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Abstract

Despite the increasing efforts in studying non-diffracting optical beams, much less work has

been done in the characterization and application of these beams for millimeter and sub-

millimeter wavelengths. This is because, in order to generate these beams for long distances,

large equipment and antennas are required. However, if shorter distances are considered (Fres-

nel region), interesting and useful diffraction-resistant beams can be generated with smaller

antennas. In this work, by using scalar and vectorial approaches, we obtain analytical solu-

tions describing plane waves, Gauss, Bessel-Gauss, and Bessel beams truncated by circular

apertures, for GHz and THz frequencies. Moreover, this work aims at characterizing, simu-

lating, and commenting possible applications of such truncated beams. These applications

are aimed into to possible medical applications, such as hyperthermic treatments. Lastly, this

paper presents a redesign of an antenna capable of generating truncated Bessel Beams.

Keywords: Localized waves analysis; Wave propagation; Physical optics; Electromagnetism

in medicine.



Resumo

Apesar dos esforços crescentes no estudo de feixes ópticos resistentes à difração, poucos tra-

balhos foram realizados na caracterização e aplicação desses feixes para comprimentos de

onda milimétricos e submilimétricos. Isso ocorre porque, para gerar tasi feixes por longas dis-

tâncias, são necessários grandes equipamentos e antenas. No entanto, se forem consideradas

distâncias mais curtas (região de Fresnel), feixes resistentes à difração podem ser gerados com

antenas menores. Neste trabalho, usando abordagens escalares e vetoriais, obtemos soluções

analíticas descrevendo ondas planas, feixes de Gauss, Bessel-Gauss e Bessel truncados por

aberturas circulares, para frequências de GHz e THz. Além disso, este trabalho tem como

objetivo caracterizar, simular e comentar possíveis aplicações de tais feixes truncados. Essas

aplicações são direcionadas para possíveis aplicações médicas, como tratamentos hipertérmi-

cos. Por Ąm, esta dissertação apresenta um redesenho de uma antena capaz de gerar feixes

de Bessel truncados.

Keywords: Análise de ondas localizadas; Propagação de ondas; Física ótica; Eletromagne-

tismo na medicina.
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1 Introduction

1.1 Context

Diffraction and attenuation of electromagnetic beams are well known and studied

phenomena and their effects often limit the use of these waves. Respectively, diffraction and

attenuation cause a progressive increase of the transverse width and the reduction of the

intensity. (BORN; WOLF, 2013)

In order to mitigate such physical effects, studies are carried out proposing different

types of spatial modeling of the electromagnetic beams. In this context, the so-called local-

ized waves or non-diffracting waves, which are solutions of the wave equation (and also of

Maxwell’s equations), were Ąrst obtained in theory and then they were produced in labora-

tories. (HERNÁNDEZ-FIGUEROA et al., 2007)

Non-diffracting waves (beams and pulses) are those that have the ability to maintain

the same transverse pattern over a long distance (HERNÁNDEZ-FIGUEROA et al., 2007).

In free space or in material media (RECAMI; ZAMBONI-RACHED, 2009), so, they can

be considered resistant to the diffraction effects observable in the usual beams. This is due

to the space-time structure that these waves possess; the lateral portions of the beam (or

pulse), when they diffract, are able to reconstruct their central region. (LÓPEZ-MARISCAL;

GUTIÉRREZ-VEGA, 2007)

It should be noted that, for the most part, the theory and experiments related to

non-diffracting waves have been and continue to be concentrated at optical frequencies. As

we shall see shortly, it is part of our proposal to carry out a transposition / adaptation of

theory and experimental generation to the GHz and THz regimes.

The best-known example of a diffraction resistant wave is the Bessel beam. In practice,

such beams, indeĄnitely resistant to diffraction, are not feasible since an inĄnite amount of

energy would be required for their generation(ZAMBONI-RACHED, 2006). However, it has

been theoretically and experimentally proven, see for example (SALEM et al., 2011; DURNIN

et al., 1987; BUTKUS et al., 2002), the possibility of generating truncated Bessel Beams; that

is, generated by a Ąnite aperture. Thus, optimal approximations are obtained for the ideal

Bessel Beams propagating resisting the effect of diffraction over long distances (LÓPEZ-

MARISCAL; GUTIÉRREZ-VEGA, 2007; STRATTON, 1941). Thus, beams of this type

may be interesting substitutes for Gaussian beams in different types of applications (SALEM
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Given the inherent limitations of Durnin’s method of generating Bessel Beams, over

the time new methods have been developed. An example is the use of conical lens (axicons)

to generate Bessel Beams. Other method is the holography, which replaces the axicons, as

can be seen in (VASARA et al., 1989; HERNÁNDEZ-FIGUEROA et al., 2007; ISHIMARU,

2017).

Despite the rising interest in the study of non-diffracting optical beams and pulses,

little has been done in the millimeter and sub-millimeter. In part, this is justiĄed because,

in order for such beams to be generated in these frequency bands over long distances and

using known methods, it would be required the use of relatively large equipment making the

technique not very attractive.

However, there may be interesting applications in the GHz and THz frequency bands

in which the required propagation distances are small, such as in medical applications. In such

cases, the process of generating beams resistant to the diffraction and attenuation phenomena

(and spatially modeled) could, at Ąrst, be made with smaller and more technically and

economically feasible antennas.

Therefore, it is fundamental to Ąnd, for Maxwell’s Equations, solutions of diffraction

resistant beams that can be spatially modeled, even if they propagate in absorbent media

(thus, making it possible to obtain beams whose spots are also resistant to attenuation by long

distances). This is because, from these mathematical solutions to the electromagnetic beams,

it will be possible to idealize and simulate prototypes of antennas capable of generating such

waves.

Of course, the study of the generation of non-diffractive beams in the frequencies

mentioned above leads to questions about possible applications to them. At this point, this

work aims to study, in a preliminary way, the possibility of using such beams as activators

of the hyperthermic effect in internal tissues. When analysing waves in the range of THz, for

example, they are found to have electromagnetic properties necessary for the health sciences;

since their energy levels are very low (1-12 meV), and, therefore, cellular damages are reduced

to thermal effects. (SIEGEL, 2004)

The beneĄts of hyperthermic treatment in the Ąght against cancer are explicited in

(STEGER; BOO-CHAI, 1990; ALEKSEEV et al., 2008; SOARES et al., 2014). However, one

of the main obstacles to the clinical use of hyperthermic therapy is the difficulty in obtaining

more deĄned heating points with greater spatial and temporal control; as a consequence,

many researchers in the Ąeld of oncology consider hyperthermia a very complicated form of

treatment to be used (RHOON et al., 2016). Therefore, it is necessary to develop technologies

that meet the current clinical demands and enable the use of this form of treatment.
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Due to its long distance attenuation resistance and the greater possibility of power

control being delivered in different regions along the propagation axis, Frozen Waves type

beams are important substitutes for existing technologies and have the prospect of satisfy-

ing the technical demands for the use of hyperthermia, especially in more internal tissues.

(DORRAH et al., 2016a; DORRAH et al., 2016b) Thus, that these beams need to be studied

and designed for the GHz and THz frequencies.

1.3 Objectives

1.3.1 General Objectives

• To study analytically the electromagnetic beams in the frequencies of THz and GHz in

order to obtain exact solutions to Maxwell’s equations;

• To contribute with the study of non-diffracting beams, especially in the range of GHz

and THz;

• To study Frozen Waves in GHz and THz aiming to model it in regions with the wave-

length size order;

• To study the possibility of generation of Bessel beams in GHz;

• To attest the generation of the hyperthermic effect from beams in millimeter and sub-

millimeter wave.

1.3.2 Specific Objectives

• To make a bibliographical review about non-diffraction beams and their main forms of

generation;

• To develop hypotheses and formulate exact solutions for the wave equation for Bessel

and Frozen Waves beams in the millimeter sub-millimeter frequency bands;

• To simulate, in CST Microwave Studio and / or MATLab, the non-diffraction beams

theoretically proposed, together with a proposed antenna that has the function of gen-

erating them;

• To continue the development of optical beam research at the State University of Camp-

inas.
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1.4 Reading Guides

This work is divided in 6 chapters. Following this brief introduction, chapter 2 sum-

marizes the topics and knowledge that are required for the complete understanding of this

work. In Chapter 3, a theoretical description of Truncated Bessel Beams in GHz and THz

frequency is provided. In Chapter 4, we suggest an mean of generation of the beams discussed

on the previous chapter via the design of an 10 GHz Leaky Wave antenna. In Chapter 5,

we suggest a theoretical description of Continuous Frozen Waves when propagating trough

absorptive medium. In chapter 6 we analyze the possibility of generation of Frozen Waves on

biological Tissues. For closure, there is a conclusion and future perspectives section.
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2 Literature Review

2.1 Introduction to Electromagnetic Beams

In this section we are going to present the fundamental concepts involving the elec-

tromagnetic beams that are going to be cited/used in this dissertation.

This section is divided into three subsections. The Ąrst covers an important ordinary

beam, the Gaussian Beam (NEWELL, 2018). The second covers one of the most renowned

non-diffraction wave: the Bessel beam (HERNÁNDEZ-FIGUEROA et al., 2007). Lastly, we

introduce a technique to model the shape of stationary wave Ąelds; or, in other words, the

Frozen Wave (ZAMBONI-RACHED, 2004).

2.1.1 Gaussian Beam

In this subsection we present the Gaussian Beam by constructing its solution using

super-positions of plane waves. In the scalar case, the Gauss Beam is made of plane waves that

propagate in directions that goes from 0° to 90° with respect to the direction of propagation

(which is the "+𝑧" direction).

Initially, we consider an Electric Field given by:

�⃗�(�⃗�, 𝑡) = 𝐸𝑦0𝑒
𝑖�⃗�≤�⃗�𝑒⊗𝑖æ𝑡ŷ (2.1)

where:

𝑘2 = 𝑘2
𝑥 + 𝑘2

𝑦 + 𝑘2
𝑧 =

æ2

𝑐
(2.2)

It is clear that Equation 2.1, jointly with Equation 2.2, obeys the wave equation;

however, it does not obey Gauss’s Law. Hence, the Electric Field can not be given by Equation

2.1 and needs to be corrected.

In order to do so, we need to suppose an Electric Field component in the ẑ direction,

whose value is easily obtained by using Gauss Law. It results in Equation 2.3 below:

𝐸𝑧 = ⊗
∫︁ 𝜕𝐸𝑦

𝜕𝑦
𝑑𝑧 (2.3)
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Next, we will do a superposition of these waves in which they have the same frequency

and propagate in directions parallel to �⃗� = 𝑘𝑥x̂ + 𝑘𝑦ŷ + 𝑘𝑧ẑ. We are going to work with the

component of the Electric Ąeld in the ŷ direction (Equation 2.1) while the component 𝐸𝑧

can be calculated using Equation 2.3.

We need to consider now a �⃗� given by �⃗� = 𝐸𝑦ŷ + 𝐸𝑧ẑ, in which 𝐸𝑦 is described on

Equation 2.4 bellow.

𝐸𝑦 = 𝑒⊗𝑖æ𝑡
∫︁ ω

c

⊗
ω
c

𝑑𝑘𝑦

∫︁

√
ω
c

⊗𝑘2
y

⊗

√
ω
c

⊗𝑘2
y

𝑑𝑘𝑥Λ(𝑘𝑥, 𝑘𝑦)𝑒𝑖𝑘x𝑥𝑒𝑖𝑘y𝑦𝑒𝑖𝑧
√

ω
c

⊗(𝑘2
x+𝑘2

y)ŷ (2.4)

Note that, in Equation 3.18, 𝑘𝑧 =
√︁

æ
𝑐

⊗ (𝑘2
𝑥 + 𝑘2

𝑦) in order to select only the positive

contributions. Also, the limits of the integrals were selected in order to guarantee that 𝑘𝑥, 𝑘𝑦

and 𝑘𝑧 are real.

In summary, the solution to Equation 3.18 clearly depends on the spectrum Λ(𝑘𝑥, 𝑘𝑦).

Then we are going to deĄne the spectrum as:

Λ(𝑘𝑥, 𝑘𝑦) =
𝑟2

𝑜

4Þ
𝑒

⊗r2

0

4
𝑘2

x𝑒
⊗r2

0

4
𝑘2

y (2.5)

It is clear that the spectrum that we chose is a product of two Gaussian functions

centered in 𝑘𝑥 = 𝑘𝑦 = 0.

Unfortunately, it is not possible to Ąnd an exact solution to Equation 3.18 when the

spectrum is given by Equation 2.5; however, we can make the following approximations:

1. The spectrum will only have appreciable values when 𝑘𝑥 and 𝑘𝑦 are much smaller than

æ/𝑐 = 𝑘, hence:
√︃

æ2

𝑐2
⊗ (𝑘2

𝑥 + 𝑘2
𝑦) ≡ æ

𝑐
⊗ (𝑘2

𝑥 + 𝑘𝑦)2

2æ/𝑐
(2.6)

2. Write the integration limits as:
∫︁

∞

⊗∞

𝑑𝑘𝑦

∫︁

∞

⊗∞

𝑑𝑘𝑥 (2.7)

With these paraxial approximations one can solve Equation 3.18 as:

𝐸𝑦 =
𝑒𝑖𝑘(𝑧⊗𝑐𝑡)

(1 + 2𝑖𝑧
𝑘𝑟2

0

)
exp

[︂ ⊗𝜌2

𝑟2
0(1 + 2𝑖𝑧

𝑘𝑟2

0

)

⎢

(2.8)

Which is a mathematical description of a Gaussian Beam, pending the calculation of

𝐸𝑧 (that can be performed using Equation 2.3).
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Besides, we can verify that this beam suffers from transverse diffraction; and, it can

be proved that it doubles the initial width (spot radius, Δ𝜌0) after having traveled a certain

distance 𝑧, called the diffraction length, expressed in Equation 2.9 below. (HERNÁNDEZ-

FIGUEROA et al., 2007)

𝑧 =

√
3𝑘0Δ𝜌2

0

2
(2.9)

Finally, by looking at Equation 2.9 one can conclude that as more concentrated

(smaller value for Δ𝜌2
0) a Gaussian Beam is, the fastest it spreads itself.

2.1.2 Bessel Beam

In this section we are aiming to present and mathematically describe a Bessel Beam,

which is a very well known example of non-diffracting beam. In order to do so, we start

by considering the wave equation in rectangular coordinates, as follows in Equation 2.10.

(BALANIS, 2012)

𝜕2Ψ
𝜕𝑥2

+
𝜕2Ψ
𝜕𝑦2

+
𝜕2Ψ
𝜕𝑧2

⊗ 1
𝑐2

𝜕2Ψ
𝜕𝑡2

= 0 (2.10)

What we are trying to accomplish here, is to use a correct superposition of plane

waves to obtain a Bessel Beam. Initially, we consider a general and monochromatic solution

to Equation 2.10 as demonstrated in Equation 2.11.

Ψ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡
∫︁

∞

⊗∞

𝑑𝑘𝑥

∫︁

∞

⊗∞

𝑑𝑘𝑦

∫︁

∞

⊗∞

𝑑𝑘𝑧𝑒
𝑖�⃗�≤�⃗�𝑆(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) (2.11)

where:

𝑆(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = 𝑆(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)Ó
[︂

√︁

𝑘2
𝑥 + 𝑘2

𝑦 + 𝑘2
𝑧 ⊗ æ

𝑐

⎢

(2.12)

and 𝑆(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is an arbitrary function of 𝑘𝑥, 𝑘𝑦, and 𝑘𝑧, i.e., the spectrum.

To deal with the mathematical difficulty we are going to perform the superposition

noting that:

�⃗� = 𝑘r̂ = 𝑘[cos 𝜃′ẑ + sin 𝜃′ cosã′x̂ + sin 𝜃′ sinã′ŷ] (2.13)

where 𝑘 = æ/𝑐.
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Then, we are going to make the following superposition:

Ψ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡
∫︁ 2Þ

0

∫︁ Þ

0
𝐴(𝜃′, ã′)𝑒𝑖�⃗�≤�⃗�𝑑𝜃′𝑑ã′ (2.14)

where 𝐴(𝜃′, ã′) is the angular spectrum, and here it is chosen to represent wave vectors over

a conical surface with aperture 𝜃0:

𝐴(𝜃′, ã′) = 𝑒𝑖𝑛ã′

Ó(𝜃′ ⊗ 𝜃0) (2.15)

That said, we can write

Ψ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡𝑒𝑖𝑘 cos 𝜃0𝑧
∫︁ 2Þ

0
𝑒𝑖𝑛ã′

𝑒𝑖𝑘 sin 𝜃0[𝑥 cos ã′+𝑦 sin ã′]𝑑ã′ (2.16)

Now, we transform the variables of Equation 2.16 from cylindrical to rectangular

coordinates using the relations present on Equation 2.17:

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝑥 = 𝜌 cosã

𝑦 = 𝜌 sinã

𝑧 = 𝑧

(2.17)

then, we obtain:

Ψ(𝜌, ã, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡𝑒𝑖𝑘 cos 𝜃0𝑧
∫︁ 2Þ

0
𝑒𝑖𝑛ã′

𝑒𝑖𝑘 sin 𝜃0[𝜌 cos ã cos ã′+𝜌 sin ã sin ã′]𝑑ã′ (2.18)

Performing the change of variables given by 𝑢 = ã′ ⊗ã, and using the trigonometrical

identity of the cosine of the subtraction of two angles, we shall have:

Ψ(𝜌, ã, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡𝑒𝑖𝑘 cos 𝜃0𝑧𝑒𝑖𝑛ã
∫︁ 2Þ

0
𝑒𝑖𝑛𝑢𝑒𝑖[𝑘 sin(𝜃0)𝜌] cos 𝑢𝑑𝑢 (2.19)

Finally, we are now able to solve the integral on Equation 2.19, and Ąnd the expression

for the Bessel Beam of the 𝑛𝑡ℎ order; presented on Equation 2.20.

Ψ(𝜌, ã, 𝑧, 𝑡) = 𝐴𝑒⊗𝑖æ𝑡𝑒𝑖𝑘z𝑧𝑒𝑖𝑛ã𝐽𝑛(𝑘𝜌𝜌) (2.20)

where 𝑘𝜌 = 𝑘 sin(𝜃0), 𝑘𝑧 = 𝑘 cos(𝜃0); so, 𝑘2 = 𝑘2
𝜌 + 𝑘2

𝑧 .
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As it was stated before, the Bessel Beam is a non-diffracting wave; which means that

its transverse shape is invariant, i.e., resistant to diffraction while propagating, with spot (in

the case of the zero-order) approximately given as:

Δ𝜌 ≡ 2.405
𝑘𝜌

(2.21)

Unfortunately, this speciĄc solution to the wave equation can not be generated because

it carries inĄnite energy Ćux. However, in this work, we will analyse Bessel Beams truncated

by an aperture with radius 𝑅 which are solutions that can be physically realized due to

the Ąnite amount of energy associated with the beam. It should be noted that, due to the

limited energy associated to the beam, the non-diffraction property is limited to a certain

range deĄned as

𝑍 =
𝑅

tan 𝜃
(2.22)

since 𝑅 ⪰ 1
𝑘ρ

.

2.1.3 Frozen Waves

In this subsection we are going to present two types of localized waves, named Frozen

Waves, that allow us to model the shape of wave Ąelds. Both of then are found using su-

perposition of equal-frequency Bessel Beams. The main difference between then is how these

superposition are made; which changes its outcome. (ZAMBONI-RACHED, 2006)

The main goal here is to have ♣Ψ(𝜌 = 0)♣2 = ♣𝐹 (𝑧)♣2 for any value of 𝑧 where 𝐹 (𝑧) is

an arbitrary function.

The Ąrst example of this technique, so-called discrete Frozen Waves, is obtained by

using a discrete superposition of Bessel Beams and aim to control the beam longitudinal

intensity shape within a chosen interval 0 ⊘ 𝑧 ⊘ 𝐿; where, 𝑧 is the propagation axis and

𝐿 is a distance much greater than the wavelength. The fact that one is able to control the

intensity until distances much farther than the wavelength guarantees that this solution to

the wave equation has the capacity of propagating much farther than a Gaussian Beam or

any other ordinary beam. (ZAMBONI-RACHED, 2004; ZAMBONI-RACHED et al., 2005)

The second one, so-called discrete Frozen Wave, is obtained by using a continuous

superposition of Bessel Beams and aim to control the beam longitudinal intensity shape

within a very small portion of the propagation axis. This solution emerged from the necessity
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of Ąnding results for constructing a wave pattern over regions equivalent in size to a few times

the wavelength that leads to highly non-paraxial beams. (ZAMBONI-RACHED et al., 2017)

2.1.3.1 Discrete Frozen Waves

In order to describe mathematically a Discrete Frozen Wave, we start by taking into

account the Bessel Beam from Equation 2.19.

By considering the superposition of 2𝑁 + 1 beams at the same frequency, but with

different 𝑘𝑧 and 𝑘𝜌, we have:

Ψ(𝜌, 𝑧, 𝑡) = 𝐴𝑒⊗𝑖æ𝑡
𝑁
∑︁

𝑛=⊗𝑁

𝐽0(𝑘𝜌𝑛𝜌)𝑒𝑖𝑘zn𝑧 (2.23)

where 𝑘2
𝜌𝑛 = 𝑘2 ⊗ 𝑘2

𝑧𝑛.

In these conditions, any longitudinal pattern express by a function 𝐹 (𝑧) can be ob-

tained by doing:

𝐹 (𝑧) ≡
𝑁
∑︁

𝑛=⊗𝑁

𝐴𝑛𝑒
𝑖 2π

L
𝑛𝑧 (2.24)

where 0 ⊘ 𝑧 ⊘ 𝐿.

Intuitively, it is desirable to make, in Equation 2.23, 𝑘𝑧𝑛 = 2Þ𝑛
𝐿

because that would

result in a simple Fourier Series when 𝜌 = 0. However, that is not a good choice due to two

reasons:

1. Once 𝑛 < 0, the values for 𝑘𝑧𝑛 will be negative; hence, there will be undesired propa-

gation in ⊗𝑧 direction.

2. This choice would not be appropriated for cases where 𝐿 ⪰ Ú.

Therefore, we choose:

𝑘𝑧𝑛 = 𝑄+
2Þ𝑛
𝐿

(2.25)

where, Q is a value chosen accordingly to the situation ant the desired spot radius through

Equation 2.26

𝑄 =

√︃

(︂

æ

𝑐

)︂2

⊗
(︂2.4

Δ𝜌

)︂2

(2.26)



Chapter 2. Literature Review 30

Thus, in order to satisfy the forward propagation requirements, we must have:

0 ⊘ 𝑄+
2Þ𝑛
𝐿

⊘ æ

𝑐
(2.27)

From Equation 2.27, we can identify the maximum number of terms for our series

once we have chosen values for 𝑄, 𝐿 and æ.

Thereby, Equation 2.23 for 𝜌 = 0 becomes:

Ψ(𝜌, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡𝑒𝑖𝑄𝑧
𝑁
∑︁

𝑛=⊗𝑁

𝐴𝑛𝑒
i2πnz

L (2.28)

Analysing Equation 2.28, it is clear that we have two exponential functions multiplied

by a Fourier Series of 𝐹 (𝑧). Hence, that results approximately in the desired beam; and the

resulting Ąeld (Frozen Wave) is given by:

Ψ(𝜌, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡𝑒𝑖𝑄𝑧
𝑁
∑︁

𝑛=⊗𝑁

𝐴𝑛𝐽0(𝑘𝜌𝑛𝜌)𝑒
i2πnz

L (2.29)

Lastly, it is not hard to show that, if we do the superposition indicated on Equation

2.29 but replacing the zeroth order Bessel beam for one with a higher order Û, we shall

observe that the longitudinal intensity pattern shall be shifted to approximately 𝜌 = 𝜌Û from

the axis 𝜌 = 0, i.e.,

Ψ(𝜌, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡𝑒𝑖𝑄𝑧
𝑁
∑︁

𝑛=⊗𝑁

𝐴𝑛𝐽Û(𝑘𝜌𝑛𝜌)𝑒𝑖Ûã𝑒
i2πnz

L (2.30)

and

♣Ψ(𝜌 = 𝜌Û, 𝑧, 𝑡)♣2 ≡ ♣𝐹 (𝑧)♣2 (2.31)

where

𝜌Û =
𝑋Û√
𝑘2 ⊗𝑄2

(2.32)

with 𝑋Û such that, 𝐽Û(𝑥) has its maximum value in 𝑥 = 𝑋Û.

2.1.3.2 Continuous Frozen Waves

The so-called Continuous Frozen Wave is obtained by using a continuous superposition

of Bessel Beams and aims to control the beam longitudinal intensity shape within a very
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small portion of the propagation axis, i.e., over regions equivalent in size to a few times the

wavelength, which leads to highly non-paraxial beams. (ZAMBONI-RACHED et al., 2017;

ZAMBONI-RACHED; RECAMI, 2008)

When we are taking into account highly non-paraxial beams conĄgurations in which

they are heavily focused, in general, it is not possible to treat them with paraxial theories,

nor with scalar approaches (GARAY-AVENDAÑO; ZAMBONI-RACHED, 2014).

At this point, our goal is to present a mathematically simple approach capable of

describing non-paraxial electromagnetic beams with fast convergence. For simplicity sake,

we are taking into account only the scalar version of the method.

We start by considering a superposition of zero-order Bessel Beams, multiplied by a

spectrum function 𝑆(𝑘𝑧), over the longitudinal wavenumber 𝑘𝑧.

Ψ(, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡
∫︁ æ/𝑐

⊗æ/𝑐
𝑆(𝑘𝑧)𝐽0

(︂

𝜌
√︁

æ2/𝑐2 ⊗ 𝑘2
𝑧

)︂

𝑒𝑖𝑘z𝑧𝑑𝑘𝑧 (2.33)

What we are trying to do here is to obtain a 𝑆(𝑘𝑧), in Equation 2.33 and in its

solution, that yield the following approximated longitudinal intensity pattern (except for a

multiplicative constant):

♣Ψ(𝜌 = 0, 𝑧, 𝑡)♣ ≡ ♣𝐹 (𝑧)♣2 (2.34)

In Equation 2.33, the limits of the integral is set in order to avoid evanescent waves;

however, it allows the existence of counter-propagating Bessel Beams. In order to prevent it,

we must chose a 𝑆(𝑘𝑧) that mitigates or annul such contributions.

As it is going to be clear, to solve Equation 2.33, for any 𝑆(𝑘𝑧) we need to take it into

a form of a Fourier Series. But Ąrst, we consider 𝑆(𝑘𝑧) a constant as expressed in Equation

2.35 below.

𝑆(𝑘𝑧) =
𝑐

2æ
(2.35)

Thereby, solving the integral in Equation 2.33 we obtain (GRADSHTEYN; RYZHIK,

2014):

Ψ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡sinc
(︂

√︃

æ2

𝑐2
𝜌2 +

æ2

𝑐2
𝑧2

)︂

(2.36)
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Afterwards, we consider 𝑆(𝑘𝑧) as:

𝑆(𝑘𝑧) =
𝑐

2æ
𝑒𝑖2Þ𝑛𝑘z/𝑘 (2.37)

Then, as solution, we get:

Ψ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡sinc
(︂

√︃

æ2

𝑐2
𝜌2 +

(︂

æ

𝑐
𝑧 + Þ𝑛

)︂2)︂

(2.38)

Lastly, we consider 𝑆(𝑘𝑧) as:

𝑆(𝑘𝑧) =
∞
∑︁

𝑛=⊗∞

𝐴𝑛𝑒
𝑖2Þ𝑛𝑘z/𝐾 (2.39)

within

⊗æ
𝑐

⊘ 𝑘𝑧 ⊘ æ

𝑐
(2.40)

where 𝐾 = 2𝑘 = 2æ
𝑐
, and 𝐴𝑛 are the constants of the newly formulated Fourier Series

expressed in Equation 2.39.

𝐴𝑛 =
1
𝐾

∫︁ æ/𝑐

⊗æ/𝑐
𝑆(𝑘𝑧)𝑒𝑖2Þ𝑛𝑘z/𝑘𝑑𝑘𝑧 (2.41)

By looking at Equation 2.41 it can be shown that, in order to obtain the relation

expressed in Equation 2.34, we can chose 𝐴𝑛 = 1
𝐾
𝐹 (⊗2Þ𝑛/𝐾) (ZAMBONI-RACHED; RE-

CAMI, 2008; ZAMBONI-RACHED et al., 2017).

As for the solution of Equation 2.33, we have:

Ψ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒⊗𝑖æ𝑡
∞
∑︁

𝑛=⊗∞

𝐹
(︂⊗2Þ𝑛

𝐾

)︂

sinc
(︂

√︃

æ2

𝑐2
𝜌2 +

(︂

æ

𝑐
𝑧 + Þ𝑛

)︂2)︂

(2.42)

According to (ZAMBONI-RACHED; RECAMI, 2008), this solution represents a con-

tinuous Frozen Wave and it is resistant to diffraction effects. Its spot can be calculated using

Equation 2.43 below.

𝑟0 =
2.4

√︁

æ2

𝑐2 ⊗𝑄2
(2.43)
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2.2 Effect of Millimeter and Sub-Millimeter Waves in Human Body

By enhancing the fundamental knowledge of the particularities of the interaction of

electromagnetic waves and biological tissues, the biological effects studies give support to

the development of new bio-medical technologies and applications for electromagnetic waves.

(WILMINK; GRUNDT, 2011) Biological effects studies are also responsible for health hazard

evaluation and making correct and safe use of electromagnetic waves and systems.

In this section, we are going to present several concepts regarding the use, applications

and thermal effects of millimeter and sub-millimeter waves. Besides, we are going to provide

background concepts in biophysics and THz technology.

2.2.1 The Terahertz Region

In the Electromagnetic Spectrum, the Terahertz Region comprehends the frequency

of 0.1 to 10 THz or the wavelengths ranging from 30 to 3000 Ûm (LIN, 2011).

In therms of energy, the Terahertz Region stands out for its photon ranging in quan-

tum energy between 0.4 and 4.1 meV. Such energy levels is several orders of magnitude below

the energy required to ionize, or remove, valence electrons from biological molecules (several

eV); therefore THz radiation is classiĄed as non-ionizing (WILMINK; GRUNDT, 2011; LIN,

2011).

Notwithstanding that THz radiation, due to its intrinsic non-ionizing feature, does

not form of highly reactive free radicals, it can cause thermal effects that are indistinguishable

from effects observed from bulk heating. (WILMINK; GRUNDT, 2011)

2.2.2 Terahertz-Tissue Interaction

As it happens to any other dielectric-like material, a fraction of the photon that are

incident to a tissue is reĆected and the remaining portion of the photons is transmitted.

Mathematically, we can express the transmitted power as

𝑇 = 1 ⊗𝑅 (2.44)

where, 𝑅 represent the fraction of the energy that is lost by surface reĆection.

The reĆection 𝑅 is due to the index of refraction mismatch between the air and the
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tissue, as for example, the skin. These losses can be quantiĄed via Equation 2.45 below.

𝑅 =
(︂

𝑛1 ⊗ 𝑛2

𝑛1 + 𝑛2

)︂2

(2.45)

As an example of the use of Equation 2.45, according to Wilmink et al. (2010) the

optical properties of excised porcine skin have real index of refraction (𝑛) ranging from 2.2 to

1.5 in frequencies between 0.1 and 2.0 THz. These values represent a surface reĆection ranging

from 15% and 9%. Furthermore, it is worthy to emphasize that the airŰtissue interface leads

to appreciable surface loses. (LIN, 2011)

2.2.2.1 Interaction at a Cellular Level

In general, when electromagnetic radiation penetrates skin it is rapidly absorbed by

chromophores and heating occurs. According to Wilmink e Grundt (2011), many biological

components of the tissues are responsible for the absorption, such as, for example, DNA,

proteins and carbohydrates; however, it is a consensus in numerous researches that water

is the most absorbing substance present in biological tissues, specially in millimeter and

sub-millimeter wavelengths. (PAL et al., 2002; PAL; ZEWAIL, 2004)

Beyond other unique properties, water has the characteristic of engaging in both inter-

and intra-molecular hydrogen bonding with neighboring molecules. Such interaction results

in collective vibrational modes generating heat. (LIN, 2011)

According to Welch et al. (2011), the absorption is responsible for the heating and

the temperature rise is proportional to the total energy absorbed. The mean variation of

temperature an be calculated using Equation 2.46 below.

Δ𝑇 =
Û𝑎𝐻

𝜌𝑐
(2.46)

where, in this case, 𝑐 represents the heat capacity and 𝜌 is the density of the tissue. The total

𝜌𝑐 is estimated, for tissues, to be around 4.2𝐽 cm⊗3°𝐶⊗1. Besides, 𝐻 is the radiant exposure

measured in 𝐽 cm⊗2.

It is important to point out that when dealing with such distinct Ąelds, as optics and

heat transfer, there are several duplication of symbols

2.2.3 Thermal Energy Induced in Tissues by Electromagnetic Waves

So far, we know that laser irradiated tissue responds with a fully dissipative process

of absorbing photons and increasing its temperature. Furthermore, in conjunction with this
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effect, there will be a diffusion of heat to surrounding areas that are cooler. (WELCH et al.,

2011) Hence, it is necessary to make a careful analysis of the processes and consequences

related to applying electromagnetic waves in biological tissues.

But Ąrst, we need to evaluate the amount of energy that is deposited into the tissue.

This calculation is the rate of heat generation and is deĄned in Equation 2.47 below.

𝑆(𝑟, 𝑧) = Û𝑎(𝑟, 𝑧)Φ0(𝑟, 𝑧) (2.47)

where Û𝑎(𝑟, 𝑧) is the material absorption coefficient at a given point; and Φ0(𝑟, 𝑧) is the

irradiance at some point in the tissue measured in (W/m2).

Using Equation 2.47, it is possible to evaluate, for any arbitrary location, the temper-

ature rise (K) as shown in Equation 2.48

Δ𝑇 (𝑟, 𝑧) =
𝑆(𝑟, 𝑧)Δ𝑡

𝜌𝑐
(2.48)

where, Δ𝑡 is the time of exposition to the electromagnetic radiation; 𝜌 is the density of the

tissue (g/m3); and, 𝑐 is the speciĄc heat of the tissue (J/g°K).

As stated before, we need to be careful and take in account all the processes of heat

transfer. So far, we have acquainted only the irradiation form of heat transfer. However, when

heating a speciĄc local a heat gradient will form and try to dissipate the thermal energy to

surrounding areas (conduction process). In addition to that, in biological tissues, there will be

heat spreading because of the blood that is perfused through the vascular network. According

to Welch et al. (2011), the arterial network is very speciĄc for each type of tissue and has

a unique geometry. This feature results in a convection process that interfere in the total

energy of the system.

According to Lin (2011), the conduction driven by a temperature gradient can be

described by Fourier’s Law.

𝑞𝑐𝑜𝑛𝑑 = ⊗𝑘𝐴Δ𝑇
Δ𝑋

(2.49)

where, 𝑞𝑐𝑜𝑛𝑑 is the heat Ćux in (W), 𝐴 is the area of the irradiated tissue, 𝑘 is the thermal

conductivity, and ∆𝑇
∆𝑋

is the temperature gradient in the direction of the heat Ćow.

Besides, according to Welch et al. (2011), the convection process occur when a solid

material is in contact with a Ćuid at a different temperature. In the biological case, the

irradiated tissue is in a different temperature than the blood that passes through the veins and
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arteries. In order to calculate the amount of heat exchanged by convection we use Newton’s

law of cooling, described in Equation 2.50 below.

𝑞′′

𝑐𝑜𝑛𝑣 = ℎ(𝑇𝑠 ⊗ 𝑇𝑎) (2.50)

where, 𝑇𝑠 is the tissue temperature, 𝑇𝑎 is the surrounding temperature, 𝑞′′

𝑐𝑜𝑛𝑣 is the heat Ćux

in (𝑊/𝑚2), and ℎ is the the convective coefficient(W/m2°K).

The convective coefficient is the hardest part to acquaint in Equation 2.50 because

there exists four distinguishing characteristics that alter the intensity of the convection pro-

cess. (WELCH et al., 2011)

Lastly, for completeness, we can assess the heat transport arising from the spontaneous

emission of EM waves by matter, so-called Radiative. (LIN, 2011) This process is described

by StefanŰBoltzmannŚs law, as follows:

𝑞𝑟𝑎𝑑 = à𝜖
⎞

𝑇 4
𝑆 ⊗ 𝑇 4

𝑎

)︁

(2.51)

where 𝑞𝑟𝑎𝑑 is the heat Ćux in (W); à is the StefanŰBoltzmann constant 5.670 × 10⊗8 J m⊗2

K⊗4 s⊗1; and, 𝜖 is the emissivity.

2.2.3.1 Thermal Damage to Cells and Tissues

When a biological tissue is submitted to heat the kinetic energy of the molecules are

increased generating a temperature rise. And, if the kinetic energy of the molecules becomes

greater than the intramolecular bounds the tissue starts to deteriorate. (LIN, 2011)

In general, the thermal effects on tissues are divided into three categories: low tem-

perature (43°𝐶 ⊗ 100°𝐶) middle temperature zone (100°𝐶 ⊗ 300°𝐶), and high temperature

zone (300°𝐶⊗1000°𝐶). In general, most modern electromagnetic sources do not have enough

power to induce temperature rises to provoke middle or high temperature zones. Therefore

the study of the thermal effects on the low temperature zone is the mos relevant for this

work.

A spatiotemporal temperature increase can provoke several damage to the tissue. At

the cellular level, damage includes - but not limited to - cellular membrane deformation,

DNA damage, death via necrotic mechanisms.

The amount of time in which the tissue is exposed to high temperatures drives the

amount and gravity of the damage. Research suggests that the point of cellular death can be
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achieved with a temperature of 45°𝐶 for 30 min. More speciĄc data can be found in (WELCH

et al., 2011).
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3 Generation of Beams Truncated by Finite

Apertures in Millimeter and Sub-millimeter

Wavelengths

It is well known the importance of studying wave beams to establish an analytic

description of their propagation. As a result of that, many works have been done in the

characterization of different beams, especially in optical frequencies.

An example of these works includes (GORI et al., 1987), in which a Bessel beam is

apodized by a Gaussian function; and, therefore it can becomes an experimentally realizable

version of a Bessel Beam with Ąnite energy, the Bessel-Gauss beam.

Despite the existence of works describing Ąnite energy Bessel beams, most of then

still meet mathematical difficulties and requires numerical simulations. These difficulties are

even more evident when one tries to describe beams in GHz and THz range of frequencies

and/or to describe waves truncated by Ąnite apertures.

As for the truncated beams, there are rare works, mainly based on the Fresnel Diffrac-

tion Integral, describing their behavior. One of the best examples is presented in (WEN;

BREAZEALE, 1988), in which superposition of Gaussian beams described axially symmetri-

cal beams truncated by circular apertures. The method requires the calculation of superpo-

sition coefficients; and, in order to do that, it is necessary to adopt computational optimiza-

tion processes. There were some attempts to simplify this method, as presented in (DING;

ZHANG, 2004).

To deal with the mathematical difficulties present on the previous methods, Zamboni-

Rached, Recami, and Balma developed a simple and effective method to describe some im-

portant wave beams truncated by Ąnite apertures. (ZAMBONI-RACHED et al., 2012) In

this method, important truncated beams can be obtained by means of BesselŰGauss beam

superposition, whose coefficients are found in a straightforward manner.

In this chapter we use the method proposed in (ZAMBONI-RACHED et al., 2012)

to yield scalar and vectorial analytical solutions to plane waves, Gauss, Bessel-Gauss, and

Bessel beams truncated by circular apertures in GHz and THz frequencies.
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3.1 Scalar Approach

We start with the Fresnel Diffraction Integral in cylindrical coordinates, assuming

azimuthal symmetry, presented on Equation 3.1. This equation is used to yield the paraxial

solution for a monochromatic scalar wave Ąeld when knowing its shape on the plane 𝑧 = 0.

It should be noticed that we are assuming and suppressing a time dependency of the

kind exp(⊗𝑖æ𝑡).

Ψ(𝜌, 𝑧) =
⊗𝑖𝑘
𝑧

exp

⎟

𝑖

⎠

𝑘𝑧 +
𝑘𝜌2

2𝑧

⎜⟨

∫︁

∞

0
å(𝜌′, 0) exp

⎠

𝑖𝑘
𝜌′2

2𝑧

⎜

𝐽0

⎠

𝑘
𝜌𝜌′

𝑧

⎜

𝜌′𝑑𝜌′ (3.1)

where 𝑘 is the wavenumber, Ú is the wavelength, and å(𝜌′, 0) indicates the Ąeld on 𝑧 = 0

(the excitation Ąeld).

Using Equation 3.1 one can yield a Bessel-Gauss beam by choosing as excitation the

following pattern.

å(𝜌′, 0) = 𝐴𝐽0(𝑘𝜌𝜌
′) exp(⊗𝑞𝜌′2) (3.2)

By applying Equation 3.2 in 3.1 we get the so-called BesselŰGauss beam given by:

Ψ𝐵𝐺(𝜌, 𝑧) = ⊗ 𝑖𝑘𝐴

2𝑧𝑄
exp

⎟

𝑖

⎠

𝑘𝑧 +
𝜌2𝑘

2𝑧
⊗ æ𝑡

⎜⟨

𝐽0

⎠

𝑖𝑘𝑘𝜌𝜌

2𝑧𝑄

⎜

𝑒𝑥𝑝

⎟

⊗ 1
4𝑄

⎠

𝑘2
𝜌 +

𝑘2𝜌2

𝑧2

⎜⟨

(3.3)

where 𝑘𝜌 is the transverse wavenumber and 𝑄 = 𝑞 ⊗ 𝑖𝑘
2𝑧

.

The result obtained in Equation 3.3 is one of the few solutions to the Fresnel diffraction

integral that can be obtained analytically. In this particular case, we are considering a Bessel

beam apodized by a Gaussian function. For a beam truncated by Ąnite aperture of radio

𝑅, Ąnding such solution becomes rather complicated because the upper limit of the integral

becomes 𝑅; which, in general, ends up requiring lengthy numerical calculations.

However, if we consider the solution obtained in Equation 3.3, and apply linearity

property, we can write the following solution to the Fresnel diffraction integral:

Ψ(𝜌, 𝑧) = exp(𝑖𝑘𝑧)å(𝜌, 𝑧) (3.4)
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with:

å(𝜌, 𝑧) = ⊗ 𝑖𝑘

2𝑧
exp

⎠

𝑖𝜌2𝑘

2𝑧

⎜

𝑁
∑︁

𝑛=⊗𝑁

𝐴𝑛

𝑄𝑛

𝐽0

⎠

𝑖𝑘𝑘𝜌𝜌

2𝑧𝑄𝑛

⎜

exp

⎟

⊗ 1
4𝑄𝑛

⎠

𝑘2
𝜌 +

𝑘2𝜌2

𝑧2

⎜⟨

(3.5)

where 𝐴𝑛 are still unknown constants, and 𝑄𝑛 are chosen as:

𝑄𝑛 = 𝑞𝑛 ⊗ 𝑖𝑘/2𝑧 (3.6)

In Equation 3.6, 𝑞𝑛 is a constant that can assume complex values and it is chosen as:

𝑞𝑛 = 𝑞𝑅 ⊗ 𝑖
2Þ𝑛
𝐿

(3.7)

where 𝑞𝑅 and 𝐿 are constants with the dimensions of a square length.

Moreover, the initial Ąeld (i.e., at 𝑧 = 0)for this superposition of beams is given by:

Ψ(𝜌, 0) = 𝐽0(𝑘𝜌𝜌)
∞
∑︁

𝑛=⊗∞

𝐴𝑛𝑒
⊗𝑞n𝜌2

(3.8)

Applying Equation 3.7 into Equation 3.8, we obtain:

Ψ(𝜌, 0) = 𝐽0(𝑘𝜌𝜌)𝑒⊗𝑞R𝜌2

∞
∑︁

𝑛=⊗∞

𝐴𝑛𝑒
i2πnρ2

L (3.9)

What we are going to show, according to (ZAMBONI-RACHED et al., 2012), is

that solution 3.5 can be used to represent (describe) important beams truncated by Ąnite

apertures of radius R. More speciĄcally, we are interested in the excitations, on the plane

𝑧 = 0, presented on Table 1.

Table 1 Ű Initial Ąeld excitation for important particular cases of localized waves

Excitation Type Equation
Truncated Plane Wave å𝑇 𝑃 (𝜌, 0) =circ( 𝜌

𝑅
)

Truncated Gaussian Beam å𝑇 𝐺(𝜌, 0) = 𝑒⊗𝑞𝜌2

circ( 𝜌
𝑅

)
Truncated Bessel Beam å𝑇 𝐵(𝜌, 0) = 𝐽0(𝑘𝜌𝜌)circ( 𝜌

𝑅
)

Truncated Bessel-Gauss Beam å𝑇 𝐵𝐺(𝜌, 0) = 𝐽0(𝑘𝜌𝜌)𝑒⊗𝑞𝜌2

circ( 𝜌
𝑅

)

Thus, in order to achieve our goal, given a beam truncated by an aperture of radius

𝑅 at 𝑧 = 0, we have to determine values of 𝐴𝑛, 𝑞𝑅 and 𝐿 that make Equation 3.9 represent

with Ądelity the excitation signals listed on Table 1.
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It is natural that, in the cases of Truncated Bessel Beams and Truncated Bessel-Gauss

Beams, the quantity 𝑘𝜌 be set as the beam transverse wavenumber. And, for the Truncated

Plane Wave or the Truncated Gauss Beam, this quantity must be equal to zero.

Besides, for all cases the function

exp (⊗𝑞𝑅𝜌
2)

∞
∑︁

𝑛=⊗∞

𝐴𝑛 exp
(︂

𝑖
2Þ𝑛
𝐿
𝜌2
)︂

(3.10)

must be approximately equal to = exp (𝑞𝜌2)𝑐𝑖𝑟𝑐( 𝜌
𝑅

).

Let us now prove that it is possible. Toward such goal, we suppose a function 𝐺(𝑟).

𝐺(𝑟) =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑒𝑞R𝑟𝑒⊗𝑞𝑟 for ♣𝑟♣ ⊘ 𝑅2

0 for 𝑅2 < ♣𝑟♣ < 𝐿/2
(3.11)

where 𝑞 is a constant.

The function 𝐺(𝑟) can be expanded in a Fourier Series:

𝐺(𝑟) =
∞
∑︁

𝑛=⊗∞

𝐴𝑛𝑒
i2πnr

L (3.12)

where ♣𝑟♣ ⊘ 𝐿/2, and it is simple to show that:

𝐴𝑛 =
1

𝐿(𝑞𝑅 ⊗ 𝑞) ⊗ 𝑖2Þ𝑛

⎭

exp
[︂(︂

𝑞𝑅 ⊗ 𝑞 ⊗ 𝑖2Þ𝑛
𝐿

)︂

𝑅2
⎢

⊗ exp
[︂

⊗
(︂

𝑞𝑅 ⊗ 𝑞 ⊗ 𝑖2Þ𝑛
𝐿

)︂

𝑅2
⎢}︂

(3.13)

At this point, by writing 𝑟 = 𝜌2 in Equation 3.11 and 3.12 the product given in 3.10

can be written as:

exp (⊗𝑞𝑅𝜌
2)

𝑁
∑︁

𝑛=⊗𝑁

𝐴𝑛 exp
(︂

𝑖
2Þ𝑛
𝐿
𝜌2
)︂

=

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝑒⊗𝑞𝜌2

for ♣𝜌♣ ⊘ 𝑅

0 for 𝑅 < ♣𝜌♣ <
√︁

𝐿/2

𝑒⊗𝑞R𝜌2

𝐺(𝜌2) ≡ 0 for ♣𝜌♣ >
√︁

𝐿/2

(3.14)

where 𝐴𝑛 are given by Equation 3.13 and 𝐺(𝜌2), given by Equation 3.12 (with 𝑟 = 𝜌2), is a

function that, according to Equation 3.11 possesses maximum values given by 𝑒(𝑞R⊗𝑞)𝑅2

(if
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𝑞𝑅 > 𝑞) or 1 (if 𝑞𝑅 < 𝑞) for 𝜌 >
√︁

𝐿/2. Since
√︁

𝐿/2 > 𝑅, it is always possible to choose 𝑞𝑅

and 𝐿 values that make 𝑒⊗𝑞R𝜌2

𝐺(𝜌2) ≡ 0 for 𝜌 ⊙
√︁

𝐿/2. Mathematically, we must have:

𝑒⊗𝑞R𝜌2

𝐺(𝜌2) ⪯ 1 (3.15)

for 𝜌 >
√︁

𝐿/2.

That implies in:

𝑒⊗𝑞R𝐿/2𝑒(𝑞R⊗𝑞)𝑅2 ⪯ 1, for 𝑞𝑅 > 𝑞 (3.16)

and, for 𝑞𝑅 < 𝑞:

𝑒⊗𝑞R𝐿/2 ⪯ 1 (3.17)

Equations 4.8 and 4.9 are the criteria that must be used when choosing 𝑞𝑅 and 𝐿.

Therefore, Equation 3.9 can be used to represent the Truncated Beams in Table 1,

in which the 𝐴𝑛 coefficients are given by Equation 3.13 with 𝑞𝑅 and 𝐿 adequately chosen

according to the criteria set by Equations 4.8 or 4.9. This way, the resulting Ąeld emanating

from the circular aperture of radius 𝑅 in 𝑧 = 0 is given by Equation 3.5.

3.2 Ensuring the Validity of the Scalar Approach

It has been seen in (ZAMBONI-RACHED et al., 2012) that the scalar method gives

a good representation for the Ąeld propagation in several situations; however, in cases where

the beam is relatively non-paraxial this method can not be used. In such cases, we need to

considerate the vectorial nature of the Ąeld.

In order to solve this problem, we can assume an Electric Field given by:

�⃗� = 𝐸𝑦ŷ + 𝐸𝑧ẑ (3.18)

and we suggest that the Ąeld component along the ŷ direction (𝐸𝑦) is equal to the scalar

Ąeld given by Equation 3.5.
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To Ąnd the axial component 𝐸𝑧 of the electric Ąeld solution we consider a free-space

propagation and apply Gauss’s Law (∇ ≤ �⃗� = 0):

𝐸𝑧 = ⊗
∫︁ 𝜕𝐸𝑦

𝜕𝑦
𝑑𝑧 (3.19)

Analysing Equation 3.19, it is clear that the partial derivative can be taken out of the

integral. By that means, we now represent Equation 3.19 as:

𝐸𝑧 = ⊗ 𝜕

𝜕𝑦

∫︁

𝑒𝑖𝑘𝑧å(𝑥, 𝑦, 𝑧)𝑑𝑧 (3.20)

where å(𝑥, 𝑦, 𝑧) is the envelop given by Equation 3.5.

Now we assume that 𝑒𝑖𝑘𝑧 varies much faster than the envelop. So that:

𝐸𝑧 ≡ ⊗𝜕å(𝑥, 𝑦, 𝑧)
𝜕𝑦

∫︁

𝑒𝑖𝑘𝑧𝑑𝑧 (3.21)

which results in:

𝐸𝑧 ≡ 𝑖𝑒⊗𝑖æ𝑡 𝑒
𝑖𝑘𝑧

𝑘

𝜕å(𝑥, 𝑦, 𝑧)
𝜕𝑦

(3.22)

Lastly, notice that ♣𝐸𝑧♣ ≡ ♣𝜕𝐸y

𝜕𝑦
♣ 1

𝑘
; also, the paraxial approximation suggests that the

variation of the envelop is much smaller than exp(𝑖𝑘𝑧). Therefore, ♣𝐸𝑧♣ is much less ♣𝐸𝑦♣ for

the paraxial regime; and, in these cases �⃗� ≡ 𝐸𝑦ŷ, justifying the scalar approach.

3.3 Results and Discussions

In this section we shall apply our descriptions for the beams in submillimeter and

millimeter wavelengths.

3.3.1 Analytic Description of the Truncated Plane Wave

We start by a plane wave whose initial excitation is represented by Ψ𝑇 𝑃 (𝜌, 0) =

circ(𝜌/𝑅). This initial Ąeld conĄguration can be modeled by Equation 3.9 by considering

𝑘𝜌 = 𝑞 = 0. For this conĄguration we adopt 𝐿 = 4𝑅2 and 𝑞𝑅 = 6/𝐿; values that satisfy

equation 3.14. Beyond that, in order to perform the simulation on MATLab, we choose

𝑓 = 50 GHz, 𝑁 = 60, and 𝑅 = 1 0cm. By that means, Figure 5 shows the initial Ąeld at

𝑧 = 0; and, the resulting Ąeld emanated by the Ąnite aperture.
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4 Generation of Bessel Beams: A Redesign of

an Antenna Model

4.1 Introduction

At optical frequencies, Bessel Beams can be generated in different ways, for example,

we can cite Durnin’s experiment (DURNIN et al., 1987) which was the Ąrst know method for

generating Bessel Beams. This method was able to generate a propagating Bessel Beam using

a laser source focusing over an annular slit positioned at the focus of a convex lens; and the

resulting beam was able to travel about 85 cm keeping its transverse intensity shape approx-

imately unchanged. As a more recent example of Bessel Beam launcher we can cite axicon-

based generation (MONK et al., 1999; ARLT; DHOLAKIA, 2000), and holography-based

(using spatial light modulator) (CHATTRAPIBAN et al., 2003; MCGLOIN; DHOLAKIA,

2005).

Unfortunately, none of the aforementioned methods can be used (some at least not

with the same simplicity) in the generation of Bessel Beams in GHz; therefore, we will focus

our attention on Bessel Beam launchers developed to operate at such wavelengths.

After a thorough analysis of the methods that have been proposed previously, we de-

cided to focus our attention on a Radial Slot Array Antenna (RLSA Antenna). The reason for

this choice are the multiple advantages that comes with it, such as being low-proĄle, planar,

single-layer, and simply fed in a single point at the center of the antenna (MAZZINGHI et

al., 2014).

In this chapter we aim to use the existing of Leaky Wave Antennas and Bessel Beam

generation (see (LEMAÎTRE-AUGER et al., 2011; FUSCALDO, 2017; FUSCALDO et al.,

2018) and references therein) to design a new antenna working in a different frequency. Also,

we shall assess the effects of one of the antenna dimensions in its radiating pattern.

This chapter is divided into 4 parts. In section 4.2, we establish the foundations

for the design of the model; and, we perform an Ąeld evaluation of the aperture antenna.

Afterwards, in section 4.3 we propose a model with a set of physical dimensions and operating

characteristics. The simulated results are presented in section 4.4 and further investigation

are developed in section 4.5.
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tor Potential can be used to derive all the Ąeld components. Therefore, we start from the

homogeneous Helmholtz equation in cylindrical coordinates:

𝜕2𝐴𝑧

𝜕𝜌2
+

1
𝜌

𝜕𝐴𝑧

𝜕𝜌
+

1
𝜌2

𝜕2𝐴𝑧

𝜕ã2
+
𝜕2𝐴𝑧

𝜕𝑧2
+ 𝑘2𝐴𝑧 = 0 (4.1)

And, from this point, one can Ąnd a generic solution (presented in Equation 4.2) for

the Magnetic Vector Potential inside this cylindrical waveguide.

𝐴𝑧 = cos(𝑘𝑧𝑧)𝑒⊗𝑖𝑛ã[𝐴1𝐻
(1)
𝑛 (𝑘𝜌𝜌) + 𝐴2𝐻

(2)
𝑛 (𝑘𝜌𝜌)] (4.2)

where 𝑘2
𝑧 + 𝑘2

𝜌 = 𝑘2.

Assuming an ã-invariant Ąeld ( 𝜕
𝜕ã

= 0), we have 𝑛 = 0 and Equation 4.2 reduces to:

𝐴𝑧 = cos(𝑘𝑧𝑧)[𝐴1𝐻
(1)
0 (𝑘𝜌𝜌) + 𝐴2𝐻

(2)
0 (𝑘𝜌𝜌)] (4.3)

We can derive expressions to the magnetic Ąeld by using �⃗� = ∇ × �⃗�; which, con-

sequently, leads to 𝐸ã = 𝐻𝜌 = 𝐻𝑧 = 0, due to the azimuthal characteristic of the Ąelds,

and

𝐸𝜌 = 𝑖
Ö𝑘𝑧𝑘𝜌

𝑘
sin(𝑘𝑧𝑧)[𝐴1𝐻

(1)
1 (𝑘𝜌𝜌) + 𝐴2𝐻

(2)
1 (𝑘𝜌𝜌)] (4.4)

𝐸𝑧 = 𝑖
Ö𝑘2

𝜌

𝑘
cos(𝑘𝑧𝑧)[𝐴1𝐻

(1)
0 (𝑘𝜌𝜌) + 𝐴2𝐻

(2)
0 (𝑘𝜌𝜌)] (4.5)

𝐻ã = 𝑘𝜌 cos(𝑘𝑧𝑧)[𝐴1𝐻
(1)
1 (𝑘𝜌𝜌) + 𝐴2𝐻

(2)
1 (𝑘𝜌𝜌)] (4.6)

It is noticeable in Equations 4.4, 4.5, and 4.6 that the Ąelds are represented as a

superposition of two Hankel functions (one outward and the other one inward). The goal

here is to obtain a Bessel-like pattern for 𝐸𝑧. For that reason, we will need to make 𝐴1 ≡ 𝐴2

by placing a metallic rim at a distance 𝜌 = 𝜌𝐵 which corresponds to one of the zeros of the

Bessel function 𝐽0(𝑘𝜌𝜌). Therefore, we will have 𝐸𝑧 = 0 at 𝜌 = 𝜌𝐵; and, consequently, we

have:

𝐴1𝐻
(1)
0 (𝑘𝜌𝜌) = ⊗𝐴2𝐻

(2)
0 (𝑘𝜌𝜌) , (4.7)
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from where we can extract an expression for 𝐴1 as being:

𝐴1 =
⊗𝐴2𝐻

(2)
0 (𝑘𝜌𝜌)

𝐻
(1)
0 (𝑘𝜌𝜌)

(4.8)

Supposing a value of 𝜌𝐵 sufficiently large (to allow several oscillations), and recalling

that for an open waveguide structure, as the one under consideration, complex waves emerge

as general source-free solutions (TAMIR; OLINER, 1963) 𝑘𝜌 is deĄned as

𝑘𝜌 = Ñ𝜌 + 𝑖Ð𝜌 (4.9)

the Hankel Functions can be approximated as:

𝐻
(1),(2)
0 ≡

√︃

2
Þ𝑘𝜌𝜌

exp
[︂

⊗𝑖(𝑘𝜌𝜌⊗ Þ

4
)
⎢

(4.10)

Using Equation 4.10 in Equation 4.8 we obtain:

𝐴1 = ⊗𝐴2 exp (2Ð𝜌𝜌𝐵) exp [2𝑖(Ñ𝜌𝜌𝐵 ⊗ Þ/4)] (4.11)

Thus, the conditions in order to make 𝐴1 ≡ 𝐴2 are presented in Equations 4.12 and

4.13.

Ð𝜌𝜌𝐵 ⪯ 1 (4.12)

Ñ𝜌𝜌𝐵 =
Þ

4
+ 𝑞Þ (4.13)

where 𝑞 ∈ Z.

These equations tell us that, in order to obtain a zeroth-order Bessel function, the

inward and backward Hankel functions must have nearly identical amplitude and they must

be out of phase.

At this point, to fully derive the Ąelds, we need to evaluate the coefficient 𝐴2. There-

fore, we need to take into consideration the type of excitation used. In this case, we want to

use a coaxial excitation that induces a current 𝐼 given by:

𝐼 = 2Þ𝑎𝐽𝑠 (4.14)
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where 𝑎 is the radius of the internal conductor, and 𝐽𝑠 is a constant current distribution (at

these frequencies penetration depth is minimal).

Assuming a very thin wave-guide (ℎ ⪯ Ú0, where ℎ is the height of the dielectric slab

and Ú0 the vacuum wavelength of the operating frequency) it is possible to use boundary

condition on 𝐻ã to determine 𝐴2. That said, at 𝑧 = 0 the current density can be found by

applying Ampère-Maxwell’s Law.

𝑘𝜌[𝐴1𝐻
(1)
1 (𝑘𝜌𝑎) + 𝐴2𝐻

(2)
1 (𝑘𝜌𝑎)] = 𝐽𝑠 (4.15)

Assuming 𝑎 very small, we can use small argument approximations for Hankel func-

tions and obtain:

𝐴2 =
⊗𝐼
4𝑖

+ 𝐴1 (4.16)

Now, we can Ąnally write expressions for 𝐸𝜌, 𝐸𝑧, and 𝐻ã which uniquely describe the

Ąelds inside the wave-guide.

𝐸𝜌 = 𝑖
𝐴1Ö𝑘𝑧𝑘𝜌

𝑘
sin(𝑘𝑧𝑧)𝐽1(𝑘𝜌𝜌) (4.17)

𝐸𝑧 = 𝑖
𝐴1Ö𝑘

2
𝜌

𝑘
cos(𝑘𝑧𝑧)𝐽0(𝑘𝜌𝜌) (4.18)

𝐻ã = 𝐴1𝑘𝜌 cos(𝑘𝑧𝑧)𝐽1(𝑘𝜌𝜌) (4.19)

It is noticeable that, unlike what we wanted, Equation 4.18 has a cosinusoidal depen-

dency. However, let us remember that we are dealing with Ąelds that are conĄned within the

wave-guide. By having the bottom plate at 𝑧 = 0, the top plate is located at a height 𝑧 = ℎ;

hence, we shall have the constant cos (𝑘𝑧ℎ) as part of Equation 4.18 resulting in the desired

𝑧-invariant Bessel function.

Also, since there are metallic walls conĄning these Ąelds, the tangential electric Ąeld

to the top and bottom plates 𝐸𝜌 must be equal to zero; therefore we must have:

𝑘𝑧ℎ = 𝑛Þ (4.20)

In conclusion, regardless of the simplicity of the model, the antenna can indeed support

the generation of a Bessel Beam resulting from the superposition of outward and inward

Hankel waves. (COMITE et al., 2018)



Chapter 4. Generation of Bessel Beams: A Redesign of an Antenna Model 52

4.3 Antenna Proposal

Since we know that the antenna presented in Figure 9 can reproduce approximately a

Bessel pattern on its initial plan; in this section, we aim to deĄne a set of physical parameters

for its construction.

Firstly, by using Ray-Optics we can interpret how Ąelds propagates, emanates and/or

radiates from the antenna. According to Figure 10, when the antenna is fed in a single point

at its center, an outward wave starts to propagate within the waveguide. Due to the Metallic

Strip Grating (MSG), the propagating Ąelds are able to leak, as indicated by the green arrows

on Figure 10. This leakage is characteristic of an open waveguide as predicted by (TAMIR;

OLINER, 1963); and, consequently, they are related to the propagating complex wave that

emerge as a general solution the this kind of problem. These waves have a complex radial

wave number 𝑘𝜌 described by Equation 4.9.

The imaginary part Ð𝜌 can be seen as an attenuation coefficient that, even though it

accounts for losses in the material, mainly describes the amount of energy leaked in form of

radiated power. In addition, this type of open waveguide structures with complex wave as

solutions are often referred to as leaky waves antennas. (TAMIR; OLINER, 1963)

It should be noted that, in this paper, we chose to work solely with the so-called

physical leaky waves which are complex waves that attenuate as they propagate and have

positive imaginary part of the radial wave number (Ð𝜌 > 0). (FUSCALDO et al., 2018)

Thereafter, when the outward waves reach the metallic rim at the extremity of the

antenna it is reĆected arising an inward wave whose leaked Ąelds are pointed towards the

z-axis (see blue arrows on Figure 11). Due to the azimuthal nature of the antenna, this

backward radiation overlaps and generate a focused Bessel Beam on the light blue region of

Figure 11 close to the axis of symmetry. Outside that region, spurious unfocused radiation

envelopes the central focused beam. (FUSCALDO et al., 2018)

As it can be seen in Figure 11, the structure and its radiated Ąelds are azimuthally

invariant. Furthermore, as it has been mentioned before, the truncation of the aperture limits

the beam propagation distance. Such limited range of propagation is commonly referred as

Non-diffracting range and can be calculated via Equation 2.22.

Besides, at this point, we would like to introduce the fact that the structure under

consideration has a periodic Metallic Strip Grating (MSG) along the radial direction 𝜌; such

feature can be seen better in Figure 12.

By all means, when a MSG is etched in a Parallel Plate Waveguide it can be seen

as a wave perturbation and it results in Leaky Waves achieved by an axially fast spatial
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Şbeam qualityŤ. And, this trade-off is controlled by the physical parameter 𝑤.
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5 Millimeter and Sub-millimeter Continuous

Frozen Waves in Absorbing Medium

Although the propositions and formulations to describe Continuous Frozen Waves

have been set, so far they are limited in the optical frequencies and in non-absorptive prop-

agation medium. In this section, we are aiming to obtain a scalar description to Continuous

Frozen Waves when propagating through absorbing medium in millimeter and sub-millimeter

frequencies.

We start by recognizing the mathematical difficulty of the problem. By looking at

Equation 2.33 and analysing the situation, it is clear that once this wave is propagating in

a absorbing medium (which means, 𝑛𝑟𝑒𝑓 = 𝑛𝑟 + 𝑖𝑛𝑖) the Bessel function will now have a

complex argument making its integration a demanding task.

In order to deal with that difficulty, Ąrstly, we deĄne Ψ(𝑥, 𝑦, 𝑧) as:

Ψ(𝜌, 𝑧) = 𝐽0(ℎ𝜌)𝑒𝑖Ñ𝑧 (5.1)

Then, we write the relation for Ñ and ℎ:

𝑛2
𝑟𝑒𝑓

æ2

𝑐2
= ℎ2 + Ñ2 (5.2)

After that, we require ℎ to be a real number and expressed as shown in Equation

5.3, where 𝑎 is a constant. Therefore, Equation 5.3 implies that Ñ is necessarily a complex

number, since 𝑛 is complex.

ℎ = 𝑎
æ

𝑐
(5.3)

Therefore, we must solve for Ñ. We start by applying Equation 5.3 in Equation 5.2

which results in:

Ñ2 = (𝑛2
𝑟 ⊗ 𝑛2

𝑖 ⊗ 𝑎2)
æ2

𝑐2
+ 𝑖2𝑛𝑟𝑛𝑖

æ2

𝑐2
(5.4)
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As a consequence of ℎ being a real number, we have Ñ = Ñ𝑟 + 𝑖Ñ𝑖 and it can be

expressed as shown in Equation 5.5.

Ñ2 = Ñ2
𝑟 ⊗ Ñ2

𝑖 + 𝑖2Ñ𝑟Ñ𝑖 (5.5)

Now, a equation system is formed using Equations 5.4 and 5.5; and, by solving it, we

are going to be able to deĄne Ñ𝑟 and Ñ𝑖.

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

Ñ2
𝑟 ⊗ Ñ2

𝑖 = (𝑛2
𝑟 ⊗ 𝑛2

𝑖 ⊗ 𝑎2)æ2

𝑐2

Ñ𝑟Ñ𝑖 = 𝑛𝑟𝑛𝑖
æ2

𝑐2

(5.6)

Isolating Ñ𝑖 in line two of Equation 5.6 and substituting into line one we obtain the

bi-quadratic function presented on Equation 5.7 below.

Ñ4
𝑟 ⊗ Ñ2

𝑟 (𝑛2
𝑟 ⊗ 𝑛2

𝑖 ⊗ 𝑎2)
æ2

𝑐2
⊗ 𝑛2

𝑟𝑛
2
𝑖

æ4

𝑐4
= 0 (5.7)

Solving Equation 5.7 results in two values for Ñ𝑟. The Ąrst one is real and comes from

the positive
√

Δ and it is shown on Equation 5.8 below. The second one is complex and

comes from the negative
√

Δ; therefore, it has no physical meaning, since, by deĄnition, Ñ𝑟

is the real part of Ñ.

Ñ𝑟 =

√︃

𝑛2
𝑟

æ2

𝑐2
⊗ ℎ2 (5.8)

Consequently, Ñ𝑖 is described as:

Ñ𝑖 =
𝑛𝑟𝑛𝑖æ

2

𝑐2
√︁

𝑛2
𝑟

æ2

𝑐2 ⊗ ℎ2
(5.9)

Hence, we can write Equation 5.1 as:

Ψ(𝜌, 𝑧) = 𝐽0(ℎ𝜌) exp
[︂

𝑖

√︃

𝑛2
𝑟

æ2

𝑐2
⊗ ℎ2𝑧

⎢

exp
[︂

𝑛𝑟𝑛𝑖æ
2

𝑐2
√︁

𝑛2
𝑟

æ2

𝑐2 ⊗ ℎ2
𝑧
⎢

(5.10)

As a matter of fact, we can even rewrite Equation 5.1 with ℎ in function of Ñ𝑟. The

result is presented in Equation 5.11 below.

Ψ(𝜌, 𝑧) = 𝐽0

(︂

𝜌

√︃

𝑛2
𝑟

æ2

𝑐2
⊗ Ñ2

𝑟

)︂

exp
[︂

𝑖Ñ𝑟𝑧
⎢

exp
[︂

𝑛𝑟𝑛𝑖æ
2

𝑐2Ñ𝑟

𝑧
⎢

(5.11)
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We need to get a continuous superposition; therefore, we calculate the integral as

presented in Equation 5.12 below.

Ψ(𝜌, 𝑧) =
∫︁ 𝑛ræ/𝑐

⊗𝑛ræ/𝑐
𝑆(Ñ𝑟)𝐽0

(︂

𝜌

√︃

𝑛2
𝑟

æ2

𝑐2
⊗ Ñ2

𝑟

)︂

exp
[︂

𝑖Ñ𝑟𝑧
⎢

exp
[︂

𝑛𝑟𝑛𝑖æ
2

𝑐2Ñ𝑟

𝑧
⎢

𝑑Ñ𝑟 (5.12)

The limits of integration on Equation 5.12 are set in order to guarantee a real value

for ℎ.

At this point, we assume that the spectrum under consideration is highly non-paraxial

and concentrated around Ñ𝑟. So, we are able to take out the term responsible for the expo-

nential decay (attenuation) from the integral.

The resulting equation is very similar to Equation 2.33. Therefore, the solution to the

remaining integral is in the form of Equation 2.42, as presented in Equation 5.13 below.

Ψ(𝜌, 𝑧) = exp
[︂

𝑛𝑟𝑛𝑖æ
2

𝑐2Ñ𝑟

𝑧
⎢ ∞
∑︁

𝑛=⊗∞

𝐹
(︂⊗2Þ𝑛

𝐾

)︂

sinc
[︂

√︃

𝑛2
𝑟æ

2

𝑐2
𝜌2 +

(︂

𝑛𝑟æ

𝑐
𝑧 + Þ𝑛

)︂2⎢

(5.13)

Analysing Equation 5.13 it is clear that the solution for beam propagating through

absorbing medium is, approximately, equal to the pattern of a continuous Frozen Wave

multiplied by a decaying exponential, as theory suggests.

Besides, exposing the behavior of Continuous Frozen Waves in absorbing medium,

Equation 5.13 implies a way of mitigating the attenuation process; it can be achieved by

simply including a growing exponential, equivalent to the decaying one, to the function

𝐹
(︂

⊗2Þ𝑛
𝑘

)︂

.

5.1 Results

In this section we shall present some examples applying our methodology. Then, we

shall compare these examples to cases in which we do not apply our compensation method.

As an example, we demonstrate the case in which we simulate a propagating beam

at 50 GHz, with a spot radius Δ𝜌 = 2.9mm, with longitudinal intensity proĄle given by a

super-Gaussian of depth 40cm, resulting on the following function 𝐹 (𝑧):

𝐹 (𝑧) = 𝑒⊗( z
Z )8

𝑒𝑖𝑄𝑧 (5.14)
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6 Analysis of the Interactions Between Non-

Diffracting Waves and Biological Tissue

The study of the dielectric properties of biological tissues in radio-frequency, mi-

crowave and terahertz has been of interest for many applications, including microwave di-

electric heating, nondestructive measurement, imaging, and etc.

Information about tissue structure and how they react in contact to electromagnetic

energy is important to mitigate health hazards, verify the presence of a tumor or even treat

it by means of hyperthermia. (SHELLMAN et al., 2008).

The purpose of this work is to obtain the current state of knowledge in terms of

dielectric properties of tissues, analyse these data and present new information about the

possibility of generation of non-diffractive beams - we shall focus on Bessel Beams and Frozen

Waves - inside these medium.

Initially we shall retrieve the data collected by (GABRIEL et al., 1996) for the elec-

trical permittivity 𝜖𝑟 and conductibility à for the human skin over the frequency range of

1 ⊗ 20GHz.

Next, by admitting a complex wavenumber 𝑘 = Ð+ 𝑖Ù where:
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The imaginary part of 𝑘 results in a wave attenuation (decreasing amplitude for

increasing values of 𝑧). And, according to (GRIFFITHS, 1962), the distance in which the

amplitude is reduced by a factor of 1/𝑒 is called depth of propagation Ó and has a value:

Ó = 1/Ù. The depth of propagation (blue line) for human skin is presented on Figure 30

along with the wavelength (dashed black line) for the featured range of frequency.

It is noticeable on Figure 30 that the depth of penetration is smaller than the wave-

length. For this reason it is not possible to generate Frozen Waves on this medium. A Frozen
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in reducing the pain involved in hyperthermia treatment.
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Conclusion and Future Perspectives

This masters dissertation summarizes our Ąndings on the theoretical study of non-

diffracting beams in GHz and THz, the design of an antenna capable of radiating a Bessel

beam, and the interaction of Frozen Waves in millimeter and sub-millimeter wavelength with

biological tissues.

On chapter 3, we were able to formulate simple, exact, and vectorial solutions to Bessel

Beams emanating from a circular aperture. Our motivation for doing this was to prove that,

even in millimeter and sub-millimeter wavelength, we can have a Ąnite energy Bessel beam

when truncating it by an aperture. This knowledge is essential the proceed with our path

in this project, because it suggested that we could propose an antenna capable of radiating

such beam.

Therefore, on chapter 4 we reviewed some of the most common Bessel beam launchers

to redesign, propose, and simulate our own model. After thorough analysis, we decided to

use a Leaky Wave antenna due to its simplicity in model and simulate, low-planar proĄle,

and because it is fed by at a single point in its center.

Towards this antenna proposition, we evaluated if a Leaky Wave antenna is capable of

supporting a Bessel beam; and, due to a positive outcome, we continued following this path

and studied how the Ąelds behave inside and outside (how they leak through the slits). With

this knowledge we started pursuing ways for completing the design of the structure by setting

its physical parameters. By completing this stage, we were able to use CST Microwave Studio

to simulate the model. We could see that the radiated Ąelds were, indeed, a Bessel beam.

Lastly, we also evaluated the effects of different slits widths on our model and discovered

a trade-off relationship between beam propagation depth and what we latter called Şbeam

qualityŤ.

On chapter 5, we studied the generation of Continuous Frozen Waves in absorbing

medium envisioning its use on biological tissues to induce hyperthermic effects. Although

it was later demonstrated on chapter 6 the impossibility of generate a frozen wave inside a

tissue due to its low depth of propagation, we could formulate an approximate equation to

describe Continuous Frozen Waves in millimeter and sub-millimeter wavelengths when they

undergo mediums with high absorptive coefficients.

Finally, on chapter 6, we discovered that the attenuation process that occurs in bio-

logical medium is too strong for a Frozen Wave to be generated, but a Bessel beam could be
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irradiated and generate heat. Due to its highly collimated proĄle, the use of a Bessel beam

to induce hyperthermic effects offer advantages to the traditional methods (lower pain level

and non-invasive).

6.1 Future Perspectives

This work summarizes a journey of discoveries that we have had in the past years.

The knowledge obtained has the potential to lead to distinct, exciting and important paths.

On chapter 3, after showing that a Bessel beam can exist and propagate when trun-

cated by a Ąnite aperture, we can extend this research to assess whether a Frozen Wave

exhibits the same behaviour or not. In case of a positive outcome we could also study how

to generate such beam in millimeter and sub-millimeter wavelengths.

Another path would be investigating more the application of Bessel beams to generate

heat in biological tissues. We could use our model on CST Microwave Studio the perform a

multi-physics simulation integrating the RF and the Thermodynamics modules to attest and

quantify the hyperthermical effects caused by Bessel beam irradiation.
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