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Abstract
The evolution of technology is fast. At the beginning of the doctoral project, the most discussed
topic was the fifth generation of cellular networks. Now, in the end, we are already talking about
the sixth generation and what comes next. With this in mind, my thesis addresses topics related
to massive MIMO and Large Intelligent Surfaces (LIS). Despite the chronological distance
between them (the first in 2016 and the second in 2020), both represent a significant leap in
developing a low latency access network and a drastic change in the mobile communications
infrastructure.

With numerous antennas on the base station and user, one of the problems inherent to massive
MIMO is interference. Thus, we present an accurate approximation to the signal-to-interference
ratio in two scenarios: when the number of antennas at the base station is finite or when this
number is large enough to be considered infinite. We consider path loss and lognormal shadowing
and prove the perfect match between simulation and our approximation from practical case
studies.

Concerning LIS, we compare the system performance already published in the literature to
that we obtained from an LoS propagation modeled of Rician channels and Matched Filter
(MF) from preliminary analyses. We propose an accurate approximation for spectral efficiency
and evaluate the path-loss when the base station does not have channel state information and
transmits the symbols with equal powers to all users.

In the sequel, we do an in-depth analysis of a practical LIS-assisted Single-Input Single-Output
(SISO) system in order to characterize its performance. We assume realistic imperfections
for the values of reflection coefficients. In the first step, symbol error probability expressions
are obtained for SISO scenarios with and without phase errors. We validate all the results
by numerical simulations and have shown an excellent agreement. Comparisons with existing
models show that practical systems present a considerable loss in performance.

In the next stage, the study is even more comprehensive. Since quantization errors are unavoid-
able, we evaluate the influence of the number of bits dedicated to the phase quantization on
important performance such as spectral efficiency, symbol error rate, and outage probability.
Based on Monte Carlo simulations, we prove our approach’s excellent accuracy and investigate
the behavior of the power scaling law and the power required to reach a specific capacity, de-
pending on the number of reflecting elements. We show that a LIS with approximately fifty
elements and four dedicated bits for phase quantization outperforms a conventional system’s
performance, i.e., a system without the assistance of a LIS.

As conclusion, we can say that the massive MIMO and LIS technologies offer substantial im-
provements and came to stay and coexist.
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Resumo
A evolução da tecnologia é rápida. No início do projeto de doutorado, o tema mais discutido era
a quinta geração de redes celulares. Agora, no final, já estamos falando sobre a sexta geração e o
que vem a seguir. Com isso em mente, minha tese aborda tópicos relacionados a MIMO massivo
e Large Intelligent Surfaces (LIS). Apesar da distância cronológica entre eles (o primeiro em
2016 e o segundo em 2020), ambos representam um salto significativo no desenvolvimento de
uma rede de acesso de baixa latência e uma mudança drástica na infraestrutura de comunicações
móveis.

Com várias antenas na estação base e no usuário, um dos problemas inerentes ao MIMO massivo
é a interferência. Assim, apresentamos uma aproximação precisa da razão sinal-interferência em
dois cenários: quando o número de antenas na estação base é finito e quando esse número é
grande o suficiente para ser considerado infinito. Consideramos a perda de percurso e o som-
breamento lognormal e provamos o excelente casamento entre simulação e nossa aproximação.

Em relação a LIS, comparamos o desempenho do sistema já publicado na literatura com o que
obtivemos de uma propagação baseada em linha de visada modelada a partir de canais Rice e
Matched Filter (MF). Propomos uma aproximação precisa para eficiência espectral e avaliamos
a perda quando a estação base não possui nenhuma informação de estado do canal e transmite
os símbolos com potências iguais para todos os usuários.

Em seguida, fazemos uma análise aprofundada de um sistema prático Single-Input Single-Output
(SISO) assistido por LIS de forma a caracterizar seu desempenho. Assumimos imperfeições para
os valores dos coeficientes de reflexão. Em uma primeira etapa, as expressões de probabilidade
de erro de símbolo são obtidas para cenários SISO com e sem erros de fase. Validamos todos
os resultados por simulações numéricas e demonstramos uma excelente concordância. As com-
parações com os modelos existentes mostram que os sistemas práticos apresentam uma perda
considerável de desempenho.

Na próxima etapa, o estudo é ainda mais abrangente. Como os erros de quantização são inevi-
táveis, avaliamos a influência do número de bits dedicados à quantização de fase no cálculo de
importantes parâmetros de desempenho, tais como, eficiência espectral, taxa de erro de símbolo
e probabilidade de interrupção. Com base em simulações de Monte Carlo, provamos a excelente
precisão de nossa abordagem e investigamos o comportamento de power scaling-law e a po-
tência necessária para atingir uma capacidade específica, dependendo do número de elementos
reflectores. Mostramos que um LIS com aproximadamente cinquenta elementos e quatro bits
dedicados à quantização de fase supera o desempenho de um sistema convencional, ou seja, um
sistema sem o auxílio de LIS.

Como conclusão, podemos dizer que as tecnologias MIMO massivo e LIS oferecem melhorias
substanciais e vieram para ficar e coexistir.
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1

Introduction

This doctorate was born in 2016 when the fifth generation of mobile communications
(5G) was still a distant reality. The text of the initial project written at that time quoted the
following:

“Technological advances such as real-time multimedia, video, and high-resolution image
applications have driven demand for ever-increasing communications service fees. A growth
factor of approximately forty times in the next five years is estimated [4]. However, this demand
arises, concomitantly, in a scenario where the availability of frequency and energy spectrum is
increasingly limited [5].

To supply the growing demand, new researches have been made to include fundamental
changes for 5G [6]. The next generation is expected to bring some changes from the current
generation. The most important technical improvements aim to achieve the following aspects:
higher data transmission speed, lower latency, and greater energy efficiency. The main idea is
to guarantee the necessary structure for the Internet of Things (IoT) to become a reality in the
world [7].

Thus, the big question still unanswered is how to offer increased throughput over the
wireless network reliably and uniformly. The main solutions already presented in the literature
cover three categories:

• Exploration of the unused frequency spectrum;

• Implementation of more access points, specific to more restricted areas;

• Use of access points and terminals with multiple antennas.

Specifically, our goal is to study the use of multiple antennas added to both the Base Sta-
tion (BS) and mobile terminal. Massive Multiple-Input Multiple-Output (MIMO), also known
as Large-Scale Antenna Systems, Large-Scale MIMO, ARGOS, Full-Dimension MIMO and Hy-
per-MIMO, is an emerging technology scaled to orders of magnitude far superior to the current
technical scenario.”

At that time, one of the news that motivated me to study Massive MIMO was that
researchers at Rice University (Texas) conducted experimental research on even more com-
prehensive wireless technology. Known as ArgosNet, the prototype that already exists (Figure
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1.1) is equipped with up to twelve programmable base stations, each with about 100 or more
antennas [1].

Figure 1.1 – Argos-Net prototype [1].

But the evolution of technology is fast. Now, in 2020 5G represents a significant leap in
developing a low latency access network through new frequency bands such as the millimeter
(mmWave) wave spectrum, licensed and unlicensed bands [8]. If it became a commercial success,
it was thanks to massive MIMO.

Digitally controllable antenna arrays can be deployed “anywhere.” Conventional sites op-
erating in the sub-6 GHz band are equipped with arrays of at least 64 antennas (per sector) for
spatial multiplexing over broad areas. New BSs operating on mmWave bands can be deployed
both indoor and at street level to provide coverage of the local area [9]. In fact, according
to Zappone et al. [10], our society is undergoing a digitization revolution, with a substantial
increase in internet users and connected devices. As innovative as the fifth generation, features
such as infrastructure and antenna densification, and frequency bands in the mmWave range
system cannot achieve the desired requirements. Its implantation is continually exposing some
limitations, and the original premise as an enabler for the Internet of Everything (IoE) is not
possible [11].

To overcome these challenges, a disruptive sixth generation (6G) wireless, whose design
follows technological trends and is adapted to the performance requirements of IoE applications
is being considered. Despite recent initiatives, the architecture and performance components of
6G remain mostly undefined.

A possible candidate to join such a generation is a Large Intelligent Surface (LIS). It is a
planar array comprising many nearly passive, low-cost, reflecting elements with reconfigurable
parameters. Figure 1.2, extracted from [2], provides a more practical overview of implementa-
tion. It is composed of some unit cells to form an array surface. Figure 1.2(a) illustrates the unit
cell’s top view schematic and its simplified equivalent circuit model. Four metallic rectangular
patches, each pair of which is bridged by a varactor diode, constitute a unit cell. The varactor
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diodes are biased via holes by the feeding network, composed of a slotted copper plate at the
substrate’s bottom. The unit cell can be modeled as a parallel resonant tank. The C, R, L1, L2,
Zl, Z0 and represent the equivalent capacitance, resistance, inductance on the top of the unit
cell, the equivalent inductance at the bottom of the unit cell, the equivalent load impedance of
the unit cell, the characteristic impedance of the air and the reflection coefficient of the unit
cell, respectively. The capacitance of the simplified equivalent circuit model for the unit cell is
dominated by the varactor diode, which indicates that the load impedance can be tuned by the
biasing voltage of the varactor diode.

Figure 1.2 – An overview of the LIS implementation [2].

With the smart controller’s help, it assists in interconnecting the physical and digital
worlds seamlessly and sustainably. This way, the wireless environment itself is turned into a
software-reconfigurable entity.

The uncertainties are countless, but we can guarantee that 6G will confluence past trends
and emerging trends with several technologies coexisting. So, it is only fair to study each one of
them. There is an envision that the LIS technology plays a critical role in 6G communication
networks, similar to the massive MIMO in 5G networks. Then, at least, let’s study the two
most important. So, this thesis addresses specific modeling topics about Massive MIMO and
LIS. In the sequel, this chapter gives an overview of the state of the art of both technologies.

1.1 Massive MIMO

In its original design, known as point-to-point MIMO, the transmitter transmits data
to a receiver equipped with some antennas. The users are accommodated at different times or



1. Introduction 24

frequency blocks. Each use of the channel comprises sending and receiving a signal vector. Each
signal received is a linear combination of transmitted signals.

Regarding point-to-point MIMO communication, there are already designed techniques
capable of achieving diversity gains that improve the channel’s reliability and transmission rate.
Implementations of these techniques include time-space codes, antenna selection, and spatial
multiplexing, which maximizes the data rate, and even capable techniques combining diversity
and multiplexing gains [12].

On the other hand, multiuser MIMO has been extensively studied during the last two
decades and applied to several wireless standards. It can significantly improve the system’s
performance. Typically, a BS equipped with some antennas serves users simultaneously, shar-
ing the multiplexing gain. In addition to the equipment user terminals are cheaper, due to
multiplexing, the system generally becomes less sensitive to the environment.

Within this context, transmitting and receiving antennas is one of the main attributes
of modern wireless communication standards. For example, Long Term Evolution (LTE), Wi-
Fi, and Worldwide Interoperability for Microwave Access (WiMAX) can achieve high energy
and spectral efficiency. However, for most MIMO implementations, BS typically employs few
antennas, and the corresponding improvement in spectral efficiency, while important, is still
relatively modest.

The most exciting scenario in recent years has been the massive multiuser MIMO. In the
last effort to achieve even more significant gains and simplify the required signal processing,
a BS, equipped with a considerable number of antennas, serves a certain number of mobile
terminals.

However, some aspects limit the performance of massive MIMO systems and deserve to be
highlighted. Among them, we can mention the acquisition of Channel State Information (CSI),
the detection and precoding algorithms, the fading channel, and the pilot contamination. We
will focus our attention on the last two, detailing them further.

1.2 Large Intelligent Surfaces

The numerous advantages of massive MIMO [7], [13] are undeniable. So much so that it is
already one of the requirements set out in the recently defined 5G standard [14]. However, the
significant disadvantage of all this concerns the implementation challenges due to the enormous
physical size of antenna arrays [15]. The propagation at high frequencies through millimeter
waves has drastically reduced the size of the antennas. Still, they require many Radio Fre-
quency (RF) components, limiting developments in the commercial application. Therefore, it
is necessary to rethink antenna arrays’ architecture to design solutions adapted explicitly to
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more realistic scenarios.

LIS can be seen as a more natural evolution of massive MIMO but taken to the extreme.
Because it is a surface with radiating and sensory elements, these surfaces resemble wallpapers
electromagnetically active with built-in processing power. Its great advantage is to make it
possible to focus energy in three-dimensional space and remote sensing with extreme precision.

A first analysis of the information transfer resources has already been carried out and
proves this new tool’s viability. However, little is known about LIS, and some of its parameters
need to be correctly estimated.

1.3 Summary of Contributions and Thesis Outline

In order to present the evolution, this thesis is organized in chronological order of devel-
opment and follows the structure below.

Chapter 2: From closed-form expressions, we model and analyze the performance of mas-
sive MIMO systems from the SIR point of view. Unlike most works that consider users uniformly
distributed, we also take into account specific cases where they are concentrated in the center
or the edge of the cell.

Chapter 3: Preliminary studies on optimization help us to understand how RIS-assisted
systems work. They gave us the background for a more in-depth approach.

Chapter 4: Faced with real scenarios with channel estimation and quantization errors, we
model some performance parameters of RIS-assisted systems.

Chapter 5: With further analysis, we again derived performance parameters from RIS-
assisted systems, but now focusing our attention only on quantization errors.
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2

Accurate Lognormal Approximation to
the Signal-to-Interference Ratio in

Massive MIMO

2.1 Introduction

MIMO emerges as a promising technology to meet the stringent requirements of future
fifth generation systems. This technology represents a drastic change in the infrastructure of
cellular networks, since its communication system is composed of Base BS with hundreds of
antennas and can serve simultaneously dozens of user terminals, each having a single antenna.
The BS is responsible for sending independent data streams to multiple user terminals in the
same time-frequency resource [13]. Furthermore, each user terminal is ideally assigned with
an orthogonal pilot sequence in the uplink channel during the training stage. However, the
maximum number of such sequences is limited by the duration of the coherence interval. So,
the available amount of orthogonal pilot sequences, in a multicell system, is finite and can result
in pilot contamination in two different situations.

In the first, when the number of pilot sequences is superior or equal to the number of
user terminals, it is assumed orthogonality between pilot sequences of the same cell. But the
frequency is reused and employed in a regular pattern to ensure that the intercell interference
remains below a harmful level. On the other hand, when the number of pilot sequences is inferior
to the number of user terminals, pilot sequences are reused within the same cell to reduce the
training overhead [16]. In this way, non-orthogonal pilot sequences need to be employed, which
is the major source of pilot contamination, known as intracell interference [13].

The influence of the all the interference is normally modeled in the Signal-to-Interference
Ratio (SIR) parameter. As our main contribution, this work presents an accurate log-normal
approximation to the Cumulative Distribution Function (CDF) of SIR in two scenarios: when
the number of antennas at BS is finite and when this number is large enough and can be
considered infinite. Moreover, an approximation for the capacity has also been presented, in
which the slow fading is a combination of path loss and log-normal shadowing. Practical case
studies are provided to illustrate the very good match between simulation results and our
analytical approximation. The validity of our approximation is extended not only to uniform
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user distribution but also to users distributed non-uniformly. To the best of our knowledge, no
similar results have been found in the literature.

The remaining of this paper is organized as follows: Section 2.2 presents the system model
while in Section 2.3 closed-form expressions for SIR and system capacity are proposed. Section
2.4 shows some examples of a common scheme in the literature and final remarks are given in
Section 2.5.

2.2 System Model

Based on Marzetta’s work [7], our model, as shown in Figure 2.1, consists of a hexago-
nal cellular geometry. The BSs, located at the center of the cell, hold a determined number
of antennas, 𝑀 . For operation simplicity, the Orthogonal Frequency Division Multiplexing
(OFDM)/Time Division Duplex (TDD) is used. In this way, it is assumed that the channel
is flat fading and exhibits a reciprocity behavior, reducing the overhead required for the ac-
quisition of Channel State Information (CSI) by means of uplink training signals. The OFDM
symbol interval is denoted by 𝑇s, the subcarrier spacing by Δ𝑓 , and the useful symbol duration
by 𝑇u = 1/Δ𝑓 . The scheme consists of a tessellation of non cooperative hexagonal cells. The 𝑁

l-cell

k-user
djkl

j-cell

Figure 2.1 – System model with hexagonal cells and, the distance 𝑑𝑗𝑘𝑙 between 𝑘-user of 𝑙-cell
and the BS in 𝑗-cell.

BSs are deterministically distributed in a circular region. It is assumed that the BSs employ fre-
quency reuse Δ and that the BSs in different bands do not interfere with each other. There are,
in total, 𝐾 user terminals within each of the 𝐿 active cells re-using the same frequency bands
and pilot sequences. The system performance is studied under the identically and independently
distributed (iid) fading assumption, including uncorrelated log-normal shadow fading, and ge-
ometric attenuation.Also, the channels are considered spatially uncorrelated with each other.
The user terminals are randomly distributed in a hexagonal cell, whose radius is 𝑟𝑐, except in
a disk of radius 100 m centered at the BS. Interfering nodes, that affect a particular cell, are
separated into tiers that reuse the same frequency band and are within eight cell-diameters
of that cell, as adopted by Marzetta [7]. Also, it is assumed perfect synchronism between the
signals received from different cells, which is the worst case in terms of pilot contamination.

As in [17], for each subcarrier, the vector between the 𝑗-th BS and the 𝑘-th user at the
𝑙-th cell is denoted by 𝑔𝑗𝑘𝑙 =

√︁
𝛽𝑗𝑘𝑙𝑔𝑗𝑘𝑙, in which 𝛽𝑗𝑘𝑙 refers to the long-term fading coefficient,
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comprising path loss and log-normal shadowing. 𝑔𝑗𝑘𝑙 is the short-term fading channel vector,
that follows a normal distribution with zero mean and unitary variance. In its turn, the orthog-
onal pilot sequences set is represented by Ψ = [Ψ1Ψ2 . . .Ψ𝜏 ] ∈ C𝜏×𝜏 , in which 𝜏 is the number
of available sequences, Ψ𝐻Ψ = 𝐼𝜏 and 𝐻 is hermitian operator. Considering Ψ𝑘 as the assigned
sequence for the 𝑘-th user, the received signal at the 𝑗-th BS during the training stage is

𝑌 𝑝
𝑗 = √

𝜌𝑝
𝐿∑︁
𝑙=1

𝜏∑︁
𝑘=1

𝑔𝑗𝑘𝑙Ψ𝐻
𝑘 +𝑁𝑗, (2.1)

in which 𝜌𝑝 is the uplink pilot transmit power, 𝑁𝑗 ∈ C𝑀×𝜏 is the Additive White Gaussian
Noise (AWGN) matrix with iid elements following a complex normal distribution with zero
mean and variance 𝜎2

𝑛. The 𝑗-th BS estimates the 𝑘-th user CSI by correlating 𝑌 𝑝
𝑗 with Ψ𝑘. By

acquiring such estimates, the BS is able to perform linear detection in uplink employing the
Maximal Ratio Combining (MRC) scheme in frequency domain. So, the 𝑗-th BS receives the
following signal

𝑦𝑗 = √
𝜌𝑢

𝐿∑︁
𝑙=1

𝐾∑︁
𝑘=1

𝑔𝑗𝑘𝑙𝑥𝑘𝑙 + 𝑛𝑗, (2.2)

in which 𝜌𝑢 is the uplink data transmit power, 𝑥𝑘𝑙 is the data symbol from the 𝑘-th user of the
𝑙-th cell and 𝑛𝑗 is the 𝑀 × 1 AWGN sample vector.

2.3 Proposed Approximation

Next, this work presents the assumptions and steps to derive our proposed approximation
for the distribution of SIR, considering a finite and infinite number of antennas 𝑀 . Without
loss of generality, only the uplink SIR is considered, but the downlink case is very similar.

2.3.1 Finite Number of BS Antennas

From the estimates available at the 𝑗-th BS, and the received signal during the uplink
data transmission stage (2.2), the uplink SIR, employing MRC, can be given by [17, Eq. 14],

𝛾u
𝑗𝑘 =

𝜁2
𝑗𝑘𝑗∑︀𝐿

𝑙=1,𝑙 ̸=𝑗 𝜁
2
𝑗𝑘𝑙 + 𝛼2

𝑗𝑘

𝑀

(︁∑︀𝐿
𝑙=1

∑︀𝐾
𝑖=1 𝜁𝑗𝑖𝑙 + 𝜎2

𝑛

𝛾𝜌𝑢

)︁ , (2.3)

in which the index 𝑗𝑘𝑙 refers to a quantity related to the 𝑘-th terminal in the 𝑙-th cell and the BS
in the 𝑗-th cell. 𝜁𝑗𝑘𝑗 = 𝛽𝑗𝑘𝑗

𝑑𝜖
𝑗𝑘𝑗

, in which the variable 𝛽𝑗𝑘𝑙 represents the shadow fading coefficient,
modeled as a log-normal random variable with mean 𝜇, and variance 𝜎2 in the logarithmic
scale, 𝑑𝑗𝑘𝑙 is the distance between the user terminal and the correspondent BS. The variable 𝜖
is the decay exponent, typically 𝜖 ≥ 2. The AWGN follows a complex normal distribution with
zero mean and variance 𝜎2

𝑛, 𝛼2
𝑗𝑘 = ∑︀𝐿

𝑙=1 𝜁𝑗𝑘𝑙 + 𝜎2
𝑛

𝜌𝑝 , and 𝜌𝑢 = 1, since it is assumed that all users
have unit transmit power. Also, 𝛾 accounts the transmit power loss due to Cyclic Prefix (CP).
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Given a certain number of users inside the cell, it is assumed that all the users are
uniformly distributed from the inner radius 𝑟 to the outer radius 𝑅, for a given tier. Since
the circumference of a circle is proportional to its radius, the Probability Density Function
(PDF) 𝑓𝑑𝑗𝑘𝑙

(𝑑) is also proportional to its radius, that is, 𝑓𝑑𝑗𝑘𝑙
(𝑑) = 𝑎𝑑 for some constant 𝑎. The

condition
∫︀ 𝑅
𝑟 𝑓𝑑𝑗𝑘𝑙

(𝑑) = 1 implies in 𝑎 = 2
𝑅2−𝑟2 , therefore

𝑓𝑑𝑗𝑘𝑙
(𝑑) =

⎧⎪⎨⎪⎩
2𝑑

𝑅2−𝑟2 , if 𝑟 ≤ 𝑑 ≤ 𝑅

0, otherwise.
(2.4)

The computation of the exact distribution of (2.3) is very intricate, and possibly, the final
solution would be useless due to its complexity. In order to corroborate this assertion, the exact
distribution of the numerator of (2.3), defined as Θ = 𝛽2

𝑗𝑘𝑗𝑑
−2𝜖
𝑗𝑘𝑗 , is derived. As said before, the

random variable 𝛽𝑗𝑘𝑗 is log-normal distributed and the distribution of 𝑑𝑗𝑘𝑗 is given by (2.4).
Finally, the PDF of Θ can be computed as the ratio of two random variables [18], and given in
an exact manner as

𝑓Θ(𝜃) =
𝜃− 𝜖+1

𝜖 𝑒
2(𝜎2+𝜇𝜖)

𝜖2

[︂
erf
(︂

− 1
2 𝜖(2𝜖 log(𝑅)+log(𝜃))+2𝜎2+𝜇𝜖√

2𝜎𝜖

)︂
− erf

(︂
− 1

2 𝜖(2𝜖 log(𝑟)+log(𝜃))+2𝜎2+𝜇𝜖√
2𝜎𝜖

)︂]︂
2𝜖(𝑟2 −𝑅2) ,

(2.5)
where erf(·) is the error function.

Unfortunately, this PDF does not have a closed form solution for its characteristic func-
tion, therefore, the computation of the PDF of the sum, presented in the denominator, would
not be possible. In order to circumvent this problem, it is proposed to approximate Θ by a log-
normal distribution 𝑋. Through the moment matching method, the mean 𝜇̂𝑥, and the variance
𝜎̂2
𝑥 of 𝑋 are estimated using the equalities E[log𝑋] = E[log Θ] and also V[log𝑋] = V[log Θ],

where E [·], and V [·] are the expectation, and variance operator, respectively. Therefore, the
following can be written

𝜇̂𝑥 = E[log(Θ)] = 2E[log(𝛽)] − 2𝜖E[log(𝑑𝑗𝑘𝑙)] =

= 2𝜇− 𝜖 {𝑟2 [1 − 2 log(𝑟)] +𝑅2 [1 − 2 log(𝑅)]}
𝑟2 −𝑅2 , (2.6)

where E[log(𝑑𝑗𝑘𝑙)] is evaluated with respect to the distribution of 𝑑𝑗𝑘𝑙, as defined in (2.4). In
the same way, the variance 𝜎̂2

𝑥 can be computed as,

𝜎̂2
𝑥 = V[log(Θ)] = 4V[log(𝛽)] + 4𝜖2V[log(𝑑𝑗𝑘𝑙)] =

= 4𝜎2 +
𝜖2
{︁
𝑟4 − 𝑟2𝑅2

[︁
2 + 4 log2

(︁
𝑅
𝑟

)︁]︁
+𝑅4

}︁
(𝑟2 −𝑅2)2 . (2.7)

Then, as supposed, the PDF of 𝑋 is the very well known log-normal distribution given as [18]

𝑓𝑋(𝑥) = 𝑒
− (log(𝑥)−𝜇̂𝑥)2

2𝜎̂2
𝑥

√
2𝜋𝑥𝜎̂𝑥

. (2.8)



2. Accurate Lognormal Approximation to the Signal-to-Interference Ratio in Massive MIMO 30

The accuracy of the proposed approximation is illustrated in Figures 2.2 and 2.3. These
figures show the approximate, simulated and exact CDF and PDF of the random variable Θ,
respectively. As can be noted, our approximation is excellent and this is the key assumption
for approximating the distribution of (2.3) as a log-normal distribution.
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Figure 2.2 – Simulated, approximate and exact cumulative distribution function for Θ (𝑟 = 100
and 𝑅 = 2000).
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Figure 2.3 – Simulated, approximate and exact probability density function for Θ (𝑟 = 100 and
𝑅 = 2000).

In the literature [19], it is well known that the ratio of two log-normal variables is also a log-
normal variable. In this sense, if a log-normal distribution could approximate the distribution
of the denominator of (2.3), then the entire ratio, given in (2.3), also would be log-normal
distributed. To this end, every term inside the sum of the denominator is approximated as a
log-normal distribution (similar to the 𝑋 variable), and then, based on the result of Filho et
al. [20], to approximate the sum of log-normal variables as a log-normal variable. This can be
performed by matching the first two moments of the inverse exact sum with those of the inverse
log-normal approximation. In this way, the parameters of the resulting log-normal distribution
are determined.

Lets call the first term in the denominator of (2.3) as 𝑆. This random variable can be
approximated as the sum of approximate iid log-normal variables as 𝑆 = ∑︀

𝑙 ̸=𝑗 𝛽
2
𝑗𝑘𝑙𝑑

−2𝜖
𝑗𝑘𝑙 . We want

to approximate the sum of log-normal variates in 𝑆 by a single log-normal variable, denoted
here as 𝑌 . To this end, the moments are matched in the following way: E[𝑌 −1] = E[𝑆−1], and
also E[𝑌 −2] = E[𝑆−2]. Since E[𝑌 −1] = 𝑒−(𝜇̂𝑦−𝜎̂2

𝑦/2) and E[𝑌 −2] = 𝑒−2(𝜇̂𝑦−2𝜎̂2
𝑦/2), then with some
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mathematical manipulations, it is possible to write that

𝜇̂𝑦 = 0.5 ln E[𝑆−2] − 2 ln E[𝑆−1]

𝜎̂2
𝑦 = ln E[𝑆−2] − 2 ln E[𝑆−1], (2.9)

where E[𝑆𝑛] is the 𝑛-th moment of 𝑆, while 𝜇̂𝑦 and 𝜎̂𝑦 are the mean and standard deviation of
the approximated log-normal random variable 𝑌 , respectively.

Following the same reasoning, the second term in the denominator of (2.3) presents the
terms 𝑉 = 𝛼2

𝑗𝑘

𝑀
, and 𝑊 = ∑︀𝐿

𝑙=1
∑︀𝐾
𝑘=1

𝛽𝑗𝑘𝑙

𝑑𝜖
𝑗𝑘𝑙

+ 𝜎2
𝑛. Both terms are approximated as log-normal

distributed, and since the product of log-normal distributions is also log-normal distributed,
the random variable 𝑍 = 𝑉𝑊 can be approximated as a log-normal variable. So, 𝜇̂𝑧 = 𝜇𝑣 +𝜇𝑤

and 𝜎̂2
𝑧 = 𝜎2

𝑣 + 𝜎2
𝑤, where 𝜇𝑣, 𝜇𝑤, 𝜎2

𝑣 and 𝜎2
𝑤 are means and variances of the variables 𝑉 and

𝑊 , respectively. Following the same rationale, the sum 𝑌 +𝑍 can be approximated by another
log-normal variable, whose parameters are 𝜇̂𝑦𝑧 and 𝜎̂2

𝑦𝑧.

Since the terms of the numerator and denominator are uncorrelated, the distribution
of the ratio of log-normals is also log-normal distributed, so the resultant parameters of the
distribution of the SIR are 𝜇̂𝑥𝑦𝑧 = 𝜇̂𝑥 − 𝜇̂𝑦𝑧 and 𝜎̂2

𝑥𝑦𝑧 = 𝜎̂2
𝑥 + 𝜎̂2

𝑦𝑧. Finally, the CDF of 𝛾u
𝑗𝑘, given

in (2.3), can be written as

P[𝛾u
𝑗𝑘 ≤ 𝜈] = 1

2 erfc
⎛⎝ log 𝜈 − 𝜇̂𝑥𝑦𝑧

𝜎̂2
𝑥𝑦𝑧

√
2

⎞⎠ , (2.10)

where erfc (·) is the complementary error function.

According to Marzetta [7], the net capacity per terminal for uplink, 𝐶u
𝑗𝑘, in bits/sec/terminal,

for uplink is given by

𝐶u
𝑗𝑘 = 𝐵

Δ

(︂
𝑇slot − 𝑇pilot

𝑇slot

)︂(︂
𝑇u

𝑇s

)︂
log2(1 + 𝛾u

𝑗𝑘), (2.11)

where 𝐵 is the total bandwidth in Hz, 𝑇slot is the slot length, 𝑇pilot is the time to transmit
pilot sequences, 𝑇u is the useful symbol duration, and 𝑇s is the OFDM symbol interval, where
the time is measured in seconds. Then, defining a constant 𝑈 = 𝐵(𝑇slot−𝑇pilot)𝑇𝑢

Δ𝑇slot𝑇𝑠
, it is possible to

obtain a closed-form expression for the CDF of 𝐶u
𝑗𝑘 as shown in

P[𝐶u
𝑗𝑘 ≤ 𝑐] =

⃒⃒⃒
𝜇̂𝑥𝑦𝑧 − log(2𝑐/𝑈 − 1)

⃒⃒⃒
erf

[︂ |𝜇̂𝑥𝑦𝑧−log(2𝑐/𝑈 −1)|√
2𝜎̂𝑥𝑦𝑧

]︂ ⃒⃒⃒
−𝜇̂𝑥𝑦𝑧 + log(2𝑐/𝑈 − 1)

⃒⃒⃒
2 |𝜇̂𝑥𝑦𝑧 − log(2𝑐/𝑈 − 1)| (2.12)

2.3.2 Infinite Number of BS Antennas

As shown in Madhusudhanan et al. [21], as the number of BS antennas is very large
(𝑀 → ∞), the effects of uncorrelated noise and fast fading vanish completely, and there is
no interference between data transmissions inside a cell. So, the simplest linear precoders and
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detectors are proved to be optimal. However, since every terminal is assigned an orthogonal
time-frequency pilot sequence reused in other cells according to Δ, the only source of pilot
contamination is the intercell interference. The asymptotic uplink SIR can be expressed as

𝛾u
𝑗𝑘 =

𝜁2
𝑗𝑘𝑗∑︀

𝑙=1, 𝑙 ̸=𝑗
𝜁2
𝑗𝑘𝑙

. (2.13)

Note that as (2.13) is composed, in the numerator by Θ, and in the denominator by
𝑆, it can be approximated by 𝑋 and 𝑌 , respectively, as a ratio of two log-normal random
variables whose mean and variance parameters are, respectively, given by 𝜇̂𝑥𝑦 = 𝜇̂𝑥 − 𝜇̂𝑦 and
𝜎̂2
𝑥𝑦 = 𝜎̂2

𝑥 + 𝜎̂2
𝑦. Finally, when 𝑀 → ∞, the CDFs of 𝛾u

𝑗𝑘 and 𝐶u
𝑗𝑘 can be obtained from (2.10)

and (2.12), respectively, assuming 𝜇̂𝑥𝑦𝑧 = 𝜇̂𝑥𝑦 and 𝜎̂2
𝑥𝑦𝑧 = 𝜎̂2

𝑥𝑦.

2.3.2.1 Non-Uniform Spatial Distribution

In this section, an approximation for (2.13) considering two types of non-uniform spa-
tial distributions for terminal users is presented. Center-intensive user distribution and edge-
intensive user distribution, which are not only analytically simple but can model practical
scenarios. The center-intensive user distribution is particularly suitable for urban scenarios
with populated buildings, while the edge-intensive user distribution is used to model rural
mountainous propagation scenarios [22].

For center-intensive user distribution, the PDF of the distance can be expressed by

𝑓𝑑𝑗𝑘𝑙
(𝑑) = 𝑎𝑐(𝑅 − 𝑑)2 + 2𝑑

𝑅2 − 𝑟2 𝑏𝑐, 𝑟 ≤ 𝑑 ≤ 𝑅 (2.14)

in which the scaling factor 𝑎𝑐 controls how strongly the users cluster towards the BS, and
𝑏𝑐 = 3(r+R)

𝑎𝑐(r2−2rR+R2)+3(r+R)
. In this case, 𝜇̂𝑥 and 𝜎̂𝑥 are given respectively by (2.15) and (2.16).

The variable 𝜎̂𝑥 is a function of the parameter 𝐴.

𝜇̂𝑥 = (𝑟 −𝑅) −7𝑟𝑅𝑎𝑐 + 𝑟𝜖 (2𝑟𝑎𝑐 + 9) + 11𝑅2𝑎𝑐 + 9𝑅)
3(𝑟 −𝑅) [𝑟2𝑎𝑐 + 𝑟 (3 − 2𝑅𝑎𝑐) +𝑅 (𝑅𝑎𝑐 + 3)] + 6𝜇 (𝑟2𝑎𝑐 − 2𝑟𝑅𝑎𝑐 +𝑅2𝑎𝑐 + 3𝑟 + 3𝑅)

3(𝑟 −𝑅) [𝑟2𝑎𝑐 + 𝑟 (3 − 2𝑅𝑎𝑐) +𝑅 (𝑅𝑎𝑐 + 3)]

+ 6𝑅2𝜖 log(𝑅) (𝑅𝑎𝑐 + 3)
3(𝑟 −𝑅) [𝑟2𝑎𝑐 + 𝑟 (3 − 2𝑅𝑎𝑐) +𝑅 (𝑅𝑎𝑐 + 3)] + 6𝑟𝜖 log(𝑟) (𝑎𝑐𝑟2 − 3𝑎𝑐𝑟𝑅 + 3𝑎𝑐𝑅2 + 3𝑟)

3(𝑟 −𝑅) [𝑟2𝑎𝑐 + 𝑟 (3 − 2𝑅𝑎𝑐) +𝑅 (𝑅𝑎𝑐 + 3)]
(2.15)

𝜎̂𝑥 = −
(︂
𝐴(r − R)2 − 36rR2𝜖2 log

(︂ r
R

)︂{︂
(𝑎𝑐R + 3)

(︁
−3𝑎𝑐rR + r(𝑎𝑐r + 3) + 3𝑎𝑐R2

)︁
log

(︂ r
R

)︂
+

𝑎𝑐(r − R)[3𝑎𝑐rR + R(9 − 5𝑎𝑐R) + r]}
)︂ 1

2
(2.16)

in which

𝐴 = 𝜖2
{︁
4𝑎2

𝑐r4 + 2𝑎𝑐r3(21 − 17𝑎𝑐R) + 3r2[𝑎𝑐R(59𝑎𝑐R − 26) + 27] + 2rR[𝑎𝑐R(123 − 116𝑎𝑐R) + 81]+

R2[𝑎𝑐R(49𝑎𝑐R + 366) + 81] + 36𝜎2
[︁
𝑎𝑐r2 + r(3 − 2𝑎𝑐R) + R(𝑎𝑐R + 3)

]︁2
(2.17)
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On the other hand, for the edge-intensive user distribution, the PDF of the distance is
given by

𝑓𝑑𝑗𝑘𝑙
(𝑑) = 𝑎𝑒𝑑

2 + 2𝑑
𝑅2 − 𝑟2 𝑏𝑒, 𝑟 ≤ 𝑑 ≤ 𝑅 (2.18)

in which 𝑎𝑒 controls how strongly the users cluster towards the cell edge and 𝑏𝑒 = 3(r+R)
𝑎𝑒(r2+rR+R2)+3(r+R)

.
In this case, 𝜇̂𝑥 and 𝜎̂𝑥 are given by (2.19) and the variable 𝜎̂𝑥 is a function of the parameter 𝐵.
From (2.14) and (2.18), it can be noted that, for the special case 𝑎𝑐 = 𝑎𝑒 = 0, both distributions
reduce to the conventional uniform distribution.

𝜇̂𝑥 =
𝜖
[︁
r2(2𝑎𝑒r + 9) − 6r2(𝑎𝑒r + 3) log(r) − 2𝑎𝑒R3 + 6R2(𝑎𝑒R + 3) log(R) − 9R2

]︁
3𝑎𝑒r3 − 3R2(𝑎𝑒R + 3) + 9r2 + 2𝜇

𝜎̂𝑥 =
⎯⎸⎸⎸⎷ 𝜖2𝐵

9
(︁
𝑎𝑒r3 − R2(𝑎𝑒R + 3) + 3r2

)︁2 + 4𝜎2

𝐵 = 4𝑎2
𝑒r6 − 8𝑎2

𝑒r3R3 + 4𝑎2
𝑒R6 + 42𝑎𝑒r5 − 42𝑎𝑒r3R2 − 42𝑎𝑒r2R3 − 36r2R2(𝑎𝑒r + 3)(𝑎𝑒R + 3) log2(r)

−36r2R2(𝑎𝑒r + 3)(𝑎𝑒R + 3) log2(R) + 36𝑎𝑒r2R2(r − R) log(R) + 36r2R2 log(r)[𝑎𝑒(R − r)

+2(𝑎𝑒r + 3)(𝑎𝑒R + 3) log(R)] + 42𝑎𝑒R5 + 81r4 − 162r2R2 + 81R4 (2.19)

2.4 Simulation Results

For the comparison between the analytical and simulated results, it is assumed that the
cellular area of interest is a tessellation filled by hexagonal cells with a radius of 𝑟c = 1600
meters. The BSs are distributed deterministically in the center of each hexagon cell whose hole
radius is 100 meters.

The OFDM parameters are identical to Long-Term Evolution (LTE): 𝑇s = 500/7 𝜇𝑠,
Δ𝑓 = 15 kHz, 𝑇u = 1/Δ𝑓 , 𝑇slot𝑇pilot

𝑇slot
= 3/7, and 𝐵 = 20 MHz. The shadow-fading is modeled as

a random variable, 𝛽𝑗𝑘𝑙, that follows a log-normal distribution with 𝜇 = 0 and 𝜎 = 8 dB. The
frequency reuse factor varies as Δ ∈ {3, 7}, while the decay exponent is 𝜖 = 3.8. There is no
power control and the power of BSs and the user terminals are unitary, as well as 𝛾.

Figure 2.4 shows the CDFs of SIR, in which the analytical result is represented by dashed
black lines, while the solid ones refer to the simulated data. The circles indicate the curves for
Δ ∈ {3, 7}. As it can be seen, our approximation perfectly matches the simulated results for
all range of SIR.

In order to investigate the influence of the number of antennas 𝑀 , Figure 2.4 also shows
the CDF for 𝜎𝑛 = 0, 𝐾 = 5 and 𝑀 = 10, in gray color, and for 𝑀 → ∞, in black color. Using
Δ = 7, for an arbitrary value of 0.6 for the CDF, it can be observed a gap of 6 dB between the
SIRs. The CDF was also calculated for 𝑀 = 106, and in this case, the gap, between the finite
𝑀 and the asymptotic case, although small still does not vanish. So, it has been observed that
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Figure 2.4 – Cumulative distribution of SIR (dB) when 𝑀 = 10 (gray curves) and 𝑀 → ∞
(black curves).

the convergence between (2.3) and (2.13) is slow. In this sense, our derived expression can be
used to assess how many antennas are necessary to achieve a target performance. In addition,
as expected, as Δ increases, the number of interferers decreases and the SIR becomes larger,
so the curve of Δ = 7 is positioned to the right in this plot, while the curve of Δ = 3 is in the
left side.

Figure 2.5 shows the analytical (2.12) and simulated CDFs of the net uplink capacity per
terminal represented by dashed and solid lines, respectively. It is observed that, for larger Δ,
the capacity increases when the asymptotic SIR is low. In this region, the gains due to SIR
compensate the loss by the frequency reuse, associated with the reduction in the bandwidth
used by each cell. On the other side, when the SIR is high, a higher frequency reuse factor
causes a net decrease in the system performance. As before, in all the cases, both simulated
and analytical curves are almost indistinguishable.

Finally, considering infinite 𝑀 and non-uniform user distribution, Figure 2.6 shows the
CDFs of SIR, in which the analytical result is represented by dashed lines, while the solid ones
refer to the simulated data. The circles indicate the curves for Δ = 3, 7. The black and gray
colors refer to the curves obtained from the center and edge user distributions, respectively. As
it can be seen, our approximation again presents an excellent agreement.
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Figure 2.5 – Cumulative distribution function of the net uplink capacity per terminal (Mbps).
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Figure 2.6 – Cumulative distribution function of SIR (dB), considering center and edge inten-
sive user distributions.

2.5 Conclusions

In this chapter, the performance of a massive MIMO system was evaluated modeling
the shadowing as a log-normal distribution. We have presented an approximated closed-form
expression for the PDF and CDF of the SIR for finite and infinite number of antennas. Using
the proposed approximation, the CDF for the net capacity was also derived, which allows the
analysis of the system performance. All approximations are based on the moment matching
method. The results have been validated by numerical simulations and have shown an excellent
agreement, considering both uniform and non-uniform user distributions.
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3

Preliminary Studies on the Large
Intelligent Surfaces Efficiency Under

Different Channels

Due to the growth in the number of applications and users requiring high-speed wireless
communication, the RF spectrum is becoming overly crowded [23]. For indoor environments,
the situation is even worse. The density of users and bandwidth demands are enormous, mainly
thanks to the coexistence of wireless services such as cellular networks, WiFi networks, Blue-
tooth systems, and IoT. Therefore, to accommodate this tremendous demand for wireless,
high-efficiency spectrum approaches are highly desired [24,25].

Recently proposed, LIS is a wireless communication system that can be considered an
extension of massive MIMO systems. But the idea transcends the traditional concept of antenna
arrays on the base stations [26]. Its main advantage is to enable energy focus in the three-
dimensional space through remote sensing with extreme precision. Because it constitutes the
distributed intelligent wireless communication, sensing, and computing platform, capable of
interconnecting the physical and digital worlds seamlessly and sustainably, LIS is considered
the basis of future networks [27,28].

The first studies on this subject began in 2014. From a range of experimental implemen-
tations, Hum et al. [29] showed that reconfigurable reflective arrangements and matrix lenses
could dynamically control the antenna beam. A similar concept to what we now call LIS was
only mentioned for the first time in 2015 at the University of California Berkeley project [15].
The general idea consisted of electromagnetically active wallpapers with built-in processing
power. A chain of Field Programmable Gate Array (FPGA) automatically controls a compact
integration of a large number of tiny antennas.

Nowadays, there is much research on this topic. However, challenges related to perfor-
mance, user location estimation, user assignment, and power allocation need to be addressed
more. Many of these works have focused on the LIS capacity for wireless communication, ad-
dressing some parameters previously developed for other systems.

For example, Björnson et al. [30] evaluate the performance of massive MIMO under ad-
verse conditions, bringing insights on how to maximize the Energy Efficiency (EE) setting the
number of BS antennas and active users and the amount of transmit power. Defined as the
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number of bits transferred per Joule of energy, the EE is affected by many factors such as
network architecture, transmission protocol, spectral efficiency, radiated transmit power, and
circuit power consumption.

Following this same reasoning, a relevant point of the system with LIS is that it is aligned
with the concepts of green communication [31]. In this topic, the critical task is to select
energy-efficient communications, networking technologies, and products to minimize resource
use whenever possible.

The two works of Huang et al. [3, 32] consider an LIS composed of passive antenna el-
ements. Performing as a scatterer with reconfigurable characteristics, it does not require any
dedicated energy source for either decoding, channel estimation, or transmission. The authors
come across a non-convex problem based on Majorization-Maximization (MM) alternated by
fractional programming to optimize the energy and spectral efficiencies. The objective func-
tion involves ratio terms. MM is an iterative optimization method that exploits a surrogate
function’s convexity to find their maxima or minima [33].

Although the optimization problem solution has already been given in [32], this work only
considered LIS systems modeled from Rayleigh channels with Zero Forcing (ZF) precoding.
Besides this, most previous research assumes that the channel fading is Rayleigh distributed.
Of course, the Rayleigh-fading model is a reasonable assumption for the fading encountered in
many wireless communications systems.

However, BS and LIS are part of the same infrastructure, and LISs are usually positioned
to explore the Line of Sight (LoS) path concerning fixed BS in 6G networks. Hou et al. [34] use
Rician fading channels for modeling the channel gain in an LIS-aided Non-Orthogonal Multiple
Access (NOMA) network.

We intend to compare the result already published in the literature to what we obtained
from an LoS propagation modeled from Rician channels and Matched Filter (MF). Besides,
due to the high computational cost, optimization is not always possible. In this case, we derive
an accurate approximation for spectral efficiency and evaluate the performance loss when BS
transmits the symbols with equal powers to all users.

The remaining of this chapter is organized as follows: Section 3.1 refers to the system
model, while Section 3.2 presents the problem formulation under the optimal view. Section
3.3 shows numerical simulations that confirm the superiority of Rayleigh channels in MIMO
systems. An sub-optimal analysis is made in Section 3.4. Finally, we close our discussion in the
Section 3.5 summarizing our conclusions.
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3.1 System Model

Among a few works, there is a consensus on adopting the system model depicted as
in Figure 3.1. As can be seen, the transmission occurs considering 𝐾 autonomous terminals
with only one antenna located in a three-dimensional environment and a two-dimensional LIS
implanted in one plane. The 𝑀 BS antennas transmit signals to 𝑁 LIS units. Due to an obstacle,
our setup consider that there is no direct path between BS and users. Also, 𝐻1 ∈ C𝑁×𝑀 and
𝐻2 ∈ C𝐾×𝑁 are the channel gain matrices between BS → LIS and LIS → 𝑘-users, respectively.

BS

M antennas

H1 H2

N LIS units

K users

•
•
•

Figure 3.1 – Radiation model of a signal transmitted from BS to LIS [3].

For analytic tractability, some simplifications are made primarily concerning propagation.
An ideal situation is considered with TDD protocol and perfect synchronization. Also, the BS
has complete knowledge of CSI.

3.2 Problem Formulation

Considering the system model represented in Figure 3.1, the signal received at 𝑘-th mobile
user can be written as

𝑦𝑘 = 𝛽2ℎ2,𝑘Φ𝛽1𝐻1𝑥+ 𝑤𝑘, (3.1)

in which 𝛽𝑡 denotes the large scale fading. In both of them, the index 𝑡 refers to link 1 (BS→LIS)
or to link 2 (LIS→ 𝑘-user). ℎ2,𝑘 ∈ C1×𝑁 is the channel gain vector between LIS and 𝑘-user and
represent the small scale fading. Also, Φ is a diagonal matrix of dimension 𝑁 × 𝑁 whose
elements Φ = 𝑒𝑗𝜃𝑛 are the effective phase shifts applied by all LIS reflecting elements, in which
𝜃𝑛 ∈ [0, 2𝜋]. 𝑤𝑘 ∼ CN(0, 𝜎2) is the thermal noise modeled as a realization of a zero-mean
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complex circularly symmetric Gaussian variable with variance 𝜎2
𝑤. Finally, 𝑥 = ∑︀𝐾

𝑘=1
√
𝑝𝑘𝑔𝑘𝑠𝑘.

In this expression 𝑝𝑘, 𝑔𝑘 and 𝑠𝑘 denote the transmit power, the precoding vector, and the unit
power complex-valued information symbol, respectively.

Then, the Signal-to-Interference-plus-Noise Ratio (SINR) is given by

𝛾𝑘 = 𝛽𝑘𝑝𝑘|ℎ2,𝑘Φ𝐻1𝑔𝑘|2∑︀𝐾
𝑖=1,𝑖 ̸=𝑘 𝛽𝑖𝑝𝑖|ℎ2,𝑘Φ𝐻1𝑔𝑖|2 + 𝜎2

𝑤

, (3.2)

in which 𝛽𝑘 is the 𝑘-user path-loss obtained by the product of 𝛽1 and 𝛽2.

The EE is defined as the ratio between the system achievable sum rate in bps and the total
power consumption in Joule. The optimization problem appears from (3.2), since it is necessary
to define the transmit powers for all users and the values for the LIS elements that jointly
maximize the bit-per-Joule energy efficiency performance. Therefore, the problem consists in
to solve the following non-convex optimization [35]:

maximize
𝑏𝑚Φ,𝑃

∑︀𝐾
𝑘=1 log2(1 + 𝛾𝑘)

𝜉
∑︀𝐾
𝑘=1 𝑝𝑘 + 𝑃𝐵𝑆 +𝐾𝑃𝑈𝐸 +𝑁𝑃𝑛

subject to log2(1 + 𝛾𝑘) > 𝑅𝑚𝑖𝑛,𝑘, ∀𝑘 = 1, . . . , 𝐾,

𝛽2 Tr[𝐺𝑃 𝐺𝐻 ] ≤ 𝑃𝑚𝑎𝑥,

|Φ| = 1 ∀𝑛 = 1, . . . , 𝑁,

(3.3)

where 𝐻 , and Tr indicate Hermitian (conjugate transpose), and trace of a matrix, respectively.
In its turn, 𝜉 is the efficiency of the transmit power amplifier, 𝑃𝑈𝐸 is the hardware static
power dissipated by the 𝑘-th user while 𝑃𝐵𝑆 and 𝑃𝑛 denote the total hardware static power
consumption at BS and LIS, respectively. 𝑅𝑚𝑖𝑛,𝑘 denotes the individual QoS constraint of the
𝑘-th user, 𝑃𝑚𝑎𝑥 is the maximal system power and 𝑃 = diag[𝑝1, . . . , 𝑝𝑘] ∈ C𝐾×𝐾 .

If we consider only the numerator of the objective function on (3.3), it can also optimize
the Spectral Efficiency (SE). This parameter measures the information rate transmitted over a
given bandwidth in a specific communication system. That is, how efficiently a limited frequency
spectrum is used. Its optimization problem consists of (3.3) considering 𝜉 = 0.

Our goal here is to analyze the LIS-assisted system under different scenarios. Therefore,
in relation to 𝑔𝑘:

• It can be Zero Forcing (ZF) precoding whose matrix is given by 𝐺 = (𝛽2𝐻2Φ𝛽1𝐻1)+, in
which + means pseudo-inverse, or

• It can be Matched Filter (MF) precoding whose matrix is given by 𝐺 = (𝛽2𝐻2Φ𝛽1𝐻1)𝐻 .

It is worth mentioning that in both cases, 𝐻2 = [ℎ𝑇
2,1, ℎ𝑇

2,2, ..., ℎ𝑇
2,𝐾 ]𝑇 ∈ C𝐾×𝑁 . Regarding the

channel, both 𝐻1 and 𝐻2 can be modeled according to:
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• Rayleigh fading: characterized by multipaths and modeled as [𝐻1]𝑖,𝑗 ∼ CN(0, 𝜎2) and
[ℎ2,𝑘]𝑖 ∼ CN(0, 𝜎2)], or

• Rician fading: when typically a dominant line of sight signal is much stronger than the
others. In this case, [𝐻1]𝑖,𝑗 ∼ CN(𝐾𝐹 , 𝜎

2)] and [ℎ2,𝑘]𝑖 ∼ CN(𝐾𝐹 , 𝜎
2)], where the shape

parameter, 𝐾𝐹 , is deterministic and is defined as the ratio of the power contributions by
LoS path to the remaining multipaths.

It is worth mentioning that high processing resource is not always possible. There is a
hardware limitation. In these situations, the best thing to do is to assume equal power for all
users. Therefore, a sub-optimal analysis is also presented in Section 3.4.

3.3 Numerical Results

In this section, numerical results are presented to validate the simulations obtained from
103 realizations, considering the practical values shown in Table I. The efficient MM approach
detailed in [32] is adopted. Beyond the variables defined in the table, it is considered that
both, ℎ2,𝑘 and 𝐻1, follow Rayleigh or Rician distribution and 𝐾𝐹 ∈ {1, 2, 4}. The multiple
single-antenna mobile users are assumed randomly and uniformly placed in the 100m×100m
half right-hand side rectangular, according to Figure 3.2.

100 m

200 m(0,0)

BS

LIS

H1

H2

100 m

Figure 3.2 – Scenario adopted with 𝐾 uniformly distributed users [3].

Figure 3.3 compares the optimization technique performance under different propagation
conditions from the EE point of view. Two curves refer to the MM-based method considering
the Rayleigh model, while the others are related to LoS with 𝐾𝐹 = 1. Note that the channel’s
energy efficiency under the Rayleigh fading has a higher energy efficiency than the Rician
case. The reason for this is the well studied rank degradation in MIMO environments and its
reduction on the spectral efficiency [36].
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Table 3.1 – Parameters adopted for the Monte Carlo simulations.
Description Value
Noise variance, 𝜎2 1
Circuit dissipated power coefficients at BS, 𝜉 1.2
Large scale fading, 𝛽𝑡 10−3.53/𝑑3.76

𝑡

Circuit dissipated power, 𝑃𝐵𝑆 40 dBm
Dissipated power at each user, 𝑃𝑈𝐸 10 dBm
Dissipated power at 𝑛-th LIS element, 𝑃𝑛 10 dBm
Individual QoS requirements, 𝑅𝑚𝑖𝑛,𝑘 0
Maximum transmit power at BS, 𝑃𝑚𝑎𝑥 50 dBm
Transmission bandwidth 180 kHz

Figure 3.3 – Average EE of Rician and Rayleigh channels under different setups.

Figure 3.4 presents this same parameter but considering the fading modeled as Rician
distribution with different 𝐾𝐹 deterministic factors. It is possible to notice that the higher 𝐾𝐹 ,
the higher the power of the dominant component and the worse is the system performance
when the channel is modeled as Rice distribution, consequently.

In its turn, Figure 3.5 compares the MF and ZF performances considering the SE of
Rayleigh and Rician channels. Just as in conventional MIMO systems, ZF stands out for
Rayleigh channels. However, when we consider the LoS scenario, MF precoding presents better
performance.

Finally, Figure 3.6 compares the EE obtained from MF and ZF techniques for two different
schemes with the Rayleigh channel. As expected, MF behaves better for low SNRs while the
performance of ZF stands out for high SNRs.
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Figure 3.4 – Average EE of Rician channels with different 𝐾𝐹 factors and 𝐾 = 8,𝑀 = 8, 𝑁 =
16.

Figure 3.5 – Comparison between ZF and MF applied to Rayleigh and Rician channels with
𝑁 = 16, 𝐾 = 8 and 𝑀 = 8.

Figure 3.6 – EE considering ZF and MF techniques for Rayleigh channels.
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3.4 Equal Power ZF

Another interesting aspect that deserves to be verified is to measure the loss in the system
performance when the total power is not optimized. That is because it is not always possible
to have the channel state information in real-time of a given effective system. In these cases,
the best we can do is assume the uniform transmit power for all 𝐾 users. So, the condition in
(3.3) becomes an equality and we can write Tr(𝐺𝑃𝐺𝐻) = 𝑃𝑚𝑎𝑥. Then

𝑝𝑘 = 𝑃𝑚𝑎𝑥
𝐾 Tr(𝛼) , (3.4)

in which 𝛼 = (𝛽2𝐻2𝜑𝛽1𝐻1)(𝛽2𝐻2𝜑𝛽1𝐻1)𝐻 . For simplicity, let 𝛽 = 𝛽1𝛽2 from now on.

Considering ZF precoding, let the sum-capacity be given by the sum of the spectral
efficiency of all users as

𝐶 =
𝐾∑︁

log2(1 + 𝑝𝑘𝜎
−2
𝑤 )

= 𝐾 log2

(︃
1 + 𝑃𝑚𝑎𝑥

𝐾𝑇𝑟[𝛼]

)︃
. (3.5)

Then, it is possible to obtain an analytical expression from the following steps.

Since 𝛼 is a random variable that depends on path loss represented by 𝛽, the probabil-
ity function is 𝑝(𝛼, 𝛽) = 𝑝(𝛼|𝛽)𝑝(𝛽) and so the expected value for the sum-capacity can be
expressed by

𝐶 = 𝐾
∫︁ ∞

0

∫︁ ∞

0
log2

(︃
1 + 𝑃𝑚𝑎𝑥

𝐾𝑇𝑟[𝛼]

)︃
𝑝(𝛼|𝛽)𝑝(𝛽)𝑑𝛼𝑑𝛽. (3.6)

A possible simplification is to replace 𝛽 for its expected value. Then

E[Tr(𝛼)] = E[𝛽2]E[Tr(𝛼1)], (3.7)

and
var[Tr(𝛼)] = E[𝛽2]

√︁
var[Tr(𝛼1)] (3.8)

in which 𝛼1 = (𝐻2𝜑𝐻1)(𝐻2𝜑𝐻1)𝐻 and var(.) means variance operator. In this case, (3.6) can
be rewritten by

𝐶 = 𝐾
∫︁ ∞

0
log2

(︃
1 + 𝑃𝑚𝑎𝑥

E[𝛽2]𝐾𝑇𝑟[𝛼1]

)︃
𝑝(𝛼1)𝑑𝛼1. (3.9)

From the central limit theorem, we can assume that 𝑝(𝛼1) follows a normal distribution.
In this case, the mean value can be obtained as

E[Tr(𝛼1)] =
𝐾∑︁
𝑖=1

𝑀∑︁
𝑖=1

E[|𝑔𝑖,𝑗|2]

= 𝐾𝑀𝑁𝜎2𝜎2
𝜑𝜎

2

= 𝐾𝑀𝑁, (3.10)
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in which 𝑔𝑖,𝑗 is the element of G located in the 𝑖-th row and in the 𝑗-th column. 𝜎2
𝜑 is the

variance of 𝜑. On the other hand, the second moment E[Tr2(𝛼1𝛼
𝐻
1 )] can be simplified by the

following expression using Mathematica software [37]:

E[Tr2(𝛼1)] =
𝑁∑︁
𝑏=1

𝑀∑︁
𝑟=1

𝐾∑︁
𝑝=1

𝐾∑︁
𝑡=1

𝑁∑︁
𝑏1=1

𝑀∑︁
𝑟1=1

𝐾∑︁
𝑝1=1

𝐾∑︁
𝑡1=1

Φ

= 𝐾𝑀𝑁(𝐾 +𝑀 +𝑁 +𝐾𝑀𝑁) (3.11)

in which Φ is expressed below as

Φ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if (𝑏 = 𝑏1) ∩ (𝑟 = 𝑟1) ∩ (𝑝1 = 𝑡) ∩ (𝑝 = 𝑡1) ∩ (𝑝 ̸= 𝑡) ∪ (𝑝1 ̸= 𝑡1) ∪ (𝑝 = 𝑡 ∩ (𝑝1 = 𝑡1) ∩ (𝑏 ̸= 𝑏1) ∩ (𝑟 ̸= 𝑟1) ∪ (𝑝 ̸= 𝑝1)

2, if (𝑏 ̸= 𝑏1) ∪ (𝑟 ̸= 𝑟1) ∩ (𝑏 = 𝑏1) ∪ (𝑟 = 𝑟1) ∩ (𝑝 = 𝑝1) ∩ (𝑝 = 𝑡) ∩ (𝑝1 = 𝑡1)

4, if (𝑏 = 𝑏1) ∩ (𝑝 = 𝑝1) ∩ (𝑟 = 𝑟1) ∩ (𝑝 = 𝑡) ∩ (𝑝1 = 𝑡1)
(3.12)

Since var[Tr(𝛼1)] = E[Tr2(𝛼1)] − E2[Tr(𝛼1)] [18], then

var[Tr(𝛼1)] = 𝐾𝑀𝑁(𝐾 +𝑀 +𝑁) (3.13)

Comparatively, Figure 3.7 shows three versions of sum-capacity: one optimum simulated
obtained by optimizing the transmit power and effective phase shifts of each user, one simulated
obtained through (3.6), and finally, one approximation. It is worth emphasizing that these last
two are sub-optimal since they consider the same transmit power for all users. The logarithmic
scale is adopted to make clear the tendency of the curves. It is evident the MM optimization
technique robustness since it provides a gain of 6 dB when used. However, considering situations
in which CSI is not available, the approximation derived here is very accurate concerning the
simulated sub-optimal results.

0 5 10 15 20 25 30 35 40

10-4

10-2

100

102

A
v
e
ra

g
e
 S

E
 (

b
p
s
/H

z
)

Suboptimal simulated

Optimal simulated

Suboptimal analytical

Figure 3.7 – Comparison between optimal, and suboptimal sum-capacity for 𝐾 = 8, 𝑀 = 8,
𝑁 = 16.
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3.5 Conclusions

In this chapter, we have reproduced some LIS-assisted systems modeled from Rayleigh
fading and ZF precoding. Then, they are compared to systems that consider Rician channels and
MF precoding. As already mentioned in the literature [38,39], we have confirmed that Rayleigh
channels perform better than Rician ones even in not conventional MIMO environments, like
LIS.

This result can be explained from the spread, the higher the scattering, the better the
system performance. What increases the spread, in this case, is the number of LIS reflecting
units and the fact that the channel is Rayleigh composed of various multipath.

Besides, ZF is better when the system power is high. However, in adverse environments,
when it is low, it is clear the MF superiority. A suboptimal analysis has also been made assuming
the same power for all users. An average gain of 6 dB in sum-capacity can be observed when
the optimization is applied.
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4

Realistic Large Intelligent
Surface-Assisted Systems

5G wireless technology is expected to be the most reliable and lowest latency technology
ever. It also looks to deliver massive connectivity to many devices that require low bandwidth
and low power. However, there is no single physical layer technology that can satisfy all re-
quirements of 5G. To overcome this issue, one of the solutions of the 6G wireless technology is
to exploit the broadcast nature of wireless propagation intelligently. The advent of LIS enables
network operators to intelligently control the radio propagation environment in order to boost
the signal quality [40].

At first glance, it may seem a futuristic technology the idea of a smart wireless communi-
cation capable of self-reconfiguring and sensing, processing, and learning from the environment
characteristics. Actually, this is already a reality and is being tested and marketed [41, 42].
This system consists of many nearly passive antenna elements, whose parameters can be tuned
according to desired objectives. It is also able to be reconfigured based on the information
received from the environment [27].

As described in the works [32, 43], there are some similarities of operation between LIS
and amplify-and-forward (AF) relaying. However, it is worth mentioning that, although several
studies already model the performance of AF systems [44, 45], the same techniques cannot be
used for LIS. In addition to the fact that there is no power amplifier in an LIS, its reflection
coefficients are complex entities with varying amplitude and phase.

Thus, it is essential to model the performance focusing on LIS-assisted systems. Although
it is a recent area of study, well-known works are highlighting the advantages of such technology.

Under hostile conditions like estimation errors and interference channels, Jung et al. [46]
evaluate the fundamental performance benefits of practical LIS environments, comparing it to
that obtained in massive multiple-input multiple-output (MIMO) systems. They conclude that
disturbs, like hardware impairments, noise, and interference from estimation errors, become
negligible as the number of LIS elements increases. A LIS-assisted system can also achieve
a performance comparable to conventional massive MIMO with improved reliability and a
significantly reduced area for antenna deployment.

Focusing on the link budget path-loss versus error performance, Basar et al. [47] models
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a perfect LIS and proves that the received power does decay with the second power of the
distance, just like the LoS ray. Considering phase noise, Badiu et al. [48] analyze such a sys-
tem’s performance and shows its robustness even under imperfect phase estimation or phase
quantization with errors. Although interesting, all these works mentioned above consider the
ideal scenario in which the reflection coefficient amplitude is fixed and equal to one.

From Yuen et al. [49], we know now that the phase shift causes reflective currents capable
of altering the previously reflection amplitude. However, the consequences of these changes for
the total system performance remain unclear.

This chapter aims to analyze the performance of single-input single-output (SISO) LIS-
assisted systems taking into account a non-unitary reflection coefficient with and without phase
error. This analysis provides insight into the performance loss inherent in practical systems.
More specifically, we characterize the equivalent channel between the source and the destination.
As the number of LIS elements increases, we can apply the central limit theorem (CLT). As
a consequence, the in-phase and quadrature components of the complex channel response can
be approximated by a Gaussian random variable. With this assumption, we assume a binary
phase-shift keying (BPSK) modulation and derive the exact and a very tight upper bound for
the symbol error probability.

The remaining of this chapter is organized as follows: Section 4.1 refers to the system
model, while Section 4.2 presents the mathematical formulation and analytical expressions
obtained for the symbol error probability in different cases. Section 4.3 shows numerical com-
parisons that confirm the accuracy of our approximation. Finally, we close the discussion in
Section 5.5 summarizing our conclusions.

4.1 System Model

The considered SISO wireless system comprises a single-antenna source (S), a single-
antenna destination (D), and an LIS composed for 𝑛 reflective elements, as shown in Figure
4.1. These structures, identified with index 𝑖 = 1 . . . 𝑛, are responsible for assisting the commu-
nication between S and D since the direct link between them is so hostile, it can be overlooked.

Assuming slow and flat fading, let 𝐻𝑖1 and 𝐻𝑖2 be the complex fading coefficients of the
S-to-R𝑖 and R𝑖-to-D channels, respectively. Also, we consider that the reflectors are sufficiently
spaced apart, such that all the coefficients are mutually independent.

Then, the signal received by the destination over the equivalent baseband channel is

𝑦 = 𝑛
√︁
𝐸𝑠|𝐻|𝑥+ 𝑤, (4.1)

in which 𝐸𝑠 is the average transmitted energy per symbol, 𝑥 is the binary transmitted signal
(𝑥 ∈ {−1, 1}), and 𝑤 is the additive white Gaussian noise with variance 𝜎2

𝑤.



4. Realistic Large Intelligent Surface-Assisted Systems 48
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Figure 4.1 – System model with LIS between S and D.

The channel response can be written as

𝐻 = 1
𝑛

𝑛∑︁
𝑖=1

|𝐻𝑖1| |𝐻𝑖2| 𝛽(𝜃𝑖)𝑒𝜃𝑖−𝛼𝑖−𝛿𝑖 ∈ C, (4.2)

in which 𝛼𝑖 = ]𝐻𝑖1 and 𝛿𝑖 = ]𝐻𝑖2 are the phase of both links. Also, let 𝛽(𝜃𝑖)𝑒𝜃𝑖 ∈ C𝑛×1

denote the reflection coefficient vector of the LIS 𝑖th element. 𝛽(𝜃𝑖) ∈ [0, 1] and 𝜃𝑖 ∈ [−𝜋, 𝜋]
are the amplitude and the phase shift on the combined incident signal, respectively. As defined
in [49], when the phase shift is around 𝜋 or −𝜋, the reflective currents are out-of-phase with
the element currents. Thus the electric field and the current flow in the element are diminished,
resulting in the highest reflection amplitude. In contrast, when the phase shift is around zero,
the reflective currents are in-phase with the element currents. The electric field and the current
flow in the element are both enhanced. As a result, the dielectric loss, metallic loss, and ohmic
loss increase dramatically, leading to substantial energy dissipation and the lowest reflection
amplitude. So,

𝛽(𝜃𝑖) = 𝛽min + (1 − 𝛽min)
{︂1

2[sin(𝜃𝑖 − 𝜑) + 1]
}︂𝑘
, (4.3)

in which 𝛽min ≥ 0, 𝜑 ≥ 0, and 𝑘 ≥ 0 are the constants related to the specific circuit imple-
mentation. 𝛽min is the minimum amplitude, 𝜑 is the horizontal distance between −𝜋

2 and 𝛽min,
and 𝑘 controls the steepness of the function curve. Note that for the ideal phase shift model
|𝛽(𝜃𝑖)| = 1, ∀𝑛, regardless of the phase shift.

4.2 Symbol Error Probability Approximation

This section discusses the different forms the exponent in (4.2) can take and the respective
mathematical implications. Therefore, there are four possible cases, and it is worth mentioning
that in all of them, 𝜃𝑖 is assumed uniformly distributed without loss of generality.
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4.2.1 Case I (𝛽(𝜃𝑖) = 1 and 𝜃𝑖 = 𝛼𝑖 + 𝛿𝑖)

As stated in [47], from (4.1) we have the following instantaneous SNR in D

𝛾 = |∑︀𝑛
𝑖=1 |𝐻𝑖1| |𝐻𝑖2| 𝛽(𝜃𝑖)𝑒𝜃𝑖−𝛼𝑖−𝛿𝑖 |2𝐸𝑠

𝜎2
𝑊

, (4.4)

whose maximal value happens when 𝜃𝑖 = 𝛼𝑖 + 𝛿𝑖 and so there is no phase error. Assuming
that the reflection coefficient amplitude is unitary, this is the optimal case. Its symbol error
probability for BPSK modulation is given by [47, Eq. 17]

𝑃𝑒 = 1
𝜋

∫︁ 𝜋
2

0

⎯⎸⎸⎷ 1
1 + (16−𝜋2)𝐸𝑠𝑛

8𝜎2
𝑊 sin2(𝜂)

exp

⎛⎜⎜⎝− 𝜋2𝐸𝑠𝑛
2

[16𝜎2
𝑊 sin2(𝜂)]

[︂
(16−𝜋2)𝐸𝑠𝑛
8𝜎2

𝑊 sin2(𝜂) + 1
]︂
⎞⎟⎟⎠ 𝑑𝜂, (4.5)

and the corresponding upper bound is given by [47, Eq. 18]

𝑃𝑒 ≤ 1
2

⎯⎸⎸⎷ 1
1 + (16−𝜋2)𝐸𝑠𝑛

8𝜎2
𝑊 )

exp

⎛⎜⎜⎝− 𝜋2𝐸𝑠𝑛
2

[16𝜎2
𝑊 )]

[︂
(16−𝜋2)𝐸𝑏𝑛

8𝜎2
𝑊

+ 1
]︂
⎞⎟⎟⎠ . (4.6)

4.2.2 Case II (𝛽(𝜃𝑖) = 1 and 𝜃𝑖 ̸= 𝛼𝑖 + 𝛿𝑖)

On the other hand, when the amplitude of the reflection coefficient remains unitary,
but there are phase errors, the result in [48] can be used. According to it, the phase error
represented by uniform distribution means high uncertainty. Then, 𝜑𝑝 = 0 for 𝑝 ≥ 1 and
we have that 𝐻 follows a normal distribution. Its real and imaginary parts, 𝐶 = R(𝐻) and
𝑆 = I(𝐻) respectively, are independent, with mean 𝜇𝐶 = 𝜇𝑆 = 0 and variance 𝜎2

𝐶 = 𝜎2
𝑆 = 1

2𝑛 .
Then, the symbol error probability is approximated by

𝑃𝑒 =
∫︁ 2𝜋

0

∫︁ ∞

0
𝑄

(︃√︃
𝑛2𝐸𝑠𝛾

2𝜎2
𝑊

)︃
×

exp
[︂
−𝛾 cos2(𝜁)

2𝜎2
𝐶

− 𝛾 sin2(𝜁)
2𝜎2

𝑆

]︂
4𝜋𝜎𝐶𝜎𝑆

𝑑𝛾𝑑𝜁, (4.7)

while its upper bound is given by

𝑃𝑒 ≤
√
𝑛𝜎𝐶𝜎

2
𝑊

2
√
𝑛𝜎𝐶 (𝐸𝑠𝑛2𝜎2

𝑆 + 𝜎2
𝑊 ) . (4.8)

4.2.3 Case III (𝛽(𝜃𝑖) ̸= 1 and 𝜃𝑖 = 𝛼𝑖 + 𝛿𝑖)

Here, we consider that the reflection coefficient amplitude is different from one, and there
is no error concerning estimation and quantization process. Just like in [47], the phase 𝜃𝑖 is
set to cancel the overall phase shift, which maximizes the SNR at the receiver [50]. However,
even so, 𝜃𝑖 causes a variation in the reflection coefficient amplitude. Then, the channel response
becomes

𝐻 = 1
𝑛

𝑛∑︁
𝑖=1

|𝐻𝑖1| |𝐻𝑖2| 𝛽(𝜃𝑖). (4.9)
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As 𝑛 tends to infinity, it is known that 𝐻 can be treated as a Gaussian random variable
distributed. Therefore, our approach proposes to find the mean and variance parameters of this
distribution, and then the symbol error rate as follows.

4.2.3.1 Mean of 𝐻

We know that the random variables are independent of each other and 𝐻𝑖1 and 𝐻𝑖2 are
Rayleigh variables defined by 𝜎𝑅 parameter. Let the term 𝜇𝛽 represents the expectation of
𝛽(𝜃𝑖), then

𝜇𝛽 = 𝛽min −
(𝛽min − 1)Γ

(︁
𝑘 + 1

2

)︁
√
𝜋Γ(𝑘 + 1) , (4.10)

in which Γ[.] represents the Gamma function. Then, substituting this expression, the mean of
𝐻, 𝜇𝐻 , can be obtained as

𝜇𝐻 = 1
2𝜋𝜎

2
𝑅

⎡⎣𝛽min −
(𝛽min − 1)Γ

(︁
𝑘 + 1

2

)︁
√
𝜋Γ(𝑘 + 1)

⎤⎦ . (4.11)

4.2.3.2 Variance of 𝐻

Regarding the variance of 𝛽(𝜃𝑖), it can be computed as

𝜎2
𝛽 =

(𝛽min − 1)2
[︃√

𝜋Γ(2𝑘+ 1
2)

Γ(2𝑘+1) − Γ(𝑘+ 1
2)2

Γ(𝑘+1)2

]︃
𝜋

, (4.12)

and so we have that the variance of 𝐻 is given by

𝜎2
𝐻 =

𝜎4
𝑅

⎛⎜⎜⎜⎜⎝
(𝛽min−1)

(︃
−

𝜋3/2(𝛽min−1)Γ(𝑘+ 1
2)2

Γ(𝑘+1)2 +
2(𝜋2−16)𝛽minΓ(𝑘+ 1

2)
Γ(𝑘+1) +

16(𝛽min−1)Γ(2𝑘+ 1
2)

Γ(2𝑘+1)

)︃
√
𝜋

− (𝜋2 − 16) 𝛽2
min

⎞⎟⎟⎟⎟⎠
4𝑛

(4.13)

4.2.3.3 Symbol Error Probability

Defined the mean and variance of 𝐻, we can then say that the SNR is a Gaussian random
variable with the following probability density function [19]

𝑓(𝛾) =
𝑒

− (𝜇𝐻 +√
𝛾)2

2𝜎2
𝐻

(︃
𝑒

2𝜇𝐻
√

𝛾

𝜎2
𝐻 + 1

)︃
2
√

2𝜋𝜎𝐻
√
𝛾

. (4.14)
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Considering the BPSK modulation, it is simple to show that the symbol error probability
is given by [51]

𝑃𝑒 =
∫︁ ∞

0
𝑄

(︃√︃
𝑛2𝐸𝑠𝛾

2𝜎2
𝑊

)︃
⎡⎣𝑒− (𝜇𝐻 +√

𝛾)2

2𝜎2
𝐻

(︃
𝑒

2𝜇𝐻
√

𝛾

𝜎2
𝐻 + 1

)︃⎤⎦
2
√

2𝜋𝜎𝐻
√
𝛾

𝑑𝛾, (4.15)

in which 𝑄 (·) is the Gaussian error function and can be approximated from the Chernoff bound
as 𝑄(𝑥) ≤ 1

2𝑒
− 𝑥2

2 , 𝑥 > 0. Then, the following upper bound can be found from (4.15)

𝑃𝑒 ≤ 𝑒
−

𝐸𝑠𝜇2
𝐻

𝑛2

2(𝐸𝑠𝑛2𝜎2
𝐻

+𝜎2
𝑊 )

2𝜎𝐻
√︂

𝐸𝑠𝑛2

𝜎2
𝑊

+ 1
𝜎2

𝐻

, (4.16)

whose limit is given by lim𝑛→∞ 𝑃𝑒 = 0 when 𝑛 tends to infinity.

4.2.4 Case IV (𝛽(𝜃𝑖) ̸= 1 and 𝜃𝑖 ̸= 𝛼𝑖 + 𝛿𝑖)

On the other hand, Case IV considers that there is an error related to the estimation or
quantization of phase. Assuming that the user on the destination is fixed, and the phases 𝛼𝑖
and 𝛿𝑖 do not vary over time, set 𝜑 = 0. Then 𝐻 can be written as

𝐻 = 1
𝑛

𝑛∑︁
𝑖=1

|𝐻𝑖1| |𝐻𝑖2| 𝛽(𝜃𝑖)𝑒𝜃𝑖−𝛼𝑖−𝛿𝑖

= 1
𝑛

𝑛∑︁
𝑖=1

|𝐻𝑖1| |𝐻𝑖2| 𝛽(𝜃𝑖)[cos(𝜃𝑖 − 𝛼𝑖 − 𝛿𝑖) + 𝑗 sin(𝜃𝑖 − 𝛼𝑖 − 𝛿𝑖)]. (4.17)

To deal with the approximation, its absolute square value is given by

|𝐻|2 = 1
𝑛2

{︂[︂ 𝑛∑︁
𝑖=1

|𝐻𝑖1| |𝐻𝑖2| 𝛽(𝜃𝑖) cos(𝜃𝑖 − 𝛼𝑖 − 𝛿𝑖)
]︂2

+
[︂ 𝑛∑︁
𝑖=1

|𝐻𝑖1| |𝐻𝑖2| 𝛽(𝜃𝑖) sin(𝜃𝑖 − 𝛼𝑖 − 𝛿𝑖)
]︂2}︂

. (4.18)

Following the same reasoning mentioned above to calculate the mean and variance, the
definition below is considered from now on. Let

𝐶 = 1
𝑛

𝑛∑︁
𝑖=0

|𝐻𝑖1| |𝐻𝑖2| 𝛽(𝜃𝑖) cos(𝜃𝑖 − 𝛼𝑖 − 𝛿𝑖),

𝑆 = 1
𝑛

𝑛∑︁
𝑖=0

|𝐻𝑖1| |𝐻𝑖2| 𝛽(𝜃𝑖) sin(𝜃𝑖 − 𝛼𝑖 − 𝛿𝑖). (4.19)
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4.2.4.1 Mean of C and S

Be the mean of 𝛽(𝜃𝑖) cos(𝜃𝑖 −𝛼𝑖 − 𝛿𝑖) defined as 𝜇𝛽𝐶
, we know that the media of 𝐶 is then

𝜇𝐶 = 1
𝑛

𝑛∑︁
𝑖=1

𝐸[𝐻𝑖1𝐻𝑖2]𝜇𝛽𝐶

= 1
𝑛

𝑛∑︁
𝑖=1

−2−𝑘−3𝜎2
𝑅 (𝛽min − 1) sin (𝛼𝑖 + 𝛿𝑖)⎡⎣−

43𝐹2
(︁

1
2 , 1,

3
2 ; 𝑘2 + 3

2 ,
𝑘
2 + 2; 1

)︁
𝑘2 + 3𝑘 + 2 +

43𝐹2

(︃
1, 1

2 − 𝑘

2 ,−
𝑘

2 ; 1
2 ,

3
2; 1

)︃
+𝜋𝑘2𝐹1

(︃
1 − 𝑘

2 , 1 − 𝑘

2 ; 2; 1
)︃]︃

, (4.20)

in which 3𝐹2(.) is the generalized hypergeometric function and 2𝐹1(.) is the hypergeometric
function. Similarly, the mean of 𝑆 becomes

𝜇𝑆 = 1
𝑛

𝑛∑︁
𝑖=1

𝐸[𝐻𝑖1𝐻𝑖2]𝜇𝛽𝑆

= 1
𝑛

𝑛∑︁
𝑖=1

(𝛽min − 1)
(︁
−2−𝑘−3

)︁
𝜎2
𝑅 cos (𝛼𝑖 + 𝛿𝑖)⎡⎣−

43𝐹2
(︁

1
2 , 1,

3
2 ; 𝑘2 + 3

2 ,
𝑘
2 + 2; 1

)︁
𝑘2 + 3𝑘 + 2 +

43𝐹2

(︃
1, 1

2 − 𝑘

2 ,−
𝑘

2 ; 1
2 ,

3
2; 1

)︃

+𝜋𝑘2𝐹1

(︃
1 − 𝑘

2 , 1 − 𝑘

2 ; 2; 1
)︃]︃

. (4.21)

4.2.4.2 Variance of C and S

We know that the variance of 𝛽𝐶 and 𝛽𝑆 can be found as 𝜎2
𝛽𝐶

= 𝐸[𝛽𝐶(𝜃)2] − 𝜇2
𝛽𝐶

and
𝜎2
𝛽𝑆

= 𝐸 [𝛽𝑆(𝜃)2] − 𝜇2
𝛽𝑆

, respectively. From a straightforward way, we can obtain 𝜎2
𝐶 and 𝜎2

𝑆 as
expressed in Appendix A.

4.2.4.3 Symbol Error Probability

Since |𝐻|2 can be written as |𝐻|2 = 𝐶2 +𝑆2, the distribution of 𝑅 = |𝐻| can be computed
from the distributions of 𝐶 and 𝑆 as [19]

𝑓𝑅,𝑍(𝑟, 𝜁) = 𝑟𝑓𝐶,𝑆(𝑐, 𝑠). (4.22)

Since 𝐶 and 𝑆 are Gaussian independent random variables, the following can be written

𝑓𝑅,𝑍(𝑟, 𝜁) = 𝑟
1

2𝜋𝜎𝐶𝜎𝑆
𝑒

− (𝐶−𝜇𝐶 )2

2𝜎2
𝐶

− (𝑆−𝜇𝑆)2

2𝜎2
𝑆 . (4.23)
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Also, 𝐶 = 𝑅 cos(𝜁) and 𝑆 = 𝑅 sin(𝜁), then we have that

𝑓𝑅,𝑍(𝑟, 𝜁) = 𝑟

2𝜋𝜎𝐶𝜎𝑆
𝑒

− (𝑟 cos (𝜁)−𝜇𝐶 )2

2𝜎2
𝐶

− (𝑟 sin(𝜁)−𝜇𝑆)2

2𝜎2
𝑆 . (4.24)

Defining the variable 𝛾 = |𝐻|2 = 𝑅2, the joint distribution of 𝛾 and 𝜃 can be obtained
through a variable transformation [19] and the joint probability density function of 𝛾 and 𝜃 can
be computed as

𝑓(𝛾, 𝜁) =
exp

{︃
− [𝜇𝐶−√

𝛾 cos(𝜁)]2

2𝜎2
𝐶

− [𝜇𝑆−√
𝛾 sin(𝜁)]2

2𝜎2
𝑆

}︃
4𝜋𝜎𝐶𝜎𝑆

. (4.25)

Finally, the average symbol error probability for Case IV with BPSK modulation is given
by

𝑃𝑒 =
∫︁ 2𝜋

0

∫︁ ∞

0
𝑄

(︃√︃
𝑛2𝐸𝑠𝛾

2𝜎2
𝑊

)︃ exp
[︃
−(𝜇𝐶−√

𝛾 cos(𝜁))2

2𝜎2
𝐶

− (𝜇𝑆−√
𝛾 sin(𝜁))2

2𝜎2
𝑆

]︃
4𝜋𝜎𝐶𝜎𝑆

𝑑𝛾𝑑𝜁, (4.26)

As the inequality
∫︀ 2𝜋

0 𝑓(𝛾, 𝜁)𝑑𝜁 ≤
∫︀ 2𝜋

0 𝑓(𝛾, 𝜁 = 2𝜋)𝑑𝜁 is valid, we can write

𝑃𝑒 ≤
∫︁ ∞

0
𝑄

(︃√︃
𝑛2𝐸𝑠𝛾

2𝜎2
𝑊

)︃ exp
(︃

− [𝜇𝐶−√
𝛾]2

2𝜎2
𝐶

− 𝜇2
𝑆

2𝜎2
𝑆

)︃
4𝜋𝜎𝐶𝜎𝑆

𝑑𝛾. (4.27)

Again applying the Chernoff bound, then the upper bound is given by

𝑃𝑒 ≤
𝜎3
𝑊 𝑒

−
𝜎2

𝐶
𝜇2

𝑆
+𝜇2

𝐶
𝜎2

𝑆
2𝜎2

𝐶
𝜎2

𝑆

⎛⎝√
2𝜋𝜇𝑆𝑒

𝜇2
𝑆

𝜎2
𝑊

2𝐸𝑠𝑛2𝜎2
𝑆

+2𝜎2
𝑊

𝜎2
𝑆

⎛⎝erf
⎛⎝ 𝜇𝑆√

2
√
𝑛𝜎2

𝑆

√︁
𝐸𝑠𝑛

𝜎2
𝑊

+ 1
𝑛𝜎2

𝑆

⎞⎠+ 1
⎞⎠+ 2

√
𝑛𝜎2

𝑆

√︂
𝐸𝑠𝑛
𝜎2

𝑊
+ 1

𝑛𝜎2
𝑆

⎞⎠
4𝜎𝐶 (𝐸𝑠𝑛2𝜎2

𝑆 + 𝜎2
𝑊 )3/2 ,

(4.28)
in which erf(.) represents the error function. Also, through asymptotic analysis, it is possible
to show that lim𝑛→∞ 𝑃𝑒 = 0.

4.3 Numerical Results

In this section, we present some numerical results to validate the Monte Carlo simulations
obtained from 105 realizations. The variables 𝛼𝑖 and 𝛿𝑖 are sorted randomly at the beginning
of each simulation. Except for 𝜑, 𝛽(𝜃𝑖), and 𝜃𝑖, the other parameters are the same for all cases.
Note that the cases I and II are already published in the literature and are presented here for
comparison only.

The probability and cumulative density function of |𝐻|, given in (4.9), for Case III, is
shown in Fig. 4.2 considering the following scenario: 𝜑 = .43𝜋, 𝛽min = .2 and 𝑘 = 1.6 for 𝑛 = 64
and 𝑛 = 128.
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Figure 4.2 – Probability and cumulative density function of |𝐻| for 𝑛 = 64 and 𝑛 = 128 for
Case III.
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Figure 4.3 shows the probability density function of |𝐻|2 for Case IV. The physical pa-
rameters are the same as in Figure 4.2, except 𝜑 = 0 and 𝑛 ∈ {16, 64}. In both figures, we can
observe an excellent agreement between the simulations and our proposed approximation. As
𝑛 increases, it is evident that the accuracy becomes better. But it is also important to mention
that the resulting channel worsens significantly since |𝐻| → 0.
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Figure 4.3 – The probability density function of |𝐻|2 for 𝑛 = 16 and 𝑛 = 64 for Case IV.

Figure 4.4 – Symbol error probability as a function of SNR. The circles represent the simula-
tions for each case.
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Figure 4.5 – Symbol error probability as a function of 𝑛 for all cases and SNR equal to -10dB.

Figures 4.4 and 4.5 show the symbol error probability for the analytical approximation,
simulation, and upper bound, as a function of SNR with 𝑛 = 64 and 𝑛 with SNR equal to 0 dB,
respectively. We have considered the Cases I, II, III, and IV. The gray color represents scenarios
without phase errors, while the black lines show the cases with phase errors. It is evident how
close are the simulation represented by circles and the approximate curves. As expected, the
SNR values are low since the resulting channel is given by the product of two others.

Also, when 𝛽(𝜃𝑖) ̸= 1 and there is phase error (Case IV), it can be seen a significant
increase in the symbol error probability. Note that as the SNR increases, the gap between the
cases with and without phase errors becomes even more significant. As expected, the symbol
error probability decreases as the number of LIS elements increases. However, this fall is subtle
for Cases II and IV.

In Figure 4.4, for a symbol error probability of 10−5, the gap between Case I (no phase
error and unitary reflection coefficient) and Case III (no phase error and non-unitary reflec-
tion coefficient) is around 8 dB. This number provides an idea of the impact of the reflection
coefficient on the symbol error probability.

4.4 Conclusions

In this chapter, we have considered practical imperfections for the values of reflection
coefficients, since they are not always unitary, as reported in the literature. Based on the
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Gaussian approximation for the in-phase and quadrature components of the channel 𝐻, symbol
error probability expressions were obtained for SISO scenarios with and without phase errors.
These simple approximations depend only on the physical system parameters. Also, we have
obtained an upper bound to the symbol error probability. All the results were validated by
numerical simulations and have shown an excellent agreement. Comparisons with models in
which |𝛽(𝜃𝑖)| = 1 (Case III and Case IV) show that practical systems present a considerable
loss in performance when compared to the ideal models published in the literature (Cases I and
Case II).
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5

Large Intelligent Surfaces With
Discrete Set of Phase-Shifts

5.1 Introduction

There is no doubt that quantization errors are inevitable when using analog-to-digital
converters (ADCs). These converters bridge the analog and the digital worlds, and the lower
is their resolution, the more distortions they can cause to the conversion process. Since the
rounding quantization introduces error in the signal estimation stage, Hou et al. [52] propose
a quantization error reduction scheme for detection based on orthogonal lattices. On the other
hand, Kotera et al. [53] proves that an efficient nonlinear Viterbi-like algorithm, used as the
equalization scheme, can estimate both inter-symbol interference in multi-path channel and
quantization error in ADC and improve the bit error rate performance.

However, for LIS-assisted systems, little is known about the impact of quantization errors.
Also called Reconfigurable Intelligent Surfaces (RIS), this technology is a strong candidate to
integrate the sixth generation of cellular networks. It consists of many electromagnetic elements
acting individually as scatterers capable of jointly reflecting the incident signal to the desired
direction [54]. Among its advantages, we can mention the ideally passive nature that does not
require any dedicated energy source. An LIS provides an inherently full-duplex transmission
scheme without introducing noise, unlike relays, by not amplifying the incident signal. Besides,
it can be easily installed onto facades of buildings or walls of rooms thanks to its lightweight
and conformal geometry. Two strategies are possible due to the smart adjustment of the phase
shifts, the reflected signals can add coherently or destructively at the receiver. The first strategy
improves the received signal power, while the second one avoids interference of unwanted signals
or transmitters and increases the security of the communication system [55].

Taking advantage of LIS-assisted systems’ low power consumption, [56] jointly optimizes
the transmit beamforming at the BS and the phase shifts at the LIS. From derived lower
bounds of the transmit power concerning the number of antennas at the BS, the number of
LIS elements, and the number of mobile users, they show that the transmit power at the BS is
significantly lower than that of a communications system without LIS.

Although some studies optimize the reflection coefficients (i.e., amplitude and phase) of
each LIS element [57], the reflection phases’ high precision configuration is unfeasible since, in
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practice, the number of bits dedicated to mapping a continuous number into discrete is limited.
As a consequence, phase quantization errors arise. Before proposing techniques to reduce them,
we first need to know them and estimate their effects as closely as possible to reality.

Badiu et al. do a preliminary analysis based on a limited number of reflectors and con-
clude that the performance measured from the error probability is robust against the phase
errors [48]. Samith et al. [58] also consider a practical phase-shift model, but to maximize the
achievable rate through the joint optimization of the transmit beamforming and the LIS re-
flect beamforming. On the other hand, Han et al. [59] propose an optimal phase shift design
that achieves approximately the ergodic capacity and ensures that a quantizer with two bits is
sufficient for a capacity degradation below 1 bit/s/Hz.

As can be seen, there are many works in the literature about the optimization of LIS-
assisted systems. In this work, we deviate a little from this idea and look for more precise
mathematical models in the face of possible scenarios.

In our previous work [60], we have used the Central Limit Theorem (CLT) to derive the
bit error rate when there are phase estimation errors. However, it is known that the CLT is
inaccurate when the number of elements in LIS is small, and the approximation error can be
significant in the high Signal-to-Noise ratio (SNR) regime.

This time, we do an in-depth investigation of LIS-assisted Single-Input Single-Output
(SISO) systems when there are quantization errors. Considering channels between source and
destination characterized as the double (cascaded) Rayleigh fading distributions [61–64], we
derive exact closed-form expressions for the spectral efficiencies, outage probabilities, and av-
erage symbol error rate (SER). Our analysis also extends to power scaling law and the power
required to achieve specific capacity. Based on our excellent accuracy approach, we evaluate the
system performance as the number of bits and reflectors increases. We conclude that the LIS
with approximately fifty elements and four dedicated bits for phase quantization outperforms
the conventional system performance without LIS. To the best of our knowledge, no similar
results have been found in the literature.

Wang et al. [65] also consider a SISO LIS-assisted system and derive exact expressions
for outage probability and diversity order without employing a CLT approach. However, they
assume that each element of the LIS has only an one-bit phase shifter. We propose expressions
for a more comprehensive scenario in which more bits are dedicated to the phase adjustment
of the LIS elements.

The remainder of this chapter is organized as follows: Section 5.2 presents the adopted
model and the preliminary assumptions. In Section 5.3, we derive exact closed-form expressions
for some important performance metrics and evaluate the quantization error effects. Section
5.4 shows our setup and the results obtained from simulations with that. Finally, Section 5.5
summarizes the main conclusions.
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Figure 5.1 – System Model.

Notations: scalars are denoted by italic letters while vectors and matrices, by bold-face
lower-case and uppercase letters, respectively. For a complex-valued vector x, |x| denotes its
Euclidean norm and diag(x) represents the diagonal matrix. The distribution of a circularly
symmetric complex Gaussian (CSCG) random vector with mean 𝑥 and covariance Ξ is denoted
by 𝒞 𝒩 (𝑥,Ξ); and ∼ stands for “distributed as”. For any general vector x, x𝑖 denote its 𝑖th
element while E is the statistical expectation. Finally, Pr(.) represents the probability of a
specific event occurring.

5.2 System Model

The system model of the adopted LIS-assisted communications scheme is shown in Fig.
5.1, where 𝑔𝑛 and ℎ𝑛 represent the fading channels between the single-antenna source (S) and the
𝑛th antenna element of the LIS, and the 𝑛th antenna element of the LIS and the single-antenna
destination (D), respectively. Here we assume Rayleigh fading channels, 𝑖.𝑒., 𝑔𝑛 ∼ 𝒞 𝒩 (0, 𝛽𝑔)
and ℎ𝑛 ∼ 𝒞 𝒩 (0, 𝛽ℎ). The parameters 𝛽𝑔 and 𝛽ℎ model the shadow and geometric attenuation
fading, (𝑖.𝑒., the large-scale fading coefficients), which are assumed to be independent over the
elements of LIS and change very slowly over time, being constant over several coherence-time
intervals [66]. This is a reasonable assumption since the distance between devices and LIS
is much larger than the distance between the LIS’ elements. In this far-field regime [54], the
intelligent surface is better modeled as a scatterer and the scaling law that governs the intensity
of its electric field is a function of the distances’ product, as proved in [67] and shown later.

We assume that the LIS is a reflect-array composed of 𝑁 simple and re-configurable reflec-
tor elements connected to a controller. Additionally, we assume that the phase-shifts produced
by the channels are estimated perfectly. However, the desired phases can not be accurately
generated by the LIS once it has a discrete set of phases. Practical LISs have a limited number
of phase shifts, 𝑖.𝑒., a discrete set of phase-shifts constrained by the number of quantization
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bits (also known as phase resolution) of the LIS. The number of quantization bits is denoted by
𝑏. Therefore, the set of phase shifts produced by each one of the elements of the LIS is defined
as

𝜑𝑛 =
{︃

0, 2𝜋
2𝑏 ,

4𝜋
2𝑏 , · · · , 2𝜋(2𝑏 − 1)

2𝑏

}︃
. (5.1)

Therefore, we model the deviation from the correct/ideal phase-shift as a phase-noise,
𝛿𝑛, which is uniformly distributed in the range [−𝜋/𝑄, 𝜋/𝑄], where 𝑄 = 2𝑏 is the number
of discrete phases the LIS can generate [68] dictated by the hardware complexity and power
consumption of LIS.

5.3 Intelligent Transmission Through LIS

In slowly varying flat fading channels, the signal received at the destination after being
reflected through an LIS composed of 𝑁 passive elements can be written as

𝑦 = √
𝜌

[︃
𝑁∑︁
𝑛=1

𝑔𝑛𝑒
−𝑗𝜑𝑛ℎ𝑛

]︃
𝑠+ 𝑤, (5.2)

where 𝜌 is the average SNR, 𝜑𝑛 is the adjustable phase-shift produced by the 𝑛th LIS reflector,
𝑠 is the modulation data symbol with zero mean, E[|𝑠|2] = 1, and 𝑤 ∼ 𝒞 𝒩 (0, 1) is the additive
white Gaussian noise (AWGN) term.

Then, (5.2) can be re-written in the matrix-form as

𝑦 = √
𝜌h𝑇Φg𝑠+ 𝑤, (5.3)

where g = [𝑔1, · · · , 𝑔𝑁 ]𝑇 and h = [ℎ1, · · · , ℎ𝑁 ]𝑇 are the channel coefficient vectors between the
BS and the RIS and between the RIS and the terminal, respectively, while Φ = diag

(︁[︁
𝑒−𝑗𝜑1 , · · · ,

𝑒−𝑗𝜑𝑁

]︁)︁
is the diagonal matrix containing the phase-shifts applied by the elements of the LIS.

It can be noticed that (5.3) is similar to the equation of conventional MIMO systems
employing precoding/beamforming for transmission. However, differently from those systems,
where precoding/beamforming is carried out at the transmitter side, here it is carried out over
the transmission medium (𝑖.𝑒., the environment) [69].

The complex channels can be written in polar representation (𝑖.𝑒., with magnitude and
phase) as ℎ𝑛 = 𝛼𝑛𝑒

𝑗𝜃𝑛 and 𝑔𝑛 = 𝜉𝑛𝑒
𝑗𝜓𝑛 , therefore, (5.2) can be re-written as

𝑦 = √
𝜌

[︃
𝑁∑︁
𝑛=1

𝛼𝑛𝜉𝑛𝑒
𝑗(𝜃𝑛+𝜓𝑛−𝜑𝑛)

]︃
𝑠+ 𝑤

= √
𝜌

[︃
𝑁∑︁
𝑛=1

𝛼𝑛𝜉𝑛𝑒
𝑗𝛿𝑛

]︃
𝑠+ 𝑤,

(5.4)

where the second line is obtained from the assumption that the LIS only generates discrete
phases and consequently, there is a phase-noise, 𝛿𝑛 = 𝜃𝑛 + 𝜓𝑛 − 𝜑𝑛.
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Considering the phase-noise, then the instantaneous SNR at the destination is given by

𝛾 = 𝜌

⃒⃒⃒⃒
⃒
𝑁∑︁
𝑛=1

𝛼𝑛𝜉𝑛𝑒
𝑗𝛿𝑛

⃒⃒⃒⃒
⃒
2

. (5.5)

Note that the instantaneous SNR is maximized when 𝛿𝑛 = 0, 𝑖.𝑒., the channels are per-
fectly estimated, and the LIS can accurately generate the phases induced by the channels
(meaning that 𝑄 → ∞) [50].

Lemma 1 From empirical comparisons between the normalised histogram of the random vari-
able given by

𝑟 = √
𝜌

⃒⃒⃒⃒
⃒
𝑁∑︁
𝑛=1

𝛼𝑛𝜉𝑛𝑒
𝑗𝛿𝑛

⃒⃒⃒⃒
⃒ = √

𝜌

⃒⃒⃒⃒
⃒
𝑁∑︁
𝑛=1

|𝑔𝑛||ℎ𝑛|𝑒𝑗𝛿𝑛

⃒⃒⃒⃒
⃒ , (5.6)

and the theoretical PDF of a Gamma random variable, it is possible to say that the PDF of 𝑟
can be accurately approximated by the Gamma PDF with shape and scale parameters given by
𝜅 and 𝜃, respectively as

𝜅 =
−
(︁
E [𝛾2] − 5E [𝛾]2

)︁
+
√︁
E [𝛾2]2 − 34E [𝛾2]E [𝛾]2 + 49E [𝛾]4

2
(︁
E [𝛾2] − E [𝛾]2

)︁ > 0, (5.7)

𝜃 =

⎯⎸⎸⎸⎷−
√︁
E [𝛾2]2 + 14E [𝛾2]E [𝛾]2 + E [𝛾]4 + 2E [𝛾2] + 2E [𝛾]2

6E [𝛾] > 0, (5.8)

where E [𝛾] and E [𝛾2] are given by (5.11) and (5.12), respectively.

Some examples of this comparison are shown in Section 5.4. The parameters 𝜅 and 𝜃 are
found following the rationale presented in Appendix B.1. Therefore, the PDF of 𝛾 can be found
following the standard transformation of random variables, 𝛾 = 𝑟2, and is defined as

𝑓𝛾(𝛾) = 1
2Γ(𝜅)𝜃𝜅𝛾

(𝜅−2
2 )𝑒−

√
𝛾

𝜃 , 𝛾 ≥ 0. (5.9)

In its turn, the cumulative distribution function (CDF) of the SNR random variable, 𝛾,
is defined as

𝐹𝛾(𝛾) =
∫︁ 𝛾

0
𝑓𝛾(𝑥)𝑑𝑥 = 1 −

Γ
(︁
𝜅,

√
𝛾

𝜃

)︁
Γ(𝜅) , 𝛾 ≥ 0, (5.10)

where Γ(.) is the Euler gamma function while Γ(., .) is the upper incomplete gamma function.
The integral result is obtained by directly applying (Eq. 2.33.10, [70]).

Remark 1 When 𝑄 → ∞, 𝑖.𝑒., the LIS is able to generate any phase-shift, the phase-noise
is zero, 𝛿𝑛 = 0,∀𝑛, and consequently, (5.11) and (5.12) can be simplified to (5.13) and (5.14),
respectively, and whose derivations are presented in Appendix B.2.
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E [𝛾] = E
[︁
𝑟2
]︁

= 𝜌𝛽𝑔𝛽ℎ𝒜1 = 𝜌𝛽𝑔𝛽ℎ𝑁

[︃
1 + 1

16(𝑁 − 1)𝑄2 sin2
(︃
𝜋

𝑄

)︃]︃
. (5.11)

E
[︁
𝛾2
]︁

= E
[︁
𝑟4
]︁

= (𝜌𝛽𝑔𝛽ℎ)2 𝒜2

= (𝜌𝛽𝑔𝛽ℎ)2 𝑁

256

⎧⎨⎩512(𝑁 + 1) + 32(𝑁 − 1)𝑄2

𝜋2 +
(𝑁 − 1)𝑄2

[︁
𝜋 sin2

(︁
𝜋
𝑄

)︁ (︁
(𝑁 − 2)𝑄

(︁
𝜋(𝑁 − 3)𝑄 sin2

(︁
𝜋
𝑄

)︁
+ 16 sin

(︁
2𝜋
𝑄

)︁)︁
+ 16𝜋(4𝑁 + 1)

)︁
− 32 cos

(︁
4𝜋
𝑄

)︁]︁
𝜋2

⎫⎬⎭ .
(5.12)

lim
𝑄→∞

E [𝛾] = 𝑁𝜌𝛽𝑔𝛽ℎ

[︃
1 + (𝑁 − 1)𝜋2

16

]︃
. (5.13)

lim
𝑄→∞

E
[︁
𝛾2
]︁

= 𝑁𝜌2 (𝛽𝑔𝛽ℎ)2

256
[︁
256 + 768𝑁 + 𝜋4(𝑁 − 3)(𝑁 − 2)(𝑁 − 1) + 48𝜋2(2𝑁 − 1)(𝑁 − 1)

]︁
.

(5.14)

5.3.1 Exact Ergodic Spectral Efficiency

The ergodic spectral efficiency of the LIS-assisted system is defined as

𝐶 = E [log2 (1 + 𝛾)]

=
∫︁ ∞

0
log2 (1 + 𝛾) 𝑓𝛾(𝛾)𝑑𝛾.

(5.15)

Solving (5.15) through an integral solver [37], we find the exact closed-form expression
for the ergodic capacity given by (5.16), where 𝑝𝐹𝑞 (𝑎1, · · · , 𝑎𝑝; 𝑏1, · · · , 𝑏𝑞; 𝑧) is the generalized
hypergeometric function [71] and Ψ(𝑛)(𝑧) is the 𝑛th derivative of the digamma function, also
known as the polygamma function [72].

𝐶 =
2 2𝐹3

(︁
1, 1; 2, 3

2 − 𝜅
2 , 2 − 𝜅

2 ; − 1
4𝜃2

)︁
𝜃2(𝜅− 1)(𝜅− 2) log(4) −

2𝜋 sec
(︁
𝜋𝜅
2

)︁
1𝐹2

(︁
𝜅
2 + 1

2 ; 3
2 ,

𝜅
2 + 3

2 ; − 1
4𝜃2

)︁
(𝜅+ 1)𝜃𝜅+1Γ(𝜅) log(4)

+
2𝜋 csc

(︁
𝜋𝜅
2

)︁
1𝐹2

(︁
𝜅
2 ; 1

2 ,
𝜅
2 + 1; − 1

4𝜃2

)︁
𝜅𝜃𝜅Γ(𝜅) log(4) + 4(log(𝜃) + 𝜓(0)(𝜅))

log(4) .

(5.16)

Remark 2 In high SNR regime, the ergodic spectral efficiency in (5.16) can be approximated
as

𝐶high-SNR ≈ 2
𝜃2(𝜅− 1)(𝜅− 2) log(4) −

2𝜋 sec
(︁
𝜋𝜅
2

)︁
(𝜅+ 1)𝜃𝜅+1Γ(𝜅) log(4) +

2𝜋 csc
(︁
𝜋𝜅
2

)︁
𝜅𝜃𝜅Γ(𝜅) log(4) + 4(log(𝜃) + 𝜓(0)(𝜅))

log(4) .

(5.17)

Remark 3 When 𝜌 → ∞, then (5.16) becomes (5.18).

lim
𝜌→∞

𝐶 = 4 log(𝜃)
log(4) . (5.18)
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The proofs for Remarks 2 and 3 are presented in Appendices B.3 and B.4, respectively.

Remark 4 In high SNR and 𝑁 regimes, the ergodic spectral efficiency can be approximated as

𝐶high-SNR, N ≈ 2
𝜃2(𝜅− 1)(𝜅− 2) log(4) + 4(log(𝜃) + 𝜓(0)(𝜅))

log(4) . (5.19)

The proof for Remark 4 is presented in Appendix B.5.

Other alternative to find the expectation in (5.15) is using the PDF of the random variable
given by 𝐶inst. = log2(1+𝛾), i.e., the instantaneous spectral efficiency, which can be found after
applying standard transformation of random variables to (5.9) giving rise to

𝑓𝐶inst. (𝑐) = log (2)
Γ(𝜅)𝜃𝜅2𝑐−1(2𝑐 − 1)(

𝜅−2
2 )𝑒−

√
2𝑐−1
𝜃 , 𝑐 ≥ 0. (5.20)

Then, the CDF of the instantaneous spectral capacity random variable is expressed by

𝐹𝐶inst. (𝑐) =
∫︁ 𝑐

0
𝑓𝐶inst. (𝑥) 𝑑𝑥 = 1 −

Γ
(︁
𝜅,

√
2𝑐−1
𝜃

)︁
Γ(𝜅) , (5.21)

whose integral is also found by directly applying (Eq. 2.33.10, [70]).

5.3.2 Upper and Lower-bounds for the Ergodic Spectral Efficiency

As it can be seen, (5.16) is quite complex. Therefore, here we aim at finding simpler but
yet tight bounds for the ergodic spectral efficiency of the LIS-assisted system. According to
Jensen’s inequality [66], it holds that

E [log2 (1 + 𝛾)] ≤ log2 (1 + E [𝛾]) . (5.22)

Then, by using E [𝛾] given by (5.11), a possible upper-bound for the ergodic capacity of
the LIS-assisted system can be given by (5.23).

𝐶 ≤ 𝐶upper = log2

(︃
1 +𝑁𝜌𝛽𝑔𝛽ℎ

[︃
1 + 1

16(𝑁 − 1)𝑄2 sin2
(︃
𝜋

𝑄

)︃]︃)︃
. (5.23)

As it is tight for high SNR scenarios, it can be assumed as a good approximation. On the other
hand, again according to Jensen’s inequality [66], it holds that

E [log2 (1 + 𝛾)] ≥ log2

⎛⎝1 +
[︃
E
[︃

1
𝛾

]︃]︃−1
⎞⎠ . (5.24)

Consequently, by using a tight approximation of E [1/𝛾] (see Appendix B.6), a lower-
bound for the ergodic capacity of the LIS-assisted system can be derived and given as

𝐶 ≥ 𝐶lower ≈ log2

(︃
1 + E [𝛾]3

E [𝛾2]

)︃

= log2

⎛⎜⎝1 +
256𝑁2𝜌𝛽𝑔𝛽ℎ

(︁
1
16(𝑁 − 1)𝑄2 sin2

(︁
𝜋
𝑄

)︁
+ 1

)︁3

32(𝑁−1)𝑄2

𝜋2 + (𝑁−1)𝑄2(𝜋 sin2( 𝜋
𝑄)((𝑁−2)𝑄(𝜋(𝑁−3)𝑄 sin2( 𝜋

𝑄)+16 sin( 2𝜋
𝑄 ))+16𝜋(4𝑁+1))−32 cos( 4𝜋

𝑄 ))
𝜋2 + 512(𝑁 + 1)

⎞⎟⎠ .
(5.25)
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Like the SNR, the spectral efficiency is also maximized when 𝑄 → ∞, meaning that
the LIS has infinite phase-shift precision and can generate any phase-shift. In this case, the
maximum ergodic spectral efficiency with the upper and lower bounds are given, respectively,
by

𝐶max.
upper = lim

𝑄→∞
𝐶upper

= lim
𝑄→∞

log2

(︃
1 +𝑁𝜌𝛽𝑔𝛽ℎ

[︃
1 + 1

16(𝑁 − 1)𝑄2 sin2
(︃
𝜋

𝑄

)︃]︃)︃

= log2

(︃
1 +𝑁𝜌𝛽𝑔𝛽ℎ

[︃
1 + (𝑁 − 1)𝜋2

16

]︃)︃
.

(5.26)

and
𝐶max.

lower = lim
𝑄→∞

𝐶lower

= log2

(︃
1 + 𝑁2𝜌𝛽𝑔𝛽ℎ (𝜋2(𝑁 − 1) + 16)3

16 ((𝑁 − 1) (𝜋4 (𝑁2 − 5𝑁 + 6) + 48𝜋2(2𝑁 − 1) + 256) + 512(𝑁 + 1))

)︃
.

(5.27)

5.3.3 Impact of Bit Quantization in the Spectral Efficiency

In practical communication systems, the set of phase-shifts is limited by the number of
quantization bits of the LIS, influencing the achieved spectral efficiency directly. Therefore, in
this section, we propose a criterion for selecting the number of quantization levels 𝑄 = 2𝑏 so that
the ergodic spectral efficiency is optimized up to a specific spectral degradation in bits/s/Hz.
In order to quantify this degradation, we define the error 𝜖 brought about by a limited number
of phase-shifts as

𝐶max.
upper − 𝐶upper ≤ 𝜖. (5.28)

Remark 5 From (5.28), we see that when the number of LIS elements tends to ∞, then the
ergodic spectral efficiency degradation, 𝜖, becomes

lim
𝑁→∞

𝜖 = log2

(︃
𝜋2

𝑄2 sin2 (𝜋/𝑄)

)︃
bits/s/Hz. (5.29)

Remark 6 From (5.28), we see that when 𝜌 → ∞, then the ergodic spectral efficiency degra-
dation, 𝜖, is given by

lim
𝜌→∞

𝜖 = log2

(︃
16 + (𝑁 − 1)𝜋2

16 + (𝑁 − 1)𝑄2 sin2 (𝜋/𝑄)

)︃
bits/s/Hz. (5.30)

Proposition 1 In order to guarantee an suitable ergodic spectral efficiency degradation of 𝜖
bits/s/Hz compared to an LIS with full-resolution phase-shift, the number of quantization levels,
𝑄, of the LIS should satisfy

𝑄 sin (𝜋/𝑄) ≥

⎯⎸⎸⎷ 16 (2−𝜖 − 1)
𝑁𝜌𝛽𝑔𝛽ℎ(𝑁 − 1) + 16 (2−𝜖 − 1)

𝑁 − 1 + 𝜋22−𝜖. (5.31)
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Remark 7 From (5.31), we see that when 𝑁 → ∞, the number of quantization levels, 𝑄,
should satisfy

lim
𝑁→∞

𝑄 sin (𝜋/𝑄) ≥
√

2−𝜖𝜋. (5.32)

Remark 8 From (5.31) we see that when 𝜖 → ∞, then the number of quantization levels, 𝑄,
should satisfy

lim
𝜖→∞

𝑄 sin (𝜋/𝑄) ≤ 𝜋. (5.33)

After analysing Remark 8, we notice that the first term in (5.33) is equal to 𝜋 only when
𝑄 → ∞. Therefore, in order to have no degradation at all, an infinite number of quantization
levels is necessary, which demonstrates the correctness of Remark 8.

Summing up, these results can be used to select the precision necessary for an LIS-assisted
system to achieve a pre-defined and acceptable degradation in its ergodic spectral efficiency.

5.3.4 Outage Probability

Based on the knowledge of the approximate PDF of the instantaneous spectral efficiency
given by (5.20), it is possible to find its cumulative density function (CDF) and derive analytical
expressions for the outage probability. The outage probability is defined as the probability that
the achieved instantaneous spectral efficiency falls below a given threshold 𝐶out. and can be
written as

𝑃out. = Pr{𝐶inst. < 𝐶out.}

=
∫︁ 𝐶out.

0
𝑓𝐶inst. (𝑥) 𝑑𝑥

= 1 −
Γ
(︂
𝜅,

√
2𝐶out. −1
𝜃

)︂
Γ(𝜅) ,

(5.34)

whose proof is provided in Appendix B.7.

Besides that way, the outage probability can also be defined with regard to the instan-
taneous SNR. In this case,it is the probability that the instantaneous SNR falls below a given
SNR threshold 𝛾out.. So, the outage probability is given by

𝑃out. = Pr{𝛾 < 𝛾out.}

=
∫︁ 𝛾out.

0
𝑓𝛾 (𝑥) 𝑑𝑥

= 1
𝜃𝜅/2

⎡⎣1 −
Γ
(︁
𝜅,

√
𝛾out.
𝜃

)︁
Γ(𝜅)

⎤⎦ ,
(5.35)

and found by using (B.48) in Appendix B.7. It can also be expressed as

𝑃out. = 𝛾
𝜅
2

𝜅𝜃
3𝜅
2

1𝐹1

(︃
𝜅, 𝜅+ 1,−

√
𝛾

𝜃

)︃
. (5.36)
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Remark 9 In high SNR regime, the outage probability can be approximated as

𝑃 high-SNR
out. = 𝛾

𝜅
2

𝜅𝜃
3𝜅
2
. (5.37)

The proofs of (5.36) and (5.37) are provided in Appendix B.8.

5.3.5 Average Symbol Error Rate

According to [51], the average Symbol Error Rate (SER) is defined as the expectation of
conditional error probability, 𝑃𝑒|𝛾, given the distribution of the SNR, 𝛾. For a wide variety of
modulation schemes, 𝑃𝑒|𝛾 is defined as 𝑃𝑒|𝛾 = 𝑎̄𝒬

(︂√︁
𝑏̄𝛾
)︂

, where 𝑎̄ and 𝑏̄ are constant modulation
dependent parameters and 𝒬 is the Gaussian 𝒬-function defined as

∫︀∞
𝑥 𝑒−𝑡2/2/

√
2𝜋𝑑𝑡 [51].

Therefore, the average SER is derived as

E
[︂
𝑎̄𝒬

(︂√︁
𝑏̄𝛾
)︂]︂

= 𝑎̄
∫︁ ∞

0
𝒬
(︂√︁

𝑏̄𝛾
)︂
𝑓𝛾(𝛾)𝑑𝛾, (5.38)

and can be analytically expressed by

𝑃𝑒 = E
[︂
𝑎̄𝒬

(︂√︁
𝑏̄𝛾
)︂]︂

= 𝑎̄2− 𝜅
2 −1𝑏̄− 𝜅

2 𝜃−𝜅×⎛⎝ 2𝐹2
(︁
𝜅
2 + 1

2 ,
𝜅
2 ; 1

2 ,
𝜅
2 + 1; 1

2𝑏̄𝜃2

)︁
Γ
(︁
𝜅
2 + 1

)︁ −
𝜅 2𝐹2

(︁
𝜅
2 + 1

2 ,
𝜅
2 + 1; 3

2 ,
𝜅
2 + 3

2 ; 1
2𝑏̄𝜃2

)︁
√

2𝑏̄𝜃Γ
(︁
𝜅+3

2

)︁
⎞⎠ , (5.39)

whose proof is provided in Appendix B.9. Note that in (5.39), 𝑎̄ and 𝑏̄ are constants that
depend on the modulation scheme. For instance, the average SER of the binary phase shift
keying (BPSK) modulation is obtained when 𝑎̄ = 1 and 𝑏̄ = 2, while that for the 𝑀 -ary Pulse
Amplitude Modulation (𝑀 -PAM), 𝑎̄ = 2(𝑀 − 1)/𝑀 and 𝑏̄ = 6/(𝑀2 − 1). In the same way, 𝑎̄ =
𝑏̄ = 2 are applied for the average SER of the quadrature phase shift keying (QPSK) modulation.
Finally, 𝑎̄ = 2 and 𝑏̄ = 2 sin2 (𝜋/𝑀) for 𝑀 -ary phase shift keying (M-PSK) modulation, while
𝑎̄ = 4(1 − 1/

√
𝑀) and 𝑏̄ = 3/(𝑀 − 1) for the average SER of the 𝑀 -ary quadrature amplitude

modulation (M-QAM), when 𝑀 > 4.

Remark 10 In high SNR regime, the average SER can be approximated as

𝑃 high-SNR
𝑒 ≈ 𝑎̄2− 𝜅

2 −1𝑏̄− 𝜅
2 𝜃−𝜅

⎛⎝ 1
Γ
(︁
𝜅
2 + 1

)︁ − 𝜅√
2𝑏̄𝜃Γ

(︁
𝜅+3

2

)︁
⎞⎠ , (5.40)

whose proof is provided in Appendix B.10.

After analyzing (5.40), it is possible to observe that the first term inside the parentheses
is the dominant one. Otherwise, the average SER would be a negative number since 𝑎, 𝑏, and
𝜃 are values greater than zero. This direct insight results in the following remark.
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Remark 11 The average SER decreases when 𝜅 and/or 𝑏 increases and when 𝑎 and/or 𝜃

decreases.

As shown in Section 5.4, this remark demonstrates that the average SER decreases as the
transmission power, 𝜌, and/or the number of reflecting elements, 𝑁 , increases. On the other
hand, the average SER increases as the modulation order increases.

5.3.6 Diversity Order

The diversity order is a fundamental parameter of diversity-based systems. It measures
the number of independent paths over which the data is received. The diversity order, 𝐷, is
formally defined as the negative slope of the average SER versus the average SNR curve in a
log-log scale, and calculated as by [73]

𝐷 = lim
𝜌−∞

− log𝑃𝑒
log 𝜌 . (5.41)

From the definition above, we can see that the diversity order is a high-SNR concept.

Remark 12 The diversity order of the LIS-assisted system is obtained as

𝐷 =
5𝒜 2

1 +
√︁

49𝒜 4
1 − 34𝒜 2

1 𝒜2 + 𝒜 2
2 − 𝒜2

4 (𝒜2 − 𝒜 2
1 ) . (5.42)

The parameters and proof of (5.42) are detailed in Appendix B.11. From them, we realize that
the diversity order increases as 𝑁 .

Remark 13 Despite both source and destination being equipped with a single antenna, the
achievable diversity order grows with the number of LIS reflecting elements. It is worth not-
ing that each reflecting element modifies the incident waves’ phases to add at the destination
coherently. A direct SISO path between source and destination would only allow for a unitary
diversity order. Once diversity gains can only be obtained by employing multiple antennas at
transmission and/or receiving sides. However, LIS employment provides a substantial diversity
order to the communication system just by adding passive reflecting elements with adjustable
phases to the system.

5.3.7 Power-scaling law

This subsection analyses the power-scaling law of the ergodic spectral efficiency regarding
the number of reflecting elements in an LIS-assisted system in which 𝑁 → ∞.
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If 𝑁 grows without limit and we consider that the transmit power, 𝜌, can be scaled down
with 𝑁2 according 𝜌 = 𝑃/𝑁2 and 𝑃 is fixed, then (5.23) and (5.26) become, respectively

𝐶upper = log2

⎛⎝1 +𝑁
𝑃

𝑁2𝛽𝑔𝛽ℎ

⎡⎣1 +
(𝑁 − 1)𝑄2 sin2

(︁
𝜋
𝑄

)︁
16

⎤⎦⎞⎠
→

𝑃𝛽𝑔𝛽ℎ𝑄
2 sin2

(︁
𝜋
𝑄

)︁
16 , 𝑁 → ∞

(5.43)

and

𝐶max.
upper = log2

(︃
1 +𝑁

𝑃

𝑁2𝛽𝑔𝛽ℎ

[︃
1 + (𝑁 − 1)𝜋2

16

]︃)︃

→ 𝑃𝛽𝑔𝛽ℎ𝜋
2

16 , 𝑁 → ∞.

(5.44)

These results confirm that with many reflecting elements and perfect channel information,
the transmit power can be reduced proportionally to 1/𝑁2 without compromising the spectral
efficiency.

Remark 14 From (5.23) and (5.43), it is possible to see that if we decrease the transmit power
proportionally to 1/𝑁𝛼, with 𝛼 > 2, then the SNR goes to zero as 𝑁 → ∞. When 𝛼 < 2, the
SNR grows without bound as 𝑁 → ∞. This means that 1/𝑁2 (𝑖.𝑒., 𝛼 = 2) is the fastest rate at
which we can decrease the transmit power and still maintain a fixed rate.

The Remark 14 shows that as 𝑁 grows without bound, the transmit power can be reduced
proportionally to 1/𝑁2. The transmit power reduction is significant mainly to power-constrained
devices such as IoT devices [74, 75].

5.4 Simulation Results

This section presents some numerical results to validate the derived expressions against
Monte Carlo simulations obtained from 106 realizations. The setup in Figure 5.2 shows the
geometric placement adopted for the BS, LIS and UE, where 𝑟𝑔 and 𝑟ℎ are the distances between
source (i.e., the BS) and LIS, and between LIS and destination (i.e., the UE), respectively. Both
of them are set to 25 m.

We assume that the large-scale fading coefficients are modeled as 𝛽𝑔 = 𝑧𝑔/(𝑟𝑔)𝜈 and
𝛽ℎ = 𝑧ℎ/(𝑟ℎ)𝜈 , in which 𝑧𝑔 and 𝑧ℎ are log-normal random variables with standard deviation
𝜎shadow, while 𝑟𝑔 is the distance between the source and the LIS and 𝑟ℎ is the distance between
the LIS and the destination. 𝜈 is the path-loss exponent. For all simulation results, we adopt
the typical suburban area parameters 𝜎shadow = 8 dB and 𝜈 = 3.67.

Figure 5.3 presents some comparisons of the normalized histogram of the random variable
given by the instantaneous SNR (see (5.5)) against the theoretical PDF given by (5.9). Note
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Figure 5.2 – Adopted setup.
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Figure 5.3 – Comparison of the approximated PDF for the instantaneous sum-capacity.

that the x axis is given in dB in the first plot, but linear scale in the others. As can be noticed,
even for a small number of reflecting elements and quantization bits, the approximation is quite
tight.

Figure 5.4 shows the Kullback-Leibler Divergence [76] between the approximated SNR
PDF and the real distribution of the SNR random variable over the variation of the number of
quantization bits and for several values of LIS elements, 𝑁 . In general, this is the most known
technique to evaluate an approximation in statistics. As can be seen, from 𝑏 = 2 bits onward,
the divergence remains constant regardless of the number of elements. Additionally, the figure
also shows that as the number of elements increases, the divergence decreases. These results
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Figure 5.4 – Kullback-Leibler divergence between the approximated SNR PDF and the real
distribution.

reveal that only the number of LIS reflecting elements can take the approximated PDF closer to
the real one and that the number of quantization bits has a minimal impact on it. It is aligned
to the theory since an inspection of (5.6) reveals that only the number of reflecting elements
impact the summation in that equation.

From Figure 5.5, which shows the spectral efficiency as a function of 𝑁 for 𝑏 ∈ {1, 4, 10},
we can see that the accuracy of the approximation becomes better not only as 𝑁 increases but
also when more bits are dedicated to phase quantization. For comparison, we also present the
simulated capacity curve of a SISO system without the assistance of an LIS. When 𝑏 = 1, the
aid provided by an LIS becomes advantageous for 𝑁 > 80. Otherwise, When 𝑏 > 1, an LIS
with 𝑁 > 50 is enough for the LIS-aided system’s behavior to outperform that of the system
without an LIS.

We also verify the performance degradation when 𝑏 varies. As shown in Figure 5.6, the
spectral efficiency decreases when 𝑏 is small. This is evident, especially for 𝑏 = 1 and 𝑏 =
2. Therefore, the performance difference between the spectral efficiency obtained when using
perfect phase shifts and that of using quantized phase shifts decreases as 𝑏 increases. Moreover,
the degradation also tends to decrease as more reflective elements are added to the LIS. That
is, for an LIS with many elements, a few bits (as few as 4 bits) are sufficient for quantization
with a negligible performance degradation, which is in accordance (5.26).

Regarding the distance between the source (i.e., the BS) and the LIS, we compare the
schemes’ spectral efficiencies with 𝑁 = 25, 50, 100, 250, 500. It is worth mentioning that the
user position is fixed, only the BS position changes. Figure 5.7 shows the results obtained for
𝑏 = 8. We can see that the performance deteriorates as the distance increases. This phenomenon
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Figure 5.5 – Spectral efficiency as a function of 𝑁 for (a) 𝑏 = 1 (b) 𝑏 = 4 (c) 𝑏 = 10.



5. Large Intelligent Surfaces With Discrete Set of Phase-Shifts 73

1 2 3 4 5 6 7 8 9 10 11 12

Quantization bits (b)

10-1

100

101

S
pe

ct
ra

l E
ffi

ci
en

cy
 [b

its
/s

/H
z]

Cmax-upper

Cexact

Csimu

Figure 5.6 – Spectral efficiency as a function of 𝑏 for different values of 𝑁 .
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Figure 5.7 – Spectral efficiency as a function of the distance between source and LIS, considering
𝑏 = 8.

was expected since the LIS is composed of only passive elements and there is no direct path
between the source and the user. However, as already mentioned, it improves when the number
of elements on LIS increases.

In its turn, Figure 5.8 shows how the spectral efficiency behaves as 𝜌 = 𝑃/𝑁𝛼 varies for
𝛼 = 3/2, 2, 5/2. We consider 𝑃 = 100 [dB] and 𝑏 ∈ {1, 2, 4, 8, 10}. As expected and stated
in Remark 14, for 𝛼 = 2 and as 𝑁 increases, the capacity becomes constant no matter the
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Figure 5.8 – Power scaling law for different 𝛼 values.

number of reflecting elements. However, when 𝛼 = 3/2, the capacity grows logarithmically fast
with 𝑁 when 𝑁 → ∞ and tends to 0 when 𝛼 = 5/2 and 𝑁 → ∞. These results confirm that
the transmit power can be reduced proportionally to 𝑁 . We can also see that, although the
capacity increases with the number of quantization bits, 𝑏, the performances for 𝑏 = 4, 𝑏 = 8,
and 𝑏 = 10 are very close.

In Figure 5.9, we show the required transmit power by the source needed to achieve fixed
capacities of 1 and 2 bits/s/Hz, respectively, considering 𝛼 = 2. As expected and predicted
by Remark 14, the transmit power can be reduced by approximately 6 [dB] by doubling the
number of reflecting elements for both fixed capacities. We can also confirm that, in general,
the LIS-assisted system outperforms the SISO system without LIS when 𝑁 is approximately
greater than 80, regardless of the number of quantization bits.

Figure 5.10 compares the average SNR as a function of the transmitted power obtained
from the simulations, (5.11), and the SISO system without LIS. We consider 𝜌 = 50 dB,
𝑁 ∈ {25, 100, 200} and 𝑏 ∈ {1, 4, 8}. As can be confirmed, the relationship between the two
parameters is linear, i.e., between the average SNR and the transmitted power. Additionally,
we can notice that, for a given 𝜌, the average SNR improves as 𝑁 increases. It is also worth
mentioning that the LIS-assisted system outperforms the conventional one the higher the num-
ber of reflecting elements 𝑁 is. Moreover, the influence of the number of quantization bits is
insignificant, as long as 𝑏 > 1.

Figures 5.11 and 5.12 shows the symbol error rate behavior for BPSK and QPSK, and
16-QAM, and 64-QAM modulation schemes considering 𝑁 = 25, respectively. As expected,
the modulations present a decreasing level of robustness as the number of symbols increases.
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Figure 5.9 – Required power for 𝐶 = 1 bit/s/Hz and 𝐶 = 2 bits/s/Hz.
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Figure 5.11 – Symbol Error Rate for BPSK and QPSK modulations for 𝑁 = 25.
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Figure 5.12 – Symbol Error Rate for 16-QAM and 64-QAM modulations for 𝑁 = 25.

The most important thing to note here is the gap between the curves for 1, 2, and 4 bits. It
gets to be almost 5 dB when the SNR is high. Although this gap exists, it is less pronounced
when more bits are dedicated to phase quantization, and 𝑏 = 4 is enough to guarantee a good
performance.

For computational simplicity, in Figure 5.13, we present the simulated and analytical out-
age probabilities only for 𝑁 = 100. We notice that the probability of achieving higher capacities
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Figure 5.13 – Outage probability for 𝑁 = 100 and 𝑏 ∈ {1, 2, 4, 8, 10}.

increases with the number of quantization bits, 𝑏. Moreover, when considering different 𝑏 values,
it is possible to confirm our previous insight; 𝑏 = 4 is enough for a good phase quantization.

Finally, Figure 5.14 shows the outage probability as we vary the number of quantization
bits. For this simulation, we assume 𝜌 equal to 80 [dB] and the capacity of 1 bit/s/Hz. By
analyzing the results, it is possible to notice that the outage probability decreases as the number
of quantization bits, 𝑏, increases and asymptotically approaches the lower bound given by an
optimal LIS with perfect phase shifts, i.e., an infinite number of bits used to represent the
phases. For all the three setups, 𝑁 = 2, 4, and 8, the outage probability reaches its largest
value when 𝑏 = 2. When 𝑁 = 2, the outage probability approaches the perfect phase bound
as long as 𝑏 > 3. We also notice that the gap between the curves gets larger as 𝑁 increases.
However, it reduces as the number of quantization bits, 𝑏, increases. Therefore, we conclude that
the phase quantization errors do not significantly impact the outage probability performance
as long as the number of bits is made large enough, which is an encouraging finding for the
deployment of LIS-assisted systems.

5.5 Conclusion

In this chapter, we have done an in-depth analysis of a practical LIS-assisted Single-
Input Single-Output (SISO) system. Since quantization errors are unavoidable, we evaluate the
influence of bits number dedicated to the phase quantization on spectral efficiency, symbol error
rate, and outage probability. We compare such a system performance with the conventional one
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without LIS through accurate closed-form expressions derived for each of these metrics. We have
extended our analysis to power scaling law and the power required to achieve specific capacity.
Not only is the influence of 𝑏 verified, but also that of the number of LIS elements.

We can conclude that the performance improves as the number of LIS elements and
bits increases. The LIS with approximately fifty elements and four dedicated bits for phase
quantization outperforms the conventional system performance without LIS.
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6

Concluding Remarks

This doctoral project has presented an overview of two key technologies of the mobile
network over approximately five years. Our main concern was to analyze and model practical
channels as close as possible to reality.

On one hand, we approach the performance of the massive MIMO of the fifth generation
taking into account the interference inherent in it. We have derived an accurate approximation
to SIR when the number of antennas at BS is or not finite. We consider path loss and lognormal
shadowing.

As for the sixth generation, we got into topics related to intelligent surfaces. We initially
compared the performance of such systems using Rician and Rayleigh channels. Due to the
high computational cost, we evaluate the performance loss when BS does not have CSI and
transmits the symbols with equal powers to all users.

With a more in-depth analysis, we derive analytical expressions for several parameters
of practical LIS-assisted SISO systems as spectral efficiency, symbol error rate, and outage
probability. We have assumed imperfections for the values of reflection coefficients considering
even phase quantization errors.

We do not know how the future will be. But given the substantial improvements that
massive MIMO and LIS technologies can offer, we can guarantee that the two are here to stay
and coexist. So, as future work, we intend to:

• Generalize cases III and IV of the Chapter 3. We are aware that the models obtained are
limited and only work well for the specified parameters;

• Deepen the knowledge related to LIS. It is worth remembering that the analyzes presented
in Chapter 4 are preliminary since the analytical model to confirm our conclusions is
missing. We need to derive equations for the general Rice case and then find the Rayleigh
as a special case (when the Rice factor is zero);

• Encompass LIS in a neural network based on machine learning tools. In this way, the
LIS would cease to be completely passive and would begin to feel and react alone to the
environment with no sign of external control. It learns how to optimally interact with
the incident signal given the channels at the active elements, extracting the current state
information and transmitter/receiver locations [77];
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• Insert the correlation matrix between the LIS elements in our analyzes would provide a
more realistic analyses. Its construction is complex and takes into account the azimuth
and elevation angles of each element. In practical LIS, the element spacing is smaller than
𝜆/2 to approximate a continuously controllable surface, and i.i.d. fading cannot occur due
to the planar nature [78];

• Improve the model by adding more antennas (at least) at the transmitter and also con-
sidering a direct link between transmitter and receiver. In this case, the channels have
more dimensions, and the effect of phase noise becomes more important to study.

• Look further into the future. For example, millimeter waves will be increasingly explored,
and as a consequence of a heterogeneous network, there will be no more borders in the
cells. The so-called cell-free massive MIMO has many individually controllable anten-
nas distributed over a wide area for simultaneously serving a small number of a user
equipment.
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A.1 Mean and Variance of C

The mean value of 𝐶 is given by

𝜇𝐶 = 𝐸[𝐶] = 𝐸

[︃
𝑛∑︁
𝑘=1

1
𝑛

|𝐻12𝑘| cos 𝜃𝑘
]︃
. (A.1)

Assuming that all coefficients are independent and have the same statistics, the following
can be written

𝜇𝐶 = 𝑛× 1
𝑛

× 𝐸 [|𝐻12𝑘| cos 𝜃𝑘]

= 𝜇1𝜇2

(︃
𝐼1(𝜅)
𝐼0(𝜅)

)︃
, (A.2)

in which 𝜇1 = 𝐸[𝐻1𝑘] and 𝜇2 = 𝐸[𝐻2𝑘]. The variance of 𝐶 is given by

𝜎2
𝐶 = var

(︃
𝑛∑︁
𝑘=1

1
𝑛

|𝐻12𝑘| cos 𝜃𝑘
)︃
. (A.3)

Note that the variance computation in (A.3) involves the product of two independent
variables. Let the variables 𝑢 and 𝑣 be independent. Therefore, the variance of the product is
given by var(𝑢𝑣) = var(𝑢)var(𝑣) + var(𝑢)𝐸[𝑣]2 + var(𝑣)𝐸[𝑢]2 [19]. Additionally, since all the
variables are independent, the following can be written

𝜎2
𝐶 = 1

𝑛
var (|𝐻12𝑘| cos 𝜃𝑘)

= 1
𝑛

(︁
𝜎2

12𝜎
2
𝐶𝑘

+ 𝜎2
12𝜇

2
𝐶𝑘

+ 𝜎2
𝐶𝑘
𝜇2

12

)︁
, (A.4)

whose parameters can be calculated as follows

𝜎2
12 = 𝜎2

1𝜎
2
2 + 𝜇2

1𝜎
2
2 + 𝜇2

2𝜎
2
1, (A.5)

in which 𝜎2
1 = var(𝐻1𝑘) and 𝜎2

2 = var(𝐻2𝑘),

𝜎2
𝐶𝑘

= 𝐸
[︁
𝑐𝑜𝑠2𝜃𝑘

]︁
− 𝐸2 [cos 𝜃𝑘] , (A.6)

𝜇𝐶𝑘
= 𝐸 [cos 𝜃𝑘] = 𝛼1 = 𝐼1(𝜅)

𝐼0(𝜅) , (A.7)
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𝐸
[︁
𝑐𝑜𝑠2𝜃𝑘

]︁
= 1

2 + 1
2𝐸 [cos 2𝜃𝑘] = 1

2 + 1
2𝛼2. (A.8)

and
𝜎2
𝐶𝑘

= 1
2 + 1

2
𝐼2(𝜅)
𝐼0(𝜅) +

(︃
𝐼1(𝜅)
𝐼0(𝜅)

)︃2

. (A.9)

Therefore, the variance of 𝐶 is defined as

𝜎2
𝐶 = 1

2𝑛𝜎
2
12

⎛⎝1 + 𝐼2(𝜅)
𝐼0(𝜅) + 4

[︃
𝐼1(𝜅)
𝐼0(𝜅)

]︃2
⎞⎠+ . . .

· · · + 𝜇1𝜇2
1

2𝑛

(︃
1 + 𝐼2(𝜅)

𝐼0(𝜅)

)︃
.

(A.10)

A.2 Mean and Variance of S

The mean value of 𝑆 can be written as

𝜇𝑆 = 𝐸[𝑆] = 𝐸

[︃
𝑛∑︁
𝑘=1

1
𝑛

|𝐻12𝑘| sin 𝜃𝑘
]︃

= 1
𝑛

× 𝑛× 𝜇1𝜇2𝐸[sin 𝜃𝑘], (A.11)

Using the same assumptions as in the previous case, the mean value of 𝑆 can be calculated
as

𝜇𝑆𝑘
= 𝐸 [sin 𝜃𝑘] = 𝛽1 = 0. (A.12)

Therefore,
𝜇𝑆 = 0 (A.13)

On the other hand, the variance of 𝑆 can be computed as

𝜎2
𝑆 = var

(︃
𝑛∑︁
𝑘=1

1
𝑛

|𝐻12𝑘| sin 𝜃𝑘
)︃

= 1
𝑛

(︁
𝜎2

12𝜎
2
𝑆𝑘

+ 𝜎2
12𝜇

2
𝑆𝑘

+ 𝜎2
𝑆𝑘
𝜇2

12

)︁
, (A.14)

whose parameters can be calculated as follows

𝜎2
𝑆𝑘

= 𝐸
[︁
𝑠𝑖𝑛2𝜃𝑘

]︁
− 𝐸2 [sin 𝜃𝑘]

= 1
2 − 1

2
𝐼2(𝜅)
𝐼0(𝜅) (A.15)

𝐸
[︁
𝑠𝑖𝑛2𝜃𝑘

]︁
= 1

2 − 1
2𝐸 [cos 2𝜃𝑘] = 1

2 − 1
2𝛼2.

Therefore, the variance of 𝑆 is defined as

𝜎2
𝑆 = 1

2𝑛
𝜎2

12

(︂
1 − 𝐼2(𝜅)

𝐼0(𝜅)

)︂
+ 1

2𝑛
(𝜇1𝜇2)2

(︂
1 − 𝐼2(𝜅)

𝐼0(𝜅)

)︂
. (A.16)
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A.2.1 Mean of the product of C and S

This appendix shows that 𝐶 and 𝑆 are uncorrelated. Considering a possible correlation
between 𝐶 and 𝑆, the bivariate Gaussian joint distribution can be written as

𝑓𝐶,𝑆(𝑥, 𝑦) = 1
2𝜋𝜎𝐶𝜎𝑆

√
1 − 𝜌2 𝑒

− 1
2
√

1−𝜌2

(︂
(𝑥−𝜇𝐶)2

𝜎2
𝐶

+ (𝑦−𝜇𝑆)2

𝜎2
𝑆

− 2𝜌(𝑥−𝜇𝐶 )(𝑦−𝜇𝑆)
𝜎𝐶 𝜎𝑆

)︂
(A.17)

where 𝜌 is defined as [19]

𝜌 = 𝐸 [𝐶𝑆] − 𝐸 [𝐶]𝐸 [𝑆]
𝜎𝐶𝜎𝑆

(A.18)

As it has been calculated from (A.13), the term 𝐸[𝑆] = 0, that is, the second term of the
numerator of (A.18) is zero. Therefore in order to prove that 𝜌 = 0, we need to compute the
mean of the product between 𝐶 and 𝑆 and show that is also zero.

Departing from (4.19), the mean of the product between 𝐶 and 𝑆 can be written as

𝐸 [𝐶𝑆] = 𝐸

⎡⎣ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑅𝑖𝑅𝑗 cos (𝜃𝑖) sin (𝜃𝑗)
⎤⎦ (A.19)

Since 𝑅𝑘 is independent of 𝜃𝑘 for all 𝑘, then

𝐸[𝐶𝑆] = 2
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗>𝑖

𝐸 [𝑅𝑖𝑅𝑗]𝐸 [cos (𝜃𝑖) sin (𝜃𝑗)] +

𝑛∑︁
𝑘=1

𝐸
[︁
𝑅2
𝑖

]︁
𝐸 [sin (𝜃𝑖) cos (𝜃𝑖)]

(A.20)

In the sequel, the following equalities are proven

𝐸 [cos (𝜃𝑖) sin (𝜃𝑗)] = 0

and
𝐸 [sin (𝜃𝑖) cos (𝜃𝑖)] = 0

Therefore (A.20) will be null. Using the very definition of the mean, the term 𝐸 [cos (𝜃𝑖) sin (𝜃𝑗)]
can be computed as

𝐸[cos(𝜃𝑖) sin(𝜃𝑗)] =
∫︁ 2𝜋

0

∫︁ 2𝜋

0
cos(𝜃𝑖) sin(𝜃𝑗)

𝑒𝜅 cos(𝜃𝑖)

2𝜋𝐼0(𝜅)
𝑒𝜅 cos(𝜃𝑗)

2𝜋𝐼0(𝜅)𝑑𝜃𝑖𝑑𝜃𝑗 = 0, (A.21)

in the same way, the mean with respect to 𝜃𝑖 in the second term of (A.20), can be calculated
as

𝐸[cos(𝜃𝑖) sin(𝜃𝑖)] =
∫︁ 2𝜋

0

cos(𝜃𝑖) sin(𝜃𝑖)
2𝜋𝐼0(𝜅) 𝑒𝜅 cos(𝜃𝑖)𝑑𝜃𝑖 = 0, (A.22)

therefore 𝐸[𝐶𝑆] = 0 and consequently 𝜌, given in (A.18)), will be 𝜌 = 0. From this, (A.17) can
be written as in (??).
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A.2.2 Variance of 𝐶 and 𝑆 for Case IV

𝜎2
𝐶 = 1

768𝑛2𝜎4
𝑅

𝑛∑︁
𝑖=1

(︂
192

(︂
(𝛽min − 1)24−𝑘

2𝐹1

(︂1
2 − 𝑘,−𝑘; 2; 1

)︂
+ 2𝛽min

(︁
𝛽min − (𝛽min − 1)2−𝑘

2𝐹1

(︃
1 − 𝑘

2 ,−𝑘

2 ; 2; 1
)︃

+ 4−𝑘(𝛽min − 1)
𝜋(2𝑘 + 1)2

(︁
768(𝛽min − 1)(2𝑘 + 1) cos2(𝛼𝑖 + 𝛿𝑖)

3𝐹2

(︂
−1

2 ,
1
2 , 1; 𝑘 + 1, 𝑘 + 3

2; 1
)︂

+512(𝛽min−1)𝑘(2𝑘+1)2 cos2(𝛼𝑖+𝛿𝑖) 3𝐹2

(︂
1, 1

2 − 𝑘, 1 − 𝑘; 3
2 ,

5
2; 1

)︂
+

48(𝛽min − 1)(2𝑘 + 1) sin2(𝛼𝑖 + 𝛿𝑖)
(︂

16(𝑘+1) 3𝐹2( 1
2 ,

3
2 ,2;𝑘+2,𝑘+ 5

2 ;1)
2𝑘+3 − (2𝜋𝑘+𝜋) 3𝐹2( 1

2 ,1,
3
2 ; 𝑘

2 + 3
2 ,

𝑘
2 +2;1)2

(𝑘+2)2

)︂
(𝑘 + 1)2 +

1
(𝑘 + 1)(𝑘 + 2)24𝜋(𝛽min − 1)(2𝑘 + 1) 3𝐹2

(︃
1
2 , 1,

3
2; 𝑘2 + 3

2 ,
𝑘

2 + 2; 1
)︃

sin2(𝛼𝑖 + 𝛿𝑖)(︃
(8𝑘 + 4) 3𝐹2

(︃
1, 1

2 − 𝑘

2 ,−
𝑘

2 ; 1
2 ,

3
2; 1

)︃
+ 𝜋𝑘(𝑘 + 2) 2𝐹1

(︃
1 − 𝑘

2 ,−𝑘

2 ; 2; 1
)︃)︃

− 1
2𝑘 + 3

2𝑘+7𝑘(4𝑘(𝑘 + 2) + 3)𝛽min

(︃
4(2𝑘 + 1) cos2(𝛼𝑖 + 𝛿𝑖) 3𝐹2

(︃
1, 1

2 − 𝑘

2 , 1 − 𝑘

2 ; 3
2 ,

5
2; 1

)︃
+ sin2(𝛼𝑖 + 𝛿𝑖)(︃

8(2𝑘 + 1) 3𝐹2

(︃
2, 1

2 − 𝑘

2 , 1 − 𝑘

2 ; 3
2 ,

5
2; 1

)︃
+ 3𝜋(𝑘 − 1) 2𝐹1

(︃
1 − 𝑘

2 ,−𝑘

2 ; 2; 1
)︃)︃

+ 1
𝑘 + 1(︃

−3𝛽min2𝑘+9(2𝑘 + 1)2 cos2(𝛼𝑖 + 𝛿𝑖) 3𝐹2

(︃
−1

2 ,
1
2 , 1; 𝑘2 + 1, 𝑘2 + 3

2; 1
)︃

+ (3𝜋(𝛽min − 1)𝑘 (64(2𝑘 − 1)

(2𝑘 + 1)(4𝑘 − 1) 2𝐹1

(︂
1 − 𝑘,

3
2 − 𝑘; 2; 1

)︂
− 𝜋2𝑘(𝑘 + 1)(𝑘 + 2)2

2𝐹1

(︃
1 − 𝑘

2 ,−𝑘

2 ; 2; 1
)︃

2 + 8(2𝑘 + 1)(︃
−3𝜋2(𝛽min − 1)𝑘(𝑘 + 2)(𝑘 + 1) 2𝐹1

(︃
1 − 𝑘

2 ,−𝑘

2 ; 2; 1
)︃

3𝐹2

(︃
1, 1

2 − 𝑘

2 ,−
𝑘

2 ; 1
2 ,

3
2; 1

)︃
− 6(𝑘 + 1)

𝜋(𝛽min − 1)(2𝑘 + 1) 3𝐹2

(︃
1, 1

2 − 𝑘

2 ,−
𝑘

2 ; 1
2 ,

3
2; 1

)︃
2 + 16(2𝑘 + 1) 8(𝛽min − 1)𝑘(𝑘 + 1)

3𝐹2

(︂
2, 1

2 − 𝑘, 1 − 𝑘; 3
2 ,

5
2; 1

)︂
− 3

√
𝜋𝛽minΓ(𝑘 + 2) 3𝐹2

(︃
1
2 ,

3
2 , 2; 𝑘 + 4

2 ,
𝑘 + 5

2 ; 1
)︃

sin2(𝛼𝑖 + 𝛿𝑖)

(A.23)
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𝜎2
𝑆 = 1

768𝑛2𝜎4
𝑅

𝑛∑︁
𝑖=1

⎛⎝4−𝑘3
⎛⎝𝛽2

min22𝑘+7 +
64(𝛽min − 1)2

2𝐹1
(︁

1
2 − 𝑘,−𝑘; 2; 1

)︁
(2𝑘 cos2(𝛼𝑖 + 𝛿𝑖) + 4𝑘 + 1)

4𝑘 + 1

(2𝑘−1)+
(𝛽min − 1) 2𝐹1

(︁
1−𝑘

2 ,−𝑘
2 ; 2; 1

)︁
(2𝑘 + 1)2

(︁
𝛽min

(︁
−2𝑘+7

)︁
(2𝑘 + 1)

(︁
(𝑘 − 1)𝑘 cos2(𝛼 + 𝛿) + 2𝑘 + 1

)︁
𝜋2

(𝛽min − 1)
(︁
−𝑘2

)︁
(𝑘 + 2)2

2𝐹1

(︃
1 − 𝑘

2 ,−𝑘

2 ; 2; 1
)︃

cos2(𝛼𝑖+ 𝛿𝑖) − 3(𝛽min − 1)242−𝑘 cos2(𝛼𝑖 + 𝛿𝑖)

3𝐹2

(︃
1, 1

2 − 𝑘

2 ,−
𝑘

2 ; 1
2 ,

3
2; 1

)︃
2 + 3

√
𝜋(𝛽min − 1)281−𝑘 cos2(𝛼𝑖 + 𝛿𝑖) 3𝐹2

(︃
1, 1

2 − 𝑘

2 ,−
𝑘

2 ; 1
2 ,

3
2; 1

)︃

Γ(𝑘 + 1) 3𝐹2

(︃
1
2 , 1,

3
2; 𝑘 + 3

2 ,
𝑘 + 4

2 ; 1
)︃

−
√
𝜋2𝑘𝑘(𝑘 + 2) 2𝐹1

(︁
1−𝑘

2 ,−𝑘
2 ; 2; 1

)︁
2𝑘 + 1 + 1

𝜋
2−4𝑘(𝛽min − 1)(︂

(𝛽min − 1)4𝑘+5𝑘 cos2(𝛼𝑖 + 𝛿𝑖)3𝐹2

(︂
2, 1

2 − 𝑘, 1 − 𝑘; 3
2 ,

5
2; 1

)︂
− 𝛽min8𝑘+3𝑘(cos(2(𝛼𝑖 + 𝛿𝑖)) + 1)

3𝐹2

(︃
2, 1

2 − 𝑘

2 , 1 − 𝑘

2 ; 3
2 ,

5
2; 1

)︃
−3𝜋2(𝛽min−1)Γ(𝑘+1)2 cos2(𝛼𝑖+𝛿𝑖) 3𝐹2

(︃
1
2 , 1,

3
2; 𝑘 + 3

2 ,
𝑘 + 4

2 ; 1
)︃

2+

(𝛽min − 1)22𝑘+9𝑘 sin2(𝛼𝑖 + 𝛿𝑖)3𝐹2

(︂
1, 1

2 − 𝑘, 1 − 𝑘; 3
2 ,

5
2; 1

)︂
− 𝛽min8𝑘+3𝑘 sin2(𝛼𝑖 + 𝛿𝑖)

3𝐹2

(︃
1, 1

2 − 𝑘

2 , 1 − 𝑘

2 ; 3
2 ,

5
2; 1

)︃
+192

√
𝜋(𝛽min−1)Γ(2𝑘+1)

(︂
cos2(𝛼𝑖 + 𝛿𝑖) 3𝐹2

(︂1
2 ,

3
2 , 2; 𝑘 + 2, 𝑘 + 5

2; 1
)︂

+

2 sin2(𝛼𝑖 + 𝛿𝑖) 3𝐹2

(︂
−1

2 ,
1
2 , 1; 𝑘 + 1, 𝑘 + 3

2; 1
)︂)︂

+2𝑘+13
√
𝜋Γ(𝑘+1)

(︃
𝜋2(𝛽min − 1)𝑘(𝑘 + 2) cos2(𝛼𝑖 + 𝛿𝑖)

2𝑘 + 1

)︃

2𝐹1

(︃
1 − 𝑘

2 ,−𝑘

2 ; 2; 1
)︃

3
𝐹2

(︃
1
2 , 1,

3
2; 𝑘 + 3

2 ,
𝑘 + 4

2 ; 1
)︃

2𝑘+6𝛽min
(︁
cos2(𝛼𝑖 + 𝛿𝑖)

3𝐹2

(︃
1
2 ,

3
2 , 2; 𝑘 + 4

2 ,
𝑘 + 5

2 ; 1
)︃

+ 2 sin2(𝛼𝑖 + 𝛿𝑖)3𝐹2

(︃
−1

2 ,
1
2 , 1; 𝑘 + 2

2 ,
𝑘 + 3

2 ; 1
)︃)︃)︃)︃)︃

(A.24)
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B.1 Parameters 𝜅 and 𝜃

To find the parameters 𝜅 and 𝜃 for the approximated PDF of 𝜆, we first need to define
the following Lemmas.

Lemma 2 ⃒⃒⃒⃒
⃒
𝑁∑︁
𝑛=1

𝑧𝑛𝑒
𝑗𝜃𝑛

⃒⃒⃒⃒
⃒
2

=
𝑁∑︁
𝑛=1

𝑧2
𝑛 + 2

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=𝑚+1

𝑧𝑚𝑧𝑛 cos(𝜃𝑚 − 𝜃𝑛). (B.1)

Proof 1 This identity is straightforwardly found by expanding the summation terms on its left
side.

Lemma 3 If X ∼ CN(0𝑀 , 𝜎2
𝑋I𝑀), then 𝑌 = |𝑋| is a Rayleigh random variable with PDF

given by

𝑓𝑌 (𝑦) = 2𝑦
𝜎2
𝑋

𝑒
− 𝑦2

𝜎2
𝑋 , 𝑦 ≥ 0. (B.2)

Proof 2 The proof for this Lemma is given in [19].

Lemma 4 If 𝑌 is a Rayleigh random variable with PDF defined by (B.2), then, its 4 first
moments are given by

E [𝑌 ] =
∫︁ ∞

0
𝑦𝑓𝑌 (𝑦)𝑑𝑦 = 𝜎𝑋

√
𝜋

2 , (B.3)

E
[︁
𝑌 2
]︁

=
∫︁ ∞

0
𝑦2𝑓𝑌 (𝑦)𝑑𝑦 = 𝜎2

𝑋 , (B.4)

E
[︁
𝑌 3
]︁

=
∫︁ ∞

0
𝑦3𝑓𝑌 (𝑦)𝑑𝑦 = 3𝜎3

𝑋

√
𝜋

4 , (B.5)

E
[︁
𝑌 4
]︁

=
∫︁ ∞

0
𝑦4𝑓𝑌 (𝑦)𝑑𝑦 = 2𝜎4

𝑋 . (B.6)
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Lemma 5 If 𝑋 is a uniform random variable with PDF given by

𝑓𝑋(𝑥) =

⎧⎪⎨⎪⎩
𝑎

2𝜋 , −𝜋
𝑎

≤ 𝑥 ≤ 𝜋
𝑎
,

0, otherwise,
(B.7)

then 𝑌 = −𝑋 has the same PDF as 𝑋, which was defined in (B.7).

Proof 3 This can be straightforwardly proved by noticing that the PDF of 𝑋 is symmetrical
around 0.

Lemma 6 If 𝜃𝑚 and 𝜃𝑛 are independent and identically distributed uniform random variables
with PDF given by (B.7), then 𝑌 = 𝜃𝑚 + 𝜃𝑛 has the following PDF

𝑓𝑌 (𝑦) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎
2𝜋

(︁
1 + 𝑎

2𝜋𝑦
)︁
, −2𝜋

𝑎
≤ 𝑦 ≤ 0,

𝑎
2𝜋

(︁
1 − 𝑎

2𝜋𝑦
)︁
, 0 < 𝑦 ≤ 2𝜋

𝑎
,

0, otherwise.

(B.8)

Proof 4 From the theory, we know that the sum of two random variables equals the convolution
of 𝑓𝜃𝑚(𝜃𝑚) and 𝑓𝜃𝑛(𝜃𝑛) is

𝑓𝑌 (𝑦) =
∫︁ ∞

−∞
𝑓𝜃𝑚(𝑦 − 𝜃𝑛)𝑓𝜃𝑛(𝜃𝑛)𝑑𝜃𝑛. (B.9)

Therefore, 𝑓𝑌 (𝑦) is defined as

𝑓𝑌 (𝑦) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫︀ 𝜋
𝑎

+𝑦
− 𝜋

𝑎

𝑎2

4𝜋2𝑑𝜃𝑛, −2𝜋
𝑎

≤ 𝑦 < 0,∫︀ 𝜋
𝑎

− 𝜋
𝑎

+𝑦
𝛽𝑔

4𝜋2𝑑𝜃𝑛, 0 ≤ 𝑦 ≤ 2𝜋
𝑎
,

0, otherwise,

(B.10)

which concludes the proof.

Lemma 7 If the PDF of the sum of two independent and identically distributed uniform ran-
dom variables is given by (B.8), then

E [cos(𝜃𝑚 − 𝜃𝑛)] =
𝑎2 sin2(𝜋

𝑎
)

𝜋2 . (B.11)

Proof 5 By using Lemma 5, we can rewrite (B.11) as E [cos(𝜃𝑚 + 𝜃𝑛)], then applying Lemma
6 we have

E [cos(𝜃𝑚 + 𝜃𝑛)] = E [cos(𝑦)] =
∫︁ 0

− 2𝜋
𝑎

cos(𝑦) 𝑎2𝜋

(︂
1 + 𝑎

2𝜋𝑦
)︂
𝑑𝑦 +

∫︁ 0

− 2𝜋
𝑎

cos(𝑦) 𝑎2𝜋

(︂
1 − 𝑎

2𝜋𝑦
)︂
𝑑𝑦.

(B.12)

Solving the two integrals in (B.12) concludes the proof.
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Lemma 8 If the PDF of the sum of two independent and identically distributed uniform ran-
dom variables is given by (B.8), then

E
[︁
cos2(𝜃𝑚 − 𝜃𝑛)

]︁
=

8𝜋2 + 𝑎2 − 𝑎2 cos2(4𝜋
𝑎

)
16𝜋2 . (B.13)

Proof 6 By using Lemma 5 we can rewrite (B.11) as E [cos2(𝜃𝑚 + 𝜃𝑛)], then applying Lemma
6 we have

E
[︁
cos2(𝜃𝑚 + 𝜃𝑛)

]︁
= E

[︁
cos2(𝑦)

]︁
=
∫︁ 0

− 2𝜋
𝑎

cos2(𝑦) 𝑎2𝜋

(︂
1 + 𝑎

2𝜋𝑦
)︂
𝑑𝑦+

∫︁ 0

− 2𝜋
𝑎

cos2(𝑦) 𝑎2𝜋

(︂
1 − 𝑎

2𝜋𝑦
)︂
𝑑𝑦.

(B.14)
Solving the two integrals in (B.14) concludes the proof.

Lemma 9 If 𝑋 is a uniform random variable with PDF given by (B.7), then the PDF of
𝑌 = 2𝑋 is given by

𝑓𝑌 (𝑦) = 𝑎

4𝜋 ,−
2𝜋
𝑎

≤ 𝑦 ≤ 2𝜋
𝑎
. (B.15)

Proof 7 This is proved by using the standard transformation of random variables.

Lemma 10 If 𝜃𝑙, 𝜃𝑚 and 𝜃𝑛 are independent and identically distributed uniform random vari-
ables with PDF given by (B.7), then 𝑌 = 2𝜃𝑙 − (𝜃𝑚 + 𝜃𝑛) has the following PDF

𝑓𝑌 (𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎
2𝜋 + 𝑎2𝑦

4𝜋2 + 𝑎3𝑦2

32𝜋3 , −4𝜋
𝑎

≤ 𝑦 ≤ −2𝜋
𝑎
,

𝑎
4𝜋 − 𝑎3𝑦2

32𝜋3 , −2𝜋
𝑎
< 𝑦 ≤ 0,

𝑎
4𝜋 − 𝑎3𝑦2

32𝜋3 , 0 < 𝑦 ≤ 2𝜋
𝑎
,

𝑎
2𝜋 − 𝑎2𝑦

4𝜋2 + 𝑎3𝑦2

32𝜋3 ,
2𝜋
𝑎
< 𝑦 ≤ 4𝜋

𝑎
,

0, otherwise.

(B.16)

Proof 8 We start by remembering that we know the PDF of 𝑊 = 2𝜃𝑙 and of 𝑍 = 𝜃𝑚 + 𝜃𝑛,
which are given by (B.15) and (B.8), respectively. Next by applying Lemma 5, we can re-write
𝑌 as 𝑌 = 𝑍 +𝑊 , which is the sum of two independent random variables. Therefore, the PDF
of 𝑌 is the convolution between the PDFs of 𝑊 and 𝑍, which is defined as

𝑓𝑌 (𝑦) =
∫︁ ∞

−∞
𝑓𝑊 (𝑦 − 𝑧)𝑓𝑍(𝑧)𝑑𝑧. (B.17)
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Therefore, 𝑓𝑌 (𝑦) is defined as

𝑓𝑌 (𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︀ 2𝜋
𝑎

+𝑦
− 2𝜋

𝑎

𝑎2

8𝜋2

(︁
1 + 𝑎

2𝜋𝑧
)︁
𝑑𝑧, −4𝜋

𝑎
≤ 𝑦 < −2𝜋

𝑎
,∫︀ 2𝜋

𝑎
+𝑦

0
𝑎2

8𝜋2

(︁
1 − 𝑎

2𝜋𝑧
)︁
𝑑𝑧 +

∫︀ 𝜋
𝑎

− 𝜋
𝑎

+𝑦
𝑎2

8𝜋2

(︁
1 + 𝑎

2𝜋𝑧
)︁
𝑑𝑧, −2𝜋

𝑎
≤ 𝑦 < 0,∫︀ 0

− 2𝜋
𝑎

+𝑦
𝑎2

8𝜋2

(︁
1 + 𝑎

2𝜋𝑧
)︁
𝑑𝑧 +

∫︀ 𝜋
𝑎

− 𝜋
𝑎

+𝑦
𝑎2

8𝜋2

(︁
1 − 𝑎

2𝜋𝑧
)︁
𝑑𝑧, 0 ≤ 𝑦 < 2𝜋

𝑎
,∫︀ 2𝜋

𝑎

− 2𝜋
𝑎

+𝑦
𝑎2

8𝜋2

(︁
1 − 𝑎

2𝜋𝑧
)︁
𝑑𝑧, 2𝜋

𝑎
≤ 𝑦 ≤ 4𝜋

𝑎
,

0, otherwise,

(B.18)

which concludes the proof.

Lemma 11 If the PDF of the sum of three independent random variables, 𝑌 = 2𝜃𝑙− (𝜃𝑚+𝜃𝑛),
is given by (B.16), then

E [cos(2𝜃𝑙 − (𝜃𝑚 + 𝜃𝑛))] =
𝑎3 cos(𝜋

𝑎
) sin3(𝜋

𝑎
)

𝜋3 . (B.19)

Proof 9 By using Lemma 10 we have

E [cos(2𝜃𝑙 − (𝜃𝑚 + 𝜃𝑛))] = E [cos(𝑦)]

=
∫︁ − 2𝜋

𝑎

− 4𝜋
𝑎

cos(𝑦)
[︃
𝑎

2𝜋 + 𝑎2𝑦

4𝜋2 + 𝑎3𝑦2

32𝜋3

]︃
𝑑𝑦

+
∫︁ 2𝜋

𝑎

− 2𝜋
𝑎

cos(𝑦)
[︃
𝑎

4𝜋 − 𝑎3𝑦2

32𝜋3

]︃
𝑑𝑦

+
∫︁ 4𝜋

𝑎

2𝜋
𝑎

cos(𝑦)
[︃
𝑎

2𝜋 − 𝑎2𝑦

4𝜋2 + 𝑎3𝑦2

32𝜋3

]︃
𝑑𝑦.

(B.20)

Solving the three integrals in (B.20) concludes the proof.

Lemma 12 If 𝜃𝑙, 𝜃𝑚, and 𝜃𝑛 are independent and identically distributed uniform random vari-
ables with PDF given by (B.7), then

E [cos(𝜃𝑙 − 𝜃𝑚) cos(𝜃𝑙 − 𝜃𝑛)] =
𝑎2 sin2(𝜋

𝑎
)
[︁
2𝜋 + 𝑎 sin(2𝜋

𝑎
)
]︁

4𝜋3 . (B.21)

Proof 10 We start by applying the trigonometric identity cos(𝑎) cos(𝑏) = cos(𝑎−𝑏)+cos(𝑎+𝑏)
2 to

(B.22), which then can be re-written as

E [cos(𝜃𝑙 − 𝜃𝑚) cos(𝜃𝑙 − 𝜃𝑛)] = 1
2E [cos(𝜃𝑛 − 𝜃𝑚)]

+ 1
2E [cos(2𝜃𝑙 − 𝜃𝑛 − 𝜃𝑚)] .

(B.22)

Next, by applying Lemmas 7 and 11 to (B.22), we conclude the proof.
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B.1.1 Approximated PDF of the Instantaneous SNR

Let the random variable 𝑍 = 𝑟, where 𝑟 is defined in (5.6), therefore, the PDF of 𝑍 can be
accurately approximated by a Gamma distribution with parameters 𝜅 and 𝜃, defined by (5.7)
and (5.8), respectively. This is empirically proven by comparing the normalized histogram of
𝑍 against the theoretical PDF of a Gamma random variable, 𝑌 , with the parameters defined
earlier.

In order to approximate 𝑍 as a Gamma random variable, 𝑌 , we have to find the parameters
shape and scale (𝑖.𝑒., 𝜅 and 𝜃) based on statistical information of 𝑍. Therefore, we approximate
𝑍 as a Gamma random variable, 𝑌 , by using two different moments of 𝑌 and then assuming
that E [𝑌 2] = E [𝑍2] and E [𝑌 4] = E [𝑍4].

Those two moments of the Gamma distribution 𝑌 are defined as

E
[︁
𝑌 2
]︁

= 𝜅(𝜅+ 1)𝜃2, (B.23)

and
E
[︁
𝑌 4
]︁

= 𝜅(𝜅+ 1)(𝜅+ 2)(𝜅+ 3)𝜃4. (B.24)

Based on (B.23), the assumption that E [𝑌 2] = E [𝑍2] and then isolating 𝜃 we find

𝜃 =

⎯⎸⎸⎷ E [𝑍2]
𝜅(𝜅+ 1) . (B.25)

Next, plugging (B.25) back into (B.24) and assuming that E [𝑌 4] = E [𝑍4], we find 𝜅 as(︂
E
[︁
𝑍4
]︁

− E
[︁
𝑍2
]︁2)︂

𝜅2 +
(︂
E
[︁
𝑍4
]︁

− 5E
[︁
𝑍2
]︁2)︂

𝜅− 6E
[︁
𝑍2
]︁2

= 0, (B.26)

which is a quadratic equation with the following two roots

𝜅0 =
−
(︁
E [𝑍4] − 5E [𝑍2]2

)︁
+
√︁
E [𝑍4]2 − 34E [𝑍4]E [𝑍2]2 + 49E [𝑍2]4

2
(︁
E [𝑍4] − E [𝑍2]2

)︁ , (B.27)

𝜅1 =
−
(︁
E [𝑍4] − 5E [𝑍2]2

)︁
−
√︁
E [𝑍4]2 − 34E [𝑍4]E [𝑍2]2 + 49E [𝑍2]4

2
(︁
E [𝑍4] − E [𝑍2]2

)︁ , (B.28)

where out of the two roots, only is useful, 𝑖.𝑒., only one root has a positive value. Since 𝜅 ought
to be a real and positive number, we assume that the value within the square root is a positive
one. Next, assuming that 5E [𝑍2]2 ≥ E [𝑍4], then only 𝜅0 results in a positive value.

Next, in order to find the moment E [𝑍2], we first expand E [𝑍2] as

E
[︁
𝑍2
]︁

= E [𝛾]

= E

⎡⎣𝜌 ⃒⃒⃒⃒⃒
𝑁∑︁
𝑛=1

|ℎ𝑛||𝑔𝑛|𝑒𝑗𝛿𝑛

⃒⃒⃒⃒
⃒
2⎤⎦

= E
[︃
𝜌

𝑁∑︁
𝑛=1

𝑑2
𝑛 + 2𝜌

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=𝑚+1

𝑑𝑚𝑑𝑛 cos(𝛿𝑚 − 𝛿𝑛)
]︃
,

(B.29)
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where 𝑑𝑘 = |ℎ𝑘||𝑔𝑘| and the last line is found by applying Lemma 2. Thus, using the fact that
|ℎ𝑛|, |𝑔𝑛|, and 𝛿𝑛, ∀𝑛 are mutually independent random variables and that ℎ𝑚 and ℎ𝑛, and 𝑔𝑚

and 𝑔𝑛, ∀𝑚,𝑛 are identically distributed, then (B.29), can be re-written as

E
[︁
𝑍2
]︁

= 𝜌
𝑁∑︁
𝑛=1

E
[︁
|ℎ𝑛|2

]︁
E
[︁
|𝑔𝑛|2

]︁
+ 2𝜌

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=𝑚+1

E [|ℎ𝑚|]2 E [|𝑔𝑚|]2 E [cos(𝛿𝑚 − 𝛿𝑛)]. (B.30)

Then, by applying Lemmas 4 and 7 to (B.30), we find (5.11).

Next, in order to find the moment E [𝑍4], we initially expand it as

E
[︁
𝑍4
]︁

= E
[︁
𝛾2
]︁

= E

⎡⎣(︃ 𝑁∑︁
𝑙=1

𝑑2
𝑙

)︃2⎤⎦+ 4
𝑁∑︁
𝑙=1

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=𝑚+1

E
[︁
𝑑2
𝑙 𝑑𝑚𝑑𝑛 cos(𝛿𝑚 − 𝛿𝑛)

]︁

+ 4E
⎡⎣(︃ 𝑁∑︁

𝑚=1

𝑁∑︁
𝑛=𝑚+1

𝑑𝑚𝑑𝑛 cos(𝛿𝑚 − 𝛿𝑛)
)︃2⎤⎦ ,

(B.31)

where 𝑑𝑘 = |ℎ𝑘||𝑔𝑘|. The first term of (B.31) can be expressed as

E

⎡⎣(︃ 𝑁∑︁
𝑙=1

𝑑2
𝑙

)︃2⎤⎦ = E

⎡⎣ 𝑁∑︁
𝑛=1

𝑑4
𝑛 +

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=1,𝑛̸=𝑚

𝑑2
𝑚𝑑

2
𝑛

⎤⎦𝑁E
[︁
|𝑔𝑚|4

]︁
E
[︁
|ℎ𝑚|4

]︁
+𝑁 (𝑁 − 1)E

[︁
|𝑔𝑚|2

]︁2
E
[︁
|ℎ𝑚|2

]︁2
= 𝑁(𝑁 + 3) (𝛽𝑔𝛽ℎ)2 ,

(B.32)

where the last line of (B.32) is found by applying Lemma 4. Next, the second term of (B.31)
can be expressed as (B.33), where the last line is found by applying Lemmas 4 and 7. Then,
the third term of (B.31) can be expressed as (B.34), where the last line is found after applying
Lemmas 4, 7, 8, and 12. Finally, after plugging (B.32), (B.33), and (B.34) back into (B.31) and
several simplifications, we find (5.12).

The proof is concluded by replacing Equations (5.11) and (5.12) into the definitions of 𝜅
and 𝜃, given by (B.27) and (B.25), respectively.

B.2 Derivation of Remark 1

For the derivation of Remark 1, we need to define the following Lemma.

Lemma 13
lim
𝑥→0

sin (𝑥)
𝑥

= 1. (B.35)

Proof 11 We prove Lemma 13 by applying L’Hôpital’s rule to (B.35) as shown next

lim
𝑥→0

𝜕 sin(𝑥)
𝜕𝑥
𝜕𝑥
𝜕𝑥

= lim
𝑥→0

cos(𝑥) = 1. (B.36)
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4
𝑁∑︁
𝑙=1

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=𝑚+1

E
[︁
𝑑2
𝑙 𝑑𝑚𝑑𝑛 cos(𝛿𝑚 − 𝛿𝑛)

]︁
= 4

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=1,𝑛 ̸=𝑚

E
[︁
𝑑3
𝑚𝑑𝑛 cos(𝛿𝑚 − 𝛿𝑛)

]︁

+ 4
𝑁∑︁
𝑙=1

𝑁∑︁
𝑚=1,𝑚 ̸=𝑙

𝑁∑︁
𝑛=𝑚+1,𝑛 ̸=𝑙

E
[︁
𝑑2
𝑙 𝑑𝑚𝑑𝑛 cos(𝛿𝑚 − 𝛿𝑛)

]︁
= 4𝑁(𝑁 − 1)E

[︁
|𝑔𝑚|3

]︁
E
[︁
|ℎ𝑚|3

]︁
E [|𝑔𝑚|]E [|ℎ𝑚|]E [cos(𝛿𝑙 − 𝛿𝑚)]

+ 2𝑁(𝑁 − 1)(𝑁 − 2)E
[︁
|𝑔𝑙|2

]︁
E
[︁
|ℎ𝑙|2

]︁
E [|𝑔𝑚|]E [|ℎ𝑚|]E [|𝑔𝑛|]E [|ℎ𝑛|] cos(𝛿𝑚 − 𝛿𝑛)

= 1
16𝑁(𝑁 − 1)(2𝑁 + 5) (𝛽𝑔𝛽ℎ)2 𝑄2 sin2

(︃
𝜋

𝑄

)︃
.

(B.33)

4E
⎡⎣(︃ 𝑁∑︁

𝑚=1

𝑁∑︁
𝑛=𝑚+1

𝑑𝑚𝑑𝑛 cos(𝛿𝑚 − 𝛿𝑛)
)︃2⎤⎦ = 4

𝑁∑︁
𝑗=1

𝑁∑︁
𝑙=𝑗+1

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=𝑚+1

E [𝑑𝑗𝑑𝑙𝑑𝑚𝑑𝑛 cos(𝛿𝑗 − 𝛿𝑙) cos(𝛿𝑚 − 𝛿𝑛)]

= 4
𝑁∑︁
𝑗=1

𝑁∑︁
𝑙=𝑗+1

𝑁∑︁
𝑚=1,𝑚=𝑗

𝑁∑︁
𝑛=𝑚+1,𝑛=𝑙

E
[︁
𝑑2
𝑗𝑑

2
𝑙 cos2(𝛿𝑗 − 𝛿𝑙)

]︁

+ 8
𝑁∑︁
𝑙=1

𝑁∑︁
𝑚=1,𝑚̸=𝑙

𝑁∑︁
𝑛=𝑚+1,𝑛̸=𝑙

E
[︁
𝑑2
𝑙 𝑑𝑚𝑑𝑛 cos(𝛿𝑙 − 𝛿𝑚) cos(𝛿𝑙 − 𝛿𝑛)

]︁

+ 4
𝑁∑︁
𝑗=1

𝑁∑︁
𝑙=1,𝑙 ̸=𝑗 ̸=𝑚 ̸=𝑛

𝑁∑︁
𝑚=1,𝑙 ̸=𝑗 ̸=𝑚̸=𝑛

𝑁∑︁
𝑛=1,𝑙 ̸=𝑗 ̸=𝑚̸=𝑛

E [𝑑𝑗𝑑𝑙𝑑𝑚𝑑𝑛 cos(𝛿𝑗 − 𝛿𝑙) cos(𝛿𝑚 − 𝛿𝑛)]

=
𝑁(𝑁 − 1) (𝛽𝑔𝛽ℎ)2

{︁
𝑄2

[︁
𝜋(𝑁 − 2) sin2

(︁
𝜋
𝑄

)︁ (︁
𝜋
(︁
(𝑁 − 3)𝑄2 sin2

(︁
𝜋
𝑄

)︁
+ 32

)︁
+ 16𝑄 sin

(︁
2𝜋
𝑄

)︁)︁
− 32 cos

(︁
4𝜋
𝑄

)︁]︁
+ 32 (𝑄2 + 8𝜋2)

}︁
256𝜋2 .

(B.34)

Lemma 14
lim
𝑥→∞

(︂
𝑥 sin

(︂
𝑎

𝑥

)︂)︂𝑛
= 𝑎𝑛,∀𝑎, 𝑛 ∈ R. (B.37)

Proof 12 We start by re-writing (B.37) as⎛⎝ lim
𝑥→∞

𝑎

𝑎

sin
(︁
𝑎
𝑥

)︁
1
𝑥

⎞⎠𝑛 =
⎛⎝ lim
𝑥→∞

𝑎
sin

(︁
𝑎
𝑥

)︁
𝑎
𝑥

⎞⎠𝑛 , (B.38)

where we also used the power rule of limits to re-write it. Next, we apply the following change
of variables 𝜃 = 𝑎

𝑥
to (B.38), resulting in(︃

lim
𝜃→0

𝑎
sin (𝜃)
𝜃

)︃𝑛
= 𝑎𝑛

(︃
lim
𝜃→0

sin (𝜃)
𝜃

)︃𝑛
, (B.39)

where we used the constant multiple rule of limits to find the last part. Next, by using Lemma
13, we conclude the proof.

B.2.1 Derivation

The results (5.13) and (5.14) are found after expanding (5.11) and (5.12), using Lemma
14 and the fact that lim𝑥→∞ cos(1/𝑥) = 1.
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B.3 Proof of (5.17)

For the proof of (5.17), we should notice that when lim𝜌→∞ 𝜃 = ∞ then, consequently,
lim𝜌→∞ − 1

4𝜃2 = 0. Therefore,

lim
𝜌→∞ 2𝐹3

(︂
1, 1; 2, 3

2 − 𝜅

2 , 2 − 𝜅

2 ; − 1
4𝜃2

)︂
= 1. (B.40)

lim
𝜌→∞ 1𝐹2

(︂
𝜅

2 + 1
2; 3

2 ,
𝜅

2 + 3
2; − 1

4𝜃2

)︂
= 1. (B.41)

lim
𝜌→∞ 1𝐹2

(︂
𝜅

2 ; 1
2 ,
𝜅

2 + 1; − 1
4𝜃2

)︂
= 1. (B.42)

Hence, in high SNR regime (5.16) can be tightly approximated as (5.17), which concludes
the proof.

B.4 Proof of (5.18)

The proof of (5.18) is straightforwardly found by noticing that the first three terms of
(5.17) tend to 0 when 𝜌 → ∞, since 𝜃 → ∞ when 𝜌 → ∞, which concludes this proof.

B.5 High SNR regime

In high SNR regime, as 𝑁 → ∞ and 𝜅 → ∞, Γ(𝜅) grows even faster. Therefore,

lim
𝑁→∞

2𝜋 sec
(︁
𝜋𝜅
2

)︁
(𝜅+ 1)𝜃𝜅+1Γ(𝜅) log(4) = 0. (B.43)

lim
𝑁→∞

2𝜋 csc
(︁
𝜋𝜅
2

)︁
𝜅𝜃𝜅Γ(𝜅) log(4) = 0. (B.44)

These two terms tend to 0 faster than the other 2 terms, concluding the proof.

B.6 Derivation of 𝐶lower

Here we outline the derivation of 𝐶lower in (5.25). We start by applying the Taylor series
expansion of 1/𝛾 around E [𝛾] [70], the term E [1/𝛾] in (5.24) can be approximated as [79]

E
[︃

1
𝛾

]︃
≈ 1

E [𝛾] + var (𝛾)
E [𝛾]3

= E [𝛾2]
E [𝛾]3

. (B.45)
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After replacing E [𝛾] and E [𝛾2] in (B.45) via (5.11) and (5.12), respectively, and then by
substituting the resultant expression into (5.24), 𝐶lower can be approximated as shown in the
second part of (5.25).

B.7 Derivation of the outage probability

Here we describe the derivation of the outage probability given by (5.34). Using the PDF
of the instantaneous capacity given by (5.20), the outage probability can be written as

𝑃out. = Pr{𝐶inst. < 𝐶out.}

= log (2)
Γ(𝜅)𝜃𝜅

∫︁ 𝐶out.

0
2𝑢−1(2𝑢 − 1)(

𝜅−2
2 )𝑒−

√
2𝑢−1

𝜃 𝑑𝑢.
(B.46)

Next, using the following change of variable 𝑥 = 2𝑢 − 1, then (B.46) becomes

𝑃out. = 1
2Γ(𝜅)𝜃𝜅

∫︁ 2𝐶out. −1

0
𝑥(𝜅−2

2 )𝑒−
√

𝑥
𝜃 𝑑𝑥. (B.47)

Finally, using (2.33.10) from [70]
∫︁
𝑥𝑚𝑒−𝛽𝑥𝑛

𝑑𝑥 = −
Γ
(︁
𝑚+1
𝑛
, 𝛽𝑥𝑛

)︁
𝑛𝛽

𝑚+1
𝑛

, (B.48)

we find a solution for the the integral in (B.47), which concludes the proof.

B.8 Proofs of (5.36) and (5.37)

For the proofs of (5.36) and (5.37), we first to define the following Lemmas.

Lemma 15 According to (Eq. 8.2.5, [71])

1 − Γ(𝑎, 𝑏)
Γ(𝑎) = 𝛾(𝑎, 𝑏)

Γ(𝑎) , (B.49)

where 𝛾(𝑎, 𝑏) is the lower incomplete gamma function.

Lemma 16 According to (Eq. 8.5.1, [71])

𝛾(𝑎, 𝑏) = 𝑎−1𝑏𝑎 1𝐹1 (𝑎, 𝑎+ 1,−𝑏) . (B.50)

Lemma 17 According to (07.20.03.0001.01) of [80]

1𝐹1 (𝑎, 𝑏, 0) = 1. (B.51)

Therefore, applying Lemmas 15 and 16, defined above, to (5.35) we end up with (5.36),
which concludes the proof. Now, (5.37) is found by applying Lemma 17 to (5.36) and remem-
bering that lim𝜌→∞ 𝜃 = ∞, then lim𝜌→∞ 1/𝜃 = 0.
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B.9 Derivation of (5.39)

In this Appendix, we derive the average symbol error rate expression given by (5.39), but
first, we need to establish some Lemmas.

Lemma 18
Q(𝑥) = 1

2

[︃
1 − erf

(︃
𝑥√
2

)︃]︃
. (B.52)

This relation is given by (Eq. B.111, [81]).

Lemma 19 ∫︁ ∞

0
𝑥𝑚𝑒−𝛽𝑥𝑛

𝑑𝑥 =
Γ
(︁
𝑚+1
𝑛

)︁
𝑛𝛽

𝑚+1
𝑛

. (B.53)

This relation is given by (Eq. 3.326.2, [70]).

Lemma 20 If erf(.) is the Gauss error function, and 𝑎, 𝑏, and 𝑐 > 0, then the integral∫︀∞
0 erf (𝑎𝑥)𝑥𝑏𝑒−𝑐𝑥𝑑𝑥 is given by (B.54). The integral in (B.54) is found by using an integral

solver [82]. ∫︁ ∞

0
erf (𝑎𝑥)𝑥𝑏𝑒−𝑐𝑥𝑑𝑥 = 𝑐−𝑏−1Γ(𝑏+ 1)

+
𝑐𝑎−𝑏−2Γ

(︁
𝑏+3

2

)︁
2𝐹2

(︁
𝑏
2 + 1, 𝑏2 + 3

2 ; 3
2 ,

𝑏
2 + 2; 𝑐2

4𝑎2

)︁
√
𝜋(𝑏+ 2)

−
𝑎−𝑏−1Γ

(︁
𝑏
2 + 1

)︁
2𝐹2

(︁
𝑏
2 + 1

2 ,
𝑏
2 + 1; 1

2 ,
𝑏
2 + 3

2 ; 𝑐2

4𝑎2

)︁
√
𝜋(𝑏+ 1) .

(B.54)

B.9.1 Proof of the Average Symbol Error Rate

By using the fact that 𝛾 = 𝑟2 (see (5.6)), the expectation of the conditional symbol error
probability given the distribution of the SNR can be written as

𝑃𝑒 = E
[︂
𝑎Q

(︂√︁
𝑏𝛾
)︂]︂

= E
[︁
𝑎Q

(︁√
𝑏𝑟
)︁]︁

=
∫︁ ∞

0
𝑃𝑒|𝛾(𝑥)𝑓𝑅(𝑥)𝑑𝑥,

(B.55)

where 𝑓𝑅(𝑟) is the PDF of the Gamma distribution, which tightly approximates the exact PDF
of the random variable, 𝑟.

By plugging 𝑃𝑒|𝛾 = 𝑎Q
(︁√

𝑏𝛾
)︁

and the Gamma PDF back into (B.55), the average SER is
rewritten as

𝑃𝑒 = 𝑎

Γ(𝜅)𝜃𝜅
∫︁ ∞

0
Q
(︁√

𝑏𝑥
)︁
𝑥𝜅−1𝑒−𝑥/𝜃𝑑𝑥. (B.56)
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By using Lemma 18, (B.56) can be equivalently rewritten as

𝑃𝑒 = 𝑎

Γ(𝜅)𝜃𝜅

⎡⎣∫︁ ∞

0
𝑥𝜅−1𝑒−𝑥/𝜃𝑑𝑥−

∫︁ ∞

0
erf
⎛⎝√︃ 𝑏

2𝑥
⎞⎠𝑥𝜅−1𝑒−𝑥/𝜃𝑑𝑥

⎤⎦ . (B.57)

The first integral inside the square brackets of (B.57) is found by applying Lemma 19 to
it, which results in ∫︁ ∞

0
𝑥𝜅−1𝑒−𝑥/𝜃𝑑𝑥 = Γ(𝜅)𝜃𝜅. (B.58)

The second integral inside the square brackets of (B.57) is found by applying Lemma 20
to it, which results in

∫︁ ∞

0
erf
⎛⎝√︃ 𝑏

2𝑥
⎞⎠𝑥𝜅−1𝑒−𝑥/𝜃𝑑𝑥

= 𝜃𝜅Γ(𝜅) −
2𝜅/2𝑏− 𝜅

2 Γ
(︁
𝜅+1

2

)︁
2𝐹2

(︁
𝜅
2 + 1

2 ,
𝜅
2 ; 1

2 ,
𝜅
2 + 1; 1

2𝑏𝜃2

)︁
√
𝜋𝜅

+
2𝜅

2 + 1
2 𝑏− 𝜅

2 − 1
2 Γ
(︁
𝜅
2 + 1

)︁
2𝐹2

(︁
𝜅
2 + 1

2 ,
𝜅
2 + 1; 3

2 ,
𝜅
2 + 3

2 ; 1
2𝑏𝜃2

)︁
√
𝜋𝜃(𝜅+ 1) .

(B.59)

Finally, by substituting (B.58) and (B.59) back into (B.57), we conclude the proof.

B.10 Proof of (5.40)

For the proof of (5.40) we should notice that when lim𝜌→∞ 𝜃 = ∞ then, consequently,
lim𝜌→∞

1
2𝜃2 = 0. Therefore,

lim
𝜌→∞ 2𝐹2

(︂
𝜅

2 + 1
2 ,
𝜅

2 ; 1
2 ,
𝜅

2 + 1; 1
2𝑏𝜃2

)︂
= 1. (B.60)

lim
𝜌→∞ 2𝐹2

(︂
𝜅

2 + 1
2 ,
𝜅

2 + 1; 3
2 ,
𝜅

2 + 3
2; 1

2𝑏𝜃2

)︂
= 1. (B.61)

Hence, in high SNR regime (5.39) can be tightly approximated as (5.40), which concludes
the proof.

B.11 Derivation of diversity order

In order to derive the diversity order, we first need to rewrite (5.11) and (5.12) as

E [𝛾] = 𝜌𝛽𝑔𝛽ℎA1, (B.62)
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and
E
[︁
𝛾2
]︁

= (𝜌𝛽𝑔𝛽ℎ)2
A2, (B.63)

respectively, where A1 and A2 do not depend on the average SNR, 𝜌. By plugging these two
equation back into (5.7) and (5.8), we find

𝜅 =
5A2

1 +
√︁

49A4
1 − 34A2

1A2 + A2
2 − A2

2 (A2 − A2
1)

> 0, (B.64)

which also does not depend on the average SNR, and

𝜃 = 𝜌
1
2

⎯⎸⎸⎸⎷𝛽𝑔𝛽ℎ

(︂
2A2

1 −
√︁
A4

1 + 14A2
1A2 + A2

2 + 2A2

)︂
6A1

= 𝜌
1
2 𝜃′ > 0,

(B.65)

which depends on the average SNR. Therefore, in high-SNR regime, (5.40) can be written as

𝑃 high-SNR
𝑒 ≈ B1𝜌

− 𝜅
2 − B2𝜌

− (𝜅+1)
2 , (B.66)

where

B1 = 𝑎2− (𝜅+2)
2 𝑏− 𝜅

2 𝜃′−𝜅

Γ
(︁
𝜅
2 + 1

)︁ , (B.67)

and

B2 = 𝜅𝑎2− (𝜅+3)
2 𝑏− (𝜅+1)

2 𝜃′−(𝜅+1)

Γ
(︁
𝜅+3

2

)︁ . (B.68)

Note that B1 and B2 do not depend on the average SNR, 𝑖.𝑒., they are independent from
it. Furthermore, from (B.66), we realise that the terms 𝜌− 𝜅

2 and 𝜌− (𝜅+1)
2 contribute with diversity

order of 𝜅
2 and (𝜅+1)

2 , respectively. Therefore, the diversity order is calculated as

𝐷 = min
(︃
𝜅

2 ,
(𝜅+ 1)

2

)︃
. (B.69)

Since 𝜅 > 0, then (B.69) is simplified as

𝐷 = 𝜅

2 . (B.70)

The proof is concluded after plugging (B.64) into (B.70).
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