
Cassiano Otávio Becker

Hyper-parameter Optimization for Manifold
Regularization Learning

Otimização de Hiperparâmetros para Aprendizado do
Computador por Regularização em Variedades

Campinas

2013

i

ii

Universidade Estadual de Campinas

Faculdade de Engenharia Elétrica e de Computação

Cassiano Otávio Becker

Hyper-parameter Optimization for Manifold

Regularization Learning

Otimização de Hiperparâmetros para Aprendizado do

Computador por Regularização em Variedades

Master dissertation presented to the School of Electrical

and Computer Engineering in partial fulfillment of the

requirements for the degree of Master in Electrical

Engineering.

Concentration area: Automation.

Dissertação de Mestrado apresentada ao Programa

de Pós- Graduação em Engenharia Elétrica da

Faculdade de Engenharia Elétrica e de Computação da

Universidade Estadual de Campinas como parte dos

requisitos exigidos para a obtenção do t́ıtulo de Mestre

em Engenharia Elétrica.

Área de concentração: Automação.

Orientador (Advisor): Prof. Dr. Paulo Augusto Valente Ferreira

Este exemplar corresponde à versão

final da dissertação defendida pelo aluno

Cassiano Otávio Becker, e orientada pelo

Prof. Dr. Paulo Augusto Valente Ferreira.

Campinas

2013

iii

v

Abstract

This dissertation investigates the problem of hyper-parameter optimization for

regularization based learning models. A review of different learning algorithms is

provided in terms of different losses and learning tasks, including Support Vector

Machines, Regularized Least Squares and their extension to semi-supervised learning

models, more specifically, Manifold Regularization. A gradient based optimization

approach is proposed, using an efficient calculation of the Leave-one-out Cross

Validation procedure. Datasets and numerical examples are provided in order to

evaluate the methods proposed in terms of their generalization capability of the

generated models.

Key-words: Machine Learning. Semi-Supervised Learning. Optimization. Support

Vector Machines. Regularized Least Squares. Manifold Regularization. Model

Selection.

vi

Resumo

Esta dissertação investiga o problema de otimização de hiperparâmetros para

modelos de aprendizado do computador baseados em regularização. Uma revisão

destes algoritmos é apresentada, abordando diferentes funções de perda e tarefas

de aprendizado, incluindo Máquinas de Vetores de Suporte, Mı́nimos Quadrados

Regularizados e sua extensão para modelos de aprendizado semi-supervisionado,

mais especificamente, Regularização em Variedades. Uma abordagem baseada em

otimização por gradiente é proposta, através da utilização de um método eficiente

de cálculo da função de validação por exclusão unitária. Com o intuito de avaliar os

métodos propostos em termos de qualidade de generalização dos modelos gerados,

uma aplicação deste método a diferentes conjuntos de dados e exemplos numéricos

é apresentada.

Palavras-chave: Aprendizado do Computador. Aprendizado Semi-Supervisionado.

Otimização Matemática. Máquinas de Vetores de Suporte. Regularização por

Mı́nimos Quadrados. Regularização em Variedades. Seleção de Modelo.

vii

Contents

Introduction 1

1 Machine Learning and the Regularization Framework 4

1.1 Supervised, Unsupervised and Semi-supervised Machine Learning 4

1.1.1 Learning Tasks . 5

1.1.2 Regression . 5

1.1.3 Classification . 6

1.1.4 Other Loss Functions and Tasks . 7

1.2 Regularization Learning . 8

1.2.1 Statistical Machine Learning Interpretation 9

1.2.2 Solution in Reproducing Kernel Hilbert Spaces 11

1.2.3 From Infinite-dimensional to l-Dimensional Optimization Problem 13

1.3 Regularized Least Squares . 16

1.4 Support Vector Machines . 17

1.5 Computational Considerations . 18

2 Hyper-parameter Optimization 20

2.1 Introduction . 20

2.2 Model Assessment . 21

2.2.1 Validation and Test Functions . 21

2.2.2 Bias-Variance Decomposition . 23

2.2.3 Partition Strategies . 25

2.2.4 Cross-Validation . 26

2.2.5 Leave-One-Out Bounds . 27

2.3 Formulation as an Optimization Problem . 28

2.4 Hyper-parameter Search Strategies . 29

2.4.1 Grid Search . 29

viii

2.4.2 Random Search . 29

2.4.3 Gradient Optimization . 30

2.5 Multiple Kernel Learning . 32

3 Semi-supervised Learning: Manifold Regularization 33

3.1 Semi-supervised Learning . 33

3.1.1 Transductive and Inductive Learning . 34

3.1.2 The Manifold Assumption . 34

3.2 Manifold Regularization . 35

3.2.1 The Laplacian and its Hyper-parameters 38

3.2.2 Point Cloud Kernel . 40

3.3 Laplacian Regularized Least Squares . 42

3.4 Laplacian Support Vector Machines . 43

3.5 Computational Considerations . 44

4 Hyper-parameter Optimization for Manifold Regularization Learning Models 45

4.1 Hyper-parameter Optimization Formulation . 45

4.2 Combination of Laplacians . 47

4.2.1 Computational Considerations . 48

4.3 Computational Experiments . 49

4.3.1 Experimental Setup . 49

4.3.2 Gradient Optimization of Regularized Least Squares 51

4.3.3 Influence of Unlabeled Data . 53

4.3.4 Laplacian RLS Hyper-parameter Optimization with Limited Function

Evaluations . 56

5 Conclusion 61

References 64

A Parameters and Hyper-parameters 69

B Experimental Code 70

ix

Acknowledgement

I would like to thank:

Prof. Dr. Paulo Valente, for his openness and availability.

My wife Mariana, for her unconditional support and continuous interest.

My parents Angela and Mario, for their wisdom and incentive.

The members of the Committee for their comments and thorough revision.

Venturus Innovation Center for allowing me to attend classes while being their employee.

The professors of FEEC/Unicamp for their quality and interest in teaching.

x

All differences in this world are of degree, and

not of kind, because oneness is the secret of

everything.

Swami Vivekananda

xi

List of Figures

1.1 The ǫ-insensitive loss function . 6

1.2 The hinge loss function . 7

1.3 Different approximation functions with zero loss at training points 8

3.1 Manifold Regularization learning classification function for the Two-moons dataset 38

3.2 Point Cloud Kernel for the Two-circles dataset 42

4.1 Hyper-parameter level sets and feval graph for the COIL20 dataset 52

4.2 Hyper-parameter level sets and feval graph for the USPST dataset 53

4.3 COIL20 dataset boxplots for LapRLS test set error performance 54

4.4 USPST dataset boxplots for LapRLS test set error performance 55

4.5 Point Cloud Kernel equivalence with LapRLS 56

4.6 COIL20 boxplots for test set error comparing different search methods. 58

4.7 USPST boxplots for test set error comparing different search methods. 59

xii

Acronyms and Notation

SVM Support Vector Machine

RLS Regularized Least Squares

LOOCV Leave-one-out Cross Validation

RKHS Reproducing Kernel Hilbert Space

M notation for matrices (latin capital letters)

MT (T), post posed to a vector or matrix, indicates transposition

M ≥ 0 matrix M is symmetric positive semi-definite

‖ · ‖K norm K of a vector, matrix or function

x∗ optimal value for vector x under criteria defined in the context

R the real set of numbers

Z the integer set of numbers

Z+ the non-negative integer set of numbers

N the natural set of numbers (including zero)

I identity matrix of appropriate dimension

e vector of all ones of appropriate dimension

xiii

Introduction

Machine Learning is increasingly present in many engineering domains. Bringing together

elements from statistics, neuroscience and computer science, it enables systems to improve their

performance by implementing mechanisms that process data they collect from their environment.

With the growth of interconnected systems and communications technology, the availability of

data is a significant resource and opportunity to be explored.

The list of relevant applications of Machine Learning can be as large as one might wish it to

be. Examples can be found from medicine (medical imaging, protein folding, drug discovery)

to social security and fraud detection. From business intelligence (infrastructure monitoring,

recommender systems) to highly elaborate autonomous vehicles and robotics. With the pressing

needs of society for more efficient systems to adress the challenges of natural resouces and

equality of opportunities for an increasing population, such list can only increase in number and

depth.

The field of Machine Learning as it is found today can be understood to have begun, on

one side, with the modeling of neurons as the Rosenblatt perceptron (Rosenblatt 1958), which

later enabled the field of Artificial Neural Networks. On the other side, it received continuous

contributions from statistical techniques for approximating and estimating mathematical

functions from data collections, such as Minimum Least Squares and Linear Regression. A major

development was achieved in the 1990’s when the problems received a more general formulation

with Support Vector Machines and Kernel Functions, which at the same time relied on results

from the field of Convex Optimization, assuring it a solid and well behaved mathematical base.

Such formulation was later further integrated and generalized with the current approach of

Regularization Theory.

One aspect that has not been entirely addressed in Regularization Theory is the definition

of the hyper-parameters of the learning function being estimated, even though such parameters

are often found to have a significant influence over the final algorithm performance. These

1

General Introduction 2

variables are defined as exogenous to the learning problem and are either assumed to have been

defined previously, from prior knowlege, or left open to be determined ad-hoc. In the latter,

usually a blind search is employed (grid search), which linearly traverses the dimensions of the

parameters. Such strategies tend to be sub-optimal and become prohibitive as the number of

hyper-parameters grow. The increase in knowledge and eventual improvement in the search

and optimization of such parameters constitutes a path to higher efficiency and quality in the

determination of computational models in Machine Learning.

Another significant dimension of improvement in the problem of learning from data has

been the development of semi-supervised algorithms, which are able to take advantage of

both labeled and unlabeled data (data whose meaning or judgement is not provided). Such

algorithms are of relevance because unlabeled data is usually generated at much lower cost, as

they forego the labeling stage tipically performed by a specialist, or demand additional energy

and knowledge. In many cases, unlabeled data is readily available or can be autonomously and

continuously collected by the system. Manifold Regularization is a semi-supervised learning

approach which extends the regularization framework by using the unlabeled data distribution

to present additional factors to the learning optimization objective function. Such terms,

however, introduce additional hyper-parameters, whose values affect the algorithm’s predictive

performance. The work in this disseration attempts to bring together these two problems by

looking at possibilities for hyper-parameter optimization for Manifold Regularization learning

algorithms. It is structured as follows:

❼ Chapter 1 presents a review of the regularization framework, which gives rise to learning

algorithms which are approached in this dissertation, such as the Support Vector Machines

and Regularized Least Squares, both also known as Kernel Learning Machines. In the

review, a connection with some statistical learning principles are established. The chapter

begins with the basic definitions of common Machine Learning tasks, such as classification

and regression.

❼ In Chapter 2, the problem of hyper-parameter optimization is addressed, as part of

the broader model selection problem. Different learning model assessment strategies

are described, which differ in the way the available training data is used. The chapter

then presents some of the most relevant hyper-parameter search strategies, with special

attention to the gradient derivation of the closed form leave-one-out cross validation value.

An alternative approach that involves the optimization of combination weights of kernel

functions is also briefly presented.

General Introduction 3

❼ Chapter 3 presents an important extension to the regularization framework which

enables the algorithm to benefit from unlabeled data, leading to a semi-supervised

setting. The Manifold Regularization technique derivation is described, along with its main

mathematical components and training algorithms. An important result, the Point Cloud

Kernel, which enables the use of previously not semi-supervised algorithms as becoming

such, is also included.

❼ Chapter 4 is devoted to explore the application of some of the hyper-parameter

optimization techniques presented in Chapter 2 to the Manifold Regularization learning

models presented in Chapter 3. Such models present an additional challenge as they

introduce additional hyper-parameters, as compared to non semi-supervised models. In

the case where parameters are integers, the employment of a weighted combination of

base components is proposed. Finally, computational experiments are presented which

illustrate the main ideas presented in the text.

Finally, conclusions and suggestions for future work are presented in Chapter 5.

Chapter 1

Machine Learning and the Regularization

Framework

1.1 Supervised, Unsupervised and Semi-supervised

Machine Learning

The overall goal of machine learning can be described as the one of producing algorithms

which are able to establish (or learn) a functional relationship between two variables, f : X → Y ,

based on an underlying phenomenon p(x, y), which is probabilistic in nature. In order to

achieve it, the learning system is given a set of samples of p(x, y), which are assumed to be

independent and identically distributed (i.i.d), as is expected to produce a valid approximation.

The“independent”part of the assumption means that one example being observed does not affect

the value or nature of the next example, and by “identically”, the assumption means that all

samples are sampled from the same underlying probability distribution. With these samples, an

estimator f(x) for future realizations of the process is sought, based on the additional induction

assumption that future data will be also drawn from the same originating distribution. Assigning

variables to the samples constituting the training set, we can say that it might be composed by

a combination of:

❼ l labeled examples Sl = {(x1, y1), . . . , (xl, yl)}, with xi ∈ X , a general set, for example

X = R
N and yi ∈ Y the output prediction variable set.

❼ u unlabeled examples Su = {x1, . . . ,xu}, with xi ∈ X , and to which their corresponding

yi values are not provided.

The set X can be some subset of a non-Euclidean input domain, such as trees, strings, graphs

and other structured objects, as long as an appropriate similarity measure between two examples

4

Chapter 1. Machine Learning and the Regularization Framework 5

can be defined. If only labeled samples are provided, the learning is said to be supervised. If

both labeled and unlabeled sets are provided, the setting is said to be semi-supervised, with

typically u > l to u ≫ l. If only unlabeled examples are provided, the algorithms are referred

to as unsupervised, and their objetive is typically to estimate the underlying probability density

p(x).

The set Y defines the prediction variable y = {y1, . . . , yl}, and its domain characterizes the

different types of functional relationships, which are grouped as different learning tasks. For

example, if y is allowed only to assume two different integer values, such as yi ∈ {−1, 1}, the
task is referred to as the one of binary classification.

Given the training sets Sl, Su and the type of functional relationship f(x) expected, each

learning task is also associated with a loss function, V (yi, f(xi)), which provides a quantitative

measure of the approximation quality of the function being estimated. The next section describes

some learning tasks and their loss functions.

1.1.1 Learning Tasks

In this section we provide some detail for two of the main learning tasks involved in supervised

and semi-supervised learning, Regression and Classification.

1.1.2 Regression

In Regression one is interested in establishing an approximation of f : X → Y , with Y = R.

It means that y ∈ Y can assume any continuous value in the range of the reals, and the

discrepancy in the approximation can be measured by the difference between the predicted

value f(xi) and the actual training value yi. The elaboration of this idea is found in two

commonly adopted functions, the first being the square loss function

V (yi, f(xi)) = (yi − f(xi))
2. (1.1)

One of the reasons for squaring the difference is that it always provides positive error values

that can be directly summed, and that its first derivative is usually a continuous function,

amenable to standard optimization techniques.

The second loss function is the ǫ-insensitive loss (Rifkin 2002), which is written as

V (yi, f(xi)) = |yi − f(xi)|ǫ (1.2)

with the | · |ǫ function defined as

Chapter 1. Machine Learning and the Regularization Framework 6

|x|ǫ ≡
{

0 , if |x| < ǫ ;

|x| − ǫ , otherwise.
(1.3)

This function is also referred to as the dead-zone loss, meaning that deviations less than

tolerance value ǫ are disregarded, as can be seen in the Figure 1.1.

ε

x

f(x)

Figure 1.1: The ǫ-insensitive loss function

The ǫ-insensitive loss is relevant because of its similarity with an important loss function

used in classification, the hinge loss function, and because it tends to yield sparse solutions in

term of the computational complexity of the learned function.

If multiple output variables are desired f : X → R
N , a common approach is to treat each

dimension in the output variable as an independent variable, and define a separate learning

algorithm for each variable.

1.1.3 Classification

In Classification, one is interested in establishing a prediction function in a restricted domain,

where the output variable y is assumed to be an integer. The most common case is where y

is restricted to assume two values, for example y ∈ {0, 1} or {−1, 1}. In this case, the learned

function f is usually defined to produce a continuous output as an intermediate step, and the

final prediction is taken after applying a hard separation envelope to its output value, such as

fclass(x) = sign(f(x)), with

sign(t) ≡
{

0 , if t < 0 ;

1 , otherwise.
(1.4)

The same function is also the first intuitive form for the classification loss function. Its

non-differentiability and non-convexity characteristics, however, have complicating consequences

in most algorithms and are typically substituted by equivalent convex surrogate functions. A

common such function is the hinge loss (Rifkin 2002), which introduces a linear penalty if the

Chapter 1. Machine Learning and the Regularization Framework 7

predicted function value and the label have opposite signs (error), and is zero when they have

same signs and f(xi) ≥ 1. Mathematically,

V (yi, f(xi)) = (1− yif(xi))+ = max(0, 1− yif(xi)). (1.5)

1 2 3-1-2-3-4

2

3

4

5

1

x

f(x)

Figure 1.2: The hinge loss function

When this function is squared, it becomes continuously differentiable, and is referred to as

the quadratic hinge loss. A hybrid function between the hinge and squared hinge loss is the

smooth hinge loss (or Huber loss), which defines a region of quadratic transition between the

zero and linear loss sections (Huber 1964).

In multi-class classification one defines the prediction variable to be yi ∈ {1, . . . , C} for C ∈ N

and C > 1. A common approach is to define C classifying functions, trained pairwise, and assign

the output class according to a choice function of the type ci = arg max fi(x), i = 1, . . . , C. This

approach is known as one-versus-all multi-class classification; other approaches are described in

(Rifkin 2002). Another related task, but in the opposite direction, is one-class classification,

or novelty detection. This is an unsupervised learning task, concerned with predicting whether

a certain point is likely to have been generated by the underlying distribution of reference, as

described in (Schölkopf & Smola 2002).

1.1.4 Other Loss Functions and Tasks

When the loss function is of the type of the logistic function 1/(1 + e−x), called logistic loss,

the learning algorithms are refererred to as Logistic Regression (Bishop 2006), and share many

characteristics with the algorithms further detailed in this dissertation.

Other relevant learning tasks are those of dimensionality reduction and compression, which

attempt to find equivalent sparser representations to a certain functional relationship, such

as Principal Component Analysis and its kernelized and non-linear variants (Shawe-Taylor

Chapter 1. Machine Learning and the Regularization Framework 8

& Cristianini 2004). Yet another important learning task is the one of clustering, which is

an unsupervised learning task that seeks to find natural groupings of data points, given a

multivariate distribution and a certain proximity criteria, with a pre-established or open number

of reference groups definitions.

1.2 Regularization Learning

Following our objective of learning a functional relationship f : X → Y from the available

samples and their associated loss functions, a first approach would be to attempt to minimize the

value of such loss function for all the available examples, assuming a given candidate function.

Such candidate function could be, for example, a piecewise linear composition, a parameterized

sum of polinomials, or any other function allowing its form to be adjusted according to the

examples and the loss function output. It is easy to see that, given a finite set of examples,

there might be multiple solutions that could approximate the data given, and at the same time

lead to equivalent overall resulting loss values (sometimes zero loss), as illustrated in Figure 1.3.

f(x)

 x

f(x)

 x

f(x)

 x

Figure 1.3: Different approximation functions with zero loss at training points

However, having in mind the overall goal that the functional relationship established should

yield a valid approximation of the real underliyng phenomenon being learned for future and

unseen data, such a variety of functions are likely to produce different, distorted and for that

purpose, invalid approximations. The reason is that, for such a finite set of training data,

the degrees of freedom provided by the parameterized template function are likely to allow for

infinite equally valid solutions with the same loss functional minimum value. Such problems

have been referred to as ill-posed problems. According to (Evgeniou, Pontil & Poggio 1999), “A

well-posed problem (in the sense of Hadamard, (Tikhonov and Arsenin, 1977)), is a problem for

which a solution (a) exists, (b) is unique, and (c) depends continuously on the data. A problem

for which at least one of the above conditions does not hold is ill-posed”.

The regularization approach adopted in this disseration was first proposed by (Tikhonov

& Arsenin 1977) and consists essentially of including an additional penalty term in the loss

function to restore the well-posedness of the solution. Such term is commonly dependent of the

Chapter 1. Machine Learning and the Regularization Framework 9

number and the module of the components of the candidate solution function, and has the goal

of measuring the level of change (energy or capacity) required from the learning function in

order to approximate the data presented. This regularization term, apart from reducing the set

of valid solutions, encourages smoothness of the resulting function, and in turn improves the

generalization capability of the function being learned. A probabilistic interpretation of such

approach will be provided in the next section. The general regularization problem is formalized

as:

f∗ = arg min
f∈H

l∑

i=1

V (yi, f(xi))) + Ω(‖f‖H). (1.6)

In this formulation, the function f∗ is a point in a possibly infinite-dimensional Hilbert vector

space H; V (yi, f(xi)) is the loss function, which is dependent of the data and the candidate

function being learned; and Ω(‖f‖H) is the regularizer, an increasing functional of the norm of

the candidate function. These components will be further addressed in section 1.2.2.

We now move to a brief analysis and justification of the regularization framework from the

statistical point of view.

1.2.1 Statistical Machine Learning Interpretation

Statistical Learning Theory, as developed by (Vapnik & Sterin 1977, Cortes & Vapnik 1995)

provides an approach to quantify the effects of using a limited amount of examples when

attempting to estimate a probabilistic functional relation between the two variables of interest.

For that purpose, it begins with a statement that the goal of a learning task is the minimization

of the risk functional

R(f) =

∫

x,y

V (yi, f(xi))p(x, y)dxdy. (1.7)

The risk functional is a reference mathematical construct that weights the loss functional,

weighted by the underlying probability distribution. Because learning the joint probability

distribution between both variables is the goal of the learning task in itself, the actual calculation

of this functional cannot be performed. Instead, statitical learning theory proposes an induction

principle, based on the sampled data, in order to build an empirical estimator of the expected

risk functional, defined as

Remp(f) =
1

l

l∑

i=1

V (yi, f(xi)). (1.8)

Chapter 1. Machine Learning and the Regularization Framework 10

If the number of examples provided increases to infinity, the empirical risk converges to the

expected risk value. To the other end, a key result established by this theory is the derivation of a

set of probability bounds for the difference between the expected and empirical risks for any loss

function. One of such bounds is defined to be dependent on the number of examples provided,

l, and on a quantity called the capacity h of the target function, with a given probability η.

The bound depends on an increasing function φ, whose exact format is defined in (Vapnik &

Sterin 1977), and can be written compactly as

R(f) < Remp(f) + φ

(√

h

l
, η

)

. (1.9)

Taking the bound to the extremes on its variables, we can see that the more data we have

available (l), the less the difference between both quantities. Also, the higher the capacity

allowed for the candidate function (h), the higher the distance between both approximations,

and the evaluated empirical risk might be disconnected from the actual expected risk, leading

to a meaningless approximated function, often associated to the effect of overfitting. Such

effect is referred to when the approximation function achieves low error when evaluated at the

example points, but at the expense of a being highly distorted in other regions, leading to poor

generalization results.

Minimizing the empirical risk functional alone is therefore an incomplete objective. An

approach named Structural Risk Minimization (SRM) was proposed as a response, and consists

of looking for the best trade-off between empirical risk and the capacity related term, which

together compose the right hand side of (1.9). Such trade-off is also referred to as the

bias-variance trade-off, with bias being related to the loss of predicting ability when a too

restrictive function space is imposed to the data (estimation error, or underfitting). The term

variance is associated with excess capacity allowed to the approximation function, which tend

to render it prone to the influence of noise and individual measurements (approximation error).

The SRM principle proposes a gradual search approach, in which the empirical risk functional

is minimized for increasing upper bounds on learning function capacities, as measured by the

quantity h. The SRM search strategy can be therefore described as a sequential minimization

of the empirical risk over a gradual nesting of growing hypotheses spaces H1 ⊂ H2 ⊂ · · · ⊂ HM :

minimize
f

Remp(yi, f))

subject to f ∈ Hm

m = 1, . . . ,M.

(1.10)

Chapter 1. Machine Learning and the Regularization Framework 11

A function f that minimizes the bound (1.9) for a space with given capacity hm is therefore

sought as the solution to the SRM problem. Calculating the capacity h of a given candidate

function is however not straightfoward, as discussed in (Vapnik & Sterin 1977). As such,

the formulation (1.10) is essentially more useful as a theoretical rather than computational

framework. Nevertheless, the work of (Evgeniou et al. 1999) established a monotonic relation

between a type of measure of function capacity Am and its norm ‖ · ‖K , if defined over a

Reproducing Kernel Hilbert Space HK (a concept to be introduced in the next section). Norms

in this space can be readily computed under some conditions. Therefore, in this space, Structural

Risk Minimization can be formulated as a set of optimization problems as the one following, for

increasing values of Am:

minimize
f∈HK

l∑

i=1

V (yi, f(xi))

subject to ‖f‖K ≤ Am

m = 1, . . . ,M.

(1.11)

The formulation above can be still re-arranged by defining the Lagrange multiplier λm and

squaring the inequality constraint for computational convenience, yielding:

minimize
f∈HK

∑

i=1

V (yi, f(xi)) + λm(‖f‖2k − A2
m)

subject to λm ≥ 0

m = 1, . . . ,M,

(1.12)

which can be equivalently written, for other increasing functions of the norm of f , as the

regularization problem (1.6).

Solving this equivalent SRM problem still involves finding minimizing solutions for a set of

λm values. SRM does not provide practical guidance on how to conduct such joint search, and in

practice one usually resorts to cross-validation strategies such as described in Chapter 2, which

are subject of investigation in this dissertation.

For more details on the characterization of the equivalence between SRM and Regularization

Theory, please refer to (Evgeniou et al. 1999, Evgeniou, Poggio, Pontil & Verri 2002).

1.2.2 Solution in Reproducing Kernel Hilbert Spaces

It turns out that the formulation in 1.12 admits a convenient solution approach, one that

leads to many learning task algorithms in an extensible framework. It allows for different data

Chapter 1. Machine Learning and the Regularization Framework 12

types as their input and different types of output predictions (depending on the loss function).

The condition to be fulfilled is that the target function should belong to a space of functions

referred to as Reproducing Kernel Hilbert Space.

A brief description of a Hilbert space is that it is a vector space, possibly infinite-dimesional,

which is complete and endowed with a dot product. By allowing infinite dimensional vectors,

a Hilbert space includes the possibility of treating functions as its elements. The completeness

property means that all Cauchy sequences in the space are converging sequences. One standard

Hilbert space is the N -dimensional Euclidean space R
N . Another commonly employed Hilbert

space is the space of all square integratable functions, L2. More details and reviews of these

concepts are provided in (Schölkopf & Smola 2002, Rifkin 2002) and references therein.

Going one step further, a Reproducing Kernel Hilbert Space, RKHS, is a Hilbert Space in

which the dot product can be computed by a kernel function k : X × X → R, k = k(x,x′)

that has the reproducing property. Such kernel function is defined as a dot product between

maps from input space X to a feature space H, typically in higher dimensions (even infinite

dimensional). Such mapping functions Φ(x) : X → H are referred to as feature maps. An

important property is that most kernel functions can be computed efficiently directly in the

data space X . The kernel function can therefore be written as

k(x,x′) ≡ 〈Φ(x) , Φ(x′)〉. (1.13)

The reproducing property, in turn, requires that an evaluation functional Fx : HK → R for

a point x given the vector k(x, ·) = kx(·) be defined such that

Fx[f] ≡ f(x) = 〈f ,kx(·)〉 ∀f ∈ Hk. (1.14)

This property is guaranteed by the Riesz Representation Theorem (Rudin 1986), and requires

that kx ∈ H is a bounded functional satisfying

∃M ∈ R < ∞ such that ∀x ∈ X , |Fx[f]| = |f(x)| ≤ M‖f‖k. (1.15)

The reproducing property can be also understood from an analogy with the Dirac evaluation

operator employed in linear time invariant systems theory. In that analogy, the dot product is

equivalent to the convolution operator, the kernel function kx(·) is the Dirac delta function at

x, and f = f(·) is the system input signal.

The Kernel function has a key role as providing a similarity metric between any two points.

Such output provides essential information for the training algorithms and target functions to

Chapter 1. Machine Learning and the Regularization Framework 13

operate. Perhaps the most widely used kernel function is the Gaussian kernel

k(x,xi) = e
−

‖x− xi‖2
2σ2 , σ > 0.

(1.16)

The Gaussian kernel, also known as a radial basis function (RBF), operates on Euclidian

distance between two points, being therefore translation invariant.

Another important kernel function is the sigmoid kernel, which is dependent of the Euclidian

dot product between two vectors, operating therefore on the projection between both vectors,

and being rotation invariant:

k(x,xi) = tanh(a〈x,xi〉+ b), a > 0, b > 0. (1.17)

Algorithms employing the sigmoid kernel are similar to multi-layer perceptron (MLP)

networks with one hidden layer.

A third canonical kernel is the linear kernel, which is defined as the direct dot product

between two vectors, 〈x,xi〉. Powers of the type (〈x,xi〉+ a)b are also valid polynomial kernels.

A quite remarkable property of kernel functions is that they do not necessarily have to

be defined in terms of R
N Euclidean vectors as their input. Data types such as strings,

trees (Schölkopf & Smola 2002, Shawe-Taylor & Cristianini 2004) and graphs (Vishwanathan,

Schraudolph, Kondor & Borgwardt 2010) can be also be defined as input elements, as long as a

valid kernel similarity function is defined. The learning algorithms defined by the regularization

framework are independent of the specific kernel employed, and different kernels functions for

different data types provide an important dimension of modularity to this machine learning

framework.

1.2.3 From Infinite-dimensional to l-Dimensional Optimization

Problem

The regularization problem (1.6) has up to now been defined as having a function f in a

Hilbert Space H as its target variable, and, as such, defines an infinite-dimensional optimization

problem. By endowing this space with a valid kernel function, and therefore defining f to belong

to an RHKSHK , an extremely important property can be derived from the so called Representer

Theorem (Wahba 1990). Applying this theorem allows the target function to be expressed in

terms of a combination of the l training examples, and reduces the problem from an infinite

dimensional space to an l-dimensional one, as we will see next. This property had historically

been employed in the context of spline approximation problems; later it has been extended by

Chapter 1. Machine Learning and the Regularization Framework 14

(Schölkopf, Herbrich & Smola 2001) to more general regularization formulations.

Theorem 1. Representer Theorem The optimal solution f∗ of the regularization problem

defined for f in a RKHS space Hk as 1

minimize
f∈Hk

l∑

i=1

V (yi, f(xi)) + Ω(‖f‖k) (1.18)

can be written as a finite linear combination of kernel functions:

f ∗(x) =
l∑

i=1

αik(x,xi) (1.19)

or, for f∗ written in the feature space,

f∗ =
l∑

i=1

αiΦ(xi). (1.20)

Put in words, as pointed out by (Rifkin 2002), the solution to the regularization problem can

be expressed as a hyperplane in feature space, corresponding to a certain linear combination of

the projection of the training examples.

Proof. The proof is by contradiction, and follows (Rifkin 2002) with a slight change in notation.

Suppose f∗ cannot be expressed as in (1.19). In this case, it must have an orthogonal complement

f⊥0 , written as

f∗ =
l∑

i=1

αiΦ(xi) + f⊥0 = f0 + f⊥0 , with 〈f0, f⊥0 〉 = 0. (1.21)

We will now evaluate this new candidate solution by means of the objective function of the

regularization problem (1.18). Take its first term, V (yi, f
∗(xi)), and consider the application of

the candidate function to any training point xj, which is defined as the dot product between

the two vectors in feature space. By the reproducing property, we have

1The subscript k on the norm of the function means that the norm is defined by the Kernel k.

Chapter 1. Machine Learning and the Regularization Framework 15

f ∗(xj) =

〈
l∑

i=1

αiΦ(xi) + f⊥0 , Φ(xj)

〉

=

〈
l∑

i=1

αiΦ(xi) , Φ(xj)

〉

+
〈
f⊥0 , Φ(xj)

〉

=

〈
l∑

i=1

αiΦ(xi) , Φ(xj)

〉

= f0(xj).

(1.22)

This shows that f⊥0 does not affect f∗ nor V (yi, f
∗(xi)), because of the orthogonality between

f⊥0 and any feature space representation of a training point xj, by the definition of f⊥0 . As

(Rifkin 2002) points out, this does not mean that f∗ and f0 are the same, but only that they

assume the same values at every training point xj, j ∈ 1, . . . , l.

Now, for the second term Ω(‖f‖K), by the Pythagoras theorem and the orthogonality

between f0 and f⊥0 , we know that

‖f∗‖K = ‖f0 + f⊥0 ‖K = ‖f0‖K + ‖f⊥0 ‖K , (1.23)

and by virtue of the triangle inequality we have

‖f∗‖K ≥ ‖f0‖K , (1.24)

with equality only holding for ‖f⊥0 ‖K = 0, that is, f⊥0 = 0.

Therefore, the minimum of the objective function requires that the orthogonal component

be absent, which shows that the optimal function can be expressed as (1.19). This result is

valid for any increasing function Ω(·) of ‖f‖K , and also implies that optimial solution is unique

when both V (yi, f
∗(xi)) and Ω(‖f‖K) are convex functions.

Because the solution is expressed as a linear combination of the training vectors, the solution

is often said to be in the subspace H0 spanned by the data kxi
, i = 1, . . . , l}. The vectors or

examples with non-zero combination coefficients are also known as the support vectors of the

solution, which are referred to as Support Vector Machines (Cortes & Vapnik 1995).

As a useful corollary of Theorem 1, when the regularization term is defined as Ω(‖f‖) = ‖f‖2,
the squared norm can be written as

Chapter 1. Machine Learning and the Regularization Framework 16

‖f‖2 = 〈f , f〉 =
〈

l∑

i=1

αiΦ(xi) ,
l∑

j=1

αjΦ(xj)

〉

=
l∑

i=1

l∑

j=1

αiαjk(xi,xj) = αTKα. (1.25)

Therefore, for the target solution in the form f ∗(x) =
∑l

i=1 αik(x,xi), we can rewrite the

regularization problem as

minimize
α∈Rl

l∑

i=1

V

(

xi ,

l∑

j=1

αjk(xi,xj)

)

+ λαTKα, (1.26)

which is a convex optimization problem defined in terms of the l-dimensinoal weight variable

α = (α1, . . . , αl).

1.3 Regularized Least Squares

The regularization problem has been defined over an RKHS, which, through the Representer

Theorem, allowed it to be reduced to an l-dimensional convex problem. Now, by using the

different loss functions (defined in section 1.1.1), practical machine learning algorithms can

be derived. For the loss function V (yi, f(xi)) = (yi − f(xi))
2 and knowing that f ∗(x) =

∑l
i=1 αik(x,xi), we obtain

α∗ = arg min
1

l
(y −Kα)T (y −Kα) + λαTKα, (1.27)

where K is an l × l matrix defined by kij = k(xi,xj), known as the Gram matrix, and y is the

label vector y = [yi, . . . , yl]. The right hand side on (1.27) is a quadratic problem in α also

known by the names of Ridge Regression and Least Square SVM (Suykens & Vandewalle 1999).

This problem can actually be solved in closed form, by calculating its derivative with respect to

α and setting it to zero:

1

l
(y −Kα∗)T (−K) + λKα∗ = 0. (1.28)

Solving 1.28 for α we obtain:

α∗ = (K+ λlI)−1y. (1.29)

Therefore the solution is defined as the inverse of the kernel Gram matrix added by a constant

diagonal matrix for better conditioning. Such diagonal matrix is referred to as the Ridge.

Chapter 1. Machine Learning and the Regularization Framework 17

1.4 Support Vector Machines

The application of the regularization framework to a different loss function leads to one of

the most widely known and adopted machine learning algorithms, Support Vector Machines

- SVM. By applying the hinge loss function V (yi, f(xi)) = (1 − yif(xi)) and the expansion

f ∗(x) =
∑l

i=1 αik(x,xi), the regularization objective function can be rewritten as

α∗ = arg min
1

l

l∑

i=1

|1− yif(xi)|+ + λαTKα. (1.30)

Each hinge loss function | · |+ = max(0, ·) can be transformed into a linear inequality

constraint for each training point, by introducing a positive slack variable ξi, which leads to

the equivalent problem:

minimize
α∈Rl

1

l

l∑

i=1

ξi + λαTKα

subject to yiα
Tki ≥ 1− ξi ,

ξi ≥ 0,

(1.31)

where ki is the i-th column (or row) of the symmetric Gram matrix K.

Looking at the resulting formulation, it can be seen that (1.31) is a convex problem, with a

quadratic objective function and linear inequality constraints. In that case, optimization theory

tells us that strong duality holds with have zero duality gap between the primal and dual optimal

values. It turns out (see (Rifkin 2002) for details) that the dual program is also a quadratic

program, however with simpler constraints:

maximize
β∈Rl

1Tβ + βTQβ

subject to
l∑

i=1

yiβi = 0 ,

0 ≤ βi ≤
1

l
,

(1.32)

where

Q = Y

(
K

2λ

)

Y ,

α∗ =
Yβ∗

2λ
,

Y = diag(y).

(1.33)

Chapter 1. Machine Learning and the Regularization Framework 18

Historically, SVMs have been firstly proposed following a geometrically inspired derivation

with the objective of finding a maximal margin separating hyperplane (Cortes & Vapnik 1995)

between the training data. In that case, the maximization of the margin was equivalent to

minimizing a term proportional to the square of the normal vector weights of the hyperplanes,

‖α‖2 = αTα, which corresponds to the regularization term in the case of a linear kernel. The

approach was then extended to allow for the use of nonlinear kernel functions to include penalty

terms for misclassified training points. This later formulation can now be interpreted as a special

case of the regularization framework.

When compared to Regularized Least Squares, Support Vector Machines tend to produce

solutions which are more sparse in terms of the expansion coefficients of the optimal function

in its training examples. This fact is known to be caused by the 1-norm characteristic of the

hinge loss function.

1.5 Computational Considerations

Resolving the RLS problem involves the inversion of a matrix of order l - the number of

labeled examples. This operation has complexity of O(n3) with the Gauss-Jordan elimination

method as the straight forward implementation, being reduced to O(n2.3) with more modern

implementations, such as the one presented in (Coppersmith & Winograd 1990). Because

of the growing sizes of datasets being targeted in learning problems (for example resulting

from computational vision applications), there has been new research in methods for defining

matrix approximations to reduce the equivalent order of the dataset matrix. Such research

focuses in methods for optimaly defining column sampling methods and other types of spectral

decompositions, and looks at the effects caused by such reduction in the resulting function

prediction capability (Talwalkar 2010). These methods become even more relevant in the

semi-supervised setting, where the resulting matrix is of order l + u, with u, the size of the

unlabeled examples, typically much larger than l.

For the SVM solution computation, there has been a large volume of specific research,

focusing at different optimization strategies and algorithms. Traditionally, the solution has

been predominantly calculated in the dual formulation. The näıve computation in that format

results in O(l3) time complexity, and O(l2) space complexity, as the kernel matrix is typically

pre-computed. The first significant improvement in SVM computation was proposed by (Platt

1999) and achieved performance O(n2d), where d is the number of dimensions of the data, via

a decomposition method that calculates a pair of Lagrange multipliers at each iteration. This

Chapter 1. Machine Learning and the Regularization Framework 19

method, and the ones of (Joachims 1999), with similar complexity characteristics, were the

reference solvers for SVM problems during a significant part of SVM history.

The solution for SVM in its primal formulation was overlooked until (Chapelle 2007), that

argued that both forms led to essentially the same complexity. The dual solution is thought to

have been preferred because, while the primal formulation involves l inequality constraints, the

dual formulation restructured the problem with simpler box restrictions. The primal approach,

as proposed by (Chapelle 2007) reformulated the problem as an unconstrained problem, and

allowed achieving control in the suboptimality of the primal α variable via early stopping, which

is a desirable characteristic in many large-scale problems. Additional methods involving other

approaches, such as stochastic gradient descent method, have been proposed (Shalev-Shwartz,

Singer & Srebro 2007), which allow trading off accuracy against computational time with

beneficial rates (even sublinear in the number of examples for some cases), while reducing

drastically the space complexity requirement. A review these methods and algorithms, with a

focus on their performance characteristics when applied to large scale problems, along with a

summary of their complexity, is given in (Menon 2009).

Chapter 2

Hyper-parameter Optimization

2.1 Introduction

We have seen that the previous algorithms and their optimization formulations provide a

well defined way to determine the optimal combination weights of basis functions that minimize

the regularized objective function as a consequence of the representer theorem. However, these

formulations take important parameters as given, such as the regularization constant λ and any

of the parameters of the kernel basis functions. Because these parameters are not optimized in

the training stage, they are referred to as hyper-parameters.

Although the weight coefficients α are assured to be optimally determined according

to the regularization function at the training stage, the influence of the variation of the

hyper-parameter values θ on the performance of the algorithm can be easily observed.

Therefore, in the process of finding a good function approximation for the problem at hand, a

complementary stage, which we refer to as hyper-parameter optimization, is required. Taking

this into account, the function we need to determine depends not only on the data samples, but

also on the weight coefficients and the hyper-parameters, f(xi, αi, θ).

Hyper-parameter optimization can also be understood as part of a larger problem, referred

to as model selection (Hastie, Tibshirani & Friedman 2001). Model selection is a broad term

which might include the initial definition of the learning algorithm to be adopted, as well as the

definition of the types of kernel functions to be considered as basis for the function approximation

expansion. In this text, we are considering that these definitions have been established a priori,

as a result of prior knowlege of the problem at hand.

To guide the search for optimal hyper-parameters, one needs to define an objective function

and a search strategy. As with the training stage, the overall hyper-parameter optimization

process is essentialy guided by information available from the underlying process which we want

20

Chapter 2. Hyper-parameter Optimization 21

to approximate, provided as a collection of data samples. Because the ultimate objective of the

learning process is to assure that the function learned will be able to generalize to future and

unseen data, one approach to model selection is to test the performance of the function against

data to which it did not have access to during the training stage. In order to assure such level

of independence, one usually splits the examples set in different partitions, such as training,

validation and test sets. In the most strict case, the training set is used for the optimization

of the weights, the validation set is aimed at optimizing hyper-parameters, and the test set

is used for the evaluation of the generalization of performance of the final function model.

The actual allocation of such partition will mostly depend on the amount of data available, the

computational complexity supported, and the statistical properties desired for the final estimate.

In the next sections, we will describe different aspects to this problem, attempting to provide an

optimization approach for the selection of hyper-parameter values with some candidate objective

functions, while looking at search strategies that make the most efficient use of the available

data.

2.2 Model Assessment

The search for better hyper-parameters can be conducted if one provides an estimate for the

performance of the learned function over independent data. The proposition of such estimate

faces two main questions: “what are the metrics to quantify the predictive quality of the

function?” And “how does one define the data partition between the training, validation and

test activities?” This is the subject of the next sections.

2.2.1 Validation and Test Functions

The definition of the validation function follows essentially the same general approach used

for the loss function for the training stage, where one typically accounts for the errors or

deviations in the prediction of the candidate function, as compared to the actual value of the

samples target variable. As we have seen, such functions are slightly different for Regression

and Classification tasks.

Regression

In Regression, one wishes to evaluate the function prediction difference to the actual

prediction variable, for each future data point, as a continuous variable. Therefore, most

functions accumulate deviations from the true value to the prediction function according to

Chapter 2. Hyper-parameter Optimization 22

a distance norm. For the one-dimensional space of the output variable y, the squared error,

(f(x)− y))2, or the absolute error, |f(x)− y|, are commonly adopted.

Variations of such error functions can be defined according to special caracteristics of the

problems at hand, as, for example, providing ǫ-tolerance regions, or introducing max norms.

Classification

In Classification, for the reference binary case, a common characteristic is that the positive

and negative classes might (and commonly do) have different penalties for errors associated

to each situation. For example, erroneously assigning a class as negative (false negative error)

might be much more harmful (or costly) than an false positive error. A practical example is

in medical diagnosis, where the error of not detecting a disease in a screening test must incur

a much higher penalty. Therefore, it is usual that both types of errors are accounted for with

different weights, as will be described shortly.

The loss function Lval(f(x), y) = fval(tp, fp) is defined as function of the following key

quantities:

❼ np, number of positive examples;

❼ nn, number of negative examples;

❼ tp, number of positive examples correctly classified: tp =
∑n

i:y=+1 s(f(xi), yi), with n being

the total number of examples;

❼ and fp, number of negative examples incorrectly classified: fp =
∑n

i:y=−1[1− s(f(xi), yi)].

In the last two cases, the function s(f(xi), yi) is 1 if the data is correctly classified, and 0

if it is incorrectly classified. With these quantities, some additional validation functions can be

defined:

Error Rate er = np−tp+fp
n

the percentage of incorrect prediction

Weighted Error Rate wer = (np−tp)+ηfp
np+ηnp

defined in terms of the ratio η of the cost of
negative to positive misclassification

Precision pr = tp
tp+fp

percentage of positive classifications that are
correct

Accuracy acc = tp+tn
tp+fp+tn+fn

percentage of all classifications that are
correct

Recall re = tp
np

percentage of positive examples that are
correctly classified

F-Measure F = 2 pr re
pr+re

= 2tp
np+tp+fp

is the harmonic mean of precision and recall

Table 2.1: Validation Functions for Classification

Chapter 2. Hyper-parameter Optimization 23

Another validation function that is sometimes referred to is the Area under ROC Curve,

where ROC stands for Receiver Operating Characteristics. Such metric yields a number between

0.5 and 1, and is statistically equivalent to the probability that a classifier will assign a higher

value to a positive instance, higher than a randomly chosen negative. An extensive description

of this function is presented in (Fawcett 2006).

Smooth Sigmoidal Approximation for Classification Validation

The functions defined for classification evaluation in the Table 2.1 are functions of the integer

count of correct and incorrect predictions, as provided by the discrimination function s(f(xi), yi).

This function is not continuously differentiable, a fact that might exclude some continuous search

algorithms. In some cases, a smooth approximation for the s function,

s̃(f(xi, yi)) =
1

1 + e−ρyif(xi)
, (2.1)

is adopted, where the parameter ρ regulates the smoothness of the aproximation.

2.2.2 Bias-Variance Decomposition

The second question to be answered is related to the different ways of partitioning the data

between training, validation and testing activities. The analysis of a fundamental characteristic

of the generalization error, the bias-variance decomposition, provides important elements to

guide such partition, as described in (Hastie et al. 2001). To build a reference model, we assume

a square loss function, with input measurements modeled as y = f(x) + ǫ, with V ar(ǫ) = σ2
ǫ .

That is, input values are the true function values plus a measurement error following a Gaussian

distribution.

The expected error is therefore defined as the expectation of the squared difference between

the two quantities. By expanding the square and applying mathematical equivalences for the

variance, a decomposition of the error expression can be produced:

Rsq(x0) = E[y − f(x0)]
2

= σ2
ǫ + [Ef(x0)− f(x0)]

2 + E[f(x0)− Ef(x0)]
2

= σ2
ǫ + Bias2[f(x0)] + Var[f(x0)]

= Irreducible Error + Bias2 + Variance.

(2.2)

The first term, the variance of the measurements, cannot be eliminated unless σǫ = 0. The

second term is the squared bias, that is, the amount that the estimation is expected to differ

Chapter 2. Hyper-parameter Optimization 24

from its true mean. The last term is the expected squared deviation around its true mean. The

bias term is related to what is defined as the approximation error, which is caused by possible

constraints on the function model imposed by the approximation. The variance term is related

to the estimation error, which is caused by an occasional excess of adaptation of the model

to peculiarities of the sample, and the additional curvature introduced in other regions of the

function image as a result of that effort. Generally, we can say that the more complex the

function model is allowed to be, the lesser will be its bias, and the higher will be its variance

component.

Optimism in Training Error

When empirically evaluating the error performance of the approximation function over its

training set, it can be shown that such estimate will almost invariably be an optimistic estimate

of the true generalization error. An intermediate approximation can be statistically derived if

one defines the quantity Rin, the in-sample error, to be the expectation over additional y values

(mathematically) taken at the training points. The optimistic excess can be estimated through

the definition of a factor Rgap such that Rin = Remp+Rgap. Such decomposition is analogous to

the Structural Risk Mininimization bound seen in Chapter 1. According to (Hastie et al. 2001),

using Rin thus defined, the expectation of the optimistic factor can be defined, for different loss

functions including square loss and 0-1 losses, as:

E[Rgap] =
2

n

n∑

i=1

Cov[f(x, y)]. (2.3)

This result has an interesting interpretation (Hastie et al. 2001): it tells that the amount

by which the empirical risk underestimates the true error depends on how strongly yi affects its

own predition. As a reference model, such term can be obtained for the simplified case where

the approximation is defined as a linear fit with b basis functions as being equivalent to b σ2
ǫ .

E[Rin] = E[Remp] + 2
b

n
σ2
ǫ . (2.4)

This aproximation, referred to as the Cp (conceptual predictive) statistic, although derived

for the restricted class of linear functions, is in qualitative agreement with the risk bounds

defined in Chapter 1. It is increasingly dependent of a quantity related to function complexity,

and decreasingly related to the number of examples provided for the training.

This statistic is also the basis for the In-Sample class model assessment criteria that will be

mentioned next.

Chapter 2. Hyper-parameter Optimization 25

2.2.3 Partition Strategies

We now look at different partition strategies and how they can be used to allow for the

estimation of the generalization error.

Hold-out

The simplest strategy for partitioning the data set is to randomly assign a given percentage

of samples for the three tasks we have mentioned (training, validation and test), for example,

50, 25 and 25 percent, respectively. One can make a quick qualitative analysis on the bias and

variance characteristics of such split: as the number of data samples available for training in

this case is only half of the total, a significant bias can be incurred, as compared to a case where

the majority of data would be used. In terms of variance, because only one trial or random split

is employed, one might expect that the output hyper-parameters and performance estimates to

be reasonably dependent on the specific data partition that has been drawn.

In response to these characteristics, and seeking to better explore the information available

at any example set, two other broad strategies have been devised, In-Sample Estimation and

Cross-Validation. A common characteristic to both is that they attempt to eliminate the need

for a separate validation set.

In-Sample Prediction Error Estimation

In-sample estimation criteria look at statistical properties of the models and error loss

functions to arrive at an estimate of the optimism factor between the empirical error observed

and the expected generalization error. Such factors are similar to the one mentioned previously

for the Cp statistic. Therefore, for equivalent empirical error performances obtained using a

given function, in-sample estimation criteria will favor the adoption of simpler function classes.

One widely referred of such criteria, being recognized as the first for this purpose, is the

Akaike Information Criterion - AIC (Akaike 1973). The AIC, in its general form, is defined

in terms of a log likelihood loss function and a term that is increasing with the number of

parameters. For a Gaussian model, it can be expressed as

AIC(θ) = Remp(θ) + 2
b(θ)

n
σ2
ǫ

(2.5)

which coincides with the Cp statistic. While for linear models b(θ) is the direct number of basis

functions used to fit the data, for nonlinear or more complex models, a corresponding effective

number of parameters quantity needs to be defined, which might depend on the hyper-parameter

Chapter 2. Hyper-parameter Optimization 26

vector θ. A brief discussion on the calculation of effective number of parameters is found in

Section 7.6 of (Hastie et al. 2001).

Other widely mentioned criteria are the BIC (Bayesian Information Criterion) and the MDL

(Minimum Description Length). Both are defined from different framework approaches (the

MDL is derived from an information theoretic optimal coding principle), but arrive at similar

formulations. Their main difference lies in relative emphasis towards simpler or more complex

functions. Compared to AIC, BIC and MDL provide more severe penalties for complexity,

therefore favoring simpler models. Please refer to (Hastie et al. 2001) for more detailed exposition

of each criterion.

Although these criteria are valuable for suggesting insights and providing some degree

of relative merit between different models, their full application to models with non-linear

dependencies on their parameters is limited, as their derivation in such cases have to be specific

and are usually non-trivial.

2.2.4 Cross-Validation

A simple and general method for estimating generalization performance is based on assigning

rotating partitions from the same overall training set sub-partitions for training and validation.

This method effectively uses training data playing both the training and validation roles, while

assuring the independence condition. The method is also generally and independently applicable

to any type of non-linear dependency between the function and its hyper-parameters. More

formally, for the set of n training examples one can define a mapping κ(t) : {1, . . . , n} →
{1, . . . , T} which will assign each data to a given validation partition t, given an initial random

assignment. The negative sign on the partition index denotes the exclusion of that element

from the set. The T partitions, or folds, are assumed to be of the same size. The procedure

consists in, for a given vector of hyper-parameters θ, execute T trainings with training subsets,

each composed of T−1
T

n examples, and n
T
examples as validation elements, where the validation

elements at each fold are defined by the κ(t) mapping. The cross validation estimate can be

computed by averaging the accumulated loss over the T partitions over which it was applied, as

CV (f(xi, α, θ)) =
1

T

T∑

t=1

Lval(yi, f
−κ(i)(xi, α, θ)). (2.6)

This procedure is known as k-Fold Cross Validation (Hastie et al. 2001). We have replaced

k with the index t to avoid notation conflict with the kernel function variable. In the extreme

case where the number of folds T is equal to the number of examples n, the procedure will be

Chapter 2. Hyper-parameter Optimization 27

equivalent to running n model trainings with n−1 data examples, which are then tested against

the single excluded example at each fold. In this case, the cross validation procedure is referred

to as Leave-One-Out Cross Validation (LOOCV) (Hastie et al. 2001). This method is known

to provide an almost unbiased estimation, as it consistently uses the largest amount of training

data available for each training, being closest to the final model in terms of use of training data.

A side effect is, however, felt in opposite direction, when one looks at the resulting variance

behavior. Because the T = n training sets are so similar amongst themselves, there will be no

averaging or compensatory effects between different training split characteristics, as compared

to what one would have with larger validation (and smaller training) splits. Moreover, a concern

that is intuitive, and often follows the presentation of LOOCV, is its computational cost, as its

calculation would in theory involve running the same number of training sessions as the number

of examples. Fortunately, as we will see in the next session, there are closed-form estimates for

some cross validation models which can be obtained after a single training session with all the

data.

2.2.5 Leave-One-Out Bounds

One important fact about some regularization based models is that their optimality

conditions, either before or after the optimization problem has been solved, can be written

as a system of linear equations. This is immediately verifiable for the Regularized Least

Squares algorithms (and their related Least Square SVM method), and is also true for SVM’s

(Keerthi, Sindhwani & Chapelle 2007). It turns out that due to the linearity, and given

the canonical leave-one-out split structure, where a single example is extracted at each turn,

a closed form expression for the difference in prediction can be derived. See (Cawley &

Talbot 2004, Rifkin 2002, Rifkin & Lippert 2007). We will present the resulting expression

for the case of Regularized Least Squares.

LOOCV Bounds for Regularized Least Squares

Remembering the notation for Regularized Least Squares, we have that a solution to the

training problem is defined by the linear system [K + λI]α = Cα = y. We will denote the

resulting function trained over the whole training set (without excluding an example) as fS,

and as f
(−i)
S the function trained with the training set, but excluding the ith example.

The ith residue, or the difference between the target variable and the predicted value for the

ith LOOCV round can be show to be calculated exactly as

Chapter 2. Hyper-parameter Optimization 28

LLOOCV
val (xi, yi) = yi − f

(−i)
S (xi) =

yi − fS(xi)

1− C−1
ii

= ri , (2.7)

which, with further manipulation, as described in (Rifkin & Lippert 2007), can be also written

as

ri =
αi

C−1
ii

. (2.8)

Thus, the ith residue is the ratio of its kernel weight component to C−1
ii , the ith element of

the diagonal of the inverse of the training matrix. An extension of this result for the case of

k-Fold Cross Validation (for T < n) is provided in (Pahikkala, Boberg & Salakoski 2006), with

an increase in computational complexity as the size of the validation set at each fold increases.

PRESS Criterion

The PRESS criterion (Predicted Residual Sum of Squares) (Allen 1974) is defined as the

sum of the squared differences from the target variable to its leave-one-out prediction. It is a

continuously differentiable function, closely related to the leave-one-out partition, defined as

PRESS(θ, yi, f(xi)) = CV (f(xi, α, θ)) =
n∑

i=1

[yi − f
(−i)
S (xi)]

2 =
n∑

i=1

r2i . (2.9)

It can be applied to both regression and classification problems if the output function for

the latter is used before the application of the hard discriminant function.

2.3 Formulation as an Optimization Problem

The validation process, with the objective of searching for appropriate hyper-parameters

according to a validation merit function, can be also viewed as an optimization problem. In

(Bergstra & Bengio 2012), such problem is addressed from an expectation point of view, as

θ(∗) = arg min
θ∈Θ

Ex[Lval(y, f(x, θ, α))]. (2.10)

Because the predicting function is typically found as a result of an optimization procedure

during trainining, problem (2.10) ultimately involves optimizing an ouput from another

optimization process. If the above expectation is replaced with its empirical approximation

through cross-validation, this problem can be generally represented in a bi-level optimization

form, as

Chapter 2. Hyper-parameter Optimization 29

minimize
αt, θ

T∑

t=1

CV (f−κ(i)(xi, αt, θ))

subject to

αt ∈ arg min
αt

{V (αt, θ,xκ(i) , yκ(i))}

θ ∈ Θ

i = 1 . . . n; t = 1 . . . T.

(2.11)

Such formulation, despite not being usually amenable for a direct numerical implementation

or solution, is useful as a reference framework for alternative castings of the hyper-parameter

optimization problem that we are addressing.

2.4 Hyper-parameter Search Strategies

In the following sections we present some relevant search strategies that can be applied to

problem (2.11), namely exhaustive grid search, random search, and gradient optimization-based

approaches.

2.4.1 Grid Search

Grid search is the simplest and perhaps the mostly used search strategy when the number of

hyper-parameters is low. This is usually the case for the simplest SVM classifier models, where

the regularization constant λ and one or two kernel parameters need to be optimized. Usually,

the scale variation of hyper-parameters is taken to be logarithmic, and a grid with a pre-specified

resolution is defined, for example λ ∈ {2−15, 2−13, . . . , 23, 25}; σ ∈ {2−15, 2−13, . . . , 21, 23}.
Therefore, for the general search space Θ = Θ1 × . . . × Θh, with corresponding cardinality

|Θ| =
∏h

i=1 |Θi| it can be easily seen that the computation complexity for grid search is

exponential in the number of hyper-parameters. Therefore, grid search is an uninformed or

blind-search algorithm that has its application limited to lower dimensional problems.

2.4.2 Random Search

The use of random search has been recently proposed by (Bergstra & Bengio 2012) as an

alternative to higher dimensional problems where simplicity of implementation is still a foremost

concern. It is based on the key observation that a uniform distribution of points in a higher

dimensional space is more likely to evenly explore such space, given a limited number of points.

Chapter 2. Hyper-parameter Optimization 30

This is in contrast with grid search, as in this later case, the search is conducted by iterating

sequentially over each dimension, and the algorithm will usually exhaust the search in a given

dimension before starting another. In (Bergstra & Bengio 2012) the authors observe that, in

higher dimensional hyper-parameter spaces, it is likely that there will be a number of parameters

which will have lower impact in the function performance. Such spaces, therefore, are spaces with

a lower effective dimensionality, and by exporing it according to uniform distributions of points,

“Random Search has the same efficiency in the relevant subspace as if it had been used to search

only the relevant dimensions”. Randomly generated points provide a more dense exploration of

a dimension that is more relevant to the objective being optimized, or for the dimensions where

variables have a lower level of coupling. The generation of random points is simply performed

according to a uniform distribution random generator, scaled in each hyper-parameter dimension

by the parameter limits:

θj = θminj
+ (θmaxj

− θminj
)U(0, 1); j = 1 . . . h . (2.12)

The quasi-uniform random exploration of the search space has the additional advantage of

allowing a more even balance between computational effort and exploration in each dimension,

thus permitting more control and early stopping in the search. Because the generation and

traversal through the points is independent, it also enables a simple parallel computing solution,

as no state control or coordination needs to be implemented.

2.4.3 Gradient Optimization

Gradient optimization uses information from the rate of decay of the objective function in

each dimension, allowing the definition of a direction of assured local descent in the search space.

The convergence to a global optimal solution is not generally guaranteed. There is a wide body

of methods and literature on different gradient-based methods, which depend, amongst other

factors, on the mathematical properties of its objective function (convex, quadratic, etc), types

of constraints (box, linear, semi-definite matrices, etc). The reader is referred to the excellent

books (Boyd & Vandenberghe 2004, Nocedal & Wright 2006) for further information about

this important class of optimization methods. In the following we proceed to the derivation of

the gradients for the leave-one-out validation bound function with respect to its regularization

and kernel hyperparameters. These gradients can be provided to different general optimization

solvers, as done in the Computational Experiments section presented in Chapter 4.

Chapter 2. Hyper-parameter Optimization 31

LOOCV Gradients

Taking advantage of the facts that a closed-form, exact bound, can be derived for the

leave-one-out cross validation strategy, and that PRESS is a continuously differentiable criterion,

we now derive its gradient with respect to its hyper-parameters θ, according to the exposition

in (Cawley & Talbot 2007). Re-stating the definition of the criterion, we have

J(θ) =
1

2

n∑

i=1

r2i , with ri =
αi

C−1
ii

. (2.13)

Applying the chain rule and the product (division) rule on the residue, yields

∂J(θ)

∂θj
=

l∑

i=1

∂J(θ)

∂ri

∂ri
∂θj

, with (2.14)

∂ri
∂θj

=
∂αi

∂θj

1

C−1
ii

− αi

(C−1
ii)

2

∂Cii
−1

∂θj
and

∂J(θ)

∂ri
= r−i

i =
αi

C−1
ii

. (2.15)

The derivatives needed are now ∂αi/∂θj and ∂C−1
ii /∂θj. For the inverse matrix derivative,

we obtain1

∂C−1

∂θj
= −C−1∂C

∂θj
C−1 . (2.16)

For the α derivative, knowing that α = C−1Y, it is possible to write

∂α

∂θj
=

∂C−1Y

∂θj
= −C−1∂C

∂θj
C−1Y = −C−1∂C

∂θj
α , (2.17)

so that all the derivatives are functions of the C matrix derivative.

Going one step further, for the regularization parameter θj = λ we have:

∂C

∂λ
= I , and (2.18)

∂α

∂λ
= −C−1 α. (2.19)

For the kernel parameters θj = θK we can generally write:

∂C

∂θK
=

∂K

∂θK
(2.20)

1This identity can be easily derived by applying the product differentiation rule to the product (CC
−1)′ = (I)′

and isolating (C−1)′.

Chapter 2. Hyper-parameter Optimization 32

and taking this definition, for example θj = σ, the parameter for the Gaussian kernel,

∂k(xi,x)

∂σ
= k(xi,x)

‖xi − x‖2
σ3

, (2.21)

which concludes the derivation of the LOOCV validation function gradient with respect to its

hyper-parameters.

2.5 Multiple Kernel Learning

A different approach to selecting or searching for the optimal parameter values for a given

kernel function is called Multiple Kernel Learning (MKL). In MKL, the kernel function kη

is defined as a combination fη of other base kernel functions km, which might have different

functional formats and parameter values, according to

kη = fη({km(xm
i ,x

m
j)}qm=1) . (2.22)

The problem in MKL is defined as finding the optimal combination of such base kernels such

that a target function related to the validation error is minimized. One possible function is the

linear combination, written as

kη =

q
∑

m=1

ηmkm(x
m
i ,x

m
j), η ∈ R

q . (2.23)

The MKL problem relies on finding the values of η = (η1, . . . , ηq) ∈ R
q. A wide variety of

combination strategies has been recently proposed by a number of authors. A comprehensive

review and a taxonomy of the aspects explored in different combination strategies is provided

in (Gönen & Alpaydın 2011). An application of this approach will be provided in more detail

in Chapter 4.

Chapter 3

Semi-supervised Learning: Manifold

Regularization

3.1 Semi-supervised Learning

As briefly introduced in Chapter 1, semi-supervised learning is defined as the ability to use

both labeled and unlabeled data in order to improve the predictive or adaptive ability of an

algorithm. If one looks at the practical aspects of collecting and providing training data, it

is easy to conclude that the cost of obtaining unlabeled data is much smaller than its labeled

counterpart. Not only unlabeled data do not require a supervisor or expert to define their labels,

such data might be autonomously collected by the machine itself during its operation. That

idea leads to the notion of continuous learning, and alludes to the way humans are believed to

process data in order to improve their experience and understanding, being constantly exposed

to natural stimuli. As a result, as pointed by (Belkin, Niyogi & Sindhwani 2006), “if we are to

make progress in understanding on how natural learning comes about, we need to think about

the basis of semi-supervised learning”.

Moving to a mathematical interpretation, we have already modeled the learning problem as

that of establishing a probabilistic functional relationship between two variables f : X → Y .

Equivalently, we are interested in learning the joint probability distribution P (x,y), which

can be decomposed as P (x,y) = P (x)P (y|x). In that case, one might attempt to use the

information present on the unlabeled data to learn the base distribution P (x). The validity

of such principle, however, relies on some assumptions, formulated by most semi-supervised

learning approaches. They are:

❼ Cluster assumption: points in the same cluster are likely to be of the same class.

33

Chapter 3. Semi-supervised Learning: Manifold Regularization 34

❼ Low density separation: the decision boundary should lie in a low-density region.

❼ Semi-supervised smoothness assumption: if two points x1,x2 are close in a high-density

region, then so should be the corresponding outputs y1, y2.

❼ Manifold assumption: high-dimensional data lie (roughly) on a low-dimensional manifold.

The Manifold Regularization approach followed in this text relies on the last assumption,

and is addressed in the following sections. For an interesting discussion on each of the other

assumptions, please refer to (Chapelle, Schölkopf & Zien 2006).

3.1.1 Transductive and Inductive Learning

Semi-supervised learning algorithms can also be described as being transductive or inductive,

according to the way they are expected to make their predictions. In inductive type algorithms,

the function learned is presented with both labeled and unlabeled data, and it is expected to

be able to generalize data to which it did not have access at training time. Its performance

is measured fundamentally on its success on the unseen data. Transductive type algorithms,

in turn, are given both labeled and unlabeled data, but are only expected to achieve good

performance in making correct predictions on the class of the unlabeled data to which they had

access at training time. In transductive algorithms, the output function learned does not even

need to be (and often is not) defined for unseen data. Transductive algorithms are defined as such

in response to what became to be known as Vapnik’s principle (Chapelle et al. 2006): “When

trying to solve some problem, one should not solve a more difficult problem as an intermediate

step”. Therefore, one can understand the goal of transductive learning as a less complex one,

to be adopted if the application under consideration and its prediction regime allows for its

use. In this work, however, we are interested in Manifold Regularization as an inductive type

of algorithm, capable of generalizing well for future or unseen examples. The definitions that

follow will be according to the work presented in (Belkin et al. 2006).

3.1.2 The Manifold Assumption

The Manifold Assumption is at the core of the Manifold Regularization approach. One

should therefore take a moment to examine its validity. According to (Belkin et al. 2006), “in

many natural situations, it is clear that the data are supported on a low-dimensional manifold.

This is often the case when points are generated by some physical process. For example, in

speech production the articulatory organs can be modeled as a collection of tubes. The space of

Chapter 3. Semi-supervised Learning: Manifold Regularization 35

speech sounds is therefore a low-dimensional manifold parameterized by lengths and widths of

the tubes. Photographs of an object from various angles form a three dimensional submanifold

of the image space. In other cases, such as in text retrieval tasks, it may be less clear whether

a low-dimensional manifold is present”. This is the same reasoning behind the approach of

the inverse problem, where a given set of natural laws are supposed to restrict the space of

information generated by the phenomenom under study. Such Manifold Assumption therefore

appears to have place in many applications.

The Manifold Assumption is also related to a key challenge in statistical learning, which

is the curse of dimensionality. As the number of dimensions considered for a given problem

grows, the “volume of ignorance” in that space grows in exponential proportion. It means

that the number of data points required to maintain a given information density also grows

exponentially. As pointed out in (Chapelle et al. 2006), “this is a problem that directly affects

generative approaches that are based on density estimates in input space. A related problem

of high dimensions, which may be more severe for discriminative methods, is that pairwise

distances tend to become more similar, and thus less expressive. If the data happen to lie on

a low-dimensional manifold, however, then the learning algorithm can essentially operate in a

space of corresponding dimension, thus avoiding the curse of dimensionality”.

3.2 Manifold Regularization

Manifold Regularization was proposed by (Belkin et al. 2006) and consists fundamentally in

extending the Regularization Learning approach to take in account both labeled and unlabeled

data in an inductive way. It achieves this goal by including an additional regularizer which

imposes the function being learned to be smooth on the estimated manifold of the data, thereby

enforcing the manifold and the semi-supervised smootheness learning assumptions. In this

setting, the regularization problem is expressed as

minimize
f∈HK

l∑

i=1

V (yi, f(xi)) + γA‖f‖2K + γI‖f‖2I (3.1)

where the ‖ · ‖I norm refers to the norm of the function in the intrinsic subspace, which is the

space defined by the manifold approximation, and γA and γI are hyperparameters. The original

space, over which the predicting function is defined, is called the ambient space, and its norm,

once the function is assumed to be in a RKHS, can be calculated as previously defined.

Two main questions should arise while looking at the Manifold Regularization problem and

trying to reach a solution which can be computed from data. How does one estimate the

Chapter 3. Semi-supervised Learning: Manifold Regularization 36

manifold from the data? And how does one evaluate the smoothness of the function over such

manifold?

According to (Belkin et al. 2006) the manifold structure can be empirically estimated from

available data through the graph Laplacian associated with the data. The graph Laplacian is a

matrix which maps the data as a graph, according to a data neighborhood association criterion,

thereby producing a distance criteria over the manifold space. The next subsections detail the

computation of such matrices.

The smoothness of the candidate function over that manifold can be evaluated by associating

the value of the function according to neighboorhood information given by the manifold

aproximation graph (Laplacian matrix). As an intermediate step, a data adjacency matrix

W is defined, whose elements are non-zero for pairs of points which are evaluated to be

neighbors (according to a criterion to be defined soon). Then, the smoothness penalty can

be estimated by summing the contribution of all pairs of data considered to be neighbors

(the non-zero matrix elements wij), weighted by the difference of the target function value

for the two points of the pair. The penalty thus defined tells the function not to assume highly

different values along its neighbor points, and, as such, enforces the function smoothness over

the approximated manifold. Adopting such penalty definition as the Manifold Regularization

term, the regularization problem becomes

minimize
f∈Hk

l∑

i=1

V (yi, f(xi)) + γA‖f‖2K +
γI l

(u+ l)2

l+u∑

i,j=1

(f(xi)− f(xj))
2wij (3.2)

where the third term corresponds to the norm of the function in the intrinsic space. In the

original work where this formulation is proposed, (Belkin et al. 2006) shows that such expression

is indeed a valid norm in a given (Reproducing Kernel) Hilbert Space. By a re-arrangement

of the components of the third term, and defining fl+u as the vector containting the evaluation

of the target function f(xi) in all labeled and unlabeled points xi, along with a the Laplacian

matrix L derived from the adjacency matrixW, the above expression can be equivalently written

as:

minimize
f∈Hk

l∑

i=1

V (yi, f(xi)) + γA‖f‖2K +
γI l

(u+ l)2
fTl+u L fl+u. (3.3)

We can see that the L matrix defines a quadratic form, which is, by its equivalence to

the third term sum in (3.2), positive semi-definite. This quadratic form is always positive for

arbitrary f(x) values, provided the working definition that wij are always positive distance

quantities.

Chapter 3. Semi-supervised Learning: Manifold Regularization 37

The effect of the inclusion of the manifold smoothness penalty is illustrated in Figure 3.1.

In this figure, an experiment using the Two moons dataset is presented (Belkin et al. 2006).

In this dataset, only one labeled example is provided for each class, represented by the circle

and diamond markers. The remaining points are provided without their labels. In the leftmost

plot, the algorithm does not take in account unlabeled data (what is equivalent to setting the γI

hyperparameter to zero). The resulting separating surface, although being capable of achieving

general nonlinear forms, becomes in this case a straight line located midway between the labeled

training points, which is the form that minimizes the given regularization functional. This

separation will however display poor classification performance if tested against the unlabeled

data. If the manifold smoothness penalty is included (by setting a nonzero value to γI), it

will encourage the approximating function not to vary along regions with high density of data,

as induced by the neighborhood measure encoded in the Laplacian matrix. Such is the role

of the (f(xi) − f(xj))
2wij penalty term. This phenomenon is presented in the center and

rightmost plots. The resulting separation region is molded (according to the minimization of

the regularized functional) to the distribution of the data, while maintaining the separation

between labeled data examples. The relative strength of these two effects will be controlled by

the ratio of the γI and γA regularization hyper-parameters.

Problem (3.3) can be used for defining computable prediction functions once we verify that

the Representer Theorem can be also applied to reduce the problem from infinite dimensional

to the n-dimensional determination of α ∈ R
l+u, as done previously.

Theorem 2. Representer Theorem for Manifold Learning

The objective function of the manifold learning problem

minimize
f∈Hk

l∑

i=1

V (yi, f(xi)) + γA‖f‖2K +
γI l

(u+ l)2
fTl+u L fl+u (3.4)

admits a solution f∗ as the expansion of the l + u examples:

f ∗(x) =
l+u∑

i=1

αik(x,xi). (3.5)

Proof. The proof is a variation of the orthogonality argument developed for the case of standard

regularization learning, Theorem 1, where f∗ is decomposed into an expansion over the training

set and its orthogonality complement. Note that the objective function of (3.4) is formed by a

sum of three components. For the first two components, the loss function and the norm of the

function in ambient space, the demonstration follows exactly like in the proof for Therorem 1. It

Chapter 3. Semi-supervised Learning: Manifold Regularization 38

turns out that the same reasoning can be extended for the third component, the regularization

term over the empirical manifold aproximation, as follows:

γI l

(u+ l)2
fTl+u L fl+u = γI

′fTl+u L fl+u, with γ′

I > 0

= γI
′(
√
L fl+u)

T
√
L fl+u

= γI
′‖
√
L fl+u‖2,

(3.6)

which is valid because L is positive semi-definite. It means that the third component is also

a norm of f∗. The working assumption that f ∗(x) =
∑l+u

i=1 αik(x,xi) + f⊥
0 is contradicted by

showing that f0
⊥ is equal to zero when the objective function in (3.4) is minimized.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) γA = 1, γI = 0

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) γA = 1, γI = 10−4

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c) γA = 1, γI = 102

Figure 3.1: Manifold Regularization learning classification function for the Two-moons dataset
for different values of γA and γI using the Laplacian Regular Least Squares Algorithm

3.2.1 The Laplacian and its Hyper-parameters

As stated previously, the estimation of the manifold can be achieved through the calculation

of the Laplacian matrix, which is calculated from an adjacency matrix representation of the

data according to some neighborhood relationship criterion. We first look at two types of such

criterion.

The ǫ-NN Adjacency Matrix

The ǫ-NN Adjacency Matrix is created by considering that any two given points are neighbors

if their Euclidean distance in the ambient space is less than or equal to a given prescribed distance

ǫ. This adjacency matrix is therefore an (l + u)× (l + u) matrix defined as

wij =

{

ωij , if ‖xi − xj‖ ≤ ǫ ;

0 , otherwise.
(3.7)

Chapter 3. Semi-supervised Learning: Manifold Regularization 39

A common drawback of this definition is that it cannot assure that the resulting graph is

connected, depending on the value of parameter ǫ and the distance of a given point to its closest

neighbors (since the distance of a given point to its closest neighbor might be more than ǫ).

This disadvantage is not present in the next adjacency matrix construction method, k-NN.

The k-NN Adjacency Matrix

The k-NN Adjacency Matrix determines, for each of its elements, what are the k other points

that have smaller Euclidian distance to it, defining its adjacency assignment. For disambiguation

of notation, letting the number of nearest neighbors be represented by the parameter ν, the k-NN

adjacency matrix W = wij can be defined as

wij =

{

ωij, if ‖xi − x∗
iv‖ ≤ ‖xi − xj‖, v = 1, . . . , ν; i, j = 1, . . . , n ;

0, otherwise,
(3.8)

where x∗
iv are the ν nearest neighbors for each point xi, and ωij is the adjacency weight, next

defined. It is worthwhile to emphasize here that the ν is an integer parameter.

Adjacency Weight ωij

The adjacency relation assignment can be either a binary one, in which case ωij = 1, or it

can be weighted according to some measure of the strength of the relationship. Typically, the

non-binary adjacency weight can be calulated as an exponential radial decay, such as

ωij = e

‖xi − xj‖2
τ .

(3.9)

where τ is a parameter for the decay sensitivity, sometimes referred to as “spread”. In both

cases we have that ωij ≥ 0, granting the positive semi-definite assumption stated previously.

The Laplacian Matrix

The Laplacian matrix carries essentialy the same information of the adjacency matrix. The

difference lies in its diagonal entries. The Laplacian matrix is defined as:

L = D−W, (3.10)

where D is a diagonal matrix with:

dii =
l+u∑

j=1

wij, i = 1, . . . , n, j = 1, . . . , n. (3.11)

Chapter 3. Semi-supervised Learning: Manifold Regularization 40

The Laplacian matrix can be normalized for some theoretical guarantees pointed by (Belkin

et al. 2006), in which case it assumes the form

L̃ = D−1/2LD−1/2. (3.12)

Finally, one has the possibility of working with an integer power of the Laplacian matrix,

which replaces the notion of adjacency with that of the existence of p-closed paths (iterations)

between any two points as graph vertices. This can be understood as an alternative notion of

neighborhood derived from the adjacency matrix. This fact will be used complementarily in

defining composite Laplacian matrices in the next chapter. The iterated graph Laplacian matrix

M can be defined as

M =
γI
γA

Lp, p ∈ N+. (3.13)

It is known that Lp, a product of L positive semi-definite matrices is also positive

semi-definite. This can be shown by iteratively applying the standard eigenvalue decomposition

expression for Lp. For the case p = 2, for example, we have Lv = λv, where (λ,v) is an

eigenvalue-eigenvector pair of L. Hence,

L2v = LLv = λLv = λλv = λ2v (3.14)

It is readily seen that, because L ≥ 0, all its eigenvalues are non-negative, and therefore all

the eigenvalues of Lp will be also non-negative.

The use of Manifold Regularization models, including their iterated and weighted Laplacians

matrices, as well as the manifold penalty multiplier, introduce additional hyperparameters θMR

to the model selection problem, θMR = (γI , ν, p, τ).

3.2.2 Point Cloud Kernel

As an alternative and powerful formulation to the Manifold Regularization problem,

(Sindhwani, Niyogi & Belkin 2005) have worked on the formulation (3.3) to allow the manifold

penalty term to be defined for standard Regularization and Kernel Learning algorithms, thereby

enabling existing algorithms to be extended to the manifold semi-supervised setting. The

main idea is that the Laplacian and its associated manifold smoothness penalty term can be

incorporated into a single kernel function definition. It is proven that such new composite

kernel is indeed a valid RKHS kernel. The so called Point Cloud Kernel, is based on a new

Chapter 3. Semi-supervised Learning: Manifold Regularization 41

dot product definition that relates any two HK elements with their plain dot product, but to

which an addition product scaled by the Laplacian matrix is summed, weighted by the penalty

parameters. The Point Cloud dot product is written as

〈f ,g〉
H̃K

= 〈f ,g〉H +
γI
γA

fTLg. (3.15)

The proof that this product induces a norm that defines a valid RKHS can be found in

(Sindhwani et al. 2005). The application of such norm definition defines the Point Cloud Kernel,

which, for each point, is given by:

k̃(x, z) = k(x, z)− kx(I+MK)−1Mkz. (3.16)

where kx denotes the l + u vector of kernel function evaluations between the current point x

and all the examples. The equivalent definition applies to kz and z.

It is worth to note that such kernel is compatible with any of the RKHS-based regularizartion

learning schemes (such as RLS and SVM), a fact that enforces the notion of modularity enabled

by this framework. When looking at the Gram matrix of all training data, the Point Cloud

Kernel matrix, together with its component matrix dimensions, is represented as:

K̃train
︸ ︷︷ ︸

l×l

= K
︸︷︷︸

l×l

−
l×(l+u)
︷︸︸︷

Kx (I+MK)−1M
︸ ︷︷ ︸

(l+u)×(l+u)

(l+u)×l
︷︸︸︷

Kz

= K − Kx G

where G = (I+MK)−1MKz.

(3.17)

An interesting interpretation of the Point Cloud Kernel is that it can be thought of as a kernel

over the labeled data deformed by the unlabeled data, so as to alter (or correct) the notion

of similarity between two vectors in ambient space with information from the intrinsic space.

Figure 3.2 depicts the level sets of the Point Cloud Kernel for the similarity between itself and

all potential surrounding points in the two-circles dataset, where the influence of the unlabeled

data can be clearly perceived. The plot displays the level sets for the kernel similarity function

between the labeled point in the outer circle, represented by a diamond marker, and every other

point in the input space. One can see that although there are points in the inner circle which

Chapter 3. Semi-supervised Learning: Manifold Regularization 42

are geometrically closer (in ambient space) to the labeled point, the Point Cloud kernel function

assigns them a lower similarity measure than to those points along the outer circle. That is,

points along the outer circle are evaluated to be relatively closer to the labeled point in instrinsic

space than point in the inner circle. The intensity of such deformation effect is controlled by

the ratio of the intrinsic and ambient regularization hyper-parameters.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Point Cloud Deformed Kernel Contours for the Two−Circles Dataset

Figure 3.2: Data-deformed kernel for a manifold derived from the Two-circles dataset. The two
concentric circles correspond to the unlabeled data distribution of two different classes. One
class is the inner circle, having one labeled data point as the solid circle. The other class is the
outer circle, having the painted diamond as its labeled example. The contour level sets show
how the similarity value is influenced by the unlabeled data distribution.

We now derive the Manifold Regularization counterparts for the two algorithms defined in

Chapter 1 as RLS and SVM.

3.3 Laplacian Regularized Least Squares

As done for the case of Regularized Least Squares, the Laplacian Regularized Least Squares

(LapRLS) is defined with the use of the square loss fuction over the labeled data. By applying

the Representer Theorem and knowing that the solution is of the form f ∗(x) =
∑l+u

i=1 αik(x,xi),

problem (3.3) can be written as

α∗ = argmin
α∈Rl+u

1

l
(y − JKα)T (y − JKα) + γAα

TKα +
γI l

(u+ l)2
αTKLKα, (3.18)

where y is an (l + u)-dimensional vector with y = [y1, . . . , yl, 0, . . . , 0]; J is an (l + u)× (l + u)

matrix J = diag(1,. . . ,1,0,. . . ,0) with first l entries 1 and remaining entries zero, and K is the

(l + u) × (l + u) Gram matrix over labeled and unlabeled data. Proceeding in similar fashion

as done for the RLS case, by equalling the gradient of the objective function of (3.18) to zero,

Chapter 3. Semi-supervised Learning: Manifold Regularization 43

yields

α∗ = (JK+ γAlI+
γI l

(u+ l)2
LK)−1y = C−1 y, (3.19)

which, similarly to the RLS case, is computable by direct inversion of the composite matrix,

now of order of (l + u).

3.4 Laplacian Support Vector Machines

The application of the hinge loss function leads to what (Belkin et al. 2006) refers to as the

Laplacian Support Vector Machine (LapSVM). Its derivation is quite similar in its main steps

to the case of the SVM, and follows his exposition. For details and intermediate steps, please

refer to (Belkin et al. 2006).

After applying the hinge loss function and expressing the solution in the form prescribed by

the Representer Theorem, the optimization problem is written as:

α∗ = arg min
1

l

l∑

i=1

|1− yif(xi)|+ + γA‖f‖2K +
γI l

(u+ l)2
fTl+u L fl+u . (3.20)

Each term of the hinge loss function can be replaced by an equivalent slack variable ξi and

two inequality constraints. The reformulation, in its primal form, becomes:

minimize
α∈Rl+u, ξ∈Rl

1

l

l∑

i=1

ξi + γAα
TKα +

γI l

(u+ l)2
αTKLKα

subject to yiα
Tki ≥ 1− ξi

ξi ≥ 0

i = 1, . . . , l.

(3.21)

By the same duality arguments used in the SVM case, (3.21) is a convex problem which can be

cast in its dual form, with zero duality gap, in order to obtain simpler constraints. Obtaining the

dual problem requires the introduction of the Lagrange multiplers β and a Lagrangian function

to be minimized, which leads to the following relation between primal and dual variables:

α∗ =

(

2γAI+ 2
γI

(l + u)2
LK

)−1

JTYβ∗. (3.22)

The dual problem can then be written in terms of the dual variables β as

Chapter 3. Semi-supervised Learning: Manifold Regularization 44

maximize
β∈Rl

1Tβ + βTQβ

subject to
l∑

i=1

yiβi = 0

0 ≤ βi ≤
1

l

(3.23)

where:

Q = YJK

(

2γAI+ 2
γI

(l + u)2
LK

)−1

JTY,

Y = diag(yi, . . . , yl),

J = [I 0] ∈ R
l×(l+u).

(3.24)

Note that after finding the optimal solution β∗ of (3.23) for the dual problem, an additional

linear system needs to be solved in order to obtain the values for α∗ and the value of the target

function.

3.5 Computational Considerations

There are two key differences when comparing the RLS and SVM computational

characteristics to its manifold extensions. The first is that the manifold algorithms require

the Laplacian matrix to be calculated, which for the k-NN variant is of order O((l + u)d). If

one compares this to the baseline complexities for the RLS and SVM (and their LapRLS and

LapSVM), this is not a dominant factor. The second difference is that the manifold algorithms

operate with l+u data points, with typically u ≫ l. It means that the complexities for LapRLS

and LapSVM are now of the order of O[(l + u)3] in time, and O[(l + u)2] in space. The same

strategies that have been applied for reducing the training time in SVM can be used, such as

looking for controlled approximate solutions in the primal, as recently proposed in (Melacci &

Belkin 2011). Additionaly, other initiatives propose a reduction in the effective dimension of

the Laplacian and associated kernel matrices through sampling and decomposition, such as the

one presented in (Talwalkar, Kumar & Rowley 2008, Talwalkar 2010). A third aspect is caused

by the additional hyper-parameters required by the manifold models, and their influence in the

final performance achieved by the predicting model. This effect with be addressed in the next

chapter.

Chapter 4

Hyper-parameter Optimization for Manifold

Regularization Learning Models

In this chapter we use concepts and results of Chapters 2 and 3 to the higher dimensional

problem of optimizing hyper-parameters for Manifold Regularization learning models. The

author proposes a new formulation for the manifold hyper-parameter optimization problem,

which enables the use of continuous optimization algorithm. Computational experiments

are performed, which illustrate the main ideas presented throughout this text, including a

comparison of different hyper-parameter optimization algorithms.

4.1 Hyper-parameter Optimization Formulation

We have seen that the PRESS validation function, when combined with the leave-one-out

cross validation partition strategy, and in the case where the kernel weights are expressed as a

linear system of the class label vector Cα = y, can be expressed in closed form as

PRESS(θ) = J(θ) =
1

2

l∑

i=1

r2i where ri = yi − f
(−i)
S (xi) =

yi − fS(xi)

1− C−1
ii

(4.1)

and fS(xi) being the prediction function trained with the complete trainining set:

fS(xi) =
l+u∑

i=1

αi k(x,xi) = αTki and α = C−1 y (4.2)

The C matrix has been defined in 3.19 for the case of Laplacian Least Squares. Note that

although the training of the semi-supervised learning function uses l+u examples, the validation

value is computed over the errors incurred over the l labeled examples only. If we specialize the

45

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 46

general optimization formulation presented in (2.11), we arrive at the following formulation of

the hyper-parameter optimization problem:

minimize
θ

1

2

l∑

i=1

r2i

subject to

ri =
yi − αTki

1− C−1
ii

,

α = C−1 y,

C = JK(θk) + γ′

A I+ γ′

IL
p(ν)K(θk),

θ ∈ Θ;

(4.3)

with α and the C matrix being a function of the vector of hyper-parameters θ = (γ′
A, θk, γ

′
I , ν, p)

with γI
′ = l

(u+l)2
γI and γA

′ = lγA. Recall that:

❼ γA is the ambient space regularizer (same as λ in RLSC), controlling the amount of fitting

allowed in the approximation.

❼ θk is a vector of kernel hyper-parameters. For the case of the Gaussian kernel, we have

θk = (σ), the exponential width.

❼ γI is the intrinsic space regularizer, controlling the amount of influence of unlabeled data.

❼ ν is the number of nearest neighbors considered in the adjacency matrix for the Laplacian

matrix.

❼ p is the iteration power of the Laplacian matrix.

For the last two hyper-parameters, ν and p, we note that they are integer quantities. In

order to apply continuous optimization methods, one could relax this constraint and define

their derivatives in order to determine a direction of descent, and later re-apply the integrality

constraint at each. A similar strategy has been applied in a recent article by (Yuan, Liu &

Liu 2012), which used a method without derivatives, the Nelder-Mead optimization algorithm

(Nelder & Mead 1965). In this dissertation, however, we have chosen to preserve the integrality

of these parameters, adopting an alternative approach, described next.

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 47

4.2 Combination of Laplacians

As discussed in Chapter 2, one can define a linear combination of kernel functions which

result in a valid composite kernel. There have been many studies exploring variations of this

approach, surveyed in (Gönen & Alpaydın 2011). Such approach has also been recently extended

to combination of Laplacian matrices in the work of (Geng, Xu, Tao, Yang & Hua 2009).

According to this study, the ensemble Laplacian matrix E is defined as a convex combination

of base Laplacian matrices, written as

E =

q
∑

j=1

µjLj,

q
∑

j=1

µj = 1 , µj ≥ 0 . (4.4)

We adopt this approach in this dissertation, and develop it further so as to make use of its

differentiability characteristic for hyper-parameter optimization. The ensemble Laplacian can

be defined to span, for example, a two-dimensional combination of the nearest neighbor number

ν and the iteration coefficient p, leading to a continuous simplex hyper-parameter µ ∈ R
ν×p.

As analyzed in (Geng et al. 2009), because each Lj is a positive semi-definite matrix, E is a

positive semi-definite matrix. In this case, the LapRLS formulation can be rephrased as:

α∗ = argmin
α∈Rl+u

1

l
(y − JKα)T (y − JKα) + γAα

TKα +
γI l

(u+ l)2
αTKEKα , (4.5)

leading to the equivalent definition of the CLC matrix. After differentiating the objective

function with respect to α, equaling the result to zero, and rearranging, we obtain

CLC α∗ = y , where CLC = JK+ γAlI+
γI l

(u+ l)2
EK . (4.6)

We can then update our hyper-parameter optimization formulation and write:

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 48

minimize
θ

1

2

n∑

i=1

r2i

subject to

ri =
yi − αTki

1− C−1
ii

,

α = C−1
LCy

CLC = (JK+ γ′

AI+ γ′

IEK)
q
∑

j=1

µj = 1 , µj ≥ 0

θ ∈ Θ

(4.7)

where we have included the hyper-parameters µ a the vector of real hyper-parameters θR =

(γA, θk, γI , µ) and fixed the integer parameters in θI = (ν, p). The overall training and validation

procedure, as directed by this optimization formulation, is summarized in Algorithm 1.

Algorithm 1 Gradient-based Hyper-parameter Optimization for Manifold Regularization with
Combination of Laplacians

Input :
l labeled training samples (xi, yi) and u unlabeled training points (xi)
default and boxed limit values for hyper-paramaters θ = (γA, θk, γI , µ)
base integer values for Laplacian parameters {ν1, . . . , νqn} × {p1, . . . , pqp}

Procedure :
1: compute the base set of Laplacian matrices Lj for the range of ν, p
2: do until ||∇J(θn)|| ≤ ǫtol :
3: compute C and its inverse
4: compute the gradient ∇J(θ)
5: θn+1 = θn+ an dn with an the step size and dn a descent direction dependent on ∇J(θ)
Output :

optimal vector of hyperparameters θ∗

4.2.1 Computational Considerations

Leave-one-out Cross Validation, in its naive implementation, requires n training rounds of

n− 1 examples, where n = l for the supervised case, and n = l+u for the semi-supervised case.

With the closed form calculation for LOOCV here presented, only 1 training round is required.

Each training round is of cost O(n3) for the RLS and LapRLS cases, and between n3 and down to

sublinear for SVM and LapSVM cases, depending on the specific SVM solver implementation

and desired accuracy, as described in section 1.5. The hyper-parameter gradient calculation

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 49

requires multiplications between the training matrices for each hyper-parameter dimension,

and is therefore of cost O(hn3), where h is the number of hyper-parameters. Quasi-newton

algorithms are also typically configured to stop in a number of iterations which is roughly

proportional to the number of dimensions of the search space.

4.3 Computational Experiments

The experiments performed illustrate the main concepts addressed in this dissertation.

Firstly, an application of hyper-parameter optimization using the closed-form PRESS validation

function is presented. A second experiment shows the influence of the use of unlabeled data

in improving predition accuracy for Laplacian Regularized Least Squares and its Point Cloud

Kernel equivalent. Lastly, the Manifold Regularization hyper-parameter optimization problem

is addressed, using different optimization methods. While this last experiment does not intend

to be in any way exhaustive or generalizable, it hopes to raise questions and interest for future

work.

4.3.1 Experimental Setup

The execution of experiments requires the consideration of different aspects involving the

selection of datasets, training algorithms, optimization solvers and reporting procedures. They

are briefly described next.

Datasets

The two datasets selected have also been used in other semi-supervised learning experiments

(Belkin et al. 2006, Sindhwani et al. 2005, Melacci & Belkin 2011). These datasets are described

below:

❼ COIL20 : according to (Nene, Nayar & Murase 1996), the“Columbia Object Image Library

(COIL-20) is a database of gray-scale images of 20 objects. The objects were placed on a

motorized turntable against a black background. The turntable was rotated through 360

degrees to vary object pose with respect to a fixed camera. Images of the objects were

taken at pose intervals of 5 degrees. This corresponds to 72 images per object”. The 20

classes have been grouped in two target classes to enable the use of binary classification,

thereby isolating the influence of multiclass strategies. The elements of COIL20 are 1024

dimensional.

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 50

❼ USPST : is a collection of handwritten digits from the United States Postal Service. It

consists of images of 0 to 9 digits with a resolution of 16 to 16 pixels. This collection has

been adopted in many machine learning studies, and is available in (Bache & Lichman

2013). Target classes have been grouped in two classes of ten objects to allow for binary

classification. The elements in USPST are 256 dimensional.

Test Execution Environment

To run the experiments with different configurations and experiment cenarios, a modular test

harness has been developed for this study, using Matlab (MATLAB 2009). The set-up allows

the use of different learning algorithms, optimizers, kernel functions and validation strategies.

The main modules of the set-up are:

❼ Trainer : Implements different supervised and semi-supervised learning algorithms, with

the following being available: RLS, LapRLS, C-LapRLS, and Least Squares SVM. Other

SVM training variants could be integrated if needed;

❼ Optimizer : Integration of the Trainer with different solution algorithms for

hyper-parameter optimization, with the “Grid Search”, “Random Search”, “Gradient

(Quasi Newton)”, “Nelder-Mead” and “Literature” implementations. The “Literature”

optimizer is a trivial solver with returns optimal values provided from external sources;

❼ Validation Strategies : The implementation of the actual objective function to be

optimized, available as the LOOCV closed form, LOOCV iterative (where each fold is

explicitly calculated), and k-Fold iterative;

❼ Partition: Provides the indexing of different random partitions (labeled, unlabeled, test)

on the datasets, enabling partition selections to be saved between executions, in order to

allow for reproducibility between experiment runs;

❼ Kernel : Allows the use of different kernel functions, including the Point Cloud Kernel,

which uses unlabeled data and references a second, inner, kernel function.

❼ Datasets and Parameters : allows the mapping of different datasets and hyper-parameter

values to be used in the experiments.

Apart from these modules, a centrally configured main execution loop to collect the data

generated for the output generation module (boxplots, contours, scatter figures) was also

implemented by the author. For the learning algorithms, the main solution step is performed

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 51

with the linear system solver for matrix inversion available in Matlab. For the optimization

solvers, the gradient Quasi-Newton solver is the one implemented in the fmincon procedure of the

Matlab Optimization Toolbox, which is a Sequential Quadratic Programming (SQP) algorithm

(Bazaraa & Shetty 1979). For Nelder-Mead optimization, an external code implemented by

(Cawley 2006) was used. Experiments were executed on Matlab 7.8.0 Student Version on an

Intel i5 Quad-core 2.5 GHz 6 GB memory machine, running Ubuntu Linux 64-bit Kernel version

3.5.0-23.

4.3.2 Gradient Optimization of Regularized Least Squares

The objectives of the computation experiments in this section are two-fold. The first goal is

to observe the applicability of the PRESS validation function. We then look at the performance

of gradient search in finding optimal points in the space of that function, as the second goal.

An RLS classifier with a Gaussian (RBF) kernel has been applied to both datasets, with

two hyper-parameters subject to variation and optimization: the Gaussian radial parameter (σ)

and the regularization paramater (λ). The Gaussian kernel is a typical decision in the absence

of specific information.

The 2-dimensional vector of hyper-parameters was subject to the gradient optimization of the

PRESS objective function, and its optimization trajectory was recorded. For each point in the

trajectory, its corresponding PRESS function value was stored, as well as its test performance

evaluated with an independent hold-out set, computed over t examples. Figures 4.1 and 4.2

present the optimization trajectories plotted against both the validation function and the

independent test set contours for the hyper-parameter space. Hyper-parameters are presented

on a log2 base, the vertical axis corresponding to the kernel parameter, and the horizontal to

the regularization parameter. One can observe that regions of lower (darker) validation function

values are in strong correspondence with regions of lower test set error performance, for both

datasets. This behavior was observed for many splits and different numbers of labeled examples

used as training conditions. It can also be seen that the optimization trajectory is relatively well

guided and arrives at regions of minima with under 40 function evaluations, in both cases. In

comparison, if this number were assigned to a uniform grid in two dimensions, a resolution of 6

points per parameter dimension would be attained. As seen in Section 4.2, in higher dimensional

parameter spaces, coarser representations of hyper-parameter space would be obtained.

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 52

Parameter: gamma A (lambda)

Dataset=COIL20 l=100 t=360 FEvals(max)=100

P
a

ra
m

e
te

r:
 s

ig
m

a

Validation Function Variation with Hyper−parameters

−20 −15 −10 −5 0
−2

−1

0

1

2

3

4

5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60
0.2

0.25

0.3

0.35

0.4

0.45

Validation Function Value per FEvals

FEvals

Dataset=COIL20 l=100 t=360 FEvals(max)=100

V
a

lid
a

ti
o

n
 F

u
n

c
ti
o

n
 V

a
lu

e

Val

min(Val)

Parameter: gamma A (lambda)

Dataset=COIL20 l=100 t=360 FEvals(max)=100

P
a

ra
m

e
te

r:
 s

ig
m

a

Test Error Rate Variation with Hyper−parameters

−20 −15 −10 −5 0
−2

−1

0

1

2

3

4

5

10

15

20

25

30

0 10 20 30 40 50 60
7.5

8

8.5

9

9.5

10

10.5

Test Error Rate on Independent Set per FEvals

FEvals

Dataset=COIL20 l=100 t=360 FEvals(max)=100

T
e

s
t

E
rr

o
r

R
a

te

ER

min(ER)

Figure 4.1: Hyper-parameter trajectory and level sets (left column), and decay over validation
function evaluations (right) for the PRESS validation function (top row) and test error rate
(bottom) for the COIL20 dataset trained with 100 labeled samples.

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 53

Parameter: gamma A (lambda)

Dataset=USPST l=100 t=498 FEvals(max)=100

P
a

ra
m

e
te

r:
 s

ig
m

a

Validation Function Variation with Hyper−parameters

−20 −15 −10 −5 0
−2

−1

0

1

2

3

4

5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Validation Function Value per FEvals

FEvals

Dataset=USPST l=100 t=498 FEvals(max)=100

V
a

lid
a

ti
o

n
 F

u
n

c
ti
o

n
 V

a
lu

e

Val

min(Val)

Parameter: gamma A (lambda)

Dataset=USPST l=100 t=498 FEvals(max)=100

P
a

ra
m

e
te

r:
 s

ig
m

a

Test Error Rate Variation with Hyper−parameters

−20 −15 −10 −5 0
−2

−1

0

1

2

3

4

5

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100
9.8

9.9

10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

Test Error Rate on Independent Set per FEvals

FEvals

Dataset=USPST l=100 t=498 FEvals(max)=100

T
e

s
t

E
rr

o
r

R
a

te

ER

min(ER)

Figure 4.2: Hyper-parameter trajectory and level sets (left column), and decay over function
evaluations (right) for the PRESS validation function (top row) and test error rate (bottom)
for the USPST dataset trained with 100 labeled samples.

4.3.3 Influence of Unlabeled Data

The purpose of this experiment is to observe the accuracy improvement provided by the

availability of unlabeled data, as processed by Manifold Regularization. The training algorithm

employed was the Laplacian Regularized Least Squares. As pointed out by (Belkin et al. 2006)

in his experiments, no significant gain was observed from LapSVM over LapRLS in the case

of manifold learning, and the LapRLS version has therefore been adopted for simplicity of

implementation.

In the experiments reported below, the amount of labeled data defined as training points to

the algorithm was restricted to smaller sets, and the remaining samples were used as unlabeled

training points. The amount of unlabeled training examples was, in turn, defined as being zero,

being the full remainder of the dataset, and being an intermediate amount between the later

two.

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 54

0 10 20
5

10

15

20

25

30

Test Error Rate on Independent Set
 10 random splits

Ratio u/l, l fixed

Dataset=COIL20 l=40 u=800 t=360

T
e
s
t
E

rr
o
r

R
a
te

Literature, RLSC

Literature, LapRLSC

0 2.5 5
2

3

4

5

6

7

8

9

Test Error Rate on Independent Set
 10 random splits

Ratio u/l, l fixed

Dataset=COIL20 l=160 u=800 t=360

T
e
s
t
E

rr
o
r

R
a
te

Literature, RLSC

Literature, LapRLSC

Figure 4.3: COIL20 dataset boxplots for test set error performance comparing supervised RLS
(light color) to semi-supervised LapRLS (darker color) for increasing availability of unlabeled
samples (their ratio being represented on the horizontal scale). The first plot (left) uses 40
labeled samples. The second plot uses 160 labeled samples.

The results are presented in the form of boxplot graphs (see explanation in separate

frame) in Figure 4.3. The vertical distribution is related to the variation of performance as

a result of 10 different data splits being used as the labeled training points. The 5-dimensional

hyper-parameter vector θ = {γA, σ, γI , ν, p} was defined with the values equal to those presented

in (Melacci & Belkin 2011).

Examining the results, one can see that the both the average classification error and its

limits are consistently improved as the algorithm is run with increasing numbers of unlabeled

data points. This was observed not only in the situation were the amount of labeled samples

was scarce (40 and 50 points), but also when the number of labeled points was comparatively

high, in regions of better overal performance, for both datasets.

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 55

In a boxplot, each collection of data is represented by a vertical column, whose

shaded portion corresponds to the second and third quartile of the data. Each quartile

corresponds to an ordered interval of the variable which spans 25% of the collection.

The shaded area therefore corresponds to the central location of 50% of the data. The

horizontal line in the center is the median location, and the circle is the mean value. The

thinner dotted line has as its limits (whiskers) the points corresponding to a distance 1.5

of the interquartile range (IQR) added to the upper and lower quartiles, IQR being the

interval spanned by the second and third quartiles. The whisker location might however

be defined differently, depending on author preferences. Occasional outliers not belonging

to this interval are plotted independently as isolated data points.

0 10 20
5

10

15

20

Test Error Rate on Independent Set
 10 random splits

Ratio u/l, l fixed

Dataset=USPST l=50 u=1000 t=498

T
e
s
t
E

rr
o
r

R
a
te

Literature, RLSC

Literature, LapRLSC

0 2.5 5
3

4

5

6

7

8

9

Test Error Rate on Independent Set
 10 random splits

Ratio u/l, l fixed

Dataset=USPST l=200 u=1000 t=498

T
e
s
t
E

rr
o
r

R
a
te

Literature, RLSC

Literature, LapRLSC

Figure 4.4: USPST dataset boxplots for test set error performance comparing supervised RLS
(light color) to semi-supervised LapRLS (darker color) for increasing availability of unlabeled
samples (their ratio being represented on the horizontal scale). The first plot (left) uses 50
labeled samples. The second plot uses 200 labeled samples.

Point Cloud Kernel Equivalence

The Point Cloud Kernel formulation is intended to enable the use of standard supervised

learning algorithms, such as Regularized Least Squares and Support Vector Machines, for

semi-supervised learning tasks. For that purpose, it defines a data dependent kernel, which, as

presented in Section 3.2.2, depends on the Laplacian matrix, but whose training kernel matrix

and the linear system matrix C turn out to be of the order of the number of labeled examples.

The prediction function that uses the Point Cloud Kernel is also a weighted combination of

Point Cloud Kernel function evaluations, but spanning the labeled examples only. To illustrate

the equivalence of the prediction functions generated by Point Cloud Kernels that employs a

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 56

supervised algorithm (RLS) and its Manifold Regularization counterpart (LapRLS), a simple

experiment aimed at comparing test rate results for different numbers of unlabeled examples,

for our two working datasets, was run.

0 5 10
8

10

12

14

16

18

20

22

24

26

Test Error Rate on Independent Set
 10 random splits

Ratio u/l, l fixed

Dataset=COIL20 l=50 u=500 t=360

T
e
s
t
E

rr
o
r

R
a
te

Literature, RLSC

Literature, LapRLSC

0 5 10
6

8

10

12

14

16

18

20

Test Error Rate on Independent Set
 10 random splits

Ratio u/l, l fixed

Dataset=USPST l=50 u=500 t=498

T
e

s
t

E
rr

o
r

R
a

te

Literature, RLSC

Literature, LapRLSC

Figure 4.5: Comparison of test error performance for growing ratios of unlabeled data
for manifold regularization models trained with Laplacian Regularized Least Squares and
Regularized Least Squares with Point cloud kernel for the COIL20 and USPST datasets.

Although having been produced by a standard supervised training solver, it can be seen that

the Point Cloud Kernel prediction output is equivalent to the one generated by a Laplacian

Regularized Least Square algorithm, as expected.

4.3.4 Laplacian RLS Hyper-parameter Optimization with Limited

Function Evaluations

The final set of experiments provides a comparison of different search strategies for the

optimization with respect to the set θ = {γA, σ, γI , ν, p} of hyper-parameters when applied to

Laplacian Regularized Least Squares learning algorithms. The criterion for comparison is the

resulting Test Error Rate on the independent dataset when the hyper-parameters are optimized

under a limitation on the number of function evaluations (feval). One feval corresponds to

one full validation cycle, which in turn involves the training and evaluation of the model on the

training data, given the cycle data partition and the current hyper-parameter vector. In the case

of iterative K-Fold cross validation, that means running K training and validation test execution

cycles. In the case of the closed-form leave-one-out cross validation, each feval corresponds

to one training execution, with the validation function value being estimated through (4.1).

Therefore, in the problem of hyper-parameter optimization, feval is a costly task which is

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 57

likely to be the dominant effort in the computation.

The experiment comprised the use of five different optimization methods: “Quasi-Newton”,

“Grid Search”, “Random Search”, “Nelder-Mead” and “Literature”. “Quasi-newton” implements

the model and algorithm described in Section 4.2, using an SQP solver, as mentioned previously.

All other methods use the LapRLS formulation with integer parameters for ν and p. The

“Nelder-Mead” method (Nelder & Mead 1965) is a heuristic-based derivative free search

algorithm which has been included for its complementary characteristics to the other methods.

All the methods had the possibility to keep track and limit their execution to a given maximum

number fevalmax of function evaluations. The definition of such value took in consideration

the high relative cost characteristic of each feval and looked for a lower bound criteria, taking

“Grid Search” as a baseline.

In this case, if three candidate values are defined per each hyper-parameter dimension

(lower, intermediate, upper), given that the hyper-parameter vector for this problem has five

components, the traversal of the grid requires a total of 35 = 243 fevals, which was the limit

adopted. The actual upper and lower values for the variables in the grid had also to be properly

defined. We referred to a recent and closely related article (Melacci & Belkin 2011), which

presents a comprehensive experimental section where different datasets and their cross-validated

hyper-parameters, generated through a much finer grid-based cross validation search, are listed.

In the present study, the upper and lower values of the variables are made equal to the

rounded maximum and minimum values of the optimal parameters across all datasets. Such

definition emulates prior ignorance over (or an educated guess for) the Manifold Regularization

hyper-parameter values given the space of their typical values for common datasets. The

resulting grid values are presented in Table 4.1. Using information from the same article,

the “Literature” methods returns the specific (optimal) hyper-parameter values found for each

dataset.

The values adopted for the grid in the “Grid Search” method are also used to define initial

conditions and the search space for the other methods. For the case of “Quasi-Newton” and

“Nelder-Mead”, the initial point was defined as the arithmetic mean hyper-parameter vector

defined by the lower and upper values at each vector component. For“Random Search”fevalmax

points are generated according to a uniform distribution limited to the upper and lower values

of each component.

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 58

Hyper-param. lower upper
log2(γ

′
A) -20 -10 0

log2(σ) -2 2 5
ν 2 10 50
p 1 2 5

log2(γ
′
I) -20 0 10

Table 4.1: Hyper-parameters grid values.

The experiments were run for both the COIL20 and USPST datasets, using l=100 for the

labeled examples and u=500 unlabeled ones. The test error rate results for 10 splits for each

method can be seen in the boxplots in Figures 4.6 and 4.7. Average and standard deviation (in

brackets) values are also presented in Table 4.2, with results for additional tests with a higher

number of unlabeld examples, as well as results obtained for the case of supervised RLS (zero

unlabeled samples), which are included for reference.

5
4

6

8

10

12

14

16

18

20

Test Error Rate on Independent Set
 10 random splits

Ratio u/l

Dataset=COIL20 l=100 u=500 t=360 FEvals(max)=243

T
e
s
t
E

rr
o
r

R
a
te

Quasi−Newton, CLap−RLSC

Grid Search, LapRLSC

Random Search, LapRLSC

Nelder−Mead, LapRLSC

Literature, LapRLSC

Figure 4.6: COIL20 dataset boxplots for test set error performance comparing different search
methods.

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 59

5
4

5

6

7

8

9

10

11

12

13

14

Test Error Rate on Independent Set
 10 random splits

Ratio u/l

Dataset=USPST l=100 u=500 t=498 FEvals(max)=243

T
e
s
t
E

rr
o
r

R
a
te

Quasi−Newton, CLap−RLSC

Grid Search, LapRLSC

Random Search, LapRLSC

Nelder−Mead, LapRLSC

Literature, LapRLSC

Figure 4.7: USPST dataset boxplots for test set error performance comparing different search
methods.

Analyzing the results, it can be seen that, “Quasi-Newton” presented best average

performance in most cases. This could be attributed to the freedom it enjoys in searching

for locally optimal solutions with potentially large improvements in its first iterations, and

fine increments as it progresses. Another reason could be the use of the combination of

Laplacian matrices, which might have endowed the algorithm with a slightly higher learning

capability. This effect would need to be clarified in a future study. “Quasi-netwon” was

however closely followed by “Literature” and “Random”. One explanation for the slightly

lower performance of “Literature” is that the parameters considered resulted from a search

performed in a more general distribution of labeled and unlabeled examples. The poorer results

exhibited by “Grid” (except for the last case) are more easily explained by the few points

per dimension it was allowed. With the increase in sophistication of prediction models, as

the recent multi-view and vector-valued regularization models (Rosenberg, Sindhwani, Bartlett

& Niyogi 2009, Minh, Bazzani & Murino 2013), the dimensionality of the hyper-parameter

Chapter 4. Hyper-parameter Optimization for Manifold Regularization Learning Models 60

Data Quasi-Newton Grid Random Nelder-Mead Literature
COIL20

l=100 u=940 7.00 (2.38) 8.39 (4.18) 6.86 (2.10) 8.58 (2.47) 5.83 (2.67)
l=100 u=500 7.19 (2.14) 9.03 (4.20) 7.58 (2.44) 10.00 (1.94) 7.58 (2.35)

l=100 u=0 (RLSC) 8.28 (2.22) 8.97 (2.92) 8.33 (2.07) 8.33 (1.90) 10.81 (2.25)
USPST

l=100 u=1000 4.60 (1.45) 6.55 (2.13) 4.74 (1.07) 6.35 (1.70) 5.68 (1.46)
l=100 u=500 6.20 (1.42) 10.06 (2.36) 7.09 (2.12) 7.65 (1.67) 7.05 (1.48)

l=100 u=0 (RLSC) 8.17 (1.64) 7.63 (1.64) 8.18 (1.61) 8.13 (1.73) 9.64 (2.41)

Table 4.2: Mean and standard deviation test error rate for five different methods of
hyper-parameter search for Manifold Regularization compared to the supervised case. The
best values found are shown in boldface.

vector is expected to increase and pose even stronger limitations on such type of search space

optimization. “Nelder-Mead”, despite being a robust method which does not rely on the

calculation of derivatives, typically needs a relatively larger number of function evaluations

to accurately converge, and might have had its performance diminished by the truncation on

fevalmax. Nevertheless, both “Quasi-Netwon” and “Nelder-Mead” were observed to commonly

reach fevalmax before fulfilling other stopping criteria. The performance of “Random”, when

its simplicity of implementation is taken in balance, needs to be highlighted. One conjecture

for its good performance is that the validation function landscape, although being highly

dimensional, and in many cases multimodal, might typically contain regions of plateaus with

a lower sensitivity to small changes in the hyper-parameters. This characteristic, if present,

might potentially allow globally sub-optimal results with limited feval calculations. To explore

such possibility, a more thorough characterization of validation function landscapes for different

datasets, as well as their correlation to actual test rates for Manifold Regularization models, is

suggested as a future research topic.

Chapter 5

Conclusion

This dissertation looked at two relevant aspects of recent machine learning topics,

hyper-parameter optimization and semi-supervised learning. Apart from the review of their

(from the eyes of the author) most important theoretical aspects and results from recent

research, computational experiments have been developed over two practical datasets. Finally, a

hyper-parameter optimization technique for Manifold Regularization models was proposed and

applied, which encompassed most of the concepts presented. More specifically, the following

conclusions and suggestions for future work can be highlighted.

The PRESS validation function appears to be a good indicator of out of sample performance,

and can be used as a proxy function for model selection. It is also a convenient estimator, as it

can be calculated as a by-product of training calculations, through the elements of the diagonal

of the inverse of a known matrix. Furthermore, it is a continuously differentiable function,

allowing for the definition of directions of local descent.

Manifold Regularization allows an increase in performance through the complementary use

of unlabeled data. The improvement is greater and significant when the number of labeled

examples is relatively small. The Manifold Regularization problem, as formulated, remains a

convex problem and can be efficiently solved by a number of available optimization solvers. The

uses of unlabeled data can also be beneficial when combined with standard supervised kernel

methods, such as Laplacian Regularized Least Squares and Support Vector Machines, through

the use of the Point Cloud Kernel. The development of such a kernel function, which embeds

unlabeled information in its distance definition, illustrates the modular characteristic of the

regularization and kernel machines framework.

Gradients for the Manifold Regularization are obtainable using by-product data of the

training phase. The use of gradient optimization led to obtention of competitive performance

rates when compared to the ones reported in the literature. In the case of the Laplacian

61

Chapter 5. Conclusion 62

matrix for the manifold approximation, the adoption of a weighted combination composed by

different numbers of nearest neighbors and iteration matrix exponents enabled additional gains

in prediction performance.

Random search is a competitive search strategy which becomes more efficient than grid search

when the number of parameters to be determined is large. Such behavior can be attributed to

the fact that the uniform distribution produces points that tend to be uniformly spaced in each

dimension individually; the coverage of the search space increases linearly, on average, with

the number of points in each dimension. Such behavior is not obtainable with grid search,

which traverses each dimension completely before producing an increment on the next nested

dimension.

Given the apparent intractability of the hyper-parameter optimization problem, there have

been many proposals for the adoption of metaheuristic-based search algorithms, for example

(Friedrichs & Igel 2005, Guo, Yang, Wu, Wang & Liang 2008). These are probabilistic

search algorithms inspired by analogies with natural processes, such as genetic algorithms,

particle-swarm and ant colony optimizations. These algorithms usually do not take advantage

of local information available with the gradient, and often require a number of parameter

adjustments. There is likely to be room for a combination of both gradient and metaheuristic

approaches through the application if what is known as local search techniques in the field of

metaheuristic optimization.

Another possibility is to apply the generalized k-Fold cross validation definition as presented

in (Pahikkala et al. 2006) and look for possible gains in the variance of the solution obtained. A

related approach, which has been proposed by (Cawley & Talbot 2007) is to add a regularization

term on the hyper-parameter objective function level. Work would be needed to determine

appropriate forms for such regularizers, and how to determine the optimal overall regularization

weights. The work presented in (Cawley & Talbot 2007, Cawley & Talbot 2010) is a good

starting point.

Finally, Manifold Regularization algorithms face the high cost demanded by matrix

operations on the size of the Laplacian matrix, of order l + u. There has been some research

focusing on the use of numerical techniques such as Nyström decomposition or other sparse

methods (Liu, He & Chang 2010, Talwalkar et al. 2008), which select a subset of the elements

of the Laplacian matrix. Their main concern is estimating the impact of the loss of information

resulting from the approximation, and providing criteria on how to best select a data subset.

Progress in this area is likely to be directly transferred to the hyper-parameter optimization

stage, as the overall problem size, and therefore its complexity, will be correspondingly reduced.

Chapter 5. Conclusion 63

Publication Submissions

The following paper has been produced as a result of this work: Gradient Hyper-parameter

Optimization for Manifold Regularization, submitted to the ICMLA 2013 - 12th International

Conference on Machine Learning and Applications 2013 Miami, Florida, USA - Workshop:

Machine Learning Algorithms, Systems and Applications. http://icmla-conference.org/icmla13

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle,

Second international symposium on information theory, Akademinai Kiado, pp. 267–281.

Allen, D. M. (1974). The relationship between variable selection and data agumentation and a

method for prediction, Technometrics 16(1): 125–127.

Bache, K. & Lichman, M. (2013). UCI machine learning repository.

URL: http://archive.ics.uci.edu/ml

Bazaraa, M. S. & Shetty, C. M. (1979). Nonlinear Programming: Theory and Algorithms, Wiley,

New York.

Belkin, M., Niyogi, P. & Sindhwani, V. (2006). Manifold regularization: A geometric framework

for learning from labeled and unlabeled examples, The Journal of Machine Learning

Research 7: 2399–2434.

Bergstra, J. & Bengio, Y. (2012). Random search for hyper-parameter optimization, The Journal

of Machine Learning Research 13: 281–305.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and

Statistics), Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Boyd, S. & Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press.

Cawley, G. C. (2006). Leave-one-out cross-validation based model selection criteria for

weighted ls-svms, Neural Networks, 2006. IJCNN’06. International Joint Conference on,

IEEE, pp. 1661–1668. Software retrieved from http://theoval.cmp.uea.ac.uk/matlab/ on

16-Jul-2013.

64

References 65

Cawley, G. C. & Talbot, N. L. (2004). Fast exact leave-one-out cross-validation of sparse

least-squares support vector machines, Neural networks 17(10): 1467–1476.

Cawley, G. C. & Talbot, N. L. (2007). Preventing over-fitting during model selection

via bayesian regularisation of the hyper-parameters, The Journal of Machine Learning

Research 8: 841–861.

Cawley, G. C. & Talbot, N. L. (2010). On over-fitting in model selection and subsequent selection

bias in performance evaluation, The Journal of Machine Learning Research 99: 2079–2107.

Chapelle, O. (2007). Training a support vector machine in the primal, Neural Computation

19(5): 1155–1178.

Chapelle, O., Schölkopf, B. & Zien, A. (eds) (2006). Semi-Supervised Learning, MIT Press,

Cambridge, MA.

Coppersmith, D. & Winograd, S. (1990). Matrix multiplication via arithmetic progressions,

Journal of symbolic computation 9(3): 251–280.

Cortes, C. & Vapnik, V. (1995). Support-vector networks, Machine learning 20(3): 273–297.

Evgeniou, T., Poggio, T., Pontil, M. & Verri, A. (2002). Regularization and statistical learning

theory for data analysis, Computational Statistics & Data Analysis 38(4): 421–432.

Evgeniou, T., Pontil, M. & Poggio, T. (1999). A unified framework for regularization networks

and support vector machines.

Fawcett, T. (2006). An introduction to roc analysis, Pattern Recogn. Lett. 27(8): 861–874.

Friedrichs, F. & Igel, C. (2005). Evolutionary tuning of multiple svm parameters,

Neurocomputing 64: 107–117.

Geng, B., Xu, C., Tao, D., Yang, Y. & Hua, X.-S. (2009). Ensemble manifold regularization,

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,

pp. 2396–2402.

Gönen, M. & Alpaydın, E. (2011). Multiple kernel learning algorithms, Journal of Machine

Learning Research 12: 2211–2268.

Guo, X., Yang, J., Wu, C., Wang, C. & Liang, Y. (2008). A novel ls-svms hyper-parameter

selection based on particle swarm optimization, Neurocomputing 71(16): 3211–3215.

References 66

Hastie, T., Tibshirani, R. & Friedman, J. (2001). The Elements of Statistical Learning, Springer

Series in Statistics, Springer New York Inc., New York, NY, USA.

Huber, P. J. (1964). Robust estimation of a location parameter, The Annals of Mathematical

Statistics 35(1): 73–101.

Joachims, T. (1999). Making large-scale svm learning practical., Advances in Kernel Methods -

Support Vector Learning, MIT Press.

Keerthi, S., Sindhwani, V. & Chapelle, O. (2007). An efficient method for gradient-based

adaptation of hyperparameters in svm models, NIPS 2006 .

Liu, W., He, J. & Chang, S.-F. (2010). Large graph construction for scalable semi-supervised

learning, Proceedings of the 27th International Conference on Machine Learning,

pp. 679–686.

MATLAB (2009). version 7.8.0 (R2009a), The MathWorks Inc., Natick, Massachusetts.

Melacci, S. & Belkin, M. (2011). Laplacian support vector machines trained in the primal,

Journal of Machine Learning Research 12: 1149–1184.

Menon, A. K. (2009). Large-scale support vector machines: algorithms and theory, Research

Exam, University of California, San Diego .

Minh, H. Q., Bazzani, L. & Murino, V. (2013). A unifying framework for vector-valued manifold

regularization and multi-view learning, Proceedings of the 30th International Conference

on Machine Learning (ICML-13), p. 100–108.

Nelder, J. A. & Mead, R. (1965). A simplex method for function minimization, Computer

Journal 7: 308–313.

Nene, S. A., Nayar, S. K. & Murase, H. (1996). Columbia object image library (coil-20),

Dept. Comput. Sci., Columbia Univ., New York.[Online] http://www. cs. columbia.

edu/CAVE/coil-20. html 62.

Nocedal, J. & Wright, S. (2006). Numerical optimization, Springer series in operations research

and financial engineering, 2. ed. edn, Springer, New York, NY.

Pahikkala, T., Boberg, J. & Salakoski, T. (2006). Fast n-fold cross-validation for regularized

least-squares, Proceedings of the ninth Scandinavian conference on artificial intelligence

(SCAI 2006), Citeseer, pp. 83–90.

References 67

Platt, J. C. (1999). Advances in kernel methods, MIT Press, Cambridge, MA, USA, chapter Fast

training of support vector machines using sequential minimal optimization, pp. 185–208.

Rifkin, R. M. (2002). Everything old is new again: a fresh look at historical approaches in

machine learning, PhD thesis, Massachussetts Institute of Technology.

Rifkin, R. M. & Lippert, R. A. (2007). Notes on regularized least squares.

Rosenberg, D., Sindhwani, V., Bartlett, P. & Niyogi, P. (2009). Multiview point cloud kernels for

semisupervised learning [lecture notes], Signal Processing Magazine, IEEE 26(5): 145–150.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and

organization in the brain., Psychological review 65(6): 386.

Rudin, W. (1986). Real and complex analysis (3rd), New York: McGraw-Hill Inc.

Schölkopf, B., Herbrich, R. & Smola, A. J. (2001). A generalized representer theorem,

Computational learning theory, Springer, pp. 416–426.

Schölkopf, B. & Smola, A. J. (2002). Learning with kernels: support vector machines,

regularization, optimization and beyond, the MIT Press.

Shalev-Shwartz, S., Singer, Y. & Srebro, N. (2007). Pegasos: Primal estimated sub-gradient

solver for svm, Proceedings of the 24th international conference on Machine learning, ACM,

pp. 807–814.

Shawe-Taylor, J. & Cristianini, N. (2004). Kernel Methods for Pattern Analysis, Cambridge

University Press, New York, NY, USA.

Sindhwani, V., Niyogi, P. & Belkin, M. (2005). Beyond the point cloud: from transductive

to semi-supervised learning, Proceedings of the 22nd international conference on Machine

learning, ACM, pp. 824–831.

Suykens, J. A. & Vandewalle, J. (1999). Least squares support vector machine classifiers, Neural

processing letters 9(3): 293–300.

Talwalkar, A. (2010). Matrix approximation for large-scale learning, PhD thesis, New York

University.

Talwalkar, A., Kumar, S. & Rowley, H. (2008). Large-scale manifold learning, Computer Vision

and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, pp. 1–8.

References 68

Tikhonov, A. & Arsenin, V. Y. (1977). Solution of ill-posed problems, Washington: Winston &

Sons.

Vapnik, V. & Sterin, A. (1977). On structural risk minimization or overall risk in a problem of

pattern recognition, Automation and Remote Control 10(3): 1495–1503.

Vishwanathan, S., Schraudolph, N. N., Kondor, R. & Borgwardt, K. M. (2010). Graph kernels,

The Journal of Machine Learning Research 99: 1201–1242.

Wahba, G. (1990). Spline models for observational data, Vol. 59, Society for industrial and

applied mathematics.

Yuan, J., Liu, X. & Liu, C.-L. (2012). Leave-one-out manifold regularization, Expert Systems

with Applications 39(5): 5317–5324.

Appendix A

Parameters and Hyper-parameters

The following table lists the main variables for the formulation of the hyper-parameter

optimization problem, including the split of the data in labeled and unlabeled sets, the adoption

of multiple validation partitions and multiple Laplacian combinations.

S dataset
d input dimension
xi input data point
yi output data point
o prediction function output
n number of all input points
l number of labeled input points
u number of unlabeled input points

θ ∈ Θ vector of hyper-parameters in hyper-parameter space
h number of hyper-parameters

γA, λ ambient space regularization coefficient
γI instrinsic space regularization coefficient
σ Gaussian kernel width parameter
ν adjacency matrix number of nearest neighbors
p power of Laplacian matrix
α coefficient weights
q number of Laplacians in combination
µ Laplacian combination cofficients

t ∈ 1 . . . T validation folds
C training matrix
K kernel matrix (Gram matrix)
L Laplacian matrix
W adjacency matrix

Table A.1: Some symbols and variables used in the text

69

Appendix B

Experimental Code

An excerpt from the test harness code used in the experiments is given below. The main

execution loop and a central configuration file example were selected for the listing.

1 % Main Optimization Loop for Manifold Hyper−parameter Optimization

2 % Master Thesis − FEEC Unicamp − 2013

3 % Cassiano Otavio Becker

4 function hyperoptloop()

5 % select configuration file

6 conf_funcstr = 'conf_GradRBF';

7 % load function pointers

8 conf_func = str2func(conf_funcstr);

9 [conf, allexprs] = conf_func();

10 % load dataset description from configuration information

11 datasets = loadDatasets();

12 clc;

13 % iterate over selected datasets

14 for di=conf.d.data_sel

15 conf.c.di = di;

16 d = datasets(conf.c.di);

17 disp(strcat('********* DATASET: ',d.name, ...

18 '**'));

19 % load dataset file

20 f= load(strcat(conf.d.datasetPath, '/', d.name, '.mat'));

21 % iterate over methods

22 exprs = conf.e.expr;

23 for e=1:size(exprs,2)

24 model = loadParams(d);

25 expr{e} = catstruct(conf,allexprs{exprs(e)});

26 expr{e} = setConf(expr{e});

27 % iterate over data splits for given dataset and method

70

Appendix B. Experimental Code 71

28 for t=1:expr{e}.c.nsplits

29 expr{e}.c.t =t ;

30 % iterate over unlabeled number parameter

31 for up=1:expr{e}.c.npoints

32 % prepare dataset split training and test partition data

33 expr{e}.c.up = up;

34 nl = d.partition.l;

35 nu = d.partition.u;

36 umin = max(0, expr{e}.d.min_u);

37 umax = min(nu, expr{e}.d.max_u);

38 nus=floor(linspace(umin,umax,expr{e}.c.npoints));

39 [d, dt] = getPartitioned(t, f , up, nus, d, conf);

40

41 fprintf(['−−−'...
42 '−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n'])
43 fprintf(['# Method (%d of %d): %s − %s − %s |'...

44 'Split %3d of %3d − U: %5.2f of %5.2f | %s \n'],...

45 e, ...

46 length(exprs),...

47 expr{e}.trainer,...

48 expr{e}.optimizer,...

49 expr{e}.kernel,...close

50 expr{e}.c.t,...

51 expr{e}.c.nsplits,...

52 nus(expr{e}.c.up)/d.partition.l,...

53 nus(expr{e}.c.npoints)/d.partition.l,...

54 d.name...

55);

56 model= resetValHistory(model);

57 % main optimization loop, according to function pointers

58 % from configuration file

59 [er,model] = optimizeHyper(d,dt,expr{e}, model);

60

61 % populate history with test set evaluation performance

62 fval_path = model.val.history.fval;

63 tr_path = getTestPerformanceHistory(...

64 dt,model,expr{e},expr{e}.p.path);

65 % format data for box plot

66 ern{e,t,up,:} = tr_path;

67 ern{e,t,up,end} = expr{e}.evalFunc(dt ,model,expr{e});

68 vrn{e,t,up,:} = fval_path;

69 vrn{e,t,up,end} = expr{e}.validationFunc(...

70 model.best_param, d ,expr{e},model);

71 end

72 fprintf(['−−−'...

Appendix B. Experimental Code 72

73 '−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n'])
74 end

75 fprintf(['=='...

76 '=================================\n'])

77 end

78 % run boxplots

79 if conf.p.semi == 1

80 lims.nus = nus;

81 lims.nl = nl;

82 plotSemiBoxPlot(d,ern, vrn, lims, expr);

83 end

84 % run multiple split decay plot

85 if conf.p.feval == 1

86 plotFeval(ern, vrn);

87 end

88 % save statistics

89 filename = strcat('out/data/data_', conf.e.name, '_', d.name,...

90 '_', datestr(now,'yyyymmddTHHMMSS'));

91 save(filename, 'd', 'ern', 'vrn', 'lims', 'expr');

92 end

93 % close all figures

94 disp('−− > End of experiment − press any key to close all windows');

95 pause

96 close all;

97 end

98 end

1 function [conf, expr] = conf_All()

2 %% Experiment Configurations

3 i = 1;

4 expr{i}.optimizer = 'gridsearch';

5 expr{i}.kernel = 'rbf';% 'point_cloud';%

6 expr{i}.trainer = 'laprlsc';%'lapmkrlsc';%'rlsc';%'lssvm';%'

7 expr{i}.validation = 'press';

8 i = 2;

9 expr{i}.optimizer ='randsearch';

10 expr{i}.kernel = 'rbf';%;'point_cloud';

11 expr{i}.trainer = 'laprlsc';%'lapmkrlsc';%'lssvm';%'rlsc';%

12 expr{i}.validation = expr{1}.validation;%'press';

13 i = 3;

14 expr{i}.optimizer ='neldermead';

15 expr{i}.kernel = 'rbf';%;'point_cloud';

16 expr{i}.trainer = 'laprlsc';%'laprlsc';%'lapmkrlsc';%'lssvm';%

17 expr{i}.validation = expr{1}.validation;%'press';

Appendix B. Experimental Code 73

18 i = 4;

19 expr{i}.optimizer ='gradsearch';

20 expr{i}.kernel = 'rbf';%;'point_cloud';

21 expr{i}.trainer = 'laprlsc';%'laprlsc';%'lapmkrlsc';%'lssvm';%

22 expr{i}.validation = expr{1}.validation;%'press';

23 i = 5;

24 expr{i}.optimizer ='gradsearch';

25 expr{i}.kernel = 'rbf';%;'point_cloud';

26 expr{i}.trainer = 'lapmkrlsc';%'lssvm';%'laprlsc';%'rlsc';%

27 expr{i}.validation = expr{1}.validation;%'press';

28 i = 6;

29 expr{i}.optimizer ='literature';

30 expr{i}.kernel = 'rbf';%;'point_cloud';

31 expr{i}.trainer = 'laprlsc';%'laprlsc';%'lapmkrlsc';%'lssvm';%

32 expr{i}.validation = expr{1}.validation;%'press';

33 % name for saving output files

34 conf.e.name = 'LapRLSC_l50u500_all_g3';

35 % selection of methods to run

36 conf.e.expr = [5 1 2 3 6];

37 % number of folds for validation function (0 = closed form loocv)

38 conf.e.tfold = 0;

39 % validation function

40 conf.e.err = 'sos';%;'err_count_smooth';%'err_count';%

41 conf.e.errfun = str2func(conf.e.err);

42 %% Dataset Configurations

43 conf.d.datasetPath = '/home/cassiano/msc/thesisCode/dataset';

44 % datasets to use

45 conf.d.data_sel = [1 2];

46 % load previously save partition indexes

47 conf.d.loadPartition = 1 ;

48 % number of unlabeled stations

49 conf.c.npoints = 1;

50 % number of random splits

51 conf.c.nsplits = 10;

52 % maximum number of fevals

53 conf.c.ntries = 243;

54 %% Optimization Configurations

55 % select which parameters will be optimized

56 conf.o.par_sel = [1:14];%11];

57 %% Plot Configurations

58 % enable plot parameter path on 2 dimensions

59 conf.p.path = 0;

60 % select which 2 parameters to plot

61 conf.p.path_sel = [1 2];

62 % enable plot parameter sensitivity

Appendix B. Experimental Code 74

63 conf.p.par = 0;

64 % selection of parameters for which sensitivity wil be plotted

65 conf.p.par_load = 1;

66 conf.p.par_sel = [2:5];

67 % enable boxplot for comparison of methods

68 conf.p.semi = 1;

69 % plot validation function box_plot if above option is one

70 conf.p.semi_val = 1;

71 % enable plot of error and validation agains validation fevals

72 conf.p.semi_lines = 0;

73 % enable of multiple split decay plots

74 conf.p.feval = 0;

75 % enable saving plot

76 conf.p.save = 0;

77 %% Set Environemnt Structure

78 conf = setEnviron(conf);

79 end

80 end

	Introduction
	Machine Learning and the Regularization Framework
	Supervised, Unsupervised and Semi-supervised Machine Learning
	Learning Tasks
	Regression
	Classification
	Other Loss Functions and Tasks

	Regularization Learning
	Statistical Machine Learning Interpretation
	Solution in Reproducing Kernel Hilbert Spaces
	From Infinite-dimensional to l-Dimensional Optimization Problem

	Regularized Least Squares
	Support Vector Machines
	Computational Considerations

	Hyper-parameter Optimization
	Introduction
	Model Assessment
	Validation and Test Functions
	Bias-Variance Decomposition
	Partition Strategies
	Cross-Validation
	Leave-One-Out Bounds

	Formulation as an Optimization Problem
	Hyper-parameter Search Strategies
	Grid Search
	Random Search
	Gradient Optimization

	Multiple Kernel Learning

	Semi-supervised Learning: Manifold Regularization
	Semi-supervised Learning
	Transductive and Inductive Learning
	The Manifold Assumption

	Manifold Regularization
	The Laplacian and its Hyper-parameters
	Point Cloud Kernel

	Laplacian Regularized Least Squares
	Laplacian Support Vector Machines
	Computational Considerations

	Hyper-parameter Optimization for Manifold Regularization Learning Models
	Hyper-parameter Optimization Formulation
	Combination of Laplacians
	Computational Considerations

	Computational Experiments
	Experimental Setup
	Gradient Optimization of Regularized Least Squares
	Influence of Unlabeled Data
	Laplacian RLS Hyper-parameter Optimization with Limited Function Evaluations

	Conclusion
	References
	Parameters and Hyper-parameters
	Experimental Code

