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Abstract

Stereotomography is a slope-based tomographic method that uses seismic reflection data to esti-

mate the macro-model of velocities in the subsurface. The velocity model obtained by stereotomogra-

phy relies on the hypothesis that the subsurface presents an acoustic velocity distribution. This acous-

tic velocity model can be split into two portions: a velocity macro-model that contains long wave-

lengths (low-frequency) and velocity perturbations that contain short wavelengths (high-frequency).

Therefore, the stereotomography is a tool for estimating the low-frequency macro-model of seismic

acoustic velocities in the subsurface. Often, the stereotomography results are employed as initializa-

tion in high-frequency methods, such as migration or full-waveform inversion. This is an interesting

approach, since several high-frequency methods are modeled as inverse problems, which are mostly

solved with the use of local optimization techniques, which are known to be strongly dependent of

a good initialization. In that context, we must think of the initialization by the picking of slopes as

a crucial part of the stereotomography problem. In this thesis we address the problem of slopes es-

timation for a better initialization of stereotomography. The central proposal of this work is to use

the attributes obtained as outputs of the common-offset common-reflection-surface method as input

data for stereotomography. Another proposal of this work is to use the global optimization method

known as differential evolution to estimate the common-offset common-reflection-surface attributes.

This strategy presents reliable estimates in data sets highly corrupted by noise. We also propose an

automatic strategy to extract the slopes used in stereotomography, from the common-offset common-

reflection-surface attributes gathers. In this thesis, we discuss the aspects of our stereotomography

implementation and we illustrate with synthetic examples the benefits of using the global estimates

of common-reflection-surface slopes as stereotomography initialization, for seismic data sets highly

corrupted by noise.

Keywords: Seismic tomography, seismic reflection method, optimization, signal processing, evo-

lutionary algorithms.



Resumo

Estéreo-tomografia é um método tomográfico baseado em inclinições que faz uso de reflexões

sísmicas para estimar o macro-modelo de velocidades. A obtenção deste modelo de velocidades pela

estéreo-tomografia baseia-se na hipótese de que a subsuperfície terrestre apresenta uma distribuição

acústica de velocidades. Este modelo de velocidades acústicas pode ser dividido em duas porções:

um macro-modelo de velocidades, contendo longos comprimentos de onda (baixas frequências) e

perturbações de velocidade, contendo curtos comprimentos de onda (altas frequências). Portanto, a

estéreo-tomografia é uma ferremaneta adequada para estimar o macro-modelo de baixas frequências

de velocidades acústicas na subsuperfície. Frequentemente, os resultados obtidos com a estéreo-

tomografia são empregados como inicialização para métodos de alta frequência, como migração e

inversão completa de onda. Esta é uma abordagem interessante, uma vez que muitos destes métodos

são desenvolvidos sob a ótica de problemas inversos, os quais são em sua maioria resolvidos com

o emprego de técnicas de otimização local. Por outro lado, estes métodos de otimização local são

fortemente dependentes de uma boa inicialização. Neste contexto, é prudente considerar como crucial

a inicialização da estéreo-tomografia, a qual é feita através de técnicas de seleção de inclinações,

ou ângulos, extraídas do dado sísmico. Nesta tese, aborda-se o problema de estimação de ângulos

para inicializar o método de estéreo-tomografia. A proposta central deste trabalho é a de utilizar

os atributos obtidos como saıda no método de superfície de reflexão comum para deslocamentos

comuns (CO-CRS, do inglês common-offset common-reflection-surface) como entrada para a estéreo-

tomografia. Outra proposta deste trabalho é a de utilizar o algoritmo de otimização global evolução

diferencial (DE, do inglês differential evolution) para estimar os atributos do método CO-CRS. Esta

estratégia apresenta boas estimativas em dados sísmicos altamente corrompidos por ruído. Também é

proposta uma estratégia para seleção automática dos ângulos obtidos com o método CO-CRS. Nesta

tese, também são apresentados alguns aspectos práticos da implementação da estéreo-tomografia.

As propostas são discutidas e analisadas em experimentos com dados sísmicos sintéticos altamente

corrompidos por ruído, onde é possível observar-se os benefícios obtidos com o emprego da seleção

automática dos ângulos obtidos com o método CO-CRS na inicialização da estéreo-tomografia.

Palavras-chave: Tomografia sísmica, método sísmico de reflexão, otimização, processamento de

sinais, algoritmos evolutivos.
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Chapter 1

Introduction

Stereotomography is a slope-based tomographic method, proposed in the works of Billette [1998]

and Billette and Lambaré [1998], that uses seismic reflection data to estimate the macro-model of

velocities in the subsurface. One important improvement in stereotomography, when compared to

the travel time tomography [Bishop et al., 1985], is that it uses the slopes information, obtained from

locally coherent seismic gathers, in the tomographic approach. This is an interesting approach, since

it yields a better-constrained velocity model [Billette, 1998]. Stereotomography is an extension of the

controlled directional reception (CDR) tomographic method [Sword, 1987], with some differences,

especially regarding the cost function calculation, picking and introduction of the paraxial ray tracing

for the calculation of the Fréchet derivatives.

In Billette et al. [2003], some practical aspects regarding the implementation and application of

stereotomography were discussed. Later, in Lambaré et al. [2004], some aspects regarding especially

the stereotomography picking automation were also discussed. The work of Le Begat et al. [2004]

presents an interesting comparison, in the same framework, between travel time tomography [Bishop

et al., 1985, Chiu and Stewart, 1987, Farra and Madariaga, 1988], slope tomography (stereotomog-

raphy) and migration velocity analysis (MVA) [Chauris et al., 2002]. In Lambaré [2008], the author

presents an extensive overview, ten years after the creation of stereotomography. In Alérini et al.

[2008], the authors applied a PP/PS version of stereotomography in a 2D ocean bottom cable (OBC)

seismic data. The work of Nguyen et al. [2008] investigates how stereotomography would be influ-

enced by making the picking after the data migration, in depth domain. In Costa et al. [2008], several

regularization functions are investigated for the stereotomography. Another interesting comparison,

this time between stereotomography and normal-incident-point (NIP) wave tomography [Duveneck,

2004], was presented in Dümmong et al. [2008]. In Gosselet and Le Bégat [2009], the authors com-

bine borehole and surface seismic data in stereotomography, by modeling the borehole seismic data

together with the seismic reflection data, in stereotomography formulation. In Prieux et al. [2013],
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the authors also perform a combination of seismic reflected data, this time with seismic data from

transmitted waves, in the framework of stereotomography. They also proposed to use the macro-

velocity model obtained from stereotomography as an initialization to the full waveform inversion

(FWI) method [Virieux and Operto, 2009]. In Plessix [2006], a new technique to compute the gra-

dient of the stereotomography cost function with the adjoint-state method is proposed. The authors

of Tavakoli et al. [2017] propose to use in the stereotomography framework an eikonal equation

solver [Zhao, 2005, Fomel et al., 2009] as forward modeling and the adjoint-state as a way of com-

puting the gradient. They also propose to use the stereotomography results to initialize the FWI

method.

The velocity model obtained by stereotomography relies in the hypothesis that the subsurface

presents an acoustic velocity distribution. By following the Born approximation, this acoustic ve-

locity model can be split into two portions [Billette, 1998]: a velocity macro-model that contains

long wavelengths (low-frequency) and velocity perturbations that contain short wavelengths (high-

frequency). Therefore, the stereotomography is a tool for estimating the low-frequency macro-model

of seismic acoustic velocities in the subsurface. Often, the stereotomography results are employed as

initialization in high-frequency methods, such as migration or FWI [Prieux et al., 2013, Tavakoli et al.,

2017]. This is an interesting approach, since several of these methods are modeled in the framework

of inverse problems [Tarantola, 2005], which are mostly solved with the use of local optimization

techniques. On the other hand, the local optimization methods are known to be strongly dependent

of a good initialization. An alternative to the initialization dependency in seismic inverse problems

would be the use of global optimization strategies [Sen and Stoffa, 1995, Datta and Sen, 2016, Sajeva

et al., 2016]. But these strategies still present several challenges to be dealt with when applied to the

estimation of hundreds to thousands of parameters in seismic tomography and FWI and are not in the

scope of this thesis.

In that context, we must think of the initialization by the picking of slopes as a crucial part of the

stereotomography problem. In this thesis we address the problem of slopes estimation for a better

initialization of stereotomography.

The common-offset common-reflection-surface (CO-CRS) [Zhang et al., 2001] is a method mostly

used to increase the signal-to-noise ratio (SNR) of seismic data by the use of locally coherent in-

formation. This method is a generalization of the zero-offset common-reflection-surface (ZO-CRS)

method [Mann et al., 1999, Jäger et al., 2001], which is used as an alternative to the common-midpoint

(CMP) stacking [Mayne, 1962]. The CO-CRS method stacks traces in a surface built with seismic

attributes, which are estimated from the seismic data. Among these attributes are the same slopes

used in stereotomography. However, the estimation of these attributes is not simple, especially in

environments with strong presence of noise. We propose to estimate the CO-CRS attributes with
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the bio-inspired global optimization algorithm Differential Evolution (DE) [Rainer, 1995, Storn and

Price, 1997]. This is a promising approach, since we already had good results in estimating the

ZO-CRS attributes with DE in the work published in Barros et al. [2015].

Another important proposal of this work is to use the attributes obtained as outputs of the CO-CRS

method with the global optimization method DE [Barros et al., 2016] as input data for stereotomog-

raphy. The strategy of using the CO-CRS attributes as input for the stereotomography was briefly sig-

nalized as a possibility in the introductory CO-CRS work of Zhang et al. [2001]. Recently, the same

discussion came to light in Schwarz et al. [2015], where it is suggested the utilization in stereotomgra-

phy of the CO-CRS parameters, obtained with the ZO-CRS approximation proposed in Baykulov and

Gajewski [2009]. Differently, in this work, we use the parameters obtained directly by the CO-CRS

method.

In the next section we outline the contents in the remaining chapters of this thesis.

1.1 Thesis organization

In this thesis we focus in the stereotomography initialization. We propose a methodology to obtain

more robust results in the presence of noise, by using the CO-CRS method to estimate the slopes used

in the stereotomography initialization. First, we present our contributions to the global estimation of

the CO-CRS method. We also propose an automatic picking strategy to use the slopes estimated with

the CO-CRS method as a way of initialization to the stereotomography. We illustrate the benefits

of our proposals in numerical experiments. The remaining chapters of this thesis are organized as

follow:

• Chapter 2: In this chapter we present the details of stereotomography, as it was proposed

in Billette [1998].

• Chapter 3: In this work we follow the idea of using the adjoint-state method to compute

the gradient used in the optimization stage of our stereotomography implementation. In this

chapter we explicitly compute the derivatives of stereotomography cost function with respect

to the model parameters, using the adjoint-state method, in the stereotomography framework.

We also suggest a way of testing if the implementation of these derivatives with the adjoint-state

method is correct.

• Chapter 4: In this chapter we explicitly discuss the practical aspects in our implementation of

stereotomography.
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• Chapter 5: In this chapter we explain the CO-CRS method. We begin by illustrating the

method itself and then we discuss the sequential and global parameter estimation strategies. We

then illustrate the behaviour of both these search strategies in synthetic and field data examples.

• Chapter 6: In this chapter we illustrate how we use the slopes estimated with CO-CRS in our

stereotomography implementation. We present an illustrative discussion about the behaviour

of the slopes estimated with the slant stack and the sequential and global versions of the CO-

CRS method, for a synthetic single plane reflector in the presence of noise. We present an

automatic picking proposal for the slopes estimated with the CO-CRS method. We illustrate

this framework in a slightly more complicate synthetic data.

• Chapter 7: We present the general conclusions and prospects involving our work in this chap-

ter.

1.2 Publications

Next, we present a complete list of the published work within the doctorate period.

1.2.1 Articles published in journals

• T. Barros, R. Lopes, and M. Tygel. Implementation aspects of eigendecomposition-based high-

resolution velocity spectra. Geophysical Prospecting, 63(1) : 99115, 2014.

• T. Barros, R. Ferrari, R. Krummenauer, and R. Lopes (2015). Differential evolution-based

optimization procedure for automatic estimation of the common-reflection surface traveltime

parameters. Geophysics, 80(6), WD189-WD200.

1.2.2 Articles published in conferences

• T. Barros, R. Ferrari, R. Krummenauer, R. Lopes, and M. Tygel. The impact of the parameter

estimation strategy in the CRS method. In SBGf 13th International Congress of the Brazilian

Geophysical Society, 2013.

• M. R. Covre, T. Barros, A. K. Takahata, and R. R. Lopes. Imageamento de difrações sísmicas

baseado em métodos de alta-resolução. Anais do XXXI Simpósio Brasileiro de Telecomuni-

cações - SBrT2013, 2013. (In portuguese)
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• T. Barros, R. Krummenauer, R. Ferrari, and R. Lopes. Global optimization of the parameters

of the Common Reflection Surface traveltime using Differential Evolution. In 76th EAGE

Conference & Exhibition, 2014.

• M. R. Covre, T. Barros, R. Lopes. High Resolution Stacking of Seismic Data. In: 22nd Eu-

ropean Signal Processing Conference (EUSIPCO 2014), 2014, Lisboa. Proceedings of 22nd

European Signal Processing Conference, 2014.

• T. Barros and R. Lopes. Eigenstructure analysis for the seismic analytical signal in stacking

velocity estimation. In SBGf 14th International Congress of the Brazilian Geophysical Society,

2015.

• T. Barros, M. Covre, A. K. Takahata, and R. Lopes. Normal moveout with phase equalization.

In SBGf 14th International Congress of the Brazilian Geophysical Society, 2015.

• T. Barros, R. Krummenauer, R. Lopes, H. Chauris. Pre-stack Data Recovery through Common

Offset CRS Stack with Differential Evolution. In: 78th EAGE Conference and Exhibition 2016,

2016, Viena.

1.2.3 Book chapter

• R. Krummenauer, A. Takahata, T. Barros, M. Covre, R. Lopes. High-Resolution Techniques

for Seismic Signal Prospecting. Signals and Images. 1ed.: CRC Press, 2015, v. , p. 533-566.
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Chapter 2

Stereotomography

Stereotomography is a tomographic method that uses seismic reflection data to estimate the so-

called macro-model of acoustic velocities in the subsurface [Billette, 1998, Billette and Lambaré,

1998]. In a very simple way, stereotomography is employed to obtain the velocity model by the

inversion of a set of observed seismic data. The vector that contains this set of data is defined as d.

A vector with the set of parameters, defined by m, forms the model for the stereotomography. The

parameters from the model can be used in a ray-tracing procedure to generate a data vector defined

as dc. In the context of inverse problems, this is known as direct problem [Tarantola, 2005]. The

velocity model is chosen as the one that generates the "best" match between the simulated data set,

dc, and the actual seismic data, d. This problem is modelled as an inversion problem [Tarantola,

1987, 2005] and the match is usually measured as the mean square error between dc and d to find

its solution. It is common to add a regularization term to the cost function, because the problem is

ill-posed [Tarantola, 2005]. In Figure 2.1 we illustrate the model and the data for stereotomography.

In this chapter we present the details of stereotomography, as it was proposed in Billette [1998].

2.1 Stereotomography data and model vectors

The seismic data, d, used in the 2D stereotomography is formed by:

• Two vectors, s = [xs, zs] and r = [xr, zr], with source and receiver horizontal and vertical

positions.

• Two slope values, ps
x and pr

x, which are part of the two vectors, ps = [ps
x, p

s
z] and pr = [pr

x, p
r
z],

that indicate the slowness of the seismic wave-front at the source and receiver. For both source

and receiver we have that ps = [sin θs/vs, cos θs/vs] and pr = [sin θr/vr, cos θr/vr], where vs
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and vr are the near surface velocities in source and receiver positions and θs and θr are the angles

in Figure 2.1.

• The two-way travel-time, tsr.

The data are provided to the stereotomography by picking methods, which are used to compute

the local slopes from the seismic data [Billette et al., 2003]. A local slope at a given time is obtained

from a data gather by the use of the local slant stack method [Schultz and Claerbout, 1978, Ottolini,

1983, Schleicher et al., 2009], where, for a given reference trace, two associated semblance panels

are computed from common-receiver (CR) and common-shot (CS) gathers. The slopes and the times

are chosen according to the points of maxima in the semblance panels. For more information about

the picking process used in the stereotomography, see [Billette et al., 2003]. The vector d, containing

all the picked parameters for N data points, is defined as:

d = [(s, r, ps
x, p

r
x, tsr)k]

N−1
k=0 , (2.1)

where N is the number of points where the data parameters were picked.

The velocity model can be described as

v(x, z) =
Nx−1
∑

i=0

Nz−1
∑

j=0

wijBi(x)Bj(z) (2.2)

where the Bi(x) and Bj(z) represent a basis for the expansion of the velocity using, for instance,

B-splines [Tarantola, 2005] or wavelets [Gholami and Siahkoohi, 2010], wij are the coefficients of

this expansion and Nx and Nz are the number of coefficients.

In order to make the notation more clear, when referring to the data and model vectors, we will

group the velocities coefficients, wij , as a vector with M = NxNz coefficients, wl. We define, now,

the vector, m, which gathers all parameters for the N +M model points. We represent the model as:

m = [((x0, θ
s
0, θ

r
0, ts, tr)k)

N−1
k=0 , (wl)

M−1
l=0 ]. (2.3)

The parameters that represent the model are:

• A pair of coordinates, x0 = [x0, z0], which represent points of origin of rays travelling to the

source and receiver positions.

• Two angles, θs
0 and θr

0, for the rays which travel from the starting point to the source and receiver

positions.
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• Two one-way travel-times, ts and tr, which measure the time the rays take to travel from x0 to

the source and receiver positions. We have the restriction that tsr = ts + tr.

• A discrete set of M = NxNz coefficients of the expansion which describes the velocity model,

w = [wl]
M−1
l=0 . Nx is the total number of points in the vertical direction and Nz is the number of

points in the horizontal.

Note that each picked point that forms the data has its own values of s, r, ps
x, pr

x and tsr. For each

data point, we will determine the parameters x0, θs
0, θ

r
0, ts and tr, that, along with the velocity model,

provide a best match to the data points.

The stereotomography is formulated as an inverse problem [Tarantola, 1987]. In that sort of

problem, from the observation of the available data we try to obtain information about the stereoto-

mography model. This problem is solved by the minimization of a cost function between the observed

data and the data calculated from the model itself. The direct problem consists in mapping the model

into the data and is solved by the use of the ray tracing technique. In the next two sections we give

more details about the direct and the inverse problems and also about the optimization techniques

used to minimize the cost function in stereotomography.

2.2 The direct problem: ray tracing

In order to obtain the velocity model with the stereotomography, we employ the ray tracing as

forward method to obtain the solution to the direct problem of computing a set of data parameters,

represented by the vector dc, from the set of model parameters, represented by the vector m. The

model m which results in a vector dc closest to the picked data d provides the estimated velocity

model. Ray tracing is a non-linear function of m, defined as:

g(m) = dc. (2.4)

The ray tracing consists into propagating trajectories defined by positions and directions along a given

ray equation [Červenỳ and Ravindra, 1971, Červenỳ, 2005]. In the framework of stereotomography,

the ray tracing is described in the context of the Hamiltonian formulation [Farra and Madariaga, 1987,

Lambaré et al., 1996, Billette and Lambaré, 1998]. The Hamiltonian equation is defined as

H(x, p, t) =
1

2
[p2v2(x)− 1], (2.5)

The quantities t, x and p are defined along the ray. They are, respectively, related to the time, t,

positions vector, x = (x, z), and slowness vector for the ray trajectories, p = ∇t(x). The quantities
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x and p are also time-dependent, but we do not indicate that in our notation, for simplicity.

The initial condition to the solution of equation (2.5) is given by H(x, p, t) = 0, resulting in

p2 = 1
v2(x)

, also known as the eikonal equation [Margrave, 2001]. The solution of equation (2.5) can

be obtained from the following system of first-order equations [Margrave, 2001]:

{

∂x
∂t

= v2(x)p
∂p

∂t
= − 1

v(x)
∇v(x)

(2.6)

The ray trajectories

y(t) =

[

x(t)

p(t)

]

(2.7)

are, then, obtained by the integration of the equations in (2.6) along the ray. In this work we used for

that a second-order Runge-Kutta method [Butcher, 1987, Press et al., 1997, Butcher, 2007]. The time

dependence in equation (2.7) exists, but is usually made implicitly.

2.3 Optimization as a way of solving the inverse problem

To obtain data parameters for both source and receiver, each ray is traced starting from x0, with

initial angle, θs
0 or θr

0 , until the final travel-times ts and tr are reached. Rays are traced using the

velocity model v(x), parametrized as w. The final positions at times ts and tr are s or r.

The stereotomography employs a cost function [Billette and Lambaré, 1998, Tarantola, 2005] to

measure how close d and dc are. This cost function is the mean square error plus a regularization

term, which is minimized to yield the solution. The cost function, S(m), is defined as:

S(m) =
1

2
[g(m)− d]TC−1

D [g(m)− d] + λr r(m), (2.8)

where, as seen before, g(m) = dc is the modeled data, C−1
D is a diagonal matrix, used to scale dif-

ferent amplitudes from the parameters in the cost function, r(m) is the regularization term used to

choose a velocity model with a desired feature and λr is the parameter used to balance the regulariza-

tion contribution.

To solve the stereotomography optimization problem, an iterative method is employed, which is

based in the local linearization of the operator g(m):

g(mk +∆m) ≈ g(mk) +Gk∆m, (2.9)

where mk represents the estimated model at the kth tomography iteration. The matrix Gk is formed
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by the partial derivatives of the computed data, g(mk), with respect to the model parameters, mk:

Gk =
∂g(mk)

∂mk

. (2.10)

The approach proposed in Billette and Lambaré [1998] to iteratively obtain the linearized minimizer

of equation (2.8) makes use of the Newton method and is given by:

mk+1 = mk −
(

∂2S

∂m2
(mk)

)−1
∂S

∂m
(mk). (2.11)

If we take the derivatives of equation (2.8) and use the definition of matrix Gk in equation (2.10),

the update for the model parameters vector becomes:

mk+1 = mk −
(

GT
kC

−1
D Gk + λr

∂2 r
∂m2 (mk)

)−1

×
(

GT
kC

−1
D (g(mk)− d) + λr

∂ r
∂m

(mk)
)

.
(2.12)

The matrix Gk is usually obtained with kinematic ray tracing [Billette and Lambaré, 1998]. In

that approach, the partial derivatives of Gk are known as Fréchet derivatives. In this work, we used a

different approach to compute the gradient, which is explained in the next chapter.
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Chapter 3

Gradient computation with the adjoint-state

method

In Plessix [2006], a new technique to compute the gradient of the stereotomography cost function,

S(m), with the adjoint-state method is proposed. Plessix [2006] presents a review of the adjoint-

state method and then writes stereotomography in the framework of this technique. We follow the

idea of using the adjoint-state method to compute the gradient, used for the model optimization,

in our stereotomography implementation. In this chapter we explicitly compute the derivatives of

S(m) with respect to the model, using the adjoint-state method, in the stereotomography framework.

In Plessix [2006], these derivatives are not explicitly evaluated. We also suggest a method to test if

the implementation of these derivatives with the adjoint-state technique is correct.

3.1 Adjoint-state method

The adjoint-state method is used to compute the derivatives of an augmented version of a given

cost function, which is called the augmented functional. These augmented functional uses the rela-

tions from equation (2.8) as restrictions, in a way that is similar to the use of Lagrange multipliers.

It is shown by Plessix [2006] that for rays satisfying the ray equations in (2.6), the derivatives of the

augmented functional, J̃ , with respect to the model parameters are the same as the derivatives of the

cost function, J , with respect to the model parameters:

∂J̃

∂m
=

∂J

∂m
. (3.1)

If we define

J(m) =
1

2
[g(m)− d]TC−1

D [g(m)− d] (3.2)
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and r(m) as the regularization operator being employed, the stereotomography cost function can be

written in terms of the functions J(m) and r(m) as

S(m) = J(m) + λr r(m), (3.3)

where the parameter λr balances the penalization given by the regularization term [Engl et al., 1996].

The derivatives of J(m) can be obtained with the derivatives of the augmented functional, J̃(m),

computed with the adjoint-state method. In this case, the derivatives of S(m) with respect to the

model parameters are:
∂S(m)

∂m
=

∂J̃(m)

∂m
+ λr

∂ r(m)

∂m
. (3.4)

The update of the model parameters, with the gradient method, at the iteration k + 1, is:

mk+1 = mk + fk, (3.5)

with the update direction fk being given by the expression

fk = −αk

∂S

∂m
(mk), (3.6)

where αk is the step length taken in the gradient direction, computed at each iteration. In appendix B

we discuss how to estimate the parameter αk.

3.2 Single-ray approximation

In order to simplify the calculations, we first consider a single ray, illustrated in Figure 3.1, starting

at a point x0 = [x0, z0], with a starting angle θ0. The ray is propagated in a medium with velocity

v(x), parametrized as w = [wl]
M−1
l=0 , where M is the number of coefficients. The ray1 is propagated

from t = 0 until t = tf, where it reaches the point x(t = tf) = [x(t = tf), z(t = tf)], with slopes

p(t = tf) = [px(t = tf), pz(t = tf)]. In this simplified problem, we assume that tf is given as part of

the picked data-set.

We can define new model and data sets and apply the same concept of stereotomography described

in chapter 2, in order to obtain the velocity model w. We define, then, the new model vector as:

m = [x0, z0, θ0, tf, w]. (3.7)

1Note that the coordinates x along the ray depend on the integration variable variable t. For simplicity, we disregard
this dependence on the notation.
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2017]. For choosing the parameters in C−1
D , we suggest the reader to see [Billette et al., 2003].

We denote the cost function in equation (3.9) as J(m) to distinguish from S(m) in equation (2.8),

where a regularization term is involved.

3.2.1 Derivation of the gradient

We now compute the gradient of the cost function in equation (3.9) with the use of the adjoint-

state method. In order to use the adjoint-state method, we define the vectors with the adjoint-state

variables:

µ = [µ1, µ2, µ3, µ4], (3.13)

and

λ(t) = [λ1(t), λ2(t), λ3(t), λ4(t)]. (3.14)

These adjoint-state variables are related to the constraints:























x(t = 0) = x0 (µ1)

z(t = 0) = z0 (µ2)

px(t = 0) = sin θ0
v0

(µ3)

pz(t = 0) = cos θ0
v0

(µ4)

(3.15)

and with the ray-tracing equations























∂x(t)
∂t

= px(t) (λ1(t))
∂z(t)
∂t

= pz(t) (λ2(t))
∂px(t)
∂t

= 1
v(x)

∂
∂x(t)

v(x) (λ3(t))
∂pz(t)
∂t

= 1
v(x)

∂
∂z(t)

v(x) (λ4(t))

(3.16)

where v0 = v(x0, z0). Note that the vector µ is the vector with the constraints related with the initial

conditions, while λ(t) represents the constraints related to the differential equations. The vector with

the state variables at each t is

y(t) = [x(t), z(t), px(t), pz(t)]. (3.17)
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We define the augmented functional for one single ray as J̃ , which is given by:

J̃ = C1

2
[x(tf)− x∗]2 + C1

2
[z(tf)− z∗]2

+C2

2
[px(tf)− p∗x]

2 + C2

2
[pz(tf)− p∗z]

2 + C3

2
[tf − t∗f ]

2

+
∫ tf

0
dtλ1(t)

[

∂x(t)
∂t

− v2(x)px(t)
]

+
∫ tf

0
dtλ2(t)

[

∂z(t)
∂t

− v2(x)pz(t)
]

+
∫ tf

0
dtλ3(t)

[

∂px(t)
∂t

+ 1
v(x)

∂
∂x(t)

v(x)
]

+
∫ tf

0
dtλ4(t)

[

∂pz(t)
∂t

+ 1
v(x)

∂
∂z(t)

v(x)
]

+µ1[x(0)− x0] + µ2[z(0)− z0]

+µ3

[

px(0)− sin θ0
v0

]

+µ4

[

pz(0)− cos θ0
v0

]

.

(3.18)

J̃ is a functional of the state variables, y(t), the adjoint-state variables, µ and λ(t), and the model

parameters, m. The derivatives with respect to the state variables, y(t), can be calculated with the

adjoint-state equations.

To rewrite the augmented functional, we first use integration by parts:

∫ tf

0
dtλ1(t)

∂x(t)
∂t

= λ1(t)x(t)|t=tf
t=0 −

∫ tf

0
dt∂λ1(t)

∂t
x(t)

∫ tf

0
dtλ2(t)

∂z(t)
∂t

= λ2(t)z(t)|t=tf
t=0 −

∫ tf

0
dt∂λ2(t)

∂t
z(t)

∫ tf

0
dtλ3(t)

∂px(t)
∂t

= λ3(t)px(t)|t=tf
t=0 −

∫ tf

0
dt∂λ3(t)

∂t
px(t)

∫ tf

0
dtλ4(t)

∂pz(t)
∂t

= λ4(t)pz(t)|t=tf
t=0 −

∫ tf

0
dt∂λ4(t)

∂t
pz(t)

(3.19)

After replacing the integration by parts, the final expression for the augmented functional is:

J̃ = C1

2
[x(tf)− x∗]2 + C1

2
[z(tf)− z∗]2

+C2

2
[px(tf)− p∗x]

2 + C2

2
[pz(tf)− p∗z]

2 + C3

2
[tf − t∗f ]

2

−
∫ tf

0
dt∂λ1(t)

∂t
x(t)−

∫ tf

0
dtλ1(t)v

2(x)px(t)

−
∫ tf

0
dt∂λ2(t)

∂t
z(t)−

∫ tf

0
dtλ2(t)v

2(x)pz(t)

−
∫ tf

0
dt∂λ3(t)

∂t
px(t) +

∫ tf

0
dtλ3(t)

1
v(x)

∂
∂x(t)

v(x)

−
∫ tf

0
dt∂λ4(t)

∂t
pz(t) +

∫ tf

0
dtλ4(t)

1
v(x)

∂
∂z(t)

v(x)

+λ1(tf)x(tf)− λ1(0)x(0) + λ2(tf)z(tf)− λ2(0)z(0)

+λ3(tf)px(tf)− λ3(0)px(0) + λ4(tf)pz(tf)− λ4(0)pz(0)

+µ1[x(0)− x0] + µ2[z(0)− z0]

+µ3

[

px(0)− sin θ0
v0

]

+µ4

[

pz(0)− cos θ0
v0

]

.

(3.20)
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The derivation of J̃ with respect to θ0, x0 and z0 yields:

∂J̃

∂θ0
=

∂

∂θ0

[

µ3
sin θ0
v0

− µ4
cos θ0
v0

]

= µ4
sin θ0
v0

− µ3
cos θ0
v0

. (3.21)

∂J̃

∂x0

= µ1
∂

∂x0

[x(0)− x0]

= −µ1. (3.22)

∂J̃

∂z0
= µ2

∂

∂z0
[z(0)− z0]

= −µ2. (3.23)

The quantities of interest to the gradient method are the equations ∂J̃
∂θ0

, ∂J̃
∂x0

and ∂J̃
∂z0

given above.

To obtain these quantities we must obtain the adjoint-state variables λ and µ by solving the equations
∂J̃

∂x(t)
= 0, ∂J̃

∂z(t)
= 0, ∂J̃

∂px(t)
= 0 and ∂J̃

∂pz(t)
= 0. These derivatives are computed, in different steps, for

t = 0, t = tf and for every value of t in this interval. We have:

∂J̃

∂x(t)

∣

∣

∣

∣

∣

t=0

= µ1 − λ1(0). (3.24)

∂J̃

∂x(t)

∣

∣

∣

∣

∣

t=tf

= C1[x(tf)− x∗] + λ1(tf). (3.25)

∂J̃

∂x(t)
= −2λ1(t)px(t)v(x)vx − 2λ2(t)pz(t)v(x)vx (3.26)

+λ3(t)

[

1

v(x)
vxx −

1

v2(x)
vxvx

]

(3.27)

+λ4(t)

[

1

v(x)
vxz −

1

v2(x)
vxvz

]

, (3.28)
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where we used:


































vx = ∂
∂x(t)

v(x)

vz = ∂
∂z(t)

v(x)

vxx = ∂2

∂x2(t)
v(x)

vzz = ∂2

∂z2(t)
v(x)

vxz = ∂
∂x(t)

∂
∂z(t)

v(x).

(3.29)

To force ∂J̃
∂x(t)

= 0 for all t we select:























λ1(tf) = −C1[x(tf)− x∗]
∂λ1(t)
∂t

= −2λ1(t)px(t)v(x)vx − 2λ2(t)pz(t)v(x)vx

+λ3(t)
[

1
v(x)

vxx − 1
v2(x)

vxvx

]

+ λ4(t)
[

1
v(x)

vxz − 1
v2(x)

vxvz

]

λ1(0) = µ1

(3.30)

The interpretation of equation (3.30) is as follows: to obtain λ1(0) and, consequently, µ1 we start

with the initial condition that yields λ1(tf) and then solve the differential equation that involves ∂λ1(t)
∂t

to obtain λ1(t) until we obtain λ1(0). This value is equal to µ1. Furthermore, note that the actual

cost function only appears in (3.25), and thus only affects the initial value λ1(tf) in the system of

equations (3.30).

Analogously, for z(t), px(t) and pz(t) we have:























λ2(tf) = −C1[z(tf)− z∗]
∂λ2(t)
∂t

= −2λ1(t)px(t)v(x)vz − 2λ2(t)pz(t)v(x)vz

+λ3(t)
[

1
v(x)

vxz − 1
v2(x)

vxvz

]

+ λ4(t)
[

1
v(x)

vzz − 1
v2(x)

vzvz

]

λ2(0) = µ2

(3.31)











λ3(tf) = −C2[px(tf)− p∗x]
∂λ3(t)
∂t

= −λ1(t)v
2(x)

λ3(0) = µ3

(3.32)











λ4(tf) = −C2[pz(tf)− p∗z]
∂λ4(t)
∂t

= −λ2(t)v
2(x)

λ4(0) = µ4

(3.33)

Now we compute the derivatives of the extended cost function, J̃ , with respect to the velocity,
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v(x). Recalling that the velocity model can be written as

v(x, z) =
Nx−1
∑

i=0

Nz−1
∑

j=0

wijBi(x)Bj(z), (3.34)

we need, then, to compute the derivatives of J̃ with respect to a given coefficient, wkl. From equa-

tion 3.20, we have that

∂J̃
∂wkl

= ∂
∂wkl

[−
∫ tf

0
dtλ1(t)v

2(x)px(t)−
∫ tf

0
dtλ2(t)v

2(x)pz(t)

+
∫ tf

0
dtλ3(t)

1
v(x)

∂
∂x
v(x) +

∫ tf

0
dtλ4(t)

1
v(x)

∂
∂z
v(x)

− (µ3 sin θ0+µ4 cos θ0)
v0

].

(3.35)

Considering that ∂J̃
∂wkl

= I1 + I2 + I3 + I4 + I0, we need to compute each one of these terms at k = i

and l = j. Considering that A = (µ3 sin θ0 + µ4 cos θ0), we have:







































I1 = −2
∫ tf

0
dtλ1(t)px(t)v(x)Bk(x)Bl(z)

I2 = −2
∫ tf

0
dtλ2(t)pz(t)v(x)Bk(x)Bl(z)

I3 =
∫ tf

0
dtλ3(t)

[

1
v(x)

∂
∂x
Bk(x)Bl(z)− 1

v2(x)
vxBk(x)Bl(z)

]

I4 =
∫ tf

0
dtλ4(t)

[

1
v(x)

Bk(x)
∂
∂z
Bl(z)− 1

v2(x)
vzBk(x)Bl(z)

]

I0 = A
v2
0

Bk(x0)Bl(z0)

(3.36)

Equation (3.35) becomes, then:

∂J̃
∂wkl

= −2
∫ tf

0
dtλ1(t)px(t)v(x)Bk(x)Bl(z)− 2

∫ tf

0
dtλ2(t)pz(t)v(x)Bk(x)Bl(z)

+
∫ tf

0
dtλ3(t)

[

1
v(x)

∂
∂x
Bk(x)Bl(z)− 1

v2(x)
vxBk(x)Bl(z)

]

+
∫ tf

0
dtλ4(t)

[

1
v(x)

Bk(x)
∂
∂z
Bl(z)− 1

v2(x)
vzBk(x)Bl(z)

]

+ A
v2
0

Bk(x0)Bl(z0).

(3.37)

To obtain the derivatives of J̃ with respect to the elements of w we must compute equation (3.37)

for every pair ij. These integrals are computed for values of x along the rays.

The derivative of the cost function J(m), from equation (3.9), with respect to tf is analytically

obtained by the expression:

∂J(m)
∂tf

= C1[x(tf)− x∗] ∂x(t)
∂t

∣

∣

∣

t=tf

+ C1[z(tf)− z∗] ∂z(t)
∂t

∣

∣

∣

t=tf

+C2[px(tf)− p∗x]
∂px(t)
∂t

∣

∣

∣

t=tf

+ C2[pz(tf)− p∗z]
∂pz(t)
∂t

∣

∣

∣

t=tf

+C3(tf − t∗f )

(3.38)
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3.3 Gradient with two rays

If we consider two different rays emerging from x0, as in Figure 2.1, we can define different

model and data vectors:
{

msr = [x0, z0, θ
s
0, θ

r
0, ts, tr, (wl)

M−1
l=0 ].

dsr = [s, r, ps
x, p

r
x, tsr].

(3.39)

Now we have that x0 is the starting point; θs
0 and θr

0 are the emergence angles for the rays which travel

from the starting point to source, at s, and receiver, at r; ps
x and pr

x are the vertical components of the

slowness vectors, measured at the source and receiver positions; ts and tr are the final ray propagation

times at source and receiver positions and tsr = ts + tr. For that case, the general stereotomography

cost function may be written as

J sr = J s + J r +
C3

2
(ts + tr − tsr)

2, (3.40)

where J s and J r are cost functions equivalent to equation (3.9), computed for a single ray, which goes

from x0 to source and receiver positions. The parameter C3 is used to scale the amplitudes in the cost

function.

The derivatives of J sr with respect to the model parameters can be obtained with the adjoint-state

method if we write the augmented functional as:

J̃ sr = J̃ s + J̃ r +
C3

2
(ts + tr − tsr)

2, (3.41)

where J̃ s and J̃ r are equivalent to equation (3.20), with the rays being traced from the point x0 to

source and receiver positions. For both these rays, the derivatives of J̃ sr, with respect to θ0, x0 and z0

are obtained by equations (3.21), (3.22) and (3.23), respectively. These derivatives are written as















∂J̃ sr

∂xs
0

= −µs
1

∂J̃ sr

∂zs
0

= −µs
2

∂J̃ sr

∂θs
0

= µs
4
sin θs

0

v0
− µs

3
cos θs

0

v0

(3.42)















∂J̃ sr

∂xr
0

= −µr
1

∂J̃ sr

∂zr
0

= −µr
2

∂J̃ sr

∂θr
0

= µr
4
sin θr

0

v0
− µr

3
cos θr

0

v0

(3.43)

The variables µs
i are obtained through the variables λs

i(t), making tf = ts in equations (3.30), (3.31),
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(3.32) and (3.33), for the ray which travels to the the source. The same procedure is used to obtain

the variables µr
i, for the ray which travels to the the receiver. Note that the superscript in xs

0, zs
0, xr

0

and zr
0 refers to the ray that ends at the source or receiver positions, since the point of origin is the

same for both rays. Also, for both the rays traced from the starting point x0 to source and receiver

positions, the derivatives of J̃ sr with respect to the coefficients wkl are given by equation (3.37), using

the adjoint-state variables λs
1(t), λ

s
2(t), λ

s
3(t) and λs

4(t) or λr
1(t), λ

r
2(t), λ

r
3(t) and λr

4(t). We have:

∂J̃ sr

∂wkl

=
∂J̃ s

∂wkl

+
∂J̃ r

∂wkl

. (3.44)

The derivatives of J̃ sr with respect to ts and tr are:

∂J̃ sr

∂ts
= C1[x(ts)− x∗]

∂x(t)

∂t

∣

∣

∣

∣

t=ts

+ C1[z(ts)− z∗]
∂z(t)

∂t

∣

∣

∣

∣

t=ts

+C2[px(ts)− p∗x]
∂px(t)

∂t

∣

∣

∣

∣

t=ts

+ C2[pz(ts)− p∗z]
∂pz(t)

∂t

∣

∣

∣

∣

t=ts

+C3(ts + tr − tsr) (3.45)

and

∂J̃ sr

∂tr
= C1[x(tr)− x∗]

∂x(t)

∂t

∣

∣

∣

∣

t=tr

+ C1[z(tr)− z∗]
∂z(t)

∂t

∣

∣

∣

∣

t=tr

+C2[px(tr)− p∗x]
∂px(t)

∂t

∣

∣

∣

∣

t=tr

+ C2[pz(tr)− p∗z]
∂pz(t)

∂t

∣

∣

∣

∣

t=tr

+C3(ts + tr − tsr) (3.46)

The derivatives with respect to t in equations (3.45) and (3.46) are given by the ray equations.

3.4 Generalization of the gradient

For N data points, the model and data vectors are written as:

{

m = [((x0, z0, θ
s
0, θ

r
0, ts, tr)i)

N−1
i=0 , (wl)

M−1
l=0 ].

d = [(s, r, ps
x, p

r
x, tsr)i]

N−1
i=0 .

(3.47)

If we compute equation (3.40) for the N data points, it will be equal to the term of equation (2.8):
1
2
[g(m)− d]TC−1

D [g(m)− d].

Now, the matrix C−1
D is formed by the coefficients C1, C2 and C3, for the N data points. The
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derivatives of any regularization term can be computed separately. Recalling that if we add a regular-

ization term to the cost function equation given above, we may rewrite the cost function as

S(m) = J sr(m) + λr r(m), (3.48)

where J sr(m) is the cost function from equation (3.40) computed for the N data points and the oper-

ator r(m) can be any regularization that we use. In a brief way, S(m) is the complete cost function,

involving the summation of the cost from stereotomography, given by J(m), and the regularization

term, r(m).

The derivatives of J sr(m) can be obtained with the adjoint-state method, if we use the augmented

functional J̃ sr(m), for the N data points. With the use of the adjoint-state method, the derivatives of

S(m) with respect to the model parameters are:

∂S(m)

∂m
=

∂J̃ sr(m)

∂m
+ λr

∂ r(m)

∂m
. (3.49)

The update of the model parameters, obtained with the gradient, at the iteration k + 1, is:

mk+1 = mk − αk

∂S

∂m
(mk). (3.50)

3.5 Stereotomography gradient verification

A practical way of verifying the gradient implementation with the adjoint-state method is to per-

form a test that uses a numerical approximation for the derivative of the cost function with respect to

the model parameters, commonly known as finite difference test. In order to do this test, we compute

the derivative of the cost function, J(m), with respect of a given model parameter, mi, as:

∂J(m)

∂m

∣

∣

∣

∣

m=mi

≈ J(m + δmei)− J(m − δmei)
2δm

, (3.51)

for sufficiently small values of the model parameter perturbation, δm. We have that the vector ei is

different than zero only for the i-th model parameter, mi. One of the interpretations of equation (3.51)

is that if the model parameter perturbation, δm, is small enough, the straight line given by J(m) +
∂J
∂m

∣

∣

m=mi
δm should be tangent to the curve given by J(m + δmei) at δm = 0.

We performed this test in the one-ray configuration, defined in section 3.2. For each variable of

the model parameter vector, defined by

m = (x0, z0, θ0, tf, {wl}M−1
l=0 ), (3.52)
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we first computed the following derivatives, with the use of the adjoint-state method:



































G1 = ∂J̃(m)
∂θ0

G2 = ∂J̃(m)
∂x0

G3 = ∂J̃(m)
∂z0

G4 = ∂J(m)
∂tf

G5 = ∂J̃(m)
∂wkl

. (3.53)

After that, we plotted the following curves































Jn(θ0 + δθ0) × δθ0 and [Jn(θ0) +G1δθ0] × δθ0

Jn(x0 + δx0) × δx0 and [Jn(x0) +G2δx0] × δx0

Jn(z0 + δz0) × δz0 and [Jn(z0) +G3δz0] × δz0

Jn(tf + δtf) × δtf and [Jn(tf) +G4δtf] × δtf

Jn(wkl + δwkl) × δwkl and [Jn(wkl) +G5δwkl] × δwkl

. (3.54)

For each model variable, we plotted curves with five different cost functions, by making n = 1, . . . , 5

in equation (3.54). The cost functions used were:































J1 = 1
2
[x(tf)− x∗]2

J2 = 1
2
[z(tf)− z∗]2

J3 = 1
2
[px(tf)− p∗x]

2

J4 = 1
2
[pz(tf)− p∗z]

2

J5 = 1
2
[tf − t∗f ]

2

. (3.55)

The motivation of using the five different cost functions, presented in equation (3.55), was that if

some implementation error were to be present in the derivatives of equation (3.53), it should be easily

tracked.

In order to perform these tests, we used a velocity model given by the following expression:

v(x, z) = 1.5 + z + 0.3xKm/s. (3.56)

We choose a velocity model with variations in x and z because it allows rays with different final

data parameters even if we vary only one model parameter. We described this velocity model in a

(x, z) region starting at the point (0, 0)Km and ending in (3.6, 1.8)Km. The original velocity model

was sampled with dg = 10m, resulting in 361 values in x and 181 in z. The velocity model was

donwsampled by a factor of 20, with the use of the B-splines representation, resulting in a velocity



3.5 Stereotomography gradient verification 38

coefficients matrix with dimensions 10 × 19. We computed a reference ray with the parameters:

θ0 = 30◦, x0 = 1.5Km, z0 = 1.5Km and tf = 0.4 s. We used dt = 1ms. In order to compute

the derivatives G1, G2, G3 and G4, we traced a different ray, for each derivative computation, with

a reference perturbation in the initial model parameters of θ0 + δθref
0 = 60◦, x0 + δxref

0 = 1.6Km,

z0 + δzref
0 = 1.6Km and tf + δtref

f = 0.3 s, respectively. For the computation of G5, we added the

reference perturbation of δwkl
ref = 1Km/s to the coefficients with indexes k = 9 and l = 8, close

to the source, and k = 11 and l = 5, far from the source. Finally, in order to plot the curves, we

added perturbations in the model values used to compute the derivatives. The perturbation ranges

used were: from −20◦ to 20◦, for δθ0; from −200m to 200m, for δx0; from −100m to 100m, for

δz0; from −0.1 s to 0.1 s, for δtf and from −1Km/s to 1Km/s, for δwkl. We computed the curves in

21 points for each test.

In Figures 3.2, 3.4, 3.6, 3.8, 3.10, and 3.12 we show the velocity model used in these tests and

the rays traced with perturbed values for the model parameter variables. In Figures 3.3, 3.5, 3.7, 3.9,

3.11 and 3.13 we show the curves plotted using equations (3.53), (3.54) and (3.55). Each of these

figures contains the curves for x, z, px and pz. As expected, these graphics present tangent curves,

thus validating the implementation of the adjoint-state method for the gradient computation. We show

the cost function J5, from equation (3.54), only in Figure 3.9, because only in this test we varied the

values of tf.
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Figure 3.2: Velocity model with perfect ray (black) and rays traced with perturbed initial angle (red).
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Figure 3.3: Finite difference test with the cost functions J1 (top left), J2 (top right), J3 (bottom left)
and J4 (bottom right).
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Figure 3.4: Velocity model with perfect ray (black) and rays traced with perturbed initial x coordinate
(red).
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Figure 3.5: Finite difference test with the cost functions J1 (top left), J2 (top right), J3 (bottom left)
and J4 (bottom right).
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Figure 3.6: Velocity model with perfect ray (black) and rays traced with perturbed initial z coordinate
(red).
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Figure 3.7: Finite difference test with the cost functions J1 (top left), J2 (top right), J3 (bottom left)
and J4 (bottom right).
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Figure 3.8: Velocity model with perfect ray (black) and rays traced with perturbed ray propagation
time (red).
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Figure 3.9: Finite difference test with the cost functions J1 (top left), J2 (top right), J3 (middle left)
and J4 (middle right) and J5 (bottom left).
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Figure 3.10: Velocity model with perfect ray (black) and rays traced with perturbed B-spline coeffi-
cient, away from the source point (red).
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Figure 3.11: Finite difference test with the cost functions J1 (top left), J2 (top right), J3 (bottom left)
and J4 (bottom right).
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Figure 3.12: Velocity model with perfect ray (black) and rays traced with perturbed B-spline coeffi-
cient, close to the source point (red).
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Figure 3.13: Finite difference test with the cost functions J1 (top left), J2 (top right), J3 (bottom left)
and J4 (bottom right).
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Chapter 4

Stereotomography implementation

Stereotomography may be implemented by a number of different techniques. In this chapter we

discuss the practical aspects in our implementation of stereotomography. We present the techniques

employed in the optimization and also the strategies adopted in the inversion. We also illustrate our

implementation of stereotomography in two synthetic examples.

4.1 Practical aspects

The practical aspects of stereotomography implementation and testing may be challenging. Its

first approach was in the stereotomography seminal work of Billette [1998]. In that work, stereoto-

mography was first conceived to estimate perturbations in the velocity model. It was later, in the work

of Billette et al. [2003], that the strategy of multi-step inversion was employed to estimate the veloc-

ity macro-model from a given initial velocity model. This strategy has been extensively employed in

tests with synthetic and field data ever since this work [Lambaré et al., 2004, Le Begat et al., 2004,

Lambaré, 2008, Gosselet and Le Bégat, 2009, Prieux et al., 2013, Tavakoli et al., 2017]. The work

of Billette et al. [2003] also approached practical aspects related to the picking stage of stereotomog-

raphy. As previously discussed, the picking plays a crucial role in the inversion process, once that

the local optimization adopted requires a good initialization to the problem, in order to avoid local

minima. We discuss the picking problem in chapters 5 and 6.

Another particularity of stereotomography is that there are more model variables to determine

than available data. This implies in the non-unicity of the solutions, since there might be several

different velocity models explaining the same picked data. The way of dealing with this problem is by

employing methods of regularization to choose a velocity model. This has been extensively discussed

in the work of Costa et al. [2008], but also approached in the works of Gosselet and Le Bégat [2009],

Prieux et al. [2013], Tavakoli et al. [2017].
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Our stereotomography framework was implemented with the adjoint-state method [Plessix, 2006],

explained in chapter 3, for the gradient computation and with the limited memory BFGS bounded (l-

BFGS-b) method [Zhu et al., 1994, Byrd et al., 1995], explained in appendix C, as the optimization

technique. We also tested other optimization techniques, such as the nonlinear conjugate gradient,

explained in appendix B, but we choose to use the l-BFGS-b due to its good results and reasonable

computational time. In the second synthetic example shown in this chapter, we present a comparison

between the l-BFGS-b and the nonlinear conjugate gradient, where we can see the quality improve-

ment obtained with the use of l-BFGS-b. The stereotomography framework was implemented in

FORTRAN and in the next sections we explain our approach to the implementation of its stages.

We finish this chapter with two synthetic examples which illustrate the potential of the implemented

method.

4.2 Optimization

For the update of the stereotomography model parameters we tested methods based on the min-

imization of a cost function. We computed the gradient of this cost function with the adjoint-state

approach and evaluated the performance of some of these methods.

Among the tested methods, the nonlinear conjugate gradient (CG) and the l-BFGS-b presented

the more interesting properties. The main difference between them is that the nonlinear CG uses only

first-order information given by the gradient, while the l-BFGS-b computes an approximation to the

Hessian matrix. The l-BFGS-b seemed to be a better optimization strategy, due to the high-quality in

the obtained results and to the reasonable computational time. Moreover, as indicated in Tavakoli et al.

[2017], the use of the Hessian in the inversion seems very appropriate when dealing with different

classes of parameters in the optimization.

For the nonlinear CG, we used our own implementation, employing the golden ratio to deter-

mine the step size and a preconditioner to speed-up the convergence. For the l-BFGS-b we used a

well-known implementation, made available by Zhu et al. [1994] and Byrd et al. [1995]. In subsec-

tions 4.2.1 and 4.2.2 we briefly explain how to use this l-BFGS-b implementation and the precondi-

tioning strategy adopted for the nonlinear CG implementation.

It is important to clarify that both l-BFGS-b and nonlinear CG are similar algorithms, but very

sensitive to its implementations. The focus of this work is not to extensively compare different op-

timization algorithms for the stereotomography, but to find a reasonable one, which provides good

results in a feasible time. In that sense, we tested our own nonlinear CG implementation and the l-

BFGS-b implementation from Zhu et al. [1994]. These implementations are difficult to compare, once

that in the nonlinear CG case we used, for the step size determination, the golden section line search
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with a fixed number of iterations and in the l-BFGS-b implementation from Zhu et al. [1994], the

model update and stop criterium are performed differently1. After extensive tests, we decided to use

the l-BFGS-b implementation, because it presents fast convergence with a reasonable computational

time.

4.2.1 l-BFGS-b implementation

Regarding the l-BFGS-b implementation, we used the FORTRAN implementation explained

in Zhu et al. [1994] and Byrd et al. [1995]. The implementation operates as a black box: at each

iteration the user must provide the value of the cost function being minimized and the vector with

the gradient of parameters being updated and the software will provide the model vector with the

updated parameters for the next iteration. This implementation is sensitive to a proper set of a few

control parameters from the algorithm itself. The ones we modified were:

• factr: This test is designed to terminate the run when the change in the objective function is

sufficiently small. Typical values for factr in double precision and in a computer with 15 digits

of accuracy are: factr = 1× 1012 for low accuracy; factr = 1× 107 for moderate accuracy and

factr = 1× 101 for extremely high accuracy.

• pgtol: This is a built-in stopping test based in the projection of the gradient onto the space

tangent to the active bounds. The running program terminates when the infinity norm of the

gradient becomes sufficiently small. It is advised by the authors to not set pgtol values smaller

than the square root of the machine precision.

This algorithm does not stop in a given number of iterations, it runs until one of the stopping criteria

is satisfied.

The first stopping test is designed to terminate the run when the change in the cost function being

minimized, J(m), is sufficiently small. This test finishes the program execution when

(J(mk)− J(mk−1))

max(|J(mk−1)|, |J(mk)|, 1)
≤ factr × epsmch, (4.1)

with epsmch being the machine precision automatically generated by the code.

The second stopping test is based on the projected gradient [Bertsekas, 1982]. The test is design

to terminate the run when the infinity norm of the projected gradient becomes too small:

‖proj∇J(m)‖∞ ≤ pgtol. (4.2)

1We explain the criteria involved in the l-BFGS-b implementation in section 4.2.1 and in appendix C.
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More details about the l-BFGS-b algorithm are given in the appendix C.

4.2.2 Preconditioning

An interesting approach to speed up the convergence of gradient-based methods is to use a pre-

conditioner [Shin et al., 2001, Métivier et al., 2014]. Remember that N is the number of scatterer

positions2, M is the total number of B-splines coefficients and consider Nm = 6N + M to be the

total number of model parameters, in stereotomography. We define a precondition diagonal matrix

P ∈ R
Nm×Nm , which we try to make as close as possible to the Hessian inverse

P ≈ H−1. (4.3)

In the precondition approach, we also define a new model

m̃k = P−1mk, (4.4)

which we use in the optimization. The update is, then, performed with

m̃k+1 = m̃k − αkP∇J(mk). (4.5)

At each iteration k + 1, the ray tracing is evaluated with the recovered model mk+1 = Pm̃k+1.

A preconditioner suggestion

The gradient in the B-splines positions is highly affected by the number of rays crossing in these

positions, resulting in gradient values with large variations according to the depth. We may consider

the use of a preconditioning method to speed up the convergence, by scaling the gradient to equally

update the B-splines parameters. We employed a simple preconditioning approach, which uses the

depth information by multiplying the gradient vector for the B-splines coefficients by a reduced pre-

conditioning diagonal matrix Pred ∈ R
M×M . The elements of this matrix are

Pred, i = zi + ǫ, (4.6)

where zi is the depth value at each B-spline coefficient and ǫ is a small constant value added to avoid

instabilities when computing Pred
−1. Note that this matrix Pred is a reduced version of the one defined

in equation (4.3), applied only in the B-spline coefficients. In this approach, we do not apply any

2The model diffraction points, where the rays from source and receiver meet, are also known as scatterer positions.
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preconditioner for the model parameters representing the scatterer positions, slopes and traveltimes.

Even that this preconditioning matrix is not a precise approximation to H−1, as confirmed in our tests,

using it as preconditioner might increase the stereotomography convergence.

The gradient preconditioning is an interesting approach that we used to speed up the convergence

in the nonlinear conjugate gradient method. But when we started using the l-BFGS-b method, it did

not significantly improve neither the computational time nor the results. We believe that this is mostly

because the inverse of the Hessian matrix, estimated in the l-BFGS-b method, already acts as a sort

of preconditioner.

4.3 Regularization

As previous discussed, the stereotomography may present multiple solutions, since different ve-

locity models might explain the same picked data. In order to overcome this issue, regularization

techniques might be used to penalize a given characteristic of the model being estimated. The regu-

larization approach employed in this work is the Tikhonov regularization [Engl et al., 1996, Lopez,

2014]. This approach penalizes the square of the l2 norm of the velocity model derivatives, there-

fore prioritizing velocities distributions with smooth interfaces. Furthermore, we are interested in the

low-frequency velocity macro-model, which presents low-magnitude derivatives.

The Tikhonov regularization operator penalizes the following equation

r(m) =
1

2
‖∇v(x, z)‖22. (4.7)

This equation can be written as

r(m) =
1

2

∫ ∫

dxdz

[

(

∂v(x, z)

∂x

)2

+

(

∂v(x, z)

∂z

)2
]

. (4.8)

The velocity model may be written in terms of the B-Spline functions and coefficients as

v(x, z) =
Nx−1
∑

i=0

Nz−1
∑

j=0

wijBi(x)Bj(z) (4.9)

Replacing (4.9) in (4.8):

r(m) =
1

2

∫ ∫

dxdz





(

Nx−1
∑

i=0

Nz−1
∑

j=0

wij

∂Bi(x)

∂x
Bj(z)

)2

+

(

Nx−1
∑

i=0

Nz−1
∑

j=0

wijBi(x)
∂Bj(z)

∂z

)2


 .

(4.10)
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In order to update the model with gradient-based techniques, it is necessary to compute the deriva-

tive of the regularization operator with respect to the B-spline coefficients, ∂ r(m)/∂wkl. This deriva-

tive is given by:

∂ r(m)
∂wkl

=
∫ ∫

dxdz
(

∑

i

∑

j wij
∂Bi(x)

∂x
Bj(z)

)

∂Bk(x)
∂x

Bl(z)

+
∫ ∫

dxdz
(

∑

i

∑

j wijBi(x)
∂Bj(z)

∂z

)

Bk(x)
∂Bl(z)
∂z

.
(4.11)

4.4 Inversion approach

The inversion approach used as way of solving the stereotomography optimization was the one

presented in Billette et al. [2003] and recently discussed in Tavakoli et al. [2017]. We describe this

approach in this section. This approach is divided into three major steps. In the first one, known

as initialization, the picked data is modified in order to form an equivalent model, which is defined

in Billette [1998] and is described in more detail in the sequel. This equivalent model presents initial

values to the model parameters. In the second step, known as localization, only the slopes, positions

and travel times of the equivalent model parameters, obtained from the picked data, are updated, while

the velocity model is kept unchanged. The localization step assures a better initialization for the joint

inversion and in most of the tests that we did involving picked data it was fundamental to avoid issues

due to local minima points. The final step is the joint inversion, where all the velocities and picked

parameters are jointly inverted.

4.4.1 Initialization: equivalent model

As illustrated in appendix A of Billette et al. [2003], the initial scatterer positions, slopes and

traveltimes, defining part of the stereotomography model vector m, can be directly computed from

the picked data, by using a velocity model computed from known B-splines coefficients. These

scatterer positions are known as equivalent model and are a good initial guess to the stereotomography

optimization.

Besides that, as discussed in Billette [1998], we can also obtain the specular angle from the angles

defined from the scattering positions to the source and receiver. The specular angle θ, illustrated in

Figure 4.1, is evaluated as

θ =
θs
0 + θr

0

2
. (4.12)

We can obtain interesting information about the reflections dip and localization if we overlap the

optimized velocity model with dip bars. These dip bars are lines plotted in the scatterer positions, with

the specular angle inclination. For more information about the dip bars, please see the appendix A of
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Billette et al. [2003].

As discussed in Billette [1998], a simple way to compute the equivalent model positions and

angles is to assume a constant velocity model v0 and compute the scatterer positions as x0 = xs+xr

2

and z0 = v0tsr
2

. In this approach, the initial angles are calculated using the surface slopes and the

homogeneous velocity, with the following equations: θs0 = arcsin(psxv0) and θr0 = arcsin(prxv0).

Finally, the traveltimes in the model are computed with ts = tr =
tsr
2

. This is a rough simplification,

but the following model optimization can reallocate the scatterer points to better initial points.

Figure 4.1: Equivalent model. θ is the specular angle.

4.4.2 Localization

This step is very important in order to relocate the scatterer positions from the equivalent model

to as close as possible to its true positions. In the localization step, only the scatterer positions are

updated, while the background velocity model is kept unchanged. We can either use a homogeneous

velocity model or a constant gradient velocity model, as indicated in Tavakoli et al. [2017]. The

background velocity model is often the initial velocity model that we want to update in the stereoto-

mography.

4.4.3 Joint inversion with multi-step optimization

In this inversion step, all the scatterer positions, slopes and travel times are jointly inverted with

the B-splines coefficients representing the velocity model, by the use of a multi-step approach.

The stereotomography, as proposed in Billette [1998], was designed to invert models of the form

v(x, z) = v0 + v1z + ∆vB-splines in a optimization procedure with three stages. The successively

obtained variables were v0, which is a homogeneous velocity; v1, which is a constant vertical gradient

and ∆vB-splines, which is a velocity perturbation represented by the B-splines coefficients. In this
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approach, all the velocity components might be jointly inverted with the scatterer positions, slopes

and travel times.

Since the work of Billette et al. [2003], a multi-step scheme has been used for the stereotomogra-

phy joint inversion. The multi-step approach, first used in the context of FWI [Bunks et al., 1995], is

a progressive refinement of the spline parametrization. It consists in starting the inversion procedure

with a coarse spacing in the B-splines coefficients, obtaining a velocity model which might be used

as an input to a new inversion, performed with a thinner B-splines spacing. This procedure can be

performed several times and presents the advantage of firstly obtain a coarse solution, which is refined

at every multi-step stage.

4.5 Implementation tests

The stereotomography framework was implemented in the FORTRAN programming language,

since it is a compiled language with good performance. In this section we describe some of the tests

performed to evaluate the behaviour of this implementation.

The main goal of the two numerical examples illustrated here is to perform a sort of sanity check

of the implemented stereotomography. We also used these tests to determine which optimization

strategy to adopt, that is the reason why we analyzed the implementation behaviour in simple envi-

ronments. Since the picking is the stage where we concentrate our proposals, we isolate its uncertain-

ties by choosing the scatterer positions, slopes and traveltimes and computing the picked data with

ray tracing. To keep the simplicity, we also run these examples only with the joint inversion stage,

differently than the approach explained in section 4.4, where the initialization and localization stages

are also employed.

In the first example we employed, as optimization tool, the nonlinear conjugate gradient with

preconditioning and in the second example we performed a comparison between this method and the

l-BFGS-b, in a velocity model slightly more complex. Some of the strategies described in this chapter

are used in the more complex synthetic examples presented in chapter 6.

4.5.1 Constant gradient velocity model

In order to evaluate our stereotomography implementation, we performed one numerical experi-

ment with a simple velocity model given by v(z) = 1.5 + z Km/s. We generated this velocity model

and, then, we perturbed it, by adding a constant value of δv = 0.5Km/s. The idea is to check if we are

able to recover the initial model by starting the stereotomography with the perturbed one. This is a

simple test, but still interesting to evaluate our implementation. In this test, we used our first stereoto-
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mography implementation, which employed as optimization tools the nonlinear conjugate gradient

with the Polak-Ribiere approximation [Polak and Ribiere, 1969] and the golden ratio search method

to determinate the step size (these methods are explained in appendix B). We also used the precon-

ditioner explained in section 4.2.2. In this test, we performed the joint inversion of the B-splines

coefficients and the scatterer positions, slopes and traveltimes. We did not use the initialization and

localization inversion steps.

We described the velocity model with 9 × 17 B-Splines coefficients, resulting in a total of 153

B-Splines coefficients. We assumed that the picking was given: the picked data was obtained from

the ray tracing in the correct velocity model of v(z) = 1.5+ z Km/s, computed with the true scatterer

positions, slopes and traveltimes. We computed 256 pairs of rays, which gave 1536 model variables.

Thus, the total size of the model vector was 1689. These artificial picked rays resulted in a total

of 1792 picked data variables. For the model initialization, we used scatterer positions, angles and

traveltimes slightly displaced by constant values, in comparison to the true ones. The initial velocity

model was given by the perturbed gradient v(z) = 2.0 + z Km/s.

In Figure 4.2 we illustrate the rays, used for the picked data computation, traced in the original

synthetic velocity model (v(z) = 1.5 + z Km/s), with the correct model parameters. The B-splines

positions are indicated by the black markers. In Figures 4.3(a) and 4.3(b) we show the difference

between the initial and the final velocity models without and with preconditioning, respectively. The

goal in this plot is to estimate the perturbation of δv = 0.5Km/s. We can see in this figure that

the estimate was closer to the perturbation value in the case where we used preconditioning of the

gradient, especially in the regions with small depths. In Figure 4.4 we show the cost function after

50 iterations of the nonlinear conjugate gradient with and without the use of preconditioning. It is

possible to observe that the convergence was faster when we used the preconditioning

4.5.2 Perturbation in the velocity model

In this numerical experiment we test how our stereotomography implementation behaves in the

presence of large variations in the velocity model. In order to do that, we superposed a high-velocity

perturbation in the simple velocity model given by the depth constant gradient v(z) = 1.5 + z km/s.

Our goal was to see which velocities would be recovered with the initialization given only by the

constant gradient velocity model. In this test we did not use the three step inversion approach, dis-

cussed in section 4.4. Instead of that, we did a joint inversion of the scatterer parameters and the

B-splines coefficients in a single step. We tested this approach with the nonlinear CG, computed with

the Polak-Ribiere method, the depth preconditioning and the golden ratio step size search, and the

l-BFGS-b optimization strategies. We did not apply any regularization in these tests.

We described the velocity model with 9× 17 B-splines coefficients, given a total of 153 velocity
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Figure 4.2: Rays traced in the original synthetic velocity model.
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Figure 4.3: Difference between the initial and the final velocity models, in the attempt of estimating
the perturbation without (a) and with (b) preconditioning.
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Figure 4.4: Cost function after 50 iterations of the nonlinear conjugate gradient with and without the
use of preconditioning.

coefficients. We computed 96 pairs of rays and, again, assumed that the picking was given by the ray

tracing evaluated in the velocity model that we wanted to recover (in this case, the perturbed one).

The velocity initialization was given by the constant gradient in depth, v(z) = 1.5 + z km/s. Finally,

in order to generate the scatterer positions initialization we also used a small displacement in the true

scatterer positions and angles.

In Figure 4.5 we illustrate the rays traced in the perfect velocity model. The B-splines positions

are indicated by the black markers. In Figure 4.6(a) we show the original velocity model and in

Figure 4.6(b) we show the initial velocity model. In Figures 4.6(c) and 4.6(d) we show the final

velocity models obtained, respectively, with the nonlinear CG and l-BFGS-b methods. It is possible

to see that both the recovered velocity models are quite close to the original one, especially in the

upper parts of the high-velocity perturbation, where there are more rays to compute the B-splines

updating derivatives. In Figure 4.7 we show the cost function for the l-BFGS-b method and a zoomed

region of the cost function for the nonlinear CG method. The nonlinear CG took 5000 iterations to

converge, while the l-BFGS-b took only 300. We can also observe that the misfit is smaller for the

l-BFGS-b method in the 300-th iteration.
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Figure 4.5: Rays traced in the perfect velocity model.
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Figure 4.6: Original (a) and initial (b) velocity models. Velocity models recovered with the nonlinear
conjugate gradient (c) and l-BFGS-b (d) methods.
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300 iterations, while the nonlinear CG took 5000 iterations to converge.
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Chapter 5

Common-offset common-reflection-surface

The stereotomography method [Billette and Lambaré, 1998], employed to estimate the seismic

macro-model of velocities in the subsurface, requires, as an input, the two slope values ps
x and pr

x,

which are part of the two vectors, ps = [ps
x, p

s
z] and pr = [pr

x, p
r
z]. These vectors indicate the

slowness of the seismic wavefront at the source and receiver. For both source and receiver: ps =

[sin θs/vs, cos θs/vs] and pr = [sin θr/vr, cos θr/vr], where vs and vr are the near surface velocities in

source and receiver positions and θs and θr are the angles that the rays make with the normal in source

and receiver positions.

The common-reflection-surface (CRS) method [Mann et al., 1999, Jäger et al., 2001] is an alter-

native method to the common-midpoint (CMP) stacking [Mayne, 1962], used to provide a simulated

zero-offset (ZO) image of the subsurface in time. To stack each ZO trace, the CRS method uses more

traces than the CMP, which allows a significant improvement in the signal-to-noise ratio (SNR) of the

produced images. The CRS stacking operator approximates ZO reflection events in the vicinity of a

ZO central ray [Höcht et al., 1999]. In 2D, the ZO-CRS stacking operator is parametrized by three

attributes.

In Zhang et al. [2001], a generalization of the 2D ZO-CRS was introduced, with a new traveltime

approximation, parametrized by five attributes. This generalization is known as common-offset (CO)

CRS and can be applied in any CO section of the pre-stack data. The CO-CRS stacking operator

approximates finite-offset (FO) reflection events in the vicinity of a given FO central ray. This gener-

alization is particularly interesting once it allows to perform CRS stacking in pre-stack data, enabling

the benefits of the SNR enhancement in other pre-stack processing flows.

One important proposal of this work is to use the attributes obtained as outputs of CO-CRS method

with the global optimization method Differential Evolution [Barros et al., 2016] as input data for

stereotomography. The strategy of using the CO-CRS attributes as input for the stereotomography

was briefly signalized as a possibility in the introductory CO-CRS work of Zhang et al. [2001]. Re-
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cently, the same discussion came to light in Schwarz et al. [2015], where it is suggested the utilization

in stereotomography of the CO-CRS parameters, obtained with the ZO-CRS approximation proposed

in Baykulov and Gajewski [2009].

Differently, in this work, we use the parameters obtained directly by the CO-CRS method. More-

over, we also indicate that there are cases where it is more appropriate to use the parameters obtained

by the CO-CRS method with the global optimization algorithm DE, in order to have more accurate

estimates, especially in cases where the signal is highly distorted by the presence of random noise.

In this chapter we explain the CO-CRS method. We begin by illustrating the method itself and then

we discuss the sequential and global parameter estimation strategies. We then illustrate the behaviour

of both these search strategies in synthetic and field data examples. In chapter 6 we analyze with

more details the quality of the slopes estimated with the CO-CRS and the results obtained by the use

of these slopes in stereotomography.

5.1 The method

Let x0 be the midpoint coordinate of the central ray. As usual, we associate each trace with a

source-receiver pair with coordinates s and r, respectively. Alternatively, a trace may be identified

by the midpoint xm and the half-offset h of the source-receiver pair. In this case, the coordinates are

related as s = xm − h and r = xm + h. For the midpoint and offset coordinates in the central point

given by (x0, h0), the 2D 1 hyperbolic CO-CRS formula can be defined as

T 2(∆xm, ∆h) =

[

t0 +

(

sin(θr)

vr
+

sin(θs)

vs

)

∆xm +

(

sin(θr)

vr
− sin(θs)

vs

)

∆h

]2

+ t0

[

(4K1 − 3K3)
cos2(θr)

vr
−K2

cos2(θs)

vs

]

∆x2
m

+ t0

[

K3
cos2(θr)

vr
−K2

cos2(θs)

vs

]

∆h2

+ 2t0

[

K3
cos2(θr)

vr
+K2

cos2(θs)

vs

]

∆h∆xm (5.1)

where ∆xm = xm−x0 and ∆h = h−h0 are the midpoint and half-offset displacements, respectively.

The quantities vs and vr are, respectively, the near-surface velocities at the source and receiver posi-

tions, which are related to the central ray. Among the five CO-CRS parameters, which are determined

from the pre-stack data, are the two angles of incidence between the central ray and the z-axis at

the source, θs, and receiver, θr. The other parameters are the three wavefront curvatures K1, K2 and

1There is also a 3D extension of this method [Hoecht et al., 2009, Müller et al., 2013].
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t0 and the coordinates (x0, h0).

The simultaneous search for all the five parameters may be too time-consuming. On the other

hand, the parameters obtained by the global search may be more accurate, as discussed for the ZO-

CRS method in Barros et al. [2013]. In Barros et al. [2015], a bio-inspired heuristic, named dif-

ferential evolution (DE) [Storn and Price, 1997], was employed to estimate the ZO-CRS attributes.

There, it is shown that this heuristic presents a good convergence rate, simple parametrization and

fast convergence, when compared to other heuristics.

5.2 Sequential search

The sequential search of the CO-CRS parameters is the traditional approach for the CO-CRS

stacking [Zhang et al., 2001]. This approach is explained in details in the work of Bergler [2001]. It

consists of consecutive searches of a small number of parameters in different seismic gathers. The

main idea behind this approach is that, at each gather, some assumptions are made for the traveltime

simplification, allowing the application of the following traveltime operator:

T 2(y) = (t0 + ay)2 + by2. (5.2)

This equation can be referred to as general search equation for the sequential CO-CRS, since the

quantities a, b and y are related to different parameters at each seismic gather. The variable y is

related to the traces coordinate in the seismic gather where the attributes search takes place and the

quantities a and b are related to different CO-CRS attributes being searched in the given seismic

gather. The search for the parameters consist in testing several parabola, constructed with the pairs of

parameters a and b being tested, and choosing the one which maximizes a coherence measure, being

the semblance [Neidell and Taner, 1971] the most used one. The search for the parameters a and b is

performed with a brute force method in pre-defined grids of values.

The sequential strategy is employed in common-midpoint (CMP), common-offset (CO) and -shot

(CS) gathers, allowing the estimation of:

• 2 parameters in CMP gather.

• 2 parameters in CO gather.

• 1 parameter in CS gather.

In Figure 5.2 we see a diagram with the central point coordinates and how these three gathers

are disposed in a midpoint-offset seismic coordinates plane. In the next subsections, we can see with

more details the sequential search strategy.
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Figure 5.2: CO-CRS sequential search diagram.

5.2.1 CMP search

For the parameters search in the CMP gathers, we can use the fact that ∆xm = 0, yielding the

traveltime operator:

T 2(y) = (t0 + aCMPy)
2 + bCMPy

2. (5.3)

In the CMP gathers we have, then, to search for the aCMP and bCMP parameters, considering y =

∆h = h − h0. This search for the parameters aCMP and bCMP can either be done simultaneously or

independently. In the latter case, we first search for aCMP, by using bCMP = 0 in equation (5.3), and

then search for bCMP, by using the whole operator in equation (5.3). In this work we perform the

bi-parametric simultaneous search for the CMP parameters. The CMP parameters are related to the

CO-CRS parameters as:

aCMP =
sin θr

vr
− sin θs

vs
, (5.4)

and

bCMP = t0

[

K3
cos2 θr

vr
−K2

cos2 θs

vs

]

. (5.5)

5.2.2 CO search

In the CO gathers, we have that ∆h = 0. The traveltime operator used in the CO parameters

search is, then:

T 2(y) = (t0 + aCOy)
2 + bCOy

2, (5.6)

with y = ∆xm = xm − x0. In this gather, the search for the parameters aCO and bCO is performed

individually, by searching one parameter at each time. First, we determine aCO by using bCO = 0

in equation (5.6) and then we use this estimated value and search for bCO by applying the complete
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operator of equation (5.6). The CO parameters are related to the CO parameters as:

aCO =
sin θr

vr
+

sin θs

vs
, (5.7)

and

bCO = t0

[

(4K1 − 3K3)
cos2 θr

vr
−K2

cos2 θs

vs

]

. (5.8)

5.2.3 CS search

The last search for the sequential strategy of estimating the CO-CRS parameters is performed in

common-shot gathers. The CS traveltime operator is defined by

T 2(y) = (t0 + aCSy)
2 + bCSy

2, (5.9)

where y = ∆xg = ∆xm +∆h. The CS parameters are given by

aCS =
sin θr

vr
=

aCMP + aCO

2
(5.10)

and

bCS = t0

[

K1
cos2 θr

vr

]

. (5.11)

The CS search involves only one-parameter search, once that, as we can see in equation (5.10), the

parameter aCS is given by the combination of parameters obtained in the CMP and CO searches.

After we obtain the parameters from all the steps of the sequential search we can apply the operator

from equation (5.1) to obtain the data enhanced by the CO-CRS technique. We can also obtain a

coherence gather with this operator as a way of quality control for the parameters estimation. We also

obtain coherence gathers at each different search performed in the sequential strategy.

5.3 Global search

As discussed in Barros et al. [2015] for the ZO-CRS case, probably the most obvious drawback

of the sequential search is that it does not find the globally optimal estimates of the parameters,

in the sense of maximizing the coherence for the CRS traveltime. This may have some serious

consequences, both in the values of the parameters themselves and on the quality of the result. To

deal with these problems, different strategies to simultaneously estimate all the ZO-CRS parameters

in a single search procedure have been proposed [Garabito et al., 2012, Barros et al., 2015]. As



5.3 Global search 64

discussed in these works, the joint estimation of the CRS parameters may lead to better results than

those from the sequence of one-parameter searches, with the drawback of higher computational costs.

In Barros et al. [2015], we provide practical insights to guide the implementation of an efficient

optimizer for the ZO-CRS global search problem. The tests performed with synthetic and real data

surveys have indicated that among the natural computing algorithms applied to optimization [de Cas-

tro, 2007], the original DE algorithm is an attractive approach for the ZO-CRS fully automatic global

search.

Regarding the CO-CRS case, the global strategy has been discussed by Garabito et al. [2013],

where the very-fast simulated annealing (VFSA) algorithm [Sen and Stoffa, 1995] is used as global

optimization algorithm. In Barros et al. [2016], we have proposed to use the differential evolution

(DE) global optimization algorithm [Storn and Price, 1997] to estimate the parameters of the CO-

CRS traveltime. Next, we present some details and practical insights to the use of DE algorithm in

the global CO-CRS parameters search context.

5.3.1 Differential Evolution

Differential Evolution (DE) is a parallel direct search method for continuous space variables which

utilizes NP D-dimensional parameter vectors

xi,G, i = 1, · · · , NP (5.12)

as population, on each generation2 G. The initial vector population is chosen randomly and should

cover the entire search space to guarantee diversity among individuals of the population. In the

absence of knowledge on the search space, one may use an uniform statistical distribution to generate

the initial population. DE generates new parameter vectors by adding the weighted difference between

two randomly chosen population vectors to a third randomly chosen vector. This operation is known

as mutation. A trial vector is generated by the combination between the mutated parameter vectors

and another randomly predetermined vector, the target vector. This combination is referred to as

crossover. It is important that each vector in the population be used once as the target vector, so

that NP parameter vectors comparisons take place in one generation. The last operation of the DE

algorithm is the selection, where the target vector is replaced by the trial vector if the value of the cost

function for the trial vector is greater than that of the target vector. (This holds for the maximization

problem. For the minimization problem the search is for the lower value.) For the CO-CRS global

search, we use the semblance measure as cost function and the parameters vector contains the CO-

CRS attributes {θs, θr, K1, K2, K3}, with length D = 5. For the operation of DE algorithm, the user

2The generation is an analogy to a given iteration in the optimization algorithm.
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must set the algorithm parameters G, NP and also the parameters related to the crossover (CR) and

mutation (F ). We explain with more details these parameters, the DE algorithm and also the mutation,

crossover and selection operations in Appendix D.

Practical insights

In our tests, we noticed that a reasonable value for the number of individuals in the population NP

is between 5D and 10D, where D is the dimensionality of the search problem. For two-dimensional

data, the number of parameters to be searched is D = 5, so that the recommended interval is 25 <

NP < 50. The number of generations, G, is usually employed as a stopping criterion, and limits the

DE iterations number. The solution is more likely to be close to the global optimum for large values

of G. We suggest that G be chosen to be at least 150.

Regarding the mutation in DE, large F values increase the algorithm capacity to explore param-

eters in large regions within the search limits. In our experiments we noted that a good choice for F

lies in the interval [0.4, 1.3]. We also have noted that the DE sensitivity in finding the global optimum

with respect to this control parameter is not as significant as for the crossover rate. In other words,

the results are robust to the choice of F , which does not need to be carefully fine-tuned.

As noted by Das and Suganthan [2011], a low CR value (e.g., CR < 0.1) results in a search

that changes each direction of the mutated vectors separately. In practice it benefits functions that are

separable in terms of dimensions. This is not the case of the semblance measure as a function of the

CRS parameters. Even so, we have noted that small crossover rates may be a good choice for very

low SNR data. We recommend the interval [0.1, 0.9]. Although this range seems to be large, DE is

quite robust in finding the global optimum if enough generations G are allowed to be executed, as

illustrated for the ZO-CRS in Barros et al. [2015].

For further information about DE and other evolutionary computing algorithms, please see Rainer

[1995] and Storn and Price [1997] as well as the references in the overview article from de Castro

[2007].

5.4 Numerical examples

In this section we present some results that demonstrate the application of the selected DE global

optimization algorithm in the CO-CRS global search problem. We applied this method in both syn-

thetic and field data sets. For the synthetic case we also compared the global optimization strategy

with the sequential search strategy explained in previous sections. The field data set used in our tests

is from a land acquisition, with very low fold. Due to that, we choose only to use our proposed global
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optimization strategy, since this method is quite data-driven and may present good results with simple

algorithm parametrizations.

5.4.1 Synthetic Marmousi data

In the synthetic tests, we use the Marmousi data set [Bourgeois et al., 1991], which presents

interesting complexity. We added random noise to the pre-stack data, in order to obtain a low signal-

to-noise ratio (SNR). In the first test, we used the CO gather with the offset coordinate of −1000m.

In Figures 5.3(a) and 5.3(b), we present the raw and noisy versions of this CO gather, respectively.

This data set presents a time sample interval of dt = 0.004 s. The offset and midpoint intervals are

50m and 25m, respectively.

For the sequential search, we used apertures of ∆hmax = 250m and ∆xmax
m = 50m both for the

searches and stacking operations. The searches in all gathers were performed with time windows of

11 samples and grids of 101 values for the brute parameters search. The search in the CMP gather

was bi-parametric, as described in the subsection 5.2.1. For all the tests with the global search, we

parametrized the DE algorithm with NP = 50, CR = 0.3, F = 0.7 and G = 200 iterations. For the

global search, we used apertures of ∆hmax = 150m and ∆xmax
m = 150m. The apertures were chosen

by trial and error and one important difference between the global and the sequential searches is that

while, in the global search, the apertures define the limits of a two-dimension surface, in the sequential

searches the limits are only in a one-dimension traveltime equation. It is interesting to note that if

we use the same aperture values for the sequential and global approaches, in the global approach we

would be using a larger number of traces in the search and stacking operations. For instance, in this

data set, if in the CMP search we use ∆hmax = 250m, it means that we are using 11 traces in this

search. In other hand, in the global search, using apertures of ∆hmax = 150m and ∆xmax
m = 150m,

which are even smaller than 250m, means using 91 traces in both search and stacking operations. At

a first glance, the apertures in the sequential search may seem small. It is important to clarify that the

Marmousi data presents strong horizontal variations in the velocity model, which caused significant

estimation errors in the sequential CO-CRS whenever we attempted to use large apertures. Besides

that, the sequential approach presents the drawback of stacking in a surface of parameters given by

the traveltime in equation (5.1), which is not the same as the one used to estimate the parameters and

given by the traveltime in equation (5.2). Because of that, we tried to minimize errors by using the

same apertures in the estimation and stacking procedures.

At each stage of the sequential search we produce a stacking and a coherence section, which

are very useful for quality control. Moreover, we also produce gathers with the parameters a and b,

which are later used for stacking. In Figures 5.4(a), 5.4(b), 5.4(c), 5.4(d), 5.4(e) and 5.4(f) we show

the stacking and coherence sections produced in the bi-dimensional CMP search and in the CS and
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CO searches. In Figures 5.5(a), 5.5(b), 5.5(c) and 5.5(d) we show the final stacking and coherence

sections from the sequential search compared with the same gathers from the global search. It is

possible to see the benefits of the global search in terms of better image definition, due to a higher

SNR, when compared to the sequential search. In Figure 5.6 we show again, only for comparison

purposes, the raw data and the enhanced CO-CRS results for the sequential and global searches.

Finally, in Figures 5.7(a), 5.7(b) and 5.7(c) we show the same displays for five different CMP gathers.

It is possible to observe from the figures a significant SNR enhancement after the CO-CRS correction.

Also, the reflections are better defined in the CO-CRS corrected images.

It is possible to observe that, in the presence of random noise, the CO-CRS method may present

better results if we use a global search for the parameters estimation. But this global estimation

may present higher computational costs, when compared to the currently used sequential estimation

method. We now illustrate how this complexity could be analyzed in the parameters estimation of

only 1 central point, for both sequential and global methods. Assume that, for this central point, in

a global search, we set the control DE parameters with the values NP = 50 and G = 200. As we

have to compute the coherence for all the individuals of the population, at each iteration, this implies

in computing 50 × 200 = 10, 000 coherence functions. For the sequential search, assuming that we

set 100 search points at each gather, we have two options: we can either use a bi or mono-parametric

search in the CMP search. If we use a bi-parametric search, this implies in 100 × 100 = 10, 000

computations. On the other hand, in a mono-parametric search, we have only 100 + 100 = 200

coherence evaluations. In the CS search , we have 100 + 100 = 200 coherence evaluations and in

the CO search we have only 100 coherence evaluations. The total would be, then, 10, 300 coherence

evaluations if we choose to use the bi-parametric CMP search and only 500 if we choose the mono-

parametric. It is important to emphasize that, in our tests with noisy data sets, the mono-parametric

search does not present a satisfactory behaviour. Also, if we choose to use the bi-parametric search,

the global search would present the same computational costs as the sequential search, possibly with

better results and with easier input algorithm variables parametrization.

5.4.2 Field data

In these tests with real data sets, we used a seismic line acquired in Amazônia, Brazil, which

presents low SNR, reflectors with large dip variations and, at most, 12 traces in each CMP. In this

numerical example we only evaluated the global CO-CRS method, in order to discuss the benefits of

our proposal.

The global estimation of CRS parameters was performed with the DE algorithm, and we used

CR = 0.3, F = 0.7, NP = 50, and G = 200. In Figure 5.8(a) we show the raw CO with offset

h = −2000m and in Figure 5.8(b) we show the same offset after the global CO-CRS method. It is
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Figure 5.3: Marmousi data set with offset of −1000m. Raw (a) and noisy (b) data used for the tests.

possible to observe that the global CO-CRS method allows us to see more geologic information in

the data, especially in regions with large dips. This is mostly because the parameters in the global

CO-CRS search are estimated and stacked with a large number of traces, as discussed for the ZO-CRS

case in Barros et al. [2015]. This fact can lead to a significant increase in the quality of the results for

data sets with low SNR and low fold. For visualization purposes, we show, in Figure 5.9(a), five raw

CMPs from the same data. In Figure 5.9(b) we show the same CMPs enhanced by the application of

the DE CO-CRS method. It is also possible to observe that these CMPs present a significant increase

in the SNR and that they are also regularized3, with traces created where there were no traces before.

For an interesting glimpse of the CO-CRS benefits we show, in Figure 5.10(a), the velocity spec-

trum from one raw CMP gather. In Figure 5.10(b) we show the same spectrum after the application

of the global CO-CRS method. It is possible to observe that the reflection events are much better

defined by the semblance function after the application of the global CO-CRS method. It is possible

to even follow a velocity trend in that spectrum, which was very hard to do in the spectrum computed

directly from the raw data.

3As pointed in Hoecht et al. [2009], the CO-CRS method presents the capability of regularize the data, by using the
neighbouring information to create traces where there were missing ones, due to irregular acquisition geometries.
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Figure 5.4: Sequential CO-CRS: CMP stacking (a) and coherence (b) gathers. CS stacking (c) and
coherence (d) gathers. CO stacking (e) and coherence (f) gathers.
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Figure 5.5: Sequential CO-CRS final stacked (a) and coherence (b) sections. Global CO-CRS stacked
(c) and coherence (d) sections.
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Figure 5.6: Marmousi CO gather. Raw data (left) enhanced sequential (middle) and global (right)
CO-CRS.
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Figure 5.7: Raw CMP data (a); sequential enhanced CMP data (b); global enhanced CMP data (c).
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Figure 5.10: Field data: Coherence map computed from the raw data set (a) and from the CO-CRS
enhanced version of the same data set (b).
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Chapter 6

Slopes estimation and picking

Slopes estimation and picking are fundamental in stereotomography, since the input data for the

inversion are obtained in these stages. In this chapter we briefly explain the manual and automatic

current strategies for slopes estimation and data picking in stereotomography. We then compare the

current stereotomography slopes estimation strategy with a new proposal, which employs the slopes

estimation in the attributes obtained with the CO-CRS method. This comparison is performed in a

simple synthetic seismic data, with a single dipping reflector. We also propose an automatic picking

strategy to select the slopes in these CO-CRS attributes gathers, in the presence of several reflections.

We finish the chapter with a synthetic seismic data example, where we obtain the macro-model of

seismic acoustic velocities with the following work-flow: application of the CO-CRS method in

the pre-stack seismic data for the slopes estimation; obtainment of the stereotomography pickings

from the CO-CRS attributes using the automatic picking proposal; inversion of these pickings with

stereotomography.

6.1 Local slant stack

The stereotomography tool used in slopes estimation and picking was proposed in the work

of Billette [1998] and is strongly based in the Tau-p transform [Stoffa, 2012], also known as slant

stack [Schultz and Claerbout, 1978, Gardner and Lu, 1991].

The slant stack is the Tau-p transform expressed as

R(τ, p) =

∫ +∞

−∞

dxf(τ + px, x), (6.1)
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for the continuous case or

R(τ, p) =
Nx−1
∑

i=0

dxif(τ + pxi, xi), (6.2)

for the discrete case.

The slant stack is, therefore, a summation of the data. This summation maps the straight line in

the trace gather (t, x) into a point in the panel (τ, p). On the other hand, for the stereotomography

picking, we use the concept of local summation of traces in the neighbouring of a given central trace,

instead of in all the traces. This is because, in stereotomography, we are interested in local values for

the slopes. The method employed to do so, proposed in Billette [1998], is to weight the traces by a

window function, centered at some reference trace.

As defined in Billette [1998], the local slant stack consists of a transformation from a trace gather

(distance, time) to a stacked panel (slope, time), for a reference distance trace. This trace gather might

be sorted in common-shot (CS), common-receiver (CR), common-midpoint (CMP) or common-offset

(CO) gathers. Finally, the function f(τ + pxi, xi), used in the stacking Tau-p operation, is the data

sampled at the time instant τ + pxi and position xi, with respect to the central trace.

In the work of Billette [1998], it is also presented the semblance measure, which is a function that

also maps the data from a (distance, time) trace gather into a coherence panel, as an alternative to

the Tau-p in the stereotomography picking. The semblance coherence panel is computed using data

windowed with a given traveltime [Neidell and Taner, 1971], as opposed to the Tau-p panel, computed

in data following a line given by the traveltime. The semblance measure presents the advantage of a

better performance in the presence of random noise, when compared to the Tau-p transform. In the

next sections we explain how the picking operation is performed in stereotomography and we provide

more information about the semblance.

6.1.1 Stereotomography data picking

The current strategy used for slopes estimation and picking, in stereotomography, might be per-

formed in CS, CR, CMP, or CO seismic gathers. As we must determine the slopes at source and

receiver positions, we must compute the Tau-p transform to estimate the slopes and pick these slopes

in, at least, two different seismic gathers. Usually, the slopes at the source position (ps) are obtained

in CR gathers and the slopes at the receiver position (pr) are obtained in CS gathers.

A very interesting approach for the stereotomography slopes estimation and picking, also dis-

cussed in Billette [1998], is to use the semblance measure, defined for stacking velocity estimation

in Neidell and Taner [1971], instead of the Tau-p transform. The semblance function is a second-order

energy measure computed for windows of 2L+ 1 time samples, taken from traces at Nr receivers. If

we adapt the semblance from stacking velocity analysis to the slopes estimation, each data window
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used for semblance evaluation follows the equation defined by the (τ, p) parameters and consists of

a few samples before and after the window center. These samples might be interpolated if the Tau-p

equation does not result in an exact time sample.

If we assume a seismic gather with a total of Nt time samples and Nx traces, we may follow a

traveltime equation and form data windows from the sampled seismic data. We write this windowed

data at the i-th time sample and j-th seismic trace as d(i, j). For the semblance evaluation, we must

design a data window centered in a reference trace, following the Tau-p equation. Finally, we center

the window at a given sample it, corresponding to the τ position, and write the semblance measure as

Sc =

it+L
∑

i=it−L

∣

∣

∣

∣

∣

Nr
∑

j=1

d(i, j)

∣

∣

∣

∣

∣

2

Nr

it+L
∑

i=it−L

Nr
∑

j=1

∣

∣d(i, j)
∣

∣

2

. (6.3)

The time sample in the center of the time window gives the τ value. This approach consists into

testing several slopes values for each τ . The semblance values for all the Tau-p possible values form

the semblance spectrum.

The main idea behind the semblance function is to measure the coherence between seismic traces

in a given neighbouring, by allowing that these traces be aligned in the tested window, if the Tau-p

equation exactly fits a reflection.

Therefore, to form the picking set for one scatterer position, composed by the parameter values

in equation (2.1), in page 22, we must choose source and receiver reference positions, given by s and

r, and compute two slopes spectra. One semblance maximum, at the same τ value for both spectra,

gives the two local slopes. The value of tsr is given by the τ value. This operation must be repeated

for all the scatterer positions, in order to generate the picked data. This is a very time consuming

operation, which encouraged several attempts to generate an automatic picking tool [Billette, 1998,

Billette et al., 2003].

6.1.2 Automatic picking

The automatic picking, proposed in Billette [1998], consists into finding, for a given τ , slopes that

jointly present coherence values within a defined interval, for all the seismic gathers under test. The

authors suggest to perform this test in all the CS, CR, CMP and CO gathers. The justification is that

a joint probability on the four semblance values in the desired interval increases the chances that the

pick is pertinent.

Semblance computation in all the discussed seismic gathers does not highly affect the computa-
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tional time, since we only need to compute the semblance measure in all the seismic gathers if we

obtain a coherence value in the desired interval for the last seismic gather being tested. The authors

also suggest to look at certain sampling of the shots and receivers, used as reference traces. We im-

plemented an automatic picking tool similar to this one, in order to compare with the picked data

obtained with the CO-CRS method.

6.2 Plane reflector with dip

In this section we analyze the quality of the local slopes estimation and inversion for three different

approaches: local slant stack computed with semblance1, sequential and global CO-CRS. In order to

perform this comparison we generated a very simple synthetic seismic data. We consider a model

with a single dipping reflector with an angle of 10◦. We further consider a homogeneous overburden

with a velocity of 2Km/s. The synthetic data were generated using 96 channels per shot in a split-

spread geometry with offsets 2500 − 150 − 0 − 150 − 2500m and 50m between the receivers. The

distance between the shots is 200m, which results in the very low fold of only 12 traces per CMP.

In order to obtain a complete comparison between the slopes estimation methods, we tested this

data in three situations, with different signal-to-noise ratios (SNR). We used the open-source software

package Seismic Unix [Stockwell, 1999] to generate random noise with Gaussian probability distri-

bution2, which we added to the synthetic data to obtain seismic data with SNR = 5, 2 and 1. For all

the comparisons, we choose the common-offset located at −2500m to be used as reference.

In Figures 6.1, 6.2, 6.3 and 6.4 we illustrate the semblance coherence spectra for the local slant

stack slopes estimation in the four described seismic gathers, computed in the data with SNR = 5.

The traces illustrated in red are the reference traces, with source and receiver coordinates resulting

in the desired offset. It is possible to observe that even in this case, with the highest tested SNR, the

trace gathers and the coherence spectra are highly affected by the noise. In section 6.2.1 we discuss

with more details this slope estimation example and in section 6.2.2 we analyze the stereotomography

inversion applied to the data picked with different slopes estimation methods.

6.2.1 Slopes quality analysis

In this section we compare the slopes obtained with the slant stack method, sequential and global

CO-CRS, for three different SNR cases, in the single dipping reflector seismic data. On the other

1For simplicity, from this point on, we call this method of local slant stack.
2We employed the suaddnoise function, which adds either Gaussian or white (uniform) noise to each trace. The

output trace is the input trace plus a scaled version of a random noise vector. The scale factor is the reciprocal of the sn
(signal-to-noise ratio) parameter times the square root of the ratio of input (signal) power to the noise power.
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Figure 6.1: CS gather for SNR = 5 and the respective semblance panel. The trace in red corresponds
to the reference trace used for the semblance computation.
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Figure 6.2: CR gather for SNR = 5 and the respective semblance panel. The trace in red corresponds
to the reference trace used for the semblance computation.
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Figure 6.3: CO gather for SNR = 5 and the respective semblance panel. The trace in red corresponds
to the reference trace used for the semblance computation.
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Figure 6.4: CMP gather for SNR = 5 and the respective semblance panel. The trace in red corre-
sponds to the reference trace used for the semblance computation.
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hand, the data with different SNR may allow us to investigate the potential in the slope estimation

methods. As we are only trying to analyze the quality in the obtained slopes, we use simpler ways of

picking the data.

For the slant stack method, we used the automatic picking for selecting the slopes in all the CS,

CR, CMP and CO gathers, with the coherence thresholds carefully adjusted to obtain only one pick

at each pair of reference source and receiver traces. Note that this is not a practical strategy, since it

is only possible because we know that each trace has only one reflection. For the CO-CRS case, we

applied the sequential and global CO-CRS methods in the common-offset of −2500m. Regarding

the picking in CO-CRS examples, we used the resulting coherence gathers as reference: we selected

the slopes in the θs and θr attributes gathers, at the time samples where the coherence presented the

maximum value, for each trace. For the global CO-CRS approach, we used the global coherence,

while for the sequential CO-CRS, we used the coherence obtained in the second CO search, which

seemed to present the highest SNR.

In Figures 6.5(a), 6.5(b) and 6.5(c) we show the source and receiver angles obtained with the slant

stack method and also the absolute value of the specular angle, obtained with equation (4.12), for the

three data with different SNR, for all the CMPs indexes, in the CO with offset equal to −2500m. It

is possible to observe that only in the data with SNR = 5 the angles are correctly estimated. In the

data with SNR = 2 the estimation starts to fail in some of the traces and in the data with SNR = 1 it

is safe to say that the estimation has failed in all the traces.

In order to obtain the stereotomography slopes, with the CO-CRS method, we needed to specify

a way of performing the picking operation. As dicussed for the NIP tomography performed with the

ZO-CRS attributes [Mann and Duveneck, 2004, Klüver and Mann, 2005], the tomography picking

can be performed in the CRS attributes with the use of coherence gathers. For the sequential CO-CRS

we have coherence gathers in all the search stages and also in the data stacking. In Figures 6.6(a),

6.6(b), 6.6(c), 6.6(d) and 6.6(e) we illustrate these coherence gathers for the data with SNR = 5. By

analyzing these spectra, and also the spectra obtained in different experiments, we decided to use the

coherence gather obtained in the CS search, once that at this search stage it presents a reasonable

SNR.

In Figures 6.7(a), 6.7(b) and 6.7(c) we show the coherence gathers obtained in the CS search with

the data with different SNR values. The angle gathers where the picking was performed are shown in

Figures 6.8(a), 6.8(b), 6.8(c), 6.9(a), 6.9(b) and 6.9(c).

We show the source and receiver angles and also the absolute value of the specular angle, obtained

with the sequential CO-CRS method, in Figures 6.10(a), 6.10(b) and 6.10(c). In this test, it is possible

to note that almost all the angles obtained from the data with SNR = 2 are correctly estimated.

The coherence gathers used to obtain the slopes in the tests with the global CO-CRS are shown
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Figure 6.5: Values of θ, θs and θr obtained from local slant stack in data with SNR = 5 (a), 2 (b) and
1 (c). θ is the specular angle and θs and θr are the angles from the scatterer to source and receiver
positions, respectively.
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Figure 6.6: Coherence gathers obtained in the sequential CO-CRS search for the data with SNR = 5.
These gathers come from: CMP search (a); first (b) and second (c) stages of CO search and CS search
(d). Final coherence gather obtained with the estimated parameters used in the stacking (e).
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Figure 6.7: Coherence gathers obtained in CS search and used for the angles pick, in the sequential
CO-CRS, for the data with SNR = 5 (a), 2 (b) and 1 (c).
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Figure 6.8: θs obtained with the sequential CO-CRS for the data with SNR = 5 (a), 2 (b) and 1 (c).
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Figure 6.9: θr obtained with the sequential CO-CRS for the data with SNR = 5 (a), 2 (b) and 1 (c).

in Figures 6.11(a), 6.11(b) and 6.11(c), where it is possible to see that the coherence values near the

reflection are much higher and well-defined, in comparison to the ones obtained from the sequential

CO-CRS. This is due to the better parameter estimation in the global CO-CRS method. We illus-

trate the angle gathers where the picking was performed in Figures 6.12(a), 6.12(b), 6.12(c), 6.13(a),

6.13(b) and 6.13(c). It is also possible to see a better definition of the angles, specially in the case

with SNR = 1.

Finally, we show the source and receiver angles and also the absolute value of the specular angle,

obtained with the global CO-CRS method, in Figures 6.14(a), 6.14(b) and 6.14(c). The parameter

estimation in the global CO-CRS gathers presented correct values in all the tested data, being the

only method in this example to present this performance in low SNR data.

6.2.2 Inversion comparison

We performed the stereotomography inversion in the seismic data from previous section, in order

to evaluate the performance of the different tested slopes estimation methods. This inversion was

performed aiming at obtaining the model with constant velocity of 2Km/s. We used the 25 picked

data from the common-offset with offset value of −2500m. The inversion strategy that we used in

this example was divided in initialization, localization and single-step joint inversion of the model

parameters and we used the Tikhonov regularization. There are several heuristics in the literature to

choose a proper value for λr. One of the most known is the L-curve method [Hansen, 2005], which

attempts to balance the misfit and regularization terms. We did not apply these sort of methods in our
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Figure 6.10: Values of θ, θs and θr obtained from the sequential CO-CRS in data with SNR = 5 (a),
2 (b) and 1 (c). θ is the specular angle and θs and θr are the angles from the scatterer to source and
receiver positions, respectively.



6.2 Plane reflector with dip 87

CMP index

ti
m

e
 [
s
]

CO gather with coherence values

 

 

5 10 15 20 25

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

CMP index

ti
m

e
 [
s
]

CO gather with coherence values

 

 

5 10 15 20 25

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

CMP index

ti
m

e
 [
s
]

CO gather with coherence values

 

 

5 10 15 20 25

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

Figure 6.11: Coherence gathers obtained with the global CO-CRS, for the data with SNR = 5 (a), 2
(b) and 1 (c).
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Figure 6.12: θs for the global CO-CRS with SNR = 5 (a), 2 (b) and 1 (c).
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Figure 6.13: θr for the global CO-CRS with SNR = 5 (a), 2 (b) and 1 (c).

experiments, but this is an interesting perspective for future studies. In our tests, we choose simply

to set the parameter λr by trial and error, with the most suitable value, according to the test being

performed.

The velocity model coordinates vary from 0 to 4Km in depth and from 0 to 11.2Km horizontally.

The velocity model was sampled with a grid of 100m, resulting in a velocity model matrix with

dimensions 41× 113. For generating the B-splines coefficients matrix, we downsampled this matrix

by a factor of 5, in both directions, resulting in a B-splines coefficients matrix with dimensions 9×23,

in a grid with 500m of distance between consecutive points. For all the tests we used the constant

velocity model with the value of 1.5Km/s as initialization.

We first show the results for the picked data with the slopes estimated by the slant stack method.

For this data, we performed the stereotomography inversion in all the three different SNR data. In

Figures 6.15(a), 6.15(b) and 6.15(c) we show how the initialization was performed in these data, with

the equivalent model approach. In order to better visualize the data, we performed a zoom in the

regions close to the reflection. We can observe that the quality in these picked data implies in poor

initialization in the cases of SNR = 2 and SNR = 1. In Figures 6.16(a), 6.16(b) and 6.16(c) we show

the localization results and in Figures 6.16(d), 6.16(e) and 6.16(f) we show the results obtained in the

joint inversion. We can observe, in these inversion stages, that the equivalent model plot appeared

to be correct only in the case with SNR = 5. In order to analyze the estimated velocity, we plot

a 2D velocity slice, extracted in the depth of 1.5 Km, in Figures 6.17(a), 6.17(b) and 6.17(c). The

velocities are close to the actual value of 2Km/s in all the distances only in the data with SNR = 5.

Although in the other two data sets the velocities are wrong, it is possible to observe that they tend
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Figure 6.14: Values of θ, θs and θr obtained from the global CO-CRS in data with SNR = 5 (a), 2 (b)
and 1 (c). θ is the specular angle and θs and θr are the angles from the scatterer to source and receiver
positions, respectively.
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Figure 6.15: Equivalent model initialization obtained with picks from the local slant stack in data
with SNR = 5 (a), 2 (b) and 1 (c).

to be close to 2Km/s. This is mostly due to the strong regularization adopted in these examples.

In Figures 6.18(a), 6.18(b) and 6.18(c) we show the cost function for the three different data. The

red vertical lines divide the localization and joint inversion stages. It is possible to observe that in the

cases of low SNR, stereotomography has converged to high cost function values, failing in the attempt

of minimizing the misfit. This is mostly due to the impossibility of obtaining a good initialization in

these cases.

For the picked data with the slopes estimated with sequential and global CO-CRS, we decided to

analyze the stereotomography inversion only in the cases of SNR = 5 and SNR = 1. First, we see

the results obtained for the slopes from the sequential CO-CRS. In Figures 6.19(a) and 6.19(b) we

show the initialization, with the equivalent model approach. In these examples, the equivalent model

dip bars, for the data with SNR = 1, present strongly incorrect values, which are difficult to analyze

because they are out of the zoomed region. This is the reason why we only show, in Figures 6.20(a)

and 6.20(b), the dip bars and equivalent model obtained in the localization and joint inversion for

the data with SNR = 5. The 2D velocity slices, extracted in the depth of 1.5 Km, are shown in

Figures 6.21(a), and 6.21(b). We can see that, in the data with SNR = 1, the velocities are quite far

from the correct value of 2Km/s. In Figures 6.22(a), and 6.22(b) we show the cost functions for the

two data sets.

Now we show the results obtained with the slopes from the global CO-CRS method, for the data

with SNR = 5 and SNR = 1. In Figures 6.23(a) and 6.23(b) we show the initialization, with the

equivalent model approach. In both cases, the dip bars present better orientations, when compared to
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Figure 6.16: Localization and joint inversion results obtained with picks from local slant stack in data
with SNR = 5 (a) and (d), 2 (b) and (e) and 1 (c) and (f).
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Figure 6.17: Velocity model slice for the picks obtained with local slant stack in data with SNR = 5
(a), 2 (b) and 1 (c).
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Figure 6.18: Cost functions for the picks obtained with local slant stack in data with SNR = 5 (a), 2
(b) and 1 (c).
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Figure 6.19: Equivalent model for the picks obtained with sequential CO-CRS in data with SNR = 5
(a) and 1 (b).
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Figure 6.20: Localization (a) and joint inversion (b) results for the picks obtained with sequential
CO-CRS in data with SNR = 5.
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Figure 6.21: Velocity model slice for the picks obtained with sequential CO-CRS in data with SNR =
5 (a) and 1 (b).
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Figure 6.22: Cost functions for the picks obtained with sequential CO-CRS in data with SNR = 5 (a)
and 1 (b).
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Figure 6.23: Equivalent model for the picks obtained with global CO-CRS in data with SNR = 5 (a)
and 1 (b).

the other picking methods. The localization and joint inversion results are shown in Figures 6.24(a),

6.24(b), 6.24(c) and 6.24(d). We can observe that the global CO-CRS is the only slopes estimation

method where the dip bars are correctly displaced for the data with SNR = 1. The 2D velocity

slices, extracted in the depth of 1.5 Km, are shown in Figures 6.25(a), and 6.25(b). In both cases

the velocities are well distributed with the distance, but in the data with SNR = 5 they are closer

to the correct value. On the other hand, this is the slopes estimation method where the velocities

are closer to the correct value in all the different SNR data sets, including the case of SNR = 1. In

Figures 6.26(a), and 6.26(b) we show the cost functions for the two data sets.

6.3 Slopes picking with CO-CRS

In this section we discuss how to perform the picking operation, to obtain the stereotomography

slopes, in the CO-CRS attributes gather, for more complex seismic data. We begin by proposing

a method to perform automatic picking with the use of coherence gathers obtained by CO-CRS.

We, then, illustrate this automatic picking strategy and the resulting stereotomography inversion in a

synthetic seismic data, that presents a few reflections.
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Figure 6.24: Localization and joint inversion results for the picks obtained with global CO-CRS in
data with SNR = 5 (a) and 1 (b).
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Figure 6.25: Velocity model slice for the picks obtained with global CO-CRS in data with SNR = 5
(a) and 1 (b).
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Figure 6.26: Cost functions for the picks obtained with global CO-CRS in data with SNR = 5 (a) and
1 (b).
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6.3.1 Strategy for automatic picking with CO-CRS

Automatic picking strategies are important tools to extract the angle values from the CO-CRS

attributes gathers, since the manual picking can become a very time consuming operation. In the

works of Mann and Duveneck [2004] and Klüver and Mann [2005] an automatic picking strategy is

presented to extract the ZO-CRS parameters, which are used as input in the NIP tomography.

We follow this idea and propose, here, an automatic strategy to extract the slopes used in stereoto-

mography, from the CO-CRS attributes gathers. As explained in chapter 5, we obtain, as output from

the CO-CRS method, some attributes and coherence gathers. The authors of Mann and Duveneck

[2004] note that the coherence gives a direct measure of the reliability of the kinematic wave-field

attributes. Therefore, using the coherence values to extract the information necessary to the picking,

from the attributes gathers, is a very interesting way to automate the picking process. However, only

using coherence as a reliability criterion for picking can be misleading. This is mostly because, in

the presence of noise, some coherence values might present high values, resulting in incorrect picks.

Therefore, some additional criteria must be considered.

We propose the following automatic picking algorithm. For each trace:

• Scan each time sample from this trace and form simple windows of size 2L + 1 and 2K + 1,

with L time samples and K traces around the scanned time sample.

• Check if the coherence (semblance) for this reference time sample is higher than a given thresh-

old.

• Check if a user-defined percentage of all samples inside the window:

– have coherence values higher than a (different) given threshold;

– have a dip difference below a given threshold with respect to the central sample.

• Continue scanning the time samples on the selected trace until a user-defined maximum number

of picks on this trace is reached.

We did not use windows aligned with the CO-CRS parameters nor performed filtering operations

in the coherence gathers, as it is suggested for the ZO-CRS case [Mann and Duveneck, 2004, Klüver

and Mann, 2005]. For the numerical experiment shown in section 6.3.2, and also for other performed

tests, the proposed algorithm presented a satisfactory performance.

6.3.2 Numerical example: synthetic data

In this numerical example, we investigate the performance of the proposed automatic picking

strategy, discussed in section 6.3.1, in a synthetic seismic data.
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Figure 6.27: Velocity model used to generate the synthetic data.

We generated the data using the open-source ray tracing tool SEIS-88, developed by the Seis-

mic waves in complex 3-D structures (SW3D) consortium and integrated in the open-source seismic

processing package GêBR [Biloti, 2011, 2012].

The data contains 179 shots with 180 receivers, displaced at intervals of 10m. The distance

between the source and the first receiver is 10m. The first shot was performed at the offset of 10m

and the last one at 1790m. Each shot was increased of 10m in relation to the last one. The data has

a sample period of 2ms and the total time of recording was 2 s. The velocity model used to generate

the data contains four layers, with VP velocities of 1.5Km/s, 2.0Km/s, 2.5Km/s and 3.0Km/s. We

illustrate this velocity model in Figure 6.27.

We used Seismic Unix to add random noise to the data, resulting in a data with SNR = 20. In

order to pick the slopes and generate the stereotomography input data, we applied the global CO-CRS
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method in the CO gather with offset coordinate of 70m. We used the DE algorithm with the crossover

and mutation parameters configured with the values of CR = 0.7 and F = 0.2. The population size

was of NP = 60 individuals and the total number of iterations was G = 400. We used the following

apertures for offset and midpoint: ∆hmax = 100m and ∆xmax
m = 100m. In Figure 6.28(a) we show

the CO gather data with SNR = 20, used in this example. Figure 6.28(b) shows the same CO gather

enhanced by the application of the global CO-CRS method. In Figures 6.28(c) and 6.28(d) we show

the angle gathers estimated in this operation.

We performed our proposed automatic picking algorithm, obtaining, in the coherence gather,

the picking positions that indicate a reflection. With these positions, we were able to select the

stereotomography parameter values in the angle gathers. In Figure 6.29(a) we show the coherence

gather superposed by black markers indicating the picked positions. In Figure 6.29(b) we show the

constant gradient v(z) = 1.5+z Km/s velocity model, used as initialization3 to the stereotomography,

superposed by the dip bars obtained by the equivalent model evaluation in the picked data. We

obtained the total of 660 pickings for this offset.

The stereotomography inversion was employed to recover the model varying from 0 to 1.8Km,

both in distance and in depth. The constant gradient velocity model used as initialization was sam-

pled in both coordinates with intervals of 10m, resulting in a matrix with dimensions 181 × 181.

In the initialization and localization inversion stages, we undersampled this model to 320m in both

dimensions, resulting in a matrix with dimensions 6 × 6. In the multi-step approach adopted in

the joint inversion, we increased this sampling distance by two, alternately for distance and depth.

We performed five multi-step inversions, in the sampling grids with depth × distance coordinates of

320m × 320m, 320m × 160m, 160m × 160m, 160m × 80m and 80m × 80m. In Figures 6.30(a),

6.30(b), 6.30(c), 6.30(d), 6.30(e) and 6.30(f) we illustrate the velocity model obtained in the local-

ization and in each one of the multi-step stages, superposed by the respective equivalent model dip

bars. These stages took 55, 43, 462, 19, 4 and 9 iterations, resulting in a total of 592 iterations. We

used the Tikhonov regularization, with the value of λr = 0.1, obtained by trial and error. We used

σx = σz = 0.01Km, σpx = σpz = 0.01 s/Km and σt = 0.001 s, as suggested in Billette et al. [2003].

It is possible to observe that the dip bars model parameters are strongly updated in the localization

and in the two first multi-step inversions, being slightly changed in the last three multi-step stages.

On the other hand, the velocity model is strongly updated in the three first multi-step inversions. In

Figures 6.31(a), 6.31(b), 6.31(c), 6.31(d) and 6.31(e) we show the true velocity model reconstructed

with B-splines coefficients and using the same sampling as the one used in the five multi-step inver-

sion stages. This is an interesting plot, since it might be used as the best possible velocity model

3We have tried to use several velocity models in the stereotomography initialization, such as homogeneous velocity
models or even different constant gradient velocity models. The constant gradient velocity model chosen is the one which
provided the best results for the velocities update in all the depths.
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Figure 6.28: Raw CO gather data with SNR = 20 (a) and the same data enhanced with CO-CRS (b).
θs (c) and θr (d) estimated attributes.
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Figure 6.29: Coherence gather superposed by black markers indicating the picking positions (a).
Constant gradient v(z) = 1.5+z Km/s velocity model, used as initialization to the stereotomography,
superposed by the dip bars obtained by the equivalent model evaluation in the picked data (b).
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B-splines representation, with the employed grid. If we use this for comparison purposes, we can

see that stereotomography performed quite well in the first two multi-step inversion stages. In Fig-

ure 6.32 we show the cost function for this example. The vertical lines correspond to the divisions in

the inversion stages.
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Figure 6.30: Velocity model obtained in the localization (a) and in each one of the multi-step stages
(b)-(f), superposed by the respective equivalent model dip bars.
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Figure 6.31: True velocity model reconstructed with B-splines coefficients using the same sampling
as the one used in the five multi-step inversion stages (a)-(e).
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Figure 6.32: Cost function for the synthetic data example. The vertical lines correspond to the divi-
sions in the inversion stages.
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Chapter 7

Conclusions

In this thesis we discussed the problem of slopes estimation for a better initialization of 2D

stereotomography. This is an important topic, since stereotomography is highly affected by its initial-

ization, as it employs local optimization methods to solve the inverse problem.

We proposed to use the attributes obtained as outputs of the common-offset common-reflection-

surface (CO-CRS) method as input data for stereotomography. We also proposed to use the global

optimization method known as differential evolution (DE) to estimate the CO-CRS attributes. The

method currently used to estimate the CO-CRS attributes is divided in a sequence of steps, where at

each step some approximations are used in the estimation. By analyzing our tests, we may conclude

that the most significant differences between the global and sequential CO-CRS parameter estimation

strategies are:

• The global CO-CRS strategy presents better estimates in data sets highly corrupted by noise.

The possible limitation for the sequential CO-CRS is that the method is strongly dependent of

each search step. If the estimation fails in some of these steps, the following ones might present

poor performances.

• The computational cost is higher for the global CO-CRS. However, the computational cost in

the sequential CO-CRS can also be quite expensive. If we choose a bi-parametric search in the

first sequential step, the sequential CO-CRS will present approximately the same computational

cost as the global CO-CRS, with, most likely, a worse performance.

The link between the CO-CRS attributes and the stereotomography initialization requires a pick-

ing strategy. We completed this work-flow by proposing an automatic picking strategy to extract the

slopes used in stereotomography, from the CO-CRS attributes gathers. We adopted a simplification

of some existing methods, which are used to obtain the ZO-CRS parameters for the NIP tomography.

Nevertheless, we still see possible improvements to be adopted in our automatic picking proposal,
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specially regarding the formation of aligned windows and application of filtering methods in the co-

herence gathers.

We illustrated, with synthetic examples, the benefits of using the global CO-CRS slopes as ini-

tialization, for seismic data sets highly corrupted by noise. We now list the most significant aspects

of these tests:

• In our tests, the stereotomography inversion with the slopes obtained from the slant stack

method presented good performance only in seismic data with reasonably good signal-to-noise

ratios (SNR). In data sets more corrupted by noise, the slopes obtained from the sequential and

global CO-CRS presented better inversion results.

• The method more robust to noisy data was the global CO-CRS, which was the only method

capable of presenting satisfactory results for all the data sets in our tests.

For the application of this complete work-flow in more complex data, we see the potential of

exploring different aspects, in order to obtain satisfactory results. As future prospects for the contin-

uation of these work, we highlight:

• The stereotomography initialization is still a great issue and the combination of slopes picked

with the CO-CRS method from different CO gathers may increase the quality of the results.

• Local optimization is a very sensitive approach to solve the inversion problem. In most of our

tests we obtained velocity models that were probably a local minimum solution. We believe that

testing different regularization functions or even better velocities initialization could mitigate

this problem.

• Regarding the stereotomography input, the proposed work-flow of slopes computation and

picking should also be investigated in more complex synthetic and field seismic data.
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Appendix A

B-Splines

One of the key aspects in stereotomography is the velocity model representation. In seismic

tomography, the usual approach to represent the velocity model is to use representations such as:

v(x, z) =
Nx−1
∑

i=0

Nz−1
∑

j=0

wijBi(x)Bj(z), (A.1)

where Bi(x) and Bj(z) represent a basis for the expansion of the velocity using, for instance, B-

splines [Tarantola, 2005], wij are the coefficients of this expansion and Nx and Nz are, respectively,

the number of rows and columns in the coefficients matrix. This approach with the B-splines is

also common in stereotomography. We provide, now, more information about how we addressed the

B-splines velocity model representation.

A.1 Definition

Splines are piecewise polynomials with pieces that are smoothly connected together. The joining

points of the polynomials are called knots. For a spline of degree n, each segment is a polynomial of

degree n, so we need (n + 1) coefficients to describe each piece [Unser et al., 1993a,b]. The splines

can be characterized in terms of a B-spline (basis spline) expansion:

s(x) =
∑

k

c(k)βn(x− k), k = 0, . . . , N − 1. (A.2)
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In the B-splines expansion, βn is a central B-spline of degree n and c(k) are the B-splines coefficients.

In this work, we used B-splines of degree n = 3, defined by:

β3(x) =











2
3
− |x|2 + |x|3

2
, 0 ≤ |x| < 1

(2−|x|)3

6
, 1 ≤ |x| < 2

0, 2 ≤ |x|
. (A.3)

We also used the first and second order derivatives of β3, defined, respectively, by:

dβ3(x)

dx
=











x(3|x|−4)
2

, 0 ≤ |x| < 1
−x(2−|x|)2

2|x|
, 1 ≤ |x| < 2

0, 2 ≤ |x|
(A.4)

and

d2β3(x)

dx2
=











3x2

|x|−2
, 0 ≤ |x| < 1

(2− |x|), 1 ≤ |x| < 2

0, 2 ≤ |x|
. (A.5)

A.2 B-splines coefficients

Traditionally, the B-spline interpolation problem has been approached using a matrix framework

and setting up a system of equations, which is then solved using standard numerical techniques. A

different method for obtaining the B-splines coefficients using simpler digital filtering techniques was

proposed by Unser [1999].

As described in Unser [1999], the B-splines coefficients can be obtained via digital filtering, using

a filtering operation. In other words, given the digital sampled input signal {s(k)}N−1
k=0 , the B-splines

are obtained by two consecutive filtering operations:

c+(k) = s(k) + z1c
+(k − 1), k = 1, . . . , N − 1, (A.6)

c−(k) = z1(c
−(k + 1)− c+(k)), k = N − 2, . . . , 0. (A.7)

with z1 = −2 +
√
3. The first filter, with output given by c+(k), is causal, running from left to right,

while the second filter, with output given by c−(k), is anti-causal, running from right to left. We

illustrate the filters diagram in Figure A.1.
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Figure A.1: Filters for B-Spline coefficients computation.

The starting values for the two filters, c+(0) and c−(N − 1), are given by

c+(0) = 6
N−1
∑

k=0

s(k)zk1 , (A.8)

and

c−(N − 1) =
z1

z21 − 1
(c+(N − 1) + z1c

+(N − 2)). (A.9)

Because of the B-spline compact support, to interpolate signals with cubic B-splines we need to use

only 4 neighbouring B-splines. The digital interpolated signal, s(m), interpolated with B-splines

coefficients, is given by:

s(m) =

k1+K−1
∑

i=k1

c(i)β3
(m

r
− i
)

, (A.10)

where each interpolated point is created at the position m = x/dg, with dg being the sample rate in

space; r is the interpolation factor; K = n + 1 is the B-spline support factor (for cubic B-splines,

n = 3 and K = 4); and k1 = ⌊m/r⌋.

A.3 2D B-splines

The two-dimension (2D) cubic B-splines interpolation is defined as:

s(x, z) =
∑

k

∑

l

c(k, l)β3(x− k)β3(z − l), (A.11)

with k = 0, . . . , N − 1, l = 0, . . . ,M − 1 and x, z ∈ R, k, l ∈ Z.

It is shown in Unser [1999] that the 2D B-splines coefficients can be obtained by two consecutive

1D filtering operations, in the x and z dimensions, using the same 1D filter, with the input sampled
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signal s(k, l), for k = 0, . . . , N − 1 and l = 0, . . . , M − 1. In that way, the sampled 2D B-spline

interpolation might be given by the following expression:

s(m1, m2) =

k1+K−1
∑

i=k1

l1+K−1
∑

j=l1

c(i, j)β3
(m1

r
− i
)

β3
(m2

r
− j
)

. (A.12)

Now, each interpolated point is created at the position m1 = x/dg and m2 = z/dg, with k1 = ⌊m1/r⌋
and l1 = ⌊m2/r⌋.
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Appendix B

Gradient method

The functional J(m) : RN → R, described as the stereotomography cost function in chapter 2, is

known as the error surface for the stereotomography minimization problem, where N is the number

of elements in the model parameter vector, m. The minimization problem consists in finding the

vector m∗ ∈ R
N which minimizes the cost function J(m):

m∗ = arg min
m

J(m), (B.1)

with m ∈ R
N .

This problem can be solved iteratively, with the use of the initial condition m0, by an optimzation

algorithm of the form:

mk+1 = mk + αkfk, (B.2)

where the variable k ≥ 0 defines the iteration number, mk ∈ R
N is the parameter vector, αk ∈ R

+ is

a scalar that defines the step size and fk ∈ R
N is a vector that defines the direction of adjustment.

One of the optimization algorithms most employed in minimization problems is the gradient

method [Nocedal and Wright, 2006]. The gradient method (also known as steepest-descent) is a

first order method, once it uses only the first order derivatives of the cost function J(m). In this

method, the direction of adjustment is given by:

f = −∇J(m). (B.3)

The adjustment, in the gradient method, is, then, given by:

mk+1 = mk − αk∇J(mk). (B.4)
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Finding the step size at each iteration, αk, is a different problem, largely addressed in the litera-

ture [Nocedal and Wright, 2006].

Interesting alternatives to the gradient method would be the methods which try to improve the

steepest-descent gradient, such as the conjugate gradient method [Nocedal and Wright, 2006]. The

conjugate gradient algorithm is an iterative linear solver for symmetric positive definite systems.

This method can be interpreted as a minimization algorithm for quadratic functions [Métivier and

Brossier, 2016]. Also, there are other alternatives which use the second-order information, present in

the Hessian matrix, such as the Newton method [Nocedal and Wright, 2006], or even methods which

try to approximate the computation of this matrix, such as the BFGS method [Nocedal and Wright,

2006].

In the next sections we briefly introduce some of the methods that we investigated in our work,

which are related to the step size determination and to the use of the nonlinear conjugate gradient,

which is an extension of the conjugate gradient to nonlinear functions.

B.1 Step size determintion

The step size value plays a crucial role the optimization techniques based on the gradient, once

it determines how much the solution moves on the gradient direction [Nocedal and Wright, 2006].

Too small values may cause a slow convergence for the algorithm, or even worse, may imply result

in failure to converge. On the other hand, too large values may cause the algorithm to oscillate in the

solution neighbouring, failing to converge.

The search for the step size value usually involves, at each iteration of the optimization technique,

the solution of a unidimensional minimization of the type:

αk = arg min
α

J(mk + αfk). (B.5)

Hence, at each k-th iteration, we apply an algorithm to find a value of αk > 0 which minimizes

equation (B.5). The line search methods are the most employed methods to estimate the step size.

Some of the most known line search algorithms are the back-tracking, the Fibonacci and the golden

ratio search methods [Nocedal and Wright, 2006]. A different approach for finding the step size is

to use the spectral projected gradient methods [Raydan, 1993, Birgin et al., 2014], which can achieve

faster convergence for steepest-descent methods.
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B.2 Nonlinear conjugate gradient

The nonlinear conjugate gradient method is an extension of the conjugate gradient algorithm to

the minimization of general nonlinear functions. In the nonlinear conjugate gradient the model update

is still performed with equation (B.2) and the the step size is computed as in equation (B.5). But we

have now a coefficient, βk ∈ R, in the computation of the direction:

{

f0 = −∇J(m0),

fk = −∇J(mk) + βkfk−1, k ≥ 1.
(B.6)

The coefficient βk tries to approximate second-order information and is computed with first-order

information, given by the gradient. We choose to compute βk with the Polak-Ribiere method [Polak

and Ribiere, 1969], which is a popular method in the literature due to its good results. The coefficient

βk, computed with the Polak-Ribiere method, is given by

βk =
∇J(mk)

T (∇J(mk)−∇J(mk−1))

∇J(mk−1)T∇J(mk−1)
. (B.7)
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Appendix C

Broyden-Fletcher-Goldfarb-Shanno method

(BFGS)

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [Nocedal and Wright, 2006], is a quasi-

Newton method, which tries to estimate iteratively the inverse of the hessian matrix, H.

To compute the BFGS algorithm, assume that the cost function J(m) has continuous partial

derivatives until second order. Define gk = −∇J(mk)
T and gk+1 = −∇J(mk+1)

T . If the hessian,

∇2J(m), is constant, then:

qk ≡ gk+1 − gk = ∇2J(m)pk, (C.1)

pk = αkfk. (C.2)

In this context, we have the direction of adjustment given by fk = Hkgk.

The BFGS algorithm determines the matrix Hk, iteratively, by:

Hk+1 = Hk +
pkp

T
k

pT
k qk

[

1 +
qT
kHkqk

pT
k qk

]

− Hkqkp
T
k + pkq

T
kHk

pT
k qk

, (C.3)

with k = 0, . . . , N − 1. The startup is H0 = IN , where IN is the identity matrix with dimension N .

C.1 Limited memory BFGS

Unfortunately, the BFGS method presents large limitations concerning its implementation for a

large number of model parameters. For large values of N , the BFGS starts to occupy much computer

memory, which significantly slows its execution. To overcome this issue, the work of Nocedal [1980]

proposes the limited memory BFGS (l-BFGS). Later, it was proposed the limited memory BFGS

bounded (l-BFGS-b) [Zhu et al., 1994, Byrd et al., 1995], for bounded problems.
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This algorithm was implemented for generical optimization problems in the FORTRAN program-

ming language and made available by its authors [Zhu et al., 1994]. This implementation of l-BFGS-b

is highly used for different sort of optimization problems and we integrated this library in our stereo-

tomography implementation.

The l-BFGS-b is employed in stereotomography in the sense of minimizing a nonlinear function

of N variables1,

min J(m) (C.4)

subject to

l ≤ m ≤ u, (C.5)

with the vector l and u representing the lower and upper bounds of the variables. The user must

provide the gradient to the algorithm, but no knowledge about the Hessian is necessary. In order to

approximate the Hessian matrix the authors use limited memory BFGS matrices.

The l-BFGS-b estimates an approximate inverse Hessian operator Qk. The resulting descent

direction is computed as

fk = −Qk∇J(mk). (C.6)

The algorithm is also appropriate to solve unbounded problems, making it unnecessary to provide

the bounds to all the variables. The authors also use the gradient projection method to determine a set

of active constraints at each iteration. This is performed before the line search to determine the step

size α. The line search is done with the Wolfe condition [Nocedal and Wright, 2006], which presents

two testing conditions.

At each iteration of the line search, before testing the two Wolfe conditions, the updated model is

projected into the feasible domain Ω through the operator Proj(m, l,u) defined, for the i-th element

of the vectors m, l, and u, as

Proj(mi, li, ui) =

∣

∣

∣

∣

∣

∣

∣

mi, if li ≤ mi ≤ ui,

li, if mi < li,

ui, if mi > ui,

(C.7)

This procedure ensures that the estimated model always remains in the feasible domain Ω [Métivier

and Brossier, 2016].

The two Wolfe conditions are the sufficient decrease condition

J(mk + αfk) ≤ J(mk) + c1α∇J(mk)
T fk (C.8)

1In order to ease the notation we consider N instead of the N +M variables defined in chapter 2.
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and the curvature condition

J(mk + αfk)
T fk ≥ c2∇J(mk)

T fk, (C.9)

with the coefficients c1 and c2 being in the interval

0 < c1 < c2 ≤ 1. (C.10)

In practice we may use c1 = 10−4 and c2 = 0.9, as suggested in the works of Nocedal and Wright

[2006] and Métivier and Brossier [2016].

For more information about the l-BFGS-b we suggest the reader to see the works of Zhu et al.

[1994] and Byrd et al. [1995].
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Appendix D

Differential evolution (DE)

Differential Evolution (DE) [Storn and Price, 1997] is a parallel direct search method for con-

tinuous space variables which utilizes NP D-dimensional parameter vectors xi,G, i = 1, · · · , NP

as population, on each generation G. Each parameter vector constitutes a candidate solution of the

optimization problem. The DE algorithm is divided in three stages: mutation, crossover and selection.

The mutation operation generates of a new vector for each individual by the following expression

vi,G+1 = xr1,G + F (xr2,G − xr3,G). (D.1)

The indexes r1, r2, r3 ∈ {1, · · · , NP} are mutually distinct, chosen randomly and different from

the index i. F is a real and constant factor in the range of [0, 2], which controls the length of the step

given in the direction defined by xr2,G − xr3,G. The crossover operation is employed with the goal

of enhancing the diversity of the mutated parameter vectors. Let xi,G be the vector under analysis

and vi,G+1 the mutated vector obtained by equation (D.1). The crossover resultant vector ui,G+1 is

obtained by

uji,G+1 =

{

vji,G+1, if rj ≤ CR or j = li

xji,G+1, if rj > CR and j 6= li
, (D.2)

where j = 1, · · · , D, rj ∼ U(0, 1), CR ∈ [0, 1] is the crossover constant factor defined by the user

and li is a random index ∈ 1, · · · , D, which ensures that ui,G+1 receives at least one component

from vi,G+1. After the stages of mutation and crossover, the selection of the vectors to be preserved

in the next generation is made by the use of a greedy criterion. The vector ui,G+1 is compared to the

vector xi,G. If vector ui,G+1 yields a larger cost function value than xi,G, then xi,G+1 is set to ui,G+1;

otherwise, the old value xi,G is retained.

The differential evolution strategy employed in this work is known in the literature by the notation:

DE/rand/1/bin. In that notation, rand specifies the random choice of the population vector in the
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Algorithm 1 Differential Evolution
Function x = DE(NP , CR, F, range, fcost)
[x, fx] ⇐= initialize(NP , range, fcost)
while stopping criterion is not reached do

for i = 1 untilNP do
vi,G+1 ⇐= mutation(xi,G, F )
ui,G+1 ⇐= crossover(xi,G, vi,G+1, CR)

end for
fu ⇐= evaluate(u, fcost)
for i = 1 untilNP do

if fu(i) > fx(i) then
xi,G+1 ⇐= ui,G+1

else
xi,G+1 ⇐= xi,G

end if
end for

end while

mutation; 1 is the number of difference vectors used in the crossover operation and bin denotes the

crossover scheme employed, related to independent binomial experiments. In Algorithm 1 we show

the pseudocode of DE [Boccato et al., 2012]. The parameters illustrated in Algorithm 1 are: the

number of individuals in a population (NP ); the crossover rate (CR); the mutation scale factor (F );

the search space limits (range) and the cost function that we are evaluating to solve the problem (fcost).

In Figure D.1.1 we present a graphic illustration of the DE/rand/1/bin algorithm. Assume that,

at a given generation we have an individual given by the vector x1, with 3 parameters to be estimated.

The DE algorithm is performed as follows: First, two other individuals from the same generation,

x2 and x3, are randomly chosen. The mutation operation is performed by adding individual x1 with

the difference between individuals x2 and x3 weighted by the control parameter F , yielding the

individual v. For the crossover operation, other individual from the same generation, x4, is also

randomly chosen. The crossover is the operation of replacing a position of the individual v by the

value of that same position of the individual x4, with a probability given by the control parameter CR,

resulting in a new individual u. The selection criterion is a greedy one, which selects the individual

yielding the higher value of the cost function being evaluated (we illustrate the maximization case).

These operations must be applied to all the individuals at every generation.




