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ABSTRACT 

This work presents a mixed integer non-linear programming (MINLP) model for the N-1 multi–

contingency transient stability constrained optimal power flow using an AC branch flow model. 

Transformers with on-load tap changers (OLTC) and switchable shunt elements are considered 

as discrete controls. The objective is to minimize the power generation and load shedding costs 

during steady-state operation. The implicit trapezoidal integration rule is used to integrate the 

time-domain differential equations used to represent the classical transient stability model of 

synchronous machines. Through linearization techniques, the original MINLP model is 

approximated into a mixed integer linear programming (MILP) model. The use of a MILP 

model guarantees convergence to optimality by using convex commercial solvers. In order to 

validate the approximations, the steady-state operating points and the transient stability results 

obtained by the proposed methodology are compared to those obtained using an exact AC 

power flow algorithm and a transient stability program. The 9–Bus/3–Generator WSCC, 14–

Bus/5–Generator IEEE, 39–Bus/10–Generator New England and 68–Bus/16–Generator IEEE 

systems are used to show the efficiency of the proposed method. Results show that the proposed 

model provides transient stable solutions at a minimum generation cost. 

 

 

 

Keywords: AC branch flow model, N-1 multi–contingency analysis, optimal power flow with 
discrete controls, transient stability assessment, mixed integer linear programming. 
 

 

 

 

 

 

 

 



RESUMO 

Neste trabalho apresenta-se um modelo de programação não linear inteira mista (PNLIM) 

para o fluxo de potência ótimo com restrições de estabilidade transitória N-1 multi–

contingencia utilizando o modelo AC de fluxo em ramos. Transformadores com comutadores 

de taps em carga e elementos shunts comutáveis são considerados como variáveis discretas. A 

função objetivo é a minimização do custo de geração e corte de carga durante a operação em 

estado estacionário. A regra trapezoidal implícita é utilizada para a integração das equações 

diferencias no domínio do tempo utilizadas para representar o modelo clássico da máquina 

síncrona para estudos de estabilidade transitória. Por meio de técnicas de linearização o 

modelo PNLIM original é aproximado em um modelo de programação linear inteira mista 

(PLIM). A utilização de um modelo PLIM garante a convergência num ponto ótimo utilizando 

solvers convexos comerciais. A fim de validar os resultados das aproximações, os pontos de 

operação de estado estável obtidos e os resultados da estabilidade transitória são comparados 

com os obtidos por um programa de fluxo de carga AC exato e um programa de estabilidade 

transitória. Os sistemas da WSCC 9–nós/3–Geradores, IEEE 14–nós/5–Geradores, Nova 

Inglaterra 39–nós/10–Geradores e IEEE 68–nós/16–Geradores são utilizados para mostrar a 

eficiência da metodologia proposta. Os resultados mostram que o modelo proposto 

proporciona soluções estáveis a um mínimo custo. 

 

 

Palavras-chave: Fluxo em ramos AC, analise N-1 multi–contingencia, fluxo de potência ótimo 
com controles discretos, avaliação de estabilidade transitória, programação linear inteira 
mista. 
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NOTATION 

Sets:  

ΩB Set of buses ΩL Set of branches ΩLred  Set of branches of the reduced network ΩC Set of plausible contingencies ΩG Set of generators 

Parameters:  

𝑎𝑖g Quadratic coefficient of production cost at bus 𝑖 𝑏𝑖g Linear coefficient of production cost at bus 𝑖 𝑐𝑖g Constant coefficient of production cost at bus 𝑖 𝑐𝑙𝑠 Load Shedding cost 𝑔𝑖sh Shunt conductance at bus 𝑖 𝑏𝑖sh Shunt Susceptance at bus 𝑖 𝐵𝑚,𝑐,𝑡sh,red Shunt susceptance of the reduced network at bus m, contingency c 
and time t 𝐵𝑖,𝑗sh Half susceptance at branch 𝑖𝑗 𝐻𝑚 Inertia constant of generator m 𝐷𝑚 Damping constant of generator m 𝑉𝑖0 Initial voltage magnitude at bus 𝑖 𝐸𝑚0  Initial internal voltage magnitude of generator m 



𝐸, 𝐸 Maximum and minimum internal voltage magnitudes 𝐺𝑚,𝑐,𝑡sh,red Shunt conductance of the reduced network at bus m, contingency c 
and time t 𝐼𝑖𝑗 Maximum current magnitude at branch 𝑖𝑗 𝐼𝑚𝑛,𝑐red

 Maximum current magnitude of the reduced network at branch 𝑚𝑛, 
and contingency c 𝑁𝑡1 Number of discrete time steps during fault 𝑁𝑡2 Number of discrete time steps during post-fault 𝑛𝑡𝑖𝑗 Maximum number of taps for the OLTC transformer at branch 𝑖𝑗 𝑃𝑖0, 𝑄𝑖0 Initial active and reactive power generation at bus 𝑖 𝑃𝑖𝑑 , 𝑄𝑖𝑑  Active and reactive power demand at bus 𝑖 𝑃𝑚𝑚 Mechanical power input at generator m 𝑃𝑖𝑔, 𝑃𝑖𝑔 Maximum and minimum active generation at bus 𝑖 𝑄𝑖𝑔, 𝑄𝑖𝑔 Maximum and minimum reactive generation at bus 𝑖 𝑅𝑖𝑗  Resistance at branch 𝑖𝑗 𝑋𝑖𝑗 Reactance at branch 𝑖𝑗 𝑅𝑚𝑛,𝑐,𝑡𝑟𝑒𝑑

 Resistance of the reduced network at branch 𝑚𝑛, contingency c, and 
time t 𝑅𝑒𝑔𝑖𝑗 Transformer regulation at branch 𝑖𝑗 𝑡𝑐𝑓𝑐 , 𝑡𝑐𝑚𝑎𝑥

 Fault clearance and maximum simulation time in contingency c 𝑉, 𝑉 Maximum and minimum voltage magnitudes 𝑋𝑚𝑛,𝑐,𝑡red  Reactance of the reduced network at branch 𝑚𝑛, contingency c, and 
time t 𝑋𝑑𝑚 Transient reactance of generator m 𝑍𝑖𝑗 Impedance at branch 𝑖𝑗 



𝑍𝑚𝑛,𝑐,𝑡red  Impedance of the reduced network at branch 𝑚𝑛, contingency c, and 
time t 𝛿, 𝛿 Maximum and minimum rotor angle relative to the center of inertia 𝛿𝑚0  Initial pre-fault rotor angle at generator m 𝛿𝑚,𝑐,𝑡0  Initial angle of the rotor at generator m, contingency c, and time t 𝜃𝑚0  Initial voltage angle at bus 𝑖 Δ𝜔, Δ𝜔 Maximum and minimum deviation from the reference of the angular 
speed Δ𝑐,𝑡 Length of the discrete time steps in contingency c, and time t 𝜔0 System angular speed Γ Number of piece-wise discretization blocks 
 

Continuous variables: 
 

 𝐸𝑚, 𝐸𝑚𝑠𝑞𝑟 Internal voltage magnitude at generator m and its square equivalent 𝐼𝑖𝑗 , 𝐼𝑖𝑗𝑠𝑞𝑟 Current magnitude at branch 𝑖𝑗 and its square equivalent 𝐼𝑚𝑛,𝑐,𝑡red  Square current magnitude of the reduced network at branch 𝑚𝑛, 
contingency c, and time t 𝑃𝑖𝑗 , 𝑄𝑖𝑗 Active and reactive power flow at branch 𝑖𝑗 𝑃𝑖g, 𝑄𝑖g Active and reactive power generated at bus 𝑖 𝑃𝑚,𝑐,𝑡e  Active electric power generated at bus m, contingency c, and time t 𝑃𝑚𝑛,𝑐,𝑡red  Active power flow of the reduced network at branch 𝑚𝑛, contingency 
c, and time t 𝑟𝑖 Load shedding percent at bus 𝑖 𝑄𝑚,𝑐,𝑡e  Reactive electric power generated at bus m, contingency c, and time t 𝑄𝑚𝑛,𝑐,𝑡red  Reactive power flow of the reduced network at branch 𝑚𝑛, 
contingency c, and time t 𝑄𝑖sh Reactive power generation of the shunt element at bus 𝑖 



𝑉𝑖, 𝑉𝑖𝑠𝑞𝑟 Voltage magnitude at bus 𝑖 and its square equivalent �̃�𝑖, �̃�𝑖𝑠𝑞𝑟 Regulated voltage of the OLTC transformer at bus 𝑖 and its square 
equivalent 𝑉𝑖𝑗,𝑘c  Auxiliary variable used for the linearization of the product between 𝑉𝑖𝑠𝑞𝑟 and 𝑡𝑖𝑗,𝑘 𝛿𝑚 Pre-fault rotor angle at generator m 𝛿𝑚,𝑐,𝑡 Angle of the rotor at generator m, contingency c, and time t 𝛿𝑐,𝑡𝐶𝑂𝐼 Angle of the center of inertia at contingency c, and time t Δ𝜔𝑚,𝑐,𝑡 Deviation from the reference of the angular speed at generator m, 
contingency c, and time t 𝜃𝑖 Voltage angle at bus 𝑖 

Binary and Integer Variables: 
 

 

ℎ𝑖 Binary operation of the shunt element at bus 𝑖 𝑛𝑡𝑖𝑗 Integer operation of the OLTC transformer at branch 𝑖𝑗 𝑡𝑖𝑗,𝑘 Binary operation of the OLTC transformer at branch 𝑖𝑗, and tap 
position k 
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CHAPTER ONE:   

 

INTRODUCTION 

Optimal power flow (OPF) is used worldwide for optimizing the operation and planning 

of electric power systems (EPS). If carefully tuned, the OPF can provide quality control actions 

for the economical and reliable operation of EPS in future scenarios of generation and demand 

(DOMMEL and TINNEY, 1968). Including transient stability constraints (TSC) into the OPF 

is a natural extension, known as TSC-OPF. The solution of the TSC-OPF problem provides an 

economic steady-state operation in terms of production (i.e., power generation) costs and, if the 

EPS is subjected to a large disturbance, it should be able to guarantee transient stability in terms 

of the rotor angle and the angular speed of synchronous machines. However, solving the TSC-

OPF is a challenging task, because transient stability assessment requires the solution of 

multiple time-domain differential equations which, combined with the non-linear algebraic 

equations used to represent the AC steady-state operation of EPS increases the computational 

complexity of the optimization problem (ABHYANKAR, GENG, et al., 2017) (GENG, 

ABHYANKAR, et al., 2017). 

 

With the advent of modern optimization methods and high-performance computing, 

there has been an ongoing interest for modeling and solving the TSC-OPF problem. Authors in 

(CAI, CHUNG and WONG, 2008) proposed a differential evolution algorithm, and authors in 
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(JIN and XIANG, 2014) used a multi-objective parallel Non–Dominated Sorting Genetic 

Algorithm II (NSGA-II) to solve the TSC–OPF problem. In (SAHA, BHATTACHARYA, et 

al., 2018) is developed a relatively new metaheuristic technique to solve the TSC-OPF based 

on collective decision optimization (CDO) considering a basic formulation of the transformers 

taps and shunt compensation, in (XIA, CHAN, et al., 2015) is develop an enhanced particle 

swarm optimization method to solve the TSC-OPF considering a dynamic model of VAr 

compensators and thyristor-controlled series capacitors, to solve the dynamic transient 

equations by direct methods and in (CHEN, LUO, et al., 2016) is solved the TSC-OPF by 

differential evolution considering transformers tap regulation. Although metaheuristics, such as 

genetic algorithms and evolutionary methods, are easy to implement and to deploy, they cannot 

guarantee optimality at any step of the process. On the other hand. In (ARREDONDO, 

CASTRONUOVO, et al., 2018), the TSC-OPF is solved by a nonlinear programming solver, 

and the performance of three different integration methods are compared.  

 

In (YANG, LIU, et al., 2017) (YANG, LIU, et al., 2018) is presented a parallel solution 

of the multi-contingency TSC-OPF based on the recursive reduced-order method. Another 

work where is presented a parallel environment are in (YANG, QIN, et al., 2018) where is 

applied an exact optimality condition to solve the TSC-OPF.  

 

Authors in (CHEN, TAKA and OKAMOTO, 2001) and (TONG, LING and QI, 2008) 

propose to the TSC–OPF problem using functional transformation techniques to convert an 

infinite-dimensional optimization problem into a finite-dimensional optimization problem, and 

solved it by standard non-linear programming (NLP) techniques, which cannot guarantee 

optimality. In (HISKENS and PAI, 2000), authors applied the numerical trapezoidal integration 

rule to obtain the trajectory sensitivities, reducing the computational burden. For small systems. 

Moreover, in (GAN, THOMAS and ZIMMERMAN, 2000), authors used the numerical 

trapezoidal integration rule and successive linear programming to solve the TSC–OPF problem, 

disregarding discrete controls. An approach to solve the TSC–OPF problem considering 

multiple contingencies was developed in (YUAN, KUBOKAWA and SASAKI, 2003), where 

the differential equations were integrated using the trapezoidal integration rule, included into 

an NLP problem which is solved through an interior point method. Hybrid methods were also 

used to solve the TSC–OPF problem. In (MINANO, CUTSEM, et al., 2010), authors developed 

the TSC-OPF by reducing the original multi-machine model to a one-machine infinite-bus 

equivalent. Moreover, authors in (CALLE, CASTRONUOVO and LEDESMA, 2013) also 
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developed an NLP model to represent the TSC–OPF for isolated power systems. The constraints 

of the OPF and transient stability constraints (integrated using the trapezoidal integration rule) 

were embedded into the same NLP model, but only one contingency is considered at a time. In 

both cases, NLP solvers were used to solve the resulting TSC–OPF problem, disregarding 

discrete controls. 

 

The specialized literature lacks an efficient optimization model that combines transient 

stability security constraints, AC economic dispatch and discrete controls (tap regulation and 

shunt operation), with a low computational complexity and reasonable accuracy. Finally, in 

Table 1.1, the proposed model characteristics are presented against with others found in the 

literature. 

 

 Optimization 
Model 

Solution 
Technique 

AC 
Branch 

Flow 

N - 1 
Multi-

contingency 

Discrete 
Variables 

Time Domain 
Simulation 

Machine 
Model 

Proposed Method MINLP, MILP CPLEX ● ● ● ● Classic 

(JIN e XIANG, 2014) NLP NSGA-II ∘ ∘ ∘ ● Classic 

(YUAN, et al, 2003) NLP IPM ∘ ● ∘ ● Classic 

 (MINANO, et al., 2010) NLP CONOPT ∘ ∘ ∘ ● Classic 

(CALLE, et al, 2013) NLP IPM ∘ ∘ ∘ ● Classic 

(YANG, LIU, et al., 2017) NLP IPM ∘ ● ∘ ● Classic 

(SAHA, et al., 2018) MINLP CDO ∘ ∘ ● ∘ Classic 

(ARREDONDO, et al., 2018) NLP IPOPT ∘ ∘ ∘ ● 4th Order 

(XIA, CHAN, et al., 2015) MINLP PSO ∘ ∘ ● ∘ 4th Order 

(YANG, LIU, et al., 2018) NLP IPM-MPI ∘ ● ∘ ● Classic 

(YANG, QIN, et al., 2018) NLP OC ∘ ● ∘ ● Classic 

(CHEN, LUO, et al., 2016) MINLP DE ∘ ∘ ● ∘ Classic 

Yes: ●; No: ∘        

Table 1.1 – Features of the proposed method and comparison to other TSC-OPF. 

 

In this work, the N-1 multi-contingency TSC–OPF problem is modelled using an AC 

branch flow model. It is initially presented as a mixed integer non-linear programming 

(MINLP) model that combines, within the same formulation, the differential and non-linear 

algebraic equations used to model the transient stability constraints and the steady-state 

operation. The solution to the proposed model schedules the productions of the dispatchable 

generators and the following discrete controls: 

 

 On-load tap changers of the transformers. 

 

 Switchable shunt elements. 
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The objective of the proposed TSC–OPF model is to minimize the power generation 

and load shedding costs. Pre-fault, fault and post-fault stages are integrated in the proposed 

model for a set of different plausible contingencies. The fault clearance time for each 

contingency is determined by the operation of the protection system and an average time is used 

to simulate a large disturbance in transient stability assessments (KUNDUR, 1994). The 

implicit trapezoidal integration rule for a multi-machine system is used to integrate the 

transient-stability constraints during fault and post-fault. Using efficient linearization 

techniques, the original MINLP model is approximated into a mixed integer linear 

programming (MILP) model that can be formulated via mathematical programming languages, 

such as AMPL (FOURER, GAY and KERNIGHAN, 2003), and efficiently solved using off–

the–shelf commercial solvers, such as CPLEX (ILOG, 2008). The steady-state operation and 

the transient stability assessment obtained by the methodology are compared with those 

obtained using an exact AC power flow and a transient stability program. The 9–bus/3–

generators WSCC system, the 14–bus/5–generators IEEE system, the 39–bus/10–generator 

New England system and the 68–bus/16–generators IEEE system are used to demonstrate the 

efficiency and scalability of the proposed method. 

1.1. OBJECTIVES 

The aim of this master dissertation is to find a stable and economic operation point 

through an optimization model, as the main core of the proposed algorithm, considering a set 

of plausible contingencies. To reach this goal, the following partial objectives are proposed: 

 

 Show the non–linear AC power flow optimization model based on branch flow, and 

linearize it via simplifications and approximations to guarantee optimality, reduce the error 

and computational time. 

 

 Present a MINLP model to solve the OPF considering discrete controls as the shunt 

operation and the OLTC tap changers. 

 

 Develop a new MINLP model for the N-1 multi–contingency TSC–OPF problem with 

discrete controls using an AC branch flow model. 

 



25 
 

 

 Develop an approximate MILP model for the proposed MINLP model, obtained from the 

application of efficient linearization techniques. 

1.2. MOTIVATION OF THE WORK 

In this dissertation the branch flow model is used to represent the AC power flow, and 

is applied to solve the classic OPF with discrete variables. Subsequently, TSC are added into 

the model. This kind of problem is nonlinear, because the equations that describe the power 

flow are non-linear. Thus, these challenges allow to use efficient linearization techniques that 

guarantee the global optimum and can be solved using well-known linear programming solvers. 

 

The TSC–OPF problem is a relatively new approach. The use of the classic OPF to find 

an operation point and then apply a three-phase fault to ground and evaluate the stability in a 

transient stability program, is one of the basic approaches. However, introducing the TSC into 

the OPF in the same model and solve the problem by nonlinear optimization solvers or heuristic 

techniques are difficult; there are other techniques that cannot guarantee the optimal solution. 

The TSC-OPF includes power flow nonlinear equations and transient stability differential 

equations, which makes the solution of this problem a challenge. 

 

The OPF is one of the most used tools to be extended to the inclusion of TSC into the 

same model. It represents a difficult challenge, because the well-known transient stability 

equations are differential and time-variants, and the power flow equations are time-invariant, 

this characteristic makes this problem difficult to solve, since it is expressed through a model 

of optimization a problem of dynamic character. 

1.3. WORK CONTRIBUTIONS 

The most outstanding contributions are the following: 

 

 A linearized AC power flow based on branch flow approach, and subsequently the OPF is 

developed, considering discrete controls. 
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 A MINLP model for the N-1 multi–contingency TSC–OPF problem with discrete controls 

using an AC branch flow model. 

 

 A MILP model for the N-1 multi–contingency TSC–OPF problem with discrete controls 

using an AC branch flow model. 

 

 A novel optimization methodology to solve MILP problems, by a sequence of linear 

programing problems. 

1.4. DISSERTATION STRUCTURE 

This master project consists of six chapters detailed as follows: 

 

Chapter 1.- INTRODUCTION: This chapter attempts to explain the motivation, objectives, 

contributions and justification of this master's project. 

 

Chapter 2.- AC POWER FLOW BASED ON BRANCH FLOW MODEL: Explains the 

mathematical and electrical characteristics of AC power flow. Based on modeling of phase 

transformers and transmission lines, is presented the optimization model for the AC power flow 

exact equations. Subsequently is developed the nonlinear AC power flow based on branch flow 

approach, and via linearization and approximation techniques, is obtained the linear model for 

the exact AC power flow. Six power flow systems are used to validate the linear model in 

comparison with its nonlinear counterpart. 

 

Chapter 3.- REVIEW OF OPTIMAL POWER FLOW AND TRANSIENT STABILITY 

ANALYSIS: Presents the concept of transient stability and optimal power flow and a brief 

literature review of transient stability constrained optimal power flow (TSC–OPF). The 

classical transient stability evaluation and multimachine systems considerations are presented. 

The advantages to use the trapezoidal integration rule is also presented, finally the most 

common TSC–OPF is presented, considering in the same model the solution of the three stages 

(pre–fault, fault and post–fault). 
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Chapter 4.- N-1 MULTICONTINGENCY TSC-OPF MINLP MODEL BASED ON BRANCH 

FLOW APPROACH: Based on the previous concepts is develop the MINLP model based on 

branch flow approach for the N-1 multi–contingencies TSC–OPF. Is presented the nonlinear 

model to solve the OPF with discrete controls based on branch flow approach. The calculation 

of the internal voltages and angles in the pre–fault stage, required for the subsequent dynamic 

calculation, is expressed by its branch flow equivalent. The swing equation is solved using the 

trapezoidal integration rule, and the electric power input is expressed using the branch flow 

approach. The transient stability is evaluated in the inequality or operative constraints, 

calculating the center of inertia (COI). 

 

Chapter 5.- N-1 MULTICONTINGENCY TSC-OPF MILP MODEL BASED ON BRANCH 

FLOW APPROACH: This chapter shows the strategies to simplify the original MINLP model, 

via linearization and equivalence techniques, as seen in the develop of AC power flow based 

on branch flow model and other simplification techniques. The MINLP model is converted into 

a model of mixed integer linear programming (MILP), which can be solved by commercial 

solvers. 

 

Chapter 6.- TEST CASES: Four common stability and power flow cases are evaluated to prove 

the efficiency and the scalability of the model. The small systems are used to prove the 

efficiency of the model, solving various cases (number of contingencies). It is also presented a 

sensitive analysis, varying the limits of the rotor angles and angular speeds and a comparative 

analysis of the TSC–OPF without TSC.
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CHAPTER TWO:  

 

AC POWER FLOW BASED 

ON BRANCH FLOW MODEL  

The power flow model or load flow in energy systems is the starting point for the 

operational analysis of electric systems. It is used to determine the state of the network, the 

distribution of the power flow in the branches and others quantities of the system 

(MONTICELLI, 1983). In this approach, the network representation does not consider the time 

variation. This is a static approach, considering only the algebraic equations modeling 

(MONTICELLI, 1983). There are different methods for the solution of this problem like the 

Newton Raphson, decoupling, fast decoupling, etc. 

 

This chapter presents the characteristics and modeling of the transmission lines and 

phase transformers. The AC power flow is modeled like an optimization problem and solved 

by a nonlinear programming solver. Besides, which will be modeled as an AC power flow based 

on branch flow model, and presenting a linearization procedure, based on approximations and 

equivalences, transforming the nonlinear programming (NLP) problem into a linear 

programming (LP) problem. Finally, the results obtained for different load flow testing systems 

are presented.
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2.1. AC POWER FLOW MODEL USING POLAR FORMULATION 

In this section the mathematical and electrical model of the transmission lines and phase 

transformers is developed to solve the AC power flow via polar formulation. Then, the 

optimization model to solve the AC power flow using this formulation is presented.  

Mathematical model of transmission lines  

For the transmission lines modeling, is considered a π equivalent representation, as shown 

in Figure 2.1, highlighting three parameters: series resistance 𝑅𝑖𝑗, series reactance  𝑋𝑖𝑗, and a 

shunt susceptance 𝐵𝑖𝑗𝑠ℎ  in the transmission line between the 𝑖  and j buses (MONTICELLI, 

1983). The series impedance is defined by 𝑍𝑖𝑗 = 𝑅𝑖𝑗 + 𝑗𝑋𝑖𝑗, and the series admittance 𝑌𝑖𝑗 = 𝐺𝑖𝑗 + 𝑗𝐵𝑖𝑗.  
 

 

Figure 2.1 – Transmission line in π equivalent. 

 

Where: 𝐼𝑖𝑗 = �̇�𝑖𝑗(�⃗⃗�𝑖 − �⃗⃗�𝑗) + 𝑗𝐵𝑖𝑗𝑠ℎ�⃗⃗�𝑗 = �̇�𝑖𝑗�⃗⃗�𝑖 − �̇�𝑖𝑗�⃗⃗�𝑗 + 𝑗𝐵𝑖𝑗𝑠ℎ�⃗⃗�𝑗 (2.1) 

𝑆𝑖𝑗∗ = 𝑃𝑖𝑗 − 𝑗𝑄𝑖𝑗 = �⃗⃗�𝑖∗𝐼𝑖𝑗 (2.2) 

From the equations (2.1) and (2.2) are obtained the active and reactive branch flows: 

𝐵𝑖𝑗𝑠ℎ 𝑍𝑖𝑗
𝐼𝑖𝑗 𝐼𝑗𝑖𝑉𝑖 𝑉𝑗

𝑖 𝑗𝐵𝑖𝑗𝑠ℎ
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𝑃𝑖𝑗𝑑𝑒 = 𝑉𝑖2𝐺𝑖𝑗 − 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.3) 

𝑄𝑖𝑗𝑑𝑒 = −𝑉𝑖2(𝐵𝑖𝑗 + 𝐵𝑖𝑗𝑠ℎ) + 𝑉𝑖𝑉𝑗(𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) − 𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.4) 

𝑃𝑗𝑖𝑝𝑎𝑟𝑎 = 𝑉𝑗2𝐺𝑖𝑗 − 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.5) 

𝑄𝑗𝑖𝑝𝑎𝑟𝑎 = −𝑉𝑗2(𝐵𝑖𝑗 + 𝐵𝑖𝑗𝑠ℎ) + 𝑉𝑖𝑉𝑗(𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) − 𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.6) 

Mathematical model of phase transformers 

The model presented in (MONTICELLI, 1983), is a general model for phase transformers (𝜃𝑖 = 𝜃𝑝), as shown in the Figure 2.2, considering two buses 𝑖 and 𝑗, a fictitious intermediary 

node p, a series admittance 𝑌𝑖𝑗 = 𝐺𝑖𝑗 + 𝑗𝐵𝑖𝑗 , an ideal autotransformer 1: 𝑎𝑖𝑗  and the 

relationship between the voltages 𝑉𝑖 and 𝑉𝑝. 

 

 

Figure 2.2 – Phase transformer. 

 

Where the following relationship is distinguished: 

 �⃗⃗�𝑝�⃗⃗�𝑖 = 𝑉𝑝∠𝜃𝑝𝑉𝑖∠𝜃𝑖 = 𝑎𝑖𝑗 (2.7) 

 

𝑌𝑖𝑗
𝐼𝑖𝑗 𝐼𝑗𝑖

𝑉𝑖 = 𝑉𝑖∠𝜃𝑖 𝑉𝑗 = 𝑉𝑗∠𝜃𝑗

𝑖 𝑗1: 𝑎𝑖𝑗  
𝑉𝑝 = 𝑉𝑝∠𝜃𝑝
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 Figure 2.2 shows the model of an ideal autotransformer, this implies that the input and 

output powers are the same. That is, there are no active and reactive power losses as shown in 

(2.8): 

 �⃗⃗�𝑖𝐼𝑖𝑗∗ + �⃗⃗�𝑝𝐼𝑗𝑖∗ = 0 (2.8) 

 

Considering 𝜃𝑝 = 𝜃𝑖, from the equations (2.7) and (2.8) is obtain: 

 𝐼𝑖𝑗𝐼𝑗𝑖 = − |𝐼𝑖𝑗||𝐼𝑗𝑖| = −𝑎𝑖𝑗 (2.9) 

 

The branch current can be expressed as follows: 

 𝐼𝑖𝑗 = −𝑎𝑖𝑗𝑌𝑖𝑗(�⃗⃗�𝑗 − �⃗⃗�𝑝) = 𝑎𝑖𝑗2 𝑌𝑖𝑗 �⃗⃗�𝑖 − 𝑎𝑖𝑗𝑌𝑖𝑗�⃗⃗�𝑗 (2.10) 

𝑆𝑖𝑗∗ = 𝑃𝑖𝑗 − 𝑗𝑄𝑖𝑗 = �⃗⃗�𝑖∗𝐼𝑖𝑗 (2.11) 

 

From the equations (2.7), (2.10) and (2.11) we obtain the active and reactive power flows: 

 𝑃𝑖𝑗𝑑𝑒 = (𝑎𝑖𝑗𝑉𝑖)2𝐺𝑖𝑗 − 𝑎𝑖𝑗𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.12) 

𝑄𝑖𝑗𝑑𝑒 = −(𝑎𝑖𝑗𝑉𝑖)2𝐵𝑖𝑗 + 𝑎𝑖𝑗𝑉𝑖𝑉𝑗 (𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) − 𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.13) 

𝑃𝑗𝑖𝑝𝑎𝑟𝑎 = 𝑉𝑗2𝐺𝑖𝑗 − 𝑎𝑖𝑗𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.14) 

𝑄𝑗𝑖𝑝𝑎𝑟𝑎 = −𝑉𝑗2(𝐵𝑖𝑗 − 𝐵𝑖𝑗𝑠ℎ) + 𝑎𝑖𝑗𝑉𝑖𝑉𝑗(𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.15) 



32 
 

 

AC power flow general equations 

From the above equations, the following general expressions are obtained for the active and 

reactive power flow in transmission lines and phase transformers. 

 𝑃𝑖𝑗𝑑𝑒 = (𝑎𝑖𝑗𝑉𝑖)2𝐺𝑖𝑗 − 𝑎𝑖𝑗𝑉𝑖𝑉𝑗 (𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.16) 

𝑄𝑖𝑗𝑑𝑒 = −(𝑎𝑖𝑗𝑉𝑖)2𝐵𝑖𝑗 + 𝑎𝑖𝑗𝑉𝑖𝑉𝑗(𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) − 𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.17) 

𝑃𝑗𝑖𝑝𝑎𝑟𝑎 = 𝑉𝑗2𝐺𝑖𝑗 − 𝑎𝑖𝑗𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.18) 

𝑄𝑗𝑖𝑝𝑎𝑟𝑎 = −𝑉𝑗2𝐵𝑖𝑗 + 𝑎𝑖𝑗𝑉𝑖𝑉𝑗(𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) (2.19) 

Optimization model for the AC power flow problem 

To obtain an operation point in electric power systems through an optimization problem, 

the equations shown above, are considered as a constraint in the model as follows: 

 min𝑓 = ∑ 𝑃𝑖𝑔∀ 𝑖 ∈ ΩB,𝑖=𝑠𝑙𝑎𝑐𝑘    (2.20) 

 

Subject to: 

 𝑃𝑖𝑔 − 𝑃𝑖𝑑 − ∑ 𝑃𝑖𝑗𝑑𝑒𝑖𝑗 ∈ ΩL − ∑ 𝑃𝑗𝑖𝑝𝑎𝑟𝑎𝑗𝑖 ∈ ΩL + 𝑉𝑖2𝑔𝑖𝑠ℎ = 0 ∀𝑖 ∈ ΩB  (2.21) 

𝑄𝑖𝑔 − 𝑄𝑖𝑑 − ∑ 𝑄𝑖𝑗𝑑𝑒𝑖𝑗 ∈ ΩL − ∑ 𝑄𝑗𝑖𝑝𝑎𝑟𝑎𝑗𝑖∈ ΩL + 𝑉𝑖2𝑏𝑖𝑠ℎ = 0  ∀𝑖 ∈ ΩB (2.22) 

𝑃𝑖𝑗𝑝𝑎𝑟𝑎 = 𝑉𝑗2𝐺𝑖𝑗 − 𝑎𝑖𝑗𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) ∀𝑖𝑗 ∈ Ω𝐿  (2.23) 

𝑃𝑖𝑗𝑑𝑒 = (𝑎𝑖𝑗𝑉𝑖)2𝐺𝑖𝑗 − 𝑎𝑖𝑗𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗))  ∀𝑖𝑗 ∈ ΩL (2.24) 
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𝑄𝑖𝑗𝑝𝑎𝑟𝑎 = −𝑉𝑗2(𝐵𝑖𝑗 + 𝐵𝑖𝑗𝑠ℎ)+ 𝑎𝑖𝑗𝑉𝑖𝑉𝑗(𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) ∀𝑖𝑗 ∈ ΩL (2.25) 𝑄𝑖𝑗𝑑𝑒 = −(𝐵𝑖𝑗 + 𝐵𝑖𝑗𝑠ℎ)(𝑎𝑖𝑗𝑉𝑖)2+ 𝑎𝑖𝑗𝑉𝑖𝑉𝑗(𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) − 𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) ∀𝑖𝑗 ∈ ΩL (2.26) 

 

The objective function in (2.20) minimizes the active power generation. Constraints (2.21) 

and (2.22) are the equations of active and reactive power balance, respectively at 𝑖  bus. 

Constraints (2.23)–(2.26) are the active and reactive power flows in the branches. Phase 

transformers and the π model of transmission lines are considered. 

 

This power flow representation is nonlinear and nonconvex, due mainly to the presence of 

sines, cosines, squared variables and multiplication between variables, being suitable for the 

solution of this type of problems, solvers such as IPOPT (WÄCHTER and BIEGLER, 2005) 

and KNITRO (BYRD, J.NOCEDAL and WALTZ, 2006), and a mathematical language like 

AMPL (FOURER, GAY and KERNIGHAN, 2003). 

2.2. BRANCH FLOW MODEL FOR AC POWER FLOW 

In this section, an AC power flow using branch flow model is presented. Figure 2.3 shows 

a generic model of a branch in a transmission network, using the above considerations of polar 

model for power flow.  

 

 

Figure 2.3 – Generic model of a branch in a transmission network. 

 

𝑏𝑖𝑠ℎ𝑉𝑖2
𝑅𝑖𝑗 𝑋𝑖𝑗 𝑍𝑖𝑗

𝑉𝑖 , 𝜃𝑖

𝑖 𝑗
1: 𝑎𝑖𝑗

𝑔𝑖𝑠ℎ𝑉𝑖2 𝐵𝑖𝑗𝑠ℎ𝑉𝑖2

𝑎𝑖𝑗𝑉𝑖 , 𝜃𝑖
𝑃𝑖𝑗 + 𝑅𝑖𝑗𝐼𝑖𝑗2𝑄𝑖𝑗 + 𝑋𝑖𝑗𝐼𝑖𝑗2 𝐼𝑖𝑗

𝐵𝑖𝑗𝑠ℎ𝑉𝑗2 𝑏𝑗𝑠ℎ𝑉𝑗2𝑔𝑗𝑠ℎ𝑉𝑗2

𝑃𝑖𝑗𝑄𝑖𝑗 𝑉𝑗 , 𝜃𝑗
𝑄𝑖𝑔𝑃𝑖
𝑔 𝑄𝑗𝑑𝑃𝑗𝑑



34 
 

 

From Figure 2.3 shown above, can be obtained a current 𝐼𝑖𝑗 as follows: 

 𝐼𝑖𝑗 = (𝑃𝑖𝑗 + 𝑗𝑄𝑖𝑗𝑉𝑗 )∗ ∀𝑖𝑗 ∈ ΩL (2.27) 

 

Also, from the Figure 2.3 can be calculated a voltage drop in branch 𝑖𝑗: 
 𝑎𝑖𝑗�⃗⃗�𝑖 − �⃗⃗�𝑗 = 𝐼𝑖𝑗(𝑅𝑖𝑗 + 𝑗𝑋𝑖𝑗) ∀𝑖𝑗 ∈ ΩL (2.28) 

 

From the equations (2.27) and (2.28) the following expression is calculated: 

 

(𝑎𝑖𝑗�⃗⃗�𝑖 − �⃗⃗�𝑗)�⃗⃗�𝑗∗ = (𝑃𝑖𝑗 − 𝑗𝑄𝑖𝑗)(𝑅𝑖𝑗 + 𝑗𝑋𝑖𝑗) ∀𝑖𝑗 ∈ ΩL (2.29) 

 

Considering that 𝑉𝑖𝑒𝑗𝜃𝑖 = 𝑉𝑖(cos 𝜃𝑖 + 𝑗 sin 𝜃𝑖) , 𝑉𝑗𝑒𝑗𝜃𝑗 = 𝑉𝑗(cos 𝜃𝑗 + 𝑗 sin 𝜃𝑗)  and 𝜃𝑖𝑗 =𝜃𝑖 − 𝜃𝑗  , then (2.29) can be writen as: 

 𝑎𝑖𝑗𝑉𝑖𝑉𝑗[cos 𝜃𝑖𝑗 + 𝑗 sin 𝜃𝑖𝑗] − 𝑉𝑗2 = (𝑃𝑖𝑗 − 𝑗𝑄𝑖𝑗)(𝑅𝑖𝑗 + 𝑗𝑋𝑖𝑗) ∀𝑖𝑗 ∈ ΩL (2.30) 

 

Identifying the real and imaginary parts in the equation (2.30) we obtain: 

 𝑎𝑖𝑗𝑉𝑖𝑉𝑗 cos 𝜃𝑖𝑗 = 𝑉𝑗2 + (𝑅𝑖𝑗𝑃𝑖𝑗 + 𝑋𝑖𝑗𝑄𝑖𝑗) ∀𝑖𝑗 ∈ ΩL (2.31) 

𝑎𝑖𝑗𝑉𝑖𝑉𝑗 sin 𝜃𝑖𝑗 = 𝑋𝑖𝑗𝑃𝑖𝑗 − 𝑅𝑖𝑗𝑄𝑖𝑗 ∀𝑖𝑗 ∈ ΩL (2.32) 

 

Adding the squares of (2.31) and (2.32), and using the trigonometric relationships, will be 

obtained: 
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[𝑎𝑖𝑗2 𝑉𝑖2 − 2(𝑅𝑖𝑗𝑃𝑖𝑗 + 𝑋𝑖𝑗𝑄𝑖𝑗)]𝑉𝑗2 − 𝑍𝑖𝑗2 (𝑃𝑖𝑗2 + 𝑄𝑖𝑗2 ) − 𝑉𝑗2 = 0 ∀𝑖𝑗 ∈ ΩL (2.33) 

 

Where can be note, that the angular difference 𝜃𝑖𝑗 is eliminated, and it is a fourth-degree 

polynomial equation that calculated the voltage drop in the branch 𝑖𝑗. 
 𝐼𝑖𝑗2 = 𝑃𝑖𝑗2 − 𝑄𝑖𝑗2𝑉𝑗2  ∀𝑖𝑗 ∈ ΩL (2.34) 

 

From equations (2.33) and (2.34), is obtained: 

 𝑎𝑖𝑗2 𝑉𝑖2 − 2(𝑅𝑖𝑗𝑃𝑖𝑗 + 𝑋𝑖𝑗𝑄𝑖𝑗) − 𝑍𝑖𝑗2 𝐼𝑖𝑗2 − 𝑉𝑗2 = 0 ∀𝑖𝑗 ∈ ΩL (2.35) 

 

Considering branch flow model. A new the power flow model is obtained which is given 

by the following optimization problem. 

 min𝑓 =  ∑ 𝑃𝑖𝑔∀ 𝑖 ∈ ΩB,𝑖=𝑠𝑙𝑎𝑐𝑘  (2.36) 

 

Subject to: 𝑃𝑖𝑔 − 𝑃𝑖𝑑 − 𝑉𝑖2𝑔𝑖𝑠ℎ + ∑ 𝑃𝑗𝑖𝑗𝑖 ∈ ΩL − ∑ (𝑃𝑖𝑗 + 𝑅𝑖𝑗𝐼𝑖𝑗2 )𝑖𝑗∈ ΩL = 0 ∀𝑖 ∈ ΩB (2.37) 

𝑄𝑖𝑔 − 𝑄𝑖𝑑 + 𝑉𝑖2𝑏𝑖𝑠ℎ + ∑ (𝑄𝑗𝑖 + 𝐵𝑗𝑖𝑠ℎ𝑉𝑖2)𝑗𝑖 ∈ ΩL− ∑ (𝑄𝑖𝑗 − 𝐵𝑖𝑗𝑠ℎ𝑉𝑖2 + 𝑋𝑖𝑗𝐼𝑖𝑗2 )𝑖𝑗∈ Ω𝐿 = 0 ∀𝑖 ∈ ΩB (2.38) 

𝑎𝑖𝑗2 𝑉𝑖2 − 𝑉𝑗2 = 2(𝑅𝑖𝑗𝑃𝑖𝑗 + 𝑋𝑖𝑗𝑄𝑖𝑗) + 𝑍𝑖𝑗2 𝐼𝑖𝑗2  ∀𝑖𝑗 ∈ ΩL (2.39) 

𝑉𝑖𝑎𝑖𝐽𝑉𝑗 sin(𝜃𝑖 − 𝜃𝑗) = 𝑋𝑖𝑗𝑃𝑖𝑗 − 𝑅𝑖𝑗𝑄𝑖𝑗 ∀𝑖𝑗 ∈ ΩL (2.40) 
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𝑉𝑗2𝐼𝑖𝑗2 = 𝑃𝑖𝑗2 + 𝑄𝑖𝑗2  ∀𝑖𝑗 ∈ ΩL (2.41) 

 

The objective function (2.36) minimize the active power generation at bus 𝑖. Constraints 

(2.37) and (2.38) represent the active and reactive power balance in the system. Constraint 

(2.39) is the voltage drop in branch 𝑖𝑗, (2.40) is the angular difference in branch 𝑖𝑗 and (2.41) is 

the current calculation at branch 𝑖𝑗.  
 

To the power flow solution,  the active generation and the voltage in PV buses are constant, 

and the bus angle and voltage in reference bus are constant in the study period. 

2.3. LINEARIZATION OF THE BRANCH FLOW MODEL FOR AC POWER FLOW 

In the above model, denotes that it is a nonlinear programming problem, since there is 

multiplication of variables, square variables, trigonometric identities as sines and cosines. This 

model may be linearized using approximations and simplifications techniques. 

 

It can be noted that in the load flow equations, the magnitudes of the current in the branches (𝐼𝑖𝑗) and the voltages in the nodes (𝑉𝑖), appear only in the forms 𝐼𝑖𝑗2  and 𝑉𝑖2 , respectively, 

therefore it is convenient to consider the following variable changes: 

 𝑉𝑖𝑠𝑞𝑟 = 𝑉𝑖2, 𝑉𝑖𝑠𝑞𝑟 ≥ 0 (2.42) 

𝐼𝑖𝑗𝑠𝑞𝑟 = 𝐼𝑖2, 𝐼𝑖𝑗𝑠𝑞𝑟 ≥ 0 (2.43) 

 

The product 𝑉𝑖𝑉𝑗 can be linearized as follows, considering the nominal voltage magnitude (𝑉𝑛𝑜𝑚), the following linear equivalence can be obtained:  

 𝑉𝑖𝑉𝑗 ≈ 𝑉𝑗 ≈ (𝑉𝑛𝑜𝑚)2 (2.44) 
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The angular difference between two buses of a branch is normally small (𝜃𝑖𝑗 ≈ 0), the 

following approximation can be made with the angles expressed in radians: 

 sin(𝜃𝑖 − 𝜃𝑗) ≅ 𝜃𝑖 − 𝜃𝑗  (2.45) 

 

The quadratic term 𝑃𝑖𝑗2 + 𝑄𝑖𝑗2  can be linearized by parts such as in (2.46)–(2.53): 

 

𝑃𝑖𝑗2 + 𝑄𝑖𝑗2  ≈ ∑𝑚𝑖𝑗,γ𝑆 ∆𝑖𝑗,γ𝑃Γ
γ=1 +∑𝑚𝑖𝑗,γ𝑆 ∆𝑖𝑗,γ𝑄Γ

γ=1  ∀𝑖𝑗 ∈ ΩL (2.46) 

𝑃𝑖𝑗+ − 𝑃𝑖𝑗− = 𝑃𝑖𝑗 ∀𝑖𝑗 ∈ ΩL (2.47) 

𝑃𝑖𝑗+ + 𝑃𝑖𝑗− =∑∆𝑖𝑗,γ𝑃Γ
γ=1  ∀𝑖𝑗 ∈ ΩL (2.48) 

𝑄𝑖𝑗+ − 𝑄𝑖𝑗− = 𝑄𝑖𝑗 ∀𝑖𝑗 ∈ ΩL (2.49) 

𝑄𝑖𝑗+ + 𝑄𝑖𝑗− =∑∆𝑖𝑗,γ𝑄Γ
γ=1  ∀𝑖𝑗 ∈ ΩL (2.50) 

0 ≤ ∆𝑖𝑗,γ𝑃 ≤ ∆̅𝑖𝑗,γ𝑆  ∀𝑖𝑗 ∈ ΩL, γ = 1…Γ (2.51) 

0 ≤ ∆𝑖𝑗,γ𝑄 ≤ ∆̅𝑖𝑗,γ𝑆  ∀𝑖𝑗 ∈ ΩL, γ = 1…Γ (2.52) 

𝑃𝑖𝑗+, 𝑃𝑖𝑗−, 𝑄𝑖𝑗+, 𝑄𝑖𝑗− ≥ 0 ∀𝑖𝑗 ∈ ΩL (2.53) 

 

The Figure 2.4 shows the linearization of 𝑃𝑖𝑗2 + 𝑄𝑖𝑗2 , where Γ  represent the number of 

linearization blocks, 𝑚𝑖𝑗,γ𝑆  is the slope of  γ–th linearization block and is calculated by (2.54), ∆̅𝑖𝑗𝑆  is upper limit of the linearization block and is show in (2.55).  

 𝑚𝑖𝑗,γ𝑆 = (2γ − 1)∆̅𝑖𝑗𝑆  ∀𝑖𝑗 ∈ ΩL, γ = 1…Γ (2.54) 
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∆̅𝑖𝑗𝑆 = 𝑉𝐼�̅�𝑗Γ  ∀𝑖𝑗 ∈ ΩL (2.55) 

 

 

Figure 2.4 – 𝑃𝑖𝑗2 + 𝑄𝑖𝑗2 : Piecewise linearized. 

 

Being the following the complete optimization model: 

 min𝑓 =  ∑ 𝑃𝑖𝑔∀ 𝑖 ∈ ΩB,𝑖=𝑠𝑙𝑎𝑐𝑘  (2.56) 

 

Subject to: 

 𝑃𝑖𝑔 − 𝑃𝑖𝑑 − 𝑉𝑖𝑠𝑞𝑟𝑔𝑖𝑠ℎ + ∑ 𝑃𝑗𝑖𝑗𝑖 ∈ ΩL − ∑ (𝑃𝑖𝑗 + 𝑅𝑖𝑗𝐼𝑖𝑗𝑠𝑞𝑟)𝑖𝑗∈ ΩL = 0 ∀𝑖 ∈ ΩB (2.57) 

𝑄𝑖𝑔 − 𝑄𝑖𝑑 + 𝑉𝑖𝑠𝑞𝑟𝑏𝑖𝑠ℎ + ∑ (𝑄𝑗𝑖 + 𝐵𝑗𝑖𝑠ℎ𝑉𝑖𝑠𝑞𝑟)𝑗𝑖 ∈ ΩL− ∑ (𝑄𝑖𝑗 − 𝐵𝑖𝑗𝑠ℎ𝑉𝑖𝑠𝑞𝑟 + 𝑋𝑖𝑗𝐼𝑖𝑗𝑠𝑞𝑟)𝑖𝑗∈ Ω𝐿 = 0 ∀𝑖 ∈ ΩB (2.58) 

𝑃𝑖𝑗2 ,𝑄𝑖𝑗2

 𝑃𝑖𝑗 ,  𝑄𝑖𝑗 

𝑚𝑖𝑗, 𝑆 = 2 − 1 Δ𝑖𝑗𝑆

𝑚𝑖𝑗, 𝑆 =  Δ𝑖𝑗𝑆𝑚𝑖𝑗,2𝑆 =  Δ𝑖𝑗𝑆
𝑚𝑖𝑗,1𝑆 = Δ𝑖𝑗𝑆

 =  
 =2

 =1

Γ2 Δ𝑖𝑗𝑆 2

 Δ𝑖𝑗𝑆 2
 Δ𝑖𝑗𝑆 2
Δ𝑖𝑗𝑆 2

Δ𝑖𝑗,1𝑃,𝑄 Δ𝑖𝑗,2𝑃,𝑄 Δ𝑖𝑗, 𝑃,𝑄 Δ𝑖𝑗, 𝑃,𝑄𝑉 𝐼𝑖𝑗 = ΓΔ𝑖𝑗𝑆

 = Γ
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𝑎𝑖𝑗2 𝑉𝑖𝑠𝑞𝑟 − 𝑉𝑗𝑠𝑞𝑟 = 2(𝑅𝑖𝑗𝑃𝑖𝑗 + 𝑋𝑖𝑗𝑄𝑖𝑗) + 𝑍𝑖𝑗2 𝐼𝑖𝑗𝑠𝑞𝑟 ∀𝑖𝑗 ∈ ΩL (2.59) 

𝑎𝑖𝐽(𝑉𝑛𝑜𝑚)2(𝜃𝑖 − 𝜃𝑗) = 𝑋𝑖𝑗𝑃𝑖𝑗 − 𝑅𝑖𝑗𝑄𝑖𝑗 ∀𝑖𝑗 ∈ ΩL (2.60) 

(𝑉𝑛𝑜𝑚)2𝐼𝑖𝑗𝑠𝑞𝑟 =∑𝑚𝑖𝑗,γ𝑆 ∆𝑖𝑗,γ𝑃Γ
γ=1 +∑𝑚𝑖𝑗,γ𝑆 ∆𝑖𝑗,γ𝑄Γ

γ=1  ∀𝑖𝑗 ∈ ΩL (2.61) 

𝑃𝑖𝑗+ − 𝑃𝑖𝑗− = 𝑃𝑖𝑗 ∀𝑖𝑗 ∈ ΩL (2.62) 

𝑃𝑖𝑗+ + 𝑃𝑖𝑗− =∑∆𝑖𝑗,γ𝑃Γ
γ=1  ∀𝑖𝑗 ∈ ΩL (2.63) 

𝑄𝑖𝑗+ − 𝑄𝑖𝑗− = 𝑄𝑖𝑗 ∀𝑖𝑗 ∈ ΩL (2.64) 

𝑄𝑖𝑗+ + 𝑄𝑖𝑗− =∑∆𝑖𝑗,γ𝑄Γ
γ=1  ∀𝑖𝑗 ∈ ΩL (2.65) 

0 ≤ ∆𝑖𝑗,γ𝑃 ≤ ∆̅𝑖𝑗,γ𝑆  ∀𝑖𝑗 ∈ ΩL, γ = 1…Γ (2.66) 

0 ≤ ∆𝑖𝑗,γ𝑄 ≤ ∆̅𝑖𝑗,γ𝑆  ∀𝑖𝑗 ∈ ΩL,  = 1…Γ (2.67) 

𝑃𝑖𝑗+, 𝑃𝑖𝑗−, 𝑄𝑖𝑗+, 𝑄𝑖𝑗− ≥ 0 ∀𝑖𝑗 ∈ ΩL (2.68) 

𝐼𝑖𝑗𝑠𝑞𝑟 ≥ 0 ∀𝑖𝑗 ∈ ΩL (2.69) 

𝑉𝑖𝑠𝑞𝑟 ≥ 0 ∀𝑖 ∈ ΩB (2.70) 

 

The above model, is an approximate linear programming problem for the calculate of AC 

power flow, where (2.56) is the objective function representing the minimization of active 

generation, constraints (2.57) and (2.58) represent the active and reactive power balances in the 

system respectively, constraints (2.59) and (2.60) represent the voltage drop and the angular 

difference in branch 𝑖𝑗 respectively, constraints (2.61) and (2.62)–(2.68) are the constraints of 

the linearization of term 𝑃𝑖𝑗2 + 𝑄𝑖𝑗2 , and the constraints (2.69) and (2.70) are the constraints that 
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guarantee that the magnitudes of voltage and current squared are positive. In addition, to the 

constraints presented above,  the active generation and the voltage in PV buses are constant, 

and the bus angle and voltage in reference bus are constant in all study period. 

2.4. TEST AND RESULTS 

The tested systems are: The 9–bus system from Western System Coordinating Council 

(WSCC) of the university of Illinois, used to solve problems involving the calculation of 

electromechanical transient, the IEEE systems of 14, 30, 57, 118 and 300 buses of the university 

of Washington, for the nonlinear and linear model of AC power flow, considering a step 

numbers for the linear model in branch flow of  Γ =  0. Comparative analysis show the degree 

of error of the linearized model comparing the values obtained with the nonlinear model. The 

power flow problem was modeled in the algebraic modeling language AMPL (FOURER, GAY 

and KERNIGHAN, 2003). The linearized AC power flow model was solved using the off-the-

shelf convex solver CPLEX (ILOG, 2008), while the exact nonlinear AC power flow was 

solved by KNITRO (BYRD, J.NOCEDAL and WALTZ, 2006) solver. These deviations or 

percentage of error were determined according to the following formulations: 

 𝜀𝑃𝑙𝑜𝑠𝑠 = |𝑃𝑖𝑗𝑑𝑒 + 𝑃𝑖𝑗𝑝𝑎𝑟𝑎 − (𝑅𝑖𝑗𝐼𝑖𝑗𝑠𝑞𝑟≈)𝑆�̅�𝑗 | × 100 ∀𝑖𝑗 ∈ ΩL (2.71) 

𝜀𝑄𝑙𝑜𝑠𝑠 = |𝑄𝑖𝑗𝑑𝑒 + 𝑄𝑖𝑗𝑝𝑎𝑟𝑎 − (𝑋𝑖𝑗𝐼𝑖𝑗𝑠𝑞𝑟≈ − 𝐵𝑖𝑗𝑠ℎ𝑙𝑉𝑖𝑗𝑠𝑞𝑟≈ − 𝐵𝑖𝑗𝑠ℎ𝑙𝑉𝑖𝑗𝑠𝑞𝑟≈)𝑆�̅�𝑗 | × 100 ∀𝑖𝑗 ∈ ΩL (2.72) 

𝜀𝑣% = |𝑉𝑖𝐴𝐶 + 𝑉𝑖≈𝑉𝑖𝐴𝐶 | × 100 

 

∀𝑖 ∈ ΩB (2.73) 

𝜀𝑃𝑑𝑒 = |𝑃𝑖𝑗𝑑𝑒 − (𝑃𝑖𝑗≈ + 𝑅𝑖𝑗𝐼𝑖𝑗𝑠𝑞𝑟≈)𝑆�̅�𝑗 | × 100 

 

∀𝑖𝑗 ∈ ΩL (2.74) 

𝜀𝑃𝑝𝑎𝑟𝑎 = |𝑃𝑖𝑗𝑝𝑎𝑟𝑎 − (−𝑃𝑖𝑗≈)𝑆�̅�𝑗 | × 100 

 

∀𝑖𝑗 ∈ ΩL (2.75) 
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𝜀𝑄𝑑𝑒 = |𝑄𝑖𝑗𝑑𝑒 − (𝑄𝑖𝑗≈ − 𝐵𝑖𝑗𝑠ℎ𝑙𝑉𝑖𝑗𝑠𝑞𝑟≈ + 𝑋𝑖𝑗𝐼𝑖𝑗𝑠𝑞𝑟≈)𝑆�̅�𝑗 | × 100 

 

∀𝑖𝑗 ∈ ΩL (2.76) 

𝜀𝑄𝑝𝑎𝑟𝑎 = |𝑄𝑖𝑗𝑑𝑒 − (−(𝑄𝑖𝑗≈ + 𝐵𝑖𝑗𝑠ℎ𝑙𝑉𝑖𝑗𝑠𝑞𝑟≈))𝑆�̅�𝑗 | × 100 

 

∀𝑖𝑗 ∈ ΩL (2.77) 

Where 𝜀𝑃𝑙𝑜𝑠𝑠 is the percentage deviation between the active power loss of the nonlinear exact 

model and the linearized model, 𝜀𝑄𝑙𝑜𝑠𝑠, is the percentage deviation between the reactive power 

loss of the nonlinear exact model and the linearized model in branch 𝑖𝑗, 𝜀𝑣% is the percentage 

deviation of the voltage magnitude of the nonlinear exact model and the linearized model, 𝜀𝑃𝑑𝑒 

and 𝜀𝑄𝑑𝑒, are the percentage deviation between the active and reactive power flow that leave the 

bus 𝑖 and enter the bus 𝑗, obtained from the nonlinear exact model and the linearized model 

respectively. 𝜀𝑃𝑝𝑎𝑟𝑎  and 𝜀𝑄𝑝𝑎𝑟𝑎  are the percentage deviation between the active and reactive 

power flow, that leave the bus j and enter the bus 𝑖, obtained from the nonlinear model and the 

linearized model respectively, where 𝑆�̅�𝑗, is the maximum capacity of the transmission line 𝑖𝑗. 
9-bus WSCC system 

In this part of the work the results obtained for the 9-bus WSCC system are presented, which 

has 9 branches and 3 generators, is a system commonly used for transient stability analysis. 

 

 

Figure 2.5– Percentage of deviations of the active and reactive power flow and voltages in the 9-bus system. 
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Figure 2.5 shows the percentage of deviations in each variable are small with respect to 

obtained by the nonlinear power flow model. In Figure 2.5(a), it can be note that the percentage 

deviations are smaller than 3% for the active and reactive power losses in the branches and the 

deviations of the power flow in the branches. In Figure 2.5(b), the percentage deviation of the 

voltage magnitude is less than 0.2%. The values of the losses for the nonlinear exact AC power 

flow and the linearized model were 4.641 MW and 4.880 MW, respectively. 

14-bus IEEE system  

The 14-bus IEEE system is presented, which has 20 branches and 5 generators, this system is 

commonly used for power flow problems. 

 

 

Figure 2.6 – Percentage of deviations active and reactive power flow and voltages in 14-bus system. 

 

Figure 2.6 shows that the percentage deviations in each variable are small with respect to 

obtained by the nonlinear power flow model. In Figure 2.6(a) it can be seen that the percentage 

deviations are smaller than 0.8% for the active and reactive power losses in the branches and 

the deviations of the power flow in the branches. In Figure 2.6(b), the percentage deviation of 

the voltage magnitude is less than 0.12%. The values of the losses for the nonlinear exact AC 

power flow and the linearized model were 13.393 MW and 12.875 MW, respectively. 
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30-bus IEEE system  

The 30-bus IEEE system is presented, which has 41 branches, this system is commonly used 

for power flow problems. 

 

 

Figure 2.7 – Percentage of deviations active and reactive power flow and voltage in 30-bus system. 

 

Figure 2.7 shows that the percentage deviations in each variable are small with respect to 

obtained by the nonlinear power flow model. In Figure 2.7(a) it can be seen that the percentage 

deviations are smaller than 3% for the active and reactive power losses in the branches and the 

deviations of the power flow in the branches. In Figure 2.7(b), the percentage deviation of the 

voltage magnitude is less than 0.045%. The values of the losses for the nonlinear exact AC 

power flow and the linearized model were 17.541MW and 16.796MW, respectively. 

57-bus IEEE system  

The 57-bus IEEE system is presented, which has 80 branches, this system is commonly used 

for power flow problems. 
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Figure 2.8 – Percentage of deviations active and reactive power flow and voltage in 57-bus system.  

 

Figure 2.8 shows that the percentage deviations in each variable are small with respect to 

obtained by the nonlinear power flow model. In Figure 2.8(a) it can be seen that the percentage 

deviations are smaller than 1.4% for the active and reactive power losses in the branches and 

the deviations of the power flow in the branches. In Figure 2.8(b), the percentage deviation of 

the voltage magnitude is less than 1.2%. The values of the losses for the nonlinear exact AC 

power flow and the linearized model were 27.791MW and 27.981MW, respectively. 

118-bus IEEE system   

The 118-bus IEEE system is presented, which has 186 branches, this system is commonly used 

for power flow problems. 
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Figure 2.9 – Percentage of deviations active and reactive power flow and voltage in 118-bus system. 

Figure 2.9 shows that the percentage deviations in each variable are small with respect to 

obtained by the nonlinear power flow model. In Figure 2.9(a) it can be seen that the percentage 

deviations are smaller than 1.8% for the active and reactive power losses in the branches and 

the deviations of the power flow in the branches. In Figure 2.9(b), the percentage deviation of 

the voltage magnitude is less than 0.6%. The values of the losses for the nonlinear exact AC 

power flow and the linearized model were 132.200MW and 131.806MW, respectively. 

300-bus IEEE system   

The 300-bus IEEE system is presented, which has 412 branches, this system is commonly used 

for power flow problems. 
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Figure 2.10 – Percentage of deviations active and reactive power flow and voltage in 300-bus system. 

Figure 2.10 shows that the percentage deviations in each variable are small with respect to 

obtained by the nonlinear power flow model. In Figure 2.10(a) it can be seen that the average 

percentage deviations are smaller than 3.0% for the active and reactive power losses in the 

branches and the deviations of the power flow in the branches. In Figure 2.10(b), the average 

percentage deviation of the voltage magnitude is less than 3%. The values of the losses for the 

nonlinear exact AC power flow and the linearized model were 505.980MW and 503.042MW, 

respectively. 

2.5. IMPORTANT REMARKS 

In this chapter, two models were developed for the AC power flow: the exact or polar model 

and the power flow based on branch flow model. The branch-based power flow is easy to 

linearize. Both power flows were implemented in the well-known algebraic modeling language 

AMPL, and obtaining the results through commercial solvers such as CPLEX and KNITRO, 

for linear and nonlinear problems respectively. 

From the results of both models, we obtained the comparisons between the exact model and 

the linearized model for the 9-bus WSSC system and the 14, 30, 57, 118 and 300 buses IEEE 

systems, which showed a good performance, obtaining errors of less than 2% for most cases, 

considering only a number of linearization steps of Γ =  0, emphasizing that for larger systems 

this number is not enough, since as the number of steps increases, the computational cost 

increases, but the results are more accurate. This fact makes the linearized model a good 

proposal for solving problems that involve the load flow. 
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CHAPTER THREE:     

         

REVIEW OF OPTIMAL 

POWER FLOW AND 

TRANSIENT STABILITY 

ANALYSIS  

In this chapter, the transient stability constrained optimal power flow (TSC–OPF) was 

developed as an extension of optimal power flow (OPF) with the inclusion of the time-domain 

differential equations which describes the behavior of the synchronous machines. The review 

of the literature respect to transient stability and the optimal power flow, the techniques for 

representing the transient stability constraints, the integration methods and the evolution of the 

TSC–OPF are also developed in this chapter. 
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3.1. OPTIMAL POWER FLOW PROBLEM 

The optimal power flow (OPF) is a concept introduced in the 60’s. It is cataloged as one of 

the most used and useful tools to solve problems of planning and operation of EPS. In the EPS 

operation OPF is useful to determine an optimum operating point and the appropriate control 

decisions and it helps to determine optimal future scenarios. 

 

Since it is a well–studied problem in the energy systems area, it has many variations and 

applications, one of the most studied being the active–reactive OPF. The objective is to 

minimize the generation costs, considering as operational constraints, the amount of active and 

reactive power generation and the voltage levels. This approach is modeled as optimization 

problem. 

 

The OPF is a natural extension of classic power flow, minimizing an objective function, 

subject to power flow equations as equality constraints and the operative constraints as the 

voltage and generation limits, making the OPF a non-linear programming problem, according 

to the following general scheme: 

 min 𝑓(𝑥) (3.1) 

Subject to: G(𝑥) = 0 (3.2) 

𝐻(𝑥) ≤ 0 (3.3) 

 

Where 𝑓(𝑥), is the objective function to minimize: Generation costs, active and reactive 

losses, etc.; G(𝑥)  are the equality constraints as the power flow equations,  𝐻(𝑥)  are the 

inequality constraints as the technical and operating limits in the system. 

 

The reference (DOMMEL and TINNEY, 1968) is one of the first works related with the 

OPF, in there is proposed a method based on power flow solution using the Newton method. 

This method is extended to yield an OPF solution, the reduced gradient procedure is used to 
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finding the optimum and the penalty functions is used to handle functional inequality 

constraints. This sequence of methods is not able to guarantee convergence to the global 

optimum. Furthermore it is not considered the discrete variables as the OLTC regulation and 

shunt elements operation. 

 

In the references (MONTICELLI, WEN-HSIUNG and LIU, 1992), (SANTOS and COSTA, 

1995) and (SUN, ASHLEY, et al., 1984) are used the Newton method to solve the OPF. In 

(MONTICELLI, WEN-HSIUNG and LIU, 1992) is proposed an adaptative method for 

handling movement penalties. In (SANTOS and COSTA, 1995) is proposed a Newton method 

to solve the OPF which operates with an augmented Lagrangian function associated with the 

original problem. In (SUN, ASHLEY, et al., 1984), the OPF is solved by an explicit Newton 

method. The obtained results by these three methods have better convergence results that other 

techniques. However, the discrete controls are not considered. 

 

In (ALSAC, BRIGHT, et al., 1990) is present a solution of OPF via LP problems sequences, 

furthermore, (PHAN and KALAGNANAM, 2014) is one of the papers that includes in the OPF 

formulation the security constraints, where is proposed three different approaches to solve it by 

a global optimization algorithm based on Lagrangian duality, decomposition schemes based on 

Benders cuts and alternating direction method of multipliers. Other optimization techniques 

applied to solve the OPF are shown in (GRANVILLE, 1994) where the reactive dispatch is 

solved by an implementation of an interior point method; in (WU, DEBS and MARSTEN, 

1994) the OPF problem is solved by a nonlinear predictor–corrector primal–dual interior point 

method; and in (WEI, SASAKI, et al., 1997) is also developed an interior point NLP problem 

for the OPF. 

 

The meta–heuristics techniques have also been used to solve the OPF. For example in 

(YUMBLA, RAMIREZ and COELLO, 2008), the OPF is solved using the particle swarm 

optimization. Authors in (BAKIRTZIS, BISKAS, et al., 2002) applied an improved genetic 

algorithm to solve the OPF, in (H. YOSHIDA, FUKUYAMA, et al., 2000) it is also applied the 

particle swarm optimization to solve the OPF considering a voltage security constraints, and it 

is presented a MINLP problem, considering as discrete variables, the automatic voltage 

regulator operation, the OLTC of the transformers and the reactive power control. 
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3.2. TRANSIENT STABILITY ANALYSIS 

The transient stability is defined as the ability of an electric system to maintain the 

synchronism between the generator units when it is subject to a large disturbance, such as a 

sudden loss or increase in load or generation, or faults in the power system. This definition in 

general terms, describes the relationship between the electromagnetic torque and the 

mechanical torque in the machines, since any unbalance presented in the system can bring the 

loss of synchronism and the subsequent imbalance between the torques making the system 

unstable. Transient stability studies are developed within the following environments: 

 

 Indirect methods or time domain simulation, refers to the solution of differential equations 

that describe the behavior of the synchronous machine, by using numerical integration 

methods. It is called an the indirect method because the obtained results are interpreted 

using tools that describe the evolution of state variables in the time. 

 

 Direct methods, are based on the use of energy functions or Lyapunov functions, where the 

transient stability is evaluated within state space without the resolution of the differential 

equations, only considering the movement of the system in the attraction domain around an 

equilibrium point. 

 

 Hybrid methods uses the energy function of the direct methods and the time domain 

simulation. 

 

In this dissertation, the choice of the solution technique, is important since it will reveal the 

degree of detail of the system when subjected to a large disturbance. In this case, we use the 

time domain simulation, allowing to know the evolution of state variables in time, detecting the 

loss of synchronism between the machines, through the deviations between the angles and the 

angular speeds of the rotors. 
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Swing Equation of Synchronous Generator 

In the transient stability studies, one of the most important parts is the dynamic analysis of 

the rotor of the machines in the transient period. Each type of transient study will have different 

machine models, being these phenomena mostly electromechanical. In this dissertation we use 

the classic model. 

 

The swing equations are based in the mechanical laws of rotation, where the unbalance 

between the mechanical and electromagnetic torques are analyzed. The electromagnetic torques 

can be subdivided in synchronizing torque, which is in phase with the rotor angle and is equal 

to the sum of the electrical torque output and the electrical losses of the machine; and the 

damping torque that is in phase with the rotor speed. 

 

The mechanical torque is defined as the mechanical torque delivered by the prime motor 

minus rotational losses (KUNDUR, 1994). Then the net torque causing acceleration or 

deceleration is expressed by: 

 𝐽 𝑑𝜔m𝑑𝑡 =  𝑇𝑎 = 𝑇𝑚 − 𝑇𝑒 (3.4) 

𝐻 = 12 𝐽𝜔0m2𝑆BASE  (3.5) 

 

Where 𝐽 is the combined moment of inertia of generator and turbine, 𝜔𝑚 is the mechanical 

angular speed of the rotor and 𝑡 is the time. The equation (3.5) is the expression for the inertia 

constant 𝐻, defined as the kinetic energy in watt–seconds at rated speed divided by the 𝑆BASE 

in VA. 

 

From  (3.4) and (3.5), the equation of the motion in per unit form is: 

 2𝐻 𝑑𝜔𝑟𝑑𝑡 = 𝑇𝑚 − 𝑇𝑒  (3.6) 

 

 The relation between the electrical terms and the mechanical terms is the number of poles: 
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 𝜔𝑟 = 𝜔m𝜔0m = 1/ 𝑓1/ 𝑓 𝜔𝑟𝜔0 = 𝜔𝑟𝜔0    

 

By convenience, the term 𝜔𝑟  that express the angular speed in electrical terms, will be 

denoted simply as 𝜔. 

 

In steady state the mechanical angle of the rotor increases uniformly in time. During the 

transient, an angular increment is added to the constant movement of the rotor. The expression 

(3.7) describes this phenomenon, note that the angular position 𝛿 of the rotor is in electrical 

radians whit respect to a synchronously rotating reference and 𝛿0 is its value at 𝑡 = 0. 

 𝛿 = 𝜔𝑡 − 𝜔0𝑡 + 𝛿0 (3.7) 

𝑑𝛿𝑑𝑡 = 𝜔 − 𝜔0 = Δ𝜔 (3.8) 

 

The expression (3.8) is the time derivative of the equation (3.7). For the classic model of 

the machine this rotor angle is the same as the internal voltage, and by the electromechanical 

equation that describes the rotative movement of the machine (3.6), which relates the angular 

acceleration and the electromechanical torques, and solved the equations (3.6) and (3.8), is 

obtained the following relationship: 

 𝑑𝛿𝑑𝑡 = 𝜔0𝛥𝜔 (3.9) 

𝑑𝛥𝜔𝑑𝑡 = 12𝐻 (𝑃𝑚 − 𝑃𝑒 − 𝐷𝛥𝜔) (3.10) 

 

The equations (3.9) and (3.10) describe completely the rotor dynamic when the systems are 

subjected to a large disturbance. The equation (3.9) and (3.10) are called the swing equation, 

due to its oscillatory nature over time. 
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Numerical Integration methods 

The dynamic nature of the transient stability studies, involve the resolution of differential-

algebraic equations. In this case, the transient stability analysis is reduced to the equations (3.9) 

and (3.10), which compose a first order non–linear differential equations system. Practically, 

presented as follows: 

 𝑑𝑥𝑑𝑡 = 𝑓(𝑥, 𝑡) (3.11) 

 

Where, 𝑥 is the temporal state variable, the function 𝑓 represent the nonlinear differential 

function associated with 𝑥, assuming initial values of  𝑥 and 𝑡 equal to 𝑥0 and 𝑡0, respectively, 

determined in the pre-fault steady state. The numerical integration methods are used to obtain 

a non-analytical solution. For this purpose several approximations of the solution are made by 

means of point-to-point evaluations. 

 

The equation (3.11) can be solved by numerical integration methods, which can be 

classified in two categories: Explicit and implicit methods. In the explicit methods, the value of 

state variable 𝑥 at any value of 𝑡 is calculated from knowledge of the previous values of 𝑡. This 

type of integration method, is easy to implement. Among them have: Euler, Runge Kutta of 1st, 

2nd, 3rd and 4th order, which uses the Taylor series expansion to approximate the solution of 

(3.11). Explicit methods are considered not numerically stable. 

 

The numerical stability is related to the consistency and the convergence of the integration 

methods equations. The convergence denotes the difference between the exact value of the 

solution of the differential equation and the approximation obtained by the integration method 

at any step. The consistency is defined by cut error at any step and it is expected to be zero as 

the integration step becomes zero. Therefore, the method should be stable in the presence of 

small changes or perturbations in the initial conditions producing changes in the consequent 

approximations. 
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Implicit methods use interpolation functions for solving the differential equations, in this 

method, to calculate the state variables is necessary evaluate the equation in future steps. The 

solution of (3.11) for 𝑥 in 𝑡1 = 𝑡0 + Δ𝑡 is expressed as: 

 𝑥(𝑡1) = 𝑥(𝑡0) + ∫ 𝑓(𝑡, 𝑥(𝑡))𝑡1𝑡0 𝑑𝑡 (3.12) 

 

The most used implicit method in transient stability studies is the trapezoidal rule, which 

consist in a linear interpolation, calculating the area under the curve of the integral in the 

equation (3.12), which will be approximated by trapezium areas as shown in (3.13). 

 𝑥𝑡+1 = 𝑥𝑡 + Δ𝑡2 [𝑓(𝑡 + 1, 𝑥𝑡+1) + 𝑓(𝑡, 𝑥𝑡)]  (3.13) 

 

Where the second term of the left side, represents the trapezium area, discretized by the 

predefined size of Δ𝑡, using a linear interpolation between the actual and future points in the 

curve. 

Transient Stability modeling 

For the transient stability modeling, it is necessary to take into account that the equations 

that describe its behavior are nonlinear differential time variant. Normally the transient stability 

analysis is divided in three stages, the pre-fault stage, where the system is in steady state 

operation, the fault stage, where the system is subjected to a large disturbance (e.g., a three-

phase to ground fault) with zero voltage magnitude at the faulted bus and the post-fault stage, 

where the fault has been extinguished by the protection system. 

 

In TSC–OPF modeling the classical model of the machine is usually used, since this 

approach is easy to implement, allows the time-domain simulation and the connection between 

the machines and the network be quick. This model of the synchronous machine is described in 

(KUNDUR, 1994) and is shown in Figure 3.1, consist in a source of internal voltage in series 

with the transient reactance. This is the most basic representation of the machine. 
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Figure 3.1 – Classical model of the synchronous machine. 

 

In this dissertation we use the multimachine concept for the transient stability analysis based 

on the classic model of the machine. For this approach the following set of assumptions are 

made to perform the multi-machine transient stability analysis via the classical generator model 

based on (KUNDUR, 1994) and (ANDERSON and FOUAD, 1977): 

 

 Mechanical power input (𝑃𝑚m) is constant. 

 

 Damping or asynchronous power is negligible. 

 

 Constant voltage in series with the transient reactance model for the synchronous machine 

is considered. 

 

 The mechanical rotor angle of the machine, coincides with the angle of the internal voltage 

behind the transient reactance. 

 

 Loads are represented by passive impedances and used in the reduced network calculation. 

 

The first assumption is used for this type of analysis because the transient period is around 

the first 2 seconds, this type of analysis is usually called first swing analysis. The second 

assumption can be relaxed to linear expression of damping. The third and fourth assumptions 

are discussed above and shown in Figure 3.1. The assumption five is the load representation by 

constant impedances, this assumption allows eliminate the algebraic equations of the network. 

Thus, the system of equations of multimachine system is replaced to a system formed only by 

𝐸𝑚
𝑋𝑑𝑚

𝑉𝑖

𝐼𝑚
+
−

+
−
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the algebraic differential equations. The reduced network is calculated by the next step-by-step 

procedure according to (KUNDUR, 1994), (ANDERSON and FOUAD, 1977): 

 

 All variables must be expressed on a common basis, normally 100MW. 

  

 A power flow calculation is performed so as to obtain the initial values of 𝑉𝑖0, 𝜃𝑖0, 𝑃𝑖0, 𝑄𝑖0. 

The values are to subsequently used to represent the load parameters as an impedance by: 𝑌𝑖,load = 𝑃𝑖,load0 −𝑗𝑄𝑖,load0|𝑉𝑖,load0 |2  

 

 The internal voltage is calculated using the value of the terminal voltage and the voltage 

drop in the transient reactance. 

 

 The transient reactance and the loads are included into the original admittance matrix. Thus 

it is obtained the increased matrix seen from the internal nodes of the generators. In the fault 

stage the row and the column values associated with the bus in fault are considered zero, in 

the post-fault stage the admittance matrix is updated, disregarding the transmission line 

associated with the fault. 

 

 The fault and post-fault increased matrix are reduced to the internal nodes of the generators 

by the Kron reduction. As shown in Figure 3.2, the reduced network parameters are 

calculated for each contingency, based on the initial power flow calculation. 
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Figure 3.2 – Flowchart: Reduced Network calculation 

 

An application example is available in (ANDERSON and FOUAD, 1977), where the 9-

bus/3-generators WSCC system is evaluated to calculate the reduced matrix for one 

contingency, then the procedure to calculating the reduced network of this system is developed 

in APPENDIX B. 

 

The graphic representation of a multimachine system is shown in the Figure 3.3. 

Considering the above assumptions, are derived the equations that describe the movement of 

the multimachine system. These assumptions allows the representation of the electric power 

systems according to Figure 3.3, for m generators, the nodes 1, 2, …𝑚  are referred to the 

internal nodes of the machines, the transmission network and the transformers are modeled as 

impedances. The loads, modeled as passive impedances, are also connected between the load 

buses and the reference bus.  
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Figure 3.3 - Multimachine System 

 

For the classical transient stability calculation it is necessary to obtain the following 

previous information: 

 

 A load flow calculation in pre–fault stage, to determine the mechanical power (𝑃𝑚m) and 

the calculate the values of internal voltage and angle (𝐸𝑚∠𝛿𝑚,𝑡,0) for all generators. 

 

 The representation of the loads as passive impedances, using the calculated data of the 

buses of the previous load flow. 

 

  It is necessary to have the basic dynamic data from all generators, as the inertia constant (𝐻𝑚), the damping constant (𝐷𝑚) and the transient reactance (𝑋𝑑𝑚). 
 

 The fault allocation, the clearance time and the maximum simulation time. 
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3.3. TRANSIENT STABILITY CONSTRAINED OPTIMAL POWER FLOW (TSC–
OPF) 

The TSC–OPF, as well as the classic optimal power flow, is a powerful tool used in the 

operation of the electric power systems to find a stable operating point when the EPS is 

subjected to one or more disturbances. In EPS planning the TSC–OPF is used to determine a 

stable operating point in future scenarios considering the demand increase and topology 

changes, and it can be also used to determine stability limits. 

 

In (CALLE, CASTRONUOVO and LEDESMA, 2013), the authors detailed the difficulties 

to include the Transient Stability Constraints (TSC) into OPF, and is divided in two groups: 

 

 The inclusion of the differential equations that describe the dynamic behavior of the 

machine into the classical OPF. These equations can be solved by the traditional way, 

representing the dynamic behavior of the machine by the swing equation and solved by 

integration methods in time–domain simulations. Other way to solve these equations is used 

the direct methods such as the equal area criterion, reducing the system to a one machine 

infinite bus, or using the energy function such as the Lyapunov functions, the hybrid 

methods combining the previous two methods can also use. 

 

 The solution of the optimization problem after the TSC inclusion, can be solved by classical 

nonlinear programming (NLP) methods, or using modern heuristic techniques, such as the 

particle swarm optimization, genetic algorithms and differential evolution. 

  

In the literature there is a limited amount of information about the TSC-OPF, the inclusion 

of TSC into OPF, is used as a tool for solving common problems such as the energy dispatch, 

EPS planning and others, as shown in (GAN, THOMAS and ZIMMERMAN, 2000) where is 

solved the differential equations using the implicit integration method as the trapezoidal rule, 

others works where is used the trapezoidal rule are (YUAN, KUBOKAWA and SASAKI, 2003) 

and (LAYDEN and JEYASURYA, 2004), where the TSC–OPF is evaluated for multiple 

contingencies, finding a stable operation point for all cases. 

 

The greatest difficulty is to reduce the effect of the number of integration steps. For this 

reason, the literature regarding the TSC–OPF shows the application of direct methods, as in 
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(PAI and NGUYEN, 2003), (LI, YUAN, et al., 2011) and (MINANO, CUTSEM, et al., 2010) 

where is used the simplification of the system to a one machine infinity bus, increasing the loss 

of information and the error. 

 

The use of modern heuristics techniques for solving the TSC–OPF are discussed in (CHAN, 

LING, et al., 2007), (MO, ZOU, et al., 2007) and (CAI, CHUNG and WONG, 2008), where is 

applied the method of particle swarm optimization, genetic algorithms, and differential 

evolution for the TSC–OPF solution. Knowing that the obtained solutions, do not guarantee an 

optimal and quality solution. In addition, the large number of iterations that they consider to 

find those solutions. 

 

The TSC–OPF, can be defined as optimization problem (CALLE, CASTRONUOVO and 

LEDESMA, 2013), as follow: min𝑓(𝑥0) (3.14) 

Subject to:  𝐺0(𝑥0) = 0  (3.15) 

𝐻0(𝑥0) ≤ 0  (3.16) 

𝐺𝑡(𝑥𝑡) = 0 ∀ 𝑡 ∈ {0… 𝑡cmax } (3.17) 

𝐻𝑡(𝑥𝑡) ≤ 0 ∀ 𝑡 ∈ {0… 𝑡cmax } (3.18) 

 

The proposed TSC–OPF, is difficult to solve mainly due to the dynamic characteristics of 

the transient stability equations. For this reason, the discretization of the interval {0… 𝑡cmax } is 
necessary, since this interval can be discretized in infinite points resulting in infinite 

dimensional variables and infinite equality and inequality constraints. 
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3.4. IMPORTANT REMARKS 

 The classical OPF model is developed. Based on literature review, this model, is 

formulated as an optimization problem. An objective function is minimized or maximized 

according to characteristic of the problem. The constraints are the power flow equations as 

equality constraints and the operative limits as inequality constraints. This model is the most 

basic formulation for the OPF. On the other hand, a brief review of the transient stability is 

developed, the three classical approaches to calculate the stability in EPS and the swing 

equation to solve transient stability problems that involves the classical model of the 

synchronous machine is also developed.  

 

Besides, the integration methods are divided in two categories to solve differential 

equations, being the implicit method the most used in transient stability studies, due to easy 

implementation and good numerical stability. The numerical stability is directly related to the 

convergence and the consistency of the differential equations system. 

 

A literature review that involves the TSC–OPF modeling is developed, highlining the 

difficulties to include the TSC into OPF, for its dynamic characteristics, and the use of nonlinear 

solvers and heuristics techniques to find an acceptable solution, since these techniques do not 

guarantee the global optimal solution, making this problem difficult to solve. Finally, the 

general form of the optimization problem of the TSC–OPF includes the dynamic constraints 

and the integration process is developed, embedded in the same model.   



62 
 

 

CHAPTER FOUR:      

        

N-1 MULTI–CONTINGENCY 

TSC–OPF MINLP MODEL 

BASED ON BRANCH FLOW 

APPROACH 

In this chapter, is presented a MINLP mathematic model for the N-1 multi–contingency 

TSC–OPF, based on branch flow approach, with control variables for the shunt elements in 

buses and the regulation of the on–load tap changers (OLTC) of phase transformers. 

The AC load flow based on branch flow model, described in chapter two, is used to modeled 

and calculate: The OPF with discrete controls (shunt elements and OLTC regulation), the pre–

fault considerations of the multimachine system (𝐸𝑚  and 𝛿𝑚,𝑐,0  ), and the time–domain 

equations of the fault and the post-fault stages. This equivalence allows to solve the complete 

N-1 multi–contingency TSC–OPF and facilitates the application of linearization techniques, 

such as piecewise function. As seen in (LAYDEN and JEYASURYA, 2004), (CALLE, 

CASTRONUOVO and LEDESMA, 2013) and (YUAN, KUBOKAWA and SASAKI, 2003) to 

integrate the time-domain differential equation, the trapezoidal rule is used due to its easy 

implementation and good numerical stability. 
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4.1. OPTIMAL POWER FLOW USING THE AC BRANCH FOW MODEL 

In this section, is presented an MINLP to solve the OPF with discrete controls. The voltages 

limits at the buses and the active and reactive power generation limits from generators, are 

considered as control variables, the tap regulation on the OLTC and the switchable operation 

of the shunt elements in the buses are also considered.  

 

The objective function of the model proposed is the minimization of the generation costs 

and load shedding. The generation costs of the generators, are represented by the cost curves, 

which can be expressed by the polynomial form, being the quadratic representation the most 

used in the literature. However, it can also be expressed as a relaxed linear approximation. The 

quadratic representation is used in this section. The complete model of TSC–OPF is shown in 

(4.1)–(4.15):    

 min ∑ [𝑎𝑖𝑔 (𝑃𝑖𝑔)2 + 𝑏𝑖𝑔𝑃𝑖𝑔 + 𝑐𝑖𝑔]𝑖∈ΩB + ∑(𝑐𝑙𝑠𝑃𝑖𝑑𝑟𝑖)𝑖∈ΩB  (4.1) 

 

Subject to: 𝑃𝑖𝑔 − 𝑃𝑖𝑑(1 − 𝑟𝑖) + ∑ 𝑃𝑗𝑖𝑗𝑖∈ΩL − ∑ (𝑃𝑖𝑗 + 𝑅𝑖𝑗𝐼𝑖𝑗2 ) − 𝑔ish𝑉𝑖2 = 0𝑖𝑗∈ΩL  ∀𝑖 ∈ ΩB (4.2) 

𝑄𝑖𝑔 − 𝑄𝑖𝑑(1 − 𝑟𝑖) + ∑ (𝑄𝑗𝑖 + 𝐵𝑗𝑖sh𝑉𝑖2)𝑗𝑖∈ΩL− ∑ (𝑄𝑖𝑗 − 𝐵𝑗𝑖sh𝑉𝑖2 + 𝑋𝑖𝑗𝐼𝑖𝑗2 ) − 𝑄𝑖sh =  0𝑖𝑗∈ΩL  ∀𝑖 ∈ ΩB (4.3) 

𝑄𝑖sh = 𝑏ish𝑉𝑖2ℎ𝑖 ∀𝑖 ∈ ΩB (4.4) 

𝑉𝑖2 [1 + Reg𝑖𝑗 𝑛𝑡𝑖𝑗nt𝑖𝑗]2 − 𝑉𝑗2 = 2(𝑅𝑖𝑗𝑃𝑖𝑗 + 𝑋𝑖𝑗𝑄𝑖𝑗) + 𝑍𝑖𝑗2 𝐼𝑖𝑗2  ∀𝑖𝑗 ∈ ΩL (4.5) 

[1 + Reg𝑖𝑗 𝑛𝑡𝑖𝑗nt𝑖𝑗] 𝑉𝑖𝑉𝑗 sin(𝜃𝑖 − 𝜃𝑗) = 𝑋𝑖𝑗𝑃𝑖𝑗 − 𝑅𝑖𝑗𝑄𝑖𝑗 ∀𝑖𝑗 ∈ ΩL  (4.6) 
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𝑉𝑗2𝐼𝑖𝑗2 = 𝑃𝑖𝑗2 + 𝑄𝑖𝑗2  ∀𝑖𝑗 ∈ ΩL (4.7) 

𝑉2 ≤ 𝑉𝑖2 ≤ 𝑉2
 ∀𝑖 ∈ ΩB (4.8) 

0 ≤ 𝐼𝑖𝑗2 ≤ 𝐼𝑖𝑗2  ∀𝑖𝑗 ∈ ΩL (4.9) 

𝑃𝑖𝑔 ≤ 𝑃𝑖𝑔 ≤ 𝑃𝑖𝑔 ∀𝑖 ∈ ΩB (4.10) 

𝑄𝑖𝑔 ≤ 𝑄𝑖𝑔 ≤ 𝑄𝑖𝑔 ∀𝑖 ∈ ΩB (4.11) 

0 ≤ 𝑟𝑖 ≤ 1 ∀𝑖 ∈ ΩB (4.12) 

−nt𝑖𝑗 ≤ 𝑛𝑡𝑖𝑗 ≤ nt𝑖𝑗 ∀𝑖𝑗 ∈ ΩL (4.13) 

𝑛𝑡𝑖𝑗 ∈  ℤ ∀𝑖𝑗 ∈ ΩL (4.14) 

ℎ𝑖 ∈ {0,1}  ∀𝑖 ∈ ΩB (4.15) 

 

The objective function (4.1) minimizes the total operation cost. The first term represents the 

production cost of the active power generation for thermal units. The second term represents 

the load shedding cost. Constraints (4.2) and (4.3) represent the active and reactive power 

balance at each node, respectively. Constraint (4.4) represents the reactive power generation of 

the switchable shunt elements, considering its binary operation. Constraints (4.5) and (4.6) 

calculate the voltage magnitude drop and the angular difference in each branch 𝑖𝑗 considering 

the OLTC regulation, respectively. Constraint (4.7) calculates the current magnitude at each 

branch 𝑖𝑗 . Constraints (4.8)–(4.12) define the minimum and maximum limits for voltage 

magnitudes, current magnitudes, active/reactive power generations and load shedding 

percentage, respectively. Constraints (4.13) and (4.14) represent the discrete operation of the 

OLTC transformers, and (4.15) is the binary operation of the switchable shunt elements. In 

practice, load shedding is not always a feasible control action. However, since the unsupplied 

demand is heavily penalized in  (4.1), having load shedding at the TSC-OPF indicates that the 
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network is not fully capable of operate under N-1 condition, and corrective measures should be 

planned. 

4.2. N-1 MULTI–CONTINGENCY TRANSIENT STABILITY ASSESSMENT 

The term “N-1 multi–contingency”, refers to a set of contingencies Ω𝑐 , where each 

contingency represents a three-phase to ground fault and the output of a transmission line to 

clear the fault. The classical transient stability assessment involves the resolution of non-linear 

differential equations through numerical integration methods. The transient stability studies are 

conducted in three stages:  

 

a) The pre-fault stage, where the EPS is in steady-state operation, in this stage is calculated 

the operation point via OPF, for all contingencies. Besides, is considered the switchable 

operation of the shunt elements and the OLTC tap changers.  

 

b) The fault stage, where the EPS is subject to a large perturbation (e.g., a three-phase to 

ground fault) with zero voltage magnitude at the faulted bus. In this stage it is essential the 

clearing time definition, since the stability of the system will depend on that.  

 

c) The post-fault stage, where the fault has been extinguished by the protection system. The 

system stability is evaluated in this stage according to state variables evolution over time. 

 

For transient stability analysis, the EPS are studied as multi–machine systems, wherein the 

most common representation for synchronous generators in the classical dynamic model, in 

which an internal voltage source is connected in series to a transient reactance (KUNDUR, 

1994), (ANDERSON and FOUAD, 1977).  

Pre-fault AC branch flow equivalent 

The swing equation of the synchronous machine defined in the previous chapter represent 

the dynamic behavior of the rotor angles and the deviation from the reference of the angular 

speed. The Figure 4.1 represents the calculation in pre-fault stage of internal voltage magnitudes 
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(𝐸𝑚) and rotor angles (𝛿𝑚) by the equivalent AC branch flow model, necessary as one the 

previous conditions to transient stability evaluation. For each synchronous generator, (4.16) 

calculates the injected current magnitudes of the generators. Moreover, (4.17) calculates the 

internal voltage drop, considering the transient reactance of the generators as a branch and a 

unidirectional flow between the generator and the transmission network. Equation (4.18) 

calculates the angular difference between 𝐸𝑚  and 𝑉𝑖 . (4.19) represents the internal voltage 

magnitude limits. 

 

 

Figure 4.1 – Equivalent AC Branch flow model for the generators in pre-fault  

 

𝑉𝑖2𝐼𝑚2 = (𝑃𝑚𝑔)2 + (𝑄𝑚𝑔 )2 ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚   (4.16) 

𝐸𝑚2 − 𝑉𝑖2 = 2𝑋𝑑𝑚𝑄𝑚𝑔 + 𝑋𝑑𝑚2 𝐼𝑚2  ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚   (4.17) 

𝐸𝑚𝑉𝑖 sin(𝛿𝑚 − 𝜃𝑖) = 𝑃𝑚𝑔𝑋𝑑𝑚 ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚   (4.18) 

𝐸2 ≤ 𝐸𝑚2 ≤ 𝐸2
 ∀𝑚 ∈ ΩG 𝑖=𝑚   (4.19) 
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Fault and post-fault AC branch flow equivalent 

In Figure 4.2, the electric power inputs of each generator can be calculated using a reduced 

transmission network during fault and post-fault stages, given by the AC branch flow model in 

(4.20)–(4.24). Note that all variables are time-varying and N-1 multi–contingency dependent. 

 

 

Figure 4.2 – Equivalent AC branch flow model for the reduced network for fault and post-fault situations 

 𝑃𝑚,𝑐,𝑡𝑒 + ∑ 𝑃𝑛𝑚,𝑐,𝑡red𝑛𝑚∈ΩLred − ∑ (𝑃𝑚𝑛,𝑐,𝑡red + 𝑅𝑚𝑛,𝑐,𝑡red (𝐼𝑚𝑛,𝑐,𝑡red )2)𝑚𝑛∈ΩLred − 𝐺𝑚,𝑐,𝑡sh,red𝐸𝑚2
= 0                                                      ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} (4.20) 

𝑄𝑚,𝑐,𝑡𝑒 + ∑ 𝑄𝑛𝑚,𝑐,𝑡red𝑛𝑚∈ΩLred − ∑ (𝑄𝑚𝑛,𝑐,𝑡red + 𝑋𝑚𝑛,𝑐,𝑡red (𝐼𝑚𝑛,𝑐,𝑡red )2)𝑚𝑛∈ΩLred − 𝐵𝑚,𝑐,𝑡sh,red𝐸𝑚2
= 0                                                     ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} (4.21) 

𝐸𝑚2 − 𝐸𝑛2 = 2(𝑅𝑚𝑛,𝑐,𝑡red 𝑃𝑚𝑛,𝑐,𝑡red + 𝑋𝑚𝑛,𝑐,𝑡red 𝑄𝑚𝑛,𝑐,𝑡red ) − (𝑍𝑚𝑛,𝑐,𝑡red )2(𝐼𝑚𝑛,𝑐,𝑡red )2   
(4.22) ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} 𝐸𝑚𝐸𝑛 sin(𝛿𝑚,𝑐,𝑡 − 𝛿𝑛,𝑐,𝑡) = 𝑋𝑚𝑛,𝑐,𝑡red 𝑃𝑚𝑛,𝑐,𝑡red − 𝑅𝑚𝑛,𝑐,𝑡red 𝑄𝑚𝑛,𝑐,𝑡red    
(4.23) ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} 
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𝐸𝑛2(𝐼mn,c,tred )2 = (𝑃𝑚𝑛,𝑐,𝑡red )2 + (𝑄𝑚𝑛,𝑐,𝑡red )2             ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} (4.24) 

 

Parameters that belong to set ΩLred  are calculated from the reduced network. During the 

fault and the post–fault stages, constraints (4.20) and (4.21) are the active and reactive electric 

power balance of the reduced network, respectively. Constraint (4.22) calculates the internal 

voltage magnitude drop between generators. Constraint (4.23) calculates the angular difference 

between generators, and (4.24) calculates the current magnitudes at each branch of the reduced 

network. Recall that all variables vary dynamically in time. The number of time steps of the 

model (4.20)–(4.24) is given by the time steps during the fault (𝑁𝑡1), plus the time steps during 

post-fault (𝑁𝑡2) . Note that the difference between the two stages is concentrated in the 

parameters of the reduced network (𝑅𝑚𝑛,𝑐,𝑡red , 𝑋𝑚𝑛,𝑐,𝑡red , 𝑍𝑚𝑛,𝑐,𝑡red , 𝐺𝑚,𝑐,𝑡sh,red, and 𝐵𝑚,𝑐,𝑡sh,red  ) , for each 

time step and contingency (KUNDUR, 1994), (ANDERSON and FOUAD, 1977). 

 

Is defined the center of inertia (COI) as the angular reference of the EPS, whose formulation 

is shown in (4.25), the center of inertia represents the average movement of the system, and the 

transient stability is defined as the maximum deviation from the COI. 

 

𝛿𝑐,𝑡COI = ∑ 𝐻𝑚𝛿𝑚,𝑐,𝑡𝑁𝑔𝑚=1∑ 𝐻𝑚𝑁𝑔𝑚=1  𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} (4.25) 

 

After a large disturbance, the EPS is considered stable if the angular difference between the 

absolute value of rotor angle and the COI does not exceed a given security limit, as shown in 

(4.26) and the bound of angular speed variation, as shown in (4.27), (GAN, THOMAS and 

ZIMMERMAN, 2000), (CALLE, CASTRONUOVO and LEDESMA, 2013). 

 

𝛿 ≤ 𝛿𝑚,𝑐,𝑡 − 𝛿𝑐,𝑡COI ≤ 𝛿 ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} (4.26) 

Δ𝜔𝑚 ≤ Δ𝜔𝑚,𝑐,𝑡 ≤ Δ𝜔𝑚 ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} (4.27) 
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The Trapezoidal rule for the swing equation 

Trapezoidal rule is used to integrate the expressions (3.9) and (3.10) from the previous 

chapter. As already mentioned in the previous chapter, the equation (3.13) is used to integrated 

the differential equations through trapezoidal rule, the expressions (4.28) and (4.29) are the 

calculation in time-domain of the angle of the synchronous generators (𝛿𝑚,𝑐,𝑡) and the angular 

speed deviation (Δ𝜔𝑚,𝑐,𝑡) , both variants for each generator, variant in time and for each 

contingency. The advantage of including implicit trapezoidal integration within the 

optimization model is the direct calculation of the angles and the angular speeds of the 

synchronous machines using linear expressions. 

 

𝛿𝑚,𝑐,𝑡+1 = 𝛿𝑐,𝑚,𝑡 + (Δ𝑐,𝑡2 )𝜔0(Δ𝜔𝑚,𝑐,𝑡+1 + Δ𝜔𝑚,𝑐,𝑡) 
(4.28) ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} 

Δ𝜔𝑚,𝑐,𝑡+1 = Δ𝜔𝑚,𝑐,𝑡 + ( Δ𝑐,𝑡 𝐻𝑚) [2𝑃𝑚m − 𝑃𝑚𝑐,𝑡+1𝑒 − 𝑃𝑚𝑐,𝑡𝑒 − 𝐷𝑚(Δ𝜔𝑚,𝑐,𝑡+1 + Δ𝜔𝑚,𝑐,𝑡)] 
(4.29) ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} 

Where: 

In fault stage: Δ𝑐,𝑡 = 𝑡𝑐𝑓𝑐𝑁𝑡1 , ∀𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1} 
In post-fault stage: Δ𝑐,𝑡 = 𝑡𝑐max − 𝑡𝑐𝑓𝑐𝑁𝑡2 , ∀𝑐 ∈ ΩC, 𝑡 ∈ {𝑁𝑡1 + 1…𝑁𝑡2} 

 

Finally, the expressions (4.30)–(4.32) are the initial points for the rotor angle, angular speed 

variation, and mechanic power input, respectively. 𝛿𝑚,𝑐,0 = 𝛿𝑚 ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC (4.30) 



70 
 

 

Δω𝑚,𝑐,0 = 0 ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC (4.31) 

𝑃𝑚m = 𝑃𝑖𝑔 ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚 (4.32) 

4.3. COMPLETE MINLP MODEL 

The N-1 multi–contingency TSC–OPF problem could be modeled as a MINLP model, given 

by (4.33). min( .1) 
(4.33) 

Subject to: (4.2) - (4.32) 

 

Note that the optimization model in (4.33) is an MINLP problem due to the nonlinear 

relationship between continue and discrete variables. MINLP problems are non-convex and 

optimality can neither be guaranteed by classical optimization techniques nor by heuristic 

approaches. Thus, the next chapter presents a set of efficient linearization strategies used to 

transform the proposed MINLP into a MILP model. MILP models are desirable because there 

are tools (e.g., commercial solvers) available for their solution which are more efficient and 

scalable than the ones used for MINLP formulations. 

4.4. IMPORTANT REMARKS 

In this chapter the complete MINLP proposed model for the TSC–OPF is shown. The 

branch flow model is used to model the power flow equations in pre-fault, fault and post-fault 

stages. In pre-fault stage or steady state, the branch flow model is based on the equations seen 

in the second chapter. Thus, the switchable control of shunt elements and the OLTC tap 

changers are included in this model, in fault and post-fault stages, it is developed a novel 

assessment to model the multimachine transient stability, based on branch flow approach. 

 

The trapezoidal rule is used as the integration method. This approach allows solving the 

swing equation by an implicit method, using the pre-fault solution as initial operation point. It 

is used in transient stability studies because it is easy to implement and has a good numerical 
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stability, making this method ideal for this kind of problem. Therefore, the state variables as 

the angular speed deviation and the rotor angle, can be calculated by trapezoidal rule.
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CHAPTER FIVE:      

           

N-1 MULTI–CONTINGENCY 

TSC–OPF MILP MODEL 

BASED ON BRANCH FLOW 

APPROACH 

In this chapter we develop a Mixed Integer Linear Programing (MILP) model, for the multi-

contingency TSC–OPF, based on MINLP model developed on previous chapter. The nonlinear 

characteristics due to the relationship between continuous and discrete variables make this kind 

of problems not easy to solve. For this reason, optimality may not be assured by classical 

optimization techniques or by heuristic approaches. All models in the literature of TSC–OPF 

are NLP problems as seen in (ABHYANKAR, GENG, et al., 2017), (JIN and XIANG, 2014), 

(MINANO, CUTSEM, et al., 2010) and (CALLE, CASTRONUOVO and LEDESMA, 2013). 

Such problems are modeled by the classical equations of load flow calculation as seen in 

(MONTICELLI, 1983). The use of a branch flow model to represent the load flow equations 

allows the application of linearization techniques, such as the piece-wise function or 
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linearization by parts. This approach also allows the inclusion of discrete variables as the 

optimal operation of shunt elements and tap regulation on OLTC. 

 

The N-1 multi–contingency approach aims at finding an economic and stable operation 

point for a set of contingencies evaluated independently. This approach was tested on (YUAN, 

KUBOKAWA and SASAKI, 2003), although the authors do not considered discrete controls 

and only two contingencies are evaluated in the same simulation, by altering the parameters of 

the reduced network for each contingency, the trapezoidal rule is used as an integration method 

for the differential equations. 

 

The branch flow model is fully developed in (FARIVAR and LOW, 2013) and (LOW and 

FARIVAR, 2013), where it is proposed an exact branch flow model for mesh as well as radial 

networks, using relaxations and convexification methods. The OPF was tested on eight systems, 

and the authors demonstrate that the branch flow model can be used for the analysis and 

optimization of mesh as well as radial networks. Also it is proposed a strategy for solving the 

OPF which is divided in two steps, compute a relaxed solution of OPF, by solving its conic 

relaxation and recover from the relaxed solution, an optimal solution of the original OPF using 

an angle recovery algorithm, this optimization process allows finding an optimal point whose 

a globally optimal solution is assumed. 

5.1. LINEARIZATIONS OF THE AC BRANCH FLOW MODEL 

In the previous chapter the following constraints were developed: (4.2)–(4.9), (4.16)–(4.17) 

and (4.20)–(4.24), voltage and current magnitudes are square. Thus, the following change in 

variables can be performed without loss of generality: 

 𝑉𝑖sqr ≡ 𝑉𝑖2 𝐼𝑖𝑗sqr ≡ 𝐼𝑖𝑗2  𝐼𝑚𝑛,𝑐,𝑡red,sqr ≡ (𝐼𝑚𝑛,𝑐,𝑡red )2 𝐸𝑚sqr ≡ 𝐸𝑚2  𝐼𝑚sqr ≡ 𝐼𝑚2  
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Hence, the linear equivalents of (4.2)–(4.3), (4.8)–(4.9), (4.17) and (4.19)–(4.22) are shown 

in (5.1)–(5.9): 

 𝑃𝑖𝑔 − 𝑃𝑖𝑑(1 − 𝑟𝑖) + ∑ 𝑃𝑗𝑖𝑗𝑖∈ΩL − ∑ (𝑃𝑖𝑗 + 𝑅𝑖𝑗𝐼𝑖𝑗sqr) − 𝑔ish𝑉𝑖sqr = 0𝑖𝑗∈ΩL  ∀𝑖 ∈ ΩB (5.1) 

𝑄𝑖𝑔 − 𝑄𝑖𝑑(1 − 𝑟𝑖) + ∑ (𝑄𝑗𝑖 + 𝐵𝑗𝑖sh𝑉𝑖sqr)𝑗𝑖∈ΩL− ∑ (𝑄𝑖𝑗 − 𝐵𝑖𝑗sh𝑉𝑖sqr + 𝑋𝑖𝑗𝐼𝑖𝑗sqr) − 𝑄𝑖sh =  0𝑖𝑗∈ΩL  
∀𝑖 ∈ ΩB (5.2) 

𝑉sqr ≤ 𝑉𝑖sqr ≤ 𝑉sqr
 ∀𝑖 ∈ ΩB (5.3) 

0 ≤ 𝐼𝑖𝑗sqr ≤ 𝐼𝑖𝑗sqr ∀𝑖𝑗 ∈ ΩL (5.4) 

𝐸𝑚sqr − 𝑉𝑖sqr = 2𝑋𝑑𝑚𝑄𝑚𝑔 + 𝑋𝑑𝑚2 𝐼𝑚sqr ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚 (5.5) 

𝐸sqr ≤ 𝐸𝑚sqr ≤ 𝐸sqr
 ∀𝑚 ∈ ΩG 𝑖=𝑚 (5.6) 

𝑃𝑚,𝑐,𝑡𝑒 + ∑ 𝑃𝑛𝑚,𝑐,𝑡red𝑛𝑚∈ΩLred − ∑ (𝑃𝑚𝑛,𝑐,𝑡red + 𝑅𝑚𝑛,𝑐,𝑡red 𝐼𝑚𝑛,𝑐,𝑡red,sqr)𝑚𝑛∈ΩLred − 𝐺𝑚,𝑐,𝑡sh,red𝐸𝑚sqr
= 0                                              ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} (5.7) 

𝑄𝑚,𝑐,𝑡𝑒 + ∑ 𝑄𝑛𝑚,𝑐,𝑡red𝑛𝑚∈ΩLred − ∑ (𝑄𝑚𝑛,𝑐,𝑡red + 𝑋𝑚𝑛,𝑐,𝑡red 𝐼𝑚𝑛,𝑐,𝑡red,sqr)𝑚𝑛∈ΩLred − 𝐵𝑚,𝑐,𝑡sh,red𝐸𝑚sqr
= 0                                             ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} (5.8) 

𝐸𝑚𝑠𝑞𝑟 − 𝐸𝑛𝑠𝑞𝑟 = 2(𝑅𝑚𝑛,𝑐,𝑡red 𝑃𝑚𝑛,𝑐,𝑡red + 𝑋𝑚𝑛,𝑐,𝑡red 𝑄𝑚𝑛,𝑐,𝑡red ) − (𝑍𝑚𝑛,𝑐,𝑡red )2𝐼𝑚𝑛,𝑐,𝑡red,sqr   
(5.9) ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} 

 

The initial  values 𝑉𝑖0, 𝐸𝑖0 and 𝑛𝑡𝑖𝑗0  are considered to be known for the products at the first 

term of (4.6), (4.18) and (4.23), as follows in (5.10)–(5.12): 

 [1 + Reg𝑖𝑗 𝑛𝑡𝑖𝑗nt𝑖𝑗] 𝑉𝑖𝑉𝑗 ≈  [1 + Reg𝑖𝑗 𝑛𝑡𝑖𝑗0nt𝑖𝑗] 𝑉𝑖0𝑉𝑗0 ∀𝑖𝑗 ∈ ΩL (5.10) 
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𝐸𝑚𝐸𝑛 ≈ 𝐸𝑚0 𝐸𝑛0 ∀𝑚𝑛 ∈ ΩLred  (5.11) 

𝐸𝑚𝑉𝑖 ≈ 𝐸𝑚0 𝑉𝑖0 ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚 (5.12) 

 

The sine function, sin(𝜓), at (4.6), (4.18) and (4.23), can be approximated around the initial 

angle 𝜓0 , by the linear function 𝑔(𝜓,𝜓0) = sin(𝜓0) + cos(𝜓0) (𝜓 − 𝜓0) . Note that, if     𝜓0 = 0, then sin(𝜓) ≈ 𝑔(𝜓, 0) = 𝜓. Thus, (4.6), (4.18) and (4.23) are linearized as in (5.13), 

(5.14) and (5.15), respectively: 

  [1 + Reg𝑖𝑗 𝑛𝑡𝑖𝑗0nt𝑖𝑗] 𝑉𝑖0𝑉𝑗0𝑔(𝜃𝑖 − 𝜃𝑗 , 𝜃𝑖0 − 𝜃𝑗0) = 𝑋𝑖𝑗𝑃𝑖𝑗 − 𝑅𝑖𝑗𝑄𝑖𝑗 ∀𝑖𝑗 ∈ ΩL (5.13) 

𝐸𝑚𝑉𝑖𝑔(𝛿𝑚 − 𝜃𝑖 , 𝛿𝑚0 − 𝜃𝑖0) = 𝑃𝑚𝑔𝑋𝑑𝑚 ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚 (5.14) 𝐸𝑚𝐸𝑛𝑔(𝛿𝑚,𝑐,𝑡 − 𝛿𝑛,𝑐,𝑡, 𝛿𝑚,𝑐,𝑡0 − 𝛿𝑛,𝑐,𝑡0 ) = 𝑋𝑚𝑛,𝑐,𝑡red 𝑃𝑚𝑛,𝑐,𝑡red − 𝑅𝑚𝑛,𝑐,𝑡red 𝑄𝑚𝑛,𝑐,𝑡red   
(5.15) ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2} 

 

During the pre-fault stage, (4.16) represents the calculate of current injection by the 

generators, which can be linearized using initial values for the active and reactive generation 

and initial voltage as shown in (5.16). 

 (𝑉𝑖0)2𝐼𝑚𝑠𝑞𝑟 = 𝑃𝑚𝑔𝑃𝑖0 + 𝑄𝑚𝑔𝑄𝑖0 ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚 (5.16) 

 

Constraints (4.7) and (4.24) are linearized using piece-wise approximation function. Where 

the accuracy of  𝑃𝑖𝑗2 , 𝑄𝑖𝑗2  and (𝑃𝑚𝑛,𝑐,𝑡red )2, (𝑄𝑚𝑛,𝑐,𝑡red )2 will depend on the number of discrete steps Γ are representing by the follow equations (5.17) - (5.24) and (5.25) - (5.32) respectively: 

 

(𝑉𝑗0)2𝐼𝑖𝑗𝑠𝑞𝑟 =∑𝑚𝑖𝑗,γ𝑆 ∆𝑖𝑗,γ𝑃Γ
γ=1 +∑𝑚𝑖𝑗,γ𝑆 ∆𝑖𝑗,γ𝑄Γ

γ=1  ∀𝑖𝑗 ∈ ΩL (5.17) 

𝑃𝑖𝑗+ − 𝑃𝑖𝑗− = 𝑃𝑖𝑗 ∀𝑖𝑗 ∈ ΩL (5.18) 
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𝑃𝑖𝑗+ + 𝑃𝑖𝑗− =∑∆𝑖𝑗,γ𝑃Γ
γ=1  ∀𝑖𝑗 ∈ ΩL (5.19) 

𝑄𝑖𝑗+ − 𝑄𝑖𝑗− = 𝑄𝑖𝑗 ∀𝑖𝑗 ∈ ΩL (5.20) 

𝑄𝑖𝑗+ + 𝑄𝑖𝑗− =∑∆𝑖𝑗,γ𝑄Γ
γ=1  ∀𝑖𝑗 ∈ ΩL (5.21) 

0 ≤ ∆𝑖𝑗,γ𝑃 ≤ ∆̅𝑖𝑗𝑆  ∀𝑖𝑗 ∈ ΩL, γ = 1…Γ (5.22) 

0 ≤ ∆𝑖𝑗,γ𝑄 ≤ ∆̅𝑖𝑗𝑆  ∀𝑖𝑗 ∈ ΩL, γ = 1…Γ (5.23) 

𝑃𝑖𝑗+, 𝑃𝑖𝑗−, 𝑄𝑖𝑗+, 𝑄𝑖𝑗− ≥ 0 ∀𝑖𝑗 ∈ ΩL (5.24) 

(𝐸𝑛0)2𝐼𝑚𝑛,𝑐,𝑡red,sqr =∑𝑚𝑚𝑛, ,𝑐,𝑡S,red ∆𝑚𝑛, ,𝑐,𝑡P,redΓ
γ=1

+∑𝑚𝑚𝑛, ,𝑐,𝑡S,red ∆𝑚𝑛, ,𝑐,𝑡Q,redΓ
γ=1  ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 +𝑁𝑡2} (5.25) 

𝑃𝑚𝑛,𝑐,𝑡+,red − 𝑃𝑚𝑛,𝑐,𝑡−,red = 𝑃𝑚𝑛,𝑐,𝑡red  ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 +𝑁𝑡2} (5.26) 

𝑃𝑚𝑛,𝑐,𝑡+,red + 𝑃𝑚𝑛,𝑐,𝑡−,red =∑∆𝑚𝑛,γ,𝑐,𝑡P,redΓ
γ=1  ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 +𝑁𝑡2} (5.27) 

𝑄𝑚𝑛,𝑐,𝑡+,red − 𝑄𝑚𝑛,𝑐,𝑡−,red = 𝑄𝑚𝑛,𝑐,𝑡red  ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 +𝑁𝑡2} (5.28) 

𝑄𝑚𝑛,𝑐,𝑡+,red + 𝑄𝑚𝑛,𝑐,𝑡−,red =∑∆𝑚𝑛,γ,𝑐,𝑡Q,redΓ
γ=1  ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 +𝑁𝑡2} (5.29) 

0 ≤ ∆𝑚𝑛,γ,𝑐,𝑡P,red ≤ ∆̅𝑚𝑛,𝑐,𝑡S,red  ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 +𝑁𝑡2}, γ = 1…Γ (5.30) 

0 ≤ ∆𝑚𝑛,γ,𝑐,𝑡𝑄,red ≤ ∆̅𝑚𝑛,𝑐,𝑡S,red  ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 +𝑁𝑡2}, γ = 1…Γ (5.31) 

𝑃𝑚𝑛,𝑐,𝑡+,red , 𝑃𝑚𝑛,𝑐,𝑡−,red , 𝑄𝑚𝑛,𝑐,𝑡+,red , 𝑄𝑚𝑛,𝑐,𝑡−,red ≥ 0 ∀𝑚𝑛 ∈ ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 +𝑁𝑡2} (5.32) 
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The right terms of constraints (5.17) and (5.25) represent the piece-wise linearization of 

(4.7) and (4.24), where Γ is the number of linearization blocks,  ∆̅𝑖𝑗𝑆  and ∆̅𝑚𝑛,𝑐,𝑡S,red  are the upper 

bounds of the linearization blocks, are calculated as: 

 

∆̅𝑖𝑗S = 𝑉 𝐼𝑖𝑗Γ   ∆̅𝑚𝑛,𝑐,𝑡S,red = 𝑉 𝐼𝑚𝑛,𝑐redΓ  

 

Where  𝐼𝑚𝑛,𝑐red
 , is the maximum current in the branches of the reduced network. The terms 𝑚𝑖𝑗,γ𝑆  and 𝑚𝑚𝑛, ,𝑐,𝑡S,red  is the slope of γ–th block and is calculated by:  

 𝑚𝑖𝑗,γ𝑆 = (2Γ − 1)∆̅𝑖𝑗S , 𝑚𝑚𝑛, ,𝑐,𝑡S,red = (2Γ − 1)∆̅𝑚𝑛,𝑐,𝑡S,red  

 

The terms ∆𝑖𝑗,γ𝑃  and ∆𝑚𝑛,γ,𝑐,𝑡P,red  are the γ-th value of the 𝑃𝑖𝑗 and 𝑃𝑚𝑛,𝑐,𝑡red  respectively, ∆𝑖𝑗,γ𝑄  and ∆𝑚𝑛,γ,𝑐,𝑡Q,red  are the γ–th value of the 𝑄𝑖𝑗 and 𝑄𝑚𝑛,𝑐,𝑡red  respectively. 𝑃𝑖𝑗+, 𝑃𝑖𝑗− and 𝑃𝑚𝑛,𝑐,𝑡+,red , 𝑃𝑚𝑛,𝑐,𝑡−,red  are 

auxiliary variables, non-negatives, to represent |𝑃𝑖𝑗| and |𝑃𝑚𝑛,𝑐,𝑡red | respectively, 𝑄𝑖𝑗+, 𝑄𝑖𝑗− and 𝑄𝑚𝑛,𝑐,𝑡+,red , 𝑄𝑚𝑛,𝑐,𝑡−,red  are auxiliary variables, non-negatives, to represent |𝑄𝑖𝑗|  and |𝑄𝑚𝑛,𝑐,𝑡red | 
respectively, as seen in (5.18), (5.20), (5.26) and (5.28) respectively. To ensure that the sum of 

all the blocks are equal to |𝑃𝑖𝑗|, |𝑄𝑖𝑗|, |𝑃𝑚𝑛,𝑐,𝑡red |, |𝑄𝑚𝑛,𝑐,𝑡red | is used the constraints (5.19), (5.21), 

(5.27) and (5.29). The constraints (5.22), (5.23), (5.30) and (5.31), fix the upper limits of the |𝑃𝑖𝑗|, |𝑄𝑖𝑗|, |𝑃𝑚𝑛,𝑐,𝑡red |, |𝑄𝑚𝑛,𝑐,𝑡red |, the constraints (5.24) and (5.32) guarantee the non-negativity of 

the auxiliary variables. 

5.2. LINEARIZATION OF THE SWITCHABLE SHUNT ELEMENTS 

Considering the change-in-variable 𝑉𝑖sqr ≡ 𝑉𝑖2, the nonlinear constraint (4.4) is linearized 

using the disjunctive equivalent shown in (5.33) - (5.36): 

 𝑉2(1 − ℎ𝑖) ≤ 𝑉𝑖𝑠𝑞𝑟 − 𝑄𝑖𝑠ℎ𝑏𝑖𝑠ℎ ≤ 𝑉2(1 − ℎ𝑖) ∀𝑖 ∈ ΩB, 𝑏𝑖𝑠ℎ ≠ 0 (5.33) 



78 
 

 

ℎ𝑖𝑉2𝑏𝑖𝑠ℎ ≤ 𝑄𝑖𝑠ℎ ≤ ℎ𝑖𝑉2𝑏𝑖𝑠ℎ ∀𝑖 ∈ ΩB, 𝑏𝑖𝑠ℎ > 0 (5.34) 

ℎ𝑖𝑉2𝑏𝑖𝑠ℎ ≥ 𝑄𝑖𝑠ℎ ≥ ℎ𝑖𝑉2𝑏𝑖𝑠ℎ ∀𝑖 ∈ ΩB, 𝑏𝑖𝑠ℎ < 0 (5.35) 

𝑄𝑖𝑠ℎ = 0 ∀𝑖 ∈ ΩB, 𝑏𝑖𝑠ℎ = 0 (5.36) 

 

Disjunctive constraints (5.33)–(5.36) represent the product ℎ𝑖𝑉𝑖sqr𝑏𝑖𝑠ℎ  exactly, given the 

binary nature of ℎ𝑖. When the shunt element is capacitive, 𝑏𝑖𝑠ℎ > 0, the constraints (5.33) and 

(5.34) are used. When the shunt element is inductive, 𝑏𝑖𝑠ℎ < 0, the constraints (5.33) and (5.35). 

Finally, when there is no shunt element, 𝑏𝑖𝑠ℎ = 0, the constraint (5.36) is used.  

5.3. LINEARIZATION OF THE OLTC TRANSFORMERS 

Considering the change-in-variable 𝑉𝑖sqr ≡ 𝑉𝑖2, the first term of the left-side-member of 

(4.5) can be replaced by the auxiliary variable �̃�𝑖sqr, which is the regulated voltage magnitude 

at the OLTC transformer as shown in (5.37). 

 �̃�𝑖sqr = 𝑉𝑖sqr [1 + Reg𝑖𝑗 𝑛𝑡𝑖𝑗nt𝑖𝑗]2 ∀𝑖𝑗 ∈ ΩL (5.37) 

 

Constraint (5.37) indicates that the regulated voltage depends on the percentage of the 

regulation, the tap position and the maximum number of steps. Note that the constraint (5.37) 

is nonlinear. Thus, to linearize it, the square integer variable 𝑛𝑡𝑖𝑗2  is transformed with a binary 

variable 𝑡𝑖𝑗,𝑘, where 𝑘 ∈ 1…2𝑛𝑡𝑖𝑗 which represents the tap position of the OLTC transformer 

connected between buses 𝑖  and 𝑗 , and the term 𝑛𝑡𝑖𝑗2𝑉𝑖sqr  is replaced through the auxiliary 

variable 𝑉𝑖𝑗,𝑘c  as shown by the linearized expression in (5.38) - (5.42): 

 

 �̃�𝑖sqr = 𝑉𝑖sqr(1 − Reg𝑖𝑗)2 +∑ Reg𝑖𝑗nt𝑖𝑗 [Reg𝑖𝑗nt𝑖𝑗 (2𝑘 − 1) + 2(1 − Reg𝑖𝑗)] 𝑉𝑖𝑗,𝑘c2nt𝑖𝑗𝑘=1  
∀𝑖𝑗 ∈ ΩL 

(5.38) 
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𝑉2(1 − 𝑡𝑖𝑗,𝑘) ≤ 𝑉𝑖sqr − 𝑉𝑖𝑗,𝑘c ≤ 𝑉2(1 − 𝑡𝑖𝑗,𝑘) ∀𝑖𝑗 ∈ ΩL, ∀𝑘 = 1…2nt𝑖𝑗 (5.39) 

𝑉2𝑡𝑖𝑗,𝑘 ≤ 𝑉𝑖𝑗,𝑘c ≤ 𝑉2𝑡𝑖𝑗,𝑘 ∀𝑖𝑗 ∈ ΩL, ∀𝑘 = 1…2nt𝑖𝑗 (5.40) 

𝑡𝑖𝑗,𝑘 ≤ 𝑡𝑖𝑗,𝑘−1 ∀𝑖𝑗 ∈ ΩL, ∀𝑘 = 2…2nt𝑖𝑗 (5.41) 

𝑡𝑖𝑗,𝑘 ∈ {0,1} ∀𝑖𝑗 ∈ ΩL, ∀𝑘 = 1…2nt𝑖𝑗 (5.42) 

 

Constraints (5.38)–(5.42) represent the linearized model for the regulated voltage 

magnitude. Constraint (5.38) calculates the magnitude of the regulated voltage based on the 

binary version of the tap position 𝑡𝑖𝑗,𝑘. Disjunctive constraints (5.39) and (5.40) define the value 

of the auxiliary variable 𝑉𝑖𝑗,𝑘c  according to the value of 𝑡𝑖𝑗,𝑘. Constraint (5.41) guarantees the 

sequence of the tap position 𝑡𝑖𝑗,𝑘 within the set 𝑘 = 1…2nt𝑖𝑗. Finally, (5.42) defines the binary 

nature of the tap position 𝑡𝑖𝑗,𝑘. The integer variable 𝑛𝑡𝑖𝑗 can be calculate using (5.43): 

 

𝑛𝑡𝑖𝑗 = −nt𝑖𝑗 + ∑ 𝑡𝑖𝑗,𝑘2nt𝑖𝑗
𝑘=1    ∀𝑖𝑗 ∈ ΩL (5.43) 

 

Finally, the linear expression for (4.5) is given by (5.44): 

 �̃�𝑖sqr − 𝑉𝑗sqr = 2(𝑅𝑖𝑗𝑃𝑖𝑗 + 𝑋𝑖𝑗𝑄𝑖𝑗) + 𝑍𝑖𝑗2 𝐼𝑖𝑗sqr ∀𝑖𝑗 ∈ ΩL (5.44) 

5.4. PROPOSED MILP MODEL 

The N-1 multi–contingency TSC–OPF problem could be modeled as an approximate MILP 

model, the quadratic term in (4.1) is approximated using the piece-wise approximation function 

as seen in (5.45)–(5.49): 
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(𝑃ig)2 =∑(𝑚𝑖,γSg  Δ𝑖, Pg )Γ
 =1  

𝑃ig+ − 𝑃ig− = 𝑃ig ∀𝑖 ∈ ΩB (5.45) 

𝑃ig+ − 𝑃ig− = ∑Δ𝑖, PgΓ
 =1  ∀𝑖 ∈ ΩB (5.46) 

0 ≤ Δ𝑖, 𝑃g ≤ Δ𝑖, Sg  ∀𝑖 ∈ ΩB,  = 1…Γ (5.47) 

0 ≤ 𝑃ig+ ∀𝑖 ∈ ΩB (5.48) 

0 ≤ 𝑃ig− ∀𝑖 ∈ ΩB (5.49) 

 

Finally, the MILP model is given by (5.50): 

 

min𝑣 = ∑ (𝑎𝑖g (∑(𝑚𝑖,γSg  Δ𝑖, Pg)Γ
 =1 ) + 𝑏𝑖g𝑃𝑖g + 𝑐𝑖g)𝑖∈ΩB + ∑(𝑐𝑙𝑠𝑃𝑖d𝑟𝑖)𝑖∈ΩB  

(5.50) 
Subject to:  

 

Pre-fault: (4.10)–(4.13), (4.15),(5.1) –(5.6), (5.13) –(5.14), (5.16), (5.17)–(5.24), 

(5.33)–(5.36), (5.38)–(5.42), (5.44) and (5.45)–(5.49). 

Fault and post-fault: (4.25)–(4.32), (5.7)–(5.9), (5.15), (5.25)–(5.32). 

 

The optimization model (5.50) is a MILP problem and its optimality can be guaranteed by 

classical optimization techniques. 
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5.5. PROPOSED OPTIMIZATION METHODOLOGY 

The step–by–step procedure to solve the N-1 multi–contingency TSC–OPF problem is 

presented as follows: 

 

 Step 1: Define ΩC. Based on the experience on transient stability studies, define 𝑡cfc, 𝑡cmax, 𝑁𝑡1 and 𝑁𝑡2. For each fault location and line isolated by the protection system, calculate the 

reduced network parameters 𝑅𝑚𝑛,𝑐,𝑡red , 𝑋𝑚𝑛,𝑐,𝑡red , 𝑍𝑚𝑛,𝑐,𝑡red , 𝐺𝑚,𝑐,𝑡sh,red, and 𝐵𝑚,𝑐,𝑡sh,red , ∀𝑚𝑛 ∈ΩLred , 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2}. From the data, is know 𝑛𝑡𝑖𝑗0 , ∀𝑖𝑗 ∈ ΩL. Run an AC load 

flow to obtained the initial values of 𝑉𝑖0, 𝜃𝑖0, 𝑃𝑖0, 𝑄𝑖0 ∀𝑖 ∈ ΩB . Let 𝐸𝑚0 = 𝑉𝑖0  and  𝛿𝑚0 =𝜃𝑖0, ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚 ; 𝛿𝑚,𝑐,𝑡0 = 𝛿𝑚0 , ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2}  and 𝑣∗ =0. 

 

 Step 2: Solve the relaxed version (disregarding the discrete nature of the decision variables) 

of the MILP model (5.50) using a commercial LP solver. Save the objective function 𝑣 and 

obtain improved values of the initial parameters: 𝑉𝑖0 = √𝑉𝑖sqr and 𝜃𝑖0 = 𝜃𝑖 , ∀𝑖 ∈ ΩB, 𝑃𝑖0 =𝑃𝑚 g  and 𝑄𝑖0 = 𝑄𝑚 g , ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚 , 𝐸𝑚0 = 𝐸𝑚  and 𝛿𝑚0 = 𝛿𝑚, ∀𝑚 ∈ ΩG , 𝛿𝑚,𝑐,𝑡0 =𝛿𝑚,𝑐,𝑡, ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 + 𝑁𝑡2}. 
 

 Step 3: If  𝑣 − 𝑣∗ ≥ 𝜖, then let 𝑣∗ = 𝑣 and go back to Step 2. Otherwise, continue to Step 

4. 

 

 Step 4: Solve the MILP model (5.50) considering the discrete controls using a commercial 

MILP solver. Let 𝑣∗ = 𝑣  and obtain improved values of the initial parameters:  𝑉𝑖0 =√𝑉𝑖sqr  and 𝜃𝑖0 = 𝜃𝑖 , ∀𝑖 ∈ ΩB , 𝑃𝑖0 = 𝑃𝑚 g  and 𝑄𝑖0 = 𝑄𝑚 g , ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚 ,  𝐸𝑚0 = 𝐸𝑚 

and 𝛿𝑚0 = 𝛿𝑚, ∀𝑚 ∈ ΩG , 𝛿𝑚,𝑐,𝑡0 = 𝛿𝑚,𝑐,𝑡, ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 +𝑁𝑡2} . Using 

(5.43) calculate 𝑛𝑡𝑖𝑗0 , ∀𝑖𝑗 ∈ ΩL. 

 

 Step 5: Fix the binary solution 𝑡𝑖𝑗,𝑘, ∀𝑖𝑗 ∈ ΩL, ∀𝑘 = 1…2nt𝑖𝑗 and ℎ𝑖𝑉𝑖 ∈ ΩB obtained in 

Step 4. Solve the relaxed version of the MILP model (5.50) using a commercial LP solver. 
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Save the objective function 𝑣 and obtain improved values of the initial parameters: 𝑉𝑖0 =√𝑉𝑖sqr  and 𝜃𝑖0 = 𝜃𝑖 , ∀𝑖 ∈ ΩB , 𝑃𝑖0 = 𝑃𝑚 g  and 𝑄𝑖0 = 𝑄𝑚 g , ∀𝑖 ∈ ΩB, 𝑚 ∈ ΩG 𝑖=𝑚 ,  𝐸𝑚0 = 𝐸𝑚 

and 𝛿𝑚0 = 𝛿𝑚, ∀𝑚 ∈ ΩG, 𝛿𝑚,𝑐,𝑡0 = 𝛿𝑚,𝑐,𝑡, ∀𝑚 ∈ ΩG, 𝑐 ∈ ΩC, 𝑡 ∈ {0…𝑁𝑡1 +𝑁𝑡2}. 
 

 Step 6: If  𝑣 − 𝑣∗ ≥ 𝜖, then let 𝑣∗ = 𝑣 and go back to Step 5. Otherwise, continue to Step 

7. 

 

 Step 7: Validate the obtained result in the time-domain simulation using a commercial 

stability software.  

 

The flowchart of the Figure 5.1 shows the novel proposed optimization methodology, based 

on LP and MILP problems sequence, considering initial values for the principal variables 

obtained from AC load flow calculation. 
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Figure 5.1 - Flowchart of the novel optimization process  
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5.6. IMPORTANT REMARKS 

Unlike (CALLE, CASTRONUOVO and LEDESMA, 2013), this research presents besides 

the branch flow model, the multi-contingency assessment, where the index 𝑐 indicates the set 

of contingencies as seen in (YUAN, KUBOKAWA and SASAKI, 2003), (LI, YUAN, et al., 

2011); and the discrete controls of the shunt elements and regulation of OLTC, that is enough 

that the model be heavier computationally. The number of contingencies based on the quantity 

of the index  𝑐  can be more while the system is smaller. 

 

The branch flow model, allows using linearization techniques as the piece-wise 

approximation (ARIAS, TABARES, et al., 2018) which uses a number of blocks that according 

to their amount improves the response. The change of quadratic variables and the approximation 

of sin(𝜓), are the most used and proven linearization techniques for this type of approaches, 

the sin(𝜓) approximation serves for any angle since it uses initial values, updated in each 

iteration in the optimization process.  

 

The majority of existing publication disregard an optimization process and uses as initial 

operating point a nonlinear version of the model, thus increasing the computational burden and 

only the degree of accuracy of the linear model would be checked. The novel optimization 

methodology shown in this dissertation improves the degree of accuracy of the MILP model 

through the consecutive solution of the relaxed version of the MILP model improving the 

response according to the predefined error. 
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CHAPTER SIX:       

           

TESTS CASES 

The proposed MILP model was implemented in the modeling language AMPL (FOURER, 

GAY and KERNIGHAN, 2003). The MILP and LP models were solved using an off–the–shelf 

commercial solver CPLEX (ILOG, 2008).  All the tests are carried out using a 3.41GHz Intel 

core i7–6700 processor with 16GB of RAM. The modified 9–Bus/3–Generators WSCC, the 

modified IEEE 14–Bus/5–Generators, 39–Bus/10–Generators New England and the modified 

IEEE 68–Bus/16–Generators systems are used to show the efficiency and scalability of the 

proposed method. 
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6.1. OPF MINLP AND MILP MODEL COMPARISON  

In this item is presented the performance of the MINLP and MILP models to solve the TSC–

OPF without the TSC, of the 9–bus / 3–generators WSCC system, 14–bus / 5–generators IEEE 

system, 39–bus / 10–generators New England system and the 68–bus / 16–generators IEEE 

system. In Table 6.1 is shown the OPF results for the four cases systems, where the MINLP 

presented better results than the MILP model in terms of generation cost. 

 

System Generation Cost 
[US$] 

Active Power Losses 
[MW] 

Time               
[s] 

9 Bus  
OPF MINLP 2063.33 6.4830 0.06 

OPF MILP 2063.16 6.4899 0.03 

14 Bus 
OPF MINLP 6066.74 1.5855 17.97 

OPF MILP 6086.41 1.5096 0.94 

39 Bus 
OPF MINLP 93546.70 36.6551 8.14 

OPF MILP 94079.78 38.3658 1.75 

68 Bus 
OPF MINLP 346635.61 372.7545 86.28 

OPF MILP 349790.32 390.4930 6.23 

Table 6.1 – Generation cost and active power losses of OPF   

 

The results of Table 6.1 show the degree of precision of the MILP model and the 

linearization techniques adopted to presented the MILP model. Since the results are similar and 

with small error. The simulation time are also shown and it can be noted the difference between 

the models, resulting the MILP model more efficient in terms of computation time. These 

results can be stable or instable in transient stability terms. In the next sections, it will be shown 

that these obtained operating points are not necessarily stables. The main characteristic of these 

results is the economic operation of the EPS, finding cheap operating points in active generation 

terms, however this fact does not guarantee a stable operation of the EPS. 
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6.2. 9–BUS / 3–GENERATORS WSCC MODIFIED SYSTEM  

For this system, network and dynamic data can be found in (ANDERSON and FOUAD, 

1977), the production costs and generation limits were based on the study conducted in (PAI 

and GUYEN, 2003). This small system is commonly used in transient stability studies and has 

3 generation buses and 3 loads buses. 

 

The Table 6.2, details the technical and economic data for this system, where we observe 

the basic dynamic data for multimachine transient stability analysis of the EPS, the transient 

reactance and the inertia and damping constants. We also observe the limits of active and 

reactive power generation. The linear and constant coefficients of the production cost equation 

are presented as the economic data for this system, neglecting the quadratic coefficient because 

it has a small value. Table 6.3 shows the contingencies data, three N-1 contingencies whit 

different clearing times was tested, these contingencies are visible in Figure 6.1, the shunt 

compensation location and the three faults location are also visible. 

 

Gen. 

Technical Data Economic Data 𝑿𝒅𝐠 𝑯𝐠 𝑫𝐠 𝑷𝒊𝐠 𝑷𝒊𝐠 𝑸𝒊𝐠 𝑸𝒊𝐠 𝒂𝒊𝐠 𝒃𝒊𝐠 𝒄𝒊𝐠 

[pu] [pu] [pu] [MW] [MW] [Mvar] [Mvar] [𝐔𝐒$𝟐/MW] [US$/MW] [US$] 𝐺1 0.0608 23.6 0 100 0 100 -100 0.01 5.0 150 𝐺2 0.1198 6.40 0 200 0 100 -100 0.01 1.2 600 𝐺  0.1813 3.01 0 90 0 100 -100 0.01 1.0 335 

Table 6.2 – Technical and Economic Data 9-bus/3-generators system 

 

Contingency 
𝟑𝝓 𝐅𝐚𝐮𝐥𝐭 Transmission 𝒕𝒊𝐟𝐜 𝒕𝒊𝐦𝐚𝐱 𝐁𝐮𝐬 Line Out [s] [s] 

C1 7 5 – 7 0.083 2 

C2 5 4 – 5 0.095 2 

C3 9 6 – 9 0.080 2 

Table 6.3 – N-1 Contingencies for 9–bus/3–generators WSCC system 
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For this system, as seen in the Figure 6.1, three contingencies are evaluated, this selection 

is based on the literature and on the experience in transient stability studies. These contingencies 

are evaluated one independent of the other. The Table 6.4 shows the TSC–OPF considerations 

or operating data, as the tap regulation percentage, the number of steps of the OLTC, the limits 

of terminal and internal voltage, the limits of angle deviation with respect to COI, the angular 

speed limits, the integration steps for the fault and post fault stages are also shown, the load 

shedding cost, the piece-wise steps number, the angular velocity and the error of optimization 

process are shown. 

 

Operating Data 𝐑𝐞𝐠𝒊𝒋 𝐧𝐭𝒊𝒋 𝑽 𝑽 𝑬 𝑬 𝜹 𝜹 𝚫𝝎 𝚫𝝎 𝑵𝒕𝟏 𝑵𝒕𝟐  𝒄𝒍𝒔 𝚪 𝝎𝟎 𝝐 

10% 8 1.05 0.95 1.20 0.80 ±  ° ±0.01 25 500 30 20 377 0.001 

Table 6.4 – Operating Data 9–bus/3–generators system 

 

 

Figure 6.1 – 9–bus/3–generators system and N-1 contingencies 

Evaluating contingency C1 

The contingency C1, is based on (ANDERSON and FOUAD, 1977),  where the disturbance 

initiating the transient is a three–phase fault occurring near bus 7 at the end of line 5–7. The 

fault is cleared in five cycles (0.083 s) by opening the line 5–7, as seen in Table 6.3. 

 

Figure 6.2 and Figure 6.3, show the rotor angle deviation with respect to COI and the rotor 

angular speed respectively. In Figure 6.2, the rotor angles deviation obtained from MILP model, 

are within the predefined limits, the angular speed deviation during the fault is also within the 
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limits, and we can see the perturbation effect until the protection system clears the fault. The 

rotor angle of generator G2 reaches its limit in the first cycle, but in the second cycle the rotor 

angle is reduced, for that reason the system is stable, in addition that the model maintains that 

deviation within the limits. 

 

Gen. 
Dispatch 

OLTC 𝒏𝒕𝒊𝒋  Tap Shunt Status 
Cost 

MILP 
Cost 

MINLP 
[MW] [US$] [US$] 

G1 75.50 T1 -5 0.969 S5 ON 

2113.82 2112.28 G2 154.30 T2 -3 0.981 S6 OFF 

G3 90.00 T3 -6 0.963 S8 OFF 

Table 6.5 – Results of the 9–bus/3–generators system, contingency C1  

 

Also Table 6.5 shows the operating results, where we can see that the power generation of 

G3 is maximum, because it is the cheaper, and the rest of load, is distributed among the other 

two generators. The OLTC are regulated in the pre–fault stage and the tap position and the 

voltage values are shown. The discrete operation of the shunt elements is also shown. These 

two considerations are to keep the voltages in the buses within the limits. The generation cost 

of MILP and MINLP are also presented, highlighting a slight difference between both, the 

computation times were 1.27s and 45.95s, respectively.  

 

 

Figure 6.2 – Rotor Angle deviation w.r.t. COI 9–bus/3–generators system – Contingency C1 
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Figure 6.3 – Angular Speed 9–bus/3–generators system – Contingency C1 

Evaluating contingencies C1 and C2 

In this part, a new contingency is added based on transient stability studies. The operating 

results are shown in the Table 6.6, where, as expected the objective function (generation cost) 

is higher than in the previous case, because the model becomes more restricted. The 

computational burden increased for this reason. The computation time was 3173.92s. This 

increase is due to the iterative process during the minimization of the error in the optimization 

process. The power generation distribution is similar to the previous case, where the G3 is at its 

maximum capacity. The OLTC regulation and the shunt elements operation is also similar to 

the previous case, because the second fault is less severe than the previous case. The generation 

cost of the MILP and MINLP model are also presented. The MILP model results more 

expensive than the other one, because the approximations and simplifications require a number 

of steps, increasing the computational burden.  

Gen. 
Dispatch 

OLTC 𝒏𝒕𝒊𝒋  Tap Shunt Status 
Cost 

MILP 
Cost 

MINLP 
[MW] [US$] [US$] 

G1 75.77 T1 -5 0.969 S5 ON 

2114.68 2112.30 G2 154.09 T2 -2 0.988 S6 OFF 

G3 90.00 T3 -5 0.969 S8 OFF 

Table 6.6 – Results of the 9–bus/3–generators system, contingencies C1 and C2 
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Figure 6.4 and Figure 6.5, show the rotor angle and rotor speed deviations. The second fault, 

as seen in these figures, is less severe than the other one and this is reflected in the curves. The 

limits are enforced, with G2 of the fault one being closest to its limit. 

 

 

Figure 6.4 – Rotor Angle deviation w.r.t. COI 9–bus/3–generators system – Contingencies C1 and C2 

 

 

Figure 6.5 – Angular Speed 9–bus/3–generators system – Contingencies C1 and C2 
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contingencies C1, C2 and C3 

Three contingencies are evaluated in the same model. The last contingency added to the 

model is similar to the first one, due to its proximity to G3. The Table 6.7 shows the operation 

point, the power generation is distributed among the generators and this operation point changes 

with reference to the other two cases, because contingency C3 is more severe than the C2. 

Naturally, the generation cost increases, when compared to the MINLP model. There exists a 

difference by the previously mentioned. The linearized version of the TSC–OPF, has an error, 

because it is subject to the use of linearization blocks in the application of the piecewise 

technique. In addition, to the other simplifications and approximations, because the model is 

more restrictive, the OLTC regulation and the shunt elements operation, changed with respect 

to previous cases. 

 

Gen. 
Dispatch 

OLTC 𝒏𝒕𝒊𝒋  Tap Shunt Status 
Cost 

MILP 
Cost 

MINLP 
[MW] [US$] [US$] 

G1 81.25 T1 -5 0.969 S5 ON 

2144.69 2122.75 G2 159.92 T2 -3 0.981 S6 ON 

G3 78.38 T3 -4 0.975 S8 OFF 

Table 6.7 – Results of the 9–bus/3–generators system, contingencies C1, C2 and C3 

 

Figure 6.6 and Figure 6.7 show the rotor angle deviations and the angular speed deviations 

for the case involving three contingencies and the three generators. All state variables are within 

the predetermined limits. The Contingency C1 remains as the most severe, and the rotor angle 

deviation from generator G2 is around its limits. Moreover the angular speed in Figure 6.7 

shows that contingencies C1 and C3 are those that most affect the system. The computational 

time was 3173.92s, naturally more than the previous case since the model is more restrictive. 

 

In the previous section the Table 6.1 shows the results of the TSC–OPF without the TSC, 

the generation cost for this system increases respect to the obtained in Table 6.7, this is 

reasonable, because the TSC–OPF is more restricted than the OPF, making the generation cost 

more expensive. 
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Figure 6.6 – Rotor Angle deviation w.r.t. COI 9–bus/3–generators system – Contingencies C1, C2 and C3 

 

Figure 6.7 – Angular Speed 9–bus/3–generators system – Contingencies C1, C2 and C3 

TSC–OPF without TSC analysis  

From the TSC–OPF without the TSC constraints, an operation point is obtained, which can 

be stable or instable, because in the OPF analysis only the economic operation of the EPS is 

calculated. Figure 6.8 shows the rotor angle deviation from the COI and the angular speed 

trajectories of the EPS when a contingency C1 is applied, using the TSC–OPF without the TSC 
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operation point as initial point in a MATLAB transient stability program. As seen in the figure 

the rotor angle and angular speed trajectories are clearly unstable in the first five cycles.  

 

 

Figure 6.8 – TSC–OPF analysis without TSC 9–bus / 3–generators WSCC system    

Sensitivity analysis 

A sensitivity analysis over the proposed model has been performed which is summarized in 

Table 6.8. The generation cost and the load shedding for different transient stability limits are 

compared. In this case, the proposed methodology is able to identify the load shedding 

minimum that must be applied to the system to obtain a feasible operation. 

 

Angle Generation Load Speed Generation Load 

Limits Cost Shedding Limits Cost Shedding [𝜹, 𝜹] [US$] [MW] [𝚫𝝎, 𝚫𝝎] [US$] [MW]  0∘ 2144.74 0.00 0.0100 2144.69 0.00   ∘ 2144.69 0.00 0.0050 1902.89 95.78  0∘ 2176.44 4.42 0.0025 1774.96 154.85 1 ∘ 2015.83 50.07 0.0010 1716.05 191.33 

Table 6.8 – 9–bus/3–generators system: Sensitive analysis 
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6.3. 14–BUS / 5–GENERATORS IEEE MODIFIED SYSTEM 

The 14–bus/5–generators IEEE system, is commonly used in power flow analysis and 

optimal power flow analysis; the Table 6.9 shows the technical and economic data for the five 

generators of this system. 

 

Gen. 

Technical Data Economic Data 𝑿𝒅𝐠 𝑯𝐠 𝑫𝐠 𝑷𝒊𝐠 𝑷𝒊𝐠 𝑸𝒊𝐠 𝑸𝒊𝐠 𝒂𝒊𝐠 𝒃𝒊𝐠 𝒄𝒊𝐠 

[pu] [pu] [pu] [MW] [MW] [Mvar] [Mvar] [𝐔𝐒$𝟐/MW] [US$/MW] [US$] 𝐺1 0.7500 2.64 0 500 0 100 -100 0.043 40.0 100 𝐺2 1.2500 9.99 0 100 0 100 -100 0.250 40.0 100 𝐺  0.7500 4.90 0 200 0 100 -100 0.010 20.0 150 𝐺  1.5000 2.64 0 100 0 100 -100 0.010 20.0 150 𝐺  1.2000 12.63 0 100 0 100 -100 0.010 20.0 150 

Table 6.9 – Technical and Economic Data 14–bus/5–generators system 

 

Network data, production costs and generation limits were based on (CHRISTIE, 1993), on 

the other hand, Table 6.10 shows the three contingencies. Three–phase faults are applied near 

to the three buses, and subsequently these faults are clarified by opening the transmission lines 

according to the clearance times of the protection system shows in Table 6.10.  

 

Contingency 
𝟑𝝓 𝐅𝐚𝐮𝐥𝐭 Transmission 𝒕𝒊𝐟𝐜 𝒕𝒊𝐦𝐚𝐱 𝐁𝐮𝐬 Line Out [s] [s] 

C1 7 7 – 9 0.070 2 

C2 6 6 – 13 0.085 2 

C3 1 1 – 5 0.080 2 

Table 6.10 – N-1 Contingencies for 14–bus/5–generators IEEE system 

 

The Figure 6.9 shows the N-1 contingencies which will be evaluated. The Table 6.11 shows 

the operating data, used to simulate the MILP model, naturally the steps number on fault and 

post–fault stages are less than the first case, because the generators number are increase, 

consequently, also the computational burden increase. 
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Operating Data 𝐑𝐞𝐠𝒊𝒋 𝐧𝐭𝒊𝒋 𝑽 𝑽 𝑬 𝑬 𝜹 𝜹 𝚫𝝎 𝚫𝝎 𝑵𝒕𝟏 𝑵𝒕𝟐  𝒄𝒍𝒔 𝚪 𝝎𝟎 𝝐 

10% 8 1.10 0.90 1.20 0.80 ±60° ±0.01 10 200 30 20 377 0.001 

Table 6.11 – Operating Data 14–bus/5–generators system 

 

 

Figure 6.9 – 14–bus/5–generators system and N-1 contingencies 

Evaluating contingency C1 

The contingency C1, is based on experience in transient stability studies, where is applied 

a three–phase fault disturbance occurring near bus 7 at the end of line 7–9. The fault is cleared 

in 0.070s by opening the line 7–9, as seen in Table 6.9. 

 

In Figure 6.10, the rotor angles deviation are obtained from the MILP model, in there the 

rotor angle deviation are into the limits, the angular speed deviation during the fault is also 

within the limits, and its can see the perturbation effect until the protection system clear the 

fault. The contingency C1 as seen in the figures is not so severe, that is reflected in the rotor 

angle deviations of the rotor generators, being slightly more affected the generator G3, because 

is the closest to the fault, besides being one of the cheapest and with less inertia constant. 
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Gen. 
Dispatch 

Cost 
MILP 

Cost 
MINLP  OLTC 𝒏𝒕𝒊𝒋  Tap  Shunt Status 

[MW] [US$] [US$]   

G1 0.00 

6086.89 6067.86 

 T1 0 1.000  S2 OFF 

G2 0.00  T2 0 1.000  S3 ON 

G3 97.03  T3 -2 0.988  S4 ON 

G4 75.05         S6 ON 

G5 88.35      S9 ON 

         S14 OFF 

Table 6.12 – Results of the 14–bus/5–generators system, contingency C1  

The Table 6.12 shows the operating results, where its can see that the power generation of 

the generators G1 and G2 is zero, because are those that have the highest generation costs, the 

generators G3, G4 and G5 are distributed the total load, since they are the cheapest, and this is 

reflected in the generation cost, being the MILP model more expensive than the nonlinear 

counterpart, because the linearization techniques require a high degree of precision in the 

selection of piecewise block numbers; the three OLTC transformers regulation and shunt 

elements operation are calculated in the pre–fault stage, this to keep the voltages in the buses 

within the limits. 

 

 

Figure 6.10 – Rotor Angle deviation w.r.t. COI 14–bus/5–generators system – Contingency C1 
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Figure 6.11 – Angular Speed 14–bus/5–generators system – Contingency C1 

Evaluating contingencies C1 and C2 

The contingencies C1 and C2 are evaluated in the same MLIP model, under the N-1 criteria, 

the operating results are shown in the Table 6.13, where, the fact of adding a new contingency 

does not alter too much the objective function, and is very similar to the previous case, because, 

besides, the model being more restricted, this second contingency is not so severe in transient 

stability terms, the computational time was 10098.31s, this increase is due to the iterative 

process during the minimization of the error in the optimization process. The power generation 

distribution is similar to the previous case, where the generators G3, G4 and G5 are those that 

distribute the load, the OLTC regulation and the shunt elements operation is also similar to the 

previous case, because the second fault is less severe than the previous case. Similar to the 

previous case the generation cost of the both models differ because the use of approximations.   
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Gen. 
Dispatch 

Cost 
MILP 

Cost 
MINLP  OLTC 𝒏𝒕𝒊𝒋  Tap  Shunt Status 

[MW] [US$] [US$]   

G1 0.00 

6097.25 6069.67 

 T1 1 1.013  S2 OFF 

G2 0.00  T2 1 1.013  S3 OFF 

G3 98.54  T3 -2 0.975  S4 ON 

G4 67.21         S6 ON 

G5 95.00      S9 ON 

         S14 OFF 

Table 6.13 – Results of the 14–bus/5–generators system, contingencies C1 and C2 

 

In Figure 6.12 and Figure 6.13, the rotor angle and rotor speed deviations are shown, the 

second fault addition, as seen in this figures, does not alter the behavior of generator, taking as 

reference the previous case analysis, where the rotor angle deviations and the speed deviations 

of the contingency C1 and C2, are very similar and the limits are respected. 

 

 

Figure 6.12 – Rotor Angle deviation w.r.t. COI 14–bus/5–generators system – Contingencies C1 and C2 
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Figure 6.13 – Angular Speed 14–bus/5–generators system – Contingencies C1 and C2 

Evaluating contingencies C1, C2 and C3  

The results obtained by the proposed MILP model are shown in Table 6.14, the generation 

is distributed between the cheaper generators. The generator G3 is the most dispatched because 

its generation limit is greater, the generator G4 is the least dispatched because its inertia constant 

is smallest and the generator G5 operates at its maximum capacity. 

 

Figure 6.14 and Figure 6.15 shown the rotor angle deviation w.r.t. COI and the angular 

speed deviation, as can see the predefined limits in the Table 6.11 are respected, the generator 

G3 is the most affected, because it has the least inertia constant as the generator G1, but this 

generator is no dispatched because is more expensive. 
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Gen. 
Dispatch 

Cost 
MILP 

Cost 
MINLP  OLTC 𝒏𝒕𝒊𝒋  Tap  Shunt Status 

[MW] [US$] [US$]   

G1 0.00 

6216.55 6118.83 

 T1 6 1.0375  S2 OFF 

G2 0.00  T2 6 1.0375  S3 OFF 

G3 152.81  T3 4 1.0250  S4 ON 

G4 8.80         S6 ON 

G5 100.00      S9 ON 

         S14 OFF 

Table 6.14 – Results of the 14–bus/5–generators system, contingencies C1, C2 and C3 

 

 

Figure 6.14 – Rotor Angle deviation w.r.t. COI 14–bus/5–generators system – Contingencies C1, C2 and C3 
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Figure 6.15 – Angular Speed 14–bus/5–generators system – Contingencies C1, C2 and C3 

TSC–OPF without TSC analysis  

The operating point from the TSC–OPF without the TSC, can be stable or instable, the 

TSC–OPF without the TSC, only calculate the best economic operation of the EPS. Figure 6.16 

shows the rotor angle deviation from the COI and the angular speed of the EPS, using the 

obtained operation point as initial point in a transient stability program, the rotor angle and 

angular speed trajectories are stable, but in the previous TSC–OPF analysis it can be seen that 

the trajectories are within the limits and it can notice the influence of the TSC inclusion, the 

generator G4 is the most oscillating in the system, but it can be noted that the synchronism 

between the generators is maintained.   
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Figure 6.16 – TSC–OPF analysis without TSC 14–bus / 5–generators IEEE system 

Sensitivity analysis 

The proposed model was tested on different transient stability limits, the Table 6.15 shows 

the summary of these results. In this case, the sensitivity of the proposed methodology to the 

change of the angle limits does not generate load shedding, however, the speed limits changes 

produce a minimum load shedding, these considerations are applied to obtain a feasible 

operation. 

 

Angle Generation Load Speed Generation Load 

Limits Cost Shedding Limits Cost Shedding [𝜹, 𝜹] [US$] [MW] [𝚫𝝎, 𝚫𝝎] [US$] [MW]  0∘ 6216.55 0.00 0.0100 6216.55 0.00   ∘ 6101.47 0.00 0.0050 6128.04 0.00  0∘ 6101.47 0.00 0.0025 4732.49 65.27 1 ∘ 6411.75 0.00 0.0010 3346.30 130.89 

Table 6.15 – 14–bus/5–generators system: Sensitive analysis 
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6.4. 39–BUS / 10–GENERATORS IEEE MODIFIED SYSTEM 

For this system, network and dynamic data can be found in (GAN, THOMAS and 

ZIMMERMAN, 2000), Table 6.16 and Table 6.17 shows the technical and economic data and 

the two N-1 contingencies respectively. There are 30 discrete control variables, including 12 

OLTC regulation and 18 shunt elements, it is also evaluated 10 generators active power output 

and terminal and internal voltages, besides the synchronism between these generators. 

 

Gen. 

Technical Data Economic Data 𝑿𝒅𝐠  𝑯𝐠 𝑫𝐠 𝑷𝒊𝐠 𝑷𝒊𝐠 𝑸𝒊𝐠 𝑸𝒊𝐠 𝒂𝒊𝐠 𝒃𝒊𝐠 𝒄𝒊𝐠 

[pu] [pu] [pu] [MW] [MW] [Mvar] [Mvar] [𝐔𝐒$𝟐/MW] [US$/MW] [US$] 𝐺1 0.03100 42.00 0 350.0 0 400.0 -400.0 0.011 15.4 240 𝐺2 0.06970 30.30 0 650.0 0 200.0 -200.0 0.009 11.3 200 𝐺  0.05310 35.80 0 800.0 0 800.0 -500.0 0.009 8.8 220 𝐺  0.04360 28.60 0 750.0 0 800.0 -100.0 0.010 8.0 250 𝐺  0.13200 26.00 0 650.0 0 600.0 -600.0 0.009 11.4 220 𝐺6 0.05000 34.80 0 750.0 0 300.0 -200.0 0.008 10.5 190 𝐺7 0.04900 26.40 0 750.0 0 200.0 -200.0 0.009 10.0 200 𝐺8 0.05700 24.30 0 700.0 0 100.0 -100.0 0.009 10.2 210 𝐺  0.05700 34.50 0 900.0 0 60.0 -50.0 0.007 7.9 230 𝐺10 0.00600 500.00 0 1200 0 300.0 -300.0 0.006 8.0 220 

Table 6.16 – Technical and Economic Data 39–bus/10–generators system 

Two contingencies are studied, a three phase to ground fault is applied, at buses 17 and 14 

and clarified by tripping the lines 17–27 and 14–15 at 0.050s and 0.085s, respectively, as shown 

in Table 6.17 and in the Figure 6.17.       

 

Contingency 
𝟑𝝓 𝐅𝐚𝐮𝐥𝐭 Transmission 𝒕𝒊𝐟𝐜 𝒕𝒊𝐦𝐚𝐱 𝐁𝐮𝐬 Line Out [s] [s] 

C1 17 17 – 27 0.050 3 

C2 14 14 – 15 0.085 3 

Table 6.17 – N-1 Contingencies for 39–bus/10–generators IEEE system 
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Table 6.18 shows the operational and stability information of the EPS. For both 

contingencies 𝑁𝑡1 = 10, 𝑁𝑡1 =  0, Γ = 20 and  𝑐𝑙𝑠 =  0US$, clearly the number of steps in 

fault and post–fault stages are increased, because the computational burden increases according 

the increase of steps number. 

 

Operating Data 𝐑𝐞𝐠𝒊𝒋 𝐧𝐭𝒊𝒋 𝑽 𝑽 𝑬 𝑬 𝜹 𝜹 𝚫𝝎 𝚫𝝎 𝝎𝟎 

10% 8 1.10 0.90 1.20 0.80 ±60° ±0.01 377 

Table 6.18 – Operating Data 39–bus/10–generators system 

 

Figure 6.17 – 39–bus/10–generators system and N-1 contingencies 

Evaluating contingencies C1 and C2 

Table 6.19 summarizes the results considering TSC into OPF for contingencies C1 and C2. 

Generation cost and generation dispatch are shown and its also shown the OLTC regulation and 

shunt elements operation. The generation cost includes the load shedding cost, only one of the 

18 shunt elements are in operation and the OLTC operation maintains the voltage profiles 

within the limits, the load shedding for this case was 1598MW and the total simulation time for 

all optimization process was 449039.32s. Note that the load shedding is deployed when 

considering C1 and C2. 
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Gen. 
Dispatch 

Cost 
MILP 

Cost 
MINLP  OLTC 𝒏𝒕𝒊𝒋  Tap  Shunt Status 

[MW] [US$] [US$]   
G1 421.49 

113954.8 

No 

feasible 

solution 

(limit 

time 

acquired) 

 T1 8 1.050  S4 OFF 

G2 167.09  T2 8 1.050  S7 OFF 

G3 246.24  T3 8 1.050  S8 OFF 

G4 558.84  T4 -6 0.963  S12 OFF 

G5 257.18  T5 -6 0.963  S15 OFF 

G6 459.99  T6 3 1.019  S16 OFF 

G7 391.22  T7 3 1.019  S18 OFF 

G8 419.90  T8 -1 0.994  S20 OFF 

G9 523.25  T9 2 1.013  S21 OFF 

G10 1100.00  T10 0 1.000  S23 OFF 

     T11 0 1.000  S24 OFF 

     T12 -1 0.994  S25 OFF 

         S26 OFF 

         S27 OFF 

         S28 OFF 

         S29 OFF 

         S31 ON 

         S39 OFF 

Table 6.19 – Results of the 39–bus/10–generators system, contingencies C1 and C2 

 

The Figure 6.18 shows the rotor angle deviation with respect to COI and the angular speed 

deviation. The obtained optimal and stable operating point are evaluated in a transient stability 

program, the obtained results for this N-1 scenarios, are showing in Figure 6.18; as can see the 

stable trajectories of rotor angles for this two contingencies, the contingency C1 is in dark green 

and the contingency C2 is in sky blue; the synchronism between the machines are maintained, 

thus, the angular speed deviation, as seem in the same figure, are stable. The main reason to the 

system maintains the stability, are the short fault clearance times and the load shedding. 
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Figure 6.18– Rotor Angle and Angular Speed deviation, 39–bus/10–generators system – Two Contingencies 

TSC–OPF without TSC analysis  

In the Figure 6.19, the rotor angle deviation with respect to COI and the angular speed 

deviation are showing based on the TSC–OPF calculation without TSC, the rotor angle and 

angular speed trajectories are stable, but similar to the previous case, this trajectories are 

oscillating with the maximum deviation of the rotor angle are 80° for the contingency C1, and 

is noted that the TSC inclusion are influenced in this deviation, because the limits are clearly 

respected in the previous analysis.   
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Figure 6.19 – TSC–OPF analysis without TSC 39–bus / 10–generators IEEE system  

6.5. 68–BUS / 16–GENERATORS IEEE MODIFIED SYSTEM 

The network and dynamic data can be found in (RAMOS, KUIAVA, et al., 2014), Table 

6.20 and Table 6.22 shows the one N-1 multi–contingency and the technical and economic data. 

This system is implemented with 33 discrete control variables, as they are 18 OLTC regulation 

and 15 shunt elements, 16 generators active power output and voltage are evaluated, the 

transient stability is also evaluated for these generators. 

 

As show in Table 6.20 one contingency is studied, a three–phase to ground fault is applied, 

at bus 17 and is clarified by tripping the lines 17–36 at 0.080s. 

 

Contingency 
𝟑𝝓 𝐅𝐚𝐮𝐥𝐭 Transmission 𝒕𝒊𝐟𝐜 𝒕𝒊𝐦𝐚𝐱 𝐁𝐮𝐬 Line Out [s] [s] 

C1 17 17 – 36 0.080 3 

Table 6.20 – N-1 Contingencies for 68–bus/16–generators IEEE system 
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The operational and stability data of the EPS is show in Table 6.21. For the contingency 

C1, is considered, 𝑁𝑡1 =  , 𝑁𝑡1 = 20, Γ = 20 and 𝑐𝑙𝑠 =  0U$S as the number of steps in fault 

and post-fault stage, the linearization blocks and  the load shedding cost, respectively, in this 

system is considered a smaller number of discretization steps, because the computational 

burden is increase according the number of steps is also increase. 

 

Operating Data 𝐑𝐞𝐠𝒊𝒋 𝐧𝐭𝒊𝒋 𝑽 𝑽 𝑬 𝑬 𝜹 𝜹 𝚫𝝎 𝚫𝝎 𝝎𝟎 

10% 8 1.10 0.80 1.20 0.75 ±60° ±0.01 377 

Table 6.21 – Operating Data 68–bus/16–generators system 

 

Gen. 

Technical Data Economic Data 𝑿𝒅𝐠 𝑯𝐠 𝑫𝐠 𝑷𝒊𝐠 𝑷𝒊𝐠 𝑸𝒊𝐠 𝑸𝒊𝐠 𝒂𝒊𝐠 𝒃𝒊𝐠 𝒄𝒊𝐠 

[pu] [pu] [pu] [MW] [MW] [Mvar] [Mvar] [𝐔𝐒$𝟐/MW] [US$/MW] [US$] 𝐺1 0.0310 42.0 0 2000.0   500.0  500.0   -500.0 0.009 8.81 220 𝐺2 0.0697 30.2 0 2000.0   400.0  500.0   -500.0 0.009 8.82 200 𝐺  0.0531 35.8 0 2000.0     0.0  500.0   -500.0 0.009 8.83 220 𝐺  0.0436 28.6 0 2000.0   500.0  500.0   -500.0 0.010 8.00 250 𝐺  0.0660 26.0 0 2000.0   400.0  500.0   -500.0 0.009 8.82 220 𝐺6 0.0500 34.8 0 2000.0   500.0  500.0   -500.0 0.009 8.85 220 𝐺7 0.0490 26.4 0 2000.0   400.0  500.0   -500.0 0.009 8.81 220 𝐺8 0.0570 24.3 0 2000.0   400.0  500.0   -500.0 0.009 8.81 220 𝐺  0.0570 34.5 0 2000.0   500.0  500.0   -500.0 0.010 8.00 250 𝐺10 0.0457 31.0 0 2000.0   400.0  500.0   -500.0 0.008 8.81 190 𝐺11 0.0180 28.2 0 2000.0   750.0  500.0   -500.0 0.008 8.81 190 𝐺12 0.0310 92.3 0 2000.0   800.0  500.0   -500.0 0.008 8.82 190 𝐺1  0.0055 248.0 0 5000.0  1500.0 1000.0   -1000.0 0.008 8.82 190 𝐺1  0.0029 300.0 0 5000.0  1000.0  500.0   -500.0 0.009 8.83 220 𝐺1  0.0029 300.0 0 3000.0  1000.0  500.0   -500.0 0.009 8.85 220 𝐺16 0.0071 225.0 0 5000.0  1000.0  500.0   -500.0 0.009 7.00 220 

Table 6.22 – Technical and Economic Data 68-bus/16-generators system 
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Evaluating contingency C1 

Table 6.23 summarizes the results of the TSC–OPF for contingency C1. The generation 

costs, OLTC regulation and shunt elements operation and the generation cost that includes the 

load shedding cost are shown. In this system, the binary operation of the OLTC tap regulation 

are considering for 17 transformers, maintains the voltage profiles within the limits, the load 

shedding was 5702.68MW and the total simulation time for all optimization process was 

373842.24s. Note that the computational burden, increases exponentially due to generators 

number and the system size. The load shedding is greater due to the fault characteristics, mainly 

the fault location. 

 

Gen. 
Dispatch 

Cost 
MILP 

Cost 
MINLP  OLTC 𝒏𝒕𝒊𝒋  Tap  Shunt Status 

[MW] [US$] [US$]   

G1 421.49 

372017 

 
No 

feasible 

solution 

(limit 
time 

acquired) 

 T1 -7 0.083  S17 ON 

G2 167.09  T2 3 1.038  S18 ON 

G3 246.24  T3 -2 0.950  S19 OFF 

G4 558.84  T4 -1 0.975  S21 ON 

G5 257.18  T5 -1 0.975  S23 OFF 

G6 459.99  T6 -8 0.800  S25 OFF 

G7 391.22  T7 -7 0.825  S27 OFF 

G8 419.90  T8 -4 0.900  S29 OFF 

G9 523.25  T9 -8 0.800  S33 OFF 

G10 1100.00  T10 -8 0.800  S41 ON 

G11 421.49  T11 2 1.025  S44 ON 

G12 167.09  T12 8 1.100  S59 OFF 

G13 246.24  T13 1 1.013  S60 OFF 

G14 558.84  T14 8 1.100  S61 ON 

G15 257.18  T15 1 1.013  S68 OFF 

G16 459.99  T16 8 1.100    

     T17 -3 0.925    

     T18 -1 0.975    

Table 6.23 – Results of the 68–bus/16–generators system, contingencies C1 

 

The Figure 6.20 shows the rotor angle deviation with respect to COI and the angular speed 

deviation. The obtained optimal and stable operating point are evaluated in a transient stability 

program; as can see the stable trajectories of rotor angles for this contingency, the synchronism 
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between the machines are maintained, thus, the angular speed deviation, as seen in the same 

figure, are stable. The main reason to the system maintains the stability, are the short fault 

clearance times and the load shedding.   

 

 

Figure 6.20– Rotor Angle and Angular Speed deviation, 68–bus/16–generators system – one contingency  

TSC–OPF without TSC analysis  

The TSC–OPF without the TSC is evaluated, the rotor angle deviation with respect to COI 

and the angular speed are showing in the Figure 6.21, it can be see that the trajectories are 

instable for the operation point obtained from the TSC–OPF without the TSC to the contingency 

C1, the previous analysis of the TSC–OPF in the Figure 6.20 for this similar case shown that 

the trajectories are stable and within the limits, and this analysis prove that the TSC–OPF can 

be used for this type of problems. 
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Figure 6.21 – TSC–OPF analysis without TSC 68–bus / 16–generators IEEE system 



113 
 

 

6.6. IMPORTANT REMARKS 

In this chapter was tested four transient stability systems, the first and the second one, were  

small systems, and the other two were more larger systems, this fact because the small systems 

has a better response and less computational time when are subjected to various contingencies, 

and the larger systems are more used to prove the scalability of the model. 

 

The 9–bus/3–generators system, was the more tested, in there three N-1 contingencies are 

evaluated, and the results from the each of them (increasing one to one), were shown separately, 

highlighting the generation cost increase of the resulting operation points, and the stable 

trajectories of the rotor angle with respect to COI and the angular speeds of the generators, the 

14–bus/5–generators system, was tested for three N-1 contingencies overall, obtaining a stable 

and economic point, the stable trajectories of the rotor angle with respect to COI and the angular 

speeds of the five generators are also shown, proving the efficacy of the MILP model.  

 

In the 39–bus/10–generators system was evaluated two N-1 contingencies at the same time, 

resulting a stable and economic operating point (including a load shedding cost), the resulting 

operating point was evaluated on transient stability program, similarly in the 68–bus/16–

generators system was studied only one contingency, because the computational time grows 

exponentially, obtaining a stable an economic operation point, for this contingency, considering 

the load shedding and increasing the generation cost. A sensibility analysis is also developed to 

small system, thus proving the efficacy of the model for different problem conditions.  
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CONCLUSIONS 

In this work, the N-1 multi–contingency TSC–OPF problem considering discrete controls 

using an AC branch flow model was presented. The differential and non–linear algebraic 

equations used to model the transient stability constraints and the steady-state operation is 

embedded in the proposed model.  

 

This approach minimizes the generation costs under operational and transient stability 

constraints. Two solution models were explored in this work: MINLP and MILP. Using the 

MINLP model we are only able to find the optimal solution for a small-scale test system with 

a significant computational burden. Due to these limitations, an approach based on a set of 

efficient linearization techniques was proposed.  

 

The resulting MILP model can be solved using existing off-the-shelf convex optimization 

solvers. Results using the 9–Bus/3–Generators WSCC, 14–Bus/5–Generators, 39–Bus/10–

Generators and 68–Bus/16–Generators IEEE systems show the accuracy, efficiency and 

scalability of the proposed optimization process, providing transient stable solutions at a 

minimum generation cost. Refined trajectories of the time-varying variables demonstrate the 

ability of the proposed TSC–OPF model to guarantee angular stability under different 

contingencies. Finally, results were validated using a nonlinear time-domain dynamic 

simulation software. 
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CONTRIBUTIONS 

This dissertation presents the following contributions: 

 

 Two new formulations for the Transient Stability Constrained Optimal Power Flow (TSC–

OPF) MINLP model were presented and they were subsequently linearized to a MILP 

model based on an AC branch flow model. 

 

 A TSC-OPF model that includes the three analysis stages (pre–fault, fault and post–fault) 

in a single model as shown (CALLE, CASTRONUOVO and LEDESMA, 2013) and the 

inclusion of discrete variables. The MINLP model was based on an AC branch flow 

approach and it is presented through a nonlinear formulation found in the literature, which 

represents an improvement of the method for the subsequent linearization process. 

 

 The inclusion of discrete variables as OLTC tap changers, regulation and shunt elements 

switched in the steady state stage of the model, guarantees the optimal operation of the EPS 

in pre-fault stage, keeping the voltages within their limits. 

 

 Using approximations and equivalences to transform the MINLP into a MILP model, that 

can be solved using off–the–shelf commercial solvers, such as CPLEX (ILOG, 2008) and 

formulated via mathematical programming languages such as AMPL (FOURER, GAY and 

KERNIGHAN, 2003).  

 

 The implicit trapezoidal integration rule was used, as seen in (GAN, THOMAS and 

ZIMMERMAN, 2000), (YUAN, KUBOKAWA and SASAKI, 2003), (CALLE, 

CASTRONUOVO and LEDESMA, 2013), to integrate the transient stability constraints 

during fault and post-fault. This implementation is embedded into the model, due its easy 

formulation and good numerical stability. 

 

 The proposed N-1 multi–contingency assessment considers all contingencies as evaluated 

independent one of the other, and a single operation point is obtained, which is expected to 

be stable and economic. 
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 The computation time of the MINLP respect to the MILP is reduced significantly, and is 

one of the advantages to obtain a linear or mixed linear programming models. The MINLP 

can be used to small systems, but for larger systems, an optimal solution may not be found, 

and will depend on the initial point. 

FUTURE WORKS 

 The TSC–OPF model via MILP and MINLP approaches can be extended to include other 

types of stability studies such, as the static or dynamic voltage stability. The voltage stability 

constraints allows to find the voltage collapse point, making the model more complete. The 

inclusion of more dynamic constraints in the base model, make the model more restrictive 

and consequently the computational burden increase. 

 

 The model can be also extended to: 

 

 Transmission expansion planning problem. 

 A highest order of the synchronous machine model. 

 An application of direct methods as the Lyapunov function into the model. 

 Frequency stability constraints. 
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APPENDIX A. SYSTEMS DATA 

The WSCC 9–bus/3–generators, is a classical system used on transient stability studies; the 

Table A.1 shows the transmission lines data and the Table A.2 shows the bus data. 

 𝒊 𝒋 𝑹𝒊𝒋 𝑿𝒊𝒋 𝑩𝒊𝒋𝐬𝐡 𝐚𝒊𝒋 
1 4 0.00001 0.05760 0.000 1.000 

2 7 0.00001 0.06250 0.000 1.000 

3 9 0.00001 0.05860 0.000 1.000 

4 5 0.01000 0.08500 0.176 0.000 

4 6 0.01700 0.09200 0.158 0.000 

5 7 0.03200 0.16100 0.306 0.000 

6 9 0.03900 0.17000 0.358 0.000 

7 8 0.00850 0.07200 0.149 0.000 

8 9 0.01190 0.10080 0.209 0.000 

Table A.1–Branch Data 9–bus/3–generators System 

 

Type 𝑽𝒊 𝜽𝒊 𝑷𝒊𝐝 𝑸𝒊𝐝 𝑷𝒊𝐠 𝑸𝒊𝐠 𝒈𝒊𝐬𝐡 𝒃𝒊𝐬𝐡 
SL 1.040 0.000 0.00 0.00 71.60 27.00 0 0 
PV 1.025 9.280 0.00 0.00 163.00 6.70 0 0 
PV 1.025 4.665 0.00 0.00 85.00 -10.90 0 0 
PQ 1.026 -2.217 0.00 0.00 0.00 0.00 0 0 
PQ 0.996 -3.989 125.00 50.00 0.00 0.00 0 0.2 
PQ 1.013 -3.687 90.00 30.00 0.00 0.00 0 0.1 
PQ 1.026 3.720 0.00 0.00 0.00 0.00 0 0 
PQ 1.016 0.728 100.00 35.00 0.00 0.00 0 0.1 
PQ 1.032 1.967 0.00 0.00 0.00 0.00 0 0 

Table A.2–Bus Data 9–bus/3–generators System 
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 The IEEE 14–bus/5–generators system is commonly used in power flow studies, the Table 

A.3 show the branch data and the Table A.4 shows the bus data of the system. 

 𝒊 𝒋 𝑹𝒊𝒋 𝑿𝒊𝒋 𝑩𝒊𝒋𝐬𝐡 𝐚𝒊𝒋 
1 2 0.01938 0.05917 0.0528 0.000 
1 8 0.05403 0.22304 0.0492 0.000 
2 3 0.04699 0.19797 0.0438 0.000 
2 6 0.05811 0.17632 0.0340 0.000 
2 8 0.05695 0.17388 0.0346 0.000 
3 6 0.06701 0.17103 0.0128 0.000 
6 8 0.01335 0.04211 0.0000 0.000 
6 7 0.00001 0.20912 0.0000 0.978 
6 9 0.00001 0.55618 0.0000 0.969 
8 4 0.00001 0.25202 0.0000 0.932 
4 11 0.09498 0.19890 0.0000 0.000 
4 12 0.12291 0.25581 0.0000 0.000 
4 13 0.06615 0.13027 0.0000 0.000 
7 5 0.00001 0.17615 0.0000 0.000 
7 9 0.00001 0.11001 0.0000 0.000 
9 10 0.03181 0.08450 0.0000 0.000 
9 14 0.12711 0.27038 0.0000 0.000 

10 11 0.08205 0.19207 0.0000 0.000 
12 13 0.22092 0.19988 0.0000 0.000 
13 14 0.17093 0.34802 0.0000 0.000 

Table A.3–Branch Data 14–bus/5–generators System 

 

Type 𝑽𝒊 𝜽𝒊 𝑷𝒊𝐝 𝑸𝒊𝐝 𝑷𝒊𝐠 𝑸𝒊𝐠 𝒈𝒊𝐬𝐡 𝒃𝒊𝐬𝐡 
SL 1.060 0.000 0.00 0.00 232.40 -16.90 0 0 
PV 1.045 -1.616 21.70 12.70 40.00 42.40 0 0.2 
PV 1.010 -2.529 94.20 19.00 0.00 23.40 0 0.1 
PQ 1.070 -7.210 11.20 7.50 0.00 0.00 0 0.2 
PQ 1.090 -7.416 0.00 0.00 0.00 0.00 0 0 
PV 1.030 -4.880 47.80 -3.90 0.00 12.20 0 0.3 
PQ 1.045 -7.416 0.00 0.00 0.00 0.00 0 0 
PV 1.038 -4.222 7.60 1.60 0.00 17.40 0 0 
PQ 1.026 -8.754 29.50 16.60 0.00 0.00 0 0.2 
PQ 1.026 -8.760 9.00 5.80 0.00 0.00 0 0 
PQ 1.044 -8.102 3.50 1.80 0.00 0.00 0 0 
PQ 1.053 -8.143 6.10 1.60 0.00 0.00 0 0 
PQ 1.046 -8.256 13.50 5.80 0.00 0.00 0 0 
PQ 1.016 -9.567 14.90 5.00 0.00 0.00 0 0.2 

Table A.4–Bus Data 14–bus/5–generators System 
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The IEEE 39–bus/10–generators system is commonly used in power flow studies, the Table 

A.5 show the branch data and the Table A.6 shows the bus data of the system. 

 𝒊 𝒋 𝑹𝒊𝒋 𝑿𝒊𝒋 𝑩𝒊𝒋𝐬𝐡 𝐚𝒊𝒋        

1 2 0.0035 0.0411 0.6987 0.0000  14 15 0.0018 0.0217 0.3660 0.0000 

1 39 0.0010 0.0250 0.7500 0.0000  15 16 0.0009 0.0094 0.1710 0.0000 

2 3 0.0013 0.0151 0.2572 0.0000  16 17 0.0007 0.0089 0.1342 0.0000 

2 3 0.0070 0.0086 0.1460 0.0000  16 19 0.0016 0.0195 0.3040 0.0000 

2 30 0.0001 0.0181 0.0000 1.0250  16 21 0.0008 0.0135 0.2548 0.0000 

3 4 0.0013 0.0213 0.2214 0.0000  16 24 0.0003 0.0059 0.0680 0.0000 

3 18 0.0011 0.0133 0.2138 0.0000  17 18 0.0007 0.0082 0.1319 0.0000 

4 5 0.0008 0.0128 0.1342 0.0000  17 27 0.0013 0.0173 0.3216 0.0000 

4 14 0.0008 0.0129 0.1382 0.0000  19 20 0.0007 0.0138 0.0000 1.0600 

5 6 0.0002 0.0026 0.0434 0.0000  19 33 0.0007 0.0142 0.0000 1.0700 

5 8 0.0008 0.0112 0.1476 0.0000  20 34 0.0009 0.0180 0.0000 1.0090 

6 7 0.0006 0.0092 0.1130 0.0000  21 22 0.0008 0.0140 0.2565 0.0000 

6 11 0.0007 0.0082 0.1389 0.0000  22 23 0.0006 0.0096 0.1846 0.0000 

6 31 0.0001 0.0250 0.0000 1.0700  22 35 0.0001 0.0143 0.0000 1.0250 

7 8 0.0004 0.0046 0.0780 0.0000  23 24 0.0022 0.0350 0.3610 0.0000 

8 9 0.0023 0.0363 0.3804 0.0000  23 36 0.0005 0.0272 0.0000 1.0000 

9 39 0.0010 0.0250 1.2000 0.0000  25 26 0.0032 0.0323 0.5310 0.0000 

10 11 0.0004 0.0043 0.0729 0.0000  25 37 0.0006 0.0232 0.0000 1.0250 

10 13 0.0004 0.0043 0.0729 0.0000  26 27 0.0014 0.0147 0.2396 0.0000 

10 32 0.0001 0.0200 0.0000 1.0700  26 28 0.0043 0.0474 0.7802 0.0000 

12 11 0.0016 0.0435 0.0000 1.0060  26 29 0.0057 0.0625 1.0290 0.0000 

12 13 0.0016 0.0435 0.0000 1.0060  28 29 0.0014 0.0151 0.2490 0.0000 

13 14 0.0009 0.0101 0.1723 0.0000  29 38 0.0008 0.0156 0.0000 1.0250 

Table A.5–Branch Data 39–bus/10–generators System 
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Type 𝑽𝒊 𝜽𝒊 𝑷𝒊𝐝 𝑸𝒊𝐝 𝑷𝒊𝐠 𝑸𝒊𝐠 𝒈𝒊𝐬𝐡 𝒃𝒊𝐬𝐡 
PQ 1.072 -9.566 0.00 0.00 0.00 0.00 0 0 
PQ 1.045 -10.256 0.00 0.00 0.00 0.00 0 0 
PQ 1.020 -10.744 322.00 2.40 0.00 0.00 0 0 
PQ 0.987 -10.511 500.00 184.00 0.00 0.00 0 0.1 
PQ 0.988 -8.767 0.00 0.00 0.00 0.00 0 0 
PQ 0.990 -7.969 0.00 0.00 0.00 0.00 0 0 
PQ 0.983 -10.192 233.80 84.00 0.00 0.00 0 0.2 
PQ 0.983 -10.683 522.00 176.60 0.00 0.00 0 0.2 
PQ 1.046 -9.757 0.00 0.00 0.00 0.00 0 0 
PQ 1.014 -5.198 0.00 0.00 0.00 0.00 0 0 
PQ 1.004 -6.138 0.00 0.00 0.00 0.00 0 0 
PQ 1.095 -6.188 7.50 88.00 0.00 0.00 0 0.1 
PQ 1.006 -6.140 0.00 0.00 0.00 0.00 0 0 
PQ 0.991 -8.393 0.00 0.00 0.00 0.00 0 0 
PQ 0.965 -9.743 320.00 153.00 0.00 0.00 0 0.2 
PQ 0.969 -8.564 329.00 32.30 0.00 0.00 0 0.1 
PQ 0.984 -9.531 0.00 0.00 0.00 0.00 0 0 
PQ 0.996 -10.461 158.00 30.00 0.00 0.00 0 0.2 
PQ 0.977 -2.984 0.00 0.00 0.00 0.00 0 0 
PQ 0.957 -3.875 628.00 103.00 0.00 0.00 0 0.2 
PQ 0.951 -6.520 274.00 115.00 0.00 0.00 0 0.2 
PQ 0.951 -1.997 0.00 0.00 0.00 0.00 0 0 
PQ 0.949 -1.884 247.50 84.60 0.00 0.00 0 0.1 
PQ 0.970 -8.585 308.60 -92.20 0.00 0.00 0 0.1 
PQ 0.981 0.084 224.00 47.20 0.00 0.00 0 0.1 
PQ 0.991 -6.894 139.00 17.00 0.00 0.00 0 0.2 
PQ 0.981 -9.382 281.00 75.50 0.00 0.00 0 0.2 
PQ 1.000 -6.638 206.00 27.60 0.00 0.00 0 0.1 
PQ 1.003 -4.801 283.50 26.90 0.00 0.00 0 0.1 
PV 1.083 -7.940 0.00 0.00 250.00 161.76 0 0 
SL 0.980 0.000 9.20 4.60 677.87 221.57 0 0.2 
PV 1.094 3.294 0.00 0.00 650.00 206.97 0 0 
PV 1.006 1.815 0.00 0.00 632.00 108.29 0 0 
PV 0.956 1.888 0.00 0.00 508.00 166.69 0 0 
PV 0.954 2.449 0.00 0.00 650.00 210.66 0 0 
PV 0.959 7.819 0.00 0.00 560.00 100.17 0 0 
PV 0.989 8.075 0.00 0.00 540.00 -1.37 0 0 
PV 0.908 0.581 0.00 0.00 830.00 21.73 0 0 
PV 1.069 -9.078 1104.00 250.00 1000.00 78.47 0 0.1 

Table A.6–Bus Data 39–bus/10–generators System 
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The IEEE 68–bus/16–generators system is commonly used in power flow studies, the Table 

A.7 show the branch data and the Table A.8 shows the bus data of the system. 

 𝒊 𝒋 𝑹𝒊𝒋 𝑿𝒊𝒋 𝑩𝒊𝒋𝐬𝐡 𝐚𝒊𝒋        

1 54 0.0001 0.0181 0.000 1.025  36 61 0.0011 0.0098 0.680 0.000 
2 58 0.0001 0.0250 0.000 1.070  37 68 0.0007 0.0089 0.134 0.000 
3 62 0.0001 0.0200 0.000 1.070  38 31 0.0011 0.0147 0.247 0.000 
4 19 0.0007 0.0142 0.000 1.070  38 33 0.0036 0.0444 0.693 0.000 
5 20 0.0009 0.0180 0.000 1.009  40 41 0.0060 0.0840 3.150 0.000 
6 22 0.0000 0.0143 0.000 1.025  40 48 0.0020 0.0220 1.280 0.000 
7 23 0.0005 0.0272 0.000 0.000  41 42 0.0040 0.0600 2.250 0.000 
8 25 0.0006 0.0232 0.000 1.025  42 18 0.0040 0.0600 2.250 0.000 
9 29 0.0008 0.0156 0.000 1.025  43 17 0.0005 0.0276 0.000 0.000 

10 31 0.0001 0.0260 0.000 1.040  44 39 0.0000 0.0411 0.000 0.000 
11 32 0.0001 0.0130 0.000 1.040  44 43 0.0001 0.0011 0.000 0.000 
12 36 0.0001 0.0075 0.000 1.040  45 35 0.0007 0.0175 1.390 0.000 
13 17 0.0001 0.0033 0.000 1.040  45 39 0.0000 0.0839 0.000 0.000 
14 41 0.0001 0.0015 0.000 1.000  45 44 0.0025 0.0730 0.000 0.000 
15 42 0.0001 0.0015 0.000 1.000  46 38 0.0022 0.0284 0.430 0.000 
16 18 0.0001 0.0030 0.000 1.000  47 53 0.0013 0.0188 1.310 0.000 
17 36 0.0005 0.0045 0.320 0.000  48 47 0.0013 0.0134 0.800 0.000 
18 49 0.0076 0.1141 1.160 0.000  49 46 0.0018 0.0274 0.270 0.000 
18 50 0.0012 0.0288 2.060 0.000  51 45 0.0004 0.0105 0.720 0.000 
19 68 0.0016 0.0195 0.304 0.000  51 50 0.0009 0.0221 1.620 0.000 
20 19 0.0007 0.0138 0.000 1.060  52 37 0.0007 0.0082 0.132 0.000 
21 68 0.0008 0.0135 0.255 0.000  52 55 0.0011 0.0133 0.214 0.000 
22 21 0.0008 0.0140 0.257 0.000  54 53 0.0035 0.0411 0.699 0.000 
23 22 0.0006 0.0096 0.185 0.000  55 54 0.0013 0.0151 0.257 0.000 
24 23 0.0022 0.0350 0.361 0.000  56 55 0.0013 0.0213 0.221 0.000 
24 68 0.0003 0.0059 0.068 0.000  57 56 0.0008 0.0128 0.134 0.000 
25 54 0.0070 0.0086 0.146 0.000  58 57 0.0002 0.0026 0.043 0.000 
26 25 0.0032 0.0323 0.531 0.000  59 58 0.0006 0.0092 0.113 0.000 
27 37 0.0013 0.0173 0.322 0.000  60 57 0.0008 0.0112 0.148 0.000 
27 26 0.0014 0.0147 0.240 0.000  60 59 0.0004 0.0046 0.078 0.000 
28 26 0.0043 0.0474 0.780 0.000  61 60 0.0023 0.0363 0.380 0.000 
29 26 0.0057 0.0625 1.029 0.000  63 58 0.0007 0.0082 0.139 0.000 
29 28 0.0014 0.0151 0.249 0.000  63 62 0.0004 0.0043 0.073 0.000 
30 53 0.0008 0.0074 0.480 0.000  63 64 0.0016 0.0435 0.000 1.060 
30 61 0.0010 0.0092 0.580 0.000  65 62 0.0004 0.0043 0.073 0.000 
31 30 0.0013 0.0187 0.333 0.000  65 64 0.0016 0.0435 0.000 1.060 
31 53 0.0016 0.0163 0.250 0.000  66 56 0.0008 0.0129 0.138 0.000 
32 30 0.0024 0.0288 0.488 0.000  66 65 0.0009 0.0101 0.172 0.000 
33 32 0.0008 0.0099 0.168 0.000  67 66 0.0018 0.0217 0.366 0.000 
34 33 0.0011 0.0157 0.202 0.000  68 67 0.0009 0.0094 0.171 0.000 
34 35 0.0001 0.0074 0.000 0.946  27 53 0.0320 0.3200 0.410 0.000 
36 34 0.0033 0.0111 1.450 0.000        

Table A.7–Branch data 68–bus/16–generators System 
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Type 𝑽𝒊 𝜽𝒊 𝑷𝒊𝐝 𝑸𝒊𝐝 𝑷𝒊𝐠 𝑸𝒊𝐠 𝒈𝒊𝐬𝐡 𝒃𝒊𝐬𝐡           
PV 1.100 1.983 0.00 0.00 662.01 500.00 0 0  PQ 1.044 -7.914 0.00 0.00 0.00 0.00 0 0 
PV 1.100 -1.123 0.00 0.00 489.08 485.07 0 0  PQ 0.987 -4.856 102.00 -19.46 0.00 0.00 0 0 
PV 1.042 -6.262 0.00 0.00 82.40 -73.70 0 0  PQ 1.085 -8.700 0.00 0.00 0.00 0.00 0 0 
PV 1.100 -1.076 0.00 0.00 639.02 357.06 0 0  PQ 1.025 -5.475 0.00 0.00 0.00 0.00 0 0 
PV 1.100 -2.303 0.00 0.00 488.82 209.10 0 0  PQ 0.955 -17.369 267.00 12.60 0.00 0.00 0 0 
PV 1.100 0.341 0.00 0.00 572.59 500.00 0 0  PQ 1.063 -8.235 65.63 23.53 0.00 0.00 0 0 
PV 1.100 1.725 0.00 0.00 454.63 368.09 0 0  PQ 0.881 3.607 1000.00 250.00 0.00 0.00 0 0.5 
PV 1.100 0.469 0.00 0.00 475.31 195.39 0 0  PQ 0.802 5.027 1150.00 250.00 0.00 0.00 0 0 
PV 1.100 -2.569 0.00 0.00 597.12 148.60 0 0  PQ 0.966 -12.978 0.00 0.00 0.00 0.00 0 0 
PV 1.066 1.495 0.00 0.00 427.50 486.41 0 0  PQ 0.966 -13.252 267.55 4.84 0.00 0.00 0 0.2 
PV 1.100 4.033 0.00 0.00 800.00 500.00 0 0  PQ 1.022 -12.144 208.00 21.00 0.00 0.00 0 0 
PV 1.100 -1.462 0.00 0.00 872.14 500.00 0 0  PQ 0.995 -9.077 150.70 28.50 0.00 0.00 0 0 
PV 0.925 -2.390 0.00 0.00 1750.00 -223.00 0 0  PQ 1.062 -9.168 203.12 32.59 0.00 0.00 0 0 
PV 0.800 5.064 0.00 0.00 1194.52 -34.94 0 0  PQ 1.070 -9.873 241.20 2.20 0.00 0.00 0 0 
PV 0.800 6.518 0.00 0.00 1113.37 -87.99 0 0  PQ 0.972 -10.302 164.00 29.00 0.00 0.00 0 0 
SL 0.800 0.000 0.00 0.00 1250.00 -471.79 0 0  PQ 0.991 -9.887 100.00 -147.00 0.00 0.00 0 0 
PQ 0.960 -6.118 6000.00 300.00 0.00 0.00 0 0.5  PQ 1.028 -12.792 337.00 -122.00 0.00 0.00 0 0 
PQ 0.858 -3.132 2470.00 123.00 0.00 0.00 0 0.4  PQ 1.074 -8.672 158.00 30.00 0.00 0.00 0 0 
PQ 1.100 -4.722 0.00 0.00 0.00 0.00 0 0.2  PQ 1.040 -6.128 252.70 118.56 0.00 0.00 0 0 
PQ 1.100 -5.892 680.00 103.00 0.00 0.00 0 0  PQ 1.062 -3.410 0.00 0.00 0.00 0.00 0 0 
PQ 1.069 -6.842 274.00 115.00 0.00 0.00 0 0.2  PQ 1.059 -7.573 322.00 2.00 0.00 0.00 0 0 
PQ 1.067 -3.325 0.00 0.00 0.00 0.00 0 0  PQ 1.031 -8.183 200.00 73.60 0.00 0.00 0 0 
PQ 1.089 -3.752 248.00 85.00 0.00 0.00 0 0.2  PQ 1.020 -7.273 0.00 0.00 0.00 0.00 0 0 
PQ 1.091 -8.481 309.00 -92.00 0.00 0.00 0 0  PQ 1.019 -6.924 0.00 0.00 0.00 0.00 0 0 
PQ 1.086 -4.337 224.00 47.00 0.00 0.00 0 0.2  PQ 1.015 -8.009 234.00 84.00 0.00 0.00 0 0.5 
PQ 1.100 -8.112 139.00 17.00 0.00 0.00 0 0  PQ 1.015 -7.959 208.80 70.80 0.00 0.00 0 0.4 
PQ 1.102 -9.338 281.00 76.00 0.00 0.00 0 0.2  PQ 1.008 -5.571 104.00 125.00 0.00 0.00 0 0.3 
PQ 1.100 -7.729 206.00 28.00 0.00 0.00 0 0  PQ 1.018 -7.152 0.00 0.00 0.00 0.00 0 0 
PQ 1.100 -6.295 284.00 27.00 0.00 0.00 0 0.2  PQ 1.018 -7.089 0.00 0.00 0.00 0.00 0 0 
PQ 1.031 -5.103 0.00 0.00 0.00 0.00 0 0  PQ 0.928 -7.334 9.00 88.00 0.00 0.00 0 0 
PQ 1.031 -4.312 0.00 0.00 0.00 0.00 0 0  PQ 1.020 -7.426 0.00 0.00 0.00 0.00 0 0 
PQ 1.042 -0.738 0.00 0.00 0.00 0.00 0 0  PQ 1.034 -8.099 0.00 0.00 0.00 0.00 0 0 
PQ 1.027 -3.409 112.00 0.00 0.00 0.00 0 0.2  PQ 1.061 -9.312 320.00 153.00 0.00 0.00 0 0 
PQ 0.999 -6.067 0.00 0.00 0.00 0.00 0 0  PQ 1.087 -8.380 329.00 32.00 0.00 0.00 0 0.5 

Table A.8–Bus Data 68–bus/16–generators System 

APPENDIX B. REDUCE NETWORK CALCULATION 

For the contingency C1 and as seen in the Figure 3.2, after the load flow calculation, the loads 

are converted in equivalent admittances: 

𝐿𝑜𝑎𝑑 𝐴: 𝑌𝐿5 = 1.2610 − 𝑗0. 0    

𝐿𝑜𝑎𝑑 𝐵: 𝑌𝐿6 = 0.8777 − 𝑗0.2 26  

𝐿𝑜𝑎𝑑 𝐶: 𝑌𝐿8 = 0. 6 0 − 𝑗0.   1  
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The generator internal voltages and their initial angles are: 

𝐸1∠𝛿1 = 1.0 66∠2.2717∘  

𝐸2∠𝛿2 = 1.0 02∠1 .7 1 ∘  

𝐸 ∠𝛿 = 1.0170∠1 .17 2∘  

 

The matrix values are shown in the next tables: 

 

Node 1 2 3 4 5 6 7 8 9 

1 -j8.445 0 0 j8.445 0 0 0 0 0 

2 0 -j5.485 0 0 0 0 j5.48 0 0 

3 0 0 -j4.168 0 0 0 0 0 0 

4 j8.445 0 0 3.30-j30.39 -1.36+j11.60 -1.94+j10.51 0 0 j4.16 

5 0 0 0 -1.36+j11.60 3.81+j17.84 0 -1.18+j5.97 0 0 

6 0 0 0 -1.94+j10.51 0 4.10+j16.13 0 0 -1.28+j5.58 

7 0 j5.485 0 0 -1.18+j5.97 0 2.80-j24.93 -1.61+j13.69 0 

8 0 0 0 0 0 0 -1.61+j13.69 3.74-j23.64 -1.15+j9.78 

9 0 0 j4.168 0 0 -1.28+j5.58 0 -1.15+j-.78 2.43-j19.25 

Table B.1 – Y matrix on pre-fault network 

Node 1 2 3 4 5 6 7 8 9 

1 -j8.445 0 0 j8.445 0 0 0 0 0 

2 0 -j5.485 0 0 0 0 0 0 0 

3 0 0 -j4.168 0 0 0 0 0 0 

4 j8.445 0 0 3.30-j30.39 -1.36+j11.60 -1.94+j10.51 0 0 j4.16 

5 0 0 0 -1.36+j11.60 3.81+j17.84 0 0 0 0 

6 0 0 0 -1.94+j10.51 0 4.10+j16.13 0 0 -1.28+j5.58 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3.74-j23.64 -1.15+j9.78 

9 0 0 j4.168 0 0 -1.28+j5.58 0 -1.15+j-.78 2.43-j19.25 

Table B.2 – Y matrix on fault network  

Node 1 2 3 4 5 6 7 8 9 

1 -j8.445 0 0 j8.445 0 0 0 0 0 

2 0 -j5.485 0 0 0 0 j5.48 0 0 

3 0 0 -j4.168 0 0 0 0 0 0 

4 j8.445 0 0 3.30-j30.39 -1.36+j11.60 -1.94+j10.51 0 0 j4.16 

5 0 0 0 -1.36+j11.60 3.81+j17.84 0 0 0 0 

6 0 0 0 -1.94+j10.51 0 4.10+j16.13 0 0 -1.28+j5.58 

7 0 j5.485 0 0 0 0 1.61+j18.95 -1.61+j13.69 0 

8 0 0 0 0 0 0 -1.61+j13.69 3.74-j23.64 -1.15+j9.78 

9 0 0 j4.168 0 0 -1.28+j5.58 0 -1.15+j-.78 2.43-j19.25 

Table B.3 – Y matrix on post-fault network 
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Using the Kron reduction, the obtained reduced network to the three stages of study are: 

 

Node 1 2 3 

1 0.846-j2.988 0.287+j1.513 0.210+j1.226 

2 0.287+j1.513 0.420-j2.724 0.213+j1.088 

3 0.210+j1.226 0.213+j1.088 0.277-j2.368 

Table B.4 – Y matrix on pre-fault reduced network  

Node 1 2 3 

1 0.657-j3.816 0.000+j0.000 0.070+j0.631 

2 0.000+j0.000 0.000-j5.486 0.000+j0.000 

3 0.070+j0.631 0.000+j0.000 0.174-j2.796 

Table B.5 – Y matrix on fault reduced network 

Node 1 2 3 

1 1.181-j2.229 0.138+j0.726 0.191+j1.079 

2 0.138+j0.726 0.389-j1.953 0.199+j1.229 

3 0.191+j1.079 0.199+j1.229 0.273-j2.342 

Table B.6 – Y matrix on post-fault reduced network 

    


