
UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computação

Flávia Barbosa

Recents Advances on

The Berth Allocation Problem

Avanços Recentes ao Problema de Alocação de

Berços

Campinas
2018



Flávia Barbosa

Recents Advances on
The Berth Allocation Problem

Avanços Recentes ao Problema de Alocação de Berços

Tese (Doutorado) apresentada à Faculdade
de Engenharia Elétrica e de Computação da
Universidade Estadual de Campinas como
parte dos requisitos exigidos para a obtenção
do título de Doutora em Engenharia Elétrica,
na Área de Automação.

PhD Dissertation presented to the School of
Electrical and Computer Engineering of the
University of Campinas in partial fulĄllment
of the requirements for the degree of PhD in
Electrical Engineering, in Automation area.

Supervisor: Prof. Dr. Akebo Yamakami

Co-supervisor: Prof. Dr. Priscila C. Berbert Rampazzo

ESTE EXEMPLAR CORRESPONDE À VERSÃO FI-

NAL DA TESE (DOUTORADO) DEFENDIDA PELO

ALUNO FLÁVIA BARBOSA E ORIENTADA PELO

PROF. DR. AKEBO YAMAKAMI.

Campinas
2018





COMISSÃO JULGADORA - TESE DE DOUTORADO

Candidato: Flávia Barbosa RA: 083552

Data da Defesa: 15 de março de 2018

Título da Tese: ŞRecents Advances on The Berth Allocation ProblemŤ

ŞAvanços Recentes ao Problema de Alocação de BerçosŤ

Prof. Dr. Akebo Yamakami (Presidente, FEEC/UNICAMP)

Prof. Dr. Luiz Leduino Salles Neto (UNIFESP)

Prof. Dr. Fabricio Olivetti de França (UFABC)

Prof Dr. Antônio Carlos Moretti (FCA/UNICAMP)

Prof. Dr. Romis Ribeiro de Faissol Attux (FEEC/UNICAMP)

A ata da defesa com as respectivas assinaturas dos membros da Comissão

Julgadora, encontra-se no processo de vida acadêmica do aluno.



To Márcia, Luiz and Rodrigo.



Acknowledgements

I thank my parents, Luiz and Márcia, for the support and love during the

challenges.

I thank my little brother, Rodrigo, for always helping me with my computa-

tional issues.

I thank my boyfriend, Eduardo, for the affection whenever I needed during

this journey.

I thank my friends who always cheered for my success.

I thank my supervisors, Akebo and Priscila for their dedication and contribu-

tion.

I thank my former supervisor, Moretti, for his friendship over the years.

I thank Professors José Fernando e Maria Antónia receiving me so well at Uni-

versity of Porto.

Last but not the least, I thank CNPq for providing the Ąnancial support for

this PhD.



“It is the Lord who goes before you.

He will be with you;

He will not leave or forsake you.

Do not fear or be dismayed.”

(Deu 31:8)



Abstract

The intermodal transportation of goods by vessels has increased over the years. In this

context, the Berth Allocation Problem (BAP) arises and becomes fundamental to guar-

antee the efficiency of the maritime terminals, deciding where and when to allocate the

vessel over a planning horizon taking into account constraints of time and space. Be-

cause the problem is proved NP-hard, this study proposes an exact method and analyzes

metaheuristics for tackling the problem. First, considering the BAP as a parallel-machine

scheduling problem, an approach for this problem is proposed based on an Evolutionary

Metaheuristic, aiming to Ąnd several good quality solutions in a single round of the algo-

rithm, considering explicitly the BAP with multiple objectives. A lower bound based on a

maximal flow problem was derived in order to evaluate the quality of the solutions. Next,

based on a heterogeneous vehicle routing problem with time windows a basic Benders

Decomposition algorithm and its variants are reviewed and applied to the BAP. Then,

a hybrid optimization procedure based on Genetic Algorithm (GA) and Scatter Search

(SS)is developed, and data envelopment analysis (DEA) is adopted to choose the efficient

combination of the operators for the algorithm proposed. Because most papers in liter-

ature use in their experiments data generated randomly, making comparisons between

researches difficult, this thesis proposes a problem generator for the BAP, allowing the

generation of appropriate test problems to be commonly used with speciĄc desired prop-

erties and under controlled conditions. The data are generated using different parameters

and the difficulty of solving the BAP with such data is analyzed through the resolution

using the CPLEX. Finally, the instances classiĄed as more difficult are solved through

two metaheuristics implemented.

Keywords: berth allocation problem; metaheuristics; mathematical programming; bench-

mark data instances.



Resumo
O transporte de mercadorias por navios aumentou ao longo dos anos. Neste contexto, o

Problema de Alocação de Berços (BAP) surge e torna-se fundamental para garantir a

eĄciência dos terminais marítimos, ao decidir onde e quando alocar o navio no horizonte

de planejamento, levando em consideração restrições de tempo e espaço. Uma vez que o

problema foi provado ser NP-hard, este estudo propõe um método exato e uma análise

de muitas metaheurásticas para resolvê-lo. Primeiro, considerando o BAP como um prob-

lema de sequenciamento de tarefas de máquinas paralelas, uma abordagem é proposta

com base em uma Metaheurística Evolutiva, com o objetivo de encontrar várias soluções

de boa qualidade em uma única rodada do algoritmo, considerando explicitamente o BAP

com múltiplos objetivos. Um limitante inferior baseado em um problema de fluxo máx-

imo foi derivado para avaliar a qualidade das soluções. Em seguida, com base em um

problema de roteamento de veículo com janelas de tempo, um algoritmo de decomposição

Benders e suas variantes são revisados e aplicados ao BAP. Então, um algoritmo híbrido

com base no Algoritmo Genético e Busca Dispersa é desenvolvido e a Análise Envoltória

de Dados é adotada para escolher a combinação eĄciente de operadores para o algoritmo

proposto. Como a maioria dos trabalhos na literatura usa em seus experimentos com-

putacionais dados gerados aleatoriamente, diĄcultando as comparações entre pesquisas,

esta tese também propõe um gerador de dados para o BAP, permitindo que a geração

de problemas-teste que sejam comumente usada, padronizando as comparações em tra-

balhos futuros. Os dados são gerados usando diferentes parâmetros e a diĄculdade de

resolver o BAP com esses dados é analisada através do CPLEX. Finalmente, as instâncias

classiĄcadas como as mais difíceis são resolvidas através de duas metaheurísticas.

Palavras-chaves: problema de alocação de navios; metaheurísticas; programação matemática;

gerador de dados.
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1 Introduction

According to the United Nations Conference on Trade and Development ((UNC-

TAD, 2016)), maritime transport carried over 80% of the volume of global merchandise

trade of the worldŠs goods in 2015 for developing countries. However the growing pace

in seaborne shipping is the smallest since 2009. The carrying capacity, on the other side,

increased by 3.5% to 1.8 billion deadweight tons. Both movements together led to an

increase in the available capacity and the freight rates dropped. The freight rates should

however decrease even more to attract volume in an increasing pace and this is only pos-

sible by a reduction in the operating costs that does not involve major investments. In the

ports this can be obtained by minimizing the handling costs which are directly related

with the waiting and service times of the vessels.

Berths are a very important resource and a good allocation of vessels to berths

entails a reduction in handling costs. This issue has been the subject of research, giving

rise to the Berth Allocation Problem (BAP) which can be stated as: where and when

to allocate arriving vessels to a berth space over a planning horizon taking into account

constraints of time and space, related to the length of the vessels, their arrival times,

the number of containers for loading or unloading, the location of the charge stock, time

windows, among others. Some assumptions made may be different for each terminal, such

as the possibility of waiting for vessels, if several vessels can moor in the same berth,

if the vessels arrival time is considered, if the service time is proportional to the size of

the vessel, among others. One of the most important characteristics of the problem is

whether the berthing space is considered discrete or continuous. It is considered to be

discrete if the quay is viewed as a Ąnite set of berths and each berth is described by

Ąxed-length segments or as points and it is considered to be continuous if the vessels can

berth anywhere along the quay depending only on the position of other vessels.

According to (MONACO; SAMMARRA, 2007), if the vessels have release

dates, the BAP is NP-hard. Therefore, for large instances evolutionary metaheuristics are

often recommended to solve the BAP. Metaheuristic is high-level problem-independent

algorithmic framework developed speciĄcally to Ąnd a solution that is good enough in a

computing time that is small enough. As a result, the computing time required to Ąnd a

solution for NP-hard problems does not increase as an exponential function of the problem

size, when computing exact optimal solutions is computationally intractable. According

to (YAGIURA; IBARAKI, 2001), metaheuristics are attractive because they can be de-

veloped even if deep mathematical properties of the problem domain are not hand and

can still in difficult cases obtain solutions better than those obtained by exact methods

and simple heuristics. This thesis aims to study the variations of the BAP, the different
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methods of resolution, exact or metaheuristic, which can be used to obtain good quality

solutions and the influence of the data in solving the problem.

Several models were developed for the BAP based on other problems in the

literature such as cutting and packing, scheduling, vehicle routing or generalized set parti-

tioning and, due to the difficulty of the problem, several heuristic approaches are proposed

in the literature. Chapter 2 presents a detailed review of the most relevant literature pub-

lished in the last 10 years. Because the BAP is a combinatorial problem, in Chapter 3

an approach based on an Evolutionary Metaheuristic is proposed. The method works

simultaneously with a set of solutions in order to perform exploration and exploitation

of the search space, allowing it to Ąnd several good quality solutions that can serve as

alternatives to a given scenario. The goal is to Ąnd this set of solutions in a single round

of the algorithm, considering explicitly the BAP with multiple objectives. In Chapter 4

a constructive heuristic with local search is developed in order obtain good solutions for

the BAP modeled as a scheduling problem. It is based on the principle that the problem

of scheduling can be represented by a maximum flow problem in which preemption in

the task handling is allowed. The aim is to verify if it results in an algorithm capable

of Ąnding good lower bounds for evolutionary metaheuristics. Benders decomposition is

a cutting plane method that has been widely used for solving large-scale mixed integer

linear optimization problems, and yet it has never been applied to the BAP. In Chapter 5

the basic Benders Decomposition algorithm and its variants are reviewed and applied to

the reformulated BAP. The BAP involves many criteria that can be used to evaluate how

good a solution is. For this reason, there are different ways to conĄgure the implemented

algorithm and we need a tool to guide the decision on how to use each proposed operator.

In Chapter 6 a hybrid optimization procedure is developed based on Genetic Algorithm

(GA) and Scatter Search (SS) for the discrete and dynamic BAP (Hybrid Evolutionary

Algorithm for the BAP - HEABAP). The data envelopment analysis (DEA) is adopted

to choose the efficient combination of the operators for the algorithm proposed. When

reviewing these different models it was possible to conclude that there are no benchmark

instances available for the BAP and most papers in the literature use in their experi-

ments randomly generated data for that particular paper. There is therefore the need for

a problem generator for the BAP problem and a set of controlled test instances that enable

the researchers to compare their approaches. To overcome such drawback, in Chapter7

a problem generator is developed for the BAP, allowing the generation of a large num-

ber of problem instances with speciĄc desired properties and under controlled conditions.

The difficulty of the parameter combinations for the beta distribution are classiĄed and

in Chapter 8 two metaheuristics are developed to try to obtain good feasible solutions

for the problem in a short computational time. A classical Genetic Algorithm (GA), one

of the Ąrst metaheuristic proposed in the literature and easily adaptable to any type of

problem, is developed and compared with a recent Particle Swarm Algorithm (PSO).
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Therefore, the aim of this thesis is to seek recent advances for the BAP, con-

sidering different perspectives.
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2 Literature Review

This chapter is organized as follows. In Section 2.1 a literature review of the

BAP is presented. The models are classiĄed according to the characteristics of berthing

space, vessels arrivals, service time, integration with other problems and multiobjective

optimization. In Section 2.2 the BAP is formulated based on formulations for other classi-

cal problems, and a few comparisons about the models and their complexity are presented.

In Section 2.3 the problem classiĄcation is summarized and Section 2.4 presents improve-

ments for a generic BAP model considered throughout this thesis.

First, to illustrate the discrete Berth Allocation Problem problem, consider

the following numerical example. There are Ąve vessels to be allocated to two berths.

Each vessel 𝑖 has a processing time 𝑝𝑘
𝑖 , different for each berth 𝑘 since it depends on the

equipment available for (un)loading, an arrival time 𝑎𝑖 and a departure time 𝑏𝑖, as shown

in Table 1.

Table 1 – Small instance for the discrete BAP

vessel processing time at berth 1 processing time at berth 2 arrival time departure time
(𝑖) (𝑝1

𝑖 ) (𝑝2
𝑖 ) (𝑎𝑖) (𝑏𝑖)

1 35 40 5 95
2 30 100 0 65
3 25 20 5 55
4 35 30 5 85
5 40 20 20 55

Let 𝑥𝑘
𝑖 be the start time for the service of vessel 𝑖 at berth 𝑘. An example of

the allocation of the Ąve vessels in the two berths is outlined in Figure 1 and Table 2:

Table 2 – Solution for the instance in Table 1 represented in Figure 1

vessel 𝑖 start time of service berth processing time waiting time
(𝑖) (𝑥𝑘

𝑖 ) (𝑘) (𝑝𝑘
𝑖 ) (𝑥𝑘

𝑖 − 𝑎𝑖)
1 30 1 35 25
2 0 1 30 0
3 5 2 20 0
4 45 2 30 40
5 25 2 20 5

total 135 70

Table 2 shows that the total time spent to (un)load the Ąve vessels and the

total waiting time were, respectively, 135 and 70.
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vessel service time (handling operations time, berth waiting time and logistic operations

time) considering truck arrivals, containership arrivals, berth assignment systems, towing

vessels, etc.

This variety of characteristics and goals that can be found in practice led to

a multitude of approaches. However, these approaches may be classiĄed and grouped

according to some common features. In the following sections the most relevant and

recent literature on the Berth Allocation Problem (BAP) will be reviewed and organized.

Special attention will be given to the data sets used for the computational experiments

and validation of each approach.

2.1.1 Berthing space: discrete versus continuous

The berthing space can be considered discrete or continuous. In the discrete

BAP, the quay is viewed as a Ąnite set of berths, and at each moment of time only

one vessel can be assigned to each berth. A model for this version of the problem was

introduced by (CORDEAU et al., 2005). This model has as objective the minimization

of the weighted sum of service times and includes constraints related to time-windows

for vessel berthing times. An heuristic based on tabu search was developed to solve the

discrete version of the BAP, and was then extended to the continuous case. The discrete

BAP is also studied in (BUHRKAL et al., 2011) with three different models, each one

with a different objective function (minimization of total waiting and handling times,

minimization of the weighted sum of vessel service times and minimization of vessels

service time). The decision variables determine the assignment of vessels to berths as well

as the order by which vessels will be processed in each berth. (BARROS et al., 2011)

considered also the discrete form of the problem in tidal bulk port terminals, the so-called

Berth Allocation Problem in Tidal Bulk ports with Stock level conditions (BAPTBS).

The objective was to minimize the total demurrage1 incurred, given the tidal conditions

and the stock level constraints, considering similarly equipped berth positions. The main

assumptions that were made relate to tidal conditions and stock level, as observed in the

maritime industrial port complex located in São Luís-MA, Brasil. The proposed model

considers the problem as a transportation problem in which the vessels are regarded as

origins and the favorable tidal condition as destinations. The test instances were randomly

generated, based on real scenarios. In (HANSEN et al., 2008) berths are also considered

as a discrete resource and the Minimum Cost Berth Allocation Problem (MCBAP) is

proposed with the objective of minimizing vessel waiting and handling costs, as well

as earliness premiums and lateness penalties. A Variable Neighborhood Search (VNS)

metaheuristic is developed to solve the problem since the model running time, even for a

small example, exceeded several hours of computing time. Three sets of instances were used
1 charges payed to the vessel owner for its delayed operations of loading/unloading.
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in the tests: the same as in (HANSEN; OGUZ., 2003), an extended version of instances

from (HANSEN; OGUZ., 2003) and a generated set.

In the continuous Berth Allocation Problem vessels can berth anywhere along

the quay depending only on the position of other vessels. For this version of the problem,

(FROJAN et al., 2015) has recently proposed a mixed integer linear model with multiple

quays, including several realistic characteristics, as that a given vessel cannot moor at

a given quay for technical or contractual reasons or that the vessels present different

adequacies to different quays. The main decision variables are related to the berthing

position of a given vessel at the quay to which it is assigned, and vessel relative position

variables. The objective function considers the minimization of the waiting and delay costs

for each vessel, the vessel-quay assignment cost and the cost associated to the deviation

of each vessel form its desired berthing position.

2.1.2 Vessels arrivals: static versus dynamic

Another important characteristic of Berth Allocation Problems concerns the

vessel arrival. The problem is classiĄed as static (Static Berth Allocation Problem - SBAP)

if all vessels to be serviced are already in the port when scheduling begins. Alternatively,

the problem is classiĄed as dynamic (Dynamic Berth Allocation Problem - DBAP), if

not all vessels to be scheduled for berthing have arrived at the beginning of the planning

horizon, although arrival times are know in advance. According to (MONACO; SAM-

MARRA, 2007), the computational complexity of the BAP lies on the dynamic arrival

process of the vessels. Indeed this problem is NP-hard even if there is a single berth, as it

reduces to minimizing the total completion time with release dates on a single machine.

On the other hand, the static version of the problem is solvable in polynomial time since

it reduces to an assignment problem.

In (IMAI et al., 2001) a model for the static BAP is formulated: binary vari-

ables 𝑥𝑖𝑗𝑘 indicate if vessel 𝑗 is handled as the 𝑘th vessel at berth 𝑖, or not. The model was

extended to the dynamic BAP, having as objective the minimization of the sum of waiting

and handling times for every vessel. A subgradient optimization procedure, based on the

Lagrangian relaxation, was developed. (HANSEN; OGUZ., 2003) revisited (IMAI et al.,

2001) models and propose a new model for the static BAP where the binary decision

variables, as in (IMAI et al., 2001), reflect both the berth assignment and the order by

which the vessels are handled, but with the particularity of looking at the vessel sequence

from the end to the beginning: 𝑥𝑖𝑗𝑘 = 1 if vessel 𝑗 is the 𝑘th last to be handled at berth 𝑖.

An extension of this model to the dynamic berth allocation problem is also discussed, and

a compact reformulation is proposed, with some further extensions. (HANSEN; OGUZ.,

2003) claim to correct an error that (IMAI et al., 2001) models included in the objective

function.
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(IMAI et al., 2003) incorporated priorities in the dynamic version of the BAP

(Priority Berth Allocation Problem - PBAP). The objective function aims the minimiza-

tion of the sum of each vessel service time weighted by its priority, which in the described

application is related to the total handling needs, i.e. vessels with a larger container han-

dling volume have a higher priority. A Lagrangian relaxation formulation is developed to

the PBAP, but given the hardness of the relaxed problem (a Quadratic Assignment Prob-

lem) and the computational burden that its resolution would imply, a genetic algorithm

developed. Later on, in (IMAI et al., 2007), the dynamic berth allocation problem was

again addressed at a multi-user container terminal with indented berths for fast handling

of mega-containerships. An indented multi-user container terminal is characterized by its

capability of fast handling from both sides of large vessels. But if they are small, multiple

vessels are permitted to be simultaneously served at a speciĄc berth, which results in

the nonlinearity in the formulation. A linear formulation is introduced based on decision

variables of berth-vessel-order assignment, and a genetic algorithm is proposed. Also in

(SIMRIN; DIABAT, 2015) the dynamic berth allocation problem is formulated as a non-

linear mixed integer program, in which the non-linearity arises in the objective function

when trying to model the time during which the terminal remains idle. Again, a genetic

algorithm is developed and tested on 6 different instances, considering different numbers

of vessels and berths. The dynamic BAP was also solved in (ARANGO et al., 2013),

aiming the minimization of the distances traveled by the forklifts and the quay crane,

during container loading and unloading operations. A genetic algorithm was integrated

in a simulation model, wich is used to test the efficiency of each vessel allocation. The

arrival times were taken from Algeciras port database, in Spain, in October 2010.

Finally, (IMAI et al., 2008) looked at a variation of the BAP in which vessels

that would normally be served at a multi-user terminal, with a limited capacity, are

assigned to an external terminal if their expected waiting time exceeds the time limit.

The authors named this problem as the Berth Allocation Problem with an External

Terminal (BAPE). Two formulations are proposed, one for the static BAPE and another

for the dynamic BAPE. The goal is to Ąnd the optimal assignment of vessel-berth-service

order, so that the total service time of vessels that are allocated to the external terminal

is minimized. A genetic algorithm was developed for the DBAPE and tested for the port

of Colombo, Sri Lanka, for 10 days in June 2003.

2.1.3 Handling time: static versus dynamic - integration with the quay crane

assignment problem

A vessel should never wait too long to be serviced, as this represents an immo-

bilization cost for the client and an opportunity cost for the port. The duration of a vessel

berthing depends on the number of quay cranes allocated to the vessel: as the number
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of quay cranes allocated to a vessel increases, the duration of vessel berthing decreases.

For the discrete BAP this means that the handling time of a vessel may be different for

different berths, even if the decision regarding the number of cranes to assign to each

vessel is not involved (e.g. (BUHRKAL et al., 2011)).

Hence, the handling time can also be classiĄed as static if the number of cranes

that will serve each vessel is Ąxed, or dynamic if the number of cranes that will work on

each vessel is variable and decided together with the berth position and service time. As

a result, an integrated Quay Crane Allocation Problem (QCAP) and Berth Allocation

Problem (BAP) arises.

According to (VACCA et al., 2013), the problem resulting from the integration

of BAP with QCAP is very complex. They implement an exact branch and price algorithm

that aims at assigning vessels to berthing positions, performing the scheduling of vessels

in each berth and allocating quay cranes (QC) to vessels over a given time horizon, taking

into account the quay crane capacity of the terminal. (TURKOGULLARI et al., 2014)

also develop an exact solution algorithm - a cutting plane algorithm - to minimize the

costs of deviation from the desired berth section, berthing later than the arrival time and

departing later than the due time. A binary integer linear program was formulated for

the integrated solution of the berth allocation and quay crane assignment.

Being the integrated discrete Berth Allocation and Quay Crane Scheduling

Problem (IBAQCSP) NP-hard ((LEE; WANG, 2010)) it is not surprising that heuristic

methods have been developed and proposed for this problem. (LEE; WANG, 2010) pro-

posed a genetic algorithm for this problem that was tested on forty random instances, sys-

tematically generated. Another genetic algorithm was proposed in (LIANG et al., 2009),

combined with a heuristic. The goal is to minimize the sum of handling time, waiting time

and delay time for every vessel. (IMAI et al., 2008) also used a genetic algorithm to Ąnd

an approximate solution for the B&CAP (the BAP formulation from (IMAI et al., 2001)

amended with some constraints). The algorithm determines the berth scheduling and the

crane scheduling at the same time, with the goal of minimizing the total service time

(waiting and handling times). The GA was also used in an hybrid multistage operation

approaches developed to facilitate local convergence in (LIANG et al., 2012). The concept

of transshipment of vessel to vessel was introduced with the consideration that the total

number of quay cranes on berth is Ąxed. The transshipment is made between two vessels

and occurs after the earlier arriving vessel has Ąnished its loading or unloading operations

without transshipment. The objective is to minimize the sum of the handling time, wait-

ing time of container vessels on berths ( time interval two vessels spend performing the

transshipment operation), the delay time of container vessels departure and the waiting

time of transshipment. The method is used to solve a case from one of Shanghai container

terminal companies in China.

(LALLA-RUIZ et al., 2014) modeled the Tactical Berth Allocation Problem
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(TBAP) involved processes: how to determine the berthing position, berthing time and

allocation of quay cranes for container vessels arriving to the port over a well-deĄned time

horizon maximizing the sum of the values of the chosen quay crane proĄles assigned to

all the vessels and, simultaneously, minimizing the yard-related housekeeping cost gen-

erated. The proposed problem was solved by a Biased Random Key Genetic Algorithm

(BRKGA). (GIALLOMBARDO et al., 2008) present a mixed integer quadratic program-

ming formulation for the Tactical Berth Allocation Problem (TBAP) with quay cranes

assignment as well. The problem maximizes the sum of the values of the chosen quay crane

assignment proĄles over all the vessels and minimizes the yard-related housekeeping costs

generated by the flows of containers exchanged between vessels. The formulation has

been tested with CPLEX 10.2, which was able to solve some instances at optimality. For

others instances it hardly Ąnds a feasible solution and therefore a reformulation based on

Dantzig-Wolfe decomposition and column generation, and an incremental approach based

on Lagrangian dual, was considered in order to exploit the structure of TBAP and its

relation with the BAP formulation. Also for the integrated tactical berth allocation prob-

lem (TBAP) and the quay crane assignment problem, (GIALLOMBARDO et al., 2010)

proposed a two level heuristic. First the quay crane proĄles are assigned for the vessels

and next the resulting berth allocation problem is solved for the given quay crane assign-

ment. This procedure is repeated for several quay cranes proĄles, which are chosen using

the reduced costs arguments of mathematical programming. A tabu search algorithm was

developed to solve the BAP aiming to minimize the yard-related transshipment costs.

(GOLIAS et al., 2009a) divided the quay into a number of berths and each

berth can service one vessel at a time and assumed that the vessel handling time is

proportional to vessel capacity and the assigned berth. It was done in order to minimize

the total waiting and delayed departure time for all vessels, reducing indirectly the fuel

consumption and emissions produced by the vessels while in idle mode. The resolution

approach presented is a genetic algorithm based heuristic. In (THEOFANIS et al., 2007)

it was supposed that vessel handling time is berth dependent, because it is related to the

time of the landside transfer operations. The problem also considered one long wharf at a

multi-user terminal, which was divided into several berths to obtain a set of assignments

of vessels to those berths and it was formulated as a linear mixed integer program with

the objective of minimizing the total weighted service time of all the vessels (Weighted

Berth Allocation Problem - WBAP) and solved with a genetic algorithm based heuristic

for medium to large instances.

The integrated berth allocation and quay crane assignments proposed in (CHANG

et al., 2010) is based on rolling-horizon approach to minimize the total deviation between

the actual and best berthing locations based on each planning horizon, the total penalty

for delayed berthing and departure time of vessels and the total energy consumption of

quay cranes. A heuristic algorithm is used to reduce the solution dimension and generate
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feasible solutions for the initialization of the population parallel genetic algorithm. A com-

bination of simulation and optimization technologies is proposed to evaluate the proposed

BAP and QCAP strategies. A rolling horizon framework was used as well as in (RAA et

al., 2011). The model, that incorporates additional real-life features, assumed that all

vessels approaching the berth need to be scheduled at minimum cost, once the each vessel

has a desired position to be berth, which is close to the dedicated storage location of

the containers that will be (un)loaded. The costs come from penalties for vessel handling

delays, deviating from a vesselŠs preferred berthing location and changes in the number

of cranes assigned to a vessel during its service. A hybrid heuristic solution procedure

is used to validate the model with a three-month data set from the port of Antwerp. A

sensitivity analysis of the available number of quay cranes, quay length and management

parameters expressing the trade-offs between cost components was performed to illustrate

the modelŠs capabilities to support managerial decision making.

The approach addressed in (YANG et al., 2012) for a multi-user container ter-

minal not only included the berth allocation (BAP) and quay crane assignment (QCAP)

problems, but also the interactions between them. The vessel berthing time and depar-

ture time obtained in the BAP determine the time window of the corresponding vessel in

the QCAP, which updates the vessel handling time and the vessel departure time, and

supplies feed-back to the BAP. A a nested loop-based evolutionary algorithm (NLEA) is

developed for solving the problem. (MEISEL; BIERWIRTH, 2013) provide a framework,

solving jointly not only the berth allocation problem (BAP) and the quay crane assign-

ment problem (QCAP), but also the quay crane scheduling problem (QCSP). Well-known

heuristics were used. First, the QCSP is solved for each vessel under a variable number

of employed cranes to obtain crane productivity rates. Next, these rates are included in

a berth allocation and crane capacity assignment problem (BACCAP) to decide on the

berthing position, berthing time, and crane capacity assigned to each vessel. Finally, to

generate an overall crane schedule, the QCSP is solved again with respect to the decisions

made, establishing time windows for the crane operations (QCSPTW).

2.1.4 Integration with yard management

Yard management thus involves optimal allocation of storage areas for import,

export and transshipment containers. If the departure position of a container is far from

its yard position, the container must be reallocated before the arrival of the outbound

vessel. It means that the favorite berth for each vessel is determined in long-term, inducing

container flows inside the yard. The aim o integrating the BAP with yard planning relies on

determining if accommodating a costumer request is feasible and how it impacts the whole

terminal performance. (PRATAP et al., 2016) simultaneously optimized the stockyard

operations and rake schedule for outbound cargo, in conjunction with the arriving vessels
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and the status of the stockyards at the port. With the goal minimizing the service time

of rakes and the delay in unloading time of the vessel due to conflict of stacker/reclaimer,

a genetic algorithm approach and a block-based evolutionary algorithm are developed to

tackle real-life instances.

The start and end times of vessel operations determine the workload distri-

bution and the deployment of yard equipment. Moreover, berthing locations of vessels

determine the storage locations of speciĄc cargo types to speciĄc yard locations. Similarly,

the yard assignment of speciĄc cargo types has an impact on the best berthing assign-

ment for vessels berthing at the port. (ROBENEK et al., 2014) combined and solved the

berth allocation and the yard assignment for bulk ports as a single large scale optimiza-

tion problem. A bulk terminal manager faces the challenge of maximizing efficiency both

along the quay side and the yard. The operations planning can be divided into tacti-

cal level (resource allocation) and operational level (daily and real time decisions). The

objective function is to minimize the total service time of all vessels: the sum of total de-

lays and total handling time of vessels berthing at the port. The proposed mixed integer

model was decomposed: the master problem is formulated as a set-partitioning problem

and subproblems identify columns with negative reduced costs and a metaheuristic ap-

proach based on critical-shaking neighborhood search was presented in order to obtain

sub-optimal solutions quickly. The test instances are based on a sample of data obtained

from the SAQR port, Ras-Al-Khaimah, UAE, the biggest bulk port in the middle east

for a time horizon of roughly 10 days from 28th March to 6th April, 2011. (HENDRIKS

et al., 2013) present a simultaneous berth allocation and yard planning problem (BAP

and YAP, respectively) at tactical level. The objective is to minimize the overall strad-

dle carrier travel distance, Ąnding the berth locations for vessels and assigning storage

blocks to containers. A heuristic that alternates between BAP and YAP until no further

improvement is possible is proposed. The instances used (cyclic timetable, vesselsŠ load

compositions and yard layout) were provided by the terminal operator PSA Antwerp.

2.1.5 Multiobjective optimization approach

According to (CHEONG; TAN, 2008), as port operators try to optimize their

operations to obtain a high throughput, there is also a need to account for the satisfac-

tion levels of vessel operators, requiring to minimize concurrently the multiple conflicting

objectives. For example, from the point of view of vessels operator, an ideal berthing plan

is one where vessels do not have to wait to be berthed and be serviced in the shortest

possible time. However, from the point of view of port operators, an ideal berthing plan

is one where the makespan is minimal.

Therefore, a multi-objective optimization approach is induced. They optimized

the complete schedules with minimum service time and delay in the departure of vessels,
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subject to a number of temporal and spatial constraints using an ant colony optimization

(ACO) incorporated to heuristics in the search process in the form of ant visibility. (IMAI

et al., 2007) determine an assignment of calling vessels to berths for cargo handling, with

two objectives to minimize: the delay in vesselsŠ departure and the total service time. Two

heuristics were proposed based on two existing procedures of the subgradient optimization

and genetic algorithm. It was carried out experiments with four berths and 24 calling ves-

sels that arrive randomly at the terminal with an exponential distribution of the average

arrival interval of 7 h. (GOLIAS et al., 2009b) formulate the discrete and dynamic berth

allocation problem as a multiobjective combinatorial optimization problem. The wharf

is divided into a number of berths and the vessels are assigned to a preferential group

according to the arrival time. For each group there is an objective function, minimizing

the total service time. And there is also an objective function minimizing the total ser-

vice time of all vessels. A genetic algorithm based heuristic was presented to solve the

proposed problem. In (CHEONG et al., 2010) the BAP was solved with a multi-objective

evolutionary algorithm (MOEA) by optimizing the berth schedule. The objectives studied

were: minimize the makespan, waiting time, and degree of deviation from a predetermined

priority schedule, all representing the interests of both port and vessels operators.

2.2 Relationship between the Berth Allocation Problem and other

Combinatorial Optimization Problems

There are several approaches to model the BAP. The most relevant ones are

presented in more detail in this section.

2.2.1 The Berth Allocation Problem as a Strip Packing Problem

The continuous Berth Allocation problem can be modeled as a strip packing

problem.

Other problems in the literature have already been modeled as a packing prob-

lem or a cutting stock problem. (TRIGOS; LÓPEZ, 2017) adapt a specialized case of

the classical one-dimensional cutting stock problem (1D-CSP) with six main additional

features to model and solve planning unit operations with limited resources in the make-

to-order industrial environment. The objective is to satisfy demand using the minimum

number of manufacturing cycles at the vulcanizing operation during the manufacturing

of rubber curved hoses in the automotive industry

Based on the model for the container loading problem proposed by (CHEN

et al., 1995), (MARTIN et al., 2015) approached the BAP by mixed integer linear pro-

gramming interpreting the problem as a special case of two-dimensional cutting stock

problem.
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Let 𝒩 = {1, ..., 𝑛} be the set of vessels and ℳ = {1, ..., 𝑚} the set of berths.

For each 𝑖 ∈ 𝒩 , 𝑝𝑖 is the processing time and 𝑎𝑖 the arrival time of vessel 𝑖. The continuous

variable 𝑥𝑖 indicates the handling start time of vessel 𝑖 and the integer variable 𝑦𝑖 indicates

to which berth vessel 𝑖 was allocated. Other binary variables Ąx the relative position of

two vessels: 𝑙𝑖𝑗 = 1 if vessel 𝑖 is on the left side of vessel 𝑗, and 0 otherwise; 𝑟𝑖𝑗 = 1 if vessel

𝑖 is on the right side of vessel 𝑗, and 0 otherwise; 𝑏𝑖𝑗 = 1 if vessel 𝑖 is behind vessel 𝑗,

and 0 otherwise, and 𝑓𝑖𝑗 = 1 if vessel 𝑖 in front of vessel 𝑗, and 0 otherwise. 𝑀 is a large

constant.

Thus, the BAP is formulated as follows:

Min ∑
𝑖

(𝑥𝑖 − 𝑎𝑖) (2.1)

s.t. 𝑥𝑖 + 𝑝𝑖 ≤ 𝑥𝑗 + (1 − 𝑙𝑖𝑗)𝑀 ∀(𝑖, 𝑗)⋃︀(𝑖 < 𝑗) (2.2)

𝑥𝑗 + 𝑝𝑗 ≤ 𝑥𝑖 + (1 − 𝑟𝑖𝑗)𝑀 ∀(𝑖, 𝑗)⋃︀(𝑖 < 𝑗) (2.3)

𝑦𝑖 + 1 ≤ 𝑦𝑗 + (1 − 𝑏𝑖𝑗)𝑀 ∀(𝑖, 𝑗)⋃︀(𝑖 < 𝑗) (2.4)

𝑦𝑗 + 1 ≤ 𝑦𝑖 + (1 − 𝑓𝑖𝑗)𝑀 ∀(𝑖, 𝑗)⋃︀(𝑖 < 𝑗) (2.5)

𝑙𝑖𝑗 + 𝑟𝑖𝑗 + 𝑏𝑖𝑗 + 𝑓𝑖𝑗 ≥ 1 ∀(𝑖, 𝑗)⋃︀(𝑖 < 𝑗) (2.6)

𝑥𝑖 ≥ 𝑎𝑖 ∀𝑖 (2.7)

1 ≤ 𝑦𝑖 ≤𝑚 ∀𝑖 (2.8)

𝑙𝑖𝑗, 𝑟𝑖𝑗, 𝑏𝑖𝑗, 𝑓𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) (2.9)

𝑥𝑖 ≥ 0 ∀𝑖 (2.10)

𝑦𝑖 ≥ 0 and integer ∀𝑖 (2.11)

The objective function (2.1) minimizes the sum of the waiting times of all

vessels. Constraints (2.2) and (2.3) ensure that vessels do not overlap in the 𝑥 axis (time

axis) and constraints (2.4) and (2.5) ensure that vessels do not overlap in the 𝑦 axis (space

axis). In constraint (2.6), the check for overlap is necessary only if two vessels are placed

in the same berth. Constraint (2.7) does not allow the vessel to be moored before its

arrival time. Constraint (2.8) indicates which berth the vessel was allocated. Constraints

(2.9), (2.10) and (2.11) specify the nature of the decision variables used.

When approaching the BAP as a strip packing problem, a time-space diagram

is used to represent it. (LEE et al., 2010) depicted the solution for the continuous BAP

where the allocation plan for each vessel is represented as a rectangle. In this model,

the vessels are allowed to berth anywhere along the quay so as to sufficiently utilize the

quay resource and vessel shifting is not considered. Two versions of Greedy Randomized

Adaptive Search Procedure (GRASP) are developed to search for near optimal solutions,

in order to minimize the sum of weighted turnaround time for each incoming vessel.

In (DU et al., 2015) the variables are deĄned in order to quantify the tidal impacts
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on seaside operations and suggest a cheap and applicable solution to this problem. The

objective function minimizes the total departure delay of the vessels. The experiments

are performed simulating the one-year seaside operations of a container terminal with

typical data in a strong realistic sense generated to keep the problem size realistic and to

maintain the validity of the experimental results.

In the time-space diagram presented in (GUAN; CHEUNG, 2004) and (LEE;

CHEN, 2009), the horizontal axis represent the time units and the vertical axis represent

the berth space. Accordingly, the vessel as a rectangle whose length is the processing

time and whose height is the vessel size. In (GUAN; CHEUNG, 2004) multiple vessels are

allowed mooring per berth and the vessel arrivals are grouped into batches (similar arrival

time) in order to minimize the total weighted flow time. Two formulations are introduced -

Relative Position Formulation (space-time diagram) and Position Assignment formulation

(space covered by the vessel rectangles) - and a composite heuristic was developed to

conduct numerical experiments. (LEE; CHEN, 2009) developed a neighborhood-search

based heuristic, treating the quay as a continuous space in order to determine the berthing

time and space for each incoming vessel.

In the time-space diagram presented in (GANJI et al., 2010) and (DU et al.,

2011), the horizontal axis represents the position along the wharf, while the vertical one

represents the time axis. Each vessel is represented by a rectangle, such that the length

of the rectangle is the length of the vessel and the height of the rectangle is the duration

of its handling time. (GANJI et al., 2010) formulated the continuous BAP as a mixed

integer nonlinear programming model, with the objective of minimizing the sum of the

service times of all vessels. A genetic algorithm based heuristic is developed to search

for a solution for the problem and two test problems, a small and a large-sized problem,

were used to test the method. The results from the small test are also compared with the

results obtained from the branch and bound algorithm. (DU et al., 2011) also formulated

the BAP as a mixed integer nonlinear programming (MINLP) model, whose nonlinear

intractability is introduced by the consideration of fuel consumption , which is mainly

determined by the sailing speed. The total departure delay of all vessels and the vessel

emission is minimized.

(DAI et al., 2008) solved the static version as a rectangle packing problem with

arrival time constraints with arrival time constraints. The aim is to minimize the delays

faced by vessels, with higher priority vessels receiving the promised level of services. A local

search algorithm that employs the concept of sequence pair to deĄne the neighborhood

structure is proposed.
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2.2.2 The Berth Allocation Problem as a Scheduling Problem

In the discrete case, the BAP can be modeled as an unrelated parallel machine-

scheduling problem, where a vessel is treated as a job and a berth as a machine.

Most works on scheduling problem aim in minimizing the maximum comple-

tion time, the so-called makespan. (TELLACHE; BOUDHAR, 2017) proved that such

problem is NP-hard in the strong sense. It was addressed the problem of scheduling a set

of unit-time operations on a two-machine flow shop, subject to the constraints that some

conflicting jobs cannot be scheduled simultaneously on different machines. Most schedul-

ing problems aim at minimizing the makespan. (LI et al., 2017) addressed the batch

processing machines problem in order to make full use of machine capacity and to im-

prove the processing efficiency. (LABBI et al., 2017) considered the problem of scheduling

a set of jobs on two identical and parallel machines with preparation constraints. Each job

requires immediately before its execution a set of resources and a non-negligible prepara-

tion time, in which the machine is not available for another job. (SOTSKOV; GHOLAMI,

2017) addressed the job-shop problem: given a set of different machines, a set of jobs, con-

sisting of a set of ordered operations and having its own machine route, must be processed

on the machines. The classical job-shop problem has the objective of Ąnding a schedule,

which is feasible with respect to the resource and precedence constraints. (MASCHIETTO

et al., 2017) viewed cranes as parallel machines and trucks as jobs in order to formulate

the crane scheduling problem to deĄne the starting time for each loading operation of

the pair coil-truck. Two cranes must load a sequence of trucks and are subject to non-

interference constraints, as they move on the same track, and each truck has a loading

demand. This kind of problem is common in several logistics centers, such as stockyards,

depots and warehouses, where cranes or other similar equipment sharing the same rail

or road are used for handling cargo. (KOUIDER et al., 2017) considered the job shop

scheduling problem with unit-time operations with a set of jobs to be processed on a set

of machines. Each job consists of a speciĄc set of operations which expresses a distinct

processing route that has already been Ąxed and known in advance. Each operation has

a unit processing time and can be executed by only one machine. Each machine can only

handle at most one operation at a time and can be used at most once by each job. The job

shop scheduling problem with unit-time operation is realized in many practical scheduling

scenarios, as in scheduling lessons or exams at the university, in scheduling games in sport

competitions when each game needs the same time, and in scheduling medical procedures

in hospitals. (OZTURK et al., 2017) investigated the parallel batch scheduling of unit

size jobs with different processing times and release dates on parallel identical machines.

Each machine can process multiple jobs simultaneously as long as the capacity constraint

is not violated and the jobs processed at the same time constitute a single batch. If each

batch can process a single job at a time the problem reduces to a classical scheduling
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problem in the presence of jobs with release dates, different processing times and parallel

machines. Batch processing is encountered in casting, metallurgy, aircraft manufacturing,

burn-in operations of integrated circuit and sterilization services of hospitals. (HAN et al.,

2016) solved the flow shop scheduling problem with blocking scheduling problem. A set

of jobs must be processed on a set of machines and due to the lack of intermediate buffer

storage between machines, a job remains in the current machine until the next machine

is available for processing.

Besides minimizing the makespan, some problems present multiple objectives.

Making an analogy with a scheduling problem, in (ZHU et al., 2017)multitasking schedul-

ing problems with a rate-modifying activity are studied. For this case, jobs denote tasks

and machines denote the human worker and the set of jobs, independent and available at

time zero, must be processed on a machine that can process only one job at a time. The

objective is minimizing makespan, as well as the total completion time, maximum lateness,

and due-date assignment related cost by determining when to schedule the rate modifying

activity and the optimal task sequence in the presence of multitasking. (THEVENIN et al.,

2017) modeled a parallel machine scheduling problem with job incompatibility. Preemp-

tion can occur (i.e. a job can be stopped and restarted later), which is usually undesirable

in production systems once it increases the throughput time of the jobs and the inventory

costs. Therefore, the minimization of multiple objectives is considered, corresponding to

the makespan, number of preemptions and summation of the jobsŠ throughput times.

(XU et al., 2012) considered the Berth Allocation Problem as a parallel-

machine scheduling problem, in which the assignment of vessels to berths is limited by

water depth and tidal condition. There are 𝑛 vessels and 𝑚 berths and the time line

⋃︁0, 1) is divided into two intervals ⋃︁0, 𝑇 ⨄︁ (low water period) and ⋃︁𝑇, 1) (high-water pe-

riod). For 𝑖 = 1, 2, . . . , 𝑛, vessel 𝑖 has a given processing time 𝑝𝑖 > 0, arrival time 𝑎𝑖 ≥ 0,

weight 𝑤𝑖 > 0, Şhigh-water berth indexŤ 𝐻𝑖, and Şlow-water berth indexŤ 𝐿𝑖, where

𝐻𝑖, 𝐿𝑖 ∈ {1, 2, . . . ..., 𝑚}. For 𝑘 = 1, 2, . . . , 𝑚, let 𝑧𝑘
𝑖 = 1 if vessel 𝑖 is assigned to berth

𝑘, and 0 otherwise. Let 𝐼𝑘
𝑖𝑖′ = 1 if vessels 𝑖 and 𝑖′ are both assigned to berth k and vessel 𝑖

is processed before vessel 𝑖′, and 0 otherwise. Finally, let 𝑥𝑖 be the start time of processing

of vessel 𝑖 and 𝑀 a large constant.
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Min
𝑛

∑
𝑖=1

𝑤𝑖(𝑥𝑖 + 𝑝𝑗 − 𝑎𝑖) (2.12)

s.t.
𝑚

∑
𝑘=1

𝑧𝑘
𝑖 = 1 𝑖 = 1, 2, . . . , 𝑛 (2.13)

𝑥𝑖 ≥ 𝑎𝑖 𝑖 = 1, 2, . . . , 𝑛 (2.14)

𝑥𝑖′ ≥ 𝑥𝑖 −𝑀(1 − 𝐼𝑘
𝑖𝑖′) 𝑖, 𝑖′ = 1, 2, . . . , 𝑛 s.t. 𝑖 ≠ 𝑖′; 𝑘 = 1, 2, . . . , 𝑚 (2.15)

𝐼𝑘
𝑖𝑖′ + 𝐼𝑘

𝑖′𝑖 ≤
1
2
(𝑧𝑘

𝑖 + 𝑧𝑘
𝑖′) 𝑖, 𝑖′ = 1, 2, . . . , 𝑛 s.t. 𝑖 < 𝑖′; 𝑘 = 1, 2, . . . , 𝑚 (2.16)

𝐼𝑘
𝑖𝑖′ + 𝐼𝑘

𝑖′𝑖 ≤ 𝑧𝑘
𝑖 + 𝑧𝑘

𝑖′ − 1 𝑖, 𝑖′ = 1, 2, . . . , 𝑛 s.t. 𝑖 < 𝑖′; 𝑘 = 1, 2, . . . , 𝑚 (2.17)

𝑧𝑘
𝑖 = 0 𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . , 𝐻𝑖 − 1 (2.18)

𝑥𝑖 ≥ 𝑇𝑧𝑘
𝑖 𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . , 𝐿𝑖 − 1 (2.19)

𝑧𝑘
𝑖 ∈ {0, 1} 𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . , 𝑚 (2.20)

𝐼𝑘
𝑖𝑖′ ∈ {0, 1} 𝑖, 𝑖′ = 1, 2, . . . , 𝑛 s.t. 𝑖 ≠ 𝑖′ (2.21)

The objective function (2.12) minimizes the sum of all vessels completion time.

Constraint (2.13) requires each vessel to be assigned to one berth. Constraint (2.14)

requires that each vessel can start its processing only after it has arrived at the terminal.

Constraint (2.15) states that if vessels 𝑖, 𝑖′ are both assigned to berth 𝑘 and vessel 𝑖 is

processed before vessel 𝑖′, then the start time of vessel 𝑖′ must be no earlier than 𝑥𝑖 + 𝑝𝑖.

Constraints (2.16) and (2.17) ensure that one of 𝐼𝑘
𝑖𝑖′ and 𝐼𝑘

𝑖′𝑖 equals 1 if vessels 𝑖 and

𝑖′ are both assigned to berth 𝑘 and that 𝐼𝑘
𝑖𝑖′ = 𝐼𝑘

𝑖′𝑖 = 0 if one of vessels 𝑖 and 𝑖′ is not

assigned to berth 𝑘. Constraint (2.18) disallows vessel 𝑖 from being assigned to berths

1, 2, . . . , 𝐻𝑖 − 1 and Constraint (2.19) disallows vessel 𝑖 from being processed by berths

1, 2, . . . , 𝐿𝑖 − 1 during period ⋃︁0, 𝑇 ⨄︁. Because the problem is computationally intractable,

a simple heuristic solution methods is presented to obtain good solutions to the problem

in an efficient time.

According to (SANCHES et al., 2015), many scheduling problems are charac-

terized by the large number of possible solutions. Therefore, an adaptive genetic algorithm

is proposed for makespan minimization, once it has been successfully used as a search

method to solve this problem due to its capacity of globally exploring the search space

and Ąnding good solutions quickly. (MONACO; SAMMARRA, 2007) studied the discrete

and dynamic berth allocation problem, dealing with it as a scheduling problem as well.

Therefore, they proposed a mixed integer model, which was strengthened by introducing

idle time variables that do not depend on the vessel. After, the formulation was improved

by deĄning idle times constraints stronger and last, a tighter version of this constraints

was considered. All these three formulations are valid for the BAP, and the last one enjoys

the property of a lower number of continuous variables and constraints. The constraints

deĄning the idle time variables play the role of complicating constraints in a Lagrangean
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relaxation framework: dualizing them, the resulting Lagrangean problem is easy to solve.

According to them, if the BAP is thought as a scheduling problem, the problem will be

NP-hard independently of the number of berths because vessels have a release date and

they are not allowed to berth before the expected arrival time (dynamic case). On the

other hand, the static version (the arrival time does not impose a restriction on timing

for mooring) of the same problem is solvable in polynomial time since it reduces to an

assignment problem.

2.2.3 The Berth Allocation Problem as a Vehicle Routing Problem

Throughout literature, the BAP is modeled as a Vehicle Routing Problem

(VRP) as well.

The (VRP) is a combinatorial optimization and integer programming problem

which generalizes the well-known traveling salesman problem (TSP). According to (AN;

YAN, 2016), modeling the problems as a TSP is advantageous as the presented special

structure allows it to be solved by special algorithms.

The VRP has many applications in real world. Considering a special case of

the vehicle routing problem where not only each customer has speciĄed delivery time

window, but each route has limited time duration - Vehicle Routing Problem with Time

Windows and Limited Duration (VRPTW-LD), (KHODABANDEH et al., 2017) mod-

eled the distribution and transportation problem faced by General Electric Appliances

& Lighting (GE). The customer locations, which have a pre-speciĄed delivery time win-

dow, need carefully be paired together within one truck route and such pairing should

not only consider the travel distances between customers but ensure the total demand for

customers along the same route does not exceed a truckŠs capacity. Minimizing the total

travel distances and the total number of required trucks will reduce their distribution cost

signiĄcantly. (MAHVASH et al., 2017) address the three-dimensional loading capacitated

vehicle routing problem (3L-CVRP). There is a travelling cost associated to each edge. A

fleet of homogenous vehicles is located in the central depot and each vehicle has a maxi-

mum weight capacity and a three-dimensional loading space of length, width and height.

The demand of each customer is expressed in terms of a set of cuboid items and each

item is characterized by length, width, height and fragility status. The 3L-CVRP aims at

Ąnding a set of vehicle routes with minimum total traveling cost.

(BUHRKAL et al., 2011) deĄned the Berth Allocation Problem on a graph

𝐺 = (𝑉, 𝐴) where the set 𝑉 = 𝑁 ∪ {𝑜, 𝑑} contains a vertex for each vessel and vertices 𝑜

and 𝑑 that represents respectively the origin and destination nodes for any route in the

graph. Thereby, the BAP was formulates as a heterogeneous vehicle routing problem with

time windows (HVRPTW), in which berths corresponds to vehicles and there is single

depot.
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The set of arcs is a subset of 𝑉 × 𝑉 . Let 𝑁 be the set of vessels and 𝑀 the

set of berths. Each vessel 𝑖 ∈ 𝑁 has an arrival time 𝑎𝑖, an expected departure time from

the port 𝑏𝑖 (which implies a time window ⋃︁𝑎𝑖, 𝑏𝑖⨄︁ for vessel 𝑖), processing times 𝑝𝑘
𝑖 that

are dependent on the respective berth 𝑘 ∈𝑀 locations and a relative importance 𝑣𝑖. For

the origin and destination vertices, the time window depends on the berth 𝑘 as berths

can be available at different times ⋃︁𝑠𝑘, 𝑒𝑘⨄︁). Each binary decision variable 𝑙𝑘
𝑖𝑗, 𝑘 ∈ 𝑀 ,

(𝑖, 𝑗) ∈ 𝐴, takes the value one if vessel 𝑗 immediately succeeds vessel 𝑖 at berth 𝑘 and is

zero otherwise. Each continuous variables 𝑥𝑘
𝑖 , 𝑖 ∈ 𝑉 , 𝑘 ∈ 𝑀 , gives the time that vessel 𝑖

starts being serviced at berth 𝑘 (if vessel 𝑖 does not use berth 𝑘, 𝑥𝑘
𝑖 = 𝑎𝑖). The variables

𝑥𝑘
𝑜 and 𝑥𝑘

𝑑 deĄne the start and end time of activities at berth 𝑘 ∈ 𝑀 respectively. The

problem is formulated as follow:

min ∑
𝑖∈𝑁

∑
𝑘∈𝑀

𝑣𝑖

⎛
⎝𝑥

𝑘
𝑖 + 𝑝𝑘

𝑖 ∑
𝑗∈𝑁∪{𝑑}

𝑙𝑘
𝑖𝑗

⎞
⎠ (2.22)

s.t. ∑
𝑘∈𝑀

∑
𝑗∈𝑁∪{𝑑}

𝑙𝑘
𝑖𝑗 = 1 ∀𝑖 ∈ 𝑁 (2.23)

∑
𝑗∈𝑁∪{𝑑}

𝑙𝑘
𝑜𝑗 = 1 ∀𝑘 ∈𝑀 (2.24)

∑
𝑗∈𝑁∪{𝑜}

𝑙𝑘
𝑖𝑑 = 1 ∀𝑘 ∈𝑀 (2.25)

∑
𝑗∈𝑁∪{𝑑}

𝑙𝑘
𝑖𝑗 = ∑

𝑗∈𝑁∪{𝑜}

𝑙𝑘
𝑗𝑖 ∀𝑘 ∈𝑀, 𝑖 ∈ 𝑁 (2.26)

𝑥𝑘
𝑖 + 𝑝𝑘

𝑖 − 𝑥𝑘
𝑗 ≤ (1 − 𝑙𝑘

𝑖𝑗)𝑀𝑘
𝑖𝑗 ∀𝑘 ∈𝑀, (𝑖, 𝑗) ∈ 𝐴 (2.27)

𝑎𝑖 ≤ 𝑥𝑘
𝑖 ∀𝑘 ∈𝑀, 𝑖 ∈ 𝑁 (2.28)

𝑥𝑘
𝑖 + 𝑝𝑘

𝑖 ∑
𝑗∈𝑁∪{𝑑}

𝑙𝑘
𝑖𝑗 ≤ 𝑏𝑖 ∀𝑘 ∈𝑀, 𝑖 ∈ 𝑁 (2.29)

𝑠𝑘 ≤ 𝑥𝑘
𝑜 ∀𝑘 ∈𝑀 (2.30)

𝑥𝑘
𝑑 ≤ 𝑒𝑘 ∀𝑘 ∈𝑀 (2.31)

𝑙𝑘
𝑖𝑗 ∈ (0, 1) ∀𝑘 ∈𝑀, (𝑖, 𝑗) ∈ 𝐴 (2.32)

𝑥𝑘
𝑖 ≥ 0 ∀𝑘 ∈𝑀, 𝑖 ∈ 𝑉 (2.33)

The objective function (2.22) minimizes the weighted sum of vessel service

times. Constraint set (2.23) states that each vessel must be assigned to exactly one berth

𝑘, while constraints (2.24) and (2.25) guarantee that for each berth 𝑘 the degree of origin

and destination nodes, respectively, is one. Constraints (2.26) ensure flow conservation

for the remaining vertices. Constraints (2.27) guarantee consistency for berthing time

and mooring sequence on each berth, and 𝑀𝑘
𝑖𝑗 = max {𝑏𝑖 + ℎ𝑘

𝑖 − 𝑎𝑗, 0}. Constraints (2.28)

and (2.29) enforce the time window requirements for each vessel. Constraints (2.30) and

(2.31) enforce the berth availability time windows. Finally, constraints (2.32) and (2.33)

deĄne the respective domains of the decision variables.
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Model (2.22)-(2.33) was solved in (TING et al., 2014a) with a particle swarm

optimization (PSO) algorithm.

(CORDEAU et al., 2005) proposed a formulation on multidepot vehicle-routing

problem with time windows: the vessels are seen as customers and the berths as depots

at which one vehicle is located. There is one vehicle one for each depot and each vehicle

starts and ends its tour at its depot, which is divided into an origin vertex and a desti-

nation vertex. The vessels are modeled as vertices in a multigraph and the time windows

are imposed on every vertex. At the origin and destination vertices, the time windows

correspond to the availability period of the corresponding berth. The objective function

is the minimization of the weighted sum of the service times. In (OLIVEIRA et al., 2012)

the problem was treated as a Vehicle Routing Problem with Time Windows and Multiple

Garages (VRPTWMG): the vessels are seen as customers and berths as garages. The

objective function minimizes the weighted sum of service time. An application of a hy-

brid method known as Clustering Search (CS) is proposed, using a Simulated Annealing

Algorithm to generate solutions.

2.2.4 The Berth Allocation Problem as a Generalized Set Partitioning Prob-

lem

The dynamic BAP has also been modeled as a Generalized Set Partitioning

Problem (GSPP).

According to (VOSS; LALLA-RUIZ, 2016), the Set Partitioning Problem (SPP)

is a well-known optimization problem because of its complexity and several real-world

applications. They presented a reformulation for the Multiple-choice Multidimensional

Knapsack Problem, which consists of Ąnding a subset of objects that maximizes the total

proĄt while observing some capacity restrictions, based on the SSP.

(BUHRKAL et al., 2011), (LALLA-RUIZ et al., 2012), (UMANG et al., 2013)

and (LALLA-RUIZ; VOSS, 2016) modeled the dynamic BAP (the quay is divided into

a Ąnite set of berths to which the vessels can be assigned for loading and unloading

purposes) as a Generalized Set Partitioning Problem (GSPP).

Let 𝑀 be the set of berthing locations, 𝑁 the set of vessels, Ω the set of

columns. Let 𝐴 and 𝐵 be two matrices, both containing ⋃︀Ω⋃︀ columns and 𝑐æ the cost of

any column æ. 𝐴𝑖æ = 1 if column æ represents an assignment of vessel 𝑖, and 0 otherwise;

𝐵𝑝æ = 1 if position 𝑝 is contained in the assignment that column æ represents, and 0

otherwise and the rows of B are indexed by the set P, with ⋃︀𝑃 ⋃︀ = ∑𝑘∈𝑀 (𝑒𝑘 − 𝑠𝑘). The

decision variable is 𝑥æ = 1 if column æ is used in the solution, and 0 otherwise. Thereby,

the GSPP formulation for the BAP is presented below:
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min ∑
æ∈Ω

𝑐æ𝑥æ (2.34)

s.t. ∑
æ∈Ω

𝐴𝑖æ𝑥æ = 1 ∀𝑖 ∈ 𝑁 (2.35)

∑
æ∈Ω

𝐵𝑝æ𝑥æ ≤ 1 ∀𝑝 ∈ 𝑃 (2.36)

𝑥æ ∈ {0, 1} ∀æ ∈ Ω (2.37)

The objective function (2.34) minimizes the vessels service time. Constraints

(2.35) guarantee that all vessels are served (generalized upper bound constraints) and

constraints (2.36) guarantee that only one vessel can use any berth during each time

interval.

(LALLA-RUIZ et al., 2012) created a tabu search with path relinking is created

for solving such problem. (UMANG et al., 2013) proposed a squeaky wheel optimization

(SWO) meta-heuristic to solve the problem for a small sample of data received from SAQR

port, Ras Al Khaimah (RAK), UAE. (LALLA-RUIZ; VOSS, 2016) presented two Par-

tial Optimization Metaheuristic Under Special IntensiĄcation Conditions (POPMUSIC)

approaches to solve the problem.

2.3 Literature Review Summary

Tables 4 and 4 summarize the classiĄcation criteria proposed in this chapter.
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(ARANGO et al., 2013) x x x x x x x x
(ARANGO et al., 2011) x x x x x x x x
(BARROS et al., 2011) x x x x x x x x x

(BUHRKAL et al., 2011) x x x x x x x x x
(CHANG et al., 2010) x x x x x x x x

(CHEONG; TAN, 2008) x x x x x x x x
(CHEONG et al., 2010) x x x x x x x x

(CORDEAU et al., 2005) x x x x x x x x
(DAI et al., 2008) x x x x x x x x

(OLIVEIRA et al., 2012) x x x x x x x x
(DU et al., 2015) x x x x x x x x
(DU et al., 2011) x x x x x x x x

(FROJAN et al., 2015) x x x x x x x x
(GIALLOMBARDO et al., 2008) x x x x x x x x
(GIALLOMBARDO et al., 2010) x x x x x x x x

(GOLIAS et al., 2009b) x x x x x x x x
(GOLIAS et al., 2009a) x x x x x x x x

(GUAN; CHEUNG, 2004) x x x x x x x x
(HANSEN; OGUZ., 2003) x x x x x x x x x

(HANSEN et al., 2008) x x x x x x x x
(HENDRIKS et al., 2013) x x x x x x x x

(IMAI et al., 2008) x x x x x x x x
(IMAI et al., 2007) x x x x x x x x
(IMAI et al., 2001) x x x x x x x x
(IMAI et al., 2003) x x x x x x x x
(IMAI et al., 2008) x x x x x x x x x
(IMAI et al., 2005) x x x x x x x x
(IMAI et al., 2007) x x x x x x x x

(LALLA-RUIZ et al., 2014) x x x x x x x x
(LALLA-RUIZ et al., 2012) x x x x x x x x

(LALLA-RUIZ; VOSS, 2016) x x x x x x x x
(LEE et al., 2010) x x x x x x x x

(LEE; WANG, 2010) x x x x x x x x
(LEE; CHEN, 2009) x x x x x x x x
(LI; PANG, 2011) x x x x x x x x

(LIANG et al., 2009) x x x x x x x x
(LIANG et al., 2012) x x x x x x x x

(MARTIN et al., 2015) x x x x x x x x x

Table 3 Classification Summary (cont)
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(MEISEL; BIERWIRTH, 2013) x x x x x x x x
(MONACO; SAMMARRA, 2007) x x x x x x x x

(RAA et al., 2011) x x x x x x x x
(ROBENEK et al., 2014) x x x x x x x x

(GANJI et al., 2010) x x x x x x x x
(SIMRIN; DIABAT, 2015) x x x x x x x x
(THEOFANIS et al., 2007) x x x x x x x x

(TING et al., 2014a) x x x x x x x x
(TURKOGULLARI et al., 2014) x x x x x x x x

(UMANG et al., 2013) x x x x x x x x x x
(VACCA et al., 2013) x x x x x x x x

(XU et al., 2012) x x x x x x x x x
(YANG et al., 2012) x x x x x x x x

Table 4 – Classification Summary
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2.4 The Discrete Berth Allocation Model (DBAP)

The model presented in Section 2.2.3 is detailed in this section because it

generalizes other models. Some improvements were made by (BUHRKAL et al., 2011) for

reducing computation time. First, a class of valid inequalities was formulated to increase

the lower bound of the 𝑥𝑘
𝑖 variables:

𝑠𝑘𝑙𝑘
𝑜𝑗 + ∑

𝑖∈𝑁

(max {𝑎𝑖, 𝑠
𝑘} + 𝑝𝑘

𝑖 ) 𝑙𝑘
𝑖𝑗 ≤ 𝑥𝑘

𝑗 ∀𝑘 ∈𝑀, 𝑗 ∈ 𝑁

On the left hand side at most one of the 𝑙 variables can be 1 in a feasible

solution (constraints (2.23) and (2.26)), hence the inequality is valid no matter which one

of the 𝑙 variables on the left hand side is non-zero.

Second, a variable Ąxing was proposed. One can Ąx a variable 𝑙𝑘
𝑖𝑗 if itŠs possible

to guarantee that an optimal solution exists in which berth 𝑘 does not use the arc (𝑖, 𝑗).
If 𝑝𝑘

𝑖 ≥ 𝑝𝑘
𝑗 and 𝑎𝑖 ≥ 𝑎𝑗, then 𝑙𝑘

𝑖𝑗 = 0. In words, if vessel 𝑗 arrives before vessel 𝑖

and has a shorter processing time, then vessel 𝑗 may not follow vessel 𝑖 at berth 𝑘.

Last, it was highlighted the data used may lead to equivalent solutions once

some berths are identical in terms of their availability time window and handling times for

all vessels. This problem is tackled by considering berth types instead individual berths:

Ñ𝑘, 𝑘 ∈𝑀 , represents the number of berths of type 𝑘 in the problem instance. Constraints

(2.24) and (2.25) and the domain of 𝑙𝑘
𝑜𝑑 need to be respectively modiĄed to:

∑
𝑗∈𝑁∪{𝑑}

𝑙𝑘
𝑜𝑗 = Ñ𝑘 ∀𝑘 ∈𝑀 (2.38)

∑
𝑗∈𝑁∪{𝑜}

𝑙𝑘
𝑖𝑑 = Ñ𝑘 ∀𝑘 ∈𝑀 (2.39)

𝑙𝑘
𝑜𝑑 ∈ {0, . . . , Ñ𝑘} (2.40)
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3 Multiobjective Algorithm for the BAP

According to (OSYCZKA, 1985), a multiobjective optimization problem is the

optimization of a vectorial function whose elements represent each one of the objective

functions. The expected solution is composed of a family of solutions considered equal to

each other and better than the remainder (partially ordered set of equilibrium points).

Along these lines, there are feasible alternatives that do not satisfy any order relation,

such as Şless than or equal,Ť impeding the use of the usual concept of optimal solution

adopted in mono-objective problems. Multiobjective optimization models better reflects

the complex reality of maritime terminals and allows the exploration of a wider range of

alternative solutions.

Most studies presented in the literature consider only one objective function:

to minimize the costs of the port and the vessel. However, other optimization objectives

may emerge, and sometimes it may conflict. In (YANG; WANG, 2010) a bi-objective

optimization model was proposed to minimize the turnaround time of vessels and the

production cost at the same time. The optimization models and associated techniques have

evolved to contemplate the more realistic situation in which multiple objectives compete to

solve a given problem (FERREIRA, 1999). (CHEONG et al., 2009) attempt to minimize

three objectives that represent the interests of both port and vessels operators: makespan

of the port, total waiting time of the vessel and degree of deviation from a predetermined

service priority schedule. In this context, to consider a multiobjective optimization may be

proĄtable, where optimal decisions need to be taken in the presence of trade-offs between

two or more conflicting objectives. The model proposed by (GOLIAS et al., 2009a) assumes

that vessels arriving at the terminal can be assigned to different preferential groups.

There will be one objective function for the vessels of each preferential customer and one

objective function for all the vessels of different customers that are non-preferential. A

Genetic Algorithm heuristic with an integer chromosomal representation is used to exploit

in full the characteristics of the problem, four different types of mutation are applied to all

the chromosomes at each generation (insert, swap, inversion, and scramble mutation) and

a novel multi-population and multi-selection approach was used to Ąnd quality solutions

for each objective function. In (PRATAP et al., 2015) a problem based on a realistic

scenario of a port located in the eastern coast of India is formulated aiming to Ąnd the

optimal order in which the ships should be allowed to pass through the channel towards

the berths. The two objectives are minimizing the waiting time and the deviation from

customer priority. A ModiĄed Non-sorting Genetic Algorithm II, aiming to mantain the

lateral diversity in the population of the next generation is proposed.

There are several mathematical programming techniques used for solving mul-
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tiobjective optimization problems based on information that must be known or deĄned

by the decision maker. These techniques tend to generate only one solution in each exe-

cution of the algorithm according to (COELLO; ZACATENCO, 2002). Alternatively, the

metaheuristics have been widely used in several applications since they are able to obtain

a set of good solutions in a single round. Based on the Non-dominated Sorting Genetic

Algorithm II (NSGA-II) (DEB et al., 2000; DEB et al., 2002), this chapter proposes the

use and adaptation of an Evolutionary Metaheuristic to solve the Berth Allocation Prob-

lem considering two objective functions to be simultaneously optimized. The aim of this

study is to provide an understanding on how well evolutionary approaches can handle

real world scenarios and compete against other operation research approaches. The ge-

netic algorithm was chosen because it is the most classical evolutionary algorithm used

in the literature, and its NSGA-II variation showed good results in several applications.

This chapter is organized as follows: the next section presents the mathematical

formulation of the BAP and the multiple objectives considered. Section 3.2 introduces the

proposed algorithm and describes how it can be applied to the BAP. Section 3.3 presents

an application of the techniques in different studied cases; the results are presented in

Section 3.4. Finally, Section 3.5 presents comments and conclusions.

3.1 Mathematical Formulation

In (BARBOSA, 2014) proposed a model based on the scheduling in parallel

machines is proposed. The model considers the BAP in the dynamic and discrete case,

and the processing time does not depend on the berth assignment. The parameters and

variables involved in the model of BAP are the ones presented below:

𝑝𝑖 : processing time of vessel 𝑖

𝑒𝑖 : arrival time of vessel 𝑖

𝑧𝑖𝑗 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1, if vessel 𝑖 is in berth 𝑗.

0, otherwise.

𝑎𝑖𝑘 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1, if vessel 𝑖 is on the left side of vessel 𝑘.

0, otherwise.

𝑥𝑖 = handling starting time of vessel 𝑖.

Thus, the following problem is modeled:
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min ∑
𝑖

(𝑥𝑖 − 𝑒𝑖) (3.1)

s.a ∑
𝑗

𝑧𝑖𝑗 = 1 ∀𝑖 (3.2)

𝑧𝑖𝑗 + 𝑧𝑘𝑗 − 𝑎𝑖𝑘 − 𝑎𝑘𝑖 ≤ 1 ∀𝑖 ≠ 𝑘, 𝑗 (3.3)

𝑥𝑖 + 𝑝𝑖 − (1 − 𝑎𝑖𝑘)𝑀 ≤ 𝑥𝑘 ∀𝑖, 𝑘 (3.4)

𝑧𝑖𝑗 + 𝑧𝑘ℎ + 𝑎𝑖𝑘 + 𝑎𝑘𝑖 ≤ 2 ∀𝑖 ≠ 𝑘, 𝑗 ≠ ℎ (3.5)

𝑥𝑖 ≥ 𝑒𝑖 ∀𝑖 (3.6)

𝑥𝑖 ≥ 0 ∀𝑖. (3.7)

𝑎𝑖,𝑘, 𝑧𝑖,𝑗 ∈ {0, 1} ∀𝑖, 𝑘, 𝑗 (3.8)

The objective function (3.1) minimizes the sum of the waiting times of all

vessels. Constraint (3.2) ensures that each vessel will be allocated exactly to one berth.

Constraint (3.3) shows that if the vessels 𝑖 and 𝑘 are in the same berth, then vessel or 𝑖 is

the right side of vessel 𝑘 or the opposite occurs. The constraint (3.4) ensures that vessels

do not overlap each other over time. Constraint (3.5) reinforces that variable 𝑎𝑖,𝑘 exists

only for vessels that are in the same berth. Finally, the constraint (3.6) does not allow

the vessels to be moored before its arrival. The last two constraints specify the type of

used variables.

3.1.1 Multiple Objectives

Based on (CHEONG et al., 2010) we have selected two different conflicting

objectives to the problem, which are described hereafter.

1. Minimizing the waiting time:

𝑓1 =∑
𝑖

(𝑥𝑖 − 𝑒𝑖) (3.9)

2. Minimizing the makespan:

𝑓2 =max {𝑥𝑖 + 𝑝𝑖} (3.10)

The waiting time (3.9) needs to be minimized from the vessel operator point of

view. From the terminal operator point of view the concern is to minimize the makespan

(3.10).
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In a multiobjective optimization problem, the search space is partially or-

dained, in a way that two arbitrary solutions are linked to each other in two possible

ways: or one of them dominates the other or neither dominates.

Let æ1 and æ2 two solutions in the search space of a problem that has 𝑚

objective functions. Then æ1 dominates æ2 (SAWARAGI et al., 1985), if and only if:

∀𝑖 ∈ {1, 2, ..., 𝑚}, 𝑓𝑖(æ1) ≤ 𝑓𝑖(æ2)
and

∃𝑗 ∈ {1, 2, ..., 𝑚}, 𝑓𝑗(æ1) < 𝑓𝑗(æ2)

In other words, æ1 is not worse than æ2 in any of the objectives and is better

in at least one of them.

Once the Berth Allocation Problem is formulated as a multiobjective opti-

mization problem, the next section presents the algorithm that treats both objectives

simultaneously and explicitly.

3.2 Multiobjective Algorithm: MOBAP

Evolutionary Metaheuristics are complex algorithms that provide adaptive, ef-

Ącient and robust search engines. According to (KNOWLES et al., 2008), these computa-

tional procedures for solving problems arise from the application of heuristic techniques by

an iterative process, in which each iteration is called generation. It is based on the follow-

ing sequence: performing reproduction with genetic inheritance, introduction of random

variations, promoting competition and selection of individuals from a given population.

In the selection stage, individuals with better Ątness have higher chance of being chosen

for reproduction. These selected individuals have a predeĄned probability of passing by

the crossover process, in which part of the parents genes are combined to generate new

individuals. After performing it, the new individuals can be mutated, with a predeĄned

probability, to maintain a genetically diverse population. It is worth highlighting that the

crossover probability is greater than the mutation probability.

We propose an algorithm MOBAP based on NSGA-II (DEB et al., 2002) to

solve the multiobjective BAP. The features of the proposed Evolutionary Algorithm have

been implemented with the concern tof respecting the characteristics of the BAP problem.

3.2.1 Coding

An individual 𝑘 is represented by coding a complete and feasible scheduling.

The following structures will be used to represent each individual. Figure 2 exempliĄes

encoding a structure that represents an individual from the population with 2 berths
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and 10 vessels. A binary matriz represents the vessel/berth allocation, a berth list (LB)

represents the vessels sequencing and a vector represents the vessels starting times. The

algorithm was implemented in a generic way to take any amount of vessels and berths.

Figure 2 – Individual k.

3.2.2 Population Initialization

The population size 𝑃 and the number of generations 𝐺 have been empirically

deĄned after a series of tuning experiments. The initialization of each individual 𝑘 is

done in a random way, that is, for each individual from the population and for each

vessel a berth 𝑗 is drawn randomly to be allocated. Thereby, the element 𝑧𝑖𝑗 from the

representation structure of individual 𝑘 is initialized with 1 (i.e., vessel 𝑖 is allocated to

berth 𝑗). From the initialization of this structure, for each individual 𝑘 and for each berth

a random list is created containing the vessel sequence. It is represented in a structure we

named BL.

The initialization of variable 𝑥 is fulĄlled according to the BL structure, and

the parameters 𝑒𝑖 and 𝑝𝑖 are also considered.

All individuals from the population are initialized in order to represent feasible

solutions. After the population has been initialized, each individual 𝑘, 𝑘 = 1, . . . , 𝑃 , is

evaluated. That means that the objective functions 𝑓1 and 𝑓2 are calculated for each

individual.

3.2.3 Population Evaluation

All individuals from the population are evaluated: for each one the objective

values 𝑓1 (sum of waiting times) and 𝑓2 (makespan) according to equations (3.9) and

(3.10) presented in Section 3.1.1. All operators have been implemented in order to always
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Pseudocódigo 3.1 MOBAP

For all (j-berth) of BL list

{

𝑓𝑟𝑒𝑒 = 0;

For all (i-vessel) of (j-berth)

{

If 𝑒𝑖 > 𝑓𝑟𝑒𝑒

{

(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑘).𝑥𝑖 = 𝑒𝑖 ;

}

Else

{

((𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑘).𝑥𝑖 = 𝑓𝑟𝑒𝑒 ;

}

𝑓𝑟𝑒𝑒 = (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑘).𝑥𝑖 + 𝑝𝑖;

}

}

create feasible individuals, therefore it is not required to check the constraints during the

treatment or evaluation procedure.

3.2.4 Nondominated Sorting Approach

As deĄned in (DEB et al., 2002), in NSGA-II every individual 𝑘 is associated

with two attributes: 𝑟𝑎𝑛𝑘𝑘 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘.

If two solutions are in different nondomination levels (different nondominated

frontiers), we prefer the solution 𝑘 with the lower 𝑟𝑎𝑛𝑘𝑘. Otherwise, if two 𝑘1 and 𝑘2

solutions belong to the same frontier (𝑟𝑎𝑛𝑘𝑘1 = 𝑟𝑎𝑛𝑘𝑘2), then we prefer the solution that

is located in a less crowded region (that is, higher 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘) (DEB et al., 2002). Figures

3 and 4 illustrate these attributes.

Figure 3 – Nondomination Rank, rank𝑘.
Figure 4 – Crowding distance, distance
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3.2.5 Main Loop

All individuals from the current population, with 𝑟𝑎𝑛𝑘𝑘 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘, form

a parent population 𝑃𝑔 of 𝑃 size. Selection, crossover and mutation operators are used to

create an offspring population 𝑄𝑔 of 𝑃𝑠𝑖𝑧𝑒. A combined population 𝑅𝑔 = 𝑃𝑔 ∪ 𝑄𝑔, of 2𝑃

size, is sorted according to nondomination rank and crowding distance to choose exactly

𝑃 population members to the new population 𝑃𝑔+1 (DEB et al., 2002).

The selection is done through the binary tournament selection algorithm. This

algorithm randomly samples two solutions of 𝑃𝑔 and compares them according to 𝑟𝑎𝑛𝑘𝑘

and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘 (as described in Section 3.2.4). The best one is chosen for the following

procedures (Figure 5). Pairs of selected solutions are randomly formed. These pairs can

go through crossover and mutation to form an offspring population 𝑄𝑔.

Figure 5 – Selection process for the composition of the next population (DEB et al., 2002).

3.2.6 Crossover

A population of parents is built through binary tournament (two random so-

lutions from the population compete according to 𝑟𝑎𝑛𝑘𝑘 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘 criteria, and the

best one will belong to the parent population). Pairs of parents from this population are

selected to generate pairs of offspring.

The crossover operator is applied to each pair of selected solutions with prob-

ability 𝑃𝐶, thus generating two offspring as follows.

For 50% of pairs of parents and offspring:

offspring1(berth1) = parent1(berth1)

offspring1(berth3) = parent1(berth3)

⋮
offspring2(berth1) = parent2(berth1)

offspring2(berth3) = parent2(berth3)

⋮
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In other words, the odd berths are copied, and the even berths are completed:

offspring1(berth2) = parent2(berth2), whereas the vessels are not allocated to offspring1

⋮
offspring2(berth2) = parent1(berth2), whereas the vessels are not allocated to offspring2

⋮

For the other 50%, the crossover is performed in the reverse way:

offspring1(berth2) = parent1(berth2)

offspring1(berth4) = parent1(berth4)

⋮
offspring2(berth2) = parent2(berth2)

offspring2(berth4) = parent2(berth4)

⋮

The odd berths are completed following the rules that ensure the feasibility

maintenance in the offspring population.

By the end of the crossover, if there still exists vessels not assigned to any

berth, they are sequenced according to arrival time (ascending order) and inserted in the

berths with the smallest amount of vessels.

Because of this procedure of copying a portion of berths, each offspring will

have characteristics inherited from both parents. The reintegration of lost vessels will

guarantee the genetic variability necessary in an evolutionary algorithm.

3.2.7 Mutation

The mutation process complements the crossover. It is applied to the offspring

and it allows a larger search space to be explored. For each individual from the offspring,

according to the probability of mutation, two vessels are randomly selected:

1. if the two vessels are allocated to the same berth, on the solution represented by

the offspring only the vessels allocation order is swapped, and the structures 𝑥 and

𝐵𝐿 are updated.

2. if the two vessels are allocated to different berths, the berth allocation is swapped,

and representation structures 𝑧, 𝑥 and 𝐵𝐿 are updated.

The offspring population is evaluated by calculating the objectives 𝑓1 and 𝑓2.

The operators of classiĄcation and agglomeration are evaluated, considering the merge

between both the original and the offspring population. The process is repeated with the

new population until the total number of generations is attained.
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3.3 Experiments

The implementation of the proposed algorithm is based on the adaptation

algorithm (DEB et al., 2002). It was written in C Language and executed on an Intel

Core i5 1.80GHz Processor, 4Gb RAM. The proposed model was solved with CPLEX.

The stopping criteria chosen was computational time, limited in 1 hour.

Computational tests were performed with four BAP instances sizes: 10, 20, 30

and 40 vessels and 2 berths.

For these, as in (BARBOSA, 2014), the vessels processing times were generated

by a binomial distribution with 16 trials and 𝑝 = 0.5 and the arrival times were generated

based on a uniform distribution in ⋃︁0, 25⨄︁.
The binomial distribution is a discrete probability distribution of the number

of successes in a sequence of 𝑛 independent experiments such as yes / no questions, each

with a probability of success 𝑝. Its probability function is:

𝑃 (𝑋 = 𝑘) = ⎛⎝
𝑛

𝑘

⎞
⎠𝑝𝑘(1 − 𝑝)𝑛−𝑘. (3.11)

The uniform distribution is a continuous probability distribution where the

probability of generating any point in an interval contained in the sample space is pro-

portional to the size of the interval ⋃︁Ð, Ñ⨄︁. Its probability density function is given by:

𝑓(𝑥) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1
Ñ−Ð

, for Ð ≤ 𝑥 ≤ Ñ

0, otherwise.
(3.12)

3.4 Results

The considered mutation and crossover rates have been empirically determined:

𝑃𝑀 = 0.1 and 𝑃𝐶 = 0.9, respectively. The population size was set to 𝑃 = 100 individuals

for all instances. The number of generations was 𝐺 = 100 for all instances.

Because of the stochastic nature of evolutionary algorithms it is necessary to

perform several test rounds to validate the results. For each study scenario, 10 test rounds

were performed.

Tables 5 and 6 present the results from CPLEX for all tests. The results are

in the following order:

• column a: minimizing the wainting time (𝑓1)

• column b: makespan associated with the solution when minimizing the wainting

time
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• column c: minimizing the makespan (𝑓2)

• column d: waiting time associated with the solution when minimizing the makespan

For the instances with 10 vessels, the computational time to reach the optimal

solution is in seconds on column e.

For the instances with 20, 30 and 40 vessels, the execution time was 1 hour, and

optimality was not reached. In this case, the quality of the solution is measured through

the GAP, which is a solver output and calculated as:

𝐺𝐴𝑃 =
𝑈𝐵 −𝐿𝐵

𝑈𝐵
(3.13)

where UB is the best upper bound and LB is the best lower bound from CPLEX.

In average, the GAP for these instances was: 52% (20 vessels), 71% (30 vessels)

and 79% (40 vessels).

instance
10 vessels 20 vessels

a b c d e a b c d
1 82 50 47 99 15.94 404 106 77 477
2 51 47 45 56 4.06 434 80 80 517
3 59 42 41 69 3.47 523 89 88 572
4 56 46 45 69 4.63 465 81 80 509
5 55 49 46 67 4.87 450 81 78 542
6 80 52 51 83 25.28 433 80 78 484
7 17 36 35 29 0.48 308 79 78 407
8 77 50 47 83 16.78 367 74 74 420
9 87 45 45 103 20.03 377 81 80 460
10 55 43 42 76 5.53 380 79 77 451

Table 5 – CPLEX Results - 10 and 20 vessels

instance
30 vessels 40 vessels

a b c d a b c d
1 1320 131 129 1547 2091 166 157 2325
2 999 118 119 1263 2356 169 166 2598
3 1168 137 124 1365 2192 172 160 2587
4 1235 134 127 1428 2117 163 161 2608
5 1260 141 127 1394 2276 180 165 2624
6 1200 128 127 1354 2193 175 158 2567
7 1043 121 120 1245 2257 179 165 2622
8 1116 126 123 1326 2111 163 160 2678
9 1169 121 120 1355 2268 170 160 2547
10 976 108 107 1235 2170 168 160 2617

Table 6 – CPLEX Results - 30 and 40 vessels



Chapter 3. Multiobjective Algorithm for the BAP 51

Table 7 shows the results from the multiobjective algorithm proposed. For each

instance 10 test rounds were executed. The average computational time of each round

was: 0.436 seconds (10 vessels), 0.613 seconds (20 vessels), 0.726 seconds (30 vessels) and

0.788 seconds (40 vessels). Each round produces a set of solutions. The best extreme

solutions among all rounds were chosen for comparison. For example, for instance 1 with

10 vessels, a single solution represents the extreme of both objectives with values 𝑓1 = 82

and 𝑓2 = 47. On the other hand, for instance 2 with 10 vessels, one point represents the

extreme solution that minimized 𝑓1 (𝑓1 = 51 and 𝑓2 = 46) and a different point represents

the extreme solution that minimized 𝑓2 (𝑓1 = 52 and 𝑓2 = 45).

For 10 vessels, the multiobjective algorithm was able to obtain the same min-

imum values for 𝑓1 e 𝑓2 obtained from CPLEX through a single point as well as two

extreme points. It is noteworthy that CPLEX guaranteed optimality of the solution with-

out exceeding the stop criteria, however the multiobjective algorithm achieved the same

solutions in a signiĄcantly shorter computational time (Table 5, column e). For instances

with 20, 30 and 40 vessels, the entries with ∗ on Table 7 refer to solutions in which the

multiobjective algorithm obtained better results than CPLEX. The entries with ∗∗ refers

to solutions in which multiobjective algorithm and CPLEX broke even. It is notewor-

thy that the computational time spent by the multiobjective algorithm to obtain those

solutions is considerably smaller, making this approach more advantageous.

instance
10 vessels 20 vessels 30 vessels 40 vessels

waiting makespan waiting makespan waiting makespan waiting makespan
time time time time

1 82 47 399∗ 77∗∗ 1315∗ 129∗∗
2101 157∗∗

2093 160

2
51 46

433∗ 80∗∗
1009 119∗∗ 2346∗ 168

52 45 1011 118∗ 2356 166∗∗

3
59 42

520∗ 88∗∗
1158∗ 127 2177∗ 161

60 41 1160∗ 124∗∗ 2178∗ 160∗∗

4 56 45 465∗∗ 80∗∗ 1232∗ 127∗∗
2111∗ 162
2112∗ 160∗

5 55 46 449∗ 78∗∗
1229∗ 128 2272∗ 165∗∗

1231∗ 126∗ 2274∗ 164∗

6 80 51 430∗ 78∗∗
1203 128 2193∗∗ 158**
1271 127∗∗ 2226 157∗

7 17 35
311 79 1054 123 2249∗ 167
313 78∗∗ 1061 119∗ 2279 164∗

8 77 47 365∗ 74∗∗ 1122 123∗∗
2143 161
2145 160∗

9 87 45 377∗∗ 80∗∗ 1159∗ 120∗∗
2277 161
2278 160∗∗

10 55 42 378∗ 77∗∗
980 108 2182 161
984 107∗∗ 2189 160∗∗

Table 7 – Multiobjective Algorithm Results - Best Extreme Solutions.
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To better analyze the obtained solutions, one instance with 10 vessels and one

with 40 vessels were chosen. The results will be presented in the next sections.

3.4.1 10 vessels analysis

This instance was chosen once the multiobjective algorithm reached the opti-

mal solutions obtained by CPLEX (𝑓1 = 82 and 𝑓2 = 47) in a single extreme point.

When the waiting time was minimized with CPLEX, with 𝑓1 = 82, the makespan

associated had value 𝑓2 = 50. This solution is outlined in Figure 6a.
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When the makespan was minimized with CPLEX, with 𝑓2 = 47, the associated

waiting time was 𝑓1 = 99, as shown in Figure 6b.

The multiobjective algorithm obtained those same values in the objective space

(𝑓1 = 82 e 𝑓2 = 47) in 5 out of 10 test rounds, referring to different values (𝑥𝑖 and 𝑧𝑖𝑗) in

the solution space.

Figure 6c shows the arrangement of the vessels/berths in one of those 5 solu-

tions.

In Figures 6a,b,c it is easy to note that the solution in which CPLEX minimized

the waiting time, the associated makespan had the highest value.

For a better understanding of the waiting time obtained by the 3 solutions

presented in Figures 6a,b,c, let us analyze the graphics in Figure 7.

Figure 7 – Waiting time comparison.

The graphic in Figure 7a shows the waiting time results for each vessel in each

one of the approaches (minimizing the waiting time with CPLEX (W), minimizing the

makespan with CPLEX (M) and the multiobjective algorithm(MOBAP)). It is observed

in Figure 7b that when CPLEX minimizes the makespan, the associated waiting time is

the worst one obtained. The multiobjective algorithm was able to obtain simultaneously

the best result among the ones presented by CPLEX when minimizing the waiting time

and the makespan disconnectedly.

Even though the two chosen objectives (minimizing the waiting time and the

makespan) do not appear to be conflicting, the multiobjective algorithm proves to be

appropriate and advantageous due to this behavior presented by the solutions resulting

from the simultaneous optimization of multiple objectives.

3.4.2 40 vessels analysis

For 40 vessels, the instance number 5 was chosen for a more detailed analysis

once it presented extreme solutions (𝑓1 = 2272 with 𝑓2 = 165 and 𝑓1 = 2274 with 𝑓2 = 164)

that dominate the solutions founded with CPLEX (𝑓1 = 2276 with 𝑓2 = 165 highlighted in

Figure 10) (Table 7).
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Figure 8 – f1 average.
Figure 9 – f2 average.

Figures 8 and 9 show the evolution of objective functions 𝑓1 and 𝑓2, from the

initial generation (random population) to the Ąnal generation (𝐺 = 100) for all the test

rounds of the instance number 5 with 40 vessels.

It is easy to conĄrm the effectiveness of the evolutionary process, which begins

with a random solution and derive signiĄcant improvements over the generations, a behav-

ior veriĄed in every round. It is important to emphasize that the number of generations

could be increased in order to improve the quality of the obtained results. The number

of generations 𝐺 = 100 was empirically deĄned through test rounds: until the solution

obtained by the multiobjective algorithm in most instances was better than the one ob-

tained by CPLEX. Higher values for 𝐺 (number of generations) and 𝑃 (population size)

may lead to better results. Empirically, it is observed that the increase in the number of

individuals has more influence on the increase in computational time of execution rather

than on the increase in the number of generations.

Figure 10 shows the nondominated frontiers (solutions 𝑘 with 𝑟𝑎𝑛𝑘𝑘 = 1 in

the last generation) of all test rounds for this instance. Two non dominated solutions are

highlighted among those obtained:

𝑓1 = 2272 and 𝑓2 = 165

𝑓1 = 2274 and 𝑓2 = 164

Both solutions are superior in relation to the other solutions, including the

ones from CPLEX, and are indifferent to each other, in the sense that they have the same

quality



Chapter 3. Multiobjective Algorithm for the BAP 56

Figure 10 – Nondominated frontiers.

3.5 Conclusion

In this Chapter we proposed the adaptation and application of NSGA-II to the

BAP problem. The proposed approach has shown great potential in solving this problem

by working with a set of solutions called population, and optimizing each solution in par-

allel. This characteristic makes it possible to obtain distinct solutions with good quality.

Different solutions correspond to alternative planning types obtained in a single round of

the algorithm. A decision maker is responsible for the Ąnal choice.

The results obtained with the algorithm were compared with the ones pre-

sented in (BARBOSA, 2014) towards 𝑓1 (minimizing the sum of waiting times) and

amended by the results towards 𝑓2 (minimizing the makespan). For instances with 40

vessels, the multiobjective evolutionary algorithm clearly stood out, both for quality of

the solutions obtained and low computational time. Thus, the approach proposed here

proved to be competitive and effective for large instances.

Although a latent conflict between the two objective functions chosen was not

identiĄed, the multiobjective approach was important to obtain a solution that represents

the minimum values for the waiting time and the makespan. This behavior was not ob-

served in the CPLEX results in which each objective was optimized separately. Therefore,

the importance of the simultaneous optimization of multiple objectives in the Operational

Research is emphasized.

The algorithm showed alternative solutions with good quality and relatively

low computational cost. The results obtained encourage the application of the proposed

algorithms to more complex subsystems.
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4 The BAP as a Maximum Flow Problem: a

lower bound approach

It is possible to propose different models for the BAP and to propose different

methodologies for its treatment or optimization.

The scale and nature of this problem at large terminals often makes it impos-

sible for the decisions made to be optimal. It is a combinatorial problem of the NP-Hard

class, as indicated by(IMAI et al., 2008). Taking advantage of the BAP formulation as a

scheduling jobs in parallel machines (Chapter 3), in this chapter we propose two adapta-

tions for a maximal flow algorithm. For this approach, the next step is the proposition of a

constructive heuristic with local search to obtain feasible solutions for the BAP. The aim

is to verify if the implementation of the constructive heuristic, coupled to the maximum

flow algorithm, would result in an algorithm capable of Ąnding good lower bounds for

evolutionary metaheuristics.

(KURZ; ASKIN, 2004) created three lower bounds in order to evaluate the

heuristics developed for scheduling in flexible flow lines with sequence-dependent setup

times to minimize makespan. Such problem is NP-hard, due to the fact that we need not

only sequence jobs on machines, we must consider which jobs are to be assigned to the

machines. Therefore, we will use the maximal flow algorithm to generate a lower bound

to evaluate the multiobjective algorithm proposed for the BAP in Chapter 3

Section 4.1 presents a model for the maximum flow problem. Section 4.2 shows

how an arbitrary schedule with preemptions can be transformed into a nonpreemptive

schedule without increasing the value of the objective function. Section 4.3 presents a max-

imal flow algorithm based on Ąnding breakthrough paths with net positive flow between

the source and sink nodes. Section 4.4 presents the preliminary results of the exploration

of the different formulations and proposals.

4.1 A mathematical model for maximum flow problem

(BRUCKER, 2006) discussed the idea of formulating a maximum flow problem

to solve the problem of scheduling jobs in parallel machines presented in Chapter 3.

Consider 𝑛 jobs with processing times 𝑝𝑖 to be scheduled in 𝑚 identical parallel

machines. Each job 𝑖 has a release time 𝑟𝑖 and a due time 𝑑𝑖. The goal is to Ąnd a

scheduling of these jobs, allowing preemption, so that they are processed within their

respective time windows ⋃︁𝑟𝑖, 𝑑𝑖⨄︁ and the maximum lateness max𝑛
𝑖=1 {𝐶𝑖 − 𝑑𝑖} is minimized,

where 𝐶𝑖 = 𝑥𝑖 + 𝑝𝑖. Such a problem is reduced to maximum flow problem in a network.
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• 𝑧𝑘: the flow from interval 𝐼𝑘 to node 𝑑

We used parameter 𝑓𝑖𝑘 to indicate if there exists an arc from job 𝑖 to interval

𝐼𝑘. In addition, the flow passing through 𝑧𝑘 was penalized: 𝑃 takes larger values for the

Ąrst intervals, forcing these Ąrst intervals to be occupied and the makespan be smaller.

Thus, we formulate the following problem:

max ∑
𝑖,𝑘

(𝑓𝑖𝑘𝑤𝑖𝑘 + 𝑦𝑖 + 𝑃𝑧𝑘) (4.3)

s.t. 𝑦𝑖 −∑
𝑘

𝑓𝑖𝑘𝑤𝑖𝑘 = 0 ∀𝑖 (4.4)

∑
𝑖

𝑓𝑖𝑘𝑤𝑖𝑘 − 𝑧𝑘 = 0 ∀𝑘 (4.5)

𝑤𝑖𝑘 ≤ 𝑓𝑖𝑘𝑇𝑘 ∀𝑖, 𝑘 (4.6)

𝑦𝑖 ≤ 𝑝𝑖 ∀𝑖 (4.7)

𝑧𝑘 ≤𝑚𝑇𝑘 ∀𝑘 (4.8)

𝑦𝑖 ≥ 0 ∀𝑖 (4.9)

𝑧𝑘 ≥ 0 ∀𝑘 (4.10)

𝑤𝑖𝑘 ≥ 0 ∀𝑖, 𝑘. (4.11)

The objective function (4.3) maximizes the network flow. (BRUCKER, 2006)

states that there exists a schedule respecting all time windows if and only if the maximum

flow has the value ∑𝑖 𝑝𝑖. Constraints (4.4) balance the network flow on each node of job 𝑖.

Constraints (4.5) balance the network flow on each node of interval 𝐼𝑘. Constraints (4.6),

(4.7) and (4.8) ensure that the flows will not exceed the arcs capacities.

4.2 Preemption correctness for Maximum Flow Problem

The model presentd in Section 4.1 allows preemption, and thus the solution

presented by it must be treated with a constructive heuristic in order to obtain a feasi-

ble solution to the original problem (without interruption). Let us illustrate how such a

modeling is done for a small scenario with only 5 vessels:

vessel 𝑖 𝑝𝑖 𝑒𝑖

1 10 9
2 7 3
3 7 22
4 11 12
5 8 16

Table 8 – Data for a 5 vessels sample
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This modeling with unit intervals increases the size of the graph. On the other

hand, modeling with larger size intervals has the disadvantage of not allowing to identify

the beginning and the end of processing within the respective interval.

Therefore, there are 58 intervals and:

• vessel 1: Can be serviced from 𝐼9 to 𝐼55

• vessel 2: Can be serviced from 𝐼3 to 𝐼58

• vessel 3: Can be serviced from 𝐼22 to 𝐼58

• vessel 4: Can be serviced from 𝐼12 to 𝐼54

• vessel 5: Can be serviced from 𝐼16 to 𝐼57

Analyzing the time intervals we see that in the interval 𝐼9 vessels 1 an 2 are

allocated, therefore, they are in different berths. The same occurs in the intervals:

• 𝐼19, 𝐼20 and 𝐼21 for vessels 4 and 5

• 𝐼22 for vessels 3 and 4

• 𝐼23, 𝐼24, 𝐼25, 𝐼26 and 𝐼27for vessels 3 and 5

The processing of vessel 5 was preempted in the interval 𝐼21: this schedul-

ing problem modeling in parallel machines allows preemption according to (BRUCKER,

2006). Processing job 𝑖 at some machine is stopped and either continued at time 𝑠 on a

different machine or at some time 𝑠
′ > 𝑠 on the same or a different machine. In this case,

such a solution is a lower bound for the original problem. From this preempted solution,

it is necessary to apply a constructive heuristic to obtain a solution without preemption,

processing feasible to the original problem.

For vessel 5, let 5𝑎 be the Ąrst part of its processing and 5𝑏 the second part.

Figure 13 shows the following allocation:
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schedule in berth 2 after time 23, considering the vessels time windows. Thus, the solution

we obtain is the same as in Figure 12.

4.3 An algorithm for the maximum flow problem

Alternatively to the resolution with CPLEX of the maximum flow model, in

order to try to obtain a breakthrough path preemption, we propose an heuristic adapted

from the algorithm proposed in (TAHA, 2007). An arc (𝑖, 𝑗) has initial capacity 𝐶𝑖𝑗.

As portions of these capacities are compromised by passing flow in the arc, the residual

capacities (remaining capacities) are updated.If a node 𝑗 receives flow from node 𝑖, it is

labeled ⋃︁𝑎𝑖, 𝑗⨄︁, where 𝑎𝑗 represents the flow from 𝑖 to 𝑗.

1. For all arcs, set the residual capacity equal to the initial capacity: 𝑐𝑖𝑗 = 𝐶𝑖𝑗.

Let 𝑎0 = ∞ and label source node with ⋃︁∞,−⨄︁.
Set 𝑖 = 0 (source)

2. Determine 𝑆𝑖 (set of unlabeled nodes 𝑗 that can be reached directly from node 𝑖 by

arcs with positive residuals, 𝑐𝑖𝑗 > 0).

If 𝑆𝑖 ≠ 0, go to step (3).

Otherwise, go to step (4).

3. Determine 𝑘 ∈ 𝑆𝑖 such that:

If 𝑖 ≠ 0, then 𝑐𝑖𝑘 =𝑚𝑎𝑥𝑗∈𝑆i
𝑐𝑖𝑗

If 𝑖 = 0, then 𝑝𝑘 =𝑚𝑎𝑥𝑗∈𝑆i
𝑝𝑗

Set 𝑎𝑘 = 𝑐𝑖𝑘 and label node 𝑘 with ⋃︁𝑎𝑘, 𝑗⨄︁.
If 𝑘 = 𝑛, the sink node has been labeled and a breakthrough is found. Go to step

(5).

Otherwise, set 𝑖 = 𝑘 go to step (2).

4. (Backtracking)

If 𝑖 = 0 no breakthrough is possible, go to step (6).

Otherwise, let 𝑟 be the node that has been labeled immediately before current node

𝑖 and remove 𝑖 from the set of nodes adjacent to 𝑟. Set 𝑖 = 𝑟 and go to step (2).

5. (Determination of residuals)

DeĄne the nodes of 𝑝th breakthrough path from source node to node 𝑛:

𝑁𝑝 = (0, 𝑘1, 𝑘2, . . . , 𝑛).
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The maximum flow along the path is computed as:

𝑓𝑝 =min {𝑎0, 𝑎𝑘1
, 𝑎𝑘2

, . . . , 𝑎𝑛}
The residual capacity of each arc along the breakthrough path is decreased:

𝑐𝑖𝑗 = 𝑐𝑖𝑗 − 𝑓𝑝

Reinstate any nodes that were removed in step (4). Set 𝑖 = 0 and return to (2) to

attempt a new breakthrough path.

6. (Solution)

(a) Given that 𝑚 breakthrough paths have been determined, the maximum flow in

the network is 𝐹 = 𝑓1 + . . . + 𝑓𝑚

(b) Using the initial and Ąnal residuals of arc (𝑖, 𝑗), the optimal flow is 𝑥𝑖𝑗 = 𝐶𝑖𝑗 −𝑐𝑖𝑗

Step 3 of the original algorithm (TAHA, 2007) has been modiĄed to restrict

that, from the moment a vessel begins to process, the priority is that it Ąnishes being

processed before the next one is allocated. Such a modiĄcation reduces interruptions, as

empirically observed. In step 3, also were analyzed the results by doing 𝑝𝑘 = 𝑚𝑖𝑛𝑗∈𝑆i
𝑝𝑗

when 𝑖 = 0. In Tables 10, 11, 12 and 13 we present the results obtained by minimizing the

makespan and the respective times that the algorithm took to obtain those values. As a

rule, the larger values for the makespan indicate solutions with fewer interruptions (closer

to feasibility).

4.4 Computational experiments

In Tables 10, 11, 12 and 13 are presented the values obtained by minimizing

the makespan (model in Section 3.1) and respective times that the algorithm took to

obtain those values. As a rule, the larger values for the makespan indicate solutions with

fewer interruptions (closer to feasibility).

Instance (TAHA, 2007) 𝑝k =𝑚𝑎𝑥j∈Si
𝑝j 𝑝k =𝑚𝑖𝑛j∈Si

𝑝j

makespan computational time (s) makespan computational time (s) makespan computational time (s)
1 47 0.051583 48 0.049238 53 0.045458
2 45 0.038818 46 0.032639 47 0.047986
3 41 0.034417 41 0.028553 43 0.033299
4 45 0.040403 46 0.033565 48 0.040767
5 46 0.035522 47 0.040245 50 0.034327
6 51 0.038210 53 0.039768 54 0.042726
7 34 0.015100 35 0.016001 37 0.021011
8 47 0.041774 47 0.041607 49 0.043530
9 45 0.036371 46 0.040963 47 0.041647
10 42 0.031159 42 0.033909 45 0.037252

Table 10 – Flow algorithm for 10 vessels
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Instance (TAHA, 2007) 𝑝k =𝑚𝑎𝑥j∈Si
𝑝j 𝑝k =𝑚𝑖𝑛j∈Si

𝑝j

makespan computational time (s) makespan computational time (s) makespan computational time (s)
1 77 0.432904 77 0.428412 79 0.399065
2 80 0.448326 80 0.437686 83 0.396158
3 88 0.547730 88 0.561812 91 0.489982
4 80 0.493009 81 0.497862 85 0.431385
5 78 0.454743 78 0.430506 80 0.387819
6 78 0.366842 79 0.359688 79 0.332487
7 78 0.411342 80 0.401321 81 0.362026
8 74 0.368888 75 0.354042 76 0.327231
9 80 0.450174 81 0.445028 82 0.413670
10 77 0.399154 78 0.397467 81 0.359463

Table 11 – Flow algorithm for 20 vessels

Instance (TAHA, 2007) 𝑝k =𝑚𝑎𝑥j∈Si
𝑝j 𝑝k =𝑚𝑖𝑛j∈Si

𝑝j

makespan computational time (s) makespan computational time (s) makespan computational time (s)
1 129 2.821822 131 2.773858 129 2.430886
2 118 2.248714 119 2.116039 121 1.821490
3 124 2.595374 124 2.572755 125 2.240254
4 127 2.801944 127 2.872677 130 2.427452
5 126 2.857407 128 2.897290 130 2.409831
6 127 2.761277 127 2.727478 128 2.388749
7 119 2.370978 120 2.408710 125 1.987783
8 123 2.464689 123 2.471099 127 2.100020
9 120 2.405109 121 2.384222 120 2.043243
10 107 1.713227 107 1.733995 108 1.501651

Table 12 – Flow algorithm for 30 vessels

Instance (TAHA, 2007) 𝑝k =𝑚𝑎𝑥j∈Si
𝑝j 𝑝k =𝑚𝑖𝑛j∈Si

𝑝j

makespan computational time (s) makespan computational time (s) makespan computational time (s)
1 157 7.153311 157 7.033389 160 5.965235
2 166 8.462691 166 8.177985 170 6.976584
3 160 7.660688 160 7.488536 162 6.242032
4 160 7.093711 162 6.942491 163 7.134168
5 164 8.380155 166 8.052578 165 6.725363
6 157 6.991960 158 6.875074 159 5.876637
7 164 8.277310 164 8.091182 168 6.808482
8 160 7.596789 161 7.459877 163 6.369196
9 160 7.443280 162 7.363338 162 6.218110
10 160 7.314320 160 7.244242 162 6.311438

Table 13 – Flow algorithm for 40 vessels

Table 14 summarizes the comparisons between the lower bound and optimal

solution of the problems solved to optimality (instances with 10 vessels); between the

lower bound and the best value founded by MOBAP and between the values returned by

CPLEX, when CPLEX was given an one hour CPU limit time.
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Instance Lower bound Heuristic solution Best bound Best integer
1 47 47 40 47

10 2 45 45 32 45
v 3 41 41 28 41
e 4 45 45 43 45
s 5 46 46 39 46
s 6 51 51 49 51
e 7 34 35 33 35
l 8 47 47 44 47
s 9 45 45 41 45

10 42 42 38 42
1 77 77 40 77

20 2 80 80 41 80
v 3 88 88 44 88
e 4 80 80 45 80
s 5 78 78 40,7826 78
s 6 78 78 40,333 78
e 7 78 78 51,1538 78
l 8 74 74 41 74
s 9 80 80 39 80

10 77 77 38 77
1 129 129 37,7601 130

30 2 118 119 36,6434 118
v 3 124 124 42 124
e 4 127 127 35,7333 127
s 5 126 126 36 126
s 6 127 127 38 128
e 7 119 119 49 119
l 8 123 123 36,8668 123
s 9 120 120 42 120

10 107 107 34 108
1 157 157 34,7476 158

40 2 166 166 40,333 166
v 3 160 160 40 162
e 4 160 160 40 163
s 5 164 165 38 166
s 6 157 158 36 159
e 7 164 164 39 166
l 8 160 160 42 160
s 9 160 160 37 160

10 160 160 37 160

Table 14 – Lower bound effectiveness

As in (KURZ; ASKIN, 2004), we consider ŞLossŤ as the (makespan - lower

bound)/lower bound. In Table 15 reports it.
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The makespan are the ones from Table 7 (Chapter 3) and the lower bound are

from Tables 10, 11, 12 and 13.

Instance 10 vessels 20 vessels 30 vessels 40 vessels
1 0 0 0 0

- - - 0,01910828
2 0,022222222 0 0,008474576 0,012048193

0 - 0 0
3 0,024390244 0 0,024193548 0,00625

0 - 0 0
4 0 0 0 0,0125

- - - 0
5 0 0 0,015873016 0,006097561

- - 0 0
6 0 0 0,007874016 0,006369427

- - 0 0
7 0,029411765 0,012820513 0,033613445 0,018292683

- 0 0 0
8 0 0 0 0,00625

- - - 0
9 0 0 0 0,00625

- - - 0
10 0 0 0,009345794 0,00625

- - 0 0

Table 15 – “Loss” statics for the MOBAP

It is noted that MOBAP found many solutions very close to the lower bound.
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5 A Benders Decomposition Algorithm for

the Berth Allocation Problem

Benders Decomposition is a solution method used for solving large-scale mixed

integer linear programming problems. It can be described as a divide-and-conquer strat-

egy: in each iteration, new constraints are added to the problem, making it progress

towards a solution. The variables of the original problem are divided into two subsets. A

Ąrst-stage master problem is solved over the Ąrst set of variables. Once these variables are

Ąxed, the values for the second set of variables are determined in a second-stage subprob-

lem. The resulting subproblem is a continuous linear program and the standard duality

theory can be used to develop cuts.

According to (RAHMANIANI et al., 2017), for more than Ąve decades the Ben-

ders Decomposition algorithm has been used to tackle problems in many Ąelds. Compu-

tational approaches based on Benders Decomposition to the constrained minimum break

problem are proposed in (RASMUSSEN; TRICK, 2007). In (MERCIER et al., 2005) a

Benders Decomposition approach for the generalized formulation of the integrated aircraft

routing and crew scheduling was implemented. A Benders-like decomposition approach

was proposed in (CARAMIA; MARI, 2016) for solving a capacitated facility location

problem with two decision makers. Exact solution algorithms based on Benders decom-

position are presented in (HUANG; ZHENG, 2015) for the traveling salesman problem

with risk constraints. This Chapter develops a Benders Decomposition approach for the

Berth Allocation Problem (BAP).

This Chapter is organized as follows. Section 5.1 gives a description of the

Benders Decomposition algorithm and its enhancements. Section 5.2 details the Benders

Decomposition algorithm applied to the BAP. Section 5.3 reports the results.

5.1 Benders Decomposition

Benders Decomposition is a cutting plane method which reduces the search

region by adding linear constraints while preserving the original feasible region.

Suppose a mixed integer linear problem of the form:

min 𝑐𝑇 𝑥 + 𝑓𝑇 𝑦 (5.1)

s.t. 𝐴𝑥 +𝐵𝑦 ≥ 𝑏 (5.2)

𝑦 ∈ 𝑌 (5.3)

𝑥 ≥ 0 (5.4)
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If (5.1) - (5.4) is an easier optimization problem in 𝑥 when 𝑦 is Ąxed, 𝑦 are

refered as Şcomplicating variablesŤ in (GEOFFRION, 1972).

With 𝑦 Ąxed to a feasible integer conĄguration 𝑦, the resulting model to be

solved is given by:

min 𝑐𝑡𝑥 (5.5)

s.t. 𝐴𝑥 ≥ 𝑏 −𝐵𝑦 (5.6)

𝑥 ≥ 0 (5.7)

with the associate dual problem:

max (𝑏 −𝐵𝑦)𝑇 𝑢 (5.8)

s.t 𝐴𝑇 𝑢 ≤ 𝑐 (5.9)

𝑢 ≥ 0 (5.10)

DeĄning 𝑧 as the objective function of (5.5)-(5.7) and 𝑢̄ as the variable values

of the dual problem (5.8)-(5.10), the valid inequality

𝑧 ≥ (𝑏 −𝐵𝑦)𝑇 𝑢̄ (5.11)

is a Benders optimality cut. In each iteration of the Benders algorithm, a master problem

is solved:

min 𝑧 (5.12)

s.t 𝑧 ≥ (𝑏 −𝐵𝑦)𝑇 𝑢̄ (5.13)

𝑧 ∈ 𝑅 (5.14)

𝑦 ∈ 𝑌 (5.15)

whose solution 𝑦 is the master problem solution and will be used to deĄne the following

subproblem (5.5) - (5.7).

If the subproblem (primal problem) is infeasible for a Ąxed 𝑦, the dual formu-

lation is unbounded. In this case, it is necessary to add a feasibility cut. Let Ð̄ be the

extreme ray of the dual formulation. The Benders feasibility cut

Ð̄𝑇 (𝑏 −𝐵𝑦) ≤ 0 (5.16)

is formulated and added to the master problem in order to eliminate the infeasible solution.
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It is noteworthy to mention that the master problem gives a lower bound (𝐿𝐵)

and the subproblem gives an upper bound (𝑈𝐵) for the original problem. The procedure

iterates until 𝑈𝐵 −𝐿𝐵 < 𝜖.

Some different enhancement strategies may be proposed to improve and accel-

erate the convergence of the Benders Decomposition method, most of them taking into

account the special characteristics of each problem. The two most important ones are

presented below.

5.1.1 Combinatorial Benders Cut

The Benders Decomposition can also be used as an alternative to the Şbig-

MŤ approach (Şeither/orŤ constraints). (CODATO; FISCHETTI, 2006) proposed and

computationally analyzed an automatic problem reformulation for mixed integer linear

problems involving logical implications modeled through big-M coefficients:

𝑦𝑗(𝑖) = 1⇒ 𝑎𝑇
𝑖 𝑥 ≥ 𝑏𝑖 (5.17)

which usually are modeled as:

𝑎𝑇
𝑖 𝑥 ≥ 𝑏𝑖 − (1 − 𝑦𝑗(𝑖)) ∗𝑀 (5.18)

Due to fact that 𝑀 is a big number, the linear relaxation of the mixed integer

linear problem model is poor and the resulting Benders cuts are weak and still depend

on the big-M values. Therefore, the classical Benders approach can be viewed as a tool

to speed-up the solution of the LP relaxation. The aim of this approach is to remove the

model dependency on the big-M coefficients.

The master problem is solved to integrality. If this problem turns out to be

infeasible, then the original problem also is. Otherwise, let 𝑦∗ be an optimal solution.

If the subproblem is infeasible for this solution, a Minimal Infeasible Subsystem 𝐶 is

sought, i.e., any inclusion-minimal set of row-indices of system (5.17) such that the linear

subsystem:

𝑎𝑇
𝑖 𝑥 ≥ 𝑏𝑖 (5.19)

has no feasible solution 𝑥.

These implication constraints are modeled through the following Combinato-

rial BendersŠ (CB) cuts:

∑
𝑗∈𝐶 ∶𝑦∗

j(i)
=0

𝑦𝑗 + ∑
𝑗∈𝐶 ∶𝑦∗

j(i)
=1

(1 − 𝑦𝑗) ≥ 1 (5.20)
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CB cuts of this type are generated in correspondence to a given infeasible

solution 𝑦∗, and added to the master problem.

5.1.2 Optimality Cut Disaggregation

If the Benders subproblem can be separated into independent subproblems,

disaggregated cuts can be obtained in order to accelerate convergence of the Benders

Decomposition algorithm. The subproblems are solved in parallel and multiple cuts formed

by the dual optimal solutions are added to the Benders master problem simultaneously.

Each subproblem 𝑘 generates an optimality cut, analogous to (5.11). According

to (TANG et al., 2013), these cuts include the same information as the primal Benders

cut and restrict the solution space of the master problem in a more accurate-exact way.

5.2 Decomposition approach for the Berth Allocation Problem

There are several models the BAP. For being a more complete and robust

model, this Chapter will treat the BAP as in (CORDEAU et al., 2005), (BUHRKAL et

al., 2011) and (TING et al., 2014b). The model was detailed in Chapter 2 (Sections 2.2.3

and 2.4). It is a model for the discrete and dynamic berth allocation problem based on a

heterogeneous vehicle routing problem with time windows (HVRPTW), in which berths

correspond to vehicles and there is a single depot.

According to (MONACO; SAMMARRA, 2007), the computational complexity

of the BAP lies in the dynamic arrival process of the vessels. If the vessels have a release

date and they are not allowed to berth before the expected arrival time, the problem is

NP-hard. On the other hand, if the arrival time does not impose a restriction on tim-

ing for mooring, the problem reduces to an assignment problem, solvable in polynomial

time. Considering the former case, the following decomposition is suggested. The master

problem is an assignment problem and contains only the binary variables 𝑙𝑘
𝑖𝑗. The master

problem is solved to optimality and the solution is sent to the subproblem. If the subprob-

lem is infeasible, a feasibility cut is generated. If the subproblem is feasible, an optimality

check is performed based on the Fundamental Theorem of Duality, as in the traditional

Benders Decomposition.
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Therefore, it can be separated in ⋃︀𝑀 ⋃︀ disconnected subproblems, each subproblem gener-

ating an optimality cut for each berth 𝑘 ∈𝑀 .

5.3 Computational Results

The implemented Benders Decomposition algorithm follows the strategy pre-

sented in (VATSA; JAYASWAL, 2016). It uses an incumbent solution in the branch-and-

bound search tree to be passed to the sub-problem for Benders cut generation and the

master problem is solved to optimality only once. Callbacks are used to intervene in the

branch-and-bound tree search process and add the Benders cuts generated to the master

problem as lazy constraints1. This method has the advantage that, by using a single search

tree, a node is never revisited and a truly superior solution is never overlooked.

All the procedures described in Section 5.2 were implemented in C++ on an

Intel Xeon Core processor model E5-W2687 3.10GHz with 128GB RAM and IBM Ilog

CPLEX 12.6. CPLEX and the decomposition approach were given an one hour CPU time

limit. The set of instances I2 from (CORDEAU et al., 2005) were used in the computa-

tional experiments. The results are presented in detail in Table 16. In the columns are

the size of the instances: 25 vessels and 5 berths (25x05), 25 vessels and 7 berths (25x07),

25 vessels and 10 berths (25x10), 35 vessels and 7 berths (35x07) and 35 vessels and

10 berths (35x10). Ten instances were tested for each problem size. For the results from

CPLEX, it is shown the GAP and the objective function value returned after one hour

of execution. From the decomposition approach, it is shown the objective function values

for the master problem and for the subproblem returned after one hour of execution. The

corresponding GAP is calculated.

Only in 5 instances, out of 50, Benders Decomposition was able to outperform

the monolithic model solved by CPLEX. However, interesting enough, these are among

the largest instances tested: 35 vessels and 7 berths and 35 vessels and 10 berths.

It is noteworthy that for the BAP model (2.22)-(2.33), the Benders subproblem

may present multiple optimal solutions, because the objective function (2.22) is a linear

combination of the constraints (2.28) and (2.29). It generates weak optimality cuts, and

for this reason the decomposition progresses slowly. Moreover, the dual solutions are

degenerate and the Pareto optimal cuts (according to (MAGNANTI; WONG, 1981) if

the primal subproblem is degenerate it is possible to select the dual solution that is the

closest to the interior of the master problem polyhedron to produce stronger cuts) can

not be used to improve Benders Decomposition performance.
1 constraints unlikely to be violated, and in consequence, applied only as necessary or not before needed
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25x05 25x07 25x10 35x07 35x10

GAP: 0.0005 optimal 0.0113 0.0663 0.0577
Objective: 6559 10088 11998 15012 21308

1 master (Lower Bound): 6308 9932 11727 13754 19831
sub (Upper Bound): 6666 10763 12418 15298 21496

GAP 0.05370 0.07720 0.05564 0.10092 0.07745

GAP: 0.02880 optimal optimal 0.08232 0.07904
Objective: 7882 12086 11693 17577 19332

2 master (Lower Bound): 7404 11922 11526 15834 17585
sub (Upper Bound): 8610 12635 12246 17760 18874

GAP 0.1400 0.0564 0.05879 0.1084 0.0682

GAP: 0.0331 optimal 0.0090 0.09692 0.0198
Objective: 6914 9807 13661 15651 19810

3 master (Lower Bound): 6447 9572 13391 13878 19190
sub (Upper Bound): 7327 10559 14023 15932 20915

GAP 0.1201 0.0934 0.0450 0.1289 0.0824

GAP: 0.0094 0.0012 0.0170 0.0582 0.0645
Objective: 8843 9984 16696 16247 21843

4 master (Lower Bound): 8597 9799 16223 15028 20226
sub (Upper Bound): 9376 11050 17096 16950 21890

GAP 0.0830 0.1132 0.0510 0.1133 0.0760

GAP: 0.0120 optimal 0.0068 0.1384 0.0408
Objective: 7598 10763 11897 18538 20108

5 master (Lower Bound): 7235 10577 11623 15692 19070
sub (Upper Bound): 8234 11683 12790 17474 20365

GAP 0.1213 0.0946 0.0912 0.1019 0.0635

GAP: 0.0342 0.0080 0.0032 0.1748 0.0919
Objective: 7444 12434 14120 17277 19717

6 master (Lower Bound): 6856 12137 13941 13968 17645
sub (Upper Bound): 7908 13378 14575 15725 19570

GAP 0.1330 0.0927 0.0434 0.1117 0.0983

GAP: 0.0009 0.0157 0.0004 0.0658 0.0554
Objective: 7751 13218 14913 17706 18106

7 master (Lower Bound): 7463 12854 14785 16215 16812
sub (Upper Bound): 8534 13972 15528 17956 18894

GAP 0.1254 0.08001 0.0478 0.0969 0.1101

GAP: optimal 0.0299 0.0013 0.0744 0.0347
Objective: 7789 10478 14498 17067 19957

8 master (Lower Bound): 7601 10458 14289 15509 18931
sub (Upper Bound): 8554 11618 14866 17642 20651

GAP 0.1114 0.0998 0.0388 0.1209 0.0832

GAP: optimal 0.0215 0.0025 0.0675 0.1266
Objective: 8556 10884 14776 18039 15408

9 master (Lower Bound): 8318 9982 14599 16560 13144
sub (Upper Bound): 9239 11189 15339 18526 14967

GAP 0.0996 0.1078 0.0482 0.1061 0.1218

GAP: 0.0335 0.0226 0.0059 0.0359 0.0454
Objective: 8579 12580 15150 16700 19973

10 master (Lower Bound): 8032 12072 14896 15846 18779
sub (Upper Bound): 9055 13268 15689 17868 20456

GAP 0.1129 0.0901 0.0505 0.1131 0.0819

Table 16 – Comparison between CPLEX and Benders Decomposition
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5.4 Conclusion

The Benders Decomposition is a cutting plane method described as a divide-

and-conquer strategy because in each iteration new constraints are added to the problem.

A model for the Berth Allocation Problem as Heterogeneous Vehicle Routing Problem

with Time Windows was presented in this Chapter and a Benders Decomposition approach

was proposed for the BAP, where several cuts were proposed and implemented. The

combinatorial Benders cuts (5.1.1) were applied to reformulate constraints (2.27) and

eliminate infeasibility caused by subtours. The cut disaggregation (5.1.2) was used to

disaggregate the subproblem, one for each berth.

The computational tests performed indicated that Benders Decomposition may

be an interesting approach to solve the BAP. Although being competitive with monolithic

model resolution with CPLEX, in general Benders Decomposition does not outperform

CPLEX. However, the exception lies on some of the largest instances, indicating that for

the most difficult instances Benders Decomposition may have a better performance.

Many real-world systems state change frequently due to unforeseen events.

Most of the computational time running scheduling systems is spent in rescheduling,

caused by changes in customer priorities, unexpected equipment maintenance, etc. This

results in a requirement for frequent re-optimization. For example, when a crane in an

automated container terminal malfunctions, a new equipment schedule for the entire port

facility must be available within Ąve to ten minutes, otherwise the handling of vessels

will be delayed. When such unexpected problems come up, the terminal operator must

be ready to change the service system; developing a tool that re-optimizes the system

and quickly Ąnd a solution to the problem help improve the dynamics of the terminals

and consequently their revenue. The results provided by Benders Decomposition in the

Berth Allocation Problem open the possibility of incorporating this algorithm in a decision

support system to re-optimize solutions whenever unforeseen events occur. Indeed, Ąxing

variables and optimizing the others is inherent to Benders Decompositions algorithms.
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6 Hybrid Evolutionary Algorithm for the BAP

Among the several metaheuristics that have already been proposed in the

literature to solve the BAP, the genetic algorithm (GA) is the one that stands out most.

(GOLDBERG; HOLLAND, 1988) states that genetic algorithms are probabilistic search

procedures to work on large spaces involving states that can be represented by strings.

It is a metaheuristic inspired by the process of natural selection and is commonly used

to generate high-quality solutions to optimization problems hard to solve. A population

of individuals (solutions) is evolved toward better solutions. Each candidate solution has

a set of chromosomes which can be recombined and mutated to form a new generation.

(GOLIAS et al., 2009a) proposed a GA metaheuristic and the measure of performance is

used based on each objective functionsŠ satisfactoriness criterion. The vessels are grouped

according to the cargo volume, inducing the use of different objective functions, one for

each group. (PRATAP et al., 2015) used the non-sorting genetic algorithm (NSGA II) to

solve the BAP as a sequencing problem for a realistic scenario of a port located in the

eastern coast of India, minimizing the total vessel waiting time and the customer priority.

In some situations, the genetic algorithm may lose the diversity of individu-

als in the population and converge to a local optimum solution. Therefore, this Chapter

develops a hybrid optimization procedure based on Genetic Algorithm (GA) and Scatter

Search (SS) for the discrete and dynamic BAP (Hybrid Evolutionary Algorithm for the

BAP - HEABAP). Scatter search is an evolutionary optimization procedure. Operating on

subset of solutions, the method makes limited use of randomization as a proxy for diversi-

Ącation when searching for a globally optimal solution. Therefore, solutions rapidly tend

to the optimum, preserving the diversity required to ensure a global search covering all the

solution set and the performance shows of better. (LIU, 2007) developed a hybrid scatter

search by incorporating the nearest neighbor rule, threshold accepting and edge recom-

bination crossover into a scatter search conceptual framework to solve the probabilistic

traveling salesman problem. (MAENHOUT; VANHOUCKE, 2010) presented a scatter

search procedure to solve the airline crew rostering problem. (DEBELS et al., 2006) com-

bined elements from scatter search and a method for the optimization of unconstrained

continuous functions that simulates the electromagnetism theory of physics for solving the

resource-constrained project scheduling problem. (GONZÁLEZ; ADENSO-DÍAZ, 2006)

presented a scatter search metaheuristic to solve the optimum disassembly sequence prob-

lem. (RUSSELL; CHIANG, 2006) used a scatter search framework to solve the vehicle

routing problem with time windows, once it is a highly constrained problem. (KESKIN;

USTER, 2007) developed a scatter search-based metaheuristic approach hybridized with

local search and path-relinking routines.
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𝑅𝑒𝑓𝑆𝑒𝑡 with size 𝑏 = 𝑏1 + 𝑏2 = ⋃︀𝑅𝑒𝑓𝑆𝑒𝑡⋃︀, is a collection of 𝑏1 high quality solutions and 𝑏2

diverse solutions of 𝑃 that are used to generate new solutions through the crossover. In

this Chapter, the scatter search was hybridized with the genetic algorithm with the main

goal of maintaining the diversity of the population and avoiding premature convergence.

After the population has been empirically initialized it was observed the oc-

currence of a idle time window for the berth service. For such reason, a treatment was

applied to the population in order to improve the generated solutions (Section 6.1.2).

Next, each individual 𝑡 must be evaluated through the calculation of the objec-

tive function value (2.22). The population 𝑃 is then sorted in ascending order of objective

function values. The construction of the initial reference set starts adding to it the Ąrst

𝑏1 solutions from initial population 𝑃 . The structures 𝑥 of each individual in 𝑃 \𝑅𝑒𝑓𝑆𝑒𝑡

and each individual in 𝑅𝑒𝑓𝑆𝑒𝑡 are compared. From 𝑃 \𝑅𝑒𝑓𝑆𝑒𝑡, the 𝑏2 most different

individuals from the ones in 𝑅𝑒𝑓𝑆𝑒𝑡 (in the sense of vessel processing start time) must be

selected and copied to 𝑅𝑒𝑓𝑆𝑒𝑡. Therefore, the resulting reference set has 𝑏1 high quality

solutions and 𝑏2 most diverse solutions.

After the initial reference set is constructed, the set of parents must be gen-

erated to be submitted to crossover (Section 6.1.3). The crossover is a problem-speciĄc

mechanism, because it is directly related to the solution representation. It considers ran-

dom pairs of solutions in the 𝑅𝑒𝑓𝑆𝑒𝑡 that contain at least a solution that has not been

combined in the past. In other words, the procedure does not allow for the same two

solutions to be subjected to the crossover more than once. Once a new subset has been

updated, the crossover is called, giving raise to the offspring population. The mutation

process complements the crossover (Section 6.1.4). It is applied to the offspring popula-

tion and it allows a larger search space to be explored. A local search procedure (Section

6.1.5), based on the one proposed in (TING et al., 2014b), was also applied to the offspring

population. The vessels can be swapped in the same berth and between berths.

Next to the local search, the offspring population is full and the reference set

is updated. The update reference set contains the best 𝑏 solutions in 𝑅𝑒𝑓𝑆𝑒𝑡 ∪ (offspring

population) and the individuals are sorted in ascending order of objective function val-

ues. If the reference set remains unchanged after the updating procedure, a rebuilding

mechanism is performed. It is deĄned a Şchange rateŤ 0 < 𝑐𝑟 < 1 to evaluate if 𝑅𝑒𝑓𝑆𝑒𝑡

remained unchanged. If the 𝑅𝑒𝑓𝑆𝑒𝑡 at the end of generation 𝑔 contains 𝑐𝑟 ∗ 𝑏 individuals

equal to those at the end of generation 𝑔 − 1, then 𝑅𝑒𝑓𝑆𝑒𝑡 is considered unchanged. The

rebuilding mechanism is similar to how the initial 𝑅𝑒𝑓𝑆𝑒𝑡 was created. First, a new pop-

ulation 𝑃 is constructed and the two individuals with the best objective function value

are selected. Then, the structure 𝑥 of each solution in 𝑃 is compare to best 𝑏1 individuals

in the set 𝑅𝑒𝑓𝑆𝑒𝑡 amended by this two selected individuals. The solutions in 𝑃 with a

greater number of different positions are added to the 𝑅𝑒𝑓𝑆𝑒𝑡, thus replacing the worst

𝑏2 − 2 solutions (the 𝑅𝑒𝑓𝑆𝑒𝑡 remains 𝑏).
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More details of the implementations of the operators are described in the

following.

6.1.1 Population Inicialization

Initialization was implemented in four ways, which will be described below.

6.1.1.1 Random

All individuals are randomly generated. For each vessel 𝑖, a berth is sorted

randomly. Then, for each berth the sequence of vessels being serviced is deĄned randomly.

6.1.1.2 Based on arrival time

In the Ąrst part, for each individual 𝑡 from the population, we chose the 𝑚

vessels that arrived Ąrst to begin service in each one of the 𝑚 berths, which is select

randomly. The remaining vessels are sorted in ascending order of arrival time and then,

following such order, a berth is chosen randomly to allocate the vessel.

6.1.1.3 Based on processing time

For each individual, a random a list of vessels (𝑅𝐿) is created. Then, for each

vessel 𝑖 in the list 𝑅𝐿, we choose the berth 𝑘∗ where there is the shortest processing time,

i.e.:

𝑝𝑘∗

𝑖 ≤ 𝑝𝑘
𝑖 ∀𝑘 ∈𝑀 (6.1)

Variable 𝑥 is properly initialized and next we must check for feasibility. If

𝑥𝑘∗

𝑖 + 𝑝𝑘∗

𝑖 ≤ 𝑏𝑖 (6.2)

and

𝑥𝑘∗

𝑖 + 𝑝𝑘∗

𝑖 ≤ 𝑒𝑘∗ (6.3)

vessel 𝑖 is allocated to berth 𝑘∗. Otherwise, we search for the next shortest processing

time.

6.1.1.4 Based on berth idle time

For each individual, a random list of vessels (𝑅𝐿) is created. Then, for each

vessel 𝑖 in the list 𝑅𝐿, we calculate for each berth 𝑘

𝑥𝑘
𝑖 + 𝑝𝑘

𝑖 (6.4)





Chapter 6. Hybrid Evolutionary Algorithm for the BAP 81

6.1.3 Crossover Operators

The crossover was implemented in three ways. Because of the procedure of

copying a portion of berths, each offspring will have characteristics inherited from both

parents, in addition to ensuring that the offspring population is feasible. The reintegration

of lost vessels will guarantee the genetic variability necessary in an evolutionary algorithm.

Before introducing the crossover implementation, we point out that in all

crossovers performed, the vessels that were not assigned to any berth must be allocated

as described bellow.

First, the time in which each berth becomes available must be calculated,

because there may already be some vessels being served (so-called idle time). Next, a

vessel that was not assigned to any berth and has the shortest arrival time is sought. Let

𝑖∗ be the index of such vessel. Then, for this vessel, for every berth is calculated:

𝑥𝑘
𝑖∗ + 𝑝𝑘

𝑖∗ , (6.5)

which represents the time the berth will become available if vessel 𝑖∗ is allocated (future

idle time). Let 𝑘∗ be the index of the berth with the shortest future idle time. If the berth

time window is not violated, vessel 𝑖∗ is allocated in berth 𝑘∗. Other wise, the berth with

the next shortest future idle time is sought.

This process is repeated until all vessels have been allocated in some berth.

6.1.3.1 Horizontal

For the horizontal crossover, we use the auxiliary structure 𝐵𝐿. The even

berths are copied, and the odd berths are completed. The odd berths are completed

following the rules that ensure the feasibility maintenance in the offspring population

(Figure 18).

The crossover is still performed in the reverse way, each with a 50% probability

of happening (Figure 19).

6.1.3.2 Vertical

For the vertical crossover, the auxiliary structure 𝐵𝐿 is used. The Ąrst half

of the vessels in each berth of parent 1 is copied to the offspring population 1; the Ąrst

half of the vessels in each berth of parent 2 is copied to the offspring population 2. The

second half of the vessels in each berth of the offspring population 1 is completed with

the vessels on the second half of the vessels in each berth of the parent 2, provided that it

has not been allocated in the previous step; the second half of the vessels in each berth of

the offspring population 2 is completed with the vessels on the second half of the vessels
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6.1.5.2 Between vessels in the different berths

The vessel higher waiting time is selected. For all vessels allocated on a different

berth and that have already arrived by the time such selected vessel started being handled,

the future idle time is computed if the vessels were swapped. If the swapping does not

decrease the future idle time, the structure 𝑥 and the objective function are recalculated,

and the swap that results in the objective function with lower value is performed.

6.2 Data Envelopment Analysis

The BAP involves many criteria that can be used to evaluate how good a

solution is, like makespan, waiting time, handling time. Besides, there are different ways

to conĄgure the implemented algorithm, we need a tool to guide the decision on how

to use each proposed operator. Among the techniques in Multicriteria Decision Making,

Data Envelopment Analysis (DEA) has obtained important results in complex situations

with multiple and conflicting criteria, which can not be easily analyzed through other ap-

proaches, according to (TŠKINDT; BILLAUT, 2006). In addition, with Data Envelopment

Analysis, it is not necessary for the decision maker to rank or sort the criteria, allowing the

comparison of alternatives with heterogeneous characteristics. The DEA models construct

a nonparametric and piecewise linear surface involving the data (DEA front), associated

with multiple criteria. Once the criteria have been selected and the values corresponding

to each alternative solution have been estimated, we apply DEA to analyze the efficiency

of each combination.

(COOPER et al., 2011) deĄne the data envelopment analysis (DEA) as a

data-oriented approach, used for evaluating the performances of a set of entities called

decision-making units (DMUs) which convert multiple inputs into multiple outputs.

Charnes, Cooper and Rhodes used the ratio of outputs to inputs to measure

the relative efficiency of a given DMU, building the so called CCR Model. Therefore, the

efficiency is expressed based in the conventional benefit/cost theory and, for such reason,

the model is also known as Constant Returns to Scale (CRS).

Consider a set of 𝑛 DMUs, represented by solutions, each consuming different

amounts of 𝑟 inputs to produce 𝑠 outputs. For example, we can consider as input in the

DEA model, minimizing the makespan and the waiting time; and as outputs, maximizing

berth utilization within the window, throughput within the window ((DAI et al., 2008)),

the total number or proĄt of the vessels processed ((ELIIYI et al., 2008)), among others.

Eff 𝑜 is the efficiency of DMU 𝑜, the one under analysis; 𝑣𝑖 and 𝑢𝑗 are the weights given,

respectively, to inputs 𝑖, 𝑖 = 1, . . . , 𝑟, and outputs 𝑗, 𝑗 = 1, . . . , 𝑠. The variables 𝑥𝑖𝑘 are the

inputs 𝑖 and 𝑦𝑗𝑘 are the outputs 𝑗 of DMU 𝑘, 𝑘 = 1, . . . , 𝑛, and 𝑥𝑖𝑜 are the inputs 𝑖 and

𝑦𝑗𝑜 are the outputs 𝑗 of DMU 𝑜.
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Turn back to the concept of benefit/cost. The efficiency of a DMU 𝑜 is:

Eff 𝑜 =
∑𝑠

𝑗=1 𝑢𝑗𝑦𝑗𝑜

∑𝑟
𝑖=1 𝑣𝑖𝑥𝑖𝑜

(6.8)

If efficiency is achieved by an equiproportional reduction of inputs and outputs

are maintained constant (input orientation - Section 6.2.1), we set

𝑟

∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜 = 1 (6.9)

and the efficiency becomes

Eff 𝑜 =
𝑠

∑
𝑗=1

𝑢𝑗𝑦𝑗𝑜 (6.10)

When the goal is to increase the outputs without decreasing the inputs (output

orientation - Section 6.2.2), we set

𝑠

∑
𝑗=1

𝑢𝑗𝑦𝑗𝑜 = 1 (6.11)

and the efficiency becomes

Eff 𝑜 =
1

∑𝑟
𝑖=1 𝑣𝑖𝑥𝑖𝑜

(6.12)

For the remaining DMUs 𝑘,

Eff 𝑜 ≤ 1 (6.13)

⇓ (6.14)
∑𝑠

𝑗=1 𝑢𝑗𝑦𝑗𝑘

∑𝑟
𝑖=1 𝑣𝑖𝑥𝑖𝑘

≤ 1 ∀𝑘 (6.15)

⇓ (6.16)
𝑠

∑
𝑗=1

𝑢𝑗𝑦𝑗𝑘 −
𝑟

∑
𝑖=1

𝑣𝑖𝑥𝑖𝑘 ≤ 0 ∀𝑘 (6.17)

6.2.1 Input orientation

The CCR model, input oriented, is described as follows:
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max Eff 𝑜 =
𝑠

∑
𝑗=1

𝑢𝑗𝑦𝑗𝑜 (6.18)

s.t
𝑟

∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜 = 1 (6.19)

𝑠

∑
𝑗=1

𝑢𝑗𝑦𝑗𝑘 −
𝑟

∑
𝑖=1

𝑣𝑖𝑥𝑖𝑘 ≤ 0 ∀𝑘 (6.20)

𝑣𝑖, 𝑢𝑗 ≥ 0 ∀𝑖, 𝑗 (6.21)

A DMU is inefficient if the efficiency value given by the optimal value for the

problem (6.18)-(6.21) is less than one.

Let Eff 𝑜 = 1
ℎ0

. The dual of problem (6.18)-(6.21) is deĄned by (6.22)-(6.25):

min ℎ𝑜 (6.22)

s.t ℎ𝑜𝑥𝑖𝑜 −
𝑛

∑
𝑘=1

𝑥𝑖𝑘Ú𝑘 ≥ 0 ∀𝑖 (6.23)

−𝑦𝑗𝑜 +
𝑛

∑
𝑘=1

𝑦𝑗𝑘Ú𝑘 ≥ 0 ∀𝑗 (6.24)

Ú𝑘 ≥ 0 ∀𝑘 (6.25)

Constraints (6.23) ensures that this reduction in each of the inputs does not

exceed the boundary deĄned by efficient DMUs. Constraints (6.24) ensures that reduction

in inputs does not change the current level of DMU outputs.

If the optimal value is equal to one and the slacks of constrains (6.23) and

(6.24) are zero (ie, ℎ𝑜𝑥𝑖𝑜 − ∑𝑛
𝑘=1 𝑥𝑖𝑘Ú𝑘 = 0 and −𝑦𝑗𝑜 + ∑𝑛

𝑘=1 𝑦𝑗𝑘Ú𝑘 = 0), then the DMU is

efficient.

All efficient points lie on the DEA front. An inefficient DMU ô can be made

more efficient by projection onto the front, through proportional reduction of inputs.

Multiplying all inputs by the value of Eff õ (smaller then one), the DMU ô is taken to the

efficient front.

6.2.2 Output orientation

The CCR model, output oriented, is described as follows:

min ℎ𝑜 =
1

Eff 𝑜

=
𝑟

∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜 (6.26)

s.t
𝑠

∑
𝑗=1

𝑢𝑗𝑦𝑗𝑜 = 1 (6.27)

𝑠

∑
𝑗=1

𝑢𝑗𝑦𝑗𝑘 −
𝑟

∑
𝑖=1

𝑣𝑖𝑥𝑖𝑘 ≤ 0 ∀𝑘 (6.28)

𝑣𝑖, 𝑢𝑗 ≥ 0 ∀𝑖, 𝑗 (6.29)
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(SCHEEL, 2001) discusses in more detail the undesired outputs. It can be

amended by transforming the values of the undesired outputs by a monotone decreasing

function. The additive inverse approach incorporates the undesired output 𝑢 with values

𝑓(𝑢) = −𝑢. It also can be translated making 𝑓(𝑢) = −𝑢 + Ñ. The multiplicative inverse

approach incorporates the undesired output using 𝑓(𝑢) = 1⇑𝑢. Further, if a DMU is

efficient using the multiplicative inverse, then it is efficient as well when the additive

inverse is used to incorporate the undesired outputs.

6.3 Numerical experiments

The before mentioned operators were implemented in the following way.

Five combinations of the proposed initializations (Section 6.1.1) were analyzed:

• I1 = random (Section 6.1.1.1),

• I2 = based on arrival time (Section 6.1.1.2),

• I3 = based on processing time (Section 6.1.1.3),

• I4 = based on berth idle time (Section 6.1.1.4),

• I5 = 1
4I1 + 1

4I2 + 1
4I3 + 1

4I4.

Both idleness treatment was always performed (Section 6.1.2).

Three crossovers were implemented:

• C1: the probability of horizontal crossover (Section 6.1.3.1) is Pℎ = 25%, the prob-

ability of vertical crossover (Section 6.1.3.2) is P𝑣 = 25% and the probability of

vertical crossover in structure 𝑙 (Section 6.1.3.3) is P𝑣(𝑙) = 50%,

• C2: the probability of horizontal crossover (Section 6.1.3.1) is Pℎ = 25%, the prob-

ability of vertical crossover (Section 6.1.3.2) is P𝑣 = 50% and the probability of

vertical crossover in structure 𝑙 (Section 6.1.3.3) is P𝑣(𝑙) = 25%,

• C3: the probability of horizontal crossover (Section 6.1.3.1) is Pℎ = 50%, the prob-

ability of vertical crossover (Section 6.1.3.2) is P𝑣 = 25% and the probability of

vertical crossover in structure 𝑙 (Section 6.1.3.3) is P𝑣(𝑙) = 25%.

Mutation was performed only for vessels in different berths (Section 6.1.4.1)

because the local search covers the case of the mutation in the same berth. The local

search was always performed, both for vessels in the same berth (Section 6.1.5.1) and for

vessels in different berths (Section 6.1.5.2).

For the scatter search, the considered change rate was 𝑐𝑟 = 0.95 and three

combinations for 𝑏1 and 𝑏2 (𝑅𝑒𝑓𝑆𝑒𝑡) were analyzed:
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• R1: 𝑏1 = 90 and 𝑏2 = 10,

• R2: 𝑏1 = 80 and 𝑏2 = 20,

• R3: 𝑏1 = 70 and 𝑏2 = 30.

Therefore, there were 45 total combinations. Each combination was named by

the acronyms of the three constituent operators (initialization, crossover and 𝑅𝑒𝑓𝑆𝑒𝑡).

The test problems instances were the ones from (CORDEAU et al., 2005). There were

Ąve problem classes: 25 vessels and 5 berths; 25 vessels and 7 berths; 25 vessels and 10

berths; 35 vessels and 7 berths; 35 vessels and 10 berths and one instance for each classes

was randomly selected. The parameter settings were: population size = 500, number of

iterations = 1000 and 𝑅𝑒𝑓𝑆𝑒𝑡 size = 100. Each of the 45 combinations was tested 30

times using different seeds and the averages of the inputs and outputs were obtained to

fed the model (6.18)-(6.21).

To determine the inputs of the DMUs, take the objective function 2.22:

min ∑
𝑖∈𝑁

∑
𝑘∈𝑀

𝑣𝑖

⎛
⎝(𝑥

𝑘
𝑖 − 𝑎𝑖) + 𝑝𝑘

𝑖 ∑
𝑗∈𝑁∪{𝑑}

𝑙𝑘
𝑖𝑗

⎞
⎠

The service time can be splitted in waiting time:

∑
𝑖∈𝑁

∑
𝑘∈𝑀

𝑣𝑖 (𝑥𝑘
𝑖 − 𝑎𝑖)

and handling time:

∑
𝑖∈𝑁

∑
𝑘∈𝑀

𝑣𝑖

⎛
⎝𝑝

𝑘
𝑖 ∑

𝑗∈𝑁∪{𝑑}

𝑙𝑘
𝑖𝑗

⎞
⎠

The computational time is a consequence of the operator combination, and we

want the combination with the shortest time to achieve the best values for the objective

function. Therefore, it can be considered an input as well to be minimized.

Because the problem has no target to maximize and we are studying the input

oriented CCR-model, we consider the outputs as a constant of value one.

The results for the efficiency values for each combination when solving the

CCR model for constant output are reported in Table 17.
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25x5 25x7 25x10 35x7 35x10
1 I1 - C1 - R1 0.998461 0.99088 0.996794 0.99718 0.997433
2 I1 - C1 - R2 0.997532 0.989156 0.998056 0.996416 0.995376
3 I1 - C1 - R3 1 0.997491 0.998447 0.997986 1
4 I1 - C2 - R1 0.995843 0.999645 1 0.995562 0.988218
5 I1 - C2 - R2 0.998578 0.994945 0.99665 0.994904 0.993504
6 I1 - C2 - R3 1 1 1 1 1
7 I1 - C3 - R1 0.998927 0.995186 0.992277 0.994288 0.992579
8 I1 - C3 - R2 1 0.996344 1 0.998445 0.992858
9 I1 - C3 - R3 1 0.99787 0.992178 0.993602 1
10 I2 - C1 - R1 0.999968 0.991739 0.990377 0.991989 0.990441
11 I2 - C1 - R2 0.998799 0.992941 0.993665 0.992896 0.992714
12 I2 - C1 - R3 0.995816 0.990554 0.994772 0.991896 0.990964
13 I2 - C2 - R1 0.997988 1 0.990249 0.995623 0.982796
14 I2 - C2 - R2 1 0.994436 0.994267 0.995149 0.987587
15 I2 - C2 - R3 0.999059 0.995676 1 0.991067 0.991342
16 I2 - C3 - R1 0.996938 0.994655 0.987607 0.991377 0.983764
17 I2 - C3 - R2 0.999612 1 0.995134 0.996109 0.984485
18 I2 - C3 - R3 0.998763 1 1 0.991877 0.992665
19 I3 - C1 - R1 0.99544 0.991527 0.994552 0.99716 0.995752
20 I3 - C1 - R2 0.99581 0.997653 0.994269 0.996297 0.997621
21 I3 - C1 - R3 0.999159 0.999744 0.994856 0.995929 0.995399
22 I3 - C2 - R1 0.997313 0.991152 0.998429 0.993162 1
23 I3 - C2 - R2 0.99351 0.99711 0.997144 1 0.999743
24 I3 - C2 - R3 1 0.998415 1 1 1
25 I3 - C3 - R1 0.995627 0.998438 0.99393 0.995847 0.994287
26 I3 - C3 - R2 0.996824 0.997223 0.992808 0.996577 0.994252
27 I3 - C3 - R3 0.99885 0.996044 0.993979 0.996562 0.997816
28 I4 - C1 - R1 0.994353 0.99646 0.99751 0.993413 0.987341
29 I4 - C1 - R2 0.996627 0.995968 0.999362 0.999057 0.988035
30 I4 - C1 - R3 0.993274 0.990306 0.999359 0.999632 1
31 I4 - C2 - R1 0.990994 0.9966 0.999756 0.992831 0.990107
32 I4 - C2 - R2 1 0.995366 0.997699 0.996412 0.992286
33 I4 - C2 - R3 0.99237 0.994845 0.998677 0.999066 0.989117
34 I4 - C3 - R1 0.995843 0.999645 1 0.995562 0.988218
35 I4 - C3 - R2 0.99601 1 0.996126 0.994682 0.988544
36 I4 - C3 - R3 0.992487 0.994392 1 1 0.991558
37 I5 - C1 - R1 0.9944 0.992594 0.994183 0.994512 0.988361
38 I5 - C1 - R2 0.993878 0.998052 1 1 0.99127
39 I5 - C1 - R3 0.997034 0.998172 0.997233 0.996959 0.996132
40 I5 - C2 - R1 0.998993 0.995849 0.992395 0.994366 0.988397
41 I5 - C2 - R2 0.996584 1 1 0.993407 0.995355
42 I5 - C2 - R3 0.997159 0.995186 1 0.998706 0.989067
43 I5 - C3 - R1 0.998192 0.999948 0.991222 0.994745 0.992904
44 I5 - C3 - R2 0.999319 0.993728 0.9923 0.994881 0.992003
45 I5 - C3 - R3 0.995095 0.995864 0.994916 1 0.995693

average 0.997142867 0.996039978 0.9962484 0.995914022 0.992799644
standard deviation 0.002399518 0.003050558 0.003318403 0.002611906 0.004624718

Table 17 – Efficiency of the CCR model for constant output
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25x5 25x7 25x10 35x7 35x10
I1-C1-R3 I1-C2-R3 I1-C2-R1 I1-C2-R3 I1-C1-R3
I1-C2-R3 I2-C2-R1 I1-C2-R3 I3-C2-R2 I1-C2-R3
I1-C3-R2 I2-C3-R2 I1-C3-R2 I3-C2-R3 I1-C3-R3
I1-C3-R3 I2-C3-R3 I2-C2-R3 I4-C3-R3 I3-C2-R1
I2-C2-R2 I4-C3-R2 I2-C3-R3 I5-C1-R2 I3-C2-R3
I3-C2-R3 I5-C2-R2 I3-C2-R3 I5-C3-R3 I4-C1-R3
I4-C2-R2 I4-C3-R1

I4-C3-R3
I5-C1-R2
I5-C2-R2
I5-C2-R3

Table 18 – Efficient combinations for constant output

The efficient combinations identiĄed by the CCR model for the approach con-

sidering three inputs and constant outputs are summarized in Table 18. It is noteworthy

that there are many combinations that have shown to be efficient. To reĄne the analysis,

we considered another way of applying the DEA, in which the portions of the objective

function as outputs and the time is an input, as proposed in (LU; YU, 2012). Because

the outputs should be maximized in a classical input-orientated DEA model, the outputs

in this work are undesired. The translated and the multiplicative approach previously

presented in Section 6.2.3 and taking into account the order of magnitude of the data, are

analyzed to amend such situation. In the translated approach, we used for the waiting

time:

𝑓(𝑢) = 1000 − 𝑢

and for the handling time we used:

𝑓(𝑢) = 10000 − 𝑢

For the multiplicative approach we used

𝑓(𝑢) = 100
𝑢

The relative efficiencies obtained by the CCR model of the 45 operator combi-

nations for the translated approach (Trans.) and for the multiplicative approach (Mult.)

are reported in Table 19. The efficiency for the multiplicative approach is ranked in Table

20. The efficient combinations for the multiplicative approach are summarized in Table

21.
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DMU Operator 25x5 25x7 25x10 35x7 35x10
combination Trans. Mult. Trans. Mult. Trans. Mult. Trans. Mult. Trans. Mult.

1 I1 - C1 - R1 0.805408 0.808961 0.650004 0.646798 0.815762 0.836302 0.782033 0.781385 0.844561 0.850555
2 I1 - C1 - R2 0.812639 0.815397 0.713365 0.708184 0.925519 0.930689 0.897713 0.895673 0.8848 0.889343
3 I1 - C1 - R3 1 1 0.856366 0.856705 0.961282 0.984638 0.9024 0.936892 0.959802 0.96659
4 I1 - C2 - R1 0.827308 0.830723 0.67994 0.680911 0.735031 0.795947 0.810953 0.841581 0.821206 0.819919
5 I1 - C2 - R2 0.918251 0.923315 0.799041 0.798296 0.903552 0.926602 0.886921 0.907161 0.947669 0.948389
6 I1 - C2 - R3 0.983741 0.985636 0.968718 1 0.964283 1 1 1 1 1
7 I1 - C3 - R1 0.749404 0.75064 0.655624 0.6554 0.740841 0.782764 0.795248 0.824201 0.79239 0.794763
8 I1 - C3 - R2 0.975925 0.977804 0.753408 0.753519 0.86699 0.870381 0.874273 0.933372 0.908522 0.907976
9 I1 - C3 - R3 0.957862 0.961113 0.863233 0.862769 0.817657 0.846349 0.935161 0.945187 0.959946 0.967296
10 I2 - C1 - R1 0.624592 0.62931 0.600494 0.598057 0.626775 0.643549 0.72217 0.718258 0.691412 0.692482
11 I2 - C1 - R2 0.604603 0.607099 0.598182 0.594765 0.730968 0.762069 0.830343 0.826421 0.803603 0.805882
12 I2 - C1 - R3 0.803494 0.804598 0.698467 0.69414 0.830905 0.870109 0.799102 0.836801 0.876374 0.874203
13 I2 - C2 - R1 0.669075 0.670485 0.656382 0.685182 0.660157 0.687635 0.722738 0.72118 0.761682 0.757444
14 I2 - C2 - R2 0.669798 0.672996 0.758515 0.756251 0.816167 0.827335 0.806792 0.83037 0.840085 0.838725
15 I2 - C2 - R3 0.854298 0.857669 0.782698 0.783175 0.881129 0.973932 0.812933 0.821302 0.915618 0.923077
16 I2 - C3 - R1 0.646081 0.647621 0.53906 0.538705 0.565035 0.570451 0.625881 0.622136 0.720787 0.716963
17 I2 - C3 - R2 0.762123 0.768306 0.806642 0.809864 0.925598 0.923671 0.945163 0.942295 0.865649 0.860854
18 I2 - C3 - R3 0.796808 0.797903 1 1 1 1 0.984705 0.977591 0.970716 0.96715
19 I3 - C1 - R1 0.681661 0.681224 0.556175 0.554298 0.678386 0.691682 0.665155 0.69423 0.701189 0.705179
20 I3 - C1 - R2 0.640025 0.640668 0.6438 0.645483 0.791411 0.790534 0.770694 0.77945 0.776805 0.780666
21 I3 - C1 - R3 0.849556 0.854241 0.676934 0.67991 0.84934 0.896596 0.797297 0.822198 0.848992 0.852296
22 I3 - C2 - R1 0.693163 0.696221 0.57329 0.570739 0.68458 0.71251 0.704565 0.723593 0.703161 0.710198
23 I3 - C2 - R2 0.868471 0.868945 0.774894 0.776 0.804318 0.805598 0.842298 0.861519 0.867591 0.875462
24 I3 - C2 - R3 0.924789 0.926396 0.793963 0.796038 0.871217 0.923004 0.833149 0.917407 0.911968 0.920314
25 I3 - C3 - R1 0.710381 0.71051 0.582869 0.584564 0.756568 0.775602 0.727951 0.777336 0.74649 0.750006
26 I3 - C3 - R2 0.852797 0.85124 0.698829 0.700169 0.834396 0.88639 0.728948 0.74383 0.842408 0.84602
27 I3 - C3 - R3 0.648843 0.64997 0.605511 0.606226 0.759448 0.781014 0.793648 0.792541 0.82829 0.831207
28 I4 - C1 - R1 0.59646 0.597223 0.645781 0.646768 0.758609 0.760423 0.795307 0.791947 0.784038 0.782768
29 I4 - C1 - R2 0.865572 0.870829 0.741771 0.741154 0.860689 0.863628 0.883686 0.928257 0.877817 0.876624
30 I4 - C1 - R3 0.960059 0.956649 0.758327 0.754734 0.925714 0.927439 0.910198 0.958026 0.982564 1
31 I4 - C2 - R1 0.775533 0.773553 0.635864 0.636584 0.747115 0.750404 0.770999 0.771479 0.798988 0.799073
32 I4 - C2 - R2 0.891731 0.899961 0.757035 0.756106 0.862837 0.864289 0.89215 0.894564 0.902459 0.904554
33 I4 - C2 - R3 0.786814 0.785664 0.605973 0.605827 0.777474 0.779784 0.947283 0.975179 0.963846 0.958657
34 I4 - C3 - R1 0.827308 0.830723 0.67994 0.680911 0.735031 0.795947 0.810953 0.841581 0.821206 0.819919
35 I4 - C3 - R2 0.873126 0.875366 0.715582 0.719082 0.841146 0.843703 0.870852 0.921761 0.85787 0.856682
36 I4 - C3 - R3 0.74216 0.739725 0.746228 0.745352 0.901543 0.904948 0.927622 0.985844 0.920916 0.919472
37 I5 - C1 - R1 0.530996 0.531919 0.379651 0.378405 0.510083 0.50999 0.562606 0.564128 0.502936 0.502791
38 I5 - C1 - R2 0.61087 0.60931 0.52066 0.522021 0.606295 0.610078 0.611455 0.612654 0.620439 0.621856
39 I5 - C1 - R3 0.643357 0.645718 0.54561 0.547088 0.626687 0.634349 0.631495 0.643426 0.66339 0.665044
40 I5 - C2 - R1 0.475612 0.478808 0.445386 0.445628 0.535368 0.563637 0.565659 0.563909 0.570806 0.570657
41 I5 - C2 - R2 0.623769 0.62652 0.510889 0.512981 0.848262 0.933205 0.870968 0.897004 0.886264 0.897604
42 I5 - C2 - R3 0.95336 0.952577 0.767182 0.76624 0.914115 0.957245 0.913169 0.930819 0.950454 0.946789
43 I5 - C3 - R1 0.7615 0.766545 0.607344 0.610283 0.72548 0.723142 0.779855 0.824332 0.785832 0.788434
44 I5 - C3 - R2 0.865662 0.871076 0.719128 0.716769 0.836255 0.858434 0.85956 0.907158 0.868548 0.869139
45 I5 - C3 - R3 0.912304 0.91322 0.789151 0.789346 0.821174 0.853889 0.91017 0.946617 0.945611 0.947198

average 0.7783842 0.780319489 0.685731244 0.6869206 0.791804267 0.813997489 0.811382689 0.831835444 0.833237778 0.835116
standard deviation 0.13042397 0.130537502 0.122636407 0.124245319 0.114673045 0.119436027 0.106120636 0.113370828 0.110191101 0.110915572

Table 19 – Efficiency of the CCR model for undesired outputs
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DMU Operator 25x5 25x7 25x10 35x7 35x10
combination rank efficiency rank efficiency rank efficiency rank efficiency rank efficiency

1 I1 - C1 - R1 21 0,808961 28 0,646798 23 0,836302 32 0,781385 24 0,850555
2 I1 - C1 - R2 20 0,815397 20 0,708184 7 0,930689 18 0,895673 16 0,889343
3 I1 - C1 - R3 1 1 4 0,856705 3 0,984638 9 0,936892 5 0,96659
4 I1 - C2 - R1 18 0,830723 24 0,680911 26 0,795947 21 0,841581 28 0,819919
5 I1 - C2 - R2 8 0,923315 6 0,798296 9 0,926602 15 0,907161 7 0,948389
6 I1 - C2 - R3 2 0,985636 1 1 1 1 1 1 1 1
7 I1 - C3 - R1 28 0,75064 27 0,6554 29 0,782764 27 0,824201 32 0,794763
8 I1 - C3 - R2 3 0,977804 15 0,753519 15 0,870381 10 0,933372 13 0,907976
9 I1 - C3 - R3 4 0,961113 3 0,862769 21 0,846349 7 0,945187 3 0,967296
10 I2 - C1 - R1 39 0,62931 35 0,598057 40 0,643549 39 0,718258 41 0,692482
11 I2 - C1 - R2 42 0,607099 36 0,594765 33 0,762069 25 0,826421 30 0,805882
12 I2 - C1 - R3 22 0,804598 22 0,69414 16 0,870109 23 0,836801 19 0,874203
13 I2 - C2 - R1 34 0,670485 23 0,685182 39 0,687635 38 0,72118 36 0,757444
14 I2 - C2 - R2 33 0,672996 12 0,756251 24 0,827335 24 0,83037 26 0,838725
15 I2 - C2 - R3 15 0,857669 9 0,783175 4 0,973932 29 0,821302 10 0,923077
16 I2 - C3 - R1 36 0,647621 41 0,538705 43 0,570451 42 0,622136 38 0,716963
17 I2 - C3 - R2 26 0,768306 5 0,809864 10 0,923671 8 0,942295 21 0,860854
18 I2 - C3 - R3 23 0,797903 2 1 2 1 3 0,977591 4 0,96715
19 I3 - C1 - R1 32 0,681224 39 0,554298 38 0,691682 40 0,69423 40 0,705179
20 I3 - C1 - R2 38 0,640668 30 0,645483 28 0,790534 33 0,77945 35 0,780666
21 I3 - C1 - R3 16 0,854241 26 0,67991 13 0,896596 28 0,822198 23 0,852296
22 I3 - C2 - R1 31 0,696221 38 0,570739 37 0,71251 37 0,723593 39 0,710198
23 I3 - C2 - R2 14 0,868945 10 0,776 25 0,805598 20 0,861519 18 0,875462
24 I3 - C2 - R3 7 0,926396 7 0,796038 11 0,923004 14 0,917407 11 0,920314
25 I3 - C3 - R1 30 0,71051 37 0,584564 32 0,775602 34 0,777336 37 0,750006
26 I3 - C3 - R2 17 0,85124 21 0,700169 14 0,88639 36 0,74383 25 0,84602
27 I3 - C3 - R3 35 0,64997 33 0,606226 30 0,781014 30 0,792541 27 0,831207
28 I4 - C1 - R1 43 0,597223 29 0,646768 34 0,760423 31 0,791947 34 0,782768
29 I4 - C1 - R2 13 0,870829 17 0,741154 18 0,863628 12 0,928257 17 0,876624
30 I4 - C1 - R3 5 0,956649 14 0,754734 8 0,927439 5 0,958026 2 1
31 I4 - C2 - R1 25 0,773553 31 0,636584 35 0,750404 35 0,771479 31 0,799073
32 I4 - C2 - R2 10 0,899961 13 0,756106 17 0,864289 19 0,894564 14 0,904554
33 I4 - C2 - R3 24 0,785664 34 0,605827 31 0,779784 4 0,975179 6 0,958657
34 I4 - C3 - R1 19 0,830723 25 0,680911 27 0,795947 22 0,841581 29 0,819919
35 I4 - C3 - R2 11 0,875366 18 0,719082 22 0,843703 13 0,921761 22 0,856682
36 I4 - C3 - R3 29 0,739725 16 0,745352 12 0,904948 2 0,985844 12 0,919472
37 I5 - C1 - R1 44 0,531919 45 0,378405 45 0,50999 44 0,564128 45 0,502791
38 I5 - C1 - R2 41 0,60931 42 0,522021 42 0,610078 43 0,612654 43 0,621856
39 I5 - C1 - R3 37 0,645718 40 0,547088 41 0,634349 41 0,643426 42 0,665044
40 I5 - C2 - R1 45 0,478808 44 0,445628 44 0,563637 45 0,563909 44 0,570657
41 I5 - C2 - R2 40 0,62652 43 0,512981 6 0,933205 17 0,897004 15 0,897604
42 I5 - C2 - R3 6 0,952577 11 0,76624 5 0,957245 11 0,930819 9 0,946789
43 I5 - C3 - R1 27 0,766545 32 0,610283 36 0,723142 26 0,824332 33 0,788434
44 I5 - C3 - R2 12 0,871076 19 0,716769 19 0,858434 16 0,907158 20 0,869139
45 I5 - C3 - R3 9 0,91322 8 0,789346 20 0,853889 6 0,946617 8 0,947198

Table 20 – Rank of the CCR model for the multiplicative approach
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25x5 25x7 25x10 35x7 35x10
I1-C1-R3 I1-C2-R3 I1-C2-R3 I1-C2-R3 I1-C2-R3

I2-C3-R3 I2-C3-R3 I4-C1-R3

Table 21 – Efficient combinations for undesired outputs

In this approach, all efficient combinations include the 𝑅𝑒𝑓𝑆𝑒𝑡 R3 composed

as 𝑏1 = 70 and 𝑏2 = 30. The random initialization I1 also proved to be more efficient among

all the proposed ones.

Comparing Tables 18 and 21, we can see that all the combinations that are

efficient for undesired outputs are also efficient for constant output, but the opposite is

not valid. Therefore, we can conclude that the approach with undesired outputs reĄned

our quest for the efficient combination to use.

6.3.1 Comparison with the criterion of non-dominance

From Multiobjective Optimization (MO), consider the concepts of the search

space partially ordained, in a way that two arbitrary solutions are linked to each other in

two possible ways: or one of them dominates the other or neither dominates.

Let æ1 and æ2 two solutions (DMUs) in the search space of a problem that

has 3 objective functions (𝑓1 = waiting time, 𝑓2 = handling time and 𝑓3 = computational

time). Then æ1 dominates æ2 according to (SAWARAGI et al., 1985), if and only if:

∀𝑖 ∈ {1, 2, 3}, 𝑓𝑖(æ1) ≤ 𝑓𝑖(æ2)
and

∃𝑗 ∈ {1, 2, 3}, 𝑓𝑗(æ1) < 𝑓𝑗(æ2)

In other words, æ1 is not worse than æ2 in any of the objectives and is better

in at least one of them (ABRAHAM; JAIN, 2005).

The DMUs that are non-dominated using the criteria previously described are

reported in Table 22.

It is noteworthy that all efficient solutions from DEA are non-dominated for

MO, but the inverse is not valid. Therefore, the DEA can be used to reĄne the set of non

dominated solutions of MO.

6.3.2 Deviating slightly the parameters

Analyzing Tables 18 and 21 from the combination I1 - C2 - R3, some slight

deviations were made in some of the parameters to analyze how the results would be

influenced
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25x5 25x7 25x10 35x7 35x10
I1-C1-R1 I1-C1-R3 I1-C1-R2 I1-C2-R3 I1-C1-R3

I1-C1-R3 I1-C2-R1 I1-C1-R3 I1-C3-R2 I1-C2-R2
I1-C2-R2 I1-C2-R3 I1-C2-R1 I3-C2-R2 I1-C2-R3

I1-C2-R3 I2-C2-R1 I1-C2-R3 I3-C2-R3 I1-C3-R3
I1-C3-R2 I2-C3-R2 I1-C3-R2 I4-C1-R2 I3-C1-R2
I1-C3-R3 I2-C3-R3 I2-C2-R3 I4-C1-R3 I3-C1-R3
I2-C1-R1 I3-C1-R3 I2-C3-R3 I4-C2-R3 I3-C2-R1
I2-C2-R2 I4-C3-R1 I3-C2-R3 I4-C3-R3 I3-C2-R3
I2-C2-R3 I4-C3-R2 I4-C1-R3 I5-C1-R2 I3-C3-R3
I2-C3-R1 I5-C2-R2 I4-C2-R1 I5-C2-R3 I4-C1-R3

I3-C1-R3 I4-C2-R3 I5-C3-R3 I5-C3-R3
I3-C2-R3 I4-C3-R1
I4-C2-R2 I4-C3-R3
I5-C3-R1 I5-C1-R2
I5-C3-R2 I5-C2-R2

I5-C2-R3

Table 22 – Non-dominated combinations

• v1: the probability of horizontal crossover (Section 6.1.3.1) is Pℎ = 1
7 , the probabil-

ity of vertical crossover (Section 6.1.3.2) is P𝑣 = 3
7 and the probability of vertical

crossover in structure 𝑙 (Section 6.1.3.3) is P𝑣(𝑙) = 3
7

• v2: the initialization is 0,5*I1 + 0,5*I2

• v3: the initialization is 0,8*I1 + 0,2*I2 and the probability of horizontal crossover

(Section 6.1.3.1) is Pℎ = 1
5 , the probability of vertical crossover (Section 6.1.3.2) is

P𝑣 = 2
5 and the probability of vertical crossover in structure 𝑙 (Section 6.1.3.3) is

P𝑣(𝑙) = 2
5

• v4: the initialization is 0,85*I1 + 0,15*I2 and the probability of horizontal crossover

(Section 6.1.3.1) is Pℎ = 1
5 , the probability of vertical crossover (Section 6.1.3.2) is

P𝑣 = 2
5 and the probability of vertical crossover in structure 𝑙 (Section 6.1.3.3) is

P𝑣(𝑙) = 2
5

• v5: the initialization is 0,95*I1 + 0,05*I2 and the probability of horizontal crossover

(Section 6.1.3.1) is Pℎ = 1
5 , the probability of vertical crossover (Section 6.1.3.2) is

P𝑣 = 2
5 and the probability of vertical crossover in structure 𝑙 (Section 6.1.3.3) is

P𝑣(𝑙) = 2
5
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25x5
CPLEX 12.6 v1 v2 v3 v4 v5

759 760 761 761 759 759
1013 982 986 983 987 976
1039 980 982 980 981 984
721 694 696 697 690 698
973 959 957 958 958 958
1165 1138 1137 1138 1138 1140
872 836 839 851 1150 844
647 630 629 627 628 628
752 754 754 755 755 756
1148 1082 1084 1079 1078 1079

25x7
CPLEX 12.6 v1 v2 v3 v4 v5

674 659 657 657 657 657
698 659 660 663 662 662
815 812 813 813 808 809
655 655 655 650 656 655
725 726 730 725 729 732
847 796 801 801 801 803
769 748 744 745 741 745
791 780 776 778 775 780
749 750 749 750 751 750
825 826 828 825 825 827

25x10
CPLEX 12.6 v1 v2 v3 v4 v5

713 715 714 718 716 717
731 729 729 731 729 731
761 762 764 764 764 764
810 820 815 815 814 815
840 840 840 844 842 841
689 692 692 689 689 691
666 669 667 669 668 669
855 855 855 855 855 855
715 716 716 715 713 713
801 801 803 803 801 801

35x7
CPLEX 12.6 v1 v2 v3 v4 v5

1046 1010 1027 1027 1026 1022
1484 1211 1215 1215 1220 1226
1442 1238 1240 1226 1232 1239
1265 1159 1148 1148 1147 1146
1255 1200 1192 1182 1189 1187
2168 1711 1710 1720 1716 1723
1538 1192 1193 1209 1207 1192
1668 1343 1339 1350 1350 1337
1721 1278 1270 1271 1267 1279
1408 1137 1148 1133 1140 1143

35x10
CPLEX 12.6 v1 v2 v3 v4 v5

1255 1131 1143 1143 1134 1136
1365 1216 1225 1228 1229 1225
996 950 951 957 947 950
1652 1249 1244 1255 1258 1254
1528 1362 1369 1359 1367 1366
1248 1225 1220 1221 1225 1218
1108 1062 1056 1059 1062 1067
1238 1210 1215 1212 1206 1209
1398 1336 1329 1338 1338 1336
1205 1199 1195 1202 1202 1202

Table 23 – Results of parameter deviations

In table 23 is noted that a small deviation in the proportion of initializations

or crossover does not entail signiĄcant changes in the value of the objective function.
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6.4 Conclusion

As stated previously, the Berth Allocation Problem has shown to be of high

resolution complexity, and metaheuristic methods stand out as a faster option to Ąnd

good solutions. For this reason, this Chapter developed a hybrid method, which combines

genetic algorithm with scatter search to solve the problem. One of the main reasons to use

a genetic algorithm is that the number of parameters and operators is very large, making

the method more robust. The scatter search was used in order to maintain the diversity

of solutions.

Because metaheuristic depends on the structure of the problem, there are

several ways to implement the genetic algorithm operators. Thus, the initialization, the

crossover and the scatter search were implemented in different ways.

The complexity of making the decision based on the empirical analysis in-

creases with the numbers of distinct operators and parameters values and the data envel-

opment analysis was used to identify the best way to combine those operators in order to

obtain the best results for the berth allocation problem. It was possible to measure if the

amount of computational time taken compensated the value obtained by the objective

function. Three approaches were analyzed and the multiplicative approach proved useful

in identifying which operator is more advantageous to use. For future works, we intend

to explore such operators to improve the HEABAP performance.
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7 Problem generator for the BAP

According to (CHEONG; TAN, 2008), there is no well-established benchmark

for the BAP in the literature.

In literature, the Berth Allocation Problem is modeled in different ways. For

this reason, there is a lack of appropriate test problems and problem generators to be used

by all researchers in their computational experiments. The purpose of developing a data

generator is to create benchmark problem instances to allow future work to be broadly

and fairly compared.

For the model proposed at Section 2.2.3, the necessary parameters to model

the BAP are the following:

• number of vessels: 𝑛

• number of berths: 𝑚

• vessel 𝑖 time window: ⋃︁𝑎𝑖, 𝑏𝑖⨄︁

• berth 𝑘 time window: ⋃︁𝑠𝑘, 𝑒𝑘⨄︁

• processing time of vessel 𝑖 at berth 𝑘: 𝑝𝑘
𝑖

• vessel 𝑖 relative importance 𝑣𝑖

Due to its extreme versatility, as proposed in (SILVA et al., 2014), the beta

distribution is used for the generation of these parameters. The standard beta distribution

is a continuous probability distribution with probability density function given by:

𝑓 (𝑥; Ð, Ñ) = 𝑥Ð−1 (1 − 𝑥)Ñ−1

∫ 1

0 ÛÐ−1 (1 − Û)Ñ−1
𝜕Û

, 0 ≤ 𝑥 ≤ 1, Ð > 0, Ñ > 0 (7.1)

In Figure 24 the shapes the beta distribution assumes for Ð = 2 and Ñ = 2

(24a), Ð = 0.5 and Ñ = 0.5 (24b), Ð = 2 and Ñ = 5 (24c) and Ð = 5 and Ñ = 2 (24d) are

shown.

As in (SILVA et al., 2014), the inverse transform sampling technique was used

for generating random numbers from the beta distribution and a uniform pseudo-random

generator was implemented to ensure the portability and reproducibility of the test data.

The parameters number of vessels (𝑛) and number of berths (𝑚) are userŠs

input. The berth time window is Ąxed for every berth and normalized: 𝑠𝑘 = 0 and 𝑒𝑘 is an

input.
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7.1 Computational tests

The computational tests were executed on a personal computer, a Dell Inspiron

14Z with Intel Core I5-3337U 1.80GHz, RAM memory of 6GB and a Solid State Drive of

size 240 GB, using CPLEX 12.6. The stopping criteria was computational time, limited

to 3600 seconds.

To evaluate the influence of the data on the difficulty of solving the problem

with CPLEX, four shapes for the beta distribution are considered: 𝑓(𝑥, 2, 2), 𝑓(𝑥, 0.5, 0.5),
𝑓(𝑥, 2, 5) and 𝑓(𝑥, 5, 2) (Figure 24). Because there are 3 parameters (𝑝, 𝑎 and 𝑏), there

are 43 different combinations of generating the set of parameters for the problem. It was

considered 𝑒𝑘 = 100 ∀𝑘 and 𝑣𝑖 = 1 ∀𝑖. For each combination, 10 instances were generated

and solved for all combinations of 20, 30 and 40 vessels with 5, 7 and 10 berths. This

totalizes 5760 computational tests solved with CPLEX 12.6. The stopping criteria was

computational time, limited in 3600 seconds (one hour).
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processing arrival departure solved average founded a Average Unknown
time (𝑝) time (𝑎) time (𝑏) problems comp. time (s) solution GAP Status
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 0,216 0 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 0,356 8 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 0,36 9 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 0,362 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 0,424 8 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 0,431 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 0,436 8 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 0,438 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 0,438 8 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 0,438 9 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 0,453 9 - 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 0,463 8 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 0,464 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 0,472 9 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 0,486 8 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 0,498 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 0,514 9 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 0,531 8 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 10 0,559 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 0,569 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 0,583 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 10 0,607 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 0,637 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 0,684 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 0,782 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 10 0,834 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 0,859 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 0,915 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 0,926 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 0,994 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 10 1,037 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 1,17 10 - 0

𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 1,25 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 1,291 10 - 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 1,775 6 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 1,776 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 1,856 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 1,884 8 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 10 2,003 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 5,286 9 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 5,673 0 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 6,297 8 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 7,699 9 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 10 8,223 8 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 10 13,075 8 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 17,788 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 27,343 9 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 10 29,794 0 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 35,295 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 46,51 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 74,244 1 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 92,344 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 10 103,247 10 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 10 115,738 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 9 63,17666667 10 0,00218726 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 9 212,8788889 10 0,0115843 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 8 5,2975 10 0,00262777 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 8 466,28625 10 0,006445155 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 7 227,9814286 10 0,00492009 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 6 108,8216667 10 0,00492219 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 4 940,6725 10 0,007966293 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 2 104,11 10 0,010397759 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 2 107,585 10 0,009646556 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 1 94,94 10 0,010643113 0

Table 25 – Instances tests analysis: 20 vessels and 5 berths



Chapter 7. Problem generator for the BAP 103

processing arrival departure solved average founded a Average Unknown
time (𝑝) time (𝑎) time (𝑏) problems comp. time (s) solution GAP Status
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 0,37 1 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 0,38 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 0,46 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 0,47 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 0,48 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 0,48 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 0,50 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 0,55 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 0,56 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 10 0,58 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 0,59 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 0,62 5 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 0,62 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 0,63 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 0,64 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 0,65 10 - 0

𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 0,66 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 0,66 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 0,69 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 0,70 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 0,71 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 0,76 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 10 0,78 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 10 0,79 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 0,82 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 0,86 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 0,88 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 0,93 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 10 0,95 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 0,95 7 - 0

𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 0,96 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 10 1,03 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 1,05 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 1,05 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 1,08 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 1,19 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 1,19 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 1,22 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 1,29 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 1,45 9 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 10 1,46 9 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 2,60 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 4,83 9 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 7,74 2 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 10,14 7 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 10 15,44 4 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 20,04 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 10 20,53 8 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 10 28,44 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 10 28,52 10 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 30,29 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 49,02 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 69,77 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 99,51 10 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 9 6,49 9 - 1
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 9 6,82 10 0,010 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 9 7,08 10 0,005 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 9 8,24 10 0,008 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 9 13,09 3 - 1
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 9 15,80 10 0,007 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 6 115,42 8 0,002 1

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 5 187,84 10 0,005 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 3 184,59 10 0,007 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 3 192,41 10 0,008 0

Table 26 – Instances tests analysis: 20 vessels and 7 berths
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processing arrival departure solved average founded a Average Unknown
time (𝑝) time (𝑎) time (𝑏) problems comp. time (s) solution GAP Status
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 0,431 2 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 0,435 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 0,532 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 0,572 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 0,579 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 0,593333333 8 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 0,594 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 0,63 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 0,63 8 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 0,634 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 0,64 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 0,65 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 0,659 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 0,662 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 0,673 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 0,674 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 0,684 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 0,704 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 0,708 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 0,718 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 0,741 10 - 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 0,774 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 0,776 10 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 0,779 6 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 0,796 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 0,82 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 0,828 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 0,857 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 0,858 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 0,867 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 0,876 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 0,886 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 0,912 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 0,926 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 0,936 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 0,94 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 0,982 9 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 1,011 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 1,017 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 1,023 9 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 1,076 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 1,095 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 1,108 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 1,143 9 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 1,163 9 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 1,169 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 1,297 9 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 1,395 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 1,429 5 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 1,505 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 1,54 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 1,635 9 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,855 10 - 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,888 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 1,9 7 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 1,903 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 2,261 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 2,439 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 2,65 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 3,216 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 3,66 10 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 3,809 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 8,976 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 12,951 9 - 0

Table 27 – Instances tests analysis: 20 vessels and 10 berths
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processing arrival departure solved average founded a Average Unknown
time (𝑝) time (𝑎) time (𝑏) problems comp. time (s) solution GAP Status
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 0,502 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 0,649 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 0,695 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 0,73 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 0,769 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 0,821 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 0,909 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,017 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 1,083 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 1,096 8 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,113 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 1,172 7 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 1,177 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 1,182 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 1,202 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 1,308 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 1,318 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 1,396 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 1,439 7 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,468 9 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,505 7 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 1,514 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 1,607 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 1,662 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 1,692 7 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 1,872 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 1,946 9 - 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 1,967 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 2,31 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 2,804 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 3,032 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 4,423 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 11,172 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 11,83 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 17,288 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 20,956 10 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 41,195 0 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 101,453 8 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 273,081 3 - 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 8 15,51375 8 - 2
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 8 43,17375 8 - 2
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 8 60,34625 8 - 2
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 8 299,295 10 0,002553855 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 7 38,83428571 10 0,002158607 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 7 52,20857143 8 0,00321897 2
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 7 71,40571429 10 0,001766614 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 7 81,28 10 0,005727813 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 7 93,07428571 10 0,002179654 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 7 144,9471429 10 0,004873342 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 7 189,2857143 10 0,01303839 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 7 223,0728571 0 - 3
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 7 316,1142857 10 0,011449853 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 7 337,6685714 9 0,00427853 1
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 7 612,2957143 10 0,009459883 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 6 520,9383333 10 0,00413608 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 6 65,77833333 10 0,002837442 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 5 56,472 7 0,001824797 2
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 5 70,264 10 0,003703622 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 5 193,824 0 - 5

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 3 339,2066667 2 0,001640705 5

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 0 - 10 0,016219735 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 0 - 10 0,016454539 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 0 - 10 0,019171329 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 0 - 8 0,013717703 2

Table 28 – Instances tests analysis: 30 vessels and 5 berths
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processing arrival departure solved average founded a Average Unknown
time (𝑝) time (𝑎) time (𝑏) problems comp. time (s) solution GAP Status
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 0,89 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 1,03 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 1,19 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 1,22 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 1,28 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 1,42 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 10 1,42 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 1,62 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 1,66 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 1,8 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 1,82 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 10 1,83 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 1,93 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 2,08 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 2,12 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 2,16 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 2,64 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 2,93 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 10 2,95 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 3,16 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 3,26 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 3,69 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 10 4,48 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 4,75 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 4,77 9 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 5,44 9 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 5,64 9 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 10 5,85 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 6,61 9 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 10 6,65 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 10 6,78 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 10 10,88 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 10 13,38 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 14,45 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 17,7 10 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 19,7 0 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 21,83 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 50,81 10 - 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 89,4 9 - 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 9 14,66 10 0,0013 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 9 15,13 10 0,0017 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 9 29,82 10 0,0047 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 9 50,5 10 0,0044 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 9 55,77 10 0,0048 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 9 62,29 10 0,0053 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 9 125,14 10 0,0009 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 9 255,44 10 0,0059 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 8 47,52 10 0,0013 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 8 65,57 10 0,0018 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 8 70,28 10 0,0014 0

𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 8 173,54 10 0,0039 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 8 232,9 10 0,0041 0
𝑓(𝑥, 0.5, 0.5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 8 280,04 10 0,0034 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 7 240,3 10 0,0034 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 6 184,24 10 0,0027 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 6 231,09 10 0,0032 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0.5, 0.5) 6 388,25 10 0,0027 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 3 697,45 0 - 7

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0.5, 0.5) 1 138,23 0 - 9

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 0 3600,00 10 0,0151 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 0 3600,00 10 0,0163 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0.5, 0.5) 0 3600,00 10 0,017 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 0 3600,00 8 0,0166 2
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 0 3600,00 0 - 10
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processing arrival departure solved average founded a Average Unknown
time (𝑝) time (𝑎) time (𝑏) problems comp. time (s) solution GAP Status
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 0,874 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 1,041 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 1,056 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,094 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,18 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,221 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 1,286 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 1,362 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,433 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 1,463 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 1,49 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 1,547 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 1,639 10 - 0

𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 1,682 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 1,732 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 1,828 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 1,854 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 1,916 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 2,003 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 2,103 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 2,115 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 2,204 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 2,284 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 2,332 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 2,375 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 2,508 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 2,597 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 3,07 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 3,402 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 3,886 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 3,985 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 4,784 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 5,435 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 5,713 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 6,809 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 8,603 10 - 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 9,648 9 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 10,475 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 11,591 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 16,245 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 17,166 10 - 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 21,174 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 22,436 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 25,408 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 29,813 8 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 32,062 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 60,972 2 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 82,549 9 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 118,409 9 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 144,465 10 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 9 4,786666667 10 0,000214812 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 9 5,022222222 10 0,000272662 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 9 7,758888889 10 0,000320907 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 9 17,18555556 9 - 1
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 9 19,11111111 9 - 1
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 9 28,16555556 10 0,00479171 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 9 326,4511111 10 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 8 341,71625 3 0,00125925 1

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 6 45,61833333 4 0,00124277 2

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 4 102,6675 4 0,000359706 4

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 2 461,27 10 0,005041028 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 2 1358,89 10 0,005203918 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 2 1781,705 10 0,005371266 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 1 53,28 10 0,004540389 0

Table 30 – Instances tests analysis: 30 vessels and 10 berths
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processing arrival departure solved average founded a Average Unknown
time (𝑝) time (𝑎) time (𝑏) problems comp. time (s) solution GAP Status

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 1,227 6 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 1,429 8 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 1,62 9 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,711 8 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 1,825 9 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 1,843 7 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 1,936 8 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,984 8 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 2,069 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 2,071 9 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 2,372 9 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 2,375 8 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 2,527 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 2,627 9 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 2,778 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 3,798 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 4,158 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 4,381 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 4,405 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 5,277 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 5,373 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 5,555 4 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 14,54 4 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 23,888 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 90,714 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 102,286 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 147,369 10 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 9 1,19 4 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 9 4,546666667 10 0,00316727 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 9 8,05 9 - 1

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 9 8,506666667 10 0,00123795 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 9 9,108888889 10 0,000959358 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 9 12,79888889 10 0,00116806 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 9 16,45444444 10 0,00015135 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 9 33,32888889 5 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 9 45,79111111 5 - 1

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 8 10,64625 10 0,000795039 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 7 100,2771429 9 0,00266342 1
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 7 118,1328571 10 0,003995563 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 7 155,9814286 10 0,00360785 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 7 291,7371429 10 0,00356527 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 7 487,6085714 10 0,004784717 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 6 25,92666667 0 - 4
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 6 29,88166667 10 0,006450196 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 6 58,72833333 10 0,003413365 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 6 61,48333333 10 0,003465536 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 6 77,51333333 7 0,00297688 3
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 6 395,365 10 0,00770437 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 6 624,3183333 4 0,000866278 3
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 6 774,97 10 0,007687028 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 5 92,488 6 0,00054691 4
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 5 142,152 7 0,002404997 3
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 5 676,544 10 0,008698172 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 4 65,02 10 0,004805311 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 3 405,92 6 0,001198743 4
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 3 621,0166667 7 0,0015551 3
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 3 878,61 8 0,001292897 2

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 2 1881,9 1 - 7
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 2 3600 0 - 8

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 0 - 10 0,462392304 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 0 - 9 0,018403446 1
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 0 - 6 0,022475927 4
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 0 - 5 0,016305238 5

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 1 3600 1 0,0060103 8
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processing arrival departure solved average founded a Average Unknown
time (𝑝) time (𝑎) time (𝑏) problems comp. time (s) solution GAP Status
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 1,213 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 1,5 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 1,698 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 1,751 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 1,898 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 1,932 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 2,01 9 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 2,153 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 2,253 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 2,306 9 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 2,45 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 2,515 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 2,8 10 - 0

𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 2,801 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 2,846 9 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 3,481 9 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 3,689 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 3,713 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 4,699 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 5,259 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 6,337 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 6,956 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 8,776 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 10,142 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 14,552 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 68,464 8 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 9 1,957777778 10 0,000278529 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 9 4,032222222 10 0,00110876 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 9 5,38 10 0,000641864 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 9 5,473333333 10 0,00138627 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 9 6,945555556 6 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 9 8,494444444 10 0,00104295 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 9 9,844444444 8 0,000646847 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 9 10,12888889 10 0,00136447 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 9 12,50111111 10 0,00117106 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 8 9,8425 8 0,00033413 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 7 45,29714286 10 0,00312722 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 7 55,47857143 10 0,007159277 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 7 62,74857143 10 0,002958975 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 7 82,88428571 10 0,003218282 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 7 91,13571429 10 0,003022713 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 7 174,5042857 10 0,003406684 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 7 218,9385714 10 0,001216485 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 7 411,9828571 10 0,000910956 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 7 465,5771429 10 0,00163916 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 6 36,71333333 10 0,002330429 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 6 69,195 10 0,003862196 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 6 281,0366667 7 0,000646937 1
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 6 368,925 10 0,001100631 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 5 141,712 8 0,00126865 2
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 5 168,912 9 0,000738735 1

𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 5 253,836 9 0,001051094 1
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 5 438,952 9 0,000868284 1
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 5 576,04 3 0,001430514 3

𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 4 281,0925 9 0,000744472 1
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 4 526,655 10 0,000846194 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 4 594,8775 8 0,000980061 2

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 1 2201,84 2 0,00224825 8
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 1 3600 2 0,001255978 7

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 0 - 10 0,013184361 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 0 - 10 0,014393717 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 0 - 9 61,45954436 1
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 0 - 6 0,009421027 4
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 0 - 2 0,000109051 8
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processing arrival departure solved average founded a Average Unknown
time (𝑝) time (𝑎) time (𝑏) problems comp. time (s) solution GAP Status
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 1,699 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 2,106 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 2,139 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 2,22 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 2,383 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 2,519 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 2,678 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 2,878 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 3,04 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 10 3,112 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 3,126 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 3,829 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 4,289 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 10 4,583 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 10 4,583 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 10 4,672 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 4,689 10 - 0

𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 4,802 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 5,122 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 10 5,802 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 10 5,81 9 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 5,987 10 - 0
𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 10 6,154 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 10 6,494 9 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 6,996 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 10 7,215 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 7,585 10 - 0

𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 10 8,101 10 - 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 10 8,788 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 9,032 10 - 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 10,192 10 - 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 10 11,693 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 10 12,62 10 - 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 14,216 10 - 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 10 14,68 10 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 9 5,104444444 9 - 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 8 10,72125 1 0,000259186 1
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 8 45,075 9 0,000431308 1
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 8 74,82 9 0,000400638 1
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 8 89,75375 9 0,000511237 1
𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 8 119,49125 10 0,000744089 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 7 177,5271429 10 0,001816381 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 7 193,92 9 0,000647949 1
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 7 237,5314286 10 0,001427221 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 7 242,2242857 10 0,002035295 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 7 298,1028571 10 0,001550801 0
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 7 311,1714286 9 0,000721911 1

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 7 332,9942857 10 0,001634901 0

𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 6 13,82 10 0,001221406 0
𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 6 14,87666667 10 0,001486145 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 0, 5, 0, 5) 6 36,68666667 10 0,002862428 0

𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 6 126,7433333 8 0,000258771 2
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 6 144,2633333 9 0,001542333 1

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 5) 5 17,84 9 0,002798768 1
𝑓(𝑥, 0, 5, 0, 5) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 5 38,142 8 0,000473617 2

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 2, 2) 5 58,798 10 0,002071587 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 𝑓(𝑥, 5, 2) 5 72,802 10 0,002214094 0

𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 0, 5, 0, 5) 3 2426,73 1 - 7
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 2) 2 1801,29 1 0,000618614 7

𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2) 0 - 10 0,006743566 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2) 0 - 10 0,006909036 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5) 0 - 10 0,008360092 0
𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5) 0 - 9 0,005560449 1
𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 𝑓(𝑥, 5, 2) 0 - 1 0,000304893 9

Table 33 – Instances tests analysis: 40 vessels and 10 berths
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Based on the CPLEX results, the difficulty of the parameters combinations

for the beta distribution was classiĄed in Tables 25, 26, 27, 28, 29, 30, 31, 32, 33 as

follows. First, we count how many of these 10 instances were completely solved, either

by proving the optimality of the solution or by proving that the problem is infeasible.

Second, we organized then in non-decreasing order of the average computational time

taken by CPLEX. Third, we count how many of the 10 instances CPLEX was able to Ąnd

a feasible solution. Fourth, for the instances in which a feasible solution was found, but

the optimality was not reached, we organized then in a non-decreasing order of average

gap. Finally, we count in how many of the 10 instances CPLEX was not able to Ąnd a

feasible solution within one hour or prove the problem as infeasible.

Analyzing the results, it is easy to see that the HVRPTW model performs

better as the vessels⇑berths ratio decreases. According to (BUHRKAL et al., 2011), this

happens due to the type of valid inequalities (2.38) introduced. However, the number of

variables must be also considered when measuring the difficulty. For example, the instances

with 20 vessels and 5 berths and the instances with 40 vessels and 10 berths have the

same ratio, 4, but the Ąrst one has 20∗20∗5 = 2000 binary variables, while the last one

has 40∗40∗10 = 16000 binary variables. Besides, the instances in which the arrival times

of all the vessels are concentrated at the beginning of the planning period have shown to

be hard for CPLEX. According to (FROJAN et al., 2015), it produces a congestion which

appears to be very difficult to manage. For these cases, we will develop two metaheuristics

to try to obtain a good feasible solutions for the problem in a short computational time.

7.2 Conclusion

Different models have been proposed for the BAP and it was not found a data

benchmark to solve them making comparisons between researches difficult. Most papers

in literature use in their experiments randomly generated data. To overcome such draw-

back, this Chapter proposed a problem generator for the BAP, allowing the generation

of appropriate test problems to be commonly used with speciĄc desired properties and

under controlled conditions. The data were generated using different parameters and the

difficulty of solving the BAP with such data was analyzed through the resolution using

the CPLEX. The tables showed that for some data, the CPLEX was able to Ąnd the

optimal solutions in a few seconds.
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8 Evaluating the benchmark data

As stated earlier, the BAP is a NP-hard problem. Therefore, we have developed

a Genetic Algorithm in Section 8.1, a classical method that has been one of the Ąrst

metaheuristic proposed in the literature, easily adaptable to any type of problem in order

to evaluated the benchmark data proposed in Chapter 7. The performance of the proposed

GA was compared with a recent Particle Swarm Algorithm (PSO) developed by (TING et

al., 2014a) and presented in Section 8.2. Both algorithms were implemented with a similar

structure (codiĄcation, initialization, Ątness) to allow comparisons of performance. The

results are shown in Section 8.3.

8.1 Genetic Algorithm

Genetic Algorithms are a metaheuristic based in the evolutionary idea of nat-

ural selection and genetics. The pioneering work of J. H. Holland in the 1970s, with the

publication of his book, Adaptation in Natural and Artificial Systems, consolidated the

contribution of Genetic Algorithms to operations research ((GOLDBERG, 1989)).

The algorithm can be summarized as follows. The implementation begins by

codifying the solution to generate a random population of individuals. (BÄCK et al.,

2000b) highlights that the adopted codiĄcation can cause individuals to be infeasible.

Then these structures are evaluated and assigned a Ątness value. It allows to assign to

each individual from the search space a value that is used as a measure of performance.

In optimization problems, the Ątness value incorporates all the aspects present in the

objective function. For infeasible individuals, in addition to the objective function, the

Ątness value also incorporates this information through a penalty cost. Selection is then

applied to the current population to create an intermediate population. The crossover

and mutation are applied to the intermediate population to create the next population.

The crossover generates new individuals through the recombination of characteristics of

two or more individuals (inheritance). It is considered the predominant genetic operator,

so it is applied with greater probability than the mutation. The mutation create a new

individual from a single parent, maintaining the genetic diversity of the population. For

such reason, crossover and mutation are considered complementary. The process of going

from the current population to the next population constitutes one iteration.

As in (TING et al., 2014a) and (KURZ; ASKIN, 2004), the following solution

representation with floating point will be used in this work. To each vessel is assigned a

real number between (0, 𝑚). The integer part is the berth number to which the vessel

is allocated and the fractional part is used to sort the vessels allocated to each berth.
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where 𝑟 is a random number from [0,1], 𝐺 is the maximal iteration number and 𝑏 is a

system parameter determining the degree of dependency on iteration number (empirically,

we set 𝑏 = 3).

We also incorporate to the GA algorithm local search to improve the solution

quality as proposed in (TING et al., 2014a). This technique has two procedures. The

vessels can be swapped in the same berth, by comparing all the possible swapping pairs

within the same berth and select the best improvement to exchange their Ątness values;

and between berths, by selecting randomly two vessels in two different berths and selecting

the best improvement to exchange.

8.2 Particle Swarm Algorithm

According to (EBERHART; SHI, 2001), the Particle Swarm Optimization -

PSO - simulates the movement of organisms in a bird flock. It has been used across a

wide range of applications because there are few parameters to adjust. For an optimization

problem of 𝑛 variables, (DU; SWAMY, 2016) deĄned a swarm of 𝑁𝑃 particles. Each

particle has its own trajectory, position 𝑥𝑖 and velocity 𝑣𝑖, and moves in the search space

by successively updating its trajectory. All particles have Ątness values that are evaluated

by the Ątness function to be optimized. The particles are flown through the solution space

by following the current optimum particles. The algorithm initializes a group of particles

with random positions and then searches for optima by updating iterations. In every

iteration, each particle is updated by the particle best pbest, denoted 𝑥∗𝑖 , 𝑖 = 1, ..., 𝑁𝑃 ,

which is the best solution it has achieved so far. The global best gbest, denoted 𝑥𝑔, is also

updated, which is the best value obtained so far by any particle in the population.

Because all particles in the swarm learn from gbest even if gbest is far from

the global optimum, particles may easily be attracted to the gbest region and get trapped

in a local optimum for multimodal problems. In case the gbest positions locate on lo-

cal minimum, other particles in the swarm may also be trapped. If an early solution is

suboptimal, the swarm can easily stagnate around it without any pressure to continue

exploration.

PSO can locate the region of the optimum faster than other. However, once

in this region it progresses slowly due to the Ąxed velocity stepsize. Linearly decreasing

weight PSO effectively balances the global and local search abilities of the swarm by

introducing a linearly decreasing inertia weight on the previous velocity of the particle

into

𝑣𝑖 (𝑡 + 1) = Ð𝑣𝑖 (𝑡) + 𝑐1𝑟1 ⋃︁𝑥∗𝑖 (𝑡) − 𝑥𝑖 (𝑡)⨄︁ + 𝑐2𝑟2 ⋃︁𝑥𝑔 (𝑡) − 𝑥𝑖 (𝑡)⨄︁ (8.3)
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where Ð is called the inertia weight, and the positive constants 𝑐1 and 𝑐2 are, respectively,

cognitive and social parameters decreases from Ð𝑚𝑎𝑥 to Ð𝑚𝑖𝑛.

At iteration 𝑡 + 1, the swarm can be updated by

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝑣𝑖 (𝑡 + 1) (8.4)

(EBERHART; SHI, 1998) point out that PSO does not label its operations in

the same way as GAs, but analogies exist depending on the implementation of the GA

operation. For example, the effect of selection in a GA is to support the survival of the

Ąttest, a concept central to all evolutionary algorithms. PSO does not utilize selection

once all particles continue as members of the population for the duration of the run. A

particle does not explicitly exchange material with other particles, but its trajectory is

influenced by them. The concept of crossover is represented in PSO because each particle

is stochastically accelerated toward its own previous best position, as well as toward

the global best position or the local best position. It is also apparent in the behavior

of particles that appear approximately midway between swarms of particles that are

clustering around local best positions, or, occasionally, between successive global best

positions. These particles seem to be exploring a region that represents the geometric mean

between two promising regions. Mutation allows a GA chromosome to reach any point in

the problem space particularly near the end of a run because a number of mutations may

be needed to reach a distant point. It may be that a PSO particle cannot reach any point

in problem space in one iteration, although this might be possible at the beginning of the

run.

8.3 Computational tests

Based on the results from CPLEX, the following instances were chosen to solve

with the proposed metaheuristics:

vessels berths 𝑝 𝑎 𝑏

20 5 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5)
30 5 (𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2)
30 5 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5)
30 5 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2)
30 7 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5)
30 7 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 2)
30 7 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2)
40 5 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2)
40 7 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 2, 5)
40 7 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 0, 5, 0, 5)
40 7 𝑓(𝑥, 5, 2) 𝑓(𝑥, 2, 5) 𝑓(𝑥, 5, 2)

Table 34 – Instances chosen to test the metaheuristics
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The computational tests were executed on a personal computer, a Dell Inspiron

14Z with Intel Core I5-3337U 1.80GHz, RAM memory of 6GB and a Solid State Drive of

size 240 GB. The GA and the PSO were implemented in C language.

For both algorithms, the population size was set to 200 and the number of

iterations to 500. For the GA, the probability of crossover was 0.9, and individuals who

did not pass through the crossover are mutated with a probability of 0.1. For the PSO,

the parameter-setting used was as in (TING et al., 2014a): 𝑊 = 0.9, 𝑐1 = 𝑐2 = 2. Due to

the stochastic nature of metaheuristics, each instance is run for 30 times and reported the

average computational time, the average objective function, the best solution and iteration

that the best solution was obtained. Total, the computational tests were performed with

110 instances. The results are shown in Tables 37 and 38.

8.3.1 Comparing the GA with two different encodings

First, the GA developed using the real coding in Section 8.1 was compared

with the one developed in Chapter 6. Tables 35 and 36 show the results.
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GA Chapter 6 GA Section 8.1 CPLEX
Comp. Average Best Comp. Average Best Iteration Objective Comp. FCFS
time objective solution time objective solution number Function time heuristic

20x5 - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 2, 5)
1 4,17904 440,92 429 2,44096 442,5 428 80 428 703,56 InFea
2 4,35339 378,933 373 2,44048 376,867 373 27 373 3600 InFea
3 4,45284 359,667 354 2,47887 356,7 354 11 354 77,39 357
4 4,30584 439,733 429 2,43888 434,7 425 72 425 3600 InFea
5 4,52712 328,833 321 2,4408 324,467 321 45 321 37,83 InFea
6 4,56483 425,767 421 2,432 426,033 418 52 419 3600 InFea
7 5,33735 363,333 361 2,44154 365,867 361 46 361 3600 InFea
8 1,95751 186,933 370 2,37677 373,067 371 59 370 2943,91 InFea
9 3,93397 391,633 385 2,39217 394,933 388 40 385 3600 InFea
10 3,70124 411,833 406 2,40779 422,867 416 63 410 3600 InFea

30x5 - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 2, 2)
1 8,8354 405,3 390 5,44496 392,433 387 65 390 3600 427
2 9,65109 373,4 360 5,62155 363,867 357 72 354 3600 Infea
3 9,86312 358,533 339 5,36694 341,6 339 76 331 3600 InFea
4 9,62346 405,267 386 5,5594 392,567 385 108 388 3600 442
5 8,43647 437,6 418 5,51518 429,7 418 63 424 3600 InFea
6 8,8245 470,833 454 5,57889 464,8 451 81 459 3600 InFea
7 9,76903 406,9 395 5,47882 397,133 388 108 394 3600 494
8 4,39767 221,567 425 5,46717 423,1 414 150 416 3600 InFea
9 9,09156 485,467 472 5,46193 471,8 460 163 481 3600 InFea
10 9,20963 433,933 416 5,51181 415,633 408 164 415 3600 InFea

30x5 - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 0, 5, 0, 5)
1 8,82407 424,567 402 5,55014 409,667 395 254 405 3600 InFea
2 9,72591 373,1 359 5,67975 368,733 357 82 361 3600 InFea
3 10,4145 355,567 342 5,35032 343,033 338 158 331 3600 InFea
4 9,80861 405,833 387 5,61758 393,733 385 61 388 3600 InFea
5 8,80933 459,267 433 5,61267 443,833 421 113 445 3600 InFea
6 8,98778 483,967 466 5,55913 474,933 458 154 483 3600 InFea
7 10,0954 408,067 397 5,49641 399,133 388 98 400 3600 InFea
8 4,43618 233,233 442 5,51259 446,7 428 135 429 3600 InFea
9 9,45453 498,9 473 6,0647 492,267 472 330 504 3600 InFea
10 9,59904 439,967 418 6,3454 429,867 414 131 427 3600 InFea

30x5 - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 5, 2)
1 9,96859 403,833 392 5,36892 390,767 382 43 391 3600 427
2 10,3374 370,167 359 5,58279 361,2 355 128 356 3600 422
3 10,4315 355,967 338 5,29334 341 339 68 331 3600 365
4 10,402 403,267 391 5,49413 392,1 386 163 393 3600 442
5 9,98498 435,467 420 5,44219 426,433 414 139 422 3600 490
6 9,97067 470,7 457 5,48639 462,133 455 257 460 3600 562
7 10,3258 403,9 393 5,43422 394,267 386 120 388 3600 494
8 5,08116 221,6 423 5,42002 427,533 414 65 414 3600 InFea
9 10,2756 480,4 469 5,38488 468,5 461 216 476 3600 539
10 10,3717 427,767 413 5,48115 414,467 406 98 414 3600 497

30x7 - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 2, 5)
1 12,1069 604,133 587 4,42206 589,8 584 69 594 3600 InFea
2 10,3655 606,6 585 4,33721 583,633 563 143 - 3600 InFea
3 8,44059 560,933 552 4,31419 560,567 546 139 554 3600 InFea
4 8,34316 637,6 602 4,29948 601,2 586 80 594 3600 InFea
5 8,03397 654,233 624 4,28449 643,867 633 74 632 3600 InFea
6 8,51378 545,6 521 4,41932 534,667 524 68 519 3600 InFea
7 8,18668 592,267 569 4,30246 600,533 567 150 567 3600 InFea
8 4,18853 282,25 540 4,36342 544,967 533 98 538 3600 InFea
9 8,08627 644,767 605 4,35974 618,9 598 249 615 3600 InFea
10 7,95617 716,577 680 4,3448 719,769 689 117 - 3600 InFea

30x7 - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 2, 2)
1 8,88333 601,267 586 4,27634 586,033 583 68 580 3600 635
2 8,52508 589,733 573 4,25298 581,833 563 173 579 3600 InFea
3 9,3706 559,7 545 4,21417 547,1 541 84 546 3600 InFea
4 8,51503 611,6 586 4,24585 587,767 577 206 583 3600 InFea
5 8,92464 639,567 627 4,23992 630,5 615 70 630 3600 InFea
6 9,45839 536,9 523 4,31371 523,5 517 119 512 3600 570
7 8,84585 582,633 566 4,20656 572,433 560 197 552 3600 InFea
8 4,67835 277,783 537 4,29258 534,7 526 93 537 3600 InFea
9 7,79943 619,6 600 4,25596 601 594 78 606 3600 InFea
10 9,83773 685,033 667 4,26808 669,667 657 188 678 3600 InFea

Table 35 – GA coding comparison - part I
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GA Chapter 6 GA Section 8.1 CPLEX
Comp. Average Best Comp. Average Best Iteration Objective Comp. FCFS
time objective solution time objective solution number Function time heuristic

30x7 - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 5, 2)
1 9,13121 593,267 581 4,16898 582,467 580 97 579 3600 635
2 9,34076 591,6 577 4,18 581,567 563 182 564 3600 637
3 9,98579 559,367 545 4,1415 545,8 541 93 550 3600 608
4 8,97596 607 586 4,15392 577,9 575 207 575 3600 654
5 9,00258 637,9 622 4,19005 629,533 623 69 615 3600 696
6 9,49101 530,6 518 4,5087 520,833 509 236 509 3600 570
7 9,40395 579,167 554 4,61945 565,933 555 108 560 3600 636
8 4,87362 276,65 534 4,57433 533,3 527 103 536 3600 618
9 9,03852 615,633 602 4,71918 592,2 589 90 598 3600 650
10 9,32982 674,167 659 4,61019 656,9 653 122 656 3600 732

40x5 - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 5, 2)
1 18,7147 683,267 665 11,0973 664 652 299 678 3600 842
2 20,7616 467,667 446 10,8854 453,733 448 201 450 3600 542
3 20,0778 399,633 378 10,6708 385,433 369 138 369 3600 489
4 18,392 519,133 498 10,5934 501,1 493 336 505 3600 625
5 19,2863 500,467 481 10,8279 487,8 480 95 482 3600 577
6 19,0954 475,267 448 10,6114 451,733 438 128 428 3600 576
7 19,2899 490,433 463 11,2115 463,867 455 95 472 3600 525
8 9,83619 184,617 342 10,864 347,033 331 156 328 3600 407
9 19,0078 444,933 414 11,5177 420,833 413 282 413 3600 497
10 18,7537 580,5 565 10,8037 566,5 550 212 568 3600 698

40x7 - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 2, 5)
_227 1 11,1394 686,133 655 7,52868 652,933 632 229 - 3600 InFea

2 11,9168 523,7 509 7,53006 491,367 466 193 463 3600 559
3 10,976 732,433 707 7,61987 718,464 688 316 - 3600 InFea
4 11,74 595,233 561 7,60239 554,567 546 103 567 3600 InFea
5 11,8577 609,367 583 7,44254 577 564 420 560 3600 InFea
6 11,2875 650,333 617 7,546 586,7 576 143 571 3600 InFea
7 11,8532 567,967 545 7,54718 519,6 508 136 512 3600 InFea
8 5,62577 350,15 668 7,64337 680,267 660 166 - 3600 InFea
9 11,8267 513,9 489 7,41872 479,6 472 157 474 3600 InFea
10 11,5322 669,233 624 7,60144 622,667 604 139 - 3600 InFea

40x7 - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 0, 5, 0, 5)
1 10,3451 673,733 639 7,56658 642,433 615 169 651 3600 InFea
2 11,3547 529,8 501 7,59673 493,6 476 291 469 3600 InFea
3 10,7667 737 707 7,59802 705,767 675 398 - 3600 InFea
4 11,866 605,767 569 7,65005 565,8 552 189 563 3600 InFea
5 12,419 609,433 586 7,474 572,533 559 274 553 3600 InFea
6 10,804 648,567 607 7,55181 593,333 574 223 644 3600 InFea
7 11,9391 571,733 538 7,5683 523,333 508 144 514 3600 InFea
8 5,60101 354,767 659 7,5857 666,3 637 313 671 3600 InFea
9 11,8415 528,233 503 7,49133 490,5 476 147 474 3600 InFea
10 11,4772 690,333 655 7,6489 642,833 624 232 653 3600 InFea

40x7 - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 5, 2)
1 14,3951 651,933 618 7,40226 635,667 627 92 614 3600 729
2 13,5733 515,533 483 7,42561 492,933 474 151 474 3600 559
3 12,8502 687,667 671 7,40462 658,733 646 140 663 3600 821
4 13,1228 579,633 560 7,57102 541,3 539 193 545 3600 590
5 12,9593 597,6 570 7,36938 565,3 555 215 558 3600 636
6 12,5648 593,833 570 7,33602 557,333 544 132 550 3600 646
7 12,8794 554,033 512 7,29626 518,733 510 122 512 3600 589
8 6,74939 332,833 634 7,46437 647,567 632 186 639 3600 747
9 12,8804 511,167 495 7,32683 475,367 468 192 476 3600 534
10 13,2078 640,633 624 7,51488 606,167 598 174 608 3600 737

Table 36 – GA coding comparison - part II
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Comparing the computational time and the average objective, it is easily no-

ticeable that the GA with real coding is the one that performs better.

8.3.2 Comparing the GA end the PSO

Among the three main methodologies proposed in this Chapter (CPLEX, GA

and PSO with real coding), the best solutions obtained are highlighted in bold in the

Tables 37 and 38.
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GA PSO CPLEX
Comp. Average Best Iteration Comp. Average Best Iteration Objective Comp. FCFS
time obj. solution time obj. sol. time heuristic

20 vessels, 5 berths - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 2, 5)
1 2.44096 442.5 428 80 2.43371 455.45 429 390 428 703.56 InFea
2 2.44048 376.867 373 27 2.43811 378.2 373 312 373 3600 InFea
3 2.47887 356.7 354 11 2.44245 357 357 0 354 77.39 357
4 2.43888 434.7 425 72 2.43617 437.333 428 494 425 3600 InFea
5 2.4408 324.467 321 45 2.49607 338.5 329 300 321 37.83 InFea
6 2.432 426.033 418 52 2.41964 426.367 423 448 419 3600 InFea
7 2.44154 365.867 361 46 2.4342 365.3 364 223 361 3600 InFea
8 2.37677 373.067 371 59 2.42829 371 371 206 370 2943.91 InFea
9 2.39217 394.933 388 40 2.38351 394.133 389 462 385 3600 InFea
10 2.40779 422.867 416 63 2.43171 418.667 411 491 410 3600 InFea

30 vessels, 5 berths - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 7𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 2, 2)
1 5.44496 392.433 387 65 5.88105 393.167 387 316 390 3600 427
2 5.62155 363.867 357 72 5.91886 367.167 363 341 354 3600 Infea
3 5.36694 341.6 339 76 5.89994 342.667 341 172 331 3600 InFea
4 5.5594 392.567 385 108 5.93147 392.567 382 291 388 3600 442
5 5.51518 429.7 418 63 5.92249 426.733 421 303 424 3600 InFea
6 5.57889 464.8 451 81 6.00652 476.3 458 350 459 3600 InFea
7 5.47882 397.133 388 108 5.83806 398.533 388 494 394 3600 494
8 5.46717 423.1 414 150 5.90615 418.467 414 386 416 3600 InFea
9 5.46193 471.8 460 163 5.90029 471.7 469 454 481 3600 InFea
10 5.51181 415.633 408 164 5.89064 416 408 403 415 3600 InFea

30 vessels, 5 berths - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 0.5, 0.5)
1 5.55014 409.667 395 254 6.06957 410.167 399 434 405 3600 InFea
2 5.67975 368.733 357 82 6.07927 368.133 358 127 361 3600 InFea
3 5.35032 343.033 338 158 5.93905 342.533 341 453 331 3600 InFea
4 5.61758 393.733 385 61 6.05866 396.867 392 234 388 3600 InFea
5 5.61267 443.833 421 113 6.04785 438.4 425 449 445 3600 InFea
6 5.55913 474.933 458 154 6.06745 487.333 468 270 483 3600 InFea
7 5.49641 399.133 388 98 5.90988 403.9 394 405 400 3600 InFea
8 5.51259 446.7 428 135 6.07503 439.667 430 184 429 3600 InFea
9 6.0647 492.267 472 330 6.08939 494.1 475 431 504 3600 InFea
10 6.3454 429.867 414 131 6.03559 432.4 424 368 427 3600 InFea

30 vessels, 5 berths - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 5, 2)
1 5.36892 390.767 382 43 5.82077 389.833 385 404 391 3600 427
2 5.58279 361.2 355 128 5.83069 365.133 363 439 356 3600 422
3 5.29334 341 339 68 5.78876 343 343 94 331 3600 365
4 5.49413 392.1 386 163 5.84025 391.867 382 418 393 3600 442
5 5.44219 426.433 414 139 5.80001 425.267 422 492 422 3600 490
6 5.48639 462.133 455 257 5.87109 471.8 455 332 460 3600 562
7 5.43422 394.267 386 120 5.74966 399.467 394 172 388 3600 494
8 5.42002 427.533 414 65 5.80267 417.733 414 381 414 3600 InFea
9 5.38488 468.5 461 216 5.77338 472.4 469 442 476 3600 539
10 5.48115 414.467 406 98 5.81969 415.3 407 336 414 3600 497

30 vessels, 7 berths - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 2, 5)
1 4.42206 589.8 584 69 4.32267 591.633 588 313 594 3600 InFea
2 4.33721 583.633 563 143 4.31193 582.7 567 325 Unknown 3600 InFea
3 4.31419 560.567 546 139 4.26428 558.4 548 295 554 3600 InFea
4 4.29948 601.2 586 80 4.35129 600.8 590 275 594 3600 InFea
5 4.28449 643.867 633 74 4.21272 647.9 634 451 632 3600 InFea
6 4.41932 534.667 524 68 4.21935 535.067 531 473 519 3600 InFea
7 4.30246 600.533 567 150 4.21311 590.067 564 451 567 3600 InFea
8 4.36342 544.967 533 98 4.24737 546.1 537 490 538 3600 InFea
9 4.35974 618.9 598 249 4.21599 614.033 598 420 615 3600 InFea
10 4.3448 719.769 689 117 4.26803 709.462 687 205 Unknown 3600 InFea

30 vessels, 7 berths - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 2, 2)
1 4.27634 586.033 583 68 4.17765 588.733 580 372 580 3600 635
2 4.25298 581.833 563 173 4.16081 580.1 564 452 579 3600 InFea
3 4.21417 547.1 541 84 4.14369 546.767 538 473 546 3600 InFea
4 4.24585 587.767 577 206 4.17538 586.2 577 288 583 3600 InFea
5 4.23992 630.5 615 70 4.1677 634.133 626 470 630 3600 InFea
6 4.31371 523.5 517 119 4.17379 526.767 524 266 512 3600 570
7 4.20656 572.433 560 197 4.17025 568.4 559 461 552 3600 InFea
8 4.29258 534.7 526 93 4.15368 538.367 532 351 537 3600 InFea
9 4.25596 601 594 78 4.16788 598.6 593 198 606 3600 InFea
10 4.26808 669.667 657 188 4.21991 678.567 667 495 678 3600 InFea

Table 37 – Comparison results - part I
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GA PSO CPLEX
Comp. Average Best Iteration Comp. Average Best Iteration Objective Comp. FCFS
time obj. solution time obj. sol. time heuristic

30 vessels, 7 berths - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 5, 2)
1 4.16898 582.467 580 97 4.10468 583.067 580 429 579 3600 635
2 4.18 581.567 563 182 4.1355 582.267 572 466 564 3600 637
3 4.1415 545.8 541 93 4.08757 546.167 540 424 550 3600 608
4 4.15392 577.9 575 207 4.11182 577.9 574 220 575 3600 654
5 4.19005 629.533 623 69 4.10211 633.2 624 384 615 3600 696
6 4.5087 520.833 509 236 4.09863 526.167 517 476 509 3600 570
7 4.61945 565.933 555 108 4.10108 565.467 557 439 560 3600 636
8 4.57433 533.3 527 103 4.08356 537.9 533 387 536 3600 618
9 4.71918 592.2 589 90 4.10279 590.033 588 156 598 3600 650
10 4.61019 656.9 653 122 4.13314 667.4 663 345 656 3600 732

40 vessels, 5 berths - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 5, 2)
1 11.0973 664 652 299 12.2981 678.567 662 409 678 3600 842
2 10.8854 453.733 448 201 12.5186 449.7 439 483 450 3600 542
3 10.6708 385.433 369 138 12.466 384.4 374 442 369 3600 489
4 10.5934 501.1 493 336 12.4098 498.167 492 479 505 3600 625
5 10.8279 487.8 480 95 12.6039 494 483 490 482 3600 577
6 10.6114 451.733 438 128 12.6231 453.867 439 489 428 3600 576
7 11.2115 463.867 455 95 12.5223 470.2 460 424 472 3600 525
8 10.864 347.033 331 156 12.5044 355.733 350 370 328 3600 407
9 11.5177 420.833 413 282 12.605 420.867 415 405 413 3600 497
10 10.8037 566.5 550 212 12.7989 574.567 566 452 568 3600 698

40 vessels, 7 berths - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 2, 5)
1 7.52868 652.933 632 229 7.96548 667.967 648 488 Unknown 3600 InFea
2 7.53006 491.367 466 193 7.99012 495.033 470 500 463 3600 559
3 7.61987 718.464 688 316 8.04117 732.897 694 476 Unknown 3600 InFea
4 7.60239 554.567 546 103 7.93714 554.4 550 492 567 3600 InFea
5 7.44254 577 564 420 7.89156 575.4 563 402 560 3600 InFea
6 7.546 586.7 576 143 7.98173 594.533 584 457 571 3600 InFea
7 7.54718 519.6 508 136 7.88165 527.6 520 461 512 3600 InFea
8 7.64337 680.267 660 166 8.03195 686.567 663 448 Unknown 3600 InFea
9 7.41872 479.6 472 157 7.95603 487.933 474 323 474 3600 InFea
10 7.60144 622.667 604 139 7.9437 627.7 613 499 Unknown 3600 InFea

40 vessels, 7 berths - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 0.5, 0.5)
1 7.56658 642.433 615 169 8.00369 672.1 639 409 651 3600 InFea
2 7.59673 493.6 476 291 8.09169 506.767 470 491 469 3600 InFea
3 7.59802 705.767 675 398 8.19223 739.067 694 495 Unknown 3600 InFea
4 7.65005 565.8 552 189 7.92617 567.567 554 444 563 3600 InFea
5 7.474 572.533 559 274 7.89535 570.133 554 460 553 3600 InFea
6 7.55181 593.333 574 223 8.06791 617.033 608 413 644 3600 InFea
7 7.5683 523.333 508 144 7.87521 527.2 518 459 514 3600 InFea
8 7.5857 666.3 637 313 8.13508 682.267 661 486 671 3600 InFea
9 7.49133 490.5 476 147 8.14429 494.767 480 401 474 3600 InFea
10 7.6489 642.833 624 232 8.02488 650.867 627 472 653 3600 InFea

40 vessels, 7 berths - 𝑝 ∶ 𝑓(𝑥, 5, 2), 𝑎 ∶ 𝑓(𝑥, 2, 5), 𝑏 ∶ 𝑓(𝑥, 5, 2)
1 7.40226 635.667 627 92 7.80689 633.767 604 416 614 3600 729
2 7.42561 492.933 474 151 7.83343 501 492 424 474 3600 559
3 7.40462 658.733 646 140 7.83034 663.433 652 321 663 3600 821
4 7.57102 541.3 539 193 7.82683 541.967 535 482 545 3600 590
5 7.36938 565.3 555 215 7.72465 563.4 553 436 558 3600 636
6 7.33602 557.333 544 132 7.92143 565.3 560 487 550 3600 646
7 7.29626 518.733 510 122 7.99787 522.3 517 278 512 3600 589
8 7.46437 647.567 632 186 7.783 655.133 646 487 639 3600 747
9 7.32683 475.367 468 192 7.79072 476.5 471 435 476 3600 534
10 7.51488 606.167 598 174 7.91903 616.067 597 475 608 3600 737

Table 38 – Comparison results - part II



Chapter 8. Evaluating the benchmark data 122

In 71% of the tests, GA outperforms PSO. In 67% of the tests, GA outperforms

CPLEX.

In 11% of the tests, GA and CPLEX tie. In 5% of the tests, PSO and CPLEX

tie.

In 7 instances, the CPLEX was not able to Ąnd a feasible solution to the

problem or prove it as infeasible (status Unknown). In 6 out of such 7 instances, the GA

found a feasible solution better than the one founded by PSO. In 58% of the tests, the

FCFS was infeasible.

It is noteworthy that in Tables 37 and 38, when the computational time for

CPLEX is less than 3600s, it means optimality was proven. It happened in 4 instances,

and in 3 of then the GA reached the same solution, while PSO approached such optimal

solution but did not reach it.

In the implementation of the algorithms, the infeasible solutions were penalized

in the objective function (Ątness) as follows:

∑
𝑖,𝑘∈𝐼

𝑥𝑘
𝑖 + 𝑝𝑏

𝑖 − 𝑏𝑖 (8.5)

set of vessel and berths indexes that violate time windows, i.e.,

𝑥𝑘
𝑖 + 𝑝𝑏

𝑖 > 𝑏𝑖

Therefore, this penalty allowed us to observe that, in most instances, the GA

was able to reach the feasibility of the solutions faster than the PSO. This behavior

is exempliĄed with the instance 1 for 30 vessels, 5 berths, processing time generated

with 𝑓(𝑥, 5, 2), arrival time generated with 𝑓(𝑥, 2, 5) and departure time generated with

𝑓(𝑥, 2, 2). In Figure 26 we can see this progression of the solution over the gener0ations.

In this case, the GA obtained a completely feasible population in iteration

8 with an average objective function of value 706.31. The PSO obtained a completely

feasible population in the iteration 156 with average objective function of value 966.145.

This justiĄes the fact that the best solution (with objective function value 357 obtained

by both algorithms) has been achieved by the GA in iteration 65 and by the PSO only in

iteration 316.

8.4 Conclusion

Developing countries are gaining greater market share in world merchandise

trade and it brings job and opportunities, but their ports lack the infrastructure for

bigger vessels becoming a bottleneck in the global business operations. Optimizing the
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9 Conclusion

This work began in 2012 in a thematic project of Vale Company with Fapesp,

when I started my masterŠs degree. In (BARBOSA, 2014) the BAP was modeled as a

cutting stock problem and as a scheduling problem. Both models were run in the CPLEX

and GLPK and had their results compared to those of a contructive heuristic that was

developed and with the FCFS heuristic. The results indicated a difficulty in obtaining the

optimal solution, and sometimes even a feasible solution. Thus, based on the scheduling

model in parallel machines, this thesis began in Chapter 3 by developing an algorithm

based on NSGA-II to solve the multiobjective BAP - MOBAP. Two objectives were con-

sidered in this study: minimizing the sum of waiting times and minimizing the makespan.

Although a latent conflict between the two objective functions chosen was not identiĄed,

the multiobjective approach was important to obtain a solution that represents the min-

imum values for the waiting time and the makespan. This behavior was not observed in

the CPLEX results in which each objective was optimized separately. Therefore, the im-

portance of the simultaneous optimization of multiple objectives in Operation Research

is emphasized. For instances with 40 vessels, the multiobjective evolutionary algorithm

clearly stood out, both for quality of the solutions obtained and low computational time.

Thus, the approach proposed here proved to be competitive and effective for large in-

stances. The scale and nature of this problem at large terminals often makes it impossible

for the decisions made to be optimal because it is a combinatorial problem of the NP-

Hard classes. Therefore, in Chapter 4 two adaptations for a maximal flow algorithm were

proposed based on the scheduling problem to generate a lower bound to evaluate the pre-

vious MOBAP algorithm. The ŞLossŤ was calculated as (makespan - lower bound)/lower

bound and it was possible to prove that MOBAP found many optimal solutions.

Benders decomposition is a technique in mathematical programming that al-

lows the solution of very large linear programming problems that have a special block

structure. Its characteristic is that the best solution to a model is found automatically

and for such reason, in Chapter 5 a description of the Benders Decomposition algorithm

and its enhancements were given and then the algorithm was applied to the BAP. Results

showed that, although being competitive with monolithic model resolution with CPLEX,

in general Benders Decomposition does not outperform CPLEX. Compared to mathemat-

ical programming, metaheuristics do not guarantee that a globally optimal solution can be

found, but they can Ąnd a solution that is good enough in a computing time that is small

enough. Due to the inneĄciency of the Benders decomposition, the remaining chapters of

this thesis invested in the development of metaheuristics to tackle the BAP. In Chapter 6

Ąve initializations, three crossover and three variations for the scatter search parameters
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were proposed for a hybrid evolutionary algorithm based on Genetic Algorithm (GA) and

Scatter Search (SS) for the discrete and dynamic BAP - HEABAP. Data envelopment

analysis (DEA) was adopted to choose the most efficient combination of the algorithmic

operators and it was possible to measure if the amount of computational time taken by

one combination compensated the value obtained by the objective function.

After the extensive literature review that was performed at the beginning of

this work, it was observed that there is no well-established benchmark for the BAP in

the literature. Therefore, in Chapter 7 with the purpose of creating benchmark problem

instances to allow future work to be broadly fairly compared. 5760 computational tests

were performed using CPLEX 12.6 and it was possible to classify the difficulty of the

parameters combinations for the beta distribution. Based on the results from CPLEX, a

Genetic Algorithm was developed and a Particle Swarm Algorithm was implemented to

solve the most difficult instances in Chapter 8. It is noteworthy that, for the proposed

comparisons, both algorithms were implemented with a similar structure: codiĄcation,

initialization, Ątness. Analyzing the results, we noticed that in computational times, GA

and PSO were very similar. However, the GA was shown to be faster in the solution quality

progression, because the best solution was obtained a smaller number of iterations. Thus,

the GA was more competitive than the PSO.

9.1 Future work

As stated previously, the Berth Allocation Problem has shown to be of high

resolution complexity, and metaheuristic methods stand out as a faster option to Ąnd

good solutions. In this sense, there are still several studies that can be carried out.

In Chapter 3 it is possible to observe patterns in the best solutions obtained

by the algorithm. For future research, we want to verify which features the best solutions

have in common, and from this proposal, for example, algorithms to Ąx variable that

include such characteristics as previous knowledge regarding the quality of solutions in

order to reduce the computational time of the optimization process.

The Genetic Algorithm proposed in Chapter 8 can still be extended to the

multiobjective case, and to evaluate the quality of the solutions, the lower bound devel-

oped in Chapter 4 can also be extended to the model proposed in the Section 2.2.3 where

the processing time of the vessels varies according to the berth in which the vessel is allo-

cated. (BRUCKER, 2006) shows it can be done through the construction of an expanded

network.
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9.2 Participation in conferences

• ŞA Benders Decomposition Approach to The Berth Allocation ProblemŤ, 8𝑡ℎ Indus-

trial Engineering and Management Symposium (IEMS), Porto, Portugal (2017).

• ŞThe Berth Allocation Problem as a Maximum Flow ProblemŤ, 28𝑡ℎ European Con-

ference on Operational Research, 2016, Poznan, Poland.

• ŞThe Berth Allocation Problem: Case Studies of Metaheuristics and Integer Pro-

grammingŤ, 27𝑡ℎ European Conference on Operational Research, 2015, Glasgow,

Scotland.

• ŞAspectos Teóricos e Computacionais do Problema de Alocação de Berços em Portos

MarítmosŤ, XVII CLAIO - Congresso Latino Ibero Americana de Investigación de

Operaciones, 2014, Monterrey, México.
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