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Field Calibration Procedure for Enhanced Automatic Gain
Control of Distributed Counter-Propagating Raman Amplifiers

Abstract

Distributed Raman amplifiers (DRAs) have gained interest for elastic optical
networking (EON) because they allow, in some configurations, to increase the amplifica-
tion bandwidth, to enhance the gain flatness and to decrease the noise insertion compared
to conventional erbium doped fiber amplifiers (EDFAs). However, there are operational
issues in the deployment of DRAs because the transmission fiber itself serves as the gain
medium. The characteristics of this fiber, that are not always perfectly known in field
installations, have an influence on the Raman gain used for the signal amplification. As
a consequence, the pump power of the DRAs must be adjusted to adapt to the actual
fiber properties to provide accurate automatic gain control.

This Masters dissertation presents a field calibration procedure for distributed
counter-propagating Raman amplifiers to enhance their automatic gain control. The per-
formance of this calibration procedure is demonstrated in simulations for transmission
fibers of different attenuation profiles and is validated experimentally with fibers of differ-
ent attenuation profiles and with splices located at several distances from the DRA pump
lasers. Finally, the impact of this calibration procedure on the amplifiers gain flatness

and noise figure is presented in simulations.

Keywords: Distributed counter-propagating Raman amplifiers, Automatic
Gain Control, Field Calibration.



Processo de Calibragao em Campo de Amplificadores Raman
Distribuidos Contra-Propagantes para Aprimoramento do
Controle Automéatico de Ganho

Resumo

Os amplificadores Raman distribuidos (DRAs) tém se mostrado interessantes
nas redes Opticas elasticas porque eles permitem, em algumas configuragoes, aumentar
a banda de amplificacao, melhorar a planicidade dos canais e diminuir a insercao de
ruido em relagao aos amplificadores a fibra dopada com érbio (EDFAs) convencionais. No
entanto, existem problemas operacionais nos DRAs pois a amplificacao acontece na propia
fibra de transmissao. As caracteristicas desta fibra, que nao sao sempre perfeitamente
conhecidas nas instalacoes em campo, tém uma influéncia sobre o ganho Raman utilizado
para a amplificacao do sinal. Como consequéncia, os lasers de bombeio dos DRAs devem
ser ajustados para se adaptar as propriedades da fibra de maneira a providenciar um
controle automatico de ganho preciso.

Esta dissertacao de Mestrado apresenta um processo de calibracao em campo
dos amplificadores Raman distribuidos contra-propagantes para melhorar a precisao do
controle automatico de ganho. A eficiéncia deste processo é demonstrada em simulagao
para fibras de transmissao tendo diferentes perfis de atenuacao e é validada experimental-
mente com fibras tendo diferentes perfis de atenuacao e com emendas localizadas a varias
distancias dos lasers de bombeio dos DRAs. Enfim, o impacto do processo de calibracao

na planicidade do ganho e na figura de ruido do amplificador é apresentado em simulagao.

Palavras-chave: Amplificadores Raman Distribuidos Contra-Propagantes,

Controle Automatico de Ganho, Calibracao em Campo.



Procédure de Calibration sur le Terrain des Amplificateurs
Raman Distribués Contre-Propagatifs pour Améliorer la
Précision de leur Controle Automatique de Gain

Résumé

L’utilisation d’amplificateurs Raman distribués (DRAs) devient de plus en
plus intéressante dans les réseaux optiques élastiques car ils permettent, dans certaines
configurations, d’augmenter la bande d’amplification, de rendre la courbe de gain plus
plate et de diminuer l'insertion de bruit par rapport aux amplificateurs a fibre dopée a
I'erbium (EDFAs) conventionnels. Pour autant, il y a des problémes opérationnels avec
les DRAs puisque I'amplification a lieu dans la fibre de transmission. Les caractéris-
tiques de cette fibre, qui ne sont pas parfaitement connues dans les installations sur le
terrain, ont une influence directe sur le gain Raman utilisé pour 'amplification du signal.
Par conséquent, les lasers de pompe des DRAs doivent étre ajustés pour s’adapter aux
propriétés de la fibre de maniére a garantir un controle automatique de gain précis.

Cette dissertation de Master présente une procédure de calibration sur le ter-
rain des amplificateurs Raman contre-propagatifs distribués pour améliorer la precision de
leur controle automatique de gain. L’efficacité de cette procédure est démontrée en simu-
lation pour des fibres de transmission ayant différents profils d’attenuations et est validée
experimentallement avec des fibres ayant différents profils d’attenuations et avec des épis-
sures situées a plusieurs distances des lasers de pompe des DRAs. Enfin, 'impact de la
procédure de calibration sur la courbe de gain et sur le facteur de bruit de 'amplificateur

est présenté dans des résultats en simulation.

Mots clés: Amplificateurs Raman Distribués Contre-Propagatifs, Controle

Automatique de Gain, Calibration sur le Terrain.
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Chapter 1
Introduction

With the dramatic growth of Internet-based services, such as file sharing, social
networking, cloud computing and Internet video, current optical networks must support
an increase of traffic demand to ensure high-speed connectivity to end-users [1]. To meet
these requirements, advanced modulation formats are investigated and implemented to
enhance network performance in terms of capacity, quality and high spectral efficiency.
In particular, current research trends on elastic optical networking (EON) are propos-
ing node architectures that route arbitrary channel bandwidths and bandwidth-variable
transponders (BVTs) [2]. The use of these advanced modulation formats in EONs re-
quires high optical signal-to-noise ratio (OSNR) to guarantee error free reception. In this
context, optical amplification plays a crucial role since it recovers optical signals from
attenuations due to fibers and reconfigurable optical add-drop multiplexers (ROADMsS)
but it also inserts noise in wavelength division multiplexing (WDM) systems. Therefore,
optical amplifiers must be designed to deliver acceptable gains in the optical bandwidth
and to limit noise insertion. Two main technologies of optical amplifiers are deployed in
current WDM systems.

On the one hand, the erbium doped fiber amplifier (EDFA) is a concentrated
amplifier, which means that it amplifies the optical signal in specific points of the fiber
link, using several meters of erbium doped fiber. It became popular before the 2000s
because of its high pumping efficiency to amplify low power signals. Therefore, high
gains can be achieved (>40 dB) using few meters of erbium doped fiber. Moreover,
simple automatic gain control (AGC) closed-loop schemes can be implemented. Indeed,
the input and the output powers of concentrated amplifiers can be measured and the
target gain can be obtained by acting on the pump power. However, the EDFA provides
amplification over a limited spectrum width (35nm), which is a limitation in current
optical networks that require always more optical bandwidth [3].

On the other hand, the Raman amplifier can be developed using two topolo-

FEEC - UNICAMP
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gies. The lumped Raman amplifier is, like in the EDFA case, a concentrated amplifier.
It amplifies the signal using about one kilometer of dispersion compensating fiber. The
other topology is the distributed Raman amplifier (DRA) where the amplification occurs
along several kilometers of transmission fiber. Both topologies, lumped and distributed,
present low pumping efficiency for the amplification, which prevented their utilization
in WDM systems for a long time. Nowadays, powerful lasers have become cheaper due
to large scale production and Raman amplifiers have regained interest. Furthermore, by
properly choosing the number of pumps and their wavelengths, Raman amplifiers enable
flat gains and a large amplification bandwidth (>100nm) [4]. In terms of noise insertion,
the DRA has an advantage over the EDFA and the lumped Raman because its distributed
signal amplification along the transmission fiber allows lower noise figures [5]. Thus, the
DRA becomes suitable for long-haul (from 300 km to 800 km) and ultra-long-haul (above
800 km) systems that use advanced modulation formats. The main drawback arises when
controlling the amplifier using the previously refered AGC mode. When using AGC for
the DRA, the pump power is usually set blindly since, in general, there is no access to
the input power, which is the launch power into the fiber span. Therefore, the amplifier
actual gain cannot be measured and the AGC accuracy cannot be guaranteed. In this
context, our work, that focus on distributed counter-propagating Raman amplifiers, is
motivated by the following observation.

Several laboratorial procedures allow to adjust the pump power of the DRA to
provide the desired gain. However, the gain of the amplifier depends on the characteristics
of the transmission fiber [6]. Consequently, these laboratory pump power adjustments
are not valid any more with a fiber that does not have the same characteristics as the
laboratorial one. In field installations, the fiber may suffer aging, bending, addition
of splices or connectors which change its properties. Therefore, these laboratory pump
power adjustments are not reliable for accurate automatic gain control.

Many works in the literature already present solutions for controlling the DRA
gain. In the patent applications US 20120177366 A1 (Method and arrangement for in
service Raman gain measurement and monitoring) [7] and US 20110141552 A1 (Auto-
matic measurement and gain control of distributed Raman amplifiers) [8] the information
given by a monitoring channel sent along with the signal at the transmission is used for
gain control. Therefore, these solutions can be implemented only if a monitoring channel
is available.

The patents US 8854726 B2 (Method for controlling signal gain of a Raman
amplifier) [9] and US 6519082 B2 (Apparatus and method for a self-adjusting Raman
amplifier) [10] aim to calculate the real-time gain of the DRA by estimating some char-

acteristics of the in-field fiber. These characteristics are obtained by measuring with

FEEC - UNICAMP
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an optical time-domain reflectometer (OTDR) the backscattered light of the signal, the
pump power or a monitoring channel in the fiber. To be implemented, this technique
requires additional components like optical splitters, photodetectors, components neces-
sary for the integration of a monitoring channel and finally an OTDR. As a result, the
fabrication cost is much higher.

The patent application US 20070115537 A1 (Method and an optical amplifier
assembly for adjusting Raman gain) [11]| presents a calibration procedure based on the
analysis of the power transient after removing or adding channels at the transmission
side. This procedure is only efficient if the target gain remains the same, which is a
limitation.

The patent application US 20120327505 A1l (Method of performing target
Raman gain locking and Raman fiber amplifier) [12] describes a gain control based on
the measurement of the amplified spontaneous emission (ASE) out of the optical channels
band. To do so, a calibration procedure is needed. This calibration consists in establishing
a linear relation between the Raman gain and the ASE noise produced in the amplification
process. To implement this solution, additional components are necessary for the ASE
measurement like an optical filter and a photodetector.

The patent application EP 1508985 A1 (Gain monitor in a distributed Raman
amplifier) [13] presents a gain control that use the modulation of the pump power by a
low frequency signal. This modulation is transferred to the Raman gain. The power
variations measured by the photodetectors at the output of the amplifier allow to deduce
the current gain of the amplifier thanks to a linear variation. This gain control method
use a modulator that increase the production cost.

The patent application US 20150002922 A1 (Self-automatic gain control dis-
tributed Raman fiber amplifier and automatic gain control method) [14] describes a
method to control the gain and the gain flatness of the counter-propagating DRA with an
unknown in-field fiber. In this method, the pump power efficiency of the for the ampli-
fication is evaluated. After this step, the in-field fiber is assimilated to a predetermined
fiber, chosen in a database of fibers, whose characteristics are the closest to the real
in-field fiber in terms of Raman amplification efficiency. By doing so, the gain control
is processed by setting the pump power corresponding to the predetermined fiber that
was selected. Obviously, one of the drawbacks of this solution is that this predetermined
database requires memory space in the control unit. Another drawback is that this as-
similation to a predetermined fiber is an approximation that can lead to gain control
errors.

The patent application BR 10 2012 021156-4 (Método de controle de ganho

e dispositivo amplificador 6ptico hibrido para redes DWDM reconfiguraveis) (in por-
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tuguese) [15] presents a gain control where, for each target gain, a fifth order gain control
polynomial (GCP) returns the pump power that must be set with the information of
the output power of the amplifier with the lasers turned off. At the field installation of
the amplifier, these GCPs are not actualized and gain control errors can occur since the
in-field transmission fiber doesn’t have the same characteristics as the fiber that was used
to generate the GCPs.

This Master’s dissertation presents a new calibration procedure that allows
to control the counter-propagating DRA with accuracy in AGC mode. This calibration
procedure does not require any information about the in-field fiber characteristics or
about the launched signal power. Furthermore, the proposed calibration procedure can be
implemented only with the traditional components that compose the DRA (pump lasers,
optical couplers and splitters, photodetector and control unit) so there is no increase in

the production cost.

1.1 Proposed work

1.1.1 Objectives

This work proposes an in-field calibration procedure of distributed counter-
propagating Raman amplifiers for enhanced automatic gain control. This calibration
procedure aims to correct the laboratorial pump power adjustments to adapt to the in-
field transmission fiber. When processed, the calibration procedure evaluates the pump
power efficiency for Raman amplification and thus on the Raman gain and adapt, for

each operation point of the amplifier, the pump power for AGC accuracy.

1.1.2 Contributions

The principal contributions of this work are the following:

e Generation and study of the behavior of GCPs (based on the patent application
BR 10 2012 021156-4 [15]) for adjustment of the pump power of the DRA for AGC;

e Proposal of a calibration procedure in field installations where these GCPs are
adjusted to adapt to the real transmission fiber properties to ensure AGC accuracy

at each operation point of the DRA;

e Evaluation of the proposed field calibration procedure performance in simulations

considering transmission fibers of different attenuation profiles;
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e Evaluation of the proposed field calibration procedure impact on the gain flatness

and noise figure of the DRA in simulations;

e Experimental validation of the proposed field calibration procedure with fibers of
different attenuation profiles and with splices located at several distances from the
DRA pump lasers. The attenuation of theses splices is varied from 0.9 to 3.2 dB to

test the calibration procedure efficiency in extreme conditions.

1.2 Chapters description

Chapter 2 presents the theoretical fundamentals necessary for the realization
of this work. It includes the evolution of optical networks and a description of the main
optical amplifiers technologies. The difference between these amplifier technologies is
detailed and the amplifier power masks, that indicate their operational performance, are
defined.

Chapter 3 details the differences of automatic gain control between concen-
trated and distributed amplifiers. Then, the AGC of distributed counter-propagating
Raman amplifiers implemented for this work is presented.

Chapter 4 describes operational issues with the DRA when operating in the
AGC mode in field installations. To overcome these operational issues, an in-field calibra-
tion procedure of the DRA for accurate AGC is proposed. To justify the proposal of this
calibration procedure, a previous study of the DRA amplification behavior is performed.

Chapter 5 evaluates the proposed field calibration procedure performance in
simulations considering transmission fibers of different attenuation profiles. Also, the
impact of the calibration procedure on the gain flatness and noise figure of the DRA is
reported.

Chapter 6 validates the proposed field calibration procedure in several exper-
iments. The calibration procedure efficiency is evaluated for several transmission fibers
presenting different attenuation profiles and having splices situated at various distances
from the pump lasers.

Finally, Chapter 7 concludes this Masters dissertation.
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Chapter 2
Theoretical fundamentals

Nowadays, optical networks must support an unstoppable increase of traffic
demand driven by new bandwidth-hungry services and applications to ensure high speed
connectivity to end-users.

In optical networks, optical amplifiers are key elements since they recover
optical signals from attenuations due to fibers and ROADMs. Consequently, optical
amplifiers enable long haul spans and are convenient in WDM networks since they operate
in a wide optical bandwidth and can amplify various channels simultaneously.

This chapter illustrates the evolution of optical networks from the first optical
transmission systems to the arrival of WDM and optical amplifiers. Then, the main
optical amplifiers technologies are described and compared. Finally, the figures of merit
and the power masks that indicate the operational performance of optical amplifiers are
defined.

2.1 The evolution of optical networks

Optical transmission systems were demonstrated commercially for the first
time in 1980 at a line rate of 45 Mb/s. They were made up of a cascade of optical links
composed of a transmitter, a fiber line, and a receiver. Each optical link was followed
by an OEO (optical-electrical-optical) regenerator to overcome transmission losses and
regenerate the signal to reduce signal distortion in the fiber [16].

By the early 1990s, optical transmission systems could operate at ~2 Gb/s.
Most traffic was voice but fax and some data services were beginning to drive more traffic
on the network.

As researchers explored optical transmission at higher bit rates (~10 Gb/s),
signal impairments on the fiber due to fiber dispersion, both chromatic and polarization,

began to present issues. That was especially the case at a wavelength of 1550 nm, the
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lowest loss wavelength region for silica fiber, to make up for the larger signal level need for
detection at the higher rate, but where standard single mode (SSMF) fiber has nonzero
dispersion [17].

Moreover, the emergence of high transmission capacity placed a tremendous
burden on the electronic devices. Considering the traffic growth and possible migration
of optical transmission systems to ultra-high bit rates made the electronic bottleneck a
serious problem. Due to these concerns, keeping the single wavelength architecture for
optical transport networks did not appear very effective.

The technical community was certainly aware of WDM as another way to
increase the fiber capacity. Under WDM, the optical spectrum available in the fiber is
carved up into a number of non-overlapping wavelength bands, with each wavelength
supporting a single communication channel. In this way, WDM avoided the problematic
transmission impairments incurred by higher bit rates as well as escaping the need to
drive to higher speed electronics.

The main obstacle for commercial viability of WDM transmission systems
prior to the availability of the optical amplifier was the cost of electrical regenerators.
In primary WDM systems, optical propagation loss compensation was still achieved by
electrical regeneration. Each wavelength in the WDM system would have to be de-
multiplexed and regenerated electrically, the operation so called OEO regeneration. The
regenerators were required at each regeneration site to restore optical signals. In this
sense, the implementation cost to upgrade the transmission system would increase roughly
proportionately to the capacity increase. That was not acceptable in the marketplace [18|.

At the very heart of the motivation, justification, and evolution of the WDM
transmission systems and ultimately WDM optical transport networks is the enormous
value proposition of the optical amplifiers. The fact that a single optical amplifier in
line with the transmission fiber and pumped by continuous wave optical power source
can simultaneously amplify multiple wavelengths makes wavelength division multiplexing
not only economical viable but also economical valuable. It is worth to mention that,
such functionality is done with very high efficiency and, without causing any mixing
or distortion between the signals being carried on the different amplified wavelengths.
Moreover, the fiber amplifier can provide amplification for signals being carried on the
wavelengths that have essentially arbitrarily bit rates. This is an enormously important
and valuable feature of optical amplifiers that enables the ability to upgrade optical
transmission systems to higher per wavelength bit rates without the need to replace
amplifiers.

Along with mentioned ideas and driven by analogies to microwave systems,

early researchers demonstrated basic optical switches that when connected to a fiber
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could, under electrical control, dynamically switch out (drop) or switch in (add) a par-
ticular wavelength onto the fiber while leaving other wavelengths on the fiber unaltered.
The research on optical switching technology received significant interest and activity in
the late 1980s and early 1990s. It is one of the most important technologies that underpin
today’s optical networks. In general, optical switches are able to switch the path of the
information carried by a particular wavelength in optical domain. In their simplest im-
plementation, an optical switch is a wavelength add/drop multiplexer. Under electrical
control, this device is able to switch a particular wavelength onto or off a fiber while
leaving unaffected all other wavelengths on the fiber. More complex version of optical
switches is the Optical Cross Connect (OXC) switch fabric, which uses a switching matrix
to switch a particular wavelength from one of N input fiber routes to any of N output fiber
routes (e.g. Reconfigurable Optical Add/Drop Multiplexers (ROADMs) [19]). Typically,
this involves a combination of wavelength de-multiplexing, optical space switching, and

wavelength multiplexing.

2.2 Optical amplifiers

With the development of optical amplifiers in the 80’s and their first utilization
in the 90’s, the amplification process started to be realized exclusively in the optical
domain and became transparent to the bit rate and modulation format [3]|. Also, optical
amplifiers became popular in WDM networks because they operate in a wide optical
bandwidth and can amplify various channels simultaneously.

However, optical amplifiers are not perfect. Erbium doped fiber amplifiers,
for example, introduce high noise levels (amplified spontaneous emission, ASE) to the
optical signal. This noise is accumulated through cascades of optical amplifiers, causing
OSNR reduction. Other amplifiers, like distributed Raman amplifiers, are expensive
because they require high pump power to amplify the signal. This section describes
the main optical amplifier technologies (EDF and Raman) and how their performance is

evaluated.

2.2.1 Optical amplifiers technologies
Erbium doped fiber amplifier

The EDFA is constituted by a segment of erbium-ion (Er*") doped optical
fiber (EDF). Figure 2.1 presents a typical schematic of the EDFA [20]. For a better
energy transfer efficiency between the pump power and the signal, this fiber is pumped
with lasers at 980 or 1480 nm [3]. At the input of the EDF, an optical coupler is used
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to gather both pump power and signal power and an isolator is placed to prevent the
ASE generated in the EDF during the amplification from returning to previous devices
of the optical network and creating disturbances. At the output of the EDF, a splitter
can be used to separate the signal from residual pump power and another isolator is
used to prevent reflections or signals created by other devices of the optical network from

interfering in the amplification process.

EDF

Isolator (KO Isolator :
—_—

— = Coupler Splitter —
Input Signal |

w

Output Signal

Pump Residual Pump

980 nm

Figure 2.1: EDFA schematic.

To understand how the pump power amplifies the signal in the EDFA, it is
necessary to observe the energy levels of erbium ions in silica [20]. In fact these energy
levels are subdivided in various levels that constitute energy bands. These energy bands
are important since they increase the number of wavelengths that can be amplified.

The EDFA operation principle is based on a stimulated emission process
among three energy bands that are presented in Figure 2.2. In fact, the erbium ions
presents many more energy bands in silica. The bands illustrated in Figure 2.2 only rep-
resents the useful bands for amplification. The pump power can amplify the frequencies
that satisfy a difference of energy of AE = hf., where AF is the difference of energy be-
tween the E2 and E1 energy bands and f. the frequency of the signal to be amplified. For
erbium ions in silica, the amplified signal wavelength band is situated between 1530 and
1565 nm which is also a low signal attenuation band in SSMFs used in communications
systems (C band of the International Telecommunication Union grid). At the thermal
equilibrium, the electron population of levels E1, E2, E3 presents the following relation:
N1 > N2> N3, where Ni, i € {1,2,3}, is the electron population at the Ei level.

For example, by amplifying the signal with a 980 nm laser, the population
inversion N2 > N1 is obtained after the combination of one absorption and one spon-
taneous emission. Electrons present at the E1 level absorb the pump photons and their
energy level transits from E1 to E3. Then, these electrons at the energy level E3 decrease
in energy through a non-radiative spontaneous emission and reach the level E2 with a
lifetime of approximately 1 us. The spontaneous emission from the E2 to the E1 energy

state presents a lifetime of 10 ms which is much higher than the previous one. For this
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Figure 2.2: Energy bands of erbium ions in silica.

reason, the E2 energy level is metastable and is more populated than the E1 level and

there is a population inversion [20].

Raman amplifiers

Raman amplification occurs thanks to stimulated Raman scattering that is a
nonlinear effect [5]. During Raman scattering, light incident on a medium is converted
to a lower frequency. This is shown in Figure 2.3. A pump photon v, excites a molecule
up to a virtual level (non-resonant state). The molecule quickly decays to a lower energy
level emitting a signal photon v in the process. The difference in energy between the
pump and signal photons is dissipated as molecular vibrations in the host material. These
vibrational levels determine the frequency shift and shape of the Raman gain curve. Due
to the amorphous nature of silica, the Raman gain curve is fairly broad in optical fibers.
Figure 2.4 shows the Raman gain spectrum for two types of optical fibers. The frequency

(or wavelength) difference between the pump and and the signal photon (1, — ;) is called
Stokes shift.

—— = = g = = = = = = \/irtual level

Molecular
Vibrations

Figure 2.3: Raman scattering effect (source: Headley and Agrawal [5]).

For high enough pump powers, the scattered light can grow rapidly with most

of the pump energy converted into scattered light. This process is called stimulated
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Figure 2.4: Raman gain profiles for a 1510 nm pump in two different fiber types:
single mode fiber (SMF) and dispersion compensating fiber (DCF) (source: Headley and

Raman scattering (SRS) and is the gain mechanism in Raman amplification. This mech-
anism counts three important points:

e SRS can occur in any fiber;

e Since the pump photon is excited to a virtual level, Raman gain can occur at any
signal wavelength by proper choice of the pump wavelength;
e The Raman gain process is very fast.
This differs from the EDFA where:
e An EDF is required;

e The pump and signal wavelengths are determined by the resonant levels of erbium
ions;
e The transfer of energy is much slower.
Further discussions about differences between the EDFA and the distributed
Raman amplifier are presented in the next section.
There are two different types of Raman amplifiers: the lumped Raman am-

plifier (LRA) and the distributed Raman amplifier (DRA). Figure 2.5 presents a possible

configuration for the lumped Raman amplifier. The pump power traveling in the same
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direction as the signal is called co-propagating or forward pump, and the pump traveling
in the opposite direction is called counter-propagating or backward pump. An interesting
gain medium for the LRA is the DCF fiber. The DCF fiber is advantageous in the LRA

for two reasons:

e For being highly nonlinear, the DCF presents a reasonable pump power conversion
efficiency as seen in Figure 2.4 (this pump power conversion being lower than for
the EDFA case but higher than for the DRA case); as a results, reasonable pump
powers and only a few kilometers of DCF are sufficient to achieve high gains (< 5

km tipically);

e By using correctly the DFC at the amplifier plant, the nonlinear effects that oc-
cur in the transmission fiber can be compensated, which is convenient in coherent

communication systems [21].

DCF

—— Coupler Coupler fF—

Input Signal r') (\ Output Signal

Co-Pump Counter-Pump

Figure 2.5: Lumped Raman amplifier with a DCF.

The main drawback with the LRA is its high noise figure due to the concen-
trated amplification [5]. This is not the case with the DRA amplifier.

Figure 2.6 presents a typical configuration for the DRA. In the co-propagating
Raman amplifier (Figure 2.6(a)), the pump power travels in the same direction as the sig-
nal. In the counter-propagating Raman amplifier, Figure 2.6(b), the pump power travels
in the opposite direction to the signal. With both co- and counter propagating config-
urations, the amplification occurs in the proper transmission fibers for many kilometers
(typically a dozen). This makes the control of the amplifier in the automatic gain control
mode difficult (cf. Chapter 3 and Section 4.1). Another drawback is that it requires high
pump power to amplify the signal.
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Figure 2.6: Typical schematics of distributed Raman amplifiers: (a) co-propagating
DRA; (b) counter-propagating DRA.

Comparisons between the EDFA and the DRA technologies

A comparison between the performance of the EDFA and the DRA is sum-

marized in Table 2.1. The main differences are the following:

The EDFA pump laser wavelength if fixed and amplify a defined spectrum band-
width whereas, with the DRA, the pump laser wavelength is chosen depending of
the desired amplification optical bandwidth;

The DRA amplifier requires higher pump power than that of the EDFA for equal
optical gain; therefore, the DRA is more expensive than the EDFA [22];

By combining pump lasers at different wavelength the DRA can amplify a wide op-
tical bandwidth whereas, for the EDFA case, the amplification bandwidth remains

the same;

By combining pump lasers at different wavelength and by controlling their power ap-
propriately the gain flatness of the DRA can be significantly improved [23| whereas,
for the EDFA case, the only way to improve the gain flatness is to use a gain flat-
tening filter (GFF) that decreases the OSRN [24];

The noise figure of the EDFA is higher than for the DRA case;

The time constant of Raman amplification is very low so the transient effects are
negligible and this is not the case for the EDFA [25].
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Table 2.1: Comparisons between the EDFA and the DRA.

‘ Property ‘ EDFA ‘ DRA ‘
Pump wavelength 980 nm or 1480 nm 10(.) HH lower.than the
signal at gain peak
Pump power > 10 mW > 100 mW
Power dissipation low high
Amplification band 1530-1565 nm 1280-1650 nm
Bandwidth 30 nm > 100 nm
Gain <40 dB <25 dB
Noise figure ~5dB <3 dB
Gain flatness GFF is requirgd for long pump wavelength
haul application dependence
Time constant 1072 s 1075 s
Cost medium high

As a conclusion, even if the EDFA has a lower cost and a higher pump conver-
sion efficiency, Raman amplifiers have gained interest after the 2000s because they enable
a large amplification bandwidth which is an asset in current optical networks that must
support bandwidth-hungry services and applications. The DRA has an advantage over
the LRA in relation to the noise figure. However, this distributed amplification makes
its control in the AGC mode (defined in the next section) more difficult (as presented in
Chapter 3 and Section 4.1).

2.2.2 Characterization of optical amplifiers

Optical networks have evolved from static to dynamic scenarios. Nowadays
the channel load can vary in an unpredictable way. Consequently optical amplifiers must
be able to operate in a signal input power range that corresponds to the variation of the
channel load. Another necessity is to operate at different gains in order to compensate
the total optical output power of the amplifier for variations of the input power caused
by dynamic switch out (drop) or switch in (add) of optical channels.

The input power range and the gain range define the operating region of the
optical amplifier. The good performance of the amplifier that is only garanteed in this
region can be plot in an amplifier power masks [26]. Figure 2.7 shows how these amplifier
power masks are built. On the horizontal and vertical axis the input power (P;,) and
the output power (P,,;) of the amplifier are represented, respectively. Each colored point
inside the power mask, associated with the colored bar on its right, gives the performance
of the amplifier at the corresponding operation point (referenced by its input power and

target gain) in relation to the parameter at study indicated in the title of the figure. The
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Max, Mean and Min values, which correspond to the maximum, mean and minimum

values of the parameter, respectively, are indicated on the top left of the amplifier power

mask.
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Figure 2.7: Amplifier power mask.
Important relations can be deduced from the power mask:
Poi = Pa™ + Guiax (2.1a)
Py = PO — G (2.1b)

where PMIN ' pMAX = pMIN and PMAX are the minimum and maximum values of Py, and

P, (in dBm), respectively, Gyun and Gyax are the minimum and maximum gains (in

dB), respectively. For example, if the amplifiers performance is guaranteed between the

PMIN

minimum output power at the maximum gain P, ;

power PMAX — 7 dBm and can operates in a gain range varying from Gy = 14 dB

to Gyax = 24 dB, the additional values of PMAX and PMIN calculated to complete the

= —1 dBm and maximum input

definition of the power mask region are the following:

PMAX — 74 14 =21 dBm

out

PMN — 1924 = —25dBm
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The dynamic range (DR, in dB) of the amplifier is defined as the range be-

tween the smallest and highest output powers:

DR = pPMAX _ pMIN, (2.2)

out out

The amplifier can be optically characterized for several parameters. The most
relevant ones for this work are the automatic gain control accuracy (AGC accuracy), the

gain flatness and the noise figure.

AGC accuracy

When the amplifier operates in the AGC mode, the control parameter to be
optimized is the gain of the amplifier. This gain (G, in dB) is defined as the difference

between the total output and input powers of the amplifier:
G = Pout - -Pm (23)

When setting a target gain (7'G, in dB) for the amplifier, the real output
power (RP,,;, in dBm) is not always RFP,, = Pi, + TG, since there may be an error in

the gain control. Therefore, new relations are defined:

TPy = P + TG (2.4a)

RPout = -Pm + RG (24b)

where T'P,,,; and RP,,; are the target and real total output powers, respectively, T'G' and
RG are the target and real gains, respectively.
With this consideration, the AGC error of the amplifiers (in dB) is defined as

follows:

AGCerror = |TPout - RPout’ (25)

Gain flatness

The amplification gain curve of the amplifier is not flat within the optical
signal bandwidth. As a consequence, some channels are more amplified than others. To

evaluate the gain flatness of the amplifier, the ripple (ripple, in dB) can be defined. By
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considering that at the input of the amplifier all the channels are equalized (i.e., same
optical power), the ripple, at a specific operation point of the amplifier, is the maximum

channels power difference at the output of the amplifier.

Noise Figure

The noise figure (NF) of an amplifier is the difference between the SNR of
the input signal and the SNR of the output signal, for a result in dB (both SNRs are
obtained after measuring the optical power with a photodetector). It is a measure of how
much the amplifier degrades the signal. Appendix A presents in detail the noise figure

calculation for distributed Raman amplifiers |5].
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Chapter 3

Automatic Gain control of optical

amplifiers

To cope with dynamic channel switching (add and drop) occurring in optical
networks, optical amplifiers have to operate in automatic gain control mode in order to
compensate the total output optical power for variations of the input power. Depending
on the amplifier topology, different gain control schemes can be implemented . This
chapter shows the difference of AGC bhetween concentrated and distributed amplifiers.
Then, the gain control of distributed counter-propagating Raman amplifiers that will be

used in this Masters dissertation is presented in details.

3.1 Concentrated amplifiers

In concentrated amplifiers, the amplification occurs in short fiber lengths (in
general, a few meters of erbium-doped fiber for the EDFA and a few hundred meters of
DCF for the LRA). Therefore, these amplifiers can be encapsulated in field installations
and the measurement of their input and output power is easy. Figure 3.1 illustrates a
possible EDFA gain control using a proportional-integral (PI) controller [27]. In this loop
control, the input and output power levels of the amplifier are measured to calculate the
real gain of the amplifier. The gain error, which is the difference between the target and
real gain, is calculated and feeds a PI controller that returns a pump power adjustment to
enhance the gain accuracy. After a few iterations of this process, the real gain converges

to the target gain.
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Figure 3.1: EDFA AGC with a PI controller.

3.2 Distributed amplifiers

In distributed Raman amplifiers, the pump power used for the amplification
is sent directly into the transmission fiber.

On the one hand, with the co-propagating Raman, Figure 2.6(a), the pump
power used for the amplification is sent in the same direction as the signal propagation.
For gain control, the input and output powers would be the total optical power at the
entry of the coupler and at the end of the SMF respectively.

On the other hand, with the counter-propagating Raman, Figure 2.6(b), the
pump power used for the amplification is sent in the opposite direction of the signal
propagation. For gain control, the input and output powers would be the total launch
power into the SMF and the total output power after the coupler, respectively.

The difficulty to control distributed Raman amplifiers in the AGC mode can
be understood by formulating the following observation.

At the co-propagating (counter-propagating) Raman amplifier plant alone,
only the input (output) power is available since distributed amplifiers are not encapsulated
devices. As a consequence, the real-time gain of the amplifier cannot be known for gain
control. This problem would be solved if optical networks used centralized controls where
the information of the total powers at each device and node would be accessible. These
optical networks are mainly laboratorial prototypes and most of the field installations do

not have a centralized control.
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3.3 Distributed counter-propagating Raman amplifier

Precedently, optical amplifiers and their gain control were compared. From
now, this work will focus on how to realize and optimize the distributed Raman counter-

propagating amplifier AGC.

3.3.1 On-off gain

Section 3.3 showed that there is no access to the input power of the counter-
popagating DRA and thus to the real gain of the amplifier. To overcome this limitation,
another gain needs to be used: the on-off gain [5]. The on-off gain corresponds to the
difference of output power of the amplifier with and without the pump lasers turned on,
respectively. That is:

Gon—off = Pon — Poyg (3.1)

where Go,—off is the on-off gain (in dB) and P,, and P, are the total output power
of the amplifier with the pump lasers turned on and off (in dBm), respectively. As a
consequence, all previously defined relations involving P, and P, in Section 2.2.2 can
be written again substituting P, (Pout) by Pors (Pon) and then G = Gopoyy-

A more precise schematic of the classical counter-propagating DRA is shown
in Figure 3.2. The optical signal is launched into a single mode fiber (SMF) with an
unknown total optical power Paunen. The pump combiner (PC) couples the lasers pump
power in the wavelengths \; and with nominal power of Pom., ¢ € {1,..,n} where n
is the number of pump lasers. This pump power is coupled into the transmission fiber,
amplifying the optical signal in counter-propagation. A photodetector (PD) receives a
fraction of the total output power of the amplifier for the gain control. The real-time
pump power P, (in mW) and the transmission fiber total attenuation Loss (in dB)

are also defined.

3.3.2 On-off gain control implementation

The DRA AGC is an open loop system where the pump power is adjusted
depending on the measured total output power and the target gain. This open loop is
illustrated in Figure 3.3. When operating, the pump lasers of the DRA cannot be turned
off to measure F,; because this would strongly disturb the optical traffic. Therefore, the
real-time on-off gain of the amplifier cannot be known and the pump power adjustments
for AGC accuracy cannot be processed like in the EDFA case (cf. Section 3.1). A solution

to this problem consists in estimating FPrs from F,, and the target gain and to find a
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Figure 3.2: Distributed counter-propagating Raman amplifier.
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relation that maps, for each P,f; and target gain, the pump power that must be set. This

relation is given by the gain control polynomials (GCPs).

GCPs generation procedure

GCPs are required to adjust the pump power of the DRA for each target gain,
depending on the actual P,g. This adjustment must be done for all the operating points
of the amplifier that are defined by the amplifier power mask limits (cf. Section 2.2.2).
In this Masters dissertation, the amplifier power mask limits that are appropriate for the

study of the DRA performance [28] are the following:
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PN — 10 dBm

Py =0 dBm
GMIN =2 dB
Guax = 12 dB

PYAX = (42 =2dBm
PN =—-10—12 = —22 dBm

The GCPs generation procedure consists in storing the DRA response varying

the Paunch and Pyump parameters according to the following stages:

e First: in this stage, the total launch power Plyunen is varied in 45 steps with a

granularity of 0.5dB in order to vary Pyg = Paunch — Loss from 0 to —22 dBm.

e Second: this stage is executed for each step of the first stage and consists in varying
the pump power of the amplifier in 46 steps with an exponential (base 10) granu-

larity between the minimum pump power (0 mW) and the maximum pump power

(360 mW).

For these 2070 iterations, the values of Py, Pog, Poump and Gop/of are stored.
Then, the data is organized and the coefficients of 11 fifth-order polynomials (Gyax —
Guin + 1 = 11) are generated to relate, for each target gain, the Pog and Pyymp powers:

Prumy(Poss) = a5 Py; + asPypp + as Py

pump o o

: (3.2)
+ a2 Py + a1 Pogp + ao,

where ngn)lg(Pog) is the pump power that must be set to provide the target on-off gain
X (in dB) at the current Pyg and ag, a;, ag, ag, a4, as are the fifth-order polynomial

regression coefficients obtained.

On-off gain control definition

The DRA on-off gain control is based on the use of the GCPs previously
generated. Its implementation is illustrated in the flowchart of Figure 3.4 and is presented
in [15] and [28] .

During the on-off gain control, Py is estimated from P,, and the set gain
by calculating Py¢ = Py, — TGx. With this estimation and the GCPs, it is possible

to calculate the P,ym, power that would be necessary to obtain the set gain. If Pymp
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Figure 3.4: On-off gain control of the DRA.

does not provide the desired gain, its value will be corrected in the next iteration after
re-estimating P,g. Such iterative correction is done until converging to the gain set or

receiving another target gain instruction.

Example: Suppose that the current amplifier operation state is:

P,;f = -10 dBm (value that cannot be measured);
Ppyump = 70 mW;

P,, = -6 dBm;

TG = 4dB.

Then, the DRA target gain is modified from 4 to 10 dB. At each iteration,
that is one loop in the Figure 3.4 flowchart, the DRA evolves to a new state where the
real gain of the amplifier tends to reach the 10 dB target gain. An example of how the
DRA could evolve is presented in Table 3.1.

At iteration 1, the gain is modified from 4 to 10 dB. P,, and RG remain the
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Table 3.1: Example of gain control evolution of the DRA.

Tteration TG | P,, | RG | P,;s estimated | P,um
ff pump

Initial state | 4 -6 4 -10 70
1 10 | -6 4 -16 150
2 10 | -2 8 -12 160
3 10 0 10 -10 165

same as in the initial state, since the pump power has not yet changed. P, is estimated
from P,, and the target gain: FPusy = P, — TG1p = —6 — 10 = —16 dBm. With the
estimated F,f; and the target gain, the pump power to be set can be calculated with
Equation 3.2.

At iteration 2, the same procedure is repeated.

At iteration 3, the real gain is equal to the target gain and the algorithm
has converged so the pump power will remains the same in the next iterations. New
adjustments of the pump power will be necessary if a new target gain is configured or if

P, is varied due to channel load variations or transmission fiber degradations.
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Chapter 4

Field calibration procedure for

counter-propagating DRAs

4.1 In-field operational issues with DRAs and motiva-

tion of this work

The GCPs generation, presented in Section 3.3.2, is usually realized with
the transmission fiber in the laboratory. In fact, the characteristics of the transmission
fiber (e.g., attenuation at the pump power and signal wavelength, geometry, chemical
composition) have an influence on the Raman gain [6]. As a result, there are two main
operational issues in the deployment of DRAs.

On the one hand, higher attenuation of the transmission line due to fiber aging
or discrete loss points (e.g., dirty or faulty connectors and splices, sharp bends and other
stress points) occurring close to the DRA can severely decrease the available pump power
for the Raman amplification, and thus the achievable Raman gain.

On the other hand, back-reflections, often associated with discrete loss points
at connectors or splices, can occur in the transmission fiber. In these back-reflections, part
of the pump energy propagating along the line will return to the pump lasers source. A
high level of back-reflection can degrade the performance of the lasers, and thus decrease
the available pump power for Raman amplification.

To overcome these issues, an in-field calibration procedure of the DRA is
needed in its installation or whenever the characteristics of the field transmission fiber
are modified to ensure accurate AGC. This calibration could be the regeneration of the
GCPs in the same way that they are generated in the laboratory (cf. Section 3.3.2). Two

notable drawbacks prevent this in-field GCPs regeneration:

e The traffic would be stopped during hours; this is not viable since the traffic cannot
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be blocked for a long time due to operators’ requirements;

e A centralized control would be necessary; this centralized control would be able to
vary Paunen in steps of 0.5 dB modifying the gain of a previous amplifier of the

optical link or attenuating its output power; usually, it is not possible to control

Baunch .

The field calibration procedure proposed in this Masters dissertation is much
faster than this GCPs regeneration since it requires only a few minutes of processing.
Furthermore, it does not need a centralized control.

The calibration procedure is based on the relation between the different gen-
erated GCPs (cf. Section 3.3.2). In the next section, a study of the GCPs properties is

reviewed. Then, the in-field calibration procedure is presented.

4.2 Study of the GCPs properties

The GCPs generated according to the procedure defined in Section 3.3.2 and
under the simulation setup that will be described in Section 5.1 are illustrated in Fig-
ure 4.1(a). The simulation setup is not detailed in this chapter because the concepts
described below are general for DRAs and similar results would be obtained with another
simulation setup. Each GCP corresponds to a target gain of the amplifier. According to
the amplifier power mask limits defined in Section 3.3.2, the P,s power range domain of

each gain polynomial is defined as:
Dray = [PYIN TGy, PXAX _TGx] = [-10 - TGx, 2 — TGx], (4.1)

Fig. 4.1(a) shows the GCPs plot in their definition domain. Accounting for
the similar shapes of the GCPs, it is possible to formulate the following hypothesis:

Hypothesis 1: There is a linear relation between the gain variation (ATG)
and the pump power variation (AP,,,) between two GCPs. That is, AP,um, = kATG,

where k is a linear coefficient. This linear variation is independent of Fys¢.

To validate Hypothesis 1, it is possible to proceed as follows:

e The mean of the pump power difference AP&%’E’TG)‘“ between each successive GCP

over the intersection of their definition domains Irgy r6,, = Dray N Dray,, 18

calculated:
1
APy O = DR — 2 2 Py (Pott) = Py (Port). (4.2)

Posg€lray Tax
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where DR —2 is the number of integer P,¢¢ in I7q, rax+1, when considering a P, s

and gain granularity of 1 dB (cf. Sections 3.3.2 and 2.2.2).

e The GCPs of successive target gains TGx and TG x4 dB for which the APy ™ ¥+
value is the closest to the mean of all the AP “X*' values calculated for all
the successive gains are chosen as the best fitted GCPs. In the case presented in

Fig. 4.1(a), these GCPs are the polynomials of target gains 4 and 5 dB.

e Taking as a reference the 4 dB gain polynomial, the AP&%I;TG‘”U values, being

U € {-2,..,8}, are plotted as a function of the gain variation ATG = U dB in
Figure 4.1(b). The linear approximation APpymp, = APSG#T9 ATG is also plotted
in Figure 4.1(b).

e The difference between the two curves of Figure 4.1(b) is plotted in Figure 4.1(c) as

a percentage of the maximum pump power used for the GCPs generation (205 mW).

e The standard deviation of the pump power difference between all the successive
GCPs is calculated at each Pug and the results are plot in Fig. 4.1(d) (as a percentage

of the previously mentioned maximum pump power).

Figures 4.1(a), (b) and (c¢) demonstrate that the pump power variation be-
tween two polynomials is, on average over the P,g power ranges, proportional to the gain
difference between the same GCPs. Indeed, the real pump power variation in relation to
the gain difference fits very well its linear approximation. Figure 4.1(d) shows that this
linear dependency is nearly independent of P,g since the standard deviation of the pump
power difference between successive polynomials as a percentage of the maximum pump
power remains very low. As a conclusion, Hypothesis 1 holds and a good approximation
of the linear coefficient k is APpTlﬁ;‘I;TG"’, obtained with the best fitted successive GCPs of
gains 4 and 5 dB.

Important remark: Hypothesis 1 was proved in a specific Py range (between 0 dBm
and -22 dBm) and for pump levels below 205 mW. This hypothesis may be questionable

for other P.g values and for higher pump levels.

4.3 Proposed calibration procedure

The proposed in-field calibration procedure is based on Hypothesis 1 and con-
sists in evaluating the pump power efficiency of the amplifier with the field transmission
fiber and calculating, for each target gain, the pump power offset to be added to the
pump power calculated by the GCPs. This is described in the following list of actions.
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Figure 4.1: Polynomials study: (a) gain control polynomials generated, simulations;
(b) AGxAPump function and its linear approximation; (c) difference between the real
and linear approximation curves of Figure 4.1(b) as a percentage of the maximum pump
power (205 mW); (d) standard deviation pump power as a percentage of the maximum
pump power (205 mW).

In-field DRAs calibration procedure:

1. Turn off the pump lasers. Measure and save Pyg.

2. Turn on the pump lasers and set a target gain T'Gx. Set the pump power PpTlfn)f)
calculated by the TG x polynomial. Measure and save P,, for TGy, P1¢x. Repeat
the same steps of this item with the target gain TGy, = TGx + 1dB. Measure

and save Po ¥ and Pprn’f;“. The target gains 7Gx and T'G'x ;1 are the gains of
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the best fitted polynomials defined in Section 4.2.

3. Calculate and save the real gains RG y and RG x.; obtained when setting the target
gains TG x and T'G x 1 respectively:

RGx = P1CX — Py (4.3a)

RGyx. = PLCx+1 — Py (4.3b)

The APpoS* ™ power is defined:

APTGX’X+1 — PTGX+1 _ PTGX (44)

pump pump pump

4. Calculate and save the pump power variation necessary to increase the real gain of
1 dB, APRGHL defined as follows:

pump 7

TGx x+1
APRG+1 o APpump

_ "
P =BGy, — RGx (45)

It is important to note that this calculation is consistent with the assumption that
Hypothesis 1 is true since the linearity between the pump power variation and the

gain difference is used.

5. Add an offset, of fsetqr,, to the zero degree coefficient of the T'Gx polynomial
(ah)

OffS(BtTGX = (TGX — RG)()APRG+1 (46)

pump

It is sufficient to add an offset to the polynomial in order to correct it because the
linear variation implied by Hypothesis 1 is independent of P,g (only the zero degree

coefficient of the polynomial needs to be corrected).

6. Add an offset, of fsetra,,,, to the zero degree coefficients of all the others GCPs:

of fsetray ., = at“X + of fsetra, + kAPﬁl%ng — a(:)mx*’“ (4.7)

with k € Z and agTX” the zero degree coefficient of the polynomial of gain GTx ., =
GTx + kdB.

Example: Figure 4.2 show a calibration procedure example. The continuous lines rep-
resent the GCPs before calibration (B.C.). The dotted lines represent the GCPs after
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calibration (A.C.). In this example, the gains of the best fitted polynomials are 3 and 4
dB.

Field calibration procedure:
1. The pump lasers are turned off and P,;y = —9 dBm is measured;

2. The pump lasers are turned on and a first target gain TG3 = 3 dB is configured.
The pump power PpTu%”p = 107 mW is calculated by the T'G3 polynomial (point A).
PTG = —6.4 dBm is measured and saved. A second target gain TGy = TGs+1 = 4
dB is configured. The pump power Pg:l%lp = 143 mW is calculated by the TGy
polynomial (point B). PL% = —5.56 dBm is measured and saved.

3. The real gains RG3 and RG,4 obtained when setting the target gains T'G3 and TGy

are calculated and saved:
RGy = Pl — Pp=—-64—(-9)=26dB (4.8a)

RGy = PL6+ — Py = —5.56 — (—9) = 3.44 dB (4.8)

TG .
APpump ™t is calculated:

APJoxxtt = plei — plos =143 — 107 = 36 mW (4.9)
4. The pump power variation necessary to increase the real gain of 1 dB, APIffnJlgl is
calculated and saved:
APpuiiy 36
APRCHL — =L __ — = 42.9 mW (4.10)

PUmP T RGe — RGy 344 — 2.6

5. An offset, of fsetgr,, is added to the zero degree coefficient of the T'G3 polynomial

(a5%):

of fsetra, = (TG3 — RG3) APRGH! = (3 — 2.6)42.9 = 17.16 mW (4.11)
6. An offset, of fsetrg,,,, is added to the zero degree coefficients of all the others

GCPs:
of fsetra,,, = ag + of fsetrg, + kKAPEG T — ag (4.12)

pump

with k € Z and a(? T34 the zero degree coefficient of the polynomial of gain G153, =
GT; + kdB.
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Figure 4.2: Field calibration example.

It is important to emphasize that the in-field calibration of the amplifier is
realized at any P,g. This Pyg depends on the channel loads and is not controllable. In the
next chapter, which reports the simulation results, the amplifier performance in terms of

AGC accuracy is evaluated for calibrations at different Pg.
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Chapter 5

Simulation Results

5.1 Simulation setup

The simulations at study in this work were realized at CPqD Foundation. The
Optisystem and MATLAB® softwares were used. The setup was arranged according to
the schematic of the DRA presented in Figure 3.2.

The signal launch into the transmission fiber is composed of 40 continuous
wave lasers with frequencies ranging from 192.1 to 196 THz (100 GHz of channel spacing).
The transmission fiber length is 100 km. Two pump lasers are chosen for the Raman
amplification in the 1425 and 1452 nm wavelengths. Both lasers have a nominal power
of 360 mW and their power is controlled simultaneously to be the same. Therefore, when
the pump power is specified, it corresponds to the pump power of only one laser. For
example, if Py, = 200 mW, it means that each laser power is 200 mW (the total pump
power being in fact 400 mW).

5.2 Configurations studied

The performance of the in-field calibration is evaluated for transmission fibers
of different attenuation profiles. These profiles are presented in Figure 5.1 (Ap is the
attenuation profile of the fiber of index F', being F' € {0,..,4}). The Ap profiles with
F # 0 are obtained from the A, profile by adding an attenuation of 0.01F dB/km for all
the wavelengths (to have a total attenuation of 1dB over the whole transmission fiber
of 100km). These profiles of higher attenuation allow to evaluate the efficiency of the
calibration procedure since the AGC will always be performed using the polynomials
generated with the Ag profile, when the real fiber profile is Ap, F' € {1,..,4}. The

polynomials presented in Figure 4.1(a) were generated with the Aq profile.
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Figure 5.1: Attenuation profiles studied.

5.3 Results

This section reports the simulation results obtained in terms of AGC accuracy
in relation to the total power (all 40 channels) and in relation to the channels power
(channels taken separately). The impact of this calibration procedure on the amplifiers

gain flatness and noise figure is also presented.

5.3.1 AGC accuracy in relation to the total power

Figure 5.2(a) shows the DRA performance in terms of AGC accuracy for the
total power of the amplifier with the Ay profile. This amplifier power masks and the
Mazx, Mean and Min values were already defined in Section 2.2.2.

Figures 5.2(b), (¢), (d) and (e) show the AGC error of the amplifier in relation
to the total power for all the Ap profiles, F' € {1,..,4}, before and after applying the
calibration procedure at different Pyg [29]. In these figures, the results are presented
regarding the Mean and Max values. The continuous lines with the filled symbols show
the AGC error before applying the calibration (BC) and the dotted lines with empty
symbols show the AGC error after the calibration (AC). With the A; profile, for almost
all the P,g power values in which the DRA calibration is applied, the AGC error decreases
(by observing the decrease of the Mean value). At P,;y = 0 dBm, the AGC error
increases. This degradation occurs due to the approximation done by using Hypothesis 1

and by adding an offset to the polynomials calculation, that cause higher AGC errors than
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Figure 5.2: Simulation results in relation to the total power: (a) characterization of the
amplifier with the Ay profile; (b) calibration AGC accuracy performance with the A; pro-
file; (c) calibration AGC accuracy performance with the A, profile; (d) calibration AGC
accuracy performance with the Aj profile; (e) calibration AGC accuracy performance
with the A, profile.
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without applying the calibration procedure. More generally, if the attenuation profile of
the in-field transmission fiber is very close to the attenuation profile of the fiber used in
the laboratory for the GCPs generation, the AGC accuracy improvement after the DRA
calibration is almost imperceptible. On the other hand, if the attenuation profile shows
some distance from the laboratory profile (Ag), as seen in profiles A, F' € {2,3,4}, then
the calibration procedure notably improves the AGC accuracy of the DRA.

More detailed results obtained with the A, profile are presented in Appendix B.

5.3.2 AGC accuracy in relation to the channels power

The AGC accuracy study in relation to the channels power, showed in Fig-

ure 5.3, is only done for the following cases:

o With the A profile, which is the best case since the GCPs were generated with this
fiber profile;

e With the A, profile, which is the more extreme case, where the fiber attenuation

increased a lot in relation to the initial Ay profile.

Figure 5.3(a) (Figure 5.3(b)) shows the DRA performance in terms of the
mean (maximum) of the AGC errors of all the channels with the A profile. Figure 5.3(c)
(Figure 5.3(d)) show the AGC error of the amplifier in relation to the mean (maximum)
of the AGC errors of all the channels with the A, profile before and after applying the
calibration procedure at different P.g. In all cases, the AGC accuracy improved after the
DRA calibration. However, the AGC errors before and after the calibration procedure
remain very high in relation to the total power analysis realized in the previous section.
This is due to the ripple of the amplifier. Figure 5.3(e) shows the AGC errors of all the
channels at point P, which is the operation point at the maximum F, ;¢ when operating
with the maximum target gain TG = 12 dB (defined in Figure 5.3(a)). It is remarkable
that, even if most of the channels AGC accuracy improved after applying the calibration
procedure, some channels were not corrected and got higher AGC errors. This behavior
can be explained by looking at Figure 5.3(f) that represents the channels gains at point
P. Before calibration, the channels near the 195 THz frequency are already close to their
12 dB target gain. Therefore, when applying the calibration procedure to correct all the
other channels, the pump power increases and the channels near the 195 THz frequency
overpass the 12 dB target gain, leading to higher AGC errors. Without any ripple of
the amplifier, all the channels would be corrected appropriately. The ripple is a physical
limitation that depends on the pump lasers wavelength and power combinations [4]. As a
conclusion, it is possible to say that the calibration procedure aims to correct the channels

group behavior even if it has to degrades some isolated channels.
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Figure 5.3: Simulation results in relation to the channel power: (a) characterization
of the amplifier with the A, profile, mean of the channels AGC errors; (b) calibration
AGC accuracy performance with the A; profile, maximum of the channels AGC errors;
(c) calibration AGC accuracy performance with the A, profile, mean of the channels
AGC errors; (d) calibration AGC accuracy performance with the A, profile, maximum of
the channels AGC errors; (e) calibration AGC accuracy performance with the A4 profile
at point P for all the channels; (f) calibration gain correction performance with the A4
profile at point P for all the channels.
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More detailed results obtained with the A, profile are presented in Appendix B.

5.3.3 Gain flatness

The gain flatness study, showed in Figure 5.4, is only done for the following

cases:

e With the A profile, which is the best case since the GCPs were generated with this
fiber profile;

e With the A, profile, which is the more extreme case since the fiber attenuation

increased a lot in relation to the initial Ay profile.

Figure 5.4(a) shows the ripple of the DRA with the A, profile. Figure 5.4(b)
shows the ripple of the amplifier with the A, profile before and after applying the cali-
bration procedure at different Pyz. The ripple of the amplifier increases after calibration
because the calibration process leads to an increase of the pump power since the A, profile
has higher attenuations than the Aj profile. This pump power increase causes a higher
gain gap between channels which explains the higher ripple measured.

More detailed results obtained with the A, profile are presented in Appendix B.
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Figure 5.4: Simulation results in relation to the gain flatness: (a) characterization of
the amplifier with the Ay profile, ripple; (b) gain flatness performance before and after
calibration at various F,s; with the A, profile.

5.3.4 Noise Figure

The noise figure study, showed in Figure 5.5, is only done for the following

cases:
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e With the A profile, which is the best case since the GCPs were generated with this
fiber profile;

e With the A, profile, which is the more extreme case since the fiber attenuation

increased a lot in relation to the initial Ay profile.

Figure 5.5(a) shows the noise figure of the DRA with the A, profile. Fig-
ure 5.5(b) shows the noise figure of the amplifier with the A4 profile before and after
applying the calibration procedure at different P,g. The calibration procedure almost
doesn’t have an impact on the noise noise figure. More detailed results obtained with the

A, profile are presented in Appendix B.
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Figure 5.5: Simulation results in relation to the noise figure: (a) characterization of the
amplifier with the Ay profile, noise figure; (b) noise figure performance before and after
calibration at various F,;; with the A, profile.
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Chapter 6

Experimental results

6.1 Experimental setup and configurations studied

All the experiments were realized at CPqD Foundation. The experimental
setup for the validation of the proposed DRA calibration procedure is almost identical to
the simulation setup introduced in Section 5.1. The only difference is in the transmission
fiber properties. Indeed, the experimental validation is done for transmission fibers of
different attenuation profiles and with splices located at several distances from the DRA

pump lasers, as presented in Figure 6.1. Three main configurations are studied:

e Configuration A: the transmission fiber is composed of two SMF spans separated
with a splice situated at 4.5 km from the amplifier pump lasers (Figure 6.1(a)).
The splice attenuations chosen are 0 dB, 1 dB, 2.1 dB and 3.2 dB.

e Configuration B: the transmission fiber is composed of two SMF spans that suf-
fered fiber aging (higher attenuation than conventional SMFs) separated by a splice
situated at 10.06 km from the amplifier pump lasers (Figure 6.1(b)). The splice
attenuations chosen are 0 dB, 0.9 dB, 2.1 dB and 3.3 dB.

e Configuration C: the transmission fiber is composed of a low loss (lower attenuation
than conventional SMFs) SMF span (Figure 6.1(c)).

The pump power provides amplification to the signal only for a few kilometers
near the pump lasers (a dozen typically). This distance vary with the fiber attenuation
profile, the chemical composition of the fiber, the presence of splices or connectors and
fiber stresses. Modifying the properties of this fiber stretch has an influence on the
pump power efficiency for the Raman amplification and thus on the Raman gain and

AGC accuracy. The experiments realized are pertinent to validate the proposed DRAs
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Figure 6.1: Experimental configurations with fibers of different attenuation profiles and
with splices located at several distances from the DRA pump lasers: (a) configuration A;
(b) configuration B; (c¢) configuration C.
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calibration procedure since the properties of the fiber are modified in many ways near

the pump lasers.

6.2 Splice realization setup

Figure 6.2 shows how splices of different attenuations are realized between
SMFs. A fixed power laser at 1550 nm wavelength is used at the input of the first SMF
span. A power meter is used at the ouput of the second SFM span to measure the
total output power. The realization of a 3 dB splice attenuation, for example, take the

following steps:

1. A 0 dB splice is created between the SMFs with the fusion splicer. In fact, a perfect
splice has an attenuation of about 0.01 dB. This attenuation is negligible in relation

to the final splice attenuation desired;

2. The output power (PL,) is measured with the power meter;

out

3. The fiber splice is broken;

4. A variable attenuation splice is realized with the fusion splicer. To do so, the fusion
splicer dislocates the SMF alignment from the ideal at the splice spot. When the
= P!, — 3 dB, the 3 dB splice

; o P2
output power measured at the power meter is P it

out

is realized.

SMF SMF
Splice
Laser Power
Meter
Fusion
Splicer

Figure 6.2: Splice setup.

6.3 Experimental GCPs generation

The experimental GCPs are generated in the configuration A (see Figure 6.1(a))

with a splice of 0 dB loss according to the following two stages:
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e First stage: The total launch power P,pnen is varied in 66 steps with a granularity
of 0.5dB in order to vary P,g = Paunen — Loss from 0 to —32.5dBm.

e Second stage : Executed for each step of the first stage and consists in varying the
pump power of the amplifier in 100 steps with an exponential (base 10) granular-
ity between the minimum pump power (10mW) and the maximum pump power

(360 mW).

Then, the original characterization of the amplifier in terms of AGC accuracy, based
on the GCPs previously generated and in the configuration A (see Figure 6.1(a)) with
a splice of 0 dB loss, is performed. The referring amplifier power mask is presented
in Figure 6.4(b) and constitutes the base for all the interpretations of the experimental

results reported in the next section.

6.4 Pump power limitations

As mentioned in Section 5.1, the nominal power of the lasers is 360 mW.
When processing the calibration procedure in cases where the transmission fiber has
higher attenuations than the fiber used to generate the GCPs, the pump power increases.
At a given operation point of the DRA, if the pump power calculated for AGC accuracy is
above this nominal power, the lasers will deliver their maximum power, that is the nominal
power. Figure 6.3 shows the post-calibration calculated pump power for configuration
B with a 0.9 dB attenuation splice. It should be noticed that the pump power already
overpassed the lasers nominal power at TG = 6 dB. For higher target gains, the DRA
will never be able to provide enough pump power for the amplification and there will be
AGC errors. These AGC errors are not due to any lack of precision of the calibration
procedure but to a physical limitation. If the nominal power of the pump lasers would be
higher, there wouldn’t be this limitation and the calibration procedure would be efficient.
Therefore, the experimental results that are presented in the next section only consider
AGC accuracy performance evaluations of the calibration procedure for target gains that

do not suffer this power limitation.

6.5 Results

The experiments are realized only in relation to the total power (all 40 chan-
nels). The experimental results are presented regarding the Min, Mean and Max values,
with and without calibration at different P,;; in Figure 6.4 in relation to the configura-

tion A, in Figure 6.5 in relation to the configuration B and in Figure 6.6 in relation to
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Figure 6.3: Post-calibration calculated pump power for configuration B with a 0.9 dB
attenuation splice.

the configuration C. The continuous lines with the filled symbols show the AGC error
before applying the calibration (BC) and the dotted lines with empty symbols show the
AGC error after the calibration (AC). For all the cases, the calibration procedure notably
improves the AGC accuracy. For some cases, like in Figure 6.5(c) at P,;f = —10 dBm
for example, the calibration procedure is so effective that the AGC errors are even lower
than for the original characterization of the amplifier in the situation where the GCPs
were generated (Figure 6.4(b)), which should have been the best result achievable. In
these particular cases, the calibration procedure may have corrected a pump power con-
trol approximation in the amplifier firmware (where the polynomials are substituted by a
neural network for time calculation efficiency) or an alteration in the connectors proper-
ties between the GCPs generation and the original characterization. Also, it is important
to notice that the calibration procedure is not only efficient for transmission fibers that
have higher attenuation profiles and addition of splices (like in Figures 6.4 and 6.5), but
also for transmission fibers of lower attenuation profiles in relation to the original fiber
(Figure 6.6).

More detailed results obtained from configuration A with a 3.2 dB attenuation
splice, configuration B with a 0.9 dB attenuation splice and configuration C are presented

in Appendix C.
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Figure 6.4: Experimental GCPs and experimental results in the configuration A: (a)
gain control polynomials generated, experiments; (b) characterization of the amplifier in
the configuration A, with a 0 dB splice; (c) calibration AGC accuracy performance in the
configuration A, with a 1 dB splice; (d) calibration AGC accuracy performance in the
configuration A, with a 2.1 dB splice; (e) calibration AGC accuracy performance in the
configuration A, with a 3.2 dB splice.
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Figure 6.5: Experimental results in the configuration B:
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performance in the configuration B, with a 0.9 dB splice;
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Figure 6.6: Experimental results in the configuration C.
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Chapter 7
Conclusion

This Masters dissertation proposes a new in-field calibration procedure of the
DRA to operate in AGC mode with accuracy. To be implemented, the proposed calibra-
tion procedure does not require any information about the in-field fiber characteristics
or about the launched signal power. Furthermore, the calibration procedure can be im-
plemented only with the traditional components that compose the DRA so there is no

increase in production cost.

The performance of the calibration procedure was proved in simulations with
transmission fibers of different attenuation profiles. Initially, pump power adjustments
were performed with the lower attenuation profile. Then, higher attenuation profiles were
used in order to see the AGC accuracy degradation that could occur in field installations
due to fiber aging, for example. Finally, the calibration procedure was performed to
evaluate its efficiency in correcting the AGC errors. In the more extreme case, that is
with the higher attenuation profile, the mean of the AGC errors for all the operation
points of the amplifier dropped from 1.1 dB before calibration to below 0.4 dB after
calibration.

Still in simulations, the impact of the calibration procedure on the gain flatness
was studied. With the fibers of higher attenuation than the one of the initial fiber, the
calibration procedure corrected the AGC errors by increasing the pump power. As a
consequence, the channels power gap increased and engendered a worse gain flatness.
However, compared to the AGC accuracy enhancements obtained with calibration, the
gain flatness degradation was insignificant.

Other simulations showed that the calibration procedure almost didn’t have

an impact on the noise figure.

Finally, the calibration procedure efficiency was validated experimentally with

fibers of different attenuation profiles and with splices located at several distances from
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the DRA pump lasers. By adding slices in the optical link it was possible to prove that the
calibration procedure was efficient not only with additional distributed attenuations, like
in the simulation case, but also with punctual attenuations (e.g., fiber splices, connectors,
fiber bends). Various configurations were studied and in the more extreme case, that is
configuration A where two SMF spans were separated by a splice of 3.2 dB attenuation
situated at 4.5 km from the pump lasers, the mean of the AGC errors for all the operation
points of the amplifier dropped from 1.75 dB before calibration to below 0.5 dB after

calibration.

Future Work: The proposed calibration procedure requires to turn off the pump lasers
for a few seconds to measure FP,ss. At the field installation of the DRA or after repairing
a fiber break with a splice the pump lasers are already turned off, so there is no problem.
However, if the calibration procedure is processed when the amplifier is operating, these
pump power variations cause signal power variations and network perturbations. To avoid
such a scenario, it would be interesting to develop a pump power adjustment that can
be processed with optical traffic. A possible solution would be to use an OTDR along
with the DRA to evaluate at any time the transmission fiber attenuations and correct
the pump power. However, this technique alone cannot solve everything. Indeed, the
OTDR cannot measure the Raman gain coefficient of the in-field fiber. Also, the OTDR
is blind to all measurements near its laser due to the pulse width. Finally, a relation
between the fiber attenuation at the OTDR pulse wavelength and at the DRA pump
lasers wavelengths needs to be found.

Another interesting study would be to evaluate the calibration procedure ef-
ficiency modifying the number of pump lasers, their wavelength and the way to control

their power.
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Appendix A

Noise figure for distributed Raman

amplifiers

In this appendix, the superscripts linear and dB indicate that the variable are
expressed "in linear" and dB respectively.

The noise figure (N F'"¢@") of an amplifier is the ratio of the SNR of the input
signal to SNR of the output signal (both SNRs are obtained after measuring the optical
power with a photodetector). It is a measure of how much the amplifier degrades the
signal. In a distributed Raman amplified system, the equivalent noise figure, (N F elé”w’"),
represents the noise figure an amplifier placed at the receiver end of the transmission span
would need, in the absence of Raman amplification, to provide the same SNR as that
obtained using distributed Raman amplification. The two equivalent systems are shown
schematically in Figure A.1.

The loss in the span in Figure A.1(b) is a,L. Hence, the gain is G'"er =
(04511)_1 and the noise figure of the unpumped span is a,L (no noise added so N Flinear —
P,/ Pout). A well-known expression for the noise figure for two cascaded amplifiers is
given as NV Fj;’;ea’" = N F1linear o (N Frolinear _ 1) /G1linear \Where N F'1tinear (N prolineary
is the noise figure of the first (second) amplifier, and G1%"?" is the gain of the first
amplifier. For the equivalent system in Figure A.1(b):

NFIner = NF o L. (A1)

sys

Equating the noise figure of the Raman amplified system to that of the equiv-

alent system, it is seen that:

linear
NF

NFlinear —
“ gL

or NF = NF{P — (a,L)"" (A.2a)

FEEC - UNICAMP



APPENDIX A. NOISE FIGURE FOR DISTRIBUTED RAMAN AMPLIFIERS 69

NFéinear — 1 PASE
linear linear
Gy hvGRer Av

(A.2b)

where G%7°?" is the linear gain of the DRA, P4 is the ASE noise power in W, Av is the
optical bandwidth in Hz, v is the channel frequency in Hz and h is the Plank constant
in J.s.

From Eq. A.2 it is seen that N FgIB can be less than zero. Such an amplifier
is not physically realizable, but is indicative of the superior performance provided by the
distributed Raman amplification, which cannot be matched by a discrete amplifier placed
after the span. An intuitive if not rigorous explanation is that amplification always adds
noise to the signal, degrading its SNR. In the best case, if the signal propagates along the
fiber with no loss and with no amplification its SNR would be equal to its input value
and the NF equal to one. The worst case is if the signal experiences the full loss of the
span and then is amplified. This is the worst case because the gain required from the
amplifier at the end of the span has increased; because more pump power is required,
more amplified spontaneous emission (ASE) is generated in the amplifier. In addition the
input signal power to the amplifier has decreased. The lower signal power means that the
ASE can more successfully compete with the signal for gain in the amplifier. These two
factors combine to lower the output SNR and increase the NF. If the transmission span is
considered to be a series of discrete amplifiers, then the more evenly the gain is distributed
along the fiber the less gain is required from each of the individual amplifiers and the
higher the signal power into each of these amplifiers. This is why distributed amplification
provides improved performance compared to discrete amplification. In addition it also
explains why even when doing distributed Raman amplification, the more evenly gain is
distributed along the fiber length the larger the improved performance provided by the
distributed amplification scheme. In many of the discussions that follow the focus will

be on raising the gain by more evenly distributing it along the fiber.

DRA: Equivalent
Gain = GN Amplifier:
NF = NFRr SMF Gain = GN
(Zii ) (E(() NF = NFeq
Coupler — Coupler [—
SMF
Span:

Gain = 1/(assl)
2 S Pump NF = asL Z S Pump
(a) (b)

Figure A.1: Equivalent system for the NF measurement (source: Headley and Agrawal
[5]): (a) schematic of a distributed Raman amplified system; (b) equivalent system of a
transmission span and a discrete erbium-doped fiber amplifier.
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Appendix B

Simulation results, a detailed study of
the A4 profile

This appendix presents detailed simulation results obtained with the A4 profile
which is the more extreme simulation case since the fiber attenuation increased a lot in
relation to the initial Ag profile (c.f., Figure 5.1). The results are reported before and after
calibration at the extreme calibration P,f¢ values (P,rr = 0 dBm and P,;f = —20 dBm)

in relation to:

The AGC accuracy of the total power (all 40 channels) in Figure B.1;

The AGC accuracy of the channels power (channels taken separately) in Fig-
ure B.2 and Figure B.3;

The gain flatness in Figure B.4;

The noise figure in Figure B.5.
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Figure B.1: Simulation results in relation to the total power, A, profile: (a) before
calibration; (b) calibration at P,; = 0 dBm; (c¢) calibration at P,;f = —20 dBm.
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Figure B.2: Simulation results in relation to the channels power, maximum of the AGC
errors of all the channels, A4 profile: (a) before calibration; (b) calibration at P,s = 0
dBm; (c) calibration at P,ry = —20 dBm.
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A4 AGC Error Channel Mean (dB) without calibration
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Figure B.3: Simulation results in relation to the channels power, mean of the AGC
errors of all the channels, A4 profile: (a) before calibration; (b) calibration at P,s = 0
dBm; (c) Calibration at P,ry = —20 dBm.
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Figure B.4: Simulation results in relation to the gain flatness, A, profile: (a) before
calibration; (b) calibration at P,;; = 0 dBm; (c¢) calibration at P,;f = —20 dBm.
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Figure B.5: Simulation results in relation to the noise figure, A4 profile: (a) before

calibration; (b) calibration at P,; = 0 dBm; (c¢) calibration at P,;f = —20 dBm.
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Appendix C

Experimental results, a detailed study

for configurations A, B and C

This appendix presents detailed experimental results in relation to the total

power obtained with:
e Configuration A with a 3.2 dB attenuation splice in Figure C.1;
e Configuration B with a 0.9 dB attenuation splice in Figure C.2;
e Configuration C in Figure C.3.

The results are reported before and after calibration at the extreme calibration
Poff values (Poff =0 dBm and Poff = —20 dBm)
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Figure C.1: Experimental results, configuration A with a 3.2 dB attenuation splice: (a)
before calibration; (b) calibration at P,ry = 0 dBm; (c) calibration at P,;; = —20 dBm.
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Figure C.2: Experimental results, configuration B with a 0.9 dB attenuation splice: (a)
before calibration; (b) calibration at P,ry = 0 dBm; (c) calibration at P,; = —20 dBm.

FEEC - UNICAMP



APPENDIX C. EXPERIMENTAL RESULTS, A DETAILED STUDY FOR
CONFIGURATIONS A, B AND C

79

AGC error (dB) without calibration Config.C

2r-Max:1.65dB g
Mean: 0.80 dB 70000000000
OF Min:0.12dB 20008000000
70000000007
2 70000000007
E 70000000007
T 4 70000800007
20 70000000007
5 70000000007
70000000007
4 70000000007
-10F

08

-06

-04

-02

20 -15 -10 5
P (dBm)
(a)
AGC error (dB) calibration at Poff=0dBm Config.C AGC error (dB) calibration at Poff=-20dBm Config.C
2rMax:1.09 dB 1 2r-Max:0.92 dB
Mean: 0.39 dB 0098000000 09 Mean: 0.36 dB 74[0101010]01010/0:0))
0F Min:0.00dB 79000000009 0F Min: 0.00dB ©000000000Y
008800000000 08 2@@0000000P
2 20000000007 07 2 20000000009
E 79000000007 08 E 00000000000
EC -4r 7080000000 - EC -4r 2086000000
0’ 7908000000¢ ’ o’
By ol 1 1 10161610/010;0 104 8
20800000000 103
B 0e@000000Y 02 -8r
20900000000
a0 10.1 A0k
2b -15 -10 5 0o -20 15 -10 5 0
P (dBm) P (dBm)
(b) ()

09

08

0.7

0.6

05

<04

-03

-02

-01

Figure C.3: Experimental results, configuration C: (a) before calibration; (b) calibration
at P,;y = 0 dBm; (c) calibration at P,ry = —20 dBm.
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