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Abstract

Exact expression for the first order statistics, such as probability density function and cu-

mulative distribution function, of the product and ratio of envelopes taken from the α-µ,

η-µ, and κ-µ distributions are obtained in terms of the multivariable Fox H-function. Fairly

simple, fast convergent series expansion are also presented as an alternative to numerically

evaluate such statistics.

Several applications in wireless communications utilize the product of envelopes, e.g., mul-

tihop systems, multiple-input-multiple-output systems, cascaded channel, radar communi-

cations, to name but a few. On the other hand, the ratio of envelopes is used in multihop

system modeling, spectrum sharing, co-channel interference, physical layer security among

many others. Moreover, composite multipath-shadowing can be modeled as a particular case

of the product of envelopes.

The α-µ, η-µ, and κ-µ distributions are general fading models encompassing several tra-

ditional fading models (Rayleigh, Nakagami-m, Hoyt, Rice and Weibull) as particular case.

Thus the results presented in this thesis can be used in a wide range of fading scenarios.

Performance metrics of a cascaded channel, detection probability in UHF RFID system and

secrecy capacity are a few application examples shown in this work to illustrate the use-

fulness and efficiency of the expressions obtained. In particular, the secrecy capacity of a

Gaussian wire-tap channel used for device-to-device and vehicle-to-vehicle communications

is characterized using data obtained from field measurements conducted at 5.8GHz.

In addition, miscellaneous results related to the new α-η-κ-µ fading model such as prob-

ability density function, cumulative distribution function, higher order moments, moment

generating function, among others are presented in new and more efficient formulation.

The α-η-κ-µ fading model is, virtually, the most complete fading distribution present in the

literature which takes into consideration, non-linearities in the physical medium, clusters

of multipath, power imbalance between in-phase and quadrature waves, cluster imbalances

and dominant components.

Keywords: α-µ distribution; κ-µ distribution; η-µ distribution; multihop systems; MIMO

systems; secrecy capacity; cascaded channel; UHF RFID.



Resumo

Expressões exatas para as estatísticas de primeira ordem, tais como função densidade de

probabilidade e função distribuição cumulativa, do produto e da razão de envelopes toma-

das das distribuições α-µ, η-µ, e κ-µ são obtidas em termos da função Fox-H multivariável.

Expansões em séries relativamente simples e com rápida convergência também são apre-

sentadas como alternativa para avaliar numericamente tais estatísticas.

Diversas aplicações em comunicações sem fio fazem uso do produto de envelopes, e.g., sis-

temas com múltiplos saltos, sistemas com múltiplas entradas e múltiplas saídas, canais em

cascata, comunicações de radar, entre outras. Já a razão de envelopes é utilizada na modela-

gem de canais com múltiplos saltos, compartilhamento espectral, estimação de interferência

co-canal, segurança em camada física entre muitas outras. Ainda, o desvanecimento com-

posto multipercurso-sombreamento pode ser obtido como um caso particular do produto de

envelopes.

As distribuições α-µ, η-µ, e κ-µ são modelos de desvanecimento genéricos que englobam

diversos modelos tradicionais (Rayleigh, Nakagami-m, Hoyt, Rice e Weibull), como casos

particulares. Dessa forma, os resultados apresentados nesta tese podem ser utilizados em

uma vasta gama de cenários de desvanecimento.

Métricas de desempenho de um canal em cascata, probabilidade de detecção de sistema UHF

RFID e capacidade de sigilo são alguns exemplos de aplicação apresentados neste trabalho

para ilustrar a utilidade e eficiência das expressões obtidas. Em particular, a capacidade de

sigilo de um canal de escuta gaussiano usado em comunicação dispositivo-a-dispositivo e

veículo-a-veículo é caracterizado usando dados obtidos de medidas de campo realizados em

5.8 GHz.

Além disso, resultados diversos relativos ao novo modelo de desvanecimento α-η-κ-µ, tais

como função densidade de probabilidade, função distribuição acumulada, momentos de

maior ordem, entre outras são apresentados com nova e mais eficiente formulação. O mo-

delo de desvanecimento α-η-κ-µ é virtualmente a distribuição de desvanecimento mais

completa presente na literatura que leva em consideração não linearidade do meio físico,

clusters de multipercurso, desbalanceamento de potência entre fase e quadratura, desba-

lanceamento de clusters e componentes dominantes.

Palavras-chaves: distribuição α-µ; distribuição κ-µ; distribuição η-µ; sistemas de múltiplos

saltos; sistemas MIMO; capacidade de sigilo, canais em cascata; UHF RFID.
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Chapter 1

Introduction

Since the dawn of wireless communications with the first radio transmission per-

formed by Marconi (arguably, the Brazilian priest Landell de Moura is claimed to precede

Marconi), the wireless medium has been tirelessly studied. Path loss, interference, multi-

path fading and shadowing are a few examples of phenomena that affect wireless com-

munications. In particular, shadowing is caused by the presence of large obstacles blocking

the direct radio path resulting in large signal fluctuations. Its statistics are well character-

ized by the lognormal distribution. Due to analytical intricacies of the lognormal model,

recently, the gamma and the α-µ distributions have been used to describe the shadowing

phenomenon [1, 2]. On the other hand, several fading models have been used to describe

the multipath fading phenomenon. Nevertheless, each fading distribution is adequate to

describe a certain physical model. For instance, line-of-sight (LoS) is well described by Rice

distribution; Hoyt is typically used to characterize imbalances between phase and quadra-

ture waves. Recently, new fading models have been defined to generalize and include other

physical phenomena, such as non-linearities and clustering of multipath. For instance, the

α-µ [3] distribution considers both non-linearities and clustering of multipath. In turn the

κ-µ [4] distribution includes the effect of dominant components and multipath clustering.

The η-µ [4] fading model considers imbalances (or correlation) between the phase and

quadrature waves along with multipath clustering.

Very recently, the α-η-κ-µ fading model [5] was proposed. It captures virtually

all fading phenomena described in the literature, namely, nonlinearity of the propagation

medium, scattered waves, dominant components, and multipath clustering. This way, the

α-η-κ-µ model comprises an enormous amount of fading scenarios, including all of those

previously cited ones, and others not yet described in the literature. Its building block was

taken from [6] as the general quadrature process of a κ-µ model. The joint envelope-phase

probability density function (PDF) was obtained in a closed-form expression. From the said
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joint PDF, envelope PDF and phase PDF can be obtained by a simple integration, and, un-

fortunately, no closed-form expressions for them are available. An envelope-based approach

was then pursued as the sum of two independent and arbitrarily distributed squared κ-µ

random variables (RV). Thence, envelope PDF was obtained both in another integral form

and in a series expansion form. Envelope cumulative distribution function (CDF) in inte-

gral form and series expansion were also provided. A pure phase-based approach would not

alleviate the intricacy of the formulations, and the phase PDF is only given in its original

integral form.

Typically, shadowing and multipath are analyzed separately, although such ap-

proach only holds for stationary scenarios and a joint analysis is required. It is shown in [7]

that the composite shadowing-multipath distribution fading can be treated as a special case

of the product of RVs. In addition to composite fading, the product of RVs appears in a

plethora of wireless communication process. For instance, the equivalent channel between

source and destination in a multihop system is modeled as the product of the individual

gains in each hop; the cascade channel [8,9] is the result of the product of several RVs; high

resolution synthetic aperture radar clutter [10] is modeled as the product of two RVs; the

keyhole effect [11–14] in multiple-input multiple-output (MIMO) system utilize the product

of two random variates to model the distribution of the elements of the transfer matrix to

name but a few examples of applications using the product of RVs.

In the next few year, a 1000-fold growth in mobile traffic is expected [15]. To

address the huge capacity increment, a more efficient spectral usage is necessary. Cognitive

radio (CR) [16] has been gaining great interest in research due to its ability to adapt its

transmission parameters such, as bandwidth, operation frequency, modulation scheme, in

accordance to channel characteristic. In this sense, CR has created the opportunity to im-

prove spectral efficiency by dynamically allocating the transmission resources. For instance,

CR is able to perform the spectrum sensing and opportunistically occupy a certain primary

channel. Of course, a side effect of this is the co-channel interference (CCI) caused to the

licensed network. An important metric to measure the CCI is the signal-to-interference ratio

(SIR) . In a fading channel scenarios, the SIR is obtained by the ratio of random envelopes.

These ratios are also used in a number of applications in wireless communications. For in-

stance, in physical layer security, the probability of positive secrecy capacity is determined

by the ratio of RVs. Other applications using the ratio of envelopes can be found in technolo-

gies such as multihop communications. Therefore, the better knowledge of the statistics of

the product and ratio distribution is definitely important.
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1.1 Related Work

1.1.1 Product of Random Variates

In the specialized literature, a plethora of work has been done analyzing the

distribution of random envelopes. The PDF and CDF for the product of n Rayleigh RVs are

obtained in [17] in terms of the Meijer G-function and it also provides series representation

for the cases n = 3, 4, 5. This work is expanded in [8] for the product of n Nakagami-m

RVs and performance metrics for the cascaded channel is derived. In [9], the PDF, CDF and

moment generating function (MGF) of the product of powers of n generalized Nakagami-m

are obtained in terms of the Fox H-function and used to evaluate the performance metrics

of a cascaded channel. More recently, statistics for the product of two α-µ random variate

were obtained in [7] in terms of finite sum of hypergeometric functions, and it established

that composite shadowing-multipath fading is a particular case of the product of RVs. The

work in [7] is extended for the product of three and n α-µ RVs, respectively, in [18] and [19]

given in terms of both the Meijer G-function and finite sum of hypergeometric functions.

1.1.2 Ratio of Random Variates

Recently, the impact of the CCI on the outage probability metric has been of

great interest. In what concerns generalized fading channels, the outage probability for the

CCI over η-µ/η-µ, η-µ/κ-µ and κ-µ/η-µ is provided in [20] and [21] restricted to integer

values for the parameter µ or in limited interference scenarios. The outage probability for

the κ-µ/κ-µ scenario is obtained in [22] again, with restrictions for the parameter µ and

limited interference. Statistics for the ratio of α-µ RVs are obtained in [23] in terms of both

infinite and finite sums of hypergeometric function, in which the results are applied to the

analysis of the capacity of spectrum sharing systems. Finally, the work in [23] is expanded

in [24] in which the PDF and CDF for the ratio of products of α-µ RVs is obtained in terms

of the Meijer G-function.

1.2 Summary of Contributions

The major contributions of this work are threefold: 1) First, the PDFs and CDFs

for the ratio of two random envelopes taken from the α-µ, κ-µ and η-µ distribution is

derived in exact closed-form in terms of the multivariable Fox H-function; 2) The PDFs and

CDFs of the product of two random envelopes taken from the aforementioned distributions

are obtained in exact closed-form in terms of the multivariable Fox H-function; and 3) the

integral involving the product of a PDF and a CDF of the variates is obtained in terms of the

multivariable Fox H-function. Besides, fairly simple, fast convergent series expansions are
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obtained as an alternative implementation of the multivariable Fox H-function. Except for

the product and ratio of α-µ variates, all the results are novel and unprecedented.

Application examples regarding the ratio and product of RVs are also presented.

These include performance metrics for the cascaded channel (amount of fading, outage

probability, outage capacity), probability of positive secrecy capacity and probability of de-

tection in ultra-high frequency (UHF) radio frequency identification (RFID) systems. In par-

ticular, the secrecy capacity of a Gaussian wire-tap channel used for device-to-device (D2D)

and vehicle-to-vehicle (V2V) communications is characterized using data obtained from

field measurements conducted at 5.8GHz at the Wireless Communications Laboratory of

The Queen’s University of Belfast.

Other interesting contribution concerns the first order statistics of the α-η-κ-µ

fading model – namely PDF, CDF, higher order moments, moment generating function and

the bit error rate. These statistics are provided in new functional form which compute faster

than existing formulations. Moreover, a first approach for the parameter estimation problem

is addressed.

1.3 The Fox H-Function

In 1961, in an attempt to find a most symmetrical Fourier kernel, Charles Fox

[25] defined a new function involving Mellin-Barnes integral which is a generalization of

the Meijer G-function. It has a vast potential of applications in several fields of science and

engineering. This function generalizes a plethora of important functions, such as, expo-

nential, Bessel-type, hypergeometric, Mittag-Leffler, Wright, hyperbolic and trigonometric

functions to name but a few. Since then, the Fox H-function has been studied and new gen-

eralizations and expansions were obtained, e.g. the multivariable Fox H-function [26] and

the extended H̄-function [27]. Recently, the Fox H-function has been extensively used in the

wireless communication field to obtain closed-form expressions in a plethora of applications.

For instance, expressions for the capacity and bit error probabilities were obtained in terms

of the Fox H-function in [28–31]. Spherically invariant channel were characterized in [32]

using the Fox H-function. Closed-form expression for the symbol error probability in single

and multi-branch diversity over α-µ channel were obtained in [33] and then extended for

the more general H-channel in [34].

Unfortunately, the Fox H-function is yet to be implemented in the most popular

mathematical packages such as MatLab or Mathematica. Nevertheless, it is possible to find

implementations for the Fox H-function. For instance, the authors in [9] provide an efficient

implementation for the single variable Fox H-function using an equivalence between the

Fox H-function and the Meijer G-function. An alternative implementation for [9] is also
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propose her. A Python implementation for the multivariable Fox H-function can be found

in [34] whose authors claim to efficiently and accurately evaluate the multivariable Fox

H-function up to four branches in a few seconds. Alternatively, it is also possible to derive

series expansions through the sum of residues [35] with the inconvenience of the number

of folded summations being equal to the number of variable which, in general, renders such

approach infeasible for more than three or four variables. Nevertheless, it is possible to

obtain simpler series expansion depending on the parameters of the Fox H-function.

1.4 Thesis Outline

This thesis is organized as follows:

Chapter 2. This chapter presents the concepts used to develop the statistics for

the ratio and product distributions. The product and ratio statistics are given in terms of

the multivariable Fox H-function, whose definition is provided in this chapter. The Mellin

transform (and its inverse) is the tool used to obtain the statistics for the product distribution

and this is also presented. And the fading models α-µ, η-µ, κ-µ and α-η-κ-µ are revisited.

Chapter 3. This chapter presents the analytical formulation necessary to derive

the PDFs and CDFs of the ratio distribution of two RVs. Specifically, expressions in terms

of the multivariable Fox H-function and series expansion for each combination of ratios

involving the α-µ, η-µ, and κ-µ fading distributions are presented. An application example

in physical layer security is used to demonstrate the usefulness of the expressions obtained.

Chapter 4. This chapter presents novel, closed-form expressions for the PDFs and

CDFs of the product of two RVs taken from the distribution α-µ, η-µ, and κ-µ distributions

in terms of the multivariable Fox H-function. Fairly simple power series are presented for

each combination of product distributions. An interesting integral involving the product of a

PDF by a CDF which is closely related to the CDF of the product distribution is also derived

both in terms of the multivariable Fox H-function as well as in terms of relatively simple

infinite series. This result finds applications for instance in computing the probability of

detection in UHF RFID systems.

Chapter 5. Results from different research topics are presented in this chapter.

These include new, more efficient formulations for the first order statistics – namely PDF,

CDF, higher order moments, moment generating function and bit error rate – for the α-η-

κ-µ fading model are presented. In addition, a first approach to the parameter estimation

problem is proposed.

Chapter 6 summarizes the main results, and indicates opportunities for future

researches.
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Appendix A. In this appendix, the derivation of the multivariable Fox H-function

representation for the PDFs and CDFs of the ratio of two random envelopes taken from the

α-µ, η-µ, and κ-µ distribution is provided in detail.

Appendix B. in this appendix, the derivation of the multivariable Fox H-function

representation for the PDFs and the CDFs of the product of two random envelopes taken

from the α-µ, η-µ, and κ-µ is provided in detail.

Appendix C. The series representation for the PDFs and CDFs of the ratio and

product distributions are derived in detail in this appendix.

Appendix D. The expression for the integral involving the product of the PDF

by the CDF is provided in detail in this appendix both in terms of the multivariable Fox

H-function as in infinite series representation.

Appendix E. An alternative implementation for the Fox H-function is found here.

As compared to that of [9], this implementation has the advantage of providing convergence

at the lower tail of the distribution.
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Chapter 2

Preliminaries

In this chapter, the distributions α-µ, η-µ, κ-µ, and α-η-κ-µ are briefly reviewed.

Their PDFs and CDFs are rewritten in terms of the multivariable Fox H-function by replacing

the exponential and Bessel functions in their formulations. In addition, the definition of

the multivariable Fox H-function is presented along with some of its important properties.

Finally, the Mellin transform and its connection with the generalized moments of positive

RVs is presented.

2.1 The Fox H-Function

The Fox H-function in N variables is defined by multiple Mellin-Barnes contour

integral in its most general form as [26]

H[x; (β ,B); (δ,D);L ] =
�

1
2π j

�N ˛

L

m
∏

i=1
Γ

�

βi +
N
∑
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bi,ksk

�

n
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i=1
Γ

�

δi +
N
∑

k=1
di,ksk

�

N
∏

i=1

x
−si

i
dsi, (2.1)

in which j =
p
−1, x= [x1, . . . , xN], β = [β1, . . . ,βm] and δ = [δ1, . . . ,δn] denote vectors of

complex numbers and B and D are real valued matrices of order m×N and n×N respectively,

L is an appropriate contour in the complex space, and Γ (x) =
´∞

0 t x−1 exp(−t)d t Γ (·) is the

gamma function [36, Equation (6.1.1)]. The function (2.1) reduces to the single variable

Fox H-function for N = 1. Properties and applications of (2.1) can be found in [37, 38],

in particular for N = 2. The convergence conditions for the integral (2.1) are described in

detail in [38] for N = 2 and then extended for an arbitrary number of variables in [26].

In [39], the single variable Fox H-function function is studied in detail providing several

properties and applications in science and engineering. A comprehensive study on integral

transforms involving the Fox H-function is found in [40].
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2.2 The Mellin Transform

The Mellin transform and its inverse are defined as follows [39].

Definition 2.1. The Mellin transform of the function f (x), denoted as f ∗(s), is defined by

f ∗(s) =

∞̂

0

x s−1 f (x)d x , (2.2)

provided the integral converges.

Definition 2.2. The inverse Mellin transform of the function f ∗(s) is defined by

f (x) =
1

2π j

˛

L
f ∗(s)x−sds (2.3)

If f ∗(s) is analytic, then f (x) is uniquely defined by (2.3).

2.2.1 The Mellin Transform and the Generalized Moments

From the standard probability theory, the k-th moment of a RV Z with positive

support is given by

E[Z k] =

∞̂

0

zk fZ(z)dz, (2.4)

in which E[·] denotes the expectation operator. By comparing (2.4) with (2.2), it is easy to

determine that the k-th moment is given in terms of the Mellin transform of fZ(z) as

E[Z k] = f ∗(k+ 1), (2.5)

or, equivalently,

f ∗(s) = E[Z s−1]. (2.6)

It follows from Definitions (2.1.) and (2.2.) that the PDF fZ(z) can be obtained from the

generalized moments as

fZ(z) =
1

2π j

˛

L
E[Z s−1]z−sds, (2.7)

or, alternatively, by performing the variable transformation u= s− 1,

fZ(z) =
1
z

1
2π j

˛

L
E[Zu]z−udu. (2.8)
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2.3 The α-µ Fading Model

The α-µ distribution arises from a general fading model suited to characterize

non dominant components environments subject to some sort of non-linearity in the wireless

medium and clustering of multipath. Let R> 0 be a fading envelope with α-root mean value

r̂ =
α
p

E[Rα]. Then its PDF is given as

fR(r) =
αµµ

Γ (µ)

rαµ−1

r̂αµ
exp

�

−µ rα

r̂α

�

, (2.9)

in which α > 0 is connected to non-linearities in the wireless medium, µ = E2[Rα]/V[Rα],

and V[·] is the variance operator. Its CDF is given as

FR(r) =
γ (µ,µrα/r̂α)

Γ (µ)
, (2.10)

in which γ(a, b) =
´ b

0 ta−1e−t d t is the incomplete gamma function [36, Equation (6.5.2)].

The k-th moment is found as

E[Rk] =
Γ (µ+ k/α)

Γ (µ)
A k, (2.11)

in which the constantA is defined for simplicity as

A = r̂

µ1/α
. (2.12)

Several important fading models are particular cases of the α-µ distribution such

as Weibull (µ = 1), Nakagami-m (µ = m and α = 2), Rayleigh (µ = 1 and α = 2), gamma

(µ = m and α = 1), one-sided Gaussian (µ = 1/2 and α = 2), and exponential (µ = 1 and

α= 1) to name but a few.

2.4 The κ-µ Fading Model

The κ-µ distribution arises from a general fading model suited to characterize

fading signals subjected to multipath clustering with dominant components. For a fading

signal R > 0 and root mean square (rms) value r̂ =
p

E[R2], its PDF is given, alternatively

to [4] by using [36, Equation (9.6.47)], as

fR(r) =
2(µ(1+ κ))µ

exp(κµ)
r2µ−1

r̂2µ
exp

�

− r2(1+ κ) µ
r̂2

�

0 F̃1

�

;µ;
r2κ(1+ κ)µ2

r̂2

�

, (2.13)

in which κ > 0 is the ratio between the total power of the dominant components by the total

power of the scattered-waves, µ= E2[R2]/V[R2]×(1+2κ)/(1+κ)2 is related to the number

of multipath clusters, and 0 F̃1(; a; z) = 0F1(; a; x)/Γ (a) is a particular case of the generalized

hypergeometric function [41, Equation (7.2.3.1)]. The CDF of the κ-µ distribution is given
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in terms of the Marcum-Q [4], alternatively, the CDF can be written in terms of the Fox

H-function as [42]

FR(r) =

�

µ(1+ κ)
r2

r̂2

�µ

H [x; (β ,B); (δ,D);Ls] , (2.14)

such that, x = [κµ,µ(1+ κ)r2/r̂2], β = [µ, 0, 0], δ = [µ,µ+ 1] and the matrices B and D

are given as

B=







−1 −1

1 0

0 1





 , and D=

�

−1 0

0 −1

�

.

The k-th moment is obtained in closed form, alternatively to [4, Equation (5)], as

E[Rk] =K k Γ (µ+ k/2)
Γ (µ)

1F1

�

−k

2
;µ;−κµ

�

, (2.15)

by using the identity [36, Equation (13.1.27)]. The constant K is defined as

K = r̂
p

µ(1+ κ)
. (2.16)

Particular cases include the Rice distribution (µ = 1), Nakagami-m (κ = 0 and

µ= m), Rayleigh and one-sided Gaussian.

2.5 The η-µ Fading Model

In a environment with no dominant components, a fading signal showing im-

balances or correlation between the in-phase and quadrature waves subjected to clustering

of multipath has its distribution characterized by the η-µ fading model. For a fading signal

R > 0 following the η-µ distribution and rms r̂ =
p

E[R2], its PDF is given, alternatively

to [4, Equation (17)] by using [36, Equation (9.6.47)], as

fR(r) =
21+2µ

�

hµ2
�µ

Γ (2µ)
r4µ−1

r̂4µ
exp

�

−2µhr2

r̂2

�

0F1

�

;µ+
1
2

;
H2µ2r4

r̂4

�

, (2.17)

in which µ= E2[R2]/(2V[R2])× (1+(H/h)2) is related to the number of multipath clusters

and h and H are functions of the parameter η defined according to the adopted Format

of the η-µ distribution. In Format 1, η > 0 is the ratio between the power of the in-phase

and quadrature scattered-waves and h = (2+ η−1 + η)/4 and H = (η−1 − η)/4; in Format

2, −1 < η < −1 is correlation coefficient between the in-phase and quadrature scattered-

waves and h = 1/(1−η2) and H = ηh. Its CDF is given, in terms of the Fox H-function, as

FR(r) =
2
p
π

Γ (µ)

�

µ
r2

r̂2

�2µ

H[x; (β ,B); (δ,D);Ls], (2.18)
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in which x= [−H2/(4h2), 2µr2/r̂2], β = [2µ, 0, 0], δ = [µ+ 1/2, 1+ 2µ], and the matrices

B and D are given as

B=







−2 −1

1 0

0 1





 , and D=

�

−1 0

0 −1

�

.

The k-th moment is given, alternatively to [4, Equation (21)], as

E[Rk] = E k Γ (2µ+ k/2)
Γ (2µ) 2F1

�

1
2
− k

4
,−k

4
;µ+

1
2

;
H2

h2

�

. (2.19)

and the constant E is defined as

E = r̂
p

2µ
(2.20)

From the η-µ distribution it is possible to obtain other important fading models.

Special cases include the Hoyt (µ = 1/2), Nakagami-m (η→ (0,∞) and m = µ or η = 1

and m= 2µ for format 1, orη = 0 and m= 2µ orη = (−1, 1) and m= µ), from Nakagami-m

is possible to obtain the Rayleigh distribution (m= 1) or the one-sided Gaussian (m= 1/2).

2.6 The α-η-κ-µ Fading Model

Accounting for virtually all short-term physical phenomena, namely nonlinearity

of the propagation medium, scattered waves, dominant components, and multipath cluster-

ing, the α-η-κ-µ fading model has been recently proposed. It comprises most of the fading

distributions presented in the literature and some not yet reported. This fading model has

been presented in three different parametrizations. Let R > 0 be a α-η-κ-µ fading signal.

It was recognized in [5] that the α-η-κ-µ fading envelope could be written in terms of the

in-phase and quadrature waves of the complex model as Rα = X 2 + Y 2, in which α > 0

models the non-linearities in the physical medium and X 2 and Y 2 are the powers of two

independent κ-µ distributed random variates. In its Global Parametrization, for an α-root

mean r̂ =
α
p

E[Rα], its PDF is given as [5]

fR(r) =
αrαµ−1

2µΓ (µ)
exp

�

− rα

2

� ∞
∑

k=0

k!ck

(µ)k
L
µ−1
k
(2rα) , (2.21)

in which µ > 0 is the number of multipath clusters, Lλ
k
(·) is the generalized Laguerre Poly-

nomial [36, Equation (22.2.12)] and ck is given as

ck =
1
k

k−1
∑

i=0

cidk−i, k ≥ 1, (2.22)

with c0 and di given, respectively, as

c0 =
8µ
�

3r̂α

ξµ
+ 2

�− µ
p+1
�

3ηr̂α

ξµp
+ 2

�− µp
p+1

exp
�

3κµr̂α(2µpξ(ηq+1)+3ηr̂α(pq+1))
δ(2µξ+3r̂α)(2µpξ+3ηr̂α)

� (2.23)
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and

di =
µ

p+ 1

�

2µξ− r̂α

2µξ+ 3r̂α

�i

+
pµ

1+ p

�

2µpξ−ηr̂α

2µpξ+ 3ηr̂α

�i

− 8iκµ2ηp2qξ

δ

(2µpξ−ηr̂α)
i−1

r̂α

(2µpξ+ 3ηr̂α)
i+1 −

8iκµ2ξ

δ

(2µξ− r̂α)
i−1

r̂α

(2ξµ+ 3r̂α)
i+1

(2.24)

wherein ξ = (1+ η)(1+ κ)/(1+ p) and δ = (1+ p)(1+ qη)/(1+ η); κ > 0 is the ratio of

the total power of dominant component and the total power of the scattered waves; η > 0

is defined as the ratio of the total power of the in-phase and quadrature scattered waves of

the multipath clusters; p > 0 is the ratio of the number of multipath clusters of in-phase

and quadrature signals; and q > 0 is the ratio of two ratios: the ratio of the power of the

dominant components to the power of the scattered waves of the in-phase signal and its

counterpart for the quadrature signal. The CDF of the fading envelope R is obtained as [5]

FR(r) =
rαµ

2µ+1Γ (µ+ 1)
exp

�

− rα

2

� ∞
∑

k=0

k!mk

(µ+ 1)k
L
µ

k

�

2(µ+ 1)rα

µ

�

, (2.25)

in which mk is defined as

mk =
1
k

k−1
∑

i=0

miqk−i, k ≥ 1, (2.26)

wherein m0 and qi are given respectively as

m0 =
8µ+1(µ+ 1)µ+1

�

2µ+ (3µ+4)r̂α

ξµ

�− µ
p+1
�

2µ+ ηr̂α(3µ+4)
µpξ

�− µp
p+1

(3µ+ 4)exp
�

κµr̂α(3µ+4)(2µ2pξ(ηq+1)+ηr̂α(3µ+4)(pq+1))
δ(2µ2ξ+(3µ+4)r̂α)(2pµ2ξ+ηr̂α(3µ+4))

� (2.27)

and

qi =
µ

p+ 1

�

µ (2µξ− r̂α)

2µ2ξ+ (3µ+ 4)r̂α

�i

+
µp

p+ 1

�

µ (2µpξ−ηr̂α)

2pµ2ξ+ηr̂α(3µ+ 4)

�i

− 8iκµi+2ηp2qξ(µ+ 1)
δ

(2µpξ−ηr̂α)
i−1

r̂α

(2pµ2ξ+ηr̂α(3µ+ 4))i+1

− 8iκµi+2ξ(µ+ 1)
δ

(2µξ− r̂α)
i−1

r̂α

(2µ2ξ+ (3µ+ 4)r̂α)i+1 +

�

− µ

3µ+ 4

�i

.

(2.28)

Unfortunately, the expressions for the PDF and CDF are given in intricate formulations using

recursivity, which can become quite troublesome to numerical evaluation. The α-η-κ-µ fad-

ing model comprises most of the fading distribution present in the literature. For instance,

the α-κ-µ fading [43] is obtained by setting p = η; for κ→ 0 and p = 1, the α-η-µ fading

model [43] is obtained. Other important short-term fading can be obtained from the partic-

ular case of the α-κ-µ and α-η-µ. Nevertheless, it is quite difficult to reduce the formulations

provided in [5] to those of the particular cases, mainly due to the recursive particle present

in (2.21) and (2.25). Of course, the reduction is straightforward by making use of physical

model of these distributions.
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Chapter 3

The Ratio Distribution of Two Fading

Envelopes

In this chapter, the basic concepts to derive the first order statistics of the ratio

of two random envelopes are shown. In particular, the PDF and CDF of the ratio of random

envelopes with variates taken from the α-µ, η-µ, and κ-µ distributions are obtained in

closed-form in terms of the Fox H-function. Fairly simple, fast convergent, series expansion

are also derived as an alternative for implementing the Fox H-function. The chapter ends

with a simple practical application example in physical layer security, namely probability of

positive secrecy capacity.

3.1 The Ratio Statistics

Let Z = X/Y > 0 be a random variate originated from the ratio of two indepen-

dent arbitrarily distributed random envelopes X and Y whose PDFs are fX (x) and fY (y).

From standard statistical procedures, the PDF of Z , denoted as fZ(r), is obtained by the

integral

fZ(z) =

ˆ ∞

0
y fX (y z) fY (y)d y, (3.1)

and, of course, its CDF can be obtained from its definition as

FZ(z) =

ˆ z

0
fZ(τ)dτ. (3.2)

Interestingly, when the RVs X and Y are taken from the α-µ, η-µ or κ-µ distributions, both

the PDF and CDF can be written in terms of a single multivariable Fox H-function given in

the general form as

g(x) = CH[x; (β ,B); (δ,D);L ]. (3.3)
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Table 3.1 – Parameters for the Fox H-Function of the Ratio PDF

Ratio C x β B δ D

α-µ/α-µ
1

zΓ (µx)Γ (µy)

�

z

uαα

�

[µx ,µy]
�

1/αx

−1/αy

�

- -

α-µ/κ-µ
αx

zΓ (µx)e
κyµy

��

z

uακ

�αx

,−κyµy

�

[µy ,µx , 0]
�−αx/2 −1

1 0
0 1

�

[µy] ( 0 −1 )

α-µ/η-µ
21−2µy

p
παx

zΓ (µx)Γ (µy)h
µy

y

��

z

uαη

�αx

,−
H2

y

4h2
y

�

[2µy ,µx , 0]
�−αx/2 −2

1 0
0 1

�

[µy +
1
2] ( 0 −1 )

κ-µ/κ-µ
2(−κxµx)

−µx (−κyµy)
−µy

zeκxµx+κyµy

�

−κxµx vκκ,−κyµy(1− vκκ)
�

[0,µx ,µy]
�−1 −1

1 0
0 1

�

[0, 0]
�

−1 0
0 −1

�

κ-µ/η-µ
4
p
π(−1)−µx−µy h

µy

y z−1

Γ (µy)e
κxµx (κxµx)

µx (H2
y
)µy

�

−κxµx vκη,−
H2

y

4h2
y

(1− vκη)
2

�

[0,µx ,µy]
�−1 −2

1 0
0 1

�

[0, 1
2]

�

−1 0
0 −1

�

η-µ/η-µ
8π(−1)−µx−µy hµx

x
h
µy

y

zΓ (µx)Γ (µy)(H
2
x
)µx (H2

y
)µy

�

−
H2

x
v2
ηη

4h2
x

,−
H2

y
(1− vηη)

2

4h2
y

�

[0,µx ,µy]
�−2 −2

1 0
0 1

�

[1
2 , 1

2]
�

−1 0
0 −1

�

Table 3.2 – Parameters for the Fox H-Function of the Ratio CDF

Ratio C x β B δ D

α-µ/α-µ
1

Γ (µx)Γ (µy)

�

z

uαα

�

[µx ,µy , 0]
�

1/αx

−1/αy

−1

�

[1] (−1)

α-µ/κ-µ
1

Γ (µx)e
κyµy

��

z

uακ

�αx

,−κyµy

�

[µy ,µx , 0, 0]
�−αx/2 −1

1 0
−1 0
0 1

�

[µy , 1]
�

0 −1
−1 0

�

α-µ/η-µ
21−2µy

p
π

Γ (µx)Γ (µy)h
µy

y

��

z

uαη

�αx

,−
H2

y

4h2
y

�

[2µy ,µx , 0, 0]
�−αx/2 −2

1 0
−1 0
0 1

�

[1,µy +
1
2]

�

−1 0
0 −1

�

κ-µ/κ-µ
(−κxµx)

−µx (−κyµy)
−µy

eκxµx+κyµy

�

−z2µxκx

u2
κκ

,−µyκy ,
z2

u2
κκ

�

[0,0,µx ,µy , 0]
�−1 −1 −1
−1 0 −1

I3

�

[1, 0,0]
�−1 0 −1
−1 0 0
0 −1 0

�

κ-µ/η-µ
2
p
π(−1)−µx−µy (H2

y
)−µy

Γ (µy)e
κxµx (κxµx)

µx h
−µy

y

�

−z2µxκx

u2
κη

,−
H2

y

4h2
y

,
z2

u2
κη

�

[0,0,µx ,µy , 0]
�−1 0 −1
−1 −2 −1

I3

�

[1, 0, 1
2]

�−1 0 −1
−1 0 0
0 −1 0

�

η-µ/η-µ
4π(−1)−µx−µy hµx

x
h
µy

y

Γ (µx)Γ (µy)(H
2
x
)µx (H2

y
)µy

�

−
z4H2

x

4h2
x
u4
ηη

,−
H2

y

4h2
y

,
z2

u2
ηη

�

[0,0,µx ,µy , 0]
�−2 0 −1
−2 −2 −1

I3

�

[1, 1
2 , 1

2]
�−2 0 −1
−1 0 0
0 −1 0

�

The respective parameters for all possible combinations of ratios of RVs involving the α-

µ, η-µ, and κ-µ are provided in Tables 3.1 and 3.2, respectively, for the PDF and CDF.

Please see Appendix A for their mathematical derivations. The constants uab and vab with

a, b ∈ {α,κ,η} used in the Tables 3.1 and 3.2 and elsewhere in the text are defined as

uαα =
Ax

Ay

, uακ =
Ax

Ky

, uαη =
Ax

Æ

hy

Ey

,

uκκ =
Kx

Ky

, uκα =
Kx

Ay

, uκη =
Kx

Æ

hy

Ey

,

uηη =
Ex

Æ

hy
p

hxEy

, uηα =
Ex

Ay

p

hx

, uηκ =
Ex

Ky

p

hx

and vab =
z2

z2 + u2
ab

(3.4)

in which Ai, Ki and Ei with i ∈ {x , y} are derived, respectively, from (2.12), (2.16) and

(2.20) with the appropriate subscripts and In denotes an identity matrix of order n.



Chapter 3. The Ratio Distribution of Two Fading Envelopes 35

3.2 Series Representation

The implementation of the general multivariable Fox H-function can become

an herculean task as the number of variables increases, and, until now, there is no such

implementation. Nevertheless, some particular implementations may be found in the liter-

ature. For instance, an interesting Mathematica implementation of the single variable Fox

H-function is found in [9], in which the Fox H-function is written in terms of the Meijer’s G-

function. In [34], a Python implementation for the multivariable Fox H-function is provided,

in which the authors claim to efficiently and accurately evaluate it up to four variables. Al-

ternatively, calculus of residues may be used to produce computable series expansions. Of

course, in general, the evaluation of these series may become extremely complicated as the

number of variables rises above three or four with the result being obtained from a multi-

fold summation. There are some cases, though, in which the multi-fold summations can be

simplified to a single sum or even to a closed-form expression.

Tables 3.3 and 3.4 present simple, fast convergent series expansions for the PDFs

and CDFs, respectively, in which B(·, ·) denotes the beta function [36, Equation (6.2.1)] and

Hm,n
p,q [·|−] represents the single variable Fox H-function [39]. These expressions compute

fairly quick on an ordinary desktop computer. On the one hand, the series involving the

α-µ distribution can present some complications as the overall computation time depends

mostly on the efficiency of the single variable Fox H-function implementation. Although a

clever computational execution of the Fox-H function can be found in [9], when α > 2

and in the vicinity of z = 0 convergence is not always guaranteed. A novel algorithm has

been implemented here, which guarantees convergence in all cases1 (see Appendix E).. On

the other hand, around 25 terms is enough to provide a good accuracy. The mathematical

derivations for the respective series expressions can be found in Appendix C.

3.3 The Reciprocal Distributions: Ratios of κ-µ/α-µ, η-µ/α-µ

and η-µ/κ-µ

In the previous sections, the PDF and CDF for the ratio distributions were ob-

tained both in terms of the multivariate Fox H-function and as series expansions for some

combinations of RVs. The remaining combinations can be obtained from the reciprocal dis-

tributions defined as Z̃ = 1/Z . By performing a simple variable transformation the PDFs

and CDFs of Z̃ are given as

f Z̃(z) =
1
z2

fZ

�

1
z

�

(3.5)

1 When α < 2, the Meijer G implementation of [9] is more efficient.
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Table 3.3 – Series Expansion for the Ratio PDF

Ratio Series Representation

α-µ/α-µ Refer to [24]

α-µ/κ-µ fZ(z) =
αx

zΓ (µx)e
κyµy

∞
∑

i=0

(κyµy)
i

i!Γ (i +µy)
H

1,1
1,1

��

z

uακ

�αx
�

�

�

(1−i−µy ,αx/2)
(µx ,1)

�
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∞
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i
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Table 3.4 – Series Expansion for the Ratio CDF

Ratio Series Representation

α-µ/α-µ Refer to [24]
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and

FZ̃(z) = 1− FZ(
1
z
). (3.6)

Hence, Tables 3.3 and 3.4 can be used directly to obtain these statistics.

3.4 Some Close-form Special Cases

For a certain set of parameters the ratio distribution presents closed-form ex-

pression. For instance, the PDF of the ratio of two Hoyt variates can be obtained by set-

ting µx = µy = 1/2 in the η-µ/η-µ expression in Table 3.3 and then using [41, Equation

(6.8.1.6)] along with the linear transformation given by [41, Eq. (7.3.1.3)], and after some

algebraic manipulations, the PDF is given as

fZ(z) =
2
Æ

hxhy(r̂x r̂y)
2(hy r̂2

x
+ z2hx r̂2

y
)z

(hy r̂4
x
+ 2z2hxhy r̂2

x
r̂2

y
+ z4hx r̂4

y
)3/2

× 2F1

�

3
4

,
5
4

; 1;
4z4H2

x
H2

y
(r̂x r̂y)

4

(hy r̂4
x
+ 2z2hxhy r̂2

x
r̂2

y
+ z4hx r̂4

y
)2

�

.

(3.7)

Closed-form expressions are also obtained for the PDF of ratios involving the

Nakagami-m distribution. By setting the αx = 2 in the α-µ distribution the PDF of the ratio

Nakagami-m/κ-µ and Nakagami-m/η-µ are given respectively as

fZ(z) =
2vµx
ακ
(1− vακ)

µy

zeκyµy B
�

µx ,µy

�1F1

�

µx +µy ;µy ;κyµy(1− vακ)
�

(3.8)

and

fZ(z) =
2vµx
αη

�

1− vαη
�

2µy

zB
�

µx , 2µy

�

h
µy

y

2F1

�

µx + 2µy

2
,
1+µx + 2µy

2
;

1+ 2µy

2
;

H2
y

h2
y

�

1− vαη
�2

�

. (3.9)

Other two interesting closed-form expressions arise from the ratios involving the

η-µ distribution with the parameter µ ∈ Z. By writing the 2F1 function as the Legendre Q

function using [41] and then the identity [44, Eq. (07.12.03.0028.01)], after tedious and

cumbersome algebraic manipulations, the PDF of the ratio of κ-µ/η-µ and η-µ/η-µ variates

are obtained respectively as

fZ(z) =
21−µy

�

1− vκη
�µy

vµx
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�
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�
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∑
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�
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�
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�
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�
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�
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�

B
�
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�
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�
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�

k
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�

1+µx ,µx + 2µy ;µx , 1+ k+µx +µy ;
κxµx vκη
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�
�

.

(3.10)
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fZ(z) =
21−µy

�
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�
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(3.11)

in which Ga =
�

�H y

�

�

�

1− vaη

�

/hy with a ∈ {κ,η} and ξ1 = 2µx + µy . Of course the inverse

of these ratios can be easily obtained as hinted earlier. Special cases of the Nakagami-m

distribution can also be easily obtained by setting the appropriate parameters.

3.4.1 Asymptotic Expressions

3.4.1.1 Asymptotic PDF and CDF

To obtain closed-form expressions for the behavior of the PDF for both the lower

and upper tails, the following procedure was performed. In the cases involving the α-µ

distribution, the Fox H-function was expanded in a power series using the residue theorem.

By taking the poles over the Γ (µx + t), the variable z will have a positive exponent. Now,

consider z small enough so that it is possible to ignore all terms in the sum other than the

first one resulting in an expression for the lower tail of the PDF. On the other hand, by taking

the residues over the other set of poles, a negative exponent on z arises. In this case, when

z is great enough all terms of the sum but the first may be ignored resulting in the upper

tail of the PDF.

In the other scenarios, for small values of z, we may consider vab
∼= z2/u2

ab
and

1 − vab
∼= 1. As z is in the vicinity of 0, summation indexes different from zero can be

ignored, that is, for the lower tail asymptotic behavior only the first term in the sum is used.

Proceeding like this and after some algebraic manipulations, the PDF lower tails presented

in Table 3.5 are obtained. For high values of z, we consider lim
z→∞ pFq(ap; bq; k(1− vab)) = 1,

vab
∼= 1 and 1− vab

∼= u2
ab
/z2. Replacing these in the expressions of Table 3.3 and performing

the required summation, the PDF upper tails given in Table 3.5 are obtained. Of course, by

integrating these expressions from 0 to z and z to∞, the CDF asymptotic behavior for the

lower and upper tails can also be achieved respectively and this is provided in Table 3.6.

Note that the CDF upper tails are indeed equal to one, although the expressions provided in

Table 3.6 can be used to achieve the lower tails of the reciprocal distribution by using (3.6).
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Table 3.5 – Left and Right Tail Asymptotic Expression for the PDF of the Ratio Distribution

Ratio Left Tail Right Tail

α-µ/κ-µ
αx Γ(

αxµx
2 +µy)zαxµx−1

Γ (µx )u
αxµx
ακ

1 F̃1
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−αxµx
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� 2Γ
�
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�
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u
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ακ
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h
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y Γ (µx )Γ(2µy)u
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�
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2+µy ;
H2
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Table 3.6 – Left and Right Tail Asymptotic Expression for the CDF of the Ratio Distribution

Ratio Left Tail Right Tail
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�
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�
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Table 3.7 – Parameters a and b for Various Modulation/Detection Combinations [45, Table
8.1]

a b 1/2 1

1/2 Orthogonal coherent BFSK Orthogonal noncoherent BFSK

1 Antipodal coherent BPSK Antipodal differentially coherent BPSK (DPSK)

0≤ g ≤ 1 Correlated coherent binary signaling –

3.4.1.2 Asymptotic Bit Error Rate

In a Gaussian channel, the bit error rate (BER) of a binary signaling may be

written in a compact form as [45, Eq. (8.100)]

Pb(γ) =
Γ (b, aγ)

2Γ (b)
, (3.12)

in which γ is the instantaneous SNR, the parameters a and b are defined accordingly to the

modulation and detection scheme as described in Table 3.7, and Γ (·, ·) is the complementary

gamma function [36, Eq. (6.5.3)]. Consider now a binary signal over a ratio channel

Z = h1/h2 in which h1 ¬ X and h2 ¬ Y with X and Y as defined previously. The signal-to-

noise ratio (SNR) is obtained as
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Table 3.8 – Bit Error Rate on High SNR for a Binary Signal over the Ratio Channel

Ratio Asymptotic Behavior
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2
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H2
y

h2
y

�

2eκxµx h
µy
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η-µ/η-µ
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�
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�

4h
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x h
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u2
ηηaγ̄

�2µx

γ=
Es

N0
Z2 =

Es

N0

�

h1

h2

�2

. (3.13)

in which Es is the average energy per symbol and N0 is the noise power spectral density. The

average SNR is given as

γ̄=
Es

N0
E[Z2] =

Es

N0
E[h2

1]E[h
−2
2 ]. (3.14)

Therefore, the instantaneous may be written in terms of the mean SNR as

γ= γ̄
Z2

E[Z2]
(3.15)

After a simple variable transformation, the PDF of the SNR is given as

f
Γ
(γ) =

p

E [Z2]

2
p

γγ̄
fZ

�√

√γE [Z2]

γ̄

�

(3.16)

The average BER is obtained by averaging (3.12) over the SNR as

Pb =

ˆ ∞

0
Pb(γ) fΓ (γ) dγ (3.17)

The PDF of the SNR can be written as a power series using, for instance, those in Table 3.3

and expanding the special function therein to obtain a PDF in the form of
∑

i ai(γ/γ̄)
bi . To

obtain the asymptotic behavior for the BER in a high SNR regime, higher exponents in the

PDF can be ignored taking only i = 0, which means that the BER behavior at high SNR levels
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depends only on the lower tail of the channel PDF. That is, to obtain an asymptotic equation

for the BER at high SNR over a ratio channel, replace fZ(z) by the respective channel lower

tail provided in Table 3.5. Table 3.8 gives the asymptotic behavior of the BER over a ratio

channel for all possible combinations of ratios.

3.5 Numerical Results

As an illustration, Figure 3.1 shows the PDF of the ratio of κ-µ by an η-µ RVs

and their asymptotic behavior at the right and left tails. It is important to remark that the

slope of the left tail depends solely on the distribution of the numerator, specifically on the

parameter µ (and α if involved), wherein the rate of decay on the right tail is ruled by the

parameter µ of the denominator. It is interesting to note that the distributions α-µ, κ-µ and

η-µ have a finite non-zero value at z = 0, when αµ = 1, 2µ = 1 and 4µ = 1, respectively.

The same effect is encountered for the ratio distributions if the random variable on the

numerator also satisfies the condition for finite, non-zero value at z = 0 and such property

can be observed in Figure 3.2.

Figure 3.1 – PDF of the ratio of κ-µ and η-µ RVs with µy = 2, ηy = 0.75, κx = 2, and
µx = {0.25, 1, 2.5} along with their asymptotic behavior for small and large z.

In Figure 3.3, the BER is depicted for channel resulting from the ratio of a κ-

µ by an η-µ distributions, in which solid lines are exact solution obtained from (3.17) and

dashed lines are the asymptotic curves at high SNR. As expected, simulation results coincide

with analytical curves. It can be seen from Figure 3.3 that the high SNR asymptote will start

to coincide with the exact curve earlier when the numerator parameter µ (or αµ if the

numerator is α-µ distributed) is small.
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capacity can be viewed as the maximum transmission rate such that no bit of information

is obtained by an eavesdropper. The experiment reported here has been conducted by Prof.

Simon Cotton’s team at the Wireless Communications Laboratory, Institute of Electronics,

Communications and Information Technology at The Queen’s University of Belfast. This is

reproduced here with their due permission. The secrecy capacity for a Gaussian wire-tap

channel is defined as

Cs =







log2

�

1+ γm

1+ γw

�

, if γm > γw

0, if γm ¶ γw

(3.18)

in which γm and γw are the signal-to-noise ratio (SNR) for the main and the wire-tap chan-

nels, respectively, and are given by γi = Ph2
i
/Ni, i = (m, w), in which P and Ni are the

transmission and noise power, respectively, and hi is the channel gain. The probability of

positive secrecy capacity is given as

Pr[Cs > 0] = 1− Pr

�

hm

hw

<

√

√Nm

Nw

�

= 1− FZ




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]


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= FZ̃
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

√

√

√ γ̄mE[h
2
w
]

γ̄wE[h
2
m
]





(3.19)

in which: (i) FZ(·) is obtained from (3.3) with parameters obtained in Section 3.1 and eval-

uated by the exact series given in Table 3.4 in accordance with the chosen fading model for

hm and hw; (ii) FZ̃ is the CDF for the reciprocal distribution given in (3.6); and (iii) γ̄m and

γ̄w are the mean values of the SNR for the main and wiretapper channels, respectively.

3.6.1 D2D Communications

The D2D measurements were conducted at 5.8 GHz within an indoor seminar

room. The exact details of the measurement setup, experiments, and data analysis can be

found in [48]. The measurement trial considered three persons who carried the hypothetical

user equipments (UEs) A, B and E2 and were positioned at points X, Y and Z respectively

(see Figure 3.4). All three persons had the UEs positioned at their heads, and were initially

stationary. The persons at positions Y and Z were then instructed to walk around randomly

within a circle of radius 0.5 m from their starting positions whilst imitating a voice call. It

should be noted that the channel between UEs A and B is referred to as the main channel

whilst the channel between UEs A and E is referred to as the wire-tap channel.
2 A, B and E are analogous to Alice, Bob and Eve as commonly encountered in eavesdropping analyses of

wireless security applications.
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Figure 3.4 – Seminar room environment showing the position of the UEs A, B and E for the
D2D scenario.

For the analysis, the data sets were normalized to their respective local means

prior to parameter estimation. To determine an appropriate window size for the extraction

of the local mean signal, the raw data was visually inspected and overlaid with the local

mean signal for differing window sizes. In this case, a smoothing window of 500 samples

was used. As an example of the data fitting process, Figs.3.5(a) and (b) show the PDF of

the α-µ, κ-µ and η-µ fading models fitted to the D2D fading data for the main and the

wire-tap channels, respectively. A total of 74763 samples of the received signal power were

obtained and used for parameter estimation. The parameter estimates were obtained using

the lsqnonlin function available in the optimization toolbox of MATLAB along with the

α-µ, κ-µ and η-µ PDFs. To allow the reader to reproduce these plots, parameter estimates

for all of measurement scenarios are given in Table 3.9. From Figure 3.5, we observe that

both the α-µ and κ-µ PDFs provide a very good approximation to the measured data, whilst

some disparity is noticed between the lower tail of the empirical PDF and the theoretical

η-µ PDF. To select the candidate model, from the α-µ, κ-µ and η-µ distributions, most likely

to have been responsible for generating the fading, the Akaike information criterion (AIC)

was used. Based upon the ranking performed using the computed AIC, it was found that the
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α-µ distribution was the most likely model for the main channel, whilst the κ-µ distribution

was the most likely model for the wire-tap channel. The α parameter estimate for the main

channel was found to be higher than that for an equivalent Nakagami-m fading channel (α

= 2, µ= m), while µ was found to be 0.68 suggesting a tendency towards significant fading

for the main channel. This is understandable due to the constantly changing orientation

and posture of both the test subjects. For the wire-tap channel, we see that the κ parameter

estimate was greater than 1, suggesting that a perceptible dominant component existed.

The µ parameter estimate for the wire-tap channel was found to be relatively close to 1,

indicating that a single cluster of scattered multipath contributes to the signals received in

the D2D (indoor) scenario.

Figure 3.5 – Empirical envelope PDF of (a) the main channel and (b) the wire-tap channel
compared to the α-µ, κ-µ and η-µ PDFs for the D2D channel measurements.

Utilizing the parameter estimates from the D2D field trials (see Table 3.9), Figure

3.6 depicts the estimated probability of positive secrecy capacity versus γ̄w for a range of

γ̄m, when the main and the wire-tap channels experience α-µ and κ-µ fading, respectively.

We now adopt the following approach to analyse the probability of positive secrecy capacity.

We perform our analysis when γ̄m is fixed at 10 dB and for two different levels of positive

secrecy capacity: 0.10 (10% level) and 0.50 (50% level), which are indicative of low and

mid-range levels of positive secrecy capacity, respectively. From Figure 3.6, we observe that

if the wire-tapper can improve her average SNR (γ̄w) from 5 dB to 10 dB, the probability of

positive secrecy capacity will decrease from 77% to 49%. Furthermore, to ensure a positive

secrecy capacity level of at least 10%, we find that the wire-tappers average SNR must not

exceed 19 dB. Likewise, to ensure a mid-range positive secrecy capacity level of at least

50%, γ̄w must not exceed 10 dB.
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Figure 3.6 – Probability of positive secrecy capacity versus γ̄w considering a range of γ̄m

for the D2D channel measurements when the main and wire-tap channels are
assumed to undergo α-µ and κ-µ fading, respectively. Here, PSC indicates pos-
itive secrecy capacity.

Table 3.9 – Parameter estimates for the α-µ, κ-µ and η-µ fading models fitted to the D2D
measured data along with the AIC Rank.

α-µ κ-µ η-µ

α µ r̂ AIC Rank κ µ r̂ AIC Rank η µ r̂ AIC Rank

D2D: Main channel 2.77 0.68 1.18 1 1.09 0.89 1.23 2 0.01 1.08 1.21 3

D2D: Wire-tap channel 2.64 0.74 1.16 2 1.11 0.91 1.20 1 0.01 1.10 1.31 3

V2V: Main channel 1.97 2.88 1.03 2 2.54 1.41 1.02 3 0.56 1.47 1.08 1

V2V: Wire-tap channel 2.78 1.55 1.04 3 41.7 0.13 0.99 2 0.80 1.39 1.02 1

3.6.2 V2V Communications

The V2V channel measurements considered in this work were conducted at 5.8

GHz. The exact details of the measurement setup and experiments can be found in [48].

Specifically, the transmitter, the legitimate receiver and the wire-tapper were positioned on

the center of the dashboards within vehicles A, B and E, respectively (see [48, Figure 10]).

Initially, both vehicles A and B drove towards each other at a speed of 30 mph whilst the

vehicle containing node E remained parked on the side of the road. The fading data used

in the analysis presented here, considered the channel acquisitions obtained when vehicles

A and B drove past each other and continued their onward journey. As before, it should be

noted that the channel between nodes A and B is referred to as the main channel whilst the

channel between nodes A and E is referred to as the wire-tap channel.
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Figure 3.7 – Empirical envelope PDF of (a) the main channel and (b) the wire-tap channel
compared to the α-µ, κ-µ and η-µ PDFs for the V2V channel measurements.

Similar to the D2D channel measurements, the data sets were normalized to

their respective local means prior to parameter estimation. In this case, a smoothing win-

dow of 200 samples was used. Figs. 3.7(a) and (b) show the PDF of the α-µ, κ-µ and η-µ

fading models fitted to the V2V data for the main and the wire-tap channels, respectively. A

total of 56579 samples of the received signal power were obtained and used for parameter

estimation. When compared to the α-µ and η-µ PDFs, we observe that the κ-µ distribu-

tion provides a better approximation around the lower tail of the empirical PDFs in Figs.

3.7(a) and (b). On the contrary, the η-µ PDF provides a better approximation than the α-µ

and κ-µ distributions around the median (where the greatest number of fade levels occur)

and also the upper tail of the empirical PDF. Accordingly, from the computed AIC rankings

(see Table 3.9), it was found that the η-µ distribution was the most likely model for both

the main and wire-tap channels. Inspecting the estimated η parameter for the V2V chan-

nel measurements (see Table 3.9), we observe that under the assumption of Format 1 for

the η-µ fading model [4], a power imbalance existed between the in-phase and quadrature

components for both the main and wire-tap channels. Under the assumption of η-µ fading,

low estimates of µ were also found for both the main and wire-tap channels, indicating that

minimal environmental multipath contributions offered by the surrounding environment.

Now, using the parameter estimates from V2V field trials (see Table 3.9), Figure

3.8 depicts the estimated probability of positive secrecy capacity versus γ̄w for a range of

γ̄m, when the main and the wire-tap channel experiences η-µ fading. Following a similar

approach to the D2D analysis with γ̄m fixed at 10 dB, we observe that increasing γ̄w from 5

dB to 10 dB causes the probability of positive secrecy capacity to significantly decrease from
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89% to 50%. Moreover, to ensure a positive secrecy capacity level of at least 10% or 50%,

we find that γ̄w must not exceed 15 dB and 10 dB, respectively.
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Figure 3.8 – Probability of positive secrecy capacity versus γ̄w considering a range of γ̄m for
the V2V when it is assumed to undergo η-µ fading. Here, PSC indicates positive
secrecy capacity.

3.7 Conclusions

This chapter presents novel and compact expressions for the PDF and CDF of the

ratio of two fading envelopes following α-µ, κ-µ and η-µ distributions in terms of the Fox

H-function. Exact, computationally efficient series representations are also provided. New,

simple, exact, closed-form expressions are obtained for special cases involving the Hoyt,

Nakagami-m and η-µ with integer µ parameter distributions. Applications for these results

include multihop systems, spectrum sharing, the characterization of co-channel interfer-

ence and physical layer security, among other areas of wireless communications. Multipath-

shadowing composite fading statistics can also be obtained as special cases of the ratio

distribution and the various combinations given here can be used to characterize a plethora

of fading environments. Interestingly, and as well known, the sum of independent identi-

cally distributed (i.i.d.) κ-µ powers is another κ-µ. In the same way, the sum of i.i.d. η-µ is
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another η-µ. Therefore, the results provided here can be directly applied to maximal ratio

combining systems in the presence of interference. In the same way, the sum of i.i.d. α-µ,

κ-µ, and η-µ envelopes can be well approximated by the respective distributions, then ren-

dering the results useful in the study of equal gain combining systems. Similar comments

concerning the sum of independent non-identically distributed variates (power and enve-

lope) also apply. The practical application example shown here dealt with secrecy capacity

of a Gaussian wire-tap channel for D2D and V2V communications, using data from field

measurements with experiments conducted at 5.8 GHz.
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Chapter 4

Statistics for the Product of Fading

Envelopes

In this chapter, the first order statistics such as PDFs, CDFs and moments of

the product of two random envelopes taken from the α-µ, η-µ, and κ-µ distributions are

presented both in terms of the multivariable Fox H-function and in fairly simple, fast con-

vergent computable series expansions. The results, given in terms of the Fox H-function, are

obtained through the inverse Mellin transform and, by the use of the sum of residues, series

expansions are derived. Another interesting result provided here is the that of the definite

integral involving the product of a PDF and a CDF which is closely related to the CDF of

the product of two random variates. These results find application in a plethora of wireless

communications systems. As an application example, performance analysis metrics namely

amount of fading, outage probability, and outage capacity of a two-tap cascaded channel

are derived. Additionally, the probability of detection of an UHF RFID system is also derived.

4.1 The Product of Two Random Envelopes

Consider the RV Z = R1R2 > 0 to be the product of two positive, independent

and arbitrarily distributed RVs R1 and R2 whose PDFs are denoted by fR1
(x) and fR2

(y).

From the standard probability procedure, the PDF of the random variate Z can be obtained

by the following integral

fZ(z) =

∞̂

0

1
y

fR1
(

z

y
) fR2
(y) d y, (4.1)

and the CDF is obtained as

FZ(z) =

z
ˆ

0

fZ(τ) dτ=

∞̂

0

FR1
(

z

y
) fR2
(y) d y. (4.2)
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Table 4.1 – Parameters of the Fox H-Function for the Product PDF
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Table 4.2 – Parameters of the Fox H-Function for the Product CDF
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Alternatively, the inverse Mellin transform may be used to derive an expression for these

statistics as discussed in Section 2.2. Since R1 and R2 are independent, the s-th moment of

the RV Z may be obtained as

E[Z s] = E[Rs
1]E[R

s
2]. (4.3)

Ergo, the PDF of the ratio distribution can be obtained through (2.8) whereas the CDF can

be obtained with the help of (4.2). It is worth remarking that both the PDF and CDF can be

represented in a compact form in terms of the multivariable Fox H-function following the

general structure

g(x) = CH[x; (β ,B); (δ,D);L ]. (4.4)

The parameters for the Fox H-function representation for the product PDF and CDF for any

combination of two RVs are summarized in Table 4.1 and 4.2, respectively, in which In and

0n denotes, respectively, the identity matrix of order n and a sequence of n zeros. Please see

Appendix B for their mathematical derivation.
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Table 4.3 – Series Expansion for the Product PDF

Product Series Representation
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4.2 Series Representations

In order to facilitate the implementation of the product statistics, series expan-

sions for the PDF and CDF of the product distribution are given in Tables 4.3 and 4.4 re-

spectively, and their mathematical derivation is found in Appendix C.

It is important to remark that for a certain combination of the parameters α

and µ, these expressions will produce a singularity. Nevertheless, these restrictions are non-

prohibitive as the function exists for these parameters and a limit can be used to numerically

evaluate the expressions. As expected, the parameters influence the convergence of the

power series. Specifically, for a given value of z, the series will converge faster the higher

the values ofA ,K and E/
p

h. Additionally, these series converge faster for small values of

z. Table 4.5 offers the number of terms necessary to achieve a 10−10 accuracy for the power

series in Tables 4.3 and 4.4
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Table 4.4 – Series Expansion for the Product CDF

Product Series Representation
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Table 4.5 – Number of terms for accuracy of 10−10 for the PDFs of Table 4.3 and for the
CDFs of Table 4.4

α-µ× κ-µ α-µ×η-µ κ-µ× κ-µ κ-µ×η-µ η-µ×η-µ

A1K2 Terms
A1E2

h2
Terms K1K2 Terms

K1E2

h2
Terms

E1E2

h1h2
Terms

PDF

1.1340 14 1.2320 15 0.9349 16 0.7203 19 1.3149 13

0.2566 42 0.3953 32 0.2548 38 0.1879 57 0.2425 49

0.0697 118 0.0757 126 0.1128 76 0.0565 170 0.0729 147

Outage Capacity

1.4062 11 1.0018 15 1.3333 12 0.6479 21 0.6130 23

0.5315 21 0.4363 27 0.3698 27 0.3240 31 0.2890 40

0.2526 34 0.2009 50 0.1867 46 0.1572 63 0.1159 90

4.3 Integral Involving the Product of a PDF and a CDF

Another interesting result concerns the integral of the the PDF and CDF of ran-

dom envelopes, given as

P(γ1,γ2) =

γ1
ˆ

0

fR1
(r)FR2

�γ2

r

�

dr, (4.5)

in which R1 and R2 are independent random envelopes following the α-µ, κ-µ or η-µ dis-

tribution, and fR1
(r) and FR2

(r) are, respectively, their PDF and CDF. An expression can

be obtained for integral (4.5) in terms of the multivariable Fox H-function with the gen-
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Table 4.6 – Parameters of the Fox H-Function for the Integral Involving the Product of PDF
and CDF
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eral structure given in (3.3). Tables 4.6 and 4.7 provide, respectively, the parameters for

the Fox H-function representation and series expansion for the integral (4.5). In Table 4.7,

1 F̃1(a, b, x) = 1F1(a, b, x)/Γ (b), γ(a, x) is the lower incomplete gamma function [36, Eq.

(6.5.2)], and Eν(x) is the exponential integral [36, Equation (5.1.4)]. The corresponding

mathematical derivation is provided in Appendix D. It is noteworthy that when γ1 tends to

infinity the above integral has the exact same format as the integral to obtain the CDF for

the product of the random variables R1 and R2.

4.4 Application Examples

4.4.1 Performance Metrics for the Cascaded Channel

Consider a two-tap cascaded channel described in [9]. The instantaneous SNR

is given as

γ=
Es

NT

(R1R2)
2
=

Es

NT

Z2, (4.6)

in which R1 and R2 are the wireless channel gain, Es is the average energy of the transmitted

symbol and NT is the noise power spectral density. Therefore, the average SNR, defined as

γ¬ E[γ], can be computed by

γ=
Es

NT

E[Z2]. (4.7)

Applying a conventional variable transformation, the PDF and CDF for the SNR can be

obtained, respectively, as

f
Γ
(γ) =

1
2

√

√ NT

γEs

fR

�√

√γNT

Es

�

(4.8)
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Table 4.7 – Series Expansion for the Integral Involving the Product of a PDF and a CDF in
(4.5)
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and

F
Γ
(γ) = FR

�√

√γNT

Es

�

, (4.9)

in which fR(r) may be replaced by (4.4) with parameters provided in Table 4.1 and FR(r)

may be replaced by (4.4) with parameters provided in Table 4.2 according to the physical

model considered, or by their respective series representation given in Tables 4.3 and 4.4.

4.4.1.1 Amount of Fading

The amount of fading (AF), which is a measure of the fading severity, is defined

in [45, Eq. (1.27)] as the ratio between the variance and the square of the average of the

instantaneous SNR, i.e., AF = V[γ]/E[γ]2. Expressing it in terms of the moments of Z leads

to

AF =
E[Z4]

E[Z2]2
− 1, (4.10)

in which E[Z2] and E[Z4] are derived from (4.3).

4.4.1.2 Outage Probability

The outage probability is the probability that the instantaneous SNR falls below

a certain threshold γth, i.e.,

Pout = Pr(0≤ γ≤ γth) =

ˆ γth

0
f
Γ
(γ)dγ, (4.11)

in which f
Γ
(γ) is given by (4.8). Therefore the outage probability is the CDF of the instan-

taneous SNR for γth and is given by

Pout = F
Γ
(γth), (4.12)

in which F
Γ
(γ) given by (4.9).

4.4.1.3 Outage Capacity

The Shannon capacity for a signal transmission over AWGN channel is defined as

C(γ) =W log2(1+γ), in which W is the signal’s bandwidth and γ is the instantaneous SNR.

The outage capacity is the probability that the capacity will fall below a certain threshold

and may be expressed as [49]

Cout = Prob [C(γ)< λ] . (4.13)

It can be easily shown that the outage capacity is given in terms of SNR’s CDF

as

Cout = F
Γ

�

2λ/W − 1
�

, (4.14)

in which F
Γ
(γ) defined by (4.9).
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Figure 4.2 – PDF for the product of one α-µ and a κ-µ variates with α1 = κ2 = 1.8, r̂1 =

r̂2 = 1 and several values for µ1 and µ2.

4.5 Some Plots

Several plots for the product PDF with different values for the parametersα, κ,η,

and µ are shown in Figs. 4.2-4.6. Without loss of generality, it is assumed that r̂1 = r̂2 = 1

in all plots. The parameters have been taken to show the broad range of shapes that the

product PDF can exhibit. As expected, higher values of the parameters α, κ and µ tend

to concentrate the curves around r̂1 r̂2. The PDF of an α-µ random variable is finite and

non-zero at z = 0 when αµ = 1. The same effect is observed when µ = 0.5 or µ = 0.25,

respectively, for κ-µ and η-µ distributions. Interestingly, the product distribution shows the

same effect if any of the random variables satisfies the conditions for non-zero PDF at z = 0

(αµ= 1, µ= 0.5 and µ= 0.25 for α-µ, κ-µ and η-µ, respectively).

As an application example, the outage capacity is depicted in Figs. 4.7-4.11 for

the cascaded channel formed by the α-µ, κ-µ and η-µ distributions, in which the dots are

Monte Carlo simulation points and the lines have been obtained from the formulations

presented here. As can be seen, simulation and the exact expressions coincide with each

other, showing the correctness of the formulations. These figures also show that the product

distribution tends to a single distribution if one of the variables involved in the product

approaches the impulse function (α→∞, κ→∞ or µ→∞), which gives the product

distribution much more flexibility than the single distribution.



Chapter 4. Statistics for the Product of Fading Envelopes 59

Figure 4.3 – PDF for the product of one α-µ and an η-µ variates with α1 = 1.8, format 2
η = 0.286, r̂1 = r̂2 = 1 and several values for µ1 and µ2,

Figure 4.4 – PDF for the product of two κ-µ variates with µ1 = 0.5, µ2 = 1.1, r̂1 = r̂2 = 1
and several values for κ1 and κ2.
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Figure 4.5 – PDF for the product of one κ-µ and one η-µ variates with κ1 = 2.4, format 2
η2 = 0.4, r̂1 = r̂2 = 1 and several values for µ1 and µ2.

Figure 4.6 – PDF for the product of two η-µ variates with η1 = 0.1, η2 = 0.4, r̂1 = r̂2 = 1
and several values for µ1 and µ2.

4.6 Conclusion

This Chapter offers novel exact expressions for the probability density function

and cumulative distribution function of the product of two fading envelopes following an
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Figure 4.7 – Outage capacity for α-µ × κ-µ channel with α1 = 1.8, µ1 = 1.6, r̂1 = r̂2 = 1
and various values for κ2.

Figure 4.8 – Outage capacity for α-µ × η-µ channel with α1 = 1.8, η2 = 0.286, µ2 = 0.8,
r̂1 = r̂2 = 1 and various values for µ1.

α-µ, κ-µ or η-µ distribution in terms of the Fox H-function. Series representations for the re-

sults are also provided. It is important to emphasize that the series in Tables 4.3 and 4.4 are

not unique and other series expansions are possible. Those provided here arises naturally
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Figure 4.9 – Outage capacity for κ-µ × κ-µ channel with κ1 = 0.5, µ1 = 1.5, µ2 = 0.25,
r̂1 = r̂2 = 1 and various values for µ2.

Figure 4.10 – Outage capacity for κ-µ × η-µ channel with κ1 = 2, µ1 = 1.4, η2 = 0.4,
r̂1 = r̂2 = 1 and various values for µ2

from the sum of residues without much algebraic manipulations and compute efficiently. In

addition, an interesting integral involving the product of a PDF and a CDF which is related

to CDF of the product of two random envelopes were derived. Said integral find application,
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Figure 4.11 – Outage capacity for η-µ × η-µ channel with η1 = 0.1, µ1 = 2.3, η2 = 0.4,
r̂1 = r̂2 = 1 and various values for µ2

for instance in UHF-RFID systems. These results are applicable in several areas of wireless

communications such as high resolution synthetic aperture radar clutter, multihop systems.

It can also be used to model keyhole channels in MIMO system. Some metrics for the cas-

caded fading channel are provided. The various combinations of the products given here

can be used as an immense multipath-shadowing class of composite fading environment.
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Chapter 5

Miscellaneous Results on the α-η-κ-µ

Fading Model

The efficiency of the series presented in 2.6 for the PDF and CDF of the α-η-κ-µ

can be greatly compromised due to the recursivity present in the series. In this chapter, a

number of new results aiming at facilitating the use of the α-η-κ-µ fading model are pre-

sented. These results include: (i) fast convergent, with no recursions, series representations

for the envelope PDF and CDF; (ii) higher order moments; (iii) moment generating function;

(iv) asymptotic behaviour of the PDF and also of the CDF; (v) a procedure for parameter

estimation; (vi) new closed-form expressions for particular cases. As application examples,

the following are shown: (i) outage probability; (ii) outage capacity; (iii) amount of fading;

(iv) bit error rate, for which the asymptotic behaviour is found.

5.1 The Envelope PDF1

As was mentioned in Section 2.6, the α-η-κ-µ model, the relation between its

envelope R and in-phase and quadrature components X and Y is given as Rα = X 2 + Y 2,

in which X 2 and Y 2 are the powers of two independent of the κ-µ variates. The respective

PDFs for the modulus of X and Y follow that of (2.13) with respective parameters κx , µx/2,

r̂x and κy , µy/2 and r̂y . Their corresponding parameters are given in terms of those of

Parametrization-2, i.e. α, κ, η, µ, p, q, and r̂, as

µx =
2pµ

1+ p
, µy =

2µ
1+ p

, κx =
(1+η)qκ

1+ qη
, κy =

(1+η)κ
1+ qη

r̂2
x
=
η(1+ q(η+ κ+ηκ))r̂α

(1+η)(1+ κ)(1+ qη)
, r̂2

y
=
(1+ κ+η(q+ κ))r̂α

(1+η)(1+ κ)(1+ qη)
.

(5.1)

1 This has also been obtained independently in [52]
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As defined in [5], U = X 2 and V = Y 2, and the PDF of the α-η-κ-µ envelope can be evaluated

as

fR(r) = αrα−1

ˆ rα

0
fU(r

α − v) fV (v)dv, (5.2)

in which fU(u) and fV (v) are easily obtained from standard statistical procedures. Of course

fR(r) = αrα−1

ˆ rα

0
fU(u) fV (r

α − u)du. (5.3)

The CDF has the integral form given as

FR(r) =

ˆ rα

0
FU(r

α − v) fV (v)dv (5.4)

or, equivalently

FR(r) =

ˆ rα

0
fU(u)FV (r

α − u)du. (5.5)

In [5], these integrals were solved using series expansion formulations found

in recursive forms. These recursive forms are not handy, and their convergence, although

achievable, is highly dependent on the parameters. It is then convenient to find new formu-

lations that render the use of such a flexible α-η-κ-µ model simpler.

Replacing fU(u) and fV (v) in (5.2) and with some algebraic manipulation yields

fR(r) =
α(µξ)µ

exp
�

(1+pq)κµ

δ

�

�

p

η

� pµ
1+p rα−1

r̂αµ
exp

�

− pξµrα

ηr̂α

�ˆ rα

0
(rα − v)

pµ
1+p−1

v
µ

1+p−1

× exp
�

−(η− p)ξµv

ηr̂α

�

0 F̃1

�

;
pµ

1+ p
;

p2qξκµ2 (rα − v)

δηr̂α

�

0 F̃1

�

;
µ

1+ p
;
κξµ2v

δ r̂α

�

dv.

(5.6)

The reader is referred to Section 2.6 for the respective definition of the parameters ξ and

δ. Using the series representation for the hypergeometric function in (5.6) as given in [41,

Equation (7.2.3.1)] and then, by changing the order of integration and summation, the PDF

is obtained, after some algebraic manipulations, as

fR(r) =
α(µξ)µ

exp
�

(1+pq)κµ

δ

�

�

p

η

� pµ
1+p rα−1

r̂αµ
e−

pξµrα

ηr̂α

∞
∑

i=0

∞
∑

j=0

1

i! j!Γ
�

j +
µ

1+p

�

Γ

�

i +
pµ

1+p

�

×
�

p2qξκµ2

δηr̂α

�i �

κξµ2

δ r̂α

� j ˆ rα

0
(rα − v)

pµ
1+p+i−1

v
µ

1+p+ j−1 exp
�

−(η− p)ξµv

ηr̂α

�

dv.

(5.7)

The inner integral can be solved with the help of [53, Equation (2.3.6.1)] resulting in

fR(r) =
α(µξ)µ

exp
�

(1+pq)κµ

δ

�

�

p

η

� pµ
1+p rαµ−1

r̂αµ
exp

�

− pξµrα

ηr̂α

� ∞
∑

i=0

∞
∑

k=0

1
i!k!

×
�

p2qξκµ2rα

δηr̂α

�i �

κξµ2rα

δ r̂α

�k

1 F̃1

�

k+
µ

1+ p
; i + k+µ;

rα(p−η)ξµ
ηr̂α

�

.

(5.8)
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The above expression can be further simplified by writing the hypergeometric function as

an infinite sum, which yields,

fR(r) =
α(µξ)µ

exp
�

(1+pq)κµ

δ

�

�

p

η

� pµ
1+p rαµ−1

r̂αµ
exp

�

− pξµrα

ηr̂α

� ∞
∑

i=0

∞
∑

k=0

∞
∑

n=0

1
i!k!n!

×
Γ

�

k+ n+
µ

1+p

�

Γ (i + k+ n+µ)Γ
�

k+
µ

1+p

�

�

p2qξκµ2rα

δηr̂α

�i �

κξµ2rα

δ r̂α

�k �
rα(p−η)ξµ
ηr̂α

�n

.

(5.9)

By performing the summation over the index i, it results in

fR(r) =
α(µξ)µ

exp
�

(1+pq)κµ

δ

�

�

p

η

� pµ
1+p rαµ−1

r̂αµ
exp

�

− pξµrα

ηr̂α

� ∞
∑

k=0

∞
∑

n=0

Γ

�

k+ n+
µ

1+p

�

k!n!Γ
�

k+
µ

1+p

�

×
�

κξµ2rα

δ r̂α

�k �
rα(p−η)ξµ
ηr̂α

�n

0 F̃1

�

; k+ n+µ;
p2qξκµ2rα

δηr̂α

�

(5.10)

Now summing over the infinite triangle n= n′− k and after some algebraic manipulations,

the PDF for the α-η-κ-µ fading model is obtained as

fR(r) =
α(µξ)µ

exp
�

(1+pq)κµ

δ

�

�

p

η

� pµ
1+p rαµ−1

r̂αµ
exp

�

− pξµrα

ηr̂α

� ∞
∑

n′=0

�

rα(p−η)ξµ
ηr̂α

�n′

× L
µ

1+p−1

n′

�

ηκµ

δ(η− p)

�

0 F̃1

�

; n′ +µ;
p2qrακξµ2

δηr̂α

�
(5.11)

Interestingly, in this new form, the PDF of the α-η-κ-µ fading model can be seen as the PDF

of an α-κ-µ distribution with the modified Bessel function of the first kind replaced by a

linear combination of Bessel functions. Therefore, it can be conjectured that the statistics of

the α-η-κ-µ distribution will be a linear combination of those of the α-κ-µ fading model.

Note, however, that the formulation in (5.11) presents an indeterminacy for p = η. It is

noteworthy, on the other hand, that, in the limit as p → η, the series reduces to the exact

closed-form PDF of the α-κ-µ distribution, as predicted in [5]. In addition, it is important to

note that this new equation evaluates substantially faster than anyone of the formulations

presented in [5] and reproduced in Section 2.6, and, in general, needs no more than 20

terms for high numerical precision.

5.2 Envelope CDF - New Series Representation

A new series representation for the α-η-κ-µ CDF can be obtained by using (5.11)

in the CDF definition. The integral form for the CDF is given by

FR(r) =
α(µξ)µ

exp
�

(1+pq)κµ

δ

�

�

p

η

� pµ
1+p 1

r̂αµ

∞
∑

n′=0

�

(p−η)ξµ
ηr̂α

�n′

L
µ

1+p−1

n′

�

ηκµ

δ(η− p)

�

×
ˆ r

0
τα(n

′+µ)−1 exp
�

− pξµτα

ηr̂α

�

0 F̃1

�

; n′ +µ;
p2qτακξµ2

δηr̂α

�

dτ,

(5.12)
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This integral can be solved by putting the hypergeometric function in terms of the modified

Bessel function of the first kind using [36, Equation (9.6.47)] and then [4, Equation (4)]

which results in

FR(r) = exp
�

−κµ
δ

�
�

η

p

� µ
1+p
∞
∑

n′=0

�

1− η
p

�n′

L
µ

1+p−1

n′

�

ηκµ

δ(η− p)

�

×
�

1−Qn′+µ

�√

√2pqκµ

δ
,

√

√2pξµrα

ηr̂α

��

,

(5.13)

in which Qν(a, b) is the Marcum-Q function [54] defined as

Qv(a, b) =
1

av−1

ˆ ∞

b

x v exp
�

− x2 + a2

2

�

Iv−1(ax) d x (5.14)

The series in (5.13) converges for 0 < η < 2p. By no means, this is an issue, because the

α-η-κ-µ distribution presents a certain symmetry such that the envelope distribution with

parameters {α,η,κ,µ, p, q} is identical to the one with parameters {α, 1/η,κ,µ, 1/p, 1/q}.
Again, there is question concerning the parameters η and p approaching each other. As said

before, this is the case in which the α-η-κ-µ reduces to the α-κ-µ, and the envelope CDF is

given in a closed-form expression.

5.3 Higher Order Moments

The higher-order moments of the α-η-κ-µ fading model can be obtained as

E[Rk] =

ˆ ∞

0
rk fR(r) dr (5.15)

After replacing fR(r) with (5.11) and changing the order of integration and summation,

yields

E[Rk] =
α(µξ)µ

exp
�

(1+pq)κµ

δ

�

�

p

η

� pµ
1+p 1

r̂αµ

∞
∑

n′=0

�

(p−η)ξµ
ηr̂α

�n′

L
µ

1+p−1

n′

�

ηκµ

δ(η− p)

�

×
ˆ ∞

0
r−1+k+α(n′+µ) exp

�

− pξµrα

ηr̂α

�

0 F̃1

�

; n′ +µ;
p2qrακξµ2

δηr̂α

�

dr.

(5.16)

The inner integral can be solved with the help of [41, Equation (2.22.3.1)] resulting in

E[Rk] =
r̂k(µξ)−

k
α

exp
�

(1+pq)κµ

δ

�

�

η

p

� k
α+

µ
1+p
∞
∑

n′=0

Γ

�

n′ +
k

α
+µ

��

1− η
p

�n′

× L
µ

1+p−1

n′

�

ηκµ

δ(η− p)

�

1 F̃1

�

n′ +
k

α
+µ; n′ +µ;

pqκµ

δ

�

.

(5.17)

The series in (5.17), likewise the envelope CDF, converges for 0< η < 2p. Again,

this is no issue, as explained for the CDF case. And again, here the comment concerning the

parameters η and p approaching each other applies, i.e. the moments in this case converge

to those of the α-κ-µ distribution, which are given in closed form.
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5.4 Moment Generating Function

The MGF is defined as the average of exp(−sR), i.e.,

M (s) = E[exp(−sR)] =

ˆ ∞

0
exp(−sr) fR(r) dr. (5.18)

The integral in (5.18) can be evaluated by replacing fR(r) with (5.11) and by

rewriting the hypergeometric function as an infinite sum. After changing the order of inte-

gration and summation, the MGF can be obtained as

M (s) = α(µξ)µ

exp
�

(1+pq)κµ

δ

�

�

p

η

� pµ
1+p 1

r̂αµ

∞
∑

n′=0

∞
∑

k=0

1
k!Γ (n′ +µ+ k)

�

(p−η)ξµ
ηr̂α

�n′

×
�

p2qrακξµ2

δηr̂α

�k

L
µ

1+p−1

n′

�

ηκµ

δ(η− p)

�ˆ ∞

0
rα(k+n′+µ)−1 exp(−sr)exp

�

− pξµrα

ηr̂α

�

dr.

(5.19)

The inner integral can be solved in terms of the Fox H-function using [39, Equation (2.29)].

After performing a series of algebraic manipulations, the moment generating function of the

α-η-κ-µ fading model is given as

M (s) = 1

exp
�

(1+pq)κµ

δ

�

�

η

p

� µ
1+p
∞
∑

k=0

ck

�

pqκµ

δ

�k

H
1,1
1,1

�
�

η

pξµ

� 1
α

r̂s

�

�

�

�

�

(1− k−µ, 1/α)

(0, 1)

�

, (5.20)

in which ck is defined as

ck =
1

Γ (µ+ k)

k
∑

n=0

1
(k− n)!

�

δ(p−η)
p2qκµ

�n

× L
µ

1+p−1
n

�

ηκµ

δ(η− p)

�

. (5.21)

5.5 Asymptotic Behavior

Expressions for the behavior of the lower portion of the PDF are found in closed-

form by taking the limit of the exponential and hypergeometric function as r → 0. Also,

it is possible to ignore all terms in the sum other than the first one. After applying some

algebraic manipulations, the lower tail envelope PDF can be obtained as

fR(r) =
αµµξµ

Γ (µ)exp
�

κµ(pq+1)
δ

�

�

p

η

� µp
p+1 rαµ−1

r̂αµ
. (5.22)

By integrating (5.22), the corresponding CDF at the lower tail is found as

FR(r) =
µµ−1ξµ

Γ (µ)exp
�

κµ(pq+1)
δ

�

�

p

η

� µp
p+1 � r

r̂

�αµ

. (5.23)
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5.6 Parameter Estimation

The α-η-κ-µ fading model is described in terms of several parameters related

to different physical phenomena. Parameter estimation in such a case can become a rather

complicated matter, mostly due to the fact that the k-th moment of the α-η-κ-µ envelope is

given in an infinite series form. Here, we propose a first approach to address the parameter

estimation problem based on the moment matching technique. The idea behind this process

is quite simple. It consists in first finding an estimate for the parameter α and then obtaining

the remaining α-η-κ-µ parameters by using the α-moments of the α-η-κ-µ distribution,

which is given in closed-form expression, as will be shown below. The tricky part now is to

estimate α. We propose to estimate α by assuming that the true distribution, i.e. α-η-κ-µ,

can be approximated by an α-κ-µ or an α-η-µ distribution, for which the k-th moments are

given in closed-form formulas. That is, the parameter α, and only the said parameter, will be

estimated using the moments of either the α-κ-µ or α-η-µ distributions. Suppose we have

a set of α-η-κ-µ random envelope samples. Then, we use the relation2

E[Rk]

E[R2]
k
2

=
M[k]

M[2]
k
2

, (5.24)

in which M[k] is the k-th moment of the data, and E[Rk] is the k-th analytical moment of

the α-η-µ [43, Eq. (2)] or α-κ-µ [43, Eq. (7)] envelope. By choosing three distinct values

of k, a system of three equations and three unknowns arises. In Mathematica, a solution for

each parameter can be attained using the FindRoot function. Another faster approach is

obtained by using the NMinimize function, which allows for the inclusion of any objective

function, e.g. the mean square error of a set of (5.24).

The α-moments of the α-η-κ-µ envelope can be found as

E[Rαk] = E[(X 2 + Y 2)k]. (5.25)

Using a multinomial expansion, the α-moments are then given as

E[Rαk] = E[

k
∑

i=0

�

k

i

�

X 2iY 2(k−i)] (5.26)

Now, replacing the moments of the κ-µ power variates and performing the necessary calcu-

lations, the α-moments are obtained as

E[Rαk] = r̂αk

k
∑

i=0

k!Γ
�

k− i +
µ

1+p

�

Γ

�

i +
pµ

1+p

�

i!(k− i)!piη−iξkµk

× 1 F̃1

�

−i;
pµ

1+ p
;− pqκµ

δ

�

1 F̃1

�

i − k;
µ

1+ p
;−κµ
δ

�

(5.27)

2 There is an infinite number of equations that could be used, the criterion was to choose a relation such
that r̂ would vanish.
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in which k ∈ N. The value for r̂ is readily obtained by setting k = 1. The remaining pa-

rameters can be estimated using higher order moments. Again, there are an infinite number

of alternatives available. As observed, there remain five more parameters to be estimated,

namely η, κ, µ, p, q. It is possible to use (5.27) and set five equations with five unknowns

and solve them by means of the FindRoot function in Mathematica. On the other hand, it

is observed that those equations become rather long as k increases, rendering the solution

very difficult and unstable. By working with these moments, we have been able to find a

pattern, which was then used to simplify the equations. Such a pattern led us to define what

we call Moment Relation, tk, which will be used to find the remaining parameters. Such a

Moment Relation is given as

tk =

�

pk + pηk

1+ p
+

k
�

pk + pqηk
�

κ

δ

�

µ

(ξµp)k
(5.28)

It can be seen that t1 = 1. From (5.27), we find that t i with i ∈ {2, 6} are related to the

α-moments as

t2 =
E[R2α]

r̂2α
− 1, t3 =

E
�

R3α
�

2r̂3α
−

3E
�

R2α
�

2r̂2α
+ 1,

t4 =
E
�

R4α
�

6r̂4α
−

2E
�

R3α
�

3r̂3α
+
E
�

R2α
�

r̂2α

�

2−
E
�

R2α
�

2r̂2α

�

− 1,

t5 =
E
�

R5α
�

24r̂5α
−

5E
�

R4α
�

24r̂4α
− 5

12

�

2−
E
�

R2α
�

r̂2α

��

3E
�

R2α
�

r̂2α
−
E
�

R3α
�

r̂3α

�

+ 1,

t6 =
E
�

R6α
�

120r̂6α
−
E
�

R5α
�

20r̂5α
+
E
�

R4α
�

8r̂4α

�

2−
E
�

R2α
�

r̂2α

�

− 1
12

�

E
�

R3α
�

r̂3α
+ 6

�2

+
1
4

�

E
�

R2α
�

r̂2α
− 3

�3

+
E
�

R2α
�

r̂2α

�

E
�

R3α
�

r̂3α
− 15

4

�

+
35
4

(5.29)

Unfortunately, it is extremely difficult, if not impossible, to obtain closed-form expressions

for each parameter, hence, a numerical solution is required. For such a case, Mathematica’s

NMinimize function can be used to obtain the remaining parameters as follows

{κ,η,µ, p,q}= {κ,η,µ, p, q}/. NMinimize[
¦

l
∑

i=2

(t i − Ki)
2 ,

κ > 0∧η > 0∧µ > 0∧ p > 0∧ q > 0
©

, {κ,η,µ, p, q}][[2]]
(5.30)

in which t i are given by (5.28) and Ki is the right-hand side of (5.29), obtained from the

corresponding moments of the data, and l ≤ 6. Interestingly, it may not be necessary to use

all equations in (5.29) to obtain estimations for the parameters, a feature of the NMinimize

function.
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5.7 New Closed-Form Particular Cases

The well-known fading distributions comprised by the α-η-κ-µ fading model are

described in [5]. As also mentioned in [5], a number of other fading scenarios are comprised

by α-η-κ-µ that are not yet known in the literature. Here, we obtain two new closed-form

expressions. This is attained as follows. By setting the parameter q = 0, the hypergeometric

function vanishes resulting in the infinite sum of Laguerre polynomials, which can also be

written in terms of a confluent double Gaussian series as

fR(r) =
α(ξµ)µ exp

�

−ξµrα

r̂α

�

exp
�
κµ

δ′

�

Γ (µ)

�

p

η

� µp
1+p rαµ−1

r̂αµ

×φ3

�

µp

1+ p
;µ;
(η− p)ξµrα

ηr̂α
,
κξµ2rα

δ′ r̂α

�
(5.31)

in which φ3 is a confluent form of the Appell series [41, Eq. (7.2.4.7)] and δ′ = (1+p)/(1+

η). This particular double hypergeometric series can be evaluated using3

φ3(β ;γ; x , y) = lim
σ→0

lim
ε→0

F1

�

1
ε

;β ,
1
σ

;γ;εx ,εσ y

�

(5.32)

in which F1 is one of the Appell hypergeometric series [41, Eq. (7.2.4.1)] and, more impor-

tantly, is readily available in some mathematical packages such as Mathematica. A similar

approach can be done for q→∞, leading to

fR(r) =
α(ξµ)µ exp

�

− pξµrα

ηr̂α

�

exp
�

pκµ

δ′η

�

Γ (µ)

�

p

η

� µp
1+p rαµ−1

r̂αµ

×φ3

�

µ

1+ p
;µ;
(p−η)ξµrα

ηr̂α
,

p2κξµ2rα

δ′η2 r̂α

�

(5.33)

5.8 Applications

This section provides a number of interesting applications using the results de-

rived previously in this chapter. Let γ be the instantaneous signal-to-noise ration of a signal

with symbol energy Es transmitted over a fading channel, so that

γ=
Esr

2

N0
, (5.34)

in which r is the channel coefficient and N0 is the noise power spectral density. Its mean

value is then obtained as

γ̄=
Es

N0
E[R2], (5.35)

3 The readers are advised that when using the Limit function in Mathematica, as it might render an incorrect
result. As a suggestion, the built-in F1 can be directly used in Mathematica, in which case ε and σ are set
as close to zero as possible.
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such that E[R2] is the second moment of the channel gain and can be evaluated from (5.17).

Following a standard probability procedure, the PDF for the instantaneous SNR can be eval-

uated from the PDF of the channel gain as

f
Γ
(γ) =

1
2

√

√

√E[R2]

γγ̄
fR

�√

√γ

γ̄
E[R2]

�

, (5.36)

in which fR(r) is the envelope PDF and can be evaluated using (5.2) or (5.11). The CDF of

the instantaneous SNR is given as

F
Γ
(γ) = FR

�√

√γ

γ̄
E[R2]

�

, (5.37)

and FR(r) is evaluated by (5.4) or (5.13).

5.8.1 Outage Probability

The probability that the SNR falls below a certain threshold defines the outage

probability, i.e.

POUT = Pr[γ < γth] = F
Γ
(γth), (5.38)

in which F
Γ
(γ) is given in (5.37).

5.8.2 Outage Capacity

Shannon capacity is defined as C(γ) =W log2(1+γ), in which W is the channel

bandwidth. Furthermore, the outage capacity is the probability that capacity falls below a

certain threshold rate C0. The outage capacity can be evaluated in terms of the CDF of the

SNR as

Cout = F
Γ

�

2
C0
W − 1

�

. (5.39)

5.8.3 Amount of Fading

The amount of fading (AF) [45] is a metric that indicated the severity of fading

and is defined in terms of the first and second moments of the instantaneous SNR or the

second and fourth moments of the envelope as

AF =
E[R4]

E[R2]2
− 1 (5.40)

which may be evaluated using (5.17).
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5.8.4 Average Bit Error Rate

A general formulation for the bit error rate (BER) for binary signaling is given

as [45, Eq. (8.100)]

Pb(γ) =
Γ (b, aγ)

2Γ (b)
(5.41)

in which a and b are parameters chosen accordingly to the modulation and detection

schemes. The authors in [45, Table 8.1] provided all possible values for a and b. The average

BER can be then computed as

Pb =

ˆ ∞

0
P b(γ) f

Γ
(γ)dγ=

ˆ ∞

0

Γ (b, aγ)

2Γ (b)
f
Γ
(γ)dγ. (5.42)

After long algebraic manipulations, the average BER is then obtained as

Pb =
1

2Γ (b)exp
�

(1+pq)κµ
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� µ
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



(5.43)

in which ci was previously defined in (5.21). A closed-form asymptotic behavior at high

SNR for the bit error rate can be obtained by expanding the Fox H-function through the

sum of residues around the poles generated by the parameter (i + µ, 1) and then ignoring

the higher exponents in the sum, the asymptotic behavior at high SNR is given as

Pb=
2−1µµ−1ξµΓ

�

b+
αµ

2

�

exp
�

(1+pq)κµ

δ

�
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�

p

η

� pµ
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�

E
�

R2
�
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�
αµ
2

. (5.44)

Now, expanding the Fox H-function using the residues around the poles created by the

parameters (1, 1) and (1 − b,α/2), after the necessary calculation a fairly simple infinite

summation for the behavior at very low SNR arises as

Pb =
1
2
− 1

2bΓ (b)exp
�
κµ

δ

�

�

η

p

� µ
1+p
�

η

pµξ
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−2b

α
; n+µ;− pqκµ

δ

�
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(5.45)

It is possible to note from (5.44) that the BER decreases with a power of αµ as the mean

SNR grows, which clearly indicates that high values of α and µ results in better channel

condition, as expected.

5.9 Some Plots

In this section, plots will be presented to illustrate the use of the formulations

developed here. It is opportune to mention that, because of the number of parameters of

the α-η-κ-µ model, only a very limited sample of possible plots are shown.
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In Figure 5.1, a few examples of shapes for the PDF are plotted with varying κ

along with their respective asymptotic behavior. It is noteworthy that the asymptotic line

slope is dependent only on the parameters α and µ, ergo keeping these constants will pro-

duce shapes with parallel behavior near r = 0 as can be seen in Figure 5.1.

The parameter estimator process described in Section 5.6 has been exercised

as follows. Samples of the α-η-κ-µ envelope with some given parameters were generated.

Then the parameter estimation algorithm proposed here was applied. The parameter α was

obtained using the FindRoot function matching the data samples with the α-κ-µ distribu-

tion using a set of (5.24) with k = {1/3, 2/3, 1}. The remaining parameters were estimated

through (5.30) with l = 3. As can be seen from Figure 5.2, the PDF using the estimated

parameters fits adequately with the original PDF even though the set of estimated param-

eters may differ slightly from the correct one. The original and estimated parameters used

to generate the curves in Figure 5.2 are given in Table 5.1.

Figure 5.1 – Exact PDF (solid line) and asymptotic behavior (dashed line) for different val-
ues of κ, and α= 2.5, η = 1.2, µ= 2.4 , p = 2 and q = 2.5.

Table 5.1 – Original and Estimated Parameters of Figure 5.2

α η κ µ p q r̂

Original 1.6 2.5 0.5 1.3 0.9 1.5 1.

Estimated 1.24261 1.2423 0.967155 1.44452 1.2423 2.1679 0.949505

Figure 5.3 shows the outage probability for a set of threshold values. As expected,

the analytical results agree with the Monte Carlo simulation. From the asymptotic analysis,

it is possible to verify that the rate at which the outage diminishes in high SNR depends

only on the product αµ, whereas the separation between curves is a function of all the
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5.10 Conclusion

Several new fundamental results concerning the α-η-κ-µmodel were developed

in this chapter. In particular, series representations for the envelope PDF and CDF were pre-

sented in terms of well-known and easy to compute functions. Such series require no recur-

sion and are fast convergent. Higher order moments were also given in series form. These

can be used in a number of applications, including parameter estimation, bit error analy-

ses, and others. Moment generating function was derived and, although given in terms of

the Fox-H function, computes easily with the help of algorithms available in the literature.

Asymptotic behavior of the PDF, CDF, and BER were given in simple closed-form formu-

lations. An efficient procedure for parameter estimation was also given. New closed-form

expressions for particular cases not shown previously in the literature were given. The use

of some of the formulations was shown in applications such as outage probability, outage

capacity, amount of fading, and bit error rate performance, for which the asymptotic be-

haviour is found.
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Conclusions

In this work, the products and ratios of two fading envelopes taken from the

α-µ, η-µ, and κ-µ distributions have been thoroughly explored.

In Chapter 3, closed-form expressions for the PDF and CDF of the ratio of two

random envelopes taken from the α-µ, η-µ, and κ-µ distributions were obtained in terms

of the multivariable Fox H-function. As the multivariable Fox H-function is yet to be imple-

mented in the most common mathematical packages, simple, fast convergent series expres-

sions were derived using the residues theorem to evaluate the multiple contour integral of

the Fox H-function. In order to obtain further insight in the effect of the parameters, asymp-

totic expressions at lower and upper tails were obtained. All the expressions in Chapter 3

may be used in a plethora of wireless communication systems, such as multihop, spectrum

sharing, characterization of co-channel interference, physical layer security among many

others. Also, multipath-shadowing composite fading statistics can be found as particular

case of the ratio of two envelopes. To illustrate their applicability, a practical example deal-

ing with secrecy capacity of a Gaussian wire tap channel for D2D and V2V communications

were conduct using data from field measurements.

In Chapter 4, first order statistics – namely PDF, CDF and moments – of the prod-

uct of two independent random envelopes taken from the α-µ, η-µ, and κ-µ distributions

were obtained in terms of the multivariable Fox H-function, and infinite series representa-

tion. Among the many possible applications, cascaded channel, multihop systems, MIMO’s

keyhole channel, high resolution synthetic aperture radar clutter stand out. In addition to

the PDF and CDF of the product distribution, an integral involving the product of a PDF

and a CDF related to CDF of the product distribution was found. The said integral was then

used to evaluate the probability of detection in UHF RFID system. Moreover, statistics for

multipath-shadowing can be obtained from the product distribution, therefore a plethora of

possible scenarios of composite fading is achieved from the results here obtained.

In Chapter 5, new and more efficient series representations for the PDF and CDF
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of the α-η-κ-µ fading model were obtained. From the PDF new representation, novel infinite

series for the higher order moments and MGF were derived. New closed-form expressions

were obtained for some interesting particular cases. In addition, closed-form asymptotic

expressions were obtained for the lower tail of the PDF and CDF. A first approach for the

parameter estimation problem of the α-η-κ-µ model was proposed. Some application ex-

amples were also shown to demonstrate the utility of the formulations proposed here, in

particular outage probability, amount of fading, outage capacity and bit error probability

for which asymptotic behaviours were derived.

Future Work

Opportunities for future investigation are summarized below:

1. The first order statistics – PDF and CDF – of the product of two random envelopes

were obtained here. These results can be generalized to obtain the statistics of the

product of several random variates.

2. Following the same lines as before, expressions for the statistics for the ratio of prod-

ucts of random envelopes can be generalized to unify the results here presented.

3. Second order statistics such as level crossing rate and average fade duration are still

an open issue for the product and ratio distributions.

4. Another interesting result is the derivation of complex-based model accounting for the

phase and the envelope for the product and ratio distributions. It is conjectured that

the phase PDF would deal with sum and difference of the random phases, respectively,

for the product and ratio of complex signals.

5. The sum of fading envelopes, which finds application in several wireless communi-

cation applications, is still an open issue. The challenge regarding the sum lies in

avoiding the use of multiple integrals or summations in the numerical evaluation. In

the same line, the summation of random vectors is also an interesting and difficult

topic of research.

6. The series presented here compute efficiently, although they are not unique and many

other series representation may arise either from changing the order of summation or

by altering the approach altogether. It is conjectured that the overall quality of a series

may vary according to the parameters. Therefore, there may exist series expression

with better performance under certain conditions or parameters and the pursuit for

new, improved formulations is an interesting research opportunity.
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7. Even though the series presented here compute rapidly, it is still interesting to find

approximations in the closed-form fashion. In the present form, it is easy to lose sight

of the impact the parameters have on the shape of the PDF. In this sense, closed-form

expressions can be used to obtain an insight on the PDF shape more easily.
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Appendix A

Derivation of the Statistics of the Ratio

Distribution

In Chapter 3, the first order statistics (PDF and CDF) were presented in terms

of the multivariable Fox H-function and also as simple, fast convergent infinite series. Here,

the mathematical derivations for said expressions are presented.

To achieve the desired result, it will be required to write some functions in terms

of their Mellin-Barnes contour integral representation, namely the exponential and the hy-

pergeometric functions, which are given as [41, Equations (8.4.3.1) and (8.2.1.1)]

exp(−x) =
1

2π j

˛

Γ (s)x−s ds, (A.1)

and [41, Equation (7.2.3.12)]

0F1(; a; x) = Γ (a)
1

2π j

˛

L

Γ (s)

Γ (a− s)
(−x)−s ds, (A.2)

and

2F1(a, b; c; z) =
Γ (c)

Γ (a)Γ (b)

1
2π j

˛

L

Γ (t)Γ (a− t)Γ (b− t)

Γ (c − t)
(−z)−t d t. (A.3)

A.1 The α-µ/α-µ Distribution

A.1.1 PDF

By replacing (2.9) in (3.1) with appropriate subscripts, the PDF for the ratio of

two α-µ variates is given by the following integral

fZ(z) =
αxαyµ

µx
x
µ
µy

y

Γ (µx) Γ
�

µy

�

zαxµx−1

r̂
αxµx
x r̂

αyµy

y

ˆ ∞

0
yαxµx+αyµy−1 exp

�

−µx(z y)αx

r̂
αx
x

�

exp

�

−
µy yαy

r̂
αy

y

�

d y.

(A.4)
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The above integral cannot be solved by elementary functions. Although, it can be interpreted

as Fox H-function by putting an exponential function in terms of its Mellin-Barnes type

contour integral representation using (A.1), which results in

fZ(z) =
αxαyµ

µx
x
µ
µy

y

Γ (µx) Γ
�

µy

�

zαxµx−1

r̂
αxµx
x r̂

αyµy

y

ˆ ∞

0
yαxµx+αyµy−1

× 1
2π j

˛

Γ (t)

�

µx(z y)αx

r̂
αx
x

�−t

d t exp

�

−
µy yαy

r̂
αy

y

�

d y.

(A.5)

It is possible to change the order of integration. This shift in the integration order causes

a distortion in the contour region which, in itself, is not prohibitive in this case. The inner

integral can now be solved using [36, Equation (6.1.1)] reproduced here for completeness

Γ (s) =

ˆ ∞

0
t s−1 exp(t) d t. (A.6)

Then, solving the inner integral, and after some algebraic manipulations and utilizing the

constants defined in (3.4), results in

fZ(z) =
αx

zΓ (µx) Γ
�

µy

�

1
2π j

˛

L
Γ (t)Γ

�

αxµx

αy

+µy −
αx t

αy

��

zαxA αx
y

A αx
x

�−t+µx

d t. (A.7)

Finally, by performing the variable transformation s = αx(t − µx), the PDF for the ratio of

two α-µ variates is written as

fZ(z) =
1

zΓ (µx) Γ
�

µy

�

1
2π j

˛

L
Γ

�

µx +
s

αx

�

Γ

�

µy −
s

αy

�
�

z

uαα

�−s

ds. (A.8)

The above integral can be interpreted as Fox H-function using (2.1) whose parameters are

given in Table 3.1.

A.1.2 CDF

The CDF of the ratio of two α-µ variates is obtained by replacing (A.8) at the

CDF’s definition resulting in

FZ(z) =

ˆ z

0

1

τΓ (µx) Γ
�

µy

�

1
2π j

˛

L
Γ

�

µx +
s

αx

�

Γ

�

µy −
s

αy

�
�

τ

uαα

�−s

dsdτ. (A.9)

After changing the order of integration the inner integral can be solved using the identity
´ z

0 τ
−s−1 = Γ (−s)/Γ (1− s)z−s which results in

FZ(z) =
1

Γ (µx) Γ
�

µy

�

1
2π j

˛

L

Γ

�

µx +
s
αx

�

Γ

�

µy − s
αy

�

Γ (−s)

Γ (1− s)

�

z

uαα

�−s

ds. (A.10)

The Fox H-function parameters for the ratio of two α-µ variates are readily deduced by

comparing (A.10) with (2.1).
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A.2 The α-µ/κ-µ Distribution

A.2.1 PDF

Let Z = X/Y be the ratio of theα-µ by the κ-µ variates with parameters {αx ,µx , r̂x}
and {κy ,µy , r̂y}, respectively. Now, replacing (2.9) and (2.13) in (3.1) results in

fZ(z) =
2αxµ

µx
x

��

1+ κy

�

µy

�µy

Γ (µx)exp
�

κyµy

�

zαxµx−1
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x r̂
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y

ˆ ∞

0
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�
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x

�
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�

−
�
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�

1+ κy

��

y2

r̂2
y

�

0 F̃1

�

;µy ;
y2κy

�

1+ κy

�

µ2
y

r̂2
y

�

d y.

(A.11)

Except for some specific values of αx , the above integral does not have a closed-form ex-

pression in terms of elementary functions. Again, a solution in terms of the Fox H-function

is possible by replacing one exponential and the hypergeometric functions by their Mellin-

Barnes contour integral representations by using (A.1) and (A.2) respectively, which gives

fZ(z) =
2αxµ

µx
x

��

1+ κy

�

µy

�µy

Γ (µx)exp
�

κyµy

�

zαxµx−1

r̂
αxµx
x r̂

2µy

y

�

1
2π j

�2 ˆ ∞

0
yαxµx+2µy−1 exp

�
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�

1+ κy

�

y2

r̂2
y

�

×
�

L

Γ (t1) Γ (t2)

Γ

�
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�
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µx(z y)αx
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x

�−t1
�
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y2κy

�

1+ κy

�

µ2
y

r̂2
y

�−t2

d t1d t2d y.

(A.12)

Again, it is possible to change the order of integration. The inner integral can solved with

the help of (A.6), and after some algebraic manipulations and using the constants (3.4), it

results in

fZ(z) =
αx

zΓ (µx)exp
�

κyµy

�

�

1
2π j

�2
�

L

Γ

�

−t2 +
1
2
αx (−t1 +µx) +µy

�

×Γ (t1) Γ (t2)

Γ

�
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�

�

zαxK αx
y

A αx
x

�−t1+µx
�

−κyµy

�−t2
d t1d t2,

(A.13)

in which Ax and Ky are derived from (2.12) and (2.16). To further simplify the above

expression, the variable transformation s = t1 −µx is performed, which results in

fZ(z) =
αx

zΓ (µx)exp
�

κyµy

�

�

1
2πi

�2 ˛

L
Γ

�

µy −
αx

2
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�
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�

��

z
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�αx
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�

−κyµy
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dsd t2.

(A.14)

And, finally, the above integral can be interpreted as Fox H-function function using (2.1)

with parameters provided in Table 3.1.
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A.2.2 CDF

The CDF of the ratio of the α-µ by the κ-µ variates is obtained by replacing

(A.14) at the CDF’s definition resulting in

FZ(z) =

ˆ z

0
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τΓ (µx)exp
�

κyµy
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�

1
2πi
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Γ

�

µy − t2

�

��
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−κyµy

�−t2
dsd t2dτ.

(A.15)

After changing the order of integration the inner integral can be solved using the identity
´ z

0 τ
−αx s−1 = Γ (−s)/(αxΓ (1− s))z−αx s which results in

FZ(z) =
1

Γ (µx)exp
�

κyµy

�

�

1
2πi

�2 ˛
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(A.16)

The Fox H-function parameters for the ratio of the α-µ by the κ-µ variates are readily de-

duced by comparing (A.16) with (2.1).

A.3 The α-µ/η-µ Distribution

A.3.1 PDF

The PDF for the ratio Z = X/Y , in which X is α-µ distributed with parameters

{αx ,µx , r̂x} and Y follows the η-µ model with parameters {ηy ,µy , r̂y}, is obtained by re-

placing (2.9) and (2.17) in (3.1) which, after some minor algebraic manipulations, gives

fZ(z) =
2h
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�
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d y.

(A.17)

After replacing an exponential and the hypergeometric functions with (A.1) and (A.2) re-

spectively, the above integral becomes

fZ(z) =
2h
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y αxΓ
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µy +
1
2

�
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(A.18)
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By changing the order of integration and using (A.6) to solve the inner integral, it results,

after some algebraic manipulations, in

fZ(z) =
h
−µy

y αxΓ

�

µy +
1
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(A.19)

Now, by performing the variable transformation s = t1−µx and using the identity Γ
�

µy +
1
2

�

/Γ
�

2µy

�

=

21−2µy
p
π/Γ

�

µy

�

[36, Equation (6.1.18)], the PDF is given as
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�
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dsd t2,

(A.20)

which can finally be interpreted as a Fox H-function using (2.1) with parameters given in

Table 3.1.

A.3.2 CDF

The CDF of the ratio of the α-µ by the η-µ variates is obtained by replacing

(A.20) at the CDF’s definition resulting in

FZ(z) =

ˆ z
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p
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�
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dsd t2dτ.

(A.21)

After changing the order of integration the inner integral can be solved using the identity
´ z

0 τ
−αx s−1 = Γ (−s)/(αxΓ (1− s))z−αx s which results in

FZ(z) =
21−2µy

p
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�
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(A.22)

The Fox H-function parameters for the ratio of two α-µ variates are readily deduced by

comparing (A.22) with (2.1).
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A.4 The κ-µ/κ-µ Distribution

A.4.1 PDF

Let Z = X/Y be the ratio of two κ-µ variates with parameters {κx ,µx , r̂x} and

{κy ,µy , r̂y} respectively for the variates X and Y . By replacing (2.13) in (3.1) with the

appropriate parameters, it results in

fZ(z) =
4
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ˆ ∞
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(A.23)

Now, using the identity (A.2) for both the 0F1 functions, it gives

fZ(z) =
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(A.24)

At this point, the order of integration is shifted and the inner integral is solved with the help

of (A.6) resulting, after some algebraic manipulations and using the constants (3.4), in

fZ(z) =
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(A.25)

Performing the variable transformations s1 = t1 − µx and s2 = t2 − µy after some algebraic

manipulations results in

fZ(z) =
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−κyµy
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(A.26)

The above integral can now be interpreted as a Fox H-function using (2.1), with parameters

provided in Table 3.1.
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A.4.2 CDF

The CDF of the ratio of two κ-µ variates is obtained by replacing (A.26) at the

CDF’s definition resulting in

FZ(z) =

ˆ z
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�
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(A.27)

By changing the order of integration it results in
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(A.28)

and the inner integral can be solved with the help of [53, Equation (1.2.4.3)] which results,

after some algebraic manipulations in

FZ(z) =
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(A.29)

Finally, the hypergeometric function is written in terms of its Mellin-Barnes contour integral

representation and, after some algebraic manipulations, the CDF results in
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(A.30)

The Fox H-function parameters for the ratio of two κ-µ variates are readily deduced by

comparing (A.30) with (2.1).

A.5 The κ-µ/η-µ Distribution

A.5.1 PDF

Let Z = X/Y be the ratio of the κ-µ by theη-µ variates with parameters {κx ,µx , r̂x}
and {ηy ,µy , r̂y} respectively. Its PDF can be obtained by replacing (2.13) and (2.17) in



Appendix A. Derivation of the Statistics of the Ratio Distribution 95

(3.1) which results, after some simplifications and using the constants defined in (2.16)

and (2.20), in
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(A.31)

This integral may be solved by replacing the hypergeometric functions with their Mellin-

Barnes contour integral representations as in (A.2) resulting, after some minor algebraic

manipulations, in
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(A.32)

At this point, the order of integration is shifted and the inner integral can be solved using

(A.6). After some minor algebraic manipulations, the PDF is given by
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(A.33)

Finally, the variable transformations s1 = t1−µx and s2 = t2−µy are performed which gives
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(A.34)

The above integral may be interpreted as Fox H-function as in (2.1) with parameters pro-

vided in Table 3.1.
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A.5.2 CDF

The CDF of the ratio of the κ-µ variate by the η-µ is obtained by replacing (A.34)

at the CDF’s definition resulting in

FZ(z) =

ˆ z
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4
p
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�
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(A.35)

By changing the order of integration, it results in

FZ(z) =
4
p
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(A.36)

and the inner integral can be solved with the help of [53, Equation (1.2.4.3)] which results,

after some algebraic manipulations, in

FZ(z) =
2
p
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y
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�
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(A.37)

Finally, the hypergeometric function is written in terms of its Mellin-Barnes contour integral

representation using (A.3) and, after some algebraic manipulations, the CDF results in

FZ(z) =
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(A.38)

The Fox H-function parameters for the ratio of two κ-µ variates are readily deduced by

comparing (A.38) with (2.1).
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A.6 The η-µ/η-µ Distribution

A.6.1 PDF

The PDF for the ratio of two η-µ variates can be obtained by replacing (2.17) in

(3.1) with the appropriate subscripts, which, after some simplifications, gives

fZ(z) =
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x
h
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(A.39)

A solution in terms of the Fox H-function is possible by replacing the hypergeometric func-

tions in terms of their Mellin-Barnes contour integral using (A.2). Then, the PDF is given by

fZ(z) =
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x
h
µy

y

Γ (µx) Γ
�

µy

�

z4µx−1

E 4µx
x E

4µy

y

�

1
2π j

�2 ˆ ∞

0
y4(µx+µy)−1 exp

�

−y2

�

hxz2

E 2
x

+
hy

E 2
y

��

×
�

L

Γ (t1) Γ (t2)

Γ

�
1
2 − t1 +µx

�

Γ

�
1
2 − t2 +µy

�

�

−
(z y)4H2

x

4E 4
x

�−t1
�

−
y4H2

y

4E 4
y

�−t2

d t1d t2d y.

(A.40)

After changing the order of integration, the inner integral can be solved with the help of

(A.6). After some algebraic manipulations and using the constants defined in (3.4), the PDF

is obtained as

fZ(z) =
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(A.41)

Finally, the variable transformations s1 = t1−µx and s2 = t2−µy are performed. Then, the

PDF is given as
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(A.42)

which can be interpreted as Fox H-function as in (2.1) with parameters provided in Table

3.1.
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A.6.2 CDF

The CDF of the ratio of two η-µ variates is obtained by replacing (A.42) at the

CDF’s definition which results in
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(A.43)

By changing the order of integration, the CDF is written as
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(A.44)

and the inner integral can be solved with the help of [53, Equation (1.2.4.3)].After some

algebraic manipulations, the CDF results in
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(A.45)

Finally, the hypergeometric function is written in terms of its Mellin-Barnes con-

tour integral representation using (A.3) and, after some algebraic manipulations, the CDF

is obtained as
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(A.46)

The Fox H-function parameters for CDF of the ratio of two κ-µ variates are readily deduced

by comparing (A.38) with (2.1).
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Appendix B

Derivation of the Statistics of the

Product Distribution

In Chapter 4, the first order statistics for the product of random envelopes taken

from the α-µ, κ-µ and η-µ distribution were presented in terms of the multivariable Fox

H-function. The mathematical derivations are provided here. Likewise the ratio statistics,

the Kummer’s confluent hypergeometric function 1F1 is required to be written in terms of

its Mellin-Barnes contour integral representation given in [41, Equation (7.2.3.12)]

1F1(a; b; z) =
Γ (b)

Γ (a)

1
2π j

˛

L

Γ (t)Γ (a− t)

Γ (b− t)
(−z)−t d t (B.1)

B.1 The α-µ × α-µ Distribution

B.1.1 PDF

Let Z = R1R2 > 0 be the product of two α-µ variates with parameters {α1,µ1, r̂1}
and {α2,µ2, r̂2} respectively. The s-th moment of Z is obtained by replacing (2.11) in (4.3)

which results in

E[Z s] =
Γ

�
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s
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�

Γ

�
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s
α2

�

Γ (µ1) Γ (µ2)

�

1
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�−s

, (B.2)

in whichA1 andA2 are derived from (2.12) with the appropriate subscripts. Now, the PDF

of the product of two α-µ variates is obtained by replacing (B.2) in (2.8) which gives

fZ(z) =
1

zΓ (µ1) Γ (µ2)

1
2π j
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�
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��
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ds (B.3)

By comparing (B.3) with (2.1), the parameters for the Fox H-function representation of the

PDF of the product of two α-µ variates are readily obtained as they are provided in Table

4.1.
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B.1.2 CDF

The Fox H-function representation for the CDF of the product of two α-µ variates

is obtained by replacing (B.3) in (4.2) which gives

FZ(z) =

ˆ z
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Then changing the order of integration, the CDF results in

FZ(z) =
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The inner integral can be easily solved using
ˆ z

0
τ−s−1 =

Γ (−s)

Γ (1− s)
z−s (B.6)

Therefore, the CDF is obtained as
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Comparing (B.7) with (2.1), the parameter for the Fox H-function are deduced as they are

provided in Table 4.2.

B.2 The α-µ × κ-µ Distribution

B.2.1 PDF

Let Z = R1R2 > 0 be the product of the α-µ by the κ-µ variates with parame-

ters {α1,µ1, r̂1} and {κ2,µ2, r̂2} respectively. The s-th moment of Z is obtained by replacing

(2.11) and (2.15) in (4.3), resulting in
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, (B.8)

in whichA1 andK2 are derived from (2.12) and (2.16) respectively. The PDF of the product

of the α-µ by the κ-µ variates is obtained by replacing (B.8) in (2.8), which results in
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Now, the hypergeometric function is written in terms of its Mellin-Barnes contour integral

representation (B.1). After some simplifications, the PDF results in
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(B.10)
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Of course the above integral can already be written in terms of the Fox H-function, al-

though, to obtain the parameters provided in Table 4.1 the variable substitution x = s/2 is

performed, which results in

fZ(z) =
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Now, comparing (B.11) with (2.1), the parameters in Table 4.1 are obtained in an exact

manner.

B.2.2 CDF

The Fox H-function representation for the CDF of the product of the α-µ by the

κ-µ variates is obtained by replacing (B.11) in (4.2) which gives
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(B.12)

Then changing the order of integration, the CDF results in

FZ(z) =
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The inner integral can be easily solved using
ˆ z

0
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Therefor, the CDF is obtained as
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Comparing (B.15) with (2.1), the parameter for the Fox H-function are deduced as they are

provided in Table 4.2.
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B.3 The α-µ × η-µ Distribution

B.3.1 PDF

Let Z = R1R2 > 0 be the product of the α-µ by the η-µ variates with parame-

ters {α1,µ1, r̂1} and {η2,µ2, r̂2} respectively. The s-th moment of Z is obtained by replacing

(2.11) and (2.19) in (4.3) which results in
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in which A1 and E2 are derived from (2.12) and (2.20) respectively. The PDF is obtained

from (2.8) by replacing the s-th moment with (B.16) which gives
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(B.17)

At this point, the hypergeometric function is replaced by its contour integral representation

(A.3). The PDF results in
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(B.18)

This expression can be further simplified, by using the duplication formula of the gamma

function Γ
�

a+ 1
2

�

/Γ (2a) = 21−2a
p
π/Γ (a) [36, Equation (6.1.18)] and the variable trans-

formation x = s/2, to
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(B.19)

The parameters for the Fox H-function representation of the PDF of the product of α-µ ×
η-µ is obtained by comparing (B.19) with (2.1) as they are provided in Table 4.1.
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B.3.2 CDF

The Fox H-function representation for the CDF of the product of the α-µ by the

η-µ variates is obtained by replacing (B.19) in (4.2), which gives
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(B.20)

Then, by changing the order of integration, the CDF results in
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�2
�

L

Γ (−2t − x)Γ (t)
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�

×
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2
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0
τ−2x−1 dτd td x .

(B.21)

The inner integral can be easily solved using
ˆ z

0
τ−2x−1 =

Γ (−x)

2Γ (1− x)
z−2x (B.22)

Therefore, the CDF is obtained as

FZ(z) =
21−2µ2

p
π

Γ (µ1) Γ (µ2)

�

1
2π j

�2
�

L

Γ (−2t − x)Γ (t)

Γ

�
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1
2 − t

�

×
Γ

�
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2x
α1

�

Γ (2µ2 + x)

Γ (1− x)

�

−
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2

4h2
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A 2
1 E 2

2
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d td x .

(B.23)

Comparing (B.23) with (2.1), the parameter for the Fox H-function are deduced as they are

provided in Table 4.2.

B.4 The κ-µ × κ-µ Distribution

B.4.1 PDF

Let Z = R1R2 > 0 be the product of two κ-µ variates with parameters {κ1,µ1, r̂1}
and {κ2,µ2, r̂2} respectively. The s-th moment of Z is obtained by replacing (2.15) in (4.3),

resulting in

E[Z s] =
Γ

�
s
2 +µ1

�

Γ

�
s
2 +µ2

�

Γ (µ1) Γ (µ2)
1F1

�

− s

2
;µ1;−κ1µ1

�

1F1

�

− s

2
;µ2;−κ2µ2

�
�

1
K1K2

�−s

.

(B.24)
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The PDF of the product of two κ-µ variates is obtained by replacing (B.24) in (2.8). After

replacing the hypergeometric functions by their contour integral representations, perform-

ing the variable transformation x = s/2 and some algebraic manipulations, the PDF is given

by

fZ(z) =
2
z

�

1
2π j

�3
�

L

Γ (−t1 − x) Γ (−t2 − x) Γ (t1) Γ (t2)

Γ (µ1 − t1) Γ (µ2 − t2)

× Γ (µ1 + x) Γ (µ2 + x)

Γ (−x)
2 (κ1µ1)

−t1 (κ2µ2)
−t2

�

z2

K 2
1 K 2

2

�−x

d t1d t2d x

(B.25)

Comparing (B.25) with (2.1) the parameters of the Fox H-function are obtained completing

the derivation.

B.4.2 CDF

The Fox H-function representation for the CDF of the product two κ-µ variates

is obtained by replacing (B.25) in (4.2), which gives

FZ(z) =

ˆ z

0

2
τ

�

1
2π j

�3
�

L

Γ (−t1 − x) Γ (−t2 − x) Γ (t1) Γ (t2)

Γ (µ1 − t1) Γ (µ2 − t2)

× Γ (µ1 + x) Γ (µ2 + x)

Γ (−x)
2 (κ1µ1)

−t1 (κ2µ2)
−t2

�

τ2

K 2
1 K 2

2

�−x

d t1d t2d xdτ.

(B.26)

Then changing the order of integration, the CDF results in

FZ(z) = 2
�

1
2π j

�3
�

L

Γ (−t1 − x) Γ (−t2 − x) Γ (t1) Γ (t2)
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2
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−t2

�

1
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2

�−x ˆ z

0
τ−2x−1 dτd t1d t2d x .

(B.27)

The inner integral can be easily solved using
ˆ z

0
τ−2x−1 =

Γ (−x)

2Γ (1− x)
z−2x (B.28)

Therefore, the CDF is obtained as

FZ(z) =

�

1
2π j

�3
�

L
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−t1 (κ2µ2)
−t2

�
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2
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d t1d t2d x .

(B.29)

Comparing (B.29) with (2.1), the parameter for the Fox H-function are deduced as they are

provided in Table 4.2.
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B.5 The κ-µ × η-µ Distribution

B.5.1 PDF

Let Z = R1R2 > 0 be the product of the κ-µ by the η-µ variate with parame-

ters {κ1,µ1, r̂1} and {η2,µ2, r̂2} respectively. The s-th moment of Z is obtained by replacing

(2.15) and (2.19) in (4.3) resulting in

E[Z s] =
Γ

�

µ1 +
s
2

�

Γ

�

2µ2 +
s
2
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�
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1
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1
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(B.30)

By substituting (B.30) in (2.8), putting the hypergeometric function in terms of its Mellin-

Barnes contour integral representation with the help of (B.1) and (A.3), and performing the

variable transformation x = s/2, the PDF is given as

fZ(z) =
2Γ
�

1
2 +µ2

�

zΓ (2µ2)

�

1
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× Γ (t1) Γ (t2) Γ (µ1 + x) Γ (2µ2 + x)

Γ (−x)Γ
�

1
2 −

x
2

�

Γ

�

− x
2

� (κ1µ1)
−t1

�

−
H2

2

h2
2

�−t2
�

z2

K 2
1 E 2

2
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(B.31)

Further simplifications are achieved by using the duplication formula of the gamma func-

tion, which results in

fZ(z) =
41−µ2
p
π

zΓ (µ2)

�

1
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�3
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(B.32)

When comparing (B.32) with (2.1) the parameters for the Fox H-function representation

for the PDF of the product of a κ-µ by an η-µ variates are obtained.

B.5.2 CDF

The Fox H-function representation for the CDF of the product of the κ-µ by the

η-µ variates is obtained by replacing (B.32) in (4.2) which gives

FZ(z) =

ˆ z
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�

1
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(B.33)
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By changing the order of integration, the CDF results in

FZ(z) =
41−µ2
p
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(B.34)

The inner integral can be easily solved using
ˆ z

0
τ−2x−1 =

Γ (−x)

2Γ (1− x)
z−2x . (B.35)

Therefore, the CDF is obtained as

FZ(z) =
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p
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(B.36)

Comparing (B.36) with (2.1), the parameter for the Fox H-function are deduced as they are

provided in Table 4.2.

B.6 The η-µ × η-µ Distribution

B.6.1 PDF

Let Z = R1R2 > 0 be the product of two η-µ variates with parameters {η1,µ1, r̂1}
and {η2,µ2, r̂2} respectively. The s-th moment of Z is obtained by replacing (2.19), with the

appropriate subscripts, in (4.3), which results in

E[Z s] =
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(B.37)

The PDF is obtained by substituting (B.37) in (2.8), and using (A.3) to replace the hyper-

geometric functions with their Mellin-Barnes contour integral representations. The PDF is

given by

fZ(z) =
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(B.38)
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Further simplifications are achieved by using the duplication formula of the gamma func-

tion, and after performing the change of variable x = s/2, the PDF for the product of two

η-µ variates is obtained as

fZ(z) =
23−2µ1−2µ2π
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�
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(B.39)

Now, by comparing (B.39) with (2.1), the parameters for the Fox H-function representation

for the PDF of product of two η-µ variates are readily deduced.

B.6.2 CDF

The Fox H-function representation for the CDF of the product of two η-µ variates

is obtained by replacing (B.39) in (4.2), which gives

FZ(z) =
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(B.40)

By changing the order of integration, the CDF results in

FZ(z) =
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(B.41)

The inner integral can be easily solved using
ˆ z

0
τ−2x−1 =

Γ (−x)

2Γ (1− x)
z−2x (B.42)

Therefore, the CDF is obtained as

FZ(z) =
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(B.43)

Comparing (B.43) with (2.1), the parameter for the Fox H-function are deduced as they are

provided in Table 4.2.
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Appendix C

Series Representation for the Ratio and

Product of Random Envelopes

In the previous appendices, the derivation of the Fox H-function representations

for the ratios and products of two random variates taken from the α-µ, κ-µ and η-µ dis-

tributions were presented. Here, the mathematical derivations of the series representations

of each combination of ratios and products presented in Tables 3.3, 3.4, 4.3 and 4.4 are

presented. These series are derived directly from their respective contour integral represen-

tations provided in the Appendices A and B through the sum of residues [35]. To obtain

the series representations, it is required to know that the residues of the gamma function

around its poles are given as

res−iΓ (x) f (x) =
(−1)i

i!
f (−i), i ∈ N. (C.1)

C.1 The Ratio Distribution - PDF

The series presented in Table 3.3 were obtained as follows

C.1.1 The α-µ/κ-µ Distribution

The contour integral representation for the PDF of the ratio of the α-µ by the

κ-µ variates is given as

fZ(z) =
αx

zΓ (µx)exp
�

κyµy

�

�

1
2πi
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��
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(C.2)
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Taking the residues around the poles of Γ (t2) will result in

fZ(z) =
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zΓ (µx)exp
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(C.3)

The inner contour integral can be interpreted as a Fox H-function and, using the notation

in [39, Equation (1.2)]. Therefore the PDF results in

fZ(z) =
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(C.4)

which is the exact same series provided in Table 3.3.

C.1.2 The α-µ/η-µ Distribution

The contour integral representation for the PDF of the ratio of the α-µ by the

η-µ variates is given as

fZ(z) =
21−2µy

p
πh
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(C.5)

Taking the residues around the poles of Γ (t2) will result in
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(C.6)

The inner contour integral can be interpreted as a Fox H-function and, using the notation

in [39]. Therefore, the PDF results in
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(C.7)

which is the exact same series provided in Table 3.3.
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C.1.3 The κ-µ/κ-µ Distribution

The contour integral representation for the PDF of the ratio of two κ-µ variates

is given as

fZ(z) =
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(C.8)

Taking the residues around the poles of Γ (µx + s1) on the positive index i and Γ (µy + s2) on

the positive index k will result in
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(C.9)

After some algebraic manipulations, the PDF simplifies to
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(C.10)

It is possible to further simplify the above double summation by performing the summation

over either the index i or k. By choosing the index k, the PDF results in
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Using the definition of the beta function, the above expression is written as
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which is the exact same series provided in Table 3.3.

C.1.4 The κ-µ/η-µ Distribution

The contour integral representation for the PDF of the ratio of the κ-µ by the

η-µ variates is given as

fZ(z) =
4
p
π(−1)−µy−µx h
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y
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�
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�
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Taking the residues around the poles of Γ (µx + s1) on the positive index i and Γ (µy + s2) on

the positive index k will result in

fZ(z) =
4
p
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(C.14)

After some algebraic manipulations, the PDF simplifies to

fZ(z) =
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p
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�2µy

vµx
κη

zΓ
�

µy

�

exp (κxµx)h
µy

y

∞
∑

i=0

∞
∑

k=0

Γ

�

i + 2k+µx + 2µy

�

i!k!Γ (i +µx) Γ
�

1
2 + k+µy

�

×
�

vκηκxµx

�i

�

H2
y

4h2
y

�

1− vκη
�2

�k

.

(C.15)

It is possible to further simplify the above double summation by performing the sum over

either the index i or k. By choosing the index k, the PDF results in

fZ(z) =
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p
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(C.16)

Using the gamma’s duplication formula and the definition of the beta function, the above

expression reduces to

fZ(z) =
2
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(C.17)

which completes the derivation.

C.1.5 The η-µ/η-µ Distribution

The contour integral representation for the PDF of the ratio of two η-µ variates

is given by

fZ(z) =
8π(−1)−µx−µy hµx

x
h
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Taking the residues around the poles Γ (s1+µx) over the index i and Γ (s2µy) over the index

k results in
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After some algebraic manipulations, the above expression simplifies to

fZ(z) =
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Performing the summation over the index k results in

fZ(z) =
23−2µy−2µxπv2µx
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From the duplication formula of the gamma function Γ
�
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the above expression reduces to
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(C.22)

Using once more the gamma’s duplication formula, it is possible to write Γ
�

1
2 + i +µx

�

=

21−2i−2µx
p
πΓ (2 (µx + i))/Γ (i +µx). After replacing this identity and using the beta function

and Pochhammer symbol, the series representation for the PDF of the ratio of two η-µ

variates is obtained as

fZ(z) =
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(C.23)

which completes the derivation.
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C.2 The Ratio Distribution - CDF

The series provided in Table 3.4 were obtained as follows

C.2.1 The α-µ/κ-µ Distribution

The contour integral representation for the CDF of the ratio of the α-µ by the

κ-µ variates is

FZ(z) =
1

Γ (µx)exp
�

κyµy

�

�

1
2πi

�2 ˛

L
Γ

�

µy −
αx

2
s− t2

�

Γ (µx + s) Γ (t2)

Γ

�

µy − t2

�

× Γ (−s)

Γ (1− s)

��

z

uακ

�αx
�−s

�

−κyµy

�−t2
dsd t2.

(C.24)

Taking the residues around the poles of Γ (t2), the CDF reduces to
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(C.25)

The inner contour integral can be interpreted as a Fox H-function function and, using the

notation in [39], the CDF is given by

FZ(z) =
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which completes the derivation.

C.2.2 The α-µ/η-µ Distribution

The contour integral representation for the CDF of the ratio of the α-µ by the

η-µ variates is

FZ(z) =
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(C.27)

Taking the residues around the poles of Γ (t2), the CDF can be written as
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The inner contour integral can be interpreted as a Fox H-function function and, using the

notation in [39], the CDF is given as

FZ(z) =
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Finally, using the duplication formula of the gamma function and the Pochhammer symbol,

the CDF is simplified to

FZ(z) =
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which completes the derivation

C.2.3 The κ-µ/κ-µ Distribution

The contour integral representation for the CDF of the ratio of two κ-µ variates

is

FZ(z) =
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(C.31)

Here, the residues of the multivariable Fox H-function are taken around the poles of Γ (µx +

s1), Γ (µy + s2) and Γ (s3), which results in the triple series
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After some algebraic manipulations, the CDF reduces to
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The summation over the index n will result in the following double summation.
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Using the identity Γ (a+1) = aΓ (a) and the beta function notation, the above double series

can be written as
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which completes the derivation.

C.2.4 The κ-µ/η-µ Distribution

The contour integral representation for the CDF of the ratio of the κ-µ by the

η-µ variates is
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Taking the residues around the poles of Γ (µx + s1), Γ (µy + s2) and Γ (s3), the CDF is written

as the following triple summation
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After performing some algebraic manipulations, the CDF is given by

FZ(z) =
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Now, performing the summation over index n will result in
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By using the gamma’s duplication formula, the CDF simplifies to
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Finally, the above expression can be further simplified by writing the gamma functions in

terms of the beta function and Pochhammer symbols, and is given as
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which completes the derivation.

C.2.5 The η-µ/η-µ Distribution

The contour integral representation for the CDF of the ratio of two η-µ variates

is
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Taking the residues around the poles Γ (µx + s1), Γ (µy + s2) and Γ (s3), the CDF is written as

a triple summation given by

FZ(z) =
4π(−1)−µx−µy hµx

x
h
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�
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(C.43)

After some algebraic manipulations, the CDF is simplified to

FZ(z) =
41−µy−µxπ
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(C.44)

At this point, the summation over the index n is performed, which results in

FZ(z) =
41−µy−µxπ
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(C.45)

Using the gamma’s duplication formula and notating the gamma functions in terms of the

beta function and the Pochhammer symbol, the CDF of the ratio of two η-µ variates is

obtained as

FZ(z) =
1

2h
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x h
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y
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(C.46)

which completes the derivation.

C.3 The Product Distribution - PDF

In this Section, the expressions for the PDF of the product of two random variates

taken from the α-µ, κ-µ and η-µ provided in Table 4.3 are derived.
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C.3.1 The α-µ×κ-µ Distribution

The contour integral representation for the PDF of the product of the α-µ and

the κ-µ variates is

fZ(z) =
2

zΓ (µ1)

�

1
2π j

�2
�

L

Γ (−t − x)Γ (t)Γ
�
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�
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A 2
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2

�−x

d td x .

(C.47)

On the variable t, the residues are taken around the poles of Γ (t) whilst on the variable x ,

Γ (µ1 + 2x/α1) and Γ (µ2 + x) are used to obtain the residues. Ergo, the PDF can be written

as the following double series

fZ(z) =
2

zΓ (µ1)
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(C.48)

Performing the summation over the index k results in

fZ(z) =
2

zΓ (µ1) Γ (µ2)
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(C.49)

which completes the derivation.

C.3.2 The α-µ×η-µ Distribution

The contour integral representation for the PDF of the product of the α-µ and

the η-µ variates is

fZ(z) =
41−µ2
p
π

zΓ (µ1) Γ (µ2)
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1
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(C.50)



Appendix C. Series Representation for the Ratio and Product of Random Envelopes 119

Here, the residues are taken around the poles of Γ (t) for the variable t and Γ (µ1 + 2x/α1)

and Γ (2µ2 + x) for the variable x . Ergo, the PDF is written as

fZ(z) =
41−µ2
p
π

zΓ (µ1) Γ (µ2)

∞
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(C.51)

The PDF for the product of the α-µ by the η-µ variates is further simplified by performing

the summation over the index k, which results in

fZ(z) =
41−µ2
p
π
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(C.52)

Further simplifications are obtained using the duplication formula of the gamma function

and the linear transformation [36, Equation (15.3.3)] on the both hypergeometric functions

2F1. Therefore, the PDF is obtained as

fZ(z) =
2

zΓ (µ1) Γ (2µ2)
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(C.53)

Finally, it is easy to show that the parameters h and H of the η-µ distribution are connected

by 1− H2/h2 = 1/h. After replacing this identity at the PDF, it results in

fZ(z) =
2
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(C.54)

which completes the derivation.
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C.3.3 The κ-µ×κ-µ Distribution

The contour integral representation for the PDF of the product of two κ-µ vari-

ates is

fZ(z) =
2
z

�

1
2π j

�3
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(C.55)

The residues are taken around the poles of Γ (t1), Γ (t2), Γ (µ1+ x) and Γ (µ2+ x), so that the

PDF can be written as the triple summation

fZ(z) =
2
z
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Performing the summation over the index n and k results in

fZ(z) =
2

zΓ (µ1) Γ (µ2)
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which completes the derivation.

C.3.4 The κ-µ×η-µ Distribution

The contour integral representation for the PDF of the product of the κ-µ by the

η-µ variates is

fZ(z) =
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p
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(C.58)
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Taking the residues around the poles of Γ (t1), Γ (t2) and Γ (µ1 + x) and Γ (µ2 + x) will lead

to a triple summation representation for the PDF which is given by

fZ(z) =
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Performing the summation over the indexes n and k will result in
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(C.60)

Further simplifications are obtained by using the gamma’s duplication formula, and the

linear transformation [36, Equation (15.3.3)] on the 2F1 functions. After applying these

transformations, the PDF is given as

fZ(z) =
2

zΓ (µ1) Γ (2µ2)
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(C.61)

Finally, it is possible to use [36, Equation (6.1.17)] and the identity 1 − H2/h2 = 1/h to

further simplify the PDF of the product of the κ-µ by the η-µ variates to

fZ(z) =
2π csc (π (2µ2 −µ1))
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(C.62)

which completes the derivation.
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C.3.5 The η-µ×η-µ Distribution

The contour integral representation for the PDF of the product two η-µ variates

is

fZ(z) =
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Taking the residues around the poles of Γ (t1), Γ (t2), Γ (x + 2µ1) and Γ (x + 2µ2) will result

in the following triple series
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The PDF of the product of two η-µ variates can be simplified to a single infinite series by

performing the summation over the indexes n and k, which results in
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(C.65)

Further simplifications can be performed by using the gamma’s duplication formula, the lin-

ear transformation [36, Equation (15.3.3)] on the hypergeometric functions, the reflection

formula of the gamma function [36, Equation (6.1.17)] and the identity (1−H2/h2) = 1/h.

After performing the aforementioned transformations and identities, the PDF of the product
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of two η-µ variates is given by

fZ(z) =
2π csc (π (2µ2 − 2µ1))

zh
µ1
1 h

µ2
2 Γ (2µ1) Γ (2µ2)

∞
∑

i=0

1
i!





�

z2h1h2

E 2
1E 2

2

�i+2µ1 2F1

�

− i
2 , 1−i

2 ; 1
2 +µ1;

H2
1

h2
1

�

Γ (1+ i + 2µ1 − 2µ2)

× 2F1

�

µ2 −µ1 −
i

2
,µ2 −µ1 +

1− i

2
;

1
2
+µ2;

H2
2

h2
2

�

−
�

z2h1h2

E 2
1E 2

2

�i+2µ2

× 2F1

�

µ1 −µ2 −
i

2
,µ1 −µ2 +

1− i

2
;

1
2
+µ1;

H2
1

h2
1

�

2F1

�

− i
2 , 1−i

2 ; 1
2 +µ2;

H2
2

h2
2

�

Γ (1+ i − 2µ1 + 2µ2)



 ,

(C.66)

which completes the derivation.

C.4 The Product Distribution - CDF

From the results presented here, there are two alternatives to obtain the series

representations for the CDF of the product distribution. 1) Compute the residues of the

contour integral representations given in Table 4.2 in a similar way as for the PDF; or 2)

by using the definition of the CDF, by integrating the PDF’s series representations given in

Table 4.3. The latter alternative is considerably simpler than the former. To obtain the series

expressions for the CDF, the following integral is required
ˆ z

0
τx−1 d x =

z x

x
. (C.67)

C.4.1 The α-µ×κ-µ Distribution

The CDF for the product of the α-µ by the κ-µ variates is obtained by replacing

(C.49) in the CDF’s definition which results in

FZ(z) =

ˆ z
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(C.68)

By changing the order of integration and summation, the CDF results in

FZ(z) =
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× 1F1
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2
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Using (C.67), the CDF is given as

FZ(z) =
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Which completes the derivation.

C.4.2 The α-µ×η-µ Distribution

The CDF for the product of the α-µ by the η-µ variates is obtained by replacing

(C.54) in the CDF’s definition which results in

FZ(z) =

ˆ z
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(C.71)

By changing the order of integration and summation, the CDF results in

FZ(z) =
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Using (C.67), the CDF is given as

FZ(z) =
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(C.73)

Which completes the derivation.
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C.4.3 The κ-µ×κ-µ Distribution

The CDF for the product of two κ-µ variates is obtained by replacing (C.57) in

the CDF’s definition which results in

FZ(z) =

ˆ z
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By changing the order of integration and summation, the CDF results in
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Using (C.67), the CDF is given as

FZ(z) =
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Which completes the derivation.

C.4.4 The κ-µ×η-µ Distribution

The CDF for the product of the κ-µ by the η-µ variates is obtained by replacing

(C.62) in the CDF’s definition which results in

FZ(z) =

ˆ z
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By changing the order of integration and summation, the CDF results in

FZ(z) =
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Using (C.67), the CDF is given as

FZ(z) =
π csc (π (2µ2 −µ1))
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Which completes the derivation.

C.4.5 The η-µ×η-µ Distribution

The CDF for the product of two η-µ variates is obtained by replacing (C.66) in

the CDF’s definition which results in

FZ(z) =
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by changing the order of integration and summation, the CDF results in
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Using (C.67), the CDF is given as

FZ(z) =
π csc (π (2µ2 − 2µ1))

τh
µ1
1 h

µ2
2 Γ (2µ1) Γ (2µ2)

∞
∑

i=0

1
i!





�

z2h1h2

E 2
1E 2

2

�i+2µ1 2F1

�

− i
2 , 1−i

2 ; 1
2 +µ1;

H2
1

h2
1

�

(i + 2µ1)Γ (1+ i + 2µ1 − 2µ2)

× 2F1

�

µ2 −µ1 −
i

2
,µ2 −µ1 +

1− i

2
;

1
2
+µ2;

H2
2

h2
2

�

−
�

z2h1h2

E 2
1E 2

2

�i+2µ2

× 2F1

�

µ1 −µ2 −
i

2
,µ1 −µ2 +

1− i

2
;

1
2
+µ1;

H2
1

h2
1

�

2F1

�

− i
2 , 1−i

2 ; 1
2 +µ2;

H2
2

h2
2

�

(i + 2µ2)Γ (1+ i − 2µ1 + 2µ2)



 .

(C.82)

Which completes the derivation.
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Appendix D

Derivation of the Integral of the Product

of a PDF by a CDF

In addition to the statistics of the product of two random envelopes, the integral

of the product of the PDF by the CDF, which is closely related with the CDF of the product

distributions, was presented here. The derivation of the multivariable Fox H-function and

their series representation are provided here.

The desired integral is

P(γ1,γ2) =

ˆ γ1

0
fR1
(r)FR2

�γ2

r

�

dr, (D.1)

in which R1 and R2 are independent random envelopes.

D.1 The Integral Involving α-µ PDF ×α-µ CDF

Let R1 > 0 and R2 > 0 be two random envelopes following the α-µ distribution

with parameters {α1,µ1, r̂1} and {α2,µ2, r̂2} respectively. Then (D.1) is solved by replacing

(2.9) and (2.10) in it with the appropriate parameters resulting in

P(γ1,γ2) =

ˆ γ1

0

α1

Γ (µ1)

rα1µ1−1
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− rα1
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−α2 γ

α2
2

�

Γ (µ2)
dr (D.2)

To obtain a multivariable Fox H-function representation for the above integral, it is required

to put the exponential and incomplete gamma function in terms of their Mellin-Barnes con-

tour integral representation using (A.1) and [41, Equation (8.4.16.1)] respectively. After
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replacing them in (D.2), P(γ1,γ2) reduces, after some algebraic manipulations, to

P(γ1,γ2) =
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Changing the order of integration will result in

P(γ1,γ2) =
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(D.4)

Remember that the inner integral can be solved with the known result
ˆ z

0
τaν−1 dτ=

Γ (ν)

aΓ (1+ ν)
zaν (D.5)

Ergo, the integral P(γ1,γ2) can be written in terms of a double Mellin-Barnes contour inte-

gral as
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(D.6)

Finally, the variable transformation s1 = t1 − µ1 is performed and, after some algebraic

manipulations, P(γ1,γ2) is given as

P(γ1,γ2) =
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(D.7)

Comparing (D.7) with (2.1), the parameters provided in Table 4.6 are easily deduced.

A series representation for P(γ1,γ2) can be obtained through the sum of residues.

From (D.7), the residues around the poles of Γ (s1+µ1) for the variable s1 and for the variable

t2 the poles of Γ (t2 +µ2) and Γ (−α1s1 +α2 t2) are taken. These operation will result in the

double summation
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In which I1(i) and I2(i) are given, respectively, as

I1(i) =
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and
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The former can be easily solve by noting that the summand vanishes for k > 0 resulting in

I1(i) =
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On its turn, I2(i) can be solved first in terms of the hypergeometric function as
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by using the identity 1/(a+k) = (1/a)×(a)k/(1+a)k in which (a)k denotes the Pochhammer

symbol. Further simplifications are obtained by using the identity [41, Equation (7.12.1.3)]

to put I2 in terms of the Kummer’s hypergeometric function, and [41, Equation (7.11.1.12)]

after applying the Kummer’s transformation [36, Equation (13.1.27)]. Therefore, I2 is given

in terms of the incomplete gamma function as

I2(i) =
1

α1 (i +µ1)

�

Γ

�

µ2, 0,
�

γ2

A2γ1

�α2
�

− Γ
�

µ2 −
α1 (i +µ1)

α2
, 0,
�

γ2

A2γ1

�α2
��

γ2

A2γ1

�α1(i+µ1)
�

.

(D.13)

Replacing I1(i) and I2(i) in (D.8) and after some algebraic manipulations P(γ1,γ2) is ob-

tained as

P(γ1,γ2) =
1

Γ (µ1) Γ (µ2)

∞
∑

i=0

(−1)i

i! (i +µ1)

�

γ1

A1

�α1(i+µ1)
�

γ

�

µ2,
�

γ2

A2γ1

�α2
�

+Γ

�

µ2 −
α1 (i +µ1)

α2
,
�

γ2

A2γ1

�α2
��

γ2

γ1A2

�α1(i+µ1)
�

,

(D.14)

in which Γ (a, b) is the upper incomplete gamma function [36, Equation (6.5.3)]. Finally,

using the identity [36, Equation (5.1.45)], the function P(γ1,γ2) can be written as

P(γ1,γ2) =
1

Γ (µ1) Γ (µ2)

∞
∑

i=0

(−1)i

i! (i +µ1)

�

γ1

A1

�α1(i+µ1)
�

γ

�

µ2,
�

γ2

A2γ1

�α2
�

+ E
1−µ2+

α1(i+µ1)
α2

��

γ2

A2γ1

�α2
��

γ2

A2γ1

�α2µ2
�

,

(D.15)

in which En(x) is the exponential integral function [36, Equation (5.1.4)]. Equation (D.15)

is the exact same provided in Table 4.7 which completes the derivation.

D.2 The Integral Involving α-µ PDF ×κ-µ CDF

Let R1 > 0 and R2 > 0 be two random envelopes following the α-µ and κ-µ

distributions respectively with parameters {α1,µ1, r̂1} and {κ2,µ2, r̂2}. Then (D.1) is solved
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by replacing (2.9) and (2.14) in it with the appropriate parameters resulting in

P(γ1,γ2) =

ˆ γ1

0

α1

Γ (µ1)

rα1µ1−1

A α1µ1
1

exp

�

− rα1

A α1
1

��

γ2
2

r2K 2
2

�µ2 � 1
2π j

�2

×
�

L

Γ (µ2 − t1 − t2) Γ (t1) Γ (t2)

Γ (µ2 − t1) Γ (µ2 + 1− t2)
(κ2µ2)

−t1

�

γ2
2

r2K 2
2

�−t2

d t1d t2dr.
(D.16)

Using (A.1), and changing the order of integration the function P(γ1,γ2) is written as

P(γ1,γ2) =
α1

Γ (µ1)

�

1
2πi

�3
�

L

Γ (µ2 − t1 − t2) Γ (t1) Γ (t2) Γ (t3)

Γ (µ2 − t1) Γ (µ2 + 1− t2)

× (κ2µ2)
−t1

�

γ2
2

K 2
2

�−t2+µ2
�

1

A α1
1

�−t3+µ1 ˆ γ1

0
r−1+2t2+α1(−t3+µ1)−2µ2 drd t1d t2d t3.

(D.17)

The inner integral can be solved with the help of (D.5) resulting, after some algebraic ma-

nipulations and the variable transformations s2 = t2 −µ2 and s3 = t3 −µ1, in

P(γ1,γ2) =
α1

Γ (µ1)

�

1
2π j

�3
�

L

Γ (−t1 − s2) Γ (2s2 − s3α1)

Γ (1+ 2s2 − s3α1)

× Γ (t1) Γ (µ2 + s2) Γ (µ1 + s3)

Γ (µ2 − t1) Γ (1− s2)
(κ2µ2)

−t1

�

γ2
2

γ2
1K 2

2

�−s2
�

γ
α1
1

A α1
1

�−s3

d t1ds2ds3.

(D.18)

By comparing the above triple integral with (2.1), the parameters for the Fox H-function

are readily obtained as they are provided in Table 4.6.

Series representation can be obtained by taking the residues of (D.18) around

the poles of Γ (t1) for the variable t1, Γ (s3+µ1) for s3, and Γ (s2+µ2) and Γ (2s2 − s3α1) for the

variable s2. This will generate a triple summation representation for the function P(γ1,γ2),

which is given by

P(γ1,γ2) =
α1

Γ (µ1)

∞
∑

i=0

(−1)i

i!

��

γ2
2

K 2
2 γ

2
1

�i+µ2

I1(i) +

�

γ2

A1K2

�α1(i+µ1)

I2(i)

�

, (D.19)

in which I1(i) and I2(i) are given, respectively, as

I1(i) =

∞
∑

n=0

∞
∑

k=0

(−1)n+k
Γ (i + n+µ2) (κ2µ2)

n

(α1 (k+µ1)− 2 (i +µ2))n!k!Γ (1+ i +µ2) Γ (n+µ2)

�

γ1

A1

�α1(k+µ1)

, (D.20)

and

I2(i) =

∞
∑

n=0

∞
∑

k=0

(−1)n+k
Γ

�

n+ 1
2 (α1 (i +µ1) + k)

�

Γ

�

µ2 − 1
2 (α1 (i +µ1) + k)

�

2n!k!Γ (1− k)Γ
�

1+ 1
2 (α1 (i +µ1) + k)

�

Γ (n+µ2) (κ2µ2)
−n

�

γ2

K2γ1

�k

.

(D.21)
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A closed form expression for I1(i) is obtained by performing the summation over the index

n which results in the Kummer’s confluent hypergeometric function and over the index k

with the help of [36, Equaiton (6.5.29)], ergo the function I1(i) is obtained as

I1(i) =
γ
�

− 2i
α1
+µ1 − 2µ2

α1
,
�

γ1
A1

�α1
�

1 F̃1 (i +µ2;µ2;−κ2µ2)

(i +µ2)α1

�

γ2
1

A 2
1

�i+µ2

(D.22)

In its turn, I2(i) vanishes for any k > 0, and the resulting summation can be written in terms

of the Kummer’s hypergeometric function as

I2(i) =
Γ

�

µ2 − α1(i+µ1)

2

�

α1 (i +µ1)
1 F̃1

�

α1 (i +µ1)

2
;µ2;−κ2µ2

�

(D.23)

Then, P(γ1,γ2) is obtained by replacing I1(i) and I2(i) in (D.19), which results, after some

algebraic manipulations, in

P(γ1,γ2) =
1

Γ (µ1)

∞
∑

i=0

(−1)i

i!

�

1 F̃1 (i +µ2;µ2;−κ2µ2)

i +µ2
γ

�

µ1 −
2 (i +µ2)

α1
,
�

γ1

A1

�α1
�

×
�

γ2
2

A 2
1K 2

2

�i+µ2

+
Γ

�

µ2 − 1
2α1 (i +µ1)

�

i +µ1
1 F̃1

�

1
2
α1 (i +µ1) ;µ2;−κ2µ2

��

γ2

A1K2

�α1(i+µ1)

.

(D.24)

Which completes the derivation of the series representation of the integral of the PDF of the

α-µ and the CDF of the κ-µ distributions.

D.3 The Integral Involving κ-µ PDF ×α-µ CDF

Let R1 > 0 and R2 > 0 be two random envelopes following the κ-µ and the α-µ

distributions respectively with parameters {κ1,µ1, r̂1} and {α2,µ2, r̂2}. Then, (D.1) is solved

by replacing (2.13) and (2.10) in it with the appropriate parameters resulting in

P(γ1,γ2) =

ˆ γ1

0

2
exp (κ1µ1)

r2µ1−1

K 2
1

exp

�

− r2

K 2
1

�

0 F̃1

�

;µ1;
r2κ1µ1

K 2
1

�

γ
�

µ2,
�

γ2
rA2

�α2
�

Γ (µ2)
dr.

(D.25)

This integral can be solved in terms of the Fox H-function by putting the exponential, hyper-

geometric and incomplete gamma functions in terms of their Mellin-Barnes contour integral

representations resulting, after some algebraic manipulations, in

P(γ1,γ2) =
2

Γ (µ2)exp (κ1µ1)

�

1
2π j

�3 ˆ γ1

0

1
r

�

L

Γ (t1) Γ (t2) Γ (−t3) Γ (t3 +µ2)

Γ (1− t3) Γ (−t2 +µ1)

×
�

r2

K 2
1

�−t1+µ1
�

− r2κ1µ1

K 2
1

�−t2 � γ2

rA2

�−α2 t3

d t1d t2d t3dr.

(D.26)
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Changing the order of integration results in

P(γ1,γ2) =
2

Γ (µ2)exp (κ1µ1)

�

1
2π j

�3
�

L

Γ (t1) Γ (t2) Γ (−t3) Γ (t3 +µ2)

Γ (1− t3) Γ (−t2 +µ1)

×
�

1

K 2
1

�−t1+µ1
�

−κ1µ1

K 2
1

�−t2 � γ2

A2

�−α2 t3
ˆ γ1

0
r2(µ1−t1−t2)+α2 t3−1drd t1d t2d t3.

(D.27)

With the help of (D.5), the inner integral can be solved and the function P(γ1,γ2) is obtained

as

P(γ1,γ2) =
2

Γ (µ2)exp (κ1µ1)

�

1
2π j

�3
�

L

Γ (−2 (t1 + t2) + t3α2 + 2µ1)

Γ (1− 2 (t1 + t2 −µ1) + t3α2)

× Γ (t1) Γ (t2) Γ (µ2 + t3) Γ (−t3)

Γ (1− t3) Γ (µ1 − t2)

�

γ2
1

K 2
1

�−t1+µ1
�

−
γ2

1κ1µ1

K 2
1

�−t2 �
γ2

γ1A2

�−α2 t3

d t1d t2d t3.

(D.28)

Now, by performing the variable transformation s1 = t2 and s2 = t1 + t2 − µ1, after some

algebraic manipulations, the integral P(γ1,γ2) is given as

P(γ1,γ2) =
2

Γ (µ2)exp (κ1µ1)

�

1
2π j

�3
�

L

Γ (−2s2 + t3α2) Γ (−s1 + s2 +µ1)

Γ (1− t3) Γ (1− 2s2 + t3α2)

× Γ (s1) Γ (t3 +µ2) Γ (−t3)

Γ (−s1 +µ1)
(−κ1µ1)

−s1

�

γ2
1

K 2
1

�−s2 �
γ2

γ1A2

�−α2 t3

ds1ds2d t3.

(D.29)

Note that isolating the variable s1, the contour integral resultant is the representation for

the Kummer’s confluent hypergeometric function. Using the Kummer’s transformation the

following identity holds
˛

L

Γ (s1)Γ (−s1 + s2 +µ1)

Γ (µ1 − s1)
(−κ1µ1)

−s1 ds1 = exp (κ1µ1)

×
˛

L

Γ (s1) Γ (−s1 − s2) Γ (s2 +µ1)

Γ (−s2) Γ (−s1 +µ1)
(κ1µ1)

−s1 ds1

(D.30)

Replacing this identity in (D.29), and after some algebraic manipulations, the function

P(γ1,γ2) is obtained as

P(γ1,γ2) =
2

Γ (µ2)

�

1
2π j

�3
�

L

Γ (−2s2 +α2 t3) Γ (−s1 − s2) Γ (s1)

Γ (1− 2s2 +α2 t3) Γ (µ1 − s1)

× Γ (µ1 + s2) Γ (µ2 + t3) Γ (−t3)

Γ (−s2) Γ (1− t3)
(κ1µ1)

−s1

�

γ2
1

K 2
1

�−s2 �
γ2

γ1A2

�−α2 t3

ds1ds2d t3.

(D.31)

The parameters provided in Table 4.6 for the integral of the PDF of the κ-µ by the CDF of

the α-µ are readily obtained by comparing (D.31) with (2.1), completing the derivation.
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A possible series representation is obtained through the sum of residues by taking

the residues around the poles of Γ (s1) for the integration variable s1, Γ (µ1 + s2) for the

variable s2 and Γ (−2s2 + α2 t3) and Γ (µ2 + t3) for t3. After some algebraic manipulations,

the function P(γ1,γ2) is written as the following triple summation

P(γ1,γ2) =
2

Γ (µ2)

∞
∑

i=0

(−1)i

i!Γ (i +µ1)

��

γ2
1

K 2
1

�i+µ1

I1(i) +

�

γ2
2

A 2
2K 2

1

�i+µ1

I2(i)

�

, (D.32)

in which I1(i) and I2(i) are given, respectively, as

I1(i) =

∞
∑

n=0

∞
∑

k=0

(−1)n+k
Γ (i + n+µ1) (κ1µ1)

n

n!k!Γ (n+µ1) (k+µ2) (2 (i +µ1)−α2 (k+µ2))

�

γ2

A2γ1

�α2(k+µ2)

, (D.33)

and

I2(i) =

∞
∑

n=0

∞
∑

k=0

(−1)n+k
Γ (i + n+µ1) Γ

�

2i+k+2µ1
α2

�

Γ

�

−2i−k−2µ1+α2µ2
α2

�

n!k!Γ (1− k)Γ (n+µ1) Γ
�

2i+k+α2+2µ1
α2

�

α2

�

γ2

A2γ1

�k

(κ1µ1)
n .

(D.34)

The function I1(i) can be solved in closed-form by performing the summation over the index

n using [41, Equation (7.2.3.1)]. Over the index k, I1(i) can be solved first in terms of the

2F2 function and then using [41, Equation (7.12.1.3)] and [41, Equation (7.11.1.12)] to

write I1(i) in terms of the incomplete gamma function as

I1(i) =
Γ (i +µ1) 1F1 (i +µ1;µ1;−κ1µ1)

2Γ (µ1) (i +µ1)

�

γ

�

µ2,
�

γ2

A2γ1

�α2
�

−γ
�

µ2 −
2 (i +µ1)

α2
,
�

γ2

A2γ1

�α2
�
�

γ2
2

A 2
2 γ

2
1

�i+µ1
� (D.35)

In its turn, I2(i) vanishes for any k > 0 and for the index j, the summation can be solve in

terms of the Kummer’s confluent hypergeometric function. Ergo, I2(i) is given as

I2(i) =
Γ (i +µ1) Γ

�

−2(i+µ1)

α2
+µ2

�

2Γ (µ1) (i +µ1)
1F1 (i +µ1;µ1;−κ1µ1) . (D.36)

Now, by replacing I1(i) and I2(i) in (D.32) and after some algebraic manipulation, P(γ1,γ2)

is obtained as

P(γ1,γ2) =
1

Γ (µ1) Γ (µ2)

∞
∑

i=0

(−1)i 1F1 (i +µ1;µ1;−κ1µ1)
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�
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1
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×
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γ
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+ Γ

�
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�
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A2γ1

�α2
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A 2
2 γ

2
1

�i+µ1
�

.

(D.37)

To finalize the derivation, the identity [36, Equation (5.1.45)] is used to put the upper

incomplete gamma function in terms of the exponential integral function so that the function
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P(γ1,γ2) is given as

P(γ1,γ2) =
1

Γ (µ1) Γ (µ2)

∞
∑

i=0

(−1)i 1F1 (i +µ1;µ1;−κ1µ1)

i! (i +µ1)

�

γ2
1

K 2
1

�i+µ1

×
�

γ

�

µ2,
�

γ2

A2γ1

�α2
�

+ E
1+

2(i+µ1)
α2
−µ2

�

γ
α2
2

A α2
2 γ

α2
1

�
�

γ2

A2γ1

�α2µ2
�
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(D.38)

Which completes the derivation of the series representation of the integral involving the

product of the PDF of the κ-µ distribution by the CDF of the α-µ distribution.

D.4 The Integral Involving α-µ PDF ×η-µ CDF

Let R1 > 0 and R2 > 0 be two random envelopes following the α-µ and η-µ

distributions respectively, with parameters {α1,µ1, r̂1} and {η2,µ2, r̂2}. Then, (D.1) is solved

by replacing (2.9) and (2.18) in it with the appropriate parameters resulting in

P(γ1,γ2) =

ˆ γ1

0

21−2µ2
p
πα1

Γ (µ1) Γ (µ2)

rα1µ1−1

A α1µ1
1

exp

�
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Γ

�

µ2 +
1
2 − t1

�

× Γ (t1) Γ (t2)

Γ (1+ 2µ2 − t2)

�

−
H2

2

4h2
2

�−t1
�

γ2
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d t1d t2dr.

(D.39)

A multivariable Fox H-function representation can be obtained by replacing the exponential

function in term of its Mellin-Barnes contour integral using (A.1) and then change the order

of integration. This operation results, after some algebraic manipulations, in

P(γ1,γ2) =
21−2µ2

p
πα1

Γ (µ1) Γ (µ2)

�

1
2π j

�3
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�
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r−1+2t2+α1(−t3+µ1)−4µ2 drd t1d t2d t3.

(D.40)

The inner integral can be solved with the help of (D.5) which gives

P(γ1,γ2) =
21−2µ2

p
πα1
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(D.41)
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Further simplification is obtained by performing the variable transformations t3 = s1 + µ1,

t1 = s2 and t2 = s3 + 2µ2, which results in

P(γ1,γ2) =
21−2µ2

p
πα1

Γ (µ1) Γ (µ2)

�

1
2π j

�3
�

L

Γ (−α1s1 + 2s3) Γ (−2s2 − s3)

Γ (1−α1s1 + 2s3) Γ
�

µ2 +
1
2 − s2

�

× Γ (µ1 + s1) Γ (s2) Γ (2µ2 + s3)

Γ (1− s3)

�

γ
α1
1

A α1
1

�−s1
�

−
H2

2

4h2
2

�−s2
�

γ2
2

γ2
1E 2

2

�−s3

ds1ds2ds3.

(D.42)

The parameters for the Fox H-function representation are readily obtained by comparing

(D.42) with (2.1), completing the derivation.

A series representation can be obtained through by summing the residues around

the poles of Γ (µ1+s1) for the variable s1, Γ (s2) for the integration variable s2 and Γ (2µ2+s3)

and Γ (−α1s2+2s3) for the s3 variable. Therefore, a triple infinite summation arises and it is

given as

P(γ1,γ2) =
21−2µ2

p
πα1

Γ (µ1) Γ (µ2)

∞
∑
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(D.43)

in which I1(i) and I2(i) are given respectively as

I1(i) =

∞
∑

n=0

∞
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and

I2(i) =

∞
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. (D.45)

The function I1(i) can be expressed in closed-form by, first summing over the index n re-

sulting in the Gauss’ hypergeometric function 2F1. For the index k the result can be written

in terms of the incomplete gamma function using [36, Equation (6.5.29)], which results in

I1(i) =

Γ (i + 2µ2)γ
�

µ1 − 2(i+2µ2)
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,
γ
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On its turn, I2(i) can be solved by first noticing that it vanishes for any k > 0 and then

performing the summation over the index n, which results in

I2(i) =
Γ

�

2µ2 − 1
2α1 (i +µ1)

�
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�
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(D.47)

By replacing I1(i) and I2(i) in (D.43) and by performing some algebraic manipulations, a

series representation for the integral involving the PDF of the α-µ distribution and the CDF
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of η-µ distribution is obtained as

P(γ1,γ2) =
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By using the duplication formula of the gamma function, the function P(γ1,γ2) is simplified

to

P(γ1,γ2) =
1
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which is the exact expression provided in Table 4.7 for the integral of the product of the

PDF of the α-µ and CDF of the η-µ distributions.

D.5 The Integral Involving η-µ PDF ×α-µ CDF

Let R1 > 0 and R2 > 0 be two random envelopes following the η-µ and the α-µ

distributions respectively, with parameters {η1,µ1, r̂1} and {α2,µ2, r̂2}. Then (D.1) is solved

by replacing (2.17) and (2.10) in it with the appropriate parameters resulting in

P(γ1,γ2) =

ˆ γ1

0

2h
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The Fox H-function representation for the above integral can be obtained by replacing

the exponential, hypergeometric and the incomplete gamma functions with their respec-

tive Mellin-Barnes contour integral representation given at (A.1), (A.2) and [41, Equation

(8.4.16.1)] respectively. The integral P(γ1,γ2) is given as
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(D.51)
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Changing the order of integration will result in

P(γ1,γ2) =
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The inner integral can be solved with the help of (D.5) resulting, after some algebraic ma-

nipulations, in

P(γ1,γ2) =
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−µ1
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1
2

�

Γ (2µ1) Γ (µ2)

�

1
2π j

�3
�

L

Γ (−2 (t1 + 2t2 − 2µ1) + t3α2)

Γ (1− 2 (t1 + 2t2 − 2µ1) + t3α2)

× Γ (t1) Γ (t2) Γ (−t3) Γ (t3 +µ2)

Γ (1− t3) Γ
�

1
2 − t2 +µ1

�

�

h1γ
2
1

E 2
1

�−t1+2µ1
�

−
H2

1γ
4
1

4E 4
1

�−t2
�

γ
α2
2

γ
α2
1 A

α2
2

�−t3

d t1d t2d t3.

(D.53)

Performing the variable transformations t1 = −2s1 + s2 + 2µ1 and t2 = s1 will result in

P(γ1,γ2) =
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Further simplifications are obtained by isolating the integral in the variable s1 which is given

as

1
2π j
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The above identity holds through the gamma’s duplication formula. The right-hand side of

(D.55) can be written in terms of the Gauss’ hypergeometric function as
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By applying the linear transformation [36, Equation (15.3.3)], the hypergeometric function

will reduce to

Γ (s2 + 2µ1)
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(D.57)



Appendix D. Derivation of the Integral of the Product of a PDF by a CDF 139

Note that due to relation amongst η with h and H of the η-µ distribution the identity 1−
H2/h2 = 1/h holds. At this point the right-hand side is rewritten in terms of the Mellin-

Barnes contour integral and it is replaced in (D.54). After some algebraic manipulations,

the integral P(γ1,γ2) is given as
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The final step is to use the gamma’s duplication formula so that the integral P(γ1,γ2) is

simplified to

P(γ1,γ2) =
41−µ1
p
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The parameters provided in Table 4.6 can be readily obtained by comparing (D.59) with

(2.1), which completes the derivation of the multivariable Fox H-function representation

for the integral involving the product of the PDF of η-µ and the CDF of α-µ distributions.

A series expressions for P(γ1,γ2) can be obtained through the sum of residues.

Using the residues around the poles of Γ (s1) for the integration variable s1, Γ (2µ1 + s2) for

s2 and Γ (µ2 + t3) and Γ (−2s2 +α2 t3) for t3 results in the following triple summation
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in which I1(i) and I2(i) are given, respectively, as
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and

I2(i) =
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For I1(i), the summation over index n can be written in terms of the Gauss’ hypergeometric

function by using the gamma’s duplication formula. On index k, the summation is solved

first in terms of the hypergeometric 2F2 function by remembering that 1/(a+ k) = (1/a)×
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((a)k/(1+a)k). The 2F2 function can be simplified using [41, Equation (7.12.1.3)] and [41,

Equation (7.11.1.12)]. After some algebraic manipulations I1(i) is given as
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In its turn, I2(i) vanishes for any k > 0 and the summation over index n can be written in

terms of the Gauss’ hypergeometric function. Therefore, I2(i) is given as

I2(i) =
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Replacing I1(i) and I2(i) in (D.60), after some algebraic manipulations, will result in
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The last step is to use the linear transformation [36, Equation (15.3.3)] and put the upper

incomplete gamma function in terms of the exponential integral function using [36, Equa-

tion (5.1.45)]. The integral P(γ1,γ2) is, then, given as

P(γ1,γ2) =
h
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Which completes the derivation of the series provided in Table 4.7 for the integral involving

the product of the PDF of the η-µ and the CDF of the α-µ distributions.

D.6 The Integral Involving κ-µ PDF ×κ-µ CDF

Let R1 > 0 and R2 > 0 be two random envelopes following the κ-µ distribution

with parameters {κ1,µ1, r̂1} and {κ2,µ2, r̂2}. Then (D.1) is solved by replacing (2.13) and

(2.14) in it with the appropriate parameters resulting in
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The multivariable Fox H-function representation is found by putting the exponential and the

hypergeometric functions in terms of their Mellin-Barnes contour integral representations

using (A.1) and (A.2). Therefore, the integral P(γ1,γ2) is given as
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By changing the order of integration, the integral P(γ1,γ2) becomes
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The inner integral is solved with the help (D.5), which results in
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Further simplifications are obtained by performing the variable transformations t1 = −s1 +

s2 +µ1, t2 = s1 and t4 = s4 +µ2, which results in
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Now, the contour integral on the variable s1 can be written in terms of the Kummer’s hy-

pergeometric function using (B.1). By using the Kummer’s transformation [36, Equation

(13.1.27)], the following identity is obtained
˛

L

Γ (−s1 + s2 +µ1) Γ (s1)

Γ (µ1 − s1)
(−κ1µ1)

−s1 ds1 =

exp (κ1µ1)
Γ (s2 +µ1)

Γ (−s2)

˛

L

Γ (s1) Γ (−s1 − s2)

Γ (µ1 − s1)
(κ1µ1)

−s1 ds1.
(D.72)

Therefore, the integral P(γ1,γ2) simplifies to

P(γ1,γ2) =

�

1
2π j

�4 ˛

L

Γ (−s1 − s2) Γ
�

−t3 − s4

�

Γ

�

−s2 + s4

�

Γ

�

1− s2 + s4

�

Γ (µ1 − s1) Γ (−s2)

Γ (s1) Γ (µ1 + s2)

Γ (µ2 − t3)

×
Γ (t3) Γ

�

s4 +µ2

�

Γ

�

1− s4

� (κ1µ1)
−s1

�

γ2
1

K 2
1

�−s2

(κ2µ2)
−t3

�

γ2
2

K 2
2 γ

2
1

�−s4

ds1ds2d t3ds4.

(D.73)
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The parameters of the Fox H-function representation are obtained by comparing (D.73) with

(2.1) and they are provided in Table 4.6 completing its derivation.

A series representation for the integral P(γ1,γ2) can be obtained through the sum

of residues. A multi-fold summation is achieved by taking the residues around the poles of

Γ (s1), Γ (µ1+ s2) and Γ (t3) for the variables s1, s2 and t3 respectively. For the variable s4, the

poles of Γ (µ2 + s4) and Γ (−s2 + s4) are used. Therefore, the integral P(γ1,γ2) is given as

P(γ1,γ2) =

∞
∑

i=0

∞
∑

l=0

(−1)i+l

i!l!Γ (i +µ1)

�

γ2
1

K 2
1

�i+µ1 � 1
Γ (1+ l +µ2) (i − l +µ1 −µ2)

×
�

γ2
2

K 2
2 γ

2
1

�l+µ2

I1(i, l) +
Γ (−i − l −µ1 +µ2)

Γ (1− l)Γ (1+ i + l +µ1)

�

γ2
2

K 2
2 γ

2
1

�i+l+µ1

I2(i, l)

�

,

(D.74)

in which I1(i, l) and I2(i, l) are given, respectively, as

I1(i, l) =

∞
∑

k=0

∞
∑

n=0

(−1)k+n
Γ (i + k+µ1) Γ (l + n+µ2) (κ1µ1)

k
(κ2µ2)

n

k!n!Γ (n+µ2) Γ (k+µ1)
, (D.75)

and

I2(i, l) =

∞
∑

k=0

∞
∑

n=0

(−1)k+n
Γ (i + k+µ1) Γ (i + l + n+µ1) (κ1µ1)

k
(κ2µ2)

n

k!n!Γ (n+µ2) Γ (k+µ1)
. (D.76)

Both I1(i, l) and and I2(i, l) can be written in closed form in terms of the Kummer’s hyper-

geometric function given as

I1(i, l) =
Γ (i +µ1) Γ (l +µ2) 1F1 (i +µ1;µ1;−κ1µ1) 1F1 (l +µ2;µ2;−κ2µ2)

Γ (µ1) Γ (µ2)
, (D.77)

and

I2(i, l) =
Γ (i +µ1) Γ (i + l +µ1) 1F1 (i +µ1;µ1;−κ1µ1) 1F1 (i + l +µ1;µ2;−κ2µ2)

Γ (µ1) Γ (µ2)
. (D.78)

After replacing I1(i, l) and I2(i, l) in (D.74) and some algebraic manipulations, P(γ1,γ2) is

obtained as

P(γ1,γ2) =
1

Γ (µ1) Γ (µ2)

∞
∑

i=0

(−1)i

i!

�

γ2
1

K 2
1

�i+µ1

1F1 (i +µ1;µ1;−κ1µ1)

×
� ∞
∑

l=0

�

γ2
2

K 2
2 γ

2
1

�l+µ2
(−1)l 1F1 (l +µ2;µ2;−κ2µ2)

l! (l +µ2) (i − l +µ1 −µ2)
+

∞
∑

l=0

�

γ2
2

K 2
2 γ

2
1

�i+l+µ1

× (−1)lΓ (−i − l −µ1 +µ2)

l!Γ (1− l) (i + l +µ1)
1F1 (i + l +µ1;µ2;−κ2µ2)

�

.

(D.79)
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A final simplification is found by noticing that the second summation vanishes for l > 0,

which results in

P(γ1,γ2) =
1

Γ (µ1) Γ (µ2)

∞
∑

i=0

(−1)i

i! 1F1 (i +µ1;µ1;−κ1µ1)

�

Γ (−i −µ1 +µ2)

i +µ1

�

γ2
2

K 2
1 K 2

2

�i+µ1

× 1F1 (i +µ1;µ2;−κ2µ2) +

�

γ2
1

K 2
1

�i+µ1 ∞
∑

l=0

(−1)l 1F1 (l +µ2;µ2;−κ2µ2)

l! (l +µ2) (i − l +µ1 −µ2)

�

γ2
2

K 2
2 γ

2
1

�l+µ2
�

,

(D.80)

completing the derivation of the series expression for the integral involving the product of

the PDF and CDF of the κ-µ distribution.

D.7 The Integral Involving κ-µ PDF ×η-µ CDF

Let R1 > 0 and R2 > 0 be two random envelopes following the κ-µ and η-µ

distributions with parameters {κ1,µ1, r̂1} and {η2,µ2, r̂2}. Then (D.1) is solved by replacing

(2.13) and (2.18) in it with the appropriate parameters resulting in

P(γ1,γ2) =
22−2µ2

p
π

exp (κ1µ1) Γ (µ2)

ˆ γ1

0

r2µ1−1

K 2µ1
1

exp

�

− r2

K 2
1

�

0 F̃1

�

;µ1;
r2κ1µ1

K 2
1

�
�

1
2π j

�2

×
�

L

Γ

�

2µ2 − 2t3 − t4

�

Γ (t3) Γ
�

t4

�

Γ

�

µ2 +
1
2 − t3

�

Γ

�

1+ 2µ2 − t4

�

�

−
H2

2

4h2
2

�−t3
�

γ2
2

r2E 2
2

�−t4+2µ2

d t3d t4dr.
(D.81)

The Mellin-Barnes contour integral representation for P(γ1,γ2) is obtained by replacing the

exponential and hypergeometric functions with their contour integral representations using

(A.1) and (A.2) respectively, and then changing the order of integration. Then, P(γ1,γ2) is

given as

P(γ1,γ2) =
22−2µ2

p
π

exp (κ1µ1) Γ (µ2)

�

1
2π j

�4 ˛

L

Γ (t1) Γ (t2)

Γ (µ1 − t2)

Γ

�

2µ2 − 2t3 − t4

�

Γ (t3) Γ
�

t4

�

Γ

�

µ2 +
1
2 − t3

�

Γ

�

1+ 2µ2 − t4

�

(D.82)

×
�

1

K 2
1

�−t1+µ1
�

−κ1µ1

K 2
1

�−t2
�

−
H2

2

4h2
2

�−t3
�

γ2
2

E 2
2

�−t4+2µ2 ˆ γ1

0
r2(−t1+µ1−t2+t4−2µ2)−1 drd t1d t2d t3d t4.

The inner integral is solved with the help of (D.5) and P(γ1,γ2) is obtained, after some

algebraic manipulation, as

P(γ1,γ2) =
21−2µ2

p
π

eκ1µ1Γ (µ2)

�

1
2π j

�4 ˛

L

Γ

�

−t1 − t2 + t4 +µ1 − 2µ2

�

Γ (t1) Γ (t2) Γ (t3) Γ
�

t4

�

Γ

�

1− t1 − t2 + t4 +µ1 − 2µ2

�

Γ (µ1 − t2) Γ
�

µ2 +
1
2 − t3

�

×
Γ

�

2µ2 − 2t3 − t4

�

Γ

�

1+ 2µ2 − t4

�

�

γ2
1

K 2
1

�−t1+µ1
�−γ2

1κ1µ1

K 2
1

�−t2
�−H2

2

4h2
2

�−t3
�

γ2
2

γ2
1E 2

2

�−t4+2µ2

d t1d t2d t3d t4.

(D.83)
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Further simplifications are achieved by performing the variable transformations t1 = −s1 +

s2+µ1, t2 = s1 and t4 = s4+ 2µ2. After some algebraic manipulations, P(γ1,γ2) is given as

P(γ1,γ2) =
21−2µ2

p
π

eκ1µ1Γ (µ2)

�

1
2π j

�4 ˛

L

Γ

�

−s2 + s4

�

Γ

�

1− s2 + s4

�

Γ

�

−s4 − 2t3

�

Γ (t3) Γ
�

s4 + 2µ2

�

Γ

�

1− s4

�

Γ

�
1
2 − t3 +µ2

�

× Γ (s1) Γ (−s1 + s2 +µ1)

Γ (−s1 +µ1)
(−κ1µ1)

−s1

�

γ2
1

K 2
1

�−s2
�

−
H2

2

4h2
2

�−t3
�

γ2
2

γ2
1E 2

2

�−s4

ds1ds2d t3ds4.

(D.84)

Now, the integral on s1 can be modified accordingly to (D.72) which, after some algebraic

manipulations, results in

P(γ1,γ2) =
21−2µ2

p
π

Γ (µ2)

�

1
2π j

�4 ˛

L

Γ (−s1 − s2) Γ
�

−2t3 − s4

�

Γ

�

−s2 + s4

�

Γ (s1)

Γ

�

1− s2 + s4

�

Γ (µ1 − s1) Γ (−s2)

×
Γ (µ1 + s2) Γ (t3) Γ

�

2µ2 + s4

�

Γ

�
1
2 +µ2 − t3

�

Γ

�

1− s4

� (κ1µ1)
−s1

�

γ2
1

K 2
1

�−s2
�

−
H2

2

4h2
2

�−t3
�

γ2
2

E 2
2γ

2
1

�−s4

ds1ds2d t3ds4.

(D.85)

By comparing (D.85) with (2.1), the parameters for the Fox H-function representation are

readily obtained and they are provided in Table 4.6 which completes the derivation.

A series representation can be obtained through the sum of residues. A multi-

fold summation arises by the taking the residues around the poles of Γ (s1), Γ (µ1 + s2) and

Γ (t3) for the integration variables s1, s2 and t3 respectively. Those used For the variable s4

are Γ (2µ2 + s4) and Γ (−s2 + s4). Therefore, the integral P(γ1,γ2) is given as

P(γ1,γ2) =
21−2µ2

p
π

Γ (µ2)

∞
∑

i=0

∞
∑

l=0

(−1)i+l

i!l!Γ (i +µ1)

 �

γ2
1/K 2

1

�i+µ1

Γ (1+ l + 2µ2) (i − l +µ1 − 2µ2)

×
�

γ2
2

E 2
2γ

2
1

�l+2µ2

I1(i, l) +
Γ (−i − l −µ1 + 2µ2)

Γ (1+ i + l +µ1) Γ (1− l)

�

γ2
2

K 2
1 E 2

2

�i+µ1
�

γ2
2

E 2
2γ

2
1

�l

I2(i, l)

�

,

(D.86)

in which I1(i, l) and I2(i, l) are given, respectively, as

I1(i, l) =

∞
∑

k=0

∞
∑

n=0

(−1)kΓ (i + k+µ1) Γ (l + 2n+ 2µ2)

k!n!Γ (k+µ1) Γ
�

1
2 + n+µ2

�

(κ1µ1)
−k

�

H2
2

4h2
2

�n

, (D.87)

and

I2(i, l) =

∞
∑

k=0

∞
∑

n=0

(−1)kΓ (i + k+µ1) Γ (i + l + 2n+µ1)

k!n!Γ (k+µ1) Γ
�

1
2 + n+µ2

�

(κ1µ1)
−k

�

H2
2

4h2
2

�n

. (D.88)

The functions I1(i, l) and I2(i, l) can be written in terms of the Kummer’s and the Gauss’

hypergeometric functions as

I1(i, l) =
Γ (i +µ1) Γ (l + 2µ2) 1F1 (i +µ1;µ1;−κ1µ1)

Γ (µ1) Γ
�

1
2 +µ2

�

2F1

�

l

2
+µ2,

1
2
+

l

2
+µ2;

1
2
+µ2;

H2
2

h2
2

�

,

(D.89)
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and

I2(i, l) =
Γ (i +µ1) Γ (i + l +µ1) 1F1 (i +µ1;µ1;−κ1µ1)

Γ (µ1) Γ
�

1
2 +µ2

�

2F1

�

i + l +µ1

2
,
1+ i + l +µ1

2
;

1
2
+µ2;

H2
2

h2
2

�

.

(D.90)

The function I1(i, l) can be slightly simplified using the linear transformation [36, Equation

(15.3.3)] and the η-µ identity 1− H2/h2 = 1/h, which results in

I1(i, l) =
Γ (i +µ1) Γ (l + 2µ2) 1F1 (i +µ1;µ1;−κ1µ1)

Γ (µ1) Γ
�

1
2 +µ2

�

h
−l−µ2
2

2F1

�

− l

2
,
1− l

2
;

1
2
+µ2;

H2
2

h2
2

�

.

(D.91)

After replacing I1(i, l) and I2(i, l) in (D.86) and performing some algebraic manipulations,

the integral P(γ1,γ2) is obtained as

P(γ1,γ2) =
1

Γ (µ1) Γ (2µ2)

∞
∑

i=0

(−1)i

i! 1F1 (i +µ1;µ1;−κ1µ1)

�

γ2
1

K 2
1

�i+µ1
� ∞
∑

l=0

�

γ2
2

E 2
2γ

2
1

�i+µ1

×
�

γ2
2

E 2
2γ

2
1

�l
(−1)lΓ (−i − l −µ1 + 2µ2)

l! (i + l +µ1) Γ (1− l)
2F1

�

i + l +µ1

2
,
1+ i + l +µ1

2
;

1
2
+µ2;

H2
2

h2
2

�

+

∞
∑

l=0

(−1)lΓ (l + 2µ2)h
l+µ2
2

l!Γ (1+ l + 2µ2) (i − l +µ1 − 2µ2)

�

γ2
2

E 2
2γ

2
1
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�
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2
,
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2
;

1
2
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2
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2

�

.
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To finalize the derivation, the first summation on the index l is simplified by noting that it

vanishes for any l > 0. Ergo P(γ1,γ2) is written as

P(γ1,γ2) =
1

Γ (µ1) Γ (2µ2)

∞
∑

i=0

(−1)i

i! 1F1 (i +µ1;µ1;−κ1µ1)

�

γ2
1

K 2
1

�i+µ1
��
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2

E 2
2γ

2
1

�i+µ1

× Γ (−i −µ1 + 2µ2)

i +µ1
2F1

�
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2
,
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2
;

1
2
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H2
2
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2

�

+

∞
∑

l=0

(−1)lhl+µ2
2

l! (l + 2µ2) (i − l +µ1 − 2µ2)

�
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2

E 2
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2
1
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2
,
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2
;

1
2
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H2
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2

��

,
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which completes the derivation of the power series for the integral involving the product of

the PDF of the κ-µ by the CDF of the η-µ distributions, which is provided in Table 4.7.

D.8 The Integral Involving η-µ PDF ×κ-µ CDF

Let R1 > 0 and R2 > 0 be two random envelopes following the η-µ and κ-µ

distributions with parameters {η1,µ1, r̂1} and {κ2,µ2, r̂2}. Then (D.1) is solved by replacing
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(2.17) and (2.14) in it with the appropriate parameters resulting in

P(γ1,γ2) =
2h
µ1
1

Γ (2µ1)

�

1
2π j

�2 ˆ γ1

0

r4µ1−1

E 4µ1
1

exp

�

−h1r2

E 2
1

�

0F1
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1
2
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1 r4

4E 4
1

�

×
�

L

Γ

�

µ2 − t3 − t4

�

Γ (t3) Γ
�

t4

�

Γ (µ2 − t3) Γ
�

1+µ2 − t4

� (κ2µ2)
−t3

�

γ2
2

r2K 2
2

�−t4+µ2

d t3d t4dr.
(D.94)

A contour integral representation is found by replacing the exponential and hypergeometric

functions with their equivalent contour integral using (A.1) and (A.2) respectively, and then

changing the order of integration. These operations will result in

P(γ1,γ2) =
2h
−µ1
1 Γ

�

µ1 +
1
2

�

Γ (2µ1)

�

1
2π j

�4 ˛

L

Γ (t1) Γ (t2)

Γ

�

µ1 +
1
2 − t2

�

Γ

�

µ2 − t3 − t4

�

Γ (t3) Γ
�

t4

�

Γ (µ2 − t3) Γ
�

1+µ2 − t4

� (D.95)

×
�

h1

E 2
1

�−t1+2µ1
�

−
H2

1

4E 4
1

�−t2

(κ2µ2)
−t3

�

γ2
2

K 2
2

�−t4+µ2 ˆ γ1

0
r2(−t1+2µ1−2t2+t4−µ2)−1 drd t1d t2d t3d t4.

The inner integral is solved with the help of (D.5). After applying the gamma’s duplication

formula, the integral P(γ1,γ2) reduces to

P(γ1,γ2) =
21−2µ1

p
π

h
µ1
1 Γ (µ1)

�

1
2π j

�4 ˛

L

Γ

�

−t1 − 2t2 + t4 + 2µ1 −µ2

�

Γ

�

1− t1 − 2t2 + t4 + 2µ1 −µ2

�
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Γ

�
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1
2 − t2

� (D.96)

×
Γ

�
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�
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�
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�
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d t1d t2d t3d t4.

By performing the variable transformations t1 = −2s1 + s2 + 2µ1, t2 = s1 and t4 = s4 + µ2,

the integral P(γ1,γ2) is simplified to

P(γ1,γ2) =
21−2µ1

p
π

h
µ1
1 Γ (µ1)

�

1
2π j

�4 ˛

L

Γ

�
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�
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�
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Γ

�
1
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�
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1− s4

� (D.97)

×
Γ
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ds1ds2d t3ds4.

The integral on the variable s1 can be interpreted as a Gauss’ hypergeometric function.

Following the same steps as in (D.55) to (D.57), the integral P(γ1,γ2) can be simplified to

P(γ1,γ2) =
21−2µ1

p
π

Γ (µ1)

�

1
2π j

�4 ˛

L

Γ (−2s1 − s2) Γ
�
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Γ

�
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(D.98)

×
Γ (2µ1 + s2) Γ (t3) Γ

�

µ2 + s4

�

Γ

�

1− s4

�
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−
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−t3

�
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2
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2 γ

2
1
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ds1ds2d t3ds4.

The parameters provided in Table 4.6 are readily obtained by comparing (D.8) with (2.1)

completing the derivation.

A series representation is found by summing the residues around the poles Γ (s1),

Γ (2µ1 + s2) and Γ (t3) for the variables s1, s2 and t3, and Γ (−s2 + s4) and Γ (µ2 + s4) for the
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variable s4. This will result in the following multi-fold summation

P(γ1,γ2) =
21−2µ1

p
π
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∞
∑

i=0

∞
∑

l=0

(−1)i+l

i!l!Γ (i + 2µ1)

�

1
Γ (1+ l +µ2) (i − l + 2µ1 −µ2)

(D.99)

×
�

γ2
1

E 2
1

�i+2µ1
�

γ2
2

K 2
2 γ

2
1

�l+µ2

I1(i, l) +
Γ (−i − l − 2µ1 +µ2)

Γ (1− l)Γ (1+ i + l + 2µ1)

�

γ2
2

E 2
1K 2

2

�i+2µ1
�

γ2
2

K 2
2 γ

2
1

�l

I2(i, l)

�

,

in which I1(i, l) and I2(i, l) are defined as
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and

I2(i, l) =

∞
∑

k=0

∞
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Both I1(i, l) and I2(i, l) can be written in the closed form in terms of the Kummer’s hyper-

geometric function and the Gauss’ hypergeometric function as

I1(i, l) =
Γ (i + 2µ1) Γ (l +µ2) 1F1 (l +µ2;µ2;−κ2µ2)
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�
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and

I2(i, l) =
Γ (i + 2µ1) Γ (i + l + 2µ1) 1F1 (i + l + 2µ1;µ2;−κ2µ2)
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After replacing I1(i, l) and I2(i, l) in (D.99) and, performing some algebraic manipulations,

the integral P(γ1,γ2) is obtained as

P(γ1,γ2) =
21−2µ1
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The final step is to use the gamma’s duplication formula, the linear transformation [36,

Equation (15.3.3)] on the 2F1 function and notice that the first summation on the index l
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vanishes for l > 0. Therefore, the integral P(γ1,γ2) results in

P(γ1,γ2) =
h
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Which completes the derivation of the integral involving the PDF of the η-µ and the CDF of

the κ-µ distributions provided in Table 4.7.

D.9 The Integral Involving η-µ PDF ×η-µ CDF

Let R1 > 0 and R2 > 0 be two random envelopes following the η-µ distribution

with parameters {η1,µ1, r̂1} and {η2,µ2, r̂2}. Then (D.1) is solved by replacing (2.17) and

(2.18) in it with the appropriate parameters resulting in
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p
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A contour integral representation is obtained by replacing the exponential and hypergeo-

metric functions by their respective Mellin-Barnes integral representations using (A.1) and

(A.2) respectively, and then changing the order of integration, which results in

P(γ1,γ2) =
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The inner integral can be solved with the (D.5). After some algebraic manipulations and

using the duplication formula of the gamma function, the integral P(γ1,γ2) is given as

P(γ1,γ2) =
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Now, performing the variable transformations t1 = −2s1+s2+2µ1, t2 = s1 and t4 = s4+2µ2,

after some algebraic manipulations, will result in

P(γ1,γ2) =
22−2µ1−2µ2πh
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The above expression can be slightly simplified by following the same steps as in (D.55) to

(D.57), which results in

P(γ1,γ2) =
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The parameters provided in Table 4.6 are readily obtained by comparing (D.110) with (2.1).

Through the summation of residues, it is possible to obtain a series represen-

tation for the integral P(γ1,γ2). For the integration variables s1, s2 and t3, the residues

around the poles of Γ (s1), Γ (2µ1 + s2) and Γ (t3) are taken respectively for each variable,

whilst Γ (2µ2+ s4) and Γ (−s2+ s4) are those used for the variable s4. The resulting multi-fold

summation for the integral P(γ1,γ2) is given as
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in which I1(i, l) and I2(i, l) are given, respectively, as
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and
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Both I1(i, l) and I2(i, l) can be written in the closed form in terms of the Gauss’ hypergeo-

metric function as

I1(i, l) =
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and
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By replacing I1(i, l) and I2(i, l) in (D.111) and performing some algebraic manipulations,

the integral P(γ1,γ2) reduces to
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Further simplifications are obtained using the gamma’s duplication formula, the linear trans-

formation [36, Equation (15.3.3)] on the first and last Gauss’ hypergeometric functions and

noticing that the first summation on l vanishes for any l > 0. After applying these modifi-

cations, the integral P(γ1,γ2) simplifies to
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which completes the derivation of the series representation for integral involving the prod-

uct of the PDF and the CDF of the η-µ distribution provided in Table 4.7.
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Appendix E

Mathematica Implementation for the

Single Fox H-function

The following Mathematica program is a simple implementation for the Fox H-

function used to evaluate those present in Tables 3.3 and 3.4.

(* A simple Mathematica Implementation for the Fox H function *)

foxH[a_ ,b_ ,z_ , limit_ ] := Block [{F, s, R, t, Na , Nb , Da , Db , V, m, n, p, q},

m = Length [a [[1]]]; n = Length [b [[1]]];

p = Length [a [[2]]]; q = Length [b [[2]]];

Na = Product [Gamma [1-a[[1,i ,1]] -a[[1,i ,2]]s], {i,1,m}];

Nb = Product [Gamma[b[[1,i ,1]]+b[[1,i ,2]]s], {i,1,n}];

Da = Product [Gamma[a[[2,i ,1]]+a[[2,i ,2]]s], {i,1,p}];

Db = Product [Gamma [1-b[[2,i ,1]] -b[[2,i ,2]]s], {i,1,q}];

F = Na Nb / Da / Db Power[z,-s];

R = Reduce [ And@@Flatten [{

Table [1-a[[1,i ,1]] -a[[1,i ,2]]s>0,{i,m}],

Table[b[[1,i ,1]]+b[[1,i ,2]]s>0,{i,n}]}] ,s];

t = If[ Length [R] == 2, Last@R +10, Mean [{ First@R , Last@R }]];

V = 1/(2 Pi I) NIntegrate [F, {s,t - I limit , t + I limit }];

Return [V];

]
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