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Abstract

Despite the increasing efforts in studying non-diffracting optical beams, much less work has
been done in the characterization and application of these beams for millimeter and sub-
millimeter wavelengths. This is because, in order to generate these beams for long distances,
large equipment and antennas are required. However, if shorter distances are considered (Fres-
nel region), interesting and useful diffraction-resistant beams can be generated with smaller
antennas. In this work, by using scalar and vectorial approaches, we obtain analytical solu-
tions describing plane waves, Gauss, Bessel-Gauss, and Bessel beams truncated by circular
apertures, for GHz and THz frequencies. Moreover, this work aims at characterizing, simu-
lating, and commenting possible applications of such truncated beams. These applications
are aimed into to possible medical applications, such as hyperthermic treatments. Lastly, this

paper presents a redesign of an antenna capable of generating truncated Bessel Beams.

Keywords: Localized waves analysis; Wave propagation; Physical optics; Electromagnetism

in medicine.



Resumo

Apesar dos esforcos crescentes no estudo de feixes opticos resistentes a difracao, poucos tra-
balhos foram realizados na caracterizacao e aplicagao desses feixes para comprimentos de
onda milimétricos e submilimétricos. Isso ocorre porque, para gerar tasi feixes por longas dis-
tancias, sdo necessarios grandes equipamentos e antenas. No entanto, se forem consideradas
distancias mais curtas (regiao de Fresnel), feixes resistentes a difragdo podem ser gerados com
antenas menores. Neste trabalho, usando abordagens escalares e vetoriais, obtemos solugoes
analiticas descrevendo ondas planas, feixes de Gauss, Bessel-Gauss e Bessel truncados por
aberturas circulares, para frequéncias de GHz e THz. Além disso, este trabalho tem como
objetivo caracterizar, simular e comentar possiveis aplica¢oes de tais feixes truncados. Essas
aplicagoes sao direcionadas para possiveis aplicagoes médicas, como tratamentos hipertérmi-
cos. Por fim, esta dissertagdo apresenta um redesenho de uma antena capaz de gerar feixes

de Bessel truncados.

Keywords: Analise de ondas localizadas; Propagacao de ondas; Fisica Otica; Eletromagne-

tismo na medicina.
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1 Introduction

1.1 Context

Diffraction and attenuation of electromagnetic beams are well known and studied
phenomena and their effects often limit the use of these waves. Respectively, diffraction and
attenuation cause a progressive increase of the transverse width and the reduction of the
intensity. (BORN; WOLF, 2013)

In order to mitigate such physical effects, studies are carried out proposing different
types of spatial modeling of the electromagnetic beams. In this context, the so-called local-
ized waves or non-diffracting waves, which are solutions of the wave equation (and also of
Maxwell’s equations), were first obtained in theory and then they were produced in labora-
tories. (HERNANDEZ—FIGUEROA et al., 2007)

Non-diffracting waves (beams and pulses) are those that have the ability to maintain
the same transverse pattern over a long distance (HERNANDEZ—FIGUEROA et al., 2007).
In free space or in material media (RECAMI; ZAMBONI-RACHED, 2009), so, they can
be considered resistant to the diffraction effects observable in the usual beams. This is due
to the space-time structure that these waves possess; the lateral portions of the beam (or
pulse), when they diffract, are able to reconstruct their central region. (LOPEZ—MARISCAL;
GUTIERREZ-VEGA, 2007)

It should be noted that, for the most part, the theory and experiments related to
non-diffracting waves have been and continue to be concentrated at optical frequencies. As
we shall see shortly, it is part of our proposal to carry out a transposition / adaptation of

theory and experimental generation to the GHz and THz regimes.

The best-known example of a diffraction resistant wave is the Bessel beam. In practice,
such beams, indefinitely resistant to diffraction, are not feasible since an infinite amount of
energy would be required for their generation(ZAMBONI-RACHED, 2006). However, it has
been theoretically and experimentally proven, see for example (SALEM et al., 2011; DURNIN
et al., 1987; BUTKUS et al., 2002), the possibility of generating truncated Bessel Beams; that
is, generated by a finite aperture. Thus, optimal approximations are obtained for the ideal
Bessel Beams propagating resisting the effect of diffraction over long distances (L()PEZ—
MARISCAL; GUTIERREZ-VEGA, 2007; STRATTON, 1941). Thus, beams of this type
may be interesting substitutes for Gaussian beams in different types of applications (SALEM
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Figure 1 — Depth of field for initial spot beams of 60 m and wavelength 0.66 m for: (a)
Gaussian beam (b) feasible Bessel beam.

et al., 2011).

It is shown on Figure 1 the comparison between a Gaussian beam and a Bessel beam,
both truncated by a 3.5mm aperture. It is possible to verify that, in the case of beams with
the same initial spot (60um) and the same wavelength (0.66um), the depth of the Gaussian

beam is only 3cm, while that of the Bessel beam is 85cm.

In general, the non-diffracting characteristic of Bessel Beams is desirable in several ap-
plication as, for instance: optical manipulation, remote sensing, confined beam spectroscopy,

high resolution hyperthermia for surfaces or internal tissues, generation of non-ionizing im-
ages, etc. (FUSCALDO et al., 2016; DATTA et al., 2015)

Besides its resistance to transverse broadening, a Bessel Beam suffers attenuation
when propagating in an absorbing media. Nonetheless, sometimes it is desirable that some
regions of the propagation axis be more radiated than others and, even more desirable, if
this feature is achieved by using only one source, resulting in a spatially structured beam

resistant to diffractive effects and also to the attenuation effect caused by the medium.

It was in this sense that a very interesting technique, named Frozen Waves, was
theoretically developed and experimentally confirmed in the optical regimes (ZAMBONI-
RACHED, 2004; ZAMBONI-RACHED et al., 2005; ZAMBONI-RACHED, 2006; VIEIRA et
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Figure 2 — Comparison between the desired intensity pattern in the longitudinal direction
and the pattern obtained with the Frozen Wave.

al., 2012; DORRAH et al., 2016a). Using this method it is possible to obtain optical beams
(in absorbing media) resistant to diffraction and attenuation whose longitudinal intensity

pattern can be chosen at will.

In summary, Frozen Waves beams are obtained from the superposition of co-propagating
Bessel beams of the same frequency but with different complex amplitudes and different
transverse and longitudinal wave numbers (DORRAH et al., 2016a). It is shown in Zamboni-
Rached (2004), Zamboni-Rached et al. (2005) that, once one does this superposition, it is
possible to construct an envelope of static intensity which takes on almost any desired shape
within a given spatial range 0 < L < z, where z is the propagation axis and L a distance,
in general, much greater than the wavelength A. As an example, it is shown in Figure 2, in
continuous line, an example of desired longitudinal pattern; while the pattern obtained from
the modeling of 28 superimposed Bessel Beams is shown in dotted line. In this example, the
desired pattern in the longitudinal was a step and a parable. It is evident that the resulting
beam, besides being resistant to the diffraction effects (because its spot does not undergo
enlargement), has a longitudinal pattern of intensity approximately equal to the desired one.

It is shown in Figure 2.24 the 3D pattern of the Frozen Wave.

The possibility of modeling, on demand, the beam longitudinal intensity pattern, even
though it is in an absorbent medium, makes the Frozen Waves also considered to be resis-
tant to attenuation. Although energy absorption by the propagation medium still occurs,
these beams have the capacity to reconstruct their nucleus by considerably greater distances
than other types of optical beams (diffractive or non-diffractive) (ZAMBONI-RACHED et
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Figure 3 — 3D graph of the field strength in the longitudinal direction for the obtained Frozen
Wave.

al., 2005; ZAMBONI-RACHED, 2006). As can be seen in Figure 2, the wave intensity is
obtained in the desired patterns. Thus, it is possible to implement beams that deliver power,
that is, have the desired field strength, only in certain regions of the longitudinal axis. The
experimental verification of these beams was obtained in (VIEIRA et al., 2012; DORRAH et
al., 2016a), thus opening numerous applications possibilities, namely: remote sensing (MUG-
NAI et al., 2000), optical tweezers (AMBROSIO; HERNANDEZ-FIGUEROA, 2011; AM-
BROSIO; ZAMBONI-RACHED, 2015), optical guidance of atoms (PACHON et al., 2016),
optical communications (GARAY-AVENDANO; ZAMBONI-RACHED, 2016), etc.

Of course, the implementation of these special beams in microwave and millimeter
wave regimes would open new possibilities for applications of great interest, such as in remote
sensing (in such frequencies), orbital angular momentum control and its use for communica-

tions and also medical applications.

In the literature, there exists a few studies for the generation of Bessel beams in the
microwave range, as shown in (RANFAGNTI et al., 2004; HERNANDEZ-FIGUEROA et al.,
2007; SALEM et al., 2011). However, the generation of Frozen Waves in this frequency range
has not been formulated theoretically and experimentally in spite of its benefits; since that
at low frequencies, in comparison to the optical frequencies, antennas need to be relatively
large, thus limiting their application (LEMAITRE-AUGER et al., 2011); in addition, despite
the promising future for the millimeter waveband, as the next generation of high-speed short
distance communication systems, very few studies of ways to generate Bessel beams in this

frequency range have been made so far.
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Figure 4 — Representation of Durnin’s Experiment for the generation of Bessel Beams.

In order to fill up these gaps, this project aims to find scalar and vectorial solutions
to Bessel beams in GHz and THz frequencies for the truncated case. Then, we will use these
results to design an aperture antenna capable of generating such beams. Besides, it aims to
find scalar and vectorial solutions to Frozen Waves in GHz and THz wavelengths. Lastly,
we will study the field irradiation at biological tissues, verify its effects and propose medical

applications for beams in the aforementioned wavelength ranges.

1.2 Motivation

The main purpose of this master’s thesis is the study and development, specially
through theory and simulations, of techniques for the spacial modelling of electromagnetic
beams in the millimeter and sub-millimeter waves. It also aims to analyse an antenna capable
of generating the theoretically obtained beams, as well as possible applications. In order to
do so, it will be presented solutions to the Maxwell Equations that give support for the initial
hypothesis of the generation of Bessel Beams and also the so-called Frozen Waves in the GHz

and THz frequency range.

Over the time, several techniques for the generations of non-diffracting beams have
been developed. The first of then was Durnin’s experiments, that consisted in interposing to
a plane wave a annular aperture positioned in the focal plane of a convergent lens, as it is
shown in Figure 4 below. However, in this method of generations, there are high power losses
due to the fact that most part of the energy is blocked by the diffracting ring (DURNIN et
al., 1987)
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Given the inherent limitations of Durnin’s method of generating Bessel Beams, over
the time new methods have been developed. An example is the use of conical lens (axicons)
to generate Bessel Beams. Other method is the holography, which replaces the axicons, as
can be seen in (VASARA et al., 1989; HERNANDEZ-FIGUEROA et al., 2007; ISHIMARU,
2017).

Despite the rising interest in the study of non-diffracting optical beams and pulses,
little has been done in the millimeter and sub-millimeter. In part, this is justified because,
in order for such beams to be generated in these frequency bands over long distances and
using known methods, it would be required the use of relatively large equipment making the

technique not very attractive.

However, there may be interesting applications in the GHz and THz frequency bands
in which the required propagation distances are small, such as in medical applications. In such
cases, the process of generating beams resistant to the diffraction and attenuation phenomena
(and spatially modeled) could, at first, be made with smaller and more technically and

economically feasible antennas.

Therefore, it is fundamental to find, for Maxwell’s Equations, solutions of diffraction
resistant beams that can be spatially modeled, even if they propagate in absorbent media
(thus, making it possible to obtain beams whose spots are also resistant to attenuation by long
distances). This is because, from these mathematical solutions to the electromagnetic beams,
it will be possible to idealize and simulate prototypes of antennas capable of generating such

waves.

Of course, the study of the generation of non-diffractive beams in the frequencies
mentioned above leads to questions about possible applications to them. At this point, this
work aims to study, in a preliminary way, the possibility of using such beams as activators
of the hyperthermic effect in internal tissues. When analysing waves in the range of THz, for
example, they are found to have electromagnetic properties necessary for the health sciences;
since their energy levels are very low (1-12 meV), and, therefore, cellular damages are reduced
to thermal effects. (SIEGEL, 2004)

The benefits of hyperthermic treatment in the fight against cancer are explicited in
(STEGER; BOO-CHAI, 1990; ALEKSEEV et al., 2008; SOARES et al., 2014). However, one
of the main obstacles to the clinical use of hyperthermic therapy is the difficulty in obtaining
more defined heating points with greater spatial and temporal control; as a consequence,
many researchers in the field of oncology consider hyperthermia a very complicated form of
treatment to be used (RHOON et al., 2016). Therefore, it is necessary to develop technologies

that meet the current clinical demands and enable the use of this form of treatment.
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Due to its long distance attenuation resistance and the greater possibility of power
control being delivered in different regions along the propagation axis, Frozen Waves type
beams are important substitutes for existing technologies and have the prospect of satisfy-
ing the technical demands for the use of hyperthermia, especially in more internal tissues.
(DORRAH et al., 2016a; DORRAH et al., 2016b) Thus, that these beams need to be studied
and designed for the GHz and THz frequencies.

1.3 Objectives

1.3.1 General Objectives

o To study analytically the electromagnetic beams in the frequencies of THz and GHz in

order to obtain exact solutions to Maxwell’s equations;

o To contribute with the study of non-diffracting beams, especially in the range of GHz
and THz;

o To study Frozen Waves in GHz and THz aiming to model it in regions with the wave-

length size order;
o To study the possibility of generation of Bessel beams in GHz;

o To attest the generation of the hyperthermic effect from beams in millimeter and sub-

millimeter wave.

1.3.2 Specific Objectives

» To make a bibliographical review about non-diffraction beams and their main forms of

generation;

o To develop hypotheses and formulate exact solutions for the wave equation for Bessel

and Frozen Waves beams in the millimeter sub-millimeter frequency bands;

« To simulate, in CST Microwave Studio and / or MATLab, the non-diffraction beams
theoretically proposed, together with a proposed antenna that has the function of gen-

erating them;

« To continue the development of optical beam research at the State University of Camp-

inas.
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1.4 Reading Guides

This work is divided in 6 chapters. Following this brief introduction, chapter 2 sum-
marizes the topics and knowledge that are required for the complete understanding of this
work. In Chapter 3, a theoretical description of Truncated Bessel Beams in GHz and THz
frequency is provided. In Chapter 4, we suggest an mean of generation of the beams discussed
on the previous chapter via the design of an 10 GHz Leaky Wave antenna. In Chapter 5,
we suggest a theoretical description of Continuous Frozen Waves when propagating trough
absorptive medium. In chapter 6 we analyze the possibility of generation of Frozen Waves on

biological Tissues. For closure, there is a conclusion and future perspectives section.
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2 Literature Review

2.1 Introduction to Electromagnetic Beams

In this section we are going to present the fundamental concepts involving the elec-

tromagnetic beams that are going to be cited/used in this dissertation.

This section is divided into three subsections. The first covers an important ordinary
beam, the Gaussian Beam (NEWELL, 2018). The second covers one of the most renowned
non-diffraction wave: the Bessel beam (HERNANDEZ-FIGUEROA et al., 2007). Lastly, we
introduce a technique to model the shape of stationary wave fields; or, in other words, the
Frozen Wave (ZAMBONI-RACHED, 2004).

2.1.1 Gaussian Beam

In this subsection we present the Gaussian Beam by constructing its solution using
super-positions of plane waves. In the scalar case, the Gauss Beam is made of plane waves that
propagate in directions that goes from 0° to 90° with respect to the direction of propagation
(which is the "+2" direction).

Initially, we consider an Electric Field given by:

E(7,t) = Ee*Te ™ty (2.1)
where:

2 _ 12 2 2_“72
=2k k= (2.2)

It is clear that Equation 2.1, jointly with Equation 2.2, obeys the wave equation;
however, it does not obey Gauss’s Law. Hence, the Electric Field can not be given by Equation

2.1 and needs to be corrected.

In order to do so, we need to suppose an Electric Field component in the z direction,

whose value is easily obtained by using Gauss Law. It results in Equation 2.3 below:

_ (95

E, =
dy

dz (2.3)
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Next, we will do a superposition of these waves in which they have the same frequency
and propagate in directions parallel to k= k.X + kyy + k.2. We are going to work with the
component of the Electric field in the y direction (Equation 2.1) while the component F,

can be calculated using Equation 2.3.

We need to consider now a E given by E = E,y + E.z, in which E, is described on
Equation 2.4 bellow.

—» _ %wt/w /V dk A(/{x,k ) thgx zkyyezz\/ k2+k2 (2.4)

Note that, in Equation 3.18, k. = /% — (k2 + kZ) in order to select only the positive
contributions. Also, the limits of the integrals were selected in order to guarantee that k., k,

and k, are real.

In summary, the solution to Equation 3.18 clearly depends on the spectrum A(k, k).

Then we are going to define the spectrum as:

7”2 —rg k2 —rg k2

A(ky, ky) = ﬁe T MeeTa (2.5)

It is clear that the spectrum that we chose is a product of two Gaussian functions
centered in k, = k, = 0.

Unfortunately, it is not possible to find an exact solution to Equation 3.18 when the

spectrum is given by Equation 2.5; however, we can make the following approximations:

1. The spectrum will only have appreciable values when k, and &, are much smaller than

\/“’2 — (k2 + k2) = w _(ktk) (2.6)

c? c 2w/c

w/c = k, hence:

2. Write the integration limits as:

/OO dk, /OO dk, (2.7)

With these paraxial approximations one can solve Equation 3.18 as:

5 eik(z—ct) _p2 03
= ————exXp|——5— )
v (1+,§%§) p[r%(l—i—i’r’%)} (28)

Which is a mathematical description of a Gaussian Beam, pending the calculation of

E. (that can be performed using Equation 2.3).
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Besides, we can verify that this beam suffers from transverse diffraction; and, it can
be proved that it doubles the initial width (spot radius, Apy) after having traveled a certain
distance z, called the diffraction length, expressed in Equation 2.9 below. (HERNANDEZ—
FIGUEROA et al., 2007)

L \/gkoAPg

: (2.9)

Finally, by looking at Equation 2.9 one can conclude that as more concentrated

(smaller value for Ap?) a Gaussian Beam is, the fastest it spreads itself.

2.1.2 Bessel Beam

In this section we are aiming to present and mathematically describe a Bessel Beam,
which is a very well known example of non-diffracting beam. In order to do so, we start

by considering the wave equation in rectangular coordinates, as follows in Equation 2.10.
(BALANIS, 2012)

v 90 9*U 19T

o2 T T o @ 0 (2.10)

What we are trying to accomplish here, is to use a correct superposition of plane
waves to obtain a Bessel Beam. Initially, we consider a general and monochromatic solution

to Equation 2.10 as demonstrated in Equation 2.11.

Uz, y, 2, 1) = et /OO dk, /OO dk, /OO dk,e™ 7S (ky, Ky, k) (2.11)

where:

S(ky, by, ko) = S(ky, by ko) {, /2 + K2+ k2 — ‘;’] (2.12)

and S(ky, ky, k) is an arbitrary function of k,, k,, and k., i.e., the spectrum.

To deal with the mathematical difficulty we are going to perform the superposition

noting that:

k =kt = k[cos0'2 + sin 0 cos ¢'% + sin 8 sin ¢'y] (2.13)

where k = w/c.
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Then, we are going to make the following superposition:

. 2w o
U(x,y,z,t) = e_m/ / A0, e Tdo dg’ (2.14)
o Jo

where A(6',¢) is the angular spectrum, and here it is chosen to represent wave vectors over

a conical surface with aperture 6y:

A0, ¢') = ™' 5(0' — 6,) (2.15)

That said, we can write

\Ij(.% Y, 2 t) _ efiwteikcoseoz /27r eind)’eiksin@g[xcos¢’+ysin¢)’]d¢/ (2 16)
y Yy %y .
0

Now, we transform the variables of Equation 2.16 from cylindrical to rectangular

coordinates using the relations present on Equation 2.17:

T = pcosao
y = psing (2.17)
Zz =z
then, we obtain:
\I’(p, ¢7 2, t) _ e—iwteik cosOpz /27r 6in¢’€iksin Oo[p cos ¢ cos ¢’+psin¢sin¢’]d¢/ (218)
0

Performing the change of variables given by u = ¢’ — ¢, and using the trigonometrical

identity of the cosine of the subtraction of two angles, we shall have:

S ) 2r o
\I/(p, Qb, z, t) _ e—zwtezk cos Gozemqb / eznuez[k‘ sin(6p)p] cos v du (219)
0

Finally, we are now able to solve the integral on Equation 2.19, and find the expression

for the Bessel Beam of the n'* order; presented on Equation 2.20.

U(p, ¢, 2,t) = Ae” ™ e*==e? ], (kyp) (2.20)

where k, = ksin(fo), k. = kcos(6); so, k* = k) + k2.
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As it was stated before, the Bessel Beam is a non-diffracting wave; which means that
its transverse shape is invariant, i.e., resistant to diffraction while propagating, with spot (in

the case of the zero-order) approximately given as:

2.405
Ap = p

(2.21)

P

Unfortunately, this specific solution to the wave equation can not be generated because
it carries infinite energy flux. However, in this work, we will analyse Bessel Beams truncated
by an aperture with radius R which are solutions that can be physically realized due to
the finite amount of energy associated with the beam. It should be noted that, due to the
limited energy associated to the beam, the non-diffraction property is limited to a certain

range defined as

(2.22)

since R > é

2.1.3 Frozen Waves

In this subsection we are going to present two types of localized waves, named Frozen
Waves, that allow us to model the shape of wave fields. Both of then are found using su-
perposition of equal-frequency Bessel Beams. The main difference between then is how these
superposition are made; which changes its outcome. (ZAMBONI-RACHED, 2006)

The main goal here is to have |¥(p = 0)|* = |F(z)|* for any value of z where F(z) is

an arbitrary function.

The first example of this technique, so-called discrete Frozen Waves, is obtained by
using a discrete superposition of Bessel Beams and aim to control the beam longitudinal
intensity shape within a chosen interval 0 < z < L; where, z is the propagation axis and
L is a distance much greater than the wavelength. The fact that one is able to control the
intensity until distances much farther than the wavelength guarantees that this solution to
the wave equation has the capacity of propagating much farther than a Gaussian Beam or
any other ordinary beam. (ZAMBONI-RACHED, 2004; ZAMBONI-RACHED et al., 2005)

The second one, so-called discrete Frozen Wave, is obtained by using a continuous
superposition of Bessel Beams and aim to control the beam longitudinal intensity shape

within a very small portion of the propagation axis. This solution emerged from the necessity
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of finding results for constructing a wave pattern over regions equivalent in size to a few times
the wavelength that leads to highly non-paraxial beams. (ZAMBONI-RACHED et al., 2017)

2.1.3.1 Discrete Frozen Waves

In order to describe mathematically a Discrete Frozen Wave, we start by taking into

account the Bessel Beam from Equation 2.19.

By considering the superposition of 2N + 1 beams at the same frequency, but with

different £, and k,, we have:

N
U(p,z,t) = Ae ™" > Jo(kpnp)e™=n* (2.23)

n=—N
2 2 12
where k7, = k* — k..

In these conditions, any longitudinal pattern express by a function F(z) can be ob-

tained by doing:

N
F(z)~ Y AeTm (2.24)
n=—N

where 0 < z < L.

Intuitively, it is desirable to make, in Equation 2.23, k., = 2”7” because that would
result in a simple Fourier Series when p = 0. However, that is not a good choice due to two

reasons:

1. Once n < 0, the values for k., will be negative; hence, there will be undesired propa-

gation in —z direction.

2. This choice would not be appropriated for cases where L > ).

Therefore, we choose:

2
Feun = O + % (2.25)

where, QQ is a value chosen accordingly to the situation ant the desired spot radius through
Equation 2.26

- (- Gay
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Thus, in order to satisfy the forward propagation requirements, we must have:

2mn w
0< < = 2.27
SQ+—7-<- (2.27)

From Equation 2.27, we can identify the maximum number of terms for our series

once we have chosen values for (), L and w.

Thereby, Equation 2.23 for p = 0 becomes:

N ,
U(p,z,t) = e “e@ N Ape T (2.28)
n=—N
Analysing Equation 2.28, it is clear that we have two exponential functions multiplied
by a Fourier Series of F'(z). Hence, that results approximately in the desired beam; and the

resulting field (Frozen Wave) is given by:

N )
U(p,z,t) = e “e@ AnJo(k:,m,o)el2T (2.29)
n=—N
Lastly, it is not hard to show that, if we do the superposition indicated on Equation
2.29 but replacing the zeroth order Bessel beam for one with a higher order u, we shall
observe that the longitudinal intensity pattern shall be shifted to approximately p = p,, from

the axis p =0, i.e.,

N .
U(p,z0) = e 3D A, (kpup)eOe T (2.30)
n=—N
and
W(p = ppo 2, D2 ~ [F (=) (2.31)
where
X

b= s (2.32)

with X, such that, J,(z) has its maximum value in z = X,.

2.1.3.2 Continuous Frozen Waves

The so-called Continuous Frozen Wave is obtained by using a continuous superposition

of Bessel Beams and aims to control the beam longitudinal intensity shape within a very
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small portion of the propagation axis, i.e., over regions equivalent in size to a few times the
wavelength, which leads to highly non-paraxial beams. (ZAMBONI-RACHED et al., 2017;
ZAMBONI-RACHED; RECAMI, 2008)

When we are taking into account highly non-paraxial beams configurations in which
they are heavily focused, in general, it is not possible to treat them with paraxial theories,
nor with scalar approaches (GARAY-AVENDANO; ZAMBONI-RACHED, 2014).

At this point, our goal is to present a mathematically simple approach capable of
describing non-paraxial electromagnetic beams with fast convergence. For simplicity sake,

we are taking into account only the scalar version of the method.

We start by considering a superposition of zero-order Bessel Beams, multiplied by a

spectrum function S(k,), over the longitudinal wavenumber k..

) w/e )
U(, 2, 8) = e / / S(kZ)JO(,o\/w?/c? —kﬁ)e““zzdkz (2.33)

—w/c

What we are trying to do here is to obtain a S(k.), in Equation 2.33 and in its
solution, that yield the following approximated longitudinal intensity pattern (except for a

multiplicative constant):

[T(p=0,2,1)] ~ |F(2)[ (2.34)

In Equation 2.33, the limits of the integral is set in order to avoid evanescent waves;
however, it allows the existence of counter-propagating Bessel Beams. In order to prevent it,

we must chose a S(k,) that mitigates or annul such contributions.

As it is going to be clear, to solve Equation 2.33, for any S(k,) we need to take it into
a form of a Fourier Series. But first, we consider S(k,) a constant as expressed in Equation
2.35 below.

S(k,) = i (2.35)

Thereby, solving the integral in Equation 2.33 we obtain (GRADSHTEYN; RYZHIK,
2014):

ot w? w?
ity 2 2
U(z,y,z,t)=e smc( 2P + 27 ) (2.36)
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Afterwards, we consider S(k,) as:

S(k,) = ieﬂm'ﬂz/’c (2.37)
Then, as solution, we get:

. w2
U(z,y, 2, t) = e “'sinc (

vt (‘Cdz+7rn)2> (2.38)

Lastly, we consider S(k,) as:

Slk.) = Y A,e?mh/K (2.39)
within

—Ww
— <k, <
C

ol E

(2.40)
where K' = 2k = 2%, and A, are the constants of the newly formulated Fourier Series
expressed in Equation 2.39.

1 w/e .
An _ E/ S(kz)eﬂwnkz/kdkz

w/e

(2.41)
By looking at Equation 2.41 it can be shown that, in order to obtain the relation

expressed in Equation 2.34, we can chose A, = +F(—2mn/K) (ZAMBONI-RACHED; RE-
CAMI, 2008; ZAMBONI-RACHED et al., 2017).

As for the solution of Equation 2.33, we have:

U(z,y,2,t) =e ™ Z F(

_9 2 2
2 £n>sinc<\/(/;p2 + (C;)z + 7m) ) (2.42)
According to (ZAMBONI-RACHED; RECAMI, 2008), this solution represents a con-

tinuous Frozen Wave and it is resistant to diffraction effects. Its spot can be calculated using
Equation 2.43 below.

24

T =
0 o2

— (2.43)
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2.2 Effect of Millimeter and Sub-Millimeter Waves in Human Body

By enhancing the fundamental knowledge of the particularities of the interaction of
electromagnetic waves and biological tissues, the biological effects studies give support to
the development of new bio-medical technologies and applications for electromagnetic waves.
(WILMINK; GRUNDT, 2011) Biological effects studies are also responsible for health hazard

evaluation and making correct and safe use of electromagnetic waves and systems.

In this section, we are going to present several concepts regarding the use, applications
and thermal effects of millimeter and sub-millimeter waves. Besides, we are going to provide

background concepts in biophysics and THz technology.

2.2.1 The Terahertz Region

In the Electromagnetic Spectrum, the Terahertz Region comprehends the frequency
of 0.1 to 10 THz or the wavelengths ranging from 30 to 3000 pm (LIN, 2011).

In therms of energy, the Terahertz Region stands out for its photon ranging in quan-
tum energy between 0.4 and 4.1 meV. Such energy levels is several orders of magnitude below

the energy required to ionize, or remove, valence electrons from biological molecules (several
eV); therefore THz radiation is classified as non-ionizing (WILMINK; GRUNDT, 2011; LIN,
2011).

Notwithstanding that THz radiation, due to its intrinsic non-ionizing feature, does

not form of highly reactive free radicals, it can cause thermal effects that are indistinguishable
from effects observed from bulk heating. (WILMINK; GRUNDT, 2011)

2.2.2 Terahertz-Tissue Interaction

As it happens to any other dielectric-like material, a fraction of the photon that are
incident to a tissue is reflected and the remaining portion of the photons is transmitted.

Mathematically, we can express the transmitted power as

T=1-R (2.44)

where, R represent the fraction of the energy that is lost by surface reflection.

The reflection R is due to the index of refraction mismatch between the air and the
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tissue, as for example, the skin. These losses can be quantified via Equation 2.45 below.

_ 2
R = (nl ”2) (2.45)
ni + No

As an example of the use of Equation 2.45, according to Wilmink et al. (2010) the
optical properties of excised porcine skin have real index of refraction (n) ranging from 2.2 to
1.5 in frequencies between 0.1 and 2.0 THz. These values represent a surface reflection ranging
from 15% and 9%. Furthermore, it is worthy to emphasize that the air-tissue interface leads

to appreciable surface loses. (LIN, 2011)

2.2.2.1 Interaction at a Cellular Level

In general, when electromagnetic radiation penetrates skin it is rapidly absorbed by
chromophores and heating occurs. According to Wilmink e Grundt (2011), many biological
components of the tissues are responsible for the absorption, such as, for example, DNA,
proteins and carbohydrates; however, it is a consensus in numerous researches that water

is the most absorbing substance present in biological tissues, specially in millimeter and

sub-millimeter wavelengths. (PAL et al., 2002; PAL; ZEWAIL, 2004)

Beyond other unique properties, water has the characteristic of engaging in both inter-
and intra-molecular hydrogen bonding with neighboring molecules. Such interaction results

in collective vibrational modes generating heat. (LIN, 2011)

According to Welch et al. (2011), the absorption is responsible for the heating and
the temperature rise is proportional to the total energy absorbed. The mean variation of

temperature an be calculated using Equation 2.46 below.

paH
pc

AT = (2.46)

where, in this case, ¢ represents the heat capacity and p is the density of the tissue. The total
pc is estimated, for tissues, to be around 4.2J cm3°C~!. Besides, H is the radiant exposure

measured in J cm™2.

It is important to point out that when dealing with such distinct fields, as optics and

heat transfer, there are several duplication of symbols

2.2.3 Thermal Energy Induced in Tissues by Electromagnetic Waves

So far, we know that laser irradiated tissue responds with a fully dissipative process

of absorbing photons and increasing its temperature. Furthermore, in conjunction with this
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effect, there will be a diffusion of heat to surrounding areas that are cooler. (WELCH et al.,
2011) Hence, it is necessary to make a careful analysis of the processes and consequences

related to applying electromagnetic waves in biological tissues.

But first, we need to evaluate the amount of energy that is deposited into the tissue.

This calculation is the rate of heat generation and is defined in Equation 2.47 below.

S(r,z) = pa(r, 2)Po(r, 2) (2.47)

where p,(r, 2) is the material absorption coefficient at a given point; and ®y(r, z) is the

irradiance at some point in the tissue measured in (W/m?).

Using Equation 2.47, it is possible to evaluate, for any arbitrary location, the temper-

ature rise (K) as shown in Equation 2.48

AT(r,z) = S(?",pZC)At (2.48)

where, At is the time of exposition to the electromagnetic radiation; p is the density of the
tissue (g/m?); and, ¢ is the specific heat of the tissue (J/g°K).

As stated before, we need to be careful and take in account all the processes of heat
transfer. So far, we have acquainted only the irradiation form of heat transfer. However, when
heating a specific local a heat gradient will form and try to dissipate the thermal energy to
surrounding areas (conduction process). In addition to that, in biological tissues, there will be
heat spreading because of the blood that is perfused through the vascular network. According
to Welch et al. (2011), the arterial network is very specific for each type of tissue and has
a unique geometry. This feature results in a convection process that interfere in the total

energy of the system.

According to Lin (2011), the conduction driven by a temperature gradient can be

described by Fourier’s Law.

AT
Gecond = _kAﬁ (249)

where, Geong 18 the heat flux in (W), A is the area of the irradiated tissue, k is the thermal

conductivity, and ﬁ—}; is the temperature gradient in the direction of the heat flow.

Besides, according to Welch et al. (2011), the convection process occur when a solid
material is in contact with a fluid at a different temperature. In the biological case, the

irradiated tissue is in a different temperature than the blood that passes through the veins and
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arteries. In order to calculate the amount of heat exchanged by convection we use Newton’s

law of cooling, described in Equation 2.50 below.

q/,conv - h<Ts - Ta) (250)

where, T, is the tissue temperature, T, is the surrounding temperature, ¢” .on, is the heat flux
in (W/m?), and h is the the convective coefficient(W/m?°K).

The convective coefficient is the hardest part to acquaint in Equation 2.50 because
there exists four distinguishing characteristics that alter the intensity of the convection pro-

cess. (WELCH et al., 2011)

Lastly, for completeness, we can assess the heat transport arising from the spontaneous
emission of EM waves by matter, so-called Radiative. (LIN, 2011) This process is described

by Stefan—Boltzmann‘s law, as follows:

Graa = o€ (T4 = T}) (2.51)

where ¢,qq is the heat flux in (W); o is the Stefan-Boltzmann constant 5.670 x 1078 J m~2

K= s7!: and, € is the emissivity.

2.2.3.1 Thermal Damage to Cells and Tissues

When a biological tissue is submitted to heat the kinetic energy of the molecules are
increased generating a temperature rise. And, if the kinetic energy of the molecules becomes

greater than the intramolecular bounds the tissue starts to deteriorate. (LIN, 2011)

In general, the thermal effects on tissues are divided into three categories: low tem-
perature (43°C' — 100°C') middle temperature zone (100°C' — 300°C"), and high temperature
zone (300°C' —1000°C"). In general, most modern electromagnetic sources do not have enough
power to induce temperature rises to provoke middle or high temperature zones. Therefore
the study of the thermal effects on the low temperature zone is the mos relevant for this

work.

A spatiotemporal temperature increase can provoke several damage to the tissue. At
the cellular level, damage includes - but not limited to - cellular membrane deformation,

DNA damage, death via necrotic mechanisms.

The amount of time in which the tissue is exposed to high temperatures drives the

amount and gravity of the damage. Research suggests that the point of cellular death can be



Chapter 2. Literature Review 37

achieved with a temperature of 45°C' for 30 min. More specific data can be found in (WELCH
et al., 2011).
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3 Generation of Beams Truncated by Finite
Apertures in Millimeter and Sub-millimeter

Wavelengths

It is well known the importance of studying wave beams to establish an analytic
description of their propagation. As a result of that, many works have been done in the

characterization of different beams, especially in optical frequencies.

An example of these works includes (GORI et al., 1987), in which a Bessel beam is
apodized by a Gaussian function; and, therefore it can becomes an experimentally realizable

version of a Bessel Beam with finite energy, the Bessel-Gauss beam.

Despite the existence of works describing finite energy Bessel beams, most of then
still meet mathematical difficulties and requires numerical simulations. These difficulties are
even more evident when one tries to describe beams in GHz and THz range of frequencies

and/or to describe waves truncated by finite apertures.

As for the truncated beams, there are rare works, mainly based on the Fresnel Diffrac-
tion Integral, describing their behavior. One of the best examples is presented in (WEN;
BREAZEALE, 1988), in which superposition of Gaussian beams described axially symmetri-
cal beams truncated by circular apertures. The method requires the calculation of superpo-
sition coefficients; and, in order to do that, it is necessary to adopt computational optimiza-

tion processes. There were some attempts to simplify this method, as presented in (DING;
ZHANG, 2004).

To deal with the mathematical difficulties present on the previous methods, Zamboni-
Rached, Recami, and Balma developed a simple and effective method to describe some im-
portant wave beams truncated by finite apertures. (ZAMBONI-RACHED et al., 2012) In
this method, important truncated beams can be obtained by means of Bessel-Gauss beam

superposition, whose coefficients are found in a straightforward manner.

In this chapter we use the method proposed in (ZAMBONI-RACHED et al., 2012)
to yield scalar and vectorial analytical solutions to plane waves, Gauss, Bessel-Gauss, and

Bessel beams truncated by circular apertures in GHz and THz frequencies.
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3.1 Scalar Approach

We start with the Fresnel Diffraction Integral in cylindrical coordinates, assuming
azimuthal symmetry, presented on Equation 3.1. This equation is used to yield the paraxial

solution for a monochromatic scalar wave field when knowing its shape on the plane z = 0.

It should be noticed that we are assuming and suppressing a time dependency of the

kind exp(—iwt).

—ik k 2 0o /2 /
U(p,z) = TZexp [@ (kz + 22)] /0 P(p',0) exp <zk§z> Jo (kpzp> pdp’ (3.1)

where k is the wavenumber, \ is the wavelength, and 1 (p’,0) indicates the field on z = 0
(the excitation field).

Using Equation 3.1 one can yield a Bessel-Gauss beam by choosing as excitation the

following pattern.

(p',0) = Ado(k,p') exp(—qp™) (3.2)

By applying Equation 3.2 in 3.1 we get the so-called Bessel-Gauss beam given by:

kA , 2k 1kk 1 k2 p?
Upa(p, z) = 2.0 exp [z (kz + /)2—2 - wt)] Jo ( 2z22p> exp l—4@ (k;z + zf )] (3.3)

where k, is the transverse wavenumber and ) = ¢ — %

The result obtained in Equation 3.3 is one of the few solutions to the Fresnel diffraction
integral that can be obtained analytically. In this particular case, we are considering a Bessel
beam apodized by a Gaussian function. For a beam truncated by finite aperture of radio
R, finding such solution becomes rather complicated because the upper limit of the integral

becomes R; which, in general, ends up requiring lengthy numerical calculations.

However, if we consider the solution obtained in Equation 3.3, and apply linearity

property, we can write the following solution to the Fresnel diffraction integral:

qj(ﬂ? Z) = eXP(ikz)l/J(@ Z) (34)
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with:

ik 0%k NoA, kk 1 k2 p?
v(p, z) = —;—Z exp (@) > @Jo <Z22Qp:> exp [_4Qn (k?) + zls )] (3.5)

=—N

where A,, are still unknown constants, and (),, are chosen as:

In Equation 3.6, ¢, is a constant that can assume complex values and it is chosen as:

2mn

In =4qr =177 (3.7)

where qr and L are constants with the dimensions of a square length.

Moreover, the initial field (i.e., at z = 0)for this superposition of beams is given by:

V(p,0) = Jolkpp) 3o Ane (33)

n=—oo

Applying Equation 3.7 into Equation 3.8, we obtain:

s i2mnp?
W(p,0) = Jo(kpp)e " 3" Ape” " (3.9)
What we are going to show, according to (ZAMBONI-RACHED et al., 2012), is
that solution 3.5 can be used to represent (describe) important beams truncated by finite
apertures of radius R. More specifically, we are interested in the excitations, on the plane

z = 0, presented on Table 1.

Table 1 — Initial field excitation for important particular cases of localized waves

Excitation Type Equation

Truncated Plane Wave Urp(p,0) :circ(f{)
Truncated Gaussian Beam Yra(p,0) = e” % circe(%)
Truncated Bessel Beam Yre(p,0) = Jo(k,p)cire(%)

Truncated Bessel-Gauss Beam  ¢rpa(p,0) = Jo(k,p)e™% circ(£)

Thus, in order to achieve our goal, given a beam truncated by an aperture of radius
R at z = 0, we have to determine values of A,,, qg and L that make Equation 3.9 represent

with fidelity the excitation signals listed on Table 1.
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It is natural that, in the cases of Truncated Bessel Beams and Truncated Bessel-Gauss
Beams, the quantity k, be set as the beam transverse wavenumber. And, for the Truncated

Plane Wave or the Truncated Gauss Beam, this quantity must be equal to zero.

Besides, for all cases the function

> 2mn
exp (—qrp®) > Anexp (zp2> (3.10)

n=—oo

must be approximately equal to = exp (gp*)circ(%).

Let us now prove that it is possible. Toward such goal, we suppose a function G(r).
et e~ for |r| < R?

G(r) = (3.11)
0 for R? < |r| < L/2

where ¢ is a constant.

The function G(r) can be expanded in a Fourier Series:

Gir)= 3 A t" (3.12)

n=—oo

where |r| < L/2, and it is simple to show that:

= g o (=0 = )] e [ = (mn—a =) ]} 003

At this point, by writing r = p? in Equation 3.11 and 3.12 the product given in 3.10

can be written as:

2

N e~ for |p| <R
2
exp (—qrp®) Y, Anexp (z‘znp?) =10 for R< |p| <\/L/2  (3.14)
n=—N
e~ G(p?) = 0 for |p| > \/L/2

where A, are given by Equation 3.13 and G(p?), given by Equation 3.12 (with r = p?), is a

function that, according to Equation 3.11 possesses maximum values given by e(@r—9R” (if
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qr > q) or 1 (if gg < q) for p > /L/2. Since /L/2 > R, it is always possible to choose qr
and L values that make e_QRPQG(pQ) ~ 0 for p > \/L/2. Mathematically, we must have:

e G(p?) < 1 (3.15)
for p > /L/2.
That implies in:
et 2elan—0R 1 for qp > ¢ (3.16)
and, for qr < ¢:
e~z « 1 (3.17)

Equations 4.8 and 4.9 are the criteria that must be used when choosing gz and L.

Therefore, Equation 3.9 can be used to represent the Truncated Beams in Table 1,
in which the A,, coefficients are given by Equation 3.13 with gz and L adequately chosen
according to the criteria set by Equations 4.8 or 4.9. This way, the resulting field emanating

from the circular aperture of radius R in z = 0 is given by Equation 3.5.

3.2 Ensuring the Validity of the Scalar Approach

It has been seen in (ZAMBONI-RACHED et al., 2012) that the scalar method gives
a good representation for the field propagation in several situations; however, in cases where
the beam is relatively non-paraxial this method can not be used. In such cases, we need to

considerate the vectorial nature of the field.

In order to solve this problem, we can assume an Electric Field given by:

E=E,;y+E.z (3.18)

and we suggest that the field component along the ¥ direction (E),) is equal to the scalar
field given by Equation 3.5.
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To find the axial component E, of the electric field solution we consider a free-space

propagation and apply Gauss’s Law (V - E= 0):

_ [ 95

E, =
dy

dz (3.19)

Analysing Equation 3.19, it is clear that the partial derivative can be taken out of the

integral. By that means, we now represent Equation 3.19 as:

. 6 ikz
E, = oy e Y(z,y, 2)dz (3.20)

where ¥ (x,y, z) is the envelop given by Equation 3.5.

Now we assume that e?** varies much faster than the envelop. So that:

~ —8¢($7y7 Z) ikz
T /e dz (3.21)

which results in:

- —iwt eikz aw@j? Y, Z)

E, ~ e 3.22
Lastly, notice that |E,| ~ 88% %; also, the paraxial approximation suggests that the

variation of the envelop is much smaller than exp(ikz). Therefore, |E,| is much less |E,| for

the paraxial regime; and, in these cases Er~ E,y, justifying the scalar approach.

3.3 Results and Discussions

In this section we shall apply our descriptions for the beams in submillimeter and

millimeter wavelengths.

3.3.1 Analytic Description of the Truncated Plane Wave

We start by a plane wave whose initial excitation is represented by Wrp(p,0) =
circ(p/R). This initial field configuration can be modeled by Equation 3.9 by considering
k, = ¢ = 0. For this configuration we adopt L = 4R* and gqr = 6/L; values that satisfy
equation 3.14. Beyond that, in order to perform the simulation on MATLab, we choose
f =50 GHz, N = 60, and R = 1 Ocm. By that means, Figure 5 shows the initial field at
z = 0; and, the resulting field emanated by the finite aperture.
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(a) (b)

Figure 5 — a) Emanating field for a 50 GHz circularly truncated plane wave. b) Initial field
for a 50 GHz truncated plane wave with R = 10 cm.

3.3.2 Analytic Description of the Truncated Gauss Beam

Let us now consider a truncated Gauss beam whose truncating circular aperture has a
radius of R = 5em. Its excitation signal at z = 0 is represented by Wrq(p, 0) = e~ circ(p/R).
This initial field configuration can be modeled by Equation 3.9 by considering k, = 0. For
this configuration we adopt L = 4R? and qp = 8/L; values that satisfy equation 3.14. Beyond
that, in order to perform the simulation, we choose f = 100 GHz, N = 100, and ¢ = 300.
Thereby, Figure 6 shows the initial field at z = 0. The resulting field emanated by the finite

aperture is shown in Figure 6.

3.3.3 Analytic Description of the Truncated Bessel-Gauss Beam

Subsequently, let us consider a Truncated Bessel-Gauss Beam at the frequency of 200
GHz. Its excitation signal at z = 0 applied to Equation 3.1is Wrpa(p, 0) = Jo(k,p)e~% circ(p/ R);
and, it is obtained via Equation 3.9. For this configuration we adopt L = 10R? and g = g,
R =10 cm, and N = 25; values that satisfy Equation 3.14. By that means, Figure 7 shows
the initial field at z = 0; and, the resulting field emanated by the finite aperture.

3.3.4 Analytic Description of the Truncated Bessel Beam

Lastly, we wish to simulate a Bessel Beam at the frequency of 300 GHz. The excitation
signal for a Truncated Bessel Beam is represented by Wrg(p,0) = Jo(k,p)circ(p/R). This
initial field configuration can be modeled by Equation 3.9 by considering ¢ = 0. For this
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p (mm) - z (m)

(@) (b)

Figure 6 — a) Emanating field for a 100 GHz circularly truncated Gauss beam. b) Initial field
for a 100 GHz truncated Gauss beam with R =5 cm.

1P

Figure 7 — a) Emanating field for a 200 GHz truncated Bessel-Gauss beam. b) Initial field
for a 200 GHz truncated Bessel-Gauss beam with R = 10 cm.

configuration we adopt L = 4R? and qr = 5/L; values that satisfy Equation 3.14. Beyond
that, in order to perform the simulation, we choose N = 23, R = 15 cm, and the transverse
wavenumber £, = 959.94, which corresponds to a beam spot with radius approximately equal
to A, = 2.5 mm. By that means, Figure 8 shows the initial field at z = 0; and, the resulting
field emanated by the finite aperture.

Truncated Beam description and analysis is an important research field due to its
applicability in various scenarios; for instance, in (ZAMBONI-RACHED; RECAMI, 2014)

this method was used to design a circularly polarized RLSA Antenna to generate a Truncated
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Figure 8 — a) Emanating field for a 300 GHz circularly truncated Bessel beam. b) Initial field
for a 300 GHz truncated Bessel beam with R = 15 cm.

Bessel Beam at 15 GHz of frequency. Later on, this antenna, on board of a vehicle, was used

to detect buried objects.

Besides, according to (LIN, 2011), THz waves are suitable to provide temperature
rise to tissues; and, later in this thesis, we shall evaluate the possibility of using then within
the human body. We expect to use this characterization to propose structures capable of
generating such beams. We envision this work being used to induce hyperthermic effects on
human body; since hyperthermia has been reported as a form of cancer treatment in many
papers in literature. (SHELLMAN et al., 2008)
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4 Generation of Bessel Beams: A Redesign of

an Antenna Model

4.1 Introduction

At optical frequencies, Bessel Beams can be generated in different ways, for example,
we can cite Durnin’s experiment (DURNIN et al., 1987) which was the first know method for
generating Bessel Beams. This method was able to generate a propagating Bessel Beam using
a laser source focusing over an annular slit positioned at the focus of a convex lens; and the
resulting beam was able to travel about 85 cm keeping its transverse intensity shape approx-
imately unchanged. As a more recent example of Bessel Beam launcher we can cite axicon-
based generation (MONK et al., 1999; ARLT; DHOLAKIA, 2000), and holography-based
(using spatial light modulator) (CHATTRAPIBAN et al., 2003; MCGLOIN; DHOLAKIA,
2005).

Unfortunately, none of the aforementioned methods can be used (some at least not
with the same simplicity) in the generation of Bessel Beams in GHz; therefore, we will focus

our attention on Bessel Beam launchers developed to operate at such wavelengths.

After a thorough analysis of the methods that have been proposed previously, we de-
cided to focus our attention on a Radial Slot Array Antenna (RLSA Antenna). The reason for
this choice are the multiple advantages that comes with it, such as being low-profile, planar,
single-layer, and simply fed in a single point at the center of the antenna (MAZZINGHI et
al., 2014).

In this chapter we aim to use the existing of Leaky Wave Antennas and Bessel Beam
generation (see (LEMAITRE-AUGER et al., 2011; FUSCALDO, 2017; FUSCALDO et al.,
2018) and references therein) to design a new antenna working in a different frequency. Also,

we shall assess the effects of one of the antenna dimensions in its radiating pattern.

This chapter is divided into 4 parts. In section 4.2, we establish the foundations
for the design of the model; and, we perform an field evaluation of the aperture antenna.
Afterwards, in section 4.3 we propose a model with a set of physical dimensions and operating
characteristics. The simulated results are presented in section 4.4 and further investigation

are developed in section 4.5.
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4.2 Design Foundation and Field Evaluation

The design of the antenna here considered for generation of Bessel Beams takes into
account a dielectric filled Parallel Plate Waveguide (PPW) whose upper plate consists in a
metal with annular slits carved within, here denominated as Metallic Strip Grating (MSG).
The main idea for this model is to have a Bessel pattern in the transverse plane inside the
cavity; and, by properly choosing slits widths (w,) and positions (ps) to make this pattern
leak out to free space. Such structure is presented in (ALBANI et al., 2014) and can be seen

in Figure 9. Note that, in the figure, the z axis is pointing out of the antenna surface.

Figure 9 — Top view of a dielectric filled PPW with slit grating. Each slit has a width w, and
its center is positioned in relation to the center of the antenna from a distance p;

In order to attest the capability of this structure to radiate an Bessel Beam in its near
field, we need to perform a field evaluation in the region inside the waveguide. We consider
this PPW as having a metallic rim at its external border and being excited by a coaxial feed

at its center inducing an outward cylindrical radial wave.

Due to the placement of the metallic wall, an outward and inward leaky wave propa-
gates inside the structure giving rise to a resonant leaky wave. (FUSCALDO, 2017)

Since we are aiming for a Transverse Magnetic (TM) Bessel Beam, we search for

solutions with FE,(p,0) = Jy(k,p)e~"***e™!. Naturally, a z-component only Magnetic Vec-
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tor Potential can be used to derive all the field components. Therefore, we start from the

homogeneous Helmholtz equation in cylindrical coordinates:

A, 104, 1024, %A
A A 21 E2A, =0 4.1
8p2+pap+p20¢2+322+ (1)

And, from this point, one can find a generic solution (presented in Equation 4.2) for

the Magnetic Vector Potential inside this cylindrical waveguide.

A, = cos(k.2)e ™A HM (k,p) + AsHP (k,p)) (4.2)

where k? + k?) = k2.
Assuming an ¢-invariant field (a% = 0), we have n = 0 and Equation 4.2 reduces to:
A, = cos(k2) (AL Hy (kpp) + AsHG? (kop)] (43)

We can derive expressions to the magnetic field by using B =V x ff; which, con-
sequently, leads to By, = H, = H, = 0, due to the azimuthal characteristic of the fields,

and

nk.k, .
5, = i i), B (k) + A B (k) (14)
1k, 0 @)
E, = =" cos(k,z)[A1Hy (k,p) + AsHy” (k,p)] (4.5)
Hy = ycos(kz) A H (kyp) + AsH (k)] (4.6)

It is noticeable in Equations 4.4, 4.5, and 4.6 that the fields are represented as a
superposition of two Hankel functions (one outward and the other one inward). The goal
here is to obtain a Bessel-like pattern for E.. For that reason, we will need to make A; ~ A,
by placing a metallic rim at a distance p = pp which corresponds to one of the zeros of the
Bessel function Jy(k,p). Therefore, we will have £, = 0 at p = pp; and, consequently, we

have:

Ay HY (kpp) = —AoHS (op) (4.7)
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from where we can extract an expression for A; as being:

_ _AzH(()Q)(kpp)

H () 49

Supposing a value of pp sufficiently large (to allow several oscillations), and recalling

that for an open waveguide structure, as the one under consideration, complex waves emerge
as general source-free solutions (TAMIR; OLINER, 1963) k, is defined as

k, =B, +iq, (4.9)

the Hankel Functions can be approximated as:

1,2 | 2 : m
HP® ~ prexp {—z(kpp — 4)} (4.10)

Using Equation 4.10 in Equation 4.8 we obtain:

A) = —Asexp (2a,pp) exp [2i(B,pp — 7/4)] (4.11)

Thus, the conditions in order to make A; ~ A, are presented in Equations 4.12 and

4.13.
QpPB <1 (412)
™
Bopp =3 +am (4.13)
where q € Z.

These equations tell us that, in order to obtain a zeroth-order Bessel function, the
inward and backward Hankel functions must have nearly identical amplitude and they must

be out of phase.

At this point, to fully derive the fields, we need to evaluate the coefficient As. There-
fore, we need to take into consideration the type of excitation used. In this case, we want to

use a coaxial excitation that induces a current I given by:

I =2malJ (4.14)
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where a is the radius of the internal conductor, and J; is a constant current distribution (at

these frequencies penetration depth is minimal).

Assuming a very thin wave-guide (h < Ao, where h is the height of the dielectric slab
and )¢ the vacuum wavelength of the operating frequency) it is possible to use boundary
condition on H, to determine A,. That said, at z = 0 the current density can be found by

applying Ampere-Maxwell’s Law.

k [AH® (kya) + A HP (kya)] = J, (4.15)

Assuming a very small, we can use small argument approximations for Hankel func-
tions and obtain:
A="1ia (4.16)
ST R '
Now, we can finally write expressions for £/,, F,, and Hy which uniquely describe the

fields inside the wave-guide.

A
E, = @177:’% sin(k,2)J1 (k,p) (4.17)
Ak
E. = ZTP cos(k,z)Jo(k,p) (4.18)
Hy = Ak, cos(k.z)J1(k,p) (4.19)

It is noticeable that, unlike what we wanted, Equation 4.18 has a cosinusoidal depen-
dency. However, let us remember that we are dealing with fields that are confined within the
wave-guide. By having the bottom plate at z = 0, the top plate is located at a height z = h;
hence, we shall have the constant cos (k,h) as part of Equation 4.18 resulting in the desired

z-invariant Bessel function.

Also, since there are metallic walls confining these fields, the tangential electric field

to the top and bottom plates F, must be equal to zero; therefore we must have:

k.h = nm (4.20)

In conclusion, regardless of the simplicity of the model, the antenna can indeed support
the generation of a Bessel Beam resulting from the superposition of outward and inward
Hankel waves. (COMITE et al., 2018)
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4.3 Antenna Proposal

Since we know that the antenna presented in Figure 9 can reproduce approximately a
Bessel pattern on its initial plan; in this section, we aim to define a set of physical parameters

for its construction.

Firstly, by using Ray-Optics we can interpret how fields propagates, emanates and/or
radiates from the antenna. According to Figure 10, when the antenna is fed in a single point
at its center, an outward wave starts to propagate within the waveguide. Due to the Metallic
Strip Grating (MSG), the propagating fields are able to leak, as indicated by the green arrows
on Figure 10. This leakage is characteristic of an open waveguide as predicted by (TAMIR;
OLINER, 1963); and, consequently, they are related to the propagating complex wave that
emerge as a general solution the this kind of problem. These waves have a complex radial

wave number £, described by Equation 4.9.

The imaginary part «, can be seen as an attenuation coefficient that, even though it
accounts for losses in the material, mainly describes the amount of energy leaked in form of
radiated power. In addition, this type of open waveguide structures with complex wave as
solutions are often referred to as leaky waves antennas. (TAMIR; OLINER, 1963)

It should be noted that, in this paper, we chose to work solely with the so-called
physical leaky waves which are complex waves that attenuate as they propagate and have
positive imaginary part of the radial wave number (a, > 0). (FUSCALDO et al., 2018)

Thereafter, when the outward waves reach the metallic rim at the extremity of the
antenna it is reflected arising an inward wave whose leaked fields are pointed towards the
z-axis (see blue arrows on Figure 11). Due to the azimuthal nature of the antenna, this
backward radiation overlaps and generate a focused Bessel Beam on the light blue region of

Figure 11 close to the axis of symmetry. Outside that region, spurious unfocused radiation
envelopes the central focused beam. (FUSCALDO et al., 2018)

As it can be seen in Figure 11, the structure and its radiated fields are azimuthally
invariant. Furthermore, as it has been mentioned before, the truncation of the aperture limits
the beam propagation distance. Such limited range of propagation is commonly referred as

Non-diffracting range and can be calculated via Equation 2.22.

Besides, at this point, we would like to introduce the fact that the structure under
consideration has a periodic Metallic Strip Grating (MSG) along the radial direction p; such

feature can be seen better in Figure 12.

By all means, when a MSG is etched in a Parallel Plate Waveguide it can be seen

as a wave perturbation and it results in Leaky Waves achieved by an axially fast spatial
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Figure 10 — Cross-sectional view of the proposed structure. The green arrows represent the
fields that are leaking away from the antenna as the outward waves propagates.
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Figure 11 — Cross-sectional view of the proposed dielectric filled PPW. The light blue dia-
mond shape represents the spatial region in which the Bessel Beam is formed as
a result of interference of the leaked field.

harmonic. (PODILCHAK et al., 2014) Therefore, the structure can be defined by a strip
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Figure 12 — Top and cross-sectional view of the considered structure along with its physical
and geometrical parameters.

width w, periodicity d, substrate thickness h, substrate permittivity €., and antenna radius
PB-

If we consider the 2D periodic structure presented in Figure 12 as having a value of
pp sufficiently big (A < pp) we can assume k, = k, since propagation is normal to metallic
strips. Similarly, we assume that k4 = k, since propagation is along the metallic strips. Such

relations become clearer by looking at Figure 13 and comparing it to Figure 12.

In summary, we want to build the equivalence of the radial 2D topology to a linear
1D-MSG presented on Figure 13. The reason that we look forward for this approximation
is because the analysis of a periodic linearized structure can be restricted to a unit cell

(x = +d/2). (BACCARELLI et al., 2005)

Besides, when dealing with such structures, it can be seen that the wave propagates
along a 1-D periodic MSG and, therefore, can be represented by Floquet waves (harmonics)
(BURGHIGNOLI et al., 2019). In this case, each space harmonic has a complex wavenumber
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Figure 13 — 1D periodic metallic strip grating.

k.m given by Equation 4.21 below.

k:cm - 6m + 1 (421)
where; m is the harmonic order, and £, is analogous to k,,, in a 2-D MSG case, as
discussed.

In this context, 3,, can also be described as:

B = Bo + %Tm (4.22)

where [ is the fundamental harmonic’s wavenumber.

4.3.1 Design Criteria

In summary, to implement the 2D periodical MSG in a Dielectric Grounded Slab we
have to exploit Leaky Wave theory. Thus, such design is done taking into consideration the
modal analysis of a 1D periodic structure presented on Figure 13. The modal analysis was

performed using the Eigenmode Solver present on the software CST Microwave Studio.
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Initially, we consider a commercial laminate with thickness A = 3.14mm and having
permittivity €, = 2.2; and a frequency of 10 GHz. With these values, by using Equation 4.23
we can assess values for the periodicity d that can guarantee that only TM Leaky Waves
radiates. (PODILCHAK et al., 2010)

d > 2h\/e, — 1 (4.23)

According to (FUSCALDO et al., 2018), we can also assess d as being

d
h<s
=2

(4.24)

to ensure the first TM mode to propagate, since we have €, > 4/3. (BALANIS, 2011)
These equations has allowed us to fix the periodicity d to 16mm.

Lastly, to design the width w of the periodic MSG we have performed a parametric
sweep analysis. It was found out in this analysis that a bigger value of w produces a stronger
perturbation that leads to higher values for the attenuation constant «, see Figure 14. We

have decided to set w = bmm; which gives us «/ko = 0.03.

0.08 T T T T T T

—w=7mm
——Ww = 6mm
0.07 - —w=5mm| |
——w =4mm
\

0.06 - N

(=)
< 0.05
-]

0.04
o2 m
8

8.5 9 9.5 10 10.5 11 11.5 12
Frequency (GHz2)

Figure 14 — Normalized attenuation constants obtained via dispersion analysis for different
strip widths.

The normalized dispersion curves for § and « is presented on Figure 15. For our
frequency, 10GH z we shall find §/ko = 0.764.

Since we have defined a value for the longitudinal wavenumber £, = 0.764k +10.03k,
we can assess the value for the final physical parameter of the antenna; its radius pg. In order

to do so, we recall Equation 4.12 which gives us the threshold pp < 0.2083.
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Figure 15 — Normalized phase and attenuation constants for the proposed parameters: w =
bmm, d = 16mm, h = 3.14mm, and €, = 2.2.

Besides, we need to consider the efficiency of radiation of this antenna. This can be
calculated via Equation 4.25 given by (FUSCALDO et al., 2018):

=1 — e tmoen/t (4.25)

Setting a minimal efficiency of 90%, we could find an interval for pp as:

pp > 0.1832 (4.26)

Lastly, by using the range of values given by Equations 4.12 and 4.25; and recalling
that the metallic rim must be placed at the position of one of the zeros of the Bessel Beam
function, we can evaluate Jy(k,p) and define pp = 0.1838 m; which gives us an efficiency
n. = 90.07%.

4.3.2 Feed Design

One of the advantages of this structure is its feeding system. In contrast to the complex
multi-point feeding for array configurations, a Leaky Wave Antenna constructed with a MSG
over a Grounded Dielectric Slab requires solely a vertical coaxial probe with 502 impedance.

It was constructed and modeled on CST Microwave Studio using a built-in macro to achieve
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impedance matching. As presented in Figure 16, its structure is similar to the one presented
by (ALBANI et al., 2012).

Figure 16 — Detailed view of the feeding structure simulated on CST Microwave Studio.

4.4 Simulated Results

In this section we present the results obtained via simulation on CST Microwave
Studio. The simulation environment consists of open boundaries for all directions, except
for the —Z in which we have an electric boundary. As stated before, the antenna is fed by
a coaxial cable; and, to simulate that, we have introduced a waveguide port with a default

excitation to our designed 50§ matched feed.

We are going to analyse the near field radiated by performing a full wave analysis of
the antenna. To minimize the simulation time, our domain is limited to a box that contains

the antenna and whose upper face is on the plane z = 20 cm.

At this point, we want to present the radiating field magnitude |F,|. A normalized
3D view is presented on and an orthogonal projection are presented Figure 17. In both cases,

we can observe a Bessel beam on the longitudinal axis z.

Observing Figure 17 b) it is possible to notice a void right on the start of the beam.
Besides, by looking at Figure 17 a) we are able to see that the fields are actually starting at
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Figure 17 — For f = 10GHz: a)Normalized 3D visualization of the radiating field |E,|.
b)Color map of the absolute value of F..

z = 40 mm. It happens because while designing the antenna it was necessary to include a
metallic circular region around the feeding point (see Figure 16 for more details) to prevent

large forward waves losses (which do not generate the Bessel beam).

However,that works in both ways; i.e., this circular metallic region also prevents the
fields from inward propagation to leak and interact to generate the beam very close to the

region of the antenna.

Besides, we can investigate the propagation of this field. Firstly, we assess the value
of the spot as being Ap = 15 mm, by looking at Figure 17 b). Then, using Equation 2.21,

we can evaluate the cone angle of the beam as 6 = 0.8694 rad.

Lastly, we use Equation 2.22 to find the non-diffracting range for a beam with these
characteristics; in this case, we found Z = 155.3mm. And, what we can conclude from Figure
17 b) is that the beam radiated by the simulated antenna has the theoretical propagation
depth.

Besides, we would like to present |E,| on the transverse plane. In Figure 18 a 3D

normalized view is provided; and, in Figure 19 a color plot is presented.

A better insight about the beam’s profile was given by Figures 18 and 19. However,
we can perform further examinations on this beam. For instance, we can examine Figure 19
at the line y = Omm and z = 100mm to obtain its 1D profile. The result is presented on
Figure 20 along with a comparison of an ideal Bessel Beam profile at the same line and with

the same propagation constant k,.

It can be observed on Figure 20 a good agreement between the |E,| radiated field

from CST and the ideal Bessel beam. The position of the foremost maximums and zeros are
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Figure 18 — Simulated 3D visualization of |E.| at the transverse plane z = 100mm.
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Figure 19 — Simulated 2D profile of |E,| at the transverse plane z = 100mm.

similar for both plots.

Hence, the results presented on Figures 17 to 20 suggest that the field radiated by
the antenna, simulated on CST, agrees very well with the Bessel function and the general
theory of Bessel beams. However, since we are dealing with a finite aperture, it should be
noticed that for increasing values of x the beam profiles differ a lot. This feature is a direct
consequence of the inward fields exited on the aperture. It was found in (ALBANI et al.,

2014) that the inward waves approximate the field to a Bessel Beam close to the vertical
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Figure 20 — 1D beam profile at the line ¥y = Omm and z = 100mm of an ideal Bessel beam
(dotted black line) and the radiated beam (red line).

axis, whilst this agreement is gradually lost when moving away from the axis due to spurious

radiation (as mentioned before).

We can move on to investigate the results for the transverse field. We should recall
that, minding the previous section, our expected outcome is a first order Bessel beam as the
pattern for |E,|. In order to analyse this component of the electric field, we present the 2D
orthogonal projection and the 2D profile on the transverse plane z = 100mm on Figure 21

below.

It is clear from Figure 21 that the radiating field agrees with the theory. And, as we
did before, we can obtain the 1D profile at the line y = 0mm and z = 100mm and compare

it with an ideal first order Bessel beam (see Figure 22).

For closure, we are going to observe the resulting radiating electric field |F|. The

orthogonal projection is presented on Figure 23.

As it can be seen in Figure 23, the resulting field still has a zeroth order Bessel beam
shaping even though it is a combination of a zeroth and a first order beam. This is a direct
consequence of the non-paraxiality of the field. As we were able to observe since the beginning
of the section, the Bessel beam at |E,| had a spot that is ever shorter than the wavelength
(A = 30mm). Therefore, the intensity of the transverse field is much smaller than the intensity

of |E,|. Clearly, for our goal, it is a remarkable feature because it allow us to obtain a more
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Figure 21 — a) Orthogonal projection of the transverse electric field radiated by the antenna
according to simulation on CST Microwave Studio at the frequency of 10GHz.

b) Simulated 2D profile for the transverse electric field at the transverse plane
z = 100mm.
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Figure 22 — 1D beam profile at the line y = 0 and z = 100 of an ideal first order Bessel beam
(dotted black line) and the radiated transverse electric field (red line).

focused and zeroth order Bessel-like beam.

4.5 Further Investigations

On the previous section we have highlighted the main aspects of the simulation of the
proposed antenna; and now. Here, on this section, we are going to evaluate the effects of the
changes of the width w of the periodic MSG.
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Figure 23 — a) Orthogonal projection of the absolute value of the electric field |E| radiated
by the antenna according to simulation on CST Microwave Studio. b) 3D profile
of |E| at the plane z = 100mm.

As it has been discussed before, when changing the values of w the perturbation is

changed and, therefore, the attenuation constant a is changed.

Hence, we have simulated antennas with different values for w. The results are sum-
marized on Figure 24. The values for w and the attenuation constant a of each case are the

ones presented on Figure 14.

On the first simulation - Figure 24 a) and b) - we are able to identify a similar
pattern to the one presented by our antenna in Figure 17; however, it has a slightly deeper
propagation depth and the main beam is visually weaker. That is a direct consequence of
the smaller value for w that allows much radiation to leaky away while the wave is in its
outward propagation. That is reflected in the small value for a (as suggested on Figure 14)

and, consequently, on the antenna efficiency below the 90% threshold.

On the second and third simulation, and also on the previous simulations, we were
able to identify the impact of the the attenuation constant a. It can be observed for each of
the 4 values of w that the increase of a has a detrimental effect on the propagation depth; and,
for larger values of o the Bessel beam vanishes before reaching the end of the non-diffraction

zone.

However, an greater value of a, and consequently a greater value of w, a smaller
portion of the field is able to leak and propagate as “spurious radiation“ - radiation outside
the light blue diamond shape on Figure 11. Besides, as it can be seen on Figure 24 b), d),

and f), increasing values of w mitigate the typical ripples of the amplitude along the z axis



Chapter 4. Generation of Bessel Beams: A Redesign of an Antenna Model

120 140 160 180

y (mm)

) 200
150
‘A ~

Figure 24 — a), c¢) and ¢): Orthogonal projection of | E,| radiated by the antenna according to
simulation on CST Microwave Studio for w = 4mm, w = 6mm, and w = 7Tmm,

respectively. b), d) and f): Normalized 3D profile of the radiated |E,| for w =
4mm, w = 6mm, and w = 7Tmm, respectively.

due to diffraction. Therefore, on these senses, a greater value of w is beneficial.

In summary, we observe a trade-off relationship between the propagation depth and
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“beam quality”. And, this trade-off is controlled by the physical parameter w.
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5 Millimeter and Sub-millimeter Continuous

Frozen Waves in Absorbing Medium

Although the propositions and formulations to describe Continuous Frozen Waves
have been set, so far they are limited in the optical frequencies and in non-absorptive prop-
agation medium. In this section, we are aiming to obtain a scalar description to Continuous
Frozen Waves when propagating through absorbing medium in millimeter and sub-millimeter

frequencies.

We start by recognizing the mathematical difficulty of the problem. By looking at
Equation 2.33 and analysing the situation, it is clear that once this wave is propagating in
a absorbing medium (which means, n,.; = n, + in;) the Bessel function will now have a

complex argument making its integration a demanding task.

In order to deal with that difficulty, firstly, we define W(x,y, z) as:

U(p, z) = Jo(hp)e'* (5.1)

Then, we write the relation for g and h:

2 w? 12 2
o = W4 (52)

After that, we require h to be a real number and expressed as shown in Equation
5.3, where a is a constant. Therefore, Equation 5.3 implies that [ is necessarily a complex

number, since n is complex.

h=a (5.3)

w
c

Therefore, we must solve for 8. We start by applying Equation 5.3 in Equation 5.2
which results in:

w? w?
B = (n?—ni— a2)§ + z'2nm,-§ (5.4)
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As a consequence of h being a real number, we have § = 3, + i; and it can be

expressed as shown in Equation 5.5.

8% = B2 — B} +i2B,5; (5.5)

Now, a equation system is formed using Equations 5.4 and 5.5; and, by solving it, we

are going to be able to define (5, and S;.

2
Br =B =(ni —ni —a)E

2
BrBi = nrni%

(5.6)

[solating f3; in line two of Equation 5.6 and substituting into line one we obtain the

bi-quadratic function presented on Equation 5.7 below.

B — 2(n2—n2—a2)ocj——n n;— =0 (5.7)

Solving Equation 5.7 results in two values for 3. The first one is real and comes from
the positive v/A and it is shown on Equation 5.8 below. The second one is complex and
comes from the negative v/A; therefore, it has no physical meaning, since, by definition, £,

is the real part of 3.

5, = 2y — 2 (5.8)
Consequently, [3; is described as:
2
NpMiW
B = —— (5.9)

2 /2w _ 12
c\nis —h

Hence, we can write Equation 5.1 as:

U(p,z) = Jo(hp)ex {i\/n2w2 — h?z] ex [Wz} (5.10)
Ps = Jolnp P T2 pc2 fﬂwf;_h? .

As a matter of fact, we can even rewrite Equation 5.1 with A in function of .. The

result is presented in Equation 5.11 below.

U(p,2) = Jo (p\/ngij — 63) exp [zﬂrz} exp [n;;zg;ﬂ z} (5.11)




Chapter 5.  Millimeter and Sub-millimeter Continuous Frozen Waves in Absorbing Medium 68

We need to get a continuous superposition; therefore, we calculate the integral as

presented in Equation 5.12 below.

W)= [ S0 02 — 52) exp [i5 2] exp [”;ngz} B (512)

The limits of integration on Equation 5.12 are set in order to guarantee a real value
for h.

At this point, we assume that the spectrum under consideration is highly non-paraxial
and concentrated around f,. So, we are able to take out the term responsible for the expo-

nential decay (attenuation) from the integral.

The resulting equation is very similar to Equation 2.33. Therefore, the solution to the

remaining integral is in the form of Equation 2.42, as presented in Equation 5.13 below.

n,pn;w? e -2\ . n2w? nyw 2
U(p,z) = exp[ 25, z] nZ_@F( e )S1nc[\/;2p2 + (cz + Wn) } (5.13)

Analysing Equation 5.13 it is clear that the solution for beam propagating through
absorbing medium is, approximately, equal to the pattern of a continuous Frozen Wave

multiplied by a decaying exponential, as theory suggests.

Besides, exposing the behavior of Continuous Frozen Waves in absorbing medium,
Equation 5.13 implies a way of mitigating the attenuation process; it can be achieved by
simply including a growing exponential, equivalent to the decaying one, to the function

)

5.1 Results

In this section we shall present some examples applying our methodology. Then, we

shall compare these examples to cases in which we do not apply our compensation method.

As an example, we demonstrate the case in which we simulate a propagating beam
at 50 GHz, with a spot radius Ap = 2.9mm, with longitudinal intensity profile given by a

super-Gaussian of depth 40cm, resulting on the following function F'(z):

F(z) = (%) g0z (5.14)
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For this case, Z = 20cm, @ = 0.92n,w/c, and the index of refraction is n = 2+170.02.
Figure 25 depicts the spectrum S(k.). Note that the majority of the spectrum is contained
at the positive values of k, /k.
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Figure 25 — Calculated spectra S(k,) for a continuous Frozen Wave at the frequency of
50GHz.

Next, we present the orthogonal projection of the beam and a 3D visualization on
Figure 26.
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Figure 26 — a) 3D view and b) Orthogonal projection of the continuous Frozen Wave profile
propagating on an absorptive medium at the frequency of 50GHz.

When looking at Figure 26 it is clear that the medium is attenuating the beam (as
a consequence of its complex index of refraction). In order to mitigate these effects the

interaction of the Bessel Beams that are overlapping have considerable values before the
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formation of the main pattern. That is, it is necessary to input more power in order to obtain

the desirable pattern. Even so, it was not achieved.

Therefore, we will apply the compensation method proposed on the last section. That

said, the function F'(z) becomes:

F(z)= o (8) Q220 (5.15)

where f3; = n;n,wic?/Q and it accounts for the attenuation.
The spectra S(k.), for this case, is presented on Figure 27.

x1078
‘

Figure 27 — Calculated spectra S(k.) for a compensated continuous Frozen Wave at the fre-
quency of 50GHz.

Again, we present the orthogonal projection of the beam and a 3D visualization on
Figure 28.

Although the absorptive nature of the propagation medium, the desirable pattern
was formed (with some limitations in shape) due to the compensation method suggested

previously as it can be noticed on Figure 28.

A complex index of reflection with the order of 1072 is very large; in other words, we
are dealing with highly absorptive material. As a matter of fact, a 50GHz plane wave would

have a depth of propagation of § = 2.2cm, which is only 3.66 times the wavelength .

For closure, we changed the frequency to f = 100GHz; the super-Gaussian depth to
30cm; and, for this case, Z = 15cm. Afterwards, we performed a simulation of several Con-
tinuous Frozen Waves propagating through various medium with different (and increasing)
complex index of refraction (n; = 0.005, n; = 0.01, n; = 0.02). The results are presented on
Figure 29.
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Figure 28 — a) 3D view and b) Orthogonal projection of the compensated continuous Frozen
Wave profile propagating on an absorptive medium at the frequency of 50GHz.

The results highlight that our compensation technique is able to enhance beam prop-

agation on absorptive medium.

In each case, it is clear that the non-compensated beam (Figures 29 b), d), and e))
is attenuated by the propagating medium. In fact, on the last case the beam is not able to

reach the desirable propagating distance of z = 15cm due to attenuation.

However, Figures 29 a), ¢), and e) suggest that by including a growing exponential,

proportional to the attenuation, helps to obtain the desirable patterns.

In addition, on Table 2 we provide, for each case, the expected depth of propagation

for a plane wave with f = 100GHz and its relation to the wavelength A.

Table 2 — Depth of propagation for a plane wave propagating through absorptive media with
different complex refractive indices.

n; |0 [em] | 5/

0.005 | 4.39 14.633
0.01 |22 7.333
0.02 | 1.1 3.667

Lastly, as it can be observed on Figure 29, the interactions of the waves that forms the
main pattern on the longitudinal axis is gaining appreciable values from one case to another
as we increase the complex index of refraction. We have set n; = 0.02 as our limit due to the
fact that for higher values these “field perturbations“ rise to the point of being equivalent
to the main pattern. Therefore, this can be considered the limit of our method. We can not

promote Continuous Frozen Wave propagation on medium with higher values of complex
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Figure 29 — a), ¢), and e) Orthogonal projection of the compensated continuous Frozen Wave
propagating on absorptive medium with complex index n; = 0.005, n; = 0.01,
n; = 0.02, respectively. The non-compensated case is presented on b), d), and f).

index of refraction n;.
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6 Analysis of the Interactions Between Non-

Diffracting Waves and Biological Tissue

The study of the dielectric properties of biological tissues in radio-frequency, mi-
crowave and terahertz has been of interest for many applications, including microwave di-

electric heating, nondestructive measurement, imaging, and etc.

Information about tissue structure and how they react in contact to electromagnetic
energy is important to mitigate health hazards, verify the presence of a tumor or even treat
it by means of hyperthermia. (SHELLMAN et al., 2008).

The purpose of this work is to obtain the current state of knowledge in terms of
dielectric properties of tissues, analyse these data and present new information about the
possibility of generation of non-diffractive beams - we shall focus on Bessel Beams and Frozen

Waves - inside these medium.

Initially we shall retrieve the data collected by (GABRIEL et al., 1996) for the elec-
trical permittivity €, and conductibility ¢ for the human skin over the frequency range of
1 — 20GHz.

Next, by admitting a complex wavenumber k& = « 4 ¢k where:

€p o\?
o= Wy — l—i—() +1
2 €w

N

and

€t
K = W\ —
2

1+ (;)2 - 1] % (6.2)

The imaginary part of k results in a wave attenuation (decreasing amplitude for
increasing values of z). And, according to (GRIFFITHS, 1962), the distance in which the
amplitude is reduced by a factor of 1/e is called depth of propagation § and has a value:

d = 1/k. The depth of propagation (blue line) for human skin is presented on Figure 30
along with the wavelength (dashed black line) for the featured range of frequency.

It is noticeable on Figure 30 that the depth of penetration is smaller than the wave-

length. For this reason it is not possible to generate Frozen Waves on this medium. A Frozen
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Figure 30 — Depth of penetration of a plane wave into the human skin for the range of
frequency of 1GHz to 20GHz along with the wavelength A according to the data
retrieved from (GABRIEL et al., 1996).

Wave is a superposition of beams that are interacting with each other while propagating;

and, for this case, no beam can propagate at least for a distance .

We shall assess the index of reflection n = n, +in;. According to (GRIFFITHS, 1962),

the real part of k£ determine the real part n, as being:

n, = — (6.3)

W

Lastly, according to (HERNANDEZ-FIGUEROA et al., 2007) we can assess 7; as:

C

B 2wn,0

(6.4)

n;

The index of reflection for the skin in the frequency range from 1 to 20GH z is pre-

sented on Figure 31.

It should be noticed that the complex part of the index of reflection n; is higher than
the ones supported by our compensating method presented on the previous section. Such
values of n; confirms our initial hypothesis of the impossibility of generation of Frozen Waves

on the human skin.
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Figure 31 — Index of reflection of the human skin for the range of frequency of 1GHz to 20GHz
along with the wavelength A\ according to the data retrieved from (GABRIEL et
al., 1996).

Besides, when analysing the data collected by (GABRIEL et al., 1996) it should be

noticed that for all tissues studied the penetration is also very small.

Finally, we can extend this study to Terahertz frequencies. By using data for pene-
tration and real index of reflection from (LIN, 2011) we were able to generate Figures 32 and
33.

Again, the result of the attenuation process that occurs in biological medium is too
strong for the generation of Frozen Waves within it. However, as suggested by (LIN, 2011)
and also in this work, when electromagnetic radiation is in contact with biological tissues heat
is generated (hyperthermia). The reason for this warming is the high absorption coefficient -
which leads to high attenuation coefficient - of these medium. Therefore, it is possible to use

Bessel Beams to irradiate and generate heat.

Similar approaches have been developed - see (XU; WANG, 2018) and (ELKAYAL
et al., 2015), for instance - but not using Bessel Beams. We envision an advance on the

hyperthermia techniques by using Bessel Beam due to its highly collimated profile.

Obviously, the ideal approach would be using Frozen Waves due to the control of the
intensity on the longitudinal axis which would focus the radiation solely on the desirable

radiation; but Bessel Beams offer advantages on the transverse plane that are already useful
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Figure 32 — Depth of penetration of a plane wave into the human skin for the range of
frequency of 0.1THz to 1.5THz along with the wavelength A according to the
data retrieved from (LIN, 2011).
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Figure 33 — Index of reflection of the human skin for the range of frequency of 0.1THz to
1.5THz along with the wavelength A according to the data retrieved from (LIN,
2011).
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in reducing the pain involved in hyperthermia treatment.
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Conclusion and Future Perspectives

This masters dissertation summarizes our findings on the theoretical study of non-
diffracting beams in GHz and THz, the design of an antenna capable of radiating a Bessel
beam, and the interaction of Frozen Waves in millimeter and sub-millimeter wavelength with

biological tissues.

On chapter 3, we were able to formulate simple, exact, and vectorial solutions to Bessel
Beams emanating from a circular aperture. Our motivation for doing this was to prove that,
even in millimeter and sub-millimeter wavelength, we can have a finite energy Bessel beam
when truncating it by an aperture. This knowledge is essential the proceed with our path
in this project, because it suggested that we could propose an antenna capable of radiating

such beam.

Therefore, on chapter 4 we reviewed some of the most common Bessel beam launchers
to redesign, propose, and simulate our own model. After thorough analysis, we decided to
use a Leaky Wave antenna due to its simplicity in model and simulate, low-planar profile,

and because it is fed by at a single point in its center.

Towards this antenna proposition, we evaluated if a Leaky Wave antenna is capable of
supporting a Bessel beam; and, due to a positive outcome, we continued following this path
and studied how the fields behave inside and outside (how they leak through the slits). With
this knowledge we started pursuing ways for completing the design of the structure by setting
its physical parameters. By completing this stage, we were able to use CST Microwave Studio
to simulate the model. We could see that the radiated fields were, indeed, a Bessel beam.
Lastly, we also evaluated the effects of different slits widths on our model and discovered
a trade-off relationship between beam propagation depth and what we latter called “beam

quality”.

On chapter 5, we studied the generation of Continuous Frozen Waves in absorbing
medium envisioning its use on biological tissues to induce hyperthermic effects. Although
it was later demonstrated on chapter 6 the impossibility of generate a frozen wave inside a
tissue due to its low depth of propagation, we could formulate an approximate equation to
describe Continuous Frozen Waves in millimeter and sub-millimeter wavelengths when they

undergo mediums with high absorptive coefficients.

Finally, on chapter 6, we discovered that the attenuation process that occurs in bio-

logical medium is too strong for a Frozen Wave to be generated, but a Bessel beam could be
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irradiated and generate heat. Due to its highly collimated profile, the use of a Bessel beam
to induce hyperthermic effects offer advantages to the traditional methods (lower pain level

and non-invasive).

6.1 Future Perspectives

This work summarizes a journey of discoveries that we have had in the past years.

The knowledge obtained has the potential to lead to distinct, exciting and important paths.

On chapter 3, after showing that a Bessel beam can exist and propagate when trun-
cated by a finite aperture, we can extend this research to assess whether a Frozen Wave
exhibits the same behaviour or not. In case of a positive outcome we could also study how

to generate such beam in millimeter and sub-millimeter wavelengths.

Another path would be investigating more the application of Bessel beams to generate
heat in biological tissues. We could use our model on CST Microwave Studio the perform a
multi-physics simulation integrating the RF and the Thermodynamics modules to attest and

quantify the hyperthermical effects caused by Bessel beam irradiation.
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