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“I have noticed even people who claim everything is predestined, and that we can do

nothing to change it, look before they cross the road.”

(Stephen Hawking)



Abstract

This work presents a theoretical and practical comparison of three popular cognitive ar-

chitectures: SOAR, CLARION, and LIDA. The theoretical comparison is performed based

on a set of cognitive functions supposed to exist in the human cognitive cycle. The practi-

cal comparison is performed applying the same experiment in all architectures, collecting

some data and comparing them using a set of software quality metrics as a basis. The

aim is to emphasize similarities and differences among the models and implementations,

with the purpose to advise a newcomer on how to choose the appropriated architecture

for an application.

Keywords: Cognitive architectures; Cognitive science; SOAR; CLARION; LIDA.



Resumo

Este trabalho apresenta uma comparação teórica e prática entre três das mais populares

arquiteturas cognitivas: SOAR, CLARION e LIDA. A comparação teórica é realizada

com base em um conjunto de funções cognitivas supostamente existentes no ciclo cognitivo

humano. A comparação prática é realizada aplicando-se um mesmo experimento em todas

as arquiteturas, coletando alguns dados e comparando-as usando como base algumas

métricas de qualidade de software. O objetivo é enfatizar semelhanças e diferenças entre

os modelos e implementações, com o objetivo de aconselhar um novo usuário a escolher a

arquitetura mais apropriada para uma certa aplicação.

Palavras-chaves: Arquiteturas cognitivas; Ciência Cognitiva; SOAR; CLARION; LIDA.
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1 Introduction

What will be my lunch today? Should I go to work by bus or by car? Should I

use a short or a long sleeve shirt? These questions are examples of some decisions that we

take every day. We live in a dynamic environment, where everything changes constantly

and where, at every moment, we face a situation that requires a decision to be taken. We

take all kinds of decisions, even for minor things and, sometimes, we are not even realizing

we are making a choice.

ArtiĄcial intelligence (AI) is a research area in computer science that aims to

reproduce the human intelligent behavior in artiĄcial agents, helping them to choose the

best decision to be taken at a given moment. Through the years, a lot of approaches were

developed: Ąrst we had expert systems (originally using classic logic, and later including

fuzzy logic), which were based on a symbolic approach correlating conditions or facts

to actions or results (expressed in form of rules); later, neural networks appeared with

a sub-symbolic approach, following an analogy based on the way that neurons work in

the brain, translating a problem-solving issue in a functional mapping, using inductive

learning techniques to Ąnd the parameters of this mapping; Ąnally, seeking to Ąll some

gaps, emerged the cognitive systems, based on models of human or animal cognitive

processing.

Cognition is a process related to how a person or animal understands the world

and acts on it. The sequence of understanding and further acting is called a cognitive cycle

and is performed using a set of functions (called cognitive functions), each one responsible

for a speciĄc task, contributing to the effectiveness of the cycle. So, if we want to develop

an artiĄcial agent that can operate in dynamic environments, it is crucial for them to

exhibit a reĄned and malleable problem-solving capability, and nothing better than to

mirror in the cognitive functions of humans or animals (forged by natural selection along

the years). If we are able to replicate these functions (perception, memory, attention, mo-

tivation, consciousness, etc) in artiĄcial agents, we can get amazing results by combining

the velocity of the current processors with the versatile way that humans or animals solve

problems. In this context, the concept of cognitive architecture emerged.
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A cognitive architecture (CA) is, basically, a multi-domain computational

model that can be used for several purposes in different levels of applications. It tries to

describe, based on different models of human or animal cognition, the way that problems

are solved, knowledge is acquired, goals are determined, actions are taken and sensorial

data is processed. Ron Sun (SUN, 2004) lists some important characteristics that any CA

should have, for instance: bio-evolutionary realism, cognitive realism, the eclecticism of

methodologies and techniques, reactivity, trial-and-error adaptation, and so on.

Each CA tries to model the functions required to create an autonomous in-

telligent agent, based on biologically inspired foundations. These foundations supporting

the architecture are referred as being the architectural model or conceptual model of the

architecture. Given a conceptual model, several computer implementations can be cre-

ated, being designated as architecture implementations, that tend to be very complex,

due to the number of concepts and theories involved. An architecture implementation is,

in short, a software that is used as a platform for the creation of other software, this one

responsible, in fact, to meet a set of goals. In other words, the architecture implementation

can be viewed as the ŞskeletonŤ of the application, because it provides the foundations of

a reusable code that can be applied in different situations.

Over the years, several paradigms appeared in cognitive science, bringing new

theoretical foundations, and the number of CAŠs considerably increased (SOCIETY,

2012). There are many examples of architectures under development that continually

receive updates: ACT-R, CLARION, SOAR, LIDA, EPIC, COGPRIME, ART, BECCA,

etc. Due to this diversity, it is complex to choose any of them in particular to make ex-

periments or to apply in real problems, in such a way that a user, that is beginning the

study in this area, will have a herculean task in order to determine which architecture

will best Ąt his needs or even if a cognitive architecture is the best approach to solve the

desired problem.

This diversity of approaches and the difficulty in properly mapping the simi-

larities and differences among them is the motivation for this work. Our main goal is to

facilitate a researcher interested in this subject in performing his Ąrst steps, providing a

better overview of the area and highlighting some important aspects. To achieve this goal,

we performed a detailed analysis of some CAŠs and a deep comparison among them under
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two perspectives: architectural modeling and architectural implementation. The models

were compared using biological functions as a basis and implementations were compared

using a practical experiment applied for all the architectures.

Considering this proposal and that a large number of cognitive architectures

is available, three CAŠs are focused in this work: SOAR (State Operator And Result),

CLARION (Connectionist Learning with Adaptive Rule Induction ON-line) and LIDA

(Learning Intelligent Distribution Agent). These architectures were chosen using the fol-

lowing criteria: to be traditional and emblematic exponents in the Ąeld, to have available

a considerable number of publications and tutorials, to have their implementation avail-

able for free in the Internet, and to be constantly updated (making the analysis of the

implementation feasible). Besides that, it is important to notice that each of the chosen

architectures is related to a speciĄc paradigm in cognitive science (cognitivism, connec-

tionism and embodied cognitive science).

In the next 3 chapters, these cognitive architectures will be explored, detailing

the foundations of their conceptual models and also exposing the functionality of each

module in the architectures. In chapter 5, we try to establish a strategy of comparison, to

be used in the sequence, based on the architectureŠs models and implementations, and also

elucidating the details of the practical experiments. Finally, chapters 6 and 7 consolidate

the analysis providing the obtained results.
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2 The SOAR Cognitive Architecture

Created at the University of Michigan by John E. Laird, Paul Rosenbloom and

Allen Newell, SOAR is a cognitive architecture that typically represents the cognitivist

ideology, predominant in the 70Šs and 80Šs, which deĄned the mind as a digital computer,

or as a set of symbolic representations handled according to syntactical rules and following

SearleŠs Chinese Room argument (SEARLE, 2001).

Despite its symbolic origins, new modules started to be added to SOAR, giving

it a hybrid Ćavor. In 2008, Laird proposed an extended SOAR architecture with new

modules and features (LAIRD, 2008). Nevertheless, as Laird said, all of these modules

are in continuous development and gradually being integrated into the architecture. Figure

2.1 helps to describe all the components that make up the actual architecture.

In SOARŠs website1, we can Ąnd both the executable and source code of SOAR,

which are available for different operational systems. In the package available for down-

load, there are some tools that make the development and the debugging easier (SoarDe-

bugger and VisualSoar, for example), documentation, code samples and the SOAR APIs.

SOAR uses an integration language, Soar Markup Language (SML), to embed SOAR

within another piece of code, allowing the use of SOAR in the construction of artiĄcial

agents. Along with this work, we will be highlighting some examples of this language in

order to explain how to create an agent with SOAR embedded.

First of all, it is important to provide a brief explanation of the principles of the

architecture. SOAR is a tool envisioned for the exploration and search of a problem space.

The idea is that, given a problem, we are able to construct a model for this problem Ąnding

a proper problem space and encoding the problem in terms of a current state, which might

be changed through the application of operators, leading the system to further states,

until a goal state is reached. From this perspective, two primary concepts in SOAR are:

operators and states.

A state is an encoding of a situation in a given time, encoded in SOARŠs

Working Memory using a set of WMEŠs (Working Memory Elements). As the SOAR
1 URL: <http://soar.eecs.umich.edu>
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stored in the Procedural Memory. Each rule has basically two parts: LHS (Left Hand

Side), usually describing a condition to be met, and RHS (Right Hand Side), usually

prescribing an action to be performed while the condition given in the LHS is met. The

LHS is constructed by a set of patterns which are matched against WMEŠs in the Working

Memory, possibly with variables which can be instanced during the pattern-match phase.

The RHS of a rule is constructed by a set of commands, which can do one of the following

things:

• Add a new WME to the Working Memory.

• Remove a WME from the Working Memory.

• Propose an operator to be applied to current state

• DeĄne preferences among operators.

• Perform system actions like printing, saving Ąles, etc.

Thus, rules in the Procedural Memory can be of different types, depending on

their conditions and actions (refer to Box 2.1 to visualize an example of usage of each

type of rule).

• Operator Proposition Rules: Rules which detect a set of conditions in the current

state and propose the application of a particular operator to the current state.

• Elaboration Rules: Rules which detect a set of conditions in the current state and

propose the creation of WMEs to further elaborate the state (e.g. calculate derived

variables, etc).

• Preferences Definition Rules: Rules which detect a set of situations in their

condition part and propose some preference among operators in their actions part.

• Operator Application Rules: Rules which detect if a particular operator was

selected by SOAR and perform a set of removals and additions of WMES in order

to change the state.

• Monitoring Rules: Rules which detect a set of situations in the current state and

perform some system debugging actions like printing message or saving logs.
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Box 2.1: Example of rules in SOAR

# Operator Proposition Rules
sp {propose*wander

(state <s> ^attribute state
^impasse no-change
^superstate <ss>)

(<ss> ^io.input-link <il>)
(<ss> ^superstate nil)
(<il> ^CREATURE <creature>)
(<creature> ^SENSOR.VISUAL <visual>)

-->
(<ss> ^operator <o> +)
(<o> ^name wander)}

# Operator Application Rules
sp {apply*wander

(state <s> ^operator <o>
^io <io>)

(<io> ^output-link <ol>)
(<o> ^name wander)

-->
(<ol> ^MOVE <command>)
(<command> ^Vel 1)
(<command> ^VelR 1)
(<command> ^VelL 1)}

#Elaboration Rules
sp {elaborate*block*increment
(state <s> ^problem-space blocks

^block-counter <counter>
^thing <element>)

(<element> ^type block)
-->
(<s> ^block-counter (+ 1 <counter>))}

#Preferences Definition Rules
sp {wander*preferences
(state <s> ^operator <o> +)
(<o> ^name wander)
-->
(<s> ^operator <o> <)}

#Monitoring Rules
sp {wander*debug
(state <s> ^operator.name wander

^io.output-link <out>)
-->
(write (crlf) |Operator applied: wander|)}

It is important to understand that the basic building blocks of SOAR are

WMEs and rules. The concepts of state and operators are high-level structures which are

constructed with the use of WMEs and rules. A reasoning cycle in SOAR is constituted

of a sequence of reasoning steps, since the problem proposition in the form of an initial

state, until the last step which invokes the halt command, indicating that the problem

has been solved, and there is a solution.

Each reasoning step has the following phases:
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• Input: During this phase, input information is collected from the environment,

encoded into WMEs and appended to the io.inputlink node of the state.

• Proposal: During this phase, operator proposition rules are Ąred in order to propose

a set of operators which might be applied to the current state.

• Decision: During this phase, SOAR evaluates all the proposed operators and select

one of them to operate on the state.

• Application: During this phase, operator application rules are Ąred in order to

change the current state, transforming it into a new state.

• Output: During this phase, any information to be output to the environment is

added to the io.outputlink node of the current state, in the form of WMEs, which

are then unencoded and made available for the user to be sent to system actuators.

In the beginning of the Ąrst reasoning step of a reasoning cycle, SOAR cre-

ates the basic structure of an initial state, which is then augmented by rules converting

information from the inputlink to the current state. Then, a set of successive reasoning

steps are performed, each of them applying just one operator and transforming a state

in a new state until the command halt is called by an operator application rule, or an

impasse is generated. There are many situations which could lead to an impasse. Basi-

cally, an impasse means that SOAR is not being able to proceed to the next reasoning

step and further information is required before continuing. To try to solve an impasse,

SOAR creates a new sub-state, where new kinds of rules are then used with the aim of

eliminating the original impasse. This mechanism is used as a way to deal with sub-goals.

For example, an impasse might be generated because there are more than one proposed

operators, and operator preferences do not help in trying to deĄne one of them. In this

case, new rules are Ąred on the sub-state, trying new conditions which might allow a

Ąnal decision, eliminating the impasse. There are also other kinds of impasses, like the

state-no-change impasse or the operator-no-change impasse, where SOAR is not able

to Ąnd further rules to apply proposing a new operator, and then SOAR also Ąnish its

reasoning cycle, without reaching a goal. During the development of a SOAR program,

new rules should be added trying to eliminate all kinds of impasses, avoiding the situation

in which SOAR needs to stop due to an impasse, without reaching the goal.
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In the next sections, each module of SOAR is described in more details.

2.1 Decision procedure

One important algorithm we need to be aware in order to understand how

SOAR works is the Decision Procedure. The Decision Procedure is responsible for man-

aging the decision phase in the reasoning step. The decision phase can be characterized

by three small steps, after which SOAR will select the best operator (only one) to be

executed transforming the current state.

The Ąrst of these steps consists in collecting all the operators proposed as

candidates for execution, as given by the proposal phase. If there is only one operator

proposed, it will be selected with no further processing.

The second step consists of evaluating the preferences among all the proposed

operators. These preferences are deĄned by preferences definition rules, providing a basis

to the architecture to identify which is the best operator to be selected when there are

multiple options. The SOAR programmer can create rules setting general preferences like

operator A has the highest or lowest preference, or also speciĄc preferences among two

operators, like operator A has a higher preference than operator B.

The third and Ąnal step is related to the evaluation of impasses. If even after

the Ąrst and second steps, there are still more than one plausible operator to execution (or

none), an impasse will be raised. An impasse causes the creation of a sub-state where the

main goal is to solve the impasse receiving some extra information provided by the archi-

tecture like: the type of impasse, which operators are involved, etc. Figure 2.3 summarizes

all these steps.

It is important to emphasize that an impasse is not necessarily a result of a

bad elaboration of operators and rules. Quite the reverse, it is a crucial feature of the

architecture. For example: given an operator Şmove to objectŤ, which is triggered when

there is a speciĄc kind of object in WME, if there are two (or more) instances of this type

of object in the working memory, probably two (or more) instances of this operator Şmove

to objectŤ will be proposed and an impasse will be raised. However, SOAR can evaluate

this impasse and take a better decision, like: Şmove to the closest objectŤ, giving more
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impasses, it is possible to plan the solution to impasses in layers: Ąrst one type of impasse

and then the others, making the problem-solving capability more modular and robust.

2.2 Perception

As SOAR is a general purpose architecture, it is expected that it can be in-

tegrated into other environments to solve different kinds of problems. So, it is really

important that this integration can be smooth and easily made, independently of the

target environment.

The perception module is responsible for performing the link between the

architecture and the real world in order to generate inputs to SOAR (in the form of

WMEŠs). The conversion between raw data (coming from the agent sensors) to WMEŠs

must be performed outside the scope of the architecture. At the end of the input phase

of the reasoning step (where perception occurs), a set of WMEs are incorporated to the

^io.inputlink node of the current state, where rules can be used to detect situations

and further elaborate the state. Examples of how to implement perception in SOAR are

covered in more details in section 7.1.

2.3 Action

The action module is very similar to the perception module because both are

responsible for making the interface between the architecture and the environment, where

the agent is inserted. However, the action module is responsible for providing the outputs

of the architecture, i.e., given some inputs, the architecture will process them and generate

the outputs which are the best for the current state. The mechanism is the opposite of the

one at the Perception module. At the end of a reasoning cycle (when a goal is reached),

a set of WMEs are incorporated into the ^io.outputlink of the current state. From

there, it is possible to unencode these WMEs into parameters which are then sent to the

environmentŠs actuator, causing some change in the environment. Also, we show some

examples of how to implement action in more details in section 7.1.
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2.4 Working memory

The Working Memory is the central repository of WMEŠs, the place where

all activity in SOAR is performed and stored. WMEŠs describe the current state of the

problem, binding together the many pieces of information necessary to represent a full

problem-solving context (as illustrated in Ągure 2.2). WMEŠs can also be added or removed

from working memory due to the processing of other architecture modules (like e.g. the

semantic memory, the episodic memory, the spatial visual system or the reinforcement

learning module). Therefore, the working memory can be viewed as a theater of opera-

tions of the architecture, because all the other modules are linked through the working

memory (as can be shown in Ągure 2.1). This modeling implements the short-term mem-

ory hypothesis, which is supposed to exist in several animals (including humans), having a

limited storage capability (sometimes referred as the Şmagical number sevenŤ (MILLER,

1956)) and with short-term duration.

All the WMEs in the Working Memory need to be linked to a parent node,

creating a hierarchy of nodes (it is not possible to create a new node without connecting

it to an existing node). The root node of all the hierarchy is always the S1 node, which

holds the current state, and is generated automatically by SOAR during the beginning of

a reasoning cycle. External inputs are connected to the ^io.inputlink node and external

outputs are connected to the ^io.outputlink node of the current state S1. The state

node S1 also has links to the episodic memory through a ^epmem node, to the semantic

memory through a ^smem node, to the spatial visual system through a ^svs node and

to the reinforcement learning mechanism through a ^reward-link node. Any sub-state

node is connected to its parent state node through a ^superstate node (the root S1

node has a nil ^superstate to indicate it is the root state). Every state node also has

a ^type state attribute to characterize it as a state node (the same happen with all

sub-states created by impasses).

2.5 Procedural memory

In Cognitive Psychology, the Procedural Memory is the part of the Memory

System responsible for storing how to do things or the place where actions are stored. In

other words, this memory is related to abilities or habits that cannot be verbalized, for
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example: drive a car, ride a bike, play piano and so on. In SOAR, the Procedural Memory

is where rules are stored (also called productions). Usually, rules are described by text Ąles

and further loaded in SOAR for its operation. In such a case, we might say that in principle,

rules are Ąxed, and can not change during SOAR operation. Nevertheless, it is possible

to have programmatic access to these rules in procedural memory, and hypothetically, it

is possible to include, modify and delete rules from SOAR during operation. This is not

an easy task, though, and the support for this is minimal.

Generally, actions of a production either create preferences for operator se-

lection or create/remove working memory elements (LAIRD; CONGDON, 2014). The

actions of a production can have two types of support: I-support and O-support. The

basic difference is: all the WMEŠs modiĄcations (described in the RHS) applied in the

working memory by an I-support production will be retracted as soon as the LHS of that

production does not match with the current state. In turn, O-support modiĄcations do not

retract, even when LHS no longer matches. O-support is given only to working memory

elements created by operator-application productions. An operator-application produc-

tion tests the current operator of a state and modiĄes the state (LAIRD; CONGDON,

2014). All the other productions that do not match this requirement receive I-support.

Box 2.2: Example of O-support

#Testing the selected operator
sp {apply*wander

(state <s> ^operator <o>
^io <io>)

(<io> ^output-link <ol>)
(<o> ^name wander)

-->
(<ol> ^MOVE <command>)
(<command> ^Vel 1)}

Box 2.2 shows an example of O-support production. The LHS is checking if

the operator wander is selected. If it is, the changes described in RHS will be permanently

applied. This rule is also an example of operator application rules.
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2.6 Episodic memory

In Cognitive Psychology, the Episodic Memory is a part of the memory system

responsible for storing episodes: events experienced by a person (or animal), including it-

self and other entities in the world. Episodes are bounded together in a linear fashion,

creating the feeling of past-present-future in the human mind, and the possibility of a

Mental Time Travel (MTT) while accessing the Episodic Memory, reviving lived experi-

ences again. Episodes can be retrieved consciously and allow the remembrance of many

details of past events - like e.g. what we did this morning, last week or two years ago,

and also what has happened during these time frames around me (things I have noticed

to happen).

SOARŠs Episodic Memory implements a simpliĄed model of human episodic

memory. In SOAR, episodes are simply samples (snapshots, full copies) of the Working

Memory, taken in different time steps. According to SOARŠs manual, Şwhen episodic

memory stores a new episode, it captures the entire top-state of working with a few

exceptionsŤ (LAIRD; CONGDON, 2014), so the most part of the WMEŠs in working

memory will be saved, creating what SOAR considers to be an episode.

This approach can look simple, but as previously said, the working memory

integrates all the modules available in SOAR. Thereby, a working memory snapshot is

a simple and effective way to provide a full and contextualized information about the

current state.

2.6.1 Episodic learning and retrieval

In order to be able to use the episodic memory, it is important to know how

the episodes are saved and retrieved in the episodic memory.

SOAR stores episodes in a very simple way: once the episodic memory system

is turned on, new episodes are automatically recorded without any deliberate action. That

is, the agent does not need to invoke any special command to store a new episode. The

architecture will constantly record new episodes. The time and phase that new episodes

are recorded can be customized.

The retrieving process is more complex. The most common way to return an
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episode is using a cue. In SOAR, cues work like queries in SQL. A cue is composed of a

set of WMEŠs and SOAR will search the best episode in episodic memory matching with

that cue. Several episodes might match, at a certain level, with a cue. Therefore, SOAR

uses a heuristic that takes in account the number of WME matches per episode and the

current WME activation (see section 2.9), grouping all in a single equation and returning

only the best episodes.

During the creation of a new state in working memory, at the beginning of a

reasoning cycle (or during the creation of a new sub-state while trying to solve an impasse),

SOAR creates the following augmentations to facilitate the use of episodic memory:

Box 2.3: Episodic Memory Structure

(<s> ^epmem <e>)
(<e> ^command <e-c>)
(<e> ^result <e-r>)
(<e> ^present-id #)

Box 2.3 describes the WMEŠs structure to access the episodic memory content

via node ^epmem. In order to retrieve episodes, a rule might augment the ^command struc-

ture with a cue. In response, SOARŠs episodic memory system augments the ^result

structure in response. The ^present-id is also returned by the episodic memory system

and indicates a number identifying the time in which the episode was captured.

2.7 Semantic memory

In Cognitive Psychology, a Semantic Memory is a kind of Declarative Memory

used to store declarative knowledge, general statements about the world not related to

time, namely, meanings and understandings. Unlike episodic memory, this memory is

context independent and stores statements like Şthe sky is blueŤ or ŞEarth is in the solar

systemŤ, or ŞCampinas is in the state of São PauloŤ.

In SOAR, the Semantic Memory is a general repository of WMEs to be stored

in a long-term, in order to be retrieved later. In this sense, it has a structure which is

similar to a Working Memory, but instead of being stored in a short-term memory, it is
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stored in a long-term memory, just like a Ąle in a Ąle system. We might think of a semantic

memory as a part of a working memory which is stored in a Ąle.

2.7.1 Semantic learning and retrieval

SOARŠs semantic memory works in a quite similar way to an episodic memory,

with the following difference. While in episodic memory a full snapshot of the Working

Memory is automatically saved at each time step, in semantic memory, the user has to

clearly specify what he wants to be stored in a new record.

Similarly to episodic memory, the retrieving process in the semantic memory

involves the deĄnition of a cue in order to retrieve the recorded information. But while in

episodic memory the matching process requires an exact match, semantic memory allows

a partial match between the cue and the information stored in long-term memory.

During the creation of a new state in working memory, at the beginning of

a reasoning cycle (or during the creation of a new sub-state while trying to solve an

impasse).

Box 2.4: Semantic Memory Structure

(<s> ^smem <smem>)
(<smem> ^command <smem-c>)
(<smem> ^result <smem-r>)

Box 2.4 describes the WMEŠs structure to access the semantic memory con-

tent via node ^smem. In order to retrieve information from the semantic memory, a rule

might augment the ^command structure with a cue. In response, SOARŠs semantic memory

system augments the ^result structure in response.

2.8 Spatial Visual System

In Cognitive Psychology, Baddeley (2012) proposed the Visuo-Spatial Sketch-

pad as a part of working memory meant to organize objects in space and establishing the

spatial relations among them. In SOAR the idea of a Visuo-Spatial Sketchpad gave rise

to the construction of a Spatial Visual System, which was made available only on version
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forms are automatically applied to the children nodes, so it makes easy to the architecture

understands what were the consequences of the environment changes.

During the creation of a new state in working memory, at the beginning of

a reasoning cycle (or during the creation of a new sub-state while trying to solve an

impasse).

Box 2.5: Spatial Visual System Structure

(<S> ^svs <SVS>)
(<SVS> ^command <SVS-C>)
(<SVS> ^spatial-scene <SSC>)

(<SSC> ^id world)

Box 2.5 describes the WMEŠs structure to access the spatial visual system via

node ^svs. The SVS maintains an internal representation of the environment as a col-

lection of discrete objects with simple geometric shapes, called the scene graph. SOAR

rules can query for spatial relationships between the objects in the scene graph through

a working memory interface similar to that of episodic and semantic memory. SVS repre-

sents the scene graph structure in working memory under the ^spatial-scene link. The

SVS provides a Scene Graph Edit Language (SGEL), a simple, plain text, line-oriented

language that is used by SVS to modify the contents of the scene graph. SOAR rules

might use the ^command link, similar to semantic and episodic memory, which is used to

post queries using SGEL. These commands allow the agent to modify the scene graph,

helping the system to perform visual-spatial reasoning.

2.9 Working Memory Activation (WMA)

Based on similar mechanisms available in other cognitive architectures like

ACT-R or LIDA, WMA (Working Memory Activation) is a recent feature that was inte-

grated into SOAR and, as Nuxoll (NUXOLL et al., 2004) said, it is very useful for two

scenarios: to retrieve which stored episodes are the best match for the current situation

and to support forgetting in working memory.

To forget something is equally important as remembering something. Given

that there is a Ąnite space for storage, a forgetting process might consider the importance
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of different pieces of information, privileging those which have more value. In this manner,

when the WMA mechanism is turned on, each WME in working memory gains an activa-

tion value and this activation might decay or increase any time that a WME was tested

by a production: if there is a match it will increase, otherwise decay. The architecture

will constantly check each WME activation in working memory and if one of them has

an activation value below a deĄned threshold, it will be discarded. So, this is an artiĄcial

forgetting process because only the WMEs with a higher activation will prevail.

Besides that, one of the toughest tasks in episodic memory is to retrieve a

relevant episode, due to the large amount of data which is stored (NUXOLL et al., 2004).

One way of biasing this match is using working memory activation. If an episode has a

high WME match, but each WME has a low activation, probably it will not be selected.

Once again the activation acts as a Ąlter that returns just the most important things.

WMA can be turned on and off in SOAR, using the wma command. Many

conĄguration parameters and options are available to tune the mechanism.

2.10 Chunking

There are basically two kinds of learning in SOAR: Chunking and Reinforce-

ment Learning. Chunking was the Ąrst learning mechanism to be introduced in the archi-

tecture and its function is basically to optimize the overhead generated by the sub-goals

mechanism while reaching an impasse situation, creating new rules for avoiding the gen-

eration of sub-goals, by summarizing the acquired knowledge while processing a sub-goal

in order to solve an impasse.

As explained in section 2.1, when an impasse is triggered, a new sub-state is

created, becoming a new sub-problem to be solved by SOAR. When this sub-problem

is solved, the SOAR chunking module is triggered, creating a new production, called a

chunk, representing the sub-state solving process. In other words, when a chunk is created,

SOAR will Ştake a pictureŤ of the current working memory state and a new rule will be

created in procedural memory. WMEŠs that are either examined or created during the

sub-state will be the preconditions of the chunk and the action of the sub-state will be

the result of the chunk. The purpose is very simple: the created chunk will be matched in

similar situations, avoiding the impasse and saving processing time (LAIRD; CONGDON,
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2014).

However, in the same way that this module can improve the performance of

the framework in some situations, it can also degenerate it in others. As pointed out

by Kennedy (KENNEDY; JONG, 2003), an excessive number of new chunks impacts

signiĄcantly the architecture performance, that is, if so many chunks are created, but just

a few are constantly used, the time saved to solve the sub-state is wasted evaluating all

the chunks in the decision cycle.

The chunking learning procedure is automatically run by SOAR while the

feature is turned on. Chunking can be turned on or off using the learn command (e.g. at

the RHS of a rule).

2.11 Reinforcement learning

This is another module that was integrated recently in the architecture and

its function is to incorporate the classic mechanism of reinforcement learning in SOAR.

Inspired by behaviorist psychology, it is based on the idea that for each action executed

by an agent, a reinforcement value (positive or negative) might be obtained from environ-

ment, such that after some interactions, the agent might execute more times the actions

associated with the positive reinforcement instead those receiving negative ones.

The reinforcement learning mechanism in SOAR relies on one speciĄc kind of

preference which can be set up in a ruleŠs RHS: indifference preference. There are two

different kinds of indifference preferences: symbolic indifference preference and numeric

indifference preference, which are indicated by the following commands in the RHS of a

rule:

• Symbolic Indifference Preference:

(<S> ^operator <O> =)

• Numeric Indifference Preference:

(<S> ^operator <O> = 1.8)

The only difference between symbolic and numeric indifference preferences is a

constant number which is declared in the case of a numeric indifference preference. When
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a symbolic indifference preference is declared, and there is no other kind of preferences in

the proposed operators, instead of generating an impasse, the decision procedure selects

a random operator, amongst those which were proposed, using a uniform distribution. In

the case, all the preferences of proposed operators are numeric indifference preferences,

the decision procedure uses the numeric value given to set the preference as a weight to

generate a biased non-deterministic selection. So, the biggest the assigned numeric value,

the higher the chance of an operator in being chosen.

This is a standard mechanism which can be used in SOAR to determine the

preference in the selection of operators. Now, when the reinforcement learning mechanism

is turned on, it is possible to use a reward value to modify these numeric values of numeric

indifference preferences, resulting in a change on the probabilistic distributions used in

the decision procedure which will select the operation to be applied. As described by box

2.6, this reward can be indicated using the ^reward-link node in the current state, so, in

this example, the creation of the following WMEs on the current state node will provide

a reward of 1.2 to the reinforcement learning mechanism.

Box 2.6: Reinforcement Learning Example

(<S> ^reward-link <R>)
(<R> ^reward <V>)

(<V> ^value 1.2)

The exact change in the numeric value depends on many parameters which can

be customized in the reinforcement learning module. This adjustment is better detailed in

Laird (LAIRD; CONGDON, 2014) and Nason (NASON; LAIRD, 2005). At the beginning

of each decision cycle, the architecture will grab the reward given in the ^reward-link and

use it to change the numeric preferences for the last executed operator, using a variation

of Q-Learning or SARSA algorithms.

2.11.1 Q-Learning

Q-Learning is a reinforcement learning technique where the intent is to select

the best action in a Ąnite set of states that the agent can assume. It was proposed by

Watkins in 1989, but only in 1992 its convergence was proved (WATKINS; DAYAN, 1992).
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Basically, given a Q-matrix, where all possible agent states and all possible

actions are described, the idea is to update this matrix with the obtained rewards in

order to allow the agent to choose the most convenient action. Next, there is a description

of the algorithm:

1. Initialize the Q-matrix (usually randomly but it is also possible to set all values

to zero or use any other initialization policy) as exempliĄed below. The capital

letters represent the states and the lowercase letters represent the actions that can

be applied in that state. The values in the matrix will represent how good (or bad)

it is to select that action in that state.

Q =

𝐴 𝐵 𝐶
∏︀

̂︁

̂︁

̂︁

̂︁

∐︁

∫︀

̂︂

̂︂

̂︂

̂︂

̂︀

0 0 0 𝑥

0 0 0 𝑦

0 0 0 𝑧

2. Choose the action to be selected given the current state. Here, it is possible to use

several approaches, for example:

a) ε-greedy: the action with the highest Q-matrix value for that state will be

chosen most of the times and, only in a few cases (with probability ε), the

other actions will be randomly chosen (for those, it does not matter what are

the Q-matrix values, the probability is uniformly distributed).

b) softmax: the action is not selected with a uniformly distributed probability,

but on the contrary, a weighted probabilistic distribution is applied, based on

the Q-matrix value.

3. Evaluate the reward received after applying the action and the new state of the

agent.

4. Update the Q-matrix according to the following equation:

𝑄(𝑆t, 𝑎t) = 𝑄(𝑆t, 𝑎t) + Ð[𝑅t+1 + Ò𝑚𝑎𝑥a𝑄(𝑆t+1, 𝑎) ⊗ 𝑄(𝑆t, 𝑎t)] (2.2)
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where 𝑄(𝑆t, 𝑎t) is the Q-matrix value for the previous state and for the selected

action, Ð is the learning rate (between 0 and 1) meaning how fast the agent will

learn based on the rewards, 𝑅t+1 is the reward obtained after applying the selected

action, Ò is the discount factor (between 0 and 1) that will be applied to the reward

and 𝑚𝑎𝑥a𝑄(𝑆t+1, 𝑎) is the maximum Q-matrix value for the next state (in our

example, it is the maximum value located in the column associated with the new

state, considering all possible actions for that state).

2.11.2 SARSA

The SARSA (State Action Reward State Action) is also a reinforcement learn-

ing technique and it is very similar to the Q-Learning algorithm. The main difference is

how the Q-matrix values are updated (all the other steps in section 2.11.1 remains the

same).

In short, the Q-matrix value of the previous state is not updated using the

maximum Q-matrix value of the next state (considering all possible actions), but it is

updated using exclusively the Q-matrix value of the next state and action. So, the Q-

matrix will only be updated after two iterations, i.e., after two action selections.

𝑄(𝑆t, 𝑎t) = 𝑄(𝑆t, 𝑎t) + Ð[𝑅t+1 + Ò𝑄(𝑆t+1, 𝑎t+1) ⊗ 𝑄(𝑆t, 𝑎t)] (2.3)

In some cases, Q-Learning can lead to some issues due to its approach to

selecting just the maximum value. For example, the greediness of selecting a short path

instead of a more safe path (e.g. as described in an experiment with a robot and a cliff

(SUTTON; BARTO, 1998)). So, SARSA tends to be more conservative and more slow to

converge, but it provides other characteristics, like safety for example.

2.12 Summary

During this chapter, we described in details how each module of SOAR works

and how they contribute to the cognitive cycle.

SOAR cognitive cycle starts with data being provided to the architecture as

WMEŠs (a symbolic entity that helps to describe the problem-solving context). These
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WMEŠs are sent to Workspace where they can be modiĄed by other modules in architec-

ture (e.g. memories). After that, SOAR tries to Ąnd the best operator (state modiĄers

described by WMEŠs and rules) to apply in the current state. SOAR analyze all operators

that meet the current state and after evaluating all the preferences and impasses, only

one operator is selected to be applied. This process is repeated until the desired state is

reached.

In the next chapter, we follow the same approach for CLARION.
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3 The CLARION Cognitive Architecture

Developed at Rensselaer Polytechnic Institute by Ron Sun, CLARION (Con-

nectionist Learning with Adaptive Rule Induction On-line) is a cognitive architecture with

a clear inspiration in Connectionism, a strong paradigm in Cognitive Science which domi-

nated the 90Šs and still today has a strong inĆuence in the intelligent systems community.

Despite its large inspiration on neural networks, CLARION is classiĄed as a hybrid archi-

tecture. In opposition to cognitivist (symbolic) approaches, connectionism emphasizes the

sub-symbolic characteristics of the reasoning process. CLARION tries to balance this con-

nectionist inspiration by including explicitly rule-based processing together with neural

networks, providing somewhat an integration of symbolic and sub-symbolic approaches.

In (SUN, 2004), Ron Sun lists a set of characteristics that every cognitive

architecture should have in order to create biologically inspired systems and one of them

is the dichotomy of explicit versus implicit processes or, in other words, symbolic and

sub-symbolic processes. According to him, the presence of this dichotomy in cognitive

architectures is very important, because it values the union of different cognitive processes,

where one is more precise and direct and the other is more holistic and imprecise, in such

a way to represent more accurately the different processes involved in the human cognitive

cycle.

This dichotomy is intrinsic in the design of CLARION where each module is

divided into two parts: top-level responsible for the explicit knowledge (symbolic) and

bottom-level responsible for the implicit knowledge (sub-symbolic). As can be visualized

in Ągure 3.1, the architecture is composed of four big modules: Action Centered Subsys-

tem (ACS), Non-Action Centered Subsystem (NACS), Motivational Subsystem (MS) and

Meta-Cognitive Subsystem (MCS). These modules are connected to each other and the

interaction among them generates the cognitive process.

From CLARIONŠs website1, an executable version of CLARION can be freely

downloaded. Although the source code is not opened, the binaries are totally available.

Recently, the implementation of this architecture has undergone big changes, moving from
1 URL: <http://www.clarioncognitivearchitecture.com>
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4. Select the action that will be executed taking into account the suggestions from

both bottom and top levels

5. Run learning algorithms on bottom and top levels

It is important to highlight that the sensory inputs provided to the architecture

should be in a dimension-value pair format, i.e., a set of tuples where one element refers

to the type of the sensory information and the other element refers to the value itself, for

example: (temperature, 32); (distance, 15) or (presence of predators, true).

3.1.1 ACS Bottom level

The bottom level of each module in CLARION consists of implicit knowledge

and, in ACS, this implicit knowledge is manifested mainly as a neural backpropagation

network with a feedback provided by the environment (positive or negative). The current

implementation of this architecture provides to the user the possibility to choose a pre-

implemented Q-Learning neural network or use a basic generic equation (very useful for

debugging) or even the possibility to implement a custom neural network.

It is important to emphasize that the Q-Learning neural network used in

CLARION uses the basic algorithm already described for SOAR (see section 2.11.1), but

applied on a neural network. If we have a large number of possible states and actions, it

can be very difficult to update all the Q-value matrix, so Q-Learning using neural network

can be a good approximation for the Q-value matrix, being more simple and requiring a

short period of learning. Figure 3.2 helps us to better understanding the scenario: a neural

network 𝑤 will receive as input the current state of the problem 𝑥 and the current action

selected by the agent 𝑎. The neural network will generate as output a numeric result,

represented by 𝑄(𝑥, 𝑎) that will be compared with the best possible value represented

by 𝑄target(𝑥, 𝑎), the same algorithm as the one presented in equation 2.2. The idea is to

train this neural network in such a way to minimize the error for 𝑄(𝑥, 𝑎) ⊗ 𝑄target(𝑥, 𝑎)

adjusting the internal weights of the network.

The bottom-level can receive data and actuate in three locations: environment,

NACS and MS. So, a network in the bottom-level can take into consideration the current

dimension-value pairs, the activated chunks and also the current goals in order to suggest
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in NACS) with an expected situation, and the action will describe the changes that will

be applied if the rule is selected for execution. As in the bottom-level, an action in the

top-level can actuate only in one of three different outputs: environment, NACS, and MS.

Rules are divided into three different categories (SUN, 2003):

• RER (Rule Extraction Refinement) Rules: These rules are generated using

the bottom-up learning mechanism (more details in section 3.1.4). Basically, if an

action suggested by the bottom-level is selected for execution, the learning mecha-

nism will generate a rule in the top-level with the preconditions and actions used in

the bottom-level.

• IRL (Independent Rule Learning) Rules: IRL rules are quite similar to RER

rules. The main difference is the origin of the rule. RER rules have their origin in

the bottom-level, and then the rule is propagated to the top-level. In IRL, rules

are independently generated directly in the top-level using some heuristic or even

wired-up. After some interactions, IRL rules are tested according to their efficacy

and, as a result, they can be removed or reĄned (similar to RER).

• Fixed Rules (FR): This is the most simple type of rules because they represent

the prior knowledge acquired by the agent (pre-wired) and they are not subjected

to a reĄnement process (like RER and IRL).

3.1.3 Action selection

In the action selection stage, ACS has the suggestions provided by both the

top and bottom levels and it must select the most appropriated action. It is important to

remember that the action can be applied in three different domains: environment, NACS

or MS. Basically, the Ąrst step in action selection is to separate the suggestion from the

top and bottom levels which are applicable to the same domain, so, there will be three

different groups including the suggestions from the top and bottom level for a speciĄc

domain.

In the context of each group, it is still necessary to select just one action.

CLARION provides two algorithms to select the Ąnal outcome of each group: stochastic

and combination.
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For the stochastic method, there is a pre-deĄned probability of selection for

each type of source suggesting an action in CLARION (if that source suggests at least

one possible action). Therefore RER rules will have a probability 𝑃RER, IRL will have a

probability 𝑃IRL, FR rules will have a probability 𝑃F R and, Ąnally, the bottom-level will

have a probability:

𝑃BL = 1 ⊗ 𝑃RER ⊗ 𝑃IRL ⊗ 𝑃F R (3.1)

These probabilities might be static (pre-set) or variable. If they are static, they

should be speciĄed before the beginning of the simulation with constant values. However,

if they are variable, they are dynamically re-calculated during the simulation, based on

the success rate of the chosen actions. So, for example, if an action from bottom-level was

chosen as the winner and its result generated a positive reward, then the probability to

choose bottom-level actions will increase (when compared to the other possible sources).

Once the probability of each source is deĄned, a selection algorithm, like the Şroulette

wheel algorithmŤ, is used to deĄne the Şwinner sourceŤ, but it is possible to have multiple

suggested actions in the same Şwinner sourceŤ, so it is time to a tie-break, selecting just

one action.

If the selected source of action is from ACS top-level, the rule utility will be

used as a tiebreaker in a Boltzmann distribution. Equation 3.2 describes how the rule

utility is calculated. Basically, it is the rule beneĄt minus its cost with a scale factor. As

Sun states (SUN, 2003) the beneĄt of a rule is calculated based on the positive match

ratio, i.e., how many positive matches a rule produces within the context of all the possible

matches by the rule (a positive match criterion needs to be set). The cost of a rule is set

based on the execution time considerations.

𝑈 r
j = 𝑏𝑒𝑛𝑒𝑓𝑖𝑡j ⊗ 𝑣 * 𝑐𝑜𝑠𝑡j (3.2)

Thus, the probability for selecting a rule 𝑖 in the top-level given the current

problem state in a moment 𝑥 will be:

𝑝(𝑖♣𝑥) =
eUr

i
/τ

√︁

j eUr
j

/τ
(3.3)
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Where 𝑈 r
i is the utility for rule 𝑖, á is the temperature of the Boltzmann

function, representing the randomness of selection, and the sum in the denominator rep-

resents the sum of the utility functions of all rules that meet the current problem state in

a moment 𝑥.

It is important to note the role of the á constant in equation 3.3. The lower

the value of á , the higher the utility function will be predominant to select a rule, i.e., if

á ⊃ 0+ the best action will always be selected. On the other hand, if á has a high value,

more randomness will be obtained, i.e., if á ⊃ ∞ the actions are chosen with the same

probability. This is the softmax algorithm (WHITESON et al., 2007) (already described

in section 2.11.1).

If the source of action is from the bottom level, instead of the utility function,

the return of the Q-Learning function, 𝑄(𝑥, 𝑎), is used (the same described in section

3.1.1) as a utility function.

Finally, it is time to focus our attention on the second way to select an action:

combinational. The combinational way is quite similar to the stochastic way. The main

difference is: in the stochastic way the source of an action (RER, IRL, FR or BL) is selected

Ąrst by a probabilistic distribution and then the action that belongs to that source is

selected using a Boltzmann distribution. However, in a combinational way, the maximum

utility for each possible source of action is computed (obviously we only consider the

sources that have suggested at least one action at that time), i.e., this number represents

the highest utility for an action that matches the current state of a given source. So,

for RER, IRL, FR, and BL, there will, respectively, 𝑢RER
a , 𝑢IRL

a , 𝑢F R
a and 𝑞a (this one

represents the Q-function return instead of the rule utility function), representing the

maximum utility function at that time.

𝑢a = 𝑤RER * 𝑢RER
a + 𝑤IRL * 𝑢IRL

a + 𝑤F R * 𝑢F R
a + 𝑤BL * 𝑞a (3.4)

After that, a weighted sum is performed, as demonstrated in equation 3.4,

gathering all utilities together and generating a combined value. Finally, this combined

value 𝑢a will be used as a threshold, so all the suggested actions with a utility function

lower than this value will be eliminated and all the suggested actions greater or equal to
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this value will be picked and a Boltzmann distribution will be applied on those (using the

same principles as described in equation 3.3).

At the end, there may be three Ąnal actions, each one applicable to a different

domain (of course that, in a given situation, not all domains are going to necessarily have

an action, so it is possible to have just one, two or three domains with possible actions).

CLARION can use one of the following approaches to deal with this multi-domain actions

(SUN, 2003):

• Random: each domain will have a speciĄc probability and CLARION will select just

one action (among the three possibles) based on the probability of each domain.

• External Ąrst: if there is an action to be applied in the environment, it will be always

chosen. Otherwise, an action from the other domains will be picked (based on the

probability for that domain).

• All: apply the actions in all domains simultaneously (although, this approach can

impact the performance).

3.1.4 Learning

CLARION provides learning between ACS levels (top-bottom and bottom-up)

and also within the same level. Considering learning at the same level, CLARION has

an intrinsic reinforcement learning algorithm implemented in the bottom level of ACS

based on backpropagation networks. Generally, the bottom level has a Q-Learning neural

network, whose reinforcement is provided by MCS (see section 3.4.2). Thus, combining

the reinforcement provided by MCS, the neural network can adjust its weights in such a

way to maximize the reward.

Regarding learning between levels, the bottom-up learning is responsible for

generating RER rules (see section 3.1.2). The basic algorithm is described below (SUN,

2003):

1. If the action selected to execute is from the bottom level, a new rule in the top-level

is created with exactly the same inputs and outputs suggested by the bottom-level.
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2. In the next interactions, if the created rule was selected for execution, check the

outcome of the rule.

a) If the outcome is successful, try to generalize the rule in order to make it more

universal (for example: removing some conditions)

b) If the outcome is not successful, try to specialize the rule (for example: adding

some conditions)

It is important to note that the RER rules are not stored forever. Each rule

has a set of statistics and if these values become below a deĄned threshold, the rule is

removed from the top-level.

The top-down learning is simpler. It consists of a classic neural network learn-

ing and is generally made using FR rules (innate knowledge). However, IRL rules can

be used too. So, the neural network will have a supervised training in order to deĄne its

functional mapping based on the knowledge provided by the top-level rules.

3.2 Non-action centered subsystem - NACS

Several studies have already detailed the key role of memory in intelligent be-

haviors, and this is exactly the main functionality of the NACS: storing and retrieving

knowledge. This system is close to what has been referred as semantic memory or declar-

ative memory in the literature (SUN, 2003). The NACS structure (top and bottom level)

is described in Ągure 3.4 and detailed in the next sub-sections.

3.2.1 NACS Bottom level

The NACS bottom-level is responsible for the processing of implicit knowledge,

being composed by associative memory networks (AMN), having as inputs and outputs

a set of dimension-value pairs. To accomplish this goal, two types of neural networks can

be used: auto-associative or hetero-associative.

For auto-associative memories, the same set of dimension-value pairs are pre-

sented as inputs and also as outputs. The idea is that, after some training cycles, the

internal network weights are adjusted in order to retrieve a piece of data from only a tiny
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A chunk can be faced as a set of features (dimension-value pairs) that together

will have an abstract meaning, a symbolic representation, and it can use AND/OR logical

functions. For example, ŞcoldŤ AND ŞwhiteŤ AND ŞwetŤ can specify ŞsnowŤ. Besides

that, the links across chunks can be generated and also stored in GKS, e.g., ŞsnowŤ AND

Şhuman shapeŤ can specify ŞsnowmanŤ. Each chunk has a strength value associated, i.e., a

number between zero and one, that represents its activation level. This value is calculated

based on different sources of activations: other chunks and dimension-value pairs related

to that chunk; an explicit activation coming from ACS (the ACS can change the activation

of a chunk deliberately) and an associative mapping coming from the bottom-level (see

section 3.2.3). The chunk activation will be the maximum value among all the sources.

3.2.3 Integrating the two levels

One important thing to note is the integration between the bottom and the

top levels in this module. As previously discussed, the AMN inputs and outputs are in

the form of dimension-value pairs. In turn, chunks located in the top-level can be viewed

as an outcome of a set of dimension-value pairs and/or other chunks. So, the outputs of

AMNs can trigger the activation of some chunks in the top-level (bottom-up activation).

However, it is also possible for a chunk to be activated, but their dimension-value pairs

in bottom-level are not. This can happen because a chunk can be associated to other

dimension-value pairs or even to other chunks, so it is possible to activate a chunk via

another ŞbranchŤ. When this scenario happens, a top-down activation takes place in order

to activate the associated dimension-value pairs that are not activated in the bottom-level.

Basically, NACS receives data from ACS and from external sensors. In parallel,

the top-level calculates the strengths of each chunk and the AMNs also generate their

outputs. First, the bottom-up activation occurs and then the top-down activation takes

place. After that, a new round of interactions can occur until a pre-deĄned number of

cycles is reached or until no more chunks are created.

3.3 Motivational subsystem

If a cognitive architecture aims to be faithful to the way humans identify and

solve problems, it is necessary to think about incorporating goals and motivations in an
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the hunger drive going down again. Thus, the basic idea behind drives is a competition

among the different drives, leading to a winning drive and then a further action which

leads to the satisfaction of the implicit needs, and the return to a state of homeostasis

and relaxation.

The architecture provides support for the following kinds of drives:

1. Primary low-level drives: represent physiological needs. They are Şhard-wiredŤ

in the agent and usually acquired during evolution. For example: eat, drink, sleep.

2. Primary high-level drives: these are not related to physiological needs, but rep-

resent high-level needs, in the sense of Maslow (1943). They are mostly related to

social behaviors, as e.g. honor, justice, curiosity, but equally to primary low-level

drives, they are Şhard-wiredŤ

3. Secondary drives: derived from other drives, they are acquired during the process

of satisfying particular compositions of primary drives. Differently from primary

drives, secondary drives are usually subject to some sort of learning, using as a base

primary drives and input from the environment.

In CLARION, the determination of a drive level can be realized by means

of two different approaches: by neural networks or by explicit equations. A CLARION

modeler can create a custom neural network and associate the drive level to its output.

Or, he can use equations (in a totally customized way) in order to specify the drive levels.

More details on this are available on section 7.2.

In the Clarion Motivational System, the bottom level is not directly used to

generate actions on the ACS. Motivational systemŠs bottom level is highly integrated

with its top level in order to affect ACS. Once drives levels are computed, they are sent

to the MCS subsystem (see section 3.4). Drives are used together with other pieces of

information by the MCS in order to trigger updates in the goal structure (MS top-level).

Only the output of MS top level is used to affect ACS and generate actions in the system.

The role of MS Top Level is explained in next section.
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3.3.2 MS Top level

The goal structure is the main component of MS top level, and it is shared with

the ACS in order to generate actions. Two different kinds of goal structures can be used:

a goal stack or a goal list. Both hold internally a set of goal chunks, from where a single

goal chunk is selected. A goal chunk is basically a symbol describing an objective, which

together with parameters given by dimension-value pairs, can be used to select the most

appropriate action for the current cognitive cycle. Each goal chunk has an associated

numeric value called base-level activation (BLA), which will be used in order to select

the winning goal. This selection is performed using a Boltzmann distribution (the same

one described on equation 3.3) based on the BLA. Equation 3.5 describes how BLA is

computed for each goal chunk.

𝐵i = 𝐵0

i + 𝑐 *
n

∑︁

l=1

𝑡−d
l (3.5)

Goal chunks enter the Goal Structure by means of goal actions, performed by

the MCS goal settings submodule (see subsection 3.4.1). Goal actions can basically set or

reset a goal chunk within the goal structure. A goal chunk set will insert the goal chunk

in the goal structure, if it is not already there, or update its BLA, if it is. A goal chunk

reset will delete the goal chunk from the goal structure. In equation 3.5, 𝐵i represents

the BLA for the goal 𝑖. 𝐵0
i , 𝑐 and 𝑑 are constants, 𝑛 is the number of times that the goal

was set in the goal structure and 𝑡l is the time since the last 𝑙th set of the goal in goal

structure (measured in milliseconds). The default values are: 𝑐 = 2, 𝑑 = 0.5 and 𝐵0
i = 0.

Based on this equation, it is possible to note that the BLA of each goal decays during

time and if a goal is set multiple times, it receives a boost in its BLA.

So, the goal structure works as a repository of many goals, from which a single

goal is selected and presented as an input to the ACS, where it can be used to deĄne an

external action. The working of a goal stack is simpler. It uses a simple strategy of putting

goal chunks on a stack (the last goal chunk becoming the current goal), and once a goal

chunk Ąnishes its usefulness, it is taken out from the stack and the next goal action in

the stack becomes the current goal. The goal list has a more complex behavior, using the

BLA activation in order to select the current goal chunk. As Sun pointed out (SUN, 2003),

the goal structure provides speciĄc and tangible motivations for actions, in the form of
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drives coming from MS, together with other factors coming from the environment, and

deĄne Goal Actions, which affect the Goal Structure. These actions are basically to set

and reset a Goal Chunk in the Goal Structure. If a goal action sets a speciĄc goal chunk,

and this goal chunk is not already in the Goal Structure, then it is included. If the goal

chunk is already in the Goal Structure, a set action will boost the BLA activation of the

goal chunk, which usually decays with time while within the Goal Structure. If a goal

chunk is within the goal structure, and the MCS orders a reset goal action, then the goal

chunk is deleted from the goal structure.

In order to deĄne goal actions, a Goal Equation computes a goal strength

for each goal chunk, using as input drive levels and state information in the form of

dimension-value pairs, weighted by relevance factors, as indicated in equation 3.6. This

relation between goals, drives and sensory information must be speciĄed by the CLARION

modeler and is described in more details in section 7.2.

𝐺𝐸g =
n

∑︁

d=1

𝐷𝐿d * 𝑅𝑒𝑙d,g +
n

∑︁

p=1

𝐷𝑉p * 𝑅𝑒𝑙p,g (3.6)

The goal equation 𝐺𝐸 computes the goal strength for a speciĄc goal chunk

𝑔 as the sum of the drive levels 𝐷𝐿 of each drive 𝑑, multiplied by the relevance factor

𝑅𝑒𝑙d,g between 𝑔 and 𝑑. This is combined with the sum of the activation 𝐷𝑉 of the several

dimensioned-value pairs 𝑝 multiplied by the relevance factor 𝑅𝑒𝑙p,g between each 𝑝 and 𝑔.

The MCS can opt for two strategies while choosing the next goal:

1. A balance of interests: goals strengths are calculated according to equation 3.6

and the goal chunk with the highest score becomes the goal to be set in the next

goal action. In this strategy, drives can be attached to more than one goal chunk

(differently from next strategy).

2. Winner takes all: drives are attached to just one goal chunk. The drive with the high-

est level wins (deterministically or stochastically) and the new goal action considers

the unique goal chunk attached to it.

The architecture also provides means to remove previously set goal, if this is

required.
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3.4.2 Reinforcement

As discussed in section 3.1, ACS has an intrinsic bottom level learning pro-

cess, based on Q-Learning Backpropagation networks. This learning process relies on the

evaluation of a reward measuring Şhow goodŤ or Şhow badŤ was an act. This sub-module

in MCS has the role of providing to ACS bottom-level the reinforcement value that will

be used for adjusting the internal weights of the network (as can be viewed in Ągure 3.1,

the output of this module will be used as input in ACS bottom-level).

As highlighted by Sun (SUN, 2003), the world does not provide the agent with a

scalar reinforcement signal, as usually assumed in the literature. Instead, the world simply

changes its state after an action is performed. Thus, the reinforcement signal should be

calculated internally by the agent in order to verify how appropriate the performed action

was.

In order to accomplish this task, sensory information (internal and/or exter-

nal), drives levels and goal chunks in the goal structure are used as inputs. Using these

inputs, the degree of satisfaction of drives and goals are evaluated. At the end, a scalar

reinforcement value is generated, which is used as feedback.

3.4.3 Filtering, selection, and regulation

Filtering is a mechanism allowing the agent to focus its attention on the most

relevant aspects of the sensory information, excluding undesired inputs. Similarly to the

reinforcement function (see section 3.4.2), a Ąltering function takes in account the drive

levels, the current goal, and some sensory information in order to Ąlter the most appropri-

ate dimension-value pairs, while others have their activation multiplied by a scalar number

close to zero. Therefore, they will have less impact on the next CLARION cognitive cycle.

This sub-module tries to reproduce a typical situation where our concentration is totally

directed to a speciĄc task and trivial things around us do not take our attention.

On the other hand, selection and regulation are related to the ability of self-

regulation or, in other words, the ability to change internal gains, parameters or even to

select different algorithms for the purpose of maximizing agentŠs performance in a given

situation. Consider the following examples of possible types of regulations:
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• to change the learning mechanism (Q-learning with Backpropagation, simpliĄed Q-

learning, disable it, etc),

• to change the probability of selecting an action from top-level or bottom-level,

• to change the temperature in the Boltzmann distribution,

• to change the learning thresholds and other aspects.

All these types of self-regulation are accomplished using the same approach of

other MCS sub-modules, as already highlighted, i.e., using a selection/regulation function

taking into account all the relevant information (drive levels, goals, inputs/outputs) and,

based on that, changing the internal aspects of the agent, optimizing its performance.

In current CLARION implementation, all these parameters or algorithms that can be

changed are represented either as a constant or as a class variable that can be easily

changed.

3.5 Summary

During this chapter, we described in details how each module of CLARION

works and how they contribute to the cognitive cycle.

CLARION cognitive cycle starts with data being provided to each module

of architecture as dimension-value pairs. NACS module is responsible for storing and

retrieving knowledge working as a semantic memory or declarative memory. MS module

is responsible for providing new goals based on the HullŠs drives theory. MCS module is

responsible for the self-regulation aspects of the agent. Finally, all data from the other

modules are sent to ACS where it will select the most appropriated action to be taken

based on the suggestions provided by the top and bottom levels.

In the next chapter, we follow the same approach for LIDA.
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coalitions with the information producer, working towards a common goal or action. The

global workspace is not a physical memory region, but a privileged condition that any

memory can momentarily experience when it is allowed to make the broadcast.

Another way to understand BaarsŠ concept of consciousness is appealing to the

ŞInteractive Theater MetaphorŤ. This metaphor is described while imagining a theater

totally covered by dark (the theater of consciousness) where there is an audience (also in

the dark), a stage and a spotlight pointing to some place in the stage. In this interactive

theater, actors are a part of the audience, which momentarily decides to go to the stage

and perform some action, triggered by what they are seeing at the stage. The enlightened

spot can have one or more actors, playing and being watched by all the audience (the

performance becoming the contents of consciousness). Seeing this performance, members

of the audience can be excited and suddenly decide to go to the stage to also play and,

according to their performance, receiving the spotlight (the consciousness), and potentially

affecting all the others in the theater, in an endless cycle. Besides that, behind the scenes,

there are a lot of other people, like the director, stagehands, scriptwriters, scene designers,

working without being noticed by the audience, but helping to determine who will be

illuminated by the spotlight in the next moment.

Complementing his Global Workspace Theory, Baars also proposed a general

framework (see Ągure 4.2) where consciousness appears together with other functions

composing a model for human cognition (BAARS; GAGE, 2010). This framework was

also an inspiration in the development of LIDA and will be referred while making a

parallel to LIDAŠs modules.

The development of LIDA put together, in an integrated way, many different

computational mechanisms, some of them quite old but out of the mainstream, like e.g.

HofstadterŠs Copycat architecture (HOFSTADTER et al., 1994), KanervaŠs Sparse Dis-

tributed Memory (KANERVA, 1988), DrescherŠs Schema Mechanism (DRESCHER, 1991)

and MaesŠs Behaviour Networks (MAES, 1989). According to Franklin et al. (2007), most

tasks in LIDA are performed by means of codelets, a concept introduced by Hofstadter

designating small pieces of independent code, focused on speciĄc tasks. A kernel concept in

LIDA is its notion of cognitive cycle, composed of three phases: perception/understanding,

attention and action/learning (FRANKLIN et al., 2016). Each of these steps is detailed
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al., 2011). Following LIDAŠs proponents, such cognitive cycles are the fundamental build-

ing blocks of all human cognition. According to them, they work as Şcognitive atomsŤ for

building the mind. Complex cognitive tasks, such as non-routine problem solving, deliber-

ation, volitional decision making, higher-level perception or imagination, can require many

of these cycles, several of which can cascade as long as the seriality of consciousness is

preserved. Within each cognitive cycle, a number of modules and processes operate, vary-

ing with the current situation or task. The cognitive cycle has the following components

(MADL et al., 2011):

1. Perception: Sensory stimuli, external or internal, are received and interpreted by

perception, producing the beginnings of meaning.

2. Percept to preconscious buffer: The percept (including some of the data plus

the meaning, as well as possible relational structures) is stored in the preconscious

buffers of LIDAŠs working memory (workspace). Temporary structures are built.

3. Local associations: Using the incoming percept and the residual contents of work-

ing memory (including emotional content) as cues, local associations are automat-

ically retrieved from transient episodic memory and from declarative memory, and

stored in long-term working memory

4. Competition for consciousness: Attention codelets view long-term working mem-

ory and bring novel, relevant, urgent, or insistent events to consciousness.

5. Conscious broadcast: A coalition of codelets, typically an attention codelet and

its related informational content, gains access to the global workspace and has its

content broadcast consciously. Thus consciousness solves the relevancy problem in

recruiting resources.

6. Learning: Multiple learning mechanisms are initiated, following the broadcast of

conscious content. The conscious content determines what is to be learned.

7. Recruitment of resources: Relevant schemes in procedural memory respond to

the conscious broadcast. These are typically schemes whose context is relevant to

information in the conscious broadcast.
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8. Setting goal context hierarchy: The recruited schemes use the contents of con-

sciousness, including feelings/emotions, to instantiate new goal context hierarchies

(copies of themselves) into the action selection system, bind their variables and

increase their activation. Other, environmental conditions determine which of the

earlier behaviors (goal contexts) also receive variable binding and or additional ac-

tivation.

9. Action chosen: The action selection module chooses a single behavior (scheme,

goal context) from a just instantiated behavior stream or possibly from a previously

active stream. Each selection of a behavior includes the generation of an expectation

codelet.

10. Action taken: The execution of a behavior (goal context) results in the behavior

codelets performing their specialized tasks, having external or internal consequences,

or both. LIDA is taking an action. The acting codelets also include at least one

expectation codelet whose task is to monitor the action, bringing to consciousness

any failure in the expected results.

In the sequence, we detail the most important blocks in Ągure 4.1, following

more or less the sequence employed by the cognitive cycle.

4.2 Sensory Memory

The cognitive cycle initiates with data acquisition. Sensors located in the agent

will acquire the raw data and send them to sensory memory (SM). In this location, low-

level feature detectors will extract meaningful information. In other words, specialized

codelets will search for patterns or common characteristics in the raw data.

This module can be viewed as the Ąrst level of processing located in the ŞSen-

sory BufferŤ in BaarsŠ framework (refer to Ągure 4.2). Making a parallel with human

beings, the eyes provide the raw data and the primary visual cortex (V1) in the brain

will make the Ąrst processing of this data, identifying low-level features like vertical lines,

20-degree tilted lines, horizontal lines, upward motion, leftward motion, downward mo-

tion, particular colors, color differences and so forth (BAARS; GAGE, 2010). At the end,
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this Ąrst layer of processing will convey this processed data to the Perceptual Associative

Memory (see section 4.3).

4.3 Perceptual Associative Memory

Once the sensory memory is done in its processing, the output is sent to the

Perceptual Associative Memory (PAM), where higher-level feature detectors (codelets)

will process this data in order to obtain more meaningful information in the form of

objects, categories, and events (SNAIDER et al., 2011).

PAM has the form of a Slipnet, a kind of Şsemantic networkŤ Ąrst introduced

in the Copycat architecture. As Hofstadter deĄnes

“The basic image for the Slipnet is that of a network of interrelated
concepts, each concept being represented by a node, and each concep-
tual relationship by a link having a numerical length, representing the
“conceptual distance” between the two nodes involved. The shorter the
distance between two concepts is, the more easily pressures can induce
a slippage between them” (HOFSTADTER et al., 1994).

The name Slipnet comes from the concept of slippage, i.e., the shifting of

perceived boundaries inside structures, descriptive concepts chosen to apply to structures

and features perceived as salient or not. The slippage of a concept happens when some

particular input in need of classiĄcation has features in the frontier among two or more

classes of concepts, and a Ąnal classiĄcation depends on a small slippery to one or another

concept. In short, each node in the Slipnet will be a symbol that represents objects,

categories, or events recognized by the agent, as is illustrated in Ągure 4.3, which shows

an example of a Slipnet used in the Copycat architecture to categorize sequences of letters

(a similar idea is applied in LIDAŠs PAM). Besides its symbolic meaning, each node of the

Slipnet has an activation level, measuring how strong is the relevance of that symbol in

that situation. This activation is spread through the net to all its neighbors, inĆuencing

in their activation.

One important concept in the Slipnet is the deepness of a node in the net or,

in other words, how many layers of links are necessary to reach a node. For example, a

Şsheet of paperŤ node might be linked to a ŞbookŤ node and the ŞbookŤ node might be

linked to a ŞlibraryŤ node. So, it takes two layers of the Şsheet of paperŤ node to reach the
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ŞlibraryŤ node. This number of layers captures the generality and abstractness of a given

concept. Once the aspects of greater depth are perceived, they should have more inĆuence

on the ongoing perception of the situation than aspects of lesser depth (HOFSTADTER

et al., 1994).

Figure 4.3 Ű Slipnet representation - Extracted from (HOFSTADTER et al., 1994)

Again making an analogy with human beings, PAM represents the second

level of processing in the ŞSensory BufferŤ in BaarsŠ framework (refer to Ągure 4.2). As

an example, it is possible to correlate the task done by PAM with the job performed by

lateral occipital complex (LOC) that seems to have a general role in the visual object

recognition, representing higher-level object shape information (BAARS; GAGE, 2010).

As mentioned, each node in PAM is a high-level symbolic representation of

objects, categories or events and each symbol has an associated activation level measuring

how strong is this representation. Although it is possible to customize how the activation
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level is calculated, it is generally evaluated using a saturated sum between of factors:

a current level activation, a base-level activation and the activation coming from the

neighbors. The nodes whose activation level is greater than a certain threshold are selected

and sent to Workspace (see section 4.4).

The current level activation of a node in PAM is calculated by a codelet re-

sponsible for detecting that speciĄc high-level feature. This value measures how close the

data coming from Sensory Memory matches with the expected pattern evaluated by the

codelet and the current level is the value that will be spread through the Slipnet to all

the neighbors of that node (the neighbors will get the level multiplied by a scale factor).

So, for a new high-level pattern to be detected (i.e, a new node in PAM), a LIDAŠs mod-

eler should code a new codelet responsible for evaluating this current level value. Finally,

the base-level measures how usefulness was that node in the past. After receiving the

consciousness broadcast, PAM can increase the base-level activation of some nodes that

were in Global Workspace in the last cognitive cycle (see more details on section 4.7),

increasing their chances to be selected in next cognitive cycle, providing continued action

over time. The base-level activation also decays over the time.

4.4 Workspace

All nodes in PAM whose activation level is greater than a certain threshold

(from now on denominated Percepts) are sent to the Workspace. Once the nodes are

there, Workspace will use this information to cue Transient Episodic Memory (TEM)

and Declarative Memory (DM), looking for collateral information that could be useful,

improving the capability to make decisions based on past events. These memories are

combined with the current percept to generate the Current Situational Model of the agent,

which represents the agentŠs understanding of what is going on right now (SNAIDER et

al., 2011). The Current Situational Model is a short-term memory which has its contents

constantly being updated.

The Workspace also hosts a short-term memory called Conscious Contents

Queue, which is a FIFO queue storing a sequence of the last broadcasts received from

the Global Workspace (for more information about this broadcast, refer to section 4.7).

Although this structure is size-limited and their items have short-term duration, it allows
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LIDA to ground and operate upon time-related concepts (FRANKLIN et al., 2016). Fi-

nally, Workspace also has some internal codelets called Structure Building Codelets, whose

responsibility is looking for contents of interests in the Current Situational Model (CSM),

as Franklin describes:

“If this content is found, then the codelet will perform an action that
will result in modifications to the CSM. Possible actions include creating
new associations (links), creating new content (such as category nodes),
or removing previous associations and content. For example, a structure
building codelet that specializes in categorization might add an ’is-a-
member-of’ link between an object node and a category node, while
another with a different specialization might add an affordance link from
an object node to an action node.” (FRANKLIN et al., 2016).

The Workspace on LIDA can be compared to the ŞWorking StorageŤ element

in BaarsŠ framework of cognition, which is responsible for allowing information to be ac-

tively maintained and manipulated, retaining a small amount of data for a short period

(BAARS; GAGE, 2010). Working Storage also receives information from other two mod-

ules: Verbal Rehearsal and Visuo-Spatial Sketchpad. Verbal Rehearsal is another term for

the inner speech used for rehearsing, memorizing information and keeping track of our

current concerns. The Visuo-Spatial Sketchpad refers to our ability to temporarily hold

visual and spatial information (BAARS; GAGE, 2010). Both are short-term memories,

having limited size capability and fast access.

As we can see, LIDAŠs Workspace is quite similar to the Working Storage

proposed on BaarsŠ framework. There are several similarities:

• the nodes decay rate is faster in the Workspace than in other modules on LIDA,

• this is the place where all the information is gathered from several places (sensory

information, memories, etc),

• the working storage in the framework will be the place where the attention codelets

will detect features to possibly reach consciousness.

4.5 Declarative Memory and Transient Episodic Memory

In Cognitive Psychology, Declarative Memory (DM) is a kind of long-term

memory which can be investigated due to verbal declarations employed by human sub-
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jects. Researchers in human memory use spoken language to collect those declarations

from human subjects and the investigation protocols usually try to measure how these

declarations are connected to reality. Declarative Memory is usually split into two kinds:

Semantic Memory and Episodic Memory (sometimes called Autobiographical Memory).

The Semantic Memory stores declarations about temporally neutral facts like ŞParis is the

capital of France.Ť or ŞBrazil is a country in South AmericaŤ. The Episodic Memory stores

events happening in speciĄc time, space, and life circumstances, forming a linear sequence

of autobiographical events experienced by the individual, which can travel mentally back

in time to relive the experience (BAARS; GAGE, 2010), and recover past experiences

in order to use them in the present. Examples of declarations from Episodic Memory

include a description of events during your breakfast this morning, the memories of your

last birthday celebration, your Ąrst travel to Europe or other episodes you lived when you

were a child. It includes events where you had an active role, by means of actions you

performed and events you just watched while observing the environment. Both Semantic

Memory and Episodic Memory are stored through years or even during the whole life of

an agent.

The proponents of LIDA, following Conway (2001) and Baddeley (2000), pro-

pose that before being consolidated in Episodic Memory, episodes are Ąrst stored in a

short-term memory (called Sensory-Perceptual Episodic Memory by Conway (2001), or

Episodic Buffer by Baddeley (2000)), which usually spans no more than 24 hours, but is

already formatted as a sequence of episodes which were consciously experienced by the

human subject along its daily interaction with its environment. This short-term memory

is called by them Transient Episodic Memory (TEM).

In LIDA, both DM and TEM are implemented using a Sparse Distributed

Memory (SDM), a model proposed by Pentti Kanerva (DENNING, 1989). An SDM is

an auto-associative memory, i.e., a content-addressable random access memory. Its input

is represented in the form of a very long bit vector, containing thousands or tens of

thousands bits. The memory responds to partial matches between the current input and

previously stored patterns. SDM uses the Hamming distance as a measure of similarity.

The output is also a vector of the same dimensionality as input, returning the stored

pattern which better matches the input vector. Each bit in the input/output vector refers

to a node in PAM, in a speciĄc timeframe where the respective node of PAM was active.
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Patterns stored in SDM are subject to a decay rate. In TEM, this decay rate is faster

and the elements expire earlier. In DM, this decay is really slow, allowing sometimes that

patterns remain stored in its SDM for the lifetime of an agent. Also, while items can

enter directly in TEM, in DM new contents need to pass Ąrst by TEM and can only

be stored in DM after a consolidation process of the undecayed TEM contents, using

a periodic offline mechanism (RAMAMURTHY; FRANKLIN, 2011). Making a parallel

with a human being, the process is similar to the role of a REM dream, which enhances

memory consolidation (BAARS; GAGE, 2010). Both TEM and DM might receive as

input a pattern, related to the agentŠs perception at the current instant, and provide as

output the stored data which has the better partial match with the provided input. So,

for example, if ŞwetŤ, ŞwhiteŤ and ŞcoldŤ are presented to the memory, probably it can

return ŞsnowŤ as a possible match.

Ideally, assuming a PAM with 1000 concepts (implying a 1000 bits pattern in

SDM as input/output), the storage of any possible combination of these 1000 concepts

would require 21000 slots of memory, each one holding one thousand bits. This is a very

large number. This is not a realistic scenario, though, as most of the combinations of

PAM nodes will never happen. KanervaŠs SDM provides an affordable number of memory

slots (yet a large number of possible patterns combinations), retrieving and storing them

in an efficient way. This theory is mathematically complete and its effectiveness was also

proved by computer simulations (KANERVA, 1988).

But how does an SDM work? First, each physical memory slot will have an

assigned address (randomly designated at Ąrst) with the same size of the perceptual

pattern. Besides that, there will be also a register for the cue (containing the pattern to

be searched) and a register for the output (in the retrieving process, the result will be

placed in this register). All of these registers have the same bit size of the perceptual

pattern.

For the storing process, a cue bit array is sent to the memory, where each

bit position refers to every node in PAM (if the node is activated it will be set as one,

otherwise zero). Each memory slot will evaluate the Hamming distance between its own

assigned address and the cue provided. In this case, the cue holds the data that we want to

store (data register). If this distance is below a certain threshold (Kanerva recommends
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451 for one million memory slots and one thousand bits), those slots will be selected,

creating the sphere of the cue. At this point, it is important to remember that each slot

will be part of other spheres for different cues, so it means that each slot stores more than

one information, in such a way that a slot could be used for different cues (that is why

the memory is sparse and distributed).

So, how is it possible to store more than one piece of data in the same slot? To

accomplish it, Kanerva proposed that each memory slot will also have a set of registers

that will work as counters (Kanerva states that an 8-bit register is enough for most of

the applications). The number of counters is the size of the perceptual pattern. So, for a

one thousand bits size, there will be one thousand counters for each memory slot. Thus,

the storage process will be performed by adding or subtracting one from the counters,

depending on the content and the cueŠs bit position. For example, in a three bits domain,

two memory slots, 𝑀1 and 𝑀2, were selected given 101 as a cue. Each memory slot will

have three counters: 𝐶0, 𝐶1 and 𝐶2 (a three bits domain). So, at the end of the storage

process, 𝐶0M1
, 𝐶0M2

, 𝐶2M1
and 𝐶2M2

will be incremented by one (because the cue has 1

at these indexes) and 𝐶1M1
and 𝐶1M2

will be decremented by one (because the cue has 0

at this index). After repeating this process, more spheres will consolidate more data, in

such a way that when an information is requested to SDM, it will be possible to retrieve

information related to the past experiences of the agent.

To retrieve information from SDM, the cue is sent to memory and the sphere

is generated using the same algorithm described in the storage process. Once the sphere

is deĄned, all the sphere counters are summed one by one, respecting the index order.

The result is placed in another set of auxiliary counters, responsible for storing this math.

So, for example, in a three bits domain, two memory slots were selected to compose the

sphere, 𝑀1 and 𝑀2. Each memory slot has three counters: 𝐶0, 𝐶1 and 𝐶2. The auxiliary

counters, 𝑆0, 𝑆1 and 𝑆2 are used to store the sum of memory slots counters in the sphere

given by: 𝑆i = 𝐶iM1
+ 𝐶iM2

where 0 ⊘ 𝑖 ⊘ 2. Since the memory output is also a bit array,

this result is translated from the auxiliary counters to the output register considering that

if the sum was nonnegative, that particular bit will be 1, otherwise 0.

Figure 4.4 gives an overview of a sparse distributed memory for 2000 memory

slots, 256 bits perceptual input pattern and a Hamming distance of 119 as a threshold.
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Figure 4.4 Ű Sparse Distributed Memory - Extracted from (DENNING, 1989)

The group of percepts, plus the data returned by both TEM and DM, is called

the agentŠs current situational model including the current perceptual information and

past related experiences, related to the current perception. The learning process (storing

data into TEM) is triggered by the consciousness broadcast (see section 4.7).

It is important to point out that LIDA does not use the original SDM proposed

by Kanerva, but a slightly adapted version of it. A ŞdonŠt careŤ state besides the standard

0 and 1 values for each vector slot was included, in order to allow a Ćexible cuing with

fewer features (RAMAMAURTHY et al., 2004). As a consequence, an adjustment was

made to the Hamming distance calculations such that the distance between a ŞdonŠt

careŤ and a 0 or 1 was set to 0.5. Another modiĄcation was the addition of a decay rate

in each memory slot, which was not present in the original SDM proposal. Basically, the

countersŠ contents in each of the hard locations were decremented based on the basis of

the employed decay function (RAMAMURTHY et al., 2006), which is very useful in the

ŞTEM to DMŤ consolidation process, where only undecayed contents will be transferred

to DM.

Finally, it is important to relate LIDAŠs implementation of DM and TEM to

BaarŠs framework (Ągure 4.2). In BaarsŠ framework, there is a gray area indicating the

long-term memories where several types of non-conscious knowledge are stored, interacting

constantly with the working memory through retrieving and the learning process. Clearly,
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this behavior is similar to LIDAŠs model, where the content stored in the workspace will

be cued in TEM and DM.

4.6 Attention Codelets

Attention codelets are one of the most important parts of the consciousness

mechanism implemented in LIDA. Their job starts at the architectureŠs consciousness

phase. Basically, they are constantly looking out for relevant, important or urgent in-

formation located in the current situational model (FRANKLIN et al., 2014). Strictly

speaking, attention codelets are interested in particular nodes or links located in the

Workspace. If an attention codelet Ąnds all the nodes and links it is supposed to look for,

it creates a coalition2 containing these nodes and links.

A coalition contains a portion of the Current Situational Model that is brought

to the Global Workspace as a unit along with the attention codelet that created it

(SNAIDER et al., 2012). Once a coalition is placed in the Global Workspace, it will

compete for consciousness with all other coalitions found by other attention codelets. At-

tention codelets also assign an activation level to the coalitions they promote, which is used

in the competition process. This activation level depends on four factors (FRANKLIN et

al., 2016):

1. The activations of each node and link in the coalition.

2. The activation of the attention codelet itself.

3. How well the nodes and links match with the expected data looked for by the

attention codelet.

4. When a winning coalition (chosen in the global workspace) has a strong activation,

it will make the associated attention codelet to enter into a refractory period where

it will be resistant to other processes and stimuli, until it gradually recovers. During

this period, a lower activation is assigned to other coalitions.
2 The notion of a coalition was first introduced by Koch (2004) as “a group of coupled neurons that

encode one percept, event or concept”. According to Koch, “coalitions are born and die at the time
scale of a fraction of a second or longer ... members of a coalition reinforce each other and suppress
members of competing coalitions ... every conscious percept must be a coalition of neurons explicitly
expressing the perceived attributes”. Koch’s notion of coalition was further incorporated in Baars’
theory of consciousness and embedded in LIDA
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BaarsŠ framework also provides a model for attention and its correlation to

consciousness (see Ągure 4.5). This model includes both bottom-up attentional capture

and top-down voluntary attention. Voluntary control over actions is performed by the

Şcentral executiveŤ, implementing: Şhigher-order purposeful behavior Ű identifying the

objective, projecting the goal, forging plans to reach it, organizing the means by which

such plans can be carried out, monitoring and judging the consequences to see that all

is accomplished as intendedŤ (BAARS; GAGE, 2010). The central executive focuses the

agentŠs attention on speciĄc events considered important for the current goal in a partic-

ular scenario.

As clariĄed by Baars (BAARS; GAGE, 2010), attentional selection often leads

to conscious events and conscious experiences can inĆuence attention in return. A good

metaphor for understanding BaarsŠ model of consciousness and understanding the role

of attention in the construction of consciousness is the so-called Şinteractive theater

metaphorŤ for consciousness. In this metaphor, consciousness works like a play running

in a theater. But instead of a usual play, this play is an interactive play. In this kind of

play, the audience watches what is going on at the stage, and while an audience member

feels touched by what he/she is watching, he/she can join others on stage and starts per-

forming. In this sense, all actors on stage are likewise members of the audience which felt

invited to participate. All the performers in stage compete for being under the spotlight,

to be seen by others. The theater director then chooses the best performances and point

the spotlight to the selected actors in order to shine them to the rest of the audience,

just as an attention mechanism selects something in a possible range of possibilities. On

the other hand, consciousness is akin to one or more actors appearing in the spotlight

and their performances being watched by everyone else in the theater. Consciousness and

attention are different but inter-related mechanisms.

4.7 Global Workspace

Coalitions selected by attention codelets are sent to the global workspace where

they start competing for consciousness. The winner coalition is selected in a straightfor-

ward way: the coalition with the highest activation wins. As already mentioned, LIDA is

based on codelets that, by deĄnition, are asynchronous and independent. However, the
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Figure 4.5 Ű Attention and consciousness in BaarsŠ framework - Extracted from (BAARS;
GAGE, 2010)

competition process provides the system with a point of synchronicity, running in a trigger

format. It waits until a certain condition is true and then starts the competition. This

triggering is effective in four different scenarios (FRANKLIN et al., 2016):

1. At least one coalition has an activation level greater than a certain threshold.

2. The sum of the activation level of the coalitions is greater than another threshold.

3. No new coalitions arrived in the global workspace in a certain period of time.

4. A consciousness broadcast did not happen in a certain period of time.

According to the interactive theater metaphor, once one or more actors are

illuminated by the spotlight, their performance can be watched by all others in the theater,

possibly exciting other members of the audience and encouraging them to go to the stage

and start their own performance. The same idea is applicable to LIDA because once

the winner coalition is selected, it is broadcast to other modules in the architecture. The

broadcast starts the learning/action phase in LIDA with different consequences depending

on the module it reaches.

When the broadcast reaches TEM and DM, the winner coalition is stored as

a new memory in the sparse distributed memory, where each coalition node is encoded in
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an appropriate index of a bit array, using the algorithm already described in section 4.5.

The broadcast is also sent to PAM and to the Workspace. In PAM, the broadcast can

change the base level activation of some nodes or create new links between nodes. On the

other hand, in Workspace, the coalition will be stored in the conscious contents queue,

being available just for a few cognitive cycles, to help other codelets (e.g., the attention

codelets) to have a time-related information, that could be helpful to the agent in order

to make a decision based on previous actions or feelings.

The consciousness broadcast also affects procedural memory (PM), which is

responsible for storing possible actions and their related context. The broadcast helps in

selecting the agentŠs next action, in a process detailed in section 4.8.

As already mentioned, attention and consciousness are related but are differ-

ent processes. When speciĄc percepts are made salient by the attention mechanism, they

compete for consciousness (see Ągure 4.5) and, in winning this competition, they can

be spread around the brain, triggering a lot of cognitive functions like e.g. episodic and

declarative memory learning. The broadcast is useful while dealing with unknown prob-

lems that require a collaborative and/or competitive activation of different specialized

networks, planning the next steps to be taken in order to identify a solution (BAARS;

GAGE, 2010). As we can see in Ągure 4.1, the process described in global workspace the-

ory was implemented in LIDA, since the winner coalition will be broadcast to all other

modules in the architecture, triggering different behaviors in different modules.

4.8 Procedural Memory

In human beings, procedural memory (PM) refers to sensory/motor habits or

automatic skills, which are largely unconscious (BAARS; GAGE, 2010), i.e., automatic

actions are performed without an explicit awareness by the human performer. For instance,

when we are driving a car, we do not pay attention to all our movements. We are simply

changing the gear, or stepping on the brake pedal, in an Şautomatic wayŤ. In BaarsŠ

framework, the PM is located in the gray area with the name Şhabits and motor skillsŤ

and is related to the agentŠs motor and verbal skills. They provide the means on how to

do an action. In LIDA, the procedural memory will play the same function: to store the

possible actions of an agent. The mechanism is based on DrescherŠs schemes.
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As described by Drescher (1991), a scheme (or a schema, in DrescherŠs no-

tation) is a representational unit expressing that a certain action has a speciĄed result

when certain conditions are met. Each scheme will be made of: the action context (the

requirements for triggering the action), the action which refers to the perceptual symbol

that is based on the internal and external sensory stimuli that accompany the execution

of the action (e.g., for the ŞgrabbingŤ action, the internal stimulus of oneŠs hand grabbing

an object, and the external stimulus of seeing oneŠs hand grabbing) (MCCALL, 2014),

and the result (which deĄnes change expectations for the environment when that action

is applied to it).

LIDA uses the same principles described by Drescher in the procedural mem-

ory. The context and results are represented by nodes and links, and the label is an

identiĄer describing the action to be performed by the agent (like e.g. Şturn rightŤ, Şgo

aheadŤ, etc.). Besides that, there is a numeric value associated with each scheme, deĄn-

ing its activation. This activation is related to the probability of a certain scheme to be

selected at the end of the action selection process (more details in section 4.9). When

PM receives the consciousness broadcast, the schemes with their contexts overlapping the

nodes and links received in the broadcast are selected and sent to the action selection

module. The consciousness broadcast also triggers a learning process in the procedural

memory. Franklin clariĄes that if a behavior is selected to execution and the event that

triggered the behavior subsequently comes to consciousness again, the base-level activa-

tion of this scheme is reinforced (FRANKLIN et al., 2016).

4.9 Action Selection

In BaarsŠ framework (Ągure 4.2) the Action Planning component is responsible

for generating outputs to the environment. This component begins considering general

goals, inĆuenced by emotional and motivational input from limbic regions of the brain,

which trigger the frontal lobe, where physical actions are planned and motor system

activity is initiated (BAARS; GAGE, 2010).

In LIDA, once a set of schemes is selected by PM, they are sent to the action

selection module, where they give rise to behaviors. Behaviors compete with each other,

based on MaesŠ behavior net algorithm (MAES, 1989), until just one is Ąnally selected,
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which is executed by the agent. The main question that any action selection mechanism

has to answer is: how to select the most suitable action to take given a particular situation?

Maes aims to answer this question proposing the behavior net mechanism.

For Maes, any behavior 𝑖 can be viewed as a tuple (𝑐i, 𝑎i, 𝑑i, Ði), where 𝑐i

deĄnes all the conditions that should be met before a behavior can be executed, 𝑎i is a

reference for the add-list and 𝑑i for the delete-list, where both specify propositions that

are expected to become true or false when the behavior executes. The difference between

them is that the add-list contains all the new states that the agent will experience and the

delete-list contains all the states that the agent will not experience anymore after applying

the behavior. For example, if a behavior is related to move an agent from point A to point

B, probably its add-list will be Şat location BŤ and its delete-list will be Şat location AŤ.

Finally, Ði is a numeric value that indicates the strength level of the activation for that

behavior. The activation, according to Maes, can also be impacted by the environment

or by goals. The environment changes the current state (asserting propositions as true or

false), and if these propositions are conditions of a behavior, this can decrease or increase

the activation level of this behavior. Goals can also increase or decrease the activation of

some behaviors if they are in accordance (or not) with the current agent goal.

Once all the behaviors are structured in this format, they will be linked in a

network format (a graph). There are three possible types of links: successor, predecessor,

and conĆicter. Given two behaviors 𝑘 and 𝑧, 𝑘 has 𝑧 as successor, when a proposition in

𝑎k is also a member of 𝑐z. For the second type of link the opposite is applied, in other

words, 𝑘 has 𝑧 as predecessor when a proposition in 𝑎z is in 𝑐k. Lastly, 𝑘 conĆicts with 𝑧,

when a proposition in 𝑐k is also in 𝑑z. It is important to emphasize that a link is applied

to/from a proposition, thus, probably, there will be several links from one behavior to the

others.

The basic idea of having links is to spread the behaviors activation in such a

way that they will inhibit or activate their neighbor behaviors, such that, after a while,

the energy will be accumulated in the best choices. Along with successor and predecessor

links, one behavior increases the activation of other behaviors that are linked to it, by a

fraction of its own activation level. However, along the conĆicter links, a behavior decreases

the activation level of the other behaviors that are linked to it also by a fraction of its
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own activation. It is possible to note that this spread of activation follows an intuitive

approach, i.e., a behavior increases the activation of other behaviors that are almost

having condition to become executable (successor links) or it increases the activation of

behaviors that, when executed, can help it to meet its preconditions (predecessor links)

and, on the other hand, decrease the activation of the modules preventing it to become

executable (conĆicter links). After all the behaviors are linked, it is time to choose the

best one and this is done according to algorithm 1.

Pseudocode 1 Selection of a winner behavior
1: procedure GetWinnerBehavior
2: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑉 𝑎𝑙𝑢𝑒

3: while 𝑇𝑟𝑢𝑒 do
4: Process activation from environment and goals
5: Spread the activation according to the links
6: Apply a decay function to keep overall activation constant
7: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 = 𝑁𝑜𝑛𝑒 ◁ Hold the winner behavior
8: for behavior 𝑏 in all behaviors do
9: if (𝑐b == 𝑇𝑟𝑢𝑒) and (Ðb ⊙ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) then

10: if (𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 ̸= 𝑁𝑜𝑛𝑒) then
11: if (Ðb > ÐSelectedBehavior) then
12: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 = 𝑏

13: end if
14: else
15: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 = 𝑏

16: end if
17: end if
18: end for
19: if (𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 ̸= 𝑁𝑜𝑛𝑒) then
20: ÐSelectedBehavior = 0 ◁ Resetting activation of the chosen one
21: return 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟

22: else
23: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 * 0.9 ◁ Reducing threshold in 10%
24: end if
25: end while
26: end procedure

As already mentioned in section 4.8, schemes hold four pieces of information:

context, action name, result, and activation. Making a parallel with the behaviors used in

the action selection module, it is possible to note that the context in the scheme will be

used as the context in the behavior, the result in the schemes will be used as the add-list in

the behavior, and the base level activation of the scheme will be used to evaluate the initial

activation of the behavior (which will be a sum of several factors, like the activation of the
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consciousness content, the base level activation of the scheme, the degree of coincidence

of the conscious contents with the schemeŠs context and so on (FRANKLIN et al., 2016)).

As an important caveat, currently, the procedural memory does not deal with delete-lists,

so although the original MaesŠ behavior can use this kind of information, it will be not

be used by LIDA. As well as in Global Workspace, the action selection module works in

a trigger format and it is triggered when a behavior is above a certain threshold or the

sum of activations of all behaviors is above another threshold or no behavior was selected

in a certain period of time (FRANKLIN et al., 2016).

LIDA framework also provides a Şbasic action selectionŤ method as an alterna-

tive way for MaesŠ behavior net where, in short, the behavior with the highest activation

value is selected. Basically, all the initial activation of behaviors is evaluated and the

selected behavior will be the one with the highest activation value among all the other

behaviors and whose the activation value is greater or equal to the activation threshold.

If there is no activation greater or equal to the activation threshold, a decay factor is

applied to the threshold (and a different factor is also applied to behaviors) and a new

action selection round is started. This is a very rudimentary mechanism, but it is very

useful for debugging purposes, small agents or in the early stages of development.

4.10 Sensory Motor Memory

As Baars already pointed out (BAARS; GAGE, 2010), output and input pro-

cessing have some striking parallels because they work as processing hierarchies. Inputs

are received as raw data and then turned into high-level perception data. In turn, outputs

receive inĆuence from goals, emotions, and motivations which proceed down to motor

skills. This is exactly the same philosophy used in LIDA, because after the action selec-

tion is done, the winner behavior is sent to sensory-motor memory where an associated

algorithm (for that behavior) is executed, coordinating a high-level desire (the behavior)

into a low-level action for that moment. This transformation is necessary because a high-

level desire can be achieved through several tiny actions. For instance, if the behavior is

Şwalk from position A to BŤ, this will be translated in coordinated movements for each leg

(step by step) and also a perceptual analysis that will tell if the B position was reached.
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4.11 Summary

During this chapter, we described in details how each module of LIDA works

and how they contribute to the cognitive cycle.

LIDA cognitive cycle starts in Sensory Memory where codelets detect low-level

features from raw input data. After that, PAM will provide a high-level processing via

an interconnected set of symbolic nodes. All nodes having the activation higher than a

certain threshold are sent to the Workspace where they will interact with other modules

(e.g. memories). Next, attention codelets will search for relevant features in Workspace.

When an attention codelet Ąnds a desired pattern, the result coalition of nodes is sent

to the Global Workspace where all coalitions compete for consciousness. The winning

coalition will be broadcast to the other modules where it will trigger several learning

processes. The broadcast also reaches the Procedural Memory where it will Ąlter the

most relevant action to be taken using MaeŠs behavior net.

In the next chapter, we describe the strategies used for the comparison of the

three cognitive architectures.
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5 Looking for a Comparison Strategy

As already mentioned in the introduction, the study of cognitive architectures

is becoming a very proliĄc area in the recent years, with new architectures appearing

here and there, and consequently intriguing the reader for their advantages/disadvantages

while compared to each other. This fact claims for some sort of comparison between them,

triggering the appearance of works intending to compare CAŠs under different perspectives

(SAMSONOVICH, 2010) (GOERTZEL et al., 2014) (KOTSERUBA et al., 2016). This

kind of work is quite relevant because it helps new researchers in the Ąeld to identify what

are the pros and cons of each CA, giving them a starting point and even clarifying if a

cognitive architecture is the best way to solve a certain problem. Cognitive architectures

are complex systems, with an inherent cost for this complexity. Depending on the problem,

there might be simpler AI mechanisms more appropriate to the situation.

Most of these comparative papers focus exclusively on the architectural mod-

els, without paying attention to their software implementations. Even though several

computer implementations can be created given a certain model, it is crucial to under-

stand the capabilities and limitations of actual implementations, because this type of

analysis can provide comments on their reuse in different situations. In practical terms,

models that cannot supply suitable implementations might not be relevant concerning

reuse. Besides that, biological aspects are sometimes left aside in this kind of study, i.e.,

issues like if the CAŠs addresses particular human or animal cognitive aspects are missing.

To Ąll these gaps, we performed two kinds of analysis in this work: the Ąrst

related to the different ways the analyzed architectures were modeled and the second

related to the implementation of such architectures. Models are compared using, as a

reference, how they address a set of different cognitive functions considered relevant for

the construction of an intelligent agent. This analysis provides a contrastive coverage of

capabilities and limitations for each CA, imposed by design, with the aim of inspiring the

emergence of new cognitive architectures combining the beneĄts of each of them.

In turn, architectures implementations are compared based on the proposition

of a common problem, and the evaluation of how each cognitive architecture considered
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in this work (SOAR, CLARION, and LIDA) can be used to solve it. It is not our goal

to exercise all the features available in each architecture. On the contrary, a simple ex-

periment is proposed as a benchmark, because the main intent is to evaluate important

aspects in the implementations (response time, ease of integration on different domains,

resolution of conĆicting interests, complexity for coding the solution, code readability and

scalability). Using a simple experiment makes this comparison more transparent, easy and

reliable because each CA has its own design with different features, so it is very hard to

design a complex experiment that can be equally applied in all three architectures. The

main idea is to provide a simple walkthrough on each CA, warning users about limitations

they might face during development, and features they might count with while using a

speciĄc architecture.

5.1 Models Comparison

Advances in neuroscience are changing our comprehension of the human brain,

allowing a better understanding of the whole cognitive process and, as a result, driving the

emergence of different theories trying to elucidate which are the major functions present in

human cognition. Alexander and Dunmall (GAMEZ, 2008) developed an approach based

around Ąve axioms (depiction, imagination, attention, planning, and emotion), which they

believe are the minimum required for consciousness. In turn, Sun (SUN, 2004) also listed

some characteristics that every cognitive architecture should have in order to be biologi-

cally inspired, and Baars (BAARS; GAGE, 2010) combined a large body of brain functions

into a single framework, helping to clarify the human cognitive cycle schematically (as

detailed in Ągure 4.2).

Inspired by these theories, we selected a set of cognitive functions to be used

as a reference while comparing the architecture models under the scope of this work.

They are: perception, goals, action selection, learning, and consciousness. We analyze and

evaluate how each cognitive architecture addresses each of them.

Perception is a process that comprehends how data is received from sensors,

processed, organized and interpreted in order to allow the agent a better understanding

of the environment.

Goals or motivations are what drives an agent to perform orchestrated actions
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in order to achieve a prescribed future state. This future state might be precisely deĄned,

or alternatively, can be any future state attending a given set of requirements which must

be satisĄed.

Action selection can be simply summarized as the answer to the question Şwhat

to do next?Ť, in other words, when an agent is facing a situation with conĆicting goals,

emotions and memories, it is an action selection mechanism role to choose the best action

for that moment.

Learning is the act of acquiring and storing a new knowledge or to modify an

existing one, in such a way that it can be useful in the future agent iterations.

Consciousness, as a human cognitive function, just recently became worth to

be investigated in a scientiĄc way. This is a very controversial subject and some authors

believe that consciousness is not related to just one phenomenon, but it is a mongrel con-

cept, related to at least 4 different phenomena (ATKINSON et al., 2000). Alexander and

Dunmall stated that at least Ąve different axioms should be present to allow consciousness

and, on the other hand, BaarsŠ Global Workspace Theory brought a fresh view for this

topic (see section 4). In the AI community, an approach called Şmachine consciousnessŤ

started to appear investigating which elements should be synthesized for consciousness to

be found in artiĄcial agents.

5.2 Implementations Comparison

The deĄnition of a common experiment to compare the three CAs under anal-

ysis in this work was not an easy task. This experiment should be complex enough to

demand the usage of a cognitive architecture, but simple enough to focus on individual

aspects of each architecture (remembering that it is not the goal of this work to exhaust

all the capabilities of each architecture). We chose a kind of computer game (in fact

a virtual environment) as a common platform of tests. In this platform, an non-player

character (NPC) is placed in a 3D virtual scenario, where it shall perform a set of tasks

autonomously, under the control of a cognitive architecture. We executed a total of three

experiments, each one controlled by a different cognitive architecture (SOAR, CLARION

and LIDA).
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ming languages, even though a common software architecture was used for the Client, we

had to use different strategies for building it in each case. Even though SOAR was built

in C++, we used a Java binding available from their creators. We also used Java for the

LIDA version and a customized C# version of the client was developed for CLARION.

Given the experiment structure, it is important to specify what the agent

should do. The experiment consists of one single agent placed in a scenario surrounded

by walls. After a period of time (T ), the system distributes a given number of jewels (J )

at random places in this area (as demonstrated in Ągure 5.2). The agent should divert the

walls (avoiding an imminent collision) and collect as many jewels as possible, being able

to store the location of some jewels in its memory.

Figure 5.2 Ű Experiment illustration

The number of jewels J is speciĄc for each experiment and new jewels are

replaced at each T seconds, where a new batch of jewels is created to restore the original

J. So, for example: if J is equal to 5 and T is 17 seconds, thus after 17 seconds, if the

remaining number of jewels is 3 (because the agent collected 2 jewels), other 2 new jewels

are replaced at random positions in order to set the maximum number of jewels of the

experiment. The value of J varies from simulation to simulation in order to evaluate how

the increase of jewels can impact in each cognitive architecture.

Again, the main intent of this experiment is to evaluate: response time, ease

of integration on different domains, resolution of conĆicting interests, complexity for cod-

ifying the solution, code readability, and scalability of the project.
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5.3 Summary

In this chapter, we developed a strategy in order to provide a comparison

among the cognitive architectures we wanted to analyze. We identiĄed a set of cognitive

functions supposedly existing in the human cognitive cycle with the intent to evaluate

how each cognitive architecture deals with these functions. We also considered the same

experiment (a computer game) in all three architectures, in order to develop a second

kind of comparison. The main intent, in this case, is to evaluate how each architecture can

be used to solve it. In the next chapter, we start performing the theoretical comparison,

focusing our attention on the architecture models and how each selected cognitive function

is implemented in each architecture.
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6 A Theoretical Comparison

Before starting the analysis of each cognitive function, it is important to em-

phasize the differences in knowledge representation. Basically, there are two paradigms:

symbolic and sub-symbolic. As Ron Sun has already pointed out (SUN, 2004), this di-

chotomy is crucial for the development of a biologically inspired cognitive architecture.

Indeed, it is possible to infer some aspects just analyzing if an architecture is based on

one approach, in another one or if it has a mixed approach.

Symbols are entities which make reference to other objects by means of a totally

arbitrary convention, a law (CRAIG; MULLER, 2007). For example, the white Ćag is a

symbol of peace, the red cross is a symbol for hospitals and so on. They are widely used,

due to their Ćexibility and power. In the study of Semiotics (the science of representation),

though, there are other kinds of representations besides symbols, e.g. indexes and icons.

Indexes represent by drawing the attention of the sign-user to their objects, usually using

an existential relation, like spatial-temporal relations or causal relations which refer them

to their objects. Icons represent by standing in themselves the same properties of their

objects (i.e. by being similar to their object in some sense).

At the beginning of ArtiĄcial Intelligence, Allen Newell and Herbert Simon

(NEWELL; SIMON, 1976) explicitly claimed that a symbolic system might have ev-

erything necessary to generate intelligent behavior. This should be possible because the

symbols might represent anything in the real world and if they can be manipulated to

generate new symbols, then, considering unlimited resources, it should be possible, in

principle, to envisage a computer as a classical Turing machine and, cumulatively, it will

be feasible to represent all objects computationally, which will provide the necessary basis

for the generation of an intelligent behavior.

This thesis, called the physical symbol systems hypothesis, was attacked by

many researchers since then. The many refutations to this thesis allowed the emergence of

the new concept of a sub-symbolic representation (also called ŞnumericŤ by some authors).

As Nilsson emphasized (NILSSON, 1998), the sub-symbolic has a Şbottom-upŤ Ćavor and,

at the lowest levels, the concept of a symbol is not as appropriate as the concept of a
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signal. Besides that, he also argues that the human intelligence evolved after billions of

years and it is necessary to follow the same steps, i.e., to concentrate Ąrst on duplicating

the signal-processing abilities in order to duplicate simple animal behaviors and, later,

more complex abilities required for handling symbols and more sophisticated concepts.

The sub-symbolic approach has spread with the appearance of neural networks,

raising several questions against the completeness of the symbolic approach. This debate

new endures for decades. Eliasmith and Bechtel (ELIASMITH; BECHTEL, 2003) tried

to summarize some of the critiques:

• Understanding: symbolic models are generally sentential, which seems to be rea-

sonable for problems that can be represented linguistically. However, for some basic

cognitive tasks (e.g. taste, touch, smell, sound, and sight), the main intent is to

respond to patterns detected in the environment. Besides that, how this association

between symbols and incoming data is performed? According to the symbolic ap-

proach, this is performed through an adapter module that translates the incoming

raw data into symbols. This idea is rather problematic. In a Ąrst glance, it is not

clear how this module works. At the same time, it becomes evident that, regarding

human thinking, there should be some intrinsic knowledge below the symbolic level.

This issue is also called the symbol grounding problem (HARNAD, 1990).

• Fault tolerance: symbolic representations are generally expressed in the form of

rules, connecting the conditions to the desired result (linking symbols). However,

if some of these rules had been corrupted, it can affect the whole system. On the

other hand, sub-symbolic entities are represented as an interconnected net of simple

units, so simple corruptions will lead the system to degenerate its accuracy, but it

still works.

• Learning: for symbolic systems, learning only occurs with the association of pre-

deĄned symbols, i.e., new symbols can not emerge. On the other hand, sub-symbolic

learning involves strengthening or weakening connections which can be used for low-

level learning, helping to explain the development of new symbols.

• Serial/Parallel processing: symbolic systems are usually implemented as serial

processes. Lists of rules are processed in an iterative way, being tested against a list of
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propositions, which truth values give or not support for triggering a rule. Iterations

on lists are the primary processing structure. In turn, sub-symbolic systems, due to

their nature of connected units, have a straightforward bias for parallel processing,

where each unit can make its processing more independently.

On the other hand, symbolicists point-out the lack of the following character-

istics in the sub-symbolic approach:

• Productivity: this is the capacity to produce arbitrarily many expressions. This is

easily achieved in symbolic systems using, for example, recursion. Each symbol can

be associated to possibly any other symbol, creating a chain of symbols providing

an elaborated meaning for the context (e.g., John told it to Sansa who told it to

Arya who told it to Robb).

• Systematicity: this pertains to a property of natural languages, in which the same

idea can be expressed using different articulations and possibly different words (e.g.,

to say that "John used his sword to kill his enemy" is the same as saying that "A

sword was used by John to kill his enemy", or that "JohnŠs enemy was killed by

his sword"). The meaning of a whole sentence derives from the composition of the

meaning of each of its words, combined in a certain way that a complete and same

idea can be expressed.

Having this background in the discussion, we can better understand what are

the impacts of using one or other approach within a CA. In next sections, the cognitive

functions selected in section 5.1 are described in more details (LUCENTINI; GUDWIN,

2015).

6.1 Perception

An important point for any living being concerns how data is acquired from

the environment, and further processed, categorized and organized. As human physiology

suggests, perception is a process which can be decomposed in several steps, where each step

adds an increased layer of abstractness, capturing patterns and relations among different

input data. The Ąrst steps are responsible for the identiĄcation of basic characteristics,
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which are gradually being abstracted in the subsequent steps, until a high-level abstraction

of a scene can be achieved, after passing through many layers of intermediary abstractions.

Each abstraction layer adds a new understanding of the same data, in a more elaborated

interpretation. Taking human vision as an example, the primary visual cortex (V1) is

responsible for detecting vertical lines, horizontal lines, colors, etc and the lateral occipital

complex (LOC) has a general role in object recognition based on the V1 processing.

Different cognitive architectures have different strategies for capturing and

modeling information such that perception can take place. In SOAR all information ob-

tained from the environment is stored in the working memory in the form of WMEs (see

section 2). In being completely arbitrary, a WME is necessarily a symbol. In SOAR, this

symbol is generated externally, i.e., SOAR does not have a speciĄc module responsible

for converting the raw data from sensors in WMEs, so all data must be processed outside

the architecture, in order to generate WMEs that will be further handled by SOAR (as

emphasized in section 2.2). Due to its nature, SOAR is mostly a symbolic architecture

concerning perception, does not providing any internal mechanism to accommodate raw

data signal processing.

In LIDA, sensory information is captured and sent to the Sensory Memory

module, where low-level feature detectors search for patterns and relations in raw data.

After that, the result of this Ąrst level of processing is sent to PAM, where high-level

feature detectors are employed to extract information, propagating its activation through

the Slipnet nodes. It is possible to Ąnd some similarities between SOAR and LIDA per-

ception processes: LIDA nodes (stored in PAM) perform a role which is very similar to

the WMEŠs in SOARŠs working memory because they represent information about the

current problem state using a symbolic representation. In the same way, the activation

of each node in Slipnet remembers the functionality of WMA in SOAR (see section 2.9).

Although they are used for different purposes, the idea to have a numeric value asso-

ciated with a symbolic node is quite similar. On the other hand, LIDA incorporates a

mechanism for the processing of incoming raw data. So, LIDA has a more elaborated per-

ception mechanism, where the perception of a symbol is performed progressively through

sub-symbolic and symbolic processes.

CLARION has a mixed representation and this is very explicit in the CA.
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Each module is split into two parts: the top-level, responsible for the explicit knowledge

(symbolic), and the bottom-level, responsible for implicit knowledge (sub-symbolic). The

incoming data in CLARION is done via dimension-value pairs that are, in summary, a set

of keys and values that represent, respectively, the information type and its corresponding

value.

Although CLARION does not have an explicit perception module (as in LIDA),

NACS helps in performing this job. On its top-level, chunks are declared associating

dimension-value pairs (or other chunks) with a symbolic representation. These chunks

also receive an activation value based on the activation of each source of that chunk. This

structure of chunks connected with other chunks and/or low-level features is very similar

to the Slipnet present in LIDAŠs PAM. On NACS bottom-level, AMN networks process

raw dimension-value pairs in order to generate other dimension-value pairs as outputs (see

section 3.2.3) and these outputs can trigger the activation of some chunks in the top-level.

Again, as in LIDA, CLARION has a gradual perception mechanism, where symbols are

detected progressively through sub-symbolic and symbolic processes.

However, it is important to emphasize one point: for SOAR, CLARION and

LIDA symbols should be previously created by the programmer, i.e., none of the architec-

tures allows the creation of a completely new symbol based on other sub-symbolic/symbolic

characteristics. Actually, these architectures have some learning processes that associate

a symbol to other different symbols, but they do not allow the creation of a completely

new symbol at run-time.

6.2 Goals

The ability to handle goals or motivations are what distinguishes deliberative

agents from mere reactive agents. Goals are speciĄcations for future states, which are

supposed to be achieved by means of agents actions. These speciĄcations can be either

of precise states to be achieved or conditions or predicates that these future states must

hold. Deliberative agents are capable of creating and executing plans, i.e., orchestrated

sequences of actions that, at the end, will try to meet this future speciĄcation (possibly

bringing a positive reward to the agent). In fact, a lot of studies try to unveil how the

human brain selects goals, but this is still an open area for discussion, although we had a
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lot of progress in recent years. Some researchers suggest that the pre-frontal cortex (PFC)

plays a central role in forming goals and objectives and some other factors (e.g. emotions,

conĆict monitoring, planning, etc might affect such decision (BAARS; GAGE, 2010)). As

Hull emphasized (HULL, 1943), the decision-making process is clearly not only symbolic

and not readily accessible cognitively.

The handling of goals can be decomposed into two main sub-steps: the gener-

ation of new goals and the generation of actions leading the system to the satisfaction of

these goals. Even though SOAR is able to make plans satisfying a given goal (any rule

which results in the halt of a SOAR cycle can be seen as a goal-matching rule), SOAR

itself does not provide any built-in motivational process, i.e., a process responsible for the

generation of new goals. SOAR presupposes that goals are implicit in the rules, and if new

goals are to be considered, these might be solved totally outside SOAR. The consideration

of new goals in different instants of time might require new rule bases being considered

by SOAR for new goals to be pursued. On the other hand, CLARION has an exclusive

module, named MS (Motivational Subsystem), in charge of it. As explained in section 3.3,

this module is divided into the bottom and top levels. The bottom-level is responsible for

handling drives and the top-level has the symbolic representation of a goal which can be

related to drives and/or perception inputs. Basically, the drive levels are sent to MCS

that updates the goal structure in MS, which then chooses the new goal for the current

cognitive cycle.

CLARION follows the drive reduction theory of Hull (HULL, 1943), where

motivation is based on drives, i.e. internal impulses to speciĄc actions representing internal

needs which might be reduced by means of an asserted repertoire of actions. Examples of

drives are hunger, fear, curiosity, honor, etc. Drives create pressures on the motivational

system, which reacts choosing a next action meant to reduce these pressures in a proper

way. So, for example, if your energy balance is negative (you are Ąnishing your energy

reserves) a hunger drive will increase its value, leading you to look for food and eat, and if

you eat something after that, you reduce your hunger, in a clearly homeostatic behavior

(your need for energy has been satiated). So, although CLARION is not able to create

effective plans, composed of a sequence of actions leading to a goal (like SOAR is able to

do), it brings an effective contribution to the problem of goal generation, by incorporating

the notion that at different instants of time, our needs might change, leading to different
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goals which need to be satisĄed. Clearly, CLARION motivational system is more than

a reactive system, as the actions selected with the aid of drives are not just reactions

to the input, but are meant to reach a future state, where the drives are reduced. So,

CLARION motivational system can be compared to a planner of a single step, a kind

of myopic planning system. Even though it does not take into account all the biological

aspects involved in goal selection, it tries to bring to the discussion a cognitive model for

that, combining symbolic and sub-symbolic characteristics. Another interesting point is

that motivations feed the ACS, i.e., they are relevant in the action selection mechanism.

Due to the GKS structure (see 3.4.1), it is possible to set a new goal and also keeping the

previous ones (creating a stack of goals), what can be useful for ACS in order to select

actions that achieve more than one goal at the same time. In some sense, CLARION and

SOAR are both strong in opposite realms. While CLARION has a more sophisticated goal

generation mechanism (SOAR has none), SOAR has a powerful planning system in terms

of generating a sequence of actions leading to the goal satisfaction (CLARION has strong

limitations in that realm). Both of them, though go beyond pure reactive systems, creating

different strategies for improving the decision-making processing in order to achieve pre-

designed future states.

In LIDA, one of the possible action-selection mechanisms, MaesŠ behavior net

(section 4.9), was originally supposed to handle goals. In her original proposal of behavior

networks (MAES, 1989), Maes explicitly says that goals are one possible origin of activa-

tion affecting the behaviors within the behavior net, possibly changing the result of the

selection process (and, as consequence, the selected action). Besides that, another possible

mechanism involving motivated behavior in LIDA is in the top-down attention mecha-

nism. As Baars pointed out (BAARS; GAGE, 2010), there are two kinds of attention:

top-down and bottom-up. Bottom-up attention is the simpler one and is usually based on

the detection of salient stimulus. For example, if you see a real lion in front of you, you

will probably engage immediately in a procedure to deal with the situation (running or

Ąghting the animal, but rarely ignoring its dangerous presence), no matter what were your

previous goals. But top-down attention, on the opposite, is a voluntary and goal-oriented

kind of attention, where we try to search for stimuli that can help us to meet our goals.

An example of top-down attention would be looking for your carŠs key if you are planning

to drive.
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McCall recently proposed new mechanisms of motivations for LIDA in order

to complement its functionalities (MCCALL, 2014). Based on DamasioŠs view of feelings

(somatic markers, i.e, the perception of a certain body state), McCall proposed the imple-

mentation of feelings as PAM nodes, where each feeling is characterized by a valence sign,

a positive or negative value, where positive stands for the agentŠs basic representation of

niceness or liking (e.g., a ŞhungryŤ node would have negative sign).

Besides feeling nodes, McCall also proposed the representation of events in

PAM nodes. Events are represented by a group of PAM nodes providing a grounded rep-

resentation of a whole ŞsituationŤ (possibly the current situation). An event comprehends

whatever happens during a segment of time at a given location, with a beginning and an

end (MCCALL et al., 2010). As McCall exempliĄes (MCCALL, 2014) in Ągure 6.1, the

event ŞCharles takes the penŤ can be recognized in PAM, using an event node, becoming

a part of the current percept.

Figure 6.1 Ű Event ŞCharles takes the penŤ - Extracted from (MCCALL, 2014)

During ordinary perception, feeling nodes might become a part of a precon-

scious event in the Workspace, either by direct recognition or by close temporal association

(MCCALL, 2014). These feeling nodes might be associated with an event. This association

is performed by structure building codelets, concerned with particular appraisal dimen-

sions and, once learned, they might be instantly recognized. This association between
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feeling nodes and events is described by McCall as an emotion. For example, given a feel-

ing node in PAM representing shame and a currently active event node, the association

between them would constitute an instance of the shame emotion (MCCALL, 2014).

Further, the feeling nodes activation will spread to the other nodes comprising

the event and used to evaluate the Ąnal activation of these nodes. As we know, a coalition

of nodes with high activation has better chance to win the competition for consciousness.

If broadcast, events having a large magnitude of activation better recruit schemes from

Procedural Memory, and can instantiate more salient behaviors. This inĆuence of incen-

tive salience on action selection is akin to the inĆuence of ŞgoalsŤ on MaesŠ behaviors

net (MCCALL, 2014). Finally, the feeling nodes activation is updated during perceptual

learning (after consciousness broadcast) using reinforcement learning methods. This idea

seems to be similar to the drive mechanism present in CLARION.

6.3 Action selection

Action selection is the process of identifying the most suitable action to be

taken by an agent, in a given moment, based on sensory data, goals, and possibly other

sources of information, like emotions, beliefs, etc. Maybe, this is one of the least understood

areas in human physiology, as properly stated by Tyrrell:

“whereas perception can be studied by presenting known stimuli and
measuring neural firing rates, and motor control can be studied by ex-
citing neurons and observing motor responses, it is not so easy to apply
either of these techniques to the behavioural parts of the brain. Al-
though areas of the brain governing behavioural responses will respond
to perceptual stimuli in certain cases, and produce motor responses, the
relationships are more complex because the inputs and outputs only in-
teract with the outside world via other interfacing systems” (TYRRELL,
1993).

There is not a unique way of determining this next action, and consequently,

each cognitive architecture proposes a potentially different action selection mechanism

(ASM).

In SOAR, there are two ways of determining the next action: the reactive and

the deliberative ways. SOAR is a rule-based machine, where from a given initial state,

different operators are analyzed and proposed to be applied for the current state. If more
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than one operator is proposed, an impasse is generated and further rules are necessary to

solve the impasse and choose one unique operator. Using SOAR in a reactive way means

that the initial state reĆects the current situation, and for that situation, SOAR must

Ąnd the best operator. In this case, the knowledge in rules reĆect the desired behavior,

and SOAR simply applies these rules in order to select a unique operator. In this ASM

strategy, the rules must detect speciĄc features which are used to choose the best operator.

But the real strength of SOAR is not on the reactive ASM. SOAR mechanism allows a

different approach, the deliberative approach. In the deliberative approach, instead of

having rules that predeĄnes speciĄc operators for different conditions, these rules are

constructed from a different perspective. In this case, rules are used to predict what will

be the future state after a given operator is applied. Then, SOAR is able to perform a state

space exploration, until a desirable state is achieved, applying a sequence of operators that

will turn the present situation into the desired situation. The result is a plan, leading the

current state to the desired state. The cognitive architecture can start executing this plan,

step by step, until the desired state is achieved.

CLARION also has two different kinds of action selection. The Ąrst one is

somewhat equivalent to SOARŠs reactive action selection. But CLARION uses a proba-

bilistic way to select the proper action and ACS is the CLARIONŠs module responsible for

this job. Instead of using simply a rule-based system, like SOAR, CLARION decomposes

the problem into two levels: the top and the bottom. The top-level is composed of rules,

following the pattern: condition/action. The bottom-level has a sub-symbolic approach,

being composed, usually, by a neural network. Each level will suggest an action in a re-

active way, and ACS will select the winner using a stochastic or combination approach.

Both top and bottom levels use BoltzmannŠs distribution in order the select the best

action, although they have some slight differences (as described in section 3.1.3). The sec-

ond action selection mechanism available in CLARION is provided by the Motivational

System (MS). In this case, instead of a pure reactive decision, CLARION uses the HullŠs

concept of needs. A CLARION agent might have many needs, which are characterized by

drives and goals, and CLARION promotes a competition among the many needs, given

the current situation, such that the many drives can be satisĄed and have their values

decreased, as pointed out in section 6.2.

In LIDA, action selection is a process involving both the PM (Procedural
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Memory) and AS (Action Selection) modules. Initially, PM provides to AS all the schemes

that match with the current state and AS will use them as a basis to choose the best action

to be taken. This selection is performed either using MaesŠ Behavior Net, a graph where

each node is a behavior, or the Basic Action Selection mechanism. The connections among

all the behaviors make clear the dependencies among them and, through a spreading

activation mechanism, AS chooses the best action.

Three cognitive architectures and three different ways to select an action. First,

letŠs compare how the actions are stored in each architecture and then we can move

our attention to the action selection process proper. In SOAR and LIDA, actions are

represented by means of rules. Of course that, in each architecture, there are differences

due to the way that each rule is represented, but, essentially, they are rules, having a

strong symbolic bias. CLARION has also rules located in ACS top-level. However, actions

can also be suggested using neural networks located in ACS bottom-level. As we can

see, CLARION has a mixed representation of actions, where symbolic and sub-symbolic

suggestions are taken into account. These two types of representations bring pros and

cons and as CLARION combines these two approaches, it also combines their qualities,

minimizing the disadvantages of a single kind of representation.

Now it is time to focus our attention on the mechanism used to choose one

single action, given a set of possible actions. As Tyrrell deĄned (TYRRELL, 1993), an

ASM should be able to handle all types of sub-problems that an agent can face in the

environment. In SOAR, this job is performed evaluating the operator conditions, their

preferences and solving impasses. All operators, preferences, and impasses should be pre-

viously identiĄed and addressed using speciĄc rules, which may increase considerably the

time and cost for designing a solution (depending on how complex is the experiment).

Besides that, it can be very hard in dynamic environments, where the conditions change

constantly and it is difficult to evaluate all the possible collisions among operators.

In turn, LIDA should declare all the actions for MaesŠ behavior net where each

one consists in the conditions that will trigger the action, the add-list, the delete-list and

the initial activation value for the behaviors. For complex experiments, these deĄnitions

may also be very hard to deĄne, but once they are deĄned, it is not necessary to evaluate

all the possible conĆicts, because they are solved thanks to the spread of activation in
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MaesŠ behavior net. However, as in SOAR, the agent should be designed to respond to all

possible situations, which may be very complex to be performed in dynamic environments.

For CLARION, ACS top-level suggests the rules which meet the current state

of the problem and the winner action is selected using a Boltzmann distribution based on

the suggestions provided by the top and bottom levels. Differently from the other CAŠs,

CLARION is more versatile to be applied in dynamic environments because it is not

required to think about every condition that the agent will face and to create a rule to

address each one. Instead of that, it is possible to take advantage of the neural networks

present in ACS bottom-level. These networks can be trained to dynamically adjust the

weight of each neuron based on the environment response (positive or negative) of a

selected action. Furthermore, the rules are still there in ACS top-level and they are very

useful because they can be applied for a Ąne tuning in the action selection, making possible

a custom prioritization.

An ASM should also be able to interrupt a sequence of actions related to a

certain goal (e.g. Şget foodŤ), if a more urgent demand appears (e.g. Şavoid predatorŤ).

This can be easily achieved using preferences in SOAR. Preferences assert the relative or

absolute merits of the candidate operators (LAIRD; CONGDON, 2014), being possible

to prioritize actions.

An interruption in LIDA can be achieved, for example, applying a high initial

activation for the behaviors that are very critical to the agent. As described in pseudocode

1, the activation is crucial for the selection of the winner behavior, so it is possible to pri-

oritize the behaviors using the activation as a reference. On the other hand, in CLARION,

it is possible to achieve this goal storing the critical actions in form of rules (e.g., as Ąxed

rules) and also adjusting the probability of selection of this kind of rule.

Another point of attention is the continuity of action, which reĆects the ten-

dency to persist with an action because the ŞcostŤ (energy, availability, etc) of changing to

another one is higher than keeping in the current strategy. In SOAR, there is no built-in

mechanism related to this, because the operators are selected based only on the current

working state. For LIDA, the persistence is not being addressed too, because the activa-

tion of the winning node is reset to zero (see pseudocode 1) and there is no mechanism to

taking into account the switching cost. In turn, CLARION has the rule utility function
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that measures the effectiveness of a rule, being a comparison of its beneĄts (rewards)

and its costs (time to execute a rule). It does not totally address all the considerations

related to contiguous action, but, at least, there is some evaluation of the cost to switch

to another action.

Finally, it is possible to note that SOAR and LIDA use a deterministic deci-

sion procedure, i.e., repeating the same inputs, the same winner action will be returned

while CLARION prefers to use an approach based on a probabilistic distribution. Both

approaches have their pros and cons. The great advantage of using a deterministic de-

cision procedure is the repeatability and consistency of the results, being very good in

controlled environments and critical tasks. But, for dynamic environments, the best choice

for a given moment will not always be the same for another moment, thus a little bit of

randomness can help the agent to explore more opportunities and possibilities. Besides

that, for the particular case of CLARION, it is also possible to adjust the constants of the

BoltzmannŠs distribution in order to make it virtually deterministic as already detailed

on section 3.1.3.

6.4 Learning

As described by Baars (BAARS; GAGE, 2010), memory can be deĄned as a

perennial representation that is reĆected in thought, experience, or behavior and learning

is the acquisition and consolidation of such memory. The learning process is very impor-

tant for any living being and this applies also to artiĄcial agents because learning allows

experiences from the past to be available in the present, helping the decision process.

This information might be very useful, for example, while trying to avoid making the

same mistakes.

LetŠs understand the several types of memories present in humans. Even though

this division is not a commonsense, human memory system can be divided into three dif-

ferent categories: sensory memory, short-term memory and long-term memory (CASTRO;

GUDWIN, 2013). The sensory memory is an ultra-short memory (less than one second)

responsible for retaining the raw data received from sensors (audition, vision, etc) for the

Ąrst level of processing. The short-term memory (also called working memory) is a short

and size-limited memory (approximately less than ten items and around ten seconds of
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retention) that works like a Şscratch-padŤ, where relevant knowledge are brought from

different places to be used in several cognitive functions (perception, reasoning, planning,

etc).

Finally, long-term memory is responsible for storing different kinds of data for

a long period of time (days, months, years, etc). This memory is also divided into two

other categories: declarative (or explicit) and non-declarative (or implicit). Declarative

memories refer to facts or events explicitly declared and it can also be divided into two

another categories: episodic and semantic. Episodic memory is used to store facts particu-

larly contextualized in time and space (CASTRO; GUDWIN, 2013), like the memories of

the Ąrst time that you went to the beach, your prom party, etc. In turn, semantic memory

stores all kinds of data (facts, meanings, concepts) not necessarily being contextualized,

like the Pythagorean theorem, or the fact that Brasilia is the capital of Brazil and so on.

Finally, non-declarative memories are more related to skills or how to use some objects.

The procedural memory, for example, is a representative of non-declarative memory where

it is stored Şhow to do this or thatŤ, e.g., how to drive a car, or how to ride a bike.

Now it is time to turn our attention to some types of learning. Initially, it is

possible to highlight the learning by association, also known as classical conditioning or

Pavlovian conditioning (BAARS; GAGE, 2010), where an arbitrary stimulus (the uncon-

ditioned stimulus) is associated with another stimulus (the conditioned stimulus) through

multiple repetitions where both stimuli are present together. The classical example of this

approach was described by Pavlov, where the sound of a bell was presented just before

the instant that a dog receives food. Thus, after a while, every time the dog listened to

the bell, even without the real food, it started to salivate, because the dog associated that

sound with the presence of food. The other type of learning is known as operant condi-

tioning and it was initially studied by Skinner in the 50Šs. In this process, the strength of a

behavior is modiĄed by the feedback (reinforcement or punishment, positive or negative)

provided by the environment, in such a way that the agent will repeat behaviors that

provide a positive feedback and avoid those that provide a negative feedback.

Having this background in mind, it is time to turn our attention to how each

CA deals with memories and learning. Table 6.1 summarizes if speciĄc memory systems

are present in each of the cognitive architectures studied in this work.
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Table 6.1 Ű Availability of memories and learning mechanisms

SOAR CLARION LIDA
Sensory memory No No Yes
Short-term memory Yes No Yes
Episodic memory Yes No Yes
Semantic memory Yes Yes Yes
Non-declarative memory Yes Yes Yes
Classical conditioning No No Yes
Operant conditioning Yes Yes Yes

SOAR does not provide any kind of sensory memory. In SOAR the raw data

is processed outside the architecture, in such a way that inputs are provided already as

WMEŠs placed in working memory (refer to section 6.1). On the contrary, LIDA has a

classic sensory memory module (see section 4.2), responsible for receiving raw data from

the sensors and being the source of information of perception codelets, processing the

raw data with low-level detectors. In turn, CLARION does not have an explicit module

responsible for this functionality (as in LIDA), i.e., there is no module responsible for

concentrating all the architecture inputs in one single place for further processing and, in

fact, the dimension-value pairs (used as input in CLARION) can be freely used in a raw

format in other modules of the architecture.

The short-term memory is represented in SOAR by the Working Memory and

it can be faced as the Ştheater of operationsŤ of the architecture. As described before,

a classical short-term memory should be size limited and it should hold the elements

just for a few period of time if they are not being used. SOAR working memory is not

size limited, but, it holds the WMEŠs to be used as context of the next cognitive cycles

and, due to the working memory activation (see section 2.9), WMEŠs are removed from

working memory if they are not being used (measured by the times that they are tested by

operators). LIDA has the Workspace module (see section 4.4) that works like the Working

Memory in SOAR, i.e., it is responsible to concentrate the information provided by the

different modules of the architecture in one single place. The Workspace also has the same

characteristics of SOAR Working memory: it is not size limited, but the elements that are

not frequently used are removed from there. However, in CLARION, there is no module

that works like a short-term memory. Although ACS concentrates all the information

provided by the other CLARION modules, it does not work like a memory, i.e., it does
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not hold the data received for more than one cognitive cycle.

Episodic and semantic memories are also present in SOAR with the same

name, characteristics, and fundamentals. Episodic memory is responsible for storing the

full amount of WMEŠs in the current working memory state creating a new episode (being

a contextualized memory) and, on the other hand, semantic memory is responsible for

storing speciĄc and relevant WMEŠs that do not need to be necessarily contextualized. In

LIDA, these two types of memories are also present. Episodes that the agent experienced

are stored into Transient Episodic Memory (TEM) with a decay rate of some hours or a

day and the episodes that have not yet decayed are stored in Declarative Memory (DM)

through an offline consolidation process. In DM, there are episodes with full contextual-

ized data (with Şwhat, where and whenŤ) in a placed called Autobiographical Memory.

Declarative Memory also contains traces that have lost their Şwhere and whenŤ to inter-

ference, while retaining their ŞwhatŤ in the form of facts, rules, being referred as semantic

memory (FRANKLIN et al., 2016). On CLARION, episodic memory is not present, i.e.,

there is no module in the CA responsible for storing full contextualized data. However,

NACS works like a semantic memory or declarative memory (SUN, 2003). The explicit

knowledge is stored in NACS top-level in form of chunks that can be triggered directly

by the top-level mechanisms or even by the reasoning process through the AMNŠs in the

NACS bottom-level.

Moving forward to the non-declarative memories, it is possible to note that,

in SOAR, operators are stored in the procedural memory, a type of a non-declarative

memory and the chunking functionality (see section 2.10) provides to CA a mechanism

for procedural learning. CLARION also has a procedural memory located in ACS top-

level where explicit agent behaviors (in the form of rules) are located. The bottom-up

learning (see section 3.1.4) also provides to CLARION a procedural learning mechanism.

LIDA has a procedural memory that is responsible for storing the agent behaviors in the

form of schemes (a structured type of rules) and also a procedural learning mechanism

using the consciousness broadcast as a trigger.

With respect to conditioning techniques, there is no module providing a clas-

sical conditioning learning in SOAR, in such a way that the links between the WMEŠs do

not change due to a learning process, i.e., new correlations and knowledge are not created
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at running time. CLARION does not have a classical conditioning as well. The integration

between levels in NACS (see section 3.2.3) only provides a mechanism to activate some

chunks or dimensioned-value pairs using different approaches, while new links of knowl-

edge are not created. LIDA has a rudimentary mechanism, sometimes referred as percep-

tual learning, to deal with classical conditioning based on the consciousness broadcast.

Basically, the consciousness broadcast reaches PAM, where the content of the broadcast

(composed by nodes and links) will be analyzed in such a way that the current nodes and

links in PAM will be adjusted (added, reinforced, removed) based on this broadcast. As

described by Franklin, the conscious broadcast begins and updates the process of learn-

ing to recognize and to categorize, both employing perceptual memory (FRANKLIN; JR,

2006).

Finally, SOAR has the reinforcement learning module which is one of the most

recent modules in the architecture, directly inspired in the behaviorist psychology, where

the main idea is to provide a positive or negative feedback for each executed operator,

in such a way that operators receiving more positive feedbackŠs will tend to be selected

more times. CLARION also uses the feedback provided by the environment in the neural

networks located at ACS bottom-level, having, therefore, the operant conditioning present.

LIDA also has a similar functionality in the architecture, but not so explicit as in SOAR

or CLARION. One of the destinations of the consciousness broadcast is the Procedural

Memory. Basically, as described by Franklin, if a behavior is selected and executed, and the

result of that behavior subsequently comes to consciousness, selective learning is triggered

and the base-level activation of the scheme that generated the behavior is reinforced

(FRANKLIN et al., 2016). Increasing the base-level activation will increase the chances

of a behavior to be selected for execution (see pseudocode 1), so these procedural skills

are shaped by reinforcement learning, operating by way of conscious processes over more

than one cognitive cycle (FRANKLIN; JR, 2006).

6.5 Consciousness

Consciousness, as a human cognitive function, just recently entered in the

realm of topics suitable to be investigated in a scientiĄc way. Nevertheless, in the intelligent

systems community, an approach being called Şmachine consciousnessŤ started to appear,
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proposing what to be synthesized if consciousness was to be found in an engineered artifact

(ALEKSANDER, 1995).

The subject is in itself very controversial and some authors understand that the

term ŞconsciousnessŤ is, in fact, a mongrel concept, relating not just to one phenomenon,

but denoting several meanings. Block classiĄed four different concepts assigned to the

word consciousness (ATKINSON et al., 2000; BLOCK, 1995):

• Access consciousness (A-consciousness): it refers to our ability to access in-

formation in our mind through speech, reasoning and the control of behavior, i.e.,

there is a representation in that personŠs brain for the possible rational controls of

speech and action given the current situation.

• Phenomenal consciousness (P-consciousness): it refers to the qualitative na-

ture of experience, also referred as qualia. Every time we use our Ąve senses (hearing,

sight, touch, smell, and taste), we are having P-consciousness and we can go further,

including sensations, feelings, and perceptions. Basically, it is related to the ques-

tion Şwhat it is likeŤ. Sometimes, P-consciousness is referred as the hard problem of

consciousness, because it is not clear how sensations acquire different meanings or

subjective aspects in each individual (CHALMERS, 1995).

• Monitoring consciousness (M-consciousness): thoughts about our awareness,

our sensations, monitoring, internal scanning or, in other words, a p-consciousness

of the self.

• Self-consciousness (S-consciousness): possessing the concept of the self and the

ability to use this concept. For instance: recognizing itself in front of mirrors.

Actually, several theories emerged to explain how consciousness works in hu-

man beings based on the concepts created by Block or even in other theories and some of

these approaches were applied in computer programs. Given the cognitive architectures

that are in the scope of this work, only LIDA uses an established model for consciousness,

the Global Workspace Theory by Baars (widely described in section 4).

In this approach, consciousness is implemented computationally by means of a

broadcast of contents from a global workspace, which receives input from the senses and
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from memory (FRANKLIN et al., 2005). Making a parallel with BlockŠs concepts for con-

sciousness, BaarsŠ theory focus the attention in A and P consciousness as a computational

substrate of consciousness (ATKINSON et al., 2000).

In summary, Global Workspace Theory says that the brain is composed of a

set of specialized networks (each one responsible for a speciĄc task) and the content of

the global workspace (a virtual memory region where sensory and memory inputs com-

pete for a position based on the result of the attention sensors) is broadcast (also called

consciousness broadcast) to these specialized regions in order to trigger different func-

tions given the content of the broadcast. According to BaarsŠ approach, the consciousness

broadcast enables most types of learning (FRANKLIN et al., 2005). For instance, when

we compare the semantic memory learning in LIDA and in SOAR, the role of conscious-

ness becomes more clear: in SOAR, the semantic memory is also present, but, in order for

an agent to store a long-term identiĄer into semantic memory, it must invoke an explicit

command (LAIRD; CONGDON, 2014). In turn, LIDA uses the content of consciousness

to automatically trigger this type of learning for the most relevant information already

Ąltered by consciousness. Thus, one of the main roles of consciousness in BaarsŠ theory is

to ŞautomaticallyŤ trigger the updating of perceptual memory, transient episodic mem-

ory, and procedural memory, using as input the most relevant information provided by

the consciousness broadcast (FRANKLIN et al., 2005).

The other CAŠs do not have an explicit consciousness mechanism computation-

ally implemented. However, taking as basis the several types of consciousness described by

Block, it is possible to correlate some types of consciousness with some features present in

each CA. For instance, the main role of Meta-Cognitive Subsystem (MCS) in CLARION

is to monitor and to control all the other modules in the architecture (see section 3.4),

whose behavior is very similar to what is described as M-consciousness. Besides that, in

SOAR and CLARION the interaction among all the modules is responsible for receiving

raw data from the environment, to process it and to select what is the best action to be

taken, what address some of the characteristics described as being A and P consciousness.
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6.6 Summary

In this chapter, we compared each cognitive architecture model discussing how

the following cognitive functions are addressed in each of the architectures: perception,

goals, action selection, memories/learning, and consciousness. The analysis showed the

pros and cons of each design based on the expected biological behavior for those cognitive

functions. In next chapter, we analyze how each architecture can be used to solve the same

experimental problem, providing an implementation analysis, considering a pragmatic

evaluation of either architecture.
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7 A Practical Comparison

To complement our study on similarities and differences among cognitive archi-

tectures, started with the theoretical analysis developed in the last chapter, we performed

also a practical analysis, which is described in this chapter. The practical analysis consists

of proposing a prototypical problem in the Ąeld of cognitive architectures and trying to

employ SOAR, CLARION, and LIDA in order to analyze the different aspects of each

implementation. Our aim here is to clarify what are the pros and cons of each approach

and acquire a better understanding of the pragmatic issues while trying to use either of

these architectures. The problem is the construction of an artiĄcial mind to control a

virtual character in a computer game-like environment. Our experiment consists of one

single agent located in a virtual environment surrounded by walls, where it should collect

the maximum number of jewels that randomly appear during the simulation, avoiding

possible collisions. Although the experiment is the same, due to the different interface

strategies in each of the architectures, we had to employ different technical solutions for

binding each cognitive architecture to the virtual world. Nevertheless, the same principles

were adopted in each of the cases (client-server architecture and three layers application

on the client side), as described in section 5.2.

In the next sections, we describe how we implemented the solutions using each

of the three cognitive architectures and, at the end of this chapter, we provide an analysis

for the three implementations, comparing them in several aspects.

7.1 Implementation in SOAR

As previously described, in SOAR there are two major elements of concern:

states and operators. The initial state is the current representation of a problem in terms

of a set of WMEŠs describing the current state of affairs in the problem demanding a

solution. Operators are modiĄers of the current state in the form of rules, generating a

new state, after its application to the current state. The SOAR kernel works by trying

to select a suitable operator to be applied to the current state, applying this operator

and making changes to the current state, turning it into a new state, and repeating this
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same procedure until a goal state is detected and the search halts. There are though two

different approaches while using SOAR to solve a problem. The Ąrst one is this canonical

deliberative approach, which is in the origins of SOAR. In this approach, operators are

applied, changing the current state, and SOAR performs a search on state space until a

goal state is found, and SOAR can halt, returning a solution. But there is an alternative

approach while using SOAR: the reactive approach. In this approach, rules are conceived

in order to detect the most suitable operator to a given condition, and after deciding

which operator to apply, the application of this operator deĄnes a command at the stateŠs

output link, and halts. In this approach, SOAR does not keep generating new states,

performing a search until Ąnding a desirable state. In a single step, it decides what to

do and sends the command to the output link, which will trigger an actuator. In our

experiments, due to the intrinsic characteristics of the problem, we decided to employ

this reactive approach.

The connection between the SOAR kernel and the external environment is

realized through two links associated to the current state: the input link and the output

link. In each cognitive cycle, before calling the SOAR kernel, a piece of software must

collect the sensory information from the environment, format this information in terms

of WMEŠs, and feed the input link. After the SOAR kernel is called and halted, another

piece of software should pick the information generated by SOAR at the output link and

send to the environment. In our simulations, this role is performed by the bridge layer

(on the client side, implemented in JAVA). So, the Ąrst step in order to use SOAR as

a decision-making algorithm is to design how the WMEŠs will be structured in Working

Memory and, after that, feed the architecture with the proper data. SOAR provides a

set of APIs making possible this conversion of raw sensory information into WMEŠs as

exempliĄed in the code snippets in Box 7.1.

The bridge tier is responsible for creating a tree of WMEŠs in SOAR Working

memory based on the raw data provided by the virtual environment (using the Sen-

sors/Actuators layer). The topology of this information written in the Working Memory

is illustrated in Ągure 7.1.

In our experiment, the bridge provides SOAR with the creatureŠs current po-

sition (in the Cartesian plane) and a list with all the perceived entities in the agentŠs
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Box 7.1: Input data in SOAR

// Importing SOAR API's
import sml.Agent;
import sml.Identifier;
import sml.Kernel;

public class SoarBridge
{

Kernel kernel = null;
Agent agent = null;
Identifier inputLink = null;
Identifier creature = null;

// Instantiating a new agent
public SoarBridge(String agentName, String pathToTheRules)
{

kernel = Kernel.CreateKernelInNewThread();
agent = kernel.CreateAgent(agentName);
agent.LoadProductions(pathToTheRules);
inputLink = agent.GetInputLink();
creature = agent.CreateIdWME(inputLink, "CREATURE");

}

public void SetCreaturePosition(double positionX, double positionY)
{

// Setting creature Position
Identifier creaturePosition = agent.CreateIdWME(creature, "POSITION");
agent.CreateFloatWME(creaturePosition, "X", positionX);
agent.CreateFloatWME(creaturePosition, "Y", positionY);

}
}

Ąeld of vision, together with several properties of each entity, like unique name (useful for

some operations), type (jewel or wall), distance to the agent (it is possible to perform this

math using SOAR operators, but it is simpler to do it from outside of the scope of the

architecture), and location (X1, Y1, X2, Y2 - for jewels, X1 is equal to X2 and Y1 is equal

to Y2, but for walls these two points represent the diagonal points of a rectangle). So,

for instance, if the agent is seeing three entities, there will be three branches coming out

from the ŞVISUALŤ node with the same attribute ŞENTITYŤ and each of them with its

own attributes according to the pattern described in Ągure 7.1. Besides that, there will be

also a ŞMEMORYŤ WME used for storing the position of the last viewed items in order

to make the search for jewels more efficient, however the entities below the ŞMEMORYŤ

node are Ąlled with the result of SOAR operators and not by the bridge layer. It is im-

portant to emphasize that this ŞMEMORYŤ WME does not use the built-in mechanisms

for semantic memory present in SOAR. This approach was used because it is simpler if

the elements can be easily and deliberately stored or removed.

The following operators were created to accomplish our intents with the ex-
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decrementing the counter if the jewel is in memory.

5. Avoid Wall

• Pre-conditions: There must be at least one wall in the visual Ąeld close to the

agent.

• Result: Rotate the agent clockwise.

In Box 7.2, we show the rules used for implementing the Wander operator.

As already mentioned in section 2, each operator is composed for, at least, two rules: the

Ąrst one proposes the operator, i.e., describes the conditions for the operator to run. The

second applies the operator if the pre-conditions are met and that operator was chosen

by SOAR in its inner selection algorithm.

Box 7.2: Wander operator

# Propose*wander:
sp {propose*wander

(state <s> ^attribute state
^impasse no-change
^superstate <ss>)

(<ss> ^io.input-link <il>)
(<ss> ^superstate nil)
(<il> ^CREATURE <creature>)
(<creature> ^SENSOR.VISUAL <visual>)

-->
(<ss> ^operator <o> +)
(<o> ^name wander)}

# Apply*wander:
# If the wander operator is selected, then generate an output command to it
sp {apply*wander

(state <s> ^operator <o>
^io <io>)

(<io> ^output-link <ol>)
(<o> ^name wander)

-->
(<ol> ^MOVE <command>)
(<command> ^Vel 1)
(<command> ^VelR 1)
(<command> ^VelL 1)}

However, as we already mentioned, an operator is not necessarily applied, just

because its pre-conditions are met. There might be more than one operators proposed at

the same time, by different rules, all of them having conditions to be applied, and SOAR

must select one among them. In order to perform this decision, SOAR processes further

rules, which set preferences between different operators. If using these rules, SOAR is not

able to select a unique operator, it generates an impasse, possibly halting the search for an
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operator, without a chosen one1. In order to solve impasses, the developer should provide

a complete set of preferences among operators, such that in any case, SOAR is able to Ąnd

the operator with the highest preference. Table 7.1 summarizes the preferences among all

operators in our experiment.

Table 7.1 Ű Preference among operators in SOAR

Wander Memorize Move Jewel Get Jewel Avoid Wall
Wander = < < < <
Memorize > = > < <
Move Jewel > < * < <
Get Jewel > > > * <
Avoid Wall > > > > =

The symbol < means that the operator in the line has always lower preference

than the operator in the column. The symbol > means that the operator in the line has

always higher preference than the operator in the column. The symbol = means that the

preference is not important, i.e., SOAR can choose one of them randomly. The symbol

* means that we should solve the preference using impasses and, for this experiment, we

evaluate all the impasses using the same approach: the operator referring an entity which

is closest to the agent will have the preference. So, for instance: if there are two jewels

in the MEMORY, rules will propose two operators of the kind Move Jewel, each of them

pointing to a different jewel. As a consequence, an impasse will occur, a sub-state will be

generated, and while processing this new sub-state, additional rules will set the preference

to the Move Jewel operator pointing to the jewel which is closest to the agent.

It is important to remember that there are different approaches to set prefer-

ences. It is possible to deĄne a global preference, i.e., one operator with the highest or

lowest preference amongst all the other operators (of course that if we have two operators

of this same type proposed at the same time, this will not solve the impasse). It is possi-

ble to deĄne a static preference between two operators, i.e., operator A will always have

more preference than operator B. Finally, it is possible to deĄne preferences by allowing

the impasse to happen and providing additional rules just to solve the impasse. Box 7.3

provides some examples of how to deal with preferences among operators using different
1 In fact, before halting the search, SOAR tries to solve the impasse creating a sub-state and trying to

apply further preference rules. Nevertheless, if it is not able to solve the impasse, the same procedure
is recursively applied, up to a maximum number of times, and if it reaches this limit, then it gives up
and halts
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approaches.

Box 7.3: Preference among operators

# Wander Preferences - Global preference
sp {wander*preferences
(state <s> ^operator <o> +)
(<o> ^name wander)
-->
(<s> ^operator <o> <)}

# Move Jewel vs Get Jewel - Static Preference
sp {moveJewel*getJewel*preferences
(state <s> ^operator <o> +

<o2> +)
(<o> ^name getJewel)
(<o2> ^name moveJewel)
-->
(<s> ^operator <o> > <o2>)}

# Move Jewel vs Move Jewel Preferences - Using Impasse
sp {moveJewel*moveJewel*less*distance
(state <s> ^attribute operator

^impasse tie
^item <o> {<> <o> <o2>}
^superstate <ss>)

(<ss> ^io.input-link <il>)
(<il> ^CREATURE <creature>)
(<o> ^name moveJewel)
(<o2> ^name moveJewel)
(<o2> ^parameter.distance <distance2>)
(<o> ^parameter.distance <distance> <= <distance2>)
-->
(<ss> ^operator <o> > <o2>)}

Using our reactive approach, once a winner operator is selected by SOAR,

the SOAR kernel halts and a command is provided at the output link to be sent to the

creatureŠs actuators. Now, at the bridge side, this command must be read, processed and

applied to the virtual world. From the deĄnition of the Wander operator in Box 7.2, the

command MOVE is placed at the output-link node and, as described in box 7.4, this

command together with its parameters are read in the bridge side and then sent to the

virtual world.
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Box 7.4: Output processing in SOAR

public void getReceivedCommands()
{

if (agent != null)
{

int numberCommands = agent.GetNumberCommands();

for (int i = 0 ; i < numberCommands ; i++)
{

// Check what is the command selected by SOAR
Identifier pCommand = agent.GetCommand(i);
String name = pCommand.GetCommandName();

if (name.equalsIgnoreCase("MOVE"))
{

// Get the parameters associated with the command
Float rightVelocity = tryParseFloat(pCommand.GetParameterValue("VelR"));
Float leftVelocity = tryParseFloat(pCommand.GetParameterValue("VelL"));
Float linearVelocity = tryParseFloat(pCommand.GetParameterValue("Vel"));

SendMoveCommandToWorldServer(rightVelocity, leftVelocity, linearVelocity)
}

}
}

}

7.2 Implementation in CLARION

Even though the experimental conditions are the same as in the SOAR case,

a totally different implementation was required in CLARION. This difference comes ba-

sically from the fact that SOAR is implemented as a framework, i.e., to include SOAR in

your program, you just create an instance of its kernel and starts it. CLARION, other-

wise, is implemented in the form of a toolkit. This means that you need to instantiate the

parts of CLARION which will be used and connect them together in order to compose the

real architecture used in a given application. In this sense, the architecture described in

chapter 3 (Ągure 3.1) is a kind of reference architecture, which guides the construction of

the real architecture making use of the classes available in the CLARION toolkit. Besides

that, CLARION gives the option to the designer using (more or less) the resources of

the top-down (rules and symbolic representations) and the bottom-up (neural networks).

The designer might need to choose one among the other, or work with mixed styles while

building its real cognitive architecture instance. Figure 7.2 shows how the CLARION

reference architecture was customized in the current experiment.

The issue of knowledge representation becomes very important in the case of
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Figure 7.2 Ű Customization of CLARION for the Current Experiment

CLARION. Instead of working just with a tree of WMEs describing the current situation,

as in SOAR, CLARION uses dimension-value pairs as input to the cognitive architecture.

This requires a tuple composed by a string (describing the input) and an activation value

(generally a numeric value) for each input. CLARION does not have a speciĄc module

for perception (see section 6.1), so all the processing to convert the raw data coming

from the virtual world into dimension-value pairs is performed outside of the scope of the

architecture, in the bridge layer. For our experiment, we deĄned three input dimension-

value pairs to represent the current state situation:

1. Wall Proximity: the activation of this dimension-value pair is inversely propor-

tional to the distance between the agent and the closest wall, i.e., the shorter the

distance to the wall, the higher is the activation.

2. Sensory Jewel Proximity: the activation of this dimension-value pair is inversely

proportional to the distance between the agent and the closest jewel in the visual

Ąeld, i.e., the shorter the distance to the jewel, the higher is the activation.

3. Memory Jewel Proximity: Similar to the idea used in SOAR, we created in
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CLARIONŠs agent a short-term and size limited memory, in the form of a limited

capacity list of jewels. The jewels in the visual Ąeld are stored in this memory if

there is an available space and if that jewel was not memorized yet. So, this input

will have the same behavior as the ŞSensory Jewel ProximityŤ, but now applied to

the jewels stored in this memory, the closer the jewel, the higher the activation.

Box 7.5 code shows how the bridge layer (implemented in C#) receives data

from the virtual world, process it and generates a new Wall proximity dimension-value

pair.

We deĄned two goals in our MS Goal Structure: ŞAvoid DamageŤ and ŞEx-

Box 7.5: Input data in CLARION

public class ClarionAgent
{

Agent CurrentAgent = World.NewAgent("ClarionAgent");
DimensionValuePair InputWall = World.NewDimensionValuePair("Sensorial", "Wall");

private void RunAgent()
{

while (true)
{

//Perceive the sensory information
SensoryInformation si = World.NewSensoryInformation(CurrentAgent);

// Get New Sensorial Information from World Server
IList<Thing> inputs = GetNewSensorialInformationEvent();

// Get the creature information
Creature creature = inputs.Where(item =>

(item.CategoryId == Thing.CATEGORY_CREATURE)).FirstOrDefault()
as Creature;

// Get all the walls ordered by the distance to the creature
Thing wall = (from item in inputs

where item.CategoryId == Thing.CATEGORY_BRICK
orderby Utils.GetMinimalGeometricDistanceToPoint(item, creature)

ascending
select item).FirstOrDefault();

double inputWallActivation = 0.0;

// Activation is proportional to the distance between agent and the wall
if (wall != null)
{

double returnedValue = Utils.GetMinimalGeometricDistanceToPoint(wall, creature);
inputWallActivation = GetActivationByDistance(returnedValue);

}

// Transfer perception information to the cognitive architecture
si.Add(InputWall, inputWallActivation);
CurrentAgent.Perceive(si);

}
}

}
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ploreŤ. These two goals are related to the following drives in the MS bottom-level: ŞAvoid-

ing Physical DangerŤ and ŞCuriosityŤ. These drives are general use pre-implemented drives

available in CLARION. The behaviors for each of these drives is deĄned using delegates,

a type-safe pointer to a method signature available in C#. So, the ŞAvoiding Physical

DangerŤ is calculated based on the ŞWall ProximityŤ input according to the code in box

7.6:

Box 7.6: Equation for avoiding physical damage drive

private void AvoidPhysicalDamageDriveEquationImpl(ActivationCollection input,
ActivationCollection output)
{

double wallActivation = input[InputWall.WorldID];
double driveActivation = 0.0;

if (wallActivation >= PROXIMITY_NEAR_ACTIVATION)
{

driveActivation = 1.0;
}

output[Drive.MetaInfoReservations.DRIVE_STRENGTH,
typeof(AvoidingPhysicalDangerDrive).Name] = driveActivation;

}

The ŞCuriosityŤ drive equation is simpler than the ŞAvoiding Physical DangerŤ

drive. It just returns a constant activation, symbolizing an agent with a persistent degree

of curiosity. It is important to highlight that with the usage of delegates it is possible to

create any custom implementation for a drive.

The process to attach these drives to goals is described in more details in the

code presented in box 7.7. In this solution, these two goals are auto-exclusive, i.e, when

one is activated the other one is not. This is accomplished using the ŞSET_RESETŤ

attribute (when a new goal is selected, the previous one is removed from goal structure),

using the coefficient value for the relevance between the goal and drive in such a way that

ŞAvoid DamageŤ goal will have more priority than ŞExploreŤ (see equation 3.6 on section

3.4.1 for more details about goal setting).
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Box 7.7: Goal and drive association in CLARION

GoalSelectionModule gsm =
AgentInitializer.InitializeMetaCognitiveModule(CurrentAgent, GoalSelectionModule.Factory);

GoalSelectionEquation gse =
AgentInitializer.InitializeMetaCognitiveDecisionNetwork(gsm, GoalSelectionEquation.Factory);

gse.Input.Add(avoidPhysicalDamageDrive.GetDriveStrength());
gse.Input.Add(curiosityDrive.GetDriveStrength());

// Initialize Basic Update Action Goals
GoalStructureUpdateActionChunk updateActionAvoidDamage =
World.NewGoalStructureUpdateActionChunk();

GoalStructureUpdateActionChunk updateActionExplore =
World.NewGoalStructureUpdateActionChunk();

updateActionAvoidDamage.Add(
GoalStructure.RecognizedActions.SET_RESET,AvoidDamageGoal);

updateActionExplore.Add(
GoalStructure.RecognizedActions.SET_RESET, ExploreGoal);

gse.Output.Add(updateActionAvoidDamage);
gse.Output.Add(updateActionExplore);

gsm.SetRelevance(updateActionAvoidDamage, avoidPhysicalDamageDrive, 1.0);
gsm.SetRelevance(updateActionExplore, curiosityDrive, 0.2);

With goals and inputs, it is time to feed ACS. We created just one entry in

ACS bottom-level represented by a generic equation (again using delegates). No rules were

created on ACS top-level, so the suggestion provided by ACS bottom-level is the chosen

one to be executed by the agent. It is important to highlight one aspect: besides this

approach using delegates, CLARION also allows ACS bottom-level to be implemented

as a Q-Learning neural network which is fed with a feedback signal provided by the

environment.

The code in box 7.8 highlights how ACS can be conĄgured to receive the

appropriate inputs and how it suggests an action based on these inputs.

The ACS levels are responsible to get all the information (inputs, goals, and

memories) and suggest one single external action chunk as a possible output for the

cognitive cycle. In this experiment, we only considered outputs to the environment (not

to NACS or back to MS) and there are four possible outcomes:

1. Move to jewel: The agent is commanded to move towards a speciĄc jewel.

2. Get jewel: The agent is commanded to catch a speciĄc jewel when it is close enough.
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Box 7.8: ACS conĄguration

public class ClarionAgent
{

private ExternalActionChunk rotateClockWise = World.NewExternalActionChunk("Rotate");

private void SetupAcs()
{

GenericEquation eq = AgentInitializer.InitializeImplicitDecisionNetwork(
CurrentAgent, GenericEquation.Factory, (Equation)AcsBottomLevelDecisionEq);

eq.Input.Add(AvoidDamageGoal,"goals");
// (...)
eq.Output.Add(rotateClockWise)
// (...)
CurrentAgent.Commit(eq);

}

private void AcsBottomLevelDecisionEq(ActivationCollection in, ActivationCollection out)
{

double avoidDamageGoalActivation = in[AvoidDamageGoal];
double rotateClockWiseActivation = 0.0;

// (...)
if (avoidDamageGoalActivation >= 1.0)
{

rotateClockWiseActivation = 1.0;
}
// (...)

out[OutputRotateClockWise] = rotateClockWiseActivation;
}

}

3. Rotate: The agent is commanded to rotate clockwise in order to avoid collisions.

4. Go ahead: The agent is commanded to go ahead when it does not Ąnd any jewel

in its visual Ąeld.

Finally, the bridge layer processes the selected output and a new command is

sent to World Server, Ąnalizing the cognitive cycle. At this point, if the experiment uses

a Q-Learning network, it is time to collect the feedback after applying the action in order

to provide to CLARION this data. This is illustrated in box 7.9.

Although we could use NACS to identify a jewel, the current structure of NACS

makes handling multiple jewels a difficult task, because there is no way to add multiple

instances of the same type of element in NACS top-level, being necessary to process this

information outside of the architecture. Explaining in more details: in SOAR, a jewel

in working memory has all the parameters related to that object (position, color, name,

etc). So, handling multiple objects in SOAR is more straightforward, because once all the
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Box 7.9: Output processing in CLARION

public class ClarionAgent
{

private ExternalActionChunk rotateClockWise = World.NewExternalActionChunk("Rotate");

private void RunAgent()
{

//(...)
ExternalActionChunk chosen = CurrentAgent.GetChosenExternalAction(si);
if (chosen == rotateClockWise)
{
// Send appropriated command to World Server
// (...)
}

}
}

information is provided to the architecture, SOAR can create multiple WMEŠs, each one

representing one speciĄc jewel. In CLARION, NACS is very good to detect patterns, so

probably we would easily identify that there is a jewel in the visual Ąeld of the agent, but

NACS top-level does not have the same Ćexibility of having multiple instances of the same

type of object (as in SOAR Working Memory). So, CLARION is good while selecting an

action with the intent to move the agent towards a jewel. However, the precise direction

of that jewel must be calculated outside of the architecture.

7.3 Implementation in LIDA

Yet, the experiment of implementing a LIDA solution to our problem became

also quite different, compared to CLARION and SOAR. First, because in SOAR and

CLARION we have a better control of the cognitive cycle. Generally, the client application

is kept in an inĄnite loop where certain APIs are called successively, each one responsi-

ble for different tasks perceiving data, making decisions, etc. However, LIDA keeps this

cognitive loop inside its framework, so instead of binding LIDA to your code, you need to

provide some code which will be bound to LIDA. LIDA has the responsibility of calling

your code during its inner cognitive cycle in order to have the expected results. Second,

because it is also necessary to properly conĄgure a set of XML Ąles that are used as input

for the architecture. These Ąles are responsible to instantiate the agent modules, behav-

iors, properties and for enabling or disabling some debugging options. In this context, it

is important to highlight three Ąles:
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• factoryData.xml: It deĄnes the common data structures, strategies, and tasks

that will be used in the architecture. In short, in this Ąle, we can deĄne what are

the classes responsible for implementing basic entities on LIDA: nodes, links, decay

strategy, etc. These classes should follow a speciĄc interface in order to be called by

LIDAŠs core.

• agent.xml: It is on this Ąle where you deĄne the LIDAŠs modules to be used in your

agent, i.e., this is the place where you build your agent, specifying all the classes

responsible for each LIDAŠs module (see chapter 4 for a description of all available

LIDAŠs modules).

• lidaConfig.properties: This Ąle provides general environment conĄgurations: Ąle

path to the other conĄguration Ąles, debug options, etc.

LetŠs highlight some important characteristics of the LIDA architecture. As we

already mentioned, LIDA is based on codelets, i.e., small pieces of code, each one running

independently, and focused on a speciĄc task. So, to create an agent in LIDA is basically

to develop the codelets which will be, together, responsible for the agentŠs behaviors.

The process of binding LIDA to an application requires several steps. First, we

need to deĄne a class to implement the Environment module in LIDA. This class should

extend a base class (EnvironmentImpl) from the LIDA Framework. The Environment

module is responsible for the agentŠs domain-speciĄc code and should override three basic

methods: the init method, used for some sort of initialization, the getState method,

responsible for getting data from sensors, and the processAction, responsible for ap-

plying the selected action into the environment. In our case, we created a class called

AgentEnvironment implementing the Environment module. Besides the class implemen-

tation, it is also necessary to edit the agent.xml Ąle in order to declare this new class to

be responsible for the implementation of the Environment module. Box 7.10 shows the

class declaration in agent.xml Ąle while Box 7.11 provides the class implementation in

Java.

Beginning its cognitive cycle, LIDA uses the Environment module to collect

the raw data from sensors, providing an input to the Sensory Memory. This is done by

means of the getState method, which in our case basically connects to the virtual world
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Box 7.10: AgentEnvironment class deĄnition in agent.xml

<module name="Environment">
<class>agent.environment.AgentEnvironment</class>
<param name="height" type="int"> 10 </param>
<param name="width" type="int">10 </param>
<taskspawner>defaultTS</taskspawner>
</module>

Box 7.11: AgentEnvironment class declaration

public class AgentEnvironment extends EnvironmentImpl
{

@Override
public void init()
{

// Override for initial configuration
}

@Override
public void processAction(Object o)
{

// Process output
}

@Override
public Object getState(Map<String, ?> map)
{

// Process input

Object rawDataFromSensors = GetDataFromWorldServer();

return rawDataFromSensors;
}

}

and get the current state, translating it into a Java Object. This Object is internally sent

to the SensoryMemory module, where this raw data is further cataloged and structured

by sensory codelets.

Similar to what was done before, it is necessary to create a custom Java class

implementing the SensoryMemory module, extending the SensoryMemoryImpl base class

in LIDA, which should be responsible for implementing the behaviors of this module.

After that, it is necessary to declare the class in the agent.xml Ąle.

Box 7.12 shows how this class is declared in agent.xml and Box 7.13 shows

how this class is implemented. In our experiment, the agent only has one sensor (visual),

so all environment data is related to the visual sensor. However, for agents with many

sensors, the sensory memory will have a key role in cataloging and low-level processing the

incoming data. The method runSensors gets the raw data from environment and store
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Box 7.12: SensoryMemory module conĄguration in agent.xml

<module name="SensoryMemory">
<class>agent.environment.SensoryMemory</class>
<associatedmodule>Environment</associatedmodule>
<taskspawner>defaultTS</taskspawner>
<initialTasks>
<task name="backgroundTask">
<tasktype>SensoryMemoryBackgroundTask</tasktype>
<ticksperrun>5</ticksperrun>
</task>
</initialTasks>
</module>

Box 7.13: Sensory Memory in LIDA

public class SensoryMemory extends SensoryMemoryImpl
{

private Map<String,Object> sensorParam = new HashMap<String, Object>();
private VisualSensorReading visualSensorReading = null;

public SensoryMemory()
{

sensorParam.put(AgentConstants.SENSOR_VISUAL, null);
}

@Override
public void runSensors()
{

// Get Readings from visual Sensor
Object readings = environment.getState(sensorParam);
visualSensorReading = (VisualSensorReading) readings;

}

@Override
public Object getSensoryContent(String sensorType, Map<String, Object> map)
{

Object contentData = null;

if (sensorType.equalsIgnoreCase(AgentConstants.SENSOR_VISUAL)
{

/// Get visual sensor content in visualSensorReading
}

return contentData;
}

}

it in an appropriate place for future processing, and the method getSensoryContent is

called by the codelets, returning that speciĄc sensor content with a low-level processing

(if necessary).

The next step in the cognitive cycle is perception, which in LIDA is performed

by PAM (Perceptual Associative Memory). As detailed in section 4.3, PAM can be viewed

as a network of linked nodes, where each node is related to a concept (quite similar to
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NACS top-level in CLARION) and, thanks to the spreading activation mechanism, the

perceptual meaning is generated. The LIDA framework already has an implementation for

PAM, but we need to conĄgure the PAM nodes, according to the application and declare

the module in agents.xml. We deĄned the following nodes in our PAM:

• Wall in front: There are one or more walls close enough to the agent to have a

collision.

• Wall clear: There are no walls close enough to have a collision.

• Jewels presence: There are jewels in the visual Ąeld or in the agent memory (not

necessarily close to the agent).

• Jewel clear: There are no jewels in the visual Ąeld or in the agent memory.

• Jewel in front: There is at least one jewel close enough to the agent, in order to

be picked.

Box 7.14 shows how PAM module is declared in agents.xml. As we can see,

the node parameters deĄne all the nodes in our PAM (no links were deĄned in this exper-

iment). If the node activation is higher or equal than pam.perceptThreshold property,

this node will be placed in the Workspace. PAM nodes have their activation level cal-

culated by a speciĄc codelet attached to each node. In a general case, if we have links

between nodes, the activation is spread through these links, so it is not necessary to have

a codelet for all the nodes, just some of them. In our case, it is necessary because we donŠt

have such links. The deĄnition of these codelets is made in three places:

• First, it is necessary to create a JAVA class implementing the codelet, which should

extend the BasicDetectionAlgorithm class. This class should be responsible for

reading the data from the sensory memory (via the overloaded detect method),

detecting the relevant features for that node and returning the proper activation

level.

• Next, in factoryData.xml we need to deĄne a task (the codelet) and associate it

to this JAVA class, locating it in the right package.
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Box 7.14: PAM deĄnition in agents.xml

<module name="PerceptualAssociativeMemory">
<class>edu.memphis.ccrg.lida.pam.PerceptualAssociativeMemoryImpl</class>
<param name="pam.Upscale" type="double">.7 </param>
<param name="pam.Downscale" type="double">.6 </param>
<param name="pam.perceptThreshold" type="double">.7 </param>
<param name="nodes">wallFront, wallClear, jewelPresence, jewelClear, jewelFront</param>
<taskspawner>defaultTS</taskspawner>
<initialTasks>
<task name="WallClearDetector">
<tasktype>NodeActivationInversion</tasktype>
<ticksperrun>15</ticksperrun>
<param name="node" type="string">wallClear</param>
<param name="nodeToInvert" type="string">wallFront</param>
</task>
<task name="WallProximityDetector">
<tasktype>ObjectProximityDetector</tasktype>
<ticksperrun>15</ticksperrun>
<param name="node" type="string">wallFront</param>
<param name="object" type="string">WALL</param>
</task>
<task name="JewelClearDetector">
<tasktype>NodeActivationInversion</tasktype>
<ticksperrun>15</ticksperrun>
<param name="node" type="string">jewelClear</param>
<param name="nodeToInvert" type="string">jewelPresence</param>
</task>
<task name="JewelPresenceDetector">
<tasktype>ObjectPresenceDetector</tasktype>
<ticksperrun>13</ticksperrun>
<param name="node" type="string">jewelPresence</param>
<param name="object" type="string">JEWEL</param>
</task>
<task name="JewelProximityDetector">
<tasktype>ObjectProximityDetector</tasktype>
<ticksperrun>15</ticksperrun>
<param name="node" type="string">jewelFront</param>
<param name="object" type="string">JEWEL</param>
</task>
</initialTasks>
<initializerclass>edu.memphis.ccrg.lida.pam.BasicPamInitializer</initializerclass>
</module>

• Finally, in agent.xml, we need to correlate each PAM node to a task deĄned in

factoryData.xml (it is possible to reuse the same type of task to different nodes).

These steps are illustrated in boxes 7.15, 7.16, and 7.17.

Attention codelets are responsible for monitoring speciĄc nodes in Workspace

and, if their activation level is greater than a certain threshold, one or more nodes and links

(forming a coalition) are sent to Global Workspace, where they will compete for conscious-

ness. Each attention codelet should be deĄned in agent.xml Ąle as described in box 7.18.

Two kinds of Attention codelets can be used, based either on the BasicAttentionCodelet

or on the DefaultAttentionCodelet tasks, provided by the LIDA framework. All our
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Box 7.15: Perceptual codelet class

public class ObjectProximityDetector extends BasicDetectionAlgorithm
{

private Map<String, Object> smParams = new HashMap<String, Object>();

@Override
public void init()
{

super.init();
String objectToDetect = (String)getParam("object", "");
smParams.put(objectToDetect, "");

}

@Override
public double detect()
{

double activationValue = 0.0;

// Get Data from sensory memory
List<Thing> allObjectsOfSomeType = (List<Thing>) sensoryMemory.getSensoryContent(
AgentConstants.SENSOR_VISUAL,smParams);

// Process data (...)

return activationValue;
}

}

Box 7.16: Perceptual codelet deĄnition in factoryData.xml

<tasks>
<task name="ObjectProximityDetector">
<class>agent.featuredetectors.ObjectProximityDetector</class>
<ticksperrun>10</ticksperrun>
<associatedmodule>SensoryMemory</associatedmodule>
<associatedmodule>PerceptualAssociativeMemory</associatedmodule>
</task>

</tasks>

Box 7.17: Perceptual codelet deĄnition in agent.xml

<task name="WallProximityDetector">
<tasktype>ObjectProximityDetector</tasktype>
<ticksperrun>11</ticksperrun>
<param name="node" type="string">wallFront</param>

<!-- Arguments that will be processed by the codelet -->
<param name="object" type="string">WALL</param>

</task>

attention codelets are based on the BasicAttentionCodelet task. Using this task, LIDA

only checks if a set of desired nodes are currently in the Workspace. If they are, the coali-

tion is moved to the Global Workspace where it will compete for consciousness. LIDA also

provides an alternative behavior, using a DefaultAttentionCodelet, where the promo-
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Box 7.18: Attention codelet deĄnition in agent.xml

<module name="AttentionModule">
<class>edu.memphis.ccrg.lida.attentioncodelets.AttentionCodeletModule</class>
<associatedmodule>Workspace</associatedmodule>
<associatedmodule>GlobalWorkspace</associatedmodule>
<taskspawner>defaultTS</taskspawner>
<initialTasks>

<task name="JewelPresenceCollisionCodelet">
<tasktype>BasicAttentionCodelet</tasktype>
<ticksperrun>10</ticksperrun>
<param name="nodes" type="string">jewelPresence, wallClear</param>
<param name="refractoryPeriod" type="int">5</param>
<param name="initialActivation" type="double">0.5</param>
</task>

</initialTasks>

tion of a node to the Global Workspace requires the activation of each node in the coalition

to be equal or higher than a certain threshold (deĄned by the attentionThreshold prop-

erty).

For Workspace and Global Workspace modules, we did not create a custom

class, i.e., for these modules we used implementations provided by LIDA. However, it is

still necessary to deĄne these modules in agent.xml. Box 7.19 shows the conĄguration

for Workspace and box 7.20 for Global Workspace. Particularly for Global Workspace, it

is important to highlight two aspects:

1. The activation of each coalition is the average activation of each node and link multi-

plied by the attention codeletŠs base-level activation (set in the initialActivation

property in box 7.18).

2. The winner coalition will be chosen following the criteria deĄned in section 4.7.

Recapping:

a) At least one coalition has an activation level greater than a certain threshold

(set by the globalWorkspace.individualActivationThreshold property in

box 7.20).

b) The sum of the activation level of the coalitions is greater than another thresh-

old (set by the globalWorkspace.aggregateActivationThreshold property

in box 7.20).

c) No new coalitions arrived in the global workspace in a certain period of time

(set by the globalWorkspace.delayNoNewCoalition property in box 7.20).
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Box 7.19: Worskapce module in agent.xml

<module name="Workspace">
<class>edu.memphis.ccrg.lida.workspace.WorkspaceImpl</class>
<submodules>
<module name="PerceptualBuffer">
<class>edu.memphis.ccrg.lida.workspace.workspacebuffers.WorkspaceBufferImpl</class>
<taskspawner>defaultTS</taskspawner>
</module>
<module name="CurrentSituationalModel">
<class>edu.memphis.ccrg.lida.workspace.workspacebuffers.WorkspaceBufferImpl</class>
<taskspawner>defaultTS</taskspawner>
</module>
</submodules>
<taskspawner>defaultTS</taskspawner>
<initialTasks>
<task name="UpdateCsmBackgroundTask">
<tasktype>UpdateCsmBackgroundTask</tasktype>
<ticksperrun>5</ticksperrun>
</task>
</initialTasks>
</module>

d) A consciousness broadcast did not happen in a certain period of time (set by

the globalWorkspace.delayNoBroadcast property in box 7.20).

Box 7.20: Global Worskapce module in agent.xml

<module name="GlobalWorkspace">
<class>edu.memphis.ccrg.lida.globalworkspace.GlobalWorkspaceImpl</class>
<param name="globalWorkspace.coalitionRemovalThreshold" type="double">0.0</param>
<param name="globalWorkspace.coalitionDecayStrategy">coalitionDecay</param>
<param name="globalWorkspace.refractoryPeriod" type="int">40 </param>
<param name="globalWorkspace.delayNoBroadcast" type="int">5 </param>
<param name="globalWorkspace.delayNoNewCoalition" type="int">5 </param>
<param name="globalWorkspace.aggregateActivationThreshold" type="double">2.0</param>
<param name="globalWorkspace.individualActivationThreshold" type="double">0.9</param>
<taskspawner>defaultTS</taskspawner>
<initializerclass>
edu.memphis.ccrg.lida.globalworkspace.GlobalWorkspaceInitalizer
</initializerclass>
</module>

Starting now the behavior generation tasks of LIDAŠs cognitive cycle, we need

to provide the information necessary for the construction of the Scheme Net, used in LIDA

for decision-making. The procedural memory stores all the possible agent behaviors in the

form of schemes. These schemes are deĄned in the agent.xml Ąle (see box 7.21), in the

form of a formatted string, containing all the data required to deĄne the scheme. This

string is formatted as a sequence of properties, separated by pipes (|). In current LIDA

implementation, the scheme contains the following properties:
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Box 7.21: Procedural memory deĄnition in agent.xml

<module name="ProceduralMemory">
<class>edu.memphis.ccrg.lida.proceduralmemory.ProceduralMemoryImpl</class>
<param name="proceduralMemory.ticksPerStep" type="int"> 14 </param>
<param name="scheme.1">if wallFront, rotate|(wallFront)()|action.rotateClockwise|()()|0.01
</param>
<taskspawner>defaultTS</taskspawner>
<initializerclass>
edu.memphis.ccrg.lida.proceduralmemory.BasicProceduralMemoryInitializer
</initializerclass>
</module>

Box 7.22: Action selection module in agent.xml

<module name="ActionSelection">
<class>edu.memphis.ccrg.lida.actionselection.BasicActionSelection</class>
<param name="actionSelection.ticksPerStep" type="int"> 10</param>
<taskspawner>defaultTS</taskspawner>
</module>

1. Scheme label - this is usually a human-readable explanation for the scheme, not

used for processing

2. Context nodes (inside a parenthesis, separated by commas) and context links (inside

the parenthesis, separated by commas).

3. Action name - the name of an action in the SensoryMotorMemory module (as de-

scribed in section 4.10).

4. Result nodes (inside a parenthesis, separated by commas) and result links (inside

the parenthesis, separated by commas).

5. Scheme base-level activation.

The schemes matching the current environment state are enabled and sent to

the action selection module, being further on called behaviors. There, they start competing

against each other, until just one behavior is selected for execution, following either MaesŠ

behavior net algorithm or the basic action selection algorithm (see section 4.9). The action

selection module has a pre-implementation provided in the LIDA Framework, so we just

need to declare its use in the agent.xml Ąle (as described in box 7.22). In our experiment,

we conĄgured the basic action selection mechanism to be used in this module.
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Behaviors should also be linked to the algorithms implementing their actions.

So, it is necessary to declare, at the sensory motor memory module, where all the behaviors

(via action name) are correlated to the desired output (an alias given for that output) as

illustrated in box 7.23.

Box 7.23: Sensory motor memory in agent.xml

<module name="SensoryMotorMemory">
<class>edu.memphis.ccrg.lida.sensorymotormemory.BasicSensoryMotorMemory</class>
<associatedmodule>Environment</associatedmodule>our
<param name="smm.mapping.1">action.rotateClockwise,algorithm.rotateClockWise</param>
<param name="smm.mapping.2">action.goAhead,algorithm.goAhead</param>
<param name="smm.mapping.3">action.goJewel,algorithm.goJewel</param>
<param name="smm.mapping.4">action.getJewel,algorithm.getJewel</param>
<taskspawner>defaultTS</taskspawner>
<initializerclass>edu.memphis.ccrg.lida.sensorymotormemory.BasicSensoryMotorMemoryInitializer
</initializerclass>
</module>

Finishing the cognitive cycle, we turn back to the Environment module (see

boxes 7.10 and 7.11), where each action should be translated into an external command

sent to the environment. Box 7.24 details the method processAction in box 7.11, re-

sponsible for translating LIDA actions into commands to the Virtual World.

Box 7.24: Output processing in LIDA

public class AgentEnvironment extends EnvironmentImpl
{

@Override
public void processAction(Object o)
{

if("algorithm.rotateClockWise".equalsIgnoreCase(action))
{

logger.log(Level.INFO, "Action rotateClockWise", TaskManager.getCurrentTick());
// Send command to World Server
CommandUtility.sendSetTurn(creature.getIndexID(), 0, 0, 2);

}
}

}

7.4 Analysis

After presenting the implementation details for the three CAs we used in this

work, it is now time to present the simulation results and evolve an analysis of them.

This analysis requires a careful examination of particular features of each CA, which
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might be unique to each architecture, turning this analysis into a difficult task, due to the

many differences among them. Some implementations can bring beneĄts only for speciĄc

conditions in speciĄc scenarios. Thus, we should only conclude one CA to be better than

other after considering all the variables in a well-controlled experiment.

In order to overcome these difficulties, we chose to focus this analysis on the

non-functional requirements of each implementation. Differently from functional require-

ments, where a set of speciĄc behaviors or functionalities are expected from a software,

non-functional requirements are sometimes referred as the Şquality attributesŤ of the soft-

ware (CHUNG; LEITE, 2009), i.e., they deĄne the criteria to be used for judging different

aspects related to the software operation. Using this approach, it is possible to compare

the implementations using the same Şquality standardŤ that should be present in every

implementation without considering the merit of the different theoretical foundations for

each CA.

Usually, these non-functional requirements are called ŞilitiesŤ, because most of

them refer to attributes with words ending with ŞilityŤ or ŞityŤ. These quality attributes

can be divided into two big categories: execution and evolution qualities. As Mari and

Eila deĄne:

“Execution qualities are observable at run-time. That is, they express
themselves in the behavior of the system. Evolution qualities cannot be
discerned at run-time, meaning that the solutions for evolution qualities
lay in static structures of the software system. Therefore, they should be
considered in the phases of the product’s life cycle, i.e. in development
and maintenance of a software system.” (MARI; EILA, 2003).

For this comparison, we chose the following attributes:

• Execution

i Performance: how fast the software is doing the work it should do, i.e., the

responsiveness of the system.

ii Scalability: the ability to handle (or to be prepared for) a growth in the

amount of work.

• Evolution

i Open source: if the source code is available with a license which provides

unrestricted use rights for any purpose.
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ii Maintainability and Modifiability: how easy a software can be maintained

or modiĄed, i.e., how easy defects can be isolated and Ąxed, how easy new

features can be added, how easily other people can support the product.

iii Supportability: refers to the technical support while installing or conĄguring

the software.

Before going further, it is important to highlight some important differences

among the implementations of each architecture. As we already mentioned, CLARION

is provided in the form of a toolkit, while SOAR and LIDA are provided in the form

of software frameworks. Thus, CLARION requires the agent to be coded using a set of

functions available in the CLARION library (written in C#). Basically, in order to use

CLARION, a designer must create a program for the agent to get information from the

environment, call the CA functions using the interfaces deĄned by the library and act

in the environment based on the responses given at the end of the CLARION cognitive

cycle. So, the designer has the burden of connecting the many parts required for the

CA to operate, in the source code. Now, instead, SOAR and LIDA provide a complete

framework (in the Java language), which just needs to be instantiated and started. It is

true, though, that both frameworks must be complemented with custom code. In the case

of SOAR, this custom code should be written in a SOAR speciĄc language, containing

SOAR rules. In turn, LIDA requires additional custom code written in Java, together

with conĄguration Ąles in XML. These details have been considered during our analysis.

7.4.1 Execution attributes

Performance is an important attribute for most systems, because, generally,

we want our tasks to be performed as faster as possible. Besides that, there might be

time constraints for real-time systems, requiring a special attention in some situations.

Scalability is another attribute that is very desirable in most systems, because it is very

common the requirement to expand our system, increasing its workload or adding new

features. So, for both scenarios, it is desirable for the system to handle growth in a smooth

way.

Thus, in order to evaluate how each architecture deals with an increase in its

workload, we run our experimental task considering a different (increasingly) number of
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jewels (J ) in the environment. A total of ten simulations was performed for each condition

(i.e. for each J ) and each simulation took about ninety seconds, having a jewels re-spawn

time of seventeen seconds. Every cognitive cycle time was measured during the simulation,

and the worst and average times were recorded. At the end of each condition, we evaluated

the following statistics (based on the data of the ten simulations):

• Mean of the cognitive cycle average time in milliseconds (ÛC)

• Standard deviation value of the cognitive cycle average time (àC)

• Mean of the cognitive cycle worst time in milliseconds (ÛW )

• Standard deviation value of the cognitive cycle worst time (àW )

For all simulations, the agentŠs memory size (of jewels locations) is seven,

a reference to the Şmagical number sevenŤ described by Miller (MILLER, 1956). The

recorded time considered only the time in the cognitive cycle (not including the time to

read data and to send commands to World Server). Of course, depending on the computer

running the experiment and the experiment itself, the numbers can be different. However,

the main concern here is to compare differences while increasing the number of jewels

and the corresponding response for each cognitive architecture. All the simulations were

performed on the same computer.

The results for SOAR are summarized in table 7.2 and in Ągure 7.3. The results

show that increasing the number of jewels in the experiment implies in an increment in

the time spent in the cognitive cycle (for worst and average times). Actually, this is not a

surprise. The increase of a jewel implies in the proposition of a new operator (e.g. to move

to this new jewel, one operator for each new jewel), requiring SOAR to decide from a bigger

Table 7.2 Ű Performance and scalability results for SOAR

µC (ms) σC (ms) µW (ms) σW (ms)
J = 1 4.664 0.234 27.958 5.190
J = 3 5.797 0.464 33.507 6.760
J = 5 6.103 0.509 33.226 8.530
J = 10 7.280 0.262 32.780 10.276
J = 20 10.481 0.639 46.723 9.487
J = 50 17.942 1.100 88.477 13.023
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evaluated for the command ŞMove to JewelŤ only counting how many times the produc-

tion moveJewel*moveJewel*less*distance appears. As a note, in this box each jewel is

represented by a unique identiĄer (O673, O674, O675, O676, and O677), each comparison

is performed between two jewels for J = 5 (thus C = 10).

Box 7.25: Number of comparisons for ŞMove JewelŤ command in SOAR

--- Firing Productions (IE) For State At Depth 2 ---
Firing moveJewel*moveJewel*less*distance
-->
(S1 ^operator O677 > O676)
Firing moveJewel*moveJewel*less*distance
-->
(S1 ^operator O673 > O676)
Firing moveJewel*moveJewel*less*distance
-->
(S1 ^operator O677 > O675)
Firing moveJewel*moveJewel*less*distance
-->
(S1 ^operator O676 > O675)
Firing moveJewel*moveJewel*less*distance
-->
(S1 ^operator O673 > O675)
Firing moveJewel*moveJewel*less*distance
-->
(S1 ^operator O677 > O674)
Firing moveJewel*moveJewel*less*distance
-->
(S1 ^operator O676 > O674)
Firing moveJewel*moveJewel*less*distance
-->
(S1 ^operator O675 > O674)
Firing moveJewel*moveJewel*less*distance
-->
(S1 ^operator O673 > O674)
Firing moveJewel*moveJewel*less*distance
-->
(S1 ^operator O677 > O673)

CLARION results, presented in table 7.3 and Ągure 7.4, show a different sce-

nario. First, it is possible to verify that the increase in the number of jewels does not

impact signiĄcantly the performance of the agent. CLARION does not use an impasse

Table 7.3 Ű Performance and scalability results for CLARION

µC (ms) σC (ms) µW (ms) σW (ms)
J = 1 137.191 5.397 227.414 39.875
J = 3 133.738 2.796 211.200 26.271
J = 5 134.792 2.095 232.215 55.626
J = 10 134.134 2.234 213.002 20.916
J = 20 131.876 1.127 211.401 19.154
J = 50 136.376 3.721 232.666 65.270
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automatically the new behaviors will be applied. For the other architectures, probably,

it would be necessary to re-compile the entire agent code and deploy the solution into

the target. Of course, this is not a big deal if you are in a controlled environment, but,

in some production scenarios, it will be necessary to create another program, responsible

for securely updating the agent, implying in a more complex solution. It is important to

highlight other two points regarding this aspect: if new inputs (in a WME format) or new

outputs are necessary, an update in the agentŠs code might also be necessary. The other

point is that LIDA has something similar, due to the way the architecture was imple-

mented. That is, it is possible to change some of the agent behaviors just making changes

to XML Ąles (see section 7.3). However, SOARŠs rule Ąles provide more Ćexibility than

LIDAŠs XML Ąles.

The con refers to two factors: Ąrst, SOARŠs rule language is not a powerful

language. When we are programming using Java or C#, we have a powerful framework

providing methods and classes to increase the productivity. SOARŠs rule language allows

just a few mathematical functions. So, depending on what we want to do, it is better to

calculate things outside the architecture and provide them to SOAR in a WME format.

The second factor: there are not so many people proĄcient in SOARŠs rule language,

so encoding behaviors in SOARŠs language might probably require a learning curve for

newcomers. Regarding this last point, it is important to make a parallel with LIDA. LIDAŠs

XML Ąles can turn the development of a new agent into a very complex task. There are

so many undocumented properties and features deĄned in the XML conĄguration Ąles

that, in order to have a clue on how doing the right thing, the user most probably will

need to look into the source code. This will result also in a shortcoming for a newcomer.

7.5 Summary

In this chapter, we described how each cognitive architecture can be used to

solve the same experimental problem. We analyzed the simulation results based on a set

of non-functional requirements (execution and evolution categories). Finally, next chapter

provides a Ąnal conclusion for the whole work.
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8 Conclusions

Cognitive architectures rely on different cognitive models for explaining the

appearance of cognitive functions in living beings (especially in humans). Considered

as possible solutions for the construction of intelligent systems, their usage is typically

indicated for complex scenarios, as e.g. dynamic environments, where a large number of

possible actions might be taken, in a given moment. Although they could be applied for

simpler problems, the complexity of the solution maybe does not justify that effort. Thus,

for the cases that they are indicated, cognitive architectures can bring a lot of beneĄts,

replicating biological features in artiĄcial systems in order to create more resilient agents,

capable to deal with several types of situations without the need of human intervention.

SOAR, CLARION, and LIDA were the three cognitive architectures described

during this work and their detailed comparison is our main contribution. At the beginning,

we described each cognitive architecture, detailing in one single place how each component

works in such a way that a new researcher can easily understand how each cognitive

function was addressed. In this context, the reader was introduced to several concepts:

reinforcement learning, symbolic and sub-symbolic dichotomy, sparse distributed memory,

MaeŠs behavior net, etc.

Two different approaches were used to compare these architectures: a theoret-

ical inquiry, where the architecture models were compared according to some cognitive

functions and an empirical approach, where the same experiment was applied in all the

architectures, in order to evaluate different aspects regarding the implementations and

the applicability of each solution in real problems.

During the theoretical inquiry, we could compare the different approaches used

to deal with some cognitive functions. First, it was possible to observe that SOAR is a

predominantly symbolic architecture, despite having some sub-symbolic modules. On the

other hand, LIDA and CLARION have a mixed approach that tries to combine the beneĄts

of both paradigms. Regarding goals, SOAR does not have any built-in motivational process

(responsible for the generation of new goals), in turn, CLARION has a more elaborated

approach using the HullŠs drive reduction theory and concerning LIDA, just recently
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McCall proposed a new mechanism of motivations based on DamasioŠs view of feelings

whose the main idea is similar to CLARIONŠs approach.

Besides that, CLARION also has a unique probabilistic decision procedure

mechanism for action selection, which can bring more randomness, but it also affects the

repeatability of some experiments when compared to the more deterministic approach

used in LIDA and SOAR. When we covered the types of memories and the learning

processes, LIDA was the only architecture which addressed all the types of memories and

learning processes described in this work. Finally, LIDA is also the only architecture to

use an established model for consciousness, the Global Workspace Theory, which performs

an important role in the learning process.

Moving further in this work, the empirical comparison probably is the most im-

portant contribution. It brought the theoretical debate to the real world. Over this study,

a new researcher could understand step-by-step how to use each cognitive architecture in

real experiments. Moreover, based on the comparison using non-functional requirements,

we can see, at a Ąrst glance, if a CA is appropriate for a given situation. Although SOAR

has demonstrated the best performance (based on the average cognitive cycle time), the

rising number of impasses directly contributed to a performance degradation. Besides

that, CLARIONŠs approach of delivering the cognitive architecture as a toolkit seemed

to be more interesting because we have more control over the cognitive cycle and we also

have more Ćexibility. The common issue found in all architectures is the lack of formal-

ism, i.e., a software development guided by a process and applied during the speciĄcation,

development, and veriĄcation of the system. This approach would increase the reliability,

robustness, and maintainability of the architectures.

With the expertise gained in learning how to operate these three architectures,

their pros and cons, we can envision, as a future work, the proposal of a new cognitive

architecture, gathering the good aspects of each CA and avoiding the common pitfalls

encountered during our Ąrst contact with them.

Structurally, we might use LIDA as the foundation for this new architecture,

because it uses codelets as basic elements, a solution we found original and elegant. The

codelet approach is particularly interesting because it brings modularity and decoupling

to the overall architectures, allowing different kinds of solutions (e.g. rule-based systems,
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fuzzy systems, evolutionary systems, neural networks of different kinds, like deep learning

convolutional networks or HTM: hierarchical temporal memories) to be easily integrated.

LIDAŠs learning mechanisms are also a source of inspiration, with its vast amount of

memory types and learning processes. Consciousness is another area where LIDA takes

advantage, because it is the only architecture implementing a scientiĄc model for con-

sciousness, something which proved to be very useful in several scenarios, especially in

the learning process.

A mixed representation for perception (symbolic and sub-symbolic) brings a

lot of beneĄts. So, in this area, it is possible to use the mechanism applied either in LIDA

or in CLARION, where sub-symbolic elements can trigger symbolic entities. However,

SOAR can also contribute to the representation process. The big advantage of SOAR in

this area is the fact that we can virtually add anything to the working memory. Taking as

an example a case from our experiment, if an agent is observing Ąve jewels at a moment,

there will be Ąve representations of jewels with all the parameters related to them in

SOAR working memory. On the other hand, CLARION and LIDA only recognize that

there is a jewel in the visual Ąeld, but the number of jewels and their properties should be

handled outside the scope of the architecture. Ideally, besides only detecting the patterns

distinguishing an object (using a sub-symbolic process to detect symbolic elements), a

cognitive architecture should also address this situation where there are multiple instances

of the same type of object, but with different properties.

Goals and the action selection process are areas where CLARION can bring

interesting contributions. A speciĄc module responsible for goals and motivations is only

present in CLARION and it proved to be very useful when dealing with long-term targets

in order to generate orchestrated actions to accomplish the objective. Regarding action

selection, a mechanism based on MaesŠ behavior net (used in LIDA) or even using pref-

erences evaluation (used in SOAR) relies on the fact that all the situations should be

mapped by design. This can be a very challenging task while dealing with dynamic en-

vironments. At this point, CLARIONŠs approach of using a sub-symbolic representation

(generally based on neural networks) and combining it with a symbolic representation

(generally based on rules) can bring more Ćexibility to the action selection process.

Finally, an important consideration regarding this new architecture is choos-
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ing to implement it as a framework or a toolkit. In our opinion, it will be adequate to

implement it as a toolkit (something close to how CLARION is implemented). The big

disadvantage of having a framework, which makes everything and control all the tasks

(as in LIDA and SOAR), is the lack of control and Ćexibility to adapt some points for

different scenarios. Besides that, as already discussed in the present work, maintainabil-

ity, modiĄability, and supportability are very important aspects of any development. For

these items, SOAR proved to be a good option, having a deep documentation and a large

community. CLARION and LIDA need to improve in this area.

Of course, the most important criteria covered in this work regarding imple-

mentation was the performance and scalability attributes. As we could see, CLARION

showed a good performance and also a good scalability. SOAR showed an excellent per-

formance but is less scalable. LIDA had the worst performance, although its cycle time

was not inĆuenced by an increase in demand (showing some scalability). These attributes

must be taken into account depending on the requirements involved in the experiment.

As we could see, each cognitive architecture has its pros and cons, so the intent

of this work is to show all the particularities of each CA in order for a new researcher

to identify which one is better applicable to a given situation. Besides that, the other

outcome is to propose a debate on possible improvements on already existing cognitive

architectures in order to improve them. Finally, as a future work, we propose a new set

of experiments in order to explore more features of each architecture and also to model

and implement a new cognitive architecture based on this comparative study, trying to

collect all the positive aspects of SOAR, CLARION, and LIDA.
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