&"’A UNIVERSIDADE ESTADUAL DE CAMPINAS
a¥ Faculdade de Engenharia Elétrica e de Computacao

UNICAMP

Fabricio Eduardo Rodriguez Cesén

Design, Implementation and Evaluation of
IPv4 /IPv6 Longest Prefix Match support in
Multi-Architecture Programmable Dataplanes

Projeto, Implementacao e Avaliacao do Suporte
de Casamento com Prefixo Mais Longo para
IPv4/IPv6 em Planos de Dados Programaveis

Multi-Arquitetura

Campinas

2018

Fabricio Eduardo Rodriguez Cesén

Design, Implementation and Evaluation of IPv4/IPv6
Longest Prefix Match support in Multi-Architecture

Programmable Dataplanes

Projeto, Implementacao e Avaliacao do Suporte de
Casamento com Prefixo Mais Longo para IPv4/IPv6 em

Planos de Dados Programaveis Multi-Arquitetura

Dissertation presented to the Faculty of Elec-
trical and Computer Engineering of the Uni-
versity of Campinas in partial fulfillment of
the requirements for the degree of Master, in
the area of Computer Engineering.

Dissertacao apresentada a Faculdade de En-
genharia Elétrica e de Computagao da Uni-
versidade Estadual de Campinas como parte
dos requisitos exigidos para a obten¢ao do
titulo de Mestre em Engenharia Elétrica, na
Area de Engenharia de Computacao.

Supervisor: Prof. Dr. Christian Rodolfo Esteve Rothenberg

Este exemplar corresponde a versao
final da tese defendida pelo aluno
Fabricio Eduardo Rodriguez Cesén,
e orientada pelo Prof. Dr. Christian
Rodolfo Esteve Rothenberg

Campinas

2018

Agéncia(s) de fomento e n%(s) de processo(s): Nao se aplica.
ORCID: https://orcid.org/0000-0003-1165-2808

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca da Area de Engenharia e Arquitetura
Elizangela Aparecida dos Santos Souza - CRB 8/8098

Rodriguez Cesén, Fabricio Eduardo, 1989-

R618d Design, implementation and evaluation of IPv4/IPv6 longest prefix match
support in multi-architecture programmable dataplane / Fabricio Eduardo
Rodriguez Cesén. — Campinas, SP : [s.n.], 2018.

Orientador: Christian Rodolfo Esteve Rothenberg.
Dissertagéo (mestrado) — Universidade Estadual de Campinas, Faculdade
de Engenharia Elétrica e de Computacao.

1. Redes definidas por software (Tecnologia de rede de computador). 2.
Software - Desempenho. 3. Redes locais de computagéo - Avaliacao. 4.
Roteamento (Administragdo de redes de computadores). |. Esteve Rothenberg,
Christian Rodolfo, 1982-. II. Universidade Estadual de Campinas. Faculdade de
Engenharia Elétrica e de Computacao. Ill. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Projeto, implementacao e avaliagdo do suporte de casamento com
prefixo mais longo para IPv4/IPv6 em planos de dados programaveis multi-arquitetura
Palavras-chave em inglés:

Software defined networking

Network performance

Computer network performance evaluation

Table lookup

Area de concentracdo: Engenharia de Computagéo

Titulacao: Mestre em Engenharia Elétrica

Banca examinadora:

Christian Rodolfo Esteve Rothenberg [Orientador]

Marco Aurélio Amaral Henriques

Fabio Luciano Verdi

Data de defesa: 18-12-2018

Programa de Pés-Graduacao: Engenharia Elétrica

COMISSAO JULGADORA - DISSERTACAO DE MESTRADO

Candidato: Fabricio Eduardo Rodriguez Cesén RA: 163682
Data da Defesa: 18 de dezembro de 2018

Titulo da Tese: “Design, Implementation and Evaluation of IPv4/IPv6 Longest Prefix
Match support in Multi-Architecture Programmable Dataplanes

Prof. Dr. Christian Rodolfo Esteve Rothenberg (FEEC/UNICAMP)(Presidente)
Prof. Dr. Marco Aurélio Amaral Henriques (FEEC/UNICAMP)
Prof. Dr. Fabio Luciano Verdi (/UFSCar - Campus Sorocoaba)

A ata de defesa, com as respectivas assinaturas dos membros da Comissao Jul-
gadora, encontra-se no SIGA (Sistema de Fluxo de Dissertagao/Tese) e na Secretaria de

PésGraduagao da Faculdade de Engenharia Elétrica e de Computagao.

To my wife, Aline, who has been a constant source of support and encouragement.

Acknowledgements

First and foremost, I have to thank my wife for her love and support. An special
thank to my family, despite the difficulties of being far away, they always have been

supporting me and encouragement to continue with my dreams.

My parents, Mariana and Vinicio, who have always supported me unconditionally
and whose good examples have taught me to work hard for the things that I aspire to

achieve.

I would like to sincerely thank my advisor, Professor Christian, for his guidance

and support throughout this study and especially for his confidence in me.

To all my friend and colleagues, they have been an important part of this process,

with their advice and support.

This work was supported by the Innovation Center, Ericsson Telecomunicagoes
S.A., Brazil under grant agreements UNI.61 and UNI.63.

“The most exciting phrase to hear in science, the one that heralds new discoveries, is not
‘Furekal” but ‘That’s funny...” ”

(Isaac Asimov)

Abstract

Among the New trends in dataplane programmability inside Software Defined Network-
ing (SDN) stand out the efforts to bring multi-platform support with a high definition of
the information that is processed by the dataplane pipeline. The Programming Protocol-
Independent Packet Processors (P4) Domain Specific Language (DSL) is an emerging
trend to express how the packets are processed by the dataplanes of a programmable net-
work platform. In parallel, OpenDataPlane (ODP) project creates an open-source, cross-
platform set of Application Programming Interfaces (APIs) designed for the networking
dataplane. Multi-Architecture Compiler System for Abstract Dataplane (MACSAD) is
an approach to converge P4 and ODP in a conventional compilation process, achieving
portability of the dataplane applications without affecting the target performance im-

provements.

This thesis aims at adding [Pv4/IPv6 Longest Prefix Match (LPM) support to MAC-
SAD integrated with ODP APIs and P4 programmability delivering high-performance
dataplane capabilities. The proposed LPM support for MACSAD combines the lookup
algorithm and the ODP API library with MACSAD table support, to create a complete
forwarding base used in the LPM process. The IPv4 implementation adapts the current
ODP lookup algorithm to work with MACSAD. IPv6 lookup implementation, currently
not supported by ODP, it is an extension of the IPv4 support developed using the same
algorithm adapted to a 128-bit key. For the performance evaluation of the LPM support,
we use a traffic generator tool Network Function Performance Analyzer (NFPA) that al-
lows generating different types of traffic across MACSAD. Experimental results show that
it is possible to reach a throughput of 10G with packets sizes of 512 Bytes and above. As

a side contribution on this front is the open source BB-Gen packet crafter tool.

Keywords: P4; Software Defined Networking; Performance analysis; Programmable net-

works.

Resumo

Dentre as novas tendéncias em programagao de dataplane dentro de SDN (Software Defi-
ned Networking) destacam-se os esforgos para prover um suporte multi-plataforma dotado
de alta definicao das informagoes que sao processadas pelo pipeline do plano de dados.
Como forma de mitigar tais problemas, verifica-se que a Linguagem Especifica de Do-
minio (DSL) Programming Protocol-Independent Packet Processors (P4) desponta como
uma tendéncia emergente para expressar como os pacotes sao processados pelo plano de
dados de uma plataforma de rede programavel. De modo independente e em paralelo,
constata-se que o projeto OpenDataPlane (ODP) cria um conjunto de plataformas aber-
tas de Application Programming Interfaces (APIs) projetado para o plano de dados de
rede. Isso posto, tem-se que o Multi-Architecture Compiler System for Abstract Datapla-
nes (MACSAD) surge como uma abordagem para convergir P4 e ODP em um processo
de compilacao convencional, arquivando a portabilidade dos aplicativos de plano de dados

sem afetar as melhorias de desempenho do alvo.

Este trabalho tem como objetivo adicionar o suporte do Longest Prefix Match (LPM) do
[Pv4/IPv6 ao MACSAD, integrado com as APIs do ODP e a programacao P4, oferecendo
recursos de planejamento de dados de alto desempenho. O suporte ao LPM proposto
para o MACSAD combina o algoritmo de lookup e a biblioteca da API do ODP com
o suporte a tabela MACSAD, para criar uma base de encaminhamento completa usada
no processo do LPM. A implementacao do IPv4 adapta o atual algoritmo de lookup do
ODP para trabalhar com o MACSAD. A implementagao de lookup IPv6, atualmente nao
suportada pelo ODP, é uma extensao do suporte IPv4 que é desenvolvido usando o mesmo
algoritmo adaptado a uma chave de 128 bits. Para a avaliagdo de desempenho do suporte
ao LPM, utilizamos uma ferramenta geradora de trafego Network Function Performance
Analyzer (NFPA) que permite gerar diferentes tipos de trafego no MACSAD. Cabe ainda
destacar, como uma contribuicao lateral deste trabalho, o desenvolvimento da ferramenta
geradora de pacote BB-Gen, ja com lancamento open source. Resultados experimentais
mostram que é possivel atingir um throughput de 10G com tamanhos de pacotes de 512

bytes ou superiores.

Palavras-chaves: P4; Rede Definida por Software; Desempenho; Redes Programéaveis.

List of Figures

Figure 1 — Mapping to Physical Resources. Source (GUREVICH, 2015) 22
Figure 2 — Mapping custom protocol to Physical Resources. Source (GUREVICH,
2015) . . L 23
Figure 3 — P4 Abstract Forwarding Model. Source: Adapted from (MCKEOWN,
2016) 25
Figure 4 — OpenDataPlane (ODP) software stack in a Linux-based target. Source
(OPENDATAPLANE, 2013c) 27
Figure 5 — Linux Kernel without DPDK vs Linux Kernel with DPDK 28
Figure 6 — Network Function Performance Analyzer (NFPA) Architecture. Source:
Adapted from (CSIKOR et al., 2015b) 30
Figure 7 — Multi-Architecture Compiler System for Abstract Dataplanes (MACSAD)
Architecture. Source (PATRA et al., 2016) 31
Figure 8 — Compilation Process. Source: Adapted from (PATRA et al., 2016) . . . 31
Figure 9 — Binary prefix tree levels. Source: Adapted from (WATERLOO, 2018) . 39
Figure 10 — Binary tree 40
Figure 11 — ODP IP prefix lookup table 41
Figure 12 — MACSAD lookup functions 42
Figure 13 — Lookup relationship between Binary prefix tree, ODP and MACS . . . 43
Figure 14 — L3-FWD Parse Flow 58
Figure 15 — L3-FWD Table Flow 58
Figure 16 — ODP LPM main flow, 59
Figure 17 — ODP Table Create and Destroy 62
Figure 18 — ODP Table Actions 63
Figure 19 — ODP LPM main flow 64
Figure 20 — ODP Table Create 65
Figure 21 — ODP Table Actios 66
Figure 22 — BB-Gen Architecture 68
Figure 23 — BB-Gen Core module 69
Figure 24 — BB-Gen Parser module 0. 69
Figure 25 — BB-Gen Data Generator module 70
Figure 26 — BB-Gen Packet Creator module 70
Figure 27 — BB-Gen Scapy module L 70
Figure 28 — BB-Gen integration with NFPA and MACSAD & T4P4S 72
Figure 29 — Testbed 75

Figure 30 — IPv4 forwarding performance for different I/O drivers (1 CPU core) . . 76
Figure 31 — IPv4 forwarding performance for different I/O drivers (4 CPU core) . . 76

Figure 32 — IPv4 different cores performance (64 bytes packets) 7
Figure 33 — IPv6 forwarding performance for different I/O drivers (1 CPU core) . . 77
Figure 34 — IPv4/IPv6 forwarding performance for different I/O drivers (1 CPU

COTR). v v v v e e e e e e 78
Figure 35 — IPv6 forwarding performance for different I/O drivers (4 CPU core) . . 78
Figure 36 — IPv6 different cores performance (64 bytes packets) 79
Figure 37 — IPv4/IPv6 different cores performance (64 bytes packets) 79

Figure 38 — MACSAD IPv6 prefix length comparison (64 bytes packets, 100 entries) 80
Figure 39 — MACSAD vs T4P4S use cases comparison (64 bytes packets, 100 entries) 80
Figure 40 — MACSAD IPv4 CPU Cycles (324k total cycles, 1 Core, 100 entries) . . 81
Figure 41 — MACSAD IPv6 CPU Cycles (261K total cycles, 1 Core, 100 entries) . . 82
Figure 42 — MACSAD IPv4/IPv6 vs T4P4S - CPU Cycles - LPM and exact lookup

commands (1 Core, 100 entries) 82

List of Tables

Table 1 — ODP supported platforms 26
Table 2 — pps Calculation for different packet sizes 30
Table 3 — Feature comparison list of different IP lookup projects 37
Table 4 — P4 Use Case Complexity 61

Acronyms

API Application Programming Interface.

ARM Advanced RISC Machine.

BPF Berkeley Packet Filter.

bps bits per second.

DApp Dataplane Application.
DPDK Data Plane Development Kit.
DSL Domain Specific Language.

DUT Device Under Test.
eBPF Extended BPF.

FIB Forwarding Information Base.

FPGA Field Programmable Gate Array.

GCC GNU Compiler Collection.

GRE Generic Routing Encapsulation.

HAL Hardware Abstraction Library.

HLIR High Level IR.
IR Intermediate Representation.

LLVM Low Level Virtual Machine.

LPM Longest Prefix Match.

MacS MACSAD Switch.
MACSAD Multi-Architecture Compiler System for Abstract Dataplanes.

MPLS Multiprotocol Label Switching.

NFPA Network Function Performance Analyzer.

ODP OpenDataPlane.
OF OpenFlow.

OVS OpenvSwitch.

P4 Programming Protocol-Independent Packet Processors.
PI Protocol Independence.

PISA Protocol Independent Switch Architecture.

pps packets per second.

PRT P4Runtime.

SAI Switch Abstraction Interface.
SDK Software Development Kit.
SDN Software Defined Networking.

SoC System on a Chip.

T4P4S Translator for P4 Switches.
TCAM Ternary Content Addressable Memory.

TTL Time to Live.

VXLAN Virtual eXtensible Local Area Network.

1

Contents

Introduction L e e e
1.1 Research Goals
1.1.1 Problem Definition L.
1.1.2 Objectives

1.2 Methodology and Contributions
1.3 Text Organization
Literature Review e
2.1 Background
2.1.1 Programming Protocol-Independent Packet Processors
2.1.2 OpenDataPlane
2.1.3 Network Function Performance Analyzer
2.1.4 Multi-Architecture Compiler System for Abstract Dataplanes. . . .
2.1.4.1 Auxiliary Frontend

2.1.4.2 Auxiliary Backend

2.1.4.3 Core Compiler,

2.1.5 Helper APIs

2.2 Related Work
2.3 SUMMATY oo e
Design and Implementation of IPv4/IPv6 Longest Prefix Match support . .
3.1 IPv4 LPM support
3.1.1 Binary tree
3.1.2 IP prefix lookup table
3.1.3 MACSAD lookup

3.2 IPv6 LPM support
3.2.1 Binary tree
3.2.2 1P prefix lookup tableo
3.2.3 MACSAD lookup

3.3 Controller
34 P4 Code
3.5 LPM Flow Diagrams
3.6 Summary . .o ... e
Packet Generator Tool: BB-Gen
4.1 Architecture
4.2 Main features
4.3 Use Case o i

4.3.1 Evaluation

4.4 Summary ... 73

5 Experimental Evaluation 0 0000 o e 74
5.1 Testbed and Methodology 74
5.2 Performance Analysis 75

5.2.1 L3-IPv4 75
5.2.2 L3-IPv6 7
523 CPUCycles o 80
5.3 SUmMmary . .o oL ... 82

6 Conclusions and Future Work 84

Conclusions i i e e e e e e e e e e e e e e e e e 84

Bibliography e e e e 87

Annex 92

ANNEX A Publications 93

ANNEX B ODPIPv6 Code ittt i it e 94
B.1 ODP IPv6 lookup code 94
B.2 ODP IPv6 Parse code 113

ANNEX C Controller Code 115
C.1 MACSAD IPv4 Controller code 115
C.2 MACSAD IPv6 Controller code 119

ANNEX D P4 Code @ i i ittt e e e e e e e e e 124
D.1 TPv4 Code e 124

D.2 IPv6 Code o, 126

17

1 Introduction

Hundreds of thousands of packets are being transmitted through the Internet every
second. As a consequence, the requirements on the network are increasing exponentially,
and it is necessary to evaluate the actual capabilities and how to manage this traffic
efficiently. A flexible, re-designable and configurable network is needed to ensure the

possibility to change the features of the dataplane.
Software Defined Networking (SDN) (KREUTZ et al., 2014) is an emerging net-

work architecture where the network splits into control and forwarding plane. This migra-
tion of control, which is tightly bounded in particular network devices, is converted into
available computing devices, enabling the underlying abstracted infrastructure for appli-
cations and network services capable to treat the network as a logical or virtual entity.
The first communications standard interface defined between the control and forwarding
layers was OpenFlow (OF). It allows direct access to manipulation of the forwarding layer
of physical and virtual network devices such as routers and switches. However, OpenFlow
has some limitations, for example, it needs to know the types of the packet headers in-
troducing difficulties in implementing new protocols and headers. Therefore, to enable
programming the forwarding chip to support new protocols, a new protocol is proposed
with independent programming abstractions, such Programming Protocol-Independent
Packet Processors (P4) (BOSSHART et al., 2014).

P4 is an open source language for expressing how the packets are processed by
the pipeline of a network forwarding element. It is based on a Match+Action forwarding
model, and it works together with SDN protocols. Use of P4 makes it possible to recon-
figure the packet’s fields, and the programmers can change the way these ones flow on the
switch. What is more, with target independence, the programmers do not have to know
the specifications of the underlying hardware for being able to describe packet processing
functionality. With the use of protocol independent, the switches do not need to be bound
to any specific network protocols (BOSSHART et al., 2014). With SDN, new protocols
program the routing devices that have emerged, as well as new data plan hardware and
languages, such P4. On the other hand, ODP (OPENDATAPLANE, 2013c) provides an
open-source, cross-platform set of Application Programming Interfaces (APIs) for the
networking dataplane. The APIs enable developers to create dataplane codes across dif-

ferent targets, being neutral to different vendors and platforms.

With P4 and ODP working together, it is possible to determine and program dat-
aplanes beyond multiple targets with a common compiler system. MACSAD (PATRA
et al., 2016; PATRA et al., 2017) is an approach to accommodate P4 and ODP through

Chapter 1. Introduction 18

a common compilation process delivering portability of dataplane applications without
compromising target performance improvements, translating P4-defined dataplanes into
high-level ODP APIs. MACSAD has a designed compiler module that generates an In-
termediate Representation (IR) for P4 applications. However, there is no previously pub-
lished study in where any user communities or third-parties presented ODP IP Lookup
support for IPv6, and MACSAD has limited support for IPv4 forwarding. In our work,
we design, implement and evaluate the IPv4/IPv6 Longest Prefix Match (LPM) support
for a multi-architecture compiler system (MACSAD) capable of supporting new Domain
Specific Languages (DSLs) and network platforms. The performance of the prototype is
tested in different dataplane instances for a 10G setup and now it is implemented using on
ODP Layer 3 forwarding base, IPv4 LPM support for MACSAD. Using the mentioned
base, we adapt the table management from ODP and combine with our forwarding sup-
port. Some functions considered to integrate the lookup tables from MACSAD to the
ODP and with the LPM algorithm. Notable works regarding IP Lookup implementations
are present in (RETVARI et al., 2013; SHAHHAZ et al., 2016; PONG; TZENG, 2012).

The generation of packet traces is commonly required to carry out performance
evaluations and hence it becomes a relevant task for the development of new network
solutions and the evaluation of the existing ones. Our analysis found a gap among open
source PCAP trace generators with simple interfaces and covering the relevant require-
ments for rich performance experiments. Some alternatives support a complete set of
protocols and allow to generate different sets of PCAP traces but do not provide impor-
tant traffic flow characteristics (e.g., packet size and address distribution). Other tools
support different encapsulation protocols but not Virtual eXtensible Local Area Network
(VXLAN) and Generic Routing Encapsulation (GRE) together in the same tool. Al-
though there are many tools for packet generation, the complementary creation of table
traces remains limited. Table traces are necessary in a programmable network to fill the

table flow configuration of the network devices.

Our need for a single packet generator tool to meet the packet trace requirements
of our research use cases to evaluate the performance and scalability of programmable
dataplanes (PATRA et al., 2016; PATRA et al., 2017; PATRA et al., 2018) and identify
the limitations of existing tools, motivated our work to develop a packet generator prior-
itizing two essential characteristics: (7) simple to use, (1) wide protocol support and rich
customizability. To that end, as our baseline, we opted for the well known Scapy python

library (BIONDI, 2008) for easier extension and packet manipulation.

Chapter 1. Introduction 19

1.1 Research Goals

The following section describes the current limitations with MACSAD IP lookup

process along with the research objectives.

1.1.1 Problem Definition

The MACSAD implementation allows performing a basic Layer 2 forwarding.
However, it limits the use-cases with the switch and the capabilities to perform a Layer
3 packet forwarding. The current limitations of IP lookup support in MACSAD are the

following ones:

1. Limited support of IPv4 lookup. There is no IPv4 lookup algorithm imple-
mentation featuring the ODP APIs, resulting MACSAD to support only Layer 2
routing. Therefore, the implementation of an IP lookup LPM support expanding

the use-cases for the project has become a necessity.

2. No IPv6 support in ODP. ODP helper library provides support for IPv4 lookup
forwarding. However, there is not an actual implementation of IPv6 lookup provided
by ODP. No short-term plans related to this implementation by the ODP team,
hence, a high-reliability multi-protocol (IPv4/IPv6) lookup mechanism is imperative

to perform the lookup process.

3. Performance evaluation. An evaluation of the Switch (MACSAD) with complete
[Pv4/TPv6 lookup process is indispensable. It has to maintain the complete capabil-
ities of the network. Without affecting the throughput of the network independently
of the LPM process, it has to conserve a high-reliability forwarding.

1.1.2 Objectives

To address the identified issues, the main objective of this work is to design, imple-
ment and evaluate the Longest Prefix Match (LPM) IPv4/IPv6 support in MACSAD.
To this end, the following specific objectives are identified:

e IPv4 LPM support for MACSAD. Adapting the IP lookup algorithm to in-
teract with ODP APIs. To provide a mechanism integrating an algorithm for IP
lookup and ODP APIs in conjunction with MACSAD to perform the LPM task.
Maintaining MACSAD architecture base and using ODP APIs allow us to create

a multi-target platform.

e IPv6 LPM support for MACSAD. To extend the support of IPv4 lookup and
make adapting and integrating the IPv6 LPM process plausible. Creating a com-

Chapter 1. Introduction 20

plete ODP library that supports IPv6 lookup, contributing in this way with the
ODP project.

e Controller support. To complete the lookup process and following the SDN de-
sign, the controller has to interact with MACSAD to manage the packet traffic and

table actions management.

e Workload generation. To have a broad and deep experimental evaluation, we
need to reach packet traces with different characteristics such as specific header

information, number of entries and, packet size.

e Performance evaluation. With the lookup process, the performance of the net-
work cannot be strongly affected. We envision that implementing the correct al-
gorithm, the performance of MACSAD will become optimal, exploiting the full
capabilities of the network. Evaluating with unidirectional traffic and the packet
configurations traces, with fixed destination and source MAC addresses, IP ad-

dresses and ports.

1.2 Methodology and Contributions

To achieve the objectives, the following main activities were planned: (i) Literature
review, (ii) Binary tree and ODP LPM library implementation, (iii) MACSAD lookup

implementation, and (iv) performance evaluation.

e Literature review. It compels the study and analysis of the state of the art of
[Pv4/IPv6 LPM algorithms to support a Multi-Architecture Programmable Data-
plane. The study of ODP and P4 language to be used for the LPM implementation.
The study of the architecture of MACSAD and the current project’s support.

e Binary tree and ODP implementation. After the literature review, we imple-
ment the Binary tree and the ODP API library. As a first part of the process,
the IPv4 support is developed, a second part consist of the IPv6 implementation,

extending the lookup support and capabilities.

e Lookup implementation. With the binary tree and ODP library implemented,
the next step planned consist to develop the LPM support for MACSAD and the
integration with the controller. The implementation separates the IPv4 and 1Pv6
support as two processes being developed before the corresponding binary tree and

ODP implementation.

e Performance evaluation. Using the Network Function Performance Analyzer
(NFPA) tool, we evaluate MACSAD for different IPv4/IPv6 traces and platform
configurations (e.g., CPU cores, 1/0).

Chapter 1. Introduction 21

The contributions of this dissertation can be summarized as follows:

e Implementation and experimental evaluations of IPv4 and IPv6 Longest Prefix
Match (LPM) support in MACSAD.

e Prototype implementation of a new ODP Helper library for the IPv6 lookup mech-
anism based on the current IPv4 solution and evaluation of the performance and

scalability for diverse workloads and target platform configurations.

e The performance and scalability evaluation of MACSAD pipelines analyzing the im-
pact of varying packet sizes and memory lookup tables, and investigating the impact
of increased pipeline complexity of P4;4 and P44 use cases ranging from Ethernet
and IPv4/v6 to VXLAN-based Data Center Gateway and Broadband Network Gate-
way (BNG). Combining the high-level Protocol Independence (PI) programmability
of P4 with the low-level cross-platform (HW & SW) APIs brought by ODP.

e A P4 CLI-based packet crafter to generate packet flows formatted as PCAP files.
Supporting different standard protocols and able to create the necessary traces for

network function configuration and testing from a P4 file as an Input.

e Open source artifacts. The MACSAD code including IPv4 and IPv6 use cases were
open sourced. BB-Gen tool, the PCAPs, and Traces generated are open for de-
velopers to evaluate the performance of the projects, being simple to integrate for

different trace formats.

Contributions of this thesis have led to seven co-authored publications (see Appendix A).

1.3 Text Organization

The rest of this work contains the following topics. Background information in-
cluding related work as presented in Chapter 2. Chapter 3 describes our architecture
proposal to design and implement of IPv4/IPv6 LPM support for MACSAD, with the de-
tails of each process involved in its development. Chapter 4 presents the packet generator
tool that will be used for the performance evaluation. Chapter 5 shows our performance

evaluation in different scenarios. Finally, our conclusions and future work are presented.

22

2 Literature Review

In this chapter, we review relevant literature for our research and related works

about problems and solutions that carries close resemblance to our approach.

2.1 Background

This section defines four main concepts in our research work: P4 expressing how
the pipeline processes packets, ODP as the APIs for the networking dataplane, NFPA

as open-source measurement application and finally a MACSAD.

2.1.1 Programming Protocol-Independent Packet Processors

Protocol Independent Switch Architecture (PISA) (MCKEOWN, 2016; GURE-
VICH, 2015) allows a custom definition of network protocols in a switch design approach.
Top-down these devices allow us to tell them how to process packets (GUREVICH, 2015).
The forwarding plane does not know any protocols until it is programmed. In Figure 1 is
shown the logical mapping dataplane design for physical resources. One of the principal
characteristics of P4 allows to reconfigure PISA devices in the field (and eventually on

the fly) (MCKEOWN, 2016).

Logical Data-plane View (P4)

Switch Pipeline

Packet
g Queues
[) () w o
2 2 e IS _ 10
5 e c |8
< © o =
£ £ g |=
|
(o]
<

Figure 1 — Mapping to Physical Resources. Source (GUREVICH, 2015)

Figure 2 shows the capability of P4 to map custom protocols together with defined

protocols to the physical resources.

Chapter 2. Literature Review 23

12 = MyEncap

Logical Data-plane View (P4)

Switch Pipeline

Q
©
S 5 < g Queues
i ° a o
> = Q
= < = >
© =
~ o
g |8 _ 7]
3 e -
& & g

Figure 2 — Mapping custom protocol to Physical Resources. Source (GUREVICH, 2015)

P4 is an innovation providing an abstract model suitable for programming the net-

work dataplane (BOSSHART et al., 2014). A P4-enabled device is protocol independent.

It delineates the packet headers and specifies the packet parsing and processing behaviors.

oA W N

o N O

ot W NN

co =N O

A P4 program include the flowing elements:

Header definitions, that specify the field names and widths for protocol headers
(see listing 2.1).

header_type ethernet_t {

fields {
dstAddr : 48; // Destination MAC address
srcAddr : 48; // Source MAC address
etherType : 16; // Ethernet type

}

}

header ethernet_t ethernet;

Listing 2.1 — P4 header definition example

Metadata, holds information about the packet that is not normally represented by
the packet data (see listing 2.2).

header type local_ metadata_t {

fields {
cpu_code : 8; // Code for packet going to CPU
port_type : 2; // Type of port
ingress__error : 1; // An error in ingress port check
was_ mtagged : 1; // Track if pkt was mtagged on ingr
}

Chapter 2. Literature Review 24

9 metadata local metadata_t local metadata;

Listing 2.2 — P4 metadata definition example

3. Registers, Meters, and Counters, for state independent of packets (see list-
ing 2.3 and 2.4).

I counter ip_pkts_by_dest {

2 type : packets;
3 direct : ip_host_table;
1}

Listing 2.3 — P4 counter definition example

1 meter customer_meters {

type : bytes;

3 instance_count : 1000;
Listing 2.4 — P4 meter definition example

4. Packet parser specification, that generates a Parsed Representation where the

match+action tables operate (see listing 2.5).

1 parser start {

2 return parse_ethernet;

5 parser parse_ethernet {

6 extract (ethernet);

[return select (latest.etherType) {
8 0x0800 : parse_ipv4;

9 default: ingress; }

12 parser parse_ipv4d {
13 extract (ipv4);

14 return ingress;
Listing 2.5 — P4 parser example

5. Match-action table specification, identifying the packet and metadata fields to
be read and the possible actions to execute in response (see listing 2.6).

1 table sendout {

2 reads {

3 standard__metadata.egress_port : exact;

4 }

5 actions {

Chapter 2. Literature Review 25

6 on_ miss;

7 rewrite__src__mac;

8 }
9 size : 512;
10}

Listing 2.6 — P4 Match-action table specification example

6. Actions, functions that may be parameterized and that invoke one or more primi-
tives (see listing 2.7).

action on_miss() {

}

=W N =

action rewrite_src_mac (smac) {

modify_ field (ethernet.srcAddr, smac);

6 }

Listing 2.7 — P4 actions specification example

7. Control flow, indicating the table execution sequence, with support for conditional
branching (see listing 2.8).

1 control ingress {

2 apply (sendout) ;

3}

Listing 2.8 — P4 control flow specification example

Figure 3 represents the abstract forwarding model, illustrating how the pipeline of
a network forwarding element should process packets (SHAHHAZ et al., 2016). When a
packet is received, the headers enter into the parser pipeline then they pass through the

match+action tables flow, and finally the headers return back, and the packet is sent.

I Match+Action > >
Tables

Figure 3 — P4 Abstract Forwarding Model. Source: Adapted from (MCKEOWN;, 2016)

In the P4 program, all these activities are defined inside the ingress and egress of
control flows. This is possible due to the protocol independent feature that details custom

headers expressing arbitrary network protocol headers and fields.

Chapter 2. Literature Review 26

2.1.2 OpenDataPlane

ODP project is a networking dataplane API specification. It allows application
developers to write and implement dataplane applications. It can leverage portability
and multi-platform support, besides the use of specific hardware acceleration capabili-
ties. ODP defines a set of high-level common APIs (e.g., CPU control, operations on a
packet Input/Output interface, operations on memory), bringing the opportunity of span
standard features across multi-targets (e.g. Advanced RISC Machine (ARM)v7, ARMvS,
MIPS64, Power, and x86) making dataplane applications portable. Table 1 presents the
ODP supported platforms.

The principal attributes of the ODP API are summarized below:

Open Source and open for contributions.

Vendor and platform independent.

Application-centric, encloses the functional needs of dapaplane applications.

Allows portability.

Defined in conjunction with application writers and platform implementers.

Architecture efficiently used on a wide range of different platforms.

Sponsored, governed, and maintained by the Linaro Networking Group (LNG).

Figure 4 presents the ODP software stack. ODP is composed by a common layer
(ODP APP) and the implementation layer (ODP Implementation). The Applications de-
fined in the common layer are portable across all ODP implementations. An application
to be executed by the ODP API will be linked to the ODP implementation for the specific
execution platform. The purpose of the implementation layer is to provide a mapping of

ODP APIs to the underlying capabilities (i.e., hardware co-processing and acceleration

Table 1 — ODP supported platforms

Company Supported Platforms

ThunderX CN88xx 24-48core ARMv8
OCTEON TX CN83/81xx 1-24 core ARMv8
Kalray MPPA
QorlQ — ARM based DPAA2 architecture 1.S2080, L.S2085

Cavium

Freescale QorlQ — ARM & PowerPC based DPAA architecture LS1043
Texas Instrument Keystone2 Cortex A15
Linaro PClIe NIC optimized implementation (odp-dpdk)

Marvell Marvell ARMADA SoC Implementation

Chapter 2. Literature Review 27

Generic Linux Linux Control
APP APP ODP APP ODP APP ﬂ
- ODP Implementation ODP Helper

LINUX |

Vendor Specific Hardware Blocks
and Software Libraries

4 4

HW Plarform (SoC or Server)

Figure 4 — ODP software stack in a Linux-based target. Source (OPENDATAPLANE,
2013c)

support) of System on a Chips (SOCs) hosting ODP implementations. The implementa-
tion has been optimized for a particular hardware platform (SOC or Server). It will call
the Vendor Specific Hardware Blocks and Software Libraries (Software Development Kit
(SDK)) through an inline call and takes advantage of the vendor extension that it is not
yet standardized (OPENDATAPLANE, 2013c).

ODP consists of a common layer and an implementation layer. Applications written
to the common layer are portable across all ODP implementations. To compile and run

an ODP application, it is compiled against a specific ODP implementation layer.

The purpose of the implementation layer is to provide an optimal mapping of
ODP APIs to the underlying capabilities (including hardware co-processing and accel-
eration support) of SoCs hosting ODP implementations. As a bootstrapping mechanism
for applications, as well as to provide a model for ODP implementers, ODP provides a
‘linux-generic’ reference implementation designed to run on any SoC which has a Linux
kernel. While linux-generic is not a performance target, it does provide a starting point
for ODP implementers and application programmers alike. As a pure software implemen-
tation of ODP, linux-generic is designed to provide best-in-class performance for general

Linux data plane support.

ODP helper library (OPENDATAPLANE, 2013a) offers a basic support for table
management (lookup mechanism), contrary to Data Plane Development Kit (DPDK),
which has various fully optimized table management libraries. It also offers support to

cuckoo, hash, IP lookup and linear tables.

ODP has been taken up by vendors that provide much more functionalities in their
hardware than the plain NIC capabilities. For instance the ODP-DPDK (OPENDATA-
PLANE, 2013b) packet, as a NIC + ODP library, helping the migration from the lower

Chapter 2. Literature Review 28

User Space User Space
Application DPDK Library§ Application
AAA
Linux Kernel Linux Kernel
Driver Driver
¢ ¢ ¢ YYY
Network Hardware Network Hardware

Figure 5 — Linux Kernel without DPDK vs Linux Kernel with DPDK

level of DPDK API to the ODP abstraction.

To improve the performance, ODP can use the user-space fast packet processing
I/O support for traditional NICs. Odp-linux (a functional reference targeting simplicity
over performance) has PKTIO support for Netmap (RIZZO, 2012) and DPDK (INTEL,
2014). With different characteristics and architecture, the DPDK and Netmap drivers are

described below:

e DPDK: it is a Linux Foundation project consisting of libraries and drivers for de-
velopers to create fast packet processing Dataplane Application (DAPP). It started
with x86 architecture and later expanded to other platforms like ARM and IBM
POWER chips, and so forth. Figure 5 compares packet path in a vanilla linux-kernel
and with DPDK driver and shows that a DAPP can access network interface from

user space for faster packet processing.

e Netmap: its framework allows fast packet access from the network card. It reduces
packet processing cost by preallocation of resources, batch packet handling and use
of shared memory to achieve higher performance. It works along with Linux kernel

and allows the use of Linux tools like "ethtool", "ip" for interface management.

2.1.3 Network Function Performance Analyzer

The NFPA (CSIKOR et al., 2015a; CSIKOR et al., 2015b), was proposed as a
benchmarking tool that allows the user to measure important performance metrics of a
network function compiled on any hardware and software combination, and to compare
the results collected in a public Database. All the experiments running through the NFPA
tool are following standardized methodologies (BRADNER; MCQUAID, 1999).

Chapter 2. Literature Review 29

NFPA was implemented using Python. A configuration file can configure the mea-
surements parameters and traffic traces to be used. NFPA is built on Intel’s DPDK (IN-
TEL, 2014) to avoid the limitation of kernel space with network card drivers; for sending
and receiving traffic, NFPA uses PktGen (WILES, 2010; TURULL et al., 2016) with cus-
tom Lua scripts for parameterizing, automating and controlling the measurements. The
results are saved in a local SQLite database and have generated Gnuplot (GNUPLOT,

1986) graphs from the performance results.

NFPA provides a complete selection of synthetic traffic traces with several packet
headers and sizes to obtain realistic scenarios as possible. There are also supported custom
user tracers in Pcap files. The traffic traces available by the NFPA project (CSIKOR et
al., 2015a) includes Layer 2, Layer 3 (IPv4), VXLAN (MAHALINGAM et al., 2014) and
Multiprotocol Label Switching (MPLS) (ROSEN et al., 2001).

The NFPA standalone node is connected to the Device Under Test (DUT) as
it is presented in Figure 6'. The user can set the measurement setup (e.g., details of
the hardware and software components, the number of repeated measurements and their
duration) and the traffic traces to use. NFPA sends packets on port 0, they are processed
and forwarded in the DUT node and are received on port 1. Then the throughput of the
DUT is calculated in terms of packets per second (PPS) and bits per second (BPS). Once

the measurement is finished NFPA saves the performance results in the local database.

When is evaluated the performance capabilities of an Ethernet device, the principal
indicator is the raw bandwidth (BPs). However, it is also important to analyze the DUT
capability to switch/route as many packets as required to achieve wire rate performance.
This is the PpPs metric (JUNIPER NETWORKS, 2015).

To calculate the amount of PPS to archive wire-rate performance it is necessary to
consider the fact that the IP protocol allows variable payload sizes. With smaller packet
sizes passing over the link, it is required more packets to achieve the wire rate performance,

while if the packet size increases the necessary packets to saturate the link decreases:

Gbps
(pkt_size +20) % 8

pps =

During the calculation of the PPs value, we need to consider the space that each
packet will occupy, for this end, we will use the frame size, as well as the Inter-frame Gap
(12 Bytes), and the Preamble (8 Bytes):

_Inter frame Gap =~ Preamble
B 12 Bytes 8 Bytes

L For illustration purpose MACSAD is the DUT

Chapter 2. Literature Review 30

Measurement
Setup

Result
Analyzer

ENGINE

Lua Control
scripts

Figure 6 — NFPA Architecture. Source: Adapted from (CSIKOR et al., 2015b)

NF Node

INTEL DPDK

5, MACSAD
PktGen

If we consider the smaller packet size (64 Bytes) and a line rate throughput of 10
Gbps. It is possible to calculate the necessary PPS to saturate the link. In this case the
maximum PPS is 14,880,952:

10 Gbps

pps =

In table 2 are summarized the pps line rate values for different packet sizes.

Table 2 — pps Calculation for different packet sizes

Speed | bits/second | bytes/second | Packet Size | Maximum PPS
10 Gbps | 10,000,000,000 | 1,250,000,000 64 14,880,952
10 Gbps | 10,000,000,000 | 1,250,000,000 128 8,445,946
10 Gbps | 10,000,000,000 | 1,250,000,000 256 4,528,986
10 Gbps | 10,000,000,000 | 1,250,000,000 512 2,349,624
10 Gbps | 10,000,000,000 | 1,250,000,000 1024 1,197,318
10 Gbps | 10,000,000,000 | 1,250,000,000 1280 961,538
10 Gbps | 10,000,000,000 | 1,250,000,000 1518 812,744

2.1.4 Multi-Architecture Compiler System for Abstract Dataplanes

MACSAD aims at taking the advantages of P4 and ODP in a common compiler
system to determine and program dataplanes beyond multiple targets. MACSAD can

Chapter 2. Literature Review 31

| Auxiliary |

I I
I

I Frontend | U | Backend :
I I
: | |

SoC(ARM)

VM(x86)

Server(x86)

Figure 7 — MACSAD Architecture. Source (PATRA et al., 2016)

CORE COMPILER
*.C

MacS

o
SRR

TRANSPILER

—E\—»
Auxiliary Frontend —

COMPILER

ODP APIs

Figure 8 — Compilation Process. Source: Adapted from (PATRA et al., 2016)

deliver portability of dataplane applications without compromising target performance
improvements. The architecture overview is shown in Figure 7. It has three main modules:

(i) Auxiliary Frontend, (ii) Auxiliary Backend and (iii) Core Compiler.

In the way that MACSAD may support different targets optimally which is a

necessary solution to:

1. Support different DSLs with a plug-in framework (Auxiliary Frontend, with P4 as

the premier choice).

2. Multi-platform support, linking together target-specific SDKs (Auxiliary Backend,
with ODP as the desired backend).

3. Turns the intermediate representation for P4 applications generated by the auxiliary
frontend, and this together with the auxiliary backend, into the imaged target (Core

Compiler, compounded of a Transpiler and a Compiler).

Chapter 2. Literature Review 32

2.1.4.1 Auxiliary Frontend

The Auxiliary Frontend creates the IR for the Core Compiler, based on the P4
code as an input. The p4-hlir project?, which is supported by the P4 organization, it is
used to translate the P4 programs into a High Level IR (HLIR). The Auxiliary Frontend
is designed as a plug-in framework and allows to aggregate several DSLs. Figure 8 shows
the generation of the HLIR from the P4, using the p4-hlir support.

2.1.4.2 Auxiliary Backend

To give a common SDK for the compiler, it is used the Auxiliary Backend. The
compiler incorporates the ODP APIs. To create the connection between P4 and ODP
abstraction, the the development libraries are necessary. These libraries allow the packet
processing inside the dataplane pipeline. This module provides the API auto-generation
support, and enables control protocols like Switch Abstraction Interface (SAI)?, Open-

Flow*, etc.

2.1.4.3 Core Compiler

As the principal part of MACSAD Switch (MACS), the Core Compiler encom-
passes the Transpiler and Compiler internal modules. With the HLIR generated by the
Auxiliary Frontend and the ODP APIs provided by the Auxiliary Backend, it is compiled
the MACS. Figure 8 displays the complete Compilation Process.

The Transpiler takes the input from the Auxilary Frontend (HLIR) and auto-
generates the Datapath Logic codes. In Figure 8 is presented the Transpiler’s processing.
The Datapath Logic is defined using 'C’ language, it is required by the pipeline and used
by the Compiler. The Transpiler determines the lookup mechanism, the size, and type of
tables that are going to be created, with the resources available on the target. The 'C’
codes generated have information from the P4 program, ODP APIs (SDKs), datapath
definitions, and helper libraries. The Transpiler allows enabling some code optimizations
for example 'Dead Code Elimination’ identifying reachability in a dependency graph of

parser logic created.

The Compiler creates the MACS for the desired target with the ‘C’ codes gener-
ated. With MACSAD is supported the GNU Compiler Collection (GCC) and Low Level
Virtual Machine (LLVM) based compiler, supporting multiple targets and optimization

tools.

2 https://github.com/p4lang/p4-hlir
3 https://github.com/opencomputeproject /SAI
4 https://www.opennetworking.org/sdn-resources/openflowl

Chapter 2. Literature Review 33

2.1.5 Helper APlIs

MACSAD is implemented with the use of a number of APIs (Auxiliary Backend
module). These APIs helps the Compiler submodule in the compilation process, covering
the Parser and Table functionalities of a P4 program over the ODP SDKs. An example
of this Helper APIs or libraries that MACSAD can use is the IPv4 LPM implementation

from ODP, adding new features and use cases to the project.

2.2 Related Work

In networking devices, IP lookup forms a bottleneck during the packet forwarding
due to the lookup speed unable to deal with the increase in link bandwidth (RAVIKU-
MAR; MAHAPATRA, 2004).

In PISCES (SHAHHAZ et al., 2016), the packet forwarding and processing are
presented in a high-level DSL as P4, compiling down to run on the underlying soft-
ware switch. The implementation is not protocol specific, which means new features
can be added. The researchers compared the performance to projects as OpenvSwitch
(OVS) (OVS, 2009) a hardwired hypervisor switch. PISCES program might be optimized

about 40 times compared as an equivalent program in Open vSwitch.

The work in (RETVARI et al., 2013) shows how to write the IP Forwarding In-
formation Base (FIB) to make forwarding decisions, with basically zero cost on LPM
and FIB update. They extend a static entropy compressed FIB representation (based
on the labeled tree entropy measure (FERRAGINA et al., 2009)) with optimal lookup.
The authors evaluate the algorithm on a Linux kernel prototype and an FPGA imple-
mentation. The compressors encode a FIB of more than 440K prefixes to about 100-400
Kbytes of memory, with an increase in lookup throughput and without time reductions
with FIB updates. Later, the researchers re-designed the prefix tree, used commonly for
IP lookup, to support and update lookups in optimized time. They compare the work with
a Trie-based FIB schemes kernel implementation of Patricia trees (SKLOWER, 2001),
the trie-based consumes 24 bytes per node and a single IP lookup cost 32 random memory

accesses.

Related with the Compressing IP Forwarding Tables: Towards Entropy Bounds
and Beyond work, CUCKOOSWITCH (ZHOU et al., 2013) presents a Scalable High Per-
formance Ethernet Forwarding. The project is an Ethernet switch, with a design based on
software, and created around memory efficiency, high-performance, and highly-concurrent
hash table for compact and fast FIB lookup. The presented switch can process 92.22
million packets (minimum sized) per second, configured with eight 10 Gbps Ethernet
interfaces on a commodity server. The performance test is also run with a continues

maintenance of the forwarding table with one billion entries. The evaluation process is

Chapter 2. Literature Review 34

performed in three main steps: (i) they evaluate the forwarding with no switching or FIB
lookup involved, these results as a base line for the capacity of the platform using DPDK,
(ii) they evaluate the proposed optimizations contribution to the performance of the hash
tables and the full system forwarding packets, (iii) the project is compared with other
common hash table implementations (INTEL, 2011) (hash table micro-benchmarks and

complete system evaluation).

Related to IPv4 and IPv6 forwarding implementations, the work (NIKOLENKO
et al., 2016) proposes an abstraction layer able to represent IPv6 FIBs on existing IP and
even MPLS infrastructure. Due to most of the forwarding methods that efficiently repre-
sent [P-based FIBs do not scale well to [Pv6 (larger 128-bit address width) (EATHER-
TON GEORGE VARGHESE, 2004; RéTVARI et al., 2013; SRINIVASAN; VARGHESE,
1999). The implementations are common in form of decision tree representation for IPv6
software FIB. The issue with these implementations is that prefix trees are inherently
sequential. For this reason, LPM lookup involves multiple consecutive steps, being the
total number of steps not optimal for IPv6 (128-bit address). Each step includes sepa-
rated random access to memory, limiting the total number of levels that the tree can
take. For this reason, most of [Pv4 FIB trees implementations are not extensible to IPv6
with optimal time and memory requirements. To avoid this trouble, the project appeals
to an IPv6 FIB representation on a parallel implementation, lookup classified prefixes
into groups, where each group contains all prefixes of the same length and perform the

lookup of each group simultaneously.

The work (PONG; TZENG, 2012) shows a distinct LPM lookup scheme to reach
concise lookup tables. The project is based on unified hash tables and can handle IPv4
and IPv6 lookup simultaneously. They simplify the table format to earn a better prefix
aggregation, also being simplified the implementation process. Due to the hash table
implementation, multiple possible buckets are permitted, allowing parallel search over
tables during the LPM lookup process. Each lookup takes two cycles on average to
complete a lookup and can handle 250 millions of packets per second. A related work
(TOBOLA; KOfENEK, 2011) implements a Hash-Tree Bitmap algorithm for fast LPM,
also supporting IPv4 and IPv6 lookups. The fast hash implementation allows passing
through a limited part of the IP prefix tree. The proposed algorithm uses 16 parallel hash
units and two consequent tree Bitmap lookups. The throughput archived by the algorithm

reaches 100 Gbps on Virtex 5 FPGA® without memory and resources limitations.

For the lookup process, it is commonly used Ternary Content Addressable Memory
(TCAM) to facilitate fast IP lookup as it is presented in (HANNA et al., 2011) TCAMs
are power-eager, expensive, and not scalable. They perform a forwarding table in tries

data structures that are acceded by pipeline. The algorithm proposed is based on a multi-

5

https://www.xilinx.com/support/documentation/data_ sheets/ds100.pdf

Chapter 2. Literature Review 35

bit tree architecture and can reach a throughput of 3.1 Terabits per second. The algorithm

archives a better compression ratio, compared with other proposed algorithms (WANG;

TZENG, 2006; DEGERMARK ef al., 1997; EATHERTONK e al., 2004).
(FIESSLER et al., 2017) presents a Hybrid On-chip Matching combining a highly

optimized configuration specialized and thus energy and resource efficient classification
circuit with the capability of quickly updated and network packet process at link rate
on a Field Programmable Gate Array (FPGA). The evaluation demonstrates that the
hybrid implementation benefices the process, resulting in a matching engine that can
manage the updates efficiently with a lower hardware resource and power dissipation
footprint. The algorithm presented in this work is not restricted to a particular use-case.
It can be adapted to an environment where two matching engines with different matching

capabilities need to be used.

The project Translator for P4 Switches (T4P4S) (LAKI et al., 2016) is a high
speed packet forwarding compiled from protocol independent dataplane specifications, it
uses as the auxiliary backend DPDK contrary to MACSAD that uses ODP. T4P4S
runs the target independent P4 core in top of a Hardware Abstraction Library (HAL) to

improves portability. The developed use cases covered L2 and L3 (IPv4) switch examples.

Primary related projects around SDN, dataplane and IP lookup implementations

with IPv4/IPv6 support mentioned above are summarized in Table 3.

Here, we summarize a selected set of related PCAP trace generator solutions. Each
tool has their advantages and disadvantages depending on their architecture, including

features or supported platforms.

RWS (KNUTSSON, 2014) PCAP generator is based on a simple packet descriptor
language. The user defines the header fields for the packets required and feed it to RWS
to generate the PCAP. It can also generate invalid packets which is rather uncommon
among PCAP generators. An example of an invalid packet can be a TCP packet tunneled

inside a Teredo tunnel and sent over GTP-u.

Ostinato (OSTINATO, 2010) is one of the most powerful packet crafter, network
traffic generator and analyzer with complete GUI support. It implements most of the
common standard protocols to facilitate traffic generation and analysis. With a complex
user interface and numerous feature combinations, Ostinato presents a steep learning
curve to tackle with, which makes it difficult and time-consuming for users to understand

and take advantage of the tool.

Scapy (BIONDI, 2008) is a packet manipulation program with Python interpreter
disguised as a DSL. It can create and decode packets of an extended number of protocols.
It can send and capture network traffic too. Its extended features also include some basic

network tasks (e.g., scanning, trace routing, probing, arpspoof, arp-sk, arping, tcpdump,

Chapter 2. Literature Review 36

and tethereal.). Scapy can stand out among competitors with its unique ability to arrange
protocol headers in a custom sequence which may not confirm to any protocol logic.
This feature allows Scapy to create invalid frames by combining techniques (e.g., VOIP
decoding on WEP encrypted channel, and so on.), similar to RWS. Among other features,
Scapy allows to set values for all header fields, payload, and padding. Moreover, it allows
writing a list of packets to a PCAP file.

With the increasing use of P4 to define the dataplane structure and the efforts to
develop complex use cases and applications, the tools to generate traffic, use cases and
analyze the code are emerging. Some of the main works for the generations of traces and

evaluation are summarized below.

A tool to validate a P4 program by generating test input packets and tables entries
is P4pktgen (NOTZLI et al., 2018). This tool automatically generates test cases for P4
programs using symbolic execution, allowing in parallel to detect bugs in the files. A
similar project is the P4app (P4.ORG, 2013). It allows to perform functional tests for
a P4 program using BMV2 simple switch in Mininet environment, being limited to a
simulated environment. For a complex test the work P4 benchmark (DANG et al., 2017)
test the target compilers by the generation of different P4 applications with variable

complexities.

2.3 Summary

This chapter summarized the background of main concepts that sets up the context
of the dissertation and the related work and projects that are aligned with this disserta-
tion. This dissertation’s approach adds the IPv4 and IPv6 LPM support to MACSAD,
creating a complete compiler system with a P4 dataplane base, being different to other

approaches that lack the support of IPv6 or do not have a compiler system and a P4 base.

We briefly introduced four main concepts that form an essential part in the dis-
sertation. P4 defining the packets pipeline process, ODP as the APIs and libraries for the
dataplane, NFPA as a benchmarking tool, and finally MACSAD to join together P4 and

ODP in a common compilation process, creating the software switch image.

Table 3 — Feature comparison list of different IP lookup projects

. . P4

Project IPv4 | IPv6 | Compiler Dataplane Target Remarks
PISCES Yes No Yes Yes Software Switch OVS Based
Compressing IP Forwarding Tables:))] B .
Towards Entropy Bounds and Beyond Yes No No No General-Purpose Processor/ FPGA | Based on prefix tree
CUCKOOSWITCH Yes No Yes No General-Purpose Processor Based on cuckoo hashing
IPv6 Forwarding Tables on) . . .
IPv4 or MPLS Dataplanes Yes Yes No No Limited by DPDK Parallel prefix trees implementation
Effective Hash-based 1Pv6 . .
Longest Prefix Match Yes Yes No No General-Purpose Processor/ FPGA | Hash-Tree Bitmap architecture
Concise Lookup Tables for IPv4 and IPv6
Longest Prefix Matching Yes Yes No No Multi-Target Based on unified hash tables
in Scalable Routers
A Novel Scalable IPY6 L.ookup Scheme Yes Yes No No Multi-Target Based on trie data structures
Using Compressed Pipelined Tries
T4P4S Yes No Yes Yes Multi-Target X86 & ARMvS support available
MACSAD (before IPv4/IPv6 Support) No No Yes Yes Multi-Target X86 & ARMvS support available
MACSAD (after or proposed IPv4/IPv6 support) | Yes Yes Yes Yes Multi-Target X86 & ARMv8 support available

MY AUNIDLINT g 423dDY))

LE

38

3 Design and Implementation of IPv4/IPv6
Longest Prefix Match support

Based on the problems identified in chapter 1 of Limited support of IPv4
lookup and No IPv6 support in ODP, and in the objectives of IPv4 and IPv6 LPM
support for MACSAD including the Controller support, in the following section,
we will describe the implementation choices and the processes embedded in MACSAD
[Pv4/IPv6 LPM support.

Firstly, we present the IPv4 LPM support implementation with a brief view of the
MACSAD and ODP library functions. Secondly, we detail the IPv6 implementation with
a complete description of the functions and processes, considering that the base of the
application is the same of IPv4 but adding support for a big key size (128 bytes). Thirdly,
it is depicted the Controller and following the P4 Code. Finally, we illustrate the LPM
diagram flow, summarizing the MACSAD and ODP functions.

3.1 IPv4 LPM support

ODP helper library has implemented an IP lookup algorithm to perform the LPM
process. We use the library as support for MACSAD IPv4 lookup implementation. From
MACS table control it is called the function that performs the lookup process.

The IP lookup algorithm uses a binary tree to detect the overlap prefix (matching
table entries). In a binary prefix tree data structure, each node has at the most two
children referred as the left child and the right child. Figure 9 presents the Binary prefix
tree description including the relationship through the different tree levels. Splitting the
process into different levels and limiting the number of tables, we can reduce memory
consumption and maintain a good lookup speed. For the ODP lookup implementation,
the number of level 1 entries is 16, and the size of one level 2 and level 3 subtrees are 8.
For our implementation we maintain the ODP library definition of levels, fixing the root
node in 16, covering the most common prefixes length distributions (RIPE NCC, 2010),
and adding two additional levels to complete the 32 bits prefix size. The number of level
2 and level 3 entries (subtrees) per cache cube is 13, and the number of prefix tree nodes

per cache cube is 20.

The lookup algorithm uses a structure that stores an entry of the IP prefix table.
Because of the leaf pushing, each entry of the table must have either a child entry or a

nexthop information. If the child is 0 and the index is valid, this entry has a nexthop

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 39

Root

parent
Internal node

child
-

siblings

subtree

leaves

Figure 9 — Binary prefix tree levels. Source: Adapted from (WATERLOO, 2018)

information; the index indicates the buffer that stores the nexthop value. If the child is

1, this entry has a subtree; the index indicates the buffer that stores the subtree.

The LPM lookup has three main processes, the Binary prefix tree, the ODP IP
prefix lookup table, and the MACSAD lookup. To implement the lookup process, some
basic methods are required depending on the process involved. The methods that we
implement are mentioned in the next section along with the relationship between the
different lookup process. The complete ODP code implemented can be found in Appendix
B.

3.1.1 Binary tree

The process that involves the Binary prefix tree is presented in Figure 10*. This
process is in charge of creating the prefix tree and managing the information that is going

to be stored in the specific nodes. The functions involved in the process are:

trie__init, to initialize the root node of the prefix tree.
e trie__destroy, to destroy the whole prefix tree (recursively).

e trie__insert_node, to insert a new prefix node into the prefix tree. If the node
already exists, it is updated the nexthop information, if the node does not exist the

target node is created and all nodes along the path from the root to the target node.
e trie_delete node, to delete a node.

e trie__detect overlap, to detect the longest overlapping prefix.

L For the functions name, it was maintained the ODP format using the term "trie" for the rest of the

work it was used the term "tree'.

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 40

Binary tree

trie_init

trie_insert_node

trie_delete_node trie_detect_over
lap

trie_destroy

Figure 10 — Binary tree

3.1.2 IP prefix lookup table

To integrate the Binary prefix tree process with the lookup library, the functions
presented in Figure 11 are the implemented ones. This process uses the Binary prefix
tree methods to originate the tables that are going to store the lookup information. The
functions involved are:

e odph__iplookup__table__create, to create a table.

e odph__iplookup__table__lookup, to perform the table lookup.

e odph__iplookup__table__destroy, to destroy the table.

e odph__iplookup__table__put_value, to add a new value into the table.

e odph__iplookup__table get wvalue, to get a value stored into the table.

e odph__iplookup__table__remowve__value, to remove a entry from the table.

3.1.3 MACSAD lookup

MACSAD uses the IP lookup library, and the functions described above are called.
The MACSAD lookup process is portrayed in Figure 12. This process sends the data

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 41

IP prefix lookup table

‘ odph_iplookup_table_create ‘

‘ odph_iplookup_table_lookup ‘

‘ odph_iplookup_table_put_value ‘

‘ odph_iplookup_table_get_value ‘

‘odph_iplookup_table_remove_value ‘

‘ odph_iplookup_table_destroy ‘

Figure 11 — ODP IP prefix lookup table

to be stored in the tables to the IP prefix lookup table applying the methods and the

information described in the section above. The functions involved are:

e table__create, to create and initialize the table.
e Ipm__add, to add a LPM value.
e Ipm__lookup, to perform the lookup process.

e odpc_lookup__tbls des, to destroy and remove all the table values.

Figure 13 shows the relationship between the MACSAD lookup functions, the
ODP IP prefix lookup table and the Binary prefix tree.

3.2 IPv6 LPM support

3.2.1 Binary tree

For the IPv6 case, we maintain the logic of the ODP IPv4 Binary prefix tree
implementation, with the additional support for 128 bits addresses. In the following list,

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 42

MACSAD

‘ table_create ‘

‘ Ipm_add ‘

‘ Ipm_lookup ‘

odpc_lookup_tbls_des

Figure 12 — MACSAD lookup functions

we describe the required parameters for each Binary prefix tree functions?.

e trie__init function initializes the root node of the prefix tree. With cache__get buffer
we get a new buffer from a cache list, if there is no available buffer a new pool will
be allocated. In this case, the new buffer will insert into the queue and according to

the type of cache will set the initial value of the buffer.

1 trie_init (odph_iplookup_table_impl #tbl){
2 trie_ node_t *root = NULL;
3 odp_ buffer _t buffer = cache_get_ buffer(tbl, CACHE TYPE TRIE) ;

5 if (buffer != ODP_BUFFER INVALID) {

6 root = (trie_node_t x*)odp_buffer_addr(buffer);
7 root—>cidr = 0;

8 tbl—>trie = root;

9 return 0;}

10 return —1;

Listing 3.1 — Binary tree initialization function

2 In the Listings, it was highlighted in red color the modifications between the existing ODP IPv4
implementation and the new IPv6 implementation.

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 43

Binary tree IP prefix lookup table MACSAD

[

trie_init ‘ odph_iplookup_table_create ‘

‘ table_create ‘

‘ odph_iplookup_table_lookup ‘

trie_insert_node ‘ odph_iplookup_table_put_value ‘ Ipm_add

‘ odph_iplookup_table_get_value ‘ ‘ Ipm_lookup ‘

trie_delete_node trie_detect_over

‘odph_iplookup_table_remove_vaIue ‘
lap

‘ odpc_lookup_tbls_des ‘

trie_destroy ‘ odph_iplookup_table_destroy ‘

[

Figure 13 — Lookup relationship between Binary prefix tree, ODP and MACS

e trie__destroy function can destroy the whole prefix tree (recursively), verifying the
child nodes (left and right).
I trie_destroy (odph_iplookup_table impl *tbl, trie node t =xtrie){
2 if (trie—>left != NULL)
3 trie_destroy (tbl, trie—>left);
| if (trie—>right != NULL)
5 trie_destroy (tbl, trie—>right);

7 odp__queue__enq (
8 tbl—>free_slots [CACHE TYPE TRIE],
9 odp_ buffer_to_event(trie—>buffer));

Listing 3.2 — Binary tree destroy function

e trie__insert_node function inserts a new prefix node into the prefix tree. If the
node already exists, it is updated the nexthop information, set the return to 0 and
the nexthop pointer to INVALID. If the node does not exist, the target node is
created and all nodes along the path from the root to the target node, then it is
set the return to 0, and the nexthop pointer points to the new buffer. If any error
occurs during the process, the return will be set to -1.

1 trie_insert_node(odph_iplookup_table impl *tbl, trie node t xroot,

2 uintl128 t ip, uint8 t cidr, odp_buffer t nexthop)

4 uint8 _t level = 0, child;
5 odp_ buffer t buf;

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support

44

6 trie_ node_t *node = root, *xprev = root;

7 for (level = 1; level <= cidr; level++) {

8 child = WHICH_CHILD(ip, level);

9 node = child = 0 ? prev—>left : prev—>right;
10 if (node = NULL) {

11 buf = cache_get_buffer (tbl, CACHE TYPE TRIE) ;
12 if (buf = ODP_BUFFER INVALID)

13 return —1;

14 node = (trie_node_t x)odp_buffer_addr(buf);
15 node—>cidr = level;

16 node—>parent = prev;

17 if (child = 0)

18 prev—>left = node;

19 else

20 prev—>right = node;

21 }

22 prev = node;

23 }

24 node—>nexthop = nexthop;

25 return 0;

Listing 3.3 — Binary tree insert node function

e trie__delete _mnode function can be used to delete a node. However, the default

prefix (root node) can not be deleted. During the process, while finding the target

node all redundant nodes are removed along the path.

1 trie_delete node(odph iplookup table impl xtbl,

2 trie_ node_t xroot, _uintl28 t ip, uint8 t cidr){
3 if (root = NULL)
4 return —1;

5 if (cidr = 0)

6 return —1;

7 trie_ node_t *node = root, xprev = NULL;

8 uint8_t level = 1, child = 0;

9 odp__buffer_t tmp;

10 for (level = 1; level <= cidr; level++) {

11 child = WHICH_CHILD(ip , level);

12 node = (child = 0) ? node—>left : node—>right;
13 if (node = NULL) {

14 return —1;

15 }

16 }

17 node—>nexthop = ODP_BUFFER INVALID;

18 for (level = cidr; level > 0; level ——) {

19 if (
20 node—>left != NULL || node—>right != NULL ||

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 45

21 node—>nexthop != ODP_BUFFER, INVALID)
22 break ;

23 child = WHICH_CHILD(ip, level);

24 prev = node—>parent;

25 tmp = node—>buffer;

26 cache_init_buffer (

27 tmp, CACHE _TYPE TRIE, sizeof (trie_node_ t));
28 odp__queue__enq(

29 tbl—free_slots [CACHE TYPE TRIE],
30 odp_ buffer_to_event (tmp)) ;

31 if (child = 0)

32 prev—>left = NULL;

33 else

34 prev—>right = NULL;

35 node = prev;

36 }

37 return 0;

38}

Listing 3.4 — Binary tree delete node function

e trie_delete _overlap function detects the longest overlapping prefix. It is used to

remove values from the IPv6 lookup table.

1 trie detect_overlap (trie_node t *trie, _uintl28 t ip, uint8 t cidr,
2 uint8_ t leaf push, uint8 t xover_ cidr,

3 odp_ buffer_t xover_nexthop){

1 uint8_t child = 0;

5 uint32_t level ; limit = cidr > leaf push ? leaf push + 1 : cidr;
6 trie_ node_t xnode = trie, *xlongest = trie;

7 for (level = 1; level < limit; leveld++) {

8 child = WHICH_CHILD(ip, level);

9 node = (child = 0) ? node—>left : node—>right;
10 if (node—>nexthop != ODP_BUFFER_INVALID)
11 longest = node;

12 }

13 xover__cidr = longest—>cidr;
14 xover_nexthop = longest—>nexthop;
15 return 0;

Listing 3.5 — Binary tree detect overlap function

3.2.2 |IP prefix lookup table

To integrate the Binary prefix tree process with the lookup library, the functions

presented in Figure 11 are adapted for the IPv6 support. This process uses the Binary

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 46

prefix tree methods to originate the tables that are going to store the lookup information.

The processes involved are:

e odph__iplookupv6__table__create function creates the lookup table. This func-
tion, firstly, is going to check if the parameters are valid. Then it is going to guarantee
that there are no existing tables with the same name using the odph__iplookup__table lookup
function, after this step the sizes of the different parts of the IP prefix are calcu-
lated, as well as the header of this memory block in the implemented structure table
where the L1 entries will be arrayed. Finally, it sets the table context, it initializes

the cache and the tree.

1 odph_table t odph_iplookupv6_table create(const char #name,

2 uint32_t pl ODP_UNUSED,
3 uint32_t p2 ODP_UNUSED,
4 uint32_ t value_ size){

5 odph_iplookup_ table_impl *tbl;
6 odp_shm_t shm_tbl;

7 odp__queue_t queue;

8 odp__queue_param_t gparam;

9

10

11)

12 tbl = (odph_iplookup_table impl x)odp_shm addr(shm_tbl);
13 memset (tbl, 0, impl size + 11 _size);

15 tbl—>11le = (prefix_entry t x)(void *)((char *)tbl 4+ impl size);
16 for (i = 0; i < ENTRY NUM Ll; i++)
17 tbl—>11e [i].nexthop = ODP_BUFFER,_INVALID;

18 snprintf(tbl—>name, sizeof(tbl—>name), "%s", name);
19 tbl—>magicword = ODPH_IP_LOOKUP_TABLE MAGIC WORD;
20 tbl—>nexthop_len = value_size;

21

22 for (i = 0; i < 2; i++) {

23 tbl—>cache_count[i] = 0;

24 odp__queue_ param_ init(&qparam) ;

25 gparam . type = ODP_QUEUE_TYPE PLAIN;

26 sprintf (queue name, "% %d", name, 1i);

27 queue = odp_ queue_ create (queue_name, &gparam);
28 if (queue =— ODP_QUEUE_INVALID) {

29 ODPH DBG(" failed to create queue");

30 cache_destroy (tbl);

31 return NULL;}

32 tbl—>free_ slots[i] = queue;

33 cache_alloc_new_pool(tbhl, i);}

34 if (trie_init (tbl) < 0) {

35 odp_shm_ free(shm_ tbl);

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 47

S

return NULL;}
return (odph_table t)tbl;

Listing 3.6 — Table create function

e odph__iplookupv6__table__lookup function performs the table lookup to find any

match with the received name.

odph_iplookupv6_table lookup(const char sname){
odph__iplookup_table_ impl xtbl = NULL;
odp_shm_t shm;
if (name = NULL || strlen (name) >= ODPH TABLE NAME IEN)
return NULL;
shm = odp_shm_ lookup (name) ;
if (shm != ODP_SHM INVALID)
tbl = (odph_iplookup_table impl #)odp_shm_addr(shm) ;
if (
tbl != NULL &&
tbl—>magicword = ODPH _IP_LOOKUP_TABLE MAGIC WORD &&
stremp (thl—name, name) = 0)
return (odph_table_t)tbl;
return NULL;

Listing 3.7 — Table lookup function

odph__iplookupv6__table__destroy functions to destroy the table. In this func-
tion the correct magic word for the IP prefix table will be checked, then they will
call the trie_destroy function, after this process will be free all the L2 and L3 entries
destroying all L3 subtrees of each L2 subtree and then destroying the L2 subtree,

finally the cache is destroyed and the memory is cleared.

odph_iplookupv6_table destroy(odph table t tbl)
{
int i, j;
odph_iplookup_table impl ximpl = NULL;
prefix_entry_t xsubtree = NULL;
odp_ buffer_t xbuffl = NULL, xbuff2 = NULL;

trie_destroy (impl, impl-—>trie);
buffl = ENTRY BUFF_ARR(impl—lle);
for (i = 0; i < ENTRY NUM Ll; i++) {
if ((impl—>lle[i]).child = 0)
continue;

subtree = (prefix_entry_t =*)impl-—>lle[i].ptr;

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 48

buff2 = ENTRY BUFF ARR(subtree) ;
for (j = 0; j < ENTRY NUM SUBTREE; j++) {
if (subtree[j].child = 0)
continue ;
odp__queue__enq(
impl—>free__slots [CACHE _TYPE_ TRIE] ,
odp_ buffer_ to_event(buff2[j]));}
odp__queue__enq(
impl—>free slots [CACHE TYPE TRIE] ,
odp_ buffer_to_event(buffl[i]));}
cache__destroy (impl) ;
odp_shm_ free (odp_shm_ lookup (impl—>name)) ;

return 0;
Listing 3.8 — Table destroy function

e odph__iplookupv6__table_put wvalue functions to add new values into the table.
This function is going to verify if the IP, Key, Prefix, and value are not null. The IP
will be parsed once its value is obtained. After this process, are set the L1 entries, the
values are inserted into the tree depending on the value of the prefix. If it is less than
the root prefix (16 bits) it will be inserted using the function prefiz_insert into lz;
this function will handle the last 8 bits when it is inserting into the table. It is used
the function prefix_insert iter if the prefix is higher than the root and it will be

used to insert groups of octets.

int odph_iplookupv6_table put_value(odph table t tbl, void xkey, void
xvalue){
odph__iplookup_table_impl *impl = (void *)tbl;
odph_iplookupv6_ prefix t xprefix = (odph_ iplookupv6 prefix t x)key;
prefix_entry_t x1le = NULL;
odp_buffer t nexthop;
int ret = 0;
uint128 t lkp ip = 0;
if ((tbl = NULL) || (key = NULL) || (value == NULL))
return —1;
nexthop = *((odp_buffer t x)value);
if (prefix—>cidr = 0)
return —1;
ret = odph_ipv6_addr_parse(&lkp_ip, "ffff: ffff: ffff: ££6F: £6£F: f££F:
fEEF: £E£6")
if (ret < 0) {
printf("Failed to get IPv6 addr from str\n");
return —1;}
prefix —>ip = prefix—ip & (lkp_ip << (IP_LENGTH — prefix—>cidr));
ret = trie_insert_node(

impl, impl-—>trie ,

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 49

prefix —ip, prefix—>cidr, nexthop);
if (ret < 0) {
ODPH DBG("failed to insert into trie\n");
return —1;}
lle = &impl—>1le [prefix—ip >> 112];
odp_buffer_t xbuff = ENTRY_BUFF_ARR(impl—>1le) + (prefix—>ip >> 112)

if (prefix—>cidr <= 16) {
ret = prefix_ insert into_ Ix(
impl, lle, prefix—>cidr, nexthop, 16);
} oelse {
ret = prefix_insert_ iter (impl, lle, buff,
((prefix—ip) << 112), prefix—>cidr — 16,
nexthop, 24, 2);}

return ret;

Listing 3.9 — Table Put value function

e odph__iplookupv6__table _get wvalue function gets a value stored into the table.
This function is going to verify if the table, Key, and buffer are not null, then the
L1 entry will be obtained and will start searching in the tree, the resulting data will
be copied, and if there is not a match will return only match the default prefix and
an ODP buffer invalid.

int odph iplookupv6_ table get value(odph table t tbl, void xkey,
void xbuffer ODP_UNUSED,
uint32_t buffer size ODP_UNUSED) {
odph_iplookup_table_impl *impl = (void x)tbl;
_uintl28_t ip;
prefix_entry_t =xentry;
odp_ buffer_t xbuff = (odp_buffer_t *)buffer;

if ((tbl = NULL) || (key = NULL) || (buffer = NULL))
return —EINVAL;

ip = x((_uint128_t x*)key);

entry = &impl—>lle [ip >> 112];

if (entry = NULL) {
ODPH DBG("failed to get L1 entry.\n");
return —1;}

ip <<= 112;

while (entry—>child) {
entry = (prefix_entry t *)entry—>ptr;
entry += ip >> 24;
ip <<= 8;}

if (entry—>nexthop = ODP_ BUFFER INVALID) {

)

n

b

printf("only match the default prefix\n

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 50

24 +buff = ODP_BUFFER INVALID;
25 } else {

26 xbuff = entry—>nexthop;}

27 return 0;

28}

Listing 3.10 — Table Get Value function

e odph__iplookupv6__table__remove__value functions to remove a entry from the
table. This function will start checking if the table and the key (including the prefix)
are not null, then it detects if there is a prefix overlap using the trie_detect_overlap
function, if the prefix is less than the root it is used the function prefiz_delete lz.
If the return of this the function is equal to 1, the next 2® entries will equal to
over_ cidr and over_nexthop. In this case, will be not pushed the over cidr and
over nexthop to the next level. In the other case when the prefix is higher than the
root, it is used the function prefiz_delete iter destroying the subtrees, after this,
it checks if it can recycle the entry. An entry can be recycled due to two reasons:
all children of the entry are the same, or all children of the entry have a prefix
smaller than the level bottom bound. At the end the function will finish with the
trie delete mnode.

1 int odph_iplookupv6__table remove_value(odph_table t tbl, void xkey) {
2 odph_iplookup_table impl *ximpl = (void x)tbl;

3 odph_iplookupv6_prefix t sprefix = (odph_iplookupv6_ prefix t x)key;
4 _uintl28_t ip;

5 uint8 _t cidr;

7 if ((tbl = NULL) || (key == NULL))

8 return —EINVAL;

9 ip = prefix—ip;

10 cidr = prefix—>cidr;

11 if (cidr = 0)

12 return —EINVAL;

13 prefix entry t xentry = &impl-—>lle[ip >> 112];

14 odp_ buffer t xbuff = ENTRY BUFF ARR(impl-—>lle) + (ip >> 112);

15 uint8_t over_ cidr, ret;

16 odp__buffer_t over_nexthop;

17 trie__detect__overlap (

18 impl—>trie , ip, cidr, 16, &over_ cidr, &over_ nexthop);
19 if (cidr <= 16) {

20 prefix delete 1x(

21 impl, entry, buff, cidr, over_cidr, over_nexthop, 16);
22 } else {

23 prefix_entry t xne = (prefix_entry_ t x)entry—>ptr;

24 odp_ buffer t sxnbuff = ENTRY BUFF ARR(ne);

o]
ut

ne += ((_uintl28 t)(ip << 112) >> 24);

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 51

ot

6

nbuff += ((_uintl128_t)(ip << 112) >> 24);
ret = prefix delete_ iter (impl, ne, nbuff, ip, cidr — 16, 24, 2);
if (ret && can_recycle(entry, 16)) {
/* destroy subtree x/
cache_init_ buffer (
«buff , CACHE_TYPE_SUBTREE,
sizeof (prefix_entry t) x ENTRY NUM SUBTREE) ;
odp__queue__enq (
impl—>free_slots [CACHE TYPE SUBTREE] ,
odp_ buffer_to_event (xbuff));
entry—>child = 0;
entry—>cidr = over_ cidr;
entry—>nexthop = over_nexthop;}}

return trie_delete_node(impl, impl—>trie, ip, cidr);

Listing 3.11 — Table Remove value function

In addition to the IP prefix lookup table and binary tree, a function is necessary to
parse the IP address. The odph_ipv6__addr _parse function reads the IP as a string,
and it parses into a vector with the 128 bits. The received string segments it into
four sections of 32 bits to parse the IP, and then all that section will be joined at
the final IP address variable.

int odph_ipv6_addr_parse(_uintl28_ t x*ip_addr, const char xstr){
unsigned byte [ODPH IPVGADDR LEN] ;
int i;
uintl28 t p_ipl, p_ ip2, p_ip3, p_ip4;
memset (byte, 0, sizeof(byte));
if (sscanf(str, "%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x
9%02x:%02x%02x:%02x%02x " ,
&byte [0] , &byte[1], &byte[2], &byte[3], &byte[4], &byte[5], &
byte[6], &byte[7], &byte[8], &byte[9],
&byte [10], &byte[11], &byte[12], &byte[13], &byte[14], &byte
[15]) != ODPH_IPV6ADDR _LEN)
return —1;
for (i = 0; i < ODPH _IPV6ADDR LEN; i-++)
if (byte[i] > 255)

return —1;

p_ipl = byte[0] << 24 | byte[l] << 16 | byte[2] << 8 | byte[3];
p_ip2 = byte[4] << 24 | byte[5] << 16 | byte[6] << 8 | byte[7];
p_ip3 = byte[8] << 24 | byte[9] << 16 | byte[l0] << 8 | byte[11];
p_ip4 = byte[12] << 24 | byte[13] << 16 | byte[14] << 8 | byte[15];

xip_addr = p_ipl << 96 | p_ip2 << 64 | p_ip3 << 32 | p_ip4;

return 0;

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 52

21}
Listing 3.12 — ODP IPv6 Parse

3.2.3 MACSAD lookup

For the LPM MACSAD process, the necessary functions are in charge of creating
the tables, add values and get values. MACSAD parses the packets and receives the
information of IP to perform the LPM match. The controller reads the entries from the

trace file and adds into the tables with the prefix information.

e table__create function will create the match table; it can be an exact table or an
LPM table. It is selected depending on the size of the key if it is IPv4 or IPv6.
After this process a table LPM lookup will be performed, if the result is not null the
table is destroyed (odph_iplookup_ table_destroy) then the table is created using
the ODP function odph__iplookup table create.

1 case LOOKUP_LPM:

2 snprintf (name, sizeof(name), "% Ilpm %d %d"', t—>name, socketid ,
replica_id);

3 if (t—key_size <= 5){ //IPV4

4 if ((tbl = odph_iplookup_table_lookup(name)) != NULL){

5 odph__iplookup_ table_destroy (tbl);}

6 // mame, capacity , key_ size, value size

7 tbl = odph_iplookup_table_ create(name, 2, t—>key_ size, t—>

val_size);

8 if (tbl = NULL) {

9 debug (" ::Table %s creation fail\n"', name);

10 exit (0);}

11 create_ext_table(t, tbl, socketid);

12 else if (t—key_size <= 17){ //IPV6

13 if ((tbl = odph_iplookupv6_table_lookup (name)) != NULL){

14 odph_iplookupv6__table_destroy (tbl);}

15 tbl = odph_iplookupv6_table create(name, 2, t—>key_ size, t—>

val_size);

16 if (tbl = NULL) {

17 debug (" ::Table %s ipv6 creation fail\n", name);
18 exit (0);}
19 create_ext_table(t, tbl, socketid);

Listing 3.13 — MACSAD Table Create

e Ipm__add function will add entries inside the LPM table. As a first step, it is used
the Key to verify if it is IPv4 or IPv6. In both cases, the logic is the same, just

the ODP functions and the size of the variables will be change to the corresponding

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 53

18

19

case. In this function, the IP is validated and then it is parsed to be added to the
LPM table with odph__iplookupv6__table_put value.

else if (t—key_size <= 17){

key [16] = depth;

unsigned byte [ODPH_IPV6ADDR,_LEN+1];

odph__iplookupv6_ prefix t prefix2;

for (int i = 0; i < ODPH_IPV6ADDR, LEN; i++)
if (key[i] > 255)

return;

prefix2.ip = p_ipl << 96 | p_ip2 << 64 | p_ip3 << 32 | p_ip4;
prefix2.cidr = 64;

ext—>content [ext—>size| = copy_to_socket(value, t—>val_size+sizeof
(int), t—>socketid);
value3 = malloc (t—>val_size);

memcpy (value3 , value, t—>val_ size);
ret = odph_iplookupv6_table put_value(ext—>odp_table, &prefix2 , &
value3d);
ext—>size++;
if (ret = —-1) {
exit (EXIT_FAILURE) ;}

Listing 3.14 — MACSAD Table Add

e Ipm_ lookup function will be in charge to perform the table get. This function
matches the Key to detect if it is IPv4 or IPv6. The IP is parsed, and the lookup

process is performed using the odph__iplookupv6__table__get_value.

else if (t—>key_size <= 17){

unsigned byte [ODPH_IPV6ADDR_LEN+1];
memset (byte, 0, sizeof(byte));

lkp_ip2 = p_ipl << 96 | p_ip2 << 64 | p_ip3 << 32 | p_ip4;

ret = odph_iplookupv6_table get value(ext—>odp_table, &lkp_ ip2, &
result , 0);

if (ret < 0) {

return t—>default_ val;

Listing 3.15 — MACSAD Table lookup

= w no

ut

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 54

3.3 Controller

The controller in an SDN architecture is in charge of controlling the dataplane
elements. In the case of MACSAD the controller is going to handle the actions and the
information to be filled in the tables defined at the P4 code. The MACSAD Controller
code implemented can be found in Appendix C. For the use case of IPv4 and IPv6 the
tables defined at the P4 code are: ipv6_fib_[pm and sendout.

The controller can read and analyze from an input file (Table Trace) to fill the
information in the tables. The Table Trace files have a specific format and information
depending on the MACSAD use case. In the case of the IPv4 and IPv6 use cases, the
information required is destination IP, MAC, and port addresses. The controller will parse
the Table Trace file and extract the corresponding information, creating the variables that
are going to be used to fill the values in the tables.
if (11 = sscanf(line, "%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x

9%02x:%02x%02x: %02x%02x %x:%x: %x: %ox: %x:%x %d ",

&values_ip [0], &values_ip[1], &values_ i], &values_ip[3],
], &values_ ip|[7],
0], &values_ip[11],
[

14], &values_ip[15],

ip[2

&values ip [4], &values ip[5], &values_ ip [6
&values_ip [8], &values_ip[9], &values_ip]|l
&values ip[12], &values ip[13], &values i

&values [0], &values[1], &values[2],

&values [3], &values[4], &values[5], &port)){
if (mac_count=MAX MACS-1){

break;}

++mac_ count;
for(i =0; i < 6; ++i)

macs [mac_count |[i] = (uint8_t) values[i];
for(i =0; 1 < 16; ++i)
ips [mac_count][i] = (uint8 t) values ip[i];
portmap [mac_count] = (uint8_t) port;
} else {
fclose (f);return —1;

}
Listing 3.16 — Controller Parse trace file

To fill the table with information in the P4 code, the controller uses the functions
fill_ipv6_fib_lpm__table and fill _sendout_table to fill the information from the Trace file
into the tables. The fill _ipv6_fib_Ilpm_table function defines the default actions of the
P4 table ipv6_fib_Ipm to fib_hit _nexthop, being necessary the parameters of IP, Port,
and destination MAC address. Additionally, this function sends the IP to the ODP LPM
table. The fill sendout table function sets the default action to the P4 table sendout
to rewrite__src_mac being necessary to pass the Port and the defined MAC address.

Additionally, a sleep of 1000us between every addition it is necessary to let the ODP

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 55

functions add the entries without missing any information.
void init () {
int i;
uint8_t smac[6] = {0xd0, 0x69, 0x0f, Oxa8, 0x39, 0x90};
for (i=0;i<=mac_count;++1i){
fill _ipv6__fib_lpm_table(ips[i], portmap[i], macs[i]);
fill _sendout_ table (portmap[i], smac);
usleep (1000);}

Listing 3.17 — Controller initialization function

3.4 P4 Code

In a P4 code, the headers of the packets are defined at the beginning of the code,
in the case of IPv4 and IPv6 the headers are Ethernet and IP. The complete P4 code

implemented can be found in Appendix D.

header type ethernet_t {

fields {
dstAddr : 48;
srcAddr : 48;

etherType : 16;}}

header_type ipv6_t {
fields {

version : 4;
trafficClass : 8;
flowLabel : 20;
payloadLen : 16;
nextHdr : 8§;
hopLimit : 8;
srcAddr : 128;
dstAddr : 128;}}

Listing 3.18 — IPv6 P4 Headers

The necessary tables to forward the packets are the ipv6_fib_Ilpm and sendout.

e ipv6__fib_lpm is going to be in charge to call the LPM function when a valid
IPv6 packet arrives. This function reads the destination address of the packet and
matches with LPM. The actions if it is found a match are the fib__hit _nexthop that
modifies the Ethernet designation address with the nexthop information, updates
the egress port to the corresponding one, and reduces the hopLimit in one, the other

action of the function it is on_miss that discards the packet.

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 56

e sendout table is going to read the egress port and perform an exact match, if

a match is found, the action will be rewrite src_mac updating the source MAC

address of the forwarded packet.

action on_miss() {}

action fib_hit_ nexthop (dmac, port) {
modify_field (ethernet.dstAddr, dmac);

(
modify_field (standard metadata.egress_port, port);
(

add_to_ field (ipv6.hopLimit, —1);}

table ipv6_fib_lpm {
reads {
ipv6.dstAddr : lpm;}
actions {
fib__hit_nexthop;
on__miss;}
size : 512;}

action rewrite src_mac(smac) {
modify_ field (ethernet.srcAddr, smac);}

table sendout {
reads {
standard _metadata.egress_port : exact;}
actions {
on_ miss;
rewrite_src_mac;}
size : 512;}

control ingress {
apply (ipv6_fib_lpm) ;
apply (sendout);}

Listing 3.19 — IPv6 P4 Tables and Actions

The control ingress is the place where the flow is going to be defined, fist it is going
to apply the ipv6_fib_Ipm table and then the sendout table. In the use case of MACSAD
all the tables are defined at the ingress.

control ingress {
apply (ipv6_ fib_lpm) ;
apply (sendout) ;}

control egress {}

Listing 3.20 — [Pv6 P4 Control Ingress and Egress

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 57

In Table 4, we compare the use case complexity of the L2 and L3 forwarding with
IPv4 and IPv6. The Parsing refers to the headers and fields that are parsed at the P4
code, in the case of L3 forwarding the headers are two, Ethernet and IP and the number of
fields depend on the protocol (IPv4 or IPv6). Processing contains the information of the
tables defined, the IPv4 and IPv6 use cases have two, the ipv6_fib Ipm and sendout. In
Packet Modification are mentioned the headers that are added or removed from the final
packet. Metadata is the local information that passes through the tables, in MACSAD
is used to pass the egress port of the switch. In Action Complezity are summarized the
fields and expressions that are modified, in the L3 cases, the fields are Ethernet source
and destination address, the Time to Live (T'TL) (hop limit for IPv6), and the metadata.
The Lookups can be Hash (exact) or LPM, the exact match is used to find the egress port
and the LPM for the IP lookup.

Comparing the use cases, the IPv6 has 1 LPM table with the key size of 128 bits
being higher than the IPv4 case. The Packets fields parsed in the IPv6 are also more than
the parsed in the IPv4. On the other hand, the L2 forwarding case has one header with
three fields and two hash lookups of 48 bits.

The flow diagram of the P4 code (Generated using P4 Graphs?) is speared in
the Parse and the Table flows. The Parse flow shows the logic while parsing a packet.
In Figure 14b, it is presented the IPv6 Parse, when a packet arrives, the first step is to
parse the Ethernet header if the eherType is IPv6 then the IP header is parsed. After
this process the tables are executed. The Table flow shows the pipeline of the ingress and
egress, in Figure 15b can be seen the order of the applied tables. First, the ipv6_fib_lpm
and finally the sendout table. After this step, the packet is sent to the egress to be forward.

3.5 LPM Flow Diagrams

In this subsection, we describe the flow diagram of the LPM implementation con-
taining the relationship between the implemented function of the binary tree, ODP lookup,
and MACSAD lookup. Additionally, it is described the flow diagram of the P4 implemen-

tation.

In Figure 16, the main OPD LPM lookup flow is observed, when an ODP program
starts, the first steps are to initialize the ODP global and local variables (Internal functions
of ODP), with this function are set parameters as the distribution of cores, the RX and
TX ques, the memory blocs to be used. The tables (Figure 17) are created after this step.
Once the tables are created, if new action is requested the flow will continue, the table
actions (Figure 18) as described in the previous subsections, the Table Put values, Tables
Get Values, Table Remove Value, and the Tables Destroy (Figure 17).

3 <https://github.com/p4lang/p4-hlir/blob/master /bin/p4-graphs>

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support

Y
start start
default default
Y
parse_ethernet parse_ethernet
ethernet.etherType ethernet.etherType
&800 0x86dd
default | parse_ipv4 default | parse_ipv6

default

(a) IPv4 Parse (b) IPv6 Parse

Figure 14 — L3-FWD Parse Flow

ALL ALL

ALL ALL

(a) IPv4 Table (b) IPv6 Table

Figure 15 — L3-FWD Table Flow

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support

99

ODP LPM
LOOKUP

ODRP initialization

odp_init_global

odp_init_local

New Action

Requested

Yes

)4

<
<

i
[}
v
o}
v
[}
v

Yes>
Destroy Table Yes»@

No

Figure 16 — ODP LPM main flow

The MACSAD LPM implementation flow diagram is described in Figure 19. Fol-
lowing the same process as described above when an ODP program starts, the OPD is
initialized, then the tables are created (Figure 20). MACSAD has two types of tables, the
Lookup Exact, and the Lookup LPM. The exact match for the L2 information is used

(Source and destination MAC address), and available types are the Cuckoo and the Hash

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support 60

table.

MACSAD uses a key to pass the IP and prefix values to the functions. For IPv4
the key size is 5, where the first 4 are the IP, and the last one is the prefix that will be
used for the LPM table. For the IPv6 case, the size of the key is 17 where the first 16
are the IP and the last one the prefix. For the LPM lookup tables, the code will match
the size of the key; if it is 5, it will be an IPv4 address creating the corresponding table,
if the key is 17, the table created will be an IPv6 type. For the MACSAD use case, one
table is created for the LPM values. The implemented table actions (Figure 21) are the
Table Add and Table Get. The Table Add matches the size of the key with the same logic
of the table create and the corresponding IPv4 and IPv6 ODP put value functions call
(odph__iplookup _table put_wvalue or odph__iplookupv6_table put value). The Table Get
uses the same logic for the size of the key and depending on the size will be called the the

ODP get value functions (odph__iplookup table get wvalue or odph__iplookupv6 _table_get value).

3.6 Summary

In this chapter we described the IPv4 LPM support implementation in ODP in-
cluding our MACSAD support for the LPM library, we detailed the IPv6 implementation
including our LPM helper library in ODP and our MACSAD support that coverage the
controller and the P4 Code design. In the ODP implementation is described the different
functions that are part of the LPM process, presenting our IPv6 LPM implementation
and comparing it with the IPv4 library developed by ODP. We illustrated the complete
workflow of the LPM implementation including the MACSAD and ODP library parts,
having a comprehensive view of the process and how the different projects are integrated,

also comparing the use case complexity of the L2 and L3 forwarding with IPv4 and IPv6.

In the next chapter, we are going to present our Packet Generator Tool BB-Gen,
that will support us in the evaluation of the implemented functions and libraries, allowing

us to generate the different packet traces for the performances test.

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support

61

Table 4 — P4 Use Case Complexity

L3-FWD | L3-FWD
LEEWD | pogy | (1Pve)
P4_14 P4_14 P4 14
#Packet
headers 1 2 2
Parsin, #Packet
g felds 3 13 19
#Branches 1 9 5
in parse graph
#Tables
(no dep) 2 2 2
Depth P P P
Processing of pipeline
Checksum
off off off
on/off
Table 8192 512 512
size
#Writes
to different register 0 0 0
ﬁ)\zgglzsre ister 0 0 0
State Accesses &
#Reads 0 0 0
to different register
#Reads . 0 0 0
to same register
#Header
adds 0 0 0
Packet Modification |"ZHeader
removes 0 0 0
#Metadatas 1 1 1
Metadata Metadata
size(bits) 9) 9
#Field 9 4 4
writes
Action Complexity #Arithmetic 0 0 0
expressions
#Boole.an 0 0 0
expressions
#Hashil?okups 2 [48] 1 (9] 1 [9]
Lookups [key_ length(bits)]
#LPM 0 1[32] | 1[128]

[key_length(bits)]

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support

62

Table Create and Destroy

Table Create

odph_iplookupvé_t
able_create

Table lookup

odph_iplookupvé6_t
able_lookup

IP prefix table

already exists

Calculate the sizes
Setup table context
Initialize cache

Initialize the root
node of the tree

trie_init

ODP initialized

Destroy Table

odph_iplookupve_t
able_destroy

Destroy Tree

trie_destroy

Free all L2 and L3
entries

Destroy all cache

Figure 17 — ODP Table Create and Destroy

63

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support

SUOTY 9[qRL, JAO — 8T 9MSIL]

opou”933[9p a1}

apou 819|2a

2a.11qns AoJisaqg

X] 213[9p X1a.d

X| 313130

x| @19|9p” x1ya4d
8 <Xlya.id
x| 819]19Q

193 21919p xiyaud

1911 219130

depano30919p a1

deano 10919

anjen snowsaJ s|qe
3 9adnyoo|di ydpo

anje/, anoway

anoway

3|qe1 2yl ui anjep

X

|- oul Jasul xiyaad
8 =>Xljald —ON-P>

X|] 03Ul 1435U|

1811 8su

1331 0JUl 113sU|

OU” LI3SUl” Bl

on|eA 199 99.] 01Ul 1JasuU|

anjeA 1nd s|qe

VANI ¥344nNg dA0 = =
1 9Aadnyjoo|di ydpo

X1324d 3nejop
341 Yo1eW ATNO, Sljh

ssalppe

8841 8y} 01Ul YydJeas 0>sl)nsaiay| LTINS e

anjen 198 @ asl
3 9ndnyoo|di ydpo ed uppe g9adi ydpo

anjen 199 3sied ssalppe d|

suondy ajqel

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support

64

MACSAD
LPM LOOKUP

ODP initialization

odp_init_global
odp_init_local

New Action
Requested

Yes
v
MACSAD
Table Add —Yes—b
I
No

b4

Table Get Yes—b@

I
No

Figure 19 — ODP LPM main flow

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support

65

MACSAD Table Create

MACSAD
Create

Table Create

table_create

Case Lookup
Exact

Case Lookup
LPM

Lookup Exact Lookup LPM

Cuckoo Table Create Ipv4 Table B =y

"

Create Hash table Create Cuckoo table LPM: key size not

supported

odph_hash_table_lo odph_cuckoo_table
okup _lookup

<
<
e

(a4 Table creation Fail

¢

No

Table created

.4_

Figure 20 — ODP Table Create

Chapter 3. Design and Implementation of IPvj/IPv6 Longest Prefiz Match support

66

MACSAD Table Actions

IPv4 Table Put

odph_iplookup_tabl
e_put_value

4—Yes—¢
No
Y

MACSAD
ADD

Table Add Table Lookup

Ipm_add Ipm_lookup

IPv4 Table Get

odph_iplookup_tabl
e_get_value

Yes

6

Figure 21 — ODP Table Actios

67

4 Packet Generator Tool: BB-Gen

With P4 gaining traction to define datapath pipelines along auto-generated control
plane APIs, the protocol-independence and increased flexibility add non-trivial hazards
when it comes to functional and in-depth performance evaluation. P4-dependent work-
load traces are needed along automated methods to populate the tables of the datapath
under test accordingly. Without proper tools, manual efforts are required for tedious tasks
such as creating appropriate PCAP traces, defining the distribution of field values, and
inserting entries in the pipeline tables. To this end, we developed BB-Gen (RODRIGUEZ
et al., 2018; CESEN et al., 2018), a packet crafter and table generator tool that given a
P4 application and a corresponding user configuration results in packet and table traces
to carry automated performance evaluation tasks. We evaluated BB-Gen with P4 appli-
cations of increasing complexity (from L2 to VXLAN-based Data Center Gateway), using
two different multi-architecture backend compilers (MACSAD, T4P4S) and different tar-
gets.

With increasing number of services over the Internet like email, web, video stream-
ing and so forth, the demand for bandwidth is increasing exponentially. Along with it,
the necessity to evaluate and test network capabilities become prevalent. While networks
are becoming more (re-configurable), network testing tools are becoming equally complex
adapting to the need of the hour. The network testing and benchmarking tools depend
on network workload generation to simulate the network traffic for testing purposes. This
trivial task has been the foundation for several research activities like (BOTTA et al.,
2012) focusing towards performance, scalability, and reliability of networks and network

devices.

Traffic generator tools are an essential part of network testing with features ranging
from supporting list of protocols, analyzing network traffic or measuring throughput to
calculating latency of packets. In theirs strive to achieve feature completeness, the tools
are getting more complex each time, and making it hard to port, manage, and use. To
address this, we propose BB-Gen which is a python based tool, with a primary focus on

simplicity, excelling in the creation of network packet traces.

BB-Gen is a simple CLI based packet crafter written in Python over Scapy library.
It can natively craft packets for different standard and custom protocols. It aims to create
PCAP files to be used with a wide set of Traffic Generators (e.g., pktgen-dpdk (OLSSON,
2005), NFPA (CSIKOR et al., 2015a; CSIKOR et al., 2015b), TCPDUMP (TCPDUMP,
2010)) helping network developers to validate the network and execute performance tests

over the targets.

Chapter 4. Packet Generator Tool: BB-Gen 68

Though BB-gen is primarily used to create PCAP trace files, it differs itself by
generating the table trace files for the PCAPs which are necessary to fill the table flow
configuration of the target device for the network testing. Table traces contains the main
information of the generated packets (e.g. source/destination IP/MAC address). BB-Gen
allows to create traces files with same/random IP/MAC/L4Port details showing its control
over the header fields like source and destination MAC addresses, IP addresses, TCP or
UDP ports while creating packets. It also allows the user to create a complete set of
PCAPs for performance test by specifying a single flag in the command line. Under this
performance setting, PCAPs generated comprises of all the standard packet sizes (64,
128, 256, 512, 1024, 1280, 1518) (BRADNER; MCQUAID, 1999) and also features simple
(best-case) and complex (worst-case) scenarios by using typical/random distribution sets
of header fields respectively. A single command can generate both PCAP and table trace
files. The command line arguments which are reckoned and self explained go in agreement
with the easy use of BB-Gen. A custom protocol support to BB-Gen can be easily added
by first adding the support to Scapy similar to the Contrib! and then extending BB-Gen

protocol list with minimal code changes.

4.1 Architecture

Figure 22 shows the principal components of the architecture of BB-Gen Packet
Crafter.

User

Y BB-Gen

Parser

’ Protocol ‘ ’Distribution‘

Y
Data Generator

e | [p] [mac
v Packet
= Y ’ Manipulation‘ ’ Assembly ‘
= Packet Creator P
§ Custom Protocols > » § PC'AP
’Read Pkt List‘ ’ Create PCAP ‘
\ \
Table PCAP
Trace Trace

Figure 22 — BB-Gen Architecture

L https://github.com/secdev/scapy/tree/master /scapy/contrib

Chapter 4. Packet Generator Tool: BB-Gen 69

e User: The user introduces required parameters such as distribution, protocols, num-

bers of entries, use case?, packet sizes, necessary to create the trace files. 3

e Core: Being the principal part of BB-Gen, it receives and process information from
the User, and generates the packet details to be included in the trace’s files. It
comprises of three sub-modules i.e., Parser, Data Generator, and Packet Generator

as explained below (Fig. 23).

v

Parser

’ Protocol ‘ ’Distribution‘

Data Ge'nerator
P || mac |

Y
Packet Creator

” Packet list

Core

Figure 23 — BB-Gen Core module

— Parser: it is in charge of selecting the protocols to be used as well as the
distribution, using the information introduced by the use or the default values

in case of missing information (Fig. 24).

v

Parser

Protocol Distribution

Figure 24 — BB-Gen Parser module

— Data Generator: using the protocols and the distribution details from Parser,
it generates the list of source and destination IP, MAC and Ports (Fig. 25).

— Packet Creator: with the information set at Parser and the list of IP, MAC
and Ports generated at Data Generator, the Packet Creator is going to create
the list of packets with all the defined fields. With the list of packets prepared,

the table trace file is going to be created using the informations about packet

2 Supported use case: MACSAD
3 More information on required parameters to generate the traces are described in BB-Gen GitHub
Wiki page, <https://github.com/intrig-unicamp/BB-Gen>

Chapter 4. Packet Generator Tool: BB-Gen 70

Data Ge'nerator
IP MAC
Port

Figure 25 — BB-Gen Data Generator module

contents. And finally, the list of packets is sent to the Scapy block to generate
the final PCAP trace (Fig. 26).

v
Packet Creator
>
Packet list

|
Figure 26 — BB-Gen Packet Creator module

e Scapy: is composed of the Packet and PCAP sub-blocks. The Packet is going to
assemble the packets included in the list of packets with the correct protocol format.
The PCAP will read the assembled packets and generate the PCAP file completing
the BB-Gen process (Fig. 27).

Packet

’ManipulationH Assembly ‘

SCAPY

PCAP
\Read Pkt List | | Create PCAP |

Figure 27 — BB-Gen Scapy module

e QOutput Files: BB-Gen generates two output files, the Table trace and the PCAP

trace:

— Table Trace: Generated by the Packet Creator module, it is a plain text
containing matching entries derived from the PCAP packet trace and Packet
List. It can be customized to the specific use-case and used to populate entries

to the dataplane tables.
— PCAP Trace: Generated by the Scapy module with all the information and

protocols configured by the user. It can be used with a wide set of benchmarking

tools for the evaluation test.

Chapter 4. Packet Generator Tool: BB-Gen 71

4.2 Main features

The principal features and capabilities of BB-Gen are summarized as below:

e Designed for simplicity, BB-Gen delivers an intuitive CLI based interface. By spec-

ifying only a few flags, the user can create a set of traces files.

e A P4 code can be used as an Input. BB-Gen identifies the protocols and auto-

generate the traffic traces.

e Very useful for best-case and worst-case testing. It allows to specify a simple /random

distribution of header fields sufficient to address the most complex test cases.

e Being a python based tool, it is easy to build, use and extend to support additional

protocols and new features.

e Kasily create multiple PCAPs in a single step. The user can define the number of
flows, packet sizes, for each PCAP.

e Generates table trace files along with every set of PCAPs utilizing the informations
from the PCAP files such as list of IP addresses, MAC address, Port numbers and
also the packet encapsulation data for protocols like VXLAN and GRE. Trace file

generation is seamless and does not require any additional user input.

e For scalability testing purposes, it can generate traces with more than 1 million

unique packet details.

e Supports a list of common standard protocols:

Ethernet.

— IPv4, IPv6.

TCP, UDP.

— Protocol Encapsulations such as GRE and VXLAN.

e Useful for performance tests as it can automatically create packets of different sizes
according to the RFC 2544 (BRADNER; MCQUAID, 1999) (64, 128, 256, 512, 1024,
1280, 1518 Bytes) by setting a single performance flag in CLI.

e User defined custom packet sizes are also accepted at the CLI, just being limited by

the defined minimum protocol size.

e Accepts user defined payload information. For this scenario, minimum packet size
is maintained to be 64 Bytes by padding with random strings if necessary. In case
payload saturates the 64 Bytes, the packet size is determined by the aforementioned
payload.

Chapter 4. Packet Generator Tool: BB-Gen 72

D rrrrrrr > RS — —_— — -
[—=1 T \TTTTTTTTTTTIITTTTTTTT paappPath UserinputPath Trace Path Internal Path Packets Path - Target Binary
1] H
1 ! '

BB-Gen
Parser L
| Tanspiler > P4HLR | [T "~

1
12fwd.p4
Target Compiler

13fwd.p4
nat.p4
I vxlan.p4 {MACSAD}
l’ Faors
NFPA

¥ :
Data Generator e
[1P| [Port | [MAC | Measurement scripts
v Setup P2
Packet Creator ! ¢
INTEL DPDK

Packet list ENGINE PktGen

: Result <€—

Analyzer
P1
PC/"\P of PCAP | Traffic
Read Pkt List||Create PCAP "\ Trace/ 7| Traces

4 Table

~_Trace /
Figure 28 — BB-Gen integration with NFPA and MACSAD & T4P4S

‘ Protocol *‘ ‘Distribution‘

Core

4\ vDUT

P4
Dataplane

SCAPY

The generated PCAP trace files are accepted as inputs for different network bench-

marking and performance tools.

e [t is a cross-platform tool with support for Windows, Linux, BSD and Mac OS X
platforms.

It is an open source project following BSD 3-Clause License.

4.3 Use Case

In order to demonstrate the usability of BB-Gen, we present a use case featuring
a programmable dataplane (MACSAD & T4P4S) and a network performance evalua-
tion tool (NFPA) which accepts a set of PCAP trace files as input for each ‘determined

setup’/‘specified configuration’ experiment run.

4.3.1 Evaluation

While using the NFPA benchmarking tool for performance evaluation of MACSAD
& T4P4S, BB-Gen generates the necessary PCAP and table trace files for worst-case
scenarios with random header field values (MAC and IP addresses, Port numbers.) from
the P4 file set as an input. Multiple sets of PCAPs are created for different packet sizes
according to the RFC 2544, and also with a different number of packet flows (100 to
1 million unique flows). This is repeated for each use-cases supported by MACSAD &
T4P4S such as L2-Fwd, L3-Fwd with IPv4 and IPv6, GRE, and VXLAN.

For the use case evaluation, the NFPA standalone node is connected to the DUT
(MACSAD or T4P48S) as presented in Figure 28 (A detailed use case is presented in Chap-

ter 5). The user defines his P4 program and configures the benchmarking tool accordingly

Chapter 4. Packet Generator Tool: BB-Gen 73

(in our case, NFPA only requires the high-level configuration details, e.g., packet size).
Then, the P4 program is fed into BB-gen. Users can define target PCAPs with different
packet sizes (i.e., from 64 to 1500 Bytes) from best-case (i.e., fixed, single header fields)
to worstcase (random, unique field values) workloads. While the packets are generated,
the DUT is compiled by our Target Compiler module supporting multi-architecture P4
compilers, such as MACSAD and T4P4S.

Once the DUT is running, BB-gen uses the available APIs* to carefully populate
the flow tables according to the P4 Table Trace containing matching entries derived from
the PCAP packet trace and Packet List. At the same time, the BB-gen loads the generated
PCAP file into NFPA, which takes care of the practical measurement conforming the

standards.

4.4 Summary

In this Chapter, we presented BB-Gen a packet generator tool that can generate a
suitable trace file used for performance evaluation with a simple process. BB-Gen can also
create multiple sets of trace files with different packet sizes and different flow distribution
simultaneously along with the corresponding table trace file for each PCAPs and pipelines.
The integration with an extensive set of benchmarking tools reinforces the ease of use of

the tool and benefits for the community with the evaluations.

We showed how BB-Gen, NFPA and “MACSAD & T4P4S” trio can work con-
jointly to exemplify how a P4 program suffices to define the datapath pipeline, create
match + action table traces to control the P4 DUT, and generate a trace file for the

evaluation, covering different complexities and requirements of the project.

4 As today, APIs are target-specific but PARuntime (PRT) API support is underway.

74

5 Experimental Evaluation

In this chapter, we evaluate the performance of the two LPM use cases using three
different packets I/O engines (DPDK, Netmap, and Socket__mmap). For each combina-
tion, we explore the scalability for different workloads (packet traces, table entries) and
configuration options (e.g., CPU cores) using NFPA as a benchmarking tool. To generate
the traces we use our packet crafter tool BB-Gen! that will provide the necessary PCAP
files to be used with NFPA. The pipeline implementation? and other information for re-
producibility purposes including the P4 programs® used by MACSAD and the traffic
generator tool (BB-Gen) are publicly available.

5.1 Testbed and Methodology

Our testbed (Fig. 29) contains two Lenovo ThinkServer RD640 servers with Intel
Xeon E5-2620v2, 6 Cores, Hyper-Threading disabled, running at 2.1GHz, 8*8GB DDR3,
a dual-port Intel X540-AT2 NIC (10G), and run with Ubuntu Linux 16.04 LTS (kernel
4.4). The Tester server (module 5 in Fig. 29) runs NFPA with DPDK v17.08 and PktGen
v3.4.5, and it is connected to the DUT (BRADNER; MCQUAID, 1999) (module 4). The
DUT supports multiple packets I/Os to illustrate the ability to accommodate different
platform features, such as DPDK v17.08, ODP v1.16.0.0, Netmap v11.2, and the basic
Linux Socket mmap provided by the Linux kernel. The P4 Code (module 1) with the
Ipv4 or IPv6 implementations is the first input of the test. The code will be used by
BB-Gen (module 2) to auto-generate the PCAP and the table Trace, and by the compiler
(module 3) to generate the MACS using the ODP APIs. The controller parses the table
Traces file and populated the information into the corresponding table. The PCAP files
are used by the NFPA to generate the traffic for the performance evaluation. The MACS
is configured to forward packets received from one port to the other and eventually back
towards NFPA, which in turn analyzes the packet throughput concerning PPS and BPS
(module 6).

For both L3-IPv4 and L3-IPv6, different number of cores (1, 2, 4, and 6) are
allocated to the DUT, distinctive workloads are configured by setting different number of
I[P prefixes (100, 1K, 10K, 100K, 1M) in the lookup table and a matching number of L3

flows used in the synthetic traces.

<https://github.com/intrig-unicamp/BB-Gen>
<https://github.com/intrig-unicamp /macsad >
<https://github.com/intrig-unicamp /macsad-usecases>

2
3

Chapter 5. Experimental Fvaluation 75

B _m | 1Pv4
| IPV6

T : ¥ o
2l _; i @ {/ \ @"ﬂﬂ“""‘""'ﬂes

MIMI Ll

> o

Figure 29 — Testbed

5.2 Performance Analysis

52.1 L3-IPv4

Figure 30 shows the performance of L3-IPv4 for different FIB sizes and packet
I/O drivers, i.e., DPDK, Netmap, and Socket_mmap. The red horizontal lines refer the
line rate for different packet sizes. (i.e., 8.44 Mpps for 128 bytes and 4.52 Mpps for 256
bytes). The results for L3-IPv4 are grouped into three sectors indicating different packet
sizes (i.e., 64, 128, 256). Each sector is further divided into five different points marking
the complexity of the pipeline, i.e., the size of the FIB (e.g., 100, 1K). It can be observed
that MAcCS, with DPDK, reaches the 256 bytes’ packet size line rate regardless of the
FIB table size. The performance of Netmap is comparatively lower, but it reaches line
rate with 512B packets. Also, it is interesting to note that, the measured results for
1M FIB entries are better than for 100K FIB entries. From the results, it is clear that
the Linux Socket_ mmap driver never saturates the 10G interfaces even with the largest
packets (1518 bytes) due to the highly increased number of system calls, fundamental

kernel scheduling, and costly context switching imposed by the Linux kernel itself.

In a configuration using 4 cores (Figure 31) the results of the different packet 1/0
drivers where grouped depending on the FIB size and the packet size. It is important
to notice that all the results independent of the driver are starting from 0’ in the "y’
axis. It is clear that the performance increases notably compared to the 1 core setup.
With DPDK the line rate is reached even with small packets of 64 bytes and with all
the FIB sizes. Netpmap also increases the performance and can saturate the link with

packets of 256 bytes. It is interesting to note that the performance results with 64 bytes’

Chapter 5. Experimental Fvaluation 76

,,, line rate 1288
8 .
= — — DPDK 3
2 6 - — - . - ___ - Netmap -
= P . . — . E — b Socket-mmap =3
=] 0 c 0 -1 0 0 line rate 256B
= R % S A B PO S L N ! Y S P N o N A I 0 i —
£
E A E 1 T I

T T T T T T L T
100 1k 10k 100K m 100 1k 10k 100k M

64 128 256
Number of entries
Packet size

Figure 30 — IPv4 forwarding performance for different I/O drivers (1 CPU core)

14.88 4= = = 1 line rate 64B
| : DPDK E=1
7 R 110 Netmap =3
§' H I b Socket-mmap ood
‘g 8.44 _ -] _ line rate 128B
o
ey
=)
3
'_E 4.52 | H | | |_| line rate 256B
line rate 512B
2.34 A
1.19 1 !!! ! ! HHHHI:I DHHI:H:I | | =
AR HHUHN HHUEE ooHon HAORA0 AOPAR He8BR
100 1k 10k100K 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M
64 128 256 512 1024 1280 1518
Number of entries
Packet size
(IPv4)

Figure 31 — IPv4 forwarding performance for different I/O drivers (4 CPU core)

packets and 1K entries are better than the 100 entries results. This behavior can be
caused by a sub-optimal synchronization and CPU utilization of Netmap, it uses NIC
interrupts and standard kernel synchronization mechanisms to block on empty or full
NIC queues (LETTIERI et al., 2017). With Socket__mmap driver are archived slightly
superior results if we compare with the performance of the 1 core evaluation using the

same driver.

Figure 32 presents the results for different core configurations (i.e., from 1 to 6),
and a 64 bytes’ packet size. The results include a FIB size of 100 and 10K. Our results
demonstrated that the performance increase with the addition of cores, this analysis
applies for the DPDK and Netmap drives, with both configurations and independent of
the FIB size it is clear that throughput raise. In case of DPDK, the line rate is reached
with 4 cores, as it was demonstrated before, with Netmap the link is saturated only with
packets starting from 256 bytes. A similar pattern of the previous results was obtained with
Socket _mmap, confirming that the limitations of the Linux kernel affect the performance

using this driver.

Chapter 5. Experimental Fvaluation 7

i line rate

[0OJ) ele)
14 0O 00q
ooq 00
=1 Socket-mmap 00 00(

ooq 00
12 43 Netmap co Slele

— cog) 00
M DPDK —poo ood
Q (o]ele DO O
[=% 10 T Jefey ____looc
= (elele Jele)
~ DO O 000
= elele 00
> 84 0O 00
= elele 00
< 00 ood
2 ood 00
3 6 18] 00(
° ooq 00
< 00 ooq
= oo9 00
4 4 00 00C
ojele DO O
00(000

(e]ele DO O
2 7 DO O 00C
sjele [e]e]
00 ood

— ood 00

T T

6 4

100 10K

Number of Cores
Number of entries

Figure 32 — IPv4 different cores performance (64 bytes packets)

A line rate 1288
8 .
= DPDK =3
& 6 — - Netmap -
= M . Socket-mmap
s L I % I S I) D ! I b N 0 R % O o I Ijr}e rate 72757678
Q .
541
>
o
<
=
2 .
lll)k IOIOI; ' I:VI
64 128 256
Number of entries
Packet size
Figure 33 — IPv6 forwarding performance for different I/O drivers (1 CPU core)
5.2.2 L3-IPv6

Results for the L3-IPv6 use case with 1 CPU core are shown in Figure 33. The
performance results lead to a similar conclusion to L3-1Pv4 where DPDK reaches line rate
(red line) with 256 bytes’ packets for all FIB sizes. There are some performance differences
in case of the Netmap driver, a slight drop as the number of FIB entries grows. However,
when comparing our results to the L3-IPv4, we must point out that the peculiarity with
100K and 1M number of entries observed before also applies for L3-IPv6.

Comparing the IPv6 results with IPv4 (Figure 34, it is important to highlight the
fact that the performance in the case of IPv4 is slightly superior with different packets
sizes (i.e., 64 and 128 bytes). Additionally, it is remarkable that in the case of IPv6 the
Key size is 128 bits increasing the complexity of the LPM tree.

The IPv6 performance results with a four cores configuration are presented in
Figure 35. It is important to highlight, with Netmap when the FIB size reaches 1M the

line rate is not achieved even with the largest packet size, the limitations of Netmap can

Chapter 5. Experimental Fvaluation 78

,, line rate 1288
8 .
- — — DPDK E3
2 6 | - || R . — —— Netmap -
= 11 F] = 1 i] o Socket-mmap 1
= 1 I 0 o 0 0 line rate 256B
5 00 T I R T I I _ e TaLE 2
g 4 | . p 8 .
=} 8 O I L . Jd | .
o H [H ol T
— 1 —
= -1
=
2 4
5l 1 H e H M Y
T T T T T T

T T T T T T r T B — T B
100 1k 10k 100K 1M 100 1k 10k 100k 1M 100 1k 10k 100k lM 100 1k 10k 100M 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M

64 128 256 64 128 256
Number of entries
(IPv4) Packet size (IPv6)

Figure 34 — IPv4/IPv6 forwarding performance for different I/O drivers (1 CPU core).

14.88 4= = 1 F1 11 line rate 64B

DPDK =1

Netmap [

Socket-mmap [
8.44], . line rate 128B

line rate 256B

2.34 1 |

Throughput (Mpps)
N
3]
N
I
I
f D —
]

| | H line rate 512B
1.19 1 | ! | H!! Dullua I = =
T AHL URPHE BHAonD HARAR AAAASE Aeand
100 1k 10k100K 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M
64 128 256 512 1024 1280 1518
Number of entries
Packet size
(IPv6)

Figure 35 — IPv6 forwarding performance for different 1/O drivers (4 CPU core)

cause this behavior.

Figure 36 shows a throughput comparison as the number of cores increases from 1
to 6. The results with different cores are consistent with what has been discussed before.
When the number of CPU cores increases, MACSAD can process more packets resulting

in higher throughput.

It is notable (red line in the Figure 37) that as the number of FIB entries increases,
the throughput reduces slightly. Moreover, when the table key size increase from 32 bytes
(IPv4) to 128 bytes (IPv6) the performance also decreases. This is a significant finding
in the understanding of how the complexity of the number of FIB entries and key sizes
affect the throughput.

Figure 38 presents the performance results of the IPv6 lookup by setting different
values to the prefix length. It is interesting to note that, when the key value (prefix)
increases, the performance reduces. With a key of 16 and 32, the line rate is easily reached.

When we increase the prefix to 64, the throughput decreases to 12.9 Mpps, and while

Chapter 5. Experimental Fvaluation 79

n line rate
T PoOOq
14 4 oo
=3 Socket-mmap -
12 {3 Netmap Ooooo
7 E=3 DPDK o
(eYere
o E o
= 10 OO’?J
= Yele}
3 81
= el
g 00
2 6 009
°
2 (eXeXe
= 500
4 T O
(o]e]e
OVO
2 i (7(,)70
500
(o]}
ood)
T
6
100 10K
Number of Cores
Number of entries
Figure 36 — IPv6 different cores performance (64 bytes packets)
J - line rate
] e 7] e | ™1 DC =
141 o ¥ o X o & X &l
=3 Socket-mmap © 5) o ol d 0 q
o o) g o o
12 4 Netmap 1 5 S o e| o >
n DPDK o T o & T H T ol b
& 10 o 1 o] B] o
s b o e 0l Ye o = e
~ O Bs] Bl O d O
5) e C ¢ e
3 8+ 1 5 I St 4 I E R 61 I
=3 D o) e [e) e o 0 b(] o
= ol b o 5] o q b o §
2 o q [Yo [¢) G © O | ©
o 6 T 9 |« O | O q | o C
2 [o g [o e o
£ i e R A T L T
4 T s ,‘ U\ I O e Ol | Q
|_F01 o Ol C © \1 O | bJe
D D] | O d Ol D o]
O (o] q] D C O Bl O] | C
2 T o ble @) (] (O us O o)
O (o]) (] O] C O Sl O] D C D
(] |] O D (O D C O D o]
y-—l [(] ol b Ol— bd O ,—I ['J <| O | D] D
T T T T T T T T T T
1 4 6 2 4 6 1 2 4 6
100 10K 100 10K
(IPv4) Number of Cores (IPv6)

Number of entries

Figure 37 — IPv4/IPv6 different cores performance (64 bytes packets)

increases the prefix the performance also reduces. This implies that the throughput is
associated with the size of the key. In ODP library when we increase the value of the
prefix, the algorithm has to create more leaves, and when we perform a lookup, it is

necessary to search in all the levels adding processing and memory consumption.

Comparing MACSAD IPv4 and IPv6 implementation with T4P4s, we can observe
in Figure 39 that the performance of the IPv4 use case is slightly superior in MACSAD.
This can be caused by an optimized algorithm to perform the LPM lookup. While com-
paring the IPv4 and IPv6 implementation with the 12fwd use case, we can observe that
the L2 forwarding has the worst performance result. From these results, it is clear that
exact lookup used by the L2 use case is not optimized what causes a reduction in the

performance.

Chapter 5. Experimental Fvaluation 80

i line rate
14 1
T [Eod DPDK
00
12 A 00(
DOO
- 00(
3 00 POO °
a 10 1 aXeX: lood looc
s DO O [o]e] [e]e)
- 00C (e]e]e (ofe]e
o PO O 00 DO O
S 8- [oYeYe feYeXs 0.0C
Q. 00 DO O 00
Ky 00 O O([OOC
o 00 0O [e]e]
8 6 . 0O0(00(00d
00 00| 00
= [eXe} oo (eXeXe
= 00 00| 00
4 o0 (eXeXe oo
1 © 00 00
oo oo oo
00 00| 00
oo oo oo
2 - 00 [oYe) Q0
oo oo oo
00 o) 00
oo oo XX
) fo) foYe)
T T T T T
64 96 97 104 112

Prefix Length (bits)

Figure 38 — MACSAD IPv6 prefix length comparison (64 bytes packets, 100 entries)

line rate
14 00 o 00 o ho 00
°) 00 ©) 00 00 o
00 o 00! ¢ o DPDK |[od]
o Q foYe) bo
% 12 1 00 Oq boq 00 O] D A OO
Q od = [e]e] 7\ P o OO [e]e] — i)
o AR OO0 od e s [e]e] od o (e]e] [e]e)
= 10 A oq od e 00 od---pe o6 00 od---po
= [00 o o 0o 00 o °) 00 00
- o od OO [e]e] od o (e]e] [e]e] od oo
> 84 [[e)e) o e oo oo o bo 00 00
=% o od oo 00 0 bo 00 00 o bo
< [00 o e oo 00 [°) 00 00
2 6 o) o) oo 00 0 >0 &8 00 YeX o)
3 00 od o oo 0o o o 00 00
o o o oo 00 od po 0o 00 od po
< 4 B - 00 od e (o] [e]e) od o (e]e] QO
[o o o]e]] od o (e]e] [e]e] o i)
o 00 od poq oo 00 od po 00 00
o o oo 00 0 bo [e)e) 00 e) o
21 00 00 Yete e} 00 00 04 e} 00 00|
@) o oo 00 od pod &9 00 od po
oo 00 e e oo 00 [e 00 00
T T T T T T T T T T
2 4 2 4 2 4 2 4 2 4
MACSAD MACSAD
MACSAD T4P4 T4P4S
12fwd IPva IPve 12fwd IPv4
Forwarding Forwarding

No. of Cores

Figure 39 — MACSAD vs T4P4S use cases comparison (64 bytes packets, 100 entries)

5.2.3 CPU Cycles

Performance counters are special hardware registers that are available on most of
the CPUs and count the number of some hardware events (i.e., instructions executed,
cache-misses suffered, branches mispredicted (Without slowing down the kernel or ap-
plications). The perf command (MELO, 2010) is a powerful tool that can instrument
CPU performance counters, tracepoints, kprobes, and uprobes (dynamic tracing). Other
similar tools to analyze the CPU performance are: the Berkeley Packet Filter (BPF) (MC-
CANNE; JACOBSON, 1993), a register-based filter evaluator for filtering network packets
(best known for its use in tcpdump), and the Extended BPF (EBPF') variant that analyzes

all over the kernel, including maps and used for aggregating statistics of events.

We evaluate the CPU Cycles using Perf and with the same topology of the perfor-
mance analysis (Fig. 29). For the evaluation, we use a configuration of 1 CPU core and
100 entries, the prefix size of 24, and DPDK as the packet I/O due to the best results
during the performance tests. We compare MACSAD and T4P4S; both projects use a
similar structure with the difference that T4P4S uses a DPDK backend and libraries,

Chapter 5. Experimental Fvaluation 81

dpdk_recy T T T T T T o e T T T T e e T T T T T e e e e e Tt 1

odp_pktin_recv_tmo TR R 1 [==1 MACSAD IPv4

table_ipv4_fib_lpm_key TS |
apply_table_ipv4_fib_Ipm {1

odph_cuckoo_table_get_value {1

Command

Ipm_lookup {3

exact_lookup {1
odph_iplookup_table_get_value I
odph_iplookup_table_create -

odph_cuckoo_table_create

0 10 20 30 40 50 60 70
CPU Cycles (K)

Figure 40 — MACSAD IPv4 CPU Cycles (324k total cycles, 1 Core, 100 entries)

including the LPM functions.

In Figure 40 it can be seen the results of the IPv4 test, are considered for the
graph the results related to the forwarding process. During the test were captured 324k
CPU cycles in total. It is important to remark that the commands that process the
receiving packets (i.e., dpdk_recv, odp _pktin_recv_tmo, ixgbe recv_pkts wvec) consume
the largest number of cycles (155k CPU cycles). The table_ipvj_fib_Ilpm_key com-
mand start the LPM processing using 21k CPU cycles. The MACSAD LPM function
of lookup Ipm_ lookup takes 689 CPU cycles samples, inside this command the ODP get
function odph__iplookup table get wvalue takes 511 CPU cycles. The ODP table create
odph__iplookup__table_create and table add use few CPU cycles (less than 200). Compar-
ing the LPM commands with the cuckoo commands, it is clear that the LPM functions

have a high impact in the CPU cycles consumed.

For the IPv6 case (Figure 41), the results lead to a similar conclusion of the IPv4
results, where the commands that process receiving packets consume more cycles, from the
261k captured more than 100k correspond to the receiving process. In the case of IPv6, the
LPM functions consume more CPU cycles; the LPM lookup reaches the 2.6k CPU cycles.
The results confirm that the size of the key affects the processing of the packets adding
more cycles. It leads to good results, even if the processing in IPv6 is higher, confirming
the results from our evaluation of different cores and use cases IPv4/IPv6 where we saw

a reduction on the performance when the size of the key increases.

When comparing our results with T4P4S (Figure 42), it worth mentioning that
MACSAD uses less CPU cycles. In the case of our LPM lookup, MACSAD IPv4 takes
689 CPU cycles, MACSAD IPv6 2.6k, and T4P4S with DPDK LPM lookup takes 12.9k.
With the evaluation, it is possible to see significantly better results for MACSAD using
the our implemented ODP library for the LPM process than T4P4S using DPDK library

Chapter 5. Experimental Fvaluation 82

dpdk_recv A]

odp_pktin_recv_tmo 1 =1 MACSAD IPvé

Ipm_lookup

apply_table_ipv6_fib_Ipm -

exact_lookup -

Command

—

table_ipv6_fib_Ipm_key 41

|

il
odph_cuckoo_table_get value

odph_iplookupv6_table_get value

odph_iplookupv6_table_create {1

odph_cuckoo_table_create

0 10 20 30 40 50
CPU Cycles (K)

Figure 41 - MACSAD IPv6 CPU Cycles (261K total cycles, 1 Core, 100 entries)

TT

=1 MACSAD IPv4
=1 MACSAD IPv6
S50 T4P4S IPv4

%

[eYele
YeYeYelo)

exact_lookup A

apply_table_ipv4_Ipm

Command

Ipm_lookup -

hash_lookup -

CPU Cycles (K)

Figure 42 — MACSAD IPv4/IPv6 vs T4P4S - CPU Cycles - LPM and exact lookup com-
mands (1 Core, 100 entries)

for the LPM process. One difference between our ODP LPM library and DPDK LPM
library can be attributed to an optimized algorithm to store the LPM entries in the table,
which can reduce the number of cycles consumed by the process. This is consistent with

what has been found in our performance evaluation (Figure 39).

5.3 Summary

The performance evaluation is a crucial part of the development of a system. We
evaluated our LPM implementation with MACSAD in different scenarios and configu-
rations, including different sets of packet 1/O drivers, cores, numbers of entries, packet
sizes, and much more. We compared our results with other similar projects like T4P4S,

analyzing the performance and the CPU Cycles consumed by the projects. We presented

Chapter 5. Experimental Fvaluation 83

an analysis of how the prefix length can impact the performance and how the size of the

prefix tree (number of levels) also impacts on the results.

84

6 Conclusions and Future Work

The focus of this dissertation is the design, implementation, and evaluation of
[Pv4/IPv6 Longest Prefix Match support in Multi-Architecture Programmable Data-
planes to address the limitation of IPv4 lookup support, lack of IPv6 support in ODP,
and understanding the performance capabilities. To this end, we have: (i) implemented
and evaluated the IPv4 and IPv6 LPM support in MACSAD, (ii) developed a new ODP
Helper library for the IPv6 lookup mechanism based on the current IPv4 solution, (iii)
carried performance and experimental evaluation of scalability, (iv) developed a P4 CLI-
based packet crafter to generate packet flows formatted as PCAP files, and (v) released

all artifacts as open source.

This dissertation describes the IPv4 LPM support implementation and a detailed
[Pv6 implementation including the functions and processes, including the Controller and
the P4 Code design. We compared the complexity of three different P4 use cases, i.e.,
L2-FWD, L3-FWD with IPv4 and IPv6, remarking the different sizes of headers, tables,
and lookup types that impact performance evaluation. We learned that the performance
is affected by the lookup type and the size of the key, which are key characteristics of the

use case pipeline complexity (e.g., number of tables, key size, table size).

We evaluated the performance of the LPM use cases using three different packet
I/O engines (DPDK, Netmap, Socket__mmap). We explored the scalability for different
workloads (packet traces, table entries) and configuration options (e.g., CPU cores), us-
ing NFPA to transmit the PCAPs created by BB-Gen. Comparing the performance of
the different packet 1/O drivers, we confirmed that Socket-mmap is slower as it is the
Linux default driver without any fastpath advantages from Netmap or DPDK. Netmap
performance is lower than DPDK on ODP system because in the case of the Netmap
packet the copy operation becomes costlier as in the case of the DPDK support, the ODP
implement a zero-copy feature. With our findings, we can understand that with the use of
the Netmap driver we have a sub-optimal CPU synchronization and CPU utilization, the
reason is that Netmap uses NIC interrupts and standard kernel synchronization mecha-
nisms to block on empty or full NIC queues. In conclusion, DPDK seems to have a better
performance, due to its packet-processing optimized design and the circumvention of the

kernel space.

Comparing the IPv6 results with IPv4, the performance in the case of IPv4 is
slightly superior for different packets sizes (i.e., 64 and 128 bytes). This conclusion follows
from the fact that the Key size in IPv6 is 128 bits increases the complexity of the LPM tree

and affects the performance. Broadly translating, our findings in the performance tests

Chapter 6. Conclusions and Future Work 85

indicate that the CPU cycles consumed by or ODP LPM implementation are less than
the DPDK implementation even in the case of IPv6, this is confirmed by the performance
results where MACSAD presents a better result.

These experiments add to a growing corpus of research showing that P4 and ODP
can work in conjunction to create a good base for a programmable dataplane device. P4
is gaining interest by the community, and it is in constant development and maintenance,

as well as ODP that continues emerging as a good set of APIs for the dataplane backend.

The BB-Gen packet generator tool allows creating the PCAP and table trace files
for the performance evaluation. BB-Gen can also create multiple sets of trace files with
different packet sizes and different flow distribution simultaneously along with the corre-
sponding table trace file for each PCAP and pipeline. BB-Gen effectively complements
other tools of the P4 developers gadgets, such as p4pktgen that validates a P4 program by
generating test input traffic and fills the tables, p4app that performs functional tests using
BMV?2 simple_switch in Mininet environments for P4 programs, and P4benchmark that

tests the target compilers generating different P4 applications varying the complexity.

We tested the applicability of BB-Gen in real projects i.e., MACSAD and T4P4S,
by creating the traces and PCAPs from a P4 file for different use cases with varying com-
plexities, suggesting that other developers could benefit from our tool in their evaluation
workflows, as well as the growing community striving for research reproducibility, e.g.,
by re-using traces, toolchains, and evaluation methodologies. With BB-Gen, NFPA and
“MACSAD & T4P4S” we demonstrated that they can work conjointly to illustrate the
datapath pipeline defined by a P4 code, create match+action table traces to control the
P4 tables in the DUT, and generate a suitable PCAP file used for performance evaluation

of different setups.

Altogether, this work accomplished a series of open source contributions: (1) the
[Pv6 lookup library developed will be suggested for adoption by ODP project, (2) BB-Gen,
(3) P4 pipelines for IPv4 and IPv6, and (4) various trace files for the NFPA repository.

Future Work

To conclude, we list some future tasks and open questions worth further investi-

gation.

Related to BB-Gen:

e Integration with P4Runtime ! to control the DUT, leveraging the possibility to
configure the P4 table entries by adding, updating, deleting, along with others.

L <https://p4.org/p4-runtime />

Chapter 6. Conclusions and Future Work 86

BB-Gen will allow to rely on Scapy’s extensibility features to create packets with ar-
bitrary sequence of headers that might not conform to standards, but an unorthodox

P4 program may require it.

Although Scapy is a powerful Python library to easily generate any type of packet,
we have experienced that generating hundreds of thousands of packets can take
several minutes, however since the performance evaluations are usually done offline
(i.e., before an actual deployment), the measurements do not require real-time traffic
generation. Therefore, we also take into consideration of Hexdump generation of
packets proven to be more effective? and contribute to materialize other open-source

projects into BB-gen.

Related to the LPM implementation:

A deep analysis in how the performance is affected by the variation of the prefix
length. In this work, we covered a brief overview of the impact of the prefix length
in the performance. This provides a good starting point for discussion and further
research, analyzing real distributions and how distribution can be optimized in a

forwarding device.

We defined the prefix tree levels following the ODP IPV4 specification. It will be
important that future research investigate if there is an optimal level distribution for

[Pv4 and IPv6, and how this distribution can affect the performance of the device.

With the evaluated performance properties, e.g., packet loss, latency, and CPU
cycles. we demonstrated that the ODP implementation has good performance com-
pared with other projects. Future research should further develop and confirm these

initial findings by using the information to optimize even more the library.

We tested MACSAD in an X86 environment; future research should evaluate in
different platforms as ARMvS, Tofino, this can open a new area with the inclusion

of more CPU cores and a dedicate P4 chipset.

To improve an optimize the LPM implementation, the analysis of the Cache-misses
and CPU cycles consumed by the process is an important part of the research. We
evaluated our implementation using Perf; future research should explore other tools
such as eBPF that can prepare user information in kernel context and transfer only

needed information to user space adding more resources and statistics maps.

2

<https://github.com/cslev/pcap__gen_ perftest>

87

Bibliography

BIONDI, P. Welcome to Scapy’s documentation! 2008. Available from Internet:
<http://scapy.readthedocs.io/en/latest/>. Cited 2 times on pages 18 and 35.

BOSSHART et al. P4: Programming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., ACM, New York, NY, USA, jul. 2014. ISSN 0146-4833. Cited
2 times on pages 17 and 23.

BOTTA, A.; DAINOTTI, A.; PESCAPE, A. A tool for the generation of realistic
network workload for emerging networking scenarios. Computer Networks, Elsevier,
v. 56, n. 15, p. 3531-3547, 2012. Cited on page 67.

BRADNER, S.; MCQUAID, J. Benchmarking Methodology for Network Interconnect
Devices. 1999. RFC 2544. Cited 4 times on pages 28, 68, 71, and 74.

CESEN, F. R.; PATRA, P. G. K.; ROTHENBERG, C. E. Bb-gen: A packet crafter for
data plane evaluation. In: SBRC. [S.1.], 2018. Cited on page 67.

CSIKOR, L.; SZALAY, M.; SONKOLY, B.; TOKA, L. Network Function Performance
Analyzer. 2015. <http://nfpa.tmit.bme.hu>. Cited 3 times on pages 28, 29, and 67.

CSIKOR, L.; SZALAY, M.; SONKOLY, B.; TOKA, L. Nfpa: Network function
performance analyzer. IEEE Conference on Network Function Virtualization and
Software Defined Networks Demo Track, 2015. Cited 4 times on pages 9, 28, 30, and 67.

DANG, H. T.; WANG, H.; JEPSEN, T.; BREBNER, G.; KIM, C.; REXFORD, J;
SOULE, R.; WEATHERSPOON, H. Whippersnapper: A p4 language benchmark
suite. In: Proceedings of the Symposium on SDN Research. New York, NY, USA:
ACM, 2017. (SOSR ’17), p. 95-101. ISBN 978-1-4503-4947-5. Available from Internet:
<http://doi.acm.org/10.1145/3050220.3050231>. Cited on page 36.

DEGERMARK, M.; BRODNIK, A.; CARLSSON, S.; PIN, S. Small forwarding tables
for fast routing lookups. ACM SIGCOMM Computer Communication Review, 1997.
Available from Internet: <http://dl.acm.org/citation.cfm?id=263133>. Cited on page
35.

EATHERTON GEORGE VARGHESE, Z. D. W. Tree bitmap : Hardware/software ip
lookups with incremental updates. ACM SIGCOMM Computer Communications Review,
April 2004. Available from Internet: <http://cseweb.ucsd.edu/~varghese/PAPERS/
ccr2004.pdf>. Cited on page 34.

EATHERTONK, W.; VARGHESE, G.; DITTIA, Z. Tree bitmap: hardware/software
ip lookups with incremental updates. ACM SIGCOMM Computer Communications
Review, 2004. Available from Internet: <http://cseweb.ucsd.edu/~varghese/PAPERS/
ccr2004.pdf>. Cited on page 35.

FERRAGINA, P.; LUCCIO, F.; MANZINI, G.; MUTHUKRISHNAN, S. Compressing
and indexing labeled trees, with applications. Journal of the ACM (JACM), November
2009. Available from Internet: <http://dl.acm.org/citation.cfm?id=1613680>. Cited on
page 33.

Bibliography 88

FIESSLER, A.; HAGER, S.; SCHEUERMANN, B. Flexible line speed network packet
classification using hybrid on-chip matching circuits. In: HPSR ’17: Proceedings of 2017
IEEE 18th International Conference on High Performance Switching and Routing. [S.l.:
s.n.], 2017. To appear. Cited on page 35.

GNUPLOT. Gnuplot. 1986. <http://www.gnuplot.info/>. Cited on page 29.

GUREVICH, V. P4 Tutorial. 2015. <https://p4.org/assets/
Nov-2015-P4-Bootcamp-P4-Tutorial.pdf>>. Available from Internet: <https:
//p4.org/assets/Nov-2015-P4-Bootcamp-P4-Tutorial.pdf>. Cited 3 times on pages 9,
22, and 23.

HANNA, M.; CHO, S.; MELHEM, R. A novel scalable ipv6 lookup scheme
using compressed pipelined tries. IFIP 10th international TC 6 conference
on Networking - Volume Part I, May 2011. Available from Internet: <http:
//dl.acm.org/citation.cfm?id=2008820>. Cited on page 34.

INTEL. Intel Threading Building Blocks. 2011. <http://threadingbuildingblocks.org/>.
Available from Internet: <http://threadingbuildingblocks.org/>. Cited on page 34.

INTEL. DPDK: Data Plane Development Kit. 2014. <http://dpdk.org>. Cited 2 times
on pages 28 and 29.

JUNIPER NETWORKS. How many Packets per Second per port are needed

to achieve Wire-Speed? 2015. Https://kb.juniper.net. Available from Internet:
<https://kb.juniper.net/InfoCenter/index?page=content&id=KB14737>. Cited on
page 29.

KNUTSSON, K. RWS Synthetic Pcap Generator. 2014. Https://github.com /karknu/rws.
Available from Internet: <https://github.com/karknu/rws>. Cited on page 35.

KREUTZ, D.; RAMOS, F. M. V.; VERISSIMO, P.; ROTHENBERG, C. E;
AZODOLMOLKY, S.; UHLIG, S. Software-Defined Networking: A Comprehensive
Survey. p. 1-61, 2014. Available from Internet: <http://arxiv.org/abs/1406.0440>.
Cited on page 17.

LAKI, S.; HORPACSI, D.; VoRo6S, P.; KITLEL R.; LESK6, D.; TEJFEL, M. High speed
packet forwarding compiled from protocol independent data plane specifications. In:
ACM SIGCOMM’16 Posters and Demos. [S.l.: s.n.], 2016. Cited on page 35.

LETTIERI, G.; MAFFIONE, V.; RIZZO, L. A survey of fast packet i/o technologies
for network function virtualization. In: KUNKEL, J. M.; YOKOTA, R.; TAUFER,
M.; SHALF, J. (Ed.). High Performance Computing. Cham: Springer International
Publishing, 2017. p. 579-590. ISBN 978-3-319-67630-2. Cited on page 76.

MAHALINGAM, M.; DUTT, D.; DUDA, K.; AGARWAL, P.; KREEGER, L.;
SRIDHAR, T.; BURSELL, M.; WRIGHT, C. Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3
Networks. [S.1.], 2014. <https://tools.ietf.org/html/rfc7348>. Available from Internet:
<https://tools.ietf.org/html/rfc7348>. Cited on page 29.

MCCANNE, S.; JACOBSON, V. The bsd packet filter: A new architecture for user-level
packet capture. In: USENIX winter. [S.1.: s.n.], 1993. v. 46. Cited on page 80.

Bibliography 89

MCKEOWN, N. Programming the Forwarding Plane. 2016.
Https://forum.stanford.edu/events/2016 /slides/plenary/Nick.pdf. Available from
Internet: <https://forum.stanford.edu/events/2016/slides/plenary/Nick.pdf>. Cited 3
times on pages 9, 22, and 25.

MELO, A. C. D. The new linux’perf’tools. In: Slides from Linux Kongress. [S.l.: s.n.],
2010. v. 18. Cited on page 80.

NIKOLENKO, S. I.; KOGANY, K.; RETVARIZ, G.; BERCZI-KOVACS, E. R.;
SHALIMOV, A. How to represent ipv6 forwarding tables on ipv4 or mpls dataplanes.
IEEE Computer Communications Workshops (INFOCOM WKSHPS), April 2016.
Available from Internet: <http://ieeexplore.ieee.org/document/7562132/>. Cited on
page 34.

NOTZLI, A.; KHAN, J.; FINGERHUT, A.; BARRETT, C.; ATHANAS, P. P4pktgen:
Automated test case generation for p4 programs. In: ACM. Proceedings of the Symposium
on SDN Research. [S.1.], 2018. p. 5. Cited on page 36.

OLSSON;, R. Pktgen the linux packet generator. In: Proceedings of the Linuz Symposium,
Ottawa, Canada. [S.].: s.n.], 2005. v. 2, p. 11-24. Cited on page 67.

OPENDATAPLANE. ODP Helper library. 2013. <https://github.com/Linaro/odp/
tree/master /helper>. Available from Internet: <https://github.com/Linaro/odp/tree/
master /helper>. Cited on page 27.

OPENDATAPLANE. OpenDataPlane DPDK. 2013. Https://github.com/Linaro/odp-
dpdk. Available from Internet: <https://github.com/Linaro/odp-dpdk>. Cited on page
27.

OPENDATAPLANE. OpenDataPlane.org. 2013. <https://www.opendataplane.org>.
Cited 3 times on pages 9, 17, and 27.

OSTINATO. Ostinato. 2010. Https://ostinato.org. Available from Internet: <https:
//ostinato.org>. Cited on page 35.

OVS. Open vSwitch. 2009. <http://openvswitch.org/>. Available from Internet:
<http://openvswitch.org/>. Cited on page 33.

P4.ORG. P/app. 2013. Https://github.com/p4lang/pdapp. Available from Internet:
<https://github.com/p4lang/p4app>. Cited on page 36.

PATRA, P. G.; ROTHENBERG, C. E.; PONGRACZ, G. MACSAD: Multi-Architecture
Compiler System for Abstract Dataplanes (Aka Partnering P4 with ODP). In: ACM
SIGCOMM’16 Demo and Poster Session. [S.l.: s.n.], 2016. ISBN 978-1-4503-4193-6.
Cited 4 times on pages 9, 17, 18, and 31.

PATRA, P. G.; ROTHENBERG, C. E.; PONGRACZ, G. Macsad: High performance
dataplane applications on the move. In: IEEE HPSR. [S.l.: s.n.], 2017. p. 1-6. Cited 2
times on pages 17 and 18.

PATRA, P. G. K.; CESEN, F. E. R.; MEJIA, J. S.; FEFERMAN, D. L.; CSIKOR,
L.; ROTHENBERG, C. E.; PONGRACZ, G. Toward a sweet spot of data plane
programmability, portability, and performance: On the scalability of multi-architecture

Bibliography 90

p4 pipelines. IEEE Journal on Selected Areas in Communications, v. 36, n. 12, p.
2603-2611, Dec 2018. ISSN 0733-8716. Cited on page 18.

PONG, F.; TZENG, N. Concise lookup tables for ipv4 and ipv6 longest prefix matching
in scalable routers. IEEE/ACM Transactions on Networking, v. 20, n. 3, p. 729-741,
June 2012. ISSN 1063-6692. Cited 2 times on pages 18 and 34.

RAVIKUMAR, V.; MAHAPATRA, R. Tcam architecture for ip lookup using prefix
properties. IEEE, August 2004. Available from Internet: <http://ieeexplore.iece.org/
abstract/document/1289292/>. Cited on page 33.

RIPE NCC. Visibility of Prefix Lengths in IPv4 and IPv6. 2010.
Https://labs.ripe.net. Available from Internet: <https://labs.ripe.net/Members/
dbayer /visibility-of-prefix-lengths>. Cited on page 38.

RIZZO, L. netmap: A novel framework for fast packet i/o. In: USENIX ATC 12. [S.1.:
s.n.|, 2012. ISBN 978-931971-93-5. Cited on page 28.

RODRIGUEZ, F.; PATRA, P. G. K.; CSIKOR, L.; ROTHENBERG, C.; LAKI, P. V. S;;
PONGRACZ, G. Bb-gen: A packet crafter for p4 target evaluation. In: Proceedings of the
ACM SIGCOMM 2018 Conference on Posters and Demos. New York, NY, USA: ACM,
2018. (SIGCOMM ’18), p. 111-113. ISBN 978-1-4503-5915-3. Available from Internet:
<http://doi.acm.org/10.1145/3234200.3234229>. Cited on page 67.

ROSEN, E.; VISWANATHAN, A.; CALLON, R. Multiprotocol Label Switching
Architecture. [S.1.], 2001. <https://tools.ietf.org/html/rfc3031>. Available from Internet:
<https://tools.ietf.org/html/rfc3031>. Cited on page 29.

RéTVAERI, G.; TAPOLCAI J.; KORG6SI, A.; MAJDAaN, A.; HESZBERGER, Z.
Compressing ip forwarding tables: Towards entropy bounds and beyond. ACM
SIGCOMM Computer Communication Review, August 2013. Available from Internet:
<http://conferences.sigcomm.org/sigcomm/2013 /papers/sigcomm /pl11.pdf>. Cited 3
times on pages 18, 33, and 34.

SHAHHAZ et al. PISCES: A Programmable, Protocol-Independent Software Switch. In:
ACM SIGCOMM. [S.l: s.n.], 2016. ISBN 978-1-4503-4193-6. Cited 3 times on pages 18,
25, and 33.

SKLOWER, K. A tree-based packet routing table for Berkeley UNIX. [S.1.], 2001.
Available from Internet: <https://people.eecs.berkeley.edu/~sklower/routing.pdf>.
Cited on page 33.

SRINIVASAN, V.; VARGHESE, G. Faster ip lookups using controlled prefix expansion.
ACM SIGMETRICS Performance Evaluation Review, 1999. Available from Internet:
<http://dl.acm.org/citation.cfm?id=277863>. Cited on page 34.

TCPDUMP. Tepdump. 2010. Https://www.tcpdump.org. Available from Internet:
<https://www.tcpdump.org>. Cited on page 67.

TOBOLA, J.; KOrENEK, J. Effective hash-based ipv6 longest prefix match. IEEE 1/th
International Symposium Design and Diagnostics of Electronic Circuits and Systems,
May 2011. Available from Internet: <http://ieeexplore.ieee.org/document/5783105/>.
Cited on page 34.

Bibliography 91

TURULL, D.; SJ6DIN, P.; OLSSON, R. Pktgen: Measuring performance on high speed
networks. Computer Communications, 2016. ISSN 0140-3664. Cited on page 29.

WANG, G.; TZENG, N. feng. Tcam-based forwarding engine with minimum
independent prefix set (mips) for fast updating. Communications, 2006. ICC
06. IEEE International Conference on, December 2006. Available from Internet:
<http:/ /ieeexplore.iece.org/document /4024102/>. Cited on page 35.

WATERLOO, U. of. Binary trees. 2018. <https://www.student.cs.uwaterloo.
ca/~cs115/coursenotesl/08-bintrees-post.pdf>. Available from Internet: <https:
//www.student.cs.uwaterloo.ca/~cs115/coursenotesl /08-bintrees-post.pdf>. Cited 2
times on pages 9 and 39.

WILES, K. pktgen-dpdk. 2010. <http://dpdk.org/browse/apps/pktgen-dpdk/refs/>.
Cited on page 29.

ZHOU, D.; FAN, B.; LIM, H.; KAMINSKY, M.; ANDERSEN, D. G. Scalable, high
performance ethernet forwarding with cuckooswitch. Proceedings of the ninth ACM
conference on Emerging networking experiments and technologies, December 2013.
Available from Internet: <http://dl.acm.org/citation.cfm?id=2535379>. Cited on page
33.

Annex

93

ANNEX A - Publications

F. R. Cesen, G. P. Patra, and C. E. Rothenberg. BB-Gen: A Packet Crafter for
Data Plane Evaluation. In: XXX VI Simpdsio Brasileiros de Redes de Computadores
SBRC 2018 Salao de Ferramentas, Campos do Jordao, SP, Brazil, May 2018.

F. R. Cesen, G. P. Patra, C. E. Rothenberg, and G. Pongracz. BB-Gen: A Packet
Crafter for Performance Evaluation of P4 Data Planes. In: 5th P/ Workshop, Stan-
ford University, CA, USA, June 2018.

G. P. patra, F. R. Cesen, J. S. Mejia, D. Feferman, C. E. Rothenberg, and G.
Pongracz. MACSAD: An Exemplar Realization of Multi-Architecture P4 Pipelines.
In: 5th P4 Workshop, Stanford University, CA, USA, June 2018.

F. R. Cesen, G. P. Patra, C. E. Rothenberg, and G. Pongracz. Design, Implementa-
tion and Evaluation of IPv4/IPv6 Longest Prefix Match support in P4 Dataplanes.

In: 17° Workshop em Desempenho de Sistemas Computacionais e de Comunicacao
WPerformance 2018, Natal, RN, Brazil, July 2018.

F. R. Cesen, G. P. Patra, L. Csikor, C. E. Rothenberg, P. Voros, S. Laki and
G. Pongracz. BB-Gen: A Packet Crafter for P4 Target Evaluation. In: ACM Spe-
cial Interest Group on Data Communication SIGCOMM 2018 Posters, Demos, and
Student Research Competition, Budapest, Hungary, August 2018.

G. P. Patra, F. R. Cesen, J. S. Mejia, D. Feferman, L. Csikor, C. E. Rothenberg,
and G. Pongracz. Towards a Sweet Spot of Dataplane Programmability, Portabil-
ity and Performance: On the Scalability of Multi-Architecture P4 Pipelines. Under
Submission in: IEEE COMSOC JSAC’18 Special Issue on Scalability Issues and
Solutions for Software Defined Networks.

F. E. R. Cesen, and C. R. E. Rothenberg. Design, Implementation and Evaluation
of IPv4/IPv6 Longest Prefix Match support in Multi-Architecture Programmable
Dataplanes. In: Décimo Primeiro Encontro dos Alunos e Docentes do Departa-
mento de Engenharia de Computacdo e Automacao Industrial, Campinas, SP, Brazil,
November 2018.

ANNEX B - ODP IPv6 Code

B.1 ODP IPv6 lookup code

#include "config.h"

#include <string.h>

#include <stdint.h>

#include <errno.h>

#include <stdio.h>

#include <odp/helper/odph_iplookuptablev6 .h>
#include "odph_ list_ internal.h"

#include "odph_debug.h"

#include <odp_ api.h>

#include <odp/helper/ip.h>

typedef _ int128 _ uintl28_ t;
typedef unsigned _ _ intl128 uintl28_ t;

/*x @magic word, write to the first byte of the memory block

*

*/

to indicate this block is used by a ip lookup table

#define ODPH IP LOOKUP TABLE MAGIC WORD O0xCFCFFCFC

/* The length(bit) of the IPv6 address x/
#define IP_LENGTH 128

/* The number of L1 entries x/
#define ENTRY NUM L1 (1 << 24)
/* The size of one L2\L3 subtree x/
#define ENTRY NUM SUBIREE (1 << 12)

#define WHICH CHILD(ip, cidr) ((ip >> (IP_LENGTH — cidr)) & 0x00000001)

/#% @internal entry struct

*

*

*

Structure store an entry of the ip prefix table.

Because of the leaf pushing, each entry of the table must have
either a child entry, or a nexthop info.

If child = 0 and index != ODP_BUFFER INVALID, this entry has
a nexthop info, index indicates the buffer that stores the
nexthop value, and ptr points to the address of the buffer.
If child = 1, this entry has a subtree, index indicates

the buffer that stores the subtree, and ptr points to the
address of the buffer.

94

69
70

ANNEX B. ODP IPv6 Code

95

typedef struct {
union {
odp_ buffer_t nexthop;
void xptr;
};
union {
_uintl128_t u8;
struct {
#if ODP_BYTE ORDER — ODP_BIG ENDIAN
uint8 _t child : 1;

uint8 _t cidr : 7;
#else

uint8 t cidr 7

uint8_t child 1;

#endif
b
¥

} prefix_entry_t;

#define ENTRY SIZE (sizeof (prefix_ entry t) + sizeof (odp_buffer t))
#define ENTRY BUFF ARR(x) ((odp_buffer t =) (void x)((char *)x \

+ sizeof (prefix_entry_t) x ENTRY NUM SUBTREE))

/*x @internal trie node struct
* In this IP lookup algorithm , we use a
x binary tire to detect the overlap prefix.
*/
typedef struct trie_node {
/* tree structure x/
struct trie_node xparent;
struct trie_node xleft ;
struct trie_node xright;
/* IP prefix length x/
uint8_t cidr;
/* Nexthop buffer index x/
odp_ buffer_t nexthop;
/* Buffer that stores this node x/
odp_buffer_t buffer;
} trie_node_t;

/*% Number of L2\L3 entries(subtrees) per cache cube.

#define CACHE NUM SUBTREE (1 << 13)
/*% Number of trie nodes per cache cube. x/
#define CACHE_NUM_TRIE (1 << 20)

/*x Qtypedef cache type t
x Cache node type

*/

89
90
91

101
102
103
104
105
106
107
108
109
110

112
113
114
115

117
118
119
120

122
123
124
125
126
127
128
129
130
131
132
133
134

ANNEX B. ODP IPv6 Code

96

*/

typedef enum {
CACHE_TYPE SUBTREE = 0,
CACHE_TYPE TRIE

} cache_type_t;

/xx A IP lookup table structure. x/
typedef struct {
/*x%< for check =/
uint32_t magicword;
/#% Name of the hash. x/
char name [ODPH_TABLE NAME IEN];
/xx Total L1 entries. x/
prefix_entry_t xlle;
/*% Root node of the binary trie x/
trie_node_t xtrie;
/*x Length of value. x/
uint32_t nexthop_len;
/*x Queues of free slots (caches)
* There are two queues:
x — free_slots [CACHE TYPE SUBTREE| is used for L2 and

* L3 entries (subtrees). Each entry stores an 8—bit
* subtree.

x — free_ slots [CACHE TYPE TRIE] is used for the binary
* trie. Each entry contains a trie node.

*/
odp__queue_t free_slots [2];
/*x The number of pool used by each queue. x/
uint32_t cache_count [2];
} odph_iplookup_table impl ODP_ALIGNED CACHE;

/***
k3K 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok Cache Hmnagenwnt K K K K K K K K K K K K K Kk Kk K Kk ok ok ok

***/

/*x Destroy all caches x/
static void cache_destroy (odph_iplookup_table_impl ximpl){
odp__queue_t queue;
odp_event_t ev;
uint32_t i = 0, count = 0;
char pool name [ODPH _TABLE NAME IEN + 8];

/* free all buffers in the queue x/
for (; i < 2; i++) {

queue = impl—>free slots[i];

if (queue = ODP_QUEUE INVALID)

continue ;

ANNEX B. ODP IPv6 Code 97

while ((ev = odp_queue_deq(queue))
!= ODP_EVENT INVALID) {
odp_buffer_ free(odp_buffer from_ event(ev));

}

odp__ queue_ destroy (queue) ;

/* destroy all cache pools x/
for (i =0; i < 2; i++) {
for (count = 0; count < impl—>cache_count[i]; count++) {
sprintf (
pool _name, "%s %d %d",
impl—>name, i, count);

odp__pool_destroy (odp_pool_lookup (pool_name)) ;

/*x According to the type of cahce, set the value of

x a buffer to the initial value.

/

static void cache_init_buffer (odp_buffer_t buffer , cache_ type_ t type,
uint32_t size){
int i = 0;

void xaddr = odp_ buffer addr(buffer);

memset (addr, 0, size);
if (type — CACHE TYPE SUBTREE) {
prefix_entry t xentry = (prefix_entry t x)addr;

for (i = 0; i < ENTRY_NUM_SUBTREE; i++, entry++)
entry—>nexthop = ODP_BUFFER INVALID;
} else if (type = CACHE_TYPE TRIE) {

trie_ node_t xnode = (trie_node_ t x*)addr;

node—>buffer = buffer;
node—>nexthop = ODP_BUFFER INVALID;

/*x Create a new buffer pool, and insert its buffer into the queue. x/
static int cache_alloc_new_pool(odph_iplookup_table_impl *xtbl, cache_type_ t
type){
odp_pool_t pool;
odp_ pool param_t param;

odp__queue_t queue = tbl—>free_slots[type];

ANNEX B. ODP IPv6 Code

180

181 odp_ buffer_t buffer;

182 char pool_name [ODPH _TABLE NAME IEN + 8];
183 uint32_t size = 0, num = 0;

184

185 /* Create new pool (new free buffers). x/
186 odp_ pool param_init(¶m) ;

187 param . type = ODP_POOL_BUFFER;

188 param . buf.align = ODP_CACHE LINE SIZE;
189 if (type = CACHE_TYPE SUBTREE) {

190 num = CACHE NUM SUBTREE;

191 size = ENTRY_SIZE x ENTRY_ NUM SUBTREE;
192 } else if (type =— CACHE_TYPE TRIE) {

193 num = CACHE NUM TRIE;

194 size = sizeof (trie_node_t);

195 } else {

196 ODPH_DBG("wrong cache_type_t.\n");

197 return —1;

198 }

199 param. buf.size = size;

200 param . buf.num = num;

201

202 sprintf (

203 pool_name, "%s_ %d %d",

204 tbl—>name, type, tbl—>cache_count[type]);
205 pool = odp_pool_create(pool_name, ¶m) ;
206 if (pool = ODP_POOL_INVALID) {

207 ODPH_DBG("failed to create a new pool.\n");
208 return —1;

209 }

210

211 /* insert new free buffers into queue x/
212 while ((buffer = odp_buffer_alloc(pool))
213 != ODP_BUFFER_INVALID) {

214 cache_init_buffer (buffer , type, size);
215 odp__queue_enq(queue, odp_buffer to_event(buffer));
216 }

217

218 tbl—>cache_ count [type]++;

219 return 0;

220}

221

222 /%% Get a new buffer from a cache list. If there is no

223 x available buffer, allocate a new pool.

224 */

225 static odp_buffer t cache get_ buffer (odph_iplookup_ table impl xtbl,
cache_type_ t type){

ANNEX B. ODP IPv6 Code 99

NN

odp_buffer_t buffer = ODP_BUFFER INVALID;
odp__queue_t queue = tbl—>free_slots[type];

/* get free buffer from queue x/
buffer = odp_ buffer_from_event (
odp__queue__deq(queue));

/* If there is no free buffer available, allocate new pool x/
if (buffer = ODP_BUFFER INVALID) {

cache_alloc_new_pool(tbl, type);

buffer = odp_buffer_from_event (odp_queue_deq(queue));

return buffer;

[3 ok ok sk sk ok kot ok KRRk sk ok sk ok ok KKK KRR R sk ok sk sk KKK K KRR R Sk ok sk ok KKK KR Rk Sk ok sk oK KK K K
sk 3k sk ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok Binary trie ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok

***/

/% Initialize the root node of the trie x/
static int trie_init (odph_iplookup_table_impl *tbl){
trie_ node_t *root = NULL;
odp_ buffer t buffer = cache_ get_ buffer(tbl, CACHE TYPE TRIE) ;

if (buffer != ODP_BUFFER INVALID) {
root = (trie_node_t x)odp_buffer_addr(buffer);
root—>cidr = 0;
tbl—>trie = root;

return 0;

return —1;

/* Destroy the whole trie (recursively) x/
static void trie_destroy (odph_iplookup_table impl *tbl, trie_node_t =xtrie){
if (trie—>left != NULL)
trie__destroy (tbl, trie—>left);
if (trie—>right != NULL)
trie_destroy (tbl, trie—>right);

/* destroy this node x/

odp__queue__enq (
tbl—free_slots [CACHE_TYPE TRIE],
odp_buffer to_event(trie—>buffer));

303
304

308
309
310
311
312

314

ANNEX B. ODP IPv6 Code

100

/* Insert a new prefix node into the trie

x If the node is already existed, update its nexthop info ,

* Return 0 and set nexthop pointer to INVALID.

x If the node is not exitsed, create this target node and

* all nodes along the path from root to the target node.
* Then return 0 and set nexthop pointer points to the
* new buffer.

* Return —1 for error.

*/

static int trieiinsertinode(
odph_iplookup_ table_impl *tbl, trie_node_t x*root,
_uintl28_t ip, uint8_t cidr, odp_buffer t nexthop)

uint8_t level = 0, child;
odp__buffer_t buf;

trie_ node_t *node = root, *xprev = root;

/* create/update all nodes along the path
* from root to the new node. %/

for (level = 1; level <= cidr; level++) {
child = WHICH_CHILD(ip, level);

node = child = 0 ? prev—>left : prev—>right;
/* If the child node doesn’t exit, create it. */
if (node = NULL) {

buf = cache_get_buffer (tbl, CACHE TYPE TRIE);

if (buf = ODP_BUFFER_INVALID)

return —1;

node = (trie_node_t x)odp_buffer_addr(buf);
node—>cidr = level;

node—>parent = prev;

if (child = 0)
prev—>left = node;
else
prev—>right = node;
}

prev = node;

/#* The final one is the target. =/
node—>nexthop = nexthop;

return 0;

334

336
337
338
339
340
341

ANNEX B. ODP IPv6 Code

101

/* Delete a node */

static int trie_delete_node(
odph__iplookup_ table_ impl xtbl,
trie_ node_t *root, _ uintl28 t ip, uint8_ t cidr)

if (root = NULL)

return —1;

/* The default prefix (root node) cannot be deleted.

if (cidr = 0)

return —1;

trie_ node_t *node = root, xprev = NULL;
uint8_t level = 1, child = 0;
odp__buffer_t tmp;

/* Find the target node. x/
for (level = 1; level <= cidr; level++) {
child = WHICH_CHILD(ip , level);
node = (child = 0) ? node—>left : node—>right;
if (node = NULL) {
ODPH_DBG("Trie node is not existed\n');

return —1;

node—>nexthop = ODP_BUFFER, INVALID;

/* Delete all redundant nodes along the path. x/
for (level = cidr; level > 0; level——) {
if (
node—>left != NULL || node—>right != NULL ||
node—>nexthop != ODP_BUFFER INVALID)
break ;

child = WHICH_CHILD(ip, level);

prev = node—>parent ;

/* free trie node x/
tmp = node—>buffer;
cache_init_buffer (
tmp, CACHE TYPE TRIE, sizeof (trie _node t));
odp__queue__enq (
tbl—free_slots [CACHE_TYPE_ TRIE],
odp__buffer_to_event (tmp)) ;

if (child = 0)

*/

413

ANNEX B. ODP IPv6 Code 102

prev—>left = NULL;

else
prev—>right = NULL;
node = prev;

}

return 0;

/% Detect the longest overlapping prefix. x/
static int trie_detect__overlap (
trie_node_t xtrie, _uintl28 t ip, uint8_ t cidr,
uint8_t leaf push, uint8_ t xover_ cidr,
odp_ buffer_t xover_nexthop)

uint8_t child = 0;
uint32_t level , limit = cidr > leaf push 7 leaf push + 1 : cidr;

trie_node_t *node = trie, xlongest = trie;

for (level = 1; level < limit; level++) {
child = WHICH CHILD(ip, level);

node = (child = 0) ? node—>left : node—>right;
if (node—>nexthop != ODP_BUFFER_INVALID)
longest = node;
}
xover_ cidr = longest—>cidr;
xover_nexthop = longest —>nexthop;

return 0;

[3k kKK KKK oK oK oK oK oK oK ok K K R S R R R R R K K KKK KK KK oK oK oK oK oK oK K SR R R R K K K K K K K K ok
sk ok sk ok sk ok ok oK K ok K oKk ok IP prefix lookup table sk ok koK sk ok sk sk K sk Kk ok koK ok

>$<>)<*>i<**>l<***>i<**>l<*>(<>i<*>$<>k*>(<>i<>k>l<>k**>i<>k>l<>l<>)<>(<>i<***********************>i</

odph_table_t odph_iplookupv6_table lookup(const char xname) {
odph__iplookup_table_ impl xtbl = NULL;
odp_shm_t shm;

if (name =— NULL || strlen (name) >= ODPH_TABLE NAME ILEN)
return NULL;

shm = odp_shm_ lookup (name) ;
if (shm != ODP_SHM INVALID)
tbl = (odph_iplookup_table impl #)odp_shm_addr(shm) ;

if (
tbl 1= NULL &&

114
415
416
417
418
419
420
421

423
424
125
426
427

ANNEX B. ODP IPv6 Code

103

tbl—>magicword = ODPH_IP_LOOKUP_TABLE MAGIC_ WORD &&
stremp (tbl—>name, name) =— 0)
return (odph_table t)tbl;

return NULL;

odph_table_t odph_iplookupv6_table create(const char sname,
uint32_t pl ODP_UNUSED,
uint32_t p2 ODP_UNUSED,

uint32_t value_size)

odph_iplookup_ table impl *xtbl;

odp_shm_t shm_ tbl;

odp__queue_t queue;

odp__ queue_param_t gparam;

unsigned i;

uint32_t impl_size, 11_size;

char queue_name [ODPH TABLE NAME IEN + 2];

/* Check for valid parameters x/
if (strlen(name) — 0) {
ODPH_DBG("invalid parameters\n");
return NULL;

/* Guarantee there’s no existing x/

tbl = (void *)odph_iplookupv6_table_lookup (name);

if (tbl != NULL) {
ODPH DBG("IP prefix table %s already exists\n", name);
return NULL;

/* Calculate the sizes of different parts of IP prefix table x/
impl_size = sizeof (odph_iplookup_table impl);
11 _size = ENTRY SIZE s ENTRY NUM LI;

shm_tbl = odp_shm_reserve(
name, impl_size 4+ 11_size,
ODP_CACHE LINE SIZE, ODP_SHM SW_ONLY) ;

if (shm_tbl = ODP_SHM INVALID) {
ODPH_DBG(
"shm allocation failed for odph_iplookup_table impl %s\n",
name) ;
return NULL;

ANNEX B. ODP IPv6 Code

104

tbl = (odph_iplookup_table impl x)odp_shm addr(shm_tbl);

memset (tbl, 0, impl size + 11_size);

/* header of this mem block is the table impl struct,
* then the 11 entries array.
*/
tbl—>11le = (prefix_entry_t x)(void *)((char *)tbl 4+ impl size);
for (i = 0; i < ENIRY NUM L1; i++)
tbl—>11le[i].nexthop = ODP_ BUFFER INVALID;

/* Setup table context. x/

snprintf(tbl—>name, sizeof (tbl—>name), "%s", name);
tbl—>magicword = ODPH_IP LOOKUP_ TABLE MAGIC WORD;
tbl—>nexthop_len = value_size;

/* Initialize cache x/
for (i = 0; 1 < 2; i++) {
tbl—>cache_count[i] = 0;

odp__queue_param_ init(&qparam) ;
gparam . type = ODP_QUEUE_TYPE PLAIN;
sprintf (queue_name, "%s %d', name, i);
queue = odp_queue_ create(queue_ name, &qparam) ;
if (queue = ODP_QUEUE INVALID) {
ODPH DBG(' failed to create queue');
cache__destroy (tbl);
return NULL;
}
tbl—>free_ slots[i] = queue;

cache_alloc_new_pool(tbl, i);

/* Initialize tire x/

if (trie_init (tbl) < 0) {
odp_shm_ free(shm_ tbl);
return NULL;

return (odph_table t)tbl;

int odph_iplookupv6_table_destroy(odph_table_t tbl) {
int i, j;
odph_iplookup_table_impl *ximpl = NULL;
prefix _entry_ t sxsubtree = NULL;
odp_ buffer_t xbuffl = NULL, xbuff2 = NULL;

ANNEX B. ODP IPv6 Code

105

if (tbl = NULL)

return —1;
impl = (odph_iplookup_table_impl x)(void x)tbl;

/* check magic word */
if (impl-—>magicword != ODPH IP LOOKUP_ TABLE MAGIC WORD) {
ODPH_DBG("wrong magicword for IP prefix table\n");

return —1;

/* destroy trie x*/

trie_destroy (impl, impl-—>trie);

/% free all L2 and L3 entries x/

buffl = ENTRY_BUFF_ARR(impl—>lle);

for (i = 0; i < ENIRY_NUM _Ll; i++) {
if ((impl—>lle[i]).child = 0)

continue ;

subtree = (prefix entry t =)impl-—>lle[i].ptr;
buff2 = ENTRY BUFF ARR(subtree);
/* destroy all 13 subtrees of this 12 subtree x/
for (j = 0; j < ENTRY NUM SUBTREE; j++) {
if (subtree[j].child = 0)
continue;
odp__queue__enq (
impl—>free__slots [CACHE TYPE TRIE],
odp__buffer_to_event(buff2[j]));
}
/* destroy this 12 subtree x/
odp_ queue__enq (
impl—free__slots [CACHE _TYPE TRIE] ,
odp_buffer to_event(buffl[i]));

/* destroy all cache x/
cache__destroy (impl) ;

/* free impl x/
odp_shm_ free(odp_shm_lookup (impl—>name)) ;

return 0;

/* Insert the prefix into level x

*+ Return:

ANNEX B. ODP IPv6 Code 106

* —1 error
* 0 the table is unmodified
* 1 the table is modified

*/

static int prefixiinsertiintoilx(
odph_iplookup_ table_impl *xtbl, prefix_ entry t =xentry,
uint8 t cidr, odp_buffer t nexthop, uint8 t level)

uint8 _t ret = 0;
uint32 t i = 0, limit = (1 << (level — cidr));
prefix_entry_t xe = entry, xne = NULL;

for (i = 0; i < limit; i++, e++) {
if (e—>child = 1) {
if (e—>cidr > cidr)

continue;

e—>cidr = cidr;
/* push to next level x/
ne = (prefix_ entry t *)e—>ptr;
ret = prefixiinsertiintoilx(
tbl, ne, cidr, nexthop, cidr + 8);
} else {
if (e—=>cidr > cidr)

continue ;

e—>child = 0;
e—>cidr = cidr;
e—>nexthop = nexthop;

ret = 1;

}

return ret;

static int prefix_insert_iter(
odph_iplookup_table_impl *tbl, prefix_ entry t xentry,
odp_buffer_t xbuff, _uintl28 t ip, uint8_t cidr,
odp_ buffer_t nexthop, uint8_t level, uint8_t depth)

uint8_t state = 0;
prefix entry t =xne = NULL;
odp_buffer_t xnbuff = NULL;

/* If child subtree is existed, get it. x/
if (entry—>child) {
//printf ("child existed, get it. \n");

ANNEX B. ODP IPv6 Code

107

ne = (prefix_entry_t *)entry—>ptr;
nbuff = ENTRY BUFF_ARR(ne);
} else {
/* If the child is not existed , create a new subtree. x/

odp__buffer_t buf, push = entry—nexthop;

buf = cache_get_buffer(tbl, CACHE TYPE SUBTREE) ;

if (buf = ODP_BUFFER_INVALID) {
ODPH DBG(" failed to get subtree buffer from cache.\n");
return —1;

}

ne = (prefix_entry_t =*)odp_buffer_addr(buf);

nbuff = ENTRY BUFF_ARR(ne);

entry—>child = 1;
entry—>ptr = ne;
x*buff = buf;
/* If this entry contains a nexthop and a small cidr,
% push it to the next level.
*/
if (entry—>cidr > 0)
(void)prefix_insert_into_lx(tbl, ne, entry—>cidr,
push, entry—>cidr + 8);
}
ne += (ip >> 120);
nbuff += (ip >> 120);
if (cidr <= 8) {

state = prefix_insert_into_Ix(
tbl, ne, cidr + depth % 8, nexthop, level);
} else {
state = prefix_insert_ iter(

tbl, ne, nbuff, ip << 8, cidr — 8§,
nexthop, level + 8, depth + 1);

return state;

int odph_iplookupv6_table_put_value(odph_table_t tbl, void xkey, void x
value) {

odph__iplookup_table_impl *ximpl = (void x)tbl;
odph_iplookupv6_prefix t xprefix = (odph_iplookupv6_prefix t =)key;
prefix entry_t x1le = NULL;
odp_ buffer t nexthop;
int ret = 0;
uintl128 t lkp ip = 0;

ANNEX B. ODP IPv6 Code 108

648 if ((tbl = NULL) || (key == NULL) || (value == NULL))

649 return —1;

650 nexthop = *((odp_buffer_t x)value);

651

652 if (prefix—cidr = 0)

653 return —1;

654

655 ret = odph_ipv6_addr_parse(&lkp ip, "ffff: ff0f: 666 £66F: 666 £66F: £££F
free");

656 if (ret < 0) {

657 printf("Failed to get IPv6 addr from str\n");

658 return —1;

659 }

660

661 prefix—ip = prefix—>ip & (lkp_ip << (IP_LENGTH — prefix—>cidr));

662 ret = trie_insert_mnode(

663 impl, impl-—>trie ,

664 prefix —ip, prefix—>cidr, nexthop);

665

666 if (ret < 0) {

667 ODPH DBG(" failed to insert into trie\n");

668 return —1;

669 }

670

671 lle = &impl—>lle[prefix—>ip >> 112];

672 odp_ buffer_t sbuff = ENTRY BUFF ARR(impl—>lle) 4+ (prefix—ip >> 112);

673

674 if (prefix—cidr <= 16) {

675 ret = prefix_ insert into_ Ix(

676 impl, lle, prefix—>cidr, nexthop, 16);

677 } else {

678 ret = prefix_insert_iter(

679 impl, 1le, buff,

630 ((prefix—ip) << 112), prefix—>cidr — 16,

681 nexthop, 24, 2);

682 }

683 return ret;

686 int odph_iplookupv6_table get value(odph_ table t tbl, void xkey,

687 void xbuffer ODP_UNUSED,

688 uint32_t buffer_ size ODP_UNUSED)

689 {

690 odph__iplookup_table_impl *ximpl = (void *)tbl;
691 _uintl28_t ip;

692 prefix_entry_t xentry;

693 odp_ buffer_t xbuff = (odp_buffer t *)buffer;

ANNEX B. ODP IPv6 Code

if ((tbl = NULL) || (key = NULL) || (buffer = NULL))

return —EINVAL;

ip = *((_uintl28 t x*)key);

entry = &impl—>1le[ip >> 112];

if (entry = NULL) {
ODPH_DBG("failed to get L1 entry.\n");
return —1;

}

ip <<= 112;

while (entry—>child) {
entry = (prefix_entry t *)entry—>ptr;
entry += ip >> 24;
ip <<= 8;

}

if (entry—>nexthop — ODP_BUFFER_INVALID) {
/* ONLY match the default prefix =/
printf("only match the default prefix\n");
xbuff = ODP_BUFFER INVALID;

} oelse {

*buff = entry—>nexthop;

return 0;

static int prefix_delete_ 1x(
odph_iplookup_ table_impl *xtbl, prefix_ entry t =xlle,
odp__buffer_t xbuff, uint8_ t cidr, uint8_t over_ cidr,

odp_ buffer t over_ nexthop, uint8 t level)

uint8_t ret, flag = 1;

prefix__entry_t xe = lle;

odp_ buffer_t xb = buff;

uint32_t i = 0, limit = 1 << (level — cidr);

for (i = 0; i < limit; i++, e++, b++) {
if (e—>child = 1) {
if (e—>cidr > cidr) {
flag = 0;

continue ;

prefix_entry t xne = (prefix_ entry t *)e—>ptr;
odp_ buffer t sxnbuff = ENTRY BUFF ARR(ne);

ANNEX B. ODP IPv6 Code

110

e—>cidr = over_ cidr;
ret = prefix_delete_1x(
tbl, ne, nbuff, cidr, over_cidr,

over_nexthop, cidr + 8);

/* If ret =— 1, the next 278 entries equal to
x (over_ cidr, over_ nexthop). In this case, we
* should not push the (over_ cidr, over_ nexthop)
* to the next level. In fact, we should recycle
x the next 278 entries.
/
if (ret) {
/* destroy subtree x/
cache_init_buffer(
b, CACHE TYPE SUBTREE,
ENTRY_SIZE x ENTRY_NUM_SUBTREE) ;
odp__queue__enq (
tbl—free_slots [CACHE TYPE SUBTREE] ,
odp_ buffer_to_event (xb));
e—>child = 0;
e—>nexthop = over_nexthop;
} else {
flag = 0;
}
} oelse {

if (e—=>cidr > cidr) {

flag = 0;
continue ;
} else {
e—>cidr = over_ cidr;
e—>nexthop = over_nexthop;

}

return flag;

/* Check if the entry can be recycled.

* An entry can be recycled duo to two reasons:

x* — all children of the entry are the same,
x* — all children of the entry have a cidr smaller than the level
* bottom bound.

*/

static uint8_t can_recycle (prefix_entry_t *e, uint32_t level) {
uint8_t recycle = 1;
int i = 1;

prefix _entry t xne = (prefix_entry t x)e—>ptr;

821

822

ANNEX B. ODP IPv6 Code

111

if (ne—>child)

return 0;

uint8 t cidr = ne—>cidr;

odp_ buffer t index = ne—>nexthop;

if (cidr > level)

return 0;
ne-++;
for (; 1 < 256; i++, ne++) {
if (
ne—>child != 0 || ne—>cidr != cidr ||
ne—>nexthop != index) {
recycle = 0;
break ;
}

}

return recycle;

static uint8_t prefix_delete_iter (
odph_iplookup_table impl *xtbl, prefix_ entry t =xe,
odp_buffer_t *xbuff, _uintl28 t ip, uint8_ t cidr,
uint8_t level , uint8_t depth)

uint8_t ret = 0, over_ cidr;

odp_buffer_t over_ nexthop;

trie_detect__overlap (
tbl—>trie , ip, cidr + 8 % depth, level,
&over__cidr, &over_nexthop);
if (cidr > 8) {
prefix_ entry_t *ne =
(prefix_entry_t x)e—>ptr;
odp_ buffer t snbuff = ENTRY BUFF ARR(ne);

ne += ((_uintl128_t) (ip << level) >> 24);
nbuff += ((_uint128 t)(ip << level) >> 24);
ret = prefix_delete_iter(

tbl, ne, nbuff, ip, cidr — 8,

level + 8, depth + 1);

if (ret && can_recycle(e, level)) {
cache_ init_buffer(
xbuff , CACHE TYPE SUBTREE,

ANNEX B. ODP IPv6 Code

112

ENTRY_SIZE * ENTRY NUM SUBTREE) ;
odp__queue__enq (
tbl—>free_slots [CACHE TYPE SUBTREE] ,
odp_ buffer_to_event (xbuff));
e—>child = 0;
e—>nexthop = over_nexthop;
e—>cidr = over_ cidr;
return 1;

}

return 0;

ret = prefix_delete_lx(
tbl, e, buff, cidr + 8 % depth,
over_ cidr, over_nexthop, level);

return ret;

int odph_iplookupv6_table remove_value(odph_table t tbl, void xkey) {

odph_iplookup_table impl *ximpl = (void x)tbl;
odph_iplookupv6_prefix_t sprefix = (odph_iplookupv6_prefix_t x)key;
_uintl28_t ip;

uint8_t cidr;

if ((tbl = NULL) || (key = NULL))
return —EINVAL;

ip = prefix—ip;
cidr = prefix—>cidr;

if (cidr = 0)
return —EINVAL;

prefix__entry_t xentry = &impl—>lle[ip >> 112];
odp_buffer t sbuff = ENTRY BUFF ARR(impl—>lle) + (ip >> 112);
uint8_t over_cidr, ret;

odp_ buffer_t over_nexthop;

trie__detect__overlap (

impl—>trie , ip, cidr, 16, &over_ cidr, &over_ nexthop);

if (cidr <= 16) {
prefix_delete_ 1x(
impl, entry, buff, cidr, over_cidr, over_nexthop, 16);
}oelse {
prefix entry t xne = (prefix_ entry t x)entry—>ptr;
odp_ buffer_t sxnbuff = ENTRY BUFF ARR(ne);

ANNEX B. ODP IPv6 Code

113

ne += ((_uintl28 t)(ip << 112) >> 24);
nbuff += ((_uintl128_ t)(ip << 112) >> 24);
ret = prefix delete_iter (impl, ne, nbuff, ip, cidr — 16, 24, 2);

if (ret && can_recycle(entry, 16)) {
cache_ init_buffer(
«buff , CACHE TYPE SUBTREE,
sizeof (prefix_entry_t) % ENTRY NUM SUBTREE) ;
odp__queue__enq (
impl—>free_slots [CACHE TYPE SUBTREE] ,
odp_ buffer_to_event (xbuff));
entry—>child = 0;
entry—>cidr = over_ cidr;

entry—>nexthop = over_nexthop;

return trie_delete_node (impl, impl—>trie, ip, cidr);

odph_table_ops_t odph_iplookupv6_table ops = {
odph__iplookupv6_table_ create,
odph_ iplookupv6_ table lookup,
odph_ iplookupv6_ table_ destroy,
odph_iplookupv6__table_put_ value,
odph__iplookupv6__table get_ value,

odph__iplookupv6_table remove_value

Listing B.1 — ODP IPv6 lookup code

B.2 ODP IPv6 Parse code

#include "config.h'
#include <odp/helper/ip.h>
#include <stdio.h>
#include <string.h>

typedef __intl128 _uintl128_ t;
typedef unsigned _ _intl28 uintl28_t;

int odph_ipv4_addr_parse(uint32_t x*ip_addr, const char xstr) {
unsigned byte [ODPH_IPV4ADDR LEN];

int i;

memset (byte, 0, sizeof(byte));

36

ANNEX B. ODP IPv6 Code

if (sscanf(str, "%u.%u.%u.%u",
&byte[0], &byte[1], &byte[2], &byte[3]) != ODPH IPVAADDR. LEN)

return —1;

for (i = 0; i < ODPH_IPV4ADDR,_LEN; i++)
if (byte[i] > 255)
return —1;

xip_addr = byte[0] << 24 | byte[l] << 16 | byte[2] << 8 | byte[3];

return 0;

int odph_ipv6_addr_parse(_uintl28 t *ip addr, const char *xstr){
unsigned byte [ODPH_IPV6ADDR,_LEN] ;
int i;

_uintl128_t p_ipl, p_ip2, p_ip3, p_ip4;
memset (byte, 0, sizeof(byte));

if (sscanf(str, "%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x
:%02x%02x:%02x%02x ",
&byte [0], &byte[1l], &byte[2], &byte[3], &byte[4], &byte[5], &byte
[6], &byte[7], &byte[8], &byte[9],
&byte [10], &byte[11], &byte[12], &byte[13], &byte[l14], &byte[15])
ODPH _IPV6ADDR, LEN)

return —1;

for (i = 0; i < ODPH_IPV6ADDR_LEN; i++)
if (byte[i] > 255)

return —1;
p_ipl = byte 1 | byte[2] << 8 | byte[3];
5] << 16 | byte[6] << 8 | byte[7];
9] << 16 | byte[l0] << 8 | byte[11];
] << 24 | byte[l3] << 16 | byte[l4] << 8 | byte[15];
xip_addr = p_ipl << 96 | p_ip2 << 64 | p_ip3 << 32 | p_ip4;

[0
p_ip2 = byte[4
p_ip3 = byte[8

[1

return 0;

Listing B.2 — ODP IPv6 parse code

ANNEX C - Controller Code

C.1 MACSAD IPv4 Controller code

#include "controller.h"

#include "messages.h'
#include <unistd .h>
#include <stdio.h>
#include <string.h>
#include <time.h>

#define MAX _MACS 2000000

controller c;

void fill_ipv4_fib_lpm_table(uint8_ t ip[4], uint8 t port, uint8_t mac[6])

{

char buffer [2048];

struct p4_headerx h;

struct p4_add_table entryx te;

struct p4_actionx a;

struct p4_action_parameterx ap,* ap2;

struct p4_field match_exactx exact;

h = create_p4_ header(buffer, 0, 2048);
te = create_p4_ add_table_entry(buffer ,0,2048);
strepy (te—>table_name, "ipv4 fib_lpm");

exact = add_p4_field match_exact(te, 2048);
strepy (exact—>header .name, "ipv4.dstAddr");
memcpy (exact—>bitmap, ip, 4);

exact—>length = 4%8+0;

a = add_p4_action(h, 2048);
strepy (a—>description .name, '"fib_hit nexthop");

ap = add_p4_action_parameter(h, a, 2048);
strecpy (ap—>name, "dmac");

memcpy (ap—>bitmap, mac, 6);

ap—>length = 6x8+0;

ap2 = add_p4_action_ parameter(h, a, 2048);
strcpy (ap2—>name, "port");
ap2—>bitmap [0] = port;

115

85

ANNEX C. Controller Code

116

ap2—>bitmap [1] = 0;
ap2—>length = 2x8+0;

netconv_ p4_header(h);
netconv_p4_add_table_entry(te);
netconv_ p4_field match_ exact(exact);
netconv_p4 action(a);

netconv_ p4_action_parameter(ap);

netconv_p4 action_ parameter(ap2);

send_p4_msg(c, buffer, 2048);

void fill _sendout_table(uint8 t port, uint8 t smac|[6])

{

char buffer [2048];
struct p4_headerx h;
struct p4_add_table entryx te;
struct p4_actionx a;
struct p4_action_parameterx ap;

struct p4_field match_exactx exact;

h = create_p4_header(buffer, 0, 2048);
te = create_p4 add_table_ entry(buffer ,0,2048);

strcpy (te—>table_name, "sendout");

exact = add_p4_field _match_exact(te, 2048);

strepy (exact—>header .name, "standard metadata.egress_port");
exact—>bitmap [0] = port;
exact—>bitmap [1] = 0;

exact—>length = 2%x8+0;

a = add_p4_action(h, 2048);

strepy (a—>description .name, "rewrite src_mac');

ap = add_p4_action_parameter(h, a, 2048);
strcpy (ap—>name, "smac");

memcpy (ap—>bitmap, smac, 6);

ap—>length = 6x8+0;

netconv_ p4_header(h);

netconv_p4_ add_table entry(te);
netconv_p4_field match_exact(exact);
netconv_p4_action(a);

netconv_ p4_action_parameter (ap);
send_p4 msg(c, buffer, 2048);

88
89
90

ANNEX C. Controller Code

117

uint8__t macs [MAX MACS][6];
uint8_t portmap [MAX MACS];
uint8_t ips [MAX MACS][4];

int mac_count = —1;

int read_ macs_and_ports_from_file(char *filename) {
FILE f;
char line [200];

int
int
int

int

f:

values [6];
values_ip [4];
port;

r

)

fopen (filename , "1r");

if (f = NULL) return —1;

while (fgets(line, sizeof(line), f)) {
line [strlen (line)—1] = *\07;
//TODO why %c?
if (11 = sscanf(line, "%d.%d.%d.%d %x:%x:%x:%x:%x:%x %d",

}

&values_ip [0], &values_ip[1], &values_ip|[2], &values_ip[3],
&values [0], &values[1], &values|[2],
&values [3], &values[4], &values[5], &port))

if (mac_count=MAX MACS-1)

{
printf('Too many entries...\n");
break ;

++mac__count;
for(i =0; i < 6; ++i)
macs [mac_count |[i] = (uint8_t) values|[i];

for(i =0; i < 4; ++i)

ips [mac_count][i] = (uint8_t) values_ip[i];
portmap [mac_count] = (uint8 t) port;
else {

printf("Wrong format error in line %d : %s\n', mac_count+2, line);
fclose (f);

return —1;

fclose (f);

return 0;

179
180

ANNEX C. Controller Code

118

void dhf(void* b) {

printf ("Unknown digest received\n");

void init () {

int i;
uint8 _t smac|[6] = {0xd0, 0x69, 0x0f, O0xa8, 0x39, 0x90};
printf ("INIT");

clock_t begin = clock();

for (i=0;i<=mac_count;++1i)

{

fill _ipv4_fib_lpm_table(ips[i], portmap[i], macs[i]);

if (0 = (i%1000)){
printf('%d inside sleep \n",i);
sleep (1) ;
}
fill _sendout_ table (portmap[i], smac);
usleep (1000) ;

clock_t end = clock () ;
double time_spent = (double)(end — begin) / CLOCKS_ PER,_ SEC;
printf ("ctrl Total entries sent %d time %f\n",i,time_spent);

int main(int argc, charx argv([])

{

wint8_t ip[4] = {192,168,1,1};
uint8_t mac[6] = {0xa0, 0x36, 0x9f, O0x3e, 0x94, Oxea};
uint8 _t port = 1;

wint8_t ip2[4] = {192,168,0,1};
uint8_t mac2[6] = {0xa0, 0x36, 0x9f, 0x3e, 0x94, Oxe8};
0;

uint8_t port2 =

uint8_t smac[6] = {0xd0, 0x69, 0x0f, Oxa8, 0x39, 0x90};

if (arge>1) {
if (arge!=2) {

printf("Too many arguments...\nUsage: %s <filename (optional)>\n"

argv [0]) ;

return —1;

181

ANNEX C. Controller Code

119

printf("Command line argument is present ...\ nLoading configuration data

...o\n");
if (read_ macs_and_ports_from_ file(argv[1l])<0) {
printf('File cannnot be opened...\n");

return —1;

printf("Create and configure 13 test controller...\n");
¢ = create_controller__with_init (11111, 3, dhf, init);
fill _ipv4_fib_lpm_table(ip, port, mac);

fill _ipv4_fib_lpm_ table(ip2, port2, mac2);

fill_sendout_ table (port, smac);

fill _sendout_ table (port2, smac);

printf("Launching controller’s main loop...\n");

execute_ controller (c¢);

printf("Destroy controller\n");

destroy__controller(c);

return 0;

Listing C.1 — MACSAD IPv4 Controller code

C.2 MACSAD IPv6 Controller code

#include "controller.h"

#include "messages.h'
#include <unistd .h>
#include <stdio.h>
#include <string.h>
#include <time.h>

#define MAX MACS 2000000

controller c;

void fill_ipv6_fib_lpm_table(uint8_ t ip[16], uint8_t port, uint8_t mac[6])

{

char buffer [2048];

struct p4_headerx h;

struct p4_add_table_ entryx te;

struct p4_actionx a;

struct p4_action_parameterx ap,x ap2;

struct p4_field match_exactx exact;

66

ANNEX C. Controller Code

120

void fill sendout_table(uint8 t port, uint8 t smac|[6])

{

h = create_p4_ header(buffer, 0, 2048);
te = create_p4_add_table_entry(buffer ,0,2048);
strcpy (te—>table_name, "ipv6_fib_lpm");

exact = add_p4_field_match_exact(te, 2048);
strepy (exact—>header .name, "ipv6.dstAddr");
memcpy (exact—>bitmap, ip, 16);
exact—>length = 16%840;

a = add_p4_action(h, 2048);
strepy (a—>description .name, '"fib_hit nexthop");

ap = add_p4_action_parameter(h, a, 2048);
strcpy (ap—>name, "dmac");

memcpy (ap—>bitmap, mac, 6);

ap—>length = 6x840;

ap2 = add_p4_action_parameter(h, a, 2048);
strcpy (ap2—>name, "port");

ap2—>bitmap [0] = port;

ap2—>bitmap [1] = O0;

ap2—>length = 2x%840;

netconv_ p4_header(h);
netconv_p4_add_table_entry(te);
netconv_ p4_ field_match_exact(exact);
netconv_ p4_action(a);

netconv_ p4 action_ parameter(ap);

netconv_p4_action_parameter (ap2);

send_p4_msg(c, buffer, 2048);

char buffer [2048];
struct p4_headerx h;
struct p4_add_table_entryx te;
struct p4_actionx a;
struct p4__action_parameterx ap;

struct p4_field match_ exactx exact;

h = create_p4_header (buffer , 0, 2048);

te = create_p4 add_table_entry(buffer ,0,2048);

strcpy (te—>table_name, "sendout");

ANNEX C. Controller Code

121

exact = add_p4_ field match_ exact(te, 2048);
strcpy (exact—>header .name, "standard metadata.egress port");
exact—>bitmap [0] = port;
exact—>bitmap [1] = 0;
exact—>length = 2x8+0;

a = add_p4_action(h, 2048);

strepy (a—>description .name, "rewrite src_mac');

ap = add_p4_action_parameter(h, a, 2048);
strepy (ap—name, "smac');

memcpy (ap—>bitmap, smac, 6);

ap—>length = 6x8+40;

netconv_p4_header (h);
netconv_p4_add_table_entry(te);
netconv__p4_field match_exact (exact);
netconv_ p4_action(a);
netconv__p4_action_parameter(ap);
send_p4 msg(c, buffer, 2048);

uint8__t macs [MAX MACS][6];
uint8 t portmap [MAX MACS];
uint8_t ips [MAX MACS][16];

int mac_count = —1;

int read_macs_and_ports_from_file(char *filename) {

FILE f;

char line [200];

int values [6];

int values_ip[16];

int port;

int 1i;
f = fopen (filename, "1r'");
if (f = NULL) return -—1;

while (fgets(line, sizeof(line), f)) {

line [strlen (line)—1] = ’\07;

//TODO why %c?

if (23 = sscanf(line, "%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x

:%02x%02x: %02x%02x: %02x%02x %ox:%ox:%x:%x: %x:%x %d"
&values_ip [0], &values_ip[1], &values_ip|[2], &values_ip[3],
&values_ip [4], &values_ip[5], &values_ip[6], &values_ip[7],
&values_ip [8], &values_ip[9], &values ip[10], &values ip[11],

ip[1

&values i 2], &values_ip[13], &values_ip[14], &values_ ip[15],

ANNEX C. Controller Code

122

&values [0], &values[1], &values|[2],
&values [3], &values[4], &values[5], &port))

if (mac_count=MAX MACS-1)

{
printf('Too many entries...\n");
break ;

}

++mac_ count;

for(i = 0; i < 6; ++H)

macs [mac_count][i] = (uint8_t) values|[i];
for(i =0; i< 16; ++i)
ips [mac_count][i] = (uint8_t) values_ip[i];
portmap [mac_count] = (uint8_t) port;
} oelse {
printf("Wrong format error in line %d : %s\n", mac_count+2, line);
fclose (f);

return —1;

}
fclose (f);

return 0;

void dhf(voidx b) {

printf("Unknown digest received\n");

void init () {
int i;
uint8 t smac[6] = {0xd0, 0x69, 0x0f, Oxa8, 0x39, 0x90};
printf ("INIT");
clock_t begin = clock () ;
for (i=0;i<=mac_count;++1i)
{

fill _ipv6_fib_lpm_table(ips[i], portmap[i], macs[i]);
if (0 = (i%1000)){ printf('%d inside sleep \n'", i);sleep(1);;}

fill_sendout__table (portmap[i], smac);
usleep (1000) ;

clock_t end = clock();
double time_spent = (double)(end — begin) / CLOCKS_PER, SEC;

printf ("ctrl Total entries sent %d time %f\n",i,time_ spent);

160
161
162

163

164
165
166
167

168
169

ANNEX C. Controller Code 123

int main(int argc, charx argv][])
{
uint8_t ip[16] = {0x20,0x01,0x0d,0xb8,0x85,0xa3,0x08,0xd3,0x13,0x19,0x8a
,0x2e,0x03,0x70,0x73,0x34 };
uint8_t mac[6] = {0xa0, 0x36, 0x9f, O0x3e, 0x94, Oxea};
uint8 _t port = 1;

uint8 t ip2[16] = {0x13,0x19,0x8a,0x2e,0x03,0x70,0x73,0x35,0x20,0x01,0x0d
,0xb8,0 xff ,0xff ,0x08,0xd3};
uint8_t mac2[6] = {0xa0, 0x36, 0x9f, Ox3e, 0x94, Oxe8};

uint8 _t port2 = 0;

uint8_t smac[6] = {0xd0, 0x69, 0x0f, O0xa8, 0x39, 0x90};

if (arge>1) {
if (arge!=2) {

printf('Too many arguments...\nUsage: %s <filename (optional)>\n",
argv [0]) ;

return —1;
}
printf("Command line argument is present...\nLoading configuration data

oA\ n") s
if (read_ macs_and_ports_from file(argv[1l])<0) {
printf("File cannnot be opened...\n");

return —1;

printf("Create and configure 13 test controller...\n");
¢ = create_controller with init (11111, 3, dhf, init);

printf ("Launching controller’s main loop...\n");

execute_controller (c¢);

printf("Destroy controller\n");

destroy_controller (c);

return 0;

Listing C.2 — MACSAD IPv6 Controller code

ANNEX D -

D.1 IPv4 Code

header_ type ethernet_t {
fields {
dstAddr : 48;
srcAddr : 48;
etherType : 16;

header_type ipv4d_t {
fields {
versionlhl : 8§;
diffserv : 8;
totalLen : 16;

identification : 16;
fragOffset : 16;
ttl : 8§;

protocol : 8§;
hdrChecksum : 16;
srcAddr : 32;
dstAddr: 32;

parser start {

return parse_ethernet;
#define ETHERTYPE_IPV4 0x0800
header ethernet_t ethernet;
parser parse_ethernet {

extract (ethernet);

return select (latest.etherType) {

ETHERTYPE IPV4 : parse_ipv4;

default: ingress;

header ipv4d_t ipv4d;

P4 Code

124

66

83
84
85
86

87

ANNEX D. P4 Code

125

parser parse_ipv4d {
extract (ipv4);

return ingress;

action on_miss() {

}

action fib__hit_nexthop (dmac, port) {
modify_ field (ethernet.dstAddr, dmac);

(
modify_ field (standard metadata.egress_port, port);
(

add_to_ field (ipv4.ttl, —1);

table ipv4_fib_lpm {

reads {
ipv4.dstAddr : lpm;

}

actions {
fib__hit_nexthop;
on_ miss;

}

size : 512;

action rewrite_src_mac (smac) {
modify_ field (ethernet.srcAddr, smac);

table sendout {
reads {
standard__metadata.egress_port : exact;
}
actions {
on_ miss;
rewrite_src_ mac;

}

size : 512;

control ingress {

/% fib lookup, set dst mac and standard metadata.egress_port x/

apply (ipv4_fib_lpm);

/* set smac from standard metadata.egress port x/

apply (sendout) ;

88
89
90

ANNEX D. P4 Code

126

control egress {
}
Listing D.1 — IPv4 P4 code

D.2 IPv6 Code

header_type ethernet_t {
fields {
dstAddr : 48;
srcAddr : 48;
etherType : 16;

}
}
header_ type ipv6_t {
fields {
version : 4;

trafficClass : 8;
flowLabel : 20;
payloadLen : 16;
nextHdr : 8;
hopLimit : 8§;
srcAddr : 128;
dstAddr : 128;

parser start {

return parse_ethernet;
#define ETHERTYPE IPV6 0x86DD
header ethernet_ t ethernet;
parser parse_ethernet {

extract (ethernet);

return select (latest.etherType) {

ETHERTYPE IPV6 : parse_ipv6;

default: ingress;

header ipv6_t ipv6;

ANNEX D. P4 Code

127

parser parse_ipv6 {
extract (ipv6) ;

return ingress;

action on_miss() {

}

action fib_hit_nexthop (dmac, port) {
modify_field (ethernet.dstAddr, dmac);

(
modify_ field (standard__metadata.egress_port, port);
(

add__to_ field (ipv6.hopLimit, —1);

table ipv6_fib_lpm {
reads {
ipv6 .dstAddr : lpm;
}
actions {
fib__hit_nexthop;
on_ miss;

}

size : 512;

action rewrite_src_mac (smac) {

modify_ field (ethernet.srcAddr, smac);

table sendout {
reads {
standard__metadata.egress_port : exact;
}
actions {
on_ miss;
rewrite_ src_ mac;

}

size : 512;

control ingress {

/% fib lookup, set dst mac and standard metadata.egress port x/

apply (ipv6_fib_lpm) ;

/* set smac from standard_metadata.egress_port x/

apply (sendout) ;

ANNEX D. P4 Code 128

87
88 control egress {
89}
Listing D.2 — IPv6 P4 code

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Research Goals
	Problem Definition
	Objectives

	Methodology and Contributions
	Text Organization

	Literature Review
	Background
	Programming Protocol-Independent Packet Processors
	OpenDataPlane
	Network Function Performance Analyzer
	Multi-Architecture Compiler System for Abstract Dataplanes
	Auxiliary Frontend
	Auxiliary Backend
	Core Compiler

	Helper APIs

	Related Work
	Summary

	Design and Implementation of IPv4/IPv6 Longest Prefix Match support
	IPv4 LPM support
	Binary tree
	IP prefix lookup table
	MACSAD lookup

	IPv6 LPM support
	Binary tree
	IP prefix lookup table
	MACSAD lookup

	Controller
	P4 Code
	LPM Flow Diagrams
	Summary

	Packet Generator Tool: BB-Gen
	Architecture
	Main features
	Use Case
	Evaluation

	Summary

	Experimental Evaluation
	Testbed and Methodology
	Performance Analysis
	L3-IPv4
	L3-IPv6
	CPU Cycles

	Summary

	Conclusions and Future Work
	Conclusions
	Bibliography
	Annex
	Publications
	ODP IPv6 Code
	ODP IPv6 lookup code
	ODP IPv6 Parse code

	Controller Code
	MACSAD IPv4 Controller code
	MACSAD IPv6 Controller code

	P4 Code
	IPv4 Code
	IPv6 Code

