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Abstract

A novel full-wave method to perform mode analysis on waveguides is introduced
in this dissertation. The core of the method is based on an Interior Penalty Discontinuous
Galerkin (IPDG) discretization of the vector wave equation. With an appropriate penalty
function a spurious-free and high accuracy method is achieved. The efficiency of the
proposed method was proved in several waveguides, including intricate optical waveguides
with leaky modes and also on plasmonic waveguides. The obtained results were compared
with the state-of-the-art mode solvers described in the literature. Also, a discussion on
the importance of this new approach is presented. Moreover, the results indicate that the
proposed method is more accurate than the previous approaches based on Finite Elements
Methods. The main contributions of this work are: the development of a novel robust and
accurate method for the analysis of arbitrary waveguides, a new penalty function for the
IPDG was proposed and practical applications of the methods are discussed. In addition,
in the appendix an application of modal analysis on 3D electromagnetic simulations with
a Discontinuous Galerkin method is detailed.



Resumo

Um novo método de onda completo para realizar a análise modal em guias de
onda é introduzido nesta dissertação. A ideia central por trás do método é baseada na
discretização da equação de onda vetorial com o Método de Galerkin Descontínuo com
Penalidade Interior (IPDG, do inglês Interior Penalty Discontinuous Galerkin). Com uma
função de penalidade apropriada, um método de alta precisão e sem modos espúrios é
obtido. A eficiência do método proposto é provada em vários guias de onda, incluindo
complicados guias de ondas ópticos com modos vazantes e também em guias de onda
plasmônicos. Os resultados foram comparados com os métodos do estado-da-arte descritos
na literatura. Também é discutida a importância dessa nova abordagem. Além disso, os
resultados indicam que o método é mais preciso do que abordagens anteriores baseadas
em Elementos Finitos. As principais contribuições deste trabalho são: foi desenvolvido
um novo método robusto e de alta precisão para a análise de guias de ondas arbitrários,
uma nova função de penalidade para o IPDG foi proposta e aplicações práticas do método
proposto são apresentadas. Adicionalmente, no apêndice é apresentado uma aplicação da
análise modal em simulação eletromagnética 3D com um método de Galerkin Descontínuo.



List of Figures

1.1 A representation of the mesh difference between the DG method and
the FEM. (a) A mesh with isolated triangles for a DG discretization (a
small separation is added in-between neighbor elements to illustrated the
discontinuity), (b) a mesh for a standard FEM. The mesh in (a) comprises
elements that doesn’t share its degrees of freedom to its adjacent elements. 17

2.1 An arbitrarily shaped waveguide with 3 different materials and a contour Γ. 21
2.2 A general triangle representation with a given point (x, y). (a) linear or

quadratic element, (b) cubic element. . . . . . . . . . . . . . . . . . . . . . 26
2.3 Waveguide analysis of the standard X-band rectangular waveguide with the

NPCGFEM using quadratic shape functions. (a) penalty parameter set to
0 and (b) penalty parameter set to 1. . . . . . . . . . . . . . . . . . . . . . 34

2.4 Transverse magnetic field ht of a correct and a spurious solution of the
standard X-band rectangular waveguide operating at 9 GHz, analyzed with
the NPCGFEM. (a) a correct solution and (b) a spurious solution. . . . . 35

2.5 Waveguide analysis of the standard X-band rectangular waveguide with the
CGFEM employing the LT/LN/Q hybrid elements. . . . . . . . . . . . . . 35

2.6 Rectangular Waveguide with a hole (non-convex domain) shown with its
mesh. Its correct solutions can’t be calculated with the NPCGFEM. . . . . 36

2.7 Absolute electric and magnetic fields of rectangular waveguide with a hole
(non-convex domain) operating at 12 GHz. (a) the solution with the CGFEM
(b) the solution with the HFSS commercial software. . . . . . . . . . . . . 37

2.8 Mesh refinement for computing the β of the holed waveguide. (a) the
solution with the CGFEM as the mesh is refined (b) the solution with the
HFSS commercial software using its adaptive mesh refinement. . . . . . . . 38

2.9 Typical photonic waveguide cross-section with its dimensions. The outer
rectangles are the PML layers. . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Electric fields profile for the photonic wire with a 500 nm × 220 nm obtained
from: (a) the NPCGFEM; (b) from the CGFEM. Fields are zoomed at the
core region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Shared edge between two elements with materials ǫL and ǫR to illustrate
the flux contributions on a given edge. . . . . . . . . . . . . . . . . . . . . 43

3.2 LT/QN shape function T8 cross each edge normal showing that the LTQN
enrichment functions contributions to the flux terms are null. . . . . . . . . 44

3.3 Global matrices comparison for the rectangular waveguide: (a) IPDG/FEM,
(b) CGFEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



3.4 Dispersion analysis of the standard X-band rectangular waveguide with the
IPDG/FEM for several αT values. (a) αT = 0, (b) αT 10−4, (c) αT = 10−2

and (d) αT = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Dominant mode β error for the Rectangular waveguide, the relative error is

presented in a logarithmic scale. (a) IPDG/FEM for several αt values. (b)
IPDG/FEM with large αt values in comparison with the CGFEM. . . . . . 51

3.6 Comparative relative error convergence for the Rectangular Waveguide as
the number of degrees of freedom is increased when f = 10 GHz. The
superior performance of the IPDG/FEM over the CGFEM is impressive
and more significant for refined meshes. . . . . . . . . . . . . . . . . . . . . 52

4.1 Absolute electric and magnetic fields of rectangular waveguide with a
hole (non-convex domain) operating at 12 GHz. (a) the solution with the
IPDG/FEM (a) the solution with the CGFEM (repeated). . . . . . . . . . 54

4.2 Dispersion relation in a wide frequency range for the rectangular waveguide
with a hole obtained from the IPDG/FEM and the CGFEM. . . . . . . . 54

4.3 Absolute magnetic fields of the loaded rectangular waveguide with a lossy
dielectric operating at 12 GHz. (a) the solution with the IPDG/FEM (a)
the solution with the HFSS commercial software. . . . . . . . . . . . . . . 55

4.4 Propagation constant from the HFSS during the adaptive mesh refinement
process. (a) the imaginary part of β and (b) the real part of β. . . . . . . 56

4.5 Rib waveguide cross-section with its dimensions. The outer rectangles are
the PML layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Transverse electric fields 2D distributions for the Quasi-TE mode of the rib
waveguide solved with the IPDG/FEM. (a) transverse fields and (b) axial
field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Convergence of the Imag{neff} in relation to the parameter σmax. (a) mesh
used for this analysis, (b) convergence. . . . . . . . . . . . . . . . . . . . . 59

4.8 Convergence of the Imag{neff} in relation to the silicon buffer layer height
S. (a) the mesh used for this analysis, (b) the actual convergence. . . . . . 60

4.9 Photonic wire Ex 1D field profile at the middle of the waveguide. The leaky
mode characteristics is detailed in the zoomed plot inside the figure. . . . . 61

4.10 Photonic wire 2D E field profile: a) |Ex|, b) |Ey|, c) |Ez|. . . . . . . . . . . 62
4.11 Geometry of the trapezoidal waveguide embedded in air and bounded by

PMLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.12 Comparison between the IPDG/FEM and the CGFEM transverse magnetic

field profiles for the trapezoidal waveguide. The core material have ǫr =
√

8
and µr =

√
8 and the mesh mean edge length at the core is set to 30 nm,.

(a) Hx, (b) Hy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.13 DLSPP waveguide cross-section with its (a) dimensions and (b) mesh. . . . 64
4.14 DLSPP |Ex| and |Ey| 2D field profiles calculated with the IPDG/FEM. . . 65
4.15 DLSPP Re{Ey} field profile calculated with the IPDG/FEM along the

middle of the waveguide. The dashed horizontal lines indicate the material
interfaces. The gold-polymer interface is located at y = 1.1 µm and the
gold-substrate interface is at y = 1 µm. (a) large plot, (b) detailed view at
the main interfaces with a zoom at the gold-substrate interface field . . . . 66

4.16 SPSWG cross-section with a refined meshed of 13417 elements. (a) general
view showing the PML boxes and (b) zoom at the metal dielectric interface. 66



4.17 Quasi-TM1 mode magnetic field 2D distributions for the SPSWG calculated
with the IPDG/FEM: (a) the transverse fields (b) the axial field. . . . . . . 67

4.18 Quasi-TM1 and Quasi-TM2 modes indexes local-overshoots captured by
the IPDG/FEM when the metal stripe width is varied: (a) Real{neff} (b)
Imag{neff}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 Sub-wavelength grating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.2 Strip Waveguide mesh with PML elements for the eigenmode solver. . . . . 81
A.3 Field distributions at λ0 = 1500 nm. (a) transverse fields, (b) longitudinal

fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.4 neff dispersion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.5 (a) mode propagation simulation setup in a grating, (b) typical Gaussian

wave-packets propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.6 Propagation time from group velocity. . . . . . . . . . . . . . . . . . . . . 86
A.7 Grating 3D model. (a) full model, (b) zoom at grating region. . . . . . . . 87
A.8 Grating model mesh. (a) full model, (b) zoom at silicon core region. . . . . 87
A.9 General grating structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.10 Grating 1 comparison between the present method, the CST commercial

solver, and the Coupled Mode Theory analysis . (a) reflectivity, (b) trans-
mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.11 Ex field plots at the Grating 1. (a) time domain, (b) frequency domain
(λ0 = 1553 nm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.12 Grating 2 comparison between the present method, the CST commercial
solver, and the Coupled Mode Theory analysis . (a) reflectivity, (b) trans-
mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of Abbreviations

CGFEM Continuous Galerking FEM.

DG Discontinuous Galerkin.

DGTD Discontinuous Galerkin Time Domain.

FDTD Finite Difference Time Domain.

FEM Finite Element Method.

IPDG Interior Penalty Discontinuous Galerkin.

NPCGFEM Nodal Penalized Continuous Galerking FEM.

PDE Partial Differential Equation.

PEC Perfect Electric Conductor.

PMC Perfect Magnetic Conductor.

PML Perfect Matched Layer.



Contents

List of Figures 9

1 Introduction 15
1.1 Numerical Methods in Electromagnetics . . . . . . . . . . . . . . . . . . . 15

1.1.1 The Discontinuous Galerkin Methods . . . . . . . . . . . . . . . . . 16
1.2 Motivations for this research . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Waveguide Analysis 20
2.1 The waveguide eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Waveguide Analysis with the FEM . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Spurious Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 The Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Nodal Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.4 Hybrid Edge/Nodal Basis . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.5 Perfect Matched Layers . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Results with the FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1 Rectangular Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Rectangular Waveguide with a hole . . . . . . . . . . . . . . . . . . 34
2.3.3 Strip Waveguide (photonic wire) . . . . . . . . . . . . . . . . . . . . 36

2.4 Commentaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Interior Penalty Discontinuos Galerkin for Waveguide Analysis 41
3.1 The spurious-free property and the IPDG choice . . . . . . . . . . . . . . . 41
3.2 DG Penalized Flux: tangential jump and average . . . . . . . . . . . . . . 42
3.3 The combined DG/FEM method . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 The Penalty Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Recipe to attain high accuracy . . . . . . . . . . . . . . . . . . . . . 48
3.5 Method Validation and investigation of the αT parameter . . . . . . . . . . 48

3.5.1 Global Matrices Structure . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 Dispersion of the Rectangular Waveguide . . . . . . . . . . . . . . . 49
3.5.3 αT effect on the accuracy . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Results with the IPDG/FEM 53
4.1 Microwave waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Non-convex domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 Inhomogeneous and lossy waveguide . . . . . . . . . . . . . . . . . . 55

4.2 Optical Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



4.2.1 Rib Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Strip Waveguide (Leaky Mode) . . . . . . . . . . . . . . . . . . . . 58
4.2.3 Trapezoidal Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Plasmonic Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 DLSPP Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 SPS Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusion 69

References 70

Appendices 79

Appendix A Mode Propagation Simulations in Bragg Gratings on SOI 79
A.1 Bragg gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 Optical Waveguide Mode Analysis . . . . . . . . . . . . . . . . . . . . . . . 80

A.2.1 Strip Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.3 Waveguide Mode Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3.1 Time Domain Excitation: Gaussian Wave Packet . . . . . . . . . . 83
A.3.2 Diogenes mode source . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.4 Grating Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.5.1 Grating 1: ∆ W = 50 nm, Λ = 324 nm, N = 28 . . . . . . . . . . . . 88
A.5.2 Grating 2: ∆ W = 50 nm, Λ = 324 nm, N = 280 . . . . . . . . . . . 90



15

Chapter 1

Introduction

This dissertation is focused on the calculation of light and other electromagnetic

waves propagation characteristics through guided wave devices. For doing so a new

numerical method for waveguide analysis is introduced, which is inspired on recently

developed mathematical methods. Overall it is expected that this new method might

be useful for the electromagnetic designers community. A great part of the discussion

presented in this dissertation is extracted from the paper [1].

1.1 Numerical Methods in Electromagnetics

In electromagnetics, the analysis and design of waveguides is a key step in the

development of devices and systems. Specifically, recent guided wave devices in photonics

include waveguides with arbitrary shapes and non-conventional properties due to the

adopted materials. In such scenario, the use of analytical methods is impractical and could

lead to a fallacious understanding of the underlying physics, as excessive simplifications

are required. Therefore, the accurate modeling of complex electromagnetic devices relies

on categorical numerical methods.

For the microwave and photonics community, essentially two main computational

methods prevail to solve the Maxwell’s Equations [2]: the Finite Element Method (FEM)

and the Finite Difference Time Domain (FDTD). While both of these methods encompass

several variants, its differences are profound. The first one consists on a tessellation of

the computational domain to obtain linear algebraic equations from Partial Differential

Equations (PDEs), then a discrete finite space is used to approximate the quantity of

interest [3, 4]. The latter divides the domain into a cartesian grid of nodes and uses finite

differences to approximate derivatives of the quantity of interest, then a time marching

scheme is applied to solve the problem in the time domain [5]. On one hand, the FEM

is usually used in the frequency domain, therefore simulation of devices in a wide-band

are time consuming. On the other hand, the FDTD method is inherently used in the time

domain, and when appropriate sources are adopted wide- band simulations are feasible.
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Although the FDTD method is simple and efficient, in its standard form it suffers

from well-known disadvantages. For instance, the correct approximation of complex

geometries is limited to its cartesian grid, which imply in aliasing effects and affect its

accuracy. Moreover, its accuracy is bounded by the finite expansion used. Additionally, the

material interfaces are hard to handle in this method. On the other hand, the conventional

FEMs are more appropriate for the discretization of complex geometries. However, the

FEMs in the time domain are less attractive than FDTD because large systems of equations

need to be solved in each time step.

1.1.1 The Discontinuous Galerkin Methods

A powerful alternative to the standard FEM and the FDTD that is under intense

research is the Discontinuous Galerkin (DG) method [6–12]. The DG methods are indeed

similar to the FEMs, however the approximation of the quantity of interest is intrinsically

discontinuous, i.e. the degrees of freedom are not shared between two adjacent elements.

The discontinuity property is achieved since the finite approximation space is local to each

element of the tessellation. Then a discrete finite element discontinuous space is adopted

to approximate the quantity of interest. Since no shared degrees of freedom are used, the

linkage between the neighboring elements is achieved with the numerical flux. There is

some freedom to define the numerical fluxes, and this will determine several properties

of the DG approach. The discontinuous property implies in an increased memory usage,

since the degrees of freedom of each element are not shared.

In Fig. 1.1 the mesh difference between the DG and the standard FEM is illustrated

for a 2D domain. The degrees of freedom in the tessellation for the DG method are local

to each element, and this is illustrated by the added separation between adjacent elements.

As explained above, the connection between elements is done via a numerical flux. The

discontinuity is consistent with the Maxwell’s equations since the discontinuous nature of

the electric and magnetic fields can be catch more appropriately.

The DG method and its variants are quite convenient since they enclose the

properties of the conventional FEMs while adding several advantages. The DG methods are

a powerful alternative to standard FEMs since they are able to mimic the discontinuous

and possibly singular nature of the electromagnetic fields. Additionally, the DG methods

are flexible with respect to locally varying element order, they can handle non-conforming

meshes and it can lead to diagonal matrices (which results in explicit time/space stepping).

In hp-adaptive mesh refinement schemes, the use of elements of different sizes and orders is

required. Therefore, the DG is well suited for hp-adaptivity, time/space marching schemes

and parallelization [1].

The DG method can be employed to solve the Maxwell’s equations with a

discretized time variable, which results in the Discontinuous Galerkin Time Domain
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Figure 1.1: A representation of the mesh difference between the DG method and the FEM.
(a) A mesh with isolated triangles for a DG discretization (a small separation is added
in-between neighbor elements to illustrated the discontinuity), (b) a mesh for a standard
FEM. The mesh in (a) comprises elements that doesn’t share its degrees of freedom to its
adjacent elements.

(DGTD), a explicit time domain method that does not require the solution of linear

equations in each time step [6,13]. With the advent of the DGTD, the temporal superiority

of the FDTD can be combined with the spatial advantage of the FEMs.

For the frequency domain (i.e. time-harmonic) Maxwell’s equations the DG

method is also more convenient since it is able to handle elements of different orders,

unstructured meshes, non-conforming meshes and it is able to mimic the discontinuous

and possibly singular nature of the electromagnetic fields [1]. Moreover, as it will be shown

in this dissertation, the computational cost increment can be made subtle in the frequency

domain DG when compared to the conventional continuous Galerkin FEM.

1.2 Motivations for this research

Several optical devices have been proposed recently with increasing geometrical

and material complexities. Of elaborate complexity the following ones are highlighted:

silicon nanobeam cavities with circular air holes [14], metasurfaces with various structures

[15], sectioned tapers for optical interconnection with sandwiched materials [16], sub-

wavelength gratings [17–19] and nonlinear silicon photonics components [20]. Additionally,

by applying optimization techniques several non-conventional devices also have been

proposed recently, interesting examples are provided in [21,22]. These optimized devices

tend to assume bizarre shapes which demand high performance numerical methods. All of

these works show a tendency of increasing complexity in guided wave devices. The optical

designer community certainly would be glad to explore the aforementioned advantages of

the DG methods.

Furthermore, some specific waveguides that could benefit from the discontinuity,

mesh handling and other convenient properties of the DG method for waveguide analysis

are the following: the light confinement on plasmonic waveguides [23–25], the guidance
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of light in photonic-crystal fiber waveguides [26], the guided light characteristics in void

nano-structures such as in slot waveguides [27] and in planar waveguides [28], and also the

guidance of light at interfaces in planar waveguides [28]. Again, the numerical simulations

of the properties of light in all of these waveguides might benefit from the DG method here

introduced.

Last but not least, the goal of this dissertation is not to solve all of the problems

concerning the simulation of electromagnetic devices, but it does wants to introduce a

novel consistent numerical method to the community. Apparently, the method can be

useful for the electromagnetic designers community. This dissertation proves the efficiency

of a DG method for waveguide analysis and paves the way for further research on DG

applications in electromagnetics.
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1.4 Outline

The general outline of this dissertation is:

• Chapter 2: the problem of waveguide analysis is stated and discussed. Some relevant

approaches to solve it with the FEMs are detailed. The main FEMs are reviewed and

the problem of non-physical solutions is examined. Then, the formulations using

two different element setups are presented. The elements mathematical properties

are presented and discussed. In the end of this chapter some important results are

reported to test the implementations.

• Chapter 3: in this chapter the method proposed in this dissertation is introduced

and all of its aspects are demonstrated. Its formulation is derived and the numerical

flux is presented. The developed penalty function is stated and a simple recipe to

guarantee a highly accurate waveguide analysis is presented. Additionally in the end

of this chapter the proposed method is validated on a standard waveguide that have

analytical solutions. Some comparative results are also shown within the method

validation.

• Chapter 4: this chapter is intended to demonstrate the application and efficacy of the

proposed method. Results for microwave and optical waveguides are presented. Then,

some challenging waveguides, such as lossy, leaky and plasmonic ones, are analyzed.

In addition, the performance of the present method is evaluated in comparison with

the state-of-the-art mode solvers described in the literature and also with commercial

softwares.

• Chapter 5: finally, the last chapter is dedicated to discuss what was developed and

also to argue about possible future works.

While doing this Master Degree the author have worked in an additional project

related to a 3D DGTD method. In the appendix this project is briefly described.
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Chapter 2

Waveguide Analysis

In this chapter the waveguide analysis problem is stated and its solution with

standard FEMs is discussed. The issues related to this approach are also discussed. Briefly,

the implementations and results made with nodal and edge elements are reported.

2.1 The waveguide eigenvalue problem

The problem of waveguide analysis, which is of main concern in this dissertation,

is stated in the following. Suppose a waveguide with an arbitrary cross-section in (x, y)

and being uniform along the propagation axis ẑ. Here it is assumed that this structure is

made of inhomogeneous and linear complex materials which are characterized by their

tensor relative permittivity [ǫr] and permeability [µr] in (x, y). In photonics, the dielectric

materials without any anisotropy are sometimes described by its refractive index n, which

is given by n =
√

ǫr. For instance, the Fig. 2.1 illustrates a waveguide with an arbitrary

geometry made of three different materials and enclosed by a contour Γ.

The propagating fields at some frequency ω at a given waveguide assume specific

distributions, which are in general called as modes. A waveguide can support none or

several modes at a given frequency. These modes can be predicted by the solution of the

full-wave Maxwell’s curl-curl source-free equation:

∇ × ([ǫr]−1∇ × H) − k2
0[µr]H = 0 (2.1)

where H is the magnetic field (A/m) and k0 = ω
√

ǫ0µ0 is the free-space wavenumber. Of

course, the corresponding electric field E curl-curl equation could be used. The uniaxial

anisotropy is assumed, therefore the [ǫr] and [µr] are diagonal matrices, i.e.:

[ǫr] =











ǫxx 0 0

0 ǫyy 0

0 0 ǫzz











[µr] =











µxx 0 0

0 µyy 0

0 0 µzz











(2.2)
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Figure 2.1: An arbitrarily shaped waveguide with 3 different materials and a contour Γ.

Any mode is characterized by its field distribution given by the equation (2.1).

Concerning the fields, at material interfaces the tangential components are continuous while

the normal component can be discontinuous. Such discontinuities should be considered

when solving the wave equation.

In waveguides the time and propagation dependence of the fields can be expressed

by ejωt−jβz, where ω is the frequency and β is the propagation constant of the mode. Note

that β is a complex value, where its imaginary part is related to the mode attenuation

during the propagation. Then, a mode can be fully defined by (E, H) and β. If one uses

the equation (2.1) to find the mode, E is given by:

E =
1

jωǫ0ǫr

∇ × H (2.3)

To find the β value and the fields, one can solve the eigenvalue problem that

arises from the equation (2.1). This eigenvalue problem is easier to solve if the magnetic

field and the ∇ operator are expanded as:

∇ = ∇t + ∇z = ∇t + (−jβ)ẑ

H = ht + (jβ)hz

(2.4)

This expansion in the transverse ht and axial hz components is useful to build a direct

problem for β. Moreover, it allows one to employ different approximations on each one, as

it is discussed in the following.
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2.2 Waveguide Analysis with the FEM

Probably the most used technique to perform waveguide analysis is the FEM,

which is an elegant approach and it is consolidated in the literature since the 80’s [30–32].

For very simple waveguides the vectorial equation (2.1) can be solved with a scalar approach

that facilitates the eigenvalue problem solution with the FEM. However, in most cases

this is not the case and the correct solution requires a full-wave formulation. Then, in

the full-wave approach a recurrent and hard to handle problem arises: the problem of

non-physical solutions (also called as spurious solutions). The spurious modes are solutions

of the discretized wave equation and a FEM waveguide analysis program should be able to

eliminate this solutions elegantly.

As part of the research developed in this dissertation, several FEM programs

to analyze waveguides were developed, including the scalar approach and the vectorial

formulations with both nodal and edge elements. In the following a short description of

the discretization of the equation (2.1) with the FEM is presented. Then, an investigation

on the nodal and edge approaches is outlined. To be concise here the scalar FEM is not

detailed, as this discussion is present in most of the textbooks [3, 4]. Before going into

these topics, a necessary and brief discussion on the spurious modes is done.

2.2.1 Spurious Solutions

Intense effort has been made to improve the meticulous analysis of waveguides due

to its relevance in basic research. A problem of main concern on the modal analysis with

FEM is the spurious solutions that can hinder the analysis of waveguides and cavities [33].

In [34], the spurious solutions issue in eigenvalue problems were deeply studied and a set

of conditions to characterize spurious-free FEMs were presented. A major reason for the

non-physical solutions is the inaccurate approximation of the null-space in the curl-curl

Maxwell equation. It is known that the edge elements are adequate to make a more precise

approximation of the null-space [33–35]. Still, a correct approximation of this null-space

implies in having unwanted static eigensolutions (at ω = 0) or a null propagation constant

(β = 0). For the time-domain propagation methods [36] and beam space propagation

methods [37,38], a FEM which efficiently eliminates the spurious solutions, including the

ones at ω = 0 and with β = 0, is highly desired.

Back in the 1980’s, the problem of spurious solution for waveguides was elegantly

handled by including a divergence penalization in the formulation using nodal elements [39].

Also, in [40, 41] the divergence condition was added to the formulation to avoid non-

physical solutions. More recently, the divergence condition was again forced into the FEM

formulation in [42] to avoid the static spurious solutions. In [43], the edge elements were

explored to avoid spurious modes on waveguide analysis. Alternative methods to the

FEM for waveguide analysis include the spectral ones [44], the finite-difference [45–47],
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the boundary integral equation [48–50], and the meshless [51] methods. On all of these

methods, dealing with field singularities (due to sharp corners, for instance) is hard.

2.2.2 The Weak Form

Before using the FEM a weak form of the wave equation (2.1) is required. This

weak form is the one which does not contain second order derivatives (curl-curl), so that the

continuity requirements for the fields under analysis are reduced. Without loss of generality

the procedure here outlined is easily done for the dual electric field wave equation.

Before proceeding, some useful identities are presented:

∇ · (~u × ~v) = (∇ × ~u) · ~v − (∇ × ~v) · ~u (2.5)

(~u × ~v) · (~p × ~t) = (~u · ~p)(~v ·
~t) − (~v · ~p)(~u ·

~t) (2.6)
∫

Ω
∇ ·

~F dV =
∮

∂Ω

~F · n dS (2.7)

where all of the terms are obvious, except for Ω which is a domain of dimension N , ∂Ω

which is its contour of dimension N − 1 and n which is an unitary vector normal to ∂Ω

pointing to the outside of Ω.

By invoking the Galerkin method, the weak form can be obtained. First, an

inner product of the wave equation with an intentionally undefined test function Φ (to be

defined with either nodal or edge shape functions) in the domain Ω ⊂ R
2 is performed:

∫

Ω
Φ ·

(

∇ × ([ǫr]−1∇ × H) − k2
0[µr]H

)

dx dy = 0 (2.8)

and with the above identities a weak formulation of the wave equation for the magnetic

field is obtained, which is given by:

∫

Ω
(∇ × Φ) · ([ǫr]−1∇ × H) dx dy +

∮

∂Ω

(

([ǫr]−1∇ × H) × Φ
)

· n dℓ

−k2
0

∫

Ωe
(Φ · [µr]H) dx dy = 0

(2.9)

where ∂Ω is the contour of the domain (∂Ω ∈ R
1 space) and dℓ is the line path differential

in (x, y).

After the discretization with the FEM, the above line integral in the weak-form is

discarded inside the domain Ω due to the shared degrees of freedoms between neighboring

elements, i.e. this is a Continuous Galerkin approach. For now, the above equation is

simplified since a Perfect Magnetic Conductor (PMC) (n × H = 0) boundary condition is

assumed on the global contour of the domain:

∮

∂Ω

(

([ǫr]−1∇ × H) × Φ
)

· n dxdy = 0 on Γ (2.10)
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where Γ is the global contour of the domain Ω. To handle a Perfect Electric Conductor

(PEC) boundary condition (n × E = 0) a similar approach can be applied which will end

up in a quite similar problem setup.

Now, this weak form can be further simplified for treating the waveguide analysis

problem stated in the Section 2.1. By applying the operator and field expansion given in

(2.4) and doing the same with Φ:

Φ = φt + (jβ)φz (2.11)

the derivatives are re-written as:

∇ × H = (jβ)[∇t × hz + ht × ẑ] + ∇t × ht (2.12)

∇ × Φ = (jβ)[∇t × φz + φt × ẑ] + ∇t × φt (2.13)

where
(

ht(x, y), hz(x, y)
)

are the tangential and axial fields, respectively, and
(

φt(x, y), φz(x, y)
)

are the test functions to be defined.

After some algebra several steps, a full-wave vectorial weak form for the wave

equation is obtained, i.e. find β ∈ C and
(

ht(x, y), hz(x, y)
)

∈ H (curl;Ω)×H1(Ω) such

that for all
(

φt(x, y), φz(x, y)
)

∈ H (curl;Ω)×H1(Ω):

∫

Ω
(∇t × φt · [ǫr]−1∇t × ht) dxdy − k2

0

∫

Ω
(φt · [µr]ht) dxdy

=

β2
[

∫

Ω
(∇t × φz · [ǫr]−1∇t × hz) dxdy +

∫

Ω
(φt × ẑ · [ǫr]−1∇t × hz) dxdy

+
∫

Ω
(∇t × φz · [ǫr]−1ht × ẑ) dxdy +

∫

Ω
(φt × ẑ · [ǫr]−1ht × ẑ) dxdy

−
∫

Ω
k2

0(φz · [µr]hz) dxdy
]

(2.14)

where H (curl;Ω)×H1(Ω) is a Hilbert space.

Solution via the FEM

With the weak form given by the equation (2.14) the application of the FEM

finally can be done to get a discrete version of this weak form. Following the Galerkin

method, both the test functions and the unknown field are approximated with a set of

functions (here either nodal or hybrid edge/nodal functions). For doing this, three steps

are required:

1. The tessellation of the computational domain under analysis to perform the dis-

cretization of the weak form to get a linear system for each element;
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2. Assembly the contribution of each element to get a global linear system of equations.

The test functions in the Galerkin approach are exactly the same ones used to expand

the fields
(

ht(x, y), hz(x, y)
)

;

3. Solve the corresponding eigenvalue problem that arises with the assembly of the

elements.

All of these steps are well discussed in textbooks such as in [3, 4]. The programming of all

of these steps can get complicated and to explore code reuse and other advantages all of

the FEM codes here developed were programmed with an object-oriented paradigm [52].

With regards to the tessellation, the free software GMSH [53] was used to generate the

meshes.

The fields
(

ht(x, y), hz(x, y)
)

in the weak form discretized with the FEM are

defined in a discrete Hilbert space, meaning that they exist in a finite dimension space,

and the dimension is given by the number of parameters to be determined [54]. Of course,

the test functions are defined in the same space.

If a given waveguide has its domain meshed with K triangles, then the assembly of

each contribution from the equation (2.14) culminates in the following eigenvalue problem:

[A]v = β2[B]v (2.15)

where v are the eigenvectors (the modal fields are ht and hz), β2 is the eigenvalue (the

squared modal propagation constant), A is the matrix obtained from the right hand side

of (2.14) and B is the matrix obtained from the left hand side of (2.14). Then, by solving

this global system of equations, which is an eigenvalue problem, a full-wave waveguide

analysis can be performed.

Tessellation and area coordinates

The tessellation employed in all of the problems here studied comprises a set of

triangles (see for instance the mesh in Fig. 1.1). When using this kind of element, a useful

mathematical tool to describe any point in a triangle are the so-called area coordinates

(also known as simplex coordinates). For this a general representation of the triangular

elements is shown in Fig. 2.2. The node 10 in the cubic element is located at barycenter

of the triangle.

For a given point (x, y) inside a general triangle with a counter-clockwise node

numbering, as shown in Fig. 2.2, the area coordinates (L1, L2, L3) are:











L1

L2

L3











=











x1 x2 x3

y1 y2 y3

1 1 1











−1 









x

y

1











(2.16)
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Figure 2.2: A general triangle representation with a given point (x, y). (a) linear or
quadratic element, (b) cubic element.

and the area of this triangle element is given by:

∆e =
1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x3 y3

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.17)

Numerical Integration

After the discretization, the contributions of each element in the global system

(equation 2.15) have to be calculated. For this, one has to perform numerical integrations

to solve each integral in the weak form. When using the area coordinates this can be easily

accomplished [3] with:

∫

Ωe
F (L1, L2, L3) dxdy =

∑

i

WiF (L1i, L2i, L3i)∆e (2.18)

where Ωe is the domain of a single element, F is any function of the are coordinates and

Wi are the weights. These weights and the exact area coordinates points are performed

with the quadrature rules from [55].

2.2.3 Nodal Basis

It is a standard procedure to expand a field quantity in a FEM with nodal elements.

The elements here adopted are built with the Lagrangian polynomials. The Lagrangian

shape functions (or basis functions) that describe these nodal elements are easy to define

with the area coordinates presented in the subsection 2.2.2. The linear shape functions
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that approximate a given field with first order functions are given by:

N1 = L1

N2 = L2

N3 = L3

(2.19)

The quadratic shape functions that approximate a field with second order functions are:

N1 = L1(2L1 − 1)

N2 = L2(2L2 − 1)

N3 = L3(2L3 − 1)

N4 = 4L1L2

N5 = 4L2L3

N6 = 4L3L1

(2.20)

And the cubic shape functions that approximate a field with third order functions are:

N1 = (9/2)(L3
1 − L2

1 + 2L1/9)

N2 = (9/2)(L3
2 − L2

2 + 2L2/9)

N3 = (9/2)(L3
3 − L3 + 2L3/9)

N4 = (27/2)(L2
1L2 − (1/3)L1L2)

N5 = (27/2)(L1L
2
2 − (1/3)L1L2)

N6 = (27/2)(L2
2L3 − (1/3)L2L3)

N7 = (27/2)(L2L
2
3 − (1/3)L2L3)

N8 = (27/2)(L2
3L1 − (1/3)L3L1)

N9 = (27/2)(L3L
2
1 − (1/3)L3L1)

N10 = 27L1L2L3

(2.21)

Now, within a triangular element, as the one in Fig. 2.2, the fields exactly at the

element nodes are called as
(

he
ti(x, y), he

zi(x, y)
)

, where i is the node number. Then, the

fields inside element e are expanded with the shape functions as:





ht

e

hz

e



 =











he
x

he
y

he
z











=



















np
∑

i=1
Nih

e
xi

np
∑

i=1
Nih

e
yi

np
∑

i=1
Nih

e
zi



















(2.22)

where np is the number of nodes used. For a linear nodal triangular element only the
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field values at the nodes 1-3 are used, so np = 3 and the shape functions from (2.19)

are necessary. Similarly, for a quadratic nodal triangular element np = 6 and the shape

functions from (2.20) are used, and for a cubic nodal triangular element np = 10 and the

shape functions from (2.21) are used.

An alternative and more compact matrix representation for the field expansion

at element e is:











he
x

he
y

he
z











=











{N}1×np
{0}1×np

{0}1×np

{0}1×np
{N}1×np

{0}1×np

{0}1×np
{0}1×np

{N}1×np














































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
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znp
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







































(2.23)

where {N}1×np
is:

{N}1×np
= [N1...Nnp

] (2.24)

Finally, within the whole waveguide problem domain Ω under the tessellation of

Nelm elements the total fields are given by:

hx(x, y) =
Nelm
∑

i=1

hi
x (2.25)

hy(x, y) =
Nelm
∑

i=1

hi
y (2.26)

hz(x, y) =
Nelm
∑

i=1

hi
z (2.27)

Discretization

There are many ways to solve the equation (2.14) with the FEM by using the

conventional nodal elements [3]. However, solving the time-harmonic curl-curl Maxwell’s

equation with this kind of elements in general produces the unwanted spurious solutions.

Using the three components of the field of interest
(

ht(x, y), hz(x, y)
)

is tricky and the

spurious solutions are not easily removed from the solution spectrum. The nodal elements

impose strict continuity requirements in the fields at the material interfaces and for this

reason they are not appropriate. Strictly speaking the nodal elements do not provide

Completeness of the Discrete Kernel (CDK) [34].
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To solve this issue, the approach used in the developed codes here is inspired in

the famous paper by Rahman et. al. [39], which includes a penalization in the formulation

with a divergence operator. This penalization works fine since the non-physical solutions

in general do not respect the divergence condition ∇ · H = 0.

So, the divergence condition:

s
∫

Ω
(∇ · Φ)(∇ · H)dxdy = s

∫

Ω
(∇t · φt)(∇t · ht) dΩ + s

∫

Ω
β2(∇t · φt hz) dΩ (2.28)

was empirically inserted in the formulation. Here s is the penalization parameter, which is

a waveguide-dependent and user defined parameter. Note that there is no term including

(jβφz) since the test functions do not have the phase constant e−jβz.

The weak form of the full-wave equation for nodal elements is then updated to

include the divergence penalization from 2.28:

∫

Ω
(∇t × φt · [ǫr]−1∇t × ht) dxdy − k2

0

∫

Ω
(φt · [µr]ht) dxdy

+ s
∫

Ω
(∇t · φt)(∇t · ht) dΩ

=

β2
[

∫

Ω
(∇t × φz · [ǫr]−1∇t × hz) dxdy +

∫

Ω
(φt × ẑ · [ǫr]−1∇t × hz) dxdy

+
∫

Ω
(∇t × φz · [ǫr]−1ht × ẑ) dxdy +

∫

Ω
(φt × ẑ · [ǫr]−1ht × ẑ) dxdy

−
∫

Ω
k2

0(φz · [µr]hz) dxdy

− s
∫

Ω
(∇t · φt) (hz) dΩ

]

(2.29)

And finally, with the finite-element procedure the weak form can be discretized.

Suppose that Ω is partitioned in K elements, then a scalar finite element space is defined

as:

Qh := {u ∈ L2(Ω) , ∀K ∈ Ω, uK ∈ P(K)} (2.30)

L2(Ω) being the Lebesgue space and P(K) being the space of Lagrangian polynomials

defined on K. In the discrete version of the weak formulation (2.29) the eigenvalue problem

is to find (ht, hz, β2) ∈ (Qh × Qh, Qh,C) for all (φ
t
, φz) ∈ (Qh × Qh, Qh). Then, with the

above mentioned linear, quadratic or cubic nodal elements the H(curl;Ω) vectorial space is

approximated, while with the same nodal elements the H1(Ω) scalar space is approximated.
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2.2.4 Hybrid Edge/Nodal Basis

A hybrid element configuration that comprises an edge shape function set for the

ht and nodal ones for the hz has been used in waveguide analysis for a while now [42,43,56].

This implies in a direct vectorial approximation for the transverse field. Then, the curl-curl

null space is correctly approximated and does not pollute the solution spectrum for β 6= 0.

The edge basis presented in [57] is employed here for the ht component, as this

vector basis satisfy the Nédelec constraints [58]. For the hz component, the conventional

nodal quadratic or cubic elements is used. As explained above, this vectorial edge element

guarantees the tangential field continuity while allowing for the normal field jumps, and

therefore it correctly approximates the Maxwell’s equation field solutions. Due to this, no

spurious modes are observed when using this element setup (except for the ones at β = 0)

as the vectorial field ht is well expanded in this vectorial finite dimensional space.

The edge elements are also known as the linear tangential/linear normal (LT/LN)

and linear tangential/quadratic normal (LT/QN) ones. They are quite convenient to the

present formulation as shown next. Indeed, numerical results for two hybrid elements setup

are presented: LT/LN edge functions with quadratic nodal functions and LT/QN edge

functions with cubic nodal functions. From now on, these hybrid elements are referred as

LT/LN/Q and LT/QN/C.

The LT/LN vectorial shape functions are given by:

T1 = l12L1∇L2

T2 = l23L2∇L3

T3 = l31L3∇L1

T4 = l12L2∇L1

T5 = l23L3∇L2

T6 = l31L1∇L3

(2.31)

where lij is the edge length between the nodes 1-3 of the triangle. For the LT/QN shape

functions two more functions are added to form the basis:

T7 = L2L3∇L1 − L1L2∇L3

T8 = L1L3∇L2 − L1L2∇L3

(2.32)

Observe that Ti have components in x̂ and ŷ due to the ∇ operator, i.e. Ti =

Txix̂ + Tyiŷ. The superposition of the LT/LN functions ensures a triangle element with a

basis that has linear tangential and linear normal functions. And the superposition of the

LT/QN functions provides a triangle with a basis that has linear tangential (first order)

and quadratic normal functions.

For either the LT/LN or the LT/QN, the shape functions in x̂ and ŷ are called
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as Txi and Tyi, respectively, and Nj are the conventional nodal shape functions. Then the

ht and hz are:

ht

e =





he
x

he
y



 =





Tx1 Tx2 ... Txne

Ty1 Ty2 ... Tyne















he
t1

...

he
tnp











(2.33)

hz = ẑ
np
∑

j=1

Njhzj (2.34)

where he
ti are the local field variables, with (ne = 6, np = 6) for LT/LN/Q and (ne =

8, np = 10) for LT/QN/C.

Discretization

With the edge elements shape functions the curl-curl null space is nicely catch,

and no explicit divergence condition needs to be imposed. Therefore, the weak formulation

from (2.9) can be directly discretized with the FEM procedure.

Again, suppose that Ω is partitioned in K hybrid edge/nodal elements, then a

vector and scalar finite element space are defined as:

Vh := {u ∈ L2(Ω)2 , ∀K ∈ Ω, uK ∈ S(K)}}
Qh := {u ∈ L2(Ω) , ∀K ∈ Ω, uK ∈ P(K)}

(2.35)

L2(Ω) being the Lebesgue space, P(K) being the space of Lagrangian polynomials defined

on K and S(K) being the vectorial space of polynomials P(K)2 defined on K. In the

discrete version of the weak formulation (2.14) the eigenvalue problem consists is finding

(ht, hz, β2) ∈ (Vh, Qh,C) for all (φ
t
, φz) ∈ (Vh, Qh). Then, with the above mentioned

LT/LN/Q or LT/QN/C elements the H(curl;Ω) vectorial space is approximated, while

with the nodal elements the H1(Ω) scalar space is approximated.

2.2.5 Perfect Matched Layers

To handle an open waveguide the Perfect Matched Layer (PML) materials [59]

are added at the outermost regions of the domain backed by either PEC or PMC walls.

Here the PMLs are implemented in the same fashion as in [60]. Following this approach,

the above defined weak formulation is kept the same, except for the modified [ǫr] and [µr]
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matrices, i.e.:

[ǫrP ML] = ǫr











cx 0 0

0 cy 0

0 0 cz











(2.36)

[µrP ML] = µr











cx 0 0

0 cy 0

0 0 cz











(2.37)

where ǫr and µr are the parameters for the material adjacent to the PML and c is given by:

c = θ − j
σ

ωǫr

(2.38)

σ being the PML material conductivity profile, and by default set θ = 1. σ is changed

throughout the depth of the PML layer as follows:

σ = σmax

(

ρ

d

)m

(2.39)

where σmax is a user-defined constant, ρ is the distance from the PML layer start, and d is

the PML layer thickness.

The properties (cx, cy, cz) at this absorbing layer are defined differently depending

on the PML-domain interface region. For a PML-material interface located in a region

with constant x, the PML parameters are set as cx = 1/c, cy = c and cz = c. When it is

located in a region with constant y, cx = c, cy = 1/c and cz = c. And at the corner regions

cx = 1, cy = 1 and cz = c2.

At open waveguides the PMLs bounded by PEC/PMC conditions are used, therefore

“Berenger” modes, also known as box modes, tend to appear for very large domains [61].

Fortunately, these modes are easily recognized and discarded.

2.3 Results with the FEM

In this section some key simulations are presented to evaluate the implementations

of the above described FEM formulations on benchmark waveguides. First, some results

for the FEM with nodal elements are shown with discussions and exposing its problems.

Then, the advantages of the FEM with edge elements are explored and discussed through

simulations. The methods are designated as:

• Nodal Penalized Continuous Galerking FEM (NPCGFEM): the discrete version of the

weak formulation given in (2.29) using nodal elements;

• Continuous Galerking FEM (CGFEM): the discrete version of the weak formulation
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given in (2.14) using edge elements;

Concerning the code, the following commentaries about the implementations can

be made:

• All of the FEM codes were programmed with Object-oriented programming [52] in

Matlab [62];

• The complex eigenvalue problem is solved with sparse matrices solvers from the

numpy/scipy libraries in Python or the Matlab (eigs function);

• All waveguides were modeled and meshed with the GMSH free software [53];

• The meshing is automatically done and imported with some Python programs

developed;

• The data processing and parsing related to the mesh is also programmed in Python;

• The most critical part of the code, the assembly, is optimized with sparse matrices,

such that the matrix filling process is as fast as possible.

In addition to the results here present, in the Appendix A an application of mode

sources for light propagation in very long silicon photonics Bragg Gratings is shown. The

research presented in this appendix used the NPCGFEM code to provide the mode solutions

for 3D DGTD simulations.

2.3.1 Rectangular Waveguide

The most basic waveguide is the rectangular one with either PEC or PMC walls.

It is a square structure filled with air. Although it is a simple waveguide, it is quite useful

to assess the accuracy of a method since its analytical solutions are easily obtained. Such

a waveguide bounded by PMC walls and with a cross-section of 10.16 mm × 22.86 mm was

analyzed and compared to its analytical solutions. Here a mesh of 304 quadratic triangles

was used.

Nodal

The penalization was set to either s = 0 or s = 1 to evaluate the eigensolutions

in a wide spectrum with the NPCGFEM. In the Fig. 2.3 it is seem that the analytical

solutions in each frequency were well captured.

All of the solutions that do not match with the analytical one in Fig. 2.3(a) are

indeed the infamous spurious modes. When s = 1 these unwanted modes are removed from

the solution spectrum, as depicted in Fig. 2.3(b). The β = 0 solutions are intentionally

left in these figures. They are easily recognized and discarded in the waveguide analysis
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Figure 2.3: Waveguide analysis of the standard X-band rectangular waveguide with the
NPCGFEM using quadratic shape functions. (a) penalty parameter set to 0 and (b)
penalty parameter set to 1.

since its β values are usually tiny (real part in the order of 10−10). Of course, cleaning

these β = 0 values for waveguides operating close to the cut-off is harder, but in most of

the cases the waveguides operate far from the cut-off. Alternatively, the β = 0 modes

can also be avoided by setting a suitable eigenvalue search. For a frequency of 9 GHz,

the correct and a spurious solution are shown in Fig. 2.4. In the spurious solution the

divergence condition violation is visually appreciated.

Edge

When using the CGFEM, no spurious modes were found. The results are shown

in Fig. 2.5. This time the β = 0 modes were filtered at the eigenvalue search, such that

they are not present in the solution.

2.3.2 Rectangular Waveguide with a hole

Even though the spurious modes problem is partially solved with the divergence

penalty, an important drawback of the NPCGFEM is that it can’t naturally handle non-

convex domains. i.e., no conforming nodal FEM can treat domains with reentrant corners.

Among others, this is one of the reasons for the electromagnetics community to use the
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(a) (b)

Figure 2.4: Transverse magnetic field ht of a correct and a spurious solution of the standard
X-band rectangular waveguide operating at 9 GHz, analyzed with the NPCGFEM. (a) a
correct solution and (b) a spurious solution.
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Figure 2.5: Waveguide analysis of the standard X-band rectangular waveguide with the
CGFEM employing the LT/LN/Q hybrid elements.

edge elements instead of the nodal ones. This aspect of the nodal elements was clarified

and studied in [35]. To check this property the PMC bounded rectangular waveguide with

a hole shown in Fig. 2.6 was analyzed. This time the mesh comprised 1104 quadratic

elements (not shown in this figure), to better capture the field singularities

Nodal

With the NPCGFEM no correct mode was found for several penalty parameters

and meshes setups (at f = 12 GHz). This was expected and confirms the theory from [35].
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Figure 2.6: Rectangular Waveguide with a hole (non-convex domain) shown with its mesh.
Its correct solutions can’t be calculated with the NPCGFEM.

Edge

This tricky holed waveguide was again analyzed at f = 12 GHz with the CGFEM

yielding good results in comparison a commercial software, the Ansys HFSS [63]. In the

commercial software the dominant mode propagation constant was found to be β = 197.37

when using the port modes solution with the default setup. In the CGFEM code it was

found to be β = 198.48 with the 1104 elements mesh. Apparently, the latter is more

precise due to the use of this refined mesh with high order elements (LT/QN/C). This can

be appreciated in the comparison of the fields from both solvers, presented in Fig. 2.7.

To get a more fair comparison with the HFSS software, the commercial software

setup was modified to do an adaptive mesh refinement with 19 passes and a Delta S value

of 10−6. In this case, the basis was set to second order instead of the default first order

basis used above. The port results for β were evaluated through the refinement process

and the values are shown in Fig. 2.8(b). Then, a non-adaptive mesh refinement with the

CGFEM was performed. In the CGFEM the mesh was changed by modifying the elements

sides with a linear variation between 5 mm and 0.45 mm. The mesh having element sides

of 0.45 mm comprised 1746 elements. The results for the convergence of β for the CGFEM

code are shown in Fig. 2.8(a). It can be seen that as the mesh is increased (smaller

elements sides), the β values match well with the converged one from the HFSS using

second order elements.

2.3.3 Strip Waveguide (photonic wire)

In Fig. 2.9 a conventional photonic waveguide is illustrated, the outermost boxes

are the PMLs used to mimic its open waveguide characteristics. It usually comprises a high

index core (nc, commonly silicon), patterned above a substrate layer (nb, commonly silica
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(a) CGFEM (b) HFSS

Figure 2.7: Absolute electric and magnetic fields of rectangular waveguide with a hole
(non-convex domain) operating at 12 GHz. (a) the solution with the CGFEM (b) the
solution with the HFSS commercial software.

- SiO2) and a cladding (nair, commonly air or silica) above the silicon and silica. Also,

there is a thick silicon layer below the silica (ns, commonly silicon or silica).

In the case of the strip waveguide, the layer of height h1 and width w is made

of silicon (nc = 3.5) mounted on a SiO2 (nb = 1.45) buffer of height h2, both above an

underlying layer of height S also made of silicon (ns = 3.5), in which the air cladding is kept.

For this waveguide w can vary from about 300 nm up to 600 nm for single mode operation

around 1500 nm. Typically, photonic devices operate under single-mode condition, where

the adopted light is either TE or TM polarized. The nomenclature TE/TM comes from 1D

slab waveguides theory. For real optical waveguides TE/TM modes are just an inherited

naming and it does not mean that the longitudinal components or any other component of

either the electric or magnetic fields are null. Instead, it separates the mode fields which

have electric fields components rather aligned (TM) or perpendicular (TE) to the plane of

incidence. Therefore, from now on a different naming for those modes is chosen: Quasi-TE

and Quasi-TM.

Here the conventional strip waveguide (photonic wire) was analyzed operating at

λ0 = 1.55 µm under a leaky mode condition. When the underlying silicon layer is included

in the modal analysis, it is known that the fundamental mode is leaky, as shown in the

work [64], and the correct calculation of neff is cumbersome due to its imaginary part.

This waveguide is a nice benchmark to evaluate mode solvers (which can handle leaky

modes) and it was rigorously studied in [65], [64] and [66]. In the present analysis, the
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Figure 2.8: Mesh refinement for computing the β of the holed waveguide. (a) the solution
with the CGFEM as the mesh is refined (b) the solution with the HFSS commercial
software using its adaptive mesh refinement.
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Figure 2.9: Typical photonic waveguide cross-section with its dimensions. The outer
rectangles are the PML layers.

dimensions were set to S = D = R = h2 = 1 µm, w = 500 nm, h1 = 220 nm to aim for the

same leaky mode as in those references. The PML thickness in this case was set to λ0, and
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after a convergence analysis on Imag{neff} its parameters were set to σmax = 1016 with

a cubic conductivity profile (m = 3). The mesh consists of 8158 quadratic elements the

core having elements with side lengths of about 40 nm. For this scenario, the best known

reported index is neff = 2.412372 − j2.9135 × 10−8 [65].

Nodal

This device was again analyzed with the NPCGFEM code. Now the penalty

parameter was set to s = 1/n2
c for removing the spurious solutions. In this case some

’Berenger’ modes were found and recognized due to their large loss. In the wavelength

under analysis only the fundamental Quasi-TE mode was found with an index of neff =

2.405 − j2.9 × 10−7. This value is not too far from the ones reported in the references.

However, the leaky mode condition was not well captured since the mode index loss is

about 10 times bigger than expected. The electric field of the three components is shown

in Fig. 2.10(a). It can be seen that the nodal elements are not capable of capturing the

singular fields at the corners.

Edge

Finally, this waveguide was evaluated with the CGFEM. In this case, the LT/QN/C

higher order elements were used to improve the solution precision. No spurious modes were

found, but the same ’Berenger’ modes appeared and were discarded. With this setup the

Quasi-TE fundamental mode was found to have neff = 2.412352 − 2.934526 × 10−8, which

is quite close to the references. Observe that the imaginary part is now more accurate

and it complies with the reference values. Additionally, the field solution, detailed in Fig.

2.10(b), is much more accurate and the corners singularities are nicely captured.

2.4 Commentaries

Overall in this chapter the waveguide analysis problem was studied. The FEM

approach was discussed and some results with different elements setups were presented.

From the results it is clear that the hybrid elements outperform the nodal ones due to

the better approximation of the H(curl;Ω) vectorial space achieved with the edge shape

functions.
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(a) NPCGFEM

(b) CGFEM

Figure 2.10: Electric fields profile for the photonic wire with a 500 nm × 220 nm obtained
from: (a) the NPCGFEM; (b) from the CGFEM. Fields are zoomed at the core region.
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Chapter 3

Interior Penalty Discontinuos

Galerkin for Waveguide Analysis

Finally, in this chapter the method proposed in this dissertation is introduced.

The proposed novel method is a combination of the the Interior Penalty Discontinuous

Galerkin (IPDG) method with the standard FEM to perform waveguide analysis with

high accuracy. From now this combined method is cas IPDG/FEM. Before introducing the

IPDG/FEM some topics to clarify the present method are discussed, namely the non-physical

solutions, the reason for using the IPDG and the DG flux.

3.1 The spurious-free property and the IPDG choice

For the second order (curl-curl) time-harmonic Maxwell’s equation, some spurious-

free DG methods have been studied in the literature: [67–71]. A local DG method with

nodal elements was used in [67, 68], and it was shown that a sufficiently large penalty

function is useful to remove the spurious modes from the solution spectrum. In essence

this penalization shifts the non-physical solutions out of the discrete solution spectrum.

In [68] the authors argue that this conclusion can be extended to other DG techniques,

such as the IPDG. Alternatively, the first order time-harmonic Maxwell’s equation solution

with the DG is discussed in [72].

The IPDG method was applied in [69, 70] for the analysis of resonant cavities.

This approach yields a symmetric system with a penalization in the numerical flux to

eliminate the spurious modes. A penalty function, if well defined, can be employed to

eliminate the spurious solutions in a consistent manner in the IPDG method. Indeed, it has

been shown by Buffa and Perugia in [71] that the IPDG methods on eigenvalue problems

are spurious-free in the sense of [34].

Then, if one seeks to exploit the advantages of the DG for the waveguide analysis

problem the IPDG can be viewed as a promising approach. A waveguide analysis with this
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method would also be spurious-free and suitable for intricate optical waveguides. Moreover,

on specific complex waveguides, such as a plasmonic one, the advantages of the DG might

come handy.

Therefore, in this research the IPDG formulation from [69–71] was considered.

The Nédelec conforming elements were used combined to the nodal conventional FEM. This

approach results in a robust novel method to compute waveguide modes with high accuracy

and which eliminates non-physical solutions in a controlled manner with a penalty term.

In order to make a precise analysis of intricate optical waveguides the Perfect Matched

Layers (PML) [59] were included in the computation of open waveguides in the same

fashion as in the Sub-Section 2.2.5. With an adequate penalty function, a spurious-free

method in the sense of [34] was observed, as expected from the theory presented in [71].

The proposed method was tested in several waveguides yielding excellent results.

In the IPDG/FEM approach the unwanted null-space (related to the eigenvalues

with β = 0 or ω = 0) is still present since no divergence condition is explicitly imposed.

These eigenvalues are easily filtered out of the solution spectrum by means of using limits

on the eigenvalues search. Additionally, in [73] and in [74] the IPDG method was successfully

extended to the time domain, producing stable explicit time-stepping numerical schemes,

indicating that contrary to what was expected from [75] the unwanted null-space solutions

do not affect the stability of those time domain numerical schemes. These results justify

the analysis here presented. Moreover, these works indicate that the present method could

be directly associated with time/space marching schemes for mode propagation.

3.2 DG Penalized Flux: tangential jump and average

As in all DG methods, a numerical flux between adjacent elements must be defined

and applied to couple the local-element basis at faces or edges. The flux definition is not

unique and its choice will dictate the convergence and stability of the method [6, 7, 76].

In this work the flux is the same as the one shown in [71] and [69], which is built with

the tangential jump and average, defined hereafter. For now, this definitions might seem

vague, but they are presented for later usage.

Suppose a general domain Ω meshed with a set of elements K and the faces set

F (edges in a 2D domain). F consists of the interior faces Fi and the boundary faces Fb.

Let n be the unit outward normal vector of a face in F . Each face in Fi is shared by two

elements. KL and KR are the adjacent elements (left and right) sharing a given face in Fi

(obviously n̂L = −n̂R). Now, suppose a discontinuous vectorial quantity u at Ω, where uL

and uR are the traces of u in a given face of F . The trace is the local value of u at the
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face. The tangential jump JuK and average {u} can finally be defined as:

JuK = nL × uL + nR × uR

{u} = (uL + uR)/2
(3.1)

for a face in Fi. And for a face in Fb, which has no adjacent element:

JuK = nL × uL

{u} = uL

(3.2)

In Fig. 3.1 two LT/LN elements sharing an edge are shown and the quantities

that will contribute to JuK and {u} are detailed. Note that the edge numbering must be

consistent.

Figure 3.1: Shared edge between two elements with materials ǫL and ǫR to illustrate the
flux contributions on a given edge.

It is interesting to note that if the LT/QN elements are used the numerical flux is

kept unchanged, since the enrichment functions (T7 = Tx7x̂ + Ty7ŷ and T8 = Tx8ŷ + Ty8ŷ

from equations (2.32)) do not present tangential components along the edges. This

is illustrated in Fig. 3.2 for a given triangle. This is quite advantageous since the

approximation order is increased without requiring additional terms in the global matrices

related to the flux terms.

With JuK and {u}, the DG numerical flux that is applied to the wave equation (2.1)

can be defined. As this discussion is out of the scope of this dissertation no further details

are presented. The excellent papers by Houston et al [69], A. Buffa and I. Perugia [71]

and Sármány et al [77] bring more details on this topic. Specifically, [77] brings details on

how to insert JuK and {u} into the equation (2.1) with two distinct fluxes.

In this work the flux adopted is the interior penalty one [77], which introduces

a penalization to the tangential jump at the faces. The penalization is controlled by a

penalty parameter. While this parameter can assume large values, it is a powerful and

simple feature to eliminate spurious solutions [68,77]. A discussion on the penalty value
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Figure 3.2: LT/QN shape function T8 cross each edge normal showing that the LTQN
enrichment functions contributions to the flux terms are null.

for different problems is given in the following.

3.3 The combined DG/FEM method

First, the discrete inner product on Ω in a 2D finite element space is given by:

∫

Ω
u · v dS = (u, v) (3.3)

for the elementwise area integrals. And:

∫

F
u · v dl = (u, v)F (3.4)

for the edgewise line integrals, where dS is the area differential and dl is the line path

differential in (x, y). The line integrals are numerically obtained using Gaussian quadrature,

while the area ones are performed with the quadrature rules from [55].

In [69, 71, 77], the approximation of equation (2.1) in a finite element space with

the symmetric IPDG discrete formulation is given. The formulations from these works are

used to solve the cavity problem, which is inherently different to the waveguide one. Then,

the eigenvalue is k2
0. If Φ are the test functions, then find (H, k2

0) such that for all Φ:

(∇ × Φ, [ǫr]−1∇ × H) − k2
0(Φ, [µr]H)

− ({[ǫr]−1∇ × Φ}, JHK)F − (JΦK, {[ǫr]−1∇ × H})F + aT (JΦK, JHK)F = 0
(3.5)
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where k0 = 2π
λ0

, λ0 is the air vacuum wavelength, aT is the penalty function. Below this

formulation is adapted for the guided mode analysis problems.

Before proceeding, it is important to focus on the physical aspects of the problem

of interest here: the 2D waveguide analysis. It is known that the non-physical solutions in

mode analysis are avoided if edge elements are used in the tangential component ht. Yet,

to better handle material discontinuities and singularities a non-conforming method, for

instance the IPDG method, is more appropriate. For the waveguide modal analysis, the

inhomogeneity lies in the tangential component. Due to this, here the hz field is solved

with the classical FEM, while ht is solved with an adapted version of the IPDG method

(equation (3.5)). It is also prudent to use the DG method only at ht, since the DG method

introduces more degrees of freedom in comparison to the conventional FEM. To solve hz

with a Continuous Galerkin FEM implies in:

JhzK = 0

{hz} = 0
(3.6)

Specifically, this means that the hybrid edge/nodal functions were adopted to

calculate the unknown field in the novel IPDG/FEM modal analysis scheme. With the

LT/LN or LT/QN elements detailed in the Sub-Section 2.2.4 the H(curl;Ω) vectorial space

is approximated, while with the conventional nodal quadratic or cubic Lagrange elements

the H1(Ω) scalar space is approximated. Note that different to the standard FEM, here

the ht field is solved with a DG method, and hence the edge shape functions are local to

each element. This allows the proposed method to catch strong field variations at material

interfaces more appropriately.

Now, the spaces definition are updated appropriately:

Vh := {u ∈ L2(Ω)2 , ∀K ∈ Ω, uK ∈ S(K)}}
Qh := {u ∈ L2(Ω) , ∀K ∈ Ω, uK ∈ P(K)}

(3.7)

L2(Ω) being the Lebesgue space, P(K) being the space of Lagrangian polynomials defined

on K and S(K) being the vectorial space of polynomials P(K)2 defined on K. Now Vh is

a discontinuous vector space since the degrees of freedom are local to each K ∈ Ω in the

IPDG. Observe that the scalar space Qh is kept the same as in the standard FEM.

Now, again the field expansion from equations (2.4) and (2.11) were applied

in both H, ∇ and at Φ in the equation (3.5). Then the original equation (3.5) can

be particularized to the 2D problem. For the tangential jump and average (recall the
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equations (3.6)):

{[ǫr]−1∇ × Φ} = (jβ){[ǫr]−1φt × ẑ} + {[ǫr]−1∇t × φt} (3.8)

{[ǫr]−1∇ × H} = (jβ){[ǫr]−1ht × ẑ} + {[ǫr]−1∇t × ht} (3.9)

J[ǫr]−1HK = J[ǫr]−1htK (3.10)

JΦK = JφtK (3.11)

note that both J[ǫr]−1htK and JφtK are vectors in ẑ.

Then, by inserting the above equations in the equation (3.5), the inner product

of the flux terms are particularized as:

∫

F
{[ǫr]−1∇ × Φ} · JHKdl =

∫

F
{[ǫr]−1∇t × φt} · JhtKdl (3.12)

∫

F
JΦK · {[ǫr]−1∇ × H}dl =

∫

F
JφtK · {[ǫr]−1∇t × ht}dl (3.13)

aT

∫

F
JΦK · J[ǫr]−1HKdl = aT

∫

F
JφtK · JhtKdl (3.14)

Finally, in the following the formulation of the novel IPDG/FEM modal analysis

scheme is defined. If φt and φz are the test functions for ht and hz, respectively, find

(ht, hz, β2) ∈ (Vh, Qh,C) such that for all (φ
t
, φz) ∈ (Vh, Qh):

(∇t × φt, [ǫr]−1∇t × ht) − k2
0(φt, [µr]ht)

− ({[ǫr]−1∇t × φt}, JhtK)F − (JφtK, {[ǫr]−1∇ × ht})F

+ aT (JφtK, JhtK)F

=

β2
[

(∇t × φz, [ǫr]−1∇t × hz) + (φt × ẑ, [ǫr]−1∇t × hz)

+ (∇t × φz, [ǫr]−1ht × ẑ) + (φt × ẑ, [ǫr]−1ht × ẑ)

− k2
0(φz, [µr]hz)

]

(3.15)

If one removes the flux terms from the equation (3.15) and setup the problem

with a classical FEM approach, i.e. with shared degrees of freedom between elements, a

conventional Continuous Galerkin FEM (CGFEM) problem is obtained.

Either the PEC or PMC walls can be incorporated into the equation (3.15) in the

same manner as in the classical FEM.

The flux related terms in the equation (3.15) can be expanded to better understand

its implementation. With the equations (3.1) and checking the Fig. 3.1, it is easy to see

that each flux related term comprises a permutation of the adjacent elements L and R
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contributions. For instance, the first flux related integration term in equation (3.15) is:

{[ǫr]−1∇t × φt} · JhtK = 0.5
(

([ǫL]−1∇t × φtL) · (nL × htL) +

([ǫL]−1∇t × φtL) · (nR × htR) +

([ǫR]−1∇t × φtR) · (nL × htL) +

([ǫR]−1∇t × φtR) · (nR × htR)
)

(3.16)

where ǫL and ǫR are the ǫr of elements L and R, respectively. Similar equations will arise

from the other flux terms.

The assembly of the contributions from all K elements and all edges in F will

culminate in an eigenvalue problem for β2, given by:

[A]v = β2[B]v (3.17)

where v are the eigenvectors - the modal fields ht and hz, β2 is the eigenvalue - the modal

propagation constants, A is the matrix obtained from the right hand side of (3.15) and B

is the matrix obtained from the left hand side of (3.15). Then, by solving this eigenvalue

problem a full-wave waveguide analysis can be performed. This formulation is free of

non-physical solutions in the sense of [34] for a large penalty parameter.

Notice that the dual electric field formulation is easily obtained following the

same approach, except that the starting equation is for E.

3.4 The Penalty Function

The value of aT is dependent on the dimensions, polynomial order and materials

of the adjacent elements. This value is problem dependent, however from [68] it is known

that when aT → ∞ the spurious eigensolutions are removed from the solution spectrum.

However, using such a large value is impractical when solving an eigenvalue problem.

Instead, a function for each face in the domain should be defined to handle each element

interface differently.

Although the actual value for the penalty term is somewhat arbitrary, some hints

on its chosen value are given in [77] and [78]. Inspired by these works and after performing

an empirical analysis the penalty function is chosen as:

aT = αT

( 1√
le

)( 1
A(KL)

+
1

A(KR)

)

(min(|ǫL|, |ǫR|))−1 (3.18)
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for edges in Fi, and:

aT = αT

( 1√
le

)( 2
A(KL)

)

(|ǫL|)−1 (3.19)

for edges in Fb. The αT is a global, positive and user defined value independent of the

mesh, le is the edge length, and A(K) is the area of one of the adjacent elements sharing

an edge. It was observed that a penalty function leaning towards the above definitions is

indeed free of non-physical solutions. Moreover, the αT is useful to increase the accuracy

and to avoid badly scaled matrices. Note that aT is an edge-local parameter.

3.4.1 Recipe to attain high accuracy

For the problems tackled with the IPDG/FEM method, it is apparent that αT ≈ 102

guarantees a high accuracy solution for microwave waveguides. On the other hand, on

intricate optical waveguides, the αT value ranges from 10−4 to 10−3. This parameter

depends on the smallest elements of the mesh: for optical waveguides with reduced element

sides of about 10 nm it was observed that by setting αT ≈ 10−4 accurate solutions are

achieved. While for sides of about 40 nm set αT ≈ 10−3. Setting αT closer to these values

is appropriate to avoid a badly scaled eigenvalue problem, since the elements are extremely

small for optical waveguides. Indeed, a spurious free mode solver with high accuracy is

ensured even when setting αT below these recommended values. Further discussions on

this parameter are presented below in practical applications.

Overall, a subtle better performance of the IPDG/FEM was observed over the

CGFEM in all of the waveguides analyzed so far. And this is directly associated with the

αT parameter value, as shown in the numerical examples in the following chapter. Indeed,

the values above described for αT are just like a recipe that until now is proven to be very

good to analyze any waveguide with unprecedented high accuracy (in comparison to prior

FEM-like approaches). Following the recipe for this parameter it is expected that any user

will be able to solve the waveguides with high accuracy and without any spurious solutions.

The role of the penalty function and its mathematical aspects are deeply discussed in the

paper [68].

3.5 Method Validation and investigation of the αT

parameter

In this chapter a novel scheme to perform a full-wave analysis of arbitrarily

shaped waveguides was demonstrated by means of a discretization of the Maxwell’s vector

wave equation with an IPDG combined with a standard FEM, named as IPDG/FEM. Prior

to solving intricate waveguides, a careful validation of the proposed method must be
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performed. Here, the validation was done on a quite simple structure: the rectangular

waveguide operating at the microwave spectrum.

In all of the examples reported in this section a classical X-band homogeneous

rectangular waveguide bounded by PMC walls was considered. Although this is a simple

structure, its analytical solutions facilitate the evaluation of the method and the investi-

gation of the the penalty parameter αT effects in the equations (3.18) and (3.19). This

waveguide has a cross-section of 10.16 mm × 22.86 mm. This structure was solved with the

proposed combined IPDG/FEM for several αT values in different frequencies.

3.5.1 Global Matrices Structure

Before proceeding on the method validation, the shape of the global matrices of

the IPDG/FEM and the CGFEM for the rectangular waveguide problem on a fixed mesh are

illustrated in Fig. 3.3. It is interesting to see that the IPDG results in an almost diagonal

matrix for B. Note that although the number of degrees of freedom is increased in the DG

method, the number of non-zero values (nz in the figure) in the global matrices is only

14.89% bigger than that of the CGFEM.

(a) (b)

Figure 3.3: Global matrices comparison for the rectangular waveguide: (a) IPDG/FEM,
(b) CGFEM.

3.5.2 Dispersion of the Rectangular Waveguide

The dispersion study from the Sub-Section 2.3.1 of the aforementioned waveguide

was repeated for four αT values: 0, 10−4, 10−2 and 1. In this study the mesh used in the

Sub-Section 2.3.1 (304 triangles) with the LT/QN/C elements was repeated. This mesh

has triangles with the mean le = 1.5 mm. The results are shown in Fig. 3.4. Note that

spurious solutions were only found for αT = 0. However, for αT < 1 the accuracy is clearly

low.

The dispersion results validated the proposed method. However, some important

insights on the αT effect can be delineated:
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Figure 3.4: Dispersion analysis of the standard X-band rectangular waveguide with the
IPDG/FEM for several αT values. (a) αT = 0, (b) αT 10−4, (c) αT = 10−2 and (d) αT = 1.

• Apparently the proposed penalty function is effective to shift the spurious eigenvalues

out of the solution spectrum;

• The penalty function by itself is not enough to guarantee a highly accurate solution;

• The penalty parameter αT should be scaled for a given domain and mesh, such that

it compensates the penalty function in a convenient manner;

Although the above observations are important, a more precise definition of

αT is needed. For this in the following some insightful empirical analysis obtained from

numerical simulations are presented.
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3.5.3 αT effect on the accuracy

To better estimate the effect of αT on the accuracy of the present method several

simulations with different penalty parameter values and using either the LT/QN/C or the

LT/LN/Q elements were performed. In this study the 304 triangles mesh was repeated.

The results are summarized in Fig. 3.5(a), where the error plot is shown for the dominant

mode propagation constant. The error is the normalized difference between the IPDG/FEM

(β) and the reference one obtained analytically (βRef ). Closer to the cut-off frequency the

error is increased, but this effect is less prominent for αt ≥ 1. And, in Fig. 3.5(b) a detailed

view of the error for αt ≥ 1 is shown. In both figures the error of the corresponding

conventional CGFEM is given. For LT/QN/C, when αt = 10000 the IPDG/FEM error is

slightly smaller than that of the CGFEM, but at the cost of using more degrees of freedom

for the ht component. In the inset of Fig. 3.5(b) this error reduction can be observed.
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Figure 3.5: Dominant mode β error for the Rectangular waveguide, the relative error is
presented in a logarithmic scale. (a) IPDG/FEM for several αt values. (b) IPDG/FEM
with large αt values in comparison with the CGFEM.
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Overall, it was observed that the precision of the IPDG/FEM is superior to that of

the CGFEM for a suitable αT , both in terms of the mesh size and the number of degrees of

freedom. This can be appreciated in Fig. 3.6 for this homogeneous waveguide. In this plot

the αT parameter was linearly varied between 500 and 5000, while the mean edge length

le is also linearly swept between 0.5 mm and 2.5 mm. One can see that as the number

of DoF is increased, the IPDG/FEM tend to outperform the CGFEM with slightly more

accurate solutions. An impressive result appears: for highly refined meshes the IPDG/FEM

outperforms the CGFEM significantly.
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Figure 3.6: Comparative relative error convergence for the Rectangular Waveguide as the
number of degrees of freedom is increased when f = 10 GHz. The superior performance of
the IPDG/FEM over the CGFEM is impressive and more significant for refined meshes.
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Chapter 4

Results with the IPDG/FEM

In this chapter the novel modal analysis scheme presented in this dissertation is

finally tested and compared to other FEM approaches discussed in the Section 2.2. The

tests include standard microwave and optical waveguides, waveguides with lossy dielectrics,

leaky optical waveguides and also plasmonic waveguides. Noteworthy is the analysis of

some benchmark waveguides that are quite challenging. Again, several results that are

shown here are also given in [1].

4.1 Microwave waveguides

This section is focused on results for waveguides operating at microwave frequen-

cies, namely the rectangular waveguide with a hole and another rectangular waveguide with

a lossy dielectric. In the first case, the holed waveguide, it is shown that the IPDG/FEM

is capable of dealing with non-convex domains, which is expected since in this method

the H(curl;Ω) vectorial space is truly approximated with the edge elements. And for the

waveguide with a lossy dielectric the efficiency of the method to analyze inhomogeneous

structures is proven. Moreover, this inhomogeneous waveguide was analyzed with a lossy

dielectric, proving that the proposed method can calculate the complex propagation

constant appropriately.

4.1.1 Non-convex domain

The simulation of the Rectangular waveguide with a hole from the Sub-Section

2.3.2 was repeated using the IPDG/FEM (setting αT = 500 and with the same 1104

LT/QN/C elements at f = 12 GHz). This setup yields β = 198.49. This value is consistent

with the convergence analysis performed with the adaptive mesh refinement process from

the Ansys HFSS and the previous results from the CGFEM. The Fig. 4.1 shows the absolute

field solution from the IPDG/FEM in comparison with the CGFEM (repeated to ease the

comparison).
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(a) IPDG/FEM (b) CGFEM

Figure 4.1: Absolute electric and magnetic fields of rectangular waveguide with a hole
(non-convex domain) operating at 12 GHz. (a) the solution with the IPDG/FEM (a) the
solution with the CGFEM (repeated).

In the Fig. 4.2 the dispersion of this waveguide in a wide frequency range is

presented also in comparison with the CGFEM. The results are under a nice agreement

and a first higher order mode is seen for f ≥ 16 GHz.
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Figure 4.2: Dispersion relation in a wide frequency range for the rectangular waveguide
with a hole obtained from the IPDG/FEM and the CGFEM.
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4.1.2 Inhomogeneous and lossy waveguide

An inhomogeneous structure is built with the same Rectangular waveguide under

test, but now the hole was replaced by a dielectric with a permittivity of ǫr = 9−j0.01. The

IPDG/FEM was used with αT = 100 and a mesh of 968 LT/QN/C elements at f = 12 GHz.

For this case the fundamental mode was found to have β = 515.13 − j0.5201. In the

HFSS [63] the dominant mode propagation constant was found to be β = 514.32 − j0.4976.

The magnetic field obtained from both solvers is presented in Fig. 4.3.

(a) IPDG/FEM (b) HFSS

Figure 4.3: Absolute magnetic fields of the loaded rectangular waveguide with a lossy
dielectric operating at 12 GHz. (a) the solution with the IPDG/FEM (a) the solution with
the HFSS commercial software.

A difference can be seen in the modal field from the IPDG/FEM and the port

field from the HFSS, which is probably due to the non-converged port solution from the

commercial solver. The HFSS was configured to perform an adaptive mesh refinement

with 19 passes and a Delta S value of 10−6 while using a second order basis. However, as

shown in Fig. 4.4, the port solution did not converged in the adaptive refinement.

4.2 Optical Waveguides

In this section a discussion on the analysis of some challenging optical waveguides

is given. Usually these waveguides required a lot of effort from the electromagnetics

community. There are several seminal works on waveguide analysis that were developed to

solve the optical waveguides, for instance [39,41,43,45,46,48,56,60]. In the introduction

(Section 1.2) some points on the importance of the analysis of optical waveguides were

presented.

The main problems in optical waveguides are the open-space condition and the

high index contrast due to the adopted materials. In this high index contrast the light is

usually strongly confined and the fields can assume unique profiles. In the IPDG/FEM this

contrast is not a problem due to the discontinuous approximation.
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(a)

(b)

Figure 4.4: Propagation constant from the HFSS during the adaptive mesh refinement
process. (a) the imaginary part of β and (b) the real part of β.

With regards to the first problem, the open-space, a special treatment is manda-

tory. In the optical regime, a correct modeling of a waveguide requires the computational

domain to emulate the open-space boundary, as the optical waveguides are not closed by

conductors. This problem has driven a lot of development in the computational electro-

magnetics. For instance, in [79] the supervisor of this dissertation tackled this issue with a

non-linear eigenvalue problem. On the other hand, a consolidated solution in the literature

is the use of the PML materials at the outer domain of the waveguide problem [59,60]. This

last solution, described in the Sub-Section 2.2.5, was directly applied to the IPDG/FEM

scheme.

In the not-so-numerous examples provided here, the efficiency of the present

method is shown for this hard and practical problem. For this some practical waveguides

were analyzed. Also, some benchmarks that the optical community usually use to validate

the computational methods were studied.

4.2.1 Rib Waveguide

The classical rib waveguide, an important benchmark case studied in the works

[42,45,64,80], is used as a first test problem here. This device is shown in Fig. 4.5 and



57

it was analyzed with both the proposed IPDG/FEM and the CGFEM. The wavelength

operation was set to λ0 = 1.15 µm. The material indexes are nair = 1, nc = 3.44, nb = 3.44,

and ns = 3.4. The dimensions were set to w = 3 µm, h1 = 0.5 µm, h2 = 0.5 µm and

S = D = R = 2 µm. A PML with σmax = 108, a length of λ0 and bounded by PMC’s was

included in the domain, which is visible in the waveguide figure.

X

Y

Z

Figure 4.5: Rib waveguide cross-section with its dimensions. The outer rectangles are the
PML layers.

A mesh of 8582 LT/QN/C elements with minimum element sides of about 75 nm

was used. Then, three modes were found and the obtained neff = β/k0 for a set of αt

values are detailed in the Table 4.1. For all of the αt values no spurious solutions were

found. The table also presents the error (|neff − neffRef.|/neff) in comparison to the

reliable reference values (neffRef.) of the Quasi-TE (Mode 1) and Quasi-TM (Mode 2)

modes from [64]. The results agree very well with the reference values for at least 6 digits

for the neff . As αT is increased the error is slightly reduced and is smaller than that of

the CGFEM, as expected from our investigation on αT detailed in the Sub-Section 3.5.3.

Since the mesh is quite coarse, setting αT = 1 is still acceptable and does not introduce

problems in the eigenvalue problem solution.

Table 4.1: neff = β/k0 for the Rib Waveguide with w = 3 µm, h1 = 0.5 µm, h2 = 0.5 µm
and R = 2 µm

Mode 1 (Relative Error) Mode 2 (Relative Error) Mode 3
IPDG αt =1E-3 3.413136006 + 1.04E-12i (1.131E-6) 3.411607870 + 7.51E-13i (9.131E-8) 3.402368789 - 1.46E-12i
IPDG αt =1E-2 3.413136008 + 1.60E-14i (1.132E-6) 3.411607895 - 3.58E-14i (8.412E-8) 3.402368811 - 6.74E-13i
IPDG αt =1 3.413135019 + 3.77E-14i (8.424E-7) 3.411608201 - 3.32E-14i (5.65E-9) 3.402367774 - 7.00E-13i
CGFEM 3.413136016 + 1.38E-14i (1.134E-6) 3.411607881 - 3.89E-14i (8.814E-8) 3.402368796 - 6.74E-13i
Ref. [64] 3.413132144 (-) 3.411608182 (-) -

The calculated electric fields for the Quasi-TE mode are given in Fig. 4.6. One

can compare the Fig. 4.6(a) with the one reported in [42] to see that the field solution

similarity is good. By looking at the imaginary part of the solutions (the imaginary part

of the indexes are leaning towards zero) one can see that this waveguide is not of a leaky

kind, this is confirmed in the field solution.
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(a)

(b)

Figure 4.6: Transverse electric fields 2D distributions for the Quasi-TE mode of the rib
waveguide solved with the IPDG/FEM. (a) transverse fields and (b) axial field.

4.2.2 Strip Waveguide (Leaky Mode)

The analysis of the conventional strip waveguide (photonic wire) operating at

λ0 = 1.55 µm from the Sub-Section 2.3.3 under a leaky mode condition was repeated with

the IPDG/FEM. This waveguide can also be illustrated by the Fig. 4.5, but now the layer of

height h1 and width w is made of silicon (nc = 3.5) mounted on a SiO2 (nb = 1.45) buffer

of height h2, both above an underlying layer of height S also made of silicon (ns = 3.5), in

which the air cladding is kept. When the underlying silicon layer is included in the modal

analysis, it is known that the fundamental mode is leaky and the correct calculation of

neff is cumbersome due to its tiny imaginary part. This waveguide is a nice benchmark

to evaluate leaky modes and it was rigorously studied in [64–66]. In the analysis presented
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here, the dimensions were set to S = 2 µm, D = R = h2 = 1 µm, w = 500 nm, h1 = 220 nm,

in order to aim for the same leaky mode as in those references.

To catch the leaky condition an analysis of the convergence of the imaginary

part of the neff in relation to the PML parameter σmax was performed. For this this

absorbing layer thickness was set to λ0 and used a coarse mesh of 9964 LT/QN/C elements,

which is shown in Fig. 4.7(a). The convergence of Imag{neff} is shown in Fig. 4.7(b),

and following the convergence its parameters were set to σmax = 5 × 1016 with a cubic

conductivity profile (m = 3).
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Figure 4.7: Convergence of the Imag{neff} in relation to the parameter σmax. (a) mesh
used for this analysis, (b) convergence.

In addition, another convergence study for the PML in this waveguide was

conducted to assess how much the height of the silicon buffer layer modifies the Imag{neff}.

In the references [64–66] this height was set to S = 2 µm, however in the IPDG/FEM it is

important to check the effect of the PML distance from to the waveguide core. For doing

so the dimension S was swept from 0.42 µm to 2.5 µm and the Imag{neff} was evaluated.

In this study the mesh inside the waveguide core was built with elements sides of about

60 nm to use a coarse mesh and therefore αT was set to 5 × 10−2. The convergence study

is shown in Fig. 4.8(b) and the used mesh when S = 1 µm is depicted in Fig. 4.8(a). From

the convergence it can be concluded that setting S = 2 µm is adequate to account for the

leakage in this waveguide with the PML, as expected from the aforementioned references.

Then, the mesh was updated to 17392 LT/QN/C elements with minimum element

sides of 30 nm at the core silicon layer. In this case αT was set to 10−3. The fundamental

Quasi-TE mode was then found to have an effective index of 2.41234170−j2.9155475×10−8.

This value is quite consistent with the reliable ones reported in [64–66]. Specifically, the

Imag{neff} is close to the values reported in these references. On the other hand, the real

part of neff agrees in 5 digits with the results from [66].

Finally, the analysis was repeated for different meshes (measured by the edge
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Figure 4.8: Convergence of the Imag{neff} in relation to the silicon buffer layer height S.
(a) the mesh used for this analysis, (b) the actual convergence.

sizes at the silicon core) and αT values. The results are shown in the Table 4.2. The

results are oscillating around a mean index of neff = 2.41234746 − j2.91534078 × 10−8.

The results here are in a great compliance with the reference ones, but a more refined

mesh is too time consuming to achieve the perfect matching with the well accepted value

from the CAMFR free-software from [65].

Table 4.2: neff for the Strip Waveguide with S = 2 µm, D = R = h2 = 1 µm, w = 500 nm,
h1 = 220 nm

le at core αT neff (Quasi-TE)
40 nm 1.45 × 10−3 2.41235185 − j2.9167883 × 10−8

35 nm 1.225 × 10−3 2.41234711 − j2.9149351 × 10−8

30 nm 10−3 2.41234170 − j2.9155475 × 10−8

25 nm 7.75 × 10−4 2.41234462 − j2.9148570 × 10−8

20 nm 5.5 × 10−4 2.41235199 − j2.9145758 × 10−8

In Fig. 4.9 the 1D profile of the dominant field Ex along the middle of the

waveguide is depicted for the fundamental Quasi-TE mode for the le = 30 nm case. The

PML layer is at the y < 0 region, and the field absorption due to the PML is visible in this

figure. The underlying silicon layer is at the 0 < y < 2 region. The oscillatory leaky field

behavior is well captured with the present IPDG/FEM. The oscillation frequency matches

with the same plot presented in [66]. Additionally, the 2D profile for the E field are given

in Fig. 4.10 for the le = 30 nm simulation.

4.2.3 Trapezoidal Waveguide

Finally, as a last example the trapezoidal waveguide was analyzed, which is

another challenging device that was only solved with accurate methods in [50] and in [81].

This structure is shown in Fig. 4.11, it comprises a dielectric/magnetic core embedded in
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Figure 4.9: Photonic wire Ex 1D field profile at the middle of the waveguide. The leaky
mode characteristics is detailed in the zoomed plot inside the figure.

an air layer. In this figure the outer boxes are the PMLs. To increase the field jumps at

the interfaces, the analyzed waveguide was the one with the core material having ǫr =
√

8

and µr =
√

8.

The analysis was performed at λ0 = 1.5 µm with the dimensions from [81], i.e.

a = 1 µm, b = a/ sin (5π/9) and c = a(1 + 2 tan (π/18)), and with an added PML of 0.7λ0

thickness. Using LT/QN/C elements and without any special treatment excellent results

were obtained. Again comparative results are presented between the IPDG/FEM and the

CGFEM with relative errors from the reference values reported in [81]. See the Table 4.3

with the results for the fundamental mode (the imaginary part was below 10−14 for all

cases and it is not shown in the table) for some values of mean core edge length (le) and

αT . The αT in the three IPDG/FEM simulations was: 5 × 10−4 (le = 30 nm), 5.25 × 10−4

(le = 35 nm) and 5.5 × 10−4 (le = 40 nm). For all of these cases the IPDG/FEM relative

error was smaller than that of the CGFEM.

Table 4.3: Comparative neff for the Trapezoidal Waveguide operating at λ0 = 1.5 µm with
a = 1 µm, b = a/ sin (5π/9) and c = a(1 + 2 tan (π/18)). Core material: ǫr = µr =

√
8

le at core IPDG/FEM (Relative Error) CGFEM (Relative Error)
30 nm 2.6707582959 (4.15E-8) 2.6707585002 (1.18E-7)
35 nm 2.6707584759 (1.09E-7) 2.6707587157 (1.99E-7)
40 nm 2.6707587916 (2.27E-7) 2.6707589431 (2.84E-7)

In this waveguide the advantage of the IPDG/FEM over the CGFEM is relevant

and a better field solution was observed with the IPDG/FEM when the mesh mean edge

length at the core was set to 30 nm. In the Fig. 4.12 the transverse magnetic field of the

IPDG/FEM and the CGFEM are plotted. While the main field Hy is apparently the same

on both methods, the Hx field is better captured with the IPDG/FEM. This explains the

slightly greater index for the CGFEM. For more refined meshes this field difference was not

observed.
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(a)

(b)

(c)

Figure 4.10: Photonic wire 2D E field profile: a) |Ex|, b) |Ey|, c) |Ez|.

4.3 Plasmonic Waveguides

In this section the analysis of two plasmonic waveguides is discussed. If optical

waveguides are cumbersome, dealing with plasmonics can be even harder. The plasmonic
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Figure 4.11: Geometry of the trapezoidal waveguide embedded in air and bounded by
PMLs.

(a)

(b)

Figure 4.12: Comparison between the IPDG/FEM and the CGFEM transverse magnetic
field profiles for the trapezoidal waveguide. The core material have ǫr =

√
8 and µr =

√
8

and the mesh mean edge length at the core is set to 30 nm,. (a) Hx, (b) Hy.

waveguides rely on metal-dielectric interfaces, which results in fields with strong singularities

that are hard to approximate. In addition, the intense fields on plasmonics implies in a
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lossy propagation condition. The losses in the plasmonic modes are rather important and

must be well calculated. For all of these issues the method proposed in this dissertation is

quite appropriate due to its already mentioned advantages. In the following the analysis

of two waveguides that supports plasmonic modes are presented.

4.3.1 DLSPP Waveguide

The dielectric-loaded surface plasmon-polariton (DLSPP) waveguide has been

throughly studied in [25]. It comprises a dielectric ridge (polymer) above a thin gold layer

with air cladding and a thick dielectric substrate. This structure supports a confined

surface plasmon-polariton lossy wave at the metal-ridge interface. The waveguide is

detailed in Fig. 4.13(a). The DLSPP with d = 100 nm, w = 600 nm and t = 600 nm,

operating at λ0 = 1.55 µm, was analyzed with both the proposed IPDG/FEM and the

CGFEM. The material properties are nair = 1, np = 1.535, ns = 1.6 and nAu = 0.55 − i11.5

(lossy metal).

X

Y

Z

(a)

X

Y

Z

(b)

Figure 4.13: DLSPP waveguide cross-section with its (a) dimensions and (b) mesh.

An extremely refined mesh with 32100 LT/QN/C elements shown in Fig. 4.13(b)

was used, in which the gold layer elements had sides of about 10 nm. Due to this small sized

elements, for this problem the penalty parameter was set to αt = 10−4. The PML thickness

was set to 1 µm and it was bounded by PMC. For the IPDG/FEM the fundamental TM00

mode had Re{neff} = 1.2912 and a propagation length L = 1/(−2Im{β}) = 44.02 µm,

while for the CGFEM the same values were found. The solution matches well with those

ones reported in [25,82]. In Fig. 4.14 the |E| 2D field profiles from the IPDG/FEM method

are depicted. Observe that the Ex is subjected to a less intense attenuation at the metal

layer. Additionally, the plot from [25] is reproduced in Fig. 4.15, which presents the

Ey field at the vertical profile of the waveguide obtained with the IPDG/FEM and the
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CGFEM. Note the exponential field decay at the metal layer and the field fluctuation at

the substrate, exposing the mode leakage.

Figure 4.14: DLSPP |Ex| and |Ey| 2D field profiles calculated with the IPDG/FEM.

4.3.2 SPS Waveguide

And finally, to increase the proof of efficiency in plasmonics the surface plasmon

stripe waveguide (SPSWG) was analyzed operating at λ0 = 1.15 µm, with the IPDG/FEM.

This waveguide shows a unique leaky condition due to its metal-dielectric interface. This

structure was thoroughly studied in [83]. Indeed, the structure of this waveguide is simple:

it comprises a small metal strip of height h and width W above a dielectric substrate

and with air cladding. For the plasmonic mode to exist, this metal strip is quite thin, i.e.

h = 55 nm and W = 3.7 µm. This waveguide meshed with an extremely refined mesh is

shown in Fig. 4.16.

The solution of this plasmonic waveguide was done with 13417 elements, which

results in only 166536 unknowns (much less than the 638347 reported in [83]). The

mean mesh edge length at the metal stripe is about 20 nm. Then it was found neff =

1.01604 − 0.00338j for the Quasi-TM1 mode. With this mesh the field and the neff were

calculated with excellent precision. Both the index and the fields are matching well with

the solution reported in [83]. The leaky field profile is depicted in Fig. 4.17. Note that in

the Hx field five dips can be seen at the substrate right below the metal stripe. At the

metal lateral edges, near the metal-air-dielectric points, the strong field singularities are

the sources for the leaky fields.

An unconventional behavior of the SPSWG is how the first modes hold some

local-overshoot due to the aforementioned field singularities and dips at the metal-dielectric

interfaces. To reproduce this strange characteristics a highly accurate mode solver is

required [42]. For doing so, it was performed a sweep on the stripe width W to see if
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Figure 4.15: DLSPP Re{Ey} field profile calculated with the IPDG/FEM along the middle
of the waveguide. The dashed horizontal lines indicate the material interfaces. The
gold-polymer interface is located at y = 1.1 µm and the gold-substrate interface is at
y = 1 µm. (a) large plot, (b) detailed view at the main interfaces with a zoom at the
gold-substrate interface field .
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Figure 4.16: SPSWG cross-section with a refined meshed of 13417 elements. (a) general
view showing the PML boxes and (b) zoom at the metal dielectric interface.

the IPDG/FEM would be able to capture this on this relatively coarse mesh. The results
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(a)

(b)

Figure 4.17: Quasi-TM1 mode magnetic field 2D distributions for the SPSWG calculated
with the IPDG/FEM: (a) the transverse fields (b) the axial field.

are presented in Fig. 4.18, where one can sees that capture this property was adequately

captured.
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Figure 4.18: Quasi-TM1 and Quasi-TM2 modes indexes local-overshoots captured by the
IPDG/FEM when the metal stripe width is varied: (a) Real{neff} (b) Imag{neff}.
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Chapter 5

Conclusion

The DG methods are promising since they incorporate the properties of the

CGFEM while adding several advantages such as: handling of unstructured complex meshes

which might comprise elements with distinct orders and shapes, appropriate modeling of

material discontinuities and field singularities, and it can lead to diagonal matrices useful

for time/space marching methods. Seeking to explore these advantages, in this dissertation

a novel numerical approach was developed to analyze waveguides by combining the IPDG

with the conventional FEM to solve the second order time-harmonic Maxwell’s equation.

The solution of open waveguides was accomplished with the help of PMLs. Albeit the

computational problem is increased in the IPDG/FEM method when compared to the

CGFEM, the computational cost increment is subtle and in all of the discussed examples

a precision improvement was observed. The present method avoids spurious solution by

setting an appropriate value for the penalty function, while the null ones (β = 0) can be

easily identified.

Several waveguides under distinct conditions were successfully analyzed to prove

the efficiency and accuracy of the proposed method. These tests included lossy, leaky and

plasmonic waveguides. The main contributions of this work are: a robust application of

the IPDG method for waveguide analysis, the proposal of a new penalty function and an

investigation of its associated penalty parameter. The proposed novel approach results in

a combined IPDG/FEM scheme, including PMLs, for the accurate modal analysis of open or

shielded waveguides.

This dissertation is focused on introducing this new method and evaluating its

accuracy for intricate waveguides. Many of the advantages of the of the IPDG, such as

different elements handling, were kept unexplored. However, they will be investigated in

detail in future works. In addition, it is expected that the present research can lead to

robust explicit time/space marching schemes, which is currently being studied and will be

presented in a future work.
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Appendix A

Mode Propagation Simulations in

Bragg Gratings on SOI

This appendix is a brief report of what was done during a Research Internship

with the Nachos Team at the Inria Sophia Antipolis - Méditerranée Research Centre from

June 2017 till December 2017. This work was developed in collaboration with Dr. Stéphane

Lanteri, Dr. Jonathan Viquerat and Dr. Laurent Labonté.

The scope of this Internship was to be able to simulate conventional photonic

grating structures with good accuracy. For this a Discontinuous Galerking Time Domain

(DGTD) program (the Diogenes, developed by the Nachos team at Inria [7]) coupled

to a Vectorial Finite Element Method Eigenmode Solver (the NPCGFEM, developed by

Leandro) was employed. A set of new functionalities were proposed by the intern to be

implemented in the Diogenes solver by the Diogenes Engineer (Jonathan Viquerat). Here,

a brief description of how the simulations were performed and analyzed is presented. To

perform the simulations many high performance computing techniques were used, and the

main simulations were performed in the Inria cluster, the NEF.

A.1 Bragg gratings

A fundamental optical component adopted in photonic circuits is the Bragg

grating. It comprises a waveguide structure with a given periodic perturbation that

changes the effective index in a controlled manner. The perturbation is designed to build

up a distributed interference pattern at a particular wavelength, the Bragg wavelength.

These grating devices are a major focus of this Appendix. An interesting application

of Bragg filters is presented in [17], where a novel sub-wavelength photonic SOI Bragg

filter structure is proposed. The filter shows outstanding characteristics while ensuring

relaxed fabrication constraints. The filters in [17] are implemented in 300 nm×220 nm

strip waveguides, and the perturbations are in the order of 150 nm. These perturbations,
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shown in the Fig. A.1 (figure from [17]), requires a single-etch process and are remarkably

bigger when compared to conventional Bragg gratings [84], simplifying the fabrication

considerably. The length of the reported filters ranges from 100 µm up to 1000 µm.

Figure A.1: Sub-wavelength grating.

The design of Bragg Gratings and other waveguide based devices in SOI platforms

requires challenging 3D electromagnetic simulations due to its dimensions, high-index

contrast and wavelength dependent characteristics. Specifically, for gratings the perturba-

tions are intrinsically small when compared to the underlying waveguide dimensions, this

hinders the structure numeric modeling since dense meshes are necessary. For instance, in

the Fig. A.1 the gratings differential corrugation ∆ W could be of only 5 nm. This small

differential corrugation requires a refined mesh in the perturbation region, which implies

in an extremely big computational problem.

A.2 Optical Waveguide Mode Analysis

A key step on the research reported here was the modal analysis of optical

waveguides. For this the NPCGFEM described in the Section 2.2 of this dissertation was

employed. The NPCGFEM code is object oriented and has several features related to mode

analysis. It is possible to use linear, quadratic or cubic elements. And to take into account

the open radiation boundary of optical waveguides the PML is also programmed and can

be introduced in the domain. With this solver very precise eigenmode solutions can be

calculated for arbitrary geometries and materials. This eigenmode solver at the time of

the internship was validated in several scenarios and its results successfully match those

ones from commercial solvers (CST, Lumerical, Comsol).

Additionally, the author of this document also developed a Coupled Mode Theory

(CMT) framework linked with the NPCGFEM. The CMT is widely adopted by the optics

community as a powerful analytical tool. This framework can be used to design and

predict the behavior of conventional grating structures, for instance. For the sake of clarity

and brevity, the CMT is not described here, details can be found in the reference [85].
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A.2.1 Strip Waveguide

The results here presented are for gratings built on strip waveguides, and in this

sub-section a brief description of its modal analysis is given. The NPCGFEM modal solver

was used to calculate the modes of a Strip Waveguide (see sub-section 2.3.3) in which the

silicon core has W = 500 nm and a height of 220 nm. The waveguide is embedded in a

thick silica layer (3 µm from the cladding until the underlying silicon layer). In this case,

the silicon layer below the substrate can be neglected as its effects on the eigenmodes are

negligible for the simulation purposes here. The PMLs were added to the outer borders of

the domain and second order elements were used. A sample of a mesh used to calculate

the modes is shown in the Fig. A.2. The refractive index of each material was fixed as

nSi = 3.47 and nSiO2
= 1.5, since the simulations are performed for a narrow bandwidth

around an air wavelength of λ0 = 1550 nm.

Figure A.2: Strip Waveguide mesh with PML elements for the eigenmode solver.

The calculated Quasi-TE mode solution fields distribution at 1550 nm are depicted

in the Fig. A.3. The longitudinal fields were separated intentionally to enhance the

difference with real TE and TM modes found in closed waveguides. And in the Fig. A.4

the mode effective index neff is shown. The effective index is directly obtained from the

propagation constant: neff = β/k0. For this bandwidth dneff

dw
is small and d2neff

dw2 ∼ 0.

A.3 Waveguide Mode Source

A major step to simulate photonic devices in a full wave 3D electromagnetic

solver is to be able to propagate a given mode properly. In the literature there is a great

discussion on options to perform mode propagation in photonic and microwave devices.

The following works are highlighted: [86], [87], [88], [89], [90], [91].

Overall, a generic and reliable way to characterize waveguide based devices (either

single-mode, higher-order mode, or multi-mode) is to excite the waveguide structure with

a set of the desired eigenmode solutions (as in [87–91]). However, with an increased

simulation domain and additional simulation steps it is also possible to evaluate the

propagation of a given mode using point sources [86, 90]. Still, with an eigenmode-like

source it is easier to guarantee a reliable analysis of the propagation characteristics.



82

(a)

(b)

Figure A.3: Field distributions at λ0 = 1500 nm. (a) transverse fields, (b) longitudinal
fields.
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Figure A.4: neff dispersion.

In this work the excitation of photonic devices was based on eigenmode sources.

The adopted eigenmode source scheme can be summarized in the following steps:

1. Impose the eigenmode solution in an unperturbed waveguide close to the device

under simulation.
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2. At the source region, the reflected wave from the device and the imposed mode

source must be separated to compute the reflection coefficient.

3. At the output, after the mode propagate throughout the device, the fields are

registered in an output face where any relevant observables can be computed.

4. With overlap integrals the mode content of interest can be separated both at the

input source and at the output face.

The adopted method to excite modes in the aforementioned DGTD method is described

below.

A.3.1 Time Domain Excitation: Gaussian Wave Packet

Independent of the method, when simulating a structure in the time-domain

one can apply a pulse p(t) (a Gaussian shaped pulse, for instance) function covering

the frequency content of interest into the source. Then, the wavelength dependence

characteristics in a limited bandwidth can be evaluated by means of the Fourier Transform.

Hence, several time steps are required since the pulse must travel throughout the simulation

domain. On the other hand, if a frequency domain solver is chosen, a number of 3D

simulations are necessary to cover the desired spectrum.

First, an expression for a Gaussian Pulse for a given eigenmode solution needs

to be defined. A single eigensolution of a given waveguide is fully defined by its field

distribution and its propagation constant, both form the so-called mode solution. Then,

consider an eigenmode field distribution φ, which is either the electric or magnetic field

distribution and a frequency dependent propagation constant β(w). Considering that the

field distribution frequency-dependency is negligible (if the pulse is covering a sufficiently

narrow bandwidth), one can apply a Fourier transform to obtain the time domain function

Φ(t, x, y, z) of this Gaussian wave-packet covering a given frequency range of interest:

Φ(t, x, y, z) =
1√

2πσ2

∫ ∞

−∞
φ(x, y)e−(

w−w0√
2σ

)2

e−jβ(w)zejwtdw (A.1)

w0 is the center frequency of the Gaussian packet, 1√
2πσ2

e
−(

w−w0√
2σ

)2

is a Gaussian distribution.

With Φ(t, x, y, z) the related eigenmode source can be imposed in the time domain

simulation. For example, the Quasi-TE mode solution of the Strip Waveguide from

Subsection A.2.1 could be used to generate both the electric and magnetic Gaussian

wave-packet distributions in the time domain.

It is relevant to consider how much the intrinsic geometric dispersion (β(w), as

in the Fig. A.4) affects the Gaussian packet in the time domain. To analytically evaluate

this a Taylor series expansion was used, with β in (A.1) being expanded centered at w0 to
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ease the process:

β(w) = β(w0) +
dβ

dw
|w0

(w − w0) +
1
2

d2β

d2w
|w0

(w − w0)2 + ... (A.2)

By means of applying (A.2) until the second order term, the Fourier transform (A.1) is

updated as:

Φ(t, x, y, z) =
1

2π

∫ ∞

−∞
φ(x, y)e−( w′

√
2σ

)2

e−jz[β(w0)+ dβ

dw
|w0

(w′)+ 1

2

d2β

d2w
|w0

(w′)2]ej(w′+w0)tdw′ (A.3)

w′ = w − w0 (A.4)

If the Gaussian packet is covering a linear dispersion frequency range:

1. dβ

dw
|w0

∼ constant

2. 1
2

d2β

d2w
|w0

∼ 0

By analyzing the equation (A.3) for the linear dispersion case (low loss system

can be considered too), it is clear that the dispersion will only add a constant phase term

to the Gaussian packet. This is obviously due to the packet group velocity distribution,

and in terms of simulation it shouldn’t be a problem, since it will be taken into account

directly as the packet propagates in a given waveguide. Therefore, as the wave packet

propagates throughout the device in the 3D simulation, the eigenmode dispersion will

be taken into account appropriately and the power spectrum at its input/output will be

affected by the geometric dispersion of the device.

So, in the time domain method, when an eigenmode solution source is applied

with a Gaussian pulse certain aspects should be considered [86–91]:

• Wideband excitation is not possible, since the eigenmodes are wavelength dependent.

• The Gaussian pulse bandwidth should be carefully chosen by analyzing the fre-

quency/geometric dispersion of the waveguide. One way to do this is to check if the

second derivative of the propagation constant d2β

dw2 is flat. The pulse should cover

a spectrum with an almost flat d2β

dw2 region, since this means that its geometrical

dispersion is roughly linear.

• For a not-too-large pulse bandwidth the mode geometric dispersion will inherently

be taken into account in the 3D full wave simulation.

• The material dispersion should be taken into account equally in the eigenmode solver

and in the 3D simulation.

• If present in the eigenspace of the device, some higher-order or radiative modes

might be excited during propagation.
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A.3.2 Diogenes mode source

In the context of the 3D simulation with the Diogenes DGTD solver, the mode

excitation is performed with a Total-Field-Scattered-Field (TF/SF) interface [7]. With

this interface a complete separation of the input and reflect waves at the source region can

be achieved. Then, the calculation of the reflection coefficients becomes rather simple. On

the other hand, to be able to perform generic simulations, an output face can be defined in

the domain to perform transmission coefficients measurements. Finally, in order to be able

to separate the input modal contents from other modes naturally excited in the simulation

domain, it is recommended to use an overlap integral both at the source interface and the

output face. The overlap operation is described in the following subsection.

The Fig. A.5(a) illustrates the simulation setup. In an unperturbed waveguide

the Gaussian packet source is imposed, and after its propagation throughout a grating the

transmission (and related observables) is measured at an output face also located in an

output unperturbed waveguide. In the Fig. A.5(b) the shape of the Gaussian packet in

time domain can be viewed. In this figure separated points register the field data in the

time domain.
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Figure A.5: (a) mode propagation simulation setup in a grating, (b) typical Gaussian
wave-packets propagation.
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Overlap for computing mode coefficients

As described above, several modes can arise in the 3D simulation. Hence,

the separation of the input modal content is important to accurately characterize a

given structure. In this work, the mode content separation is performed with overlap

integrals, which under certain assumptions is a reasonable way to avoid the pollution of

the observables spectrum. The overlap can be understood as a mode content measurement

of a given field distribution in relation to a reference mode. It can be defined in different

manners depending on the analysis context, here it is defined as [92]:

overlap = ℜ
{(

∫

Ω
~E1 × ~H2dΩ)(

∫

Ω
~E2 × ~H1dΩ)

∫

Ω
~E1 × ~H1dΩ

} 1

ℜ
{

∫

Ω
~E2 × ~H2dΩ

} (A.5)

where Ω is the 2D domain where a calculated field distribution is being compared to a

known mode distribution, the pairs (E1, H1) and (E2, H2) are the fields distributions of

either the known mode or the calculated field distribution.

Simulation time

The time required for the pulse propagation in a waveguide can be calculated

from the β dispersion relationship. Then, a good estimative for the total simulation time in

a grating can be obtained. In the Fig. A.6 an example of the time of a pulse propagation

which covers the spectrum between 150 THz and 250 THz is shown.
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Figure A.6: Propagation time from group velocity.

A.4 Grating Model

To perform the grating simulations the intern designed a parameterized computa-

tion model of gratings. This fully parameterized model of a generic purpose grating device

in Strip Waveguides was built with the Gmsh software [53] with its novel CAD tool. In

the Fig. A.7 this model is depicted. The model includes PML and the aforementioned
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TF/SF regions. This model enables the simulation of asymmetric gratings of any kind.

The source interface and output face are located before and after the grating structures,

respectively, on unperturbed waveguides. The Gmsh also is used to build the mesh from

the grating model. In the Fig. A.8 the mesh of a small length grating is shown in different

perspectives, including a detailed view of the silicon core region. If necessary, adiabatic

transitions can be included in the model.

(a) (b)

Figure A.7: Grating 3D model. (a) full model, (b) zoom at grating region.

(a) (b)

Figure A.8: Grating model mesh. (a) full model, (b) zoom at silicon core region.

A.5 Simulations

With the eigenmode source described in Section A.3, incorporated into the

Diogenes DGTD solver, it became possible to simulate photonic waveguides-based devices.

The NPCGFEM mode solver from Section A.2 outputs a set of formatted files to be directly

send to the Diogenes solver source. Throughout the internship a huge set of testing runs

were necessary to validate the mode source and observables calculation with the overlap

integral. Nonetheless, some relevant simulations were performed to show that it is possible

to simulate gratings with the Diogenes solver coupled to the NPCGFEM solver. In this

section only the physically relevant results are presented.
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The intern was also responsible for the gratings design. For this, the CMT was

employed. The developed NPCGFEM solver has a framework to design periodic structures

with the CMT, which eases the process. In this work, all of the simulated gratings were

designed to reflect the Quasi-TE mode around 1550 nm. They were built on a strip

waveguide with simple rectangular corrugations of width ∆ W , a fixed period of Λ and a

number of periods N . The general geometry is depicted in the Fig. A.9 (figure from [93]).

In all simulations the strip waveguide has W = 500 nm and a height of 220 nm, and it is

embedded in a SiO2 layer of 2 µm. The underlying silicon layer was neglected in the present

analysis. The Quasi-TE mode solution for this waveguide is presented in Subsection A.2.1.

Figure A.9: General grating structure.

The main simulation results are presented for two gratings with the following

parameters:

1. ∆ W = 50 nm, Λ = 324 nm, N = 28;

2. ∆ W = 50 nm, Λ = 324 nm, N = 280;

It is important to state that at the moment very big gratings simulations are

troublesome since both the mesh is huge and the number of time steps is enormous to

perform the full pulse propagation. The total simulation time is defined by the dimensions

of the device and also by the pulse size (how large or narrow is the Gaussian bandwidth).

Additionally, the time step size is bounded by the mesh sizes in the DGTD solver, the

more the mesh is refined the smaller the time step will be. Furthermore, the of higher

order elements can also be used to decrease the time step.

A.5.1 Grating 1: ∆ W = 50 nm, Λ = 324 nm, N = 28

Although this grating has a small length, its Bragg effect is explicit due to the

large corrugation. The results presented in this subsection includes the overlap at the

source interface, which is the setup explained at the section Subsection A.3.

The results for this grating are presented in comparison with the CST commercial

solver and the CMT. The results are presented in the Fig. A.10.

Apart from a minor frequency shift, the level and shape of the curves from the

Diogenes+NPCGFEM (called Diogenes+VecEigFEM in the figures) solver are quite similar

to the CST and CMT, which indicates a reliable simulation. The frequency shift between
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Figure A.10: Grating 1 comparison between the present method, the CST commercial
solver, and the Coupled Mode Theory analysis . (a) reflectivity, (b) transmission.

the CMT and the other methods is expected since this is an analytical approach that does

not account for the radiative modes as in a 3D simulation. The radiative modes losses are

responsible for the huge difference in the transmission spectrum between the CMT and

the other 3D simulations.

When compared to the CST simulation, the solution around the Bragg wave-

length is remarkably similar, and supposedly accurate. However, for wavelengths more

distant to the resonance a significant difference can be seen. The CST solver is employing

a wide bandwidth excitation, so probably the reflection solution at the borders of the

wavelength range analyzed includes other modes contribution. Instead, with the pro-

posed Diogenes+NPCGFEM simulation setup the dominant Quasi-TE mode is evaluated

completely separated due to the overlap integral.

In the Fig. A.11 two plots with the Ex field distribution are shown in the time

domain and in the frequency domain. The fields are shown in a cut inside the waveguide
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at the grating region. The wavelength in the frequency domain plot is of 1553 nm, which

is the Bragg wavelength.

(a) (b)

Figure A.11: Ex field plots at the Grating 1. (a) time domain, (b) frequency domain
(λ0 = 1553 nm).

A.5.2 Grating 2: ∆ W = 50 nm, Λ = 324 nm, N = 280

The last result to be presented is a set of simulations on a large grating, which

is a physically relevant and could actually be used in practical applications, since a high

reflectivity is achieved. The same 50 nm corrugation is used, however with 280 periods.

This grating was simulated in a coarse mesh, due to its enormous sizes. In the

Fig. A.12 the grating characteristics are presented again in comparison with the CST

and the CMT. The CST solution here presented was performed with dispersive silicon

materials. Therefore a huge wavelength shift can be seen. But, as seen in the figures it

seems that the bandwidth of the device is well captured with the Diogenes+NPCGFEM

simulation scheme.

Again, the shift in the CMT is quite reasonable and expected, along with its

lower rejection level at the Bragg wavelength. Nonetheless, the Diogenes simulation here

is using a poor mesh.
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Figure A.12: Grating 2 comparison between the present method, the CST commercial
solver, and the Coupled Mode Theory analysis . (a) reflectivity, (b) transmission.
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