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Abstract

This thesis presents a study on the κ-µ and the generalized Nakagami-m phase

statistics. The exact formula of the phase Cumulative Distribution Function

(CDF) and its inverse of the generalized Nakagami-m model are found and de-

scribed. An approximation for both the Phase Crossing Rate (PCR) and Phase

Probability Density Function (PDF) of the κ-µ model are found, as analytic

closed-form expressions. These approximations yield results almost indistinguish-

able from the exact integral formulation but require significantly less computa-

tional resources. In particular, the approximation of the Phase PDF is itself a

new general distribution, bounded in the interval [0, 2π) and inheriting both the

generality and physical meaning of the κ-µ model, which makes it suitable to

be used as a standalone random variable to study phase processes. This new

distribution encompasses both the exact Nakagami-m phase as well as the ex-

act Von Mises (Tikhonov) densities as special cases. Joint statistics involving

combinations of the envelope, phase, and their time derivatives are defined in an

exact manner. Furthermore, the error between the approximation and the exact

solution is computed for a wide range of the parameters κ, µ and φ, delineating

the regions where the approximation follows more closely the exact solution. The

shortcomings of the existing simulation models for the phase of the κ-µ fading

model are discussed and a new simulator is described. The new simulator gener-

ates correlated κ-µ samples that are distributed according to the exact κ-µ first

and second order statistics. The formulations and the simulator presented here

drastically facilitate the use of the κ-µ model to study fading channels.

Key-words: Fading channels, kappa-mu fading, Nakagami-m fading, phase statis-

tics, simulation, random variable.



Resumo

Esta tese apresenta um estudo sobre as estat́ısticas de fase dos modelos κ-µ e

Nakagami-m generalizado. São encontradas e descritas as fórmulas exatas da

Função Distribuição Acumulada da Probabilidade (FDA) de Fase e sua inversa,

do modelo Nakagami-m generalizado. Foram também encontradas aproximações

anaĺıticas para a Taxa de Cruzamento de Fase (TCF) e para a Função Den-

sidade de Probabilidade (FDP) de Fase do modelo κ-µ, em fórmulas fechadas.

Estas aproximações tem valores quase indistingúıveis das fórmulas exatas, mas

requerem consideravelmente menos recursos computacionais para o seu cálculo.

Em particular, a aproximação da FDP de Fase é uma nova distribuição de prob-

abilidade, restrita ao intervalo [0, 2π), e que herda tanto a generalidade quanto

o significado f́ısico do modelo κ-µ, o que a torna adequada para o estudo da

fase de sinais propagados em canais com desvanecimento. Esta distribuição tem

como casos particulares tanto a distribuição exata de fase de Nakagami-m como

a FDP exata de Von Mises (Tikhonov). Diversas fórmulas exatas de estat́ısticas

conjuntas da distribuição κ-µ envolvendo combinações do envelope, fase e suas

respectivas derivadas no tempo são apresentadas. Adicionalmente, o erro entre

as aproximações encontradas e a solução exata é calculado para uma grande faixa

dos parâmetros κ, µ e φ, delimitando as regiões onde a aproximação e a solução

exata são mais próximas. Os problemas com os modelos de simulação da fase

do modelo κ-µ são discutidos e um novo simulador foi desenvolvido. O novo

simulador gera amostras correlacionadas que são distribúıdas de acordo com as

estat́ısticas exatas de primeira e segunda ordem do modelo κ-µ. As estat́ısti-

cas derivadas aqui e o simulador apresentado facilitam drasticamente o uso do

modelo κ-µ para estudo de canais com desvanecimento.

Palavras-chave: Canal em desvanecimento, desvanecimento kappa-mu, desvanec-

imento Nakagami-m, estat́ısticas de fase, simulação, variável aleatória.
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4.3.3 Joint PDF of P, Ṗ ,Θ, Θ̇ . . . . . . . . . . . . . . . . . . . . . . . . . 46
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4.3.11 The Marginal PDFs of Ṗ and Θ̇ . . . . . . . . . . . . . . . . . . . . . 49

4.3.12 A New Mathematical Identity . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Second Order Statistics - A Closed-Form Approximation . . . . . . . . . . . 50

4.4.1 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Information Loss Between Exact and Approximate Solutions . . . . . . . . . 59

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 On the Simulation of the κ-µ phase process 62

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Considerations on the Phase of the κ-µ Processes . . . . . . . . . . . . . . . 63

5.2.1 Fixed Signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2 Sign Estimation Based in the Zi Components . . . . . . . . . . . . . 64

5.3 Quadrant Sign Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Individual Component Sign Estimation . . . . . . . . . . . . . . . . . . . . . 74

5.5 Statistical Characterization of the Markov-Chain Simulators . . . . . . . . . 76

5.6 Dynamic Markov-Chain Sign Estimation . . . . . . . . . . . . . . . . . . . . 79

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Conclusions and Further Work 88

Appendix A MATLAB code 91

A.1 κ-µ functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.1.1 Exact Phase PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.1.2 Approximate Phase PDF (O Distribution) . . . . . . . . . . . . . . . 92

A.1.3 PDF of the Z Components . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1.4 Exact PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1.5 Approximate PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Generalized Nakagami-m functions . . . . . . . . . . . . . . . . . . . . . . . 93

A.2.1 Exact Phase PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2.2 Exact PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3.1 Rayleigh Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3.2 κ-µ Simulators - Markov-Chain Quadrant Sign Estimation . . . . . . 94

A.3.3 κ-µ Simulators - Markov-Chain Individual Component Sign Estimation 95

A.3.4 κ-µ Simulators - Dynamic Markov-Chain Sign Estimation . . . . . . 96

References 98



Chapter 1. Introduction 15

Chapter 1
Introduction

1.1 Modeling the Mobile Radio Channel

Modeling the mobile radio channel is a very hard task. Unlike wired and other forms

of electronic communication propagated via a solid medium, the wireless propagation en-

vironment is chaotic. Once the signal leaves the transmitter station it has to go through

an unknown environment, potentially filled with obstacles and many sources of corruption,

before reaching the receiving station. The transmitting and receiving stations are often in

movement in regard to one another, adding a Doppler shift to the problem. The signal will

usually travel through multiple paths of different lengths before reaching its destination,

interfering with time-shifted copies of itself. Furthermore, each transmission has to compete

with the interference from all the other transmissions using the same frequency band, which

can add up to a substantial noise in places such as office spaces where WiFi stations contend

with bluetooth devices and microwave ovens over the usage of the same 2.4 GHz band. All

things considered, it might come as a surprise to the uninitiated that any wireless commu-

nication is possible at all. A very good understanding of the mobile radio channel is the

working basis for all the techniques that make that kind of communication a reality.

The study of signal fading is an important part of understanding the wireless commu-

nication channel. Signal fading is a phenomenon that causes the signal to randomly drop

below detectable levels at the receiver and it can have many causes. Movement between the

transmitter and receiver may cause obstacles to come amidst the propagation path, multiple

reflectors may cause the signal to destructively interfere with copies of itself and the Doppler

shift complicates everything. In general, the many sources of signal fading can be broadly

divide into two distinct groups: fast fading and slow fading [1, 2]. The terms slow and fast

refers to the duration of the fade in relation to the coherence time of the channel, which

is a measure of the time taken by the signal to become uncorrelated with itself. Obstacles

moving into and out of the propagation path would cause slow fading, whereas multipath

interference is one source of fast fading [3]. Due to the random nature of the changes in the

propagation channel, both types of fading are modeled as random variables. Slow fading is

well modeled by the lognormal distribution [4, 5], for which a physical model was proposed

in [1], linking the lognormal distribution to the attenuation caused by random obstacles with

different attenuation coefficients. On the other hand, it is harder to pin down a single math-

ematical model to fast fading. Channel characteristics such as line-of-sight (LOS), or lack

thereof, the tendency to form multipath clusters and the number of clusters formed, and the
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Doppler effect, among others, change the nature of fast-fading. Thus, many different fading

models have been proposed to represent the many different fast fading conditions.

One of the first and most influential investigations of the statistical properties of fading

was conducted by S. O. Rice in his seminal work ”Statistical properties of sine wave plus

random noise” [6]. His paper introduces the Ricean distribution, one of the most used

fading distributions for LOS propagation, and lays the foundation for the study of higher

order statistics, introducing the Level Crossing Rate (LCR) and Phase Crossing Rate (PCR)

among other statistics.

The first work to tackle fading in terms of the interaction between multiple reflected

waves was proposed by J. F. Ossanna in [7]. It modeled a mobile receiver moving through

a field of vertical reflectors randomly distributed, representing buildings around a street, so

that a stationary wave results from the multiple reflections. The model was rather brit-

tle and, whereas it modeled well the received signal within 2 miles from the transmitter,

lacked the flexibility to adjust for different street directions. Moreover, it didn’t allow for

different ratios of the power of the direct waves to the reflected waves, assuming it to be

fixed [8]. Nevertheless it was an important work which allowed the development of more

general models.

R. H. Clarke proposed a more flexible model in [8]. The Clarke model assumes that the

received signal is composed by the sum of a great number of scattered waves, that reach the

receiver at random angles and with independent and uniformly distributed phases. Clarke

shows that his model predicts an envelope distributed according to the Rayleigh distribution,

thus establishing the theoretical groundwork to explain previous studies that had found that,

for certain propagation conditions, field data had a good fit to the Rayleigh distribution, such

as [9]. Based on Clarke’s model, Jakes proposed an isotropic channel simulator in [10].

In [11], M. Nakagami describes the m-distribution, widely known as Nakagami-m, which

generalizes the Rayleigh distribution. Nakagami derived his distribution directly from field

data by finding a mathematical function that provided a good fit to the observed fading, in

contrast to the physical-modeling approach of Rice, Ossana and Clarke. Then, in [12], M.

D. Yacoub proposed an underlying physical model that leads to the Nakagami-m statistics,

similarly to what Clarke did to the Rayleigh distribution. This model allowed the derivation

of higher order statistics of the Nakagami-m model. In [13], the Nakagami-m model was

generalized by the addition of a phase parameter, which gave the model more flexibility and

allowed its use to the study of phase.

More general distributions to describe the mobile radio channel have been recently pro-

posed. [14] introduces the α − µ model, which presents a physical propagation model that

leads to the Stacy distribution, describing a non-linear channel. The κ− µ and η − µ mod-

els, introduced in [15], describe environments that cause the transmitted signal to arrive at

the receiver station as multiple clusters, with the former describing LOS conditions and the

latter non-LOS channels. These general models are suited to fit data from many different

real situations, due to their greater flexibility.

The κ − µ model is of special interest for this thesis, as most of the following work is

based on it. It assumes that the received signal is composed of µ different clusters, with a

distinction between the direct wave arriving by the LOS path and the scattered waves. The

ratio between the power of the dominant component to the scattered components is κ. It

contains several of the previously cited model as special cases: (i) the model reduces to the

Rice distribution when µ = 1 and κ = k, whereas k is the Rice parameter; (ii) Nakagami-m
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is obtained by setting κ → 0 and µ = m, in which m is the Nakagami parameter; and (iii)

Rayleigh, being itself a special case of the Nakagami-m model when m = 1. The model was

expanded in [16] [17] to include a phase parameter, φ, that describe the ratio of the power

of the in-phase components to the quadrature components, and higher order statistics of the

envelope were described in [18].

In addition to the field data in previous literature that corroborates the special case

distributions, it was found that the general κ−µ distribution is well suited to describe a range

of real world propagation conditions, including its first- [15] and second-order statistics [18].

The κ− µ fading distribution is being used in recent research to study system performance

under this type of fading. These investigations encompass subjects such as cognitive radio

systems [19,20], retransmission systems [21,22], transmission systems with diversity [23–26],

symbol error rates [27] and outage probability and channel capacity [28]. Numerous other

investigations concerning the envelope statistics have been appearing in the literature (e.g.

[29–37]). Additionally, the phase behavior can be used in the synchronization process of

coherent receivers for which carrier recovery schemes are necessary [38]. Phase statistics also

affect the performance of modulation systems using both non-ideal coherent detection or

incoherent detection [39]. It influences the performance of modulation schemes in OFDM

signals [40], and impacts on the capacity of MIMO channels [41, 42]. Moreover, the Phase

Crossing Rate is central to the study of the error rate performance of FM receivers using

a limiter-discriminator based detection, where random FM spikes are generated by phase

jumps [43].

1.2 Contributions

The main contribution of this thesis is to further the study of the phase process in

channels subjected to both generalized Nakagami-m and κ-µ fading. It accomplishes the

following contributions:

❼ Provides the Cumulative Density Function of the Generalized Nakagami-m fading

model as an analytic expression;

❼ Completes the work started in [44], by finding an analytic approximation to the κ− µ

Phase Crossing Rate;

❼ Introduces the O random variable with its corresponding analytic PDF, which is a new

distribution based on the κ− µ fading that is fit to describe phase processes;

❼ Provides the formulas for a number of joint statistics of the phase, envelope and their

derivatives of the κ− µ channel;

❼ Derives the PDF of the time derivative of the phase of the κ− µ channel;

❼ Describes a new integral identity of the confluent hypergeometric function of the first

kind;

❼ Proposes a simulator to the κ− µ fading channel that produces correlated phase sam-

ples.
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1.3 Structure

The research for this work lead to the publication of two papers, [45] and [46]. Those

papers are presented in this thesis, alongside additional unpublished research, as follows:

Chapter 2 is an introductory chapter presenting the basic expressions that constitutes

the mathematical basis for the thesis. This chapter gives an overview of the Rayleigh,

Generalized Nakagami-m, Rice and κ-µ fading channels, including their physical models,

exactly how each model is related to the others and the formulas of their first and second order

statistics. It also presents the definition of the Phase Crossing Rate statistic and discusses

the basis of the simulation techniques that are used to generate the appropriately correlated

samples needed to simulate a fading channel. The chapter is intended as a foundation upon

which the rest of the thesis is built.

Chapters 3 and 4 are the extended versions of papers [45] and [46] respectively. Chapter

3 concerns the Generalized Nakagami-m fading channel, presenting the derivation of the

formulas of its phase CDF and inverse CDF. It also presents evidence of real world occurrence

of this type of fading, in form of field data fitted to the Generalized Nakagami-m phase

statistics.

Chapter 4 is about the first and second order statistics of the κ-µ model. It defines

various joint statistics for the distributions of phase, envelope and its first time derivatives.

It also presents analytic approximations of both the phase PDF and the PCR of the κ-µ

model, which are compared to their respective exact counterparts through various plots and

through a distance measure based on the Kullback-Leibler divergence.

Chapter 5 introduces the simulation technique developed. It starts with the discussion

of the shortcomings of the previous simulation techniques and the intrinsic difficulties to

simulate the κ-µ fading channel. The chapter then presents a series of different simulators,

building up to the definitive simulation developed, which is shown to generate samples that

are distributed according to the exact κ-µ theoretical statistics.

Finally, Chapter 6 concludes the thesis.
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Chapter 2
Fading Models Revisited

This chapter revisits the foundations of the statistical modeling of fading channels. It

is an introductory chapter that aims to give the reader the means to follow the rest of the

thesis. A summary of the relevant theory regarding the Rayleigh, Nakagami-m, Rice and

κ−µ models are given, along with the corresponding physical model and the most important

mathematical expressions.

2.1 The Phase Crossing Rate

The PCR is a second order statistics that measures the average number of upward (or

downward) crossings per second of a given phase θ. The PCR of a continuous process is

given as

NΘ(θ) =
∫ ∞

0
θ̇fΘ,Θ̇(θ, θ̇)dθ̇. (2.1)

2.2 The Rayleigh Fading

In the Rayleigh Fading channel, the phase and the envelope are independent. The Prob-

ability Density Function (PDF) of the envelope is the Rayleigh distribution,

fR(r) =
r

σ2
exp(

−r2

2σ2
), (2.2)

for r ≥ 0, and the phase PDF is the uniform RV defined by

fΘ(θ) =
1

2π
, (2.3)

for −π < θ ≤ π.

This distribution arises from the physical model of the complex envelope given by

Z = X + jY , (2.4)

in which X and Y are Gaussian RVs with zero mean and variance σ2. In turn, these

Gaussian RVs model a isotropic scattering propagation channel, in which the received signal

is comprised of many reflected clusters of random phase and a Doppler shift that is dependent

on the angle of reflection [8, 10]. X and Y are given by
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X =
1√
N

N
∑

j=1

cos(cos(αj)ωdt+ φj) (2.5)

and

Y =
1√
N

N
∑

j=1

sin(cos(αj)ωdt+ φj), (2.6)

in which N is the number of different paths leading to the receiver, αj is the angle of arrival

at the receiver in relation to the direction of movement of the station, ωd is the maximum

radial Doppler shift and φj is the phase shift associated with the N th path [8]. Both αj and

φj are RVs uniformly distributed over the interval [−π, π). When N is large enough, both

X and Y become Gaussian distributions (as a result of the Central Limit Theorem).

The theoretical power spectrum of the signal arriving at a moving station is

S(f) =







1

πfd

√
1−((f−fc)/fd)2

if |f − fc| < fd

0 elsewise,
(2.7)

in which f is the frequency in Hertz, fc is the carrier frequency and fd = V/λc is the frequency

of the maximum Doppler shift, with V being the speed of the receiving station and λc being

the carrier wavelength [8, 10].

The auto-correlation between two samples of this process taken at a time difference of τ

is

R(τ) = J0(2πfdτ), (2.8)

in which J0(x) is the zeroth-order Bessel function of the first kind [47, Eq.(9.1.18)].

The PCR of Rayleigh is

NΘ(θ) =
fd

2
√

2
. (2.9)

The PCR is simply a constant because the phase is uniformly distributed.

2.3 The Generalized Nakagami-m Model

The Generalized Nakagami-m model is a modified version of the original Nakagami-m

model that allows for an imbalance between the phase and the quadrature components [48].

The physical model of the complex envelope is given as

R2 =
mX
∑

i=1

X2
i +

mY
∑

i=1

Y 2
i , (2.10)

in which each pair (Xi, Yi) are Gaussian random variables with the same variance and zero

mean, and mX and mY are the number of multipath clusters in the in-phase and quadrature

components. The phase parameter −1 < p < 1 measures the phase imbalance and is given

as

p ,
mX −mY

mX +mY

, (2.11)

in which mX and mY relates to the m parameter of the original Nakagami-m model by

2m = mX +mY . (2.12)
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The phase-envelope PDF is

fR,Θ(r, θ) =
mm| sin θ cos θ|m−1r2m−1

ΩmΓ
(

1+p
2
m
)

Γ
(

1−p
2
m
)

| tan θ|pm
exp

(

−mr2

Ω

)

, (2.13)

r ≥ 0, −π < θ ≤ π, in which Γ (x) is the gamma function [47, Eq. (6.1.1)] and Ω is the

mean value of the square of the envelope,

Ω = E[R2]. (2.14)

The marginal PDFs of the envelope and phase are found to be

fR(r) =
2mmr2m−1

ΩmΓ(m)
exp

(

−mr2

Ω

)

. (2.15)

and

fΘ(θ) =
Γ(m)

2mΓ
(

1+p
2
m
)

Γ
(

1−p
2
m
)

| sin 2θ|m−1

| tan θ|pm
. (2.16)

The PCR of the generalized Nakagami-m model is [49]

NΘ(θ) =

√
πfd| sin 2θ|m−1| tan θ|−pmΓ

(

m− 1
2

)

2m+ 1
2 Γ
(

1+p
2
m
)

Γ
(

1−p
2
m
) . (2.17)

2.3.1 Special Cases

When p = 0, the fading channel is balanced and the Generalized Nakagami-m reverts to

its classical formulations. With this condition, the PDFs and PCR of the classical Nakagami-

m fading channel can be easily found from the equations above.

From Equations (2.4) and (2.10) it is clear that Rayleigh fading is a special case of the

Generalized Nakagami-m fading when mX = mY = 1.

2.4 Rice Fading

The complex envelope of the Ricean process is

Z = (X + p) + j(Y + q), (2.18)

in which X and Y are Gaussian random variables with zero mean and variance σ2 and p and

q represent the power of the LOS components. The Ricean phase-envelope joint distribution

is

fP,Θ(ρ, θ) =
1 + k

π
ρ exp

(

−(1 + k)ρ2 + 2
√

k(1 + k)ρ cos(θ − φ) − k
)

, (2.19)

ρ ≥ 0, −π < θ ≤ π, in which k = (p2 + q2)/(2σ2) is the ratio of the power of the LOS

components to the power of the scattered waves. The variable ρ is defined as ρ = r/r̂, with

r̂ being the RMS value of r.

The marginal PDF of the normalized envelope is

fP (ρ) = 2(1 + k)ρ exp
[

−(1 + k)ρ2 − k
]

I0

[

2
√

k(1 + k)ρ
]

, (2.20)
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ρ ≥ 0, and the marginal PDF of the phase is

fΘ(θ) =
exp(−k)

2π
(1 +

√
kπ exp(k cos2(θ − φ)) cos(θ − φ)[1 + erf(

√
k cos(θ − φ))]), (2.21)

−π < θ ≤ π, in which erf(·) denotes the error function [47, Eq.(7.1.1)].

The PCR of the Rice fading model is [50]

N(θ) =
fd

2
√

2
exp

(

−d2 sin2(θ − φ)

2σ2

)[

1 + erf

(

d cos(θ − φ)√
2σ

)]

, (2.22)

in which d is defined as

d2 , p2 + q2. (2.23)

2.4.1 Special Cases

Rayleigh fading is a special case of the Ricean fading when p = q = 0. This can be

verified from comparing the definitions of the complex envelopes of those models, described

in Equations (2.4) and (2.18), and likewise, all the equations for Rayleigh fading can be

found by making this substitution to the Ricean equations.

2.5 The κ-µ Fading Model

The κ-µ envelope is defined as [15]

R2 =
µ
∑

i=1

(Xi + pi)
2 +

µ
∑

i=1

(Yi + qi)
2, (2.24)

in which Xi and Yi are independent Gaussian random variables with zero mean and variance

σ2, with each pair (Xi, Yi) being a realization of the stochastic process defined in Equa-

tions (2.5) and (2.6). The parameter µ is the number of multipath clusters formed in the

communication channel.

The in-phase and quadrature parts of the signal are given, respectively, as

X2 =
µ
∑

i=1

(Xi + pi)
2 (2.25)

and

Y 2 =
µ
∑

i=1

(Yi + qi)
2. (2.26)

in which the terms pi and qi are the mean values of the in-phase and quadrature components

of the multipath cluster i.

Throughout the text, whenever X and Y can be used interchangeably they are often

referred to as the variable Z, in which case p or q are denoted by λ. More specifically, let Z

be

Z2 =
µ
∑

i=1

(Zi + λi)
2, (2.27)

in which: (i) Z may denote either X or Y , defined in Equations (2.25) and (2.26); (ii)

Zi are independent Gaussian RVs with zero mean and variance σ2; (iii) λ2
i is the power
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of the dominant component of the multipath cluster i, denoting either p or q expressed in

Equation (2.28); and (iv) µ is the number of multipath clusters.

The power of the in-phase and quadrature components are given as

p2 =
µ
∑

i=1

p2
i and q2 =

µ
∑

i=1

q2
i , (2.28)

and the total power of the dominant components is

d2 =
µ
∑

i=0

(

p2
i + q2

i

)

. (2.29)

The parameter κ is the ratio of the total power of the dominant components and the

power of the scattered waves,

κ = d2/2µσ2. (2.30)

The variance of the Gaussian processes can be written as a function of the parameters κ

and µ and the root mean square (RMS) value of the envelope r̂ =
√

E[R2],

σ2 =
r̂2

2µ(1 + κ)
. (2.31)

In [16], a phase parameter φ , arg(p + jq) was introduced. It allows the terms p and q

to be written as a function of κ, µ and φ,

p =

√

κ

1 + κ
r̂ cos(φ) (2.32)

and

q =

√

κ

1 + κ
r̂ sin(φ). (2.33)

The PDF of |Z| and Z are given as [16]

f|Z|(z) =
z

µ

2

σ2|λ|µ

2
−1

exp

(

−z2 + λ2

2σ2

)

Iµ

2
−1

(

|λ|z
σ2

)

, (2.34)

z ≥ 0, and

fZ(z) =
|z|µ

2

2σ2|λ|µ

2
−1

exp

(

−(z − λ)2

2σ2

)

Iµ

2
−1

(

|λz|
σ2

)

sech

(

λz

σ2

)

, (2.35)

in which Iν(z) denotes the modified Bessel function of the first kind [47, Eq. (9.6.3)] and

sech(·) denotes the hyperbolic secant [47, Eq. (4.5.5)].

Observe that although the probability distribution of the in-phase or quadrature com-

ponents is known, the complex envelope is not. Equation (2.35) was achieved by combining

the PDF of |Z|, the absolute value of the RV Z, with the knowledge of the PDF of Z at

a particular case. More details on this derivation are found in [16]. The absence of a well

defined complex envelope complicates the simulation of the phase, as will be discussed in

later parts.

The joint PDF of the normalized envelope P and the phase Θ of the κ-µ model is given

as [16]

fP,Θ(ρ, θ) =
1

2
µ2κ1− µ

2 (1 + κ)
µ+2

2 ρµ+1| sin 2θ|µ

2 | sin 2φ|1− µ

2

× exp
(

−µ(1 + κ)ρ2 − κµ+ 2µ
√

κ(1 + κ)ρ cos(θ − φ)
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| cos θ cosφ|
)

sech
(

2µ
√

κ(1 + κ)ρ cos θ cosφ
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| sin θ sinφ|
)

sech
(

2µ
√

κ(1 + κ)ρ sin θ sinφ
)

,

(2.36)
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ρ ≥ 0, −π < θ ≤ π.

In this thesis P denotes the envelope normalized by its RMS value, rather than the scaled

version found in [16]. Two particular cases of the joint envelope were also presented in [16],

for φ = ±nπ and for φ = ± (2n+1)π
2

. They are

fP,Θ(ρ, θ)|φ=±nπ =
1

Γ
(

µ
2

)µ1+ µ

2 κ
1
2

− µ

4 (1 + κ)
1
2

+ 3µ

4 ρ
3µ

2 | sin θ|µ−1| cos θ|µ

2

× exp
(

−µ(1 + κ)ρ2 − κµ+ 2µ
√

κ(1 + κ)ρ cos θ cosφ
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| cos θ|
)

sech
(

2µ
√

κ(1 + κ)ρ cos θ
)

(2.37)

and

fP,Θ(ρ, θ)|
φ=± (2n+1)π

2

=
1

Γ
(

µ
2

)µ1+ µ

2 κ
1
2

− µ

4 (1 + κ)
1
2

+ 3µ

4 ρ
3µ

2 | cos θ|µ−1| sin θ|µ

2

× exp
(

−µ(1 + κ)ρ2 − κµ+ 2µ
√

κ(1 + κ)ρ sin θ sinφ
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| sin θ|
)

sech
(

2µ
√

κ(1 + κ)ρ sin θ
)

,

(2.38)

in which Γ(·) is the complete gamma function [47, Eq.(6.1.1)]. The PDF of the normalized

envelope P can be found by integrating Equation (2.36) with respect to Θ from −π to π or

it can be derived in a straightforward fashion as shown in [15]. It is given as

fP (ρ) =
2µ(1 + κ)

µ+1
2

κ
µ−1

2 exp(µκ)
ρµ exp

[

−µ(1 + κ)ρ2
]

Iµ−1

[

2µ
√

κ(1 + κ)ρ
]

, (2.39)

ρ ≥ 0.

The phase PDF is found by integrating either one of Equations (2.36) to (2.38)) with

respect to ρ from 0 to ∞,

fΘ(θ) =
∫ ∞

0
fP,Θ(ρ, θ)dρ. (2.40)

No closed-form expression was found for this integral and it can only be calculated numeri-

cally.

The PCR of the κ − µ fading channel was found as an integral form in [44]. Let NΘ(θ)

denote the κ-µ PCR and let the function NΘ(ρ, θ) be defined in such a way that

NΘ(θ) =
∫ ∞

0
NΘ(ρ, θ)dρ. (2.41)

NΘ(ρ, θ) was found to be [44,46]

NΘ(ρ, θ) =

√
πfd

2
√

2
µ3/2κ1− µ

2 (1 + κ)
µ+1

2 ρµ

× exp(−κµ)| sin 2θ|µ

2 | sin 2φ|1− µ

2

× exp
(

−µ(1 + κ)ρ2 + 2µ
√

κ(1 + κ)ρ cos(θ − φ)
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| cos θ cosφ|
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ)ρ cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ)ρ sin θ sinφ
)

,

(2.42)

and the exact PCR can be found by perform the integration described in Equation (2.41).
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2.5.1 Special Cases

The original formulation of the Nakagami-m fading model, obtained by setting p = 0 in

Equation (2.11), is a special case of the κ− µ fading channel when κ → 0.

The Ricean channel is also a particular case of the κ-µ process when µ = 1 and κ = k.

The Rayleigh fading channel, being a special case of both Rice and Nakagami-m models,

is also a special case of the κ− µ model, obtained when µ = 1 and κ → 0.

2.6 Simulation Techniques

As showed in the previous sections, the Complex Envelopes of various fading channels are

described in terms of algebraic operations over Gaussian RVs. In turn, these RVs model the

signal resulted from multiple reflections, causing the signal to arrive at a moving receiving

station from multiple angles, with a random phase and frequency shift due to the Doppler

effect. Each different reflection is then, in itself, a random variable, and the Central Limit

Theorem assures that, given enough random variables, their sum can be adequately approx-

imated by a Gaussian RV. The fact that a station is in continuous movement makes each

Gaussian RV resulting from the process above have a particular power spectrum, described

by Equation (2.7), and to be correlated according to Equation (2.8).

With this theory established, the path to a simulator becomes clear. First it is necessary

to generate properly correlated, Gaussian distributed, random samples and then combine the

samples in the adequate way according to which model is being simulated. The latter is only

a matter of applying the suitable operations of the relevant model. For instance, starting

from two correlated sequences Xn and Yn, one can simulate a Rayleigh channel sequence Zn

by simply substituting each Xn and Yn in Equation (2.4). As for the former, a few strategies

have been derived.

The most straightforward simulator that generates Gaussian-distributed samples with

the desired auto-correlation and power spectrum is perhaps the Jakes’ simulator [10]. The

simulator discretizes the angles of arrival and uses a series of oscillators to simulate each

reflected component. It outputs a continuous signal that approximates well the power spec-

trum and auto-correlation, becoming better with a greater number of oscillators. The power

spectrum becomes a discrete version of Equation (2.7).

An efficient discrete simulator can be achieved with the aid of the Inverse Discrete Fourier

Transform (IDFT) [51–53]. First a sequence of uncorrelated Gaussian distributed samples

is generated. Then, each sample is multiplied by a filter sequence and then the IDFT is

performed over the sequence. The result is a Gaussian distributed complex sequence, with

auto-correlation defined by the filter sequence. By choosing an appropriate filter, it is possible

to obtain a sequence correlated according to Equation (2.8). The result is a complex valued,

Gaussian distributed, auto-correlated, discrete sequence. Since the real and imaginary parts

are correlated to each other, the imaginary part is usually discarded, resulting in a real

valued sequence. This process can be repeated with as many sequences of uncorrelated

Gaussian samples as needed in order to generate the number of RVs used by a particular

model. For instance, to simulate the complex envelope of a Rayleigh channel described in

Equation (2.4), the process would be repeated two times to generate the X and Y sequences.

The same can be done to simulate the Ricean fading. The Generalized Nakagami-m channel

requires mX +mY Gaussian sequences, whereas the κ-µ channel requires 2µ.
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Figure 2.1: Simulated correlated Gaussian time series, with normalized maximum Doppler
shift fD = 1 and sample frequency Fs = 100FD. The Gaussian distribution used to generate
the time series has zero mean and unitary variance.

In the simulations presented in this thesis, the following filter sequence described in [51,52]

was used,

F [k] =



































0, k = 0,
√

√

√

√

1

1

√

1−
(

k
Nfd

)2
, k = 1, 2, . . . , km − 1,

√

k
2

[

π
2

− arctan
(

k−1√
2k−1

)]

, k = km,

(2.43)

in which km = ⌊fdN⌋. Each term of the filter sequence is multiplied by a sample of the

N -long Gaussian sequence prior to the application of the IDFT. Since the IDFT itself is

a weighted sum of the Gaussian samples, the output of the IDFT will have a Gaussian

distribution. The overarching idea of this process is to shape the power spectrum of the

output sequence so that it agrees with Equation (2.7). Note that the filter sequence is the

discretized version of the continuous auto-correlation, from f = 0 to f = fD, with the last

term being an approximation to the weight of the area under the last bin of the discretized

frequency, to avoid the infinity at fD that would arise if the exact formula was used.

Figures 2.1 and 2.2 show the time series and auto-correlation of a simulated Gaussian se-

quence, normalized for unitary variance. In Figure 2.2, the exact auto-correlation is compared

with the simulated samples auto-correlation, showing a remarkable agreement. Figure 2.3

portrays the distribution of the samples superimposed with a zero mean, unitary variance

Gaussian distribution, illustrating that the process of multiplying a Gaussian sequence by

the filter sequence and then performing an IDFT over the sequence preserves the Gaussian

nature of the original samples, as expected.
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2.6.1 The simulation of the absolute value of the κ-µ components

The absolute value of the components of the κ-µ fading model can be simulated in a

straightforward way with the aid of the physical model in Equation (2.24), for integer µ.

The variables Xi and Yi can be modeled in time as the discrete samples Xi[k] and Yi[k] of

a stochastic process, with the auto-correlation in Equation (2.8). Let Z be X or Y and λ

be p or q as required. The series |Z[k]| of the κ-µ model can be obtained with the aid of

the inverse Fourier transform, according to the block diagram in Figure 2.4 [53]. The filter

sequence in the diagram is the one defined in Equation (2.43), and the output sequence will

be distributed according to the statistics of |Z|.

Figure 2.4: Block diagram of the simulation of Z.

On an ending note, only the envelope of the κ-µ process is defined. There is no physical

model for the complex envelope, Z = X + jY , which complicates the simulation. This will

be further discussed in Chapter 5, in which a simulation model is developed.
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Chapter 3
The Phase CDF and The Inverse Phase CDF

of the Generalized Nakagami-m Fading Process

3.1 Introduction

This chapter contains an expanded version of the original paper published in [45]. It

presents the derivations of the exact, closed-form formulations for the CDF of the phase

Θ of the Generalized Nakagami-m fading process and its inverse, denoted respectively by

FΘ (θ) and F−1
Θ (y). The formulations found are then fitted to field measurements. The

original paper presented for the first time such practical validation of the phase statistics of

the generalized Nakagami-m fading channel.

3.2 Phase CDF

The straightforward way to find the phase CDF is to integrate the phase PDF, presented

in Equation (2.16), with regards to θ. The direct integration is, however, hindered by the

absolute valued functions that are part of the phase PDF expression. One way to tackle the

integration is to first divide the domain of the function in smaller parts in which the signal

of the absolute valued functions is invariant, evaluate the integral in one of these smaller

domains and then expand the expression to the whole domain by using the symmetries and

periodicity of the phase PDF.

From Equation (2.16) it can be seen that the phase PDF is periodic with period π, and

has even symmetry. Define the auxiliary functions a1(θ) and a2(θ) over the interval [0, π/2)

as

a1(θ) =







fΘ(θ) if 0 ≤ θ < π/2,

0 elsewhere,
(3.1)

and

a2(θ) =







fΘ(−θ + π/2) if 0 ≤ θ < π/2,

0 elsewhere.
(3.2)

Note that in the interval [0, π/2) considered, both sin(2θ) and tan(θ) are always non

negative. Thus, in this interval, the phase PDF becomes
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fΘ(θ) = a1(θ) =
Γ(m)

2mΓ
(

1+p
2
m
)

Γ
(

1−p
2
m
)

(sin 2θ)m−1

(tan θ)pm , for 0 ≤ θ < π/2. (3.3)

The auxiliary functions a1(θ) and a2(θ) are related to each other as

a2(θ) = a1(π/2 − θ). (3.4)

Figure 3.1 shows the auxiliary functions in comparison to the phase PDF. The a1 function

is congruous to the phase PDF in the [0, π/2) interval, whereas the a2 function is a mirrored

version of a1 in that interval.
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Figure 3.1: Comparison between the phase PDF and auxiliary functions a1 and a2.

The phase PDF fΘ(θ) can be expressed in a piecewise fashion as

fΘ(θ) =



































a1(θ + π) if −π ≤ θ < −π/2
a2(θ + π/2) if −π/2 ≤ θ < 0

a1(θ) if 0 ≤ θ < π/2

a2(θ − π/2) if π/2 ≤ θ < π.

(3.5)

The advantage of this representation lies in the fact that the integral of a1(θ) as well as

that of a2(θ) may be found in closed form, as discussed next. From Equations (3.4) and (3.5),

it can be inferred that
∫ π/2

0 a1(θ)dθ =
∫ π/2

0 a2(θ)dθ = 1/4, since the area below fΘ(θ) is equal

to 1. By defining A1(θ) =
∫ θ

0 a1(x)dx and A2(θ) =
∫ θ

0 a2(x)dx, we can write the phase CDF

as
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FΘ(θ) =































































0 if θ < −π
A1(θ + π) if −π ≤ θ < −π/2
1/4 + A2(θ + π/2) if −π/2 ≤ θ < 0

1/2 + A1(θ) if 0 ≤ θ < π/2

3/4 + A2(θ − π/2) if π/2 ≤ θ < π

1 if θ ≥ π.

(3.6)

The integration of a1(θ) results in

A1(θ) = 1/4 − 1

4
Icos2(θ)

(

1

2
m(p+ 1),

1

2
m(1 − p)

)

, (3.7)

in which Iv(a, b) denotes the regularized beta function [47, Eq. (6.6.2)].

By defining the auxiliary function U(θ) as

U(θ) =
1

4
Icos2(θ)

(

1

2
m(p+ 1),

1

2
m(1 − p)

)

(3.8)

the functions A1(θ) and A2(θ) can be succinctly written as

A1(θ) = 1/4 − U(θ) and (3.9)

A2(θ) = U(π/2 − θ), (3.10)

0 ≤ θ < π/2.

Replacing Equations (3.9) and (3.10) into Equation (3.6), FΘ(θ) is found as

FΘ(θ) =































































0 if θ < −π
1/4 − U(θ + π) if −π ≤ θ < −π/2
1/4 + U(−θ) if −π/2 ≤ θ < 0

3/4 − U(θ) if 0 ≤ θ < π/2

3/4 + U(π − θ) if π/2 ≤ θ < π

1 if θ ≥ π.

(3.11)

In Equation (3.11), U(θ) is defined for θ ∈ [0, π/2). By allowing θ to assume any value

within [−π, π), the following properties of U(θ) can be derived as

U(θ) = U(−θ), (3.12)

U(θ + π) = U(θ) and (3.13)

U(π − θ) = U(θ). (3.14)

Combining the previous identities with Equation (3.11), FΘ(θ) can be further simplified

to

FΘ(θ) =































































0 if θ < −π
1/4 − U(θ) if −π ≤ θ < −π/2
1/4 + U(θ) if −π/2 ≤ θ < 0

3/4 − U(θ) if 0 ≤ θ < π/2

3/4 + U(θ) if π/2 ≤ θ < π

1 if θ ≥ π.

(3.15)
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This piecewise formula can be grouped into a single equation with the aid of the sign and

square wave functions as

FΘ(θ) =
2 + sign(θ)

4
− S

(

θ

π

)

U (θ) , − π ≤ θ < π, (3.16)

in which the sign function sign(x) is defined as being valued −1 for x < 0, 0 for x = 0 and

1 for x > 0, and the square wave function S(x) is defined as S(x)
△
= sign(sin(2πx)).

3.3 Inverse Phase CDF

The same piecewise approach used to find the phase CDF can be used to find its inverse.

This allows the inverse CDF to be expressed in terms of U−1(y), 0 ≤ y < 1/4, with U−1(y)

meaning the inverse of U(θ) for 0 ≤ θ < π/2. The restriction to the domain of U(θ) is needed

to guarantee that the function is a bijection, which is a necessary condition for it to have an

inverse function. From inspection of Equation (3.11), the inverse CDF can be written as

F−1
Θ (y) =



































U−1(1/4 − y) − π if 0 ≤ y < 1/4

−U−1(y − 1/4) if 1/4 ≤ y < 1/2

U−1(3/4 − y) if 1/2 ≤ y < 3/4

π − U−1(y − 3/4) if 3/4 ≤ y < 1,

(3.17)

0 ≤ y < 1. The function U−1(y) is found from Equation (3.8) as

U−1(y) = arccos





√

I
−1

4y

(

1

2
m(p+ 1),

1

2
m(1 − p)

)



 , (3.18)

0 ≤ y < 1/4. Finally, we combine Equations (3.17) and (3.18)) in a single equation,

F−1
Θ (y) = S(2y) × U−1

(

T(2y + 1/4) + 1

8

)

+ π⌊2y − 1/2⌋, (3.19)

with the aid of the square wave function S(x) defined above and the triangular wave function

defined as T(x)
△
= 2

π
sin−1 (sin (2πx)). This concludes the derivation of the inverse phase CDF

of the Nakagami-m signal.

3.4 Some Plots

Figure 3.2 shows two families of the CDF for the general case, for the fading parameters

m = 1.5 and m = 0.75, and varying phase parameter p, described in Equation (2.11). As can

be seen, for any p, the phase is equally likely to be found in any one of the four quadrants.

However, as p departs from zero toward one or minus one, the distribution becomes more

impulsive. This happens because when p = 1 there are no quadrature component, and when

p = −1 there are no in-phase component, so, for these values of p, the phase concentrate

respectively at the specific values 0 and π, or π/2 and −π/2.
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Figure 3.2: Two families of curves of the phase CDF, for a varying phase parameter and
fading parameters m = 1.5 (solid line) and m = 0.75 (dashed line). The arrow indicates the
direction of growing p.

3.5 Fitted Field Data

In this section, field data from experiments conducted by Cotton et al. [54] is fitted to

the Generalized Nakagami-m channel PDF and CDF. In these experiments, a transmitter

located at the user’s left waist transmitted at 2.45 GHz and the signal was received by 5

mm higher mode microstrip patch antennas [55] arranged in a body area network setup

throughout the body of the subject. The receivers were placed on the right side of the head,

front chest, waist, knee, ankle, wrist, and elbow of the subject, and recorded by a vector

network analyzer (Rhode & Schwarz ZVB-8 VNA) that was configured to take measurements

at 5 ms intervals for 30 seconds. During the experiment, the subject simulated a walking

motion. From the data acquired, the phase PDF, CDF and PCR were calculated and then

fitted to the theoretical expressions.

To fit the data, a parametric search method to find good estimations for the parameters

m and p was performed. First a non-linear optimization algorithm set to minimize the mean

square error between the theoretical expression and the field measurements was used to find

a starting point for p and m. From those parameters, a manual search was performed to

refine the fit. The goal of this optimization was to find theoretical curves that yielded a good

representation of the features of the phase PDF of the experimental data while maintaining

a low error.

Figures 3.3 to 3.6 show the data for two sensors in the anechoic chamber, the ones on

the ankle and wrist of the subject. This kind of chamber is engineered to minimize any

environmental reflections, which means that any multipath clusters will be primarily caused

by diffracted creeping waves and on-body surface waves. The signal captured by the sensor

in the ankle is well modeled by a parameter m < 1, suggesting a partial cluster leading to

a severe fading, whereas the estimated m parameter greater than one on the ankle sensor

implies the occurrence of some type of clustering. Note how these odd phase shapes are
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Figure 3.3: Phase PDF for m < 1 adjusted to field measurements.
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Figure 3.4: Phase CDF for m < 1 adjusted to field measurements.
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Figure 3.5: Phase PDF for m > 1 adjusted to field measurements.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ (rad)

P
h
a
s
e
 C

D
F

Anechoic chamber − wrist

 

 

−π −

π

2
0 π

2

π

field data

m = 1.37, p = −0.132

Figure 3.6: PCR for m > 1 adjusted to field measurements.
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Figure 3.7: Phase PDF for m < 1 adjusted to field measurements.

reasonably followed by the theoretical curves. Figures 3.3 and 3.4 show a very low power

imbalance p parameter, meaning that the received signal’s power is shared almost equally

between the in-phase and quadrature components. In both the ankle and wrist sensors, the

signal reception will be strongest when the respective limb moves from its position alongside

the body to the front of the body. In terms of phase, the paths linking the two antennas will

be constantly changing. However, the phase repeats as the arm or leg moves from behind to

the front of the body and back again.

Figures 3.7 to 3.10 show the phase PDF and CDF of the signal captured by two sensors

in the reverberation chamber experiment. In contrast with the anechoic chamber, the rever-

beration chamber is built in order to increase the reflections of the waves, generating a great

number of multipath clusters. The data obtained from this chamber fits better the Gen-

eralized Nakagami-m model, which is expected since this fading channel assumes non-LOS

conditions.

Finally, Figures 3.11 and 3.12 show the Phase Crossing Rate of the ankle sensor in both

the anechoic and reverberation chambers. As can be inferred through their respective theo-

retical formulations, the shapes of the phase PDF and PCR are akin to each other, bearing

the same overall shape for the same set of parameters. Interestingly, for the majority of

the curves, the same set of parameters used to fit the phase PDF (or CDF) also yielded a

very good fit to the PCR, which is well illustrated by the two examples here. This suggests

that the underlying physical processes involved in the modeling of the Nakagami-m complex

signal are plausible, since the second order statistics predicted by the model find validation

in the field data. Another interesting observation is that although the propagation condi-

tions estimated are found to be rather close to that of Rayleigh (m approaching one), the

measured PCR departs from the classical Rayleigh PCR, which is supposed to be constant.

Indeed, as predicted by Equations (2.16) and (2.17), even the Rayleigh condition (m = 1)

may be associated to a non-uniform phase PDF or a non-constant PCR, depending on the
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Figure 3.8: Phase CDF for m < 1 adjusted to field measurements.
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Figure 3.9: Phase PDF for m > 1 adjusted to field measurements.
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Figure 3.10: Phase CDF for m > 1 adjusted to field measurements.

phase parameter p. Figures 3.11 and 3.12 are thus an example of conditions for which the

Generalized Nakagami-m model is more suited than the Rayleigh channel.

As can be seen in all plots, although some distance between theoretical and practical

plots exists, the shapes of the curves are very similar to each other.

3.6 Conclusion

In this Chapter, exact, closed-form expressions for both the CDF and the inverse CDF

of the phase of the Nakagami-m fading model have been derived. Validation of the phase

statistics derived here and in [48] has been achieved through careful comparison with field

measurements. It has been shown that the intriguing shapes of the phase statistics as pre-

dicted in the Nakagami-m complex model are actually found in practice. Notwithstanding

the contributions made here, the authors recognize that other phase models may be associ-

ated to Nakagami-m fading (e.g., [56]) that lead to different shapes of the statistics. This

topic will be the direction of future investigations.
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Figure 3.11: PCR for m < 1 adjusted to field measurements.

0

0.5

1

1.5

2

2.5

3

3.5

θ (rad)

P
C

R
 (

c
ro

s
s
in

g
s
/s

e
c
)

Reverberation chamber − ankle

 

 

−π −

π

2
0 π

2

π

field data

m = 0.98, p = −0.188, Fd = 6.52

Figure 3.12: PCR for m < 1 adjusted to field measurements.
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Chapter 4
Exact and Approximate Higher Order

Statistics of the κ-µ Fading Process

4.1 Introduction

This chapter contains an adapted version of the paper published in [46]. The aim of

this chapter is to further the study of the phase of the κ-µ fading model. It presents the

continuation of the work in [44], by finding the analytic formula to both the PCR and phase

PDF approximations found in that work, removing the need of any integrations to evaluate

those statistics. The approximate phase PDF described here is a closed form description

of a new random variable, that is extremely flexible, relatively simple and can be used on

its own to model phase processes. During the derivation of these statistics, a new integral

identity of the confluent hypergeometric function of the first kind was discovered and is

also included. Most interestingly, and strikingly, whereas the exact κ-µ phase PDF, given

in integral-form, contains as special cases the exact Nakagami-m phase PDF and the exact

Rice phase PDF, the approximate κ-µ phase PDF, given in closed-form, though approxi-

mate, contains as special cases the exact Nakagami-m phase PDF and the exact Von Mises

(Tikhonov) phase PDF. In the same way, the approximate κ-µ PCR, given in closed-form,

though approximate, contains as a special case the exact Nakagami-m PCR. A comparison

between the approximations and the exact solutions show the excellent fit between them,

making the approximate solutions directly applicable to the study of the phase. The PDF

of the time derivative of the phase of the κ-µ channel is also derived in an exact manner

and in closed-form. A number of other joint distributions comprising envelope, phase, and

their time derivatives are presented in closed-form. Finally, a numerical comparison between

exact and approximate solutions is presented.

The chapter is structured in seven sections. Section 4.2 proposes a tight closed-form

approximation for the phase Probability Density Function. Section 4.3 derives the exact

second order statistics of the κ-µ model, presenting several joint statistics of the envelope,

phase, the time derivative of the envelope and the time derivative of the phase. Section 4.4

proposes a closed-form approximation for the Phase Crossing Rate. Section 4.5 presents

sample plots for the new formulations. Section 4.6 compares the exact and approximate

solutions. Section 4.7 concludes the chapter.

Mathematical Functions. Throughout the text: Γ (a) denotes the gamma function [47,

Eq. (6.1.1)]; Iv(a) denotes the modified Bessel function of the first kind [47, Eq. (9.6.18)];
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1F1(a; b; c) denotes the confluent hypergeometric function of the first kind, also known as

Kummer’s function [47, Eq. (13.1.2)].

4.2 First Order Statistics - A Tight Closed-Form Ap-

proximation

The phase-envelope joint distribution of the κ-µ channel was found in [16]. Whereas

the phase-envelope joint PDF was described as an analytical expression, the marginal phase

PDF was left in integral form. The exact solution of the phase PDF is the integration of

Equation (2.36) shown in Equation (2.40).

An exact result given in integral-form is certainly useful but restricts its applicability,

chiefly if its computation is to be performed repeatedly. For instance, finding an optimal

set of parameters to fit experimental data implies a non-linear optimization problem that

requires multiple evaluations of the statistics being considered. The lack of a closed-form

expression for the phase PDF of the κ-µ model hinders the practicality of its use to study

phase related phenomena. A tight approximation with an analytic expression can make the

model more readily usable.

As will be shown later in the chapter, the function fO(θ) ≈ fΘ(θ), given in Equation (4.1),

is a tight closed-form approximation to the κ-µ phase PDF.

fO(θ) =
µ
√

κ(1 + κ)

4Iµ−1

(

2µ
√

κ(1 + κ)
) | sin 2θ|µ

2 | sin 2φ|1− µ

2

× exp
(

2µ
√

κ(1 + κ) cos(θ − φ)
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ) cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ) sin θ sinφ
)

,

(4.1)

for −π ≤ θ < π.

This formula is derived in Section 4.2.1 and captures all of the properties of the exact

phase PDF, including maxima and minima occurring at values of θ very close to those of

the original function. It has the following symmetry properties also found in the exact phase

PDF: when φ is an integer multiple of π/2 or when µ = 1, both functions are symmetric

around φ; when µ 6= 1, the PDF is quadrimode, reaching zero (µ > 1) or infinity (µ < 1)

when θ is an integer multiple of π/2. Although approximate, by construction, this is a true

PDF, since it is non-negative and integrates to 1 over its domain.

Equation (4.1) leads to indeterminacy for certain values of µ when φ is an integer multiple

of π/2. However, the limits limφ→nπ fO(θ) and limφ→(2n+1)π/2 fO(θ), n ∈ Z, exist and are given

by Equations (4.2) and (4.3),



Chapter 4. Exact and Approximate Higher Order Statistics of the κ-µ Fading Process 42

fO(θ)φ→nπ =
(µ
√

κ(1 + κ))
µ

2

2Γ(µ/2)Iµ−1

(

2µ
√

κ(1 + κ)
)

×| sin θ|µ−1| cos θ|µ

2 sech
(

2µ
√

κ(1 + κ) cos θ
)

× exp
(

2µ
√

κ(1 + κ) cos(θ) cos(φ)
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| cos θ|
)

(4.2)

and

fO(θ)
φ→ (2n+1)π

2

=
(µ
√

κ(1 + κ))
µ

2

2Γ(µ/2)Iµ−1

(

2µ
√

κ(1 + κ)
)

×| cos θ|µ−1| sin θ|µ

2 sech
(

2µ
√

κ(1 + κ) sin θ
)

× exp
(

2µ
√

κ(1 + κ) sin(θ) sin(φ)
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| sin θ|
)

.

(4.3)

The derivation of the proposed approximation for the general case is carried out in two

steps, as detailed next: first, a function bearing the same behavior of the exact phase PDF

is obtained; then, this function is normalized to have unitary area.

4.2.1 Derivation of the Tight Approximate Solution

Initially, a Taylor expansion of Equation (2.36) with respect to θ for a fixed ρ was con-

sidered. 1 The idea was to truncate the series in order to achieve a first order approximation

of the function. This strategy failed, however, because each term of the Taylor expansion is

itself expressed as an integral over ρ, for which no analytic solution was found, increasing

the complexity of the problem instead of reducing it. An alternative and definitive approach

was then pursued. Instead of Taylor expanding fP,Θ(ρ, θ) with respect to θ for a fixed ρ, the

integrand of Equation (2.36) was expanded in terms of ρ for a fixed θ. The series thus ob-

tained was truncated before the integration was performed. Note that, strictly speaking, this

is not a first order approximation, since the function is truncated prior to the integration.

Nonetheless, the function found this way, and normalized to guarantee unitary area, had

the desired behavior, allowing it to be used as an approximate PDF. However, there is an

inherent problem with the proposed Taylor expansion solution.The Taylor series is obviously

a polynomial function on ρ and, since the range of ρ is infinite, the integral will diverge for

all truncated versions of the expansion. The integral only converges if the number of terms

remains infinite. A workaround to address this problem is achieved by manipulating the

integration. First, the interval of integration is divided in two ranges, namely from 0 to 1

and from 1 to ∞, as

fΘ(θ) =
∫ 1

0
fP,Θ(x, θ)dx+

∫ ∞

1
fx,Θ(x, θ)dx. (4.4)

Next, the variable x of the second integral is changed to y = 1/x, so that y = 0 when x = ∞,

y = 1 when x = 1, and dx = −dy
y2 . Then, the dummy variable y is changed back to x and

1The first part of this derivation was presented in [44]. However, in that work, although the formula
was almost analytic, there still remained an integral term to be evaluated. In the following derivation, this
integration is evaluated and its results are combined with the main expression, leading to the true closed
form formula showed in Equation (4.1). The full derivation is included here for completeness.
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both integrals are regrouped under a single integral from 0 to 1.

fΘ(θ) =
∫ 1

0



fP,Θ(x, θ) +
fP,Θ

(

1
x
, θ
)

x2



 dx

=
∫ 1

0 u(ρ, θ)dx.

(4.5)

A series expansion of the integrand u(ρ, θ) of Equation (4.5) about the point ρ0 = 1 is

performed, resulting in

u∗
(ρ, θ) =

2−ρ
2
µ2κ1− µ

2 (1 + κ)1+ µ

2 | sin 2θ|µ

2 | sin 2φ|1− µ

2

× exp
(

−µ(1 + 2κ) + 2µ
√

κ(1 + κ) cos(θ − φ)
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ) cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ) sin θ sinφ
)

+O(ρ− 1)2.

(4.6)

Now, the integral of u(ρ, θ) from ρ = 0 to ρ = 1 is found trivially,

gΘ(θ) =
3
2
µ2κ1− µ

2 (1 + κ)1+ µ

2 | sin 2θ|µ

2 | sin 2φ|1− µ

2

× exp
(

−µ(1 + 2κ) + 2µ
√

κ(1 + κ) cos(θ − φ)
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ) cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ) sin θ sinφ
)

.

(4.7)

Note that Equation (4.7) is the basis of Equation (4.1)), multiplied by a function of the

parameters κ, µ and φ. Before integrating Equation (4.7) to find the area for normalization

purposes, it is convenient to strip it of the multiplicative terms that are not function of θ or

φ, resulting in
g∗

Θ(θ) = | sin 2θ|µ

2 | sin 2φ|1− µ

2

× exp
(

2µ
√

κ(1 + κ) cos(θ − φ)
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ) cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ) sin θ sinφ
)

.

(4.8)

Most interestingly, the integral of Equation (4.8) with respect to θ can be calculated with

the aid of the following integral identity first found in [17, Eq. 17],

Iµ−1(x) =

x
8
| sin(2φ)|1− µ

2

∫ 2π

0
| sin 2θ|µ

2 exp (x cos(θ − φ))

×Iµ

2
−1 (x| cos θ cosφ|) Iµ

2
−1 (x| sin θ sinφ|)

× sech (x cos θ cosφ) sech (x sin θ sinφ) dθ.

(4.9)
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With this identity, the integration becomes straightforward, and after some algebraic ma-

nipulation we find the area to be

∫ 2π

0
g∗

Θ(θ)dθ =
4Iµ−1

(

2
√

κ(κ+ 1)µ
)

√

κ(κ+ 1)µ
. (4.10)

Equation (4.1) is then found by dividing Equation (4.8) by Equation (4.10). Note that

Equation (4.1)) is both non-negative and has unitary area, making it the description of the

PDF of a new RV, denoted here by O.

4.2.2 Special Cases

As already known, the κ-µ distribution encompasses several other distributions, including

Nakagami-m and Rice. In this section, the behavior of the approximate expression for those

two special cases is explored.

A) Rice Distribution

By setting µ = 1 in Equation (4.1), the approximation can be evaluated for the Rician

case. This is a straightforward substitution and results in a rather simple expression,

fO(θ)Rice =
exp

(

2
√

κ(1 + κ) cos(θ − φ)
)

2πI0(2
√

κ(1 + κ))
. (4.11)

Strikingly, the expression in Equation (4.11) is the exact Von Mises (Tikhonov) dis-

tribution [57]. This result shows that the Von Mises (Tikhonov) distribution can be

used to approximate the Rician phase distribution. Furthermore, since the parameters

k and φ are described in terms of physical phenomena involved in wireless communica-

tions, it may give a physical interpretation to the Von Mises (Tikhonov) distribution

as well.

B) Nakagami-m Distribution

The κ-µ channel becomes the Nakagami-m channel when κ → 0. However, by making

κ → 0 in Equation (4.1) an indeterminacy is encountered. It can be shown [58] that

lim
x→0

(

x
1
2

− µ

4 Iµ

2
−1(ax

1/2)
)

=
(a/2)

µ

2
−1

Γ
(

µ
2

) . (4.12)

With the aid of this limit, we obtain

fO(θ)nak =
| sin 2θ|µ−1Γ(µ)

2µΓ2(µ/2)
. (4.13)

which, again strikingly, is exactly the Nakagami-m phase PDF as described in [13].

This is an interesting result that shows one particular case in which the proposed

approximate phase PDF reduces to the exact function.
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C) A New Phase/Angle Probability Density Function

It is noteworthy that the said tight approximate solution is indeed a totally new

phase/angle PDF. It can be written more compactly as

fO(θ) =
kµ

8Iµ−1(kµ)
| sin 2θ|µ

2 | sin 2φ|1− µ

2 exp (kµ cos(θ − φ))

×Iµ

2
−1 (kµ| cos θ cosφ|) Iµ

2
−1 (kµ| sin θ sinφ|)

× sech (kµ cos θ cosφ) sech (kµ sin θ sinφ) ,

(4.14)

in which k = 2
√

κ(1 + κ).

Its special cases, as said, include Von Mises (Tikhonov) for µ = 1, i.e.

fO (θ) =
exp (k cos (θ − φ))

2π I0 (k)
(4.15)

and Nakagami-m for κ → 0, i.e.

fO(θ) =
| sin 2θ|µ−1Γ(µ)

2µΓ2(µ/2)
(4.16)

4.3 Second Order Statistics - Exact Solution

The second order statistics, as explored here, concern the time derivative of the compo-

nents of the signal. We start by calculating the joint distribution of X, Y , Ẋ, and Ẏ , in

which the dot signifies the time derivative of the variable. The variables X and Y denote

respectively the in-phase and quadrature component of the κ-µ channel, defined in Equa-

tions (2.25) and (2.26) with the corresponding PDF given in Equation (2.35). We then

proceed by making a transformation of variables to obtain the joint distribution of R, Θ, Ṙ,

and Θ̇.

4.3.1 PDF of Ż

As noted in Section 2.5, the in-phase and quadrature components of the κ-µ signal follow

the same distribution, as defined in Equation (2.35), with their physical model given in

Equation (2.27). By differentiating both sides of Equation (2.27) with respect to time and

rearranging the terms, it is possible to write

Ż =

∑µ
i=1(Zi + λi)Żi

Z
. (4.17)

Let Ż|Z represent the variable Ż conditioned on the value of all Zi , i = 1, ..., µ. For an

isotropic environment, Żi is a Gaussian random variable with zero mean and variance [12]

σ̇2 = 2π2f 2
dσ

2, (4.18)

in which fd denotes the maximum Doppler shift [8]. The variance of each multipath cluster,

σ2, may be written in terms of the κ-µ parameters as [15]

σ2 =
r̂2

2µ(1 + κ)
. (4.19)
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When Equation (4.17) is conditioned on Zi, all Zi, and hence Z, become known and thus

they can be treated as constants. Because of this, Equation (4.17) becomes a sum of the

µ Gaussian random variables Żi, which is itself a Gaussian random variable, and its PDF

can be fully characterized by its first and second moments. The moments of each individual

Gaussian component Żi are (i) E[Żi] = 0, (ii) E[ŻiŻj] = σ̇2, if i = j, and (iii) E[ŻiŻj] = 0,

if i 6= j. The mean value of Ż|Z is

E[Ż|Z] =

µ
∑

i=1
(Zi + λi)E[Żi]

Z
= 0, (4.20)

and its second moment is

E[Ż2|Z] =

µ
∑

i=1

µ
∑

j=1
(Zi + λi)(Zj + λj)E[ŻiŻj]

Z2
= σ̇2.

(4.21)

The PDF fŻ|Z(ż|z) of Ż|Z is then

fŻ|Z(ż|z) =
1√

2πσ̇2
exp

(

− ż2

2σ̇2

)

. (4.22)

Because fŻ|Z(ż|z) is not a function of z, then fŻ|Z(ż, z) = fŻ(ż), which means that Z is

independent of Ż, or, in other words, X is independent of Ẋ and Y is independent of Ẏ .

Thus,

fŻ(ż) =
1√

2πσ̇2
exp

(

− ż2

2σ̇2

)

. (4.23)

Again, by definition, becauseX and Y are independent processes, it follows that the variables

X, Ẋ, Y, Ẏ are jointly independent.

4.3.2 Joint PDF of X, Ẋ, Y, Ẏ :

Knowing thatX, Ẋ, Y, Ẏ are jointly independent, then fX,Ẋ,Y,Ẏ (x, ẋ, y, ẏ) = fX(x)fẊ(ẋ)fY (y)fẎ (ẏ),

in which the marginal PDFs are given by Equations (2.35) and (4.23), with the appropriate

substitution of Z by X or Y and Ż by Ẋ or Ẏ , as required. That is,

fX,Ẋ,Y,Ẏ (x, ẋ, y, ẏ) =

|xy|
µ
2

8πσ4σ̇2|pq|
µ
2 −1

exp
(

− (x−p)2+(y−q)2

2σ2

)

exp
(

− ẋ2+ẏ2

2σ̇2

)

×Iµ

2
−1

(

|px|
σ2

)

Iµ

2
−1

(

|qy|
σ2

)

sech
(

px
σ2

)

sech
(

qy
σ2

)

.

(4.24)

4.3.3 Joint PDF of P, Ṗ ,Θ, Θ̇

Define P as the normalized envelope, as before, and Ṗ its time derivative. The joint PDF

fP,Ṗ ,Θ,Θ̇(ρ, ρ̇, θ, θ̇) of P, Ṗ ,Θ,and Θ̇ is obtained through variable transformations, from the

Cartesian coordinates (X, Y ) to the polar coordinates (r̂P,Θ). Then, fP,Ṗ ,Θ,Θ̇(ρ, ρ̇, θ, θ̇) =

|J |fX,Ẋ,Y,Ẏ (x, ẋ, y, ẏ), in which J is the Jacobian of the transformation and X/r̂ = P cos Θ

and Y/r̂ = P sin Θ. Therefore Ẋ/r̂ = Ṗ cos Θ − P Θ̇ sin Θ and Ẏ /r̂ = Ṗ sin Θ + P Θ̇ cos Θ.
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The Jacobian of this transformation is found to be |J | = r̂2ρ2. Now, using the definitions

for σ2 and σ̇2 and carrying out the necessary algebraic manipulations, then

fP,Ṗ ,Θ,Θ̇(ρ, ρ̇, θ, θ̇) =
κ1− µ

2 (1 + κ)2+ µ

2µ3

4π3f 2
d

ρµ+2

×| sin 2θ|µ

2 | sin 2φ|1− µ

2 exp
(

−µ(1+κ)
2π2f2

d

(ρ̇2 + ρ2θ̇2)
)

× exp (−µ(1 + κ)ρ2 − κµ)

× exp
(

2µ
√

κ(1 + κ)ρ cos(θ − φ)
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| cos θ cosφ|
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ)ρ cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ)ρ sin θ sinφ
)

.

(4.25)

4.3.4 Joint PDF of P, Ṗ , Θ̇

The joint PDF of P, Ṗ and Θ̇ is calculated by integrating Equation (4.25) with respect

to Θ. This integration is achieved with the aid of the identity Equation (4.9), leading to

fP,Ṗ ,Θ̇(ρ, ρ̇, θ̇) = π−3f−2
d κ

1−µ

2 (1 + κ)
3+µ

2 µ2

×ρµ+1Iµ−1

(

2µ
√

κ(1 + κ)ρ
)

exp (−κµ)

× exp
(

−µ(1+κ)
2π2f2

d

(ρ̇2 + ρ2θ̇2) − µ(1 + κ)ρ2

)

.
(4.26)

4.3.5 Joint PDF of P, Ṗ ,Θ

The joint PDF of P, Ṗ and Θ is calculated by integrating Equation (4.25) with respect

to Θ̇, which results in the expression

fP,Ṗ ,Θ(ρ, ρ̇, θ) =
κ1− µ

2 (1 + κ)
3+µ

2 µ5/2

(2π)3/2 fd

ρµ+1

×| sin 2θ|µ

2 | sin 2φ|1− µ

2 exp
(

−µ(1+κ)
2π2f2

d

ρ̇2 − κµ
)

× exp
(

2µ
√

κ(1 + κ)ρ cos(θ − φ) − µ(1 + κ)ρ2
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| cos θ cosφ|
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ)ρ cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ)ρ sin θ sinφ
)

.

(4.27)

4.3.6 Joint PDF of P,Θ, Θ̇

Similarly, the joint PDF of P,Θ and Θ̇ is calculated by integrating Equation (4.25) with

respect to Ṗ , which produces the function



Chapter 4. Exact and Approximate Higher Order Statistics of the κ-µ Fading Process 48

fP,Θ,Θ̇(ρ, θ, θ̇) =
κ1− µ

2 (1 + κ)
3+µ

2 µ5/2

(2π)3/2 fd

ρµ+2

×| sin 2θ|µ

2 | sin 2φ|1− µ

2 exp
(

−µ(1+κ)
2π2f2

d

ρ2θ̇2 − κµ
)

× exp
(

2µ
√

κ(1 + κ)ρ cos(θ − φ) − µ(1 + κ)ρ2
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| cos θ cosφ|
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ)ρ cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ)ρ sin θ sinφ
)

.

(4.28)

4.3.7 Joint PDF of P,Θ

The joint PDF of P and Θ can be calculated from either Equation (4.27) or Equa-

tion (4.28) by integration, in the same fashion as before. This leads to

fP,Θ(ρ, θ) =
1

2
κ1− µ

2 (1 + κ)1+ µ

2µ2ρµ+1

×| sin 2θ|µ

2 | sin 2φ|1− µ

2 exp (−κµ)

× exp
(

2µ
√

κ(1 + κ)ρ cos(θ − φ) − µ(1 + κ)ρ2
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| cos θ cosφ|
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)ρ| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ)ρ cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ)ρ sin θ sinφ
)

.

(4.29)

Equation (4.29) is the non-normalized version of [17, Eq. (2)].

4.3.8 Joint PDF of P, Ṗ

The joint PDF of P and Ṗ is calculated by integrating Equation (4.26) with respect to

Θ̇, resulting in

fP,Ṗ (ρ, ρ̇) =

√
2

π3/2fd

µ3/2κ
1−µ

2 (1 + κ)1+ µ

2 ρµ

× exp
(

−µ(1+κ)
2π2f2

d

ρ̇2−µ(1 + κ)ρ2 − µκ
)

×Iµ−1

(

2µ
√

κ(1 + κ)ρ
)

.

(4.30)

Equation (4.30) is exactly the same equation derived in [18] and is included in this chapter

for completeness purposes.

4.3.9 Joint PDF of P, Θ̇

The joint PDF of P and Θ̇ is calculated by integrating Equation (4.26) with respect to

Ṗ , resulting in

fP,Θ̇(ρ, θ̇) =

√
2

π3/2fd

µ3/2κ
1−µ

2 (1 + κ)1+ µ

2 ρµ+1

× exp
(

−µ(1+κ)
2π2f2

d

ρ2θ̇2−µ(1 + κ)ρ2 − µκ
)

×Iµ−1

(

2µ
√

κ(1 + κ)ρ
)

.

(4.31)



Chapter 4. Exact and Approximate Higher Order Statistics of the κ-µ Fading Process 49

4.3.10 Joint PDF of Ṗ , Θ̇

The joint PDF of Ṗ and Θ̇ is achieved by simply integrating Equation (4.26) with respect

to P , which results in

fṖ ,Θ̇(ρ̇, θ̇) =
2µ−1/2f 2µ−1

d π2µ−2

(

2π2f 2
d + θ̇2

)µ+ 1
2

Γ
(

µ+ 1
2

)

Γ(µ)

×
√

µ(1 + κ) exp
(

−µ(1+κ)ρ̇2

2π2f2
d

− κµ
)

× 1F1

(

µ+ 1
2
;µ;

2f2
d

π2κµ

2π2f2
d

+θ̇2

)

.

(4.32)

4.3.11 The Marginal PDFs of Ṗ and Θ̇

The marginal PDFs fṖ (ρ̇) and fΘ̇(θ̇) are found by integrating fṖ ,Θ̇(ρ̇, θ̇) appropriately.

However, integration over θ̇ does not lead to a closed-form expression, whereas integration

over ρ̇ easily leads to

fΘ̇(θ̇) =
exp(−κµ)Γ

(

µ+ 1
2

)

√
2π3/2fdΓ(µ)

(

1 + θ̇2

2f2
d

π2

)µ+1/2

× 1F1



µ+ 1
2
;µ; κµ

1+ θ̇2

2f2
d

π2



 .

(4.33)

It is evident from Equation (4.33) that the density of Θ̇ has even symmetry, since all

terms of θ̇ are squared. This means that the positive changes in phase occurs with the same

frequency as negative ones. It is also independent of the phase parameter φ. Overall, the

distribution has a single maximum centered at θ = 0, declining as θ gets farther from the

center.

We recognize that Equation (4.33) can be separated from the joint PDF in Equation (4.32).

Dividing Equation (4.32) by Equation (4.33), we find the PDF of Ṗ ,

fṖ (ρ̇) =
exp

(

− ρ̇2

2σ̇2

)

√
2πσ̇

, (4.34)

in which σ̇2 is given by Equation (4.18) with r̂ = 1, since this statistics refers to the the nor-

malized envelope. We note that Equation (4.34) was already described in [18] and is included

here for completeness. An interesting conclusion that can be drawn from Equations (4.32)

to (4.34)) is that Ṗ is independent of Θ̇, since their joint PDF is simply the multiplication

of the marginal distributions.

We end this section by remarking that no closed-form expression was found for any joint

PDF for a set of random variables that contains Θ but not P . Whereas the identity in

Equation (4.9) is useful for removing Θ from the joint PDFs, no such artifice was found to

remove P without removing Θ first.

4.3.12 A New Mathematical Identity

Earlier, we stated that the integration over the range of θ̇ in fṖ ,Θ̇(ρ̇, θ̇) was not possible.

However, through alternative means, we have been able to obtain the corresponding marginal
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PDFs. Now, because Equation (4.33) is a true PDF, its integration with respect to θ̇ over

its range (from −∞ to ∞) is equal to one. Knowing that this is an even function, we find

the following identity of the confluent hypergeometric function of the first kind

∫ ∞

1

1F1

(

a; a− 1
2
; b

z

)

za
√
z − 1

dz =

√
πΓ

(

a− 1
2

)

exp(b)

Γ(a)
. (4.35)

To the best of the authors’ knowledge, this is the first time this identity has been described

in the literature.

4.4 Second Order Statistics - A Closed-Form Approx-

imation

The integral needed to evaluate the phase PDF of the κ-µ model is very similar to the

one needed to evaluate the PCR, as it can be recognized by comparing Equations (2.36)

and (2.42). The two functions are composed by essentially the same building blocks, the

difference between them being the power of ρ and the multiplicative constant that is only

a function of κ, µ and φ. This suggests that a similar procedure can be used to find an

approximation to the phase PDF. The same method used to attain Equation (4.7) is followed

here by substituting fΘ(θ) and fP,Θ(ρ, θ) for NΘ(θ) and NΘ(ρ, θ), respectively. The detailed

steps are avoided and the result is

hΘ(θ) =
3
2
fd

√

π
2
(1 + κ)

1+µ

2 κ1− µ

2µ
3
2 | sin 2θ|µ

2 | sin 2φ|1− µ

2

× exp
(

−µ(1 + 2κ) + 2µ
√

κ(1 + κ) cos(θ − φ)
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ) cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ) sin θ sinφ
)

.

(4.36)

As before, Equation (4.36) is stripped of the terms that are not a function of θ, µ or φ,

leading to
h∗

Θ(θ) = | sin 2θ|µ

2 | sin 2φ|1− µ

2

× exp
(

2µ
√

κ(1 + κ) cos(θ − φ)
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

×Iµ

2
−1

(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ) cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ) sin θ sinφ
)

.

(4.37)

Unsurprisingly, Equation (4.37) is exactly the same function as Equation (4.8). In order to

obtain a satisfactory approximation, Equation (4.37) is normalized to match the same area

of the exact PCR. This entails the integration of both Equations (2.41) and (4.37) from

θ = 0 to θ = 2π. The former has already been performed and is given by Equation (4.10).

The latter is calculated as follows. The desired area is
∫ 2π

0
NΘdθ =

∫ 2π

0

∫ ∞

0
NΘ(ρ, θ)dρdθ. (4.38)
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The order of integration is changed, leading to
∫ ∞

0

∫ 2π

0
NΘ(ρ, θ)dθdρ =

∫ ∞

0
A(ρ)dρ, (4.39)

in which A(ρ) =
∫ 2π

0 NΘ(ρ, θ)dθ. Using Equation (4.9) in Equation (4.39), A(ρ) is found to

be
A(ρ) =

√
2πf

√
µκ

1
2

− µ

2 (1 + κ)µ/2ρµ−1 exp (−κµ)

× exp(−µ(1 + κ)ρ2)Iµ−1

(

2µ
√

κ(1 + κ)ρ
)

.
(4.40)

The integration of Equation (4.40) from ρ = 0 to ρ = ∞ yields the following closed-form

formula for the area under the exact PCR,

∫ 2π

0
NΘdθ = fd

√

π

2

Γ
(

µ− 1
2

)

Γ(µ)
1F1

(

1

2
;µ; −κµ

)

. (4.41)

The restriction µ > 1/2 is needed for the integral to converge, whereas κ is always posi-

tive, by definition. Finally, the desired approximation NO(θ) ≈ NΘ(θ) is found by dividing

Equation (4.41) by Equation (4.10) and multiplying the result by Equation (4.37),

NO(θ) =
fd

√

π
2
µ
√

κ(1 + κ)Γ
(

µ− 1
2

)

4Iµ−1

(
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√
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)

Γ(µ)
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(

1
2
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)
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2
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)

×Iµ

2
−1

(

2µ
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κ(1 + κ)| sin(θ) sin(φ)|
)

×Iµ

2
−1

(

2µ
√
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)

× sech
(

2µ
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)

× sech
(
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κ(1 + κ) sin(θ) sin(φ)
)

.

(4.42)

When φ is a multiple integer of π and π/2, Equation (4.42) becomes

NO(θ)φ→nπ =
fd

√

π
2
(µ
√

κ(1 + κ))
µ

2 Γ
(

µ− 1
2

)
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(
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√
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)
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2
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1
2
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)
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(
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)

×Iµ
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−1

(

2µ
√
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)

× sech
(
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√

κ(1 + κ) cos θ
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(4.43)

and

NO(θ)
φ→ (2n+1)π

2

=
fd

√

π
2
(µ
√

κ(1 + κ))
µ

2 Γ
(

µ− 1
2

)

2Iµ−1

(

2µ
√

κ(1 + κ)
)

Γ(µ
2
)Γ(µ)

× 1F1

(

1
2
;µ; −κµ

)

| cos θ|µ−1| sin θ|µ

2
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(

2µ
√

κ(1 + κ) sin(θ) sin(φ)
)

×Iµ

2
−1

(
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√
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)
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(
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√

κ(1 + κ) sin θ
)

,

(4.44)
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where n ∈ Z.

As its phase PDF counterpart, Equation (4.42) has the same features of the exact function

and is substantially less complex to compute.

It is noteworthy that it is possible to arrive at Equation (4.42) by assuming that Θ and Θ̇

are independent RVs and by substituting Θ by O. To find the PCR in this fashion, fΘ,Θ̇(θ, θ̇)

in Equation (2.1) is replaced by fO(θ)fΘ̇(θ̇), in which fO(θ) is given by Equation (4.1). Since

fO(θ) is not a function of θ̇ it can be taken out of the integral, which now remains with

the term θ̇fΘ̇(θ̇). This integration produces a term which is a function of only κ and µ

which, after being multiplied by fO(θ), results in Equation (4.42). In other words, this

integration produces the scaling constant that transforms the approximate PDF into the

approximate PCR. This means that, whilst the original RVs Θ and Θ̇ are not independent,

the approximate PCR is compatible with a formulation in which Θ is substituted by the RV

O with O and Θ̇ independent.

4.4.1 Special Cases

The study of the special cases are indeed very interesting and intriguing, since, in this

case, we are dealing with approximate solutions.

A) Rice

By setting µ = 1 in Equation (4.42), the approximation can be evaluated for the Rician

case. This substitution is straightforward and leads to the compact formula

NO(θ) =
fdI0

(

κ
2

)

exp
(

2
√

κ(κ+ 1) cos(θ − φ) − κ
2

)

2
√

2I0

(

2
√

κ(κ+ 1)
) . (4.45)

Whereas this equation is not equal to the Rician PCR, it approximates it well, as shall

be seen.

B) Nakagami-m

As with the Phase PDF, when κ → 0, the approximate PCR of the Nakagami-m

reduces to the exact function, obtained from Equation (2.17) by setting p = 0, which

is rather intriguing. In other words, although the κ-µ PCR in Equation (4.42) is

approximate, its special case for κ → 0 is the exact Nakagami-m PCR.

4.5 Numerical Results

This section depicts three sets of plots, as follows: (i) one for the PDF of the time deriva-

tive of the phase, fΘ̇(θ̇); (ii) another, comparing the exact and approximate phase PDFs,

fΘ(θ) and fO(θ), respectively; (iii) and finally one comparing the exact and approximate

PCRs, NΘ(θ) and NO(θ), respectively. In all figures, the parameters were chosen in a way

to present the general behavior of the expressions over a wide range of scenarios.

Figures 4.1 to 4.3 show plots of the phase derivative PDF, respectively, for fixed µ and

fd, and varying κ, for fixed κ and fd and varying µ and for fixed κ and µ and varying fd.It
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Figure 4.1: Phase derivative PDF for µ = 1.75, fd = 1 and varying κ.

is clear from the plots that the phase derivative becomes more impulsive as either κ or µ

increases, or when fd decreases. This means that for low values of κ and µ and high values

of the Doppler shift fd, large phase changes are expected. For high values of κ and µ and

low Doppler shift fd, there is less phase variation and it becomes more stable. In general, it

can be seen that this PDF has an even symmetry and is independent of the phase parameter

φ. The distribution is centered around zero and has a bell shape, but it is not Gaussian.

Figures 4.4 to 4.7 compare the exact and approximate phase PDFs, given by Equa-

tions (2.40) and (4.1), respectively. Note how close to each other the approximate and exact

curves are. Of particular interest is Figure 4.7, which compares exact and approximate phase

PDFs for µ = 1. In such a case, the κ-µ phase PDF reduces to that of Rice, for the exact

solution, and to Von Mises (Tikhonov), for the approximate solution. Note, here again, that

both distributions are quite similar to each other, which is a rather interesting result. In all

cases, the approximate solution is very close to the exact solution

Figures 4.8 to 4.11 show samples curves comparing exact and approximate PCR, given

by Equations (2.41) and (4.42), respectively. It is observed that the PCR curves bear shapes

very similar to those of the phase PDFs, as expected. Now comparing exact and approximate

curves, it can be noticed that the approximations are very good in all cases. In general, the

approximate curves are more impulsive, meaning that they slightly overestimate the phase

crossings on the quadrant of the main lobe and underestimate the crossings on the other

quadrants. The impulsive nature of the approximation is clearly seen in Figure 4.11, which

compares the Rician exact PCR to the Rician approximate PCR. Note the bigger peaks and

shorter tails of the approximation in relation to the exact function. In Figure 4.8 it can be

seen that both the exact and approximate solutions coincide when κ → 0, as predicted by

the formulations.
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Figure 4.2: Phase derivative PDF for κ = 1, fd = 1 and varying µ.
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Figure 4.3: Phase derivative PDF for κ = 1, µ = 1.75 and varying fd.
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Figure 4.4: Comparison between exact (solid line) and approximate (dashed line) phase PDF
for µ = 4, φ = π/4 and changing κ.
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for κ = 0.1, φ = π/6 and changing µ.
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Figure 4.6: Comparison between exact (solid line) and approximate (dashed line) phase PDF
for κ = 1, µ = 2 and changing φ.
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Figure 4.8: Comparison between exact (solid line) and approximate (dashed line) PCR for
µ = 4, φ = π/4 and changing κ.

N
Θ

(θ
)/

f d
 a

n
d
 N

* Θ
(θ

)/
f d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−π −

π
2

0
π
2

π

κ = 0.1, µ = 0.9, φ = π/6

µ = 1.5

µ = 2

µ = 4

Figure 4.9: Comparison between exact (solid line) and approximate (dashed line) PCR for
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Figure 4.12: Resistor-Average Divergence between exact function and its respective approx-
imation for the phase PDF (solid line) and normalized PCR (dashed line) for selected values
of µ and φ and varying κ.

4.6 Information Loss Between Exact and Approximate

Solutions

To assess the information loss associated with the approximation we used a metric called

the Resistor-Average Divergence (RAD) [59], which is derived from the Kullback-Leibler

Divergence (KLD)2 [60]. The Resistor-Average Divergence satisfies the four conditions of

distance metrics: i) it is non negative; ii) if RAD(pa, pb) = 0 → pa = pb; iii) unlike the

KLD, the RAD is symmetric, which means that RAD(pa, pb) = RAD(pb, pa); and finally, it

satisfies the triangle inequality, since RAD(pa, pc) ≤ RAD(pa, pb) +RAD(pb, pc).

The κ−µ phase PDF and its approximation can be compared directly using this metric,

since both are true PDFs. The PCR and its approximation, however, are not PDFs and

cannot be compared directly using this measurement. In order to be compared, they are first

normalized to unitary area so that they become a PDF. Since both exact and approximate

PCR have the same area by construction, their normalized version are scaled by a common

factor and thus retain the same ratio as the original functions.

The divergence is synthesized in Figures 4.12 to 4.14. As expected, the divergence goes

to zero as κ → 0, since at that point the approximations reduce to the exact functions. As κ

increases, the divergence reaches a maximum and then starts to recede, reducing monotoni-

cally as κ becomes larger. This monotonic decrease in the divergence is also observed when

µ is increased, as it can be seen in Figure 4.13. With respect to φ, the divergence is periodic.

It reaches its lowest values when φ is an integer multiple of π/2 and it is independent of φ

when µ = 1, at which point the parameter φ does not change the shape of the curve, only

the phase shift. In all cases the PCR has a bigger divergence than the phase PDF, which

means that the approximation fits the phase PDF better. This is in accordance to what was

qualitatively observed in Section 4.5.

2The RAD is calculated as RAD(p0, p1) = D(p0||p1)D(p1||p0)
D(p0||p1)+D(p1||p0) , in which D(p0||p1) is the KLD from p0 to p1
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Figure 4.13: Resistor-Average Divergence between exact function and its respective approx-
imation for the phase PDF (solid line) and normalized PCR (dashed line) for selected values
of κ and φ and varying µ.

φ

-3 -2 -1 0 1 2 3

R
e
s
is

to
r-

A
v
e
ra

g
e
 D

iv
e
rg

e
n
c
e

0

0.01

0.02

0.03

0.04
κ = 0.5, µ = 3

κ = 1, µ = 2

κ = 6, µ = 1

Figure 4.14: Resistor-Average Divergence between exact function and its respective approx-
imation for the phase PDF (solid line) and normalized PCR (dashed line) for selected values
of κ and µ and varying φ.



Chapter 4. Exact and Approximate Higher Order Statistics of the κ-µ Fading Process 61

4.7 Conclusion

This chapter conducted a thorough investigation on the phase statistics of the κ-µ fading

channel. It introduced several new statistics of the model: (i) tight approximate closed-form

formula for the phase PDF; (ii) exact JPDF of combinations of phase, envelope, and their

time derivatives; (iii) exact closed-form formula for the PDF of the time derivative of the

phase; (iv) approximate closed-form formula for the PCR. As a result of the calculations

carried out here, a new mathematical identity was also found.

A very interesting outcome of the approximation for the phase PDF is a new phase/angle

random variable. Such a new RV has a closed-form expression for its PDF and can be

computed very efficiently. It has been initially derived as a simpler approximate solution of

the κ-µ phase PDF, but, strikingly, it turned out to be a generalization of both Von Mises

(Tikhonov) and Nakagami-m phase distributions, both of them comprised in its PDF.

In general, it can be said that, as far as first-order statistics are concerned, the approx-

imate phase PDF yields curves that are almost indistinguishable from those of the exact

phase PDF. On the other hand, concerning the second-order statistics, exact and approxi-

mate PCR formulations indeed yield excellent fit to each other for the great majority of the

cases, yielding slightly poorer results for intermediate values of κ (say, κ around 1) for low

values of µ, as confirmed by the divergence plots provided.

A previous work [54] has already found that the κ-µ phase PDF has applicability in

practice. Because the corresponding PCR yields shapes that are very similar to those of

the phase PDF, it is expected that the formulations derived here will also find practical

applications. Overall, this chapter has shown that κ-µ is a highly flexible and mathematically

tractable fading model with a direct application in wireless scenarios. Furthermore, since its

parameters carry physical meaning by construction, insight about real propagation conditions

can be gained by fitting data to the model. Finally, the formulations presented here, be they

in their exact or approximate forms, facilitate the usability of the model.
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Chapter 5
On the Simulation of the κ-µ phase process

5.1 Introduction

The objective of this chapter is to propose a simulation technique for the phase of the κ-µ

channel. The simulation of the κ-µ phase process cannot be done in the straightforward way

discussed in Section 2.6 because the κ-µ model lacks a complete description of its complex

envelope. Whereas the absolute value of both the in-phase and quadrature components of

the κ-µ model can be easily inferred from Equations (2.25) and (2.26), the information about

the sign of each component is lost in the exponentiation. The task of assigning a sign to each

component thus becomes an important part of the simulation itself. Indeed, if those were

known, it would be trivial to build a simulator for the phase of the κ-µ channel. How to

estimate those signs in a way that the output sequence of the simulator maintains an overall

compatibility with the statistics of the κ-µ channel becomes the central unknown that needs

to be tackled by the simulation technique.

The final simulator proposed in this chapter addresses this problem by introducing a

Markov-chain to estimate the instantaneous sign of each component, with transition prob-

abilities driven by the instantaneous value of the component simulation. This dynamic

probabilities are set so that the simulated phase has exactly the κ-µ phase statistics, as is

proven in this chapter. An assortment of other simulation techniques are also discussed. In

particular, two less sophisticated simulators that also relied on a Markov-chain to estimate

the signs were developed and are explained in detail. Those simulators provide the basis for

the construction of the final, dynamic simulator.

This chapter is structured in seven sections. Section 5.2 discusses some particularities

of the κ-µ phase channel and presents two previous methods of estimating the components’

signs. Section 5.3 presents a simulator that uses a Markov-chain to estimate the quadrant

of a κ-µ sample, and from that determine its components’ signs. Section 5.4 presents a

Markov-chain sign estimator that goes in the opposite way, first choosing the signs of the

individual components and from that establishing the quadrant. Section 5.5 provides the

statistical characterization of the Markov simulators previously presented, deriving their

phase PDF and proving that both sign selection approaches lead to the same statistics.

Section 5.6 develops the final, dynamic Markov simulator, which is constructed in such a

way to simulate the κ-µ phase statistics exactly. Finally, Section 5.7 concludes the chapter.
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5.2 Considerations on the Phase of the κ-µ Processes

As briefly discussed in the introduction, the κ-µ phase process has a peculiarity that

hinders its direct simulation. The absolute value of the X and Y components of the complex

envelope Z = X+jY of the signal are well defined, by Equations (2.25) and (2.26), but their

signs are completely unknown. Without the sign information, it is not possible to assign each

simulated sample to a specific quadrant.

The question that arises naturally is: how to create a phase simulation of a model that

provides no information about the quadrant of the samples? It might come as a surprise

that the phase PDF is known and that it has values in all four quadrants, despite the lack

of an underlining physical model. Indeed, in [17] the authors used a clever mathematical

observation to obtain the PDF. First the PDF of the absolute value of the in-phase and

quadrature component was found, for which there is a well defined physical description.

Then, they applied the boundary condition that, for µ = 1, the distribution must revert to the

Ricean distribution to maintain compatibility with this special case. From the PDF of X and

Y the phase PDF is obtained through a Cartesian to polar coordinate change. Even though

this method yields the expression of the PDF of the in-phase and quadrature components,

as well as the PDF of the κ-µ phase, it does not provide any insight on the physical model

that leads to that distributions. In the particular case of the Ricean distribution, the sum

of squares disappears (since µ = 1) and determining the sign becomes trivial, as seen in

Equation (2.18).

5.2.1 Fixed Signs

The simplest sign estimation method is to simply arbitrarily assign a fixed positive or

negative sign to all samples. For instance, the signs of X and Y can be fixed as positive,

which would always generate samples bounded to the first quadrant. Evidently this is not well

suited to simulate a phase model distributed over the four quadrants but even this simplistic

method can yield a good simulator for certain parameter sets that naturally restrain the κ-µ

PDF to a certain quadrant. Figure 5.1 illustrates this with two examples. The first set of

parameters yields a curve that is mostly contained within the first quadrant. As a result, the

naive simulation performs very well under this circumstance. In the same Figure is shown

an example with a set of parameters that causes the κ-µ phase PDF to sprawl over the four

quadrants. As expected, the naive simulator performs much worse, concentrating all the

probability mass in the first quadrant and as a result overshooting the true PDF there, while

remaining null over the rest of the phase domain.

By not allowing the simulation to change quadrants we have effectively created a new

Random Variable. Let Ψ denote the RV obtained this way, and let fΘ(θ) denote the κ-µ

phase PDF. The PDF of Ψ is found to be [44]

fΨ(ψ) = fΘ(ψ − π) + fΘ(−ψ) + fΘ(ψ) + fΘ(π − ψ), 0 < ψ < π/2. (5.1)

Equation (5.1) describes how the naive simulator trasposes the samples to the first quad-

rant. Whenever Equation (5.1) is a good approximation to the κ-µ phase PDF, the simulator

will perform well. In practice, this simulator gets better the closer the phase parameter φ

is to π/4 and the greater κ and µ are, since this increases the impulsiveness of the phase

PDF [44]. The naive simulator can also be used when φ is close to −3π/4, −π/4 and π/4,
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Figure 5.1: The κ-µ phase PDF and the naive simulation for two sets of parameters. The
simulation never yields any sample outside the [0, π/2) interval by construction and thus was
suppressed outside this interval for greater visibility.

by toggling the sign from either or both the in-phase and quadrature components, to lock

the simulator in the appropriate quadrant.

5.2.2 Sign Estimation Based in the Zi Components

Another simulator discussed in [44] takes into account the instantaneous values of the Zi

components to estimate the sign of the sample. In this model, the sign is defined as

sX [k] = sign

( µ
∑

i=1

Xi[k] + pi

)

and sY [k] = sign

( µ
∑

i=1

Yi[k] + qi

)

. (5.2)

According to Equation (5.2), the sign is taken as the sign of the sum of all the µ indepen-

dent individual samples that makes up the in-phase or quadrature component. The complex

envelope of this simulator is then

R = sX [k] ×
µ
∑

i=1

(Xi + pi)
2 + jsY [k] ×

µ
∑

i=1

(Yi + qi)
2, (5.3)

in which Xi and Yi are the Gaussian simulations with auto-correlation described by Equa-

tion (2.8), and pi and qi are the mean values of the components, as defined in Equation (2.28).

Whereas Equation (5.3) does not perfectly yield the κ-µ statistics, it is an interesting

approach that reduces back to the straightforward Rice simulator when µ = 1. Furthermore,

this simulation first and second order statistics fit very well the theoretical curves of the

κ-µ channel in three types of scenarios: when all the four lobes are symmetric (Nakagami-m

conditions); when the PDF is symmetric and the probability mass is concentrated in just

two quadrants; and when almost all the probability mass is concentrated in one quadrant.

The performance worsens when the phase PDF strays from these cases. Figures 5.2 to 5.4
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show three examples of this simulator. The most probable quadrant is consistently under

represented, which in turn leads to the lesser probable quadrants being over represented.

Figure 5.2 shows two cases in which the simulation performs well: when κ = 0 the κ-µ

distribution becomes Nakagami-m and the phase PDF becomes four symmetric lobes; and

when κ = 4, in which case most probability mass is restricted to the first quadrant. Figure 5.4

shows another optimal case for this simulator, with the curve φ = 0.

θ

P
h

a
s
e

 P
D

F

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−π −

π
2

0
π
2

π

κ = 4, µ = 2, φ = π/4

Simulation

κ = 1, µ = 2, φ = π/4

Simulation

κ = 0.2, µ = 2, φ = π/4

Simulation

κ = 0, µ = 2, φ = π/4

Simulation

Figure 5.2: Four sets of the κ-µ phase PDF and the sign estimation simulation for three
sets of parameters, illustrating how the simulation performs for different values of κ. The
simulation gets better as κ → 0.

A particularity of this simulation is that whenever µ 6= 1 there are sudden phase jumps

every time the quadrant changes, indicating that the sign changes when the envelope is

non-zero. In fact, the probability that a sum of squared Gaussians is zero is null, as it

would only happen if all the Gaussians simultaneously became zero, and the probability

that a continuous RV will assume a certain value is null. There is never a chance to change

quadrants without a phase jump, which implies that, to assure the change of quadrants, any

practical simulation of the κ-µ channel will have to incorporate these jumps in one way or

another. This gives insight on the kind of physical process underlying the κ-µ distribution: it

must cross the quadrant boundary impulsively, suggesting that the in-phase and quadrature

components are subjected to repeated brusque changes in signs.
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Figure 5.3: Three sets of the κ-µ phase PDF and the sign estimation simulation for three
sets of parameters, illustrating how the simulation performs for different values of µ.
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Figure 5.4: Four sets of the κ-µ phase PDF and the sign estimation simulation for three
sets of parameters, illustrating how the simulation performs for different values of φ. The
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5.3 Quadrant Sign Estimation

All the proposed simulation methods so far assigned the in-phase and quadrature signs

independently to each other. A different approach would be to first choose the quadrant

and then use that information to determine the sign of each component. By using a 4

state Markov-chain, with each state representing a quadrant, and carefully controlling the

state transition probabilities, it is possible to build a simulator that keeps the quadrant

probability the same as the theoretical model, performing better than all the previously

described simulators. Figure 5.5 shows the proposed quadrant-estimating Markov-chain.

Figure 5.5: Markov-chain used to estimate the appropriate quadrant.

States A, B, C and D represent the quadrants I, II, III and IV, respectively. The process

of sign assignment works as follows: first, two independent κ-µ sequences X and Y are

generated using the method described in Section 2.6, with N samples per sequence. The

first sample is randomly assigned to one of the quadrants and, from that sample on, the sign

of the next sample is determined according to Figure 5.5. For instance, if the first sample

is assigned to the first quadrant, the Markov-chain initiates at state A. The next sample

has probability PAA of staying in the first quadrant, probability PAB of transitioning to the

second quadrant and probability PAD of transitioning to the fourth quadrant. In general

terms, a sample in this simulation can stay in the quadrant of the former sample or it can

transition to one of the adjacent quadrants, but can not transition directly to the opposite

quadrant. In terms of the components, that means that it can either keep the same sign

as the previous sample or change the sign of one of the components, but not both of them

at the same step. This was a design choice and is not a requirement of the model. The

elimination of the odd cases in which the signs of both the in-phase and quadrature flip at

the same simulation step simplifies the stochastic matrix. This elimination does not change

the statistics of the simulation, as will be shown in the next sections, which includes another

simulator without this restriction.
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The stochastic matrix P describes this chain,

P =















PAA PAB 0 PAD

PBA PBB PBC 0

0 PCB PCC PCD

PDA 0 PDC PDD















. (5.4)

In Equation (5.4) the sum of the elements of each line is unitary. At a first glance, this

is a system of 4 equations and 12 unknowns, giving it 8 degrees of freedom. Therefore,

there is a considerable autonomy for the selection of the transition probabilities. There is,

however, one important consideration that adds more restrictions to this system. Let PX be

the probability that the Markov process is in state X, after a long number of iterations. We

want PX to be equal to the probability that the quadrant of a randomly chosen κ-µ phase

sample is in quadrant X. Let θi and θf be the angles marking the boundaries of the quadrant

X (for instance, if X is the first quadrant, θi = 0 and θf = π/2) and let fΘ(θ) denote the

κ-µ phase PDF. We want PX to be equal to

PX =
∫ θf

θi

fΘ(θ)dθ. (5.5)

The PX probabilities can be directly calculated by the study of the steady-state condition

of the Markov-chain. The chain is said to be in a steady-state when the probability of it

being in a certain state does not change after a transition. Let PA, PB, PC and PD denote the

steady-state probability of the chain being in states A to D respectively. The steady-state

condition is mathematically written as

[

PA PB PC PD

]

=
[

PA PB PC PD

]

×















PAA PAB 0 PAD

PBA PBB PBC 0

0 PCB PCC PCD

PDA 0 PDC PDD















. (5.6)

The chain always converge to the steady-state in positive recurrent Markov-chains [61].

Positive recurrence means that every state of the chain has non null probability of being

reached at any time in the future of the chain, which is always respected in Equation (5.4)

when all transition probabilities are positive.

Equation (5.6) gives us 4 new Equations, but it is possible to demonstrate that only 3 of

those are independent. By incorporating those new restrictions into the system, the number

of degrees of freedom is decreased from 8 to 5, meaning that the solution space of the system

of equations representing the transition probabilities with the steady-state restriction has

5 dimensions. There are, therefore, infinitely many different models that respect all the

conditions imposed so far. How to further restrict the variables to obtain a definitive model

is a choice of the designer.

After considering many different models, the following stochastic matrix was developed,

P =















1 − r(PB + PD) rPB 0 rPD

rPA 1 − r(PA + PC) rPC 0

0 rPB 1 − r(PB + PD) rPD

rPA 0 rPC 1 − r(PA + PC)















, (5.7)
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in which 0 ≤ r ≤ min {(PB + PD)−1, (PA + PC)−1}. The restrictions over r come from the

fact that every element of the matrix must be at the same time greater than or equal to zero

and smaller than or equal to one, since they represent probabilities. This model introduces

a parameter r that controls the transition rate between states. The biggest r is, the biggest

is the transition rate. When r = 0 there are no transitions; in this case, the Markov-chain

remains locked to the state it was initialized in. When r is set to its maximum allowed

value, the transition rate is maximized. In this case, the least probable states will have a

transition probability of 1, meaning that even though those state are reachable, they are

not stable. The choice of the parameter r is a sort of a Goldilocks problem. If r is set too

high, the simulation will transition too often and the simulated signal will be increasingly

discontinuous. If it is set too low, the simulation will take too long to leave a given state,

taking a greater number of samples to converge. During simulations it was observed that

the value r = fD/Fs is a good compromise for r, in which fD is the maximum Doppler shift

and Fs is the sample frequency of the simulation.

The main design driver of this model was to create a simulator in which the transition

probability is proportional to the steady-state probability. For instance, if the chain is at

state A, it will transition to state B with probability rPB and to state D with probability

rPD, favoring the transition to the most probable state.

Figures 5.6 to 5.12 show some simulations obtained from this stochastic model, with the

same sets of parameters used in Figures 5.2 to 5.4 for comparison. As can be seen, the

simulator performs well in almost all scenarios, for both first and second order statistics. For

most parameter choices, the simulator tends to concentrate more probability mass in the

center of the quadrant when compared to the theoretical statistics. The biggest divergence

is observed in the PCR when the simulator tries to generate Ricean samples, as shown in

Figure 5.12. In this case, the forced transitions alters the second order statistics, by making

the simulation cross the quadrant boundaries by jumping. This, in turn, causes the PCR

to be zero at the quadrant boundaries and introduces artificial discontinuities to the Ricean

PCR, altering significantly this statistics. However, as discussed in Chapter 2, the Ricean

channel can be easily simulated by known methods and was included here for illustrative

purposes of how the simulator performs in this extreme case.

From Equation (5.4) it is easy to compute the frequency of a quadrant jump. The

probability that a jump occurs at any step is simply the sum over the conditional probabilities

of a transition given that the chain is at state i. Mathematically,

P (transition) =
∑

all i

P (transition|state = i)P (state = i), i ∈ {A,B,C,D} . (5.8)

Applying Equation (5.8) to Equation (5.7), the transition probability is worked out to be

P (transition) = 2r(PA + PC)(PB + PD). (5.9)

Equation (5.9) expresses the probability that a jump will occur at any step. In terms of

simulation time, each step corresponds to a time period equal to the inverse of the sampling

frequency Fs, so that there will be, in average, P (T ) transitions per time period of 1/Fs.

Therefore, the simulated frequency of transitions, denoted by FT , is equal to the transition

probability times the sampling frequency,
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Figure 5.6: Four sets of the κ-µ phase PDF and the Markov-chain quadrant estimation
simulation for three sets of parameters, illustrating how the simulation performs for different
values of κ.

FT = 2Fsr(PA + PC)(PB + PD). (5.10)

Equation (5.10) can be used to find the appropriate r to obtain a desired transition

frequency. The maximum achievable transition frequency is obtained when r is maximal.

Since 0 ≤ r ≤ min {(PB + PD)−1, (PA + PC)−1}, the maximum transition frequency is

FTmax = 2Fs × min {(PA + PC), (PB + PD)} . (5.11)
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Figure 5.7: Three sets of the κ-µ phase PDF and the quadrant estimation simulation for
three sets of parameters, illustrating how the simulation performs for different values of µ.
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Figure 5.8: Four sets of the κ-µ phase PDF and the quadrant estimation simulation for three
sets of parameters, illustrating how the simulation performs for different values of φ.



Chapter 5. On the Simulation of the κ-µ phase process 72

θ

P
C

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−π −

π
2

0
π
2

π

κ = 4, µ = 2, φ = π/4

Simulation

κ = 1, µ = 2, φ = π/4

Simulation

κ = 0.2, µ = 2, φ = π/4

Simulation

κ = 0, µ = 2, φ = π/4

Simulation

Figure 5.9: Four sets of the κ-µ PCR and the Markov-chain quadrant estimation simulation
for three sets of parameters, illustrating how the simulation performs for different values of
κ.
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Figure 5.10: Three sets of the κ-µ PCR and the quadrant estimation simulation for three
sets of parameters, illustrating how the simulation performs for different values of µ.
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Figure 5.11: Four sets of the κ-µ PCR and the quadrant estimation simulation for three sets
of parameters, illustrating how the simulation performs for different values of φ.
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Figure 5.12: Four sets of the κ-µ PCR and the quadrant estimation simulation for µ = 1,
illustrating the Ricean case. The discontinuities in the simulation are caused by the constant
quadrant flipping, which is not a feature of the Ricean model in particular. Note that the
quadrant jumps cause the crossing rate to be zero at the quadrant boundaries.
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5.4 Individual Component Sign Estimation

The previous section introduced a Markov-chain to first determine the quadrant of the

sample and then select the appropriate signs of the components to assure it is in the given

quadrant. An alternative approach can be used to build a simulator that works in the

opposite way, one that determines the quadrant by first selecting the signs of the X and

Y component independently. Instead of using a single 4-states Markov-chain, two 2-states

Markov-chains are used, one to determine the sign of X and the other for the sign of Y . Let

Z denote X or Y and let P+
Z and P−

Z be the probabilities that Z is positive and negative,

respectively. By following a similar method as before, the following transition matrix for Z

was developed,

T =





P++
Z P+−

Z

P−+
Z P−−

Z



 =





1 − rZP
−
Z rZP

−
Z

rZP
+
Z 1 − rZP

+
Z



 , (5.12)

rZ < min
{

1/P−
Z , 1/P

+
Z

}

, in which the P uv
Z represents the transition probability from state

u to v. The associated Markov-chain is presented in Figure 5.13.

Figure 5.13: Markov-chain used to estimate the sign of each individual component.

Note that this simulation allows transitions from any quadrant to any other quadrant,

since the components flip signs independently, as opposed to the quadrant sign estimator in

the previous section.

The steady state probabilities P+
X , P−

X , P+
Y and P−

Y can be written as functions of the

steady state probabilities of the trigonometric quadrants PA, PB, PC and PD as

P+
X = PA + PD (5.13a)

P−
X = PB + PC (5.13b)

P+
Y = PA + PB (5.13c)

P−
Y = PC + PD, (5.13d)

or, conversely, the quadrant probabilities can be written as a function of the component’s

steady state probabilities,

PA = P+
XP

+
Y (5.14a)
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PB = P−
XP

+
Y (5.14b)

PC = P−
XP

−
Y (5.14c)

PD = P+
XP

−
Y , (5.14d)

in which A, B, C and D represent the first, second, third and fourth quadrants, respectively.

The probability of a transition happening can be calculated, as before, by summing over

all the conditional probabilities of a transition happening in a given state. The two chains

are independent and the probability of a transition can be calculated by first calculating the

probability that a transition occurs in each chain, summing them, and then subtracting the

probability that a transition occurs at the same time in both chains, since that was counted

twice in the sum. After the necessary algebraic manipulations, the transition probability is

found as

P (transition) = 2rXP
+
XP

−
X + 2rY P

+
Y P

−
Y − 4rXrY P

+
XP

−
XP

+
Y P

−
Y . (5.15)

The transition probability can be written in terms of the quadrant probabilities by sub-

stituting Equations (5.13) and (5.14) in Equation (5.15),

P (transition) = 2rX(PA + PD)(PB + PC) + 2rY (PA + PB)(PC + PD) − 4rXrY PAPC . (5.16)

The transition frequency FT is, as before, the transition probability times the sample

frequency Fs,

FT = 2Fs

(

rXP
+
XP

−
X + rY P

+
Y P

−
Y − 2rXrY P

+
XP

−
XP

+
Y P

−
Y

)

. (5.17)

The constants rX and rY can take any value in the intervals 0 < rX ≤ min
{

1/P−
X , 1/P

+
X

}

and 0 < rY ≤ min
{

1/P−
Y , 1/P

+
Y

}

. If any of those are set to 0, the corresponding Markov-

chain will be locked in its initial state; if any of those are set to its maximum value, the

least probable state of the corresponding Markov-chain will have a transition probability

of one and thus be unstable. The maximum possible quadrant transition frequency of this

simulator is

FT = 2Fs

(

min
{

P+
X , P

−
X

}

+ min
{

P+
Y , P

−
Y

}

− 2 min
{

P+
X , P

−
X

}

min
{

P+
Y , P

−
Y

})

. (5.18)

Even though this simulator uses a different method to select the signs of the samples,

both lead to the same statistics. This happens because both simulators choose the signs

independently of the instantaneous value of the X and Y components. The main job of

these simulators is to guarantee the correct proportion of positive and negative signs are

distributed, so that the quadrant probabilities of the simulation are compatible with what

was expected based on the theoretical probabilities. The secondary job is to moderate the

dynamics of the sign distribution, controlling the rate of sign change to assure the resulting

signal is not excessively discontinuous. In the next section, the statistics of these simulators

will be derived in an exact manner.
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5.5 Statistical Characterization of the Markov-Chain

Simulators

In the previous sections, two sign generators based on a Markov-chain were proposed.

The first used a 4-state Markov-chain to estimate the quadrant and the second used two

2-state Markov-chains to estimate the sign of each component directly. In both approaches,

the sign generation is independent of the samples; the sign estimator does not take into

account the instantaneous value of the channel to determine the sign. It was observed that

this process does not produce the exact κ-µ theoretical channel. The PDF of the phase of

the simulated samples is close to the theoretical phase PDF, but it is clearly distributed

according to a different function. In this section we are interested in finding this function

that describes the phase PDF of those simulators.

The two Markov-chain based simulators proposed are similar in nature, and can be sum-

marized as follows: first, a sequence of N properly auto-correlated samples are generated

for both the X and Y components. Each of these sequences will be distributed according to

the PDF of |Z| in Equation (2.34), with the same parameters σ and µ. The parameter λ is

equal to p or q in Equations (2.32) and (2.33), depending on whether we are simulating X

or Y . Then, each sample is assigned a positive sign with probability P+
Z and a negative sign

with probability P−
Z , in which Z means X or Y as required. Since the signs are independent

of the values of the samples, the PDF of the simulated Z component can be written as

fsimZ(z) = P+
Z u(z)f|Z|(z) + P−

Z u(−z)f|Z|(−z), (5.19)

in which u(·) is the unit step function [47, Eq. (29.1.3)]. u(z) is equal to 1 if z > 0, 0 if

z < 0 and 1/2 if z = 0. Figures 5.14 and 5.15 show the simulations of the X and Y κ-µ

components by a Markov-chain sign estimator. Notice that the simulation fits perfectly the

theoretical PDF given by Equation (5.19), shown in solid line.

X component
-5 0 5

P
D

F
 o

f 
X

0

0.1

0.2

0.3

0.4

0.5

0.6

κ = 0.2, µ = 2, φ = -5π/6, σ
2
 = 1

Theor. Sim. PDF

Component Sign Estimation

Figure 5.14: Comparison between the PDF of the theoretical κ-µ X component (dashed
line) and the Markov-chain simulator (solid line. The crosses show the actual simulation.
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Figure 5.15: Comparison between the PDF of the theoretical κ-µ Y component (dashed line)
and the Markov-chain simulator (solid line. The crosses show the actual simulation.

From the PDF of the components X and Y it is possible to find the PDF of the phase

by first finding the joint PDF of X and Y , then performing a variable change to the polar

variables R and Θ and finally calculating the marginal PDF of Θ. Since X and Y are

independent, their joint PDF fXsim,Y sim(x, y) can be found by multiplying their marginal

PDFs,

fsimX,Y (x, y) = P+
XP

+
Y u(x)u(y)f|X|(x)f|Y |(y) + P+

XP
−
Y u(x)u(−y)f|X|(x)f|Y |(−y)+

P−
XP

+
Y u(−x)u(y)f|X|(−x)f|Y |(y) + P−

XP
−
Y u(−x)u(−y)f|X|(−x)f|Y |(−y).

(5.20)

The phase-envelope joint distribution fsimR,θ(r, θ) of the simulation can then be found by

the following variable change,

X = R cos Θ (5.21a)

Y = R sin Θ, (5.21b)

and the expression for the joint PDF is calculated as

fsimR,θ(r, θ) =

∣

∣

∣

∣

∣

δ(x, y)

δ(r, θ)

∣

∣

∣

∣

∣

fsimX,Y (x, y), (5.22)

in which |δ(x, y)/δ(r, θ)| is the Jacobian of the transformation, which is easily found to be r.

Let g(x, y) be defined as

g(x, y) = f|X|(x)f|Y |(y), (5.23)

for x > 0 and y > 0. g(x, y) is the joint PDF of the absolute value of two κ-µ independent

component random variables. The phase-envelope joint distribution gP,Θ(ρ, θ) is found after

substituting Equations (5.20) and (5.21) in Equation (5.22),

gP,Θ(ρ, θ) = 2µ2κ1− µ

2 (1 + κ)
µ

2
+1ρµ+1| sin 2θ|µ

2 | sin 2φ|1− µ

2 exp
(

−µ(1 + κ)ρ2 − κµ
)

×Iµ

2
−1

(

2ρ cos θ| cosφ|µ
√

κ(1 + κ)
)

Iµ

2
−1

(

2ρ sin θ| sinφ|µ
√

κ(1 + κ)
)

,
(5.24)
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in which ρ = r/r̂ is the normalized envelope. After the required algebraic manipulations,

the phase-envelope joint PDF of the simulator can be expressed as a function of gP,Θ as

fsimP,Θ(ρ, θ) = gP,Θ(ρ, θ) ×
(

u(x)u(y)PA − u(−x)u(y)PB + u(−x)u(−y)PC − u(x)u(−y)PD

)

,

(5.25)

in which the terms PA-PD are the quadrant probabilities given in Equation (5.14). The

terms inside the parentheses are mutually exclusive due to the step functions. For instance,

if 0 ≤ θ < π/2, the sample is in the first quadrant which implies that X and Y are positive;

in turn, both u(x) and u(y) are equal to one. All the other terms inside the parentheses

are null in this case, and the simulation PDF reduces to fsimP,Θ(ρ, θ) = PA × gP,Θ(ρ, θ). In

order to obtain the marginal phase PDF of the simulator, Equation (5.25) is integrated over

ρ from 0 to ∞. No closed form expression was found, however, but it is still possible to

compute the phase PDF by numerical integration.

Each lobe of the simulator phase PDF is thus a scaled version of gP,Θ(g, θ), and the

scaling factor is the corresponding quadrant probability. This behavior is expected, since

the simulator draw from a pool of variates with the same PDF and selects a quadrant for

them with the corresponding quadrant probability. Equation (5.25) encapsulates succinctly

the mechanics behind this kind of simulators.

The only assumption needed to arrive at Equation (5.25) is that the choice of the compo-

nents sign is independent of the sample values. This means that any simulator that chooses

the signs based only on some fixed probabilities will have the same phase statistics. Fig-

ure 5.16 illustrates this property, by plotting in the same graph the phase statistics of both

Markov-chain simulators. Notice that both follow perfectly the theoretical expression given

by Equation (5.25). The true κ-µ phase PDF is also plotted, for comparison.
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Figure 5.16: Comparison between the phase PDF of the theoretical κ-µ channel (dashed
line) and the Markov-chain simulator (solid line. The crosses and circles show, respectively,
the simulations by individual component and quadrant sign estimation.
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5.6 Dynamic Markov-Chain Sign Estimation

The conclusion from last section is that any simulator that chooses the signs indepen-

dently of the sample values based on fixed probabilities will have the same statistics, no

matter how the signs are chosen. In order to improve on the simulator design, the sign

selection has to take into account the instantaneous value of each component.

Consider the RV Z that represents a component of the κ-µ channel. The previous simu-

lators create a new RV ZS by taking samples from |Z| and choosing a sign. The probability

that ZS is positive or negative is regulated by the probability that Z is positive or negative,

and those probabilities are found by a numerical integration of the PDF fZ(z) described in

Equation (2.35).

Now choose two positive real numbers za and zb so that 0 ≤ za < zb. Let p denote the

probability that fZ(z) is positive if za < z < zb. Define a simulator that chooses a positive

sign for z0 with probability p and a negative sign with probability 1 − p if za < z0 < zb, and

keeps a positive sign if z0 is any number outside this interval. The statistics of this simulator

will be the same as |Z| for all points outside the interval (za, zb) ∪ (−zb,−za). Inside the

interval, the simulator PDF will be

fsimZ(z) = u(z)pf|Z|(z) + u(−z)(1 − p)f|Z|(−z), (5.26)

in which p is computed as

p(za, zb) =

∫ zb

za
fZ(t)dt

∫ zb

za
fZ(t)dt+

∫−za

−zb
fZ(t)dt

. (5.27)

The simulator takes probability mass from the interval (za, zb) and redistribute it between

the positive and negative parts of the domain. Note that the Markov-chain sign estimators

from the previous sections are a particular case of this simulator when za = 0 and zb = ∞.

Let the length of the interval, zb − za, become very small, so that zb = za + dz, in which dz

represents an infinitesimal length. The integral of a continuous and infinitely differentiable

function h(x) over an infinitesimal interval dz is simply h(x)dx, since h(x) = h(x+ dx) and

the integral represents the area of the infinitesimal rectangle with sides h(x) and dx. In this

case, Equation (5.27) can be rewritten as

p(za) =

∫ za+dz
za

fZ(t)dt
∫ za+dz

za
fZ(t)dt+

∫−za

−za−dz fZ(t)dz
=

fZ(za)dz

fZ(za)dz + fZ(−za)dz
=

fZ(za)/fZ(−za)

fZ(za)/fZ(−za) + 1
.

(5.28)

The terms dz in the numerator and denominator can be canceled out since, even though

infinitesimal, they stand for the same distance. The PDF of the absolute value of a RV is

related to the PDF of the RV by the following expression

f|Z|(z) = fZ(z) + fZ(−z). (5.29)

It is easy to see why Equation (5.29) holds. The absolute value operator takes any sample

that was originally inside a negative interval (−zj,−zi), such as 0 ≤ zi < zj, and moves it

to the interval (zi, zj) keeping any sample that was originally within the interval (zi, zj)

unchanged. The probability that a sample of |Z| will be in the interval (zi, zj) is then

P (zi < |Z| < zj) = F|Z|(zj) − F|Z|(zi) = (FZ(zj) − FZ(zi)) + (FZ(−zi) − FZ(−zj)), (5.30)
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∀zi, zj ∈ R
+|zi < zj, in which FZ(z) denotes the CDF of Z. Let zj = zi + ∆z. Then,

F|Z|(zi + ∆z) − F|Z|(zi)

∆z
=
FZ(zi + ∆z) − FZ(zi)

∆z
+
FZ(−zi) − FZ(−(zi + ∆z))

∆z
. (5.31)

By taking the limit ∆z → 0 of both sides of Equation (5.31), Equation (5.29) is obtained.

Replacing Equations (5.28) and (5.29) in Equation (5.26) leads to

fsimZ(z = ±za) = u(za)fZ(za) + u(−za)fZ(−za). (5.32)

Equation (5.32) shows that, inside the infinitesimal interval (−za −dz,−za)∪(za, za +dz),

this simulator has exactly the same statistics as the true κ-µ component. Thus, the final step

to create a simulator that has exactly the same statistics as the κ-µ component everywhere

is to allow the simulator to work on all positive z, from z = 0 to z = ∞. That is, create a

rule that for every sample |Z| = z it assigns a positive sign with probability

p(z) =
fZ(z)/fZ(−z)

fZ(z)/fZ(−z) + 1
=

L(z)

L(z) + 1
, (5.33)

in which

L(z) =
fZ(z)

fZ(−z) = exp

(

2|z|λ
σ2

)

. (5.34)

The function L(z) in Equation (5.34) is found by simply substituting Equation (2.35) in

Equation (5.33). The absolute value inside the exponential is added to augment the domain

of Equation (5.33) to encompass the negative Reals as well, since p(z) is defined as the

probability of z being positive. As before, it doesn’t matter how the signs are assigned, just

that the probability in Equation (5.33) is respected. To control the rate of transitions, a

parameter r can be added, in a dynamic Markov-chain that changes the transition probability

according to the value of |Z|. The same Markov-chain of Figure 5.13 is used, with the steady

state probabilities P+
Z and P−

Z changed to

P+
Z = p(z) =

L(z)

L(z) + 1
(5.35a)

P−
Z = 1 − p(z) =

1

L(z) + 1
. (5.35b)

The transition matrix for this simulator becomes

T =



















1 − r(z)

L(z) + 1

r(z)

L(z) + 1

r(z)L(z)

L(z) + 1
1 − r(z)L(z)

L(z) + 1



















, (5.36)

r(z) ≤ min {1 + 1/L(z), 1 + L(z)}. r is left as a function of z because it is not needed to be a

fixed value, as by construction it does not alter the steady state probability of the matrix. The

only restriction on r(z) is that it must be an even function, such that r(z) = r(−z), in order

to maintain the desired steady state probabilities. If λ > 0, min {1 + 1/L(z), 1 + L(z)} =

1 + 1/L(z), and if λ < 0, min {1 + 1/L(z), 1 + L(z)} = 1 +L(z) . The transition probability

is computed as
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P (transition) =
∫ ∞

−∞
P (transition|Z = z)P (Z = z)dz

=
∫ 0

−∞

r(z)L(z)

L(z) + 1
fZ(z)dz +

∫ ∞

0

r(z)

L(z) + 1
fZ(z)dz

=
∫ ∞

0

r(z)

L(z) + 1

(

L(z)fZ(−z)
)

dz +
∫ ∞

0

r(z)

L(z) + 1
fZ(z)dz

= 2
∫ ∞

0

r(z)

L(z) + 1
fZ(z)dz.

(5.37)

The maximum transition probability is obtained when r(z) = min {1 + 1/L(z), 1 + L(z)}. If
λ > 0, the maximum transition probability is

Pmax(transition|λ > 0) = 2
∫ 0

−∞
fZ(z)dz, (5.38)

and if λ < 0,

Pmax(transition|λ < 0) = 2
∫ ∞

0
fZ(z)dz. (5.39)

The maximum transition probability is equal to twice the probability of the least probable

half of the real line. The simulated transition rate is, as discussed in the previous sections,

the transition probability times the sampling frequency Fs,

FT = 2Fs

∫ ∞

0

r(z)

L(z) + 1
fZ(z)dz. (5.40)

Figures 5.17 to 5.19 show the phase PDF of the final dynamic κ-µ sign estimation sim-

ulator. The simulator uses the technique developed in this section to simulate two κ-µ

components X and Y , which are then combined to generate the phase samples. Note that,

for every set of parameters, the simulator phase PDF is exactly the κ-µ phase PDF, as was

expected.
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Figure 5.17: Four sets of the κ-µ phase PDF and the dynamic Markov-chain sign estimation
simulation for three sets of parameters, illustrating how the simulation performs for different
values of κ.
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Figure 5.18: Three sets of the κ-µ phase PDF and the dynamic Markov-chain sign estimation
simulation for three sets of parameters, illustrating how the simulation performs for different
values of µ.
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Figure 5.19: Four sets of the κ-µ phase PDF and the dynamic Markov-chain sign estimation
simulation for three sets of parameters, illustrating how the simulation performs for different
values of φ.
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Figure 5.20 shows the simulated phase time series. In the leftmost graph, the transition

r(z) of the simulation of the components X and Y was set as its maximum instantaneous

value of r(z) = min {1 + 1/L(z), 1 + L(z)}, in order to maximize the number of transitions.

The other two simulations used a constant value of r. As r increases, the simulation becomes

increasingly discontinuous. The transition rate function r(z) can be made as low as desired

to make the simulation more continuous, although a very small r(z) will require a large

number of simulated samples to assure that at least some transitions will happen.

Figure 5.21 show the comparison between the PDF of the simulations in Figure 5.20. Even

though the transition rate change, the PDF remains exactly the same as the κ-µ theoretical

phase PDF, as was expected.
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Figure 5.20: Comparison of the behavior of the simulated phase time series for different
values of r, for κ = 0.2, µ = 2 and φ = π/4. The leftmost figure shows the behavior
under the maximum achievable transition rate. Note that when r diminishes, the number of
transitions diminishes as well, as expected.

The second order phase statistics of the simulator also approach the theoretical κ-µ

statistics. Figures 5.22 to 5.24 show the PCR of the simulator compared to the κ-µ PCR.

The transition rate used was r = 0.5. The PCR is also independent from r, although when r

is too small it will take a greater number of samples for the PCR to converge in comparison

to the phase PDF. To calculate the experimental PCR, only the continuous crossings are

counted; when a discontinuity happen the signal is considered to have gone directly from

one quadrant to the other, without passing through the phases in between.
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Figure 5.21: The κ-µ phase PDF along with the simulation PDF of the cases illustrated in
Figure 5.20. This graph shows that the transition rate does not alter the phase PDF.
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Figure 5.22: Four sets of the κ-µ PCR and the dynamic Markov-chain sign estimation
simulation for three sets of parameters, illustrating how the simulation performs for different
values of κ.
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Figure 5.23: Three sets of the κ-µ PCR and the dynamic Markov-chain sign estimation
simulation for three sets of parameters, illustrating how the simulation performs for different
values of µ.
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Figure 5.24: Four sets of the κ-µ PCR and the dynamic Markov-chain sign estimation
simulation for three sets of parameters, illustrating how the simulation performs for different
values of φ.
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5.7 Conclusion

This chapter provided an in-depth exploration of the simulation of the κ-µ phase. It first

established the inevitability of phase jumps, as being an inherent part of the κ-µ channel

when µ 6= 1. It also identified that the main challenge in making a working simulation of the

κ-µ channel is the correct estimation of the signs of each component. The chapter proceeds

to present various different ways to choose the signs, in order to generate a simulation that

has the same phase statistics of the κ-µ channel.

A total of five different types of sign selection were presented: (i) - fixed signs; (ii) -

Zi component sign estimation; (iii) - quadrant selection by a fixed Markov-chain; (iv) -

individual component sign selection by a fixed Markov-chain; and (v) - sign selection by

a dynamic Markov-chain. The first simulator does not estimate the sign at all; it simply

let the sign be fixed throughout the simulation. Still, it performs well in some cases, when

the parameters lock the κ-µ phase to one quadrant. The second simulator used a technique

that provided a perfect simulation when µ = 1 and a good approximation in some other

cases. Its performance decreases when the κ-µ phase is asymmetric. The third and fourth

simulators use fixed Markov-chains to chose the sign of the components. They perform much

better in asymmetric phase PDF conditions then the previous simulators, since the transition

probabilities of the Markov-chains are set in a way to ensure that the simulator will have

the same quadrant probabilities as the theoretical κ-µ phase PDF. It was later proved that

both simulators have the same phase statistics, which expression was found in an exact way.

Although close to the κ-µ phase PDF, the statistics are not identical.

Lastly, a final and definite simulator was created. This simulator uses a Markov-chain

with transition probabilities that are dependent on the instantaneous value of the simulated

signal components. The transition probabilities were tailored so that the simulator has the

exact κ-µ phase statistics, as was demonstrated by the simulations provided. The transition

probabilities can be efficiently computed, being dependent only on an exponential function,

and the simulator does not require any numerical integration as did its predecessors. The

simulator was also shown to be compatible with the κ-µ second order statistics, as the

simulations included demonstrated. Finally, the chapter concluded with the characterization

of the transitions, providing the formulas that govern the average frequency of transitions

and showing how phase simulation is affected by the parameter that controls the rate of

transitions.
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Chapter 6
Conclusions and Further Work

This thesis is the culmination of the research conducted during my period as a PhD

student. It presents many new improvements to the knowledge base of fading channels,

providing new mathematical expressions, a statistical characterization of the κ-µ and Gener-

alized Nakagami-m phase, and a new simulation method that generates correlated κ-µ with

exact statistics. Although most of the work was focused on the κ-µ channel, the results are

not restricted to it; for instance, the simulation method developed may be used to create

simulators of other correlated Random Variables for which there is no quadrant information.

Other possible contributions that may find use in other fields are the new Random Variable

O and the mathematical identity presented in Chapter 4.

The first and second chapters of the thesis provide a summary of the current status of

the research in the modeling of mobile radio channels, with emphasis on the phase processes.

They can be used as both a bibliographical and quick reference guides for some widely used

mobile channel fading models, namely the Rayleigh, Rice, Nakagami-m and κ-µ channels.

The introduction provides a historical background of the research in this field, since its ori-

gin with the publication of the important paper by Rice in which he begins to investigate

the statistical properties of signal fading. The many citations and descriptions of papers

that punctuate the introduction help give an interested reader a basic map to guide fur-

ther individual research. Chapter 2 presents, in a condensed way, information and relevant

expressions about many common fading channels, along with the basics of the simulation

technique. The chapter merges results from many different papers in the same place, for

easy reference.

The third and fourth chapters contain the adapted versions of two papers published

during the PhD studies: “Nakagami-m phase model: Further results and validation” [45] and

“On the phase statistics of the κ-µ process” [46]. Chapter 3 provides the exact expressions

of the Generalized Nakagami-m CDF and inverse CDF, along with field data fitted to that

model. Chapter 4 presents many important results regarding the phase of the κ-µ process,

in particular: (i) the analytic expression of a new phase Random Variable that is a tight

approximation to the κ-µ phase PDF; (ii) the exact expressions of many joint distributions

of the components of the κ-µ channel and its derivatives; (iii) the PDF of the derivative of

the phase; (iv) a new integral identity of the confluent hypergeometric function of the first

kind; and (v) a closed form approximation of the κ-µ phase crossing rate.

Finally, the fifth chapter explores the problems of the simulation of the phase of the

κ-µ channel. From the initial observation that phase jumps are inherent to any general
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κ-µ simulation, a series of different simulators are proposed, each providing incremental

improvements over the preceding simulator, until a definitive simulator is found. This last

simulator outputs correlated samples that have the exact first and second order statistics of

the κ-µ fading channel. The creation of this simulator gives insight on the physical nature

of the κ-µ fading. It also is a fundamental tool for the study of the effect of the κ-µ fading

in transmission systems.

Further work will focus on improving the simulator, to allow the simulation of fractional

values of µ. Other promising leads are applying the simulation technique developed to create

simulators of other Random Variables and using the simulator to study the performance of

communication schemes suffering κ-µ fading.
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Appendix A
MATLAB code

This appendix presents the MATLAB functions used to generate the data showed in the

plots.

A.1 κ-µ functions

A.1.1 Exact Phase PDF

function [ y ] = km_ppdf( theta, parameters )

K = parameters(1);

M = parameters(2);

P = parameters(3);

theta = theta(:)';

st = numel(theta);

rho = linspace(0.005,1.0,200);

rho_inv = 1./rho;

rep_rho = repmat(rho, st,1)'; %[sr x st]

s = rho(2) − rho(1);

w1 = pdf_rt(rho,theta, K, M, P);

w2 = pdf_rt(rho_inv,theta, K, M, P)./(rep_rho.^2);

y = sum(w1+w2)*s;

t = isnan(y)|isinf(y);

y(t) = 0;

end

function [ f ] = pdf_rt(rho, theta, K, M ,P)

%PDF_RT returns the phase−enveloppe joint distribution f(rho, theta) for

%the kappa−mu model

%let size(theta) = [1 x st] and size(rho) = [1 x sr]

st = numel(theta);

sr = numel(rho);

b = exp(−K*M)*(1/(((2*K*M)^M)*8))/((abs(sin(2.*P))).^((M./2)−1)); %b is a multiplying constant

rep_theta = repmat(theta,sr,1); %size(f1) = [sr x st]

rep_rho = repmat(rho,st,1)';%size(f1) = [sr x st]

f1 = (abs(sin(2*rep_theta)).^(M./2)); % size(f1) = [sr x st];

f2 = (rep_rho.^(M+1)); %size(f2) = [sr x st]

f3 = exp(−(rep_rho.^2)/(4*K*M)+ rho'*cos(theta−P)); %size(f3) = [sr x st]

f4 = ...

k_func((M/2)−1,rho'*abs(cos(theta)*cos(P))).*k_func((M/2)−1,rho'*abs(sin(theta)*sin(P))); ...

%size(f4) = [sr x st]

f = b*f1.*f2.*f3.*f4;%size(f) = [sr x st]

end
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function [ Y ] = k_func( nu, Z )

Y = besseli(nu,Z).*sech(Z);

end

A.1.2 Approximate Phase PDF (O Distribution)

function [ Y ] = km_apdf_closed( X, parameters ) %approximate PDF

K = parameters(1);

K = 2*sqrt(K*(1+K));

M = parameters(2);

P = parameters(3);

C1 = K*M*abs(sin(2*P))^(1−M/2);
C2 = 8 * besseli(M−1,K*M);
Y = ((abs(sin(2*X)).^(M/2) ).*exp(K*M.*cos(X−P)).*k_func((M/2)−1,K*M*abs(cos(X).*cos(P)))...
.*k_func((M/2)−1,K*M*abs(sin(X).*sin(P))));
Y = Y*C1/C2;

end

A.1.3 PDF of the Z Components

function [ f ] = km_zpdf( z, mu, lambda, sigma2)

f = (abs(z).^(mu/2)).* exp(−((z−lambda).^2)/(2*sigma2)).*besseli(mu/2 − ...

1,abs(lambda*z)/sigma2)...

./(2*sigma2*(abs(lambda).^(mu/2−1)).*cosh(lambda*z/sigma2));
nan_index = isnan(f);

f(nan_index) = 0;

end

A.1.4 Exact PCR

function [ y ] = km_pcr( theta, parameters )

%pcr for f_d = 1, in which f_d is the maximum Doppler shift in Hz

K = parameters(1);

M = parameters(2);

P = parameters(3);

y = zeros(size(theta));

rho = linspace(0.01,15,1000);

f = nrt(rho,theta,K,M,P);

y = sum(f,1)*(rho(2)−rho(1));
end

function [ f ] = nrt(rho, theta, kappa, mu ,phi)

%KM_NRT returns N(rho, theta), which if integrated from 0 to infinity in

%respect to rho yelds the PCR of the kappa−mu distribution.

rho = rho(:); % rho is a column vector

theta = theta(:)'; %theta is a row vector

f_const = (2*pi)*(1/sqrt(32*pi))*(mu^(3/2))*(kappa^(1−mu/2))*((1+kappa)^(1/2 + ...

mu/2))*exp(−kappa*mu);
f_rho = (rho.^mu).*exp(−mu*(1+kappa)*rho.^2);
f_theta = ((abs(sin(2.*theta)).^(mu./2))./(abs(sin(2.*phi))).^((mu./2)−1));
f_rho_theta = exp(2*mu*sqrt(kappa*(1+kappa))*rho*cos(theta−phi)).*...
k_func((mu./2)−1,2.*mu.*sqrt(kappa.*(1+kappa)).*rho*abs(cos(theta).*cos(phi))).*...
k_func((mu./2)−1,2.*mu.*sqrt(kappa.*(1+kappa)).*rho*abs(sin(theta).*sin(phi)));
f = f_const*(f_rho*f_theta).*f_rho_theta; %[size_rho x size_theta]

end

A.1.5 Approximate PCR

function [ Y ] = km_apcr( X, parameters )

K = parameters(1);

M = parameters(2);

P = parameters(3);
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Y = ((abs(sin(2*X)).^(M/2)).*exp(2*M*sqrt(K*(1+K)).*cos(X−P))...
.*k_func((M/2)−1,2*M*sqrt(K*(1+K))*abs(cos(X).*cos(P)))...
.*k_func((M/2)−1,2*M*sqrt(K*(1+K))*abs(sin(X).*sin(P))));
t = isnan(Y)|isinf(Y);

Y(t) = 0;

if M>=1

[~,t] = max(Y);

else

[~,t] = min(Y);

end

w = km_pcr(X(t),parameters)./Y(t);

Y = Y*w;

end

A.2 Generalized Nakagami-m functions

A.2.1 Exact Phase PDF

function [ f ] = nakmp_pdf( theta, m , p )

if p == 0

f = (gamma(m)/((2^m)*gamma(m/2)*gamma(m/2)))*(abs(sin(2*theta)).^(m−1));
else

f = (gamma(m)/((2^m)*gamma((1+p)*m/2)*gamma((1−p)*m/2)))*(abs(sin(2*theta)).^(m−1))...
./(abs(tan(theta)).^(p*m));

end

t = isnan(f)|isinf(f);

f(t) = 0;

end

A.2.2 Exact PCR

function [ f ] = nakmp_pcr( theta, m,p )

f = (sqrt(pi)*(abs(sin(2*theta)).^(m−1)).*(abs(tan(theta)).^(−p*m))...
.*gamma(m−1/2))/((2^(m+(1/2)))*gamma((1+p)*m/2)*gamma((1−p)*m/2));
end

A.3 Simulations

A.3.1 Rayleigh Simulator

function [g]=rayleigh_gen(Fd, Fs, N, sigma2)

%Fd is the maximum Doppler shift, Fs is the sampling frequency, N is the

%number of samples that will be generated, gi and gq are the time series of

%the in−phase and quadrature components, respectively

Tsim = N/Fs;

deltat = Tsim/N; % Sampling period

deltaf = 1/(N*deltat); % Espectral resolution

% −−−−−−−−−−−−−−−−−−−−−−−−− Doppler spectrum evaluation −−−−−−−−−−−−−−−−−−−−−
K = ceil(Fd*N*deltat+1); % Number of samples of the spectrum

fd = (0:deltaf:Fd)';

H = 1./sqrt(1−(fd(1:K−1)/Fd).^2); % Doppler spectrum Samples

if K > 2

%H=[H;(Fd−deltaf)*(pi/2−atan((Fd−2*deltaf)/sqrt(2*Fd−2*deltaf)))]; % Aprox. at f=Fd

H=[H;2*H(K−1)−H(K−2)]; % this expression can be used too

else

H=[H;1.5*H];

end
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% −−−−−−−−−−−−−−−−−−−−−−−−−− White Gaussian noise Generation −−−−−−−−−−−−−−−−−−
N_gauss = randn(K,1);

G = sqrt(H) .* N_gauss;

% −−−−−−−−−−−−−−−−−−−− evaluating Inverse Fast Fourier Transform −−−−−−−−−−−−−−−
g = real(ifft(G,N)); % Correlated in fase Gaussian vector

% −−−−−−−−−−−−−−−−−−−−−−−−− Mean remmoval −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
g = g−mean(g);

% −−−−−−−−−−−−−−−−− Normalizing the correlated gaussian vectors −−−−−−−−−−−−−−−−
g = sqrt(sigma2)*g/sqrt(var(g));

g = g(:);

end

A.3.2 κ-µ Simulators - Markov-Chain Quadrant Sign Estimation

function [ km_channel ] = kmgen_quad_markov(N, Fd, Fs, r, parameters)

kappa = parameters(1);

mu = parameters(2);

phi = parameters(3);

sigma2 = 1;

p_i=sqrt(2*kappa*sigma2)*cos(phi);

q_i=sqrt(2*kappa*sigma2)*sin(phi);

M = N;

N = 2*N−1;

sign_i = zeros(N,1);

sign_q = zeros(N,1);

gi = zeros(N,1);

gq = zeros(N,1);

%get the quadrant probabilities

nquad = 50;

theta = linspace(0,2*pi,4*nquad);

f = km_ppdf(theta,parameters);

dtheta = theta(2)−theta(1);
[Pa, Pb, Pc, Pd] = quad_prob(parameters);

probabilities = [Pa, Pb, Pc, Pd];

quads = quad_markov(M,probabilities,r)';

for j = 1:mu

[gi1,gq1]=rayleigh_gen(Fd, Fs, N, sigma2);

gi = gi + (gi1 + p_i).^2;

gq = gq + (gq1 + q_i).^2;

sign_i = sign_i + p_i + gi1;

sign_q = sign_q + q_i + gq1;

end

sign_i = (quads==1)+(quads==4)−1*((quads==2)+(quads==3));
sign_q = (quads==1)+(quads==2)−1*((quads==3)+(quads==4));
gi = gi(1:M);

gq = gq(1:M);

gi = sign_i.*sqrt(gi);

gq = sign_q.*sqrt(gq);

km_channel = gi + 1i*gq;

end

function [ Pa, Pb, Pc, Pd ] = quad_prob( parameters )

g = @(z) km_ppdf(z, parameters);

Pa = integral(g, 0, pi/2);

Pb = integral(g, pi/2, pi);

Pc = integral(g, −pi, −pi/2);
Pd = integral(g, −pi/2, 0);

end
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function [quadrant] = quad_markov(N,probabilities,transition_ratio)

Pa = probabilities(1);

Pb = probabilities(2);

Pc = probabilities(3);

Pd = probabilities(4);

r = transition_ratio;

transition_matrix = ...

[[1−r*(Pb+Pd),r*Pb,0,r*Pd];...
[r*Pa,1−r*(Pa+Pc),r*Pc,0];...
[0,r*Pb,1−r*(Pb+Pd),r*Pd];...
[r*Pa,0,r*Pc,1−r*(Pa+Pc)]];
current_state = get_next_state(probabilities);

quadrant = zeros(1,N);

quadrant(1) = current_state;

for i=2:N

current_state = get_next_state(transition_matrix(current_state,:));

quadrant(i) = current_state;

end

return

function [next_state] = get_next_state(transition_prob_vector)

rd = rand();

if rd<= transition_prob_vector(1)

next_state =1;

elseif rd<=transition_prob_vector(1)+transition_prob_vector(2)

next_state = 2;

elseif rd<=transition_prob_vector(1)+transition_prob_vector(2)+transition_prob_vector(3)

next_state = 3;

else

next_state = 4;

end

return

A.3.3 κ-µ Simulators - Markov-Chain Individual Component Sign
Estimation

function [ Zreal, Zimag ] = kmgen_bi_markov_rv(N, Fd, Fs, r,v, parameters, sigma2)

Zreal = Z_bi_markov(N, Fd, Fs, r, parameters, sigma2, 'x');

Zimag = Z_bi_markov(N, Fd, Fs, v, parameters, sigma2, 'y');

end

function [ Z ] = Z_bi_markov(N, Fd, Fs, r, parameters, sigma2, x_or_y)

%Simulates the kappa mu channel using a markov chain sign estimation

x_or_y = lower(x_or_y);

kappa = parameters(1);

mu = parameters(2);

phi = parameters(3);

if x_or_y == 'x'

lambda = sqrt(2*mu*kappa*sigma2)*cos(phi);

elseif x_or_y == 'y'

lambda = sqrt(2*mu*kappa*sigma2)*sin(phi);

else

error('Specify a valid option for Z (X or Y)');

end

Z = Zgen(N, Fd, Fs, lambda, mu, sigma2);

%get the probabilities

p(1) = integral(@(x) Z_norm_pdf(x,parameters,x_or_y),0,100);

p(2) = 1−p(1);

signs = bi_markov(N,p,r)';

Z = signs.*Z;

end

function [ Y ] = Z_norm_pdf(chi, parameters, x_or_y)

kappa = parameters(1);

mu = parameters(2);

phi = parameters(3);
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x_or_y = lower(x_or_y);

if x_or_y == 'x'

Y = (abs(chi).^(mu/2)).*exp(−((chi − sqrt(2*mu*kappa)*cos(phi)).^2)/2)...

.*besseli((mu/2)−1,abs(chi*sqrt(2*mu*kappa)*cos(phi)))...

./(2*(abs(sqrt(2*mu*kappa)*cos(phi))).^((mu/2)−1).*cosh(abs(chi*sqrt(2*mu*kappa)*cos(phi))));
elseif x_or_y == 'y'

Y = (abs(chi).^(mu/2)).*exp(−((chi − sqrt(2*mu*kappa)*sin(phi)).^2)/2)...

.*besseli((mu/2)−1,abs(chi*sqrt(2*mu*kappa)*sin(phi)))...

./(2*(abs(sqrt(2*mu*kappa)*sin(phi))).^((mu/2)−1).*cosh(abs(chi*sqrt(2*mu*kappa)*sin(phi))));
else

error('Specify a valid option for Z (X or Y)');

end

end

function [states] = bi_markov(N,probs,transition_ratio)

r = transition_ratio;

transition_matrix = [[1−r*probs(1),r*probs(1)];[r*probs(2),1−r*probs(2)]]';

current_state = get_next_state(probs);

states = zeros(1,N);

states(1) = current_state;

for i=2:N

current_state = get_next_state(transition_matrix(:,current_state));

states(i) = current_state;

end

states(states==1) = −1;
states(states==2)=1;

return

function [next_state] = get_next_state(transition_prob_vector)

rd = rand();

if rd<= transition_prob_vector(1)

next_state =1;

else

next_state = 2;

end

return

A.3.4 κ-µ Simulators - Dynamic Markov-Chain Sign Estimation

function [ Zreal, Zimag] = kmgen_dyn_markov(N, Fd, Fs, r, parameters)

kappa = parameters(1);

mu = parameters(2);

phi = parameters(3);

sigma2 = 0.5;

p_i=sqrt(2*kappa*sigma2)*cos(phi);

q_i=sqrt(2*kappa*sigma2)*sin(phi);

p = p_i*sqrt(mu);

q = q_i*sqrt(mu);

Zreal = Zgen(N, Fd, Fs, p, mu, sigma2);

Zimag = Zgen(N, Fd, Fs, q, mu, sigma2);

sreal = dynamic_sign_r(Zreal, r, p, sigma2);

simag = dynamic_sign_r(Zimag, r, q, sigma2);

Zreal = Zreal.*sreal;

Zimag = Zimag.*simag;

end

function [ Z ] = Zgen(N, Fd, Fs, lambda, mu, sigma2 )

%ZGEN Simulates the absolute value of the in−phase or quadrature component of the kappa−mu
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%channel

lambda_i = lambda/sqrt(mu);

M = N;

N = 2*N−1;
Z = zeros(N,1);

for j = 1:mu

g = rayleigh_gen(Fd, Fs, N, sigma2);

Z = Z + (g + lambda_i).^2;

end

Z = sqrt(Z);

Z = Z(1:M);

end

function [ signs ] = dynamic_sign_r( Z, r, lambda, sigma2)

%DYNAMIC_SIGN returns the appropriate signs for the given Z vector

%if r == −1, the maximum possible transition rate is set

random_vector = rand(size(Z));

if r == −1
if lambda>0

r = 1 + 1./z_lh(Z,lambda,sigma2);

else

r = 1 + z_lh(Z,lambda,sigma2);

end

end

Tab = r.*T(Z, lambda, sigma2);

Tba = r.*T(−Z, lambda, sigma2);

pos_transitions = random_vector<Tab;

neg_transitions = random_vector<Tba;

signs = ones(size(Z));

current_sign = 1;

for i = 1:length(Z)

if current_sign == 1

if pos_transitions(i) == 1

current_sign = −1;
end

else

if neg_transitions(i) == 1

current_sign = 1;

end

end

signs(i) = signs(i)*current_sign;

end

end

function [ L ] = z_lh(z, lambda, sigma2)

%Z_LH function that measures the likelihood that Z is positive over Z is

%negative

L = exp(2*z*lambda/sigma2);

end

function [ t ] = T(z, lambda, sigma2)

%Non−normalized positive to negative transition probability given z

t = 1./(z_lh(z,lambda,sigma2)+1);

end



References 98

References

[1] M. D. Yacoub, Foundations of Mobile Radio Engineering, 1st ed. Boca Raton, FL,

USA: CRC Press, Inc., 1993.

[2] T. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. Upper

Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[3] Proakis, Digital Communications 5th Edition. McGraw Hill, 2007.

[4] D. Cox, R. Murray, and A. Norris, “800-MHz attenuation measured in and around

suburban houses,” AT T Bell Laboratories Technical Journal, vol. 63, no. 6, pp. 921–

954, July 1984.

[5] R. Bernhardt, “Macroscopic diversity in frequency reuse radio systems,” IEEE Journal

on Selected Areas in Communications, vol. 5, no. 5, pp. 862–870, Jun 1987.

[6] S. O. Rice, “Statistical properties of sine wave plus random noise,”Bell System Technical

Journal, vol. 27, pp. 109 – 157, Jan. 1948.

[7] J. F. Ossanna, “A model for mobile radio fading due to building reflections: Theoreti-

cal and experimental fading waveform power spectra,” Bell System Technical Journal,

vol. 43, no. 6, pp. 2935–2971, Nov 1964.

[8] R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell Systems Technical

Journal, vol. 47, pp. 957–1000, 1968.

[9] J. Young, W.R., “Comparison of mobile radio transmission at 150, 450, 900, and 3700

mc,”Transactions of the IRE Professional Group on Vehicular Communications, vol. 3,

no. 1, pp. 71–84, Jun 1953.

[10] W. C. Jakes, Microwave Mobile Communications. John Wiley & Sons Inc, 1975.

[11] M. Nakagami, “The m-distribution, a general formula of intensity of rapid fading,” in

Statistical Methods in Radio Wave Propagation: Proceedings of a Symposium held June

18-20, 1958, W. C. Hoffman, Ed. Pergamon Press, june 1960, pp. 3–36.

[12] M. D. Yacoub, J. E. V. Bautista, and L. Guerra de Rezende Guedes, “On higher order

statistics of the Nakagami-m distribution,” IEEE Transactions on Vehicular Technology,

vol. 48, no. 3, pp. 790–794, May 1999.



References 99

[13] M. Yacoub, G. Fraidenraich, and J. Santos Filho, “Nakagami-m phase-envelope joint

distribution,” Electronics Letters, vol. 41, no. 5, pp. 259 – 261, march 2005.

[14] M. Yacoub, “The α- µ distribution: A physical fading model for the Stacy distribution,”

IEEE Transactions on Vehicular Technology, vol. 56, no. 1, pp. 27–34, Jan 2007.

[15] ——, “The κ-µ distribution and the η-µ distribution,” IEEE Antennas and Propagation

Magazine, vol. 49, no. 1, pp. 68 –81, feb. 2007.

[16] U. Dias, M. Yacoub, and D. da Costa, “The κ-µ phase-envelope joint distribution,”

in Proc. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio

Communications, 2008. PIMRC 2008., sept. 2008, pp. 1 –5.

[17] U. Dias and M. Yacoub, “The κ-µ phase-envelope joint distribution,” IEEE Transactions

on Communications, vol. 58, no. 1, pp. 40 –45, january 2010.

[18] S. Cotton and W. Scanlon, “Higher-order statistics for κ-µ distribution,” Electronics

Letters, vol. 43, no. 22, 25 2007.

[19] P. Sofotasios, E. Rebeiz, L. Zhang, T. Tsiftsis, D. Cabric, and S. Freear, “Energy detec-

tion based spectrum sensing over κ-µ and κ-µ extreme fading channels,” IEEE Trans-

actions on Vehicular Technology, vol. 62, no. 3, pp. 1031–1040, March 2013.

[20] G. Chandrasekaran and S. Kalyani, “Performance analysis of cooperative spectrum sens-

ing over κ-µ shadowed fading,” IEEE Wireless Communications Letters, vol. PP, no. 99,

pp. 1–1, 2015.

[21] K. Peppas, G. Alexandropoulos, and P. Mathiopoulos, “Performance analysis of dual-

hop AF relaying systems over mixed η-µ and κ-µ fading channels,” IEEE Transactions

on Vehicular Technology, vol. 62, no. 7, pp. 3149–3163, Sept 2013.

[22] B. Kumbhani and R. S. Kshetrimayum, “Error performance of two-hop decode and

forward relaying systems with source and relay transmit antenna selection,”Electronics

Letters, vol. 51, no. 6, pp. 530–532, 2015.

[23] M. Milisic, M. Hamza, and M. Hadzialic, “Outage performance of L-branch maximal-

ratio combiner for generalized κ- µ fading,” in Proc. IEEE Vehicular Technology Con-

ference., May 2008, pp. 325–329.

[24] X. Wang and N. Beaulieu, “Switching rates of two-branch selection diversity in κ-µ and

α-µ distributed fadings,” IEEE Transactions on Wireless Communications, vol. 8, no. 4,

pp. 1667–1671, April 2009.

[25] R. Subadar, T. Reddy, and P. Sahu, “Performance of an L-SC receiver over κ -µ and η -µ

fading channels,” in Proc. IEEE International Conference on Communications (ICC),

May 2010, pp. 1–5.

[26] P. Kumar and P. Sahu,“Analysis of M-PSK with MRC receiver over κ -µ fading channels

with outdated CSI,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 557–560,

Dec 2014.



References 100

[27] M. Arezoomandan and A. Shahzadi, “SER expression for M-ary dual ring star QAM

over κ-µ fading channels,” in Proc. 7th International Symposium on Telecommunications

(IST), Sept 2014, pp. 379–382.

[28] S. Kumar, G. Chandrasekaran, and S. Kalyani, “Analysis of outage probability and

capacity for κ - µ/η - µ faded channel,” IEEE Communications Letters, vol. 19, no. 2,

pp. 211–214, Feb 2015.

[29] A. M. Oliveira Ribeiro and E. Conforti, “Asymptotically efficient moment-based es-

timator of the κ parameter for the κ -µ distribution,” IEEE Antennas and Wireless

Propagation Letters, vol. 14, pp. 598–601, 2015.

[30] S. L. Cotton, “Human body shadowing in cellular device-to-device communications:

Channel modeling using the shadowed κ -µ fading model,” IEEE Journal on Selected

Areas in Communications, vol. 33, no. 1, pp. 111–119, Jan 2015.

[31] S. Khatalin, “Performance analysis of switch and stay combining diversity system

over κ-µ fading channels,” AEU - International Journal of Electronics and

Communications, vol. 69, no. 2, pp. 475 – 486, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1434841114002830

[32] P. C. Sofotasios, T. A. Tsiftsis, Y. A. Brychkov, S. Freear, M. Valkama, and G. K.

Karagiannidis, “Analytic expressions and bounds for special functions and applications

in communication theory,” IEEE Transactions on Information Theory, vol. 60, no. 12,

pp. 7798–7823, Dec 2014.

[33] A. Annamalai and E. Adebola, “Asymptotic analysis of digital modulations in κ-µ, η-µ

and α-µ fading channels,” IET Communications, vol. 8, no. 17, pp. 3081–3094, Nov

2014.

[34] E. Adebola and A. Annamalai, “Unified analysis of energy detectors with diversity

reception in generalised fading channels,” IET Communications, vol. 8, no. 17, pp.

3095–3104, Nov 2014.

[35] E. Adebola, A. Olaluwe, and A. Annamalai, “Partial area under the receiver operating

characteristics curves of diversity-enabled energy detectors in generalised fading chan-

nels,” IET Communications, vol. 8, no. 9, pp. 1637–1647, Jun 2014.

[36] S. L. Cotton, “A statistical model for shadowed body-centric communications channels:

Theory and validation,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 3,

pp. 1416–1424, March 2014.

[37] J. F. Paris, “Statistical characterization of κ - µ shadowed fading,” IEEE Transactions

on Vehicular Technology, vol. 63, no. 2, pp. 518–526, Feb 2014.

[38] D. Hess, “Cycle slipping in a first-order phase-locked loop,” IEEE Transactions on Com-

munication Technology, vol. 16, no. 2, pp. 255 –260, april 1968.

[39] J. G. Proakis and D. K. Manolakis, Digital Signal Processing (4th Edition). Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.



References 101

[40] K. Hamdi, “Analysis of OFDM over Nakagami-m fading with nonuniform phase distri-

butions,” IEEE Transactions on Wireless Communications, vol. 11, no. 2, pp. 488–492,

February 2012.

[41] C. Zhong, S. Jin, T. Ratnarajah, and K.-K. Wong, “On the capacity of non-uniform

phase MIMO Nakagami-m fading channels,” IEEE Communications Letters, vol. 14,

no. 6, pp. 536–538, June 2010.

[42] M. Vu and A. Paulraj, “Optimum space-time transmission for a high K factor wireless

channel with partial channel knowledge,” Wiley Journal on Wireless Communications

and Mobile Computing, vol. 4, pp. 807–816, 2004.

[43] R. Vaughan, “Signals in mobile communications: A review,” IEEE Transactions on

Vehicular Technology, vol. 35, no. 4, pp. 133–145, Nov 1986.

[44] I. B. G. Porto, “Approximation and higher order statistics for the κ-µ phase fading

model,” Master’s thesis, UNICAMP, Campinas - SP - Brasil, 2013. [Online]. Available:

http://repositorio.unicamp.br/jspui/handle/REPOSIP/259664

[45] I. Porto, M. Yacoub, J. Santos Filho, S. Cotton, and W. Scanlon, “Nakagami-m phase

model: Further results and validation,” IEEE Wireless Communications Letters, vol. 2,

no. 5, pp. 523–526, October 2013.
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