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Abstract

Convolutional neural networks (CNNs) are one branch of deep learning that have per-

formed successfully in many brain magnetic resonance (MR) imaging analysis. CNNs

are representation-learning methods with stacked layers comprised of a convolution op-

eration followed by a non-linear activation and pooling layers. In these networks, each

layer outputs a higher and more abstract representation from a given input, in which the

weights of the convolutional layers are learned by an optimization problem. In this work,

we tackled two problems using deep-learning-based approaches: skull-stripping (SS) and

tractography. We Ąrstly proposed a full CNN-based SS trained with what we refer to as

silver standard masks. Segmenting brain tissue from non-brain tissue is a process known

as brain extraction or skull-stripping. Silver standard masks are generated by forming the

consensus from a set of eight, public, non-deep-learning-based SS methods using the algo-

rithm Simultaneous Truth and Performance Level Estimation (STAPLE). Our approach

reached state-of-the-art performance, generalized optimally, decreased inter-/intra-rater

variability, and avoided CNN segmentation overĄtting towards one speciĄc manual anno-

tation. Secondly, we investigated a CNN-based tractography solution for epilepsy surgery.

The main goal of this analysis was to structure a baseline for a deep-learning-based-

regression to predict white matter Ąber orientations. Tractography is a visualization of

the white matter Ąbers or tracts; its goal in presurgical planing is simply to identify the

position of eloquent pathways, such as the motor, sensory, and language tracts to reduce

the risk of damaging these critical structures. We performed analysis cross-validation us-

ing only in a single patient per time, and also, training with data from 10 patients for

training the CNN. Our results were not optimal, however, the tracts tended to be of a

similar length and converged to the mean Ąber tract locations. Additionally, to the best of

our knowledge, our method is the Ąrst approach that investigates CNNs for tractography,

and thus, our work is a baseline for this topic.

Keywords: Deep Learning; Convolutional Neural Network; Skull-stripping; Tractogra-

phy; Magnetic Resonance Image; Silver-standard Masks.



Resumo

Redes neurais convolucionais (CNNs-Convolutional neural networks) são uma vertente

do apredizado profundo que obtiveram muito sucesso quando aplicadas em várias análises

em imagens de ressonância magnética (MR-magnetic resonance) do cérebro. As CNNs são

métodos de aprendizagem de representação com várias camadas empilhadas compostas

por uma operação de convolução seguida de uma ativação não linear e de camadas de agru-

pamento. Nessas redes, cada camada gera uma representação mais alta e mais abstrata de

uma determinada entrada, na qual os pesos das camadas convolucionais são aprendidos

por um problema de otimização. Neste trabalho, tratamos dois problemas usando aborda-

gens baseadas em aprendizagem profunda: remoção da calota craniana (SS) e tractograĄa.

Primeiramente, propusemos um SS completo baseado em CNN treinado com o que nos

referimos como máscaras de padrão de prata. A segmentação de tecido cerebral a partir

de tecido não cerebral é um processo conhecido como extração da calota craniana ou re-

moção de crânios. As máscaras de padrão de prata são geradas pela formação do consenso

a partir de um conjunto de oito métodos de SS públicos, não baseados em aprendizagem

profunda, usando o algoritmo Verdade Simultânea e Estimativa do Nível de Desempenho

(STAPLE-Simultaneous Truth and Performance Level Estimation). Nossa abordagem al-

cançou o desempenho do estado da arte, generalizou de forma otimizada, diminuiu a

variabilidade inter / intra-avaliador e evitou a super-especialização da segmentação da

CNN em relação a uma anotação manual especíĄca. Em segundo lugar, investigamos uma

solução de tractograĄa baseada em CNN para cirurgia de epilepsia. O principal objetivo

desta análise foi estruturar uma linha de base para uma regressão baseada em aprendiza-

gem profunda para prever as orientações da Ąbra da matéria branca. TractograĄa é uma

visualização das Ąbras ou tratos da substância branca; seu objetivo no planejamento pré-

operatório é simplesmente identiĄcar a posição de caminhos eloqüentes, como os tratos

motor, sensorial e de linguagem, para reduzir o risco de daniĄcar essas estruturas críticas.

Realizamos uma análise em um único paciente e também uma análise entre 10 pacientes

em uma abordagem de validação cruzada. Nossos resultados não foram ótimos, entretanto,

as Ąbras preditas pelo algoritmo tenderam a ter um comprimento similar e convergiram

para os locais médios do trato das Ąbras. Além disso, até onde sabemos, nosso método

é a primeira abordagem que investiga CNNs para tractograĄa, e assim, nosso trabalho é

uma base para este tópico.

Palavras-chaves: Aprendizado Profundo; Redes Neurais Convolucionais; Extração de

Crânio; TractograĄa; Imagem de Resonância Magnética; Máscara de Padrão Prata.
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1 Introduction

1.1 Motivation

In medical image analysis, magnetic resonance (MR) imaging modality is widely

used in clinical medicine and medical research, especially in diagnosing and studying brain

disorders. MR imaging exhibits excellent soft tissue contrast that is not usually found in

other imaging modalities, such as x-ray or computed tomography. As a consequence,

MR scanning is broadly accepted as producing good-to-excellent visualization of brain

structures as an example (BROWN et al., 2014). Moreover, MR is often used to diagnose

a variety of brain diseases including acoustic neuroma, AlzheimerŠs disease and other

neurodegernative conditions, cerebrovascular diseases (like brain aneurysm, arteriovenous

malformations, stroke), and tumours (KALAVATHI; PRASATH, 2016).

In this Ąeld, deep-learning-based approaches, in particular convolutional neu-

ral networks (CNNs) have been widely used in a myriad of tasks (GREENSPAN et

al., 2016; LITJENS et al., 2017; KER et al., 2018; RAVÌ et al., 2017), such as: brain

structures segmentation (BREBISSON; MONTANA, 2015), lesion detection (HUANG et

al., 2017), classiĄcation of abnormalities (BAR et al., 2015), reconstruction and registra-

tion (CHENG et al., 2018; HAMMERNIK et al., 2018). CNNs are representation-learning

methods with multiple stack layers comprised of a convolution operation followed by a

non-linear activation and pooling layers (LECUN et al., 2015; LITJENS et al., 2017).

In these networks, each layer outputs a higher and more abstract representation from a

given input (SCHMIDHUBER, 2015), in which the weights of the convolutional layers are

learned by an optimization problem. Therefore, opposed to conventional machine learning

algorithms, CNNs can discover automatically the representations needed for a speciĄc task

by feeding raw data as input (i.e. classiĄcation, segmentation, regression, etc), without

the need of handcrafting features (LECUN et al., 2015).

Although CNNs have performed successfully in brain medical image analysis,

training a CNN from scratch in a end-to-end solution is still a challenge due to the

amount of annotated data needed for the supervised training (GREENSPAN et al., 2016;

LUCENA et al., 2018). The Şgold-standardŤ annotation in medical image datasets is

usually done by a manual rater and this stage can be time-consuming and expensive.

Also, manual annotation is a subjective procedure. For instance, there are more than a

dozen protocols for hippocampus segmentation and different protocols provide up to 2.5-

fold volume difference (SOUZA et al., 2018). As a consequence, intra/inter rater variability

affect the validation results in such data driven methods. In order to mitigate inter-/intra-

rater variability and a potential alternative for the lack of "gold-standard" labeled data,
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the consensus of multiple automatic methods could be used in CNN-based methods.

CNNs have been also employed to in surgical planning achieving optimal re-

sults (HUFF et al., 2018; IBRAGIMOV et al., 2017; WANG et al., 2018). A particular

case is a pre-surgical planning of the epileptogenic zone surgery, which is the minimal

area of cortex that must be resected to produce seizure-freedom (LÜDERS et al., 2006).

For this case, tractography is used to identify the position of eloquent pathways, such as

the motor, sensory, and language tracts (BERMAN, 2009) to plan the surgery aiming to

avoid damaging these bundles. Tractography is basically a non-invasive method for visu-

alization of the white matter Ąber bundles or tracts done using information in diffusion

magnetic resonance images (dMRI) (YAMADA et al., 2009). Recently, machine learning

approaches and deep-learning-based methods have been used for tractography (NEHER

et al., 2017; POULIN et al., 2017). However, up to date, none have investigated CNN for

such task.

1.2 Objectives

In this dissertation, we advance the study of deep-learning-based approaches for

brain MR analysis. Two problems were tackled using deep-learning-based approaches for

brain MR images. First, we investigated this technique in a segmentation task for skull-

stripping (SS) and then in a regression analysis for tractography.

1.3 Contributions

The main contributions of this work are in the deep-learning-based segmentation

and regression domains in brain MR. Two speciĄc tasks were considered: skull-stripping

(SS) and tractography. The main contributions of this work are summarized below.

1.3.1 Skull-stripping

To begin with, we developed an end-to-end CNN-based solution using what we

refer to as "silver-standard" annotation for the brain extraction or skull-stripping. Seg-

menting brain tissue from non-brain tissue is a process known as brain extraction or SS.

The silver standard annotations are masks generated by an agreement among eight pub-

licly available automatic SS methods using the consensus algorithm Simultaneous Truth

and Performance Level Estimation (WARFIELD et al., 2004). An outline of our Ąndings

for this task is presented as follows:

∙ Validation of silver standard masks for CNNs training.
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∙ Development of a deep-learning-based method for SS fully trained with consensus-

derived silver standard masks, eliminating the use of expert manual annotation.

∙ Cross-dataset validation for deep-learning-based SS approach.

∙ State-of-the-art performance.

∙ Open-source and publicly available approach.

1.3.2 Tractography

As a second application, we investigated a CNN-based-tractography solution for

epilepsy surgery, which was done during a six-month internship at University College

London under the FAPESP BEPE scholarship. The main goal of this analysis was to

structure a baseline for a deep-learning-based-regression to predict white matter Ąber

orientations. We outline our main Ąndings as follows:

∙ A baseline using deep-learning-based regression for tractography.

∙ Investigation of convolutional neural networks for tractography.

∙ Robust regression using a three stages approach with an auto-encoder, training from

scratch, and Ąne-tuning.

1.4 Organization of the Dissertation

This dissertation is organized into three main parts, which are: Convolutional

Neural Networks for skull-stripping in Brain MR Imaging using Consensus-based Silver

standard Masks (Chapter 2), Deep-learning-based Tractography for Surgical Planning in

Epilepsy Treatment (Chapter 3), and Conclusions (Chapter 4). Remark: both Chapter 2

and 3 are written in an article-like style.

In Chapter 2, we detail the current state-of-the-art and challenges, our contribu-

tions, the datasets we adopted, the steps for the generation of our silver-standard masks,

our proposed pipeline, our results, discussion, and Ąnally the conclusions.

In Chapter 3, we follow the same organization as the previous one except for not

detailing of silver standard masks since they are not used for this case.

In Chapter 4, we present our Ąnal thoughts regarding the works presented in

Chapters 2 and 3 and a list of publications related to this M.Sc. research.
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2 Convolutional Neural Networks for Skull-

stripping in Brain MR Imaging using

Consensus-based Silver standard Masks

2.1 Motivation

Segmenting brain tissue from non-brain tissue (a process known as brain ex-

traction or skull-stripping, SS) is a critical step in many MR brain image processing

algorithms. After brain extraction, the analysis of brain regions are more easily and more

accurately performed (KALAVATHI; PRASATH, 2016), thus, accurate brain segmenta-

tion is an essential, early processing step. In fact, it is typically the initial step in a

wide range of brain MR imaging analyses, such as when segmenting tissue types (BOER

et al., 2010), analyzing multiple sclerosis lesions (ZIVADINOV et al., 2004), classifying

AlzheimerŠs disease (RUSINEK et al., 1991), assessing schizophrenia (TANSKANEN et

al., 2005), monitoring the development or aging of the brain (BLANTON et al., 2004), and

determining changes in volumes and shape of brain regions across many disorders (PE-

TRELLA et al., 2003; HUTCHINSON; RAFF, 2000). Normally, brain MR images present

unwanted non-brain tissues that make SS challenging. Further, the brain gyri and sulci

(i.e., the ridges and depression on the brain outer surface, respectively) can challenge

even current state-of-the-art SS methods (IGLESIAS et al., 2011). New approaches are

continually being proposed to overcome these and other limitations, suggesting that the

study of SS techniques remains an active research Ąeld using either conventional meth-

ods (IGLESIAS et al., 2011; SMITH, 2002; SÉGONNE et al., 2004; ESKILDSEN et al.,

2012; BEARE et al., 2013; AVANTS et al., 2011; SHATTUCK et al., 2001) or, more

recently, deep learning (DL)-based approaches (KLEESIEK et al., 2016; SALEHI et al.,

2017).

After the groundbreaking result of (KRIZHEVSKY et al., 2012), DL, especially

CNN-based approaches, has become a commonly employed algorithmic approach to solve

medical imaging problems (LITJENS et al., 2017). DL-based methods are trained with

labeled raw data to Şautomatically discoverŤ the underlying mathematical representations

needed for detection, classiĄcation and/or segmentation (LECUN et al., 2015). Commonly,

training a CNN from scratch requires a large amount of correctly labeled data. Appro-

priate medical image datasets, however, are generally too small to succeed at this task.

Challenges often arise because labeled data require signiĄcant manual effort from an ex-

pert in order to complete this time-consuming and, thus, expensive task (GREENSPAN

et al., 2016).
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To reduce cost, single rater, manual annotation is often used. However, man-

ual annotation is known to vary, even among highly-trained experts (WARFIELD et al.,

2004; AKKUS et al., 2017), and be impacted by both inter- and intra-rater variability (AS-

MAN; LANDMAN, 2011). Additionally, the characteristics of MR data are complex and

can be impacted by several other factors including contrast differences among scanners

and changes in image spatial resolution, especially at border voxels lying between tissues.

These and other issues lead to the presence of ambiguous voxels and label confusion during

manual annotation by experts (ASMAN; LANDMAN, 2011). Finally, manual annotation

guidelines are generally subjective. For example, there are more than a dozen protocols

for hippocampal segmentation and different protocols have been shown to provide up to

2.5-fold variation in volume estimates (BOCCARDI et al., 2011). An effective scenario

to mitigate the inherent variability in manual annotation is development of a consensus

agreement approach that uses multiple expert annotations in order to generate a robust

Şgold standardŤ. However for tasks like SS, forming a consensus among multiple experts is

impractical due to the linear increase in cost associated with performing each additional

manual segmentation. Consensus-based approaches can also generate annotated data by

Ąnding agreement between different annotations or between the outputs of different au-

tomated methods (WARFIELD et al., 2004; ASMAN; LANDMAN, 2011; REX et al.,

2004). These consensus results are potentially robust and in the past have been applied

to improve automatic multi-atlas segmentation methods (ALJABAR et al., 2009; WU et

al., 2014).

2.1.1 Previous Works in Skull Stripping

Traditional (i.e., non DL-based) SS methods can be categorized into one of six

main classes: 1) manual annotation, 2) intensity-based methods, 3) morphology-based

methods, 4) deformable surface-based methods, 5) atlas-based methods, and 6) hybrid

methods (KALAVATHI; PRASATH, 2016). The gold standard method, manual annota-

tion, is usually done by an expert, often a radiologist or similarly highly trained user. Man-

ual methods, unfortunately, are time consuming; experts often need to spend hours seg-

menting one brain image volume. Manual annotations are considered, thus, impractical for

medical analysis in large-scale studies. The second class, intensity-based methods (SHAT-

TUCK et al., 2001), are fast, but lack robustness. They are very sensitive to local changes

in image contrast, noise, and artifacts. Morphology-based methods (BEARE et al., 2013),

the third class, are also fast, but depend on parameters that are experimentally computed

and related to size and shape of mathematical morphological operations (KALAVATHI;

PRASATH, 2016). Deformable surface model-based methods (SMITH, 2002) are a class

that use a balloon-like template that deforms to Ąt the brain based on gradient infor-

mation. Although they can Ąt both the interior and exterior areas of the brain, these
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methods are very dependent on initialization of the balloon-like template. Atlas-based

methods (ESKILDSEN et al., 2012; AVANTS et al., 2011) rely on image registration to

an atlas template, making them time-consuming approaches and very dependent of the

atlas geometry. Lastly, hybrid methods attempt to combine the best features of the pre-

viously described methods. They generally require longer processing times, but usually

achieve optimal segmentation results (IGLESIAS et al., 2011; SÉGONNE et al., 2004;

LUTKENHOFF et al., 2014).

DL-based segmentation are newer methods that are performed using two predom-

inant approaches: 1) voxel-wise networks using CNN architectures with fully connected

layers that classify the central pixel in an image patch, and 2) fully convolutional networks

(FCNs) (LONG et al., 2015) that segment the entire image in one step. Both methods

have been implemented using both 2D and 3D architectures; but because 3D convolu-

tions are computationally expensive, 2D convolutions are more commonly used. Although

the Ąrst class of approaches have been frequently exploited due to their derivation from

classiĄcation tasks, FCNs perform better in retrieving spatial information from local and

global features. They are also faster than voxel-wise networks (LONG et al., 2015; RON-

NEBERGER et al., 2015). Moreover, FCNs can work with any sized input because their

weights do not depend on the input size, a limitation of voxel-wise networks.

Recently, two DL-based SS methods have been proposed; both methods were val-

idated against small publicly available datasets against manual annotation. (KLEESIEK

et al., 2016) proposed a voxel-wise 3D CNN for SS that we will refer to as 3D CNN. The

3D CNN is not deep due to the cost of the 3D convolutions, limiting its learning capacity.

(SALEHI et al., 2017) applied the auto-net method to brain extraction. They examined

two approaches: 1) parallel voxel-wise networks and 2) parallel 2D FCN U-Net (RON-

NEBERGER et al., 2015), each followed by an auto-context CNN classiĄer. Basically,

this classiĄer takes the concatenation of the probability maps from a pre-trained network

and feeds them as input data to another CNN following the auto-context algorithm pre-

sented in (TU; BAI, 2010). Context information retrieval with CNNs have been explored

in other medical segmentation tasks. (CHEN et al., 2017) also presented an auto-context

version of its VoxResNet approach, which is an architecture based on the ResNet (HE et

al., 2016) for brain structures segmentation. (KAMNITSAS et al., 2017) used multi-scale

3D CNN with fully connected conditional random Ąelds (CRFs) for brain lesion segmen-

tation, but such CRFs are time consuming and have very limited neighborhood relations

compared to the auto-context approach (TU; BAI, 2010).

Consensus methods could be used to generate annotated data from the output

masks of different automatic methods. (REX et al., 2004) obtained a higher agreement

rate than that of individual segmentations done by two different experts. Recently, con-

sensus masks have been used to generate what we refer to as silver standard masks.
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(SOUZA et al., 2017) evaluated the agreement between consensus predictions and man-

ual labeled data in the Calgary-Campinas-359 (CC-359 ) public dataset in which silver

standard masks were generated by the consensus algorithm simultaneous truth and per-

formance level estimation (STAPLE) (WARFIELD et al., 2004). This work also suggested

the usage of consensus masks for training CNNs. (LUCENA et al., 2018) have further in-

vestigated and validated the usage of silver standard masks in the CNN training stage for

SS. In this work, the authors trained and compared the same DL architecture with silver

standard annotation labels and manual annotation labels. Their results suggested that

the performance of training a network with silver standard labeled data are comparable

to models trained with gold standard data but generalize better due to consensus method,

likewise STAPLE, because it reduces the inter-/intra-rater variability. Also, they can be

generated without the need for (and cost of) manual annotation, potentially augmenting

our training input datasets and improving generalization over training a CNN with only

a single manual annotation.

2.1.2 Our Approach

We present in this chapter a CNN approach for brain extraction in MR im-

ages. Unlike others, our method is completely trained using silver standard masks that

are generated by forming the consensus between eight, public, non DL-based automatic

SS methods. Our method has two main implementations: 1) a tri-planar method using

parallel 2D CNNs that we will refer to as CONSNet and 2) an auto-context variation

of CONSNet that adapts an auto-context CNN in cascade with the tri-planar method.

The term CONSNet is used to refer to the complete approach (i.e., training with silver

standard masks and use of a CNN architecture). Our analysis were conducted on three

public datasets: Calgary-Campinas-359 (CC-359 ) (SOUZA et al., 2017), LONI Proba-

bilistic Brain Atlas (LPBA40) (SHATTUCK et al., 2008), and the Open Access Series

of Imaging Studies (OASIS) (MARCUS et al., 2007). We validated our method against

manual annotations available in twelve image sets in the CC-359 dataset and all im-

age sets in the LPBA40 and OASIS datasets. Five performance metrics were used: Dice

coefficient, sensitivity, speciĄcity, Hausdorff distance, and symmetric surface-to-surface

mean distance. Furthermore, we compared the processing time of our method against the

publicly available state-of-the-art automatic SS methods and the consensus-based masks

generated by STAPLE.

The main contributions of our approach can be summarized as follows:

∙ It is the Ąrst DL-based method to be fully trained with consensus-derived silver

standard masks. This step eliminates the cost associated with manual annotation.

It also enlarges the training input data so that it is suitable for large-scale analysis

from non-annotated data.
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∙ It is generalizable. It was trained using the CC-359 dataset and was then validated

using the LPBA40 and OASIS datasets.

∙ It outperforms most SS methods including some DL-based approaches.

∙ It is completely open-source and publicly available1.

2.2 Materials and Methods

2.2.1 Datasets

Three publicly available datasets were used for this study. All datasets contain

adult human MR brain images acquired using a T1-weighted volumetric imaging method.

Some variability in the image acquisition parameters is presented within and between

the three datasets. The CC-359 was used for training and both the LPBA40 and OASIS

dataset were used for validation. The three public datsets have a total of 476 subjects

(218 males, 258 females, 51.2 ∘ 10.4 years). All three datasets included manual (gold

standard) segmentations of varying quality (Figure 1).

(a) Manual CC-359 (b) Manual LPBA40 (c) Manual OASIS

Figure 1 Ű Representative 3D reconstruction of the manual (gold standard) annotation
for one subject of the CC-359, OASIS and LPBA40 datasets.

2.2.1.1 CC-359 Dataset

The CC-359 2 is a public dataset composed of image volumes in NIfTI format

from 359 subjects (176 males, 183 females, 53.5 ∘ 7.8 years) acquired in the coronal image

plane. Data were collected on scanners from three different vendors (General Electric (GE)

Healthcare, Philips Medical Systems, and Siemens Healthineers) and at two magnetic

Ąeld strengths (1.5 T and 3 T). Image volumes have a spatial resolution of 1.0 × 1.0 ×

1.0 mm3 (SOUZA et al., 2017). The CC-359 dataset includes the original volumes, the

consensus masks were generated for all subjects using the STAPLE algorithm (described
1 https://github.com/MICLab-Unicamp/CONSNet
2 http://miclab.fee.unicamp.br/tools
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in Section 2.2.3). In addition, manual annotations were performed on twelve randomly

selected subjects (two for each vendor-Ąeld strength combination).

2.2.1.2 LPBA40 Dataset

The LPBA403 dataset is composed of 40 T1-weighted image volumes from healthy

subjects (20 males, 20 females, 29.2 ∘ 6.3 years) and their corresponding manually labeled

brain masks (SHATTUCK et al., 2008). The scans were acquired on a GE Healthcare 1.5-

T system with a spatial resolution of 0.86 × 1.5 × 0.86 mm3.

2.2.1.3 OASIS Dataset

We use the Ąrst two discs of the OASIS4 dataset that consist of T1-weighted

volumes from 77 subjects, with spatial resolution of 1.0 × 1.0 × 1.0 mm3 (MARCUS et

al., 2007). This dataset contains 55 females and 22 males with an average age of 51.6

∘ 24.7 years. Twenty subjects (26%) had early AlzheimerŠs disease. The masks in this

dataset were segmented with a custom method based on registration to an atlas, and

then revised by human experts (IGLESIAS et al., 2011); unlike CC-359 and LBPA40, the

OASIS images were not fully manually segmented. As a result, the quality of the masks

provided with this dataset is relatively poor (cf., Figure 1c) - cortical surface features

and other small structures are Ąltered. Nonetheless, we choose to use this dataset so that

we can compare our results against published results of (KLEESIEK et al., 2016) and

(SALEHI et al., 2017).

2.2.2 Automatic Skull-stripping Methods

This work employed a series of eight state-of-the-art, non DL-based, automatic

skull-stripping methods, as well as two DL-based methods. These methods are all pub-

lic and were used to develop consensus-derived labeled data (non DL-based methods

only, Section 2.2.3) and to analyze the performance of our proposed SS methods (Sec-

tion 2.2.6). In alphabetical order, the eight non DL-based methods were: 1) Advanced

Normalization Tools (ANTs) (AVANTS et al., 2011), 2) Brain Extraction based on non-

local Segmentation Technique (BEAST) (ESKILDSEN et al., 2012), 3) Brain Extraction

Tool (BET) (SMITH, 2002), 4) Brain Surface Extractor (BSE) (SHATTUCK et al., 2001),

5) Hybrid Watershed Approach (HWA) (SÉGONNE et al., 2004), 6) Marker Based Wa-

tershed Scalper (MBWSS) (BEARE et al., 2013), 7) Optimized Brain Extraction (OPTI-

BET) (LUTKENHOFF et al., 2014), and 8) Robust Brain Extraction (ROBEX) (IGLE-

SIAS et al., 2011). An overview of non DL-based methods was provided in motivation
3 http://www.loni.usc.edu/atlases
4 http://www.oasis-brains.org/app/template/Index.vm
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section and further details can be found in the cited references. In our analysis we used

the default processing parameters detailed in the above citations.

The two DL-based methods are the 3D CNN (KLEESIEK et al., 2016) and auto-

net (SALEHI et al., 2017). The 3D CNN approach is a voxel-wise network containing seven

convolutional hidden layers, and one convolutional soft-max output-layer. The receptive

Ąeld (i.e., input for each predicted pixel) of this model is 533 voxels (KLEESIEK et al.,

2016). For this method, we used the CNN model provided by the authors, which was

trained using three public datasets (LPBA40, Internet Brain Segmentation Repository

(IBSR), and OASIS). We tried to train the 3D CNN using our data, but the results

were worse than the published model. Therefore, the published model was used in this

work. The results of a two-fold cross-validation experiment with the LPBA40 and OASIS

datasets were used in our comparative analysis.

A second DL-based approach used auto-net: a 2D FCN U-Net followed by an

auto-context CNN classiĄer. (SALEHI et al., 2017) describe their results with and without

the auto-context CNN in a two-fold cross-validation experiment using the LPBA40 and

OASIS datasets. Only these published results were used as the authors did not provide

source code.

2.2.3 STAPLE-derived Silver Standard Consensus

Consensus methods can be used to provide more reliable and accurate segmen-

tation labeling in SS and other image processing tasks. These methods combine different

segmentations and obtain more robust results (WARFIELD et al., 2004; ASMAN; LAND-

MAN, 2011; REX et al., 2004; REHM et al., 2004). STAPLE is one such consensus-forming

algorithm that uses an expectation-maximization algorithm to estimate the hidden (or

true) segmentation as a probabilistic mask. The algorithm considers a collection of seg-

mentations and computes a probabilistic estimate of the true segmentation and a measure

of the performance level represented by each segmentation method (WARFIELD et al.,

2004). This algorithm was used in this work to generate what we refer to as silver standard

segmentation masks. These brain masks are formed from STAPLE output (a probability

mask) by applying a threshold of 0.5. In our study, STAPLE used as an input binary

masks resulting from the eight non DL-based automatic skull-stripping techniques previ-

ously described (Section 2.2.2).

We applied the STAPLE algorithm to the LBPA40 and OASIS dataset (It has

already been applied to the CC-359 dataset using the same protocols that we adopted.)

STAPLE was chosen in this work because the algorithm has been validated extensively

through experiments (WARFIELD et al., 2004; FENNEMA-NOTESTINE et al., 2006;

CAN et al., 2009). Moreover, an open-source implementation of the algorithm was avail-

able (Insight Segmentation and Registration Toolkit (ITK) repository (JOHNSON et al.,
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2015)). For the CC-359 dataset, silver standard masks for the CC-347 subset were gen-

erated and used for CNN training. The consensus brain masks generated for the twelve

subjects with gold standard manual annotation (i.e., the CC-12 subset) were compared

against the manual annotations. For clarity, the silver standard masks derived from the

CC-12 are referred to as STAPLE-12. For LPBA40 and OASIS datasets, the silver stan-

dard masks were only compared against manually annotated data. These silver standards

are referred to as STAPLE-LPBA40 and STAPLE-OASIS.

2.2.4 Convolutional Neural Network Architecture and Implementation

Our CNN is based on the 2D FCN U-Net architecture. The original U-Net archi-

tecture is a ŞUŤ-shaped network (contracting path, left side; expansive path, right side,

Figure 2) composed of 23 convolutional layers (RONNEBERGER et al., 2015). Our imple-

mentation is a modiĄcation of the CNN architecture from RECOD Titans (MENEGOLA

et al., 2017) which is composed of 20 convolutional layers.

In our implementation, we removed the fully connected layers and used a Ąxed

kernel size of 3 × 3. We adopted the RMSprop (TIELEMAN; HINTON, 2012) with an

initial learning rate of 0.001 and an exponential decay of 0.995 after each epoch at the

training stage. Additionally, the negative of the Dice coefficient (described in Section

2.2.6) was used as the loss function. The implementation was built using Keras with

TensorĆow (ABADI et al., 2016) as a backend. The full code of our implementation is

openly available at https://github.com/MICLab-Unicamp/CONSNet.

2.2.5 Proposed Brain Extraction Pipelines

We propose two DL-based brain extraction methods: 1) the regular CONSNet

that consists of a tri-planar method, analogous to what was implemented in (PRASOON

et al., 2013), with three parallel 2D CNN pipelines and 2) an auto-context version of

CONSNet. Both methods are summarized pictorially in Figure 3. The pipeline presented

in Figure 3a shows the steps required to perform the CONSNet prediction where its Ąnal

output is calculated after applying a threshold to the average probability of the three CNN

output probability maps. The pipeline presented in Figure 3b overviews the auto-context

CONSNet version. This second version takes the output probability maps from the three

CNNs as the input to a fourth CNN.

The key idea in our implementation is to perform 2D segmentation on a image-

by-image basis over each volume and repeat for each orthogonal orientation (i.e., original

axial plus both the coronal and sagittal reformatted images). 3D segmentation is then

done by reconstruction through the concatenation of the 2D predictions. Our approach

is analogous to what is done manually by an expert when reviewing volumetric images.
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Figure 2 Ű ModiĄed RECOD U-Net architecture. (a) presents conĄgurations of the con-
tractive path blocks (CPB), connection blocks (CB), and expansive path blocks
(EPB) used in the architecture. (b) illustrates the entire architecture consist-
ing of CPB, CB, and EPB modules. The contracting path is on the left and
the expansive path is on the right. The concatenations (red arrows) are always
done between the output of the third convolutional layer (red in CPB block
of (a)) in the contracting path and the output of the previous block in the
expansive path. The number of Ąlters in two Ąrst EPB blocks vary for each
convolution. The text in blue and orange of (b) correspond to the convolution
layers blocks of the same colors in the EPB block in (a).

To manually segment an image volume, a human operator would start the task in one

view (often sagittal), and toggle to the other orthogonal views (axial and coronal) to

determine that the voxel in question is or is not brain tissue. The operator is undertaking

a form of Şlabel voting" (CHAKRAVARTY et al., 2013) by assessing each voxel from

different perspectives. By adopting the tri-planar approach, we expect that the CONSNet
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prediction improves compared to when only processing one orientation.

The auto-context CONSNet implementation takes the probability maps gener-

ated by 2D parallel CNNs as input to a fourth CNN. The algorithm reĄnes the output

results in an iterative way and integrates low-level and contextual information by fusing

a large number of low-level appearance features with context and implicit shape infor-

mation (CHEN et al., 2017). Originally (TU; BAI, 2010) used random forest classiĄers

to perform this step; here we take the advantage of the CNN architecture to extract the

context information.

In both implementations, CONSNet and auto-context CONSNet, there are three

major steps: 1) a pre-processing step, 2) a CNN segmentation step, and 3) a threshold and

post-processing step. The details of each step are described in the following subsections.

2.2.5.1 Pre-processing Step

The CC-347 data subset, which is composed of 347 volumes and their respective

silver standard masks, was used to train our CNNs. Because the range of grayscale inten-

sities varies across the image volumes, we Ąrst normalized each volume to the same image

intensity range (0 to 1000). This range was chosen to ensure sufficient dynamic range and

to minimize data storage requirements.

Second, because the volumes from different vendors have differing matrix dimen-

sions, we initially varied the number of patches and their size to improve spatial content

retrieval. We settled on using three patches of size 128 × 128 per slice in each image vol-

ume. Patches were randomly extracted from each slice that contained brain voxels, and

they were subsequently fed into the CNN during training.

We did not use patches surrounding a common voxel; rather, patches were ran-

domly extracted across each slice. This approach was applied in each axial, coronal and

sagittal image orientation for the CONSNet training and after concatenation of the ouput

probability maps for the auto-context CONSNet training.

2.2.5.2 CNN Segmentation Step

In the training step for CONSNet (Figure 3a), the three 2D parallel CNNs, one

for each axial, coronal, and sagittal image plane, were trained. The input to the Ąnal

prediction step consisted of the predictions of all three orthogonal models. For the auto-

context CONSNet (Figure 3b), the training step consisted of training a fourth CNN

using three channels (i.e., one channel per each tri-planar model prediction). This step

was needed because we have to concatenate the output probability maps from the other

CONSNet steps to produce an input to the fourth network. For this implementation, our

CNN uses the sagittal orientation.
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(a)

(b)

Figure 3 Ű Proposed deep learning brain segmentation pipelines. Both pipelines con-
sist of three stages: pre-processing (purple), CNN segmentation (green), and
threshold/post-processing (red). The CONSNet pipeline is shown in (a), and
the auto-context CONSNet pipeline is shown in (b). The blue box in Figure (b)
represents the probability generation done by CONSNet to be used as input
in auto-context CONSNet.

We chose this plane because it is the plane most often considered by experts when

performing manual annotation. As previously mentioned, experts generally toggle to the

orthogonal axial and coronal views only to ensure that a voxel is or is not brain tissue.
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2.2.5.3 Threshold and Post-processing Step

In the Ąrst CONSNet pipeline (Figure 3a), each of the CNN models considers

different orientation-speciĄc spatial information. Therefore, to retrieve integrated spatial

information from the predictions provided by the three CNNs, we calculated the average

probability of the results, and then thresholded the result. The threshold consisted of

setting to 1.0 voxels where the average probability from the three CNNs was greater than

0.5. Otherwise, the voxels were set to 0.0. The second CONSNet pipeline (Figure 3b)

produced only one prediction, thus, the threshold was applied directly to the single CNN

output. A threshold of 0.5 was applied to produce a Ąnal prediction. Both the CONSNet

and auto-context CONSNet Ąnal predictions were obtained after a post-processing step in

which only the largest connected component was preserved. The other smaller components

were removed using an area-open (SALEMBIER et al., 1998) Ąlter.

2.2.6 Evaluation Metrics and Statistical Analysis

The evaluation metrics used were: sensitivity, speciĄcity, Dice coefficient, Haus-

dorff distance, and mean symmetric surface-to-surface distance. The sensitivity, speciĄcity

and Dice coefficient metrics are overlap metrics (larger numbers are best, maximum value

is 100%). The Hausdorff distance and mean symmetric surface-to-surface distance rep-

resent surface distance metrics (smaller numbers are best, minimum value is 0.0). If we

let 𝐺 be the gold standard image and 𝑆 the segmentation we wish to compare, then the

metrics can be deĄned by:

∙ Dice coefficient:

𝐷𝑖𝑐𝑒(𝐺, 𝑆) =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

∙ Sensitivity:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝐺, 𝑆) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

∙ SpeciĄcity:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝐺, 𝑆) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

∙ Hausdorff distance:

𝑑𝐻(𝑆, 𝐺) = max¶sup
𝑠∈𝑆

inf
𝑔∈𝐺

𝑑(𝑠, 𝑔), sup
𝑔∈𝐺

inf
𝑠∈𝑆

𝑑(𝑠, 𝑔)♢

∙ Symmetric surface-to-surface mean distance:

𝑑𝑆(𝑆, 𝐺) =

√︁

𝑠∈𝑆

min
𝑔∈𝐺

𝑑(𝑠, 𝑔) +
√︁

𝑔∈𝐺

min
𝑠∈𝑆

𝑑(𝑔, 𝑠)

♣𝑆♣ + ♣𝐺♣
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where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 , and 𝐹𝑁 are the number of true positive, false positive, true negative,

and false negative Ąndings, respectively, 𝑑(≤, ≤) is the Euclidean distance, sup is supremum,

and inf is the inĄmum.

Each adopted metric evaluates different performance characteristics between the

prediction (𝑆) and ground truth (𝐺) segmentations. Sensitivity measures how much brain

tissue is included in the segmentation, whereas speciĄcity measures how much non-brain

tissue is correctly segmented as non-brain. The Dice coefficient metric is a compromise

between sensitivity and speciĄcity metrics; it evaluates the trade-off between the correct

and incorrect voxel classiĄcations. The Hausdorff distance is indicative of segmentation

outliers, and the symmetric surface-to-surface mean distance has a similar interpretation

to the Dice coefficient but uses the distance between the segmented and gold standard

surfaces.

Heat maps were created to better visualize the correctness of the segmented voxels

versus the manual mask. Non-linear registration (AVANTS et al., 2011) was used to place

all subjects on the same space. The average FP and FN error was then projected for all

the skull stripping methods. The manually segmented subjects served as the reference and

sagittal, coronal, and axial projections were formed.The projected values were normalized

between 0.0 and 1.0.

The statistical analysis to assess differences in the evaluation metrics was done

using Wilcoxon signed-rank tests with Bonferroni correction. This test is a non-parametric

statistical hypothesis test that does not assume a normal distribution (HAYNES, 2013).

A 𝑝-value less than 0.05 was used to conĄrm statistically signiĄcant differences. For pur-

poses of statistical comparison, the auto-context CONSNet approach was selected as the

reference method.

2.2.7 Experimental Methodology

CONSNet was compared, in two experiments against the eight, traditional (non

DL-based) methods, the STAPLE-derived consensus of these methods, and two DL-based

methods (3D CNN (KLEESIEK et al., 2016) and auto-net and U-Net (SALEHI et al.,

2017)). In Experiment 1, we trained CONSNet and the auto-context CONSNet using the

STAPLE-derived consensus formed from the CC-347 subset to demonstrate the concept

of training using silver standard data and the model generalizability. In Experiment 2,

we demonstrated the robustness of our CNN architecture by performing a two-fold cross-

validation using the LPBA40 and OASIS datasets. The labeled masks for this experiment

are the ones originally provided by LPBA40 and OASIS datasets. Each experiment is

described in the following sections. All experiments used a general purpose workstation

equipped with a CPU (Xeon R÷ E3-1220 v3, 4×3.10 GHz; Intel) and 32 GByte of memory.

The workstation GPU (GeForce Titan X; NVIDIA) had 12 GByte of on-board memory.
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2.2.7.1 Experiment 1

In Experiment 1, we demonstrated training of the CONSNet and the auto-context

CONSNet methods using the STAPLE-generated silver standard masks derived from the

CC-347 data subset. We compared our Ąndings against the eight non DL-based SS meth-

ods, plus the 3D CNN (KLEESIEK et al., 2016) method and the STAPLE consensus

results for the CC-12, OASIS and LPBA40 datasets.

2.2.7.2 Experiment 2

In the second experiment, we performed a two-fold cross-validation using sepa-

rately the LPBA40 and OASIS datasets. These tests compare our Ąndings against pub-

lished results for 3D CNN (KLEESIEK et al., 2016), and for auto-net and U-Net (SALEHI

et al., 2017) networks. We also evaluated model generalization by validating our ap-

proaches using the CC-12 subset and either the OASIS or LPBA40 dataset (i.e., exclud-

ing the dataset used for network training). In Experiment 2, the patch size was allowed to

vary; it was experimentally set, allowing the patch size to change according to the image

size of each dataset. We used ten patches of size 96 × 96 for the LPBA40 dataset and ten

patches of size 144 × 144 for the OASIS dataset.

2.3 Results

2.3.1 Experiment 1

Figures 4 to 6 present representative 3D reconstructions of the different seg-

mentation methods for one sample subject in the CC-12, OASIS, and LPBA40 datasets,

respectively. These panels compare the manual annotation to the outputs of both the pub-

lished non DL and DL-based methods, and to our proposed CONSNet methods. Overall

the quality of the brain extraction is good, though some variation by method and by

dataset was found. For instance, there are automatic methods that poorly delineate (or

smooth) the gyri and sulci, such as ROBEX (cf., Figure 4a vs Figure 4i). The OASIS

manual annotation (Figure 6a) is also relatively smooth because it was automatically seg-

mented using a computer and then manually revised (see description provided in Section

2.2.1.3). The BSE method was found to perform much worse than the other methods with

the CC-12 data subset. Therefore, we chose to not include the BSE output masks in our

subsequent Experiment 1 analyses. To generate the STAPLE consensus results, however,

we included the BSE image volumes.

Tables 1 to 3 summarize the overall analyses for each evaluation metric. These

data are summarized as box plots in Figures 7 to 11. Performance of the CONSNet method

was excellent across the three datasets. While all tested methods generally performed
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(a) Manual (b) STAPLE-12
𝑝𝑟𝑜𝑏 > 0.5

(c) ANTs (d) BEAST (e) BET

(f) HWA (g) MBWSS (h) OPTIBET (i) ROBEX (j) 3D CNN

(k) CONSNet (l) auto-context
CONSNet

Figure 4 Ű Representative 3D reconstruction of the different segmentation methods for
one subject of the CC-12 subset.

well (i.e., > 90% on Dice coefficient, sensitivity and speciĄcity; < 10 mm on Hausdorff

distance; and < 0.1 mm on symmetric surface-to-surface mean distance), CONSNet was

typically in the top Ąve of the eleven tested methods (except for speciĄcity). In the

OASIS dataset (Table 3), our CONSNet method performed slightly worse than ROBEX,

however as previously noted, the ROBEX segmentations were very smooth and did not

track surface brain tissue details. Finally, CONSNet outperformed the 3D CNN method

(Dice coefficient, sensitivity, Hausdorff and symmetric surface-to-surface mean distances)

across all three datasets. The results from the LPBA40 and OASIS datasets suggest

generalizability of the CC-347 -trained network.
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(a) Manual (b) STAPLE-
LPBA40
𝑝𝑟𝑜𝑏 > 0.5

(c) ANTs (d) BEAST (e) BET

(f) HWA (g) MBWSS (h) OPTIBET (i) ROBEX (j) 3D CNN

(k) CONSNet (l) auto-context
CONSNet

Figure 5 Ű Representative 3D reconstruction of the different segmentation methods for
one subject of the LPBA40 dataset.

Table 1 Ű Overall analysis against manual segmentation results for the CC-12 subset.
The best two values and all values better than auto-context CONSNet are
emboldened. SSSMD = symmetric surface-to-surface mean distance.

Methods
Metrics

Dice (%) Sensitivity (%) Specificity (%) Hausdorff (mm) SSSMD (mm)

ANTs 95.927 ∘ 0.009 94.510 ∘ 0.016 99.705 ± 0.001 8.905 ± 1.393 0.057 ∘ 0.015
BEAST 95.766 ∘ 0.012 93.838 ∘ 0.026 99.757 ± 0.001 9.907 ∘ 1.410 0.067 ∘ 0.029

BET 95.220 ∘ 0.009 98.261 ∘ 0.016 99.131 ∘ 0.002 12.169 ∘ 2.766 0.08 ∘ 0.024
HWA 91.657 ∘ 0.011 99.930 ± 0.001 97.830 ∘ 0.008 15.399 ∘ 1.799 0.179 ∘ 0.038

MBWSS 95.568 ∘ 0.015 92.784 ∘ 0.027 99.848 ± 0.004 28.228 ∘ 5.446 0.080 ∘ 0.031
OPTIBET 95.433 ∘ 0.007 96.133 ∘ 0.010 99.357 ∘ 0.003 10.304 ∘ 1.998 0.066 ∘ 0.013
ROBEX 95.611 ∘ 0.007 98.421 ∘ 0.007 99.130 ∘ 0.003 9.410 ∘ 1.610 0.063 ∘ 0.015
3D CNN 92.454 ∘ 0.032 88.770 ∘ 0.059 99.648 ± 0.001 21.244 ∘ 14.921 0.333 ∘ 0.349

STAPLE-12 96.797 ∘ 0.007 98.976 ± 0.006 99.382 ∘ 0.002 8.327 ± 1.665 0.038 ∘ 0.007
CONSNet 97.183 ± 0.005 98.919 ∘ 0.005 99.465 ∘ 0.002 9.713 ∘ 2.827 0.037 ± 0.007

auto-context CONSNet 97.191 ± 0.005 98.944 ∘ 0.005 99.465 ∘ 0.002 9.137 ∘ 2.374 0.037 ± 0.007
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(a) Manual (b) STAPLE-OASIS
𝑝𝑟𝑜𝑏 > 0.5

(c) ANTs (d) BEAST (e) BET

(f) HWA (g) MBWSS (h) OPTIBET (i) ROBEX (j) 3D CNN

(k) CONSNet (l) auto-context
CONSNet

Figure 6 Ű Representative 3D reconstruction of the different segmentation methods for
one subject of the OASIS dataset.

Table 2 Ű Overall analysis against manual segmentation results for the LPBA40 dataset.
The best two values and all values better than auto-context CONSNet are
emboldened. SSSMD = symmetric surface-to-surface mean distance.

Methods
Metrics

Dice (%) Sensitivity (%) Specificity (%) Hausdorff (mm) SSSMD (mm)

ANTs 97.259 ∘ 0.006 98.981 ± 0.004 99.179 ∘ 0.002 9.394 ± 3.876 0.039 ± 0.017
BEAST 96.306 ∘ 0.005 94.060 ∘ 0.012 99.759 ± 0.003 9.447 ± 3.724 0.058 ∘ 0.016

BET 96.625 ∘ 0.007 97.236 ∘ 0.014 99.276 ∘ 0.002 18.127 ∘ 6.379 0.079 ∘ 0.065
HWA 92.515 ∘ 0.012 99.898 ± 0.001 97.092 ∘ 0.006 16.110 ∘ 2.701 0.206 ∘ 0.055

MBWSS 96.239 ∘ 0.008 94.406 ∘ 0.013 99.680 ± 0.002 23.661 ∘ 6.283 0.075 ∘ 0.087
OPTIBET 95.874 ∘ 0.006 93.349 ∘ 0.011 99.742 ± 0.002 12.536 ∘ 2.838 0.064 ∘ 0.020
ROBEX 96.773 ∘ 0.002 96.491 ∘ 0.008 99.469 ∘ 0.002 12.472 ∘ 3.816 0.050 ∘ 0.006
3D CNN 95.696 ∘ 0.007 92.614 ∘ 0.015 99.831 ± 0.001 15.553 ∘ 5.062 0.070 ∘ 0.021

STAPLE-LPBA40 97.585 ± 0.002 98.144 ± 0.006 99.457 ∘ 0.002 9.399 ± 3.74 0.033 ± 0.005
CONSNet 97.353 ∘ 0.003 97.257 ∘ 0.007 99.541 ± 0.001 12.350 ∘ 3.721 0.039 ± 0.006

auto-context CONSNet 97.356 ± 0.003 97.330 ∘ 0.007 99.528 ∘ 0.001 11.991 ∘ 4.043 0.039 ± 0.007
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Table 3 Ű Overall analysis against manual segmentation results for the OASIS dataset.
The best two values and all values better than auto-context CONSNet are
emboldened. SSSMD = symmetric surface-to-surface mean distance.

Methods
Metrics

Dice (%) Sensitivity (%) Specificity (%) Hausdorff (mm) SSSMD (mm)

ANTs 95.307 ∘ 0.019 94.391 ± 0.036 98.732 ∘ 0.008 9.898 ∘ 4.350 0.114 ∘ 0.171
BEAST 92.468 ∘ 0.013 86.763 ∘ 0.025 99.700 ± 0.003 11.991 ∘ 1.905 0.167 ∘ 0.039

BET 93.503 ∘ 0.027 92.638 ∘ 0.048 98.101 ∘ 0.013 20.091 ∘ 6.768 0.227 ∘ 0.242
HWA 93.954 ∘ 0.014 98.36 ± 0.015 96.125 ∘ 0.016 14.062 ∘ 1.162 0.149 ∘ 0.055

MBWSS 90.241 ∘ 0.044 84.094 ∘ 0.079 99.351 ± 0.005 13.395 ∘ 8.086 0.249 ∘ 0.297
OPTIBET 94.456 ∘ 0.011 91.519 ∘ 0.027 99.222 ± 0.005 11.202 ∘ 1.714 0.110 ∘ 0.031
ROBEX 95.557 ∘ 0.008 93.954 ∘ 0.022 99.067 ∘ 0.005 9.442 ± 1.813 0.083 ± 0.025
3D CNN 95.237 ∘ 0.009 92.81 ∘ 0.023 99.277 ± 0.004 10.644 ∘ 2.642 0.095 ∘ 0.031

STAPLE-OASIS 96.096 ± 0.007 95.188 ± 0.02 98.983 ∘ 0.006 8.553 ± 1.602 0.069 ± 0.018
CONSNet 95.548 ∘ 0.010 93.98 ∘ 0.028 99.055 ∘ 0.006 10.228 ∘ 3.932 0.083 ± 0.028

auto-context CONSNet 95.602 ± 0.01 94.021 ∘ 0.028 99.078 ∘ 0.006 9.614 ∘ 3.658 0.083 ± 0.029



















Chapter 2. Convolutional Neural Networks for Skull-stripping in Brain MR Imaging using

Consensus-based Silver standard Masks 45

CONSNet processing time did not include the time to generate the probability maps from

the CONSNet prediction stage. The auto-net is not included in these analysis since its

source code is not publicly available.

Table 4 Ű Processing times for one image volume of each dataset (CC-359, OASIS, and
LPAB40) for each skull-stripping method. For the CONSNet approaches, the
number in front of the backslash represents the time computed on the CPU
while the number after the backslash is the GPU time. ⋆ denotes results for
the processing time for the STAPLE consensus-forming step only or the auto-
context CONSNet step only (see text).

Processing time (seconds)

Method
Datasets

CC-12 OASIS LPBA40

ANTs 1378 1025 1135
BEAST 1128 944 905

BET 9 5 7
BSE 2 1 1

HWA 846 248 281
MBWSS 135 66 79

OPTIBET 773 579 679
ROBEX 60 53 57
3D CNN 196 121 123

STAPLE (12,OASIS,LPBA40) 160⋆ 54⋆ 36⋆

CONSNet 516/25 214/18 301/20
auto-context CONSNet 155⋆/11⋆ 75⋆/8⋆ 105⋆/10⋆

2.3.2 Experiment 2

Tables 5 and 6 summarize the results of Experiment 2. Evaluation metrics are

shown for the two-fold cross-validation experiment using the LPBA40 and OASIS datasets

for training. Also summarized are the evaluation metrics published for the 3D CNN (KLEESIEK

et al., 2016), and for auto-net and U-Net (SALEHI et al., 2017) networks using the

LPBA40 data (Table 5) and the OASIS (Table 6) datasets. Comparison is also made

validating on the CC-12 subset. Our results compared favourably to the result published

using the 3D CNN (KLEESIEK et al., 2016), auto-net and U-Net (SALEHI et al., 2017)

methods. CONSNet was always best or second best across the Ąve evaluation metrics.

2.4 Discussion

2.4.1 Experiment 1

Our approaches had excellent results with respect to the Dice coefficient which is

the Ąrst metric taken by the raters to evaluate an optimal segmentation. CONSNet also
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Table 5 Ű Two-fold cross-validation using the LPBA40 dataset. The best score us-
ing the LPBA40 dataset for each metric is emboldened. Values for 3D
CNN (KLEESIEK et al., 2016), and for auto-net and U-Net (SALEHI et al.,
2017) are from literature. SSSMD = symmetric surface-to-surface mean dis-
tance.

Datasets Methods
Metrics

Dice (%) Sensitivity (%) Specificity (%) Hausdorff (mm) SSSMD (mm)

CC-12 CONSNet 89.63 ∘ 0.076 85.11 ∘ 0.129 99.6 ∘ 0.002 16.67 ∘ 3.915 0.24 ∘ 0.217

LPBA40
CONSNet 98.47 ± 0.002 98.55 ± 0.005 99.71 ± 0.001 10.05 ± 5.087 0.02 ± 0.003

Auto-net (SALEHI et al., 2017) 97.73 ∘ 0.003 98.31 ∘ 0.006 99.48 ∘ 0.001 ⊗⊗ ⊗⊗
U-Net (SALEHI et al., 2017) 96.79 ∘ 0.004 97.22 ∘ 0.016 99.34 ∘ 0.002 ⊗⊗ ⊗⊗

3D CNN (KLEESIEK et al., 2016) 96.96 ∘ 0.01 97.46 ∘ 0.01 99.41 ∘ 0.003 ⊗⊗ ⊗⊗

OASIS CONSNet 92.55 ∘ 0.03 89.11 ∘ 0.059 98.86 ∘ 0.007 13.09 ∘ 4.483 0.15 ∘ 0.075

Table 6 Ű Two-fold cross-validation using the OASIS dataset. The best score using the
OASIS dataset for each metric is emboldened. Values for 3D CNN (KLEESIEK
et al., 2016), and for auto-net and U-Net (SALEHI et al., 2017) are from liter-
ature. SSSMD = symmetric surface-to-surface mean distance.

Datasets Methods
Metrics

Dice (%) Sensitivity (%) Specificity (%) Hausdorff (mm) SSSMD (mm)

CC-12 CONSNet 92.22 ∘ 0.022 94.17 ∘ 0.058 98.92 ∘ 0.004 18.55 ∘ 13.443 0.17 ∘ 0.087

LPBA40 CONSNet 92.31 ∘ 0.046 90.78 ∘ 0.08 99.0 ∘ 0.003 17.8 ∘ 8.306 0.18 ∘ 0.135

OASIS
CONSNet 97.14 ∘ 0.005 97.45 ∘ 0.013 98.88 ± 0.006 6.9 ± 1.549 0.04 ± 0.013

Auto-net (SALEHI et al., 2017) 97.62 ± 0.01 98.66 ± 0.01 98.77 ∘ 0.01 ⊗⊗ ⊗⊗
U-Net (SALEHI et al., 2017) 96.22 ∘ 0.006 97.29 ∘ 0.01 98.27 ∘ 0.007 ⊗⊗ ⊗⊗

3D CNN (KLEESIEK et al., 2016) 95.02 ∘ 0.01 92.40 ∘ 0.03 99.28 ∘ 0.004 ⊗⊗ ⊗⊗

had excellent sensitivity (i.e., keeping brain tissue in the SS mask). In fact, all methods

performed equivalently with the exception of HWA, which usually had a high sensitivity

but poor overlap (Dice coefficient) and speciĄcity due to the challenges of atlas-based

registration. With respect to speciĄcity, all methods performed acceptably, except for

HWA (Figure 9). Also, our CONSNet methods had very few outliers in the Hausdorff and

symmetric surface-to-surface mean distances (Figures 10 to 11). Using the auto-context

CONSNet as a reference, some metric differences were found to be statistically signiĄcant

(i.e., p-value < 0.05) compared to most other methods (Figures 12 to 14). STAPLE and

ANTs, had fewest statistically signiĄcant performance differences.

The projection heat maps showed interesting average differences between the

methods. Figure 15a, for example, shows that methods with high speciĄcity, such as

ANTs and BEAST were not able to properly segment the Ąssure between the left and

right brain hemispheres in the CC-12 data subset. Only MBWSS was capable of correctly

segmenting the brain Ąssure. In the STAPLE consensus algorithm, MBWSS is one out of

eight methods and its inĆuence is diluted by the other algorithms that did not correctly

segment the brain Ąssure, thus affecting the silver standard mask used to train CONSNet.

Our approach was more inĆuenced by the other methods and, as a result, did not segment

the brain Ąssure correctly. Both OASIS and LPAB40 have annotated masks with smoothed

brain Ąssures. From Figures 16a and 17a it is possible to see that we had very few FP
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errors even along the brain border region.

The 3D CNN method had the highest number of FN errors than the other meth-

ods in the CC-12 data subset. Figures 15b, 16b and 17b show that we had few FN in all

datasets, mostly in the OASIS dataset. In this heat maps analysis, STAPLE had similar

results to our method, except in the OASIS and LPBA40 datasets.

The guidelines for manual annotation varies between expert raters, inĆuencing

the performance evaluation of the predictions for different datasets (ESKILDSEN et al.,

2012). The CC-12 subset had a manual annotation which correctly segmented the gyral

and sulcal regions as well as the brain Ąssure. The LPBA40 dataset had a comparatively

smoother surface delineation. The OASIS dataset had annotated brain mask data that

was generated using automatic segmentation and then manually revised by an expert.

Our silver standard masks were the agreement among different traditional algorithmic

approaches, overcoming the possible super-specialization in the CNN training when us-

ing only one procedure for generating annotated data. As a result, we have an optimal

performance across datasets when CONSNet and auto-CONSNet were trained with silver

standard masks and validated with LPBA40 and OASIS datasets.

It was observed that the processing time of the most robust individual methods

(ANTs, BEAST) was ≡ 20 minutes for larger image volumes like in the CC-12 data

subset (Table 4). ROBEX which proĄts from a parallel implementation, was the fastest,

taking around a minute for the same image volume. Our CPU-based implementation of

the auto-context CONSNet prediction took over two minutes without considering the

time to generate the probability maps from the parallel CNNs predictions. If we consider

this additional time, the auto-context CONSNet prediction required ≡ 11 minutes (671

seconds, which equals 3× the time to generate the probability maps plus the time of the

auto-context CONSNet prediction itself, or 516+155 seconds). This aggregate time is still

approximately half that required by ANTs or BEAST. CONSNet prediction times were

signiĄcantly reduced in the GPU implementation, our method requiring ≡ 25 seconds.

STAPLE as a method outperformed our method in almost all of the computed

metrics in the OASIS and LPBA40 dataset (Tables 2 and 3) with statistical difference (Fig-

ures 13, and 14). These results suggest that our CONSNet results might be limited by the

STAPLE results. Nonetheless, using STAPLE as a method is very expensive and time-

consuming because for every new image volume the automatic methods need to be ran

again to generate a new STAPLE brain mask. In other words, maximum performance

is determined by the standard used for annotation (in this work, that is, the STAPLE-

derived, silver standard consensus). As an additional note, the quality of the manually

segmented data in both OASIS and LPBA40 datasets are inferior than the CC-12. This

could also limit our observed performance. More investigation of these limitations, there-

fore, should be undertaken.
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2.4.2 Experiment 2

Experiment 2 consisted of a two-fold cross validation experiment using Ąrst the

LPBA40 and then the OASIS dataset for training. We explored only the CONSNet method

because the approach had similar results to the auto-context CONSNet but was faster

(see 4). CONSNet also had comparable performance to the auto-net and outperformed

the U-Net and the 3D CNN methods (Tables 5 and 6).

CONSNet performed better than all DL-based methods in the LPBA40 dataset

across all metrics. In the OASIS dataset, we ranked second in Dice coefficient and in

sensitivity; but were ranked Ąrst regarding speciĄcity. The U-Net pipeline from (SALEHI

et al., 2017) work does not have an auto-context CNN. Therefore, a fairer comparison

between the CNN architectures would be to compare against U-Net. CONSNet outper-

formed U-Net by 1% and 1.7% margin in the OASIS and LPBA40 datasets, respectively.

Our CONSNet architecture was very robust, having Gaussian noise, dropout, and batch

normalization as regularizers. These steps lead to a substantial improvement against U-

Net (SALEHI et al., 2017) and comparable results to auto-net (SALEHI et al., 2017).

Two-fold cross validation analysis cannot demonstrate generalization. When the

two-fold-derived models were applied to datasets with images that were not included in

the training step, the best results with respect to Dice coefficient, for instance, ranged

from 89% to 92%. This result occurred because CNNs are data-driven approaches and

during their training stage they only learn to reproduce the annotation (rules) provided

by the training data. Therefore they are biased to the provided manual annotation. As

a consequence, since LPBA40 and OASIS are not robust datasets (i.e., only one vendor

and scanner, and have poor annotation), good generalization was not achieved.

2.4.3 General Discussion

Overall, CONSNet is the most appropriate choice between our two pipelines ap-

proaches (CONSNet and auto-context CONSNet). This model has low cost (fast) and

achieved similar performance compared to auto-context CONSNet in Experiment 1. It

also achieved similar results to auto-net in Experiment 2 but with lower cost. These re-

sults show that by using silver standard data as annotated input for training results in

better generalization (Experiment 1) compared to the two-fold cross-validation with gold

standard, manual masks (Experiment 2). As discussed, silver standard data are generated

through agreement among different automated processes (each with distinct guidelines).

This approach can reduce super-specialization effects in training and minimize dominance

of one expert/process/guideline on the CNN training. Silver standard data can also min-

imize the impact of inter-/intra- rater variability in the annotation step. Additionally,

we generated silver standard masks from unlabeled data, greatly enlarging our input an-

notated data: by adopting a patch-wise training scheme with more than 100,000 input
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data.

2.5 Conclusions

In this chapter, we have proposed a robust CNN for brain MR imaging SS, fully

trained using silver standards masks. CONSNet and auto-context CONSNet are compa-

rable to state-of-the-art automatic approaches, faster than the most robust non DL-based

methods (even CPU-based implementations), and have optimal generalization. The us-

age of silver standard masks, also, provides a low cost solution for generating annotated

input data to augment the volume of training data. Silver standards also reduce inter-

/intra-rater variability and decrease overĄtting of data-driven approaches because the

annotations are generated through consensus agreement. With these results we want to

leverage the usage of silver standard brain masks for large-scale studies in medical image

processing. Moreover, we also want to extend CONSNet to a 3D architecture. We recog-

nize the paucity of expertly annotated data in other medical image processing tasks and,

in the future, want to extend our contribution to other applications.
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3 Deep-learning-based Tractography for Sur-

gical Planning in Epilepsy treatment

3.1 Motivation

Epilepsy is a brain disorder characterized predominantly by recurrent and un-

predictable interruptions of normal brain function, called epileptic seizures (FISHER et

al., 2005). Epilepsy affects 50 million 1 people worldwide. Between 20 and 40 % of focal

epilepsy patients are refractory, i.e., do not respond to treatment with antiepileptic med-

ication (KWAN; BRODIE, 2004). An effective treatment for these patients is surgical re-

section of the epileptogenic zone (EZ) (WIEBE et al., 2001; PLATT; SPERLING, 2002),

which is deĄned as the minimal cortex area that must be resected to produce seizure-

freedom (LÜDERS et al., 2006). Surgical resection of the hippocampus is performed to

cure refractory temporal lobe epilepsy (WINSTON et al., 2012; WINSTON et al., 2011;

KWAN; BRODIE, 2004), consisting of either a speciĄc resection of the hippocampus and

amygdala or a complete anterior temporal lobe resection. In this surgery, there is a 10%

risk of a signiĄcant visual Ąeld deĄcit (GOONERATNE et al., 2017) because of damage

to the optic radiation, the white matter (WM) Ąbres of the visual system (WINSTON et

al., 2011).

Tractography is a non-invasive method for visualization of the white matter

Ąber bundles or tracts done using information in diffusion magnetic resonance images

(dMRI) (YAMADA et al., 2009). Tractography identiĄes white matter pathways based

on the assumption of predominant water diffusion along the Ąbers rather than perpen-

dicular to them (LEMKADDEM et al., 2014). The primary clinical application of trac-

tography is preoperative planning (YAMADA et al., 2009), for example the delineation

provided by tractography of the optic radiation, which cannot be performed using con-

ventional MR imaging sequences, is used to determine the distance between the temporal

pole and MeyerŠs loop (WINSTON et al., 2012; WINSTON et al., 2011), consequently

reducing the risk of damage at the visual Ąeld. The goal of presurgical tractography is

to identify the position of eloquent pathways, such as the motor, sensory, and language

tracts (BERMAN, 2009) to plan the surgery aiming to avoid damaging these bundles.

3.1.1 Previous Works in Tractography

Although tractography has demonstrated huge beneĄts in both neuroscience and

clinical applications, there are outstanding challenges in how to get the most out of the
1 http://www.who.int/news-room/fact-sheets/detail/epilepsy
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acquired dMRI data. Usually, tractography is performed in two main steps: the Ąrst step

is to obtain a voxel-wise estimate of local Ąber orientations and the second step is to

track Ąbers across voxels (ZHAN et al., 2015). There are a plethora of methods to convert

acquired dMRI data into local Ąber orientations which are then used in tractography,

for instance, using diffusion tensor (BASSER et al., 1994), multi-tensor (MALCOLM

et al., 2010), spherical deconvolution (TOURNIER et al., 2004), or multi-compartment

models (ASSAF et al., 2008). Three main approaches exist to perform tractography which

are deterministic, probabilistic, and global (LEMKADDEM et al., 2014; MORI et al.,

1999; YENDIKI et al., 2011; TOURNIER et al., 2012).

In general, deterministic tractography algorithms follow the peak Ąber orientation

at discrete locations in small, discrete steps (ALEXANDER, 2010). The other approaches

use multiple start Ąbers, and then Ąnd multiple directions for a given voxel. Initially,

tractography is performed by starting from one or more ŞseedŤ locations propagating

the trajectories according to some constraints until the tracts are terminated (ALEXAN-

DER, 2010). Probabilistic tractography relies on a probability density function (PDF)

for Ąber orientation (PARKER, 2010). In this approach, a probability is assigned to

the reconstructed pathways by considering multiple pathways emanating from the same

seed (JEURISSEN et al., 2011). Global methods try to reconstruct all the Ąbers simultane-

ously by Ąnding the conĄguration that describes best the measured data, this necessarily

involves the solution of the forward problem of predicting the measured signal given a Ąber

conĄguration (REISERT et al., 2011). For these methods, anatomical prior constraints

are often used.

The conventional tractography methods have several unresolved challenges: how

to distinguish between different complex Ąber conĄgurations within a voxel, where axons

can cross, kiss, bend, or fan out; premature termination of tracts based on predeĄned

stopping criteria; or the trade-off between speciĄcity and sensitivity of different approaches

(in either local orientations or tractography) (NEHER et al., 2015; NEHER et al., 2017).

These issues in data processing for tractography are intricately tied to data acquisition

parameters, such as the minimum number of diffusion-weighting gradients and the chosen

b-values (BERMAN, 2009; LEMKADDEM et al., 2014; NEHER et al., 2015; NEHER

et al., 2017). Moreover, the selection of speciĄc Ąber bundles, like the optic radiation,

is typically done as a post-processing step independent of signal modeling, using expert

manual input which can be very time consuming and has signiĄcant variability between

manual raters (YAMADA et al., 2009; NOWELL et al., 2015).

Recently, machine-learning (NEHER et al., 2017) and deep-learning-based (POULIN

et al., 2017) tractography approaches have been proposed, which use the measured signal

directly and rely on machine learning advantages, such as neighborhood information to

disentangle asymmetric Ąber patterns. The lack of general restrictions on the type of im-
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age acquisition forgo the necessity of ad hoc constraints of signal modeling (NEHER et

al., 2017). Moreover, deep-learning-based methods have the advantage to be fast at the

prediction stage (LECUN et al., 2015). However, none of the aforementioned approaches

have used convolutional neural networks (CNNs).

3.1.2 Our Approach

We present in this chapter a deep-learning-based approach to perform tractog-

raphy for surgical planning in epilepsy treatment. We structured the problem in a deep-

learning-regression pipeline to predict the Ąbers bundles, using a three-stage approach:

(1) use an auto-encoder to learn a high-level representation in a latent space for the coor-

dinates in each Ąber; (2) regressing the input images to map the high-level representation

of tract by feeding them into a 3D 18-convolutional-layer residual network (ResNet18); (3)

Ąne-tuning the stack model (ResNet18 + decoding layers from the auto-encoder) to regress

the tracts. We validated our approach using 10 subjects in a Ąve-fold cross-validation by

doing two experiments: (a) training and testing in a subject and (b) training in data from

all subjects and testing the model for each one. We used Dice coefficient as the evaluation

metric to compute the overlap area between the voxels that both prediction and ground

truth Ąber bundles were passing through in the raw data.

The main contributions in this work can be summarized as follows:

∙ To the best of our knowledge, we are the Ąrst ones to investigate the use of CNNs

for tractography.

∙ Our method uses a three stages approach with an auto-encoder to obtain a high-level

representation of the Ąber bundles, making the Ąnal regression more robust.

∙ Our analysis serves as a baseline for deep-learning-based regression for tractography

in epilepsy surgery.

3.2 Materials and Methods

3.2.1 Dataset

Our dataset is comprised of 10 subjects. Each dMRI is acquired in multi-shell

format with the following characteristics: 2𝑚𝑚 isotropic resolution, with 115 gradient di-

rections: 11, 8, 32, and 64 at b-values: 0, 300, 700, and 2500𝑠/𝑚𝑚2 , single 𝑏 = 0 image with

reverse phase-encoding to correct for susceptibility-induced distortions (ANDERSSON et

al., 2003). Each patient has annotation of the uncinate fasciculus (UF) tract which is com-

posed of 5000 Ąbers (Figure 18). Each Ąber has a set of points in which the coordinates
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represent the 3D position in 𝑚𝑚. Fiber tracts were reconstructed using the probabilis-

tic tractography method from MRTrix3 (TOURNIER et al., 2012) using integration over

Ąber orientation distributions (TOURNIER et al., 2010) and anatomically-constrained

tractography, then, they were manually revised by two experts, following an established

criteria (WAKANA et al., 2007).

Figure 18 Ű 3D reconstruction of the UF tract.

3.2.2 Convolutional Neural Network Architectures and Implementation

We structured the tractography problem in a deep-learning-based regression and

conducted the experiments using two networks. The Ąrst network is an autoenconder

with 1 hidden layer comprised of 1024 neurons, 𝑙2 weight regularization of 10−4, 𝑙1 activity

regularization of 10−5, scaled exponential linear units (SeLU) (KLAMBAUER et al., 2017)

activation for the hidden layer, and linear activation for the output layer. The second one

is a 3D 18-convolutional-layer residual network (ResNet18) (HE et al., 2016) with ReLU

activations in all layers except for the last layer which contains a linear activation. Both

were implemented using Keras with TensorĆow (ABADI et al., 2016) as a backend, and

the ResNet18 was based on a publicly available code 2. In this CNN, we modiĄed the

stride to be 1 × 1 × 1 in both Ąrst convolution and max-pooling layer. Figure 19 depicts

the adopted ResNet18 architecture.

Nadam (DOZAT, 2016) was used as the optimizer with an initial learning rate of

0.001 and a step decay of after every Ąve epochs at the training stage for ResNet18. For the
2 https://github.com/JihongJu/keras-resnet3d
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autoencoder training, we adopted Adam (KINGMA; BA, 2014) optimizer with a learning

rate of 0.0001 and no weight decay. The Huber loss presented in Equation 3.1 was used as

the cost function in both networks. We chose this function because for regression tasks it

is less sensitive to outliers in the training data than the mean squared error (ZINKEVICH

et al., 2010).

ℎ(𝑥) =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

0.5𝑥2, if ♣𝑥♣ ⊘ 𝑑

0.5𝑥2 + (♣𝑥♣ ⊗ 𝑑), otherwise
(3.1)

where 𝑑 = 1.0, 𝑥 = 𝑦𝑡𝑟𝑢𝑒 ⊗ 𝑦𝑝𝑟𝑒𝑑

3.2.3 Proposed Tractography Pipeline

To perform the regression, we based our approach on learning a high-level latent

representation used in (KATIRCIOGLU et al., 2018) to predict 3D human pose estima-

tion. In this work, the authors show that combining a traditional CNN for supervised

learning with autoencoders results in an improved performance since it learns to properly

encode dependencies between joint locations.

First, they learned high-level representation embeddings using autoencoders. Sec-

ondly, a regression network is trained to map an input to these embeddings. As a Ąnal

step, they stacked the decoding layers of the trained autoencoder on top of the CNN and

Ąne-tuned the whole architecture to predict the joint locations. Based on their approach,

we built our pipeline consisting of the same three stages shown in Figure 20. The three

stages for our proposed tractography are: (a) learn high-level models on a latent space

to represent the tracts with an autoencoder, in our case an embedding with size of 1024

(experimentally set); (b) regressing the input images to map a high-level representation of

tract; (c) Ąne-tuning the stack model (ResNet18 + decoding layers) to regress the tracts.

3.2.3.1 Pre-processing

White matter tracts can vary in size due to patientsŠ head size making the CNN

training stage challenging when using data from different subjects potentially leading

to wrong inferences (i.e. inferring a streamline in grey matter or lack of reproducibil-

ity) (MAIER-HEIN et al., 2017; ESSAYED et al., 2017). Another issue is using raw data

as an input to feed a CNN. Ideally, raw data has more information than a processed data

(Ąt into Ąber orientation model) as a model signal orientation necessarily is constrained by

the signal model. However, dMRI is noisy and raw data values may restrict the method

by the used MRI acquisition of the training dataset, not allowing slight variations in

the acquisition setup, such as patient orientation with the scanner, without a complete

retraining of the method (WASSERTHAL et al., 2018).
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Figure 19 Ű 18-layer 3D ResNet implemented. (a) Presents the residual blocks imple-
mented in the network. (b) Depicts the full architecture adopted where FC
stands for fully connected layer.

To overcome the above issues, we used as input three principal Ąber directions

per voxel as input, resulting in 9 features per voxel like in (WASSERTHAL et al., 2018).

First, we Ąt our raw data into a constrained spherical deconvolution (CSD) model using
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ferring to 𝑃 points, which in our case is 120. Therefore, our approach aims to regress

an input 3D data to a correspondent Ąber. To reach that, our CNN regression was per-

formed by feeding the networks with 3D patches. 3D patches were extracted in Ąxed size

of 48 × 48 × 48. They represent the white matter voxels that each Ąber from the tract

is passing through. The patches generation is done based on segmented mask from the

tract. These segmented masks were generated by a nearest-neighbor interpolation.

3.2.4 Experimental Methodology

Our experiments were focused on the left UF tract because this bundle is a

well-deĄned bundle in terms of end-points and despite the curved geometry has high

reproducibility between raters. These features make the UF a good candidate to validate

tractography performance.

We conducted two Ąve-fold cross-validation experiments to evaluate the perfor-

mance of the proposed method. In Experiment 1, we performed our CNN regression in

one subject for training and testing, and the procedure was repeated for all ten patients.

In this case, all 5000 Ąbers from the left UF tract were used. In Experiment 2, we were in-

terested in evaluating the performance of our tractography method per patient by adding

data from other subjects. In this case, we randomly extracted 700 Ąbers from each of the

ten subjects and evaluated the trained model against each patient.

3.2.5 Evaluation Metrics

Using the Dice coefficient, we quantiĄed the overlap between our predictions and

the annotated tracts. This overlap is measured by retrieving brain regions per voxel of the

dMRI that the Ąbers are passing though. We map the tracts to weighted high-resolution

image, using MRtrix, and thresholded this image to output a binary mask when the

probability weight was greater or equal to 0.5. The Dice coefficient was then calculated

between these masks.

The statistical analysis to assess differences in the evaluation metrics was done

using a t-test. A 𝑝-value less than 0.05 was used to conĄrm statistically signiĄcant differ-

ences.

3.3 Results

Table 7 summarize the averaged results for the Ąve-fold cross validation in the

Experiment 1 and 2. Figure 21 depicts a bar plot for a better comparative visualization

of the Dice among patients in both experiments. In general, our approach did not achieve

an optimal performance in both experiments. However, combining data from different
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subjects in Experiment 2 resulted in a slight performance improvement compared to

Experiment 1. Except for subject 6 and 7, all patients had an enhanced overlap (i.e.

improvement of Dice coefficient) for Experiment 2.

Figures 22 and 23 show a 3D reconstruction of the ground truth annotation and

predicted tracts of the best and worst subject performances in Experiment 1 and 2 based

on the scores of Table 7. The predicted tracts followed the geometry of the ground truth,

however, they mostly stay in the center of the ground truth and do not extend to the full

region of the tract. Also, for the cases with worst performance, it is noticeable that they

are a bit shifted from the center potentially affecting the measured overlap.

Table 7 Ű Averaged results for Ąve-fold cross-validation in experiments 1 and 2. The best
scores are emboldened and the worst are underlined.

Subjects
Dice Coefficient (%)

Experiment 1 Experiment 2

1 20.508 ∘ 0.032 22.07 ∘ 0.072
2 16.908 ∘ 0.007 21.133 ∘ 0.041
3 15.144 ∘ 0.018 19.925 ∘ 0.054
4 19.869 ∘ 0.025 23.894 ∘ 0.031
5 25.737 ∘ 0.060 27.849 ± 0.047
6 28.598 ± 0.076 24.206 ∘ 0.063
7 15.470 ∘ 0.047 5.544 ∘ 0.046
8 18.780 ∘ 0.071 18.856 ∘ 0.059
9 12.807 ∘ 0.04 21.044 ∘ 0.069

10 16.700 ∘ 0.060 23.094 ∘ 0.042

3.4 Discussion

3.4.1 Experiment 1

Experiment 1 consisted of a Ąve-fold cross-validation experiment using data from

the same subject for the training and testing stages. In this experiment, we aimed to

investigate how well we predict tracts from the same dataset. Although the Dice coef-

Ącient (Table 7) is low, it is seem in the 3D reconstructions depicted in Figure 22 that

subject 6 followed the Ąbers bundle reasonably. However, this pattern did not persist

over all folds (Figure 22(a) and Figures 22(c)-(e)). Therefore, we can assume that the

generalization of our method could be improved.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 22 Ű Representative 3D reconstruction of the left UF tract in Experiment 1, which
the ground truth annotation is in red and the prediction from our method is
yellow. (a)-(e) 3D reconstructions of the subject 6 (best performance among
all subjects) and (f)-(j) subject 9 (worst performance among all subjects)

network might not converge properly to a minimum. In Experiment 2, due to our memory

resources, we could not store all the 5000 Ąbers from each patient, and the problem of

obtaining enough data to Ąt the model persisted. Therefore, there is a necessity to leverage

more data during training.

Even though the Huber loss is a robust cost function, it only measures a point-

wise distance and does not take into account the geometry of the Ąbers. That may explain

why the Ąbers were near the mean shape and not Ątting the full length of the Ąber tract. A

possible solution to overcome this case is to Ąnd a cost function that computes the curve

distance (MAHENDRAN et al., 2017) or incorporating statistical shape priors (MIL-

LETARI et al., 2017).

3.5 Conclusions

In this chapter, we have proposed a deep-learning-based approach to perform

tractography for surgical planning in epilepsy treatment. We performed analysis in a single

patient and also among 10 patients in a cross validation approach. Although the results

were not optimal, the tracts tended to be of a similar length and converged to the mean

Ąber tract locations. As fas as we know, our method is the Ąrst approach that investigates
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 23 Ű Representative 3D reconstruction of the left UF tract in Experiment 2, which
the ground truth annotation is in red and the prediction from our method is
yellow. (a)-(e) 3D reconstructions of the subject 5 (best performance among
all subjects) and (f)-(j) subject 7 (worst performance among all subjects)

CNNs for tractography. Therefore, our work is a start point for further analysis regarding

the presented topic. We recognize the limitations of our method, and as future work, we

intend to acquire more training data, investigate the use of curve distance metrics for the

cost function, and incorporate statistical shape analysis as priors.
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4 Conclusions

This dissertation advanced the study of deep-learning-based approaches for brain

MR analysis. This technique was investigated in a segmentation task for skull-stripping

(SS) and in a regression analysis for tractography.

With respect to SS analysis, we Ąrst validated silver standard masks for CNN

training. Then, a robust CNN for brain MR imaging SS was proposed. As far as we know,

our approaches were the Ąrst ones fully trained using silver standards masks, and thus,

eliminating the use of expert manual annotation. CONSNet and its auto-context version

achieved performance comparable to SS state-of-the-art automatic methods, faster than

the most robust non-deep-learning-based methods, and had an optimal generalization

across datasets. Moreover, silver standard masks are a low-cost solution for generating

annotated data for small datasets, and also, they reduce inter-/intra-rater variability

and overcome the bias of data-driven approaches due to the consensus agreement among

different automatic methods. These results aim to leverage the use of silver standard brain

masks for large-scale studies in medical image processing.

Regarding this Ąrst task, there are challenges that can still be investigated. In

our analyses, we implemented 2D CNN architectures in a tri-planar approach. However,

a 3D analyses can improve the output due to the 3D neighborhood features. Therefore,

we plan to extend CONSNet to a 3D architecture. Also, we recognize the paucity of

expertly annotated data in other medical image processing tasks. Manual annotation is

not only time-consuming for SS but is known to vary, even among highly-trained ex-

perts (WARFIELD et al., 2004; AKKUS et al., 2017), and be impacted by both inter-

and intra-rater variability (ASMAN; LANDMAN, 2011). Hence, silver standard masks

can impact other applications.

Concerning the deep-learning-based tractography for surgical planning in epilepsy

treatment, our contribution to the Ąeld was a baseline approach for CNN-based tractogra-

phy. Previous works in deep learning consisted of methods with no convolution layers. To

the best of our knowledge, we were the Ąrst to propose a model with them. Our analyses

were conducted using a cross-validation for a single patient, and also, a cross-validation

using data from 10 subjects at the training stage. Additionally, we performed a regression

based on a three-stage methodology with an auto-encoder, training a CNN from scratch,

and a Ąne-tuning phase. Although the overlap metrics were low, the results showed tracts

tended to be of a similar length and converged to the mean Ąber tract locations.

Outputting a Ąber from a tract in an end-to-end CNN solution is a complex task.

Training 3D CNN models is costly and requires tones of data. For instance, in one of the

experiments, we have 33M trainable parameters and even the 5000 input Ąbers used were
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not sufficient to train the model properly. Therefore, there is a necessity to leverage more

data during training. Another challenge is to Ąnd an appropriate loss function to take into

account the geometry of the Ąber. A possible solution to overcome this case is to Ąnd a

cost function that computes curve distance (MAHENDRAN et al., 2017) or incorporating

statistical shape priors (MILLETARI et al., 2017). We recognize that for this task our

results were not optimal. However, a further investigation acquiring more training data,

performing CNN model selection, and using a curve distance loss function can improve

this baseline analysis.

4.1 Publications

As a result of this dissertation, one journal paper, two international conference

full papers, and three abstracts were published. Remark that the abstracts were published

based on preliminary Ąndings for the skull-stripping case during the M.Sc. project. The

conference paper "Transfer Learning Using Convolutional Neural Networks for Face Anti-

spoofing" was published as a result of M.Sc. course project which I had a Ąrst contact with

deep-learning- based techniques that helped me in further analysis for brain MRI skull-

stripping. Additionally, the conference paper "A machine learning approach to predict

instrument bending in stereotactic neurosurgery" was a result of a collaborative work

during my M.Sc. internship at University College London, which I was responsible for the

machine learning analysis. A full list of publications is presented as follows:

4.1.1 Journal Papers

∙ Souza, R., Lucena, O., Garrafa, J., Gobbi, D., Saluzzi, M., Appenzeller, S., Rit-

tner, L., Frayne, R., Lotufo, R., An open, multi-vendor, multi-field-strength brain

MR dataset and analysis of publicly available skull stripping methods agreement,

Neuroimage, 2017

4.1.2 Conference Papers

∙ Lucena, O., Souza, R., Rittner, L., Frayne, R., Lotufo, R. (2018, April). Silver

standard masks for data augmentation applied to deep-learning-based skull-stripping.

2018 IEEE 15th International Symposium on Biomedical Imaging (IEEE ISBI 2018).

∙ Souza, R., Lucena, O., Bento, M., Garrafa, J., Appenzeller, S., Rittner, L., Lotufo,

R. and Frayne, R., 2018, April. Reliability of using single specialist annotation for

designing and evaluating automatic segmentation methods: A skull stripping case

study. 2018 IEEE 15th International Symposium on Biomedical Imaging (IEEE

ISBI 2018)
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∙ Lucena, O., Junior, A., Moia, V., Souza, R., Valle, E., Lotufo, R., “Transfer Learn-

ing Using Convolutional Neural Networks for Face Anti-spoofing", 14th International

Conference Image Analysis and Recognition (ICIAR 2017).

∙ Granados, A., Mancini, M., Vos, S., Lucena, O., Vakharia, V., Rodionov, R., Mis-

erocchi, A., McEvoy, A., Duncan, J., Sparks, R., Ourselin, S., A machine learning

approach to predict instrument bending in stereotactic neurosurgery. 21st Interna-

tional Conference On Medical Image Computing and Computer Assisted Interven-

tion (MICCAI 2018).

4.1.3 Abstracts

∙ Lucena, O., Souza, R., Frayne, R., Rittner, L., Lotufo. 2D Single Plane Big data

Convolutional Neural Network for skull stripping. 27th ISMRM 2018.

∙ Souza, R., Lucena, O., Rittner, L., Lotufo, R., Frayne, R. Can brain MRI skull-

stripping methods be further improved using manual segmentation as ground-truth

for validation? 27th ISMRM 2018.

∙ Lucena, O., Souza, R., Lotufo, R. “A 2D CNN Approach for Skull-Stripping in

MR Imaging". 4th BRAINN Congress, 2017, Journal of Epilepsy and Clinical Neu-

rophysiology, 2017.
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