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Abstract

The corpus callosum (CC) is the largest white matter structure in the central nervous

system, allowing communication between both brain cortical hemispheres. This structure

is important since its shape and volume are associated with certain subject characteristics,

some diseases, and clinical conditions. Usually, the CC is studied in magnetic resonance

imaging (MRI), where it is segmented to extract precise information and perform posterior

analyses. As the availability of MRI data grows up and the automated algorithms to

perform CC segmentation proliferate, quality control (QC) verification is mandatory

to assure reliability in segmentations and avoid errors that would otherwise propagate

throughout the analysis.

In this work, we compare two methods to perform QC of CC segmentations on T1-MRI

with no need for ground-truth. The first method uses classical machine learning techniques

by performing manual extraction of a multi-resolution shape descriptor along with a

classifier based on a support vector machine ensemble. The second method involves a

deep learning approach by using a convolutional neural network (CNN) to extract deep

features from the segmentation mask and contextual information from the image. In the

experiments, images from 907 subjects were acquired from two sequences: 802 T1-MRI

(including 7 subjects with tumor affecting the CC), and 105 diffusion MRI (processed into

fractional anisotropy maps). The dataset comes from Hospital das Clínicas from Unicamp,

except for 247 T1-MRI that come from ABIDE for the study of autism.

Both approaches got a similar performance (area under the curve ROC of 98%) when

trained and tested on T1-MRI as well as an identical execution time (9 seconds to process

136 samples). The performance of the methods was evaluated on two other datasets:

diffusion MRI and patients with tumor. In diffusion MRI, the classical approach presented

the best performance (AUC was 20% higher). In a dataset of patients with tumor affecting

the CC, the CNN prevailed with an accuracy of 80%. The CNN was more versatile to

learn new shapes and image intensities.

Keywords: corpus callosum; magnetic resonance imaging; quality control; support vector

machine; convolutional neural network.



Resumo

O corpo caloso (CC) é a maior estrutura de substância branca do sistema nervoso central

e permite comunicação entre os dois hemisférios cerebrais. Esta estrutura é importante

uma vez que sua forma e volume estão associados a diversas características da pessoa,

doenças neurodegenerativas e não degenerativas e condições clínicas. Normalmente, o

CC é estudado usando imagens de ressonância magnética (MRI) onde é segmentado

para conseguir extrair informação detalhada e realizar análises posteriores. À medida

que a disponibilidade de bancos de dados de MRI cresce e os algoritmos automáticos de

segmentação do CC proliferam, verificar o controle de qualidade (QC) é importante para

garantir a confiabilidade das segmentações e evitar introduzir erros, que serão propagados

ao longo da análise.

Neste trabalho, comparamos dois métodos para fazer QC das segmentações do CC em T1-

MRI sem uso de um ground-truth. O primeiro método usa técnicas clássicas de aprendizado

de máquina fazendo extração manual de um descritor multi-resolução de forma, junto

com um classificador baseado em um comitê de máquinas. O segundo método envolve

técnicas de aprendizado profundo usando uma rede neural convolucional (CNN) para

extrair descritores da máscara de segmentação e obter informação contextual da imagem.

Nos experimentos foram usadas imagens de 907 sujeitos, adquiridas em duas sequências

diferentes: 802 de T1-MRI (incluindo 7 sujeitos com presença de tumor afectando o CC)

e 105 de MRI de difusão (procesadas para mapas de anisotropia fraccional). Todas as

imagens provêm do hospital das clínicas da Unicamp, a excepção de 247 imagens de

T1-MRI que provêm da iniciativa ABIDE para estudo de autismo.

As duas abordagens propostas para aplicação de QC conseguiram um desempenho similar

(área abaixo da curva ROC de 98% aproximadamente) quando treinadas e testadas em

T1-MRI, assim como um tempo de execução idêntico (9 segundos para processar 136

amostras). Adicionalmente, o desempenho dos métodos foi testado em duas bases de dados

diferentes à usada para treino: difusão e pacientes com tumor. Em MRI de difusão, a

abordagem clássica apresentou melhor desempenho (AUC foi 20% maior), generalizando

os padrões aprendidos em T1. No banco de dados de pacientes com tumor afetando o CC,

prevaleceu a CNN com 80% de acurácia, se mostrando mais efetiva dado seu conhecimento

do contexto a través da imagem de entrada. Ainda que os dois modelos podem ser usados

em MRI, o método profundo é mais versátil, pudendo aprender novas formas e intensidades.

Keywords: corpo caloso; imagens de resonância magnética; controle de qualidade; máquina

de vetores suporte; rede neural convolucional.
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1 Introduction

1.1 Corpus Callosum studies on MRI

The corpus callosum (CC) is the largest white matter (WM) structure in the

central nervous system, connecting the hemispheres of the brain and allowing them to

communicate (HOFER; FRAHM, 2006). The CC is important in research owing to the

correlation between its shape and volume with certain subject characteristics such as gender,

aging, and handedness. Some important neurodegenerative diseases, including Alzheimer’s

and multiple sclerosis, can change the shape and volume of the CC. Besides, other diseases

and clinical conditions affect the CC, such as dyslexia, epilepsy, schizophrenia, smoking,

obesity, and alcoholism (COVER et al., 2018).

Studies on CC are normally performed using magnetic resonance imaging

(MRI), which offers excellent soft tissue contrast and is superior, in general, to other

technologies such as radiography and computerized tomography (EDELMAN; WARACH,

1993). While conducting morphological and physiological feature extraction, studies on the

CC usually start with CC segmentation (COVER et al., 2018). However, segmenting the

CC is particularly challenging because of shape variability among the subjects, the intensity

similarity of the CC with neighboring structures (such as the fornix), intensity variability

among scanners, the partial volume effect caused by a limited acquisition resolution and

artifacts derived from technological limitations such as motion (HE et al., 2007).

With the increasing availability of MRI data and the proliferation of automatic

algorithms, segmentation over large datasets has become affordable. Deep learning-based

methods are eager for data and their adoption in medical imaging analysis pipelines made

populational studies jump from dozens to tenths of thousands of subjects (JR et al., 2008;

THOMPSON et al., 2020; KIESOW et al., 2020). In this scenario, manual segmentation is

no longer an option because of the high effort involved and time spent. Moreover, a quality

control (QC) step is mandatory because segmentation errors can be propagated along the

whole pipeline, impairing the final results. There are many automatic and semi-automatic

CC segmentation methods, yet none of them are entirely reliable (COVER et al., 2018).

Special attention must be given to images with artifacts (head coverage, ra-

diofrequency noise, signal inhomogeneity, susceptibility, blurring, and ringing) (BACK-

HAUSEN et al., 2016), newborns (SCHOEMAKER et al., 2016) , young and elder popula-

tion (WENGER et al., 2014), and ill patients with tumors (GUENETTE et al., 2018). All

of these cases present changes in brain morphology or image formation, further limiting

the accuracy of automatic segmentation methods and requiring, at least, QC verification.
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FreeSurfer1, for example, is a free and popular and widely used tool for pro-

cessing and analyzing brain MRI, including segmentation, in both clinical and scientific

contexts. However, it makes segmentation errors, especially in subcortical structures such

as the amygdala and hippocampus, requiring visual inspection and manual correction of

the masks (GRIMM et al., 2015). Moreover, CC FreeSurfer segmentation is performed

over the five midline sagittal slices only. However, the CC rarely is confined to these slices.

Also, patients with tumors are even more prone to suffer from poor segmentation due to

brain symmetry loss. FreeSurfer is atlas-dependant and, for that reason, deficient in these

cases. Tailored adjustments can be performed to compensate tumor distortion, but as

these adjusts are treated on a case-by-case basis, they are not feasible in large datasets.

Likewise, no segmentation algorithm in the literature is 100% effective in segmenting the

CC (COVER et al., 2018). All of this makes QC mandatory to assure CC segmentation

reliability (GUENETTE et al., 2018).

1.2 Quality control on medical imaging pipelines

Although there is a concern for QC, it is still subjective, prone to errors, and

time-consuming, as well as usually conducted in a visual and exploratory manner (REEVES;

LIU; XIE, 2016). To determine whether automated subcortical FreeSurfer segmentations

are reliable, GUENETTE et al. (2018) visually inspected, and manually corrected the

whole T1 MRI dataset. MAKROPOULOS et al. (2018) proposed a fully automated

processing pipeline, including a QC stage, for developing neonatal brain MRI. The QC

was performed over cerebrospinal fluid (CSF), WM, and grey matter (GM) segmentation

by visually scoring a stratified sampling (10%) of the whole dataset. BACKHAUSEN et

al. (2016) introduced a workflow to rate motion artifacts of structural MRI, including

a manual verification of segmentation for skull-stripping (removal of non-brain tissue),

subcortical/cortical structure borders, and GM using Freeview (FreeSurfer graphical

tool). KESHAVAN et al. (2018) developed Mindcontrol, an open-source collaborative

web application for brain segmentation QC through a dashboard that allows organizing,

exploring, visualizing, annotating, and editing data. Mindcontrol eases the manual quality

assurance process, but it does not remove the necessity for manual curation. In summary,

QC is applied using visual inspection, in some cases using a graphical tool (Table 1.1).

There is no evidence in the literature of the utilization of automatic algorithms for QC in

MRI applications.

There is thus a clear need for an automatic QC tool. Some methods, focused

on particular applications, have been proposed for perfoming QC. A machine learning

approach developed by KLAPWIJK et al. (2019) verified cortical segmentation using

supervised random forests, obtaining both high sensitivity and specificity (AUC = 0.98).
1 http://surfer.nmr.mgh.harvard.edu/
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Method Characteristics Application Reference

Visual inspection Verification of the whole Subcortical Freesurfer GUENETTE et al. (2018)

dataset segmentation (Head trauma)

Visual inspection Stratified sampling (10%) of CSF, WM and GM MAKROPOULOS et al. (2018)

the whole dataset (Neonatal MRI brain)

Visual inspection Graphical tool Skull-stripping and GM BACKHAUSEN et al. (2016)

(Rate motion artifacts)

Visual inspection Graphical and collaborative Skull-stripping, WM, GM, KESHAVAN et al. (2018)

tool CSF (General purpose)

Table 1.1 – MRI studies in the literature applying QC in their processing pipeline

Nevertheless, data was acquired only from one scanner and segmented with FreeSurfer

exclusively. The classifier used measures derived from the segmentations rather than masks

themselves. Furthermore, no subcortical structures were evaluated.

Outside the medical image context, recent studies showed interest in automatic

QC of image segmentation. PENG et al. (2017) presented a framework for evaluating the

segmentation quality, composing a reference from multiple labeled segmentations, and

using the distance of the composed reference to each new segmentation. In a medical

context, ABDALLAH et al. (2016) assessed the low-expertise practitioners’ manual seg-

mentations of MRI scans diffused low-grade gliomas using a statistical approach. These

two last approaches required several ground-truth to be composed into the reference. SHI

et al. (2015) presented an objective measure for visual quality evaluation of an object

segmentation using human visual properties as features applied to a common dataset with

one foreground object. The quality measured was still subjective and lacked semantic and

contextual information.

HUANG; WU; MENG (2016) and SHI; MENG; WU (2017) trained several

convolutional neural network (CNN) architectures fusing the segmentation to be evaluated

with the original image into the network input. The results were evaluated using the

correlation between the output and the existing segmentation evaluation scores. VALIN-

DRIA et al. (2017) and ROBINSON et al. (2017) proposed a QC scheme based on Reverse

Classification Accuracy (RCA) with no use of ground-truth. The RCA was tested through

three different methods: atlas forests, CNN (DeepMedic (KAMNITSAS et al., 2017)),

and multi-atlas propagation. This work was validated over large cardiovascular MRI

datasets (ROBINSON et al., 2019), but it would need a re-evaluation for use in other

anatomical regions. Moreover, deep learning capabilities were not fully explored. ROBIN-

SON et al. (2018) trained a CNN for predicting the Dice coefficient from 5 regions of

cardiovascular MRI. The predicted Dice cannot be used to measure the real Dice, but

only for predicting whether segmentation is good or poor given some threshold. ROY et

al. (2019) used the QuickNat CNN with a Bayesian extension on four small MRI datasets,

measuring the final QC score and the voxel-wise uncertainty map.
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Method Characteristic Application Reference

Random forest Extracted features from Cortical Freesurfer KLAPWIJK et al. (2019)
segmentations segmentation

Distance Distance from the General RGB images PENG et al. (2017)
segmentation to the
labelled references

Statistical approach Statistical analysis over Diffuse low-grade glioma ABDALLAH et al. (2016)
experts segmentations

Object quality measure Weighted mean of 4 General RGB images SHI et al. (2015)
extracted visual features

CNN Score from mask+image General RGB images HUANG; WU; MENG (2016),
input using CNN’s SHI; MENG; WU (2017)

Reverse classification Segmentation is used to Cardiac MRI VALINDRIA et al. (2017)
train 3 RC, which are
evaluated on ref. dataset

CNN CNN is used to predict Cardiac MRI ROBINSON et al. (2018)
Dice from mask+image

CNN CNN + Bayesian Brain MRI ROY et al. (2019)
extension

Table 1.2 – Proposed method to perform QC in images segmentation

In summary, available automatic quality assurance segmentation tools (Ta-

ble 1.2) present some of the following limitations:

• Require one or several reference segmentations to perform the evaluation. This

reference usually is the manual segmentation, which is hard to obtain;

• Take into account only specific descriptors that do not cover all the aspects of the

segmentation;

• Use specific or subjective metrics that poorly describe the segmentation quality or

accuracy;

• Are established for a specific application or image group, and tested on small datasets,

with no guarantee of generalization.

1.3 Objectives

In this work, we pursue a framework for QC of CC segmentations in large

datasets without the need for ground truth. For that purpose, we investigated two ap-

proaches: classical machine learning and deep learning. The specifics goals of this work

are:

• To develop a method for automatic QC of CC segmentations on MRI using classical

machine learning techniques;

• To produce a model for automatic QC of CC segmentations on MRI using deep

learning techniques;
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• To compare the classical approach to the deep learning one, measuring practical

issues such as execution time and impact of the dataset size;

• To analyze the extension of both methods to other domains: generalization to other

MRI sequences (T1 and diffusion MRI) and performance on subjects with tumor

affecting the CC.

1.4 Main contributions

The main original contributions of this work are:

• Three CC datasets to be made available: 151 T1-MR images with their respective

manual masks, 105 DWI subjects with semi-automatic masks, and 7 T1-MRI subjects

with tumor;

• A multi-resolution shape descriptor for the CC, able to fully characterize the CC

shape through a curvature profile;

• A QC method using the proposed CC shape descriptor coupled with an SVM

ensemble, able to distinguish correct from incorrect segmentations;

• A QC method on CC segmentations using a simple CNN architecture and contextual

information from the image.

• Comparison of both proposed QC methods, the classical machine learning, and the

deep learning approaches, in several scenarios: performance and execution time,

variation on the dataset size, test on other MR sequence images, and patients with

tumor affecting the CC.

• Open source code, available to guarantee reproducibility and make it accessible for

researchers interested in perform QC.

1.5 Thesis outline

This thesis was conceived in the format of articles compilation, putting together

two published and one submitted articles. Before presenting the articles, a theoretical

chapter was included to familiarize the reader with the necessary concepts to understand

the posterior chapters. Each article is presented in one independent thesis chapter. It

includes a short contextualization of the article in the whole thesis, the presentation of

the method and the obtained results, and a final discussion reporting the limitations and

how they will be addressed in the next chapter.
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Therefore, the thesis is divided into five chapters: chapter 2 is the theoreti-

cal background, including the CC, MRI, and its sequences, and the CC segmentation

methods; chapter 3 presents the article entitled Corpus Callosum Shape Signature

for Segmentation Evaluation, detailing our shape descriptor, called shape signature,

and its first usage as a tool to compare CC segmentations from the same subject but

in different MRI sequences; chapter 4 introduces the article entitled A framework for

quality control of corpus callosum segmentation in large-scale studies, where

we make use of the shape signature to extract several shape descriptors of the CC at

different resolutions and combine them into a classifier mediated by an ensemble to perform

QC over the segmentations; chapter 5 presents the article entitled Automatic quality

control on corpus callosum segmentation: Comparing deep and classical ma-

chine learning approaches, describing an additional deep learning approach to measure

the quality score of the CC segmentations using a CNN classifier, and comparing both

approaches, the classical and the deep, on real domains; and finally, chapter 6 summarizes

the results, discusses the findings and future works, and lists the publications and used

tools.
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2 Theoretical concepts

This chapter addresses the theoretical concepts necessary to understand the

next chapters: first, the corpus callosum (CC) being the structure of interest on which

we will apply the quality control (QC) methods (Sec. 2.1); then, we will cover magnetic

ressoncance imaging (MRI), that is the used technique to visualize and study the CC

(Sec. 2.2); in section 2.3 we will study the CC segmentation methods used on MRI.

Although MRI has various acquisition sequences, here we will only deal with T1 and

diffusion MRI sequences. Finally, section 2.4 gives an overview of the supervised machine

learning approaches as used in this work.

2.1 Corpus callosum

The plane dividing the brain into two symmetrical halves along the inter-

hemispheric fissure is called the mid-sagittal plane. In general, any parallel plane to the

mid-sagittal one going in the left-right direction is a sagittal slice located on a sagittal

plane (Fig. 2.1.(a)). Coronal plane (Fig. 2.1.(b)) is orthogonal to the sagittal plane going

from the nape (posterior part) to the noise (anterior part). Axial plane is orthogonal to

both, sagittal and coronal planes (Fig. 2.1.(c)), and it goes from the lower part of the

structure (inferior) to the upper part (superior) (ENDERLE; BRONZINO, 2012).

(a) (b) (c)

Figure 2.1 – Reference planes used to describe the brain: a) Sagittal plane, b) Coronal
plane, c) Axial plane (Source: http://biology-forums.com, 2020)

The CC (tough body in latin) is a structure located underneath the cerebral

cortex, is the greatest white matter structure in the central nervous system, with more than

300 millions fibers (HOFER; FRAHM, 2006). The CC connects both brain hemispheres

allowing the communication between them. In the sagittal plane, going from the anterior

part (A) to the posterior one (P) of the CC, the external portion is known as genu

(Fig. 2.2(a)) and the lower curve coming out of the genu is called rostrum (Fig. 2.2(b)).
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Going to the posterior part, in the middle of the CC, it is the body (Fig. 2.2(c)) and then

the trunk (Fig. 2.2(d)). Finally, the posterior edge is known as splenium (Fig. 2.2(e).)

Figure 2.2 – CC parts in the sagittal plane, going in the anterior-posterior direction: a)
genu, b) rostrum, c) body, d) trunk, and e) splenium (Source: Segmentação e parcelamento
do corpo caloso em imagens de tensor de difusão, 2012 (FREITAS, 2012))

There are several studies on the relationship between the size and shape of

the CC and subject characteristics such as sex, age, numerical and mathematical skills,

handedness. From a clinical point of view, the CC is affected by illness such as Alzheimer,

autism, schizophrenia, dyslexia, epilepsy, multiple sclerosis, depression. Also, the literature

relates it with alcoholism, obesity and smoking (COVER et al., 2018).

2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) facilitates the study in vivo of the brain

structures and their functions. Today, this is the most widely used technique to obtain

information about CC as it allows tumor detection, uses non-ionizing radiation, and it

is faster and provides better contrast for soft tissue than X-rays and computed tomogra-

phy (EDELMAN; WARACH, 1993).

Studies in magnetic resonance started formally in 1939, with the technique

to measure nuclear magnetic moments (RABI et al., 1939). From there, several studies

and experiments were developed around magnetic resonance. However, it was throughout

the 1970s that Raymond Damadian, assisted by the Paul Lauterbur’s work, developed

the theoretical and practical foundations of MRI: created the very first MRI acquisitions,

established the time relaxation constants (T1 e T2) for detecting cancer tissue and produced

the first MRI scanners (DAMADIAN et al., 1976; DAMADIAN, 1971; LAUTERBUR,

1973).

Although the acquisition techniques and the MRI equipment have been im-

proving since then, the principles are the same. The human body is mostly composed

of hydrogen atoms that have a nuclear magnetic moment associated, due to their single

proton. When a hydrogen atom is positioned in a static magnetic field, its magnetic
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2.2.2 Diffusion weighted MRI

Diffusion weighted imaging (shortened as DWI, and also called diffusion MRI

or simply diffusion) provides contrast based on differences in diffusion in the water

molecules within the brain. The very first diffusion sequences were describe in the mid-

1960s (STEJSKAL; TANNER, 1965) but only in 1986 were inserted in the medical

practice (BIHAN et al., 1986). The diffusion represents the random movement of the

molecules (Brownian movement), and depends of several factors such as molecule type,

temperature and micro-environment (BAMMER, 2003). In structures with highly oriented

fibers, the diffusion along the fibers is greater than the diffusion in any orthogonal direction

to them. This diffusion is known as anisotropic, in contrast with isotropic diffusion, where

the molecules diffuse equally in all directions (HUISMAN, 2003).

In DWI, the re-alignment of the magnetic moment is affected by the Brownian

movement of the molecules, causing signal loss. Therefore, the diffusion can be inferred

from this signal loss. In order to describe completely the tissue, gradients of the magnetic

field are applied in various directions, thereby achieving one 3D diffusion map for each

direction.

This multi-dimensional map is complex, hard to be interpreted and seldom

used in the medical practice. The diffusion tensor imaging (DTI) model was introduced to

simplify the DWI acquisition (BASSER; MATTIELLO; LEBIHAN, 1994). The diffusion

values in all directions are combined, and every voxel (minimum volumetric element in a

3D image) is represented by the second-order tensor D (Eq. 2.1) describing the spatial

diffusion of the volume (BIHAN et al., 2001; BIHAN et al., 1991).

D =











Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz











(2.1)

DTI is still a complex model, because of its tensorial elements. A further

simplification can be made by deriving a map of anisotropy from the DTI model. Al-

though there are many anisotropy indexes, the most accepted is the FA that can be

calculated from the eigenvalues (λi) of the tensorial matrix D for each voxel using the

equation 2.2 (PIERPAOLI; BASSER, 1996).

FA =

√

√

√

√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2 · (λ2
1 + λ2

2 + λ2
3)

(2.2)

FA describes indirectly the organization level of the tissue, ranging from 0 for

isotropic media (diffusion is the same in all directions) to 1 for completely anisotropic

media (diffusion only happens in one specific direction). Because the fibers in the CC are
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well oriented, going out of the sagittal plane, this structure has higher anisotropy values

than its surrounding structures (Fig. 2.3.(b)) (ABOITIZ et al., 1992).

2.3 Corpus callosum segmentation on MRI

The segmentation is the process of partitioning an image into mutually exclu-

sive regions that are spatially adjacent and contain homogeneous pixels (GORDILLO;

MONTSENY; SOBREVILLA, 2013). CC segmentation is employed in several applications,

including: quantitative study and qualitative visualization, statistical analysis of anatom-

ical variability or deficits, longitudinal monitoring of disease progression or remission,

preoperative evaluation and surgical planning (COVER et al., 2018). Although the CC is

a noticeable structure, its segmentation is challenging for several reasons: it presents shape

variability between subjects, there is intensity variation among different images captured

from different MRI scanners using similar sequences, the partial volume effect caused by

resolution acquisition, imperfections from equipment pulse profile, and proximity with the

fornix (adjacent structure with similar intensity to the CC) (HE et al., 2007). Specially in

diffusion MRI, segmentation is hard because of the low resolution of the images.

Manual segmentation methods are commonly used, at small scale, as ground-

truth for semi and fully automated algorithms, and in clinical trials, especially where

considerable human knowledge and expertise are required to distinguish between brain

structures (GORDILLO; MONTSENY; SOBREVILLA, 2013). However, they are not

suitable at large scale because demand visual effort, require specialist training and skill, lead

to time-consuming processes, and result in both inter- and intra-specialist variability. Semi-

automated methods are considered as improved manual implementation, but they cannot

fully bridge the manual gaps, and they are still subjected to variability between specialists.

Additionally, the intervention of a human operator is often needed to initialize the method,

to check the accuracy of the result, or even to manually correct the segmentation result.

Fully automated algorithms are efficient and desirable due to their operator-independent

nature but they are not as reliable as manual tracing (COVER et al., 2018).

In the literature, there are many methods for segmenting the CC, however

none of them is widely used or outweighs all others. Also, there are plenty of metrics

intended to quantify the CC segmentation quality (COVER et al., 2018). Among them,

Dice similarity coefficient (shortened as DSC, or simply Dice) (DICE, 1945) is a well-

established segmentation metric, and the most accepted to evaluate image segmentation

performance, that measures the overlap between the mask to be assessed and the reference

(commonly the ground-truth) (Fig. 2.4).

In T1-MRI, there are at least 14 studies among which we can highlight MOGALI

et al. (2013) and ADAMSON et al. (2014), that achieve solid results among large dataset
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R
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DSC =
2 × TP

2 × TP + FP + FN
(2.3)

Figure 2.4 – Dice calculated as the overlap between segmentation mask to evaluate (S)
and a reference (R) from the image representation.

(Dice around 90%). On the other hand, FreeSurfer1 is a well established brain imaging

software package based on atlas model and used for segmenting the structures of the brain.

However, its segmentation results are poor, specially in subcortical structures, such as the

CC, and in subjects with tumor (GRIMM et al., 2015).

Overall, the CC segmentation is better established in T1-MRI, when compared

with diffusion MRI. In diffusion, among 6 accepted methods, we can highlight NAZEM-

ZADEH et al. (2012) and KONG et al. (2014) that reported a Dice of 96% and 90%,

respectively. However, these studies were tested on very small dataset (below 32 sub-

jects) (COVER et al., 2018).

Although there are some proposals to perform the CC segmentation in 3D,

most available methods are 2D-based. 2D approach is more used in studies due to its

greater usability and quality when compared to 3D segmentations. Also, 2D segmentation

gives a suitable CC overview, enough for most practical purposes. When 2D segmentation

is adopted, usually the mid-sagittal slice is used, as depicted in the figure 2.5.

2.4 Supervised learning: Classical and Deep

The QC problem can be addressed by classifying a segmentation mask into

correct or incorrect class. This classification task can be learned via supervised learning,

where a set of rules are created from labelled instances (training set) and applied later

to classify new samples (test set) (KOTSIANTIS; ZAHARAKIS; PINTELAS, 2007).

Machines can classify by learning proper features, to guarantee maximum separation

between samples from different classes while keeping same-class samples close. In this

setting, the classifier can draw a hyperplane to separate the classes. The classification

result depends heavily of the features employed by the classifier to represent the samples

on the feature space. Further, image applications require the classification function to

be sensitive to relevant features, such as shape, while being insensitive to meaningless
1 http://surfer.nmr.mgh.harvard.edu/
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(a) (b)

Figure 2.5 – 2D CC segmentation at the mid-sagittal slice: a) T1-MRI, b) Highlighted CC
segmentation contour.

characteristics, such as position or orientation (DUDA; HART; STORK, 2012; LECUN;

BENGIO; HINTON, 2015). In this work, we will compare two distinct machine learning

approaches, which will be called classical and deep.

The classical approach extracts handcrafted features, which demands an

intensive domain knowledge and engineering skill. Among classical techniques, support

vector machine (SVM) is still a state-of-the-art solution for many binary and high-

dimensional classification problems. SVM finds the hyperplane with the largest separation

margin between positive and negative classes (CORTES; VAPNIK, 1995). The training

points lying closest to the decision boundary are called support vectors and determine the

separation hyperplane position. When the classes are not linearly separable, a function

(kernel) leads the samples to a high-dimensional space, where linear separation is possible,

finding a hyperplane with maximal margin of separation between classes (BOSER; GUYON;

VAPNIK, 1992). Given a training dataset with N samples ({xi, yi}), where xi ∈ Rn are

observations with n features and yi ∈ {0, 1} are their labels, SVM finds the hyperplane with

maximal separation margin between classes solving the classification function (Eq. 2.4).

f(x) =
N

∑

i=1

aiyiK(xj, xi) + b (2.4)

where K(xj, xi) = 〈ϕ(xj) · ϕ(xi)〉 is the kernel that takes the function ϕ from the input

space for the higher dimensionality space ((Rn 7→ Rm) : m ≥ n) where classes are linearly

separable.

In contrast, deep approaches can learn suited features automatically using a

general-purpose suervised learning procedure (LECUN; BENGIO; HINTON, 2015). The

widespread of deep learning has been possible mainly due to three factors: availability of
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computational power; mathematical and empirical techniques for optimizing deep archi-

tectures training; and large datasets of labeled information (GOODFELLOW; BENGIO;

COURVILLE, 2016). On medical imaging, deep learning has achieved remarkable outcomes

in various applications: classification of exams, illness and lesions; detection of tumors,

organs, regions and landmarks; segmentation of organs and lesions; registration; big data

applications such as content-based image retrieval and combination with reports; and

generative models for enhancing, de-noising, normalizing and pattern discovery (LITJENS

et al., 2017; LEE et al., 2017).

Among deep learning techniques, convolutional neural networks (CNN) are the

most used to deal with images. CNN are feed-forward machine learning models inspired

by the visual cortex in the brain. Although there are several CNN architectures, all of

them are composed of the same functional blocks made of convolutional and pooling layers.

The convolutional ones serve as feature extractor at increasing levels of abstraction, and

the pooling ones perform subsampling to reduce computational load and achieve spatial

invariance (RAWAT; WANG, 2017).
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3 Corpus Callosum shape signature

CC is an elongated bundle of white matter fibers connecting brain cortical

hemispheres. Although there is variability in the CC shape among subjects and scanners,

in a normal population, the general CC shape can be characterized. In this chapter, a

comprehensive shape descriptor is proposed, called shape signature. This name comes

from the fact that it is capable of describing the shape with several features, each of them

grasping the shape at different resolution and level of detail. In the beginning, the shape

signature came from the necessity to describe the shape of a regular CC. However, we

soon realized the possibility of applying it to separate populations (e.g., age, sex, illness)

and detect incorrect segmentations.

In this chapter, the work entitled Corpus Callosum Shape Signature for

Segmentation Evaluation is introduced. This work was presented in oral format during

the XXVI Brazilian Congress on Biomedical Engineering (CBEB 2018). It was nominated

as best regular work in the main category Cândido Pinto de Melo, and published in the

proceedings of the congress (HERRERA; BENTO; RITTNER, 2019). In this work, the

shape signature was applied to the direct evaluation of CC segmentations in diffusion

MRI using a ground-truth in T1-MRI. Because the ground-truth is not present in the

same space as the segmentation, the shape signature facilitated the direct evaluation of

the segmentation with no additional processes involved, such as registration. Much of the

discussion of this work focused on the manual choice of the proper resolution to perform

the evaluation.

Using one resolution, the shape signature allowed the evaluation of segmenta-

tions from three different methods in diffusion MRI over 145 subjects. However, two critical

downsides can be pointed: first, the need for a ground-truth for each subject, making

this evaluation method unfeasible in most cases, especially in large dataset pipelines;

and second, the manual selection of one resolution to perform the evaluation, discarding

the remaining ones, undermines the capabilities of the shape signature to describe the

segmentation more richly.

These disadvantages will be approached in future chapters using supervised

machine learning. In the meantime, the paper presented in this chapter is essential because

it contains the first and full formulation of the shape signature that will be used as the basis

for our classical machine learning QC framework (Chpt. 4). Also, the method presented

here allows us to evaluate CC segmentations in diffusion MRI where it is harder to obtain

the ground-truth, because of the low resolution of the images. It eliminates the need for a

registration step that introduces errors into the final evaluation measure.



Corpus Callosum Shape Signature
for Segmentation Evaluation
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Abstract

Corpus callosum is the greatest white matter structure in

brain. It is located beneath the cortex and connects both of

two hemispheres, making possible their communication.

Corpus callosum shape and size are associated with some

subject’s characteristics such as gender, handedness and

age, and alterations in its structure have correlation with

some diseases and medical conditions. Diffusion MRI

allows a further analysis of corpus callosum structure and

functionality by accessing neuronal fibers and tissues

microstructure using the water diffusion model. However,

the corpus callosum segmentation (required initial step to

structural analysis) in diffusion MRI is challenging, since

no gold-standard is available. In this work, we propose a

segmentation evaluation method that relies on the corpus

callosum shape by using its shape signature. We were

able to evaluate three different segmentations in diffusion

MRI over a 145 subjects’ dataset using manual segmen-

tation on T1 as reference.

Keywords

Corpus callosum � Diffusion MRI � Segmentation �
Gold-standard � Shape signature

1 Introduction

The corpus callosum (CC) is the greatest fiber bundle of

white matter in the brain allowing communication between

left and right brain hemispheres [1]. It is a structure with

considerable importance in research, clinical and medical

areas since its shape and volume are associated with some

subject’s characteristics such as gender, handedness and age.

CC alterations are related with important diseases and

medical conditions such as: Alzheimer, autism, schizophre-

nia, dyslexia, epilepsy, multiple sclerosis, depression,

smoking, alcoholism and obesity [2].

The CC in vivo study is normally performed through

magnetic resonance imaging (MRI) due to its better

soft-tissue contrast in comparison with other techniques such

as radiography and computed tomography [3]. The CC

segmentation is a necessary step for any posterior analysis

and allows extraction of morphological and physiological

characteristics on both, micro and macro levels [4].

The CC segmentation in structural modality T1-weighted

image (T1) has been widely covered in the literature. How-

ever, there are only a few proposed methods in the diffusion

space, both in diffusion weighted imaging (DWI) and dif-

fusion tensor imaging (DTI) [2]. Segmentation in diffusion is

a challenging task due to: images with low resolution, def-

inition and contrast, CC variability along subjects, intensity

variability along scanners, partial volume effect that makes

difficult definition of CC borders, proximity and similarity of

other structures and thin areas at the CC central zone that

causes partition of the structure [5].

In order to evaluate its quality, the segmentation is

compared with a reference. An ideal reference is called

ground-truth, that is rarely available. A good approximation

to the ground-truth is the gold-standard [6]. Normally in

neuroimaging, the gold-standard is the manual delineation
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of the structure of interest by a specialist. However, in dif-

fusion, it is hard to obtain the gold-standard because the

quality of diffusion images makes difficult manual delin-

eation of the structure.

In the literature, it is possible to find some algorithms for

automatic or semi-automatic CC segmentation performing

quantitative evaluation [2]. Nazem-Zadeh et al. implemented

a 3D CC segmentation over DTI using a level-set method

and compared it with a manual segmentation carried out by a

specialist [7]. Freitas et al. and Rittner et al. segmented the

CC in 2D and 3D using the Watershed transform; both

works evaluated the segmentation using a manual segmen-

tation over DTI done by three specialists [8, 9]. Niogi et al.

used a threshold method for 2D CC segmentation; the

validation was performed by an experienced operator using

a semi-automatic software [10]. Kong et al. adopted a

graph-based semi-supervised learning model for 3D CC

segmentation and used a manual segmentation registered

on DTI for evaluation [11]. Garcia et al. implemented a

level-set algorithm on DTI for the 3D extraction of the CC;

the outcome was validated with tractography directly on

DTI [12]. Except for the last work, that followed an unusual

approach, all of these works performed validation using a

manual segmentation drawn or registered on DTI. Both of

these evaluation approaches present some pitfalls: it is

challenging to delineate a precise manual segmentation

directly on DTI due to low resolution; and the registration

process inserts errors during the registration process.

This paper proposes a CC shape signature build by

measuring the curvature along CC contour. The proposed

signature allows to evaluate and compare segmentations

performed in different spaces (diffusion and T1, for exam-

ple). Different CC segmentations obtained for a dataset of

145 diffusion images were evaluated against manual seg-

mentations performed on T1 images, using the proposed

shape signature. This study is arranged into five sections as

follows: Sect. 2 explains the shape signature and its con-

figuration among extraction, matching and evaluation,

Sect. 3 presents the experiments and results regarding our

method, Sect. 4 discusses the results and Sect. 5 summarizes

the findings obtained in this study.

2 Corpus Callosum Shape Signature

We propose a method based on shape features to directly

evaluate CC segmentation in diffusion space, using a

gold-standard delineated in T1, with no registration required.

First, for every segmentation the shape signature is

extracted. Then, in order to compare two distinct signatures,

matching and evaluation steps are performed.

2.1 Shape Signature Extraction

The proposed signature is a shape descriptor that measures

curvature along the segmentation contour. The curvature

(k) in one point (p: xp, yp) of the contour is given by:

k xp; yp
� �

¼ arctan
ypþ r � yp

xpþ r � xp

� �

� arctan
yp � yp�r

xp � xp�r

� �

ð1Þ

where k represents the angle at the p point, between line

segments going from (xp, yp) to (xp+r, yp+r) and (xp-r, yp-r),

the p point is the vertex of the angle and r determines the

resolution of the signature. The higher r, the lower the res-

olution is. The parameter r will be given in percentage of the

total length of the contour.

2.2 Shape Signature Matching

Matching of the shape signatures allows fair comparison

between signatures from different segmentations because

shape signature calculation starts in any arbitrary point along

of each segmentation contour. Since the parametric repre-

sentation of the contour is closed, the signature is periodic.

Matching is performed shifting horizontally the signature to

be compared maintaining fixed the reference signature. For

each position, the distance between signatures is measured

using root mean square error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

P

X

P

p¼1

kseg � kref
� �2

v

u

u

t ð2Þ

where kseg e kref are the curvature values for the segmenta-

tion and the reference, respectively, measured at the p point

and averaged over all the P points of the contours. The

RMSE is measured for all the positions along the contour.

The matching position corresponds to the minimum RMSE.

For every pair of signatures, matching can be performed for

different resolutions. Lower resolutions perform well for the

matching process because these resolutions hold global

information of the segmentation and therefore r = 0.35 is a

proper value for matching signatures.

2.3 Shape Signature Evaluation

Shape signature evaluation requires always two signatures:

the one to be evaluated and the reference one. After

matching the signatures, RMSE will be used again for

quantitative evaluation of the signatures. The higher the

RMSE, the more distinct the signatures are. Proper resolution
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for segmentation evaluation is a critical hyper-parameter to

be chosen. For each segmentation, several signatures can be

obtained, one for each resolution (0.01 < r < 0.49). Higher

resolutions (0.01 < r < 0.2) hold details of the contour while

lower resolutions (0.21 < r < 0.49) describe globally the

segmentation shape (see Fig. 1).

In this work, we are interested in compare segmentations

of the same subject that tend to differ in finer details and

hence, it is expected that higher resolutions will be more

suitable to performing evaluation. First, RMSE was calcu-

lated for a rotated version of the reference, then RMSE was

calculated for a silver-standard constructed with STAPLE,

an independent segmentation tool that computed a proba-

bilistic estimate of the true segmentation [13]. Our goal is to

find a resolution that returns a low RMSE when a reference is

compared with a perturbation of itself (very similar seg-

mentations) while returns a high RMSE when a reference is

compared with an independent segmentation (distinct

segmentations).

Since we are looking for a suitable resolution for evalu-

ation purposes, the RMSE for both cases was assessed along

all the resolutions using the original reference as basis. The

difference between both RMSE (rotated reference and

silver-standard) was calculated for 50 subjects (see Fig. 2).

As expected, lower resolutions (higher r values) leaded to

little RMSE differences because signatures, at these resolu-

tions, describe global shape of the segmentation of the same

subject neglecting details. Higher resolutions gave larger

differences of RMSE. Therefore, r = 0.08 was the selected

resolution for segmentation evaluation because it allowed

the higher RMSE difference among all the resolutions.

3 Experiments and Results

In order to validate the proposed shape signature, an

experiment evaluating three segmentation methods was

conducted. MRI from 145 subjects were collected as part of

a project approved by the research ethics committee from the

School of Medicine at University of Campinas (CEP

920/2007; CAAE: 0669.0.146.000-07). All the participants

signed an informed consent form agreeing their participation

on the study. All the data was acquired on a Philips scanner

Achieva 3T. DWI dataset has a 1 � 1 mm spatial resolution

Fig. 1 Shape signatures at different resolutions. (Left) examples of shape signatures at r = 0.05. (Right) examples of shape signatures at r = 0.3

Fig. 2 Mean and standard deviation for the RMSE difference along all

the resolutions between rotated and silver-standard segmentations
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and 2 mm slice thickness in the axial plane, along 32

directions (b-value = 1000 s/mm2, TR = 8.5 s, and TE =

61 ms). T1 images were acquired in the coronal plane with

spatial resolution of 1 � 1 � 1 mm (TR = 7 s and

TE = 3.2 ms).

From each subject, the mid-sagittal slice was extracted.

The evaluated diffusion segmentations were segmentation

based on Watershed [8], Reproducible Objective Quantifi-

cation Scheme (ROQS) [10] and Pixel-based method [14].

Segmentations were evaluated using as reference manual

segmentation, delineated on T1.

For each subject, the shape signatures associated to the

three segmentations were extracted at r = 0.35 (for match-

ing) and r = 0.08 (for evaluation). Signatures matching

process was performed at r = 0.35 and the manual seg-

mentation on T1 was used as reference (see Fig. 3).

For each segmentation in diffusion, it was calculated the

RMSE along the full dataset at r = 0.08 (see Fig. 4).

4 Discussion

Shape signature is a simple way to compare binary seg-

mentations because computation of the signature itself and

the RMSE is straightforward. The shape signature is highly

related with the resolution that establishes the detail level of

the corresponding segmentation. Matching signatures at

r = 0.35 using RMSE presented no errors due to the char-

acteristic shape signature of the CC at this resolution for any

subject. For evaluation, a higher resolution (r = 0.08) was

then used because we were interested in detecting details of

different segmentations on the same subject (intra-subject).

This resolution (r = 0.08) presented a proper tradeoff

between noise immunity and details sensitivity. For

inter-subject applications, lower resolutions could be more

reliable.

Watershed, ROQS and pixel-based segmentations were

evaluated in a 145 subjects dataset when compared to

manual T1 segmentation. ROQS was the best method

achieving the lowest RMSE mean and standard deviation

along the dataset; however, it is important to point out that

this is a semi-automatic method. On the other hand, the

Watershed and the pixel-based methods (both of them fully

automatic methods) had similar performances, but their

errors were different. While Watershed had more errors (in

20 subjects other regions than the CC were incorrectly

segmented), the pixel-based method only failed segmenting

the CC for 3 subjects. However, the pixel-based method

often segments irregularly the borders due to the pixel-wise

approach.

5 Conclusion

In this work, a method for CC segmentation evaluation in

diffusion was proposed using the shape signature. This

method allowed evaluation of three segmentation methods

Fig. 3 Shape signatures for three

CC segmentations in diffusion

and the reference in T1

(Signatures were matched): (Left)

Parametric contour of each

segmentation displaying line

segments for r = 0.08, (right)

Shape signatures at r = 0.08

associated with CC segmentations

Fig. 4 RMSE mean and standard deviation for the three diffusion

segmentations along the dataset when used as reference manual

segmentation in T1
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using the gold-standard (manual segmentation in T1) as

reference without registering it into diffusion space, since it

is time consuming and prone to errors. RMSE was used to

measure distance between signatures to compare them.

Our proposed shape descriptor may also be used in other

applications together with other descriptors and metrics.

Some foresee applications are: CC characterization, auto-

matic identification of incorrect segmentations in large

datasets, cross-sectional and longitudinal studies regarding

CC shape.
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4 Quality control of corpus callosum segmen-

tations: classical approach

QC is performed to prevent deficient segmentations from being included in

posterior analysis and results. Typical quality evaluation of CC segmentations involves

the use of a ground truth per segmentation. In the previous chapter, we used the shape

signature to evaluate segmentations in diffusion MRI using the ground truth in T1-MRI.

However, obtaining the ground truth is prone to error and time consuming, making QC

unfeasible, especially in large datasets. In contrast, supervised QC schemes can learn

particular features to perform segmentation evaluation with no ground truth.

In this chapter, we present the work entitled A framework for quality

control of corpus callosum segmentation in large-scale studies that was published

in the Journal of Neuroscience Methods (HERRERA et al., 2020). In this paper, the shape

signature was extracted in 49 different resolutions, from which the more relevant ones

were automatically selected using a clustering technique. Then, we put them together in a

final SVM ensemble to obtain the final QC measure. The problem was approached with a

supervised classifier, trained to distinguish among correct and incorrect segmentations.

The final quality measure goes from 0% for correct segmentations to 100% for incorrect

segmentations. Because the SVM ensemble learned the proper shape features to perform

the classification, there is no need for any ground-truth to use the framework.

The framework was trained and tested exclusively on T1-MRI, getting an AUC

of 98.25% on the test dataset. Because the framework only considers shape features,

two critical issues will be analyzed throughout the paper. First, the CC maintains its

characteristic shape among different MRI sequences and can be used directly on them. It is

important since we can extend the use of the framework to other sequences such as diffusion

MRI where manual segmentations are scarce to train the model (low-resolution diffusion

images make it more difficult to perform manual segmentation). Second, the framework

was trained on a normal population, and therefore it could fail to evaluate abnormal

populations such as fetal, newborn, elderly, and tumor patients. These populations are

rarely addressed in the literature, but in the medical practice are common and more

important to be monitored.

Because the work presented in this chapter only explored T1-MRI, these two

points only will be theoretically addressed in the discussion of the paper. However, they

will be revisited in the next chapter, where we will compare this framework with a QC

method using deep learning (Chpt. 5) . The comparison will be enriched with experiments

in two additional datasets: diffusion MRI and patients with tumor.
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Background: The corpus callosum (CC) is the largest white matter structure in the brain, responsible for the
interconnection of the brain hemispheres. Its segmentation is a required preliminary step for any posterior
analysis, such as parcellation, registration, and feature extraction. In this context, the quality control (QC) of CC
segmentation allows studies on large datasets with no human interaction, and the proper usage of available
automated and semi-automated algorithms.
New method: We propose a framework for QC of CC segmentation based on the shape signature, computed at 49
distinct resolutions. At each resolution, a support vector machine (SVM) classifier was trained, generating 49
individual classifiers. Then, a disagreement metric was used to cluster these individual classifiers. The final
ensemble was constructed by selecting one representation from each cluster.
Results: The proposed framework achieved an area under the curve (AUC) metric of 98.25% on the test set (207
subjects) employing an ensemble composed of 12 components. This ensemble outperformed all individual classifiers.
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segmentations on large datasets without the need for a ground-truth.
Conclusions: The shape descriptor is robust and versatile, describing the segmentation at different resolutions.
The selection of classifiers and the disagreement measure lead to an ensemble composed of high-quality and
heterogeneous classifiers, ensuring an optimal trade-off between the ensemble size and high AUC.

1. Introduction

The corpus callosum (CC) is the largest white matter structure in the
central nervous system, connecting both brain hemispheres and al-
lowing communication between them (Hofer and Frahm, 2006). The
importance of CC goes beyond brain interconnection, and its differences
in shape and volume have been linked to certain subject characteristics
such as sex, aging, and handedness, and, most importantly, to several
diseases. Some works have reported association between CC volume
with neurodegenerative or inflammatory diseases, for instance, Alz-
heimer's disease, and multiple sclerosis. In addition, the CC seems to be
affected by a number of central nervous system diseases such as dys-
lexia, epilepsy, schizophrenia, and other common clinical conditions
such as smoking, obesity, and alcoholism (Cover et al., 2018). These
certain types of conditions might alter CC structure by changing its
shape and/or volume.
To verify and track changes in shape and volume and extract mor-

phological and physiological features on the CC, image-based clinical
and research studies usually require a preliminary step, the CC seg-
mentation (Gordillo et al., 2013). Segmentation also allows statistical
studies along populations, comparison between subjects and individual
characterization of the CC. However, CC segmentation through mag-
netic resonance imaging (MRI) is challenging because of the shape
variability among the subjects, the similarity of the CC with neigh-
boring structures such as the fornix, intensity variability among scan-
ners, the partial volume effect caused by a limited acquisition resolu-
tion, and artifacts derived from technological limitations such as
motion (He et al., 2007).
With the increasing availability of MRI data and the proliferation of

automated algorithms, segmentation over large datasets has become
affordable (Cover et al., 2018). To avoid errors resulting from the use of
poor CC segmentations on the whole analysis pipeline, it is required to
practice quality control (QC) over the segmentations. Many QC

algorithms rely on the ground-truth, defined as the correct segmentation
used as reference to evaluate automatic and semi-automatic methods.
Commonly, the ground-truth is manually obtained, and that may be a
strong limitation, specially in large studies. Besides, the segmentation
QC methods are frequently conducted visually, using an exploratory
approach, making it subjective, prone to errors, and time-consuming
(Reeves et al., 2016).
Although automated methods have been previously proposed for a

quality assessment of image segmentation, none of those methods fo-
cused on CC. A machine learning approach developed by Klapwijk et al.
(2019) verifies cortical segmentation in MRI using supervised random
forest algorithm, obtaining both high sensitivity and specificity
(AUC=0.98). In this study, data were acquired only from one scanner
and segmented with Freesurfer exclusively. Peng et al. (2017) presented
a framework that evaluates the quality of segmentation on generic RGB
images. Their assessment is performed by computing the distance be-
tween individual segmentations and a reference, composed from mul-
tiple labeled segmentations. Abdallah et al. (2016) assessed the manual
segmentations of diffused low-grade gliomas on MRI scans using mea-
surements derived from the segmentation and compared them with a
reference using a statistical approach. Shi et al. (2015) presented an
objective measure for visual quality evaluation of an object segmenta-
tion using human visual properties as features applied to generic RGB
images.
Among deep learning approaches, Shi et al. (2017) and Huang et al.

(2016) trained convolutional neural networks to assess the quality of
segmentation using ground-truth segmentations and the corresponding
quality score generated from trained datasets. The quality of these
methods was measured on generic RGB datasets. Valindria et al. (2017)
and Robinson et al. (2017) proposed a QC scheme based on reverse
classification accuracy (RCA) in the absence of ground-truth. This last
work was validated on a large MRI cardiovascular datasets (Robinson
et al., 2019).

Fig. 1. Diagram of the QC framework: extrac-
tion and matching of shape signatures at dif-
ferent resolutions from the dataset composed of
binary segmented masks, individual SVM clas-
sifiers for each resolution, and the final SVM
ensemble composed of high-quality and diverse
components. High-quality and diversity was
guaranteed by filtering low-quality individual
classifiers and grouping by similarity the re-
maining ones into clusters.
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Available automated quality assurance segmentation tools do not
fully solve the QC requirements for CC segmentation. In summary, Peng
et al. (2017), Abdallah et al. (2016), Shi et al. (2015) require one or
several reference segmentations to perform the evaluation, making
them impracticable in large dataset analysis; use generic automatic
extracted features (Shi et al., 2017; Huang et al., 2016; Valindria et al.,
2017; Robinson et al., 2017), or manual extracted features (Klapwijk
et al., 2019; Peng et al., 2017; Abdallah et al., 2016; Shi et al., 2015)
but not shape; and are established in generic RGB image datasets (Peng
et al., 2017; Shi et al., 2015, 2017; Huang et al., 2016) or MRI specific-
domain applications (Klapwijk et al., 2019; Abdallah et al., 2016;
Valindria et al., 2017; Robinson et al., 2017, 2019), but not CC. Notice
only Robinson et al. (2019) tested over large and multiple MRI datasets
to consider their work generalizable to similar datasets.
We propose a framework for the automatic QC of CC segmentations

in large datasets. Compared to the methods described above, our pro-
posal is the first one to deal with QC of CC segmentation in MRI. It has
no need for ground-truth, and it was tested in two large datasets using
three different segmentation methods (one manual and two auto-
mated). Our framework is based on the CC shape signature and an
ensemble of support vector machine (SVM) classifiers. The shape sig-
nature is a shape descriptor extracted by measuring the curvature along
the segmentation contour and offering the shape characterization of the
CC at different resolutions.
This paper is divided into four sections: Section 2 describes the

components of the proposed framework namely: shape signature ex-
traction and matching, SVM individual classifiers and the ensemble that
outputs the final quality measure; Section 3 describes the experiments,
including the used datasets, the chosen hyper-parameters, the final
results over the test set and two additional experiments to evaluate the
framework reliability; and Section 4 discusses the results highlighting
the importance of our framework, the used criteria to construct the
ensemble, the final quality measure, and the usage and limitations of
our method in real applications. Finally, Section 5 provides some con-
cluding remarks summarizing the current study and presenting possible
extensions of our work.

2. Methods

Our framework allows an automatic assessment of the quality of CC
segmentations. CC has large variability among the subjects, and its
shape maintains a characteristic pattern that can be used as a descriptor
for evaluating the quality of the segmentation. The use of a shape de-
scriptor as an attribute to describe the segmentation quality has two
main advantages; namely, there is no need for a ground-truth for each
segmentation, and the signature can capture the segmentation shape at
various levels of detail (resolutions), making the classification highly
customizable.
In this work, we make use of supervised machine-learning technique

to learn the characteristic patterns of the CC shape and to choose the
most relevant signature resolutions to perform the classification task.
The supervised classifier learns to distinguish between correct and in-
correct segmentations. Then, it assigns to a new segmentation a prob-
ability, which ranges between 0% for completely correct segmentation,
and 100% for completely incorrect segmentation. This probability is the
quality score.

The proposed framework consists of three main components to
achieve the QC of CC segmentation (Fig. 1): Sections 2.1 and 2.2 de-
scribe the extraction and matching of the shape signatures from the CC
segmentation masks, Section 2.3 describes the supervised individual
classifier using an SVM that receives the segmentation shape signature
as input and outputs the probabilities for each resolution, and finally
Section 2.4 details the combination of individual SVM classifiers into an
ensemble that takes the individual probabilities and combines them in a
final agreed probability: the quality score.

2.1. Shape signature extraction

Our method is based on the shape signature, name given to a shape
descriptor that measures the curvature along the CC segmentation
contour at several resolutions (Herrera et al., 2019). Shape descriptors
representing contours at different resolutions have already been used
for content-based image retrieval application or contour description.
Adamek and O’Connor (2004) extracted the multi-resolution descriptor
by evolving the segmentation contour and representing it through a 2D
matrix; Mokhtarian and Mackworth (1992) constructed a multi-re-
solution descriptor by convolving the parametric representation of the
contour with Gaussian functions of different parameter values; Jomma
and Hussein (2016) proposed a multi-resolution shape descriptor by
measuring the distance from the segmentation contour points to each
viewing point on several circular orbits positioned at the segmentation
centroid. Only Mokhtarian and Mackworth (1992) descriptor is similar
to ours, although the curvature is computed differently. None of these
methods use the multi-resolution shape descriptor for segmentation
assessment, medical imaging or QC. Furthermore, none of these
methods discusses selection of the proper resolutions or even the use of
the shape descriptor in a machine learning ensemble classifier.
For our shape signature, the curvature k in one point p (xp, yp) is

given by:
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( = +ext ext extx y) determines the resolution of the shape descriptor.
Note that the extension (ext) is the opposite to the resolution: the
greater the ext the smaller the resolution. As ext increases, the curvature
(k) loses in detail, in other words, its resolution decreases.
The curvature computation is easier through a parametric spline

representation of the contour. In this case, ext is given as a percentage
of the total parametric length of the contour. ext is only measured be-
tween 0 and 0.5 (0 < ext < 0.5) because, for a greater ext
(0.5 < ext < 1), the shape signature is mirrored (Fig. 2).
Signature is extracted by calculating curvature k (Eq. (1)) in every

equidistant p point for the total number of points P, along the closed
contour. This signature is calculated for several resolutions (varying
ext) gathering shape representation in various levels of detail. Both P
and ext, are chosen as part of the framework arrangement.

Fig. 2. Signature extraction: (a) Curvature
measure k for a contour at point p (xp, yp). The
curvature is measured as the angle between
lines going from point p to point (xp−ext,
yp−ext), and point p to point (xp+ext, yp+ext), and
(b) Shape signature when k is measured along
the contour.
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2.2. Shape signature matching

Shape signature matching is a process in which two or more shape
signatures are shifted to the same relative position, thereby allowing a
comparison to be conducted. By finding the optimal matching position,
the reference shape signature is fixed, and the remaining ones are
shifted for all points p (recalling that the curvature descriptor is peri-
odic because the contours are closed). The distance between each re-
maining signature and the reference is measured using the root mean
square error (RMSE):

=

=

P
k kRMSE

1
( )

p

P

1

ap bp
2

(2)

where kap and kbp represent the curvature for segmentations a and b,
respectively, measured at point p. P is the total number of points where
the curvature is calculated. The matching point is where the RMSE is
the smallest (Chao and Chien, 2010). Matching at resolutions between
0.25 and 0.45 (0.25 < ext < 0.45) is performed well owing to the fact
that, at these resolutions, the signature represents the global segmen-
tation shape and is not influenced by subtle shape variations. On the
other hand, at higher resolutions (0.01 < ext < 0.05) the signature is
prone to noise, and therefore such resolutions are inappropriate for
matching. The signature shift applied during the matching process is
repeated for all resolutions of each segmentation, thereby ensuring a
match for every resolution.

2.3. Supervised classification using support vector machines (SVM)

In our framework, the input is a binary segmentation mask, which
can be obtained through the execution of any automated, semi-auto-
mated or manual segmentation method. Afterward, each segmentation
is assigned a probability of belonging to one of two classes: correct
(negative) or incorrect (positive). The higher the probability is, the
more likely the segmentation is incorrect. This probability is the quality
measure of our framework. By applying a threshold (decision threshold)
to the quality measure it is possible to classify a new segmentation
between correct or incorrect. Therefore, segmentations above the de-
cision threshold are classified as incorrect and below as correct.
The classification task can be learned using a supervised machine

learning scheme. A supervised classifier creates a set of rules from la-
belled instances (training set) and uses them to classify new instances
(test set) in a process called generalization (Kotsiantis et al., 2007). A
validation set is used to avoid over-training that happens when the
classifier learns specific rules only applicable to the training set but not
generalized to the test set.
Among supervised techniques, SVM is still a state-of-the-art solution

for many binary and high-dimensional classification problems. SVM is a
type of supervised machine learning technique that will be used for
both, the individual classifiers and the ensemble. SVM finds the hy-
perplane with the largest separation margin between positive and ne-
gative classes (Cortes and Vapnik, 1995). The training points lying
closest to the decision boundary are called support vectors and de-
termine the separation hyperplane position. When the classes are not
linearly separable, a function (kernel) is used to map the points to a
higher dimension space, where the classes are linearly separable
(Burges, 1998). As mentioned, the classifier outputs the probabilities
for each class and the decision threshold must be applied to assign the
instance to a certain class.
The selection of the proper way to evaluate a classifier is not an easy

task because there are many available metrics and their selection de-
pends on the final application (Sokolova and Lapalme, 2009). The re-
ceiver operating characteristic (ROC) curve is a graphical tool for
evaluating a classifier by considerating the true positive rate (TPR) and
the true negative rate (TNR) for the full range of decision threshold
(Hanley and McNeil, 1982) (Fig. 3).

Every point in the curve is given by a decision threshold, leading to
a trade-off between TPR and TNR maximization. We are not interested
in evaluating the classifier based on a particular decision threshold but
assessing the performance over its entire operating range. Area under
the curve (AUC) is a well known and versatile metric for classification
tasks, whose value does not depend on the selected decision threshold.
A real classifier falls between the “random guessing” classifier
(AUC=50%) and the ideal classifier (AUC=100%). By maximizing
the AUC, the classifier will have good performance at any decision
threshold (Hajian-Tilaki, 2013). Therefore, AUC is used for quality as-
sessment of the classifiers by allowing the filtering of low-quality in-
dividual classifiers.
We can classify segmentations between correct or incorrect by de-

fining a decision threshold using the F1score that takes both, TPR and
TNR, into account. In the literature, the F1score is presented as the
weighted average of precision (agreement of the real positive classes
with those of the classifier) and recall (effectiveness of a classifier to
identify positive instances) (Powers, 2011). It can be noticed that, as
the decision threshold increases, precision increases (TPR increases),
but recall decreases (TNR decreases). A good choice is selecting the
decision threshold associated with the maximum F1score, thus obtaining
the best trade-off between recall and precision.

=

+

F1
2*(precision*recall)

(precision recall)
score

(3)

2.4. Ensemble of individual classifiers

For each binary segmentation, one signature for each resolution is
extracted (as described in Section 2.1). Different resolutions are chosen
to represent the shape with varying levels of detail. After obtaining the
signatures for the entire dataset, they are matched (as detailed in Sec-
tion 2.2). Thus, a 3D feature matrix of size [N, R, P] is assembled, where
N is the number of samples, R is the number of resolutions extracted per
segmentation, and P is the number of points where the curvature is
calculated.
It is difficult to determine which resolutions lead to an optimal se-

paration between correct and incorrect segmentations. For determining
significant errors in the segmentation, the global shape is essential;
although with this representation, small errors can be neglected. Mixing
all R resolutions in a unique classifier does not guarantee good results
because each resolution has a different discriminatory power, and there
is a lot of redundancy among the data. For this reason, R individual
SVM classifiers, one for each resolution, are trained and evaluated (as
described in Section 2.3).
After training, the individual SVM classifiers give distinct

Fig. 3. ROC curve depicting the ideal classifier, the random guessing case and
an example of real classifier with associated AUC.
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probability results. Some of them will be selected and passed as inputs
to the ensemble. Bagging and boosting are popular techniques for
constructing ensembles based on their simplicity and effectiveness; as
shown in Faria et al. (2012), a bagging SVM ensemble presents superior
results. The ensemble of classifiers aims to surpass the performance of
individual classifiers, easing the agreement of several classifiers and
increasing the generalization capability of the framework. The selected
classifiers whose outputs are passed to the ensemble are called en-
semble components.
An effective ensemble uses the minimum number of high-quality

components trying to combine heterogeneous classifiers com-
plementing each other (Tulyakov et al., 2008). So, the aim is first to
select high-quality classifiers, using the quality threshold1 (based on
the AUC). Therefore, AUC is used for filtering low-quality individual
classifiers, selecting only the highest AUC classifiers on the validation
set (individual classifiers above the quality threshold). Then, from the
selected ones, we find the most diverse ones, based on the disagree-
ment measure. There are many different useful measurements used to
select heterogeneous classifiers (Kuncheva and Whitaker, 2003). These
measures are based on the agreement matrix (Table 1) where True
corresponds to cases correctly predicted by the classifier, and False
corresponds to cases incorrectly predicted.
The disagreement measure Dis (Eq. (4)) defines the proportion of

the number of observations in which one classifier correctly predicts an
outcome, and the other incorrectly predicts it, and vice-versa, to the
total number of observations.

=
+

+ + +

b c

a b c d
Disc c,i k (4)

Dis is a pair-wise metric that focuses on identifying classifiers that
accomplish different types of False results. A matrix can be obtained
depicting the disagreement between all pairs of classifiers. This matrix
is used as a distance matrix where highly discrepant classifiers have
higher values and are represented farther away from each other.
Therefore, a clustering method is used to group classifiers, given the
distance between them. A recursive algorithm forms initial clusters and
merges the pair of clusters that minimally increases the Dis distance.
The number of clusters becomes a hyper-parameter that must be de-
fined.
From each cluster, the classifier with the highest AUC is chosen. The

selected individual classifiers are used to compose the final ensemble.
The ensemble is formed by an SVM whose inputs are the probability
outputs of the individual classifiers and returns the probability of a
given segmentation being incorrect.

3. Results

In order to validate the proposed framework, we first trained in-
dividual classifiers and then an ensemble to classify new segmentations.
AUC was used to evaluate the whole framework. To obtain the final
classification into one of the following two classes: Correct and Incorrect,
decision threshold was experimentally determined using F1score.
Because both of the classification steps, namely, individual classifiers
and ensemble, use a supervised scheme, the segmentations were labeled
as Correct (Fig. 4a) and Incorrect (Fig. 4b and c) using a manual ap-
proach. Signatures were extracted for both of them (Fig. 4d and e).

3.1. Data preparation

To increase the generalization, T1-MR images were obtained from

two studies with three different segmentation methods. From the 548
T1 images acquired at the University of Campinas, 397 were segmented
with Freesurfer v5.3.0, which is freely available for download online2

and the remaining 151 were manually segmented by a specialist. On the
other hand, 247 subjects from ABIDE database (Hiess et al., 2015) were
automatically segmented and manually corrected in minor details by
Ardekani (2013). All data used in preparation for this article were ap-
proved by the local ethical committee and fully anonymized. All of the
participants were duly informed, and all of them signed a consent form
agreeing to participate in the studies. Due to property rights, the data
cannot be shared with the community. The manual labelling of the
segmentations was performed by the authors in a one-to-one visual
basis. As it will be pointed out later in this section, for precaution,
segmentations whose class was not clear were discarded.
The experiments were conducted using a Python/Numpy environ-

ment (Oliphant, 2006) along with Scikit-learn (Pedregosa et al., 2011)
for machine-learning implementations. Both, the source code and the
saved trained model can be found on GitHub.3

From each T1-MRI volume, only the mid-sagittal slice was employed
using the acpcdetect tool from ART toolbox (Ardekani et al., 1997).
After segmentation and mid-sagittal selection, some images were dis-
carded due to registration problems, bad selection of the mid-sagittal
slice or it was not clear which class the segmentation belonged to
(subtle errors in the segmentation). Therefore, the final dataset was
composed of 688 segmentations, distributed into 287 incorrect seg-
mentations (42%) and 401 correct segmentations (58%).
The shape signatures were extracted from the final segmentation

dataset by firstly obtaining the contour (S), by applying a logical XOR,
pixel-wise, between the original segmentation (G) and its eroded ver-
sion using a structuring element (e) of size 1 (Eq. (5)).

=S G G eXOR( , ) (5)

Then, for each contour, a spline of degree g=5 and smoothness of
700 was calculated. The shape signatures were extracted by measuring
the curvature of 500 points (P=500) along the spline for 49 resolu-
tions (R=49): from 0.01 to 0.49 with steps of 0.01 (Fig. 5). Finally, all
signatures were matched using ext=0.35, resulting in a 3D feature
matrix of [688, 49, 500].

3.2. Individual classifiers

Prior to the classification, the feature matrix was randomly divided
into three sets: trainind, trainens, and testens (Table 2). Individual SVM
classifiers were trained using the trainind set. A grid search to adjust the
SVM was applied along with the kernel type (kernel, {rbf, linear,
polynomial}) and penalty parameter (C, {0.1,1,10,20,50,100}) using a
cross-validation strategy. For illustration purposes, the final config-
uration of each SVM-resolution classifier and one shape signature ex-
ample based on the resolution are presented in Table A.1 in Appendix
A.

Table 1
Agreement matrix for classifiers ci and ck, where a represents cases in which
both the classifiers correctly predicted the result; b represents cases in which
ci correctly predicted, and ck incorrectly predicted the result; c represents
cases in which ci incorrectly predicted, and ck correctly predicted the result;
and finally, d represents cases in which both the classifiers incorrectly pre-
dicted the result.

True ck False ck

True ci a b
False ci c d

1 The reader should not confuse the quality threshold with the decision
threshold. The quality threshold is applied over the individual classifiers to
select only high-quality components while the decision threshold is applied on
the final output probability to classify the segmentation as correct or incorrect.

2 http://surfer.nmr.mgh.harvard.edu/.
3 https://github.com/wilomaku/CC_seg_clas.
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3.3. Ensemble of classifiers

To build the ensemble, two criteria were met: quality and diversity.
Regarding quality, AUC was used to measure classification performance
of the individual classifiers. Individual classifiers below the quality
threshold (AUC < 0.9) were rejected: 8 classifiers were discarded, and
41 remained (Fig. 6a). Afterward, using the trainens set, a disagreement
matrix (Fig. 6b) was constructed in which rows and columns represent
the individual classifiers and each cell represents the disagreement
measure (Eq. (4)) between every pair of classifiers. Lighter values

denote lower disagreement (less diversity) and darker values mean
higher disagreement (more diversity).
The disagreement matrix was used as a distance matrix to determine

the optimal ensemble composition by grouping nearby classifiers (lower
disagreement). First, the agglomerative clustering technique was ap-
plied to identify classifier clusters using the disagreement distance.
Further, for each cluster, only one individual classifier was chosen
(cluster representative) to construct the ensemble by electing the clas-
sifier with a minor intra-cluster distance. Therefore, the number of
clusters is the same as the ensemble size because only one classifier was
chosen from each cluster. An extensive search over all the possible
number of clusters was conducted from 1 to 41, as it is not possible to
define the number of clusters a priori.
Forty-one ensembles were trained in the trainens set, one for each

ensemble size, along with the same grid search used for individual
classifiers. The AUC for the testens set was obtained (Fig. 7a). The op-
timal ensemble size was chosen as the minimum size that achieved the
highest AUC, obtained along all the possible ensembles. In this case, the
optimal ensemble size was 12.
The optimal ensemble achieved an AUC of 98.25% (Fig. 7)b. The

Fig. 4. Example of three segmentations: (a) Seg1 – correct segmentation, (b) Seg2 – incorrect segmentation, and (c) Seg3 – incorrect segmentation with their
associated signatures at resolutions: (d) res=0.10, and (e) res=0.15.

Fig. 5. Extraction of shape signature: (a) Spline depicting one example point p where the curvature is measured between the anterior (p− ext) and posterior (p+ ext)
points, and (b) Shape signature measured along 500 contour points obtained at ext=0.1.

Table 2
Final dataset distribution for training and test sets both the individual classifiers
and the ensemble.

Set name Samples Proportion Purpose

trainind 240 35% Training and validation of the individual
classifiers

trainens 241 35% Training and validation of the ensemble
testens 207 30% Test of the ensemble
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resolutions (ext), associated to the individuals classifiers, selected for
conforming the ensemble were 0.03, 0.04, 0.05, 0.16, 0.23, 0.28, 0.31,
0.34, 0.39, 0.44, 0.46, 0.48. To classify segmentations as correct or
incorrect, the decision threshold, defined at the maximum F1score, was
31%. Applying this decision threshold to the output probability, the
ensemble presented 9 miss-classifications (accuracy=95.65%) (Fig. 8).

3.4. Additional experiments

Two additional experiments were performed to evaluate the relia-
bility of our framework. In the first experiment, we tested the im-
portance of diversity by comparing the optimal ensemble with a high-
quality ensemble with no diversity. In the second experiment, the
sensibility to hyper-parameters was tested by varying them and
checking the output.

Importance of diversity: As previously mentioned, diversity is
crucial for the selection of suitable ensembles. A new ensemble was
mounted with the top 12 high-quality individual classifiers, whose

resolutions (ext) were: 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12,
0.13, 0.14, 0.15, 0.16. This ensemble had the same size as the optimal
one, however it had poor diversity because the associated resolutions
were close to each other. The 12 high-quality ensemble achieved
96.81% of AUC against 98.25% achieved by the optimal ensemble, in
the testens set (Fig. 9).

Sensibility to hyper-parameters: Although the ensemble has the
advantage of automated selection of the proper resolutions to achieve
the classification task, its disadvantage is the need to adjust some
hyper-parameters: the number of extracted resolutions (R), the quality
threshold applied to AUC to filter low-quality individual classifiers, the
dissimilarity measure, and the criteria to select representatives by
cluster. This experiment aimed to test the framework robustness to
variation of these hyper-parameters with regards to the original se-
lected values. The initial hyper-parameter values were modified one by
one, while maintaining the remaining ones invariant, obtaining the
final AUC (Table 3). These values were compared with the AUC for the
optimal ensemble with its original values (last row of the table).

Fig. 6. Criteria for ensemble construction: (a) Histogram for the AUC of individual classifiers where quality threshold was applied (classifiers with AUC < 0.9 were
rejected) and (b) Disagreement matrix representing the diversity between every pair of classifiers. Each cell in the matrix is the disagreement measure Dis (Eq. (4))
between the row and the column classifiers.

Fig. 7. Optimal ensemble: (a) Extensive search over all the possible number of clusters (ensemble size) depicting AUC for each ensemble, and (b) Final ROC and AUC
for the optimal ensemble.
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4. Discussion

Quality control of segmentations is an essential step in MRI analysis.
Traditionally, QC of segmentations is performed manually, but this is
becoming unfeasible with the rise of the large datasets of today (Reeves
et al., 2016). Other authors proposed methods to assess QC of seg-
mentations in MRI using specific-domain features: Klapwijk et al.
(2019) verified Freesurfer's cortical segmentation; Abdallah et al.
(2016) assessed the manual segmentations of diffused low-grade

gliomas; Valindria et al. (2017), Robinson et al. (2017), and Robinson
et al. (2019) proposed QC schemes on cardiovascular datasets. Our
approach is the first one to deal with QC of MRI CC segmentations,
assigning, for each segmentation, a probability (quality score) of be-
longing to one of two classes: correct or incorrect. By applying a deci-
sion threshold to this probability, it is possible to label a new seg-
mentation as correct or incorrect.
Selection of the proper decision threshold is a trade-off that depends

on the specific application. In practice, lower decision threshold values
are preferable because they increase the detection capability (increase
TPR) at the cost of increasing false positives. However, as incorrect
segmentations, including false positives, go on to a posterior manual
verification/correction after QC is applied, it is possible to guarantee
the effectiveness of the QC stage. Fortunately, in our framework, TPR
and TNR remain high for a wide range of decision threshold values,
thanks to the high AUC obtained (Fig. 7b).
We defined the decision threshold using the F1score resulting in 2

false positives and 7 false negatives (Fig. 8). The false positive cases
could be avoided by using a more traditional decision threshold, such as
50%. On the other hand, the false negatives presented low output
probabilities. Five out of these 7 cases resulted from masks that are
divided into two sections (Fig. 8b), and the shape signature, when
evaluated in one of them, seemed normal. These cases could be avoided
by adding a preliminary verification step that rejects two-portion seg-
mentations, using a connected-component algorithm for example.
The shape signature was a robust and versatile descriptor for CC

segmentation quality assessment. As the signature is extracted at var-
ious resolutions, it allows an assessment of the CC segmentation at
different levels (fine detail and coarse shape). However, it is challen-
ging to choose the proper combination of resolutions to accomplish the
proposed classification task. By constructing an ensemble of classifiers
according to high-quality and diversity criteria, we achieved
AUC=98.25%, a notable score for classification tasks. Rejecting

Fig. 8. Confusion matrix and false outcomes cases for the ensemble presented at threshold=31%: (a) confusion matrix, (b) false negative example with p=6.8%, (c)
false positive example with p=41.6%.

Fig. 9. Comparison of the AUC from optimal ensemble, best-quality ensemble
and individual classifiers on the testens set. Each points is the AUC associated to
one individual classifier along the 49 resolutions (0.01 to 0.49). The compo-
nents of both the two ensembles are depicted: optimal in bold and best-quality
like cross. The optimal ensemble AUC is superior to the best-quality one's and
both of them are superior to AUC of any individual classifier.

Table 3
New values tested, one by one, for the hyper-parameters of the ensemble. Each row is an experiment where is changed one hyper-parameter value. For comparison,
the AUC base, with the original values, obtained 98.25% (last row).

R Quality threshold Dissimilarity Measure Criterium representative Final AUC

25 0.90 Disagreement Intra-cluster distance 97.16%
50 0.80 Disagreement Intra-cluster distance 96.87%
50 0.93 Disagreement Intra-cluster distance 93.57%
50 0.90 Q statistics (Kuncheva and Whitaker, 2003) Intra-cluster distance 97.31%
50 0.90 Disagreement Best AUC 98.22%
50 0.90 Disagreement Random 97.32%
50 0.90 Disagreement Intra-cluster distance 98.25%

Bold value signifies specific parameter that was changed in every experiment.
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individual classifiers with low individual AUC was essential to exclude
low-quality components of the final ensemble (Fig. 6a). The optimal
ensemble was constructed, allowing the automated selection and
agreement of 12 individual classifiers spread along the resolutions.
The optimal ensemble led to the best final AUC, keeping the number

of classifiers low (twelve). The experiments showed poor performance
with fewer components (below 12 components), and there was no
substantial improvement by using more components (above 12 com-
ponents) (Fig. 7a). The optimal ensemble also obtained a higher AUC
(98.25%) than the ensemble with the 12 best-quality individual clas-
sifiers (96.81%), demonstrating that diversity is important in building
the ensemble (Fig. 9).
Experiments (Section 3.4) confirmed the robustness of our frame-

work to the selection of hyper-parameters (Table 3). The most relevant
hyper-parameter was the quality threshold. When this value was either
increased or decreased, the final result got worse, showing that a
quality threshold value of 0.90 is an optimal choice.
The use of the framework for the analysis of other T1-MRI CC seg-

mentation datasets is straightforward since we made the Python script
and the trained classification model available. Given that the frame-
work was trained in two large datasets and it learned the characteristic
shape of the CC, it does not need ground-truth for quality assessment of
new segmentations. Also, it can be used in other MRI sequences such as
T2-MR images and Diffusion-Weighted images, where the CC preserves
its characteristic shape. In any of these cases, the hyper-parameter va-
lues can be kept the same as the original ensemble (the Python script
and the trained model are by default configured with these values
Table 3). The only value that needs to be defined is the final decision
threshold for classifying input segmentations as correct or incorrect.
There are specific populations such as fetal, newborn (Huang et al.,

2006), or non-disabled elderly populations (Ryberg et al., 2007) in
which the CC shape changes in relation to the dataset used in this work.
In these cases, the use of our framework probably requires re-training
the supervised model in the target image dataset and setting the hyper-
parameters to achieve good QC results. On the other hand, it is expected
that our framework will not perform properly, even if re-trained, in the
presence of CC malformations, tumors, and agenesis (Hetts et al., 2006).
In these cases, it is difficult for the classifier to learn the separation
model between correct and incorrect classes.
Finally, our method can be extended to any segmentation QC ap-

plication where the masks to be evaluated have a generic shape along
with the dataset. This is the case for several medical imaging applica-
tions, such as brain MRI, in which structures and organs maintain their
shape along with the population. In these cases, it is possible to cus-
tomize the shape signature to grasp the generic shape along the target
dataset. The ability of our framework to adapt to several applications
occurs because the multi-resolution descriptor and the supervised en-
semble ensure the framework learns the best characteristics of the
shape to perform the proposed classification task.

5. Conclusions

In large-scale imaging studies, where segmentation is a mandatory
step, the automatic detection of incorrect segmentations is of utmost
importance. In this work, we proposed a framework for QC of CC seg-
mentations that does not need ground-truth.
Our framework used a multi-resolution shape descriptor and auto-

matic selection of individual classifiers through a clustering technique.
Since the selection of the proper resolutions for QC is tricky, the use of
an ensemble yielded a better solution. Two criteria led to the con-
struction of the optimal ensemble: selection of high-quality classifiers
and variability between them. This scheme was used to build an en-
semble of 12 components with various resolutions, achieving an AUC of
98.25% on the test set containing 207 segmentations.
Finally, since our framework is based on a shape descriptor and does

not depend on intensities, its use can be easily extended to assess

segmentations done over other MRI sequences, such as T2-MR images
and Diffusion-Weighted images. The method can be extended to other
QC segmentation applications by training the framework in the target
dataset.
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44

5 Quality control of corpus callosum segmen-

tations: deep learning approach

In the previous chapter, we presented the first QC framework applied to CC

segmentations using manually extracted features (shape signature) and classical machine

learning techniques, with outstanding performance (AUC = 98.25%) on T1-MRI. At the

end of the paper, we hypothesized about two new scenarios: diffusion MRI and tumor

patients, where this framework would have both advantages and disadvantages, given its

exclusive dependence on the segmentation mask shape.

In this chapter, we present our work entitled Automatic quality control on

corpus callosum segmentation: Comparing deep and classical machine learning

approaches which was submitted to the Neurocomputing journal. It makes two significant

contributions: proposal of a QC method for CC segmentations based on deep learning and

comparison of this new method with the classical machine learning framework in the cases

listed in the previous paragraph.

The CNN method achieved a similar performance (AUC = 97.98%) to that

of the classical machine learning approach on the test dataset. When comparing both

methods, the classical approach got the best result in diffusion MRI while the CNN

performed better in the tumor dataset. The main advantage of the deep learning approach

is its capability to extract features of the mask and the image, gaining knowledge about the

context of the segmentation. However, as this approach is sensitive to the image intensity,

it is not easy to generalize it to domains with different intensity (e.g., T1 to diffusion). In

this case, a domain adaptation technique could be useful to improve the CNN performance

on this new domain.

Some additional techniques were tested along the experiments including: random

variation of brightness and contrast for data augmentation, blurring the segmentation

mask using a Gaussian function, and usage of the CNN ResNet50. However, none of these

techniques improved the performance of the network substantially and therefore they were

not included in the final model.
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Abstract

The Corpus callosum (CC) is a massive white matter structure in the brain, and changes in
its shape and volume are associated with subject characteristics, several diseases, and clini-
cal conditions. The CC is mostly studied in magnetic resonance imaging (MRI), where it is
segmented to extract valuable information. With the increasing availability of MRI data and
the proliferation of automated algorithms to perform CC segmentation, quality control (QC)
verification is mandatory to assure reliability in the entire analysis pipeline.

We propose a convolutional neural network (CNN) for QC of CC segmentations. The CNN
gets information on the mask and contextual information on the image and performs deep
feature extraction using a pre-trained model. The CNN model was fine-tuned using T1-MRI
images with CC masks, in the task of classifying correct or incorrect segmentations.

The CNN-based approach got an area under the curve (AUC) of 97.98% on the test set. To
validate our proposal, we compared it with a classical machine learning approach, based on a
SVM ensemble, trained in the same task. The classical approach got the best performance in
the diffusion domain, but the CNN overcame it in subject with tumor affecting the CC. Both
approaches were compared in diffusion MR images and patients with tumor to test generalization
capability to other domains.

The simple CNN architecture got similar performance as the classical machine learning
approach, in the dataset used to train the models. However, the CNN resulted more versatile
than the classical machine learning model, better able to adapt to unseen patients with tumor,
and best suited to learn other patterns with domain adaptation.

Keywords: corpus callosum, segmentation, quality control, convolutional neural network,
magnetic resonance imaging

1. Introduction1

The Corpus callosum (CC) is the largest white matter structure in the brain and is respon-2

sible for the inter-communication of the brain hemispheres [1]. The CC is essential in medical,3

clinical and, research areas since changes in its shape and volume are associated with subject4
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characteristics, several diseases, and clinical conditions [2]. The CC is mostly studied in mag-5

netic resonance imaging (MRI), in which its segmentation is required [3]. Segmentation is the6

process of dividing an image into non-intersecting and homogeneous regions. This process is7

the preliminary step to several analysis stages and can be accomplished by using an automatic,8

semi-automatic, or manual segmentation method [4].9

With the increasing availability of MRI data, manual or even semi-automatic methods are10

unfeasible, with automatic methods being the only way to perform segmentation on a large11

scale [5]. Because automatic methods are not fully reliable, quality control (QC) verification12

is mandatory to assure reliability in the entire analysis pipeline. QC stage allows detecting13

incorrect segmentation in order to be discarded or revised, avoiding the introduction of errors14

into the remaining pipeline [6].15

In medical imaging, efforts have been concentrated on proposing and improving automated16

segmentation methods, and so there are few works in QC of segmentation. Among QC pro-17

posals, Bouix et al. [7] presented three techniques - common index agreement, expectation-18

maximization, and multidimensional scaling - for evaluating brain tissue segmentation. Abdal-19

lah et al. [8] used a statistical model to assess the manual segmentation of diffused low-grade20

gliomas on MRI by comparing extracted measurements from the segmentation with a refer-21

ence. A random forest model developed by Klapwijk et al. [9] evaluated cortical Freesurfer22

segmentation on MRI.23

Valindria et al. [10] and Robinson et al. [11] used a deep learning approach based on reverse24

classification accuracy (RCA) to evaluate segmentation accuracy in the lack of ground-truth.25

This work was then tested on a large MRI cardiovascular dataset [6]. Roy et al. [12] proposed a26

Bayesian extension of the QuickNat CNN for delivering both the segmentation with the voxel-27

wise uncertainty map and the final quality control measure. This approach was trained and28

tested in four small datasets for different brain structures on MRI.29

In our previous work [13], we presented a framework for QC of CC segmentation on MRI30

using an ensemble of support vector machine (SVM). It is based on a shape descriptor, depending31

only on the shape of the segmentation mask, making it independent of which MRI sequence32

the segmentation was performed on. While it is an advantage because the same framework33

can be applied in other MRI sequences, it may be seen as a shortcoming, since it operates34

decoupled from the MR image, missing the contextual information of the image. In the latter35

situation, subjects with tumor, correct but shifted masks (e.g., registration errors) and specific36

populations (e.g., fetal, newborn, or elderly people) may be misclassified.37

On medical imaging, deep learning applications have achieved remarkable outcomes in vari-38

ous applications: classification of exams, illness and lesions; detection of tumors, organs, regions39

and landmarks; segmentation of organs and lesions; registration; big data applications such as40

content-based image retrieval and combination with reports; and generative models for enhanc-41

ing, de-noising, normalizing and pattern discovery [14, 15]. Deep learning is a group of machine42

learning techniques, in which many layers of information processing are stacked for performing43

complex pattern recognition and feature representation tasks. Deep learning allows construct-44

ing complex concepts out of simpler ones by extracting information at increasing levels of detail45

through simple operations, such as convolution [16].46

Among the most popular deep learning techniques, convolutional neural networks (CNN)47

are the most used to deal with images, overshadowing classical machine learning methods on48

several applications. Therefore they are a promising approach when dealing with QC of image49

segmentation. However, CNN are not the solution for every case and require more data and50

computational resources, leaving room for classical machine learning approaches [17]. Therefore,51

we propose a method for QC of CC segmentations using a CNN. We compare its performance52

with the performance of the classical machine learning method, and finally, we extend the53

trained models to other domains: diffusion MRI sequence and patients with tumor. Testing54

in other datasets allows us to verify our model’s generalization capability and possibly allows55
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residual representations are easier to optimize and allow gain accuracy on behalf of deeper archi-86

tectures. In practice, the residual representations are achieved by inserting shortcut connections87

every two convolutional layers [18].88

We used ResNet18, which has one initial block, comprising one convolutional layer, and eight89

sequential blocks, composed of two convolutional layers. A batch normalization layer follows90

all convolutional layers, and Relu activations are used inside the sequential blocks, between the91

convolutional layers. Right after the convolutional blocks, three fully connected layers were92

inserted, providing the QCS.93

2.3. Training process94

Since the used CNN is a supervised model, it requires a training process to learn the dis-95

tribution of samples, discovering the classification hyperplane that best separates the classes.96

Deep learning models are recognized for requiring both computing power and large datasets97

during the training phase. To alleviate this, we used transfer learning to take advantage of pre-98

trained CNN, achieving an effective feature extractor [19]. In this paper, we used ResNet18,99

pre-trained on ImageNet [20]. In order to adapt the ImageNet RGB domain to our problem, we100

froze the convolutional part, except for the last block, and adjusted, by fine-tuning, this final101

block and the final fully connected layers [21]. We also used the data augmentation technique,102

which increases generalization performance, focusing on the training dataset. The idea is to103

extract more information from the original dataset through random augmentations [22]. In our104

case, we applied random affine rotations. Since the rotation left some pixels in the border with105

unknown value, we made a crop in the center of the image, discarding the border. Because the106

CC is always in the center of the brain, this crop did not affect it.107

3. Results108

We used 907 MR images from two distinct acquisition sequences, and the CC was segmented109

using different methods (Table 1). All data used in this work was fully anonymized and approved110

by the local ethical committee. All of the participants were adequately informed, and they111

agreed to participate in the studies.112

Experiment MRI sequence Study Samples Segmentation method

Unicamp 397 Freesurfer [23]
CNN Evaluation /

Unicamp 151 Manual
Performance comparison

T1-MRI

ABIDE [24] 247 Yuki [25]

Generalization (FA) Diffusion-MRI Unicamp 105 ROQS [26]

Tumor 6* Manual
Generalization (Tumor) T1-MRI

Tumor 4* Freesurfer

*3 subjects were segmented with both methods, Manual and Freesurfer.

Table 1: MRI datasets used in CNN experiments: normal subjects T1-MRI, normal subjects Diffusion-MRI, and
T1-MRI of subjects with tumor.

The experiments were performed using Python [27] along with Pytorch [28] for the CNN113

implementations. For reproducibility purposes, the trained model and the source code are114

available on GitHub1.115

1https://github.com/wilomaku/CC_QC_CNN
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In the first experiment, we tested the CNN-based method using a T1-MRI dataset (Sec-116

tion 3.1), where three different methods segmented the CC. In the second experiment, its per-117

formance was compared to the performance of our previous QC framework based on classical118

machine learning (Section 3.2). Finally, we verify the generalization of both models to other119

domains: diffusion MRI and tumor datasets (Section 3.3).120

3.1. Evaluation of the CNN-based proposed method121

For training and testing the proposed model, we performed the experiments over the T1-122

MRI dataset exclusively. From each T1-MRI volume, the mid-sagittal slice was extracted by123

using the acpcdetect tool from the ART toolbox [29]. Then, some samples of the dataset were124

discarded due to one of the following reasons: significant different image size, wrong selection125

of the mid-sagittal slice, or unclear accuracy of segmentation because of very subtle errors. The126

final dataset comprised 685 samples distributed into 400 correct segmentations (58%) and 285127

incorrect segmentations (42%). Furthermore, the dataset was stratifiedly partitioned (Table 2).128

Samples Proportion Use

439 64% Training

110 16% Validation

136 20% Testing

Table 2: T1-MRI dataset distribution used in CNN experiments comprising training, validation and testing sets.

Each sample of the dataset is composed of a 2D image and its associated segmentation mask.129

Because the image size varies with the studies, we established a 240x240 size to ensure that the130

network worked with any input. Images with different sizes were re-scaled using the Lanczos131

interpolation, a high-quality convolutions-based algorithm with the Lanczos kernel [30]. Since132

the network was pre-trained on ImageNet, input should be normalized with per-channel mean133

([0.485, 0.456, 0.406]) and standard deviation ,([0.229, 0.224, 0.225]) values. Data augmentation134

was applied in the form of random rotations between −3◦ to 3◦. Afterward, a central 176x176135

crop was performed.136

The ResNet18 was configured as specified in section 2.2. Three fully connected layers that137

generated the QCS were added at the end of the network, with sizes 1024, 512, 2, respectively.138

We trained the model along 50 epochs with cross entropy loss function, Adam optimizer [31],139

a learning rate of 1x10−5, and a mini-batch size of 16. After 12 epochs, the network suffered140

overfitting, and after 5 additional epochs (17 epochs) with no improvement, the training was141

halted using early-stop. The state of the network (learned parameters) was saved at the 12142

epoch, achieving 0.121 and 0.173 of cross entropy loss (Fig. 2a).143

The AUC for the testing set was 97.98% (Fig. 2b). The decision threshold, defined at the144

maximum F1score, was 53% to classify a given segmentation as correct or incorrect. With this145

decision threshold, the CNN had seven miss-classifications (accuracy=94.85%) (Fig. 3).146

3.2. Performance comparison of QC methods147

The final AUC of our previous classical approach [13] was similar to our current work148

(Section 3.1). Therefore, in this section, we propose a performance comparison in terms of149

training and execution time and dataset size. These two aspects have a direct impact on the150

daily use and the final AUC of the method, respectively, and can determine the choice of one of151

them over the other. We compared the CNN-based approach with our previous one, using an152

SVM ensemble [13], in two experiments: time measurement for both training and testing stages153

(Section 3.2.1) and impact of training set size on the final result (Section 3.2.2).154
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Subject Method Ground-truth
SVM ensemble CNN

QCS Predict QCS Predict

Manual Correct 99.61 Incorrect 91.48 Incorrect
1

Freesurfer Incorrect 99.60 Incorrect 91.50 Incorrect

Manual Correct 95.75 Incorrect 1.73 Correct
2

Freesurfer Incorrect 99.59 Incorrect 72.12 Incorrect

Manual Correct 22.13 Correct 0.6 Correct
3

Freesurfer Incorrect 27.18 Correct 5.36 Correct

4 Manual Correct 45.78 Correct 1.15 Correct

5 Manual Correct 78.07 Incorrect 0.67 Correct

6 Manual Correct 17.39 Correct 23.37 Correct

7 Freesurfer Incorrect 99.61 Incorrect 57.95 Incorrect

Table 5: QCS for the SVM ensemble and CNN approaches for patients with tumor affecting the CC. Two methods
were evaluated: Manual and Freesurfer. The predict outcome corresponds to a threshold separation of 50%.

approaches. This might seem surprising, especially in CNN, which are considered eager for219

large amounts of information. However, the implementation of transfer learning and fine-tuning220

strategies alleviated this requirement. Nevertheless, increasing the size of the training dataset221

did help, improving the accuracy in the CNN-based approach, and allowing outperform the222

classical machine learning approach.223

By selecting a simple pre-trained model such as the ResNet18, in order to construct the224

quality control system, we obtained fair training and testing times using moderate hardware225

(Table 3). Training the CNN in a non-last generation GPU (Nvidia Tesla K80, launched in 2014)226

took almost 5 times longer than the classical approach. The pre-training strategy mitigated227

the training time because the CNN converged in just 12 epochs. More importantly, due to the228

practical use of our quality control system, the testing time to evaluate 136 subjects was less229

than 10 seconds, that is, the same as the classical approach and fast enough to be used in any230

real scenario with large datasets.231

To compare both approaches in new domains, we tested the generalization of the models,232

trained on standard T1-MR images, to new real scenarios: diffusion FA images and tumor cases.233

In the diffusion domain, we tested over 105 new subjects segmented with a semi-automatic234

method. The SVM-based approach performed better (AUC = 95.5%) than the CNN-based ap-235

proach (AUC = 75.7%). When switching the domain, from T1 to diffusion MRI, the CC shape236

remains the same, with some resolution loss, while the input image contrast changes drasti-237

cally. This explains why the CNN-based approach, which relies on both features, performed238

worse, while the SVM ensemble model, which only depends on the CC shape, maintained its239

performance. Similarly to what we have tested in the diffusion domain, the SVM model could240

be used in other MRI sequences such as T2 and proton-density weight images where the CC241

shape persists. In this cases, the CNN-based approach would fail unless a fine-tuning in the242

new domain was performed.243

When a tumor is present, the characterization of brain structures is essential to monitoring244

its advance and the degree to which these structures are affected. In this case, applying QC245

to detect erroneous segmentations is crucial because the proposed segmentation methods are246

created from normal images and do not work as expected in abnormal cases such as tumor.247

We tested the SVM ensemble and the CNN-based models in 10 CC segmentations from 7248

subjects segmented with two methods: manual and freesurfer (3 subjects were segmented by249
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tissue, so the result could be improved if the model is fine-tuned with this kind of image.266

5. Conclusions267

QC is an important step intended to assure that data can be used reliably, being essential in268

studies with large datasets where automatic segmentation methods must be applied, and errors269

can be propagated and scaled faster. In medical image, QC segmentation is a neglected issue,270

with few proposed works. Notably, on CC segmentation, QC has been approached only on our271

previous proposal.272

Our proposal of using the ResNet18 CNN resulted in a simple but effective tool to perform273

quality control over segmentation in different CC datasets. In T1-MRI, the CNN had a similar274

performance as the classical machine learning framework, with an identical AUC value and275

requiring the same time at the testing stage. However, building the SVM-based model required276

much more effort due to the hand-craft feature extraction process associated with classical277

machine learning models. This manual process is not necessary in CNN models, where the278

convolutional layers learn the optimal features automatically.279

Since machine learning models are data-driven, training and testing in homogeneous and280

normal datasets are relatively straightforward. However, trained models usually do not work281

well in new domains. Therefore, the extension of the CNN-based approach to domains where282

the image intensity changes, such as diffusion MRI, requires domain adaptation. In this work,283

domain adaptation was not possible because of the lack of ground-truth in the target domain;284

therefore the SVM-based approach got the best performance. Tumor cases are complex for any285

machine learning model because the target structure, the CC in this case, can vary in unexpected286

ways, affecting its shape, intensity, and location. However, the CNN-based approach was best287

suited to solve tumor cases thanks to the contextual information that it grasps from the images.288

Further, domain adaptation techniques, such as fine-tuning, can improve the performance of289

the CNN in these cases, allowing the network to learn tumor particularities.290

In summary, the CNN is more versatile than the classical machine learning model. It is291

better able to adapt to abnormal unseen samples and is best suited to learn different problems292

with domain adaptation. Moreover, the same CNN architecture, using the proposed input293

image/mask arrange, can be used to perform QC over other brain structures.294
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[38] R. Luis-Garćıa, C.-F. Westin, C. Alberola-López, Gaussian mixtures on tensor fields for407

segmentation: Applications to medical imaging, Comput. Med. Imaging Graph. 35 (2011)408

16–30.409

[39] A. Omuro, L. M. DeAngelis, Glioblastoma and other malignant gliomas: a clinical review,410

Jama 310 (2013) 1842–1850.411

On Line Sources412

14

CHAPTER 5. QC OF CC SEGMENTATIONS: DEEP LEARNING APPROACH 58



59

6 Final remarks

The automatic quality evaluation is an important component to guarantee

reliability in every step of a whole image analysis pipeline. Incorrect segmentations can

introduce early errors in the process. In practice, QC is performed by visual inspection

on a one-to-one basis. In massive datasets, automated methods are used to produce

segmentations on a large scale, and manual quality verification is unfeasible.

Although QC methods have been proposed for cardiac (VALINDRIA et al., 2017;

ROBINSON et al., 2017; ROBINSON et al., 2018; ROBINSON et al., 2019), brain (ABDAL-

LAH et al., 2016; KLAPWIJK et al., 2019; ROY et al., 2019), and multi-purpose (VALIN-

DRIA et al., 2017) MRI applications, no specific methods for QC on CC have been

formulated. Although ABDALLAH et al. (2016) studied glioma segmentation QC itself,

none of these methods tested generalization of their method to cases with tumor presence.

Except for ABDALLAH et al. (2016) that used FLAIR-MRI (because of the best-offered

contrast for glioma), all of these methods used the T1-MRI sequence exclusively. In this

work, two methods for performing QC over CC segmentations were proposed: the first

method based on classical machine learning and the second one, using a CNN. Furthermore,

both methods were analyzed independently in T1-MRI and compared in real additional

scenarios: diffusion MRI sequence and patients with tumor.

The first proposed method used a handcrafted shape feature than can be

extracted at several resolutions named shape signature. At one specific resolution, the

shape signature was useful to evaluate segmentations in diffusion MRI using a ground truth

in T1-MRI. The ground truth in diffusion MRI is scarce and inaccurate because the diffusion

images have low resolution. Furthermore, no registering process was necessary because

the comparison between T1 and diffusion was performed through the shape signature.

However, this process has two important disadvantages: first, just one manually-selected

resolution was used, mining the versatility of our descriptor and its capability to describe

the segmentation at several levels of detail; second, although the method suppresses the

need to use a ground-truth in diffusion, it still requires the ground-truth in T1-MRI.

Classical machine learning allowed us to handle these two drawbacks using

an ensemble of SVM. The selection of the proper resolutions to perform QC was done

automatically by grouping similar resolutions into clusters and selecting only one resolution

by each group. With the selected resolutions, an ensemble learned to distinguish correct

from incorrect segmentations through supervised training. Because the ensemble learned

the characteristic shape of the CC at several levels of detail, the ground-truth is no longer

necessary. This framework was trained and tested in T1-MRI normal subjects achieving an
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AUC of 98.25%. The QC score given by the framework ranges between 0% and 100%, and

it is independent of the decision threshold used to classify the segmentation into correct

or incorrect. Two characteristics make our framework applicable in several situations: it

is possible to set up the best decision threshold to minimize the false positives or false

negatives occurrences, and it is independent of the image intensity associated with the

segmentation mask. Independence from the image intensity allows us to use the framework

in other sequences, such as T2 or diffusion MRI. However, it becomes a disadvantage

when the tested CC is considered abnormal, such as in fetal, newborn, elderly, or tumor

populations, because the model does not have contextual information of the image to

distinguish an abnormal segmentation from an incorrect one.

Another method, based on deep learning, to perform QC over CC segmentations

was proposed using the pre-trained ResNet18 CNN. The input was arranged in a three-

channel fashion: the first and the third channels were the T1 image and the segmentation

mask, respectively. The second channel was composed as the T1 image multiplied by the

segmentation mask, giving to the network explicit information about the context of the

mask. The training process was alleviated using the pre-trained network, making it faster

and resulting in a model less dependent on the size of the dataset. In the test dataset, the

CNN achieved an AUC of 97.98%.

It is not possible to perform a direct comparison with the literature. However,

two studies deserve consideration because they tested in large populations and reported

similar performance as ours. ROBINSON et al. (2019) got accuracy = 95% on a cardio-

vascular MRI dataset composed of 4805 images using RCA. KLAPWIJK et al. (2019) got

an AUC = 98% on a 784 subjects brain MRI dataset segmented with FreeSurfer using

a classical machine learning approach. However, this last work only works with brain

FreeSurfer segmentations, and it gives one overall score of several brain structures (not

including the CC). Although these two methods got remarkable results, generalization

was not tested to include other sequences or abnormal populations.

We compared the classical and the deep learning models, both of them trained

in T1 MRI data. In terms of training time, the CNN spent at least five times longer to be

trained, using a GPU, than the SVM ensemble (141 and 28 minutes, respectively). For

testing, both approaches employed 9 seconds approximately in a dataset with 136 samples.

In terms of AUC, both approaches got a similar value (AUC ≈ 98%). Although the

accuracy was very close, the SVM ensemble presented the best accuracy (Accuracy ≈ 92%)

for few samples of training (below 274 images), while the CNN performed better for more

available training samples (over 342 images). It makes sense for any deep learning approach

where much data is necessary to achieve good performance. However, the CNN still had a

reasonable performance at reduced dataset sizes, thanks to the use of pre-training and

fine-tuning.
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The SVM ensemble generalized better in diffusion MRI than the CNN being

trained with T1 images, because the first model is independent of the image intensity

while the second one learned the intensity of the input image. In contrast, regarding of

generalization in the tumor patients’ dataset, the CNN got better performance because

it contextualizes the image, distinguishing between a segmentation associated with an

abnormal CC and an incorrect segmentation. It is not possible for the SVM ensemble

where the model only considers the mask shape.

In summary, both models can be used in real applications of T1-MRI as long

as the CC has a regular shape. In other sequences, such as diffusion MRI, it can be

challenging to train the model because of the lack of ground-truth. In these cases, it is

recommendable to use the SVM ensemble, because this model generalizes well the learned

shape to other sequences. In abnormal CC datasets, such as in fetal, newborn, elderly, or

tumor populations, the CNN prevails because it gets the contextual information of the

image. It is important to notice that the CNN approach is more versatile to learn new

shapes and image intensities, improving its performance in domains where it is possible

re-training or fine-tuning the model in the target domain.

6.1 Future work

The shape signature is a versatile descriptor capable of describing the seg-

mentation shape at multiple levels of detail. Furthermore, since the shape signature is

independent of the image intensity, it is applicable among several MRI sequences. We

foresee that several populational studies could benefit from the multi-resolution shape

descriptor. The CC shape descriptor could be used to characterize group differences such

as sex, age, or presence of an specific pathology. While lower resolutions allow to describe

global differences between subjects and therefore they are useful in discriminating subjects

from different populations, higher resolutions are suitable to follow subtle changes in the

structure derived from the pathology progression or the treatment effectiveness. In these

cases, the selection of the proper resolutions that best describe the structure of interest is

essential to solve the problem. Some applications may require a combination of different

resolutions. The manual process of selection of the resolutions requires exploration of the

curves being arduous and sub optimal. On the other hand, machine learning techniques

can automate the selection process and ease the combination of the best resolutions.

Unsupervised clustering algorithms can be valuable to group subjects, helping to find

patterns or subtle differences on CC shape.

As in diffusion, in other MRI sequences such as T2, FLAIR and proton-density

is difficult to obtain a balanced training dataset composed of segmentations from different

methods to train a QC model. Therefore, our SVM-based framework can be directly used
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to perform QC taking advantage to the fact that the CC maintains its shape. Furthermore,

more descriptors can be added to the SVM ensemble, such as area or texture, increasing

its scope and gaining performance. Particularly, false negative cases of the SVM ensemble

are related with missing portions of the segmentation mask that can be solved with a area

preliminary verification.

Quality over other sub-cortical brain structures such as hippocampus, hypotha-

lamus,or amygdala can be verified using either the classical or the deep approach. Although

there are available some datasets with segmentation of sub-cortical structures, establishing

a heterogeneous dataset with segmentations from different methods is fundamental to

guarantee the algorithm generalization. In any case, the 2D slice, on which the quality

assessment will be made, must be defined. For some structures, 2D characterization can

be poor due to the size, orientation or physiology of the structure. In these cases, a 3D

implementation of the QC method can be useful. For the classic approach, a 3D shape

descriptor must be extracted and the resolution could be associated with the mesh setting.

The selection and consensus of the 3D descriptors can still be made using machine learning.

For the deep approach, 3D CNN classifiers are being used more and more with several

pre-trained architectures available. 2.5D proposals can be considered too.

The CNN-based approach was more versatile and was able to deal better with

abnormal samples. Other abnormal populations such as newborn, elderly, and atrophies,

could benefit from this method. In these scenarios, including tumor, where few data are

available, few-shot and zero-shot learning techniques could be employed to adapt the

model to the new domain. Considerations among weight initialization, architectures, data

augmentation, and meta-learning (learn how to adapt to novel classes/samples) are crucial

to succeed in the task. Traditional data augmentation techniques produce only limited

alternative data. Therefore, we can use generative algorithms, such as generative adversarial

networks, to produce a much broader set of images increasing the model generalization.

Semisupervised techniques can alleviate need for huge datasets at training stage. For

example, using autoencoders for coarse weight initialization and adjusting using fine tuning

can make the dataset usage more effective. Also, using self-supervised schemes, a network

can learn useful representations to classify segmentations by contrastive learning. The aim

is maximize the agreement between representations of the sample and its augmentations

while rejecting any other sample. Our final goal is construct a framework to perform QC

on several brain structures using general and customized algorithms, depending on the

target, able to deal with different sequences and plausible abnormalities.
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6.2 Publications

6.2.1 Relevant publications

These are the main publications of my Ph.D., covered throughout this document:

• Corpus Callosum Shape Signature for Segmentation Evaluation. Interna-

tional Federation for Medical and Biological Engineering Proceedings, 2018. Published

article (HERRERA; BENTO; RITTNER, 2019).

• A framework for quality control of corpus callosum segmentation in large-

scale studies. Journal of Neuroscience Methods, 2020. Published article (HERRERA

et al., 2020).

• Automatic quality control on corpus callosum segmentation: Comparing

deep and classical machine learning approaches. Neural Computing and Ap-

plications, 2020. Submitted article.

6.2.2 Additional publications

One additional study was made in collaboration with a laboratory partner

applying deep learning techniques. This work was presented in the 5th Brainn Congress.

• Classification of Alzheimer’s patients and cognitive deficit through MRI.

Journal of Epilepsy and Clinical Neurophysiology, 2018. Published article (PEREIRA

MARIANA; RITTNER, 2018).

6.3 Tools

All the experiments made throughout this work are open source, and were

implemented with Python (ROSSUM; DRAKE, 2009) along with specialized Python

packages, among which we can mention Numpy (OLIPHANT, 2006), Scikit-learn (PE-

DREGOSA et al., 2011), and Pytorch (PASZKE et al., 2017). All the code, the trained

models, and the instructions to use and reproduce the work are available in GitHub:

Framework for QC of CC segmentation using a SVM ensemble1 (Fig. 6.1a) and Automatic

CNN-based model for QC of CC segmentation2 (Fig. 6.1b). The data can not be openly

shared due to property rights.

1 https://github.com/wilomaku/CC_seg_clas
2 https://github.com/wilomaku/CC_QC_CNN
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