(

Nπ
2
σ1σ2

)2

N 16−π2

4
(σ1σ2)

2 + σ2
3

∀i 6= k (5.50)

by performing algebraic simplifications we have that

ρci,ck =
Nπ (σ1σ2)

2

N(π + 4) (σ1σ2)
2 + 4

4−π
σ2
3

∀i 6= k (5.51)
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5.2.5 Variance of ‖w‖2

Let Zk = |wk|2, so the variance of the sum of the correlated random variables Zk will be

given by

var
(

‖w‖2
)

= var

(

M
∑

i=1

Zi

)

=
M
∑

i=1

var(Zi) + 2
∑

1≤i<k≤M

cov (Zi, Zk) . (5.52)

Since the variables have the same distribution and parameters therefore

var

(

M
∑

i=1

Zi

)

= M × var(Zi) +M(M − 1)× cov (Zi, Zk) , (5.53)

so, the pairwise covariance can be obtained by

cov (Zi, Zk) = E[ZiZk]− E[Zi]E[Zk] (5.54)

where

E[ZiZk] = E[|wi|2|wk|2] = E[(c2i + s2i )(c
2
k + s2k)] (5.55)

and simplifies to

E[ZiZk] = E[c2i c
2
k] + E[c2i s

2
k] + E[s2i c

2
k] + E[s2i s

2
k] (5.56)

Since

E[c2i s
2
k] = E[s2i c

2
k], (5.57)

so,

E[ZiZk] = E[c2i c
2
k] + 2E[c2i s

2
k] + E[s2i s

2
k] (5.58)

Considering that ck and ci are correlated Gaussian random variables with the same mean

and variance, therefore we have that

E[c2i c
2
k] =

∞
∫

−∞

∞
∫

−∞

x2y2fci,ck(x, y)dxdy (5.59)

where fci,ck(x, y) is the joint probability density function of the correlated Gaussian random

variables ci and ck.

E[c2i c
2
k] = µ4

ck
+ 2µ2

ck
(1 + 2ρci,ck) σ

2
ck
+
(

1 + 2ρ2ci,ck
)

σ4
ck

(5.60)
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E[c2i c
2
k] =















































k4
1σ

4
12 + 2k2

1σ
2
12

(

k1
2π
a1a2σ

2
12 + σ2

3

)

+ 2k3
1a1σ

4
12 +

1
2
k2
1σ

4
12a

2
1 + . . .

(

k1
2π
a1a2σ

2
12 + σ2

3

)2
i 6= k

k4
1σ

4
12 + 6k2

1σ
2
12

(

k1
2π
a1a2σ

2
12 + σ2

3

)

+ 3
(

k1
2π
a1a2σ

2
12 + σ2

3

)2
i = k

Therefore E[c2i c
2
k] can be calculated by (5.90), where k1 = N π

2
, a1 = 4− π, a2 = 4 + π

and σ12 = σ1σ2.

Since ci and sk are independent and E[|s2k|] = var(sk) so we have that

E[c2i s
2
k] = E[c2i ]E[s2k] (5.61)

Since

E[c2i ] = var(ci) + (E[ci])
2 =

k1

2π
a1a2σ

2
12 + σ2

3 + k2
1σ

2
12,

so, we have that

E[c2i ] = σ2
12

(

k1

2π
a1a2 + k2

1

)

+ σ2
3,

Since E[s2k] = var(sk) = σ2
3 , therefore

E[c2i s
2
k] = σ2

123

(

k1

2π
a1a2 + k2

1

)

+ σ4
3 (5.62)

where σ2
123 = σ2

1σ
2
2σ

2
3 .

The fourth order moment E[s4k] of a Gaussian random variable is well known in the

literature and can be calculated by

E[s4k] = (E[sk])
4 + 2(E[sk])

2var(sk) + 3(var(sk))
2 (5.63)

Since E[sk] = 0, therefore

E[s4k] = 3σ4
3 (5.64)

E[ZiZk] =
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k4
1σ

4
12 + 2k2

1σ
2
12

(

k1
2π
a1a2σ

2
12 + σ2

3

)

+ 2k3
1a1σ

4
12 +

1
2
k2
1σ

4
12a

2
1 + . . .

(

k1
2π
a1a2σ

2
12 + σ2

3

)2
+ 2σ2

123

(

k1
2π
a1a2 + k2

1

)

+ 3σ4
3 i 6= k

k4
1σ

4
12 + 6k2

1σ
2
12

(

k1
2π
a1a2σ

2
12 + σ2

3

)

+ 3
(

k1
2π
a1a2σ

2
12 + σ2

3

)2
+ . . .

2σ2
123

(

k1
2π
a1a2 + k2

1

)

+ 5σ4
3 i = k

(5.65)

With the expected value E[ZiZk], the expected value of Zk = |wk|2 and the consideration

that E[Zi] = E[Zk] ∀i∀k, the covariance between Zi and Zk can be obtained by

cov (Zi, Zk) = E[ZiZk]− (E[Zk])
2 (5.66)

Note that var(Zk) = cov(Zk, Zk), so the variance of ‖w‖2 can be obtained by

σ2
‖w‖2 = var

(

‖w‖2
)

= Mcov(Zk, Zk) +M(M − 1)cov(Zi, Zk) (5.67)

By substituting the terms E[ZiZk] and E[Zk], given in (5.65) and (5.27), in the equation (5.67),

we have that the analytical expression of the variance in (5.68).

σ2
‖w‖2 = M

(

k4
2 + 2k2

2(k3 + σ2
3) + 2k1k

2
4a1

1

2
k2
4a

2
1 + (k3 + σ2

3)
2+

2σ2
3(k3 + k2

2) + 3σ4
3 − (k3 + 2σ2

3 + k2
2)

2
)

+ . . .

M(M + 1)
(

k4
2 + 6k2

2(k3 + σ2
3) + 3(k3 + σ2

3)
2 + 2(k3 + k2

2) + 5σ4
3 − (k3 + 2σ2

3 + k2
2)

2
)

(5.68)

where

k2 = k1σ12, k3 =
k1

2π
a1a2σ

2
12, k4 = k1σ

2
12

5.3 Mean and Variance of the Overall Channel Fading Coefficient

with Von Mises Distributed Phase Errors

5.3.1 Mean of w̃k

Let w̃k = c̃k + js̃k be the fading coefficient with respect to the antenna k when phase

errors occurs at the LIS. To obtain the mean of w̃k we need to calculate the mean of c̃k and s̃k.
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The mean value of the in-phase fading component c̃k is

E[c̃k] = N
π

2
σ12α1 (5.69)

and the quadrature component mean E[s̃k] is

E[s̃k] = E

[

N
∑

i=1

|gki|
∣

∣hLIS
i

∣

∣ sin δki + S̃BS
k

]

(5.70)

using the linearity of the expected value we can rewrite the equation as

E[s̃k] =
N
∑

i=1

E
[

|gki|
∣

∣hLIS
i

∣

∣ sin δki
]

+ E
[

S̃BS
k

]

(5.71)

since β1 = 0, so

E[s̃k] = N
π

2
σ12β1 = 0 (5.72)

Therefore we can calculate the mean of the overall fading coefficient, for the antenna k

by using

E[w̃k] = E[c̃k] + E[s̃k] = N
π

2
σ12α1. (5.73)

5.3.2 Variance of the In-Phase and Quadrature Components

To obtain the variance of w̃k we need to calculate the variance of c̃k and s̃k. The variance

of the quadrature component is

var(s̃k) = Nvar(|gki|
∣

∣hLIS
i

∣

∣ sin δki) + σ2
3, (5.74)

where

var(|gki|
∣

∣hLIS
i

∣

∣ sin δki) = var(|gki|
∣

∣hLIS
i

∣

∣)var(sin δki) + . . .

var(sin δki)
(

E[|gki|
∣

∣hLIS
i

∣

∣]
)2

+ var(|gki|
∣

∣hLIS
i

∣

∣) (E[sin δki])
2 (5.75)

and simplifies to

var(|gki|
∣

∣hLIS
i

∣

∣ cos δki) = var(|gki|
∣

∣hLIS
i

∣

∣)var(cos δki) + . . .

var(cos δki)
(

E[|gki|
∣

∣hLIS
i

∣

∣]
)2

+ var(|gki|
∣

∣hLIS
i

∣

∣) (E[cos δki])
2
. (5.76)
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To compute the variance of the in-phase and quadrature components we need to calculate closed

expressions for the trigonometric moments of the Von Mises random variable.

The expected value of the sine of a Von Mises distributed phase error is given as

var(sin δki) = E[sin2 δki]− (E[sin δki])
2

=
1

2
(1− E[cos 2δki])− (E[sin δki])

2

=
1

2
(1− α2)− β2

1 (5.77)

Since β1 = 0, so

var(sin δki) =
1

2
(1− α2) (5.78)

The expected value of the cosine of a Von Mises variable can be calculated by

var(cos δki) = E[cos2 δki]− (E[cos δki])
2
, (5.79)

or, using a trigonometric substitution,

var(cos δki) =
1

2
(1 + E[cos 2δki])− α2

1, (5.80)

In terms of the the characteristic function, we have

var(cos δki) =
1

2
(1 + α2)− (α1)

2 (5.81)

So the variance of s̃k is

var(s̃k) = N

[

16− π2

8
σ2
12 (1− α2)

π2

8
σ2
12 (1− α2)

]

+ σ2
3 (5.82)

and simplifies to

var(s̃k) = N
(

2σ2
12 (1− α2)

)

+ σ2
3. (5.83)

The variance of the in-phase fading coefficient will be

var(c̃k) = N

[

16− π2

4
σ2
12

(

1

2
(1 + α2)− α2

1

)

+ . . .

α2
1

16− π2

4
σ2
12 +

(

1

2
(1 + α2)− α2

1

)

π2

4
σ2
12

]

+ σ2
3 (5.84)

and simplifies to

var(c̃k) = σ2
3 +N

[

2σ2
12(1 + α2)−

π2

4
α2
1σ

2
12

]

(5.85)



61

5.3.3 Mean of |w̃k|2

To compute the variance of the total fading coefficient we need the mean value of the

squared fading coefficients.

The mean of the squared in-phase component is given as

E[c̃2k] = σ2
3 +N

[

2σ2
12(1 + α2)−

π2

4
α2
1σ

2
12

]

+
(

N
π

2
σ12α1

)2

. (5.86)

The expected value of the squared quadrature component can be written as

E[s̃2k] = var(s̃k) = N
(

2σ2
12 (1− α2)

)

+ σ2
3 (5.87)

Therefore, the mean squared magnitude of the overall fading with respect to the antenna k is

given as

E[|w̃k|2] = N

[

2σ2
12(1 + α2)−

π2

4
α2
1σ

2
12

]

+
(

N
π

2
σ12α1

)2

+N
(

2σ2
12 (1− α2)

)

+2σ2
3 (5.88)

and simplifies to

E[|w̃k|2] = 4N(1 + α2)σ
2
12 + 2σ2

3 (5.89)

5.3.4 Correlation between the Fading Coefficients

The real and imaginary parts of the fading coefficients are uncorrelated, however we

need to compute the correlation coefficient between the real parts.

The expected value of the product of two different in-phase coefficients can be written as

E[c̃ic̃k] = E

[(

N
∑

l=1

|gil||hLIS
l | cos δil + C̃BS,i

)

×
(

N
∑

m=1

|gkm||hLIS
m | cos δkm + C̃BS,k

)]

(5.90)

since all the variables have the same distribution and parameters, therefore if l 6= m, so all the

summation variables are independent, and in addition E
[

C̃BS,k

]

∀k and the variables C̃BS,i and

C̃BS,k are independent ∀i 6= k, therefore

E[c̃ic̃k] = E
[

C̃BS,iC̃BS,k

]

+
N
∑

l=1

N
∑

m=1

E
[

|gil||gkm||hLIS
l ||hLIS

m | cos δil cos δkm
]

(5.91)

and
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l 6= m ⇒ E
[

|gil||gkm||hLIS
l ||hLIS

m | cos δil cos δkm
]

= E [|gkm|]2 E
[

|hLIS
m |

]2
E [cos δkm]

2 =
(

σ1

√

π

2

)2(

σ2

√

π

2

)2

α2
1 =

π2

4
σ2
12α

2
1 (5.92)

and also

l = m, i 6= k ⇒ E
[

|gil||gkm||hLIS
l ||hLIS

m | cos δil cos δkm
]

= E [|gkm|]2 E
[

|hLIS
m |2

]

E [cos δim]E [cos δkm] =

π

2
σ
2
1 (2σ2)

2
α
2
1 = πσ

2
12α

2
1, (5.93)

l = m, i = k ⇒ E
[

|gil||gkm||hLIS
l ||hLIS

m | cos δil cos δkm
]

= E
[

|gkm|2
]

E
[

|hLIS
m |2

]

E
[

cos2 δkm
]

=

2σ2
12σ

2
2
1

2
(1− α2) (5.94)

therefore

E[c̃ic̃k] =















































N(N − 1)
(

π2

4
σ2
12α

2
1

)

+N (πσ2
12α

2
1) i 6= k

N
(

2σ2
12σ

2
2
1
2
(1− α2)

)

+ σ2
3 + . . .

N(N − 1)
(

π2

4
σ2
12α

2
1

)

i = k

and the correlation for i 6= k is given as

ρc̃ic̃k =
N(N − 1)

(

π2

4
σ2
12α

2
1

)

+N (πσ2
12α

2
1)−

(

N π
2
σ12α1

)2

σ2
3 +N

[

2σ2
12(1 + α2)− π2

4
α2
1σ

2
12

] (5.95)

5.3.5 Mean of ‖w̃‖2

The mean value of the total fading coefficient can be written as

µ‖w̃‖2 = E
[

‖w̃‖2
]

= E

[

M
∑

k=1

|w̃k|2
]

. (5.96)

Since the fading coefficients are identically distributed, then

µ‖w̃‖2 = ME[|w̃k|2], (5.97)

and

µ‖w̃‖2 = 4NM(1 + α2)σ
2
12 + 2Mσ2

3 (5.98)
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5.3.6 Variance of ‖w̃‖2

The variance of the total fading coefficient is given as

var
(

‖w̃‖2
)

= var

(

M
∑

k=1

|w̃k|2
)

. (5.99)

Let Z̃k = |w̃k|2, therefore

var
(

‖w̃‖2
)

= var

(

M
∑

i=1

Z̃i

)

= M × var(Z̃i) +M(M − 1)× cov
(

Z̃i, Z̃k

)

, (5.100)

Since

cov
(

Z̃i, Z̃k

)

= E
[

Z̃iZ̃k

]

− E
[

Z̃i

]

E
[

Z̃k

]

, (5.101)

the expected value of the product of the squared magnitude of two diffent fading coefficients is

E[Z̃iZ̃k] = E[c̃2i c̃
2
k] + 2E[c̃2i s̃

2
k] + E[s̃2i s̃

2
k] (5.102)

The term E[c̃2i c̃
2
k] can be calculated by (5.103)

E[c̃2i c̃
2
k] =































































2k5 (σ
2
3 + k6 − k5a3) + (σ2

3 + k6 − k5a3)
2
+

8
π
k3
5a3 (N + 1)− 3k4

5 +
(

2
π
k5a3 (N + 1)− k2

5

)2
i 6= k

k4
5 + 6k2

5 (σ
2
3 + k6 − k5a3) + 3 (σ2

3 + k6 − k5a3)
2

i = k

(5.103)

where k5 = N π
2
σ12α1, k6 = 2Nσ2

12(1 + α2) and a3 =
π
2
σ12α1. Since E[s̃k] = 0, thus the forth

order moment of the quadrature component is

E[s̃4k] = 3(var(s̃k))
2 = 3

(

N
(

2σ2
12 (1− α2)

)

+ σ2
3

)2
= 3

(

k7 + σ2
3

)2
(5.104)

where k7 = 2Nσ2
12(1− α2).

We need to obtain the term E [c̃2i s̃
2
k] without considering the CLT, because the correlation

coefficient between c̃ and s̃ is zero. But the terms c̃2i and s̃2k are not independent and the approach

that use the integral of the product to obtain the expected value is hard to solve analytically.

Considering the definition, we have that
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E
[

c̃2i s̃
2
k

]

= E





(

N
∑

l=1

|gil||hLIS
l | cos δil + C̃BS,i

)2

×
(

N
∑

m=1

|gkm||hLIS
m | sin δkm + S̃BS,k

)2




(5.105)

Expanding the power and the product of the two terms we can find the expression (5.106).

Considering that E
[

C̃BS,i

]

= 0, E
[

S̃BS,k

]

= 0, E
[

S̃2
BS,k

]

= E
[

S̃2
BS,k

]

= σ2
3 so (5.106)

simplifies to (5.107). The three summation terms of (5.107) are obtained by (5.108), (5.109) and

(5.110) that can be obtained by analyzing the different possible values of the summation indexes

that can made the indexed terms dependents or independents.

E
[

c̃
2
i s̃

2
k

]

= E





(

N
∑

l=1

|gil||h
LIS
l | cos δil

)2( N
∑

m=1

|gkm||hLIS
m | sin δkm

)2


+ E





(

N
∑

l=1

|gil||h
LIS
l | cos δil

)2

S̃
2
BS,k



+

2E





(

N
∑

l=1

|gil||h
LIS
l | cos δil

)2( N
∑

m=1

|gkm||hLIS
m | sin δkm

)

S̃BS,k



+ 2E

[(

N
∑

l=1

|gil||h
LIS
l | cos δil

)

C̃BS,iS̃
2
BS,k

]

+

+ 2E





(

N
∑

l=1

|gil||h
LIS
l | cos δil

)

C̃BS,i

(

N
∑

m=1

|gkm||hLIS
m | sin δkm

)2


+ E



C̃
2
BS,i

(

N
∑

m=1

|gkm||hLIS
m | sin δkm

)2


+

4E

[(

N
∑

l=1

|gil||h
LIS
l | cos δil

)

C̃BS,i

(

N
∑

m=1

|gkm||hLIS
m | sin δkm

)

S̃BS,k

]

+ E
[

C̃
2
BS,iS̃

2
BS,k

]

+

2E

[

C̃
2
BS,i

(

N
∑

m=1

|gkm||hLIS
m | sin δkm

)

S̃BS,k

]

(5.106)

E
[

c̃2i s̃
2
k

]

= E





(

N
∑

l=1

|gil||hLIS
l | cos δil

)2( N
∑

m=1

|gkm||hLIS
m | sin δkm

)2


 . . .

+ E





(

N
∑

l=1

|gil||hLIS
l | cos δil

)2


 σ2
3 + E





(

N
∑

m=1

|gkm||hLIS
m | sin δkm

)2


 σ2
3 + σ4

3 (5.107)

E





(

N
∑

l=1

|gil||hLIS
l | cos δil

)2


 = E

[

N
∑

l=1

N
∑

t=1

|gil|||git||hLIS
l ||hLIS

t | cos δil cos δit
]

=

2Nσ2
12(1 + α2) + (N2 −N)

(π

2

)2

σ2
12α

2
1 (5.108)

E





(

N
∑

m=1

|gkm||hLIS
m | sin δkm

)2


 = E

[

N
∑

d=1

N
∑

m=1

||gkd||gkm||hLIS
d ||hLIS

m | sin δkd sin δkm
]

=
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2Nσ2
12(1− α2) (5.109)

E





(

N
∑

l=1

|gil||hLIS
l | cos δil

)2( N
∑

m=1

|gkm||hLIS
m | sin δkm

)2


 =

E

[

N
∑

l=1

N
∑

t=1

N
∑

d=1

N
∑

m=1

|gil|||git|||gkd||gkm||hLIS
l ||hLIS

t ||hLIS
d ||hLIS

m | cos δil cos δit sin δkd sin δkm
]

(5.110)

E
[

c̃2i s̃
2
k

]

=































































(N − 1)k10 + 3(N2 −N)k9 + 2k10 + (N3 − 3N2 + 2N)k9 . . .

+
(

k6 +
(N−1)

N
k5 + k7

)

σ2
3 + σ4

3 i 6= k

(N − 1)k8 +
9
2
(N2 −N)k11 + 4k10 + (N3 − 3N2 + 2N)k9 . . .

+
(

k6 +
(N−1)

N
k5 + k7

)

σ2
3 + σ4

3 i = k

where

k8 = 2Nσ4
12(1− α4), k9 = 2

(π

2

)2

σ4
12α

2
1(1− α2), k10 = 4Nσ4

12(1− α2
2), k11 =

(π

2

)2

σ4
12α1(α1 − α3) (5.111)

E[Z̃iZ̃k] =



































































































































2k5
(

σ2
3 + k6 − k5a3

)

+
(

σ2
3 + k6 − k5a3

)2
+ 8

π
k3
5a3 (N + 1)− 3k4

5 +
(

2
π
k5a3 (N + 1)− k2

5

)2
+

2
[

(N − 1)k10 + 3(N2 −N)k9 + 2k10 + (N3 − 3N2 + 2N)k9 +
(

k6 +
(N−1)

N
k5 + k7

)

σ2
3 + σ4

3

]

+

2
(

σ2
3 + k6 − k5a3 + k2

5

) (

k7 + σ2
3

)

+
(

k7 + σ2
3

)2
i 6= k

k4
5 + 6k2

5

(

σ2
3 + k6 − k5a3

)

+ 3
(

σ2
3 + k6 − k5a3

)2
+ 2

(

σ2
3 + k6 − k5a3 + k2

5

) (

k7 + σ2
3

)

+

2
[

(N − 1)k8 +
9
2
(N2 −N)k11 + 4k10 + (N3 − 3N2 + 2N)k9 +

(

k6 +
(N−1)

N
k5 + k7

)

σ2
3 + σ4

3

]

+

3
(

k7 + σ2
3

)2
i = k
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(5.112)

Thus the covariance cov(Z̃i, Z̃k) can be obtained by (5.101), where E
[

Z̃iZ̃k

]

is given

by (5.112), remember that E
[

Z̃i

]

= E
[

Z̃k

]

and E
[

Z̃k

]

= E [|w̃k|2] that can be calculated

by (5.89), also consider that var
(

Z̃k

)

= cov
(

Z̃k, Z̃k

)

and the variance of the overall fading

coefficient is given by (5.113).

σ
2
‖w̃‖2 = var

(

‖w̃‖2
)

=

M(M − 1)

[

2k5
(

σ
2
3 + k6 − k5a3

)

+
(

σ
2
3 + k6 − k5a3

)2
+

8

π
k
3
5a3 (N + 1)− 3k4

5 +

(

2

π
k5a3 (N + 1)− k

2
5

)2

+

2

(

(N − 1)k10 + 3(N2 −N)k9 + 2k10 + (N3 − 3N2 + 2N)k9 +

(

k6 +
(N − 1)

N
k5 + k7

)

σ
2
3 + σ

4
3

)

+

2
(

σ
2
3 + k6 − k5a3 + k

2
5

) (

k7 + σ
2
3

)

+
(

k7 + σ
2
3

)2
−
(

2k6 + 2σ2
3

)2
]

+

M
[

k
4
5 + 6k2

5

(

σ
2
3 + k6 − k5a3

)

+ 3
(

σ
2
3 + k6 − k5a3

)2
+ 2

(

σ
2
3 + k6 − k5a3 + k

2
5

) (

k7 + σ
2
3

)

+

2

(

(N − 1)k8 +
9

2
(N2 −N)k11 + 4k10 + (N3 − 3N2 + 2N)k9 +

(

k6 +
(N − 1)

N
k5 + k7

)

σ
2
3 + σ

4
3

)

+

3
(

k7 + σ
2
3

)2
−
(

2k6 + 2σ2
3

)2
]

(5.113)

5.4 Trigonometric Moments of a Von Mises Random Variable

Since the Von Mises distribution is symmetric about zero, therefore the expected values

of odd functions applied to a Von Mises distributed random variable will be zero, therefore

∀n,m ∈ Z E[sin2n+1 δ cosm δ] = 0, (5.114)

on the other hand, the expected value of a power of even trigonometric functions must be

expanded in trigonometric Fourier series, or simply transformed in a superposition of cosine

and sine functions using trigonometric transformations to allow us to use the characteristic

function definition.

Since E[cos pδ] = αp, we have that

E[cos2 δ] = E

[

1

2
(1 + cos 2δ)

]

=
1

2
(1 + α2) , (5.115)

E
[

cos3 δ
]

= E

[

1

4
(3 cos δ + cos 3δ)

]

=
1

4
(3α1 + α3) , (5.116)
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and

E[cos4 δ] = E

[

1

8
(3 + 4 cos 2δ + cos 4δ)

]

=
1

8
(3 + 4α2 + α4) . (5.117)

We can write the power of a sine function in terms of the cosine function by applying the

algebraic transformation sin2 δ = 1− cos2 δ, and this substitution is useful only when the power

is even. The expected value is zero for every odd power of sin δ.
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