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“Le savant n’étudie pas la nature

parce que cela est utile;

il l’étudie parce qu’il y prend plaisir

et il y prend plaisir parce qu’elle est belle.

Si la nature n’était pas belle,

elle ne vaudrait pas la peine d’être connue, la vie

ne vaudrait pas la peine d’être vécue”

Henri Poincaré, “Science et méthode”



Abstract

In signal processing, statistically dependent signals carry valuable informa-

tion to solve problems of various natures. Based on the classical second-order

statistical framework, however, their statistical characterization is limited to

a certain degree of partiality. In view of this, in this work, a more extensive

extraction of the information regarding statistical dependence is proposed via

the use of methods based on Information Theoretic Learning (ITL) allied to

a multivariate perspective.

Focusing on the statistical temporal dependence, this approach is applied

to three important problems within the signal processing area: blind chan-

nel equalization with temporally-structured sources, supervised equalization

using Infinite Impulse Response (IIR) filters, and nonlinear Blind Source Sep-

aration (BSS) problems. In each case, the results led to relevant contributions,

including the extension of the ITL paradigm to the multivariate perspective

and also to the use of metaheuristics as optimization strategies, instead of the

traditional gradient-based methods.

The developed study opens new possibilities for the statistical processing

of videos, images and speech data in complex scenarios; in communications,

it becomes possible to deal with messages subject to statistically dependent

coding schemes.

Keywords: Information Theoretic Learning, Temporal Structured Data, Chan-

nel Equalization, Blind Source Separation, Infinite Impulse Response Filters,

Post-Nonlinear Mixtures.



Resumo

Sinais dotados de dependência estat́ıstica portam informações relevantes

para a solução de problemas no contexto de processamento de sinais. Porém,

de acordo com o ferramental clássico baseado em estat́ısticas de segunda or-

dem, a caracterização probabiĺıstica desses sinais é limitada a certo grau de

parcialidade. Tendo isso em vista, propõe-se nesta tese de doutorado a ex-

tração mais extensiva da informação sobre a dependência estat́ıstica, sendo

utilizadas para isto as metodologias de Aprendizado Baseado na Teoria da In-

formação (ITL, do inglês Information Theoretic Learning) combinadas a uma

perspectiva multivariada dos dados.

Com particular interesse na dependência estat́ıstica temporal, esta abor-

dagem é aplicada em três relevantes problemas dentro da área de processa-

mento de sinais: equalização cega de canais com fontes dotadas de estrutura

temporal, equalização supervisionada com filtros de Resposta ao Impulso In-

finita (IIR, do inglês Infinite Impulse Response) e Separação Cega de Fontes

(BSS, do inglês Blind Source Separation) no contexto não linear. Em cada

caso, os resultados levaram a relevantes contribuições, incluindo a extensão do

paradigma de ITL para a perspectiva multivariada e o uso de metaheuŕısticas

como estratégia de otimização em vez dos tradicionais métodos baseados no

gradiente.

O estudo desenvolvido abre novas possibilidades para o processamento es-

tat́ıstico de v́ıdeos, imagens e dados de fala em cenários complexos; no contexto

de comunicações, torna-se posśıvel lidar com mensagens sujeitas a esquemas

de codificação com dependência estat́ıstica.

Palavras-chave: Aprendizado Baseado na Teoria da Informação, Dados Dota-

dos de Estrutura Temporal, Equalização de Canais, Separação Cega de Fontes,

Filtros com Resposta ao Impulso Infinita, Modelo de Mixturas Post-Nonlinear.
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6.22 Cost Surface - Scenario 1: Ĵcor and ĴMQD−D costs for M = 2 and σ = 0.3. . 158

6.23 Cost Surface - Scenario 2: Analytical instances associated with the source

sn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.24 Cost Surface - Scenario 2: Surface contours for M = 1 and M = 2. . . . . . 161

6.25 Costs Surfaces - Scenario 3: Source distribution and its estimation from

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.26 Cost Surfaces - Scenario 3: Estimation of the source statistics. . . . . . . . 163

6.27 Cost Surface - Scenario 3: Surface contours for M = 1 and M = 2. . . . . . 164

6.28 Discrete Sources - Scenario 1 - Mean HISI/QISI performance for the best

solution found by the DE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.29 Discrete Sources - Scenario 1 - Algorithms QISI performance for M = 1

and M = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.30 Adaptive kernel size σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



6.31 Discrete Sources - Scenario 1 - Algorithms QISI performance for varying σ

and for M = 1 and M = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.32 QISI x SNR - Gaussian and impulsive noise (M = 4). . . . . . . . . . . . . 170

6.33 Discrete Sources - Scenario 2 - IIR equalizer. . . . . . . . . . . . . . . . . . 171

6.34 Continuous Sources - Scenario 1: Laplacian source. . . . . . . . . . . . . . 173

6.35 Continuous Sources - Scenario 1: Algorithms QISI performance for M = 1

and M = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.36 Continuous Sources: Algorithms QISI performance for varying σ and for

M = 1 and M = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.37 Laplacian Source: IIR equalizer. . . . . . . . . . . . . . . . . . . . . . . . . 175

6.38 Image processing: (a) original; (b) received; recovered by (c) the CR, (d)

the MCK, (e) the correntropy-based and (f) the MQD-C approach. . . . . 176

6.39 Image processing: Estimation of the source statistics. . . . . . . . . . . . . 177

7.1 Block diagram of a communication system with an IIR equalizer. . . . . . 182

7.2 Equation-Error Formulation - Scenario 1 - MSEE Surface contours. . . . . 193

7.3 Equation-Error Formulation - Scenario 1 - ITL costs surface contours for

σ = 3, M = 0 and SNR of 10 dB. . . . . . . . . . . . . . . . . . . . . . . . 193

7.4 Equation-Error Formulation - Scenario 1: ITL costs surface contours for

σ = 0.7, M = 0 and SNR of 10 dB. . . . . . . . . . . . . . . . . . . . . . . 194

7.5 Equation-Error Formulation - Scenario 1: ITL costs surface contours for

σ = 0.7, M = 2 and SNR of 10 dB. . . . . . . . . . . . . . . . . . . . . . . 195

7.6 Equation-Error Formulation - Scenario 1: QISI Performance of the LMS-

based algorithms for M = 0 and M = 2 and SNR of 10 dB. . . . . . . . . . 196

7.7 Equation-Error Formulation - Scenario 1: QISI Performance σ sweep. . . . 197

7.8 Equation Error - Scenario 1: QISI × SNR (M = 0). . . . . . . . . . . . . . 197

7.9 Equation-Error Formulation - Scenario 2: QISI × SNR for M = 0. . . . . . 199

7.10 Equation-Error Formulation - Scenario 2: QISI × SNR for M = 3. . . . . . 200

7.11 Equation-Error Formulation - Scenario 3: QISI × SNR for M = 0. . . . . . 202

7.12 Equation-Error Formulation - Scenario 3: QISI × SNR for M = 3. . . . . . 203

7.13 Output-Error Formulation - Scenario 1 - MSOE Surface contours. . . . . . 205

7.14 Output-Error Formulation - Scenario 1: ITL costs surface contours for

σ = 3, M = 0 and SNR of 10 dB. . . . . . . . . . . . . . . . . . . . . . . . 206

7.15 Output-Error Formulation - Scenario 1: ITL costs surface contours for

σ = 1.2, M = 0 and SNR of 10 dB. . . . . . . . . . . . . . . . . . . . . . . 207

7.16 Output-Error Formulation - Scenario 1: ITL costs surface contours for

σ = 1.2, M = 2 and SNR of 10 dB. . . . . . . . . . . . . . . . . . . . . . . 208

7.17 Output-Error Formulation - Scenario 1: PLR and RPE algorithms Perfor-

mance - σ sweep (M = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . 209



7.18 Output-Error Formulation - Scenario 1: PLR and RPE algorithms Perfor-

mance - σ sweep (M = 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.19 Output-Error Formulation - Scenario 1: QISI Performance of the PLR- and

RPE-based algorithms for M = 0 and SNR of 10 dB. . . . . . . . . . . . . 211

7.20 Output-Error Formulation - Scenario 1: QISI Performance of the PLR- and

RPE-based algorithms for M = 2 and SNR of 10 dB. . . . . . . . . . . . . 212

7.21 Output-Error Formulation - Scenario 1: QISI×SNR for M = 0. . . . . . . . 213

7.22 Output-Error Formulation - Scenario 1: QISI×SNR for M = 2. . . . . . . . 215

7.23 Output-Error Formulation - Scenario 2: QISI×SNR for Gaussian noise and

M = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.24 Output-Error Formulation - Scenario 2: QISI×SNR for impulsive noise and

M = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.25 Output-Error Formulation - Scenario 2: QISI×SNR for Gaussian noise and

M = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.26 Output-Error Formulation - Scenario 2: QISI×SNR for impulsive noise and

M = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.27 Output-Error Formulation - Scenario 3: QISI×SNR for Gaussian noise and

M = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.28 Output-Error Formulation - Scenario 3: QISI×SNR for impulsive noise and

M = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.29 Output-Error Formulation - Scenario 3: QISI×SNR for Gaussian noise and

M = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7.30 Output-Error Formulation - Scenario 3: QISI×SNR for impulsive noise and

M = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

8.1 Mixing and separating systems in the PNL model. . . . . . . . . . . . . . . 231

8.2 Number of delays: equations and solutions. . . . . . . . . . . . . . . . . . . 244

8.3 Mean and Best Performance - Analytical Costs. . . . . . . . . . . . . . . . 245

8.4 Cost Comparison and Correlation matrices. . . . . . . . . . . . . . . . . . 246

8.5 Estimated Costs: Scatter plots. . . . . . . . . . . . . . . . . . . . . . . . . 248

8.6 Estimated Costs: s(n)× y(n) plots. . . . . . . . . . . . . . . . . . . . . . . 249



List of Tables

5.1 Permutations of P (z) and required responses for the combined channel+equalizer

system C(z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Permutations of P (z) and associated multivariate distribution. . . . . . . . 102

5.3 Permutations of P (z) and associated covariance matrices. . . . . . . . . . . 107

5.4 Permutations of P (z) and associated cross-kurtosis kS(m). . . . . . . . . . 111

5.5 Summary of the Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Permutations of P (z) and associated correntropy values for m from 0 to 3. 126

6.2 Solutions performance measures for the scenario 1. . . . . . . . . . . . . . . 159

6.3 Solutions performance measures for scenario 2. . . . . . . . . . . . . . . . . 162

6.4 Solutions performance measures for scenario 3. . . . . . . . . . . . . . . . . 165

6.5 Image Processing - MSE values for the CR, MCK, cor and MQD-C criteria. 177

7.1 Mean QISI performance for several number of delays M . . . . . . . . . . . 198

7.2 Scenario 2: Mean QISI performance for Gaussian noise and for M = 0 and

M = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.3 Scenario 2: Mean QISI performance for impulsive noise and forM = 0 and

M = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.4 Scenario 3: Mean QISI performance for Gaussian noise and for M = 0 and

M = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.5 Scenario 3: Mean QISI performance for impulsive noise and forM = 0 and

M = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.6 Output-Error Formulation: Algorithms Parameters for M = 0 and M = 2. 210

7.7 Output-Error Formulation - Scenario 1: Mean QISI performance forM = 0

and M = 2 (SNR level of 10 dB). . . . . . . . . . . . . . . . . . . . . . . . 212

7.8 Output-Error Formulation - Scenario 2: Mean QISI performance for M = 0.219

7.9 Output-Error Formulation - Scenario 2: Mean QISI performance for M = 2.219

7.10 Output-Error Formulation - Scenario 3: Mean QISI performance for M = 0.224

7.11 Output-Error Formulation - Scenario 3: Mean QISI performance for M = 2.227



8.1 Performance in terms of SIR [dB] . . . . . . . . . . . . . . . . . . . . . . . 248



Acronym List

AMUSE Algorithm for Multiple Unknown Signals Extraction

ANN Artificial Neural Networks

AWGN Additive White Gaussian Noise

BD Block Diagonalization

BGR Benveniste-Goursat-Ruget

BPSK Binary Phase-Shift Keying

BSS Blind Source Separation

CM Constant Modulus

CMA Constant Modulus Algorithm

cor Correntropy

corEE Correntropy - Equation-Error

corOE Correntropy - Output-Error

CR Correlation Retrieval

DD Decision-Directed

DE Differential Evolution

DFE Decision Feedback Equalizer

FIR Finite Impulse Response

GMI Gaussian Mutual Information

HISI Entropy-based Intersymbol Intereference

HOS Higher-Order Statistics

HS Shannon’s Entropy

HSEE Shannon’s Entropy - Equation-Error

HSOE Shannon’s Entropy - Output-Error
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SIR Signal-to-Interference Ratio

SOBI Second-Order Blind Identification

SOMI Second-Order Mutual Information

SOMIq Second-Order Mutual Information - Quadratic

SOS Second-Order Statistics

SNR Signal-to-Noise Ratio

SW Shalvi-Weinstein

TDSEP Temporal Decorrelation Separation

ZF Zero-Forcing



Notation

Symbol Meaning

Scalars, Vectors, Matrix and Functions

a scalar

a vector

A matrix

I identity matrix

(·)∗ complex conjugate

(·)T vector or matrix transpose

(·)H vector or matrix Hermitian transpose

f(·), g(·) function

∇f(·) gradient vector of f(·)
(̂·) estimate of a scalar, vector or matrix

|a| Euclidean norm of vector a

(·)⊙a Hadamard power of a

log(·) natural logarithm operator

det(·) determinant operator

Spaces and Sets

R set of real numbers

C set of complex numbers

A general set symbol

Probability and Statistics

X random variable

X set of random variables

E[·] mathematical expectation operator

pX(v) probability mass function of RV X, with v ∈ R

fX(v) probability density function of RV X

pX(v) multivariate/joint probability mass function of the set of RVs X

fX,Y (v) multivariate/joint probability density function of the set of RVs X
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Introduction

In signal processing problems, the statistical characterization of signals and systems

is known to provide efficient mathematical tools to carry out complex tasks. As a well

studied topic, its theoretical background sums up results from more than two centuries

in areas like statistical inference, linear filtering and information theory [Romano et al.,

2010], in which a classical approach is the assumption of linear models and Gaussian

distributed and statistically independent signals.

However, the recent increase of the amount of available data and the associated com-

plexity contributed to the rise of new problems – as well as the redefinition of the tra-

ditional ones – for which the classical assumptions might not be sufficient. In fact, for

nonlinear systems and/or signals in which the statistical information cannot be easily

characterized by a limited set of statistical moments (even higher-order statistics), the

classical statistical framework may lead to a performance far from that ideally attainable.

Examples of this assertion emerge in applications related to audio and speech signals, im-

ages and non-Gaussian noise (like the impulsive, uniform and Laplacian noises) [Wang and

Bovik, 2009; LeBlanc et al., 1994; Axford et al., 1998]. In the additional case of violation

of the signal statistical independence assumption, there exists an unavoidable demand

for theoretically-based methodologies to turn possible the treatment of the messages with

inherent statistical dependence [Comon and Jutten, 2010].

Particularly, statistically dependent signals are of major interest in this Ph.D. thesis,

where special attention will be dedicated to the information regarding the temporal struc-

ture. Sometimes called temporal dependence, this information is not easily extracted from

the statistical measures belonging to the classical approaches, i.e., only a partial portion

of the information can be exploited by them. In that sense, a promising option comes

from the methods belonging to the research field known as Information Theoretic Learn-

ing (ITL), whose objective is to provide the extraction of the statistical information in a

more complete fashion. This will be the central theme of the present thesis, i.e., the use

of the temporal structure of the signals within the ITL paradigm to solve signal process-

ing problems. More specifically, the channel equalization and the nonlinear Blind Source

Separation (BSS) problems will be considered.
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Due to the nature of the tackled problems, the study is carried out according to a mul-

tivariate perspective, which will lead to relevant contributions in the area, among which

we cite: in the blind equalization problem, a theoretical basis will be provided in order

to establish the necessary statistical conditions for performing equalization in a class of

temporally structured sources; for supervised equalization, the use of the temporal depen-

dence information on a recursive equalizer will lead to an improvement on the achieved

performance; and, for the nonlinear BSS problem, an extended temporal formulation will

provide further insight to solve a particular mixture case with the use of the Second-Order

Statistics (SOS).

Perspectives on the Use of the Temporal Structure of

Data

The historical preference for statistically independent source signals is justified by the

fact that the distortion effects caused by intermediate systems can be successfully nullified

through the recovery of this condition, which is usually not a difficult task. Statistically

independent sources also present other convenient mathematical features, which can be

exploited in order to obtain simpler methods to restore the information [Godard, 1980;

Shalvi and Weinstein, 1993; Comon and Jutten, 2010]. For this reason, the option for

these type of sources is a common sense in diverse fields, mainly regarding unsupervised

approaches [Romano et al., 2010].

Although this assumption can be successfully used in a wide range of practical prob-

lems, there still remains a gap when considering the case of inherently dependent sources.

Such type of sources naturally occurs in analog discrete-time signal processing (e.g., in

audio-related scenarios), videos (due to pixel correlation), or as a result of channel coding

in communications. In view of their large occurrence in signal processing problems, they

are far from belonging to a neglected group of signals.

In fact, the temporal dependence of the signals can be used in a beneficial manner, since

they carry valuable information about the sources. For instance, the knowledge of the

temporal structure would be able to provide, at each time instant, the information about

other probable past and future occurrences. From the Information Theory perspective,

the statistical dependence is able to reduce the uncertainty about the events [Cover and

Thomas, 1991]. In that sense, their effective manipulation opens an horizon to the direct

statistical processing of the present day media, such as images, audio and speech data. In

the context of communications, besides the extension to a broader communication model

encompassing signals that have inherent temporal dependence, it becomes possible to deal

with messages subject to general coding schemes, even at symbol level. This would open

possibilities to the emergence of novel statistically dependent modulation/demodulation
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schemes. Additionally, the own temporal structure printed by the source coding scheme

can be used for system deconvolution.

These perspectives motivate us in the use of ITL measures/entities capable of encom-

passing the statistical dependence present on the signals of interest, which shall be of

great significance for solving the aforementioned problems.

Objectives and Thesis Organization

The present thesis sums up the results obtained during the regular Ph.D. research

period, focused on the channel equalization problem as well as during the Ph.D. sandwich

made by the student, carried out in the context of the nonlinear BSS problem.

The document is structured in two parts: the first one provides the fundamental

background on channel equalization and nonlinear BSS, including the basic elements to

solve a signal processing task, which comprises the filtering structure, the criterion and

the optimization method; the second part presents the contributions on the two problems

using the concepts and definitions introduced in the previous part. A more detailed

content of each chapter is described in the following.

• In Chapter 1, a selection of linear and nonlinear filtering structures are presented

and their main features are discussed, such as the tradeoff between flexibility and

complexity.

• Chapter 2 presents the main aspects regarding the criterion, followed by an intro-

duction on the concepts of the ITL field. As the main theme of this thesis, the most

promising ITL criteria are also presented, including the extension of the Parzen

window method for multivariate densities.

• To complete the triad – filtering structure, criterion and optimization method –,

Chapter 3 discusses the main techniques involved in the optimization process in the

signal processing area, from which a special attention is dedicated to the gradient-

based methods and the metaheuristics.

• Using the elements of the previous chapters, Chapter 4 provides an overview on the

main methods applied in the channel equalization and the blind source separation

problems. Besides a brief historical perspective, it is also discussed how the ITL

methods are inserted in each problem. Finally, to conclude the foundations part,

the promising investigative lines are pointed out.

• The contributions part begins with Chapter 5, which presents a novel and de-

tailed theoretical basis for solving the blind channel equalization problem with a
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temporally-structured source. The statistical conditions are established by resort-

ing to important theorems in the literature and by some empirical results, revealing

the need for using multivariate densities in this context.

• Based on the previous theoretical analysis, Chapter 6 introduces the novel criteria

– including an ITL-based approach that uses the concept of multivariate density

matching – for the blind channel equalization problem with a temporally structured

source. The performances of the criteria are evaluated in a set of representative

scenarios and compared with that of the state-of-the-art method.

• Chapter 7 treats the supervised channel equalization problem through the exclusive

use of linear Infinite Impulse Response (IIR) filters. The problem is analyzed from

the perspective of the equation-error and output-error formulations, whose ITL-

based methods – like entropy and correntropy – can be successfully applied. In this

case, the extraction of the temporal dependence is made through the extension of

these ITL criteria to the multivariate domain.

• In Chapter 8, a special case within the nonlinear BSS problem is investigated.

A temporal-extended formulation is followed in order to encompass the statistical

temporal dependence of the sources. Using the definition of the ITL metric named

Mutual Information (MI) and with the hypothesis of colored multivariate Gaussian

sources, a criterion based on Second-Order Statistics (SOS) is proposed.

• Having presented the contributions, the thesis is concluded in Chapter 9, where the

final considerations and the future perspectives are presented.
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Chapter 1

Statistical Adaptive Filters

In signal processing, a given task can be efficiently carried out when the following

triad works with great synergy: (i) the filtering structure, (ii) the adaptation criterion

and (iii) the optimization method, as illustrated in Fig. 1.1. In this chapter, the focus

will be on the first one.

Figure 1.1: Triad of fundamental elements in signal processing problems.

The filtering structure has as its raison d’être the extraction of information about a

quantity of interest from the available data [Haykin, 1996]. In other words, the filter must

process the input data (or signal) and be flexible enough to provide the information of

interest in the form of an output signal. Fig. 1.2 illustrates the general form of a filtering

structure, where the number of inputs/outputs may vary according to the application.

Before assuming the form of an analog or digital device, the filter is defined by means of

a mathematical model that establishes a mapping of the input space to the output space.

The filter can be dynamically controlled in any level, but, generally, adaptation is carried

out by a set of free parameters (hence the name adaptive filter) [Haykin, 1996; Coelho

et al., 2015]. Particularly, in situations where signals and/or systems may vary from time

to time or can even be unknown, the use of a filter whose coefficients are variable – i.e.,

an adaptive filter – is crucial to obtain a good performance.
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Figure 1.2: Diagram of a general filtering structure.

There are many practical instances in which it is relevant to perform filtering. Com-

munications, control, radar and seismic [Romano et al., 2010] are examples of areas where

the filter performs the role of fundamental tool for processing the information in its various

forms.

In this thesis, we are mainly concerned with the processing of the statistical content

of data or, more specifically, we are interested on the existence of a temporal structure.

Since the filter plays a key role as an effective modifying agent of the statistical properties

(i.e., it is able to modify the statistical structure of the signals), the correct choice of

its structure and properties will be of fundamental importance to carry out the task at

hand. In the following, we present the filters that figure as fundamental elements in signal

processing.

1.1 Adaptive Filters

The systems or structures that are capable of extracting from data the information

about a quantity of interest receive the name of filters. They can be divided into two main

classes: linear and nonlinear. Basically, the filter is linear if its input and output obey

the superposition principle, i.e., if input x1 produces output f(x1) and input x2 produces

output f(x2), then the input x1+x2 must produce the output f(x1+x2) = f(x1)+f(x2).

In addition to that, for any scalar a, f(ax1) = af(x1) must hold. In summary,

f(ax1 + bx2) = af(x1) + bf(x2), (1.1)

where both outputs f(ax1 + bx2) and af(x1) + bf(x2) are equivalent. Otherwise, if the

superposition principle is not obeyed, the filter is nonlinear.

It is worth pointing out that, as a rule, in this thesis, the signals are assumed to be

stationary discrete-time stochastic processes and the filters discrete-time structures.
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1.1.1 Linear Filters

Linear digital filters are the simplest processing structures and can be divided into

two types: Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters.

The main difference between them is that FIR filters are feedforward structures while IIR

filters rely on the existence of a feedback loop.

Finite Impulse Response Filters

The emblematic FIR filter is the most basic signal processing system. Its importance

is the result of a vast theoretical framework developed in areas like linear estimation the-

ory [Gauss, 1809; Kolmogorov, 1939; Wiener, 1949], adaptive filtering algorithms [Widrow,

1971; Godard, 1974] and signal processing applications [Lucky, 1965; Godard, 1980].

The linear FIR filter is defined by a set of tap coefficients that weight present and past

samples of an input signal. In the adaptive case, the coefficients or weights of the filter

can be adapted along the time samples. Its structure can be seen in Fig. 1.3.

Figure 1.3: Finite impulse response filter.

Mathematically, the output of the FIR filter of order Lw – and with Lw+1 coefficients

– can be expressed, using a vector notation, as

yn =
[

w∗
0 w∗

1 · · · w∗
Lw

]













xn

xn−1

...

xn−Lw













=wHxn,

(1.2)

where w is the vector with the tap weights, xn the input vector and yn the output

signal at time instant n; the superscript H denotes Hermitian transpose (the operation of

transposition combined with complex conjugation), and the asterisk (·)∗ denotes complex

conjugation.

An FIR filter can also be described by means of its transfer function (or the Z-transform
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of its impulse response) [Oppenheim et al., 1997], i.e.:

W (z) = w∗
0 + w∗

1z
−1 + · · ·+ w∗

Lw
z−Lw , (1.3)

where the roots of this polynomial in function of z are called zeros. Since a filter can

be totally characterized, up to a scale factor, by the number of zeros and its values, its

graphical representation is reduced to the simple block shown in Fig. 1.4.

Figure 1.4: FIR filter block.

Infinite Impulse Response Filters

IIR filters are linear structures as well, but endowed with feedback loops. They were

intensively studied along the decades of 70 to 90 [Horvath Jr., 1976; Johnson Jr., 1984;

Goodwin and Sin, 1984; Treichler, 1985; Long et al., 1987; Regalia, 1994], with applications

in system identification, adaptive control, linear prediction, channel equalization and echo

cancellation. Later, in the beginning of the 2000s, some efforts were aimed at the use of

evolutionary algorithms/metaheuristics for training IIR filters, which showed to be a more

robust alternative than the gradient-based methods [Chen, 2000; Krusienski and Jenkins,

2004; Chen and Luk, 2010].

IIR systems are attractive due to two main reasons: (i) they are linear structures

with low complexity and (ii) they are able to perfectly compensate other linear systems

– even when the number of the IIR coefficients are insufficient, they tend to present an

improved performance in comparison with an adaptive FIR filter with the same number of

coefficients. It is important to remark that these features are consequence of the feedback

loop within the IIR structure, which allows the achievement of a infinite impulse response

from only a finite number of parameters [Shynk, 1989].

Notwithstanding, the same feedback loops that guarantee an improved performance

for the IIR filters also contribute to the emergence of a nonlinear relationship between the

filter output and its coefficients, which, on its turn, may provoke a behavior that demands

special attention in order to keep the system stable. In that sense, the task of using IIR

filters is still a challenge.
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IIR filters are composed of two parts: the feedforward and the feedback parts, as

shown in Fig. 1.5. Mathematically, the filter output can be expressed as

Figure 1.5: Infinite impulse response filter.

yn =

Lb
∑

i=0

bixn−i +
La
∑

j=1

ajyn−j, (1.4)

where Lb and La are the order of the feedforward and the feedback parts, respectively.

Alternatively, using a vector notation,

yn = θTφn, (1.5)

where θ = [b0 b1 . . . bLb
a1 . . . aLa

]T and φn = [xn xn−1 . . . xn−Lb
yn−1 . . . yn−La

]T .

Note that the feedback loop only operates on the delayed versions of yn.

Using the Z-transform at (1.4), it results

Y (z) =
B(z)

1− A(z)
X(z), (1.6)

where the numerator B(z) is a polynomial in function of z, whose roots are named zeros

and are associated with the feedforward part, and the denominator 1−A(z) is a polynomial

whose roots are called poles [Oppenheim et al., 1997] and are associated with the feedback

part.

In order to guarantee the IIR filter stability, its poles must be located within the region

limited by the unit circle, as illustrated in Fig. 1.6(a). Alternatively, the stable region

can also be identified by the stability triangle [Shynk, 1989]. For La = 2, the stability

triangle is as depicted in Fig. 1.6(b). Each point within the triangle area can be mapped

to another point within the unit circle. If the point falls below the dashed line, the poles

will form complex conjugate pairs.

When the poles of the IIR filter are outside the unit circle, the output signal will

grow in modulus indefinitely (the system is not Bounded-Input Bounded-Output [Proakis

and Manolakis, 1996]). Generally, this case is not desired and additional care might be

necessary to avoid that it happens.
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(a) Unit circle in the complex z-
plane.

(b) Stability triangle.

Figure 1.6: Stability regions for IIR filters.

Other important aspect in IIR filters is the already mentioned emergence of a nonlinear

relationship between the filter coefficients and the output yn. In fact, a recursive expansion

of the delayed outputs of yn in Eq. (1.4) would reveal terms with the product of the

coefficients bi and aj, for i = 0, . . . , Lb and j = 1, . . . , La. This feature exposes the

nonlinear essence of the IIR structure, implemented by means of a linear framework.

1.1.2 Nonlinear Filters

Linear filters present advantages like structural simplicity and mathematical tractabil-

ity, however, they may be unsatisfactory when extracting the information about the signals

of interest in complex scenarios. In that sense, the use of nonlinear filtering structures

is an interesting alternative, since they are able to provide more flexible mappings of the

data.

An infinite set of mappings or filters do not obey the superposition principle, giving rise

to a number of classes among the nonlinear structures. In that sense, the analysis of these

structures in a general context is not trivial. However, certain classes of nonlinear filters

share an important feature: their structure encompasses the universal approximation

capability [Park and Sandberg, 1991]. For instance, this is the case of the polynomial filters

and the Radial-Basis Function neural network. Both of them are able to approximate any

given continuous function with any expected learning error [Park and Sandberg, 1991;

Haykin, 1998].

Polynomial Filters

In signal processing applications, the use of polynomial filters was the starting point

of a more widespread adoption of nonlinear models. The initial efforts can be traced to

the decades of 70 and 80, in the context of equalization and echo cancellation [Agazzi

et al., 1982; Benedetto et al., 1979; Biglieri et al., 1984; Thomas, 1971].
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The main advantage of the polynomial filters is to represent general functions in terms

of a linear combination of other functions. This idea is closely related to the Volterra

series [Mathews and Sicuranza, 2000], where, in analogy with the Taylor series [Oppenheim

et al., 1997], a given continuous function can be expressed by its polynomial expansion:

yn = w0 +
∑

i

w1(i)xn−i +
∑

i

∑

j

w2(i,j)xn−ixn−j

+
∑

i

∑

j

∑

k

w3(i,j,k)xn−ixn−jxn−k + . . .
(1.7)

where w(i, . . . , k) are the weights or the Volterra kernels and xn and yn are the input and

output of the system, respectively. Basically, the series is based on the idea of represent-

ing the system response in terms of polynomial components, which contain products of

different delayed versions of the input signal.

Usually, a truncated version of the Volterra series is adopted to avoid excessively large

filters. For instance, a system with two inputs, say xn and xn−1, is of the form:

yn =
[

w0 w1(1) w2(0,0) w2(0,1) w2(1,1)
]

















xn

xn−1

x2n

xnxn−1

x2n−1

















=wTξn,

(1.8)

where ξn is the vector of expanded terms of xn and xn−1 in the Volterra domain. The key

factor of this polynomial filter is that, although the input-output relationship is nonlinear,

the structure is linear with respect to the free parameter vector w.

From the standpoint of parameter adaptation, the linear free parameters w allow the

emergence of methods whose complexity is close to that of FIR filters, which is certainly

a positive feature [Romano et al., 2010].

Radial-Basis Function Neural Network

Artificial Neural Networks (ANNs) are nonlinear adaptive signal processing devices

whose original purpose was to model the nervous systems of living beings [Haykin, 1998].

The beginning of the studies on this topic can be attributed to the seminal works of

McCulloch and Pitts [McCulloch and Pitts, 1943] and Frank Rosenblatt [Rosenblatt,

1958] in pattern recognition. Later, an extension of the Rosenblatt’s work gave rise to the

so-called Multilayer Perceptron (MLP) [Werbos, 1974; Haykin, 1998], an ANN structured

in multiple layers and composed of nonlinear processing units (called neurons). In this

case, each neuron could be defined by the values of the synaptic weights and by a nonlinear
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memoryless activation function. Finally, in 1988, Broomhead and Lowe [Broomhead and

Lowe, 1988] introduced a new multilayer structure, the Radial-Basis Function (RBF)

network, a fundamental neural approach for function approximation [Park and Sandberg,

1991].

By rule, RBF networks are composed of one input layer, one hidden layer and a linear

output layer, which linearly combines the output of the activation functions. The model

is described by Fig. 1.7.

Figure 1.7: Radial-Basis Function Network.

Mathematically, the output of the RBF network can be expressed as follows:

yn =
[

w0 w1 . . . wM

]













κ0(xn)

κ1(xn)
...

κM(xn)













=wTκn,

(1.9)

where xn = [xn xn−1 . . . xn−N ]
T is the input vector, κn is the vector with the M+1

responses of the hidden neurons for input xn, κi(·) is the i-th radial-basis activation

function, for i = 0, . . . ,M , and, as usual, w = [w0 w1 . . . wM ] is the vector with the

linear weights.

The nonlinear activation functions κi(·) must be radially symmetric about a center

vector (hence the name radial-basis function) and compliant with other mild conditions

on its shape. If these conditions are satisfied, an RBF network with enough hidden

neurons can approximate any continuous function on a compact subset with arbitrary

precision [Park and Sandberg, 1991]. Although this result guarantees the universal func-

tion approximation, it does not reveal how many neurons are necessary in the hidden

layer. In practical terms, the number of neurons in the design of an RBF network is a
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trade-off between computational cost and performance.

Generally, the radial-basis function is a multidimensional Gaussian function:

κi(xn) = exp
(

−(xn − ci)
TΣ−1

i (xn − ci)
)

, (1.10)

where ci is the center vector of the RBF and Σi is the positive definite and diagonal

matrix

Σi =















σ2
i1 0 · · · 0

0 σ2
i2

. . .
...

...
. . . . . . 0

0 · · · 0 σ2
iN















, (1.11)

being σ2
ij, for i = 0, . . . ,M and j = 0, . . . , N , the variances or dispersion factors. Although

not the common option, the case in which the off-diagonal elements of Σi are not null can

also be adopted when dealing with statistically dependent data.

The common approach for training the RBF networks is performed in two stages: (i)

first, the center vectors and the dispersion factors are defined according to heuristic or

unsupervised methods (e.g., randomly picking inputs as centers and assuming a single

dispersion factor for all centers, such as σ2 = dmax/
√
2M+2, being dmax the maximum

Euclidean distance between centers [Haykin, 1998]); (ii) for the second stage, there re-

mains a linear combination problem in function of the free parameters w to be solved,

where, again, the complexity will be comparable to that of FIR filters.

1.2 Conclusion

This chapter introduced some linear and nonlinear structures that can be employed

to process or filter the statistical information underlying the data and to provoke modifi-

cations in its temporal structure.

In the linear case, the fundamental concepts of the FIR and IIR filters were introduced.

Both filters present a feedforward weighting structure, however, the IIR filter contains an

additional feedback loop, which is capable of increasing the performance of the filter in

comparison with an FIR structure, but also demands special attention to avoid unstable

behavior.

In the nonlinear domain, we presented two structures which share the property of

universal function approximation: polynomial filters and RBF networks. In both cases,

the nonlinearities are result of mappings of the input signal to a higher dimensional

(nonlinear) space, followed by linear transformations in this space. This approach is

particularly convenient because, besides encompassing nonlinear properties, the structure

is linear with respect to the free parameters, thus reducing the complexity of parameter

adaptation.
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In any case, the design of a filter may require some structural choices that are not

always simple to deal with. Questions like “the filter should be linear or nonlinear?”, “does

it need a feedback loop?” or “when using an ANN, how many neurons are necessary?”

are unavoidable and the answer must take into account a trade-off between simplicity

(computational cost) and efficiency. In fact, the choice of the filter concerns the complexity

of the problem at hand and the criterion it must satisfy, as we will see in the next chapter.
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Chapter 2

Information Theoretic Learning

After a careful choice of the filtering structure to be employed in the signal processing

problem, the next step is to define an adaptation (or performance) criterion. This mathe-

matical entity is responsible for reliably translating the rationale of the entire framework

according to the problem at hand so that the desired objective can be achieved [Romano

et al., 2010; Attux et al., 2015].

The criterion is composed of a cost function, a mathematical expression that encom-

passes the general objectives of the problem and the optimization information (maximiza-

tion or minimization). For instance, a criterion can be defined as the minimization of a

given cost J(w) with respect to the filter coefficients w, i.e.,

min
w

J(w) . (2.1)

In signal processing, the cost function generally involves (explicitly or implicitly) the

statistical information about the signals of interest, which, in a number of practical ap-

plications, may be the most reliable information within range.

Interestingly, the research branch known as Information Theoretic Learning (ITL)

[Principe, 2010] focuses on the study of criteria and methods capable of extracting the

signal statistical information in a manner as complete as possible, using concepts and

measures from Information Theory [Cover and Thomas, 1991], like entropy and Mutual

Information (MI). The relevance of these entities can be justified in terms of their prob-

abilistic structure, which allows a more extensive statistical characterization than that

provided by second or even specific higher-order moments. In that sense, its application

in signal processing problems – like blind source separation [Comon and Jutten, 2010] and

channel equalization [Romano et al., 2010] – is already known to be very effective [Comon

and Jutten, 2010; Principe, 2010; Santamaŕıa et al., 2006]. Particularly, this topic consti-

tutes the main theme of the present thesis, whose features will be crucial while extracting

the temporal information about the underlying signals. Hence, a special attention will be

dedicated to it.
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Nonetheless, before proceeding with the discussion about the ITL criteria, it is conve-

nient to firstly introduce the fundamental aspects on Information Theory and the entities

that established a close connection with the signal processing area and gave rise to the

ITL research field, as presented in the following.

2.1 Information Theory - Fundamentals

Differently from many other theories that gradually formed their corpus from several

contributions along the years, the Information Theory was entirely conceived in a single

and remarkable work of Claude Elwood Shannon, a celebrated researcher from the 20th

century. The work entitled “A Mathematical Theory of Communication” [Shannon, 1948]

provided an insightful and careful study, from which important theoretical bounds on

communication devices could be derived.

It is not preposterous to state that the development of the Information Theory is

consequence of a key element defined by Shannon: the entropy. The importance of this

entity comes from its brilliant interpretation as a measure of uncertainty and, mainly, of

information. Mathematically, for discrete random variables (RVs), the entropy can be

defined as [Cover and Thomas, 1991]:

HS(X) = −
∑

v∈AX

pX(v) log (pX(v)) , (2.2)

where pX(v) is the Probability Mass Function (PMF) of the RV X and AX is the alphabet

of all possible occurrences ofX; for continuous variables, the entropy extension (also called

differential entropy [Cover and Thomas, 1991]) is intuitive:

HS(X) = −
∫

fX(v) log (fX(v)) dv, (2.3)

where fX(v) is the Probability Density Function (PDF) of the continuous RV X. In both

discrete and continuous cases, the entropy can be viewed as a measure of the average

amount of information required to describe the RV [Cover and Thomas, 1991]. Based on

this, Shannon proves a theorem that establishes the entropy of the source as a limit to

the achievable efficiency of any coding process [Shannon, 1948; Silva et al., 2016].

Besides that, Shannon also makes use of a measure of the amount of information one

RV brings about another RV. This quantity is called Mutual Information (MI) and can

be defined as [Cover and Thomas, 1991]:

I(X;Y ) = HS(X) +HS(Y )−HS(X, Y ), (2.4)
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where HS(X, Y ) is the joint entropy, defined as

HS(X, Y ) = −
∑

v∈AX ,AY

pX,Y (v) log (pX,Y (v)) , (2.5)

being pX,Y (v) the joint PMF associated with the discrete RVs X and Y ; or, for continuous

RVs,

HS(X, Y ) = −
∫

D

fX,Y (v) log (fX,Y (v)) dv, (2.6)

where fX,Y (v) is the joint PDF of the continuous RVs X and Y and D ⊆ R
2. Shannon

refers to the MI as the “rate of actual transmission” and uses it to obtain an astonishing

result: the definition of the bound on the channel capacity, i.e., the limit of the rate

of information production at the source for which there always exists a coding system

capable of giving rise to an arbitrarily small error rate [Shannon, 1948; Silva et al., 2016].

The immense importance of the results reached by Shannon contributed to make

Information Theory a research field per se and have attracted the attention of several re-

searchers, who extended its concepts and elements (specially the entropy and the mutual

information) beyond their original scope. In signal processing, the link with Informa-

tion Theory can be traced back to the development of Independent Component Analysis

(ICA) and of applications related to BSS, in which were used, for instance, the idea of

quantification of statistical independence with the aid of the MI and the concepts like

information flow in a given system [Hyvärinen et al., 2001; Hérault et al., 1985]. In the

context of channel equalization, the notion of entropy and of RVs comparisons (similar

to the MI) [Principe, 2010] is explored to mitigate the distortions caused by the channel.

Particularly, in this case, the adopted entropy is based on a generalized measure of infor-

mation – an extended version of the original definition in Eq. (2.3) – allied to the use of

non-parametric density estimators, which resulted in the first referred ITL method.

In fact, the use of these non-parametric density estimators became a special trend

within the ITL field, and, for this reason, we present their definition in the following,

considering both the cases of univariate and multivariate density estimators.

2.2 Non-Parametric Density Estimators

From the definitions of entropy and MI, the requirement of the distribution knowledge

is essential to translate the notion of information. However, in many practical cases, the

probabilistic distribution is not available and must be estimated from data samples.

In the case in which the distributions are not based on parametrized classes of probabil-

ity distributions, the non-parametric estimators can be employed, i.e., they make no prior

assumption of the RVs being assessed. Although there are a number of non-parametric

methods that can be used, the standard approach within the ITL field is the Parzen
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window method [Parzen, 1962; Principe, 2010]. The preference for this choice is justified

by two main reasons: firstly, this method allied with certain Information Theory entities

can lead to simplified estimators (as will be seen) and, secondly, they are differentiable, a

useful property for deriving gradient-based algorithms.

2.2.1 The Parzen Window Method

In 1962, Parzen proposed a method whose objective was to obtain density estimates

from a data set [Parzen, 1962]. The fundamental component in his formulation were the

kernel functions, which, although not originally aimed for statistical purposes, showed to

be perfectly suitable for the derivation.

The kernel functions are known to be particularly useful for solving nonlinear prob-

lems, given their ability of performing inner product operations, represented by 〈·,·〉, in a

potentially much higher-dimensional feature space with a linear structure, which, under

the perspective of the input space, results in nonlinear operations over the data. Very

interestingly, these operations can be implicitly performed in the input (or data) space,

without the need of nonlinear mappings, i.e., the inner product formulation is implicitly

performed in the higher-dimensional feature space but the data and the operations are

completely executed in the input space [Principe, 2010].

To clarify this kernel paradigm, suppose the nonlinear mapping:

Φ :S → H

x → Φ(x),
(2.7)

where the data {x1,x2, . . . ,xn} ⊂ S are mapped into a potentially much higher-dimensional

feature space H (an allusion to the reproducing kernel Hilbert space) by the nonlinear

function Φ(·). From this, it is possible to prove that there exists a real-valued bivari-

ate kernel function κ(xi,xj), non-negative definite and symmetric (the Mercer’s condi-

tions [Vapnik, 1995]), such that

κ(xi,xj) = 〈Φ(xi),Φ(xj)〉. (2.8)

In words, Eq. (2.8) reveals that the application of the kernel function over the data,

κ(xi,xj), in the input space S corresponds to an inner product of the nonlinearly mapped

data in the higher-dimensional feature space H (the so-called “kernel trick”) [Principe,

2010]. This elegant idea allows us to implicitly deal with nonlinear transformations Φ by

using only the kernel functions. Hence, the nonlinear mapping Φ is not even necessary to

be known. However, the effective nonlinear mapping Φ is directly related with the choice

of the kernel function [Aronszajn, 1943].

Besides the Mercer’s conditions [Vapnik, 1995], a kernel function must also fulfill the
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following properties to be used for density estimation [Principe, 2010], i.e.:

(i) κ(x) ≥ 0;

(ii)

∫

R

κ(x) dx = 1;

(iii) lim
x→∞

|xκ(x)| = 0.

(2.9)

Generally, the used kernel functions for density estimation are symmetric and normalized,

with peak at the sample. If the aim is to develop gradient-based methods, it is also

desirable that the kernels be continuous and differentiable.

Based on these kernel properties, Parzen proposed the estimation of the PDF associ-

ated with the continuous RV X, fX(v), from a window of N samples (realizations of X):

assuming that N independent and identically distributed (i.i.d.) samples {x1, . . . , xN} are

available, the PDF fX(v) can be estimated by [Parzen, 1962]:

f̂X(v) =
1

N

N
∑

i=1

κσ

(

v − xi
σ

)

, (2.10)

where κσ(·) is an arbitrary kernel function and σ is the kernel size.

A common option in the literature is the use of the Gaussian kernel function Gσ2(·),
which can be defined as [Principe, 2010]:

Gσ2(v − xi) =
1√
2πσ

exp

(−|v − xi|2
2σ2

)

, (2.11)

where the kernel size σ plays the role of a smoothing factor and | · | is the absolute value

operator. The preference for this choice is justified by the large occurrence of Gaussian

distributed RVs in practical scenarios and, mainly, by the simplification properties it

holds. For instance, the integral of the product of two Gaussian kernel functions leads to

another Gaussian kernel evaluated at the samples difference:

∫

Gσ2 (v − xi)Gσ2 (v − xj) dv = G2σ2 (xi − xj) . (2.12)

This property shall be particularly useful for us, as we will see later.

Note that the Parzen window method considers i.i.d. samples, but, in practice, sta-

tistically dependent samples can be considered, with certain impact on the estimation,

depending on the “degree” of dependence. In these cases, the Gaussian kernel also shows

to be a favorable choice, since the product of Gaussian functions treat the samples inde-

pendently, contributing to the reduction of the estimation error [Scott, 2015].



45

2.2.2 The Multivariate Kernel Density Estimator

The work of Parzen [Parzen, 1962] was limited to univariate densities and, indeed,

within the ITL field, the use of the Parzen window method for univariate PDF density

estimation is the standard approach due to its greater mathematical simplicity. However,

the multivariate (or joint) PDF estimation can also be a promising or even necessary

approach – e.g., on the MI estimation, given by Eq. (2.4). In fact, the generalization of

the Parzen window method for multivariate densities was introduced by Cacoullos [1966]

and later applied to some practical problems [Silverman, 1978; Scott, 2015]. In our work,

the manipulation of multivariate densities will be of fundamental importance to extract

the temporal structure underlying the signals of interest.

Basically, from the temporal perspective, the estimation of the multivariate PDFs can

be stated as follows: assume that xn = [xn xn−1 . . . xn−M ]T is the vector composed

of signal xn at time instant n plus M of its delayed versions, being associated with the

vector of RVs X = {Xn, Xn−1, . . . , Xn−M} (note that, in this case, the RV is not required

to be i.i.d.). Thus, similarly to the Parzen window method, from a window of N vector

samples {x1, . . . ,xN}, the estimate of the multivariate PDF fX(v) is

f̂X(v) =
1

N

N
∑

i=1

κσ

(

v − xi

σ

)

, (2.13)

where κσ(·) is the multivariate kernel function, since it operates on vectors (instead of

samples, as in Eq. (2.10)), and σ is the kernel size. Since this estimate is very similar to

Eq. (2.10), we will refer to it as the multivariate Parzen window method.

Just like the univariate case, the multivariate kernel function must satisfy the Mercer’s

conditions – i.e., to be non-negative definite and symmetric – and, to be suitable for PDF

estimation, it must also fulfill the moments constraints [Scott, 2015]:

(i)

∫

D

κ(v) dv = 1;

(ii)

∫

D

vκ(v) dv = 0;

(iii)

∫

D

vvTκ(v) dv = IM+1;

(2.14)

where D ⊆ R
(M+1) and IM+1 is the identity matrix of dimension M+1. If κ(v) is indeed

a multivariate kernel function, then the two last expressions are very informative about

the marginal kernels: the expression (ii) states that the mean values of the marginal

kernels are all null; while expression (iii) affirms that the marginal kernels are pair-wisely

uncorrelated and each of them present unit variance. Hence, the multivariate kernel

functions are symmetric and normalized, typically with peak on the sample.
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For reasons similar to the univariate Gaussian kernel, the multivariate Gaussian kernel

occupies a special place among all the multivariate kernel functions. Mathematically, it

can be defined as

GΣ (v − xi) =
1

√

(2π)M+1 det(Σ)
exp

[−1

2
(v − xi)

TΣ−1(v − xi)

]

, (2.15)

where Σ = σ2IM+1 is the covariance matrix and det(·) is the determinant operator. Since

it is continuous and differentiable, the multivariate Gaussian kernel is an attractive option

to be used in optimization techniques based on the stochastic gradient.

Other important advantage of the multivariate Gaussian kernel is the analogous prop-

erty of the integral of the product of two Gaussian functions, which results in

∫

D

GΣ (v − xi)GΣ (v − xj) dv = G2Σ (xi − xj) . (2.16)

This property shall be very useful for the study of the multivariate case.

It is important to mention that the multivariate case might suffer from the so-called

“curse of dimensionality”, in which it is stated that the higher the dimension the larger

must be the number of samples necessary to obtain reliable density estimates [Scott,

2015]. This fact, allied to the increment on the computational cost it engenders, may have

caused certain aversion to this approach. However, as we intend to show, the “curse of

dimensionality” is not severe and, with the huge computational power available nowadays,

the performance gain provided by the multivariate perspective is worth its costs.

In the following, we will show how the kernel methods are applied to the ITL criteria.

However, since the standard approach focus on the use of the univariate Parzen window

method, the derivation will be limited to this case. The application of the multivariate

kernel density estimator will be addressed later, starting from Chapter 5.

2.3 The ITL Criteria

Shannon has introduced the concept of uncertainty with his entropy definition and,

later on 1976, Alfred Rényi proposed a generalization of this idea in [Rényi, 1976].

Nonetheless, the effective use of the entropy as a criterion for the channel equalization

problem only occurred on the beginning of the 2000’s [Erdogmus and Principe, 2002a,b;

Santamaŕıa et al., 2002a; Sala-Alvarez and Vázquez-Grau, 1997; Principe, 2010], where

a Rényi’s entropy estimator was accomplished through the use of the Parzen window

method. This first approach opened way to other similar approaches [Santamaŕıa et al.,

2002b; Lázaro et al., 2003a, 2005; Santamaŕıa et al., 2006], forming a set of methods that

later was classified as belonging to the ITL field, whose objective was the application of

the Information Theory concepts in machine learning problems. It is possible to state
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that the research on this topic was mainly concentrated on the research group led by

Prof. José C. Pŕıncipe, but also counted with important contributions of other groups,

like that of Silva et al. [2005] and of Cavalcante and Romano [2005], responsible for us-

ing the Parzen window method in the Shannon’s entropy and in information theoretic

similarity measures.

Although the term ITL is commonly associated with the use of the Parzen window

method, in the big picture, any use of the entities and concepts belonging to the Informa-

tion Theory applied to a filtering task might be classified as an ITL method as well [Silva

et al., 2016]. Following this line of reasoning, the beginning of the ITL field can be traced

back to the 80’s, when Information Theory concepts were massively used on ICA and/or

BSS problems [Hyvärinen et al., 2001; Comon and Jutten, 2010], but without relying on

the specific use of the Parzen window estimator.

In the present thesis, we also pursue the wide perspective of the ITL definition, whose

criteria are directly involved with the notion of information about the variables of interest.

As we have seen from entropy and MI definitions presented in Section 2.1, the information

concept makes indispensable use of the distributions associated with the signals of interest,

which, from a statistical perspective, is an instance containing all statistical moments,

including higher-order statistics (HOS). In that sense, the ITL criteria encompass a richer

statistical content in comparison with the classical approaches that are generally based

on second-order statistics (SOS), which might be crucial when dealing with non-Gaussian

distributions, temporally dependent sources, recurrent and nonlinear structures. These

aspects allows, at least in theory, the achievement of formulations in a more general

standpoint [Erdogmus and Principe, 2006].

The wide scope in which the instances of the information concept can be applied is

undoubtedly vast, even if only the signal processing area is considered. This contributed

to the emergence of several ITL criteria, but we will restrain ourselves to a small but

representative set of them, which we roughly classified in measures of uncertainty and of

similarity.

2.3.1 Uncertainty Measures

The uncertainty measures, as described by Shannon, are directly related to the notion

of information. Within the ITL framework, we highlight the Shannon’s and the Rényi’s

entropy.

Shannon’s Entropy

The employment of the Shannon’s entropy in signal processing problems was firstly

addressed to ICA methods, in which kernel density estimators were employed [Ahmad and

Lin, 1976] as well as further approximations in an attempt to reduce the computational
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complexity [Comon and Jutten, 2010]. Particularly, in the context of the classification

problem, the approximation followed by Silva et al. [2005] used a simple formulation allied

to the use of the Parzen window estimator, as presented in the following.

Recalling the entropy definition for continuous RV given by Eq. (2.3), a sample mean

is used instead of the expectation operator in the work of Silva et al. [2005], which results

in:

ĤS(X) =
−1

Nx

Nx
∑

i=1

log (fX(xi)) , (2.17)

where Nx is the number of samples of the signal xn used for estimation. Note that the

PDF is assessed only based on the sample values. Using the Parzen window method for

univariate PDF estimation – given by Eq. (2.10) – and with Gaussian kernel functions,

we obtain the following relation

ĴHS = − 1

Nx

Nx
∑

i=1

log

(

1

Nx

Nx
∑

j=1

Gσ2 (xi − xj)

)

, (2.18)

which is the Shannon’s entropy estimator via the use of the Parzen window method. As

a cost function, it can be considered in several signal processing problems: for equaliza-

tion purposes, the estimated Shannon’s entropy is usually a cost function that must be

minimized, in order to reduce the uncertainty introduced by the channel [Principe, 2010];

however, for the BSS problem, the cost can be sometimes maximized, e.g., to increase the

information flow [Hyvärinen et al., 2001].

Rényi’s Entropy

The proposal that vigorously contributed to establish and unify the ITL methods was

introduced through the combination of the quadratic Rényi’s entropy and the Parzen

window method for PDF estimation [Santamaŕıa et al., 2002; Principe, 2010], an arrange-

ment that presents the advantage of being differentiable, a property necessary for online

adaptive algorithms based on the stochastic gradient.

Rényi’s entropy can be viewed as a generalization of Shannon’s entropy, since it pre-

serves, to a certain extent, the properties of uncertainty. Sometimes called the order-α

Rényi’s entropy, it can be defined as

HR
α (X) =

1

1− α
log

(∫

fα
X(v) dv

)

, (2.19)

where α ≥ 0 and α 6= 1. Note that, differently from the Shannon’s entropy, the PDF only

exists in the argument of the logarithm function. Interestingly, it is possible to show that,

for α → 1, Rényi’s entropy becomes Shannon’s entropy [Principe, 2010].

For estimation purposes, the case in which α = 2 – the quadratic Rényi’s entropy –
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is usually preferred, since it leads to simpler relations when combined with the Parzen

window method. Indeed, using a Gaussian kernel function, the quadratic Rényi’s entropy

can be written as

ĴHR = − log

∫ ∞

−∞

(

1

Nx

Nx
∑

i=1

Gσ2(v − xi)

)2

dv

= − log
1

N2
x

∫ ∞

−∞

(

Nx
∑

i=1

Nx
∑

j=1

Gσ2(v − xj)Gσ2(v − xi)

)

dv

= − log
1

N2
x

Nx
∑

i=1

Nx
∑

j=1

∫ ∞

−∞

Gσ2(v − xj)Gσ2(v − xi) dv

= − log

(

1

N2
x

Nx
∑

i=1

Nx
∑

j=1

G2σ2(xj − xi)

)

,

(2.20)

where the result given by Eq. (2.12) was used in the last step. Since the logarithm

function log(·) is monotonic, it can be disregarded in optimization problems, since the

null-gradient points are not influenced by this change. In addition, the negative sign

can also be discarded, with the proviso that the optimization direction must be inverted,

i.e., if the objective is the maximization of the cost ĴHR, by disregarding the negative

sign and the logarithm function, the resulting cost must be minimized. In literature, the

argument of the logarithm is called quadratic Information Potential estimator (or simply

IP) [Principe, 2010].

2.3.2 Similarity Measures

There exists a vast number of similarity measures which, in the context of ITL, aim

at a most extensive information comparison among RVs, like Rényi’s divergence, Cauchy-

Schwarz divergence and quadratic MI [Principe, 2010; Principe et al., 2000]. For us, three

of them shall be very useful: the MI, the Quadratic Divergence (QD) and the correntropy.

Mutual Information

In signal processing, the MI metric defined in Eq. (2.4) is particularly known for its ap-

plication in ICA methods as a measure that exploits the degree of statistical independence

between variables.

From a more generic standpoint, the MI can be viewed as a special case of the Kullback-

Leibler (KL) divergence, which is a measure of dissimilarity between two distributions,

i.e.:

DKL(X||Y ) =

∫

fX(v) log

(

fX(v)

fY (v)

)

dv, (2.21)

where fX(v) and fY (v) are the two densities being compared. The KL divergence is zero
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if and only if fX(v) = fY (v). If one considers the comparison between the joint density

fX,Y (v) and the product fX(v1)fY (v2), the resulting KL divergence is exactly the MI

measure, which can be written as

I(X;Y ) =

∫

D

fX,Y (v) log

(

fX,Y (v)

fX(v1)fY (v2)

)

dv

=

∫

D

fX,Y (v) (log (fX,Y (v))− log (fX(v1))− log (fY (v2))) dv

= −
∫

D

fX,Y (v) log (fX(v1)) dv −
∫

D

fX,Y (v) log (fY (v2)) dv

+

∫

D

fX,Y (v) log (fX,Y (v)) dv

= HS(X) +HS(Y )−HS(X, Y ),

(2.22)

where v = [v1 v2]
T and D ⊆ R

2.

Since the MI can be decomposed in instances of the Shannon’s entropy, MI estimation

is usually reduced to the estimation of the marginal entropies HS(X) and HS(Y ), which

was already discussed. For the joint entropy HS(X, Y ), approximations or special prop-

erties are usually explored [Comon and Jutten, 2010]. Other possibility is its estimation

via multivariate kernels, but this discussion will be left for an opportune moment.

The Quadratic Divergence

An alternative measure for dissimilarity between PDFs is the QD measure. Differently

from the KL divergence, the QD measure is symmetric with respect to the RVs, and can

be considered as a distance measure. Interestingly, this idea also establishes connections

with the notion of MI [Principe, 2010]. Its application is focused on the unsupervised

channel equalization, since it leads to simpler estimators in comparison with the MI/KL

divergence when combined with the Parzen window method [Santamaŕıa et al., 2002b;

Lázaro et al., 2005].

Mathematically, the QD measure can be defined as [Principe, 2010]:

QD(X||Y ) =

∫

(fX(v)− fY (v))
2 dv

=

∫

f 2
X(v)dv +

∫

f 2
Y (v)dv − 2

∫

fX(v)fY (v)dv .

(2.23)

Note that, similarly to the estimation of the quadratic Rényi’s entropy, there emerge

terms with the densities to the power of two, in which the Parzen window method can

be applied satisfactorily. Assuming Gaussian kernel functions, the QD measure can be
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estimated as [Lázaro et al., 2005]

ĴQD =
1

N2
x

Nx
∑

i=1

Nx
∑

j=1

G2σ2(xj − xi) +
1

N2
y

Ny
∑

i=1

Ny
∑

j=1

G2σ2(yj − yi)

− 2

NxNy

Nx
∑

i=1

Ny
∑

j=1

G2σ2(yj − xi),

(2.24)

where Nx and Ny are the number of samples used in the window for the RVs X and

Y , respectively. If it is desired to match the PDFs fX(v) and fY (v), then the criterion

becomes the minimization of the cost ĴQD.

Correntropy

Other emblematic ITL entity for measuring similarity is the one called correntropy,

which can be viewed as a generalized correlation function [Principe, 2010; Santamaŕıa

et al., 2006]. It differs from the previous methods for taking into account a kernel function

κσ(·) in its definition:

vX,Y =

∫

D

κσ (v) fX,Y (v) dv

= EX,Y [κσ (v)] ,

(2.25)

where EX,Y [·] denotes expectation over the joint space D ⊆ R
2. Depending on the chosen

kernel function, different statistical moments about the RVs are considered. For instance,

when Gaussian kernels are used, only even moments are encompassed in the measure –

as can be shown through a Taylor series expansion [Principe, 2010].

Assuming a Gaussian kernel for the kernel function, the correntropy becomes [Principe,

2010]

vX,Y =

∫

D

Gσ (v1 − v2) fX,Y (v) dv

=

∫

Gσ (ξ) fΞ(ξ) dξ

(2.26)

where v = [v1 v2]
T and ξ = v1 − v2. Using a sample mean instead of the statistical

expectation, the correntropy estimator becomes

v̂X,Y =
1

N

N
∑

i=1

Gσ2(xi − yi), (2.27)

where N is the number of differences xi − yi. When xi − yi approaches zero, the kernel

function value tends to its peak; hence, if it is desired to match the RVs X and Y , the

maximization of the correntropy estimator can be used as a criterion.

It is worth mentioning that the correntropy main features are its lower computational

cost and its lower sensitivity to the kernel size σ parameter in comparison with the other
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ITL approaches. It also presents interesting relations to the correlation function and

the estimated quadratic Rényi’s entropy, hence the name [Principe, 2010]. Correntropy

has been successfully used in a variety of applications, among which we cite time series

analysis, channel equalization, robust regression and blind source separation [Santamaŕıa

et al., 2006; Li et al., 2007; Singh and Pŕıncipe, 2009; Gunduz and Principe, 2009; Principe,

2010].

2.4 Conclusion

In this chapter, we focused on the optimization criterion, an entity whose purpose is to

express the general objectives of the problem in mathematical terms. In signal processing

problems, the adoption of some statistical properties of the underlying signals is usual.

Particularly, the criteria belonging to the ITL framework are of special interest here, since

they aim at the extraction of the signal statistical information in a manner as complete as

possible, using concepts and measures from Information Theory. These entities are also

known for their direct manipulation of the signal distributions, allowing a more extensive

statistical characterization than that of the classical second-order moments.

In practical scenarios, the distributions associated with the signals might not be easily

obtained, being usually estimated from samples. In that sense, we presented the Parzen

window method, which is the standard approach for PDF estimation within the ITL frame-

work. This method encompasses the use of kernel functions, which presents interesting

properties, such as the implicit operations in a potentially much higher-dimensional fea-

ture space – also known as the kernel trick. The extension of the Parzen window method

to the multivariate case was also presented; however, in ITL, the univariate perspective

is the common choice due to their reduced computational complexity. In light of this, a

selection of the relevant ITL criteria was presented, being classified into uncertainty and

similarity measures. In the first class, Shannon’s and Rényi’s entropy estimators were

defined, and, in the second class, the mutual information, the quadratic divergence and

the correntropy. Although they share similar concepts, each criterion follows a particu-

lar characterization of the signals, which can be more or less suitable, depending on the

problem at hand. The presentation of the ITL criteria was limited to the univariate per-

spective, but we highlight that their multivariate extension will be addressed later, since

it shall be very useful when extracting the temporal information about the signals, one

of our main objectives in this work.

After choosing the filtering structure (Chapter 1) and the criterion, the next step is

to define the optimization method, as will be discussed in the next chapter.
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Chapter 3

Optimization Methods

Having defined the filtering structure and the adaptation criterion, it is possible to

choose a suitable optimization method. An optimization methodology is responsible for

efficiently adapting the parameters of the chosen filtering structure, in order to determine

an optimum solution with respect to the criterion at hand.

The optimization process can be performed by means of an algorithm with finite steps

to achieve the optimal solution, or with iterative convergence to a solution [Haykin, 1996],

or, yet, by means of metaheuristics, which can perform a more extensive search for the

solution [Blum and Roli, 2003]. In view of these possibilities, there are a number of

optimization methods, whose features may vary depending on the type of focused cost

function(s). For example, the cost function can be unimodal or multimodal (when there

are one or multiple solutions), and the optimization process may involve one or more cost

functions (criteria) at once – i.e., it is said to be single- or multi-objective [De Castro and

Von Zuben, 2005].

For some specific classes of unimodal and single-objective problems, a finite-step al-

gorithm can be used [Ruggiero and Lopes, 1997], but a wider class of problems can be

addressed with iterative convergence methods, like gradient-based strategies; however, for

multimodal cost functions, global convergence is not guaranteed [Haykin, 1996]. In these

cases, a broader search strategy, like that provided by metaheuristics, can be an interest-

ing alternative, although it is usually associated with a higher computational cost [Blum

and Roli, 2003].

In signal processing, the most popular techniques for optimization are undoubtedly the

gradient-based algorithms and, more recently, the metaheuristics [Haykin, 1996; De Castro

and Von Zuben, 2005]. In this thesis, these approaches will also be of great importance

and the details will be presented in the next sections.
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3.1 Gradient-Based Optimization

Gradient-based optimization methods – also known as gradient-descent or steepest-

descent [Murray, 1972] – are iterative methods, being the updates of the filter coefficients

at each iteration corrections in the opposite direction of the gradient. Since the negative

of the gradient of a function points towards its maximum decrease, this approach can be

employed in minimization tasks (in maximization problems, the direction of the positive

gradient is adopted, being the approach called steepest-ascent [Haykin, 1996]). It is re-

quired, however, that the objective (or cost) function be continuous and differentiable for

all possible configurations of the parameters.

Mathematically, the update of the filter coefficients at iteration n can be expressed as

wn+1 = wn − µ∇wJ(wn), (3.1)

where ∇J(wn) is the gradient vector of the cost function evaluated with respect to wn,

the filter coefficients at time instant n, and µ is a positive real-valued parameter, called

adaptation step or step size, since it controls the amplitude of the corrections applied to the

filter coefficients. A wrong choice of µ may cause the algorithm to diverge, i.e., it can lead

the filter coefficients away from the minimum point, with modulus possibly approaching

infinity [Haykin, 1996]. For this reason, it is not unusual to find a time-varying step size

µn.

Since a recursive relation is established by Eq. (3.1), it is necessary to define an initial

value for the weights at instant n = 0. When there is no prior information about the cost

function, w0 is typically set equal to the null vector in supervised approaches [Haykin,

1996], while, in unsupervised tasks, the center spike initialization method is preferred, in

which all the coefficients of w0 are set to be null, with exception of the central tap, set to

unity [Ding et al., 1991; Foschini, 1985].

Based on this, the adaptation of the weights of the filter can be done accordingly to

Alg. 3.1.

Algorithm 3.1 Steepest-Descent

1. Initialization of w0 and µ0;
2. Using present guess of the solution, compute the gradient vector ∇J(wn);
3. Compute the next guess using

wn+1 = wn − µn∇wJ(wn);

4. Update the step size µn, if necessary;
5. Go back to step 2 and repeat the process.

The stability of the steepest-descent algorithm requires additional care, as unstable
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behavior is possible due to the presence of feedback [Haykin, 1996; Ding et al., 1991]. The

stability performance is determined by two factors: (i) the step size parameter µ, and (ii)

the gradient vector J(wn), as these two parameters entirely control the transfer function

of the feedback loop [Haykin, 1996]. Depending on the cost function J(wn), the condition

for the stability can be studied by means of the natural modes of the algorithm [Widrow,

1971]. There are alternative approaches in which the step size adjustment is not strictly

necessary, but, in turn, more complex computations are required. The Newton’s method,

for instance, demands the computation of the Hessian matrix, which could be unduly

costly in certain cases [Haykin, 1998].

Gradient methods with update rule given by Eq. (3.1) can be classified as local search

tools, since the gradient ∇J(wn) is a local operator, i.e., it is able to measure the growth

profile at a given point of the surface cost, which reveals certain information about an

infinitesimal neighborhood but not a clue about where the global optimum might be.

Hence, these methods converge to local solutions. However, the gradient-based algorithms

are a common choice for optimization due to their great simplicity. In addition to that,

further simplification can be achieved by considering relaxations on the gradient ∇J(wn),

as discussed in the following.

3.1.1 The Approximate Gradient

Ideally, exact measurements of the gradient vector ∇J(wn) allied to a suitable choice

of the step size µ would certainly lead the steepest-descent algorithm to a minimum.

However, in signal processing problems, exact measures of the gradient vector are not

generally possible and it must be estimated from the available data. Very conveniently, in

certain cases, it is possible to reduce the computational complexity by assuming further

approximated versions of the gradient ∇J(wn).

Undoubtedly, these approaches may cause significant impact on the optimization per-

formance, which can be associated with a lower convergence rate and/or with a slightly

mismatch regarding the desired solution [Haykin, 1996; Shynk, 1989]. But, for certain

applications, this impact is not a major issue. A remarkable example is the stochastic

gradient approach, whose fundamental idea is to use instantaneous estimates in lieu of the

mathematical expectation [Robbins and Monro, 1951; Haykin, 1996]. In that sense, the

classical auto-correlation function for a given signal xn would be approximated as

E [xnx
∗
n] ≈ xnx

∗
n, (3.2)

being E [·] the mathematical expectation operator. This estimate is unbiased in the sense

that its expected value equals the true value of the mathematical expectation.

Algorithms derived from the stochastic approach, named stochastic gradient algo-

rithms, may seem, at first sight, incapable of achieving good performance, since they
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use instantaneous and, hence, imprecise estimates. However, since the algorithms op-

erate in a recursive manner, they implicitly average the estimates during the course of

adaptation [Haykin, 1996].

Examples of stochastic gradient algorithms are the Least-Mean-Square (LMS) [Widrow,

1971], the Constant Modulus Algorithm (CMA) [Godard, 1980], the Sato algorithm [Sato,

1975], among others.

The approximate gradient is also conveniently used when the computation of the gra-

dient presents some difficulties, i.e., when the true gradient leads to complex expressions.

Examples of this situation frequently arise in the adaptation of IIR filters, whose gradient

depends on all the coefficients past values [Johnson Jr., 1984; Shynk, 1989]. In these cases,

a slightly modified version of the gradient ∇J(wn) (for instance, a truncated version) is

adopted. However, since a modified gradient is adopted, a small but tolerable deviation

on the solutions may happen [Johnson Jr., 1984; Mendel, 1973].

3.2 Metaheuristics

Metaheuristics are search strategies with wide applicability to hard optimization prob-

lems, such as those that often arise in signal processing tasks. They are sometimes inspired

by natural phenomena, which has been shown to provide efficient methodologies to ex-

plore the search space. They usually encompasses stochastic components to gain diversity

on the search and they do not use the gradient or Hessian matrix of the objective func-

tion [Boussäıd et al., 2013]. Compared to iterative methods, the metaheuristics are not

able to guarantee that a global solution will be found, but they are known to be more

robust against local convergence and to be efficient in obtaining multiple solutions in a

multimodal optimization task [Blum and Roli, 2003].

The advent of metaheuristics in the signal processing field can be attributed to a

natural consequence of the more complex filtering criteria arising from the development

of blind methods and of statistical decision and information-theoretic formulations [Attux

et al., 2015; Chen et al., 1993; Principe, 2010], as well as the increasing adoption of

nonlinear and recurrent filtering structures [Romano et al., 2010; Haykin, 1998]. The most

widespread methods in signal processing are, historically, evolutionary algorithms [Chen

and Wu, 1998], but particle swarm optimization has also received a significant deal of

attention [Krusienski and Jenkins, 2004].

The success of a metaheuristic in a given optimization problem will basically depend

on the balance between the exploration (diversification) and the exploitation (intensifi-

cation). Exploration is intended to identify regions of the search space with high-quality

solutions, while exploitation is meant to intensify the search in some promising areas of the

accumulated search experience. The main differences among the existing metaheuristics

concern how this balance is pursued [Boussäıd et al., 2013]. Particularly, in this work, we
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are interested in the differential evolution (DE) algorithm [Storn and Price, 1997], whose

global search strategy is coherent with the main aspects of the problems to be considered,

as will be presented in the following.

3.2.1 Differential Evolution

Differential Evolution is an evolutionary search paradigm conceived to handle the

optimization of multidimensional continuous-valued functions [Price et al., 2005]. The

main feature of this technique is the fact that the candidate solutions are modified by

mechanisms that exploit the information available in the current population, instead

of using conventional operators based on random perturbations generated by specific

distributions [Storn and Price, 1997]. Since it is not a gradient-based approach, the

functions are not required to be differentiable.

The standard DE algorithm begins by randomly creating NP parameter vectors pi ∈
R

L×1, called individuals, being L the number of parameters in each vector. The objective

is to find the parameter vector that maximizes (or minimizes) an objective function f(p) :

R
L 7→ R, also called fitness function. At each iteration (or generation) g, a new mutated

vector is generated for each individual according to the following expression:

p̂i(g) = pj(g) + F (pk(g)− pl(g)), (3.3)

where j, k, l ∈ {1, 2, . . . , NP} are randomly selected and mutually distinct indexes and F

controls the size of the step that is taken in the direction given by (pk(g)− pl(g)).

Then, the elements of the mutated vector p̂i(g) are mixed with those of the original

individual pi(g) according to the following crossover rule:

p̃
j
i (g) =







p̂
j
i (g) with probability CR,

p
j
i (g) with probability (1− CR),

(3.4)

where j = 1, . . . , L, and the parameter CR determines the rate at which the elements of

the combined vector p̃i(g) come from p̂i(g) or from pi(g).

The last step involves the selection of the individuals that shall remain in the popu-

lation to the next iteration. The procedure consists in comparing the combined vectors

p̃i(g) with the corresponding original individuals pi(g), i = 1, . . . , NP : if f(p̃i(g)) is bet-

ter than f(pi(g)), then pi(g + 1) = p̃i(g); otherwise, pi(g + 1) = pi(g). These three

steps – mutation, combination and selection – are repeated until a maximum number of

iterations is reached. The pseudo-code presented in Alg. 3.2 summarizes the DE method

for optimization.

In the problems to be encompassed in this work, we will constantly face multimodal

objective functions, being required additional efforts to avoid local convergence during
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Algorithm 3.2 Differential Evolution

Initialize all NP individuals pi with random positions in the search-space;
while Maximum number of iterations is not reached do

for Each individual p̂i(g), i ∈ NP do

Randomly pick three different individuals pj(g), pk(g) pl(g), for j, k, l ∈
{1, 2, . . . , NP}
Generate new mutated vector:

p̂i(g) = pj(g) + F (pk(g)− pl(g))

Combination of the original individual:
for Each j ∈ {1, . . . , L} do

p̃
j
i (g) =

{

p̂
j
i (g) with probability CR,

p
j
i (g) with probability (1− CR),

end for

Selection:
if f(p̃i(g)) is better than f(pi(g)) then

pi(g + 1) = p̃i(g)

else

pi(g + 1) = pi(g)

end if

end for

Pick the best individual of the population and present as best found candidate for
solution until moment

end while
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optimization. Indeed, instead of using stochastic (random) operators, the search mecha-

nisms employed by the DE metaheuristic showed to be an efficient approach to extensively

exploit the search space in local and global instances, which may significantly improve

the success rate [Storn and Price, 1997].

3.3 Conclusion

There are several techniques that can be employed to perform optimization. However,

in this work, there are two options that reveal themselves attractive when dealing with

signal processing tasks: gradient-based optimization and metaheuristics. On the one

hand, the gradient approach is a low cost and a canonical choice for optimization in

equalization scenarios, mainly when the use of the approximate gradient is a reliable

option. However, the simplicity comes at the cost of a potentially locally convergent

method – since the gradient is a local operator – and the requirement that the objective

function be continuous and differentiable. On the other hand, the metaheuristics tends

to be more complex, but its use is justified depending on the nature of the optimization

task, which may be significantly different from that found in more classical frameworks.

Particularly, the DE metaheuristic is a preferred option here, since it encompasses the

information available in the current population without only relying on random operators

to explore the search space, which results in a very good compromise between local and

global search capabilities. This feature shall be very useful in problems where the cost

function is multimodal, which will be a constant issue in this work.
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Chapter 4

Statistical and Adaptive Signal Processing

Problems

The previous chapters provided a brief insight on the triad: filtering structure, adap-

tation criterion and optimization method, which, within the signal processing area, are

fundamental elements to tackle a given problem. Particularly, in this work, we are mainly

interested in two problems for which the information about the temporal structure of the

signals shall be useful: the channel equalization and the Blind Source Separation (BSS)

problems. In the following, we present the historical background on these two problems,

where it will become evident the importance of establishing an important synergy among

the triad.

4.1 Channel Equalization

The problem of channel equalization occupies a prominent place within the signal

processing area, since it counts with applications in a diverse set of scenarios such as

astronomy, biomedicine, speech, radar, sonar and seismic [Romano et al., 2010]. However,

its definition has a particular character in the context of communication systems [Haykin,

2001]. In simple terms, in a communication system, the information flow between the parts

is established through a transmission channel, which, depending on the environment it

is inserted in, might cause distortions on the sent information and, consequently, impair

the correct interpretation of the received message. In these cases, a filtering structure is

usually adopted, here named equalizer, whose ideal objective is to mitigate the channel

distorting effects [Haykin, 1996; Romano et al., 2010].

The block diagram that illustrates the communication system is presented in Fig. 4.1,

where H(z) is the channel transfer function, usually unknown, and W (z) is the equalizer

transfer function; the signals sn, xn and yn are the transmitted, the received and the

equalized signals, respectively. The signal sn is commonly referred to as source. Note
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Figure 4.1: Block diagram of a communication system.

that there might also be the presence of noise, denoted by ηn, which could be the result of

interference from other sources or even thermal noise. When limited to a finite bandwidth,

the noise is usually modeled by a Gaussian distributed signal, but, in non-conventional

environment, there might result different noise types, like the Laplacian or impulsive

noise [Romano et al., 2010; Principe, 2010]. In that sense, it is expected from the equalizer

to neutralize the dispersive effect caused by the channel – the well known “Intersymbol

Interference” (ISI) – and, if possible, to perform noise attenuation. In other words, it is

expected that the equalizer output yn be as close as possible to the source sn.

From the receiver standpoint, it can be admitted, ideally, that the equalizer output yn

be a time shifted and/or a scaled version of sn, i.e.,

yn = asn−k, (4.1)

where a is a scale factor and k an arbitrary time delay. If the relation given by Eq. (4.1)

is obeyed, then the equalizer has completely compensated the channel (removing the ISI)

and the noise disturbances.

In the literature, an approach that is usually followed in theoretical formulations fo-

cuses on the relation between channel and equalizer, being the noise neglected for simpli-

fication purposes. In this case, a combined channel+equalizer impulse response is consid-

ered, cn =
∑∞

i=−∞w∗
i h

∗
n−i, which is the convolution between the channel and the equalizer

(assuming, hypothetically, an infinite length in both causal and non-causal parts). Math-

ematically, the output signal of the combined channel+equalizer system is

yn =wHxn =
∞
∑

i=−∞

w∗
i xn−i

=
∞
∑

i=−∞

w∗
i

(

∞
∑

j=−∞

h∗jsn−i−j

)

,

(4.2)
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and, by adopting j = l − i, there results

yn =
∞
∑

i=−∞

w∗
i

(

∞
∑

l=−∞

h∗l−isn−l

)

=
∞
∑

l=−∞

(

∞
∑

i=−∞

w∗
i h

∗
l−i

)

sn−l

=
∞
∑

l=−∞

clsn−l = cT sn.

(4.3)

Hence, the output yn can be directly expressed as a function of the source sn.

In order to obtain the relation given by Eq. (4.1), the combined channel+equalizer

system c = [c−∞ · · · c−1 c0 c1 · · · c∞]T must be a vector with a single non-null element

equal to a, i.e.,

c =
[

0 · · · 0 a 0 · · · 0
]T

. (4.4)

This situation is referred to as the Zero-Forcing (ZF) condition [Haykin, 1996], whose

name is related with the fact that c is forced to be null for all considered delays but

a single one. It is important to mention that the ZF condition may not be attainable,

depending on the channel and equalizer models.

Although the combined channel+equalizer system represents an important theoretical

indicative of the equalization degree, in practice, the unknown channel impulse response

limits its use. In any case, the partial or complete channel equalization will only be

possible if the equalizer structure and parameters are correctly adjusted, a result that

can only be accomplished with a well chosen/defined triad: the filtering structure, the

criterion and the optimization method. In channel equalization, the main approaches

regarding the triad choice are divided into two classes: supervised and unsupervised.

4.2 Supervised Equalization

In supervised channel equalization, it is assumed that there is a finite sequence of the

source that is available to be used as a reference signal dn by the equalizer. When the

sequence dn is transmitted, there starts a training period for the receiver, which can use

the sequence dn known a priori to perform the equalizer adaptation.

In light of this, the supervised criteria aim at the exploitation of the statistical infor-

mation concerning the reference signal dn and other signals of interest, but the approaches

might vary depending on the equalizer structure. In our study, FIR and IIR filters will

play a central role and a special attention will be dedicated to them.
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4.2.1 Finite Length Equalizers

When the equalizer can be modeled as a simple linear combiner, such as an FIR fil-

ter, the problem formulation can gain further mathematical simplicity, mainly from the

quadratic perspective, whose elegant derivation is able to lead to a closed-form solution,

also known as the Wiener solution. However, this SOS-based analysis can impose cer-

tain performance limitations when signals are non-Gaussian. In this case, a promising

approach is the use of the ITL framework. Hence, in order to provide a more complete

perspective of the problem, the SOS-based Wiener filtering paradigm and two supervised

ITL-based approaches will be described in the following.

Wiener Filtering

Probably the key pillar in supervised equalization is the paradigmatic Wiener crite-

rion [Haykin, 1996; Romano et al., 2010], whose origin dates back to the independent

works of Kolmogorov and Wiener, in 1941 and 1942, respectively [Haykin, 1996].

Basically, the criterion is totally formulated from the notion of the Mean-Squared

Error (MSE) between the reference signal dn and the equalizer output yn:

JMSE(w) = E
[

|en|2
]

= E
[

|dn − yn|2
]

, (4.5)

where E[·] is the expectation operator. The objective is, then, to minimize the MSE cost,

so that, ideally, the error energy is as close as possible to zero.

Assuming that the source is a stationary discrete-time stochastic process, further sim-

plification can be achieved with the analysis of the SOS. Indeed, in this case, the correla-

tion matrix RX associated with signal xn and the cross-correlation vector pXD between

signals xn and dn are given by

RX = E
[

xnx
H
n

]

=













rX(0) rX(1) · · · rX(N)

rX(−1) rX(0) · · · rX(N−1)
...

...
. . .

...

rX(−N) rX(−N+1) · · · rX(0)













, (4.6)

and

pXD = E [xnd
∗
n] , (4.7)

respectively, where xn = [ xn xn−1 . . . xn−N ]T is the equalizer input vector and

rX(k) = E
[

xnx
∗
n−k

]

is the autocorrelation function. Based on these entities, the MSE
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cost can be expanded as:

JMSE(w) =E
[

|en|2
]

= E [ene
∗
n]

=E
[(

dn −wHxn

) (

d∗n − xH
n w
)]

=E [dnd
∗
n]−wHE [xnd

∗
n]− E

[

dnx
H
n

]

w +wHE
[

xnx
H
n

]

w

=σ2
D − pH

XDw −wHpXD +wHRXw,

(4.8)

where σ2
D is the variance associated with the signal dn. The Eq. (4.8) exposes the quadratic

character of the MSE cost with respect to the FIR equalizer coefficients w. Since RX is

typically positive definite, the MSE cost forms a paraboloid with a single minimum point.

In order to reach the minimum cost value, a possible approach is to identify the

condition that leads to the null derivative. In that sense, the differentiation of JMSE(w)

with respect to w results in:

∇wJMSE(w) =
dJMSE(w)

dw
=

d

dw

(

σ2
D − pH

XDw −wHpXD +wHRXw
)

= −2pXD + 2RXw ,

(4.9)

and, making Eq. (4.9) equal to zero (i.e., the null derivative), it yields

wo = R−1
X pXD, (4.10)

where wo is the equalizer coefficient vector w at its optimum value in the minimum

mean-squared error sense. This vector is called Wiener solution.

The minimum MSE value can then be obtained by replacing Eq. (4.10) in Eq. (4.8):

JMSE(wo) = σ2
d − pH

XDwo −wH
o pXD +wH

o RXwo

= σ2
d − pH

XDR
−1
X pXD.

(4.11)

It is important to remark that the Wiener solution (Eq. (4.10)) depends on the temporal

delay k considered for the reference signal, which might be dn = sn−k. For each delay k,

there might be a different Wiener solution, being necessary to perform a search for the

delay k that leads to the best performance.

Gradient-Based Algorithms

As we have seen in Section 3.1, the gradient-based algorithms can be attractive due

to their relative simplicity. From the large set of algorithms, we highlight the ones based

on the deterministic gradient and the Least-Mean-Square (LMS) [Romano et al., 2010].
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Deterministic Gradient Algorithm

Since the equalizer coefficients w may change throughout time instants (or updates),

we will henceforth call them wn, which is the vector of coefficients of the FIR equalizer

at time instant n.

Following the gradient update rule given by Eq. (3.1) and using the gradient of the

MSE cost shown in Eq. (4.9), the deterministic gradient algorithm will be defined by the

updates

wn+1 = wn − µ (−2pXD + 2RXwn) . (4.12)

It is important to note that no matrix inversion is necessary in the process. However, the

cross-correlation vector pXD and the correlation matrix RX still must be estimated.

LMS Algorithm

The LMS algorithm is an optimization method widely used in the linear channel equal-

ization problem, mainly due to its robustness and simplicity. This method is based on the

stochastic gradient approach (Section 3.1) proposed by Robbins and Monro [1951], whose

main characteristic is the substitution of the mathematical expectation by instantaneous

estimates.

For the MSE, the stochastic gradient approach of the cross-correlation vector pXD and

the correlation matrix RX are

pXD −→ p̂XD = xnd
∗
n

RX −→ R̂X = xnx
H
n ,

(4.13)

which leads to the following approximate gradient:

∇̂JMSE(wn) = −2xnd
∗
n + 2xnx

H
n wn. (4.14)

Hence, from Eq. (4.14) and the gradient update rule given by Eq. (3.1), the recursive

relation of the LMS algorithm is

wn+1 = wn + µ
(

d∗n − xH
n wn

)

xn, (4.15)

where the multiplicative factor of 2 in Eq. (4.14) was not considered – since this only

causes a scale change on the step size µ. The complex form of the LMS algorithm was

originally proposed by Widrow et al. [1975] and is also called by the name stochastic

gradient-based algorithm.

In 1996, Macchi [1996] performed a study on the convergence properties of the LMS

algorithm and observed that, although the instantaneous estimates of pXD andRX present

high variance, the recursive nature of the LMS algorithm performs, in a certain way, an
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average estimate of pXD and RX throughout the iterative process, being the step size µ

the major responsible for the algorithm convergence.

ITL Filtering

From a general perspective, the ITL methods applied to the supervised problem aim

at the extraction of richer statistical characterization about the error signal en = dn − yn,

which can be particularly convenient in non-Gaussian scenarios [Principe, 2010]. The

most common methods are Rényi’s entropy [Erdogmus and Principe, 2002a,b] and cor-

rentropy [Principe, 2010] (introduced in Section 2.3.1).

Regarding the Rényi’s definition about entropy, its application in the supervised chan-

nel equalization problem is associated with the notion of uncertainty, in the sense that

the distortion effect caused by the channel might contribute to the increase of the error

uncertainty. Ideally, it is expected that the error signal en be a null sequence after a

successful equalization, a circumstance in which the error entropy is null. However, if the

error is not null, its entropy will tend to increase [Principe, 2010]. In light of this, Erdog-

mus and Principe [2002a] proposed the ITL criterion which aims at the minimization of

the quadratic Rényi’s entropy of the error, i.e.,

min
w

HR
2 (E) = min

w

− log

(∫

f 2
E(v) dv

)

, (4.16)

where fE(v) is the PDF associated with the error. However, since the channel and noise

are usually unknown in the equalization problem, the error PDF must be estimated,

being a promising approach the Parzen window method with Gaussian kernel functions

(see Section 2.3.1), which results in:

ĴHR(w) = − log

(

1

N2
e

Ne
∑

i=1

Ne
∑

j=1

G2σ2(ej − ei)

)

, (4.17)

where Ne is the number of considered error samples. For simplification purposes, the

IP cost can also be used. Differently from the MSE cost, the cost ĴHR is no longer a

paraboloid and, consequently, a closed-form solution is difficult to be obtained.

Other important supervised ITL criterion is that based on correntropy (Section 2.3.2).

Since this entity can be seen as a similarity measure capable of extracting the HOS about

the RVs, one can apply it to the equalization problem by maximizing the correntropy

between the reference dn and the equalizer output yn signals, resulting in

max
w

vD,Y =

∫

R2

κσ (v) fD,Y (v) dv, (4.18)

where fD,Y (v) is the joint PDF associated with the RVs D and Y . Again, using the
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Gaussian function (Eq. (2.11)) as the kernel and the sample mean instead of the statistical

expectation, there results:

Ĵcor(w) =
1

Ne

Ne
∑

i=1

Gσ2(di − yi) =
1

Ne

Ne
∑

i=1

Gσ2(ei). (4.19)

In comparison with the quadratic Rényi’s estimator, the correntropy-based cost Ĵcor(w)

presents the advantages of requiring a lower computational cost (note that there is a single

summation operator in Eq. (4.19)) and being less sensitive to variations on the kernel size

σ. On the other hand, it can demand a larger number of samples Ne to provide a good

estimate [Santamaŕıa et al., 2006; Principe, 2010].

In situations where the channel is linear and the additive noise is Gaussian, both men-

tioned ITL criteria provide solutions that tend to be close to the MSE optimum [Principe,

2010; Boccato et al., 2016]. However, this is not the case when the source and/or noise

are non-Gaussian distributed, a case in which the ITL algorithms tend to be more robust

than that based on the MSE. Furthermore, the ITL-based approach gains special distinc-

tion from the classical MSE approach when nonlinear relationships emerge, such as those

caused by the use of a multilayer perceptron neural network as an equalizer [Santamaŕıa

et al., 2002]. But we remind the reader that a linear structure might also lead to nonlinear

relations, as occurs in IIR filters (Section 1.1.1), as we will see later.

From a general perspective, the computational burden associated with the costs can be

reduced through the use of the adaptive algorithms – e.g., similarly to the LMS approach,

where the estimation of the cross-correlation vector pXD and the correlation matrix RX

are simplified, an adaptive algorithm can rely on a reduced number of samples for the

ITL entities estimation.

Gradient-Based Algorithms

Regarding the ITL approaches, the gradient-based algorithms are also applied to chan-

nel equalization problems. Although local convergence is possible in this case (since the

cost surface might be more complex than a paraboloid), the use of these methods in ITL

is justified by its reduced computational cost [Santamaŕıa et al., 2002; Principe, 2010].

For the quadratic Rényi’s entropy estimator, Eq. (4.17), the gradient is given by [San-

tamaŕıa et al., 2002]

∇wn
ĴHR(wn) ∝

1

2N2
e σ

2

Ne
∑

i=1

Ne
∑

j=1

G2σ2 (en−i − en−j) (en−i − en−j) (xn−i − xn−j) , (4.20)

where the negative log was suppressed, since the null gradient point remains the same.
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For the correntropy estimator, the gradient is [Principe, 2010]

∇wn
Ĵcor(wn) =

−1

Neσ2

Ne
∑

i=1

Gσ2 (en−i) en−ixn−i. (4.21)

The resulting algorithms are obtained by replacing Eqs. (4.20) and (4.21) in Eq. (3.1).

Note that the stochastic approach is encompassed in the Rényi’s entropy estimator via

the Parzen window method, while, for the correntropy estimator, Eq. (4.19), there is a

substitution of the mathematical expectation by sample estimation.

It is important to emphasize that, due to approximations on the gradient, the algo-

rithms convergence may result in oscillations around the solution (the so-called misad-

justment effect [Haykin, 1996]), which can be softened by the correct adjustment of the

step size µ.

4.2.2 Infinite Length Equalizers

As presented in Section 1.1.1, the IIR structure is able to provide important features

that may demand special care on the criterion definition, which contributed to the devel-

opment of several approaches for this infinite length filter [Horvath Jr., 1976; Long et al.,

1987; Regalia, 1994]. Among these approaches, we highlight the equation-error [Mendel,

1973] and the output-error [Johnson Jr., 1984] formulations, since they aim at simpler

interactions with respect to criteria and/or optimization algorithms. Although the main

efforts were aimed in the context of system identification, their application in channel

equalization problems is straightforward. In the following, the two formulations – that

are based on the MSE – will be presented in detail.

Equation-Error Formulation

The equation-error formulation is based on a simple but effective approach: in order

to avoid the nonlinear relationship that emerges between the equalizer output yn and the

IIR coefficients, it is assumed that delayed versions of yn, say yn−m, already achieved

equivalence with the reference signal dn−m, being m > 0. Hence, the output of the IIR

structure is modified to1

ye,n =

Nb
∑

i=0

bixn−i +
Na
∑

j=1

ajdn−j, (4.22)

or, in a vector representation,

ye,n = θTφe,n, (4.23)

1Very interestingly, the equation-error formulation can also be viewed as a Decision Feedback Equalizer
(DFE) without error propagation.
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where φe,n = [xn xn−1 . . . xn−Nb
dn−1 . . . dn−Na

]T – the vector θ is as defined in Eq. (1.5).

Note that Eq. (4.22) is very similar to Eq. (1.4), with exception that dn−m is employed in

lieu of yn−m. As consequence, the feedback part in Eq. (4.22) is replaced by a feedforward

linear combination of dn−m.

As a supervised approach, a simple and efficient criterion for this formulation can be

obtained by means of the minimization of the MSE between the reference signal dn and

the output signal ye,n, i.e.,

JMSEE(θ) = E
[

|ee,n|2
]

= E [(dn − ye,n)(dn − ye,n)
∗] , (4.24)

which is a unimodal cost in function of θ, i.e., the cost has a single minimum.

After optimization, which could be, for instance, via a gradient-based algorithm, the

coefficients aj, for j = {1, . . . , Na}, are ‘copied’ to an all-pole filter in cascade with

B(z) [Shynk, 1989], as shown in Fig. 4.2. Although it seems to be a very convenient

approach, the equation-error formulation may lead to biased solutions, depending how far

is yn from dn. In fact, the presence of noise is a preponderant factor leading to biased

solutions [Shynk, 1989], and, due to this, this approach is usually preferred in scenarios

with high Signal-to-Noise Ratio (SNR).

Figure 4.2: Equation-error formulation - Copy operation.

Since the equation-error formulation allows to approximate the IIR structure by two

FIR filters, a closed-form solution similar to Eq. (4.10) can be obtained. However, a

gradient-based algorithm is usually preferred in practical scenarios due to its lower com-

putational complexity, such as the LMS-based algorithm [Widrow et al., 1976] described

in the following.
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LMS Algorithm

By changing the equalizer output yn to the approximate ye,n (Eq. (4.22)), the equation-

error formulation is able to reduce the relation between θ and ye,n to a linear one, allowing

the direct implementation of the LMS-based algorithm [Shynk, 1989; Haykin, 1996].

In this case, the gradient of the JMSEE(θ) cost is given by

∇θJMSEE(θ) = −ee,n∇θye,n

= −ee,nφe,n,
(4.25)

and, similarly to the FIR equalizer counterpart (Eq. (4.15)), the weights optimization will

follow the update rule:

θn+1 = θn − µ∇θn
JMSEE(θn)

= θn + µee,nφe,n,
(4.26)

where the initial coefficients θ0 are generally set to be null.

Output-Error Formulation

In the output-error formulation, no assumptions are made on the IIR structure, but

on the derivatives of the gradient-based methods. In this case, the relation between θ

and yn (given by Eq. (1.4)) is, as already known, nonlinear.

As in the equation-error formulation, the MSE-based criterion is the common ap-

proach, whose cost is given by

JMSOE(θ) = E
[

|eo,n|2
]

= E [(dn − yn)(dn − yn)
∗] . (4.27)

Note that, in this case, there is no closed-form solution and the cost JMSOE(θ) may

significantly differ from the previous paraboloid of the equation-error [Johnson Jr., 1984].

The nonlinear relationship between θ and yn becomes evident through the gradient of

JMSOE(θ), which can be written as

d

dθ
JMSOE(θn) = −eo,n

(

d

dθn

yn

)

(4.28)

being

∂

∂aj,n
yn = yn−j +

Na
∑

k=1

ak,n
∂yn−k

∂aj,n
;

∂

∂bi,n
yn = xn−i +

Na
∑

k=1

ak,n
∂yn−k

∂bi,n
.

(4.29)

The partial derivative on the right side of Eq. (4.29) is non-null and can be seen as a
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direct result of the feedback part existent on the IIR structure: the past samples of yn are

dependent on the past values of the coefficients, which, in turn, are related to the present

ones – aj,n and bi,n – due to the successive iterations of the gradient-based optimization

approaches [Shynk, 1989]. Note that Eq. (4.29) is not easily computed, since the partial

derivatives are taken with respect to the current values of the coefficients aj,n e bi,n, being

not recursive.

In order to simplify the gradient computation, some approximations are usually con-

sidered [Johnson Jr., 1984; Shynk, 1989], which result in different algorithms. In the

present work, we consider two of them: the Pseudolinear Regression (PLR) [Feintuch,

1976] and the simplified Recursive Prediction Error (RPE) [Ljung and Söderström, 1983;

Ljung, 1998].

PLR Algorithm

The PLR algorithm is based on a relaxation involving the IIR equalizer coefficients θ

and its output yn. Basically, the gradient of the cost JMSOE(θn) is approximated to

∇θJMSOE(θ) = −eo,n∇θyn

≈ −eo,nφn,
(4.30)

which is based on the supposition that yn and θ are linearly combined. Hence, the

coefficients update rule becomes

θn+1 = θn + µeo,nφn. (4.31)

This approach is very similar to the LMS algorithm, but it does not make use of the

reference signal dn to compose the vector φn, which should be as defined in Eq. (1.5).

Simplified RPE Algorithm

For the RPE algorithm, it is assumed a slow adaptation of the coefficients, so that

θn ≈ θn−1 ≈ . . . ≈ θn−Ni
, being Ni a given number of iterations [Johnson Jr., 1984]. As

consequence, the derivative of Eq. (4.29) is approximated to

∂

∂aj,n
yn ≈ yn−j +

Na
∑

k=1

ak,n
∂yn−k

∂aj,n−k

;

∂

∂bi,n
yn ≈ xn−i +

Na
∑

k=1

ak,n
∂yn−k

∂bi,n−k

,

(4.32)
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where j = {1, . . . , Na} and i = {0, . . . , Nb}. In this case, the derivatives are recursive,

and can actually be seen as signals filtered by the all-pole filter 1/(1 − A(z)). This is

the main idea behind the standard RPE algorithm. However, each component of the

gradient vector for j = {1, . . . , Na} and i = {0, . . . , Nb} must be filtered by 1/(1− A(z))

individually.

In order to reduce the complexity, a simplified RPE approach can be achieved if

assumed:
∂yn
∂aj,n

≈ ẏn−j;

∂yn
∂bi,n

≈ ẋn−i,

(4.33)

for j = {1, . . . , Na} and i = {0, . . . , Nb}. Hence, each component of the gradient is simply

a delayed version of ẏn or ẋn, which leads to [Johnson Jr., 1984; Shynk, 1989]

ẏn ≈ yn +
Na
∑

k=1

ak,nẏn−k;

ẋn ≈ xn +
Na
∑

k=1

ak,nẋn−k,

(4.34)

which is, basically, the filtering of yn and xn by the all-pole filter 1/(1−A(z)), as illustrated
in Fig. 4.3. The signals ẏn and ẋn are called simplified gradient components and, according

Figure 4.3: Output-error formulation - Simplified gradient components.

to Eq. (4.33), its delayed versions are necessary to compose the gradient vector. Thus,

the approximate gradient becomes

∇θJMSOE(θ) = −eo,n∇θyn

≈ −eo,nφ̇n,
(4.35)

being φ̇n = [ẋn ẋn−1 . . . ẋn−Nb
ẏn−1 . . . ẏn−Na

]T the vector of the signals filtered by

1/(1−A(z)). Finally, the update rule for the simplified RPE algorithm can be computed
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as

θn+1 = θn + µeo,nφ̇n, (4.36)

which is very similar to the previous approach, except by the use of the simplified gradient

components ẏn and ẋn instead of the signals yn and xn, respectively.

In this work, both PLR and RPE-based approaches will be studied, but from the

perspective of the ITL framework. In fact, in the context of the system identification

problem, some initial steps were taken considering the matching of distributions [Lai,

2002; Lai et al., 2003], but without relying on the use of these algorithms. A major

discussion on this topic will be provided in Chapter 7.

4.3 Unsupervised Equalization

Under the supervised perspective, the need for the reference sequence dn might dras-

tically reduce the transmission rate in several practical applications. In fact, during the

equalizer training process, there is no effective information transmission, since the ref-

erence sequence is already known by the receiver. This standpoint motivated the rise

of new techniques able to perform channel equalization without relying on the reference

signal dn. To this class of problems, it is assigned the name unsupervised or blind channel

equalization.

It is possible to state that the blind equalization problem was a frequent research

topic during the decades of 70 to 90, which is a direct consequence of its wide horizon of

applications, such as telecommunications, audio and speech processing, radar and sonar,

biomedical signal/image processing and geophysics [Romano et al., 2010].

From a general perspective, a completely blind approach implies in a tremendous

difficulty for reducing the ISI. However, a promising approach is to use, implicitly or

explicitly, some general prior statistical information about the source signal. For instance,

in prediction error filtering, it is assumed that the sources are statistically independent

(or, at least, uncorrelated), or, in classical Bussgang and Godard techniques, it is assumed

that the modulation scheme is known a priori [Haykin, 1996; Romano et al., 2010].

Although some of the pioneering works on this topic were based on some intuitive

approaches, mainly involving specific modulations, like the Pulse Amplitude Modulation

(PAM) or the Quadrature Amplitude Modulation (QAM) [Godfrey and Rocca, 1981;

Bellini and Rocca, 1986], it was later theoretically verified that the HOS statistics were a

requirement for solving the problem. This idea motivated the employment of ITL methods

within this topic. Hence, next, we present a brief overview in blind equalization, starting

from the main theoretical results, following by some selected elements of the classical

techniques and ending with some ITL methods. Differently from the supervised approach,

no distinction is made regarding the equalizer structure, but the standard adoption is of
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FIR filters as equalizers.

4.3.1 The Theoretical Pillars in Blind Equalization

The works of Benveniste et al. [1980] and of Shalvi and Weinstein [1990] introduced

the theorems responsible for establishing the theoretical conditions for blind equalization.

These theorems were named after their authors: the Benveniste-Goursat-Ruget (BGR)

and the Shalvi-Weinstein (SW) theorems.

The Benveniste-Goursat-Ruget Theorem

In simple terms, the BGR theorem [Benveniste et al., 1980; Romano et al., 2010] can

be posed as

Theorem 1 (BGR Theorem). Let the transmitted signal be composed of non-Gaussian

i.i.d. samples and both channel H(z) and equalizer W (z) be linear time-invariant filters,

in a noiseless scenario. Under these conditions, if the distribution of the source, fS(v),

and of the equalizer output, fY (v), are equal, then the channel will have been perfectly

equalized.

This theorem ensures that equalization can be obtained using only the statistical prop-

erties about the signals, however, it is required the knowledge of the source distribution.

The limitation concerning Gaussian distributions results from the linear filtering process,

in which Gaussian distributed signals remains Gaussian after filtering, and no further

information besides the variance can be extracted [Romano et al., 2010].

The Shalvi-Weinstein Theorem

Ten years later, Shalvi and Weinstein [1990] were able to establish less stringent con-

ditions for blind equalization under assumptions similar to those of the BGR theorem:

Theorem 2 (SW Theorem). Let the transmitted signal be composed of non-Gaussian

i.i.d. samples and both channel H(z) and equalizer W (z) be linear time-invariant filters,

in a noiseless scenario. Under these conditions, if E[|sn|2] = E[|yn|2] and a higher than

second-order nonzero cumulant of sn and yn are equal, then the channel will have been

perfectly equalized.

In other words, the SW theorem states that equalization can be performed by using

only the second-order statistics and the cumulants of the source and equalized signals [Ro-

mano et al., 2010]. This simplified conditions provided the theoretical basis to understand

the performance of the classical blind algorithms, presented in the following.
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4.3.2 Bussgang Techniques

The blind approaches known as Bussgang techniques have in common the prior knowl-

edge of some statistics of the source and the implicit use of the HOS necessary to solve

the problem. The higher complexity in comparison with the MSE cost contributes to the

rise of certain local minima as well as other points, such as maxima and saddle points,

which is a very rich and dynamical scenario.

The Bussgang techniques traditionally employ linear FIR filters as equalizers, a cri-

terion with implicit HOS and an LMS-like algorithm for optimization. Although these

three elements are involved in the derivation, in the literature, the approaches belonging

to this class of techniques are usually referred by their algorithms names.

The Decision-Directed and The Sato Algorithms

The Decision-Directed (DD) algorithm makes use of a memoryless nonlinear decision-

device, whose objective is to provide an estimate of the reference signal [Lucky, 1965].

Interestingly, the nonlinearity involved in the decision process is responsible for implicitly

introducing the HOS necessary to solve the problem.

The DD criterion can be viewed as a modified MSE criterion, whose reference signal

is substituted by an estimate based on the equalizer output signal yn. Its cost function

can be defined as

JDD(w) = E
[

|dec(yn)− yn|2
]

, (4.37)

where dec(·) is the nonlinear decision function.

By using the stochastic approach to compute the gradient (similarly to the LMS

algorithm), the resulting update rule of the DD algorithm becomes

wn+1 = wn + µ
(

dec∗(yn)− xH
n wn

)

xn. (4.38)

The information about the source is encompassed in the decision process. For instance,

in case the transmitted signal is modulated according to the Binary Phase-Shift Keying

(BPSK) scheme, the decision function can be defined as

dec(yn) = sgn(yn) =

{

+1, if yn ≥ 0

−1, if yn < 0
. (4.39)

It is important to emphasize that the equalization performance is limited to the type

of the chosen nonlinearity. The decision-device will only provide reliable estimates of

the reference signal if the algorithm initialization already provides a satisfactory open-

eye condition, i.e., a relatively good initialization. This justifies the usual application

of the DD algorithm together with a supervised approach, e.g., the LMS algorithm. In

this case, the LMS algorithm is used during the transmission of a header in the message,
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which should lead the algorithm to an open-eye condition; after that, the transmission

can be switched to the blind mode, and the DD algorithm will be able to complete

the equalization process, converging, ideally, to the Wiener solution [Macchi and Eweda,

1984].

An extension of this work was accomplished by Sato [1975], having in mind multilevel

modulation schemes, e.g., the M-ary baseband Pulse Amplitude Modulation (M-PAM).

Basically, Sato [1975] proposed the use of the decision function:

dec(yn) = γsgn (yn) , (4.40)

where γ is a scale factor defined as:

γ =
E [s2n]

E [|sn|]
. (4.41)

This approach was able to achieve more robust performance than the DD algorithm, being

able to operate in a complete blind fashion, i.e., even in closed-eye condition.

The convergence aspects for the DD algorithm are, to a great extent, also valid for

the Sato algorithm. This similarity emerges, for instance, when the source is BPSK

modulated and both algorithms are coincident. Thus, both are susceptible to local minima

convergence – even in the case in which the equalizer is doubly infinite and the source is

PAM modulated [Ding et al., 1993].

Godard Algorithm

The blind techniques proposed by Godard [1980] are based on a criterion which mea-

sures the dispersion of the equalized signal around a prior value, without making use of

the phase information. This approach allows that even complex modulations – such as

the Quadrature Amplitude Modulation (QAM) – be adopted. The cost function, also

referred to as ‘p-order dispersion’, is of the form

JGodard(w, p) = E
[

(|yn|p −Rp)
2] , (4.42)

where p is a positive integer and Rp is a predetermined constant value, given by

Rp =
E [|sn|2p]
E [|sn|p]

. (4.43)

By computing the gradient and using the classical stochastic approximation, Godard

obtained the following update rule for the homonym algorithm:

wn+1 = wn − µy∗n|yn|p−2 (|yn|p −Rp)xn. (4.44)
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Particularly, the case p = 2 is of great practical interest due to its robustness and

fast convergence [Godard, 1980]. Referred to as the Constant Modulus (CM) [Treichler

and Agee, 1983] criterion, this case also presents local minima convergence, even on the

combined channel+equalizer system domain [Ding et al., 1991]. However, the initializa-

tion strategy named center-spike contributed to the reduction of the local convergence

rate [Foschini, 1985]. This same initialization method was investigated for the Shalvi-

Weinstein criterion, which revealed connections between these two approaches [Foschini,

1985].

4.3.3 The Shalvi-Weinstein Algorithm

The SW criterion [Shalvi and Weinstein, 1990] is based on the Theorem 2 and uses, as

crucial element, the quantity called kurtosis, which is able to extract HOS of the signals

of interest. In that sense, the kurtosis of the equalizer output signal can be defined as

kY = E
[

|yn|4
]

− 2E2
[

|yn|2
]

−
∣

∣E
[

y2n
]∣

∣

2
, (4.45)

in which the use of the fourth-order statistics is evident.

Since the SW theorem also encompasses a variance constraint, a possible option for the

SW criterion is to formulate it through a maximization problem subject to a constraint,

i.e.:

max
w

JSW (w) = max
w

|kY | ; (4.46)

subject to

E
[

|yn|2
]

= E
[

|sn|2
]

. (4.47)

As can be noted, it does not belong to the Bussgang techniques because it encompasses

explicit use of the HOS and makes no assumption on the source distribution (except non-

Gaussianity). The maximization of kY is related with the idea that, for i.i.d. sources,

linear distortions caused by the channel result in a reduction of the kurtosis. In that

sense, by maximizing kY , it is ideally expected that the channel effect be suppressed and

kY reaches its maximum value, which is equal to kS.

The stochastic gradient approach results in the following update rule to be performed

in two steps:

w̃n+1 = wn − µsgn (kS) |yn|2ynxn, (4.48)

in which kS is the kurtosis associated with the source, and

wn+1 =
w̃n+1

||w̃n+1||
, (4.49)

which is related with the normalization constraint of Eq. (4.47); however, in order to
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ensure a fixed variance at the equalizer output, the spectral prewhitening of the channel

output is required [Shalvi and Weinstein, 1990].

The SW algorithm showed to be an interesting blind technique to encompass the

HOS of the signals of interest. However, in a more recent trend, the increase of the

computational capacity contributed to the adoption of criteria aligned with the idea of the

BGR theorem, in which the probability distributions are encompassed in the formulation,

as will be seen in the following.

4.3.4 ITL Criteria

The BGR and SW theorems make explicit the idea that, for a successful equalization

in the blind context, the use of the HOS about the signals of interest is of fundamental

importance. In that sense, the ITL-based methods [Principe, 2010] reveal themselves to

be a very promising approach, since they seek an extensive extraction and utilization of

the statistical information about the signals, including the HOS.

Basically, there are three main ITL approaches applied to the blind equalization prob-

lem, which are the Rényi’s entropy, the quadratic divergence and the correntropy-based

methods.

Rényi’s Entropy

In parallel with the development of supervised ITL criteria [Santamaŕıa et al., 2002],

one of the first blind ITL approaches aimed at bringing together entropy and the p-order

dispersion that engenders the Godard’s family of cost functions [Godard, 1980]. However,

in order to obtain simpler estimators for entropy, instead of Shannon’s definition, the

quadratic Rényi’s entropy [Principe, 2010] (Eq. (2.19)) is considered, which results

JHRD(w) = HR
2 (Y p −Rp) = HR

2 (Y
p), (4.50)

where the RV Y p is associated with the modulus signal |yn|p, Rp = E [|sn|2p] /E [|sn|p]
and p ∈ Z. The last equality in Eq. (4.50) comes from the fact that the entropy does not

depend on the mean of the RV. As in the supervised case, it is desired to minimize the

JHRD(w) cost.

As usual within the ITL framework, the PDF associated with Y p, fY p(v), is estimated

according to the Parzen window method with Gaussian kernel functions (Section 2.3.1),

resulting in

ĴHRD(w) =
1

N2
y

Ny−1
∑

i=0

Ny−1
∑

j=0

G2σ2 (|yn−j|p − |yn−i|p) , (4.51)

where Ny is the number of samples of yn.
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Generally, for FIR equalizers, a stochastic gradient-based algorithm is used for opti-

mization. Additionally, assuming p = 2, the gradient of Eq. (4.51) is

∇wn
ĴHRD(wn) ∝

1

2N2
yσ

2

Ny−1
∑

i=0

Ny−1
∑

j=0

G2σ2

(

|yn−j|2 − |yn−i|2
) (

|yn−j|2 − |yn−i|2
)

·

· (yn−ixn−i − yn−jxn−j) ,

(4.52)

where the negative log was suppressed [Santamaŕıa et al., 2002]. The resulting algorithm

is obtained by replacing Eq. (4.52) in the update rule given by Eq. (3.1).

Since this method makes use of the statistical information brought by only the filter

output signal yn, a constraint over the equalizer is necessary to avoid convergence towards

the trivial solution, such as keeping one of the taps unitary [Santamaŕıa et al., 2002].

The Quadratic Divergence Between Distributions

In consonance with the BGR theorem, the idea of matching the distributions associated

with the equalizer output and with the source gains new insight when combined with the

QD measure within the ITL framework (Section 2.3.2). In that sense, a possible cost

function can be written as [Santamaŕıa et al., 2002b; Lázaro et al., 2005]

JQD(w) =

∫

(fY p(v)− fSp(v))2 dv

=

∫

f 2
Y p(v)dv +

∫

f 2
Sp(v)dv − 2

∫

fY p(v)fSp(v)dv ,

(4.53)

where fY p(v) and fSp(v) are the PDFs associated with the RVs Y p = {|y(n)|p} and

Sp = {|s(n)|p}, respectively. Note that this method considers the modulus of the symbols

to the power p, similarly to the p-order dispersion [Godard, 1980]. Also, it is important

to mention that the second term after the last equality of Eq. (4.53) is generally disre-

garded, since it is assumed that fSp(v) is a target PDF and remains fixed during the filter

adaptation process.

In communication problems, the PMF of the source pS(v) is assumed to be known.

In the work of Lázaro et al. [2005], the convolution between the Gaussian kernel and the

discrete distribution of the source pS(v) is considered to simplify the cost estimation. In

this case, the distribution of the source is approximated to a PDF according to

f̂Sp(v) =
∑

i∈A

pS(si)Gσ(v − |si|p) (4.54)

where A is the alphabet of all possible occurrences of the RV S and si is the i-th symbol

∈ A. Using the Parzen window method with Gaussian kernels for fY p(v), the QD cost
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function can be estimated as

ĴQD(w) =
1

N2
y

Ny−1
∑

i=0

Ny−1
∑

j=0

G2σ2(|yn−j|p − |yn−i|p)

− 2

NyNA

∑

i∈A

Ny−1
∑

j=0

G2σ2(|yn−j|p − |si|p),
(4.55)

where NA is the number of elements in A. Note that we have not considered the second

term of Eq. (4.53) for obtaining Eq. (4.55).

Assuming p = 2, the gradient of Eq. (4.55) is

∇wn
ĴQD(wn) =

−1

2N2
yσ

2

Ny−1
∑

i=0

Ny−1
∑

j=0

G2σ2(|yn−i|2 − |yn−j|2)
(

|yn−i|2 − |yn−j|2
)

·

· (yn−ixn−i − yn−jxn−j)

+
2

NyNAσ2

∑

i∈A

Ny−1
∑

j=0

G2σ2(|yn−j|p − |si|p)(|yn−j|p − |si|p)yn−jxn−j,

(4.56)

which can be directly applied in Eq. (3.1) to obtain the gradient-based algorithm. In

order to reduce computational complexity, one can consider Ny = 1, there vanishing the

first term of Eq. (4.56) [Lázaro et al., 2005].

4.3.5 Correntropy

Finally, a correntropy-based criterion can also be used in the context of blind equaliza-

tion, as proposed by Santamaŕıa et al. [2006]. Very interestingly, the authors consider the

case in which the sources are not necessarily i.i.d. and may present a temporal structure.

In this case, correntropy can be used to extract the HOS and the temporal structure of the

underlying signals to perform blind equalization, resulting in the following cost function:

Jcor(w) =
M
∑

m=1

(vS(m)− vY (m))2 , (4.57)

where M ≥ 1 is the number of lags considered, vS(m) = vSn,Sn−m
and vY (m) = vYn,Yn−m

are the (auto)correntropy of the source sn and of the equalizer output yn for delay m,

respectively.

In context of communications, the correntropy of the source vS(m) is assumed to be

known, and the correntropy associated with the equalizer output, vY (m), is estimated via
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the method shown in Section 2.3.2, resulting in

Ĵcor(w) =
M
∑

m=1

(

vS(m)− 1

Ny

Ny−1
∑

i=0

Gσ2 (yn−i−yn−m−i)

)2

. (4.58)

Again, a gradient-based algorithm can be used for optimization, with

∇wĴcor =
M
∑

m=1

(vS(m)− v̂Y (m))

(

−1

σ2Ny

Ny−1
∑

i=1

Gσ2 (yn−i−yn−m−i) ·

· (yn−i−yn−m−i)(xn−i−xn−m−i)

)

.

(4.59)

We highlight that, although correntropy was the subject of intense research in the last

decade [Santamaŕıa et al., 2006; Liu et al., 2006; Li et al., 2007; Gunduz and Principe,

2009; Principe, 2010], the study of the case in which the sources are non-i.i.d. is still

incipient in the blind equalization context. In fact, as previously mentioned, this topic

composes one of the main subjects to be investigated in this work.

4.4 Blind Source Separation

In many practical applications, it is of interest to retrieve a set of source signals from

some samples (or observations) that actually are the mixtures of these sources. Since no

prior knowledge about the source distributions is assumed, the problem is referred to as

Blind Source Separation (BSS) [Comon and Jutten, 2010; Romano et al., 2010]. It counts

with a diverse set of applications, in which we mention: audio signals [Makino et al.,

2006], astronomical data [Jutten et al., 2007], brain images [Calhoun et al., 2001] and

other medical applications [Comon and Jutten, 2010].

In general terms, the BSS problem can be formulated as: let s(n) = [s1(n) · · · sN(n)]T
be a vector of N sources at time instant n (note that we have used a different notation, be-

ing the time index n used within parenthesis, as customary in the BSS formulation [Comon

and Jutten, 2010; Romano et al., 2010]) and an unknown mixing function Φ(·), such that

x(n) = Φ (s(n)) , (4.60)

with x(n) = [x1(n) · · · xM(n)]T the observation vector with M mixtures. Using only a

limited number of samples of x(n), it is desired to obtain an unmixing function Ψ(·), such
that

y(n) = Ψ (x(n)) (4.61)

be as close as possible to the sources s(n), up to scale and permutation factors [Comon and
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Jutten, 2010]. Note that this problem is similar to that of equalization, if Multiple-Inputs

Multiple-Outputs (MIMO) systems are considered.

Throughout three decades of existence, this issue was object of great attention from the

academic community, where most of the initial efforts were aimed at the standard linear

and instantaneous mixing model, with the assumption that the sources are mutually inde-

pendent. The results contributed to a solid theoretical framework known as Independent

Component Analysis (ICA) [Comon and Jutten, 2010], in which the MI (Section 2.3.2)

plays a central role. However, in certain practical scenarios, the linear and instantaneous

approach may not be adequate, being necessary the adoption of nonlinear models, in

which we cite, for instance, the Linear-Quadratic (LQ) mixtures and the Post-Nonlinear

(PNL) models [Deville and Duarte, 2015]. In that sense, we briefly present some aspects

of both linear and nonlinear cases within the BSS problem.

4.4.1 The Linear Case

In the linear and instantaneous BSS problem, the mixtures can be modeled as

x(n) = As(n), (4.62)

where A is the M ×N mixing matrix. Assuming that the mixing matrix A is invertible,

a linear separating structure can be employed, i.e.,

y(n) = Wx(n), (4.63)

where W is an N×M separating matrix. The challenge, however, is to obtain W = A−1,

up to scale and row permutations, based only on the observed samples x(n) and a minimal

amount of information about the sources.

Particularly, we consider two hypotheses about the sources: in the first case, the

sources are assumed to be statistically independent, and, in the second case, the sources

are additionally assumed to be temporally colored.

MI-Based Criteria

The assumption of mutual independent sources can be mathematically expressed

through the relation:

fS1,...,SN
(v) =

N
∏

i=1

fSi
(vi), (4.64)

where v = [v1, . . . , vN ]
T , fS1,...,SN

(v) is the joint PDF associated with the sources and

fSi
(vi) is the marginal distribution of the i-th source. Based on this assumption, Comon

[1994] showed that it is possible to obtain the separating matrix W in an unsupervised
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fashion.

Very interestingly, the concept of MI can be used to quantify independence between

random variables, leading to a promising separation criterion. Hence, based on Eq. (2.22),

the MI among the outputs of the separating system is

I(Y1; . . . ;YN) =

∫

D

fY1,...,YN
(v) log

(

fY1,...,YN
(v)

∏N
i=1 fYi

(vi)

)

dv

=
N
∑

i=1

HS(Yi)−HS(Y1, . . . ,YN),

(4.65)

where the MI should be minimized and, for I(Y1; . . . ;YN) = 0, mutual independence is

reached [Comon and Jutten, 2010].

For linear mixtures, it can be shown that [Comon and Jutten, 2010]

HS(Y1, . . . ,YN) = HS(X1, . . . ,XM) + log |det(W)| . (4.66)

Since the term HS(X1, . . . ,XM) does not depend on W, it can be disregarded in the

minimization process. Thus, the resulting MI-based criterion is

min
W

JMI(W) = min
W

N
∑

i=1

HS(Yi)− log |det(W)| . (4.67)

In this case, the sources are not allowed to be Gaussian distributed except for one of them,

due to reasons similar to those presented in the BGR theorem [Hyvärinen et al., 2001].

The criterion given by Eq. (4.67) can be estimated following a diverse set of ap-

proaches [Hyvärinen et al., 2001; Comon and Jutten, 2010; Silva et al., 2016], even the

kernel-based estimators presented in Section 2.2.1. However, it is evident that use of the

HOS is an unavoidable requirement for performing BSS, except if more information about

the sources can be used, such as the temporal structure.

Temporally Colored Sources

Besides the mutual independence assumption, the sources can also be considered tem-

porally non-i.i.d., which, fortunately, is far from being a prohibitive assumption, given its

large occurrence in practical BSS problems [Hyvärinen et al., 2001]. In such cases, the

information about the temporal structure of the underlying signals is most valuable, since

only the SOS reveal to be sufficient for performing linear BSS – i.e., if the SOS exhibit

sufficient diversity (non-coincident spectral densities), the HOS are no longer necessary.

In addition, the temporal information also allows the separation of Gaussian sources,

which are not separable using any of the classical approaches which ignore the temporal

structures [Comon and Jutten, 2010].
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Within the SOS-based framework, the time structure can be extracted via the au-

tocorrelation (or autocovariance) functions. However, for a successful separation, it is

required that the sources be wide sense stationary and that their power spectral densities

be mutually distinct, i.e., that their correlation profile obeys

E[si(n)si(n−k)] 6= E[sj(n)sj(n−k)], (4.68)

for i 6= j and some delay k 6= 0 [Romano et al., 2010]. In fact, the mutual independence

assumption guarantees that the sources be mutually uncorrelated and the autocorrelation

matrix of the sources for delay k is always diagonal, i.e., for unitary variance sources,

RS(m) = E[s(n)sT (n−k)] = IN , (4.69)

where IN is an N ×N identity matrix. Based on this, the information of the time-lagged

correlation can be used instead of the HOS, so that

E[yi(n)yj(n−k)] = 0, (4.70)

for i 6= j and an arbitrary delay k ≥ 0 [Hyvärinen et al., 2001]. This is equivalent to force

the off-diagonal elements of RY (k) to be null:

RY (k) = E[y(n)yT (n−k)]
= WARS(k)A

TWT

= WAINA
TWT .

(4.71)

This idea composes the essence of the AMUSE algorithm [Tong et al., 1991], but it is

necessary that the lagged correlation be different for all sources at time delay k.

An extension of this idea using d time lags leads to algorithms like SOBI [Belouchrani

et al., 1997] and TDSEP [Ziehe and Müller, 1998]. Hence, the objective is to simulta-

neously diagonalize all the corresponding lagged covariance matrices, which leads to the

cost

JSOBI(W) =
d
∑

k=0

off (RY (k)) =
d
∑

k=0

∑

i 6=j

(E [yi(n)yj(n−k)])2 , (4.72)

where off(·) is the sum of the squares of the off-diagonal elements of a given matrix and d

the maximum number of delays. The separation can be achieved by minimizing Eq. (4.72).

It is important to remark that, although it is assumed that the sources are mutually

independent, the mentioned algorithms only require that the sources be uncorrelated.

However, in order to obtain good results, it is important that the sources power spectra

be different from each other [Romano et al., 2010].
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Figure 4.4: Mixing and separating systems in the PNL model.

4.4.2 The Nonlinear Case

Recently, there has been a considerable effort for extending the ICA framework to

nonlinear mixing models, in view of its promising applications like smart chemical sensor

arrays [Duarte et al., 2009] and hyperspectral imaging [Meganem et al., 2011]. However,

from a general standpoint, mutual independence may not be sufficient for performing

separation. Thus, the studies on this topic were focused on a constrained set of nonlinear

models in which the ICA methods are still valid [Hosseini and Jutten, 2003], such as the

Post-Nonlinear (PNL) models [Taleb and Jutten, 1999].

The Post-Nonlinear Mixtures

The PNL system comprises two stages of mixing: the linear and the nonlinear stages.

As illustrated in Fig. 4.4, the mixtures can be written as

x(n) = f (As(n)) , (4.73)

being f(·) a set of M component-wise functions. As a counterpart of the mixing system,

the separation system output is

y(n) = Wg (x(n)) , (4.74)

where W is an N×M matrix and g(·) is a set of M component-wise functions, ideally

the inverse of f(·) [Comon and Jutten, 2010].

Basically, it is possible to classify the separation techniques for PNL mixtures into two

main classes: the joint and the two-stage approaches [Deville and Duarte, 2015].

In the former, the main idea is to jointly adjust g(·) and W by minimizing a given

statistical dependence measure; generally, the use of the ICA framework represents an

efficient methodology for performing separation, but it will be possible if [Achard and

Jutten, 2005]: (i) the mixing matrix A is invertible and effectively mixes the sources

(there are at least two nonzero elements in each row and column); (ii) f(·) and g(·) must

be monotonic functions; (iii) at most one source is Gaussian, and (iv) the joint PDF of

the sources is differentiable and its derivative is continuous on its support. Satisfied these
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conditions, the MI criterion can be applied [Taleb and Jutten, 1999]:

min
W

JMI(W) = min
W

N
∑

i=1

HS(Yi)− log |det(W)| − E

[

log
N
∏

i=1

|g′i(xi(n))|
]

, (4.75)

where g′i(·) is the derivative of the i-th separation function gi(·). As in the linear case,

the term HS(X1, . . . ,XM) was disregarded. The gradient-based algorithm for this case is

usually done through the use of the score functions [Taleb and Jutten, 1999], but issues

like local convergence and constrained adaptation of the nonlinearities require special

attention.

On the other hand, for the two-stage approach, the linear and the nonlinear mix-

ing stages are addressed separately, i.e., two different but ‘simpler’ problems need to be

solved: g(·) is adapted so that the nonlinear part of the mixtures are completely sup-

pressed and, then, W is adjusted to solve the classic linear BSS problem. There are a

number of methods for adapting g(·) – the first stage –, as those based on some a priori

information [Duarte et al., 2012], but the most common approach is that based on Gaus-

sianization: from the perspective of the central limit theorem, the resultant RVs after

the linear mixing stage will tend to be “more” Gaussian. Thus, the most intuitive idea

for adapting g(·) is to make its output z(n) Gaussian again [Ziehe et al., 2003]. This

strategy reveals to be more effective when the number of sources N is large – according

to the central limit theorem – or when the sources are Gaussian distributed. One can

also include among these ideas the notion of the matching of probability distributions,

which was one of the first methods in the PNL two stage approach [White, 1982]. In this

case, the nonlinearity compensation is accomplished when the distributions associated

with u(n) and with z(n) are matched – note, however, that the a priori knowledge of

the distribution of u(n) is required. The second stage – i.e., the adaptation of the linear

term W – is usually solved with classical ICA methods, which encompass HOS [Comon

and Jutten, 2010; Deville and Duarte, 2015]. However, when the sources are temporally

colored, methods based on second-order statistics (SOS) can be applied, since they are

known for its robustness and reliable simplicity. This idea is exploited in [Ziehe et al.,

2003] by using a Gaussianization method in the first stage followed by a Temporal Decor-

relation Separation (TDSEP) method [Comon and Jutten, 2010] in the second stage. In

fact, this approach is interesting because it merges the simplicity of the second-order

framework with simple source priors, for solving the complex nonlinear mixtures.

It is important to remark that, in both joint and two-stage approaches, the study of

the PNL mixtures in light of the use of the temporal structure of the sources and the SOS

is still incipient. In fact, an initial step in this direction was given by the Gaussianization

method in the two-stage approach [Ziehe et al., 2003; Deville and Duarte, 2015], but a

deeper investigation on the real necessity of the HOS in scenarios with colored sources is
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lacking. In this work, we intend to follow a study on this line, as will be seen later.

4.5 Conclusion

In this chapter, a brief background on the channel equalization and the blind source

separation problems was presented. The main purpose was to provide the reader with the

main structures, criteria and optimization methods that are typically employed in each

signal processing problem, since they form the basis for the subsequent chapters.

Regarding the channel equalization problem, the supervised and the blind approaches

were considered. In the supervised branch, when the equalizer structure is an FIR filter,

the classical approach is the MSE criterion and the LMS algorithm, but for scenarios

encompassing non-Gaussian signals and/or recursive/nonlinear elements, the ITL criteria

like those based on the Rényi’s entropy and on the correntropy might be promising alter-

natives. When the filtering structure is a recursive IIR filter, the equation-error and the

output-error formulations are reliable supervised approaches, which leads to interesting

gradient-based algorithms: the (already mentioned) LMS, the PLR and the RPE. On the

other side, for the unsupervised case, we showed that this branch is mainly supported

by the BGR and the SW theorems, which establish the main theoretical and statistical

conditions to ensure a successful blind equalization. These theorems also reveal the un-

avoidable necessity of the HOS to solve the problem. Based on this, there emerges a set

of methods, such as the Bussgang techniques (the DD, the Sato and the Godard meth-

ods), which make use of nonlinear devices and/or implicit HOS of the source to perform

equalization, the SW method, that explicitly uses a statistical moment higher than two,

and, finally, the most recent trend, the ITL-based approaches (such as the QD and the

blind versions of the Rényi’s entropy and the correntropy criteria), which makes a more

extensive use of the HOS. Usually, the equalizer structure is assumed to be an FIR filter

adapted via a gradient-based algorithm, but this approach may vary, depending on the

complexity of the scenario.

Concerning the BSS problem, a brief panorama was provided on the linear and non-

linear mixing/demixing systems. In the linear case, we saw that, under the assumption

of mutual independence between sources, the MI can be used as a separation criterion,

in which the use of the HOS are mandatory. Due to this, at most one of the sources can

be Gaussian. If colored sources are considered, i.e., sources with temporal structure, the

sole use of the SOS is sufficient for performing separation, unless the power spectra of

the sources be coincident. For the nonlinear case, special attention is dedicated to the

PNL model, in which the ICA framework is still valid under certain conditions. In a joint

approach, the MI can be applied; however, due to the constrained optimization process

and the possible local convergence of the MI-based algorithm, the two-stage approach

showed to be a promising alternative: in the first stage, the nonlinear part is treated and,
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in the second stage, the linear part. Even separating the problem in two relatively simpler

instances, the HOS still show to be necessary, mainly in the nonlinear stage.

It is important to notice that this overview also reveals promising investigative lines

to be followed. In the equalization problem, for instance, the study of the IIR structures

is, in a certain sense, limited to the MSE-based approaches. Since there is a nonlinear

relationship between the filter coefficients and the filter output, the use of the ITL-based

criteria might be an interesting approach to be followed. In the blind equalization case,

the exploitation of the temporal structure of the non-i.i.d. sources can be made by the

correntropy, however, in view of some particularities of this ITL-based measure, this

approach is still incipient and demands further efforts, including a theoretical analysis of

the viability of this approach. For the nonlinear BSS problem, although some initial steps

were taken towards the use of the temporal structures of the sources, it is still lacking a

study able to encompass a more extensive use of the temporal information in this scenario.



Part II

Contributions
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Chapter 5

Theoretical Conditions for Blind Equalization

in the Context of a Temporally Structured

Source

In the context of blind channel equalization, two celebrated theorems contributed

to a deeper understanding of the problem and its statistical demands: the Benveniste-

Goursat-Ruget (BGR) [Benveniste et al., 1980] and the Shalvi-Weinstein (SW) [Shalvi

and Weinstein, 1990] theorems. They were responsible for bringing a solid theoretical

justification to the performance reached by empirical methods, still not well understood

up to that moment. Undoubtedly, the definition of the statistical requirements to solve the

problem contributed to the development of more efficient methods [Shalvi and Weinstein,

1990, 1993; Regalia, 1999; Santamaŕıa et al., 2002a,b].

The BGR and SW theorems are able to cover a wide range of practical scenarios that

involve i.i.d. sources and linear channel/equalizers. However, outside this context, the

classical theorems show to be insufficient. In that sense, there remains a gap associated

with alternative scenarios, like the ones encompassing sources that present temporal or

spatial statistical dependence. In fact, non-i.i.d. source scenarios have significant occur-

rence in real applications – such as audio-related scenarios, images/videos and channel

coding in communications – and the statistical properties necessary in these cases can

completely diverge from those of the classical approach [Neves et al., 2009]. In this thesis,

they compose a special class of the problem and will be referred to as colored blind channel

equalization.

In light of this, as one of the contributions of this work, we present in this chapter

a detailed theoretical analysis on the required conditions for the extension of the BGR

and SW theorems towards the adoption of non-i.i.d. sources (or temporally structured

sources).

Whenever possible, the theoretical analysis to be performed will invoke certain math-
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ematical results, like some elegant theorems found in the literature. However, due to the

complexity involved on the mathematical computations, we will also rely on some empir-

ical results. The option for this type of approach compromises the proposition of novel

theorems, but, on the other hand, we are still able to hold the objective of establishing

the required statistical conditions for the colored blind channel equalization problem.

The theoretical analysis to be performed makes a consistent use of the properties

defined in the BGR and SW theorems. In that sense, we present a detailed explanation

of the classical theorems before proceeding to the analysis of their extensions.

5.1 Recapitulation: The Classical Theorems for Chan-

nel Equalization

For the derivation of the classical BGR and SW theorems [Benveniste et al., 1980;

Shalvi and Weinstein, 1990], concepts like the combined channel+equalizer impulse re-

sponse and the ZF condition were crucial. For both, the systems that compose the

communication block are assumed to be discrete-time linear structures, without additive

noise, as Fig. 5.1 depicts. In this case, the combined channel+equalizer system is simply

Figure 5.1: Block diagram of the communication system
assumed in the classical theorem.

the concatenation of the channel H(z) and the equalizer W (z), whose coefficients can be

obtained through the convolution between them, i.e.:

cn = wn ∗ hn =
∞
∑

i=−∞

w∗
i hn−i, (5.1)

where hn and wn are the coefficients of the channel and the equalizer systems, respectively.

Note that both channel and equalizer might assume infinite length for both causal and

non-causal parts. In terms of the Z-transform, the convolution in the time-domain is

simplified to a product

C(z) = W (z)H(z). (5.2)

As shown in Eq. (4.3), the equalizer output yn can be written as a function of cn.

When the ZF condition is attained, the combined channel+equalizer impulse response
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should be as defined by Eq. (4.4) or, in terms of the Z-transform, C(z) = αz−k, being α a

scale factor. In the complex domain, it also admitted a phase shift redundancy θ, so that

the ZF condition becomes C(z) = ejθz−k [Shalvi and Weinstein, 1990].

It is also important to remark that the BGR theorem makes use of the probabilistic

distribution associated with a RV. In that sense, the notation assumes that a signal yn,

for instance, is associated with the RV Y , which, in turn, has a probability distribution

denoted by fY (v). In addition to that, the theorems refer to a generic continuous or dis-

crete distribution, however, whenever convenient, we make distinction about (continuous)

PDFs and (discrete) PMFs.

If the notions of combined channel+equalizer system, ZF condition and probabilistic

distribution are clear, we are able to present the BGR and SW theorems in detail.

5.1.1 The Benveniste-Goursat-Ruget Theorem

The relevance of the BGR theorem comes from its pioneering character in establishing

the theoretical conditions for blind equalization [Romano et al., 2010]. However, to be

satisfied, the theorem must fulfill the following assumptions [Benveniste et al., 1980]:

1. Channel, H(z), and equalizer, W (z), are (real valued) linear time-invariant filters,

with finite energy;

2. the source distribution, fS(v), is symmetric, with finite variance, non-Gaussian and

its sequence composed by (real valued) i.i.d. samples.

which are reasonable conditions in view of the channel equalization task.

In order to characterize the possible solutions for the equalizer, the authors use a

lemma which describes the possible distributions for i.i.d. sequences that are not modified

when filtered [Benveniste et al., 1980]:

Lemma 3 (Pólya Theorem). Consider a sequence sn of i.i.d. random variables with

distribution fS(v), being fS(v) symmetric with finite variance. Assume that there is a

sequence cn (here, the combined channel+equalizer impulse response), with at least two

nonzero terms, such that
∑Lc−1

i=0 c2i = 1, and the distribution associated with yn = cn ∗ sn
is fY (v) = fS(v). Then fS(v) is a Gaussian distribution.

The proof for Lemma 3 can be found in [Benveniste et al., 1978] and [Kakosyan et al.,

1984]. Although not mentioned in the original work of Benveniste et al. [1980], we

have found in the literature that Lemma 3 is equivalent to Pólya’s theorem, written

in 1923 [Kakosyan et al., 1984].

Lemma 3 establishes that, if cn has more than one non-null tap and its energy is

unitary, then the distributions matching fY (v) = fS(v) implies that the source is Gaussian

distributed. Based on this, the BGR theorem can be expressed as:
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Theorem 4 (BGR Theorem). Consider an equalizer system, W (z), such that the distri-

bution of the random variable Y (associated with the signal yn) is fY (v) = fS(v). Denote

by C(z) = H(z)W (z) the combined channel+equalizer system, and assume that the distri-

bution fS(v) is non-Gaussian. Then C(z) = ±1z−k, which is identity except for a possible

delay k.

Proof. Consider the combined channel+equalizer impulse response cn = wn ∗ hn. If

fY (v) = fS(v), we have E[y2n] = E[s2n], which gives, using the independence of sn:

E
[

y2n
]

=
Lc−1
∑

i=0

Lc−1
∑

j=0

cicjE [sn−isn−j]

=
Lc−1
∑

i=0

c2iE
[

s2n
]

,

(5.3)

being necessary that
∑Lc−1

i=0 c2i = 1.

Hence, it remains to prove that C(z) = ±1z−k. Lemma 3 applied to C(z) gives the

result.

In other words, the BGR theorem establishes by means of statistical properties (and

without any knowledge about the channel impulse response) that, if the distribution

associated with the equalizer output yn is matched with the distribution of the source

sn, then equalization was successfully performed. However, Gaussian distributions are

not allowed, since, as shown by Lemma 3, a linearly filtered Gaussian process remains

Gaussian [Papoulis, 1991] and, in this case, distribution matching only implies in power

normalization [Romano et al., 2010].

5.1.2 Shalvi-Weinstein Theorem

In some applications, the complete knowledge of the source distribution may be dif-

ficult to be obtained or even estimated. In that sense, in 1990, a decade after the BGR

theorem proposition, Shalvi and Weinstein [1990] were able to demonstrate a novel the-

orem that stated the conditions for perfect equalization relying only on a few statistical

moments of the involved signals.

The assumptions made by the SW theorem are equivalent to those of the BGR theo-

rem, except that signals and systems now can belong to the complex domain.

The SW theorem requires the use of an entity named kurtosis, defined in Eq. (4.45).

Very interestingly, the kurtosis is able to carry statistical information of the signals of

interest up to the fourth-order, and is null for Gaussian distributions. This allowed Shalvi

and Weinstein to conceive the homonym theorem:

Theorem 5 (Shavi-Weinstein Theorem). If E[|yn|2] = E[|sn|2] then



94

1. |kY | ≤ |kS|,

2. |kY | = |kS| if and only if C(z) = ±ejθz−k, in which θ is a phase shift and k a delay.

Proof. Consider the combined channel+equalizer impulse response cn = wn ∗ hn and the

i.i.d. source sn. The second-order statistics and the kurtosis of yn results

E[|yn|2] = E[|sn|2]
(

∑

l

|cl|2
)

kY = kS

(

∑

l

|cl|4
)

.

(5.4)

Let c = [c0 c1 · · · cLc
]T be a vector of complex variables such that

∑

i |ci|2 < N < ∞.

Then,
∑

l

|cl|4 ≤
(

∑

l

|cl|2
)2

, (5.5)

where equality holds if and only if cn has at most one nonzero component. Thus, if
∑

l |cl|2 = 1, then

1.
∑

l |cl|4 ≤ 1;

2.
∑

l |cl|4 = 1 if and only if C(z) = ±ejθz−k, in which θ is a phase shift and k a delay.

Hence, recalling Eq. (5.4), the proof follows immediately [Shalvi and Weinstein, 1990].

Differently from the BGR theorem, which requires the matching of the distributions

(i.e., all statistical moments), the SW theorem uses as a necessary and sufficient condition

for equalization the matching of the second-order statistics, E[|yn|2] = E[|sn|2], and of

the kurtosis, |kY | = |kS|, which are simpler to be obtained and/or estimated.

The theoretical advance provided by these two theorems was fundamental to the emer-

gence of a wide range of methods and criteria for blind equalization. Even nowadays, these

theorems serve as inspiration for new criteria, such as the kernel-based PDF matching ap-

proach [Lázaro et al., 2003a, 2005; Santamaŕıa et al., 2002b].

Notwithstanding, it is not unusual to find practical scenarios in which the assumptions

encompassed by the theorems are not matched. This is the case, for instance, when one

must deal with sources that present a temporal structure, i.e., sources that are not i.i.d.

In light of this, it would be interesting if the BGR and SW theorems could be extended

to also include these cases. This is one of the main goals of the present thesis.
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5.2 Extension of the Classical Theorems for Sources

with Temporal Structure

Speech filtering, coding, medical and seismic analysis are some examples of scenarios

that encompass sources with temporal or spatial structure. In all these cases, the source

cannot be classified as i.i.d. and, hence, the BGR and SW theorems are not valid. In that

sense, our objective is to analyze the conditions to extend the BGR and SW theorems

so that they be able to encompass non-i.i.d. sources. For the sake of simplicity, we

will henceforth refer to statistical dependence as ‘temporal structure’ – although the

dependence may belong to other domains instead of temporal.

The temporal structure in the sources is usually seen as the inherent result of the

system which generates the sources (for example, in speech signals, the sound waves are

majorly produced by the vocal folds – or vocal cords –, without any intermediate filtering

process). However, in our work, we assume that the non-i.i.d. source can be modeled by

an i.i.d. signal filtered by a linear system called Pre-Coder, with transfer function P (z),

as illustrated by Fig. 5.2:

Figure 5.2: Non-i.i.d. source as the result of a filtering process over an i.i.d. signal.

where un is an i.i.d. signal and sn the resulting non-i.i.d. (or colored) source. As one

can note, the element responsible for imprinting the temporal structure on the signal is

the pre-coder P (z). In that sense, the ‘colored’ communication system can be described

according to the following block diagram [Santamaŕıa et al., 2006]:

Figure 5.3: Source with temporal structure: Communication system block diagram.

Note that Fig. 5.3 shows the combined channel+equalizer system, C(z) = H(z)W (z),

and the combined pre-coder+channel+equalizer, G(z) = P (z)C(z) = P (z)H(z)W (z),

which shall be useful for our analysis.
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In order to analyze the possible extensions of the BGR and SW theorems to encompass

non-i.i.d. sources, the assumptions made on the pre-coder system will be crucial. In fact,

as we intend to show, the extensions are not straightforward, but they can be achieved

by resorting to theorems found in the literature and under certain relaxation in the set of

possible solutions. As a result, we achieve two possible approaches in the context of the

BGR theorem (considering univariate and multivariate distributions) and one approach

in the context of the SW theorem. They will be described in the following.

5.2.1 Extension of the BGR Theorem - Univariate Distributions

We start with assumptions similar to the BGR theorem, but include the pre-coder

system and the non-i.i.d source sn:

1. Pre-coder, P (z), channel, H(z), and equalizer, W (z), are linear time-invariant fil-

ters, with finite energy;

2. the signal un is composed by i.i.d. samples and its associated distribution, fU(v), is

symmetric, with finite statistical moments and non-Gaussian;

3. the source sequence sn may present temporal dependence but its distribution, fS(v),

is symmetric, with finite variance and non-Gaussian.

It is important to note that we assume the pre-coder system P (z) to be a linear system, i.e.,

p = [p0 p1 · · · pLp
]T . Although this may imply in a significant constraint on the non-i.i.d.

sources representativeness, its simplicity contributes with the mathematical tractability

of the problem.

Using the combined pre-coder+channel+equalizer system G(z), with impulse response

gn (in vector notation, g = [g0 g1 · · · gLg
]T ), the idea of density matching can be directly

extended to non-i.i.d. sources with the Marcinkiewicz’s theorem, initially proposed in

1939 [Marcinkiewicz, 1939]. It can be stated as follows:

Theorem 6 (Marcinkiewicz Theorem). Consider a finite or infinite sequence un of i.i.d.

samples with distribution fU(v), symmetric and with finite statistical moments. Suppose

that sn = pn ∗ un and yn = gn ∗ un exists and that their distributions are identical,

fS(v) = fY (v), for all v ∈ R. Under these hypothesis, either the elements of {|pn|} and

{|gn|} only differ on the order, or fU(v) is a Gaussian distribution.

The complete proof for this theorem can be found in [Marcinkiewicz, 1939].

Basically, this theorem states that if the distributions fS(v) and fY (v) are matched,

then either the pre-coder pn and the combined pre-coder+channel+equalizer impulse re-

sponse gn are equal, up to a permutation in its coefficients (with sign ambiguity), or fU(v)

is Gaussian (and nothing can be said about the system coefficients).
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Hence, in the case in which fU(v) is non-Gaussian, the matching of fS(v) and fY (v)

implies that gn is equal to pn or a permuted version of |pn|. This means that, for instance,

if p = [p0 p1]
T , then

g = [p0 p1]
T , or

g = [−p0 p1]T , or
g = [p1 p0]

T , or

g = [p1 −p0]T , or
g = [p0 0 −p1]T

(5.6)

are examples of possible permutations of |pn|. Recalling that G(z) = P (z)C(z), when gn

is equal to ±pn, this means that one of the possible solutions is C(z) = ±1 (ZF condition).

However, when gn is a permuted version of |pn|, the solution for C(z) may not be the

ZF condition and, in that sense, the Marcinkiewicz theorem does not provide a complete

compliance with the blind equalization problem.

Notwithstanding, as we intend to show, if additional care is taken in the equalization

process, it is possible to reduce all the possible permutations to the case in which C(z) =

±1z−k. To clarify this point, we divide all possible permutations into two classes:

1. gn is a time-shifted version of ±pn;

2. gn is the result of a change in the order and/or in the sign of the coefficients of pn,

with exception of the cases defined by class 1.

In the class 1, since gn is a time-shifted version of ±pn, it gives G(z) = ±P (z)z−k and,

since G(z) = P (z)C(z), it is necessary that C(z) = ±1z−k (the ZF condition). Note that,

in this case, the zeros (roots) of the polynomial G(z) are the same of P (z) plus null zeros

(due to z−k).

For the class 2, we assume that P (z) is a monic and irreducible polynomial in function

of z (i.e., the polynomial has the nonzero coefficient of highest degree equal to 1 and

cannot be factored). In this case, P (z) can be written as

P (z) = (z − r0)(z − r1) . . . (z − rLp−1)

=

Lp−1
∏

i=0

(z − ri)

= 1zLp + pLp−1z
Lp−1 + . . .+ p0z

0,

(5.7)

where ri, for i = 0, . . . , Lp−1, are the zeros (or roots) associated with P (z), and pi are

its coefficients. The roots determine the polynomial, which will be unique [Bourbaki,

1972]. Note that a permutation of the roots ri does not change the coefficients pi, but

a change on the coefficients pi can completely change the roots ri. This means that a

permutation or a sign change in the coefficients of the pre-coder pn yields zeros that are
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different from those of P (z). Now, if we recall that G(z) = P (z)C(z), to G(z) result in

the correct zeros demanded for the permutation of pn, then C(z) will require an infinite

number of coefficients (or an infinite impulse response). Indeed, from the assumptions

made, C(z) is only able to provide zeros (while the zeros of P (z) are fixed). Hence, the

only way to achieve the zeros of the permutation of pn is that C(z) cancels all the zeros

of P (z) (with an infinite number of zeros) and provide the new ones necessary for the

permutation [Oppenheim et al., 1997].

Finally, from the standpoint of the Marcinkiewicz theorem, if we neglect the solutions

of C(z) which have an infinite number of zeros, then C(z) = ±1z−k is the only possible

solution, i.e., the zero forcing condition is achieved.

In practical (linear) scenarios, this constraint over the set of solutions of C(z) can be

done according to the situation:

• Channel, H(z), and equalizer, W (z), only present zeros in their transfer functions

(i.e., they can be modeled by FIR filters);

• Channel, H(z), and/or equalizer, W (z), present poles in their transfer functions

(i.e., one or both the systems can be modeled by IIR filters).

In the first case, no action is demanded: since H(z) and W (z) are of finite length, the

combined system C(z) = H(z)W (z) will never be able to cancel the zeros of P (z) – note,

however, that the ZF condition is not attainable in this case. For the second situation,

the poles of H(z) and/or W (z) must not match (or cancel) the zeros of P (z), otherwise, a

permutation on the coefficients of P (z) might be achieved by C(z). From the equalizer’s

point of view, the constraint on the solutions is possible to be made via the estimation of

C(z) or via the prior knowledge of P (z). This point will be elucidated in Chapter 6.

Example

Consider that P (z) = p0+p1z
−1 = 1+0.5z−1 or, alternatively, p = [p0 p1]

T = [1 0.5]T .

If no delayed version of P (z) is considered, then, there are eight possible permutations of

sign and values of the coefficients, as shown in Tab. 5.1.

Assuming that un is a binary {+1,−1} i.i.d. sequence, the resulting distribution or

PMF of the pre-coded sequence sn, pS(v), will be as illustrated in Fig. 5.4. Interestingly,

for all possible permutations P̂ (z) of the pre-coder, the resulting PMF pS(v) will be

identical to that of Fig. 5.4. In other words, the PMF pS(v) carries ambiguities on the

linear system P (z), being impossible to define which of the permutations P̂ (z) generated

pS(v).

According to the Marcinkiewicz theorem, gn can be any permuted version of |pn|, i.e.,
G(z) can be any of the permutations P̂ (z) in Tab. 5.1 (plus the delayed ones that we do

not show). Since G(z) = P (z)C(z), it is necessary that C(z) assume the values indicated
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Table 5.1: Permutations of P (z) and required responses for the combined
channel+equalizer system C(z).

Permutations of P (z) Ĉ(z)

1 P̂ (z) = 1 + 0.5z−1 1

2 P̂ (z) = −1− 0.5z−1 −1

3 P̂ (z) = 0.5 + 1z−1 (0.5 + 1z−1)/P (z)

4 P̂ (z) = −0.5− 1z−1 (−0.5− 1z−1)/P (z)

5 P̂ (z) = 1− 0.5z−1 (1− 0.5z−1)/P (z)

6 P̂ (z) = −1 + 0.5z−1 (−1 + 0.5z−1)/P (z)

7 P̂ (z) = 0.5− 1z−1 (0.5− 1z−1)/P (z)

8 P̂ (z) = −0.5 + 1z−1 (−0.5 + 1z−1)/P (z)

−1.5 −0.5 0 0.5 1.5
0

0.25

v

p
S
(v

)

Figure 5.4: Distribution of pS(v) for pre-coder P (z).

in Tab. 5.1 to achieve each possible permutation. Note that, except for P̂ (z) = 1+0.5z−1

and P̂ (z) = −1− 0.5z−1, C(z) must have an infinite impulse response.

If the delayed versions of P (z) are also considered, the permutations P̂ (z) = 1z−1 +

0.5z−2, P̂ (z) = 1 + 0.5z−2 and P̂ (z) = −0.5z−1 + 1z−2, for instance, will produce the

distribution pS(v) depicted in Fig. 5.4 as well. However, analogously to the previous case,

C(z) will have a finite impulse response only when P̂ (z) = ±P (z)z−k (i.e., C(z) = ±1z−k).

Very interestingly, if it is assumed that P (z) = 1, the Marcinkiewicz theorem will

reduce to the BGR theorem. Indeed, the only permutation possible in this case requires

that C(z) = ±1z−k, i.e., the ZF condition.

5.2.2 Extension of the BGR Theorem - Multivariate Distribu-

tions

An interesting possibility of extracting the temporal structure of the source in a more

extensive manner is to consider multivariate distributions instead of the univariate ones.

In fact, as we intend to show, the multivariate distributions are able to carry valuable
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information about temporal statistical dependence. In light of this, we analyze in this

section the BGR theorem extension regarding multivariate distributions.

We start by defining the notation used in the multivariate perspective. Assume that

sn = [sn sn−1 . . . sn−M ]T is a column vector with sn and M delayed versions of it.

The random vector S = {Sn, Sn−1, . . . , Sn−M} is associated with the samples vector sn,

and its multivariate distribution is denoted by fS(v).

The main motivation for this approach comes from the fact that, if the signal is non-

i.i.d., then

fS(v) 6=
M
∏

i=0

fSn−i
(vi), (5.8)

being v = [v0 v1 . . . vM ]T . This means that the multivariate distribution cannot be ob-

tained from its marginal distributions: the difference between fS(v) and
∏M

i=0 fSn−i
(vi) is

exactly the temporal structure information (also, for stationary RVs fSn−i
(vi) is identical

for all delays i, hence the simplified notation fS(v) for univariate distributions). Indeed,

from the perspective of information theory, the evaluation of the information content

of multivariate distributions can significantly contribute to reduce the associated uncer-

tainty. In terms of Shannon’s joint entropy, this idea is expressed through the following

property [Cover and Thomas, 1991]:

HS(S) =
M
∑

i=0

HS(Sn−i|Sn−i+1, . . . , Sn−0)

≤
M
∑

i=0

HS(Sn−i),

(5.9)

where M is the number of distinct considered delays. It is important to remark that

the uncertainty reduction only occurs if there exists dependence between the variables.

If the variables are independent, the adoption of multivariate distributions can result in

unnecessary additional computational cost.

However, in parallel with the univariate case, the class of multivariate Gaussian dis-

tributions do not provide new statistical information in their HOS. On the other hand,

the temporal information may still be extracted from the SOS. In view of this, we split

our analysis into two cases: multivariate non-Gaussian distributions and multivariate

Gaussian distributions.

Multivariate Non-Gaussian Distributions

The assumptions for this analysis are the following:

1. Pre-coder, P (z), channel, H(z), and equalizer, W (z), are linear time-invariant fil-

ters, with finite energy;
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2. the signal un is composed by i.i.d. samples and its associated distribution, fU(v), is

symmetric, with finite statistical moments and non-Gaussian;

3. the source sequence sn may present temporal dependence but its multivariate distri-

bution, fS(v), is (transpositional) symmetric, with finite variance and non-Gaussian.

With respect to the previous assumption in the univariate case, the main difference is

that the distribution of sn is assumed to be multivariate.

Very interestingly, in the context of channel equalization and stationary signals, the

marginal densities of fS(v) – i.e., fSn−i
(vi), for i = 0, . . . ,M – are identical and, if it

is considered the matching of the multivariate distributions fS(v) = fY (v), then the

matching of their marginal must also occur. Note, however, that the inverse may not

hold, i.e., the matching of the marginal distributions does not imply in the matching of

the multivariate distributions, as stated by Eq. (5.8).

Recalling the Marcinkiewicz theorem (Theorem 6), it is known that if fS(v) is non-

Gaussian, then the matching of the marginal distributions fS(v) = fY (v) implies that gn is

equal to pn or any permuted version of |pn|. This permutation ambiguity is a consequence

of the univariate distribution fS(v) being invariant to permutations of |pn|. However, if

we consider a multivariate distribution fS(v), more information is taken into account and

we are able to make the following assumption:

Assume that un is a non-Gaussian i.i.d. sequence and that the pre-coder P (z) is of

depth Lp, i.e., P (z) = p0 + p1z
−1 + . . . + pLp

z−Lp . The non-i.i.d. source sn = pn ∗ un is

associated with the random vector S = {Sn, Sn−1, . . . , Sn−M}, with distribution fS(v). If

the dimension of the distribution (M+1) is equal to or higher than the length of the pre-

coder (Lp+1), i.e., M ≥ Lp, then only P (z)z−k or −P (z)z−k yields the same distribution

fS(v) – and no other permutation of P (z).

The proof for this statement is difficult to be obtained, since its mathematical for-

mulation is rather complex. However, its validity is appealing, as shown in the following

example.

Example

Assume that un is an i.i.d. binary {+1,−1} sequence and consider the pre-coder

P (z) = 1 + 0.5z−1. The permutations of sign and values of the coefficients of the pre-

coder and the resulting multivariate distributions for sn (M = 1) are as shown in Tab. 5.2.

Differently from the univariate case, the multivariate distributions are distinguishable

among each other.

In addition, a simple time shift (z−k) in any case of P̂ (z) in Tab. 5.2 does not change

the PMF pS(v). However, permutations like P̂ (z) = 1 + 0z−1 + 0.5z−2, P̂ (z) = −1 +

0z−1 + 0.5z−2 and P̂ (z) = −0.5 + 0z−1 + 1z−2, or even with higher order, result in the
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Table 5.2: Permutations of P (z) and associated multivariate distribution.

Permutations of P (z) pS(v)

1

2

P̂ (z) = 1 + 0.5z−1

P̂ (z) = −1−0.5z−1

3

4

P̂ (z) = 0.5 + 1z−1

P̂ (z) = −0.5−1z−1

5

6

P̂ (z) = 1− 0.5z−1

P̂ (z) = −1+0.5z−1

7

8

P̂ (z) = 0.5− 1z−1

P̂ (z) = −0.5+1z−1

distribution fS(v) showed in Fig. 5.5. In fact, in these cases, Lp > M and the dimension

of the multivariate distribution is insufficient to represent the temporal structure.
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Figure 5.5: Source distribution for pre-coder with Lc = 2.

In view of this, the ambiguity caused by fS(v) with respect to the pre-coder P (z) is

simply a sign factor or a time shift, i.e., ±P (z)z−k. Thus, in the context of the commu-

nication system, suppose that sn = pn ∗ un and yn = gn ∗ un exists, are non-Gaussian,

and that their multivariate distributions are identical, i.e., fS(v) = fY (v) for M ≥ Lp.

Under these hypotheses, it is necessary that G(z) = P (z)C(z) = ±P (z)z−k, implying in

the single solution C(z) = ±1z−k, which is the ZF condition.

This observations are very similar to BGR theorem, but the requirements for perfect

equalization are now completely fulfilled by means of the knowledge of the source mul-

tivariate distribution. In that sense, this multivariate perspective is the most complete

extension of the BGR theorem towards colored blind channel equalization.

Multivariate Gaussian Distributions

So far, we know that the use of multivariate distributions can be useful for reduc-

ing the ambiguities associated with the elements of the pre-coder. However, when the

source distribution is Gaussian, the HOS information is not relevant and additional care

is necessary.

The Gaussian distribution occupies a special place in engineering applications, due to

its large occurrence in practical scenarios. Interestingly, it can be totally described by the

statistics up to second-order:

fS(v) =
1

√

(2π)M+1 det(ΣS)
exp

[−1

2
(v − µS)

TΣ−1
S (v − µS)

]

, (5.10)

where µS = [µ0 . . . µM ]T is the column vector with the mean values and ΣS is the

covariance matrix. Hence, the distribution can be totally characterized with the sole
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knowledge of µS and ΣS.

Starting from the assumption that fS(v) is Gaussian, we invoke the Cramér theo-

rem [Cramér, 1936]1,

Theorem 7 (Cramér Theorem). If the distribution of two RVs is jointly Gaussian, then

their marginal distributions are Gaussian as well.

This means, under our assumption, that the marginals fSn−i
(vi), for i = 0, . . . ,M , are

also Gaussian distributed.

From the Marcinkiewicz theorem (Theorem 6), the matching of marginals that are

Gaussian implies in no further information about neither P (z) nor G(z). However, in the

context of multivariate distributions, the matching of the distributions fS(v) = fY (v) can

be analyzed in the context of the Kullback-Leibler (KL) divergence [Cover and Thomas,

1991]. Thus, assuming that fS(v) and fY (v) are multivariate Gaussian distributions, then

the KL divergence between them can be defined as:

DKL(Y ||S) =
∫

D

fY (v) log

(

fY (v)

fS(v)

)

dv

=
1

2

(

log
det(ΣS)

det(ΣY )
+ Tr

(

Σ−1
S ΣY

)

− (M + 1)

)

= 0.

(5.11)

where D ∈ R
M+1 and Tr(·) denotes the trace, i.e., the sum of the elements on the main

diagonal of a matrix. When DKL(Y ||S) = 0, the distributions are identical.

From the symmetry assumption, it implies that µS = µY = 0. Hence, for Eq. (5.11)

to be valid, it is sufficient that the covariance matrices be equal, i.e., ΣY = ΣS. Based on

this, we are able to perform an analysis on the conditions necessary for the covariances

to match.

The covariance matrices associated with Y and S are

ΣY =













E[y2n] E[ynyn−1] · · · E[ynyn−M ]

E[yn−1yn] E[y2n−1] · · · E[yn−1yn−M ]
...

. . .
...

E[yn−Myn] E[yn−Myn−1] · · · E[y2n−M ]













ΣS =













E[s2n] E[snsn−1] · · · E[snsn−M ]

E[sn−1sn] E[s2n−1] · · · E[sn−1sn−M ]
...

. . .
...

E[sn−Msn] E[sn−Msn−1] · · · E[s2n−M ]













.

(5.12)

1In the same work, Cramér [1936] also proposes his most celebrated theorem, which states that if the
sum of two independent RV are Gaussian, then the summands must be Gaussian as well.
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The equality ΣY = ΣS implies that each element

E[yn−iyn−j] = E[sn−isn−j], (5.13)

for i, j = 0, . . . ,M must be matched. Using Eq. (4.3), the elements ofΣY can be expanded

as

E [yn−iyn−j] =
Lc−1
∑

k=0

Lc−1
∑

l=0

ckclE [sn−i−ksn−j−l] . (5.14)

By combining, Eqs. (5.13) and (5.14), it results

E [yn−iyn−j] =
Lc−1
∑

k=0

Lc−1
∑

l=0

ckclE [sn−i−ksn−j−l] = E[sn−isn−j], (5.15)

which is a second-order polynomial in function of the combined channel+equalizer coeffi-

cients cn. In that sense, the matching of covariance matrices ΣY = ΣS can be viewed as

a system of quadratic equations. Notwithstanding, in order to achieve the desired solu-

tion for the system, it is necessary that the number of non-redundant equations be equal

(determined case) or larger (overdetermined case) than the number of unknown variables.

Assuming that un is stationary and real-valued, then E[yn−iyn−j] = E[yn−jyn−i] and

E[sn−isn−j] = E[sn−jsn−i] (the correlation matrices are Toeplitz [Haykin, 1996]) and, thus,

some quadratic equations are redundant. In this case, the quadratic equations system in

the matching ΣY = ΣS is composed of, at most, M + 1 non-redundant equations.

If both the source sn and the output signal yn do not present a temporal structure

for delay k, i.e., if E[snsn−k] = E[ynyn−k] = 0, then, the matching results in equations

of the type 0 = 0, which do not contribute to solving the system. If fact, the number

of valid equations will depend on the temporal structure of yn, which will be of length

Lp + Lc + 1. In other words, the pre-coder and the combined channel+equalizer systems

are the responsible for introducing correlation in the time samples of yn.

Since the analysis is held in the combined channel+equalizer domain, the number of

equations necessary to solve the system only depends on the number of unknown variables

for cn, which is only Lc + 1 equations. If Lc is finite, then it is demanded that M ≥ Lc.

Otherwise, if Lc is infinite, then we also needM = ∞. Hence, if the number of equations is

sufficient, then the solution for the system (and for the matching of covariance matrices) is

the intersection point of the surfaces generated by each quadratic equation in the system.

Example

We consider the case in which un is an i.i.d. Gaussian distributed sequence, with zero

mean and unit variance, and the pre-coder has transfer function P (z) = 1+0.5z−1. For the

combined channel+equalizer system C(z), two possibilities are assumed: in the first one,
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Lc = 1, i.e., C(z) = c0 + c1z
−1 and, in the second, Lc = 2, i.e., C(z) = c0 + c1z

−1 + c2z
−2.

In the first case, we have two unknown variables, c0 and c1, and, in the second, three

unknown variables, c0, c1 and c2.

We adopt M = Lc and, for each case, we have the following covariance matrices ΣS:

ΣS =

[

1.25 0.5

0.5 1.25

]

, ΣS =







1.25 0.5 0

0.5 1.25 0.5

0 0.5 1.25






, (5.16)

for M = 1 and M = 2, respectively. Hence, the system of equations, in this case, will be

{

E[y2n−k] = 1.25

E[ynyn−1] = 0.5
,











E[y2n−k] = 1.25

E[ynyn−1] = 0.5

E[ynyn−2] = 0

, (5.17)

where each equation can be written in function of c, as indicated by Eq. (5.14).

By varying the values of c we are able to identify the cases in which each equation

is valid, as plotted in Fig. 5.6. In the case Lc = 1 (Fig. 5.6(a)), since we have only two

−1 0 1

−1

0

1

c
1

c
0

 

 

E[y
n
y

n−1
]=E[s

n
s

n−1
]

E[y
n−k

2
] = E[s

n−k

2
]

(a) Equations for M = 1. (b) Equations for M = 2.

Figure 5.6: System of equations - Intersection.

unknown variables, it is possible to visualize the equations in the plane. There are four

points where the curves intercept each other, which are C(z) = ±1 and C(z) = ±1z−1,

i.e., all the cases when the ZF condition is attained. In the case Lc = 2 (Fig. 5.6(b)), the

equations constitute surfaces in the 3D-space, and the intersection among them occur in

six points: C(z) = ±1, C(z) = ±1z−1 and C(z) = ±1z−2, i.e., all possible ZF solutions

for Lc = 2.

In both cases, all equations of the system are satisfied in the intersection points, which

are the points where the matching ΣY = ΣS is achieved.
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In the overdetermined case, i.e., when the number of equations is larger than the

number of unknowns (M > Lc), the equations in excess form redundant equations (by

construction) and the system always have a valid solution. Thus once is satisfied M ≥
Lc, the matching of the covariances ΣY = ΣS can always be performed. However, the

covariance matrices carry ambiguity of sign and direct/inverse order of the coefficients of

the involved systems, as we will see in the following example.

Example

We assume again that un is an i.i.d. Gaussian distributed sequence with pre-coder

P (z) = 1 + 0.5z−1. The permutations of sign and values of the coefficients of the pre-

coder and the resulting covariance matricesΣS (forM = 1) are as shown in Tab. 5.3. Note

Table 5.3: Permutations of P (z) and associated covariance matrices.

Permutations of P (z) ΣS

1 P̂ (z) = 1 + 0.5z−1

ΣS =

[

1.25 0.5
0.5 1.25

]

2 P̂ (z) = −1− 0.5z−1

3 P̂ (z) = 0.5 + 1z−1

4 P̂ (z) = −0.5− 1z−1

5 P̂ (z) = 1− 0.5z−1

ΣS =

[

1.25 −0.5
−0.5 1.25

]

6 P̂ (z) = −1 + 0.5z−1

7 P̂ (z) = 0.5− 1z−1

8 P̂ (z) = −0.5 + 1z−1

that the permutations 1 to 4 are associated with the same covariance matrix. Thus, it is

not possible to distinguish among them only by ΣS. The same occurs for permutations 5

to 8.

In all cases, a time shift (z−k) does not imply in changes on the covariance matrix ΣS.

Permutations that increase the order of the polynomial, like P̂ (z) = 1 + 0z−1 + 0.5z−2,

P̂ (z) = −1 + 0z−1 + 0.5z−2 or P̂ (z) = −0.5 + 0z−1 + 1z−2, result in covariance matrices

different from those exhibited in Tab. 5.3.

The ambiguity in the matching ΣY = ΣS will imply in the following solutions for

G(z): (i) G(z) = ±P (z)z−k or (ii) G(z) = ±P (z−1)z−k. In the first case, since G(z) =

P (z)C(z), it is necessary that C(z) = ±1z−k, and the ZF condition is attained. In

the case (ii), C(z) will require an infinite number of coefficients to invert the order of

the coefficients of P (z). Just like the analyzed case in Section 5.2.1, this case can be

controlled by avoiding an infinite impulse response of C(z).
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5.2.3 Extension of the SW Theorem

An analogous analysis of the BGR theorem extension can be performed for the SW

theorem. The assumptions are similar to the previous case, being the main difference that

signals can belong either to the real or complex domains:

1. Pre-coder, P (z), channel, H(z), and equalizer, W (z), are linear time-invariant fil-

ters, with finite energy;

2. the real/complex signal un is composed by i.i.d. samples and its associated distri-

bution, fU(v), is symmetric, with finite statistical moments and non-Gaussian;

3. the real/complex source sequence sn may present temporal dependence but its dis-

tribution, fS(v), is symmetric, with finite variance and non-Gaussian.

In the context of Fig. 5.3, we are able to analyze the second-order statistics and the

kurtosis (Eq. (4.45)) of the involved signals. Starting with the second moment, analo-

gously to Eq. (5.4), we have

E[|sn|2] = E[|un|2]
(

∑

i

|pi|2
)

, (5.18)

and

E[|yn|2] = E[|un|2]
(

∑

j

|gj|2
)

, (5.19)

for the source sn and output yn signals, respectively. For mathematical convenience, we

assume that
∑

i |pi|2 = 1.

By matching the mentioned second-order statistics, i.e., E[|yn|2] = E[|sn|2], it is nec-
essary that the equivalence holds

∑

j

|gj|2 =
∑

i

|pi|2 = 1. (5.20)

Regarding the fourth-order statistics, the kurtosis of the signals sn and yn, based on

Eq. (5.4), can be written as

kS = kU

(

∑

i

|pi|4
)

, (5.21)

and

kY = kU

(

∑

j

|gj|4
)

. (5.22)

Now, supposing the matching of the kurtosis kS and kY , it results

∑

j

|gj|4 =
∑

i

|pi|4. (5.23)
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Similarly to the SW theorem, from Eq. (5.5), we can write

∑

i

|pi|4 ≤
(

∑

i

|pi|2
)2

≤ 1,

(5.24)

and
∑

j

|gj|4 ≤
(

∑

j

|gj|2
)2

≤ 1,

(5.25)

where equality holds if and only if pn and gn has one nonzero component of magnitude 1.

This means that
|kS| ≤ |kU |
|kY | ≤ |kU |,

(5.26)

and, when equality is reached, the problem is reduced to the classical SW theorem.

However, for intermediate values 0 < |kY | < |kU |, the kurtosis kY can be associated

with up to an infinite number of configurations of pn and gn. In that sense, Eqs. (5.20) and

(5.23) can only provide a limited amount of information, being sufficient for equalization

of a temporally structured source only if the number of unknown coefficients is equal to

or lower than two – it will be a system of two equations and two unknown variables –,

otherwise, there will be an infinite set of solutions.

Consequently, Eqs. (5.20) and (5.23) are not sufficient for equalization of temporally

structured sources (only if the number of unknown coefficients is equal to or lower than

two – otherwise, there will be an infinite set of solutions).

In view of this, it would be interesting if additional information about the temporal

structure of the signals were also considered. Very interestingly, a temporal-based kurtosis

measure was proposed in the context of the blind source separation problem [Hyvärinen

et al., 2001]:

kS(i,j) = E
[

|sn−i|2|sn−j|2
]

− 2E2
[

sn−is
∗
n−j

]

− |E [sn−isn−j]|2 , (5.27)

being called cross-kurtosis.

With the cross-kurtosis at hand, we are able to compose a set of equations (similarly

to the approach followed in Section 5.2.2) to find the desired solution. Thus, our objective

will be to match the second-order statistics and the cross-kurtosis of the source sn with

those of the output signal yn, considering time delays from 0 to M .

Regarding the SOS, the cross-correlation for the source sn and the output yn signals
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are, respectively,

E
[

sn−is
∗
n−j

]

=

Lp
∑

k=0

Lp
∑

l=0

p∗kplE
[

un−i−ku
∗
n−j−l

]

, (5.28)

and

E
[

yn−iy
∗
n−j

]

=

Lg
∑

k=0

Lg
∑

l=0

g∗kglE
[

un−i−ku
∗
n−j−l

]

, (5.29)

for i,j = {0, . . . ,M}. Due to the i.i.d. assumption for un, E
[

un−i−ku
∗
n−j−l

]

= E [|un|2]
when i+k = j+l, and E

[

un−i−ku
∗
n−j−l

]

= 0 otherwise.

Similarly, for the cross-kurtosis, we have

kS(i,j) = E
[

|sn−i|2|sn−j|2
]

− 2E2
[

sn−is
∗
n−j

]

− |E [sn−isn−j]|2 , (5.30)

and

kY (i,j) = E
[

|yn−i|2|yn−j|2
]

− 2E2
[

yn−iy
∗
n−j

]

− |E [yn−iyn−j]|2 , (5.31)

where the first term of kS(i,j) is

E
[

|sn−i|2|sn−j|2
]

=
∑

k

∑

l

∑

m

∑

o

p∗k−ipl−ipm−jp
∗
o−jE

[

un−k−iu
∗
n−l−iu

∗
n−m−jun−o−j

]

,

(5.32)

being [Shalvi and Weinstein, 1990]

E
[

un−k−iu
∗
n−l−iu

∗
n−m−jun−o−j

]

=























E [|un|4] , k+i = l+i = m+j = o+j

E2 [|un|2] , k+i = l+i 6= m+j = o+j, k+i = m+j 6= l+i = o+j

|E [u2n] |2, k+i = o+j 6= l+i = m+j

0, otherwise.

(5.33)

The second term of kS(i,j) is as Eq. (5.28) and, finally, the third term is

E [sn−isn−j] =

Lp
∑

k=0

Lp
∑

l=0

p∗kp
∗
lE [un−i−kun−j−l] , (5.34)

in which E [un−i−kun−j−l] = E [u2n] when i+k = j+l, and E [un−i−kun−j−l] = 0 otherwise.

The terms are very similar with respect to yn, being in function of gn instead of pn.

If signals are stationary and, along with the systems, belong to the complex domain,

the complex-valued covariance matrices are Hermitian (i.e., ΣH = Σ) and there will be up

to 2(M +1) non-redundant equations. For the cross-kurtosis, if the matrices KS and KY

are considered, whose elements of the i-th row and the j-th column are the cross-kurtosis

kS(i,j) and kY (i,j) elements, then the matrices will also be Hermitian, and there will

be up to 2(M + 1) non-redundant equations as well (note that the number of unknown
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variables for cn in the complex domain is 2(Lc+1)). In that sense, it is necessary that

M ≥ (Lc−1)/2 to obtain valid solutions for c. If all variables are in the real domain, the

number of non-redundant equations are half the one of the complex case, i.e., 2(M+1)

non-redundant equations, but there are only Lc+1 unknown coefficients, resulting in the

same requirement of M ≥ (Lc−1)/2.

The temporal structure will be responsible for generating valid equations to the system.

Similarly to the case of the matching of covariance matrices, there could be used up to

Lp+Lc+1 time delays. When the source is Gaussian, it is known that kS(0,0) and kY (0,0)

are null [Hyvärinen et al., 2001] and this equation is not valid. In this case, there is up

to Lp+Lc valid equations in the system for the cross-kurtosis.

As one might note, the cross-kurtosis encompasses the use of the quadratic terms of

pn or gn, which may generate permutation ambiguities of the involved systems. In fact,

the cross-kurtosis is invariant to phase shift ejθ (sign change for real-valued variables) and

reverse ordering of the coefficients.

Example

Consider the real-valued i.i.d. sequence un with symbols {+1,−1} and pre-coder

P (z) = 1 + 0.5z−1. Since the variables are on the real domain, it is assumed that the

cross-kurtosis only depends on the delay m:

kS(m) = E
[

|sn|2|sn−m|2
]

− 2E2
[

sns
∗
n−m

]

− |E [snsn−m]|2 . (5.35)

The permutations of sign and values of the coefficients of the pre-coder and the resulting

cross-kurtosis (for M = 3) are as shown in Tab. 5.4. It is possible to note that the cross-

Table 5.4: Permutations of P (z) and associated cross-kurtosis kS(m).

Permutations of P (z) |kS(m)|
1 P̂ (z) = 1 + 0.5z−1

0 1 2 3 4
0

0.5

1

1.5

2

2.5

m

K
S
(m

)

2 P̂ (z) = −1− 0.5z−1

3 P̂ (z) = 0.5 + 1z−1

4 P̂ (z) = −0.5− 1z−1

5 P̂ (z) = 1− 0.5z−1

6 P̂ (z) = −1 + 0.5z−1

7 P̂ (z) = 0.5− 1z−1

8 P̂ (z) = −0.5 + 1z−1

kurtosis is invariant to all permutations in Tab. 5.4. A time shift (z−k) does not imply

in changes on the cross-kurtosis. Permutations that increase the order of the polynomial,

like P̂ (z) = 1+ 0z−1 + 0.5z−2, P̂ (z) = −1 + 0z−1 + 0.5z−2 or P̂ (z) = −0.5 + 0z−1 + 1z−2,
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results in different measures for cross-kurtosis.

Tab. 5.4 also shows that the cross-kurtosis is constant for m > Lp. In fact, when there

is no temporal structure the cross-kurtosis assumes a constant value different from zero.

If signals and systems were defined in the complex domain, then permutations with

phase shift ejθ – such as P̂ (z) = 1ejθ0 + 0.5ejθ1z−1 and P̂ (z) = 0.5ejθ0 + 1ejθ1z−1, being

θ0 and θ1 arbitrary phase shifts – also results in the same cross-kurtosis of Tab. 5.4.

Gaussian signals can also be considered in the analysis. Assuming un an i.i.d. Gaussian

distributed sequence with zero mean and unit variance, the resulting cross-kurtosis for

the pre-coder P (z) = 1 + 0.5z−1 and its permutations (in Tab. 5.4) is as illustrated in

Fig. 5.7. Observe that, in this case, kS(0) = 0, i.e., the kurtosis is null. Indeed, for

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m

K
S
(m

)

Figure 5.7: Cross-kurtosis for colored Gaussian Source.

Gaussian sources the kurtosis (or kS(0)) will always be null.

Hence, the cross-kurtosis is able to identify the coefficients |pn|, but with uncertainty

about the phase shift and direct or inverse order of the coefficients. Recalling that the

second-order statistics (covariance matrices) are also matched, the ambiguities can be

reduced. In fact, if E
[

sn−is
∗
n−j

]

= E
[

yn−iy
∗
n−j

]

and if kS(i,j) = kY (i,j) are satisfied for

i,j = {0, . . . ,M}, with M ≥ (Lc−1)/2, then the possible solutions for G(z) are: G(z) =

P (z)ejθz−k or G(z) = P (z−1)ejθz−k, being θ a phase shift. Since G(z) = P (z)C(z), this

implies, in the first case, that C(z) = 1ejθz−k, i.e., the ZF condition, and, in the second

case, that C(z) have an infinite impulse response.

Again, an additional care is necessary to avoid solutions for C(z) with infinite impulse

response that cancels the zeros of the pre-coder P (z). This can be done in the same way

of the preceding sections.
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5.3 Summary of the Extensions

The theoretical analysis carried out so far revealed the required statistical conditions,

based on the classical BGR and SW theorems, for solving the colored blind channel

equalization problem. In rigorous terms, to ensure that the ZF condition be achieved, it

is necessary to have a priori knowledge of the multivariate distribution of the temporally

structured source, which must not be Gaussian. Indeed, this is the only case where the

solutions for C(z) have no permutations ambiguities.

In comparison with the classical approach, where the second- and fourth-order statis-

tics are sufficient for equalization (SW theorem), the requirement of a priori knowledge

of the source multivariate distribution exposes the complexity of the problem. Notwith-

standing, we have also seen that, under certain constraints on the channel+equalizer

system, the statistical conditions can be relaxed and even the second-order statistics can

be sufficient for colored equalization.

In view of the several properties each extension carries, we present in Tab. 5.5 a sum-

mary with the possible ambiguous solutions for C(z) and the number of delays required

for each extension case, considering a generic FIR pre-coder P (z).

It is also worth mentioning that, when P (z) = 1, the ambiguities for C(z) are reduced

to the ZF condition in all cases (however the source becomes i.i.d.).

In the following, we consider some test scenarios to verify the properties of Tab. 5.5

for each extension case.

5.4 Test Scenarios

In order to illustrate the properties of the extensions of the BGR and SW theorems

towards temporally structured sources, we consider the following measures. In the context

of the BGR theorem, we adopt the discrete Kullback-Leibler divergence, which can be

defined as

DKL(Y ||S) =
∑

v∈S

pY (v) log

(

pY (v)

pS(v)

)

(5.36)

where pY (v) and pS(v) are the multivariate PMFs associated with yn and sn, respectively,

and S is the set of all vector states associated with non-null probabilities; for the con-

tinuous case, we use the continuous version of Kullback-Leibler divergence, as defined in

Eq. (5.11).

In the context of the SW theorem, for the use of second-order statistics, we consider

the measure of the matching of covariances as

Jcov =
M
∑

i,j=0

(

E
[

yn−iy
∗
n−j

]

− E
[

sn−is
∗
n−j

])2
; (5.37)
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Table 5.5: Summary of the Extensions.

C(z) Ambiguities
Delays

FIR C(z) IIR C(z)

B
G
R

T
h
eo
re
m

E
x
te
n
si
on

s

Univariate
Distributions

N
on

-G
au

ss
.

±1z−k (ZF)
±p0z−k0±p1z−k1±...±pLpz

−kLp

P (z)

M = 0

G
au

ss
ia
n

∞ ∞

Multivariate
Distributions

N
on

-G
au

ss
.

±1z−k (ZF) – M ≥ Lp

G
au

ss
ia
n

±1z−k (ZF) ±P (z−1)z−k

P (z)
M ≥ Lc

S
W

T
h
eo
re
m

E
x
te
n
si
on

Cross-
Kurtosis

N
on

-G
au

ss
.

1ejθz−k (ZF) P (z−1)ejθz−k

P (z)

M ≥ Lc−1
2

G
au

ss
ia
n

1ejθz−k (ZF) P (z−1)ejθz−k

P (z)

and the matching of cross-kurtosis as

JK =
M
∑

i,j=0

(kY (i,j)− kS(i,j))
2 , (5.38)

being kY (i,j) and kS(i,j) as defined in Eq. (5.27). However, since the cross-kurtosis ap-

proach also depends on the matching of the covariances, the considered measure associated

with the extension of the SW theorem was

J = Jcov + JK . (5.39)

Particularly, the matching of covariances, Eq. (5.37), is closely related to the matching of

multivariate Gaussian distribution (BGR theorem extension), since, in this case, only the

SOS are encompassed. In view of this, we also include this measure in the test scenarios.
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For all considered measures, the matching conditions are satisfied when the above relations

are null.

Each of these measures are able to verify the conditions established in our analysis

when they reach their optimum values. They will be tested in two scenarios:

1. un is a real-valued i.i.d. sequence with symbols {+1,−1}, the pre-coder is P (z) =

1 + 0.6z−1;

2. un is a real-valued i.i.d. Gaussian distributed sequence with zero mean and unit

variance, the pre-coder is P (z) = 1 + 0.6z−1;

Our objective will be to identify if, once attained the requirements regarding the

analysis of the theorems extension, the solutions for the combined channel+equalizer

system are the ZF condition and/or the possible permutations.

We consider two structures for the combined channel+equalizer system C(z). In the

first case, C(z) = c0 + c1z
−1, i.e., C(z) has a finite impulse response. In the second case,

C(z) has infinite impulse response, but is implemented via an IIR structure of the form:

C(z) =
c0 + c1z

−1

P (z)
=
c0 + c1z

−1

1 + 0.6z−1
. (5.40)

Hence, in both cases, there are only two unknown variables c0 and c1, which will be helpful

for the solution visualization. The case in which the signals and systems belong to the

complex domain will not be considered, since the number of unknown variables is higher

and the visualization of the solutions would be compromised.

5.4.1 Scenario 1 - Non-Gaussian Source

In scenario 1, we start by analyzing the KL divergence, Eq. (5.36), for univariate

(M = 0) and multivariate (M = 1) PMFs. From Tab. 5.5, we know that, for C(z)

with finite impulse response, M = 0 is sufficient to obtain the ZF condition. Thus, by

performing a sweep for c0 and c1 from −1.5 to 1.5 in the FIR C(z) system, we found the

solutions displayed in Fig. 5.8.

There are 4 possible solutions for both cases: c = [1 0]T , c = [−1 0]T , c = [0 1]T

and c = [0 −1]T , which can be represented by C(z) = ±1z−k, for k ∈ {0, 1}, all the ZF

solutions possible.

The procedure was repeated for the measures given by Eqs. (5.37) and (5.39) consid-

ering M = 0 and M = 1, being their surfaces contours plotted in Fig. 5.9.

For M = 0, the number of equations is insufficient to obtain the desired solutions

for c, as mentioned in Section 5.2.3. In the case of the covariance matching, Fig. 5.9(a),

there is an infinite set of solutions for c in the shape of an ellipse. On the other hand,

for the cross-kurtosis and covariances matching, Fig. 5.9(c), the number of solutions is
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Figure 5.8: Scenario 1 - Solutions for FIR C(z) - BGR theorem extensions.
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Figure 5.9: Scenario 1 - Contours for covariance and cross-kurtosis matching - Solutions
for FIR C(z).
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reduced, but some of them do not satisfy the ZF condition. When the number of delays is

increased to M = 1, the number of equations (M +1) is equal to the number of unknown

variables (Lc + 1) and it is possible to achieve the desired solutions. Indeed, as shown in

Figs. 5.9(b) and 5.9(d), the only possible solutions are C(z) = ±1z−k, for k ∈ {0, 1}.
For the combined channel+equalizer system with an infinite impulse response, we

performed again the sweep for c0 and c1 from −1.5 to 1.5. The resulting surface contours

of the KL divergence for M = 0 and M = 1 are displayed in Fig. 5.10.
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Figure 5.10: Scenario 1 - Solutions for IIR C(z) - BGR theorem extensions.

According to Tab. 5.5, we know that for M = 0 the solutions for C(z) are all possible

permutations of the coefficients of P (z). Indeed, as shown in Fig. 5.10(a), the solu-

tions are C(z) = 1 + 0.6z−1/P (z), C(z) = 1− 0.6z−1/P (z), C(z) = −1 + 0.6z−1/P (z),

C(z) = −1− 0.6z−1/P (z), C(z) = 0.6 + 1z−1/P (z), C(z) = 0.6− 1z−1/P (z), C(z) =

−0.6 + 1z−1/P (z) and C(z) = −0.6− 1z−1/P (z). By increasing the number of delays,

i.e., with M = 1, the only possible solutions are C(z) = ±1 (i.e., C(z) = 1 + 0.6z−1/P (z)

and C(z) = −1− 0.6z−1/P (z)) and the ambiguous cases are solved.

Finally, for the covariance and the cross-kurtosis matching, the behavior of the com-

bined channel+equalizer system with an infinite impulse response is as illustrated in

Fig. 5.11, for M = 0 and M = 1.

According to Tab. 5.5, the possible solutions are C(z) = ±P (z−1)z−k/P (z) ifM ≥ Lc.

When M = 0, the set of possible solutions for C(z) is infinite with respect to the

covariance matching measure (Fig. 5.11(a)). When M = 1, it is possible to achieve

the necessary conditions for solving the equations system, and the set of possible so-

lutions are C(z) = ±P (z−1)z−k/P (z) (more especifically, C(z) = 0.6 + 1z−1/P (z) and

C(z) = −0.6− 1z−1/P (z)) and the ones associated with the ZF condition (C(z) =

1 + 0.6z−1/P (z) and C(z) = −1− 0.6z−1/P (z)), as shown in Fig. 5.11(b). With re-

spect to the cross-kurtosis matching, when M = 0, it may lead to solutions other than



118

c
0

c
1

J
cov

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Infinite Set 
of Solutions

(a) Covariance matching (M = 0).

c
0

c
1

J
cov

−1 −0.6 0.6 1

−1

−0.6

0.6

1

(b) Covariance matching (M = 1).

c
0

c
1

J
cov

+J
K

−1 −0.6 0.6 1

−1

−0.6

0.6

1

(c) Kurtosis matching (M = 0).

c
0

c
1

J
cov

+J
K

−1 −0.6 0.6 1

−1

−0.6

0.6

1

(d) Cross-kurtosis matching (M = 1).

Figure 5.11: Scenario 1 - Contours for covariance and cross-kurtosis matching -
Solutions for IIR C(z).

the desired ones, as verified at the FIR C(z) case. However, in this IIR C(z) case, since

a constrained model for C(z) is adopted, the solutions found includes all possible permu-

tations of the P (z) coefficients, as indicated in Fig. 5.11(c). It is important to emphasize

that, if the IIR C(z) were not constrained, other solutions could also appear. By increas-

ing M to unity, we achieve the necessary conditions for a valid solution and the solutions

are C(z) = ±P (z−1)z−k/P (z) and C(z) = ±1z−k, as the covariance matching.

5.4.2 Scenario 2 - Colored Gaussian Source

When the source is a colored Gaussian, the HOS information becomes useless for

equalization. For that reason, this distribution type form a special class of source. In the

following, we present the analysis of the combined channel+equalizer system for the KL

divergence (given by Eq. (5.11)), the covariance matching and cross-kurtosis matching for

this scenario.
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In the case the combined channel+equalizer system C(z) has finite impulse response,

we performed the grid search of the possible solutions for C(z), by varying c0 and c1 from

−1.5 to 1.5. With respect to the KL divergence, the obtained solutions for M = 0 and

M = 1 are as displayed in Fig. 5.12.
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Figure 5.12: Scenario 2 - Solutions for FIR C(z) - BGR theorem extensions.

Tab. 5.5 indicates that, for M = 0, the set of solutions for C(z) is infinite. Indeed,

the amount of statistical information in this case is insufficient for equalization and all

the solutions that lie on the ellipse shown in Fig. 5.12(a) are possible. For M = 1, the

multivariate distribution aggregates the temporal structure of the signal and, as shown

in Fig. 5.12(b), the possible solutions are the ones associated with the ZF condition, i.e.,

C(z) = ±1z−k, for k ∈ {0, 1}.
For the covariance and the cross-kurtosis matching, we have an interesting relation.

When M = 0, the kurtosis is zero (see Fig. 5.7) and the measure given by Eq. (5.39)

reduces to Eq. (5.37). In fact, as shown by Figs. 5.13(a) and 5.13(c), the surface contours

are identical.

By increasing M to unity, the solutions for C(z) becomes the ones that are in compli-

ance with the ZF condition, for both covariance and cross-kurtosis matching. Actually,

the number of equations achieved in the covariance matching is already sufficient to obtain

valid solutions for c and, hence, the cross-kurtosis matching, in this case, is redundant in

terms of statistical information. It is also worth mentioning that, although the measures

of the covariance matching and the KL divergence for Gaussian distributions assume dif-

ferent forms, they are equivalent in statistical terms. Indeed, note that Figs. 5.12(a) and

5.12(b) are very similar to 5.13(a) and 5.13(b), respectively.

For the IIR C(z) case, the situation is analogous to the FIR C(z) model. The surface

contours of the KL divergence for M = 0 and M = 1 displayed at Fig. 5.14 reveal

that an infinite set of solutions can be achieved when the number of delays considered
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Figure 5.13: Scenario 2 - Contours for covariance and cross-kurtosis matching -
Solutions for FIR C(z).

c
0

c
1

D
KL

(Y||S)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Infinite Set
of Solutions

(a) Univariate dist.

c
0

c
1

D
KL

(Y||S)

−1 −0.6 0.6 1

−1

−0.6

0.6

1

(b) Multivariate dist. (M = 1).

Figure 5.14: Scenario 2 - Solutions for IIR C(z) - BGR theorem extensions.
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is insufficient (M = 0), but, when M ≥ Lc, the solutions that can be achieved are

C(z) = ±P (z−1)z−k/P (z) (C(z) = 0.6 + 1z−1/P (z) and C(z) = −0.6− 1z−1/P (z)) and

the ZF condition (C(z) = 1 + 0.6z−1/P (z) and C(z) = −1− 0.6z−1/P (z)), as indicated

in Tab. 5.5 and Fig. 5.14(b).

For the covariance matching, Figs. 5.15(a) and 5.15(b), the situation is identical to

the KL divergence of Gaussian distributions, as occured in the FIR C(z) case.
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Figure 5.15: Scenario 2 - Contours for covariance and cross-kurtosis matching -
Solutions for IIR C(z).

Regarding the cross-kurtosis matching, the case in which M = 0 reduces to the co-

variance matching for Gaussian sources and Fig. 5.15(c) is identical to Fig. 5.15(a). For

M = 1, the additional information used by the cross-kurtosis is, in a certain sense, redun-

dant, since only the covariance information is sufficient for this case. Thus, the solutions

for C(z) shown in Fig. 5.15(d) are the same of that of Fig. 5.15(b), although the contours

shape are different.
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5.5 Conclusions

In light of the important theorems of Benveniste, Goursat and Rouget and Shalvi and

Weinstein for blind channel equalization, we performed in this chapter a theoretical anal-

ysis of their extension towards temporally structured sources. The analysis encompassed

univariate and multivariate distributions in the context of the BGR theorem and, regard-

ing the SW theorem, the covariance function and the cross-kurtosis function for different

time delays.

Due to the inherent mathematical complexity involving the addressed topics, we have

not proposed new theorems for what can be called colored blind channel equalization.

However, whenever possible, we invoked theoretical results from a deep prospection in

the literature, like the theorems of Marcinkiewicz, Pólya and Cramér, which were crucial

for the conducted analysis.

The analysis results showed that, differently from the SW theorem, the second- and

the fourth-order statistics are not sufficient to ensure the zero forcing condition for col-

ored blind channel equalization. However, more than the BGR theorem, it is required

the complete knowledge of the multivariate (non-Gaussian) distribution of the source to

guarantee the perfect equalization.

In addition, by imposing certain conditions on the combined channel+equalizer sys-

tem, we also showed that the cross-kurtosis and even the second-order statistics (and

Gaussian sources) considering different time delays can be sufficient to achieve the perfect

equalization. However, additional care is necessary in order to avoid ambiguous solutions

for the problem.

Similarly to the BGR and SW theorems, the analysis of the extension of these two

theorems to colored blind equalization can contribute to the development of new methods

and criteria. Furthermore, in view of the large computational resources available nowa-

days, even the estimation of multivariate densities can be performed in a considerably

fast and reliable fashion. Thus, in the next chapter, we follow this idea and propose novel

criteria and methods to be analyzed in real tasks of the colored blind channel equalization

problem.
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Chapter 6

Methods for Blind Channel Equalization in

the Context of a Temporally Structured

Source

Since the classical criteria for blind equalization, in general, implicitly assume sta-

tistical independence among samples, they tend to fail in scenarios where the source is

temporally structured. Indeed, in these cases, it becomes necessary some kind of modi-

fication in the adopted methodology or, when possible, to perform a pre-processing step

before transmission to mitigate the effects of dependence [LeBlanc et al., 1994; Axford

et al., 1998; Neves et al., 2009]. Alternatively, based on the analysis of the previous chap-

ter, it is possible to exploit the temporal structure of the source and use it to adapt the

filter coefficients. This approach is particularly interesting because it allows the direct use

of the temporal structure. In that sense, the employment of measures/entities capable

of encompassing the statistical dependence present in the signals of interest is of great

significance for solving the aforementioned problems.

Following this line of reasoning, in this chapter, we focus on the methods that can

be used for solving the colored blind channel equalization problem. In fact, a initial step

in that direction was made by Santamaŕıa et al. [2006], where an entity based on the

ITL framework – named correntropy – was used to extract the temporal dependence from

data, as will be described in the following.

6.1 Background on Colored Blind Channel Equaliza-

tion

In the problem of colored blind channel equalization, the temporal structure of the

source is of crucial importance for performing the desired task. This temporal structure

might be the result of inherent systems involved in the signal general process. However, for
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its study, it is important to define a generative model. A reasonable hypothesis concerning

this topic is that of assuming the source as the result of a filtering process over an i.i.d.

signal (as assumed in Chapter 5). In this case, in the context of communications, a

colored communication system can be outlined according to the block diagram illustrated

in Fig. 6.1 [Santamaŕıa et al., 2006], where un is an i.i.d. signal, sn is the resulting non-i.i.d.

Figure 6.1: Block diagram of a communication system with non-i.i.d. source.

(or colored) source and P (z) is the impulse response of the pre-coder system, responsible

for introducing the temporal structure in the source; the other systems, H(z) and W (z),

correspond, respectively, to the channel and the equalizer. Note that there could exist

noise interference, as indicated by the signal ηn. In digital communications, it is usually

assumed that the pre-coder P (z) and the distribution of un are known.

In this scope, the metric known as correntropy [Santamaŕıa et al., 2006] is the state-

of-the-art approach within the ITL framework to perform colored channel equalization.

In simple terms, correntropy is a bivariate function that brings together two important

features: (i) it is capable of extracting information about the signal temporal structure

and (ii) it makes effective use of higher-order statistics (HOS) by means of ITL kernel

estimators [Santamaŕıa et al., 2006; Fantinato et al., 2014]. The mathematical definition

of correntropy can be found in Chapter 2. However, for convenience, we replicate its

estimated version here:

v̂X(m) =
1

Nx

Nx
∑

i=1

Gσ2 (xn−i−xn−m−i) , (6.1)

where Gσ2(·) is a univariate Gaussian kernel with kernel size σ and Nx is the window

length (i.e., the number of pairs of entries xn−i, xn−m−i).

A simplified view of this similarity measure solely based on second-order statistics and

able to consider time-correlation was proposed by our research group in [Fantinato et al.,

2013]. Basically, the statistical dependence is extracted, in this case, through the use of

the classical auto-correlation function – i.e., rX(m) = E[xnxn−m] – in a manner similar

to the SOBI algorithm for BSS [Belouchrani et al., 1997].

Although correntropy, as an ITL entity, is potentially capable of providing, in com-

parison with the canonical second-order correlation, a richer characterization of temporal

dependence, the extent of its effective relevance is a subject that deserves further inves-
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Figure 6.2: Integration of the joint PDF over the plane.

tigation. Indeed, as suggested in Chapter 5, there can be alternative strategies that can

potentially extract more information from dependent sources.

6.1.1 Motivation for Further Investigation

Correntropy presents a number of interesting properties [Santamaŕıa et al., 2006;

Principe, 2010], however, its capability of extracting the temporal structure informa-

tion may suffer from a certain type of limitation, as indicated by the three perspectives

of correntropy presented in the following.

One possible interpretation of correntropy considers it as a similarity metric based

on the joint distribution of the pair Xn and Xn−m [Principe, 2010]. However, not all

statistical moments from this joint distribution are considered, which poses two main

limitations: first, the considered statistical moments depend on the chosen kernel – in

the case of a Gaussian kernel, all the even-order moments are considered –; second, the

measure is sensitive to the sum of second and higher-order moments, which are weighted

by terms inversely proportional to the kernel size σ [Principe, 2010]. In this sense, σ

should be carefully determined so that the suitable statistical moments be favored with

respect to less significant ones according to the problem at hand. For example, for values

of σ ≥ 1, correntropy tends to privilege the second-order moment (i.e., the classical

correlation) [Principe, 2010; Fantinato et al., 2013, 2014].

The second aforementioned perspective of correntropy concerns the specific case in

which σ → 0, a situation where the higher-order moments become dominant. In such case,

correntropy can be seen as the integral of the joint distribution over the plane in which

xn = xn−m, as illustrated by Fig. 6.2. In practice, the adoption of significantly low values

for σ is rare, but this shows that correntropy is subject to a “certain degree of partiality”

regarding the statistical information provided by the joint distribution [Fantinato et al.,

2014].

In addition, if it is considered that a pre-coder P (z) was responsible for introducing the
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time structure of the source, measuring only its correntropy is not enough for determining

P (z). In other words, correntropy can present representation ambiguity for P (z), as

illustrated in the following example.

Example

Assume that un is an i.i.d. binary {+1,−1} sequence and consider the pre-coder

P (z) = 1+0.5z−1. The permutations of sign and values of the coefficients of the pre-coder

and the resulting correntropy values for sn, for m from 0 to 3, are as shown in Tab. 6.1.

As can be noted, all permutations of the type P̂ (z) = ±P (z)z−k or P̂ (z) = ±P (z−1)z−k,

being k an arbitrary time delay, yields the same correntropy values (this situation is

analogous to the covariance matching case seen in Chapter 5).

Table 6.1: Permutations of P (z) and associated correntropy values for m from 0 to 3.

Permutations of P (z) vS(m)

1

2

3

4

P̂ (z) = 1 + 0.5z−1

P̂ (z) = −1−0.5z−1

P̂ (z) = 0.5 + 1z−1

P̂ (z) = −0.5−1z−1
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8

P̂ (z) = 1− 0.5z−1

P̂ (z) = −1+0.5z−1

P̂ (z) = 0.5− 1z−1

P̂ (z) = −0.5+1z−1
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These perspectives, along with the analysis carried out in the previous chapter, form

sufficient evidences that motivate us to proceed with the study on colored blind channel

equalization beyond the use of the correntropy. In that sense, based on the extensions of

the BGR and SW theorems, we will propose the use of alternative criteria, as described

in next section.
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6.2 Criteria for Colored Channel Equalization

Besides correntropy, we are going to make use of three more statistical entities that ba-

sically differ by the statistical moments they consider, which are: the correlation function

(SOS), the cross-kurtosis function (second- and fourth-order statistics) and multivariate

distributions (which encompass all statistical moments). Together, they will form funda-

mental ingredients to the proposition of the criteria to be studied.

Based on Chapter 5, we present in the following the criteria to be considered in the

analysis, followed by some of their aspects related to estimation and optimization.

6.2.1 The Cost Functions

We consider five cost functions that are based on the matching of: correlation, cross-

kurtosis, correntropies and multivariate densities. In the last case, two costs can be

proposed, depending on the nature of the analyzed RVs – i.e., if they are discretely or

continuously distributed.

Correlation Retrieval

From the simpler to the most complex, we start with the correlation-based cost func-

tion introduced in [Fantinato et al., 2013], which uses exclusively SOS. The cost named

Correlation Retrieval (CR) aims at the matching of the correlation profile for M + 1

distinct delays:

JCR(w) =
M
∑

m=0

|rY (m)− rS(m)|q , (6.2)

where rS(m) = E[sns
∗
n−m] and rY (m) = E[yny

∗
n−m] are the auto-correlation functions for

delay m associated with the source sn and the output signal yn, respectively; M is the

maximum arbitrary delay and q is a non-null positive value (usually assumed to be equal

to 2). It is important to emphasize that we are assuming the signals to be stationary and,

thus, the statistical properties are invariant to signal time shifts.

The objective is to minimize the CR cost, so that when JCR = 0 the correlation profile

of yn is matched with that of the source sn.

Estimation

The estimation of the CR cost is completely related to the estimation of the correlation

function. However, since the pre-coder P (z) and the distribution of un are assumed to

be known in communications scenarios, the correlation profile of the source sn can be

analytically computed, i.e., its correlation values can be exactly obtained without the
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need of estimation tools. Indeed, sn−m can be written as

sn−m =
[

p∗0 p∗1 · · · p∗Lp

]













un−m

un−m−1

...

un−m−Lp













= pHun−m, (6.3)

so that
rS(m) = E[sns

∗
n−m] = E[pHunu

H
n−mp]

= pHE[unu
H
n−m]p,

(6.4)

where the matrix E[unu
H
n−m] will be, for m = 0, an identity matrix scaled by the variance

of un, i.e., E[unu
H
n−m] = σ2

UI (since un is i.i.d.); for m 6= 0, E[unu
H
n−m] will have its m-th

diagonal equal to σ2
U and the other elements null.

On the other hand, the auto-correlation function for yn may be difficult to be an-

alytically computed, since the channel H(z) and the noise ηn are considered unknown.

However, it can be estimated from samples through the following relation:

r̂Y (m) =
1

Ny

Ny−1
∑

i=0

yn−iy
∗
n−m−i, (6.5)

where Ny is the number of pairs {yn, yn−m} used in the estimation.

Alternatively, the correlation function rY (m) can be estimated in function of the cor-

relation matrix of xn. Similarly to Eq. (6.4), we are able to write:

rY (m) = E[yny
∗
n−m] = E[wHxnx

H
n−mw]

= wHE[xnx
H
n−m]w = wHRXnXn−m

w.
(6.6)

Hence, once R̂XnXn−m
is estimated, r̂Y (m) is a direct function of the filter weights w.

This approach tends to be computationally more efficient when the correlation profile of

yn must be evaluated several times – e.g., in optimization metaheuristics.

Finally, the estimated CR cost becomes

ĴCR(w) =
M
∑

m=0

|r̂Y (m)− rS(m)|q , (6.7)

being rS(m) obtained according to Eq. (6.4) and r̂Y (m) according to Eq. (6.5) or Eq. (6.6).

Matching of the Cross-Kurtosis

Based on the SW theorem extension (Section 5.2.3, in Chapter 5), it might also be

interesting to use the information present on the fourth-order statistics via the cross-
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kurtosis, whose definition is repeated here for convenience:

kS(m) = E
[

|sn|2|sn−m|2
]

− 2E2
[

sns
∗
n−m

]

− |E [snsn−m]|2 . (6.8)

Considered as a nonlinear correlation function in the ICA theory, the cross-kurtosis might

be particularly useful in nonlinear scenarios [Hyvärinen et al., 2001]. However, in this

work, we are focused on the linear equalization problem.

Similarly to the matching of correlations, the matching of the cross-kurtosis can be

outlined by means of the divergence measure:

Jkurt(w) =
M
∑

m=0

|kY (m)− kS(m)|q , (6.9)

where kS(·) and kY (·) are the cross-kurtoses associated with the source sn and with the

output signal yn, respectively, and q is a non-null positive value. However, in accordance

with the SW theorem extension, the SOS must also be encompassed, which results in

JMCK(w) =
M
∑

m=0

|kY (m)− kS(m)|q + |rY (m)− rS(m)|q . (6.10)

We refer to this cost simply by MCK (Matching of Cross-Kurtosis).

Estimation

In the context of communication channels, we assume that the cross-kurtosis of the

source is known at the receiver. It can be analytically computed according to the following

relations. For the first term of Eq. (6.8), we have

E
[

un−k−iu
∗
n−l−iu

∗
n−m−jun−o−j

]

=























E [|un|4] , k+i = l+i = m+j = o+j

E2 [|un|2] , k+i = l+i 6= m+j = o+j, k+i = m+j 6= l+i = o+j

|E [u2n] |2, k+i = o+j 6= l+i = m+j

0, otherwise.

(6.11)

For the second term, it is basically the correlation function given by Eq. (6.4) to the power

of 2 and scaled by −2; and, at last, the third term can be computed as

E[snsn−m] = pHE[unu
T
n−m]p

∗, (6.12)

in which the modulus of the result must be taken to the power of 2 and scaled by −1. If

the signals are treated in the real domain, Eqs. (6.4) and (6.12) are equivalent.
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For the cross-kurtosis of the output signal yn, we consider the sample mean estimation:

k̂Y (m) =
1

Ny

Ny−1
∑

i=0

|yn−i|2|yn−m−i|2 − 2r̂2Y (m)−
∣

∣

∣

∣

∣

1

Ny

Ny−1
∑

i=0

yn−iyn−m−i

∣

∣

∣

∣

∣

2

. (6.13)

The resulting estimated MCK cost becomes

ĴMCK(w) =
M
∑

m=0

∣

∣

∣
k̂Y (m)− kS(m)

∣

∣

∣

q

+ |r̂Y (m)− rS(m)|q , (6.14)

being kS(m) obtained by relations (6.11), (6.4) and (6.12); k̂Y (m) obtained by Eq. (6.13);

rS(m) by Eq. (6.4) and, finally, r̂Y (m) by Eq. (6.5) (or Eq. (6.6)).

Matching of Correntropies

The pioneering work of Santamaŕıa et al. [2006] introduced the idea of the matching

between the correntropies of the source and of the equalized signal, since this ITL simi-

larity measure could retain great portion of the statistical information. Mathematically,

the correntropy-based criterion is the minimization of the following cost:

Jcor(w) =
M
∑

m=1

(vS(m)− vY (m))2 . (6.15)

where vS(m) and vY (m) are the correntropy of the source sn and of the equalizer output

yn, respectively.

Estimation

When the source is discrete, the correntropy can be analytically computed from a

PMF associated with a filtered signal in the following manner. Consider the filter P ′(z) =

P (z)(1− 1z−m) and the filtered signal:

s′n = p′Hun. (6.16)

If the PMF associated with s′n is

pS′(v) =
∑

i∈A
S′

P (v = aS′(i))δ(v − aS′(i)), (6.17)

where AS′ is the alphabet of all possible occurrences of S ′, aS′(i) is the i-th symbol ∈ AS′

and P (v = aS′(i)) is the probability of v = aS′(i); then, the correntropy can be calculated
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as

vS(m) =
∑

i∈A
S′

pS′(aS′(i))Gσ2 (aS′(i)) . (6.18)

When the source sn is continuous, it might be a hard task to analytically compute the

correntropy of S: it demands the computation of the continuous distribution of S ′ – the

PDF fS′(v) – followed by the evaluation of the integral

vS(m) =

∫

fS′(v)Gσ2 (v) dv, (6.19)

which is not always straightforward. When un is Gaussian distributed and the pre-coder

P (z) is linear, this integral can be easily computed through the property given by Eq.(2.12)

– this property is valid when the kernel is a Gaussian-like function. For other cases, the

estimation of the correntropy from a set of representative samples – i.e., via Eq. (6.1) –

is usually preferred. Thus, the estimated values v̂S(m), for m = 1, . . . ,M , are stored and

used in the receiver (we assume that the PDF of the source remains fixed, i.e., the source

is assumed to be stationary).

The correntropy of the output signal yn, vY (m), is estimated via Eq. (6.1). Hence, the

cost of the matching of correntropies can be estimated as

Ĵcor(w) =
M
∑

m=1

(

vS(m)− 1

Ny

Ny−1
∑

i=0

Gσ2 (yn−i−yn−m−i)

)2

, (6.20)

where vS(m) can be analytically computed (via Eq. (6.18) or (6.19), depending on the

nature of the source).

Matching of Multivariate Densities

So far, we have seen that the correlation, the cross-kurtosis and the correntropy mea-

sures are able to evaluate, from different perspectives, the similarity between a pair of

RVs (with different time lags m). However, a broader range for this similarity measure

can be attained if multivariate distributions are considered, as suggested in the analysis

performed in Chapter 5. Indeed, the multivariate distributions are able to jointly evaluate

RVs encompassing M different time delays.

Following this line of reasoning, it is desirable to measure how matched (or how similar)

are two multivariate densities. Based on the works of Principe [2010] and Lázaro et al.

[2005], a possibility for quantifying the similarity between two distributions can be the

Quadratic Divergence (QD) measure. Assuming multivariate distributions, the resulting
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multivariate QD, or simply MQD, can be expressed as

JMQD(w) =

∫

D

(fY (v)− fS(v))
2 dv

=

∫

D

f 2
Y (v)dv +

∫

D

f 2
S(v)dv − 2

∫

D

fY (v)fS(v)dv

(6.21)

where Y = {Yn, Yn−1, . . . , Yn−M}, S = {Sn, Sn−1, . . . , Sn−M}, M is the number of distinct

considered delays, D ⊆ R
M+1. Note that, unlike correntropy, the MQD considers two

stochastic process Y and S, whose number of delays M can be arbitrary [Fantinato et al.,

2014]. It is important to remark that the joint distributions must be strictly stationary,

i.e., a time shift does not provoke modifications on the joint distribution (similarly to

correntropy). Although the concept of the quadratic divergence between distributions has

been previously proposed, we highlight that taking into account multivariate distributions

is an innovative contribution of our research.

Apparently, the possibility of using all statistical information of the multivariate dis-

tributions in the similarity measure given by Eq. (6.21) may seem computationally costly.

However, the estimation of the joint PDFs can be performed with relative simplicity

through the framework defined by kernel density estimation, which will be discussed in

the following.

Estimation

The canonical strategy in ITL for density estimation is the use of the Parzen win-

dow method [Parzen, 1962], a kernel-based approach, which is aimed at the estimation of

continuous densities (or PDFs). Although other methods like those based on order statis-

tics [Pham, 2000; Even, 2003], on the k-nearest-neighborhood [Kraskov et al., 2004] and

on histograms [Steuer et al., 2002] could also be employed, the Parzen window method is

preferred here due to its simple extensibility to the multivariate case and, along with the

use of Gaussian kernels, its leading to important simplifying properties, as will be shown.

Regardless of the source type, since it is assumed that the noise ηn is continuously

distributed (but unknown), it is expected that the distribution associated with yn, fY (v),

be continuous as well and the Parzen window method can be applied with no further

issues. In this case, the joint PDF of fY (v) can be estimated as:

f̂Y (v) =
1

Ny

Ny−1
∑

i=0

GΣ (v − yn−i) , (6.22)
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where GΣ(·) is the multivariate symmetric Gaussian kernel given by

GΣ (v − yn−i) =
1

√

det(2πΣ)
exp

[−1

2
(v − yn−i)

TΣ−1(v − yn−i)

]

, (6.23)

with yn−i = [yn−i yn−i−1 . . . yn−i−M ]T , Σ = σ2I, where I is the identity matrix of

dimension M+1.

Regarding the source, it may occur that its distribution be of a discrete nature. In

fact, in general communication systems, the signal to be transmitted belongs to a pre-

defined finite set of symbols, as in the BPSK and QAM schemes. When this is the case,

for time-dependent sources, all the information about temporal dependence is contained

in the joint PMF. Consider a generic PMF for S described as:

pS(v) =
∑

i∈AS

P (v = aS(i))δ(v − aS(i)), (6.24)

where AS is the alphabet of all possible occurrences of S, aS(i) is the i-th symbol ∈ AS

and P (v = aS(i)) is the probability of v = aS(i). Then, the MQD cost becomes

JMQD−D(w) =

∫

D

(fY (v)− pS(v))
2 dv

=

∫

D

f 2
Y (v)dv +

∫

D

p2S(v)dv − 2

∫

D

fY (v)pS(v)dv,

(6.25)

where there emerges an important remark: the second term of the last equality depends

solely on the probabilities of the sources, being independent of the parametric model un-

derlying the set of observable variables yi, and can be neglected. Actually, the integration

of this term may diverge, making the similarity measure lose its properties. By neglecting

it, the measure will not be a distance anymore, however, since this term is constant (the

PMF pS(v) is assumed to be stationary), there is no impact on the optimization process.

Using (6.24) and (6.22) instead of pS(v) and fY (v) in Eq. (6.25), respectively, the

estimation for the matching between a PDF and a PMF becomes:

ĴMQD−D(w) =
1

N2
y

Ny−1
∑

i=0

Ny−1
∑

j=0

G2Σ (yn−i − yn−j) +

∫

D

p2S(v) dv

− 2

Ny

∑

i∈AS

[

pS(aS(i))

(

Ny−1
∑

j=0

GΣ (aS(i)− yn−j)

)] (6.26)

where the first term after the last equality was obtained through the following relation:

∫

D

GΣ (v − yn−i)GΣ (v − yn−j) dv = G2Σ (yn−i − yn−j) , (6.27)
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which is a property valid for Gaussian kernels. Other kernels can be employed, although

the resultant integration may not be simple. Remark that the term relative to the square

of pS(v) is not considered. This measure is called MQD-D, since it aims at discrete

distributions.

When the source is continuously distributed, the situation is similar to correntropy:

the use of the analytical PDF may lead to difficult integral computations (unless it is

Gaussian distributed). Thus, it is usually preferred to adopt the Parzen window method

for fS(v) in the same way as Eq. (6.22). In this case, the estimation of the MQD cost

becomes:

ĴMQD−C =
1

N2
y

Ny−1
∑

i=0

Ny−1
∑

j=0

G2Σ (yn−i − yn−j) +
1

N2
s

Ns−1
∑

i=0

Ns−1
∑

j=0

G2Σ (sn−i − sn−j)

− 2

NyNs

Ny−1
∑

i=0

Ns−1
∑

j=0

G2Σ (yn−i − sn−i) ,

(6.28)

where yn−i = [yn−i yn−i−1 . . . yn−i−M ]T , sn−i = [sn−i sn−i−1 . . . sn−i−M ]T ; Ny and Ns are

the window length (or the number of vector samples) for Y and S, respectively. Since

this approach is based on the assumption that both RVs Y and S are associated with

continuous distributions, we refer to the cost given by Eq. (6.28) as MQD-C. Generally,

one of the PDFs is considered as a fixed target PDF. Thus, if we assume that fS(v)

remains unchanged, the second term in Eq. (6.28) can be disregarded in optimization

problems.

Notwithstanding, this approach requires the receiver to store (or generate) a represen-

tative set of samples of sn, which can be an attractive option if the number of samples to

be stored is relatively small; otherwise, besides the necessity of a large memory, we will

face the increase of the computational burden. In view of this, a promising alternative

is to store the source PDF by means of a weighted Gaussian combination (with the aid

of a RBF structure 1 – see Section 1.1.2), which is able to drastically reduce the memory

usage, but demands an offline pre-processing step, as described in the following.

First, from a representative set of samples sn, the PDF fS(v) can be estimated in

specific points νi – for example, in a regular grid or in a certain region of interest –

according to the relation

f̂S(νi) =
1

Ns

Ns−1
∑

j=0

GΣ (νi − sn−j) , (6.29)

for each of the specific points νi. Next, an RBF-based method with multivariate Gaussian

kernels can be employed to approximate f̂S(νi). Once the RBF is trained, the combination

1It is important to remark that this idea is related with the Gaussian Mixture Model [Yu et al., 2012]
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of the activation functions (i.e., Gaussian kernels) can be viewed as f̂S(νi) itself. At the

end of the process, the estimated PDF of the source can be mathematically expressed as

f̂S(v) =
Na
∑

j=k

ckGΣ (v − µk) , (6.30)

being µk the mean vector, ck the weights of each Gaussian kernel and Na the number of

activation functions. A customary RBF approach is to first obtain the mean vectors µk

and variance Σ in a unsupervised way (e.g., using the k -means method [Haykin, 1998])

and, then, solve a linear combination problem for the weights ck. In that sense, a reduced

number Na of activation functions can be employed, being necessary to store only the

means µk and the weights ck of each Gaussian (the variances can be assumed to be

constant). Finally, the MQD-C cost becomes

ĴMQD−C =
1

N2
y

Ny−1
∑

i=0

Ny−1
∑

j=0

G2Σ (yn−i − yn−i) +
1

N2
a

Na
∑

i=1

Na
∑

j=1

G2Σ

(

µi − µj

)

− 2

NyNa

Ny−1
∑

i=0

Na
∑

k=1

ckG2Σ (yn−i − µk) ,

(6.31)

which is simpler and computationally more efficient.

6.2.2 Gradient-Based Optimization

All considered costs are differentiable, allowing the adoption of the stochastic gradient

method for optimization, as described in Section 3.1. In fact, this is the preferred option in

the ITL field [Santamaŕıa et al., 2006; Principe, 2010], given the simplicity of the resulting

algorithms. In the following, we present the gradient of each considered cost.

Correlation Retrieval

The analytical gradient of Eq. (6.2), assuming q = 2, can be written as

∇wJCR = 2
M
∑

m=0

(rY (m)− rS(m))E
[

y∗nxn−m + y∗n−mxn

]

. (6.32)

However, the entities rY (m) and E[y∗nxn−m + y∗n−mxn] must be estimated in practical ap-

plications and, depending on the adopted method, there could result different algorithms.

In classical SOS-based algorithms (like the LMS algorithm), the stochastic gradient

approach is usually adopted. In [Fantinato et al., 2013], a semi-batch (sliding window)
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approach is assumed in order to obtain a more precise derivative estimation:

∇wĴCR = 2
M
∑

m=0

(r̂Y (m)− rS(m))

(

1

Ny

Ny−1
∑

i=0

y∗n−ixn−m−i + y∗n−m−ixn−i

)

, (6.33)

being Ny the number of pairs {yn, yn−m}. This same approach will be considered in this

work.

Matching of the Cross-Kurtosis

The Cross-Kurtosis-based cost (Eq. (6.10)) has the gradient:

∇wJMCK = 2
M
∑

m=0

(kY (m)− kS(m)) 2E
[

|yn|2y∗n−mxn−m + y∗nxn|yn−m|2
]

− 2E
[

yny
∗
n−m

]

E
[

y∗nxn−m + xny
∗
n−m

]

− E [ynyn−m]E [ynxn−m + xnyn−m] .

(6.34)

Similarly to the CR cost, the main issue is how to estimate the expectations. In the work of

Shalvi and Weinstein [1990], a mixture of empirical average and stochastic approximation

is considered. However, in this work, we will consider the semi-batch approach, which

results in

∇wĴMCK = 2
M
∑

m=0

(

k̂Y (m)− kS(m)
)

(

2

Ny

Ny
∑

i=0

|yn−i|2y∗n−m−ixn−m−i + y∗n−ixn−i|yn−m−i|2
)

−
(

2

Ny

Ny
∑

i=0

yn−iy
∗
n−m−i

)(

1

Ny

Ny
∑

i=0

y∗n−ixn−m−i + xn−iy
∗
n−m−i

)

−
(

1

Ny

Ny
∑

i=0

yn−iyn−m−i

)(

1

Ny

Ny
∑

i=0

yn−ixn−m−i + xn−iyn−m−i

)

.

(6.35)

When Ny = 1, the resulting algorithm reduces to the standard stochastic-gradient

approach.

Matching of Correntropies

The gradient of the correntropy-based cost given by Eq. (6.15) can be computed as

∇wĴcor =
−1

σ2

M
∑

m=1

(vS(m)− v̂Y (m))E [Gσ2 (yn−yn−m) (yn−yn−m)(xn−xn−m)] , (6.36)

considering, again, Gaussian kernel functions.

As in the work of Santamaŕıa et al. [2006], a semi-batch approach is considered for
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estimating the expectation:

∇wĴcor =
M
∑

m=1

(vS(m)− v̂Y (m))

(

−1

σ2Ny

Ny−1
∑

i=1

Gσ2 (yn−i−yn−m−i) ·

· (yn−i−yn−m−i)(xn−i−xn−m−i)

)

,

(6.37)

which will be the same approach adopted in this work.

Matching of Multivariate Distributions

The considered matching of multivariate distributions can present two costs, depending

on the nature of source: the JMQD−D (Eq. (6.25)) and JMQD−C (Eq. (6.21)). Since the cost

function involves the distribution of the signals, a general gradient is not straightforward.

Hence, we derive the gradients of the estimated costs (Eqs. (6.26) and (6.28)).

For the estimated MQD-D cost, ĴMQD−D, the gradient is

∇wĴMQD−D =
−1

2N2
y

Ny−1
∑

i=0

Ny−1
∑

j=0

G2Σ (yn−i − yn−j)
(

(Xn−i −Xn−j)
TΣ−1(yn−i − yn−j)

)

+
2

Ny

∑

i∈AS

[

pS(aS(i))

(

Ny−1
∑

j=0

GΣ (aS(i)− yn−j)X
T
n−jΣ

−1(aS(i)− yn−i)

)]

,

(6.38)

where

Xn−i = [xn−i xn−i−1 · · · xn−i−M ] =













xn−i xn−i−1 · · · xn−i−M

xn−i−1 xn−i−2 · · · xn−i−M−1

...
...

...
...

xn−i−Lw
xn−i−1−Lw

· · · xn−i−M−Lw













(6.39)

and yn−i = XT
n−iw.

The gradient of the continuous counterpart can be written as

∇wĴMQD−C =
−1

2N2
y

Ny−1
∑

i=0

Ny−1
∑

j=0

G2Σ (yn−i − yn−j) (Xn−i −Xn−j)
TΣ−1(yn−i − yn−j)

+
1

NyNs

Ns−1
∑

i=0

Ny−1
∑

j=0

G2Σ (sn−i − yn−j)X
T
n−jΣ

−1(sn−i − yn−j).

(6.40)

Note that, in both cases, the second term of Eqs. (6.26) and (6.28) disappears, since

the distribution of the source is independent of the equalizer coefficients w.

When the source distribution is approximated by an RBF network, Eq. (6.31), the
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derived gradient is

∇wĴMQD−C =
−1

2N2
y

Ny−1
∑

i=0

Ny−1
∑

j=0

G2Σ (yn−i − yn−j) (Xn−i −Xn−j)
TΣ−1(yn−i − yn−j)

+
1

NyNa

Na
∑

k=1

Ny−1
∑

j=0

ckG2Σ (yn−i − µk)X
T
n−iΣ

−1(yn−i).

(6.41)

As can be noted, all gradient functions are estimated using a sliding sample window.

The reason for this choice is to seek a fair and coherent comparison with the kernel-based

methods.

The performance of the gradient-based methods will be evaluated in Section 6.6, where

they will also be compared with an evolutionary algorithm for optimization.

6.3 Estimation Issues

Once we have formed a representative set of criteria for the colored blind channel

equalization problem, some natural questions may arise, like “how many samples are

necessary to achieve a reliable estimation of the costs?”, “what is the optimal kernel size to

be used in the correntropy- and multivariate density-based criteria?” or still “how intense

is the effect of the curse of dimensionality [Scott, 1992] in the multivariate densities?”.

Undoubtedly, a generic answer for these questions is not easy to be found, since it will

depend on the type of distributions underlying the set of observable variables and on the

noise.

In that sense, we perform a few analyses on these questions having as background the

colored blind channel equalization problem.

6.3.1 The Number of Samples vs. Dimensionality

In order to evaluate the effect of the number of samples and the number of delays

over the estimated costs, we have selected two representative scenarios that are able to

illustrate the key behavior of each criteria. In the first scenario, the source is associated

with a discrete distribution (or a PMF) and, in the second scenario, the source is associated

with a continuous density (or a PDF).

First Scenario: Discrete Colored Source

Consider a binary {+1,−1} i.i.d. signal un which is pre-coded by the linear pre-coder

P (z) = 1 + 0.5z−1 − 0.3z−2 + 0.1z−3 + 0.15z−4. (6.42)
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Hence, the resulting pre-coded signal sn has a temporal structure of order Lp = 4. The

PMFs associated with un and sn can be seen in Fig. 6.3.
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Figure 6.3: Scenario 1 - PMF of the i.i.d. and pre-coded signal.
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Figure 6.4: Scenario 1 - Analytical instances associated with the source sn.

Since the PMF of un and the pre-coder P (z) are known, we are able to analytically



140

compute the correlation, the cross-kurtosis, the correntropy and the PMF associated with

sn. Fig. 6.4 shows these values for M = 5 (except for the multivariate PMF, in which,

for the sake of visualization, the M = 1 case was plotted). For correntropy, the chosen

kernel size was σ = 0.3.

Assuming that there is a set of samples of sn available, we wish to estimate the correla-

tion, cross-kurtosis, correntropy and the multivariate distribution according to Eqs. (6.5),

(6.13), (6.1) and (6.22), respectively. However, to establish a relation between the number

of samples and the number of considered delays, it is assumed that Ns can have the values

{30, 60, 100, 200, 300, 400, 500, 600, 700} and M the values {0, 1, 2, 3, 4, 5}.
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Figure 6.5: Scenario 1 - Cost values: Ns ×M .

Having obtained the estimates, it is possible to measure how close they were to their

analytical values using the costs presented in Section 6.2.1 (it suffices to replace the

estimated entities associated with the RV Y by the estimates associated with the RV S).

In other words, we apply the costs ĴCR, ĴMCK , Ĵcor and ĴMQD−D to measure the distance

between the estimates and the analytical values; the costs will be null when the estimates

match the analytical values. For 100 independent experiments, the average measured

costs for the values of Ns and M are displayed in Fig. 6.5 (it was assumed the kernel size
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σ = 0.3 for correntropy and Σ = σ2I = 0.09I for the multivariate density estimation).

It is possible to note that ĴCR, ĴMCK and Ĵcor present similar cost shapes. For the

ĴCR cost, Fig. 6.5(a), the quality of the estimates decreases – i.e., the cost increases –

exponentially by reducing the number of samples and/or increasing the number of delays

M . For ĴMCK and Ĵcor, by decreasing the number of samples, the quality of the estimates

decreases (the costs are higher) exponentially; by increasing the number of delays M , the

quality of the estimates tends to decrease logarithmically. The costs ĴCR and ĴMCK seem

to present higher sensibility for large M and small Ns. Also, Ĵcor presented the lower

cost values if compared with ĴCR and ĴMCK ; however, the reason for this comes from

small correntropy values (see Fig. 6.4(c) – vs(0) must not be taken into account, since it

is not considered on the cost). On the other hand, for the ĴMQD−D cost, we have not

considered its second term (as expressed by Eq. (6.25)), hence, it cannot be seen as a

distance measure. However, the general behavior of the cost is still preserved (the lower

the cost, the higher the quality of the estimation). In that sense, we are able to note

that the increase of the number of delays M can improve the estimation (the ĴMQD−D

cost attains lower values) and, along the Ns axis, for Ns ≥ 100, ĴMQD−D is practically

constant. This suggests that, in contrast with the “curse of dimensionality”, the number

of samples may not be an issue for estimating multivariate PDFs. It is also important to

mention that a wrong choice of the kernel size Σ may contribute to the increase of the

residual errors in the estimation (i.e., a kernel size misadjustment). However, the analysis

of the kernel size will be done in Section 6.3.2.

Now, we repeat the same procedure but consider noisy samples of sn, i.e., we assume

sn = pTun + ηn, (6.43)

being ηn an Additive White Gaussian Noise (AWGN), with resultant Signal-to-Noise

Ratio (SNR) level of 5 dB, a considerably high noise energy level in terms of equalization.

Fig. 6.6 shows the histogram of the noisy samples of sn.
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Figure 6.6: Histogram of the noisy samples of sn.
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The average costs for 100 independent experiments are displayed at Fig. 6.7. As it

is possible to note, the ĴCR and the ĴMCK costs showed a considerable increase in the

estimation error in comparison with the noiseless case (mainly the ĴMCK cost), being small

values of M preferred in order to increase the estimation accuracy. For the kernel-based

costs Ĵcor and ĴMQD−D, their cost values remained practically the same of the noiseless

case, revealing more robustness against noise. Indeed, this is a very attractive feature of

kernel-based methods [Principe, 2010].
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Figure 6.7: Scenario 1 - Cost values: Ns ×M for noisy samples (SNR 5 dB).

Second Scenario: Colored Gaussian Source

Consider an i.i.d. Gaussian distributed signal un with zero mean and unit variance

(σ2
U = 1) that is pre-coded by the same previous system P (z), defined in Eq. (6.42). The

histograms of the PDFs (M = 0) associated with un and sn can be seen in Fig. 6.8.

The analytical computation of the correlation, the cross-kurtosis, the correntropy and

the multivariate PDF associated with sn is possible because the PDF of un and the pre-

coder P (z) are known. The correlation is analytically obtained via Eq. (6.4), while the

cross-kurtosis via the group of Eqs. (6.11), (6.4) and (6.12). For correntropy, the analytical
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Figure 6.8: Scenario 2 - Histograms of the PDFs of the i.i.d. and pre-coded signal.

values can be computed according to Eq. (6.19), whose calculus is straightforward, since

the source and the kernel function are both Gaussian. Basically, since un is Gaussian

distributed, it is known that a linear combination of un will be Gaussian as well. More

specifically, the PDF of s′n (defined in Eq. (6.16)), fS′(v), will be

fS′(v) =
1

√

2πσ2
S′

exp

( −1

2σ2
S′

v2
)

= Gσ2

S′
(v) , (6.44)

being

σ2
S′ = E

[

s′
2
n

]

= p′TE
[

unu
T
]

p′ = p′Tp′, (6.45)

where p′ is the modified pre-coder with transfer function P ′(z) = P (z)(1−1z−m). Hence,

applying (6.44) in (6.19), there results

vS(m) =

∫

fS′(v)Gσ2 (v) dv

=

∫

Gσ2

S′
(v)Gσ2 (v) dv = Gσ2

S′+σ2 (0) ,

(6.46)

where the relation given by Eq.(2.12) was used. Note that σ2
S′ may change in function

of the considered delay m. Finally, for the multivariate PDF associated with sn, we also

know that it will be a multivariate Gaussian distribution of the type:

fS(v) = GΣS
(v) , (6.47)

where ΣS is the covariance matrix of sn as defined in Eq. (5.12), which can also be

analytically obtained.

Fig. 6.9 shows the analytical values obtained for M = 5 (for correntropy, the chosen

kernel size was σ = 0.3, and, for the multivariate PDF, the M = 1 case is plotted for the
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sake of visualization).
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Figure 6.9: Scenario 2 - Analytical instances associated with the source sn.

Similarly to the first scenario, we apply the costs ĴCR, ĴMCK and Ĵcor to measure the

distance between the estimates and the analytical values. For the MQD-C cost, we use a

slightly modified version:

ĴMQD−C =
1

N2
y

Ny
∑

i=1

Ny
∑

j=1

G2Σ (yi − yj) +G2ΣS
(0)− 2

Ny

Ny
∑

i=1

GΣ+ΣS
(yi) , (6.48)

since the source PDF is a multivariate Gaussian distribution.

Very interestingly, this scenario allows the use of the Silverman’s rule [Silverman,

1986] for the kernel size adjustment, which allows the achievement of the optimum kernel

size value – in a squared error sense – when the estimated distribution is Gaussian.

Mathematically, Silverman’s optimum kernel size can be computed as

σ2
o = σ2

S

(

4

(Ns(2(M+1) + 1))

)2/(M+5)

, (6.49)
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where σ2
S is the variance of sn. Hence, we adopt σ2 = σ2

o and Σ = σ2
oI as kernel sizes for

the Ĵcor and the ĴMQD−C costs, respectively. However, since σ2
o depends on Ns and M ,

this value has to be updated for each considered value of Ns and M .

For 100 independent experiments, the mean costs values are as exhibited in Fig. 6.10

for Ns = {30, 60, 100, 200, 300, 400, 500, 600, 700} and M = {0, 1, 2, 3, 4, 5}. Compared

with the discrete case in Fig. 6.5, it is possible to note that the ĴCR presents a similar

behavior, while ĴMCK revealed poorer estimates when Ns is small, i.e., the cost is higher

for Ns ≤ 100. For the kernel-based costs Ĵcor and ĴMQD−C , the optimum kernel size

σ2
o contributed to reduce the estimation error. For correntropy, the general tendencies

were kept, i.e., by decreasing the number of samples, the quality of the estimates reduces

exponentially and, by increasing the number of delays M , the quality of the estimates

tends to reduce logarithmically. However, the cost values are lower than that of Fig. 6.5(c).

For the ĴMQD−C cost, Fig. 6.10(d), it is now clear that, by increasing Ns or – counter

intuitively – by increasingM , the estimates becomes more accurate (and ĴMQD−C attains

lower values). Also, it is possible to note that reducing Ns or M the quality of the

estimation deteriorates exponentially.
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Figure 6.10: Scenario 2 - Cost values: Ns ×M .

Following the same line of the previous scenario, we also consider noisy samples ac-
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cording to the model given by Eq. (6.43). Again, an additive white Gaussian noise with

resulting SNR level of 5 dB is considered. The surfaces of the focused costs are displayed

in Fig. 6.11. Similarly to the discrete case, the ĴCR and the ĴMCK costs registered higher

discrepancies between the estimated entities and their analytical values (mainly the ĴMCK

cost). For correntropy and the multivariate PDF, Figs. 6.11(c) and 6.11(d), a slight differ-
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Figure 6.11: Scenario 2 - Cost values: Ns ×M for noisy samples (SNR 5 dB).

ence in the costs was observed. However, the Ĵcor cost exhibited a noticeable change when

the number of delays M is increased, following a linear-like tendency of growth (hence,

linearly reducing the estimation quality).

In a general perspective, we observed that, by increasing the number of samples,

the estimates tend to become close to their correspondent analytical values, and, for

ĴCR, ĴMCK and Ĵcor, by increasing the number of delays, there may be a reduction on

the estimation quality. However, in contrast with the “curse of dimensionality”, the

MQD cost – in its discrete and continuous versions – revealed that, by increasing the

number of delays M , there is no need of increasing the number of samples to improve

the estimation quality. On the contrary, a relatively small number of samples (Ns ≈ 100)

can provide more information when a multivariate PDF is considered, improving the

estimation quality. When the samples are corrupted by noise, the kernel-based estimators
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showed great robustness. Undoubtedly, this result is associated with a correct choice of

the kernel size, as we will see in the following.

6.3.2 The Kernel Size

As occurs in the majority of the ITL-based framework, the correntropy-based and the

multivariate distribution-based criteria involve the adjustment of the kernel size parameter

σ, which is sometimes associated with a smoothing factor over the estimates (as discussed

in Chapter 2). From the literature, it is known that the correct choice of σ will depend

on the type of the distribution, on the number of samples used in the estimation and on

the dimension of the data. In order to illustrate these properties of σ, we recall the two

scenarios considered in Section 6.3.1.

First Scenario: Discrete Colored Source

Our objective now is to measure the quality of the estimation of correntropy and the

multivariate distribution by varying the parameters σ2, Ns and M . For this, we consider

again the binary {+1,−1} i.i.d. signal un which is pre-coded by the system given by

Eq. (6.42) and the analytical instances illustrated in Fig. 6.4. We choose σ to vary along

the values {0.1 : 0.1 : 2, 4} (where 0.1 : 0.1 : 2 are the values from 0.1 to 2 in steps of 0.1),

Ns to have the values {30, 60, 100, 200, 300, 400, 500, 600, 700}, and M , {0, 1, 2, 3, 4, 5}.
However, for the sake of visualization, we analyze separately σ×Ns and σ×M , using, in

the first case, a fixed value for M and, in the second case, a fixed value for Ns. The fixed

values were chosen to be M = 2 and Ns = 200, since they are intermediate values of the

considered range.

Similarly to the previous analysis, we performed 100 independent experiments con-

sidering noiseless and noisy samples (SNR of 5 dB), whose mean cost functions Ĵcor and

ĴMQD−D are displayed in Figs. 6.12 and 6.14 for the σ × Ns case. For correntropy,

Fig. 6.12(a), it is possible to note that small values of σ can lead to a lower quality esti-

mation (and, consequently, higher costs). However, by increasing the number of samples,

the quality tends to improve exponentially. When there is noise, Fig. 6.12(c), the sensibil-

ity of the estimated correntropy increases for small values of σ. Hence, in this case, higher

values of σ are also preferred. For the multivariate distribution, Fig. 6.12(b), the view

is displayed from bottom to top, and, contrarily to correntropy, it is possible to see that

small values of σ reduce the cost ĴMQD−D (hence, increase the quality of the estimation).

Indeed, when σ tends to 0, the estimated PDF will tend to a PMF, which is the target

of the cost; however, since the second term of Eq. (6.25) is neglected in ĴMQD−D, the

perfect match between distributions will happen when ĴMQD−D = −∞. If the number

of samples is increased, it contributes to the quality of the estimation, particularly with

lower values of σ. With the presence of noise, Fig. 6.12(d), ĴMQD−D indicates that small
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(c) Ĵcor (SNR of 5 dB).

100
200

300
400

500
600

700

0.5
1

1.5
2

2.5
3

3.5
4

0

0.1

0.2

0.3

0.4

0.5

0.6

N
s

σ

J
M

Q
D

−
D
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Figure 6.12: Scenario 1 - Cost values: σ ×Ns and M = 2, with and without noise.
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Figure 6.13: Scenario 1 - ĴMQD−D in function of σ (SNR of 5 dB).

values of σ can reduce the estimation quality. On the other hand, if σ is excessively

increased, ĴMQD−D tends to 0. Interestingly, in the vicinity of σ ≈ 0.3, ĴMQD−D attains

its lowest value in this noisy case. The visualization of the minimum cost becomes clearer

in Fig. 6.13(a), where it is possible to note that the optimum value of σ depends on the
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number of samples.

For the σ ×M case, Fig. 6.14 illustrates the mean cost values. For correntropy, the

larger the number of delays M , the larger must be σ to obtain higher quality estimates –

but σ > 1 seems to be sufficient for noiseless samples (Fig. 6.14(a)). When there is noise,

Fig. 6.14(c), the quality of the estimates is reduced and, in this case, it is recommended

that σ be greater than 2. It is important to recall that, for large values of σ, correntropy

tends to emphasize the SOS [Principe, 2010]. Fig. 6.14(b) exhibits the ĴMQD−D cost – the
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Figure 6.14: Scenario 1 - Cost values: σ ×M and Ns = 200, with and without noise.

noiseless case – with a view from bottom to top, where a behavior similar to the σ×Ns case

is observed, i.e., low values of σ (σ < 0.2 ) increase the estimation quality and, hence,

the ĴMQD−D cost is reduced. In addition, by increasing the number of delays M , the

better becomes the estimate when σ is small. However, when σ increases (σ > 0.7), the

number of delays M causes no effect over ĴMQD−D, except for M = 0, in which ĴMQD−D

attains slightly lower values (but we remind the reader that the multidimensional case is

of great importance, since it can provide additional statistical information). By adding

noise, Fig. 6.14(d), the ĴMQD−D cost accuses a reduction in the estimation quality when

σ is small (σ < 0.2), similarly to the σ × Ns case. This becomes clearer in Fig. 6.13(b),

where it is also possible to note that ĴMQD−D presents higher sensitivity to variations of
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σ (for σ > 0.2) when M is small. Nonetheless, it is possible to achieve better estimates

(lower costs of ĴMQD−D) for a small M .

Second Scenario: Colored Gaussian Source

Regarding the continuous distributions, we repeat our kernel size analysis for the

previous case in which un is an i.i.d. Gaussian distributed signal. Following the former

analysis procedure, we display in Fig. 6.15 the σ×Ns case. The optimum kernel size values

obtained by the Silverman’s rule (Eq. (6.49)) are also illustrated in Fig. 6.15. As one can
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Figure 6.15: Scenario 2 - Cost values: σ ×Ns and M = 2, with and without noise.

note, the noiseless case for correntropy, Fig. 6.15(a), is very similar to the discrete case,

Fig. 6.12(a). However, the impact of the noise, Fig. 6.15(c), is less pronounced in this case.

Again, a larger σ (σ > 2) is preferred in order to increase the estimation quality. It is also

worth mentioning that the values provided by the Silverman’s rule are not very suitable

for correntropy, since the Ĵcor cost registers certain degree of estimation error along the

values of σo. For the ĴMQD−C cost, Figs. 6.15(b) and 6.15(d) – with and without noise,

respectively – are similar to the noisy case for discrete source (Fig. 6.12(d)). Moreover,

the optimum σ values lie within the range 0.3 < σ < 0.7, depending on the number of
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Figure 6.16: Scenario 2 - ĴMQD−C in function of σ.

samples, as shown in Fig. 6.16(a). More specifically, the optimum σ values are exactly

the ones provided by the Silverman’s rule, being perfectly suitable for the ĴMQD−C cost

when the source is Gaussian.
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Figure 6.17: Scenario 2 - Cost values: σ ×M and Ns = 200, with and without noise.
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Fig. 6.17 shows the σ ×M plots, for Ĵcor and ĴMQD−C with and without noise (as

well as the kernel sizes obtained by the Silverman’s rule). The correntropy-based cost,

Figs. 6.17(a) and 6.17(c), presented again a behavior similar to that of the discrete case,

with lower values of the Ĵcor cost for σ > 2 (far from the σo given by the Silverman’s rule).

The ĴMQD−C cost is practically indifferent to the presence of noise and Fig. 6.17(b) is very

similar to Fig. 6.17(d). Again, low values of σ (σ < 0.2) cause a loss in the estimation

quality and, differently from the discrete case (Figs. 6.12(b) and 6.14(d)), M = 0 does

not lead to a reduction on the MQD cost: on the contrary, for a larger σ, the ĴMQD−C

cost tends to increase (i.e., reducing the estimation quality). For M ≥ 3, the effect of the

kernel size becomes less prominent, except for considerably small values of σ (σ < 0.2), as

can be clearly seen in Fig. 6.16(b). In addition, Fig. 6.16(b) also shows that the minimum

value of ĴMQD−C (the optimum value for σ) is practically invariant to changes on the

number of delays M . Indeed, the σo provided by the Silverman’s rule forms a straight

line in Fig. 6.17(b).

Finally, to conclude this section, we have that the increase on the number of delaysM

may require adjustments on the number of samples Ns and/or on the kernel size σ. More

specifically, the correlation, the cross-kurtosis and the correntropy estimation showed to

be more sensitive to the increase of M , requiring a larger number of samples to keep the

quality of estimations. Notwithstanding, contrarily to the “curse of dimensionality”, the

use of multivariate densities estimated via kernel functions revealed to be an attractive

option, since it does not require a large number of samples with the increase of M . This

is a very interesting property that shall be useful when exploring the temporal structure

of data, as we will see in the next section.

6.4 Methodology - Optimization and Performance

In order to properly compare the considered criteria, we will use two methods for the

filter coefficient adaptation: gradient-based algorithms and metaheuristics; and, to assess

the quality of the found solutions, we will make use of two performance measures.

In terms of the filter adaptation, traditionally, the gradient method is employed along

with ITL criteria due to its lower computational cost. As mentioned in Section 3.1,

this optimization method involves the adjustment of the step size µ, whose value must

establish a fair comparison among the algorithms. In order to do so, the adjustment of

µ will be done so that the filter coefficient mean displacement (in terms of the Euclidean

distance) between iterations be equivalent. With the intention of being as fair as possible,

this displacement was measured only after convergence of all algorithms, i.e.:

dispw =
1

Nit −Nconv + 1

Nit
∑

i=Nconv

||wi+1 −wi||, (6.50)
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where Nit is the maximum number of iterations and Nconv is the number of iterations

required for convergence. The coefficient initialization will be made following the center-

spike method, in which the taps are all null, except for the center tap, whose value is

1.

Notwithstanding, the unavoidable existence of local optima in the blind equalization

problem can possibly lead the gradient-based algorithms to converge to suboptimal solu-

tions, depending on the parameter initialization. With this in mind, the metaheuristics

show more robustness against local convergence, but are computationally more costly,

depending on the size of the search space, which grows as a function of the number of

free coefficients in the equalizer. The evolutionary algorithm to be employed in the sim-

ulations will be the Differential Evolution (DE) [Storn and Price, 1997], a metaheuristic

whose population adaptation operators strictly use the information available in the current

solution candidates, instead of the classical random perturbations (for more information,

see Chapter 3).

For performance evaluation in practical blind equalization problems, measures regard-

ing the equalized samples, like the eye-diagram or the constellation analysis in PAM/QAM

modulation schemes [Proakis and Manolakis, 1996] are usually considered. However, in

our case, to exhibit a detailed profile of the criteria performance, we will count on two

ISI-based metrics, which are representative measures of how much ISI remains in the

equalization process. Usually, the quadratic ISI (QISI) measure is employed [Lázaro

et al., 2003a,b; Santamaŕıa et al., 2006], defined as

QISIdB = 10 log10

(

∑Mc

i=0 |ci|2
)

−maxj |cj|2

maxj |cj|2
, (6.51)

where c = [c0 c1 . . . cLc
]T is the combined channel + equalizer impulse response, with

length Lc+1; but a promising ISI measure capable of considering the HOS involved in

the process is the entropy-based ISI (HISI) [Attux et al., 2015; Nose-Filho et al., 2013],

defined as

HISIdB = 10 log10

(

−
Mc
∑

i=0

α|ci|log2 (α|ci|)
)

, (6.52)

where α = 1/
∑

i |ci|. This alternative metric aims to measure the uncertainty about the

channel by means of the Shannon’s entropy, which can be more congruent to the analysis

of non-Gaussian scenarios, as it encompasses the use of all the statistical moments, while

the conventional ISI measure is a second-order statistically biased metric [Nose-Filho

et al., 2013].

Example

The classical QISI reflects the preference for SOS-based approaches, given their relative
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mathematical simplicity and the existence of a closed-form solution (in the MSE sense

– see Chapter 4). However, in the works [Attux et al., 2015; Nose-Filho et al., 2013],

it is shown that, depending on the distribution of the source, the QISI may not express

the equalization optimality for non-ZF solutions, making HISI an interesting alternative

measure.

In fact, when a ZF solution is attainable, i.e., the channel can be perfectly equal-

ized, both QISI and HISI provide coherent measures. To illustrate this, we consider the

following channel+equalizer with impulse response:

C(z) = α + (1− α)z−1, (6.53)

with α varying from 0 to 1. The measured values for QISI and HISI are shown in

Fig. 6.18(a), where it is possible to note that the optimal (minimal) values for both

QISI and HISI happen at α = 0 and α = 1, the ZF solutions. However, for intermediate

α values, the HISI measure weights the ISI effect differently from the QISI measure.

(a) Combined channel+equalizer impulse re-
sponse.

(b) Equalizer impulse response.

Figure 6.18: Measured values for QISI and HISI.

When the ZF solutions are not attainable (e.g., when both channel and equalizer are

FIR filters), the difference between HISI and QISI becomes sharper. We use as example

the following scenario. The channel is modeled according to a linear FIR filter with

impulse response H(z) = 1 + 0.6z−1 and the equalizer as

W (z) = 1 + αz−1. (6.54)

In this case, by varying α from −1 to +1, we obtain the measures of QISI and HISI

presented in Fig. 6.18(b). Now, the optimum value for QISI is different from that of

HISI (denoted by red crosses in the figure). If it is considered that the source is a BPSK-
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modulated signal, the performance of the each optimum in terms of the QISI and the HISI

can be evaluated considering the classical eye diagram, as shown in Fig. 6.19. It is clear
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(b) Optimum HISI.

Figure 6.19: Eye diagram for the optimal cases of QISI and of HISI.

that both of them lead to an open-eyed solution for W (z), but, the ISI peak measured

in the optimum QISI case (0.8475) is higher than in the HISI case (0.7200) and the noise

margin is narrower in the QISI case (0.5765 for QISI and 0.6400 for HISI). This indicates

that, for this case, the HISI measure can be more adequate as a performance measure

than the QISI.

Indeed, in the work of Nose-Filho et al. [2013], it is shown that the HISI can be an

interesting performance measure when the source is not Gaussian, e.g., sparse and uniform

sources. For the Gaussian case, the classical QISI suffices. In view of this, we will make

use of both measures to obtain a more complete analysis of the criteria performance,

always considering the scenario at hand.

The analysis will be firstly addressed in terms of the cost surfaces (simpler scenar-

ios), followed by more complex adaptation scenarios within the colored blind channel

equalization problem.

6.5 Cost Surfaces

In this first analysis, our intention is to study the behavior of these criteria surfaces

as a function of the parameters w of a linear FIR equalizer. For the sake of visualization

of the cost functions, the equalizers w will have only two adjustable coefficients, w0 and

w1, i.e.,

W (z) = w0 + w1z
−1. (6.55)
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Hence, by varying the values of w0 and w1, it is possible to evaluate the cost functions

of interest and, consequently, their shape. In addition to that, to better compare the

costs, we will use overlapping contours of the cost surfaces. The optimal solutions of each

criterion will be obtained with the aid of the DE metaheuristic (see Chapter 3), whose

parameters were set to NP = 100, F = 0.5, CR = 0.9 and 100 iterations for all cases.

The cost surfaces will be analyzed in three different scenarios: one of them involving

a discrete source and the other two involving continuous distributed sources, as will be

described in the following.

6.5.1 Cost Surfaces - Scenario 1

In the first scenario, we consider that un is a BPSK modulated signal with symbols

{−1,+1} that are pre-coded by P (z) = 1 − 0.5z−1 + 0.3z−2. The transmission channel

can be modeled by the transfer function H(z) = 1+0.6z−1, and there is AWGN, with an

SNR equal to 27 dB. We will consider the M = 1 and M = 2 cases.
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(c) Correntropy vS(m) (σ = 2). (d) Multivariate Distribution for M = 1.

Figure 6.20: Cost Surface - Scenario 1: Analytical instances associated with the source
sn.
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Since we suppose that the pre-coder P (z) and the source distribution are known, it is

possible to obtain the analytical values of the correlation, cross-kurtosis and correntropy

profiles of the source, as well as its joint PMF, as illustrated in Fig. 6.20.

The parameters σ and Ny were chosen to remain fixed, being their values adjusted

according to the previous section, with σ = 2 for the correntropy-based cost, σ = 0.4 for

the MQD-D cost (using M = 1 as reference), and Ny = 200 for all the considered costs.
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(b) Ĵcor and ĴMQD−D costs for M = 1.
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(c) ĴCR and ĴMCK costs for M = 2.
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(d) Ĵcor and ĴMQD−D costs for M = 2.

Figure 6.21: Cost Surface - Scenario 1: Surface contours for M = 1 and M = 2.

By varying the values of the coefficients of w and by considering a set of 200 samples of

sn, it is possible to obtain the surface contours of the ĴCR, ĴMCK , Ĵcor and ĴMQD−D costs

for M = 1, as illustrated by Figs. 6.21(a) and 6.21(b), and for M = 2, in Figs. 6.21(c)

and 6.21(d). Due to their blind character, it is possible to see that all criteria surfaces

present axial symmetry and that there are multiple minima. Interestingly, the shapes of

the surfaces are very distinct from each other and their minima are not coincident. This

gives support to the idea that the exploited information is not equivalent. For the M = 1

case (Figs. 6.21(a) and 6.21(b)), the ĴCR cost presented several local minima, which can

be an inconvenient issue for using local search operators, such as gradient-based methods.
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Figure 6.22: Cost Surface - Scenario 1: Ĵcor and ĴMQD−D costs for M = 2 and σ = 0.3.

The ĴMCK cost presented a shape somehow similar to ĴCR, but with a reduced number of

local minima and non-coincident global minima (indeed, the MCK cost is able to extract

more statistical information than the CR cost). In Fig. 6.21(b), Ĵcor presented an ellipse-

like region where its global and local solutions can be found, while ĴMQD−D presented

a completely different behavior, where it is possible to identify very distinct global and

local minima.

By changing M to 2 (Figs. 6.21(c) and 6.21(d)), the cost contours tended to become

more similar among each other. The ĴCR cost reduced the number of local minima, but

the solutions are again not coincident with those of MCK (in fact, although a larger M

is able to increase the amount of statistical information encompassed by the CR cost, the

MCK cost is able to additionally encompass the fourth-order statistics). In Fig. 6.21(d),

the MQD-D cost presented small variations on its cost shape and on the minima position,

which means that, for the M = 1 case, the MQD-D cost already encompassed significant

amount of statistical information. In contrast, the correntropy-based cost Ĵcor significantly

changed its surface shape and minima position and, interestingly, no longer presented local

minima, which is an important property of the kernel size σ. It is important to emphasize

that the correct choice of the kernel size σ can immensely contribute for smoothing the cost

and reducing the number of local minima (i.e., taking into account the estimation issues

presented in Section 6.3). Indeed, this property can also be exploited in the MQD-D cost

if a higher value for σ is assumed, say σ = 0.7, as illustrated in Fig. 6.22 – note that the

local minima of the MQD-D cost vanish. Contrarily, a sufficient low value of the kernel size

may cause the reappearance of the local minima. Fig. 6.22 also depicts the correntropy-

based cost with σ = 0.3, where it is possible to note several local minima. In general

terms, for the MQD, σ is directly related to the PDF estimation, but, for correntropy, σ

will be more closely associated with the weighting of the statistical moments. The value

of σ, in both cases, is also related to a smoothing parameter: a small σ tends to create

spurious minima, while a large σ, although reducing the effect of local minima, tends to
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disturb the optimal solution [Lázaro et al., 2005].

In all cases, the global and local optima were found with the aid of the DE meta-

heuristic, being the global solutions indicated by a plus ‘+’ or an asterisk ‘∗’ sign.
Although the focus of this first analysis lies on the surface cost, it is also pertinent

to evaluate the performance of the global minima and to identify their relation with

the cost behavior. In that sense, the performance in terms of HISI and QISI of the

global solutions for each criterion were evaluated in 10 independent experiments, whose

mean values are shown in Tab. 6.2. For M = 1, it is possible to note a tendency of

Table 6.2: Solutions performance measures for the scenario 1.

CR MCK cor MQD-D

M = 1
HISI [dB] 1.6113 1.5898 0.9219 0.1919
QISI [dB] −1.8459 −2.4306 −4.1151 −9.8130

M = 2
HISI [dB] 1.2073 1.1669 0.6352 −0.3823
QISI [dB] −1.8714 −4.2261 −5.3767 −8.7600

a reduction of the HISI/QISI values when a ‘larger amount’ of statistical information

is considered: the MQD-D criterion exhibits the best performance, being followed by

the correntropy-based, the MCK and the CR cost. The CR and the MCK performance

present similar performance measures, but it is important to remember that these costs

are more vulnerable to estimation errors when the number of samples are considerably

low (as explained in Section 6.3). In terms of QISI, the MQD-D criterion also performs

better in comparison with the other three criteria, however, since the source is far from a

Gaussian distribution, the HISI measure tends to be more suitable in this scenario. When

M = 2, the criteria are able to extract more information and, as shown in Tab. 6.2, their

performance is improved in terms of HISI. In terms of QISI, the increment of M caused

the CR, the MCK and the correntropy-based criteria to experience an improvement in the

performance, differently from the MQD-D criterion, which experiences a slight reduction.

Even though, the MQD-D performance is still the best in terms of QISI as well – it is

important to emphasize that the HISI is the preferred measure in this scenario, where the

MQD-D criteria revealed a huge increase on its performance with M = 2.

6.5.2 Cost Surfaces - Scenario 2

We continue the cost surface analysis, but consider now a continuously distributed

source. It is assumed that sn is a colored Gaussian distributed signal, result of the pre-

coding of un, an i.i.d. Gaussian distributed signal, by P (z) = 1 − 0.5z−1 + 0.3z−2, the

same previous pre-coder. The channel is also kept the same, i.e., H(z) = 1+0.6z−1, and

there is AWGN with an SNR equal to 27 dB.

The analytical values of the source statistics are shown in Fig. 6.23. For the matching

of multivariate PDFs, we consider the cost given by Eq. (6.48).
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(c) Correntropy vS(m) (σ = 2). (d) Multivariate Distribution for M = 1.

Figure 6.23: Cost Surface - Scenario 2: Analytical instances associated with the source
sn.

For the same criteria parameters of the previous scenario, the contours of ĴCR, ĴMCK ,

Ĵcor and ĴMQD−C for the M = 1 and M = 2 cases are displayed in Fig. 6.24. For the

M = 1 case, it is possible to note from Fig. 6.24(a) that the CR cost is very similar to the

discrete case (Fig. 6.21(a)), while MCK is slightly different, with only global minima and

close to the global CR solutions. This is due to the fact that, for the delay m = 0, the

cross-kurtosis (or simply kurtosis) is null when the signal is Gaussian distributed (check

Fig. 6.23(b)) and the second-order statistics term becomes stronger. The correntropy-

based cost as well as the MQD-C cost present smoother surfaces in comparison with

the discrete case (Fig. 6.21(b)). The correntropy-based cost, for example, shows a clearer

ellipse-shape region where its solutions can be found; while the MQD-C cost presents only

global minima. These effects are similar to that of increasing the kernel size σ; however,

in this case, the smoothing effect is caused by the continuous source [Boccato et al., 2016].

When the considered number of delays is increased toM = 2, the CR and the MCK costs

keep their general shapes, as shown in Fig. 6.24(c), but the number of local minima for
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(c) ĴCR and ĴMCK costs for M = 2.
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(d) Ĵcor and ĴMQD−D costs for M = 2.

Figure 6.24: Cost Surface - Scenario 2: Surface contours for M = 1 and M = 2.

the CR criterion decreases and the MCK cost becomes less smoother, due to the increase

on the number of fourth order statistical terms. For the MQD-C cost, changing M to 2

has not caused a major impact and the contours are basically the same as in the M = 1

case, as shown in Fig. 6.24(d). The correntropy, on the other hand, reduces the number

of minima, leaving only the global ones – an effect similar to that verified for the discrete

case.

For each case, a search for the global solutions was performed using the DE meta-

heuristic. In 10 independent experiments, the HISI and QISI performances were eval-

uated, being their mean values displayed at Tab. 6.3. In general aspects, it is possible

to note that the performance achieved by the criteria in terms of HISI and QISI were

lower in comparison with the discrete case (Tab. 6.2), which could be a direct reflex of

the limited statistics present on the Gaussian source (the scenarios involving other source

distributions will be considered later). However, the MQD-C cost is still able to achieve

the best HISI/QISI performance, being followed by correntropy – it is important to re-
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Table 6.3: Solutions performance measures for scenario 2.

CR MCK cor MQD-C

M = 1
HISI [dB] 1.6044 1.5405 1.0839 0.5332
QISI [dB] −2.3677 −1.7517 −3.7352 −4.8128

M = 2
HISI [dB] 1.4905 1.4525 1.8105 1.1753
QISI [dB] −0.6298 −2.2061 −3.8591 −4.9520

mark that the QISI is more suitable in this scenario, given that the source is Gaussian.

For M = 1, the MCK criterion performs slightly poorer than the CR in terms of QISI,

but, for M = 2, the performance of the CR becomes more degraded. We recall that these

two costs may present higher estimation errors for continuous sources and small number

of samples, as discussed in Section 6.3, which might explain the CR behavior when M is

increased. The correntropy and the MQD-C performance is practically kept the same by

changing M , which suggests that, for this scenario (i.e., with a Gaussian source, a short

length FIR channel and filter), M = 1 is sufficient for them.

6.5.3 Cost Surfaces - Scenario 3

In the last scenario of the cost surface analysis, we consider that the source statistics

are estimated from a limited set of samples instead of relying on their analytical values.

Situations like this commonly arise for continuous sources, whose analytical computation

might be complex.

We assume that un is an i.i.d. signal associated with a continuous Laplace distribution,

mathematically defined by:

fU(v) =
1

2b
exp

(−|v − µ|
b

)

, (6.56)

where µ = 0 and b = 2 were chosen. The considered pre-coder has as transfer function

P (z) = 1 + 1.5z−1 and the channel is kept the same, H(z) = 1 + 0.6z−1. Fig. 6.25(a)

illustrates the histogram of the source sn.

Although the distribution of un, fU(v), and the pre-coder P (z) are assumed to be

known, we will not obtain the analytical statistics of the source; contrarily, we will use

this information to generate a set of samples to be used as reference signal sn at the

receiver. Note, however, that these samples will be different from the actually transmitted

source (since it is an unsupervised scenario). As an example, we exhibit in Fig. 6.25(b)

the estimated distribution fS(v) using a set of Ns = 200 samples, where two important

issues must be noted: (i) the estimation might be poor and (ii) the estimated PDF is

asymmetric. This might lead to important implications concerning the cost surfaces.

Using a given set of Ns = 200 samples of sn, randomly generated (from the knowledge

of fU(v) and P (z)), we have estimated the source statistics for M varying from 0 to 5, as
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Figure 6.25: Costs Surfaces - Scenario 3: Source distribution and its estimation from
samples.

shown in Fig. 6.26.
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Figure 6.26: Cost Surfaces - Scenario 3: Estimation of the source statistics.
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The same generated set will be used as reference samples sn for the CR, the MCK, the

correntropy-based and the MQD-C costs. We adopted Ny = 200 for all costs and the cases

M = 1 and M = 2. For the correntropy-based and the MQD-C cost, the kernel sizes were

chosen to be σcor = 2 and σMQD = 0.5, respectively. By varying the coefficients w0 and

w1 from −2 to +2, we obtained the surface costs presented in Fig. 6.27. In comparison
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(c) ĴCR and ĴMCK costs for M = 2.
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(d) Ĵcor and ĴMQD−C costs for M = 2.

Figure 6.27: Cost Surface - Scenario 3: Surface contours for M = 1 and M = 2.

with the analytical Gaussian case, it is possible to note that the MQD-C cost is no longer

symmetric with respect to the w0 = w1 axis, which is a direct consequence of the PDF

fS(v) being asymmetric, and, due to this, there is a single global minimum for the MQD-

C criterion. A similar effect was observed for the MCK cost when M = 2, where the

asymmetry contributed to the local minima disappearance; however, for M = 1 the SOS

is still strong and contributes to the presence of the local minima, as can be observed for

the CR cost. The correntropy-based cost, just like the CR cost, kept the symmetry as

well as the global and local minima.

In terms of performance, 30 experiments were carried out independently, where the
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performances of the solutions found by the DE for each criteria were evaluated by the HISI

and the QISI measure, whose mean values are displayed in Tab. 6.4. In comparison with

Table 6.4: Solutions performance measures for scenario 3.

CR MCK cor MQD-C

M = 1
HISI [dB] 1.6625 1.5726 1.2602 1.1325
QISI [dB] −0.6753 −1.5509 −2.3023 −2.8540

M = 2
HISI [dB] 1.2376 1.3773 1.6193 0.9639
QISI [dB] −3.2980 −1.8003 −2.5121 −3.3662

the previous scenario results in Tab. 6.3 (which is a valid comparison since the channel is

the same), when M = 1, all criteria performances were worst in terms of both HISI and

QISI. This reveals that all of them might suffer from estimation issues involving both the

sources and the filter output, contributing to decrease the performance. By increasing

M to 2, the performance is improved for all criteria in terms of the QISI, which can be

considered more suitable in this scenario. Note, again that the MQD-C criterion performs

better than the other criteria, which gives support to the idea presented in Section 6.3.1

that the MQD cost can present more reliable estimates from a reduced number of samples.

Finally, having these three scenarios in mind, it is possible to affirm that all criteria

might present (undesired) local minima in scenarios where the ZF solution cannot be

attained, an aspect that must be considered when adopting the optimization method.

Moreover, it can be noted that, in general, by increasing the number of delaysM , the HISI

or the QISI performance associated with the criteria global solutions can be improved. In

all cases, the MQD criterion was able to employ a larger amount of statistical information,

leading to a better performance in comparison with the other criteria. However, a more

detailed analysis will be carried out in the following section.

6.6 Performance Analysis

In order to properly evaluate the performance of the criteria, we consider from now on

more complex scenarios involving larger pre-coders, channels and equalizers. The analysis

will consider the cases in which: (i) the equalizer is not able to completely invert neither

the pre-coder nor the channel; (ii) the equalizer is able to completely invert both the

pre-coder and the channel; and (iii) the equalizer is able to completely invert channel but

not the pre-coder. These pre-coder/channel/equalizer configurations will be distributed

in scenarios encompassing discrete and continuous sources. For discrete sources, the

source statistics will be analytically obtained, while, for continuous sources, they will be

estimated from samples.
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6.6.1 Discrete Source - Scenario 1

Starting with a discrete source, assume a binary i.i.d. signal un which is pre-coded by

P (z) = 1 + 2.1z−1 − 0.9z−2 + 0.4z−3 − 0.7z−4, (6.57)

i.e., a linear pre-coder of order Lp = 4. The pre-coder output sn, is then transmitted

through the channel with transfer function

H(z) = 0.76− 0.25z−1 + 0.44z−2 − 0.02z−3, (6.58)

and there is the presence of AWGN with resulting SNR level of 20 dB. The equalizer is

chosen to be a 5-tap FIR filter. Hence, again, there is no possibility of complete inversion

of the channel, but we hope that the ISI can be at least partially mitigated.

Just like the previous cases, the distribution of un and the pre-coder P (z) are assumed

to be known, which allows us to analytically compute the correlation, the cross-kurtosis,

the correntropy and the multivariate PMF of the source sn. These values will be used as

the target values for the considered criteria.

In a first step, the adaptation of the filter coefficients will be done with the aid of the

DE metaheuristic with parameters: population size NP = 300, adaptation step F = 0.5,

crossover constant CR = 0.9 and maximum number of iterations 300, values that were

chosen based on empirical tests that confirmed a wide exploration of the search space and

a relatively high global convergence rate. For the criteria, Ny = 200 and M varying from

0 to 5 were considered. For the correntropy-based and the MQD-D costs, the kernel size

σ was chosen based on the analysis of Section 6.3, being σcor = 2 for correntropy and

σMQD = 0.8 for the multivariate PDF estimation (we used the reference value of σ for

M = 3 in Fig. 6.14(b), since it is an intermediate value of M).

The objective will be that of evaluating the performance of the four studied criteria as

a function of the number of delaysM . For 25 independent trials, the equalizer was trained

according to each criterion, and the solution found by the DE was evaluated in terms of the

HISI and QISI performance measures. The mean values for each number of delays M are

displayed in Fig. 6.28. In general lines, the HISI and the QISI measures revealed similar

behavior, in a way that the analysis of only one of them is sufficient to obtain the evident

conclusions: the MQD-D and the correntropy-based costs presented the best performances

and, by increasing the number of delays, the performance is improved, but tends to a

limit value. This suggests that there is a sufficient number of delays able to encompass

the necessary information to perform equalization. Indeed, it is possible to note that, for

M = 4, the criteria achieve lower values of HISI/QISI and, increasing M to 5, either the

performance is just slightly improved or it remains the same. Hence, for this scenario,M =

4 can be a convenient choice, which is in accordance with the results shown in Chapter 5.



167

0 1 2 3 4 5
1.5

2

2.5

3

3.5

4

M

H
IS

I 
[d

B
]

 

 

J
CR

J
MCK

J
cor

J
MQD−D

(a) Mean HISI performance.

0 1 2 3 4 5
−14

−12

−10

−8

−6

−4

−2

0

2

M

Q
IS

I 
[d

B
]

 

 

J
CR

J
MCK

J
cor

J
MQD−D

(b) Mean QISI performance.

Figure 6.28: Discrete Sources - Scenario 1 - Mean HISI/QISI performance for the best
solution found by the DE.

It is also clear that the MQD-D criterion can attain lower values of HISI/QISI while the

correntropy-based criterion suffers certain type of limitation. This is a strong evidence

that the multivariate distributions are able to encompass more statistical information. On

the other hand, the CR and MCK criteria achieve HISI/QISI performance measures poorer

than correntropy. Although their performance is also improved with M , the statistics

considered by them limit their performance.

Algorithms Performance

As a classical procedure in channel equalization, it is also convenient to evaluate the

gradient-based algorithm performance. In that sense, we consider the algorithms described

in Section 6.2.2 with Ny = 5 and two cases for M : M = 1 and M = 2. The kernel sizes

were the same adopted in the previous scenario, i.e., σcor = 2 and σMQD = 0.5.

Here, the objective of the analysis will be that of evaluating the convergence speed

and the convergence to global optima. The performance measure used here will be only

the QISI metric (Eq. (6.51)), since the HISI, in this case, provides the same conclusions

as those of QISI – as in the previous metaheuristic optimization analysis.

For M = 1, the step sizes were chosen to be µCR = 3e−6, µcor = 0.2 and µMQD = 0.1,

with associated mean displacement of 1.5e−3 (Nit = 20000 and Nconv = 10000); for

M = 2, the step sizes were adjusted to µCR = 2e−6, µcor = 0.08 and µMQD = 0.3,

with mean displacement of 1.8e−3 (Nit = 20000 and Nconv = 15000); the only exception

was the MCK algorithm, whose step size adjustment faced instability issues, requiring a

small step size of µMCK = 2e−10 and µMCK = 1e−10, for the M = 1 and M = 2 cases,

respectively, being the mean displacement equal to 1e−6 in both cases. The coefficient

initialization was made following the center spike method, i.e., w = [0 0 1 0 0]T .

After running 50 independent experiments, the QISI performance along iterations was
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computed, the mean values of which are displayed in Fig. 6.29. When M = 1, the CR,
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(a) QISI performance for M = 1.
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Figure 6.29: Discrete Sources - Scenario 1 - Algorithms QISI performance for M = 1
and M = 2.

the correntropy-based and the MQD-D algorithms converge to local minima, since the

attained QISI level after convergence was higher than that found by the DE metaheuristic

(Fig. 6.28(b)). By increasing M to 2, the correntropy-based and the MQD-D algorithms

are able to achieve lower values of QISI, which are similar to the performance obtained

by the DE, strongly suggesting that they converged to the global minima. Recalling that

increasingM causes a smoothing effect on the correntropy and the MQD-D costs surfaces,

this result is in consonance with the idea that larger values of M are able to reduce the

number of local minima. On the other hand, the MCK algorithm faces stability issues, as

it encompasses terms to the power up to four, which might result in an unstable behavior.

Very interestingly, the correntropy-based and the MQD-D algorithms are able to use

an adaptive kernel size σ to aid their convergence. For instance, a large σ value can be

assumed at the initial iterations, so that its smoothing properties reduces the local conver-

gence rate. After that, the σ value can be gradually reduced until the desired kernel size

value is achieved (this procedure is sometimes called kernel annealing [Principe, 2010]).

Based on this, we adopted adaptive values for σ varying accordingly to Fig. 6.30. In other

words, the kernel size is linearly reduced from an arbitrary large value to the desired

value in Nconv iterations; after this stage, its value is kept constant for the algorithm final

convergence. Using this approach, the QISI performance of the algorithms are presented

in Fig. 6.31. It is clear that the convergence of the correntropy-based and the MQD-D

algorithms becomes smoother and even faster, achieving convergence in Nconv = 12000

iterations. Note, however, that this approach does not avoid local convergence in the

M = 1 case (it might improve the global convergence in certain cases, but the result will

depend on the coefficient initialization).
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Figure 6.30: Adaptive kernel size σ.
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Figure 6.31: Discrete Sources - Scenario 1 - Algorithms QISI performance for varying σ
and for M = 1 and M = 2 .

Robustness Against Noise - ISI x SNR Curves

In order to evaluate the criteria robustness against noise in a more extensive manner,

we resort to the analysis of the ISI x SNR curve, encompassing Gaussian and impulsive

noise. We consider again the same scenario of Section 6.6.1, the only difference being that

now the noise signal ηn shall have its energy varied to ensure a given SNR level.

When the noise is Gaussian, its energy can be simply controlled by the variance σ2
η;

however, when the noise is impulsive, a more complex control is demanded, given the

higher complexity of its PDF:

fη(v) = ǫGσ2

1
(v) + (1− ǫ)Gσ2

2
(v), (6.59)

being σ1 >> σ2 usually adopted, and a small value for ǫ. In our simulations, we considered

ǫ = 0.1 and a constant rate σ2
1/σ

2
2 = 15. With this fixed relation, the values of σ1 and

σ2 were adjusted to obtain the desired SNR level. The chosen parameters were similar to
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those of the previous case, i.e., Ny = 200, σcor = 2 for correntropy, σMQD = 0.8 for the

MQD-D cost and M varying from 0 to 5.

Again, we used the DE metaheuristic to search for the optimal solution in 25 indepen-

dent experiments, whose parameters were NP = 300, F = 0.5, CR = 0.9 and maximum

number of iterations of 300. The mean QISI values as a function of the SNR level are dis-

played in Fig. 6.32 for the Gaussian and the impulsive noise cases. As expected, the best
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(a) QISI x SNR - Gaussian noise.
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(b) QISI x SNR - Impulsive noise.

Figure 6.32: QISI x SNR - Gaussian and impulsive noise (M = 4).

QISI performance is achieved for higher SNR levels, but, it is possible to note that the

MQD-D criterion can be more robust, since it still presents a relatively good performance

(≈ −10dB) for an SNR of 10 dB, while the other criteria require an SNR of 15 dB or more.

For the impulsive noise, Fig. 6.32(b), the criteria seem to be more robust. The MQD-D

criterion, for instance, achieved a reasonable QISI performance (≈ −6.5 dB) with an SNR

level of 5 dB. The exception lies on the MCK criterion, whose terms involving the fourth

power show to be more sensitive to the spikes present on the impulsive behavior of the

noise (mainly for low SNR values). We emphasize that, in both noise types, the MQD-D

criterion provided greater robustness against noise, a direct result of the more precise

estimation of the multivariate PDFs via the kernel methods, as observed in Section 6.3.2.

6.6.2 Discrete Sources - Scenario 2 - IIR Filtering

The previous scenario considered the case in which neither the channel nor the pre-

coder can be inverted, since the equalizer, as well as the channel and pre-coder, were FIR

systems. Now, we consider the case in which the equalizer is an IIR filter long enough to

invert both channel and pre-coder. Recalling Chapter 5, this case may lead to ambiguous

solutions for the proposed criteria, which are not suitable for blind colored channel equal-

ization. Since these recursive structures establish non-linear relations between the filter

coefficients and the filter output, the gradient-based algorithms will not be considered
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here, being left for future work.

Again, an i.i.d. BPSK modulated signal un is generated, being pre-coded by the system

with transfer function P (z) = 1+0.5z−1. The resulting signal sn is transmitted through

the channel H(z) = 1+0.6z−1 and there is AWGN interference with SNR level of 25 dB.

The adopted IIR equalizer has as transfer function

W (z) =
b0 + b1z

−1

1 + a1z−1 + a2z−2 + a3z−3
, (6.60)

whose coefficients b0, b1, a1, a2 and a3 will be adapted using the DE metaheuristic with

parameters NP = 300, F = 0.5, CR = 0.9 and maximum number of iterations 300.

Remark that the IIR equalizer is able to assume the form W (z) = P̂ (z)/(H(z)P (z)),

being P̂ (z) a permuted version of P (z), which is a plausible solution for the CR, the

MCK and the correntropy-based criteria.

For all criteria we adopt Ny = 200 and M varying from 0 to 5. The kernel sizes were

the same of the previous scenarios, i.e., σcor = 2 for correntropy and σMQD = 0.8 for the

MQD-D criterion.

We performed 30 independent experiments whose solutions found by the DE meta-

heuristic were evaluated in terms of HISI and QISI. The average performance is as dis-

played at Fig. 6.33. Although all criteria are able to achieve the ZF condition, it turns
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Figure 6.33: Discrete Sources - Scenario 2 - IIR equalizer.

out that the MQD-D attains lower values of HISI/QISI. In fact, the CR, the MCK and

the correntropy-based criteria are also capable of converging to the ZF solution, but the

average performance is reduced since they might also converge to solutions of the type

W (z) = P̂ (z)/(H(z)P (z)), which are not adequate for colored blind channel equalization

and are usually associated with lower HISI/QISI values. Fig. 6.33 also shows that the

number of delays M must be larger than or equal to 1 – as stated in Chapter 5 – in order

that the algorithms achieve a good solution. It is possible to note that by increasing M ,
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the performance can be improved, since more temporal information can be encompassed

up to a limit.

6.6.3 Continuous Source - Scenario 1

In this scenario, we assume that un is an i.i.d. signal associated with a continuous

Laplace distribution, as defined in Eq. (6.56). Then, un is pre-coded by P (z) = 1+0.5z−1,

the resulting source sn being transmitted by the minimum-phase channel H(z) = 1 +

0.6z−1, with AWGN of an SNR level of 20 dB. The histogram of the source sn is as shown

in Fig. 6.25(a), which is very similar to a Gaussian distribution (due to the Gaussianizing

effect on the pre-coding step). In this case, the QISI metric provides a more suitable

performance measure and, for this reason, we will omit the HISI results. The equalizer is

assumed to be a 4-tap FIR filter.

Here, we assume that the source statistics must be estimated instead of using their

analytical values. We consider that a set of reference samples can be generated at the

receiver by assuming that the distribution of un, fU(v), and the pre-coder P (z) are known.

Undoubtedly, the generated set of reference samples will differ from the transmitted source

(similar to scenario 3 in Section 6.5), but they may provide valuable statistics. In that

sense, we randomly generate a set of Ns = 200 samples with the same distribution of

fU(v) and filter it with the known pre-coder transfer function P (z); the resulting signal

is used to yield reference samples sn for the CR, the MCK, the correntropy-based and

the MQD-C criteria. It is also assumed that there are a limited number of samples at the

equalizer output, i.e., with Ny = 200 for all criteria.

For comparison purposes, we also consider the case in which a larger number of samples

can be used, i.e., Ns = 2000. However, in order to avoid the computational burden,

the source statistics are estimated once and stored for the use on the receiver. More

specifically, the correlation, the cross-kurtosis and the correntropy profile of the source

(for the number of delays M considered) are estimated according to Eqs. (6.5), (6.13)

and (6.1), respectively. Regarding the MQD-C criterion, the multivariate source PDF

estimated from samples was stored via the RBF approach described in Section 6.2.1,

where 30 centers (using the k -means [Haykin, 1998]) and weights of Gaussian kernels

were used. For the equalizer, we kept Ny = 200 for all criteria.

The kernel sizes were adjusted to σcor = 2 and σMQD = 0.5 for the correntropy-

based and the MQD-C costs, respectively; the number of delays M were assumed to vary

from 0 to 5. To perform the search for the minima, we used the DE metaheuristic with

parameters NP = 200, F = 0.5, CR = 0.9 and maximum number of iterations 200. In 25

independent experiments, the mean QISI performance for the cases with Ns = 200 and

Ns = 2000 are as displayed in Fig. 6.34. It is possible to note that all criteria suffer with

the source statistics estimation errors, since the QISI levels are higher in Fig. 6.34(a) than
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(b) QISI performance for Ns = 2000.

Figure 6.34: Continuous Sources - Scenario 1: Laplacian source.

in Fig. 6.34(b). Hence, it is strongly recommended to obtain reliable sources statistics

as they can provide considerable improvement in the performance. Individually, the

performances of the criteria were similar to those of the discrete case (Fig. 6.28), i.e.,

again, the multivariate PDF-based approach performed better than the others, being

followed by the correntropy-based, MCK and CR criteria (Fig. 6.34(b)). In addition, it

is possible to observe that increasing M can improve the performance, but M = 1 is

sufficient for equalization (since Lp = 1, as discussed in Chapter 5).

Algorithm Performance

Similarly to the discrete counterpart, we also consider the gradient-based algorithms

to search for the criteria solutions. The scenario is the same of the previous case. The

source statistics were estimated with Ns = 2000 samples.

The criteria parameters are Ny = 5 and two cases for M (M = 1 and M = 2). The

step sizes µ were adjusted using the equal mean displacement measure given by Eq. 6.50.

For M = 1, the step sizes were chosen to be: µCR = 3e−6, µcor = 0.2 and µMQD = 0.008,

with associated mean displacement of 1e−3; for M = 2, the step sizes: µCR = 2e−5,

µcor = 0.08 and µMQD = 0.08, with mean displacement of dispw = 1.2e−3. Again, we

opened an exception for the MCK algorithm due to instability issues, whose step sizes were

chosen to be µMCK = 2e−10 (mean displacement of dispw = 7e−6) and µMCK = 1e−10

(mean displacement of dispw = 3e−6), forM = 1 andM = 2, respectively. The coefficient

initialization was based on the center-spike method, however, since there is no center

tap, it was considered that w = [0 1 0 0]T . The adopted kernel sizes were σcor = 2 and

σMQD = 0.5, for correntropy-based and the MQD-C algorithms, respectively.

For 50 Monte-Carlo simulations, the mean QISI performance along iterations forM =

1 and M = 2 is as displayed in Fig. 6.35. When M = 1, all the algorithms converged

to local minima, with exception of the correntropy-based algorithm, which converged to
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(a) QISI performance for M = 1.
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(b) QISI performance for M = 2.

Figure 6.35: Continuous Sources - Scenario 1: Algorithms QISI performance for M = 1
and M = 2.

a QISI level similar to that found by the DE metaheuristic, as shown in Fig. 6.34(b).

By increasing M to 2, the correntropy-based and the MQD-D algorithms are able to

achieve lower values of QISI, similarly to the DE performance. Again, the increment

in the number of delays M contributed for the performance improvement, but the CR

algorithm still converges to a local minimum. The MCK algorithm suffers from instability

issues and must keep an extremely small step size, which compromises its performance.

Similarly to the discrete case, it is also possible to adopt a varying kernel size. However,
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Figure 6.36: Continuous Sources: Algorithms QISI performance for varying σ and for
M = 1 and M = 2 .

as mentioned in the cost surface analysis, the continuous case already presents smoother

costs and, by using large kernel sizes σ, the surfaces can become oversmoothed. Indeed,

by applying the variable σ in the correntropy-based and the MQD-C algorithms, the mean

QISI performance is as illustrated in Fig. 6.36 and, as can be noted, the large kernel sizes
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only delayed the convergence of the algorithms, with a more severe effect on the MQD-C

algorithm.

IIR Filtering

For the same Laplacian source signal, pre-coder P (z) = 1 + 0.5z−1, minimum-phase

channel H(z) = 1 + 0.6z−1 and AWGN noise of 20 dB, we consider now the use of an

IIR equalizer with transfer function given by Eq. 6.60. As in the discrete case, this IIR

equalizer is able to obtain solutions like W (z) = P̂ (z)/(H(z)P (z)), which inverts both

channel and pre-coder, and generate a permuted version of the pre-coder. Indeed, we

know that this might lead to undesired solutions for the CR, MCK and correntropy-based

criteria, however, as we are dealing with estimated source statistics, the costs and the

solutions present some changes, as discussed in Section 6.5, scenario 3.

The criteria parameters are adjusted to Ny = 200 and with kernel sizes σcor = 2

and σMQD = 0.5, for the correntropy-based and the MQD-C costs, respectively. The

number of delays M will vary from 0 to 5 and the source statistic will be estimated

from Ns = 2000 samples, as in the previous section. After 30 Monte-Carlo runs, the

mean QISI performance is obtained, being its values illustrated in Fig. 6.37. The results
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Figure 6.37: Laplacian Source: IIR equalizer.

are somewhat similar to those of the discrete case, Fig. 6.33(b), where the use of the

multivariate distributions are able to extract more information and to solve ambiguities,

resulting in the best performance. Although it is known that the asymmetry on the source

statistics can reduce the number of minima, as depicted in Fig. 6.27, the ambiguities are

not solved and the CR, the MCK and the correntropy-based approaches still converge to

undesired solutions, reducing their performance.

6.6.4 Continuous Source - Scenario 2: Image Processing

In the second continuous source scenario, we consider the case in which a 100×100-

pixel image has been column-wise distorted by a linear system with transfer function
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H(z) = 0.2258+0.5161z−1+0.6452z−2+0.5161z−3 [Lázaro et al., 2005] and there is AWGN

with resulting SNR of 20 dB. The original image and the distorted one are presented in

Fig. 6.38(a) and Fig. 6.38(b).

(a) (b) (c) (d) (e) (f)

Figure 6.38: Image processing: (a) original; (b) received; recovered by (c) the CR, (d)
the MCK, (e) the correntropy-based and (f) the MQD-C approach.

We assume that the original image was available to obtain estimates of the correlation,

the cross-kurtosis, the correntropy and the joint PDF – via the Parzen window method,

Eq. (6.29) –; however, after that, the samples were no longer available for the image

recovery process. Since there is no prior knowledge of the dependence between samples,

we empirically chooseM = 3, as it should be able to allow a significant use of information

about statistical dependence. The kernel size σ was considered to be 0.5 for the MQD-C –

and the joint PDF estimation – and 2 for the correntropy. The joint PDF estimated from

the original samples was stored by means of 30 centers and weights, obtained through an

RBF with Gaussian kernels as activation functions, as described in Section 6.2.1. The

correlation, cross-kurtosis and correntropy values of the source for M = 3 delays were

recorded as well.

For illustration purposes, we exhibit in Fig. 6.39 the estimated source statistics. From

the correlation, cross-kurtosis and correntropy, it seems that the temporal structure of

the image signal is very long (at least for 5 delays), which corresponds to a long pre-coder

P (z).

Now, the distorted image will be filtered by an IIR linear equalizer

W (z) =
b0 + b1z

−1

1 + a1z−1 + a2z−2 + a3z−3
, (6.61)

whose coefficients b0, b1, a1, a2, a3 and a4 are free parameters. Note that, in this case,

the channel can be completely equalized, but the temporal structure of the image is long

enough to avoid ambiguities on the solutions.

Since we have the original source statistics estimates, we can employ the CR, the

MCK, the correntropy-based and the MQD-C criteria to recover the image quality from

its distorted version. However, in order to reduce the computational cost, the equalizer

will have access of only two randomly chosen columns of the Fig. 6.38(b) (equivalent

to 200 pixel samples) for estimating the costs. By employing the DE metaheuristic for

optimization, we can recover the images shown in Figs. 6.38(c) to (f). We can see that

all criteria were able to recover the image with a considerably good quality, except for
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Figure 6.39: Image processing: Estimation of the source statistics.

the presence of noise, which was partially mitigated. The resulting MSE (after sign and

variance correction) for each criteria solution found by the DE is as exhibited in Tab. 6.5.

The CR, the correntropy-based and the MQD-C criteria presented similar results, while

Table 6.5: Image Processing - MSE values for the CR, MCK, cor and MQD-C criteria.

CR MCK cor MQD-D
M = 3 MSE 0.0316 0.0340 0.0328 0.0323

the MCK performed poorly. Indeed, it is possible to see in Fig. 6.38(d) that there are

some residual noise errors, probably due to a poor estimation of the cross-kurtosis.

In fact, in this scenario, all criteria are equally likely to achieve the ZF solution,

since there are no pre-coder ambiguities to deal with, given the excessively long temporal

structure of the source. This might demand a large number of delays M to extract the

dependence found in data. However, as can be noted, the choice of M = 3 can be a

reasonable trade-off between performance and computational complexity in these cases.
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6.7 Conclusions

The extension of the BGR and the SW theorems towards the colored blind equal-

ization problem, studied in the previous chapter, provided us with sufficient elements to

conceive criteria compliant with the necessary conditions for equalization. In that sense,

we performed in this chapter the investigation of three criteria underlying the study of

the theorems: (i) the correlation retrieval (CR), already proposed by our research group

in [Fantinato et al., 2013]; (ii) the matching of the cross-kurtosis (MCK), a novelty in

the equalization problem; and (iii) the matching of multivariate distributions (MQD), an

original proposal that combines the multivariate kernel density estimators and the notion

of quadratic divergence. The main concern was the investigation of these criteria as well

as the correntropy matching approach, the state-of-the-art in colored blind equalization.

The criteria were presented encompassing aspects like the analytical calculus of the

costs and their estimation, as well as their gradient calculus for the application in gradient-

based methods for optimization. It is important to emphasize that the described method

for analytical computation of the correntropy is also a contribution of this work (in the

literature, the correntropy is analytically analyzed in terms of its Taylor series expan-

sion [Principe, 2010; Yang et al., 2011]). Next, some statistical estimation issues like

number of samples, number of delays and noise disturbances were analyzed, encompassing

all considered criteria. For the correntropy and the multivariate distribution estimation,

the analysis of the kernel size was also considered, in which its adjustment must be done

considering the scenario (discrete or continuous data samples), number of samples and

number of delays. In general terms, the correlation (CR), the cross-kurtosis (MCK) and

the correntropy revealed certain estimation quality reduction when the number of delays

is increased, requiring a larger number of samples to counterbalance the number of de-

lays. For the multivariate density estimation, very interestingly, the so-called “curse of

dimensionality” proved to be untrue when the estimation is done via multivariate kernel

density estimators, in which a given number of samples, say 100 samples, is sufficient to

obtain reliable estimates of 3, 4 or 5-dimension distributions. Particularly, this is a very

attractive feature of the multivariate distributions, since their computational cost can be

drastically reduced if the number of samples is small.

The surface costs were also analyzed in discrete and continuous scenarios, from the

analytical and estimated source statistics perspective, being assumed FIR models for

channels and equalizers. In all cases, all the costs presented local minima, which may

not be suitable in terms of equalization. Hence, the optimization method must be chosen

taking this information into account. Generally, by increasing the number of delays, all the

costs tend to become smoother and the global minima tend to provide better solutions in

terms of ISI reduction. When the source statistics are estimated, the MCK and the MQD

costs might reduce the number of minima, or even become asymmetric, as occurs with



179

the MQD cost. Finally, for the correntropy-based and the MQD costs, the kernel size can

also be adjusted to control the smoothness of their surface, but the minima position may

change, potentially causing a reduction on the quality of the solution. Hence, a suitable

value for the kernel size must be picked in order to obtain the desired performance.

A more detailed analysis of the criteria performance was considered in some commu-

nications scenarios involving colored sources. In this study three possible configurations

of the pre-coder/channel/equalizer deserve to be outlined: (i) the equalizer is not able

to completely invert neither the pre-coder nor the channel; (ii) the equalizer is able to

completely invert both the pre-coder and the channel; and (iii) the equalizer is able to

completely invert the channel but not the pre-coder. In the first configuration, we an-

alyzed the case in which both channel and equalizer were modeled by FIR filters (and

also the pre-coder) and, by searching the solutions via the DE metaheuristic, we could

observe that the performance reducing the ISI is somehow proportional to the amount

of statistics encompassed in the criteria, i.e., the CR criterion, which only considers the

SOS, performed poorer; the MCK criterion, which, besides the SOS, also encompasses

the fourth order statistics, performed better than the CR criteria, being surpassed by the

correntropy-based criterion, which, since Gaussian kernels were considered, was able to

encompass all the even statistical moments; but the best performance was achieved by

the MQD cost, which, by using the distributions information, makes use of all statistical

moments. Furthermore, by increasing the number of delays, the performances of the cri-

teria were also improved, but tended to a limit value. However, a good performance can

be attained only if the number of delays considered is larger than the pre-coder length

(as discussed in Chapter 5). It is important to emphasize that these general results were

obtained in both discrete and continuous scenarios. The gradient-based algorithms were

also considered as optimization tools, where the increase of the number of delays aided the

convergence to global solutions, but we emphasize that local converge might still happen

and should be a major concern when using this optimization approach. For the configura-

tion (ii), the channel could be completely equalized, but also the pre-coder. In this case,

the CR, the MCK and the correntropy-based criteria presented reduced performance in

the ISI removal in comparison with the MQD criterion, since they may converge to am-

biguous solutions of the pre-coder, as mentioned in Chapter 5. At last, for configuration

(iii), an image processing scenario is considered, whose temporal structure of the data is

considerably long and cannot be inverted, only the channel. In this case, the ambiguities

of pre-coder no longer exist and the criteria becomes equally likely to obtain the desired

solution. Indeed, the obtained performances of all criteria are very close in this case.

In summary, the MQD criteria (in its continuous or discrete version) showed their

wide potential in extracting the data temporal structure information, outperforming cor-

rentropy, the state-of-the-art in the context of colored blind equalization, and the other

considered criteria, CR and MCK. Indeed, from the present analysis, it is clear that,
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among the considered criteria, the MQD seems to be the most suitable, since it carries

no ambiguity for the pre-coder and also is able to obtain more reliable estimates from

a reasonably small amount of samples, even when the considered number of delays is

relatively high.

Finally, this theoretical analysis on the criteria for colored blind channel equalization

shows that it is possible to apply the direct processing of colored signals, which, as men-

tioned, can open a wide horizon of potential applications, such as image, video and audio

processing as well as the use of coding schemes in symbolic level, which might consider-

ably improve the performance in communications scenarios, given the vaster exploration

of the redundancy present in data.
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Chapter 7

Adaptive IIR Equalization Based on

Information Theoretic Learning

IIR filters were object of intensive study along the decades of 1970 to 1990 [Horvath

Jr., 1976; Johnson Jr., 1984; Goodwin and Sin, 1984; Treichler, 1985; Long et al., 1987;

Regalia, 1994], counting with applications in a diverse set of problems, such as system

identification, adaptive control, linear prediction, channel equalization and echo cancella-

tion. After the year 2000, some efforts regarding the IIR filters were aimed at the use of

metaheuristics/evolutionary algorithms for adaptation, which have shown to be a more

robust technique than that based on the gradient methods [Chen, 2000; Krusienski and

Jenkins, 2004; Chen and Luk, 2010]. Notwithstanding, there remains a gap concerning

novel criteria for training these structures, which motivates us to study this problem us-

ing the concepts and methods from ITL [Principe, 2010], as well as their extension to

encompass the temporal information more efficiently.

Within the scope of IIR filtering, it is of particular interest the inherent nonlinear

relationship that arises between the coefficients of the IIR filter and its output yn. On the

one hand, this feature allows a significant flexibility of the structure, but, on the other

hand, it may lead to some difficulties in terms of the mathematical manipulation. In view

of this, there are two formulations that are able to aid the adaptation of the IIR filters,

which are based on different approximations of an error signal en: these formulations are

termed equation-error and output-error (presented in Section 4.2.2 of Chapter 4). Their

importance is directly related to the gradient-based algorithms they engender, which are

the Least-Mean-Square (LMS) – for the equation-error formulation –, the Pseudolinear

Regression (PLR) and the Recursive Prediction Error (RPE) – both for the output-

error formulation. Given their importance in IIR signal processing tasks, we will adopt

these two formulations for the ITL methods, whose objective is to extract the statistical

information about the underlying signal in a more extensive manner. This will be the

main objective of this chapter.
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Before presenting the proposed ITL criteria to be studied in this chapter, we discuss

the main features considered in the equalization problem when using an IIR equalizer.

In the sequence, the proposed ITL criteria will be adapted based on the LMS, PLR and

RPE approaches to be used as gradient-based algorithms. Finally, the performance of the

resulting algorithms will be evaluated, from which we will be able to outline the main

conclusions of this study.

7.1 Supervised Equalization Using IIR Equalizers

In this chapter, we consider the problem of channel equalization from a supervised

standpoint. Additionally, the equalizer is assumed to be an IIR filter. Fig. 7.1 shows

Figure 7.1: Block diagram of a communication system with an IIR equalizer.

the block diagram of the assumed communication system, where sn is the source to be

transmitted through the channel H(z); B(z) and A(z) are the transfer functions of the

feedforward and feedback parts of the IIR equalizer, respectively; and the presence of

noise is assumed, denoted by the signal ηn. In the supervised approach, it is considered

that a reference signal dn is available at the receiver (equalizer), with dn being a sequence

obtained from a portion of sn.

As discussed in Section 1.1.1, IIR filters are interesting processing tools, as they ally

the simplicity of the linear structures and the capability of completely compensating other

linear systems (when the filter length is sufficient). The IIR filter output yn is as given by

Eq. (1.4) and, to concisely represent the filter coefficients, we use the following relation:

Θ(z) =
B(z)

1− A(z)
. (7.1)

This notation allows us to express the IIR filter output accordingly to Eq. 1.5, which we

repeat here for convenience:

yn = θTφn, (7.2)

being θ = [b0 b1 . . . bLb
a1 . . . aLa

]T and φn = [xn xn−1 . . . xn−Lb
yn−1 . . . yn−La

]T .

This expression will be of utmost importance for the derivation of the gradient-based

algorithms.

Since the equation- and output-error formulations are based on an error signal en,
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the time structure of the source is not of great relevance for this analysis – i.e., the

subtraction operation in the error signal, en = dn − yn, in a certain sense, neutralizes the

source temporal structure. However, the time structure that is ‘imprinted’ by the channel

and by the equalizer remains valuable statistical information to be considered. Hence,

our efforts will also be aimed at using multivariate densities, similarly to the preceding

chapter.

In a simple way, the equation- and output-error formulations make different assump-

tions about the IIR filter output signal yn. As presented in Section 4.2.2, the equation-

error formulation assumes that the IIR feedback part is replaced by an FIR filtering of

the reference signal dn. Mathematically, this simply implies modifying the input vector

φn in Eq. (7.2) to φe,n = [xn xn−1 . . . xn−Lb
dn−1 . . . dn−La

]T , whose output will be

denoted by ye,n. In this case, the error signal will be

ee,n = dn − ye,n. (7.3)

On the other hand, the output-error formulation strictly follows the canonical relation

given by Eq. (7.2), i.e., no further assumptions are made on the IIR structure. Thus, the

error signal becomes

eo,n = dn − yn. (7.4)

Based on these two forms of error signals, we are able to extract their statistical content

using the ITL framework, as presented in the following.

7.2 ITL Criteria for Adaptive IIR Filtering

ITL criteria are known for their capability of extracting the statistical information

underlying the signals of interest in a relatively complete fashion. In the context of channel

equalization, the use of Rényi’s entropy and correntropy-based criteria already showed to

be promising approaches, particularly in scenarios involving non-linear structures (e.g.,

ANN and RBF-like structures) and non-Gaussian noise [Principe, 2010]. Thus, in view

of the non-linear relationship that arises in IIR filtering (as seen in Section 4.2.2), the

use of ITL methods deserve attention as an attractive alternative to the classical criteria

for IIR filters. Previous efforts in this topic involved the (univariate) quadratic Rényi’s

entropy [Lai, 2006] and the (univariate) matching of distributions [Lai, 2002; Lai et al.,

2003], both in the system identification problem.

The proposals encompassing ITL criteria generally follow a univariate approach, which

is a computationally convenient choice, counting with positive results in a number of

applications. However, in accordance with the research line followed in this thesis, it will

be convenient to adopt multivariate versions of the ITL criteria, since they are able to

extract the temporal structure contained in the signals, the main focus of this work.
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The set of ITL criteria to be considered in our study encompasses: (i) Shannon’s

entropy, whose estimator is based on the Parzen window method [Parzen, 1962], (ii) the

already mentioned Rényi’s entropy, (iii) the correntropy and, finally, (iv) the multivariate

quadratic divergence (MQD, presented in Chapter 6). It is important to mention that the

use of these ITL criteria in the channel equalization problem as well as their multivariate

extension is a contribution of our work. These criteria will be presented in the following,

where we assume a generic error signal en that can be replaced by ee,n or eo,n, defined in

Eqs. (7.3) and (7.4), respectively.

7.2.1 Multivariate Shannon’s Entropy

The work of Shannon [1948] introduced the entity called entropy, which was essential to

the development of Information Theory [Cover and Thomas, 1991]. Proportionally to the

broadness of Shannon’s work, this entity found a wide horizon of applications in several

problems, among which we highlight the pattern recognition task [Duda et al., 2012],

where, for the first time, Shannon’s entropy was estimated using the kernel methods [Silva

et al., 2005]. Here, we will consider the same method for estimating Shannon’s entropy,

however, we will apply it to the channel equalization problem.

Our aim using Shannon’s entropy will be that of measuring the uncertainty about an

error signal en. However, in our multivariate approach, we consider the error vector

en = [en en−1 . . . en−M ]T (7.5)

of length M+1, which is associated with the RV E = {En En−1 . . . En−M}. Basically,

this vector is the composition of the error signal en at time instant n andM of its delayed

versions. Mathematically, the multivariate Shannon’s differential entropy can be defined

as

HS(E) = −
∫

D

fE(v) log (fE(v)) dv

= −E [log (fE(v))] ,

(7.6)

being fE(v) the multivariate PDF of the RV E (assumed to be of a continuous distribution

– which requires the use of the differential entropy instead of its discrete version), and

D ⊆ R
M+1.

However, the analytical use of this instance is sometimes intangible in practical sce-

narios, being preferable the use of estimated versions of entropy. Hence, similarly to the

work of Silva et al. [2005], we use a sample mean instead of the expectation operator in

Eq. (7.6), i.e.:

ĤS(E) =
−1

Ne

Ne−1
∑

i=0

− log (fE(ei)) (7.7)

and the Parzen window method for PDF estimation with multivariate kernels. Accord-
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ing to this method, the multivariate PDF can be mathematically estimated through the

following relationship:

f̂E(v) =
1

Ne

Ne−1
∑

j=0

GΣ (v − ej) , (7.8)

which, by replacing Eq. (7.8) in (7.7), results in

ĴHS(θ) = − 1

Ne

Ne
∑

i=1

log

(

1

Ne

Ne
∑

j=1

G2Σ (ei − ej)

)

, (7.9)

where Ne is the number of error vectors en and GΣ(·) is the multivariate symmetric

Gaussian kernel given by

GΣ (v − ei) =
1

√

det(2πΣ)
exp

[−1

2
(v − ei)

TΣ−1(v − ei)

]

, (7.10)

with Σ = σ2I, being σ the kernel size. In the M = 0 case, the estimated Shannon’s

entropy – Eq. (7.9) – is reduced to the univariate case proposed by Silva et al. [2005].

For equalization purposes, the estimated Shannon’s entropy is a cost function that

must be minimized. The main idea is that, by minimizing the entropy, the error reduces

its uncertainty: ideally, the error distribution associated with the lowest uncertainty (or

entropy) is a (multivariate) Dirac delta function. Preferably, it is desired that the spike be

at the origin – i.e., fE(v) = δ(v); however, when fE(v) = δ(v − µ) for µ 6= 0 is likely to

happen, additional care must be employed, e.g., by applying a constraint to the equalizer.

7.2.2 Multivariate Rényi’s Entropy

In the problem of channel equalization, the most iconic ITL measure is undoubtedly

Rényi’s entropy, which was the pioneering approach allying the entities from Information

Theory and PDF estimation via the Parzen window method [Erdogmus and Principe,

2002a; Principe, 2010].

Interestingly, Rényi’s entropy establishes certain relationships with Shannon’s entropy

and, consequently, with the notion of uncertainty [Principe, 2010]. Besides that, Rényi’s

entropy for α = 2 presents the advantage of leading to simple relations when kernel density

estimators are used.

The multivariate Rényi’s entropy of order α can be defined as

HR(E) =
1

1− α
log

∫

D

fα
E(v) dv, (7.11)

where α is a constant, such that α 6= 1 and α ≥ 0 [Principe, 2010]. By assuming, as usual,

that α = 2 and that the multivariate PDF of E can be estimated via the Parzen window
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method with Gaussian kernels, Eq. (7.8), Rényi’s entropy can be estimated as

ĴHR(θ) = − log

(

1

N2
e

Ne
∑

i=1

Ne
∑

j=1

G
2Σ (ei − ej)

)

= − log V̂2(E), (7.12)

where V̂2(E) will be called the multivariate quadratic information potential (MIP) esti-

mator.

Just like Shannon’s entropy, we wish to reduce the uncertainty about the RV E. Hence,

the objective will be that of minimizing the cost function ĴHR(θ) given by Eq. (7.12). Since

the logarithm is a monotonic function, it can be disregarded in optimization tasks and,

alternatively, the MIP estimator can be maximized.

7.2.3 Multivariate Correntropy

In the literature, the correntropy is a simpler ITL measure able to encompass the

HOS of the signals of interest. It can also be seen as a biased estimator of the information

potential [Santamaŕıa et al., 2006; Principe, 2010] and, for this reason, we also consider

this criterion in our analysis.

In the previous chapter, the correntropy-based cost was able to encompass the signals

time structure by means of a squared error expression (see Eq. (6.15) in Chapter 6).

However, when an error signal en is involved, the temporal structure can be exploited by

other means. In that sense, we propose the use of a multivariate version of correntropy,

which can be defined as:

vE =

∫

D

GΣ (v) fE(v) dv

= E [GΣ (v)] ,

(7.13)

where a multivariate Gaussian kernel GΣ (·) was adopted.
Now, if we assume a sample mean estimator for the expectation operator, the multi-

variate correntropy becomes:

Ĵcor(θ) =
1

Ne

Ne
∑

i=1

GΣ (ei) . (7.14)

Curiously, if the Parzen window method is considered for the PDF fE(v) in Eq. (7.13),

the resulting equation is equal to Eq. (7.14), except for the kernel size, which would

be 2Σ = 2σ2I. However, since the kernel size is a free parameter, this scale factor is

negligible.

Since the kernel functions present their peak value at the origin and the objective

is to make the error signal en null, an intuitive equalization criterion will be that of

maximizing the error correntropy cost Ĵcor(θ) given by Eq. (7.14). Note that, differently
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from Shannon’s and Rényi’s entropy, the case in which fE(v) = δ(v−µ) for µ 6= 0 cannot

be a global optimum for correntropy.

7.2.4 Matching of Multivariate Distributions

Motivated by the results obtained in the previous chapter, as well as by the efforts

of Lai [2002], we also consider the MQD cost as criterion to be investigated in the IIR

filtering problem.

Since we wish the error to be an impulse at the origin, i.e., that fE(v) = δ(v), we

may pose the problem as the matching between the densities fE(v) and p0(v) = δ(v).

Recalling the MQD-D cost presented in Eq. (6.25), we are able to define an analogous

cost function:

JMQD(θ) =

∫

D

(fE(v)− p0(v))
2 dv

=

∫

D

f 2
E(v)dv +

∫

D

p20(v)dv − 2

∫

D

fE(v)p0(v)dv,

(7.15)

in which, using p0(v) = δ(v) and the Parzen window method for PDF estimation,

Eq. (7.8), results in

ĴMQD(θ) =
1

N2
e

Ne
∑

i=1

Ne
∑

j=1

G2Σ (ei − ej) +

∫

D

p20(v) dv − 2

Ne

N
∑

j=1

GΣ (ej) , (7.16)

where, again, the second term can be disregarded in optimization problems, as it does

not depend on the IIR equalizer parameters. Note that the first term is basically the

Rényi’s entropy estimator for α = 2 and the last term can be seen as a penalizing term

that avoids solutions of the type fE(v) = δ(v − µ) for µ 6= 0, just like correntropy. In

that sense, the MQD cost can be seen as a linear combination of the Rényi’s entropy and

correntropy cost.

From a general perspective, all the considered ITL criteria makes use of a generic

error signal, which allows their direct application as equalization criteria in the output-

and equation-error formulations. To simplify the use of the adopted acronyms, Shannon’s

entropy-, Rényi’s entropy, correntropy and multivariate distribution-based criteria will

be referred to as HSEE, HREE, corEE and MQDEE, respectively, for the equation-error

formulation; and as HSOE, HROE, corOE and MQDOE, respectively, for the output-error

formulation.

Having defined the criteria, the next step is to derive the gradient-based algorithms

according to the LMS, PLR and RPE approaches, as described in the following.
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7.3 Novel ITL Algorithms for Adaptive IIR Filters

In the context of the equation-error formulation, an LMS-like algorithm usually is

employed for training the IIR structure, while, in the output-error formulation, the PLR or

the (simplified) RPE are the preferred options [Shynk, 1989], as presented in Section 4.2.2.

Then, our intention is to employ the ITL criteria according to these approaches.

Basically, all algorithms make use of the gradient-based update rule given by

θn+1 = θn − µ∇θJ(θ), (7.17)

being the difference among them the gradient ∇θJ(θ) of each approach. In the following,

we present the gradient of each ITL cost function using the generic error signal, and later

we specify the error terms according to the LMS, PLR and RPE approaches.

7.3.1 Gradient of ITL Criteria

Starting with the ĴHS(θ) cost, its gradient with respect to θ can be computed as

∇θĴHS(θ) =
1

2N2
e

Ne
∑

i=1

∑Ne

j=1G2Σ (ei − ej) (ei − ej)
T
Σ−1∇θ (ei − ej)

1
Ne

∑Ne

k=1G2Σ (ei − ek)
; (7.18)

being ∇θ (ei − ej) the gradient of the error signal difference, which will vary according to

the approach, as we will see later.

Similarly, for the Rényi’s entropy-based cost, the gradient is proportional to

∇θĴHR(θ) ∝
1

2N2
e

Ne
∑

i=1

Ne
∑

j=1

G2Σ (ei − ej) (ei − ej)
T
Σ−1∇θ (ei − ej) , (7.19)

where it was assumed α = 2. Note that the logarithmic function was disregarded – hence,

the proportional symbol is used – without causing any impact in the criteria solution.

Eq. (7.19) basically represents the gradient of the MIP estimator, but the sign must be

changed if a maximization process is to be carried.

Continuing with the derivation, the gradient of correntropy-based cost can be ex-

pressed as

∇θĴcor(θ) =
−1

Ne

Ne
∑

i=1

GΣ (ei) e
T
i Σ

−1∇θei; (7.20)
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and, finally, for the MQD cost,

∇θĴMQD =
1

2N2
e

Ne
∑

i=1

Ne
∑

j=1

G2Σ (ei − ej) (ei − ej)
TΣ−1∇θ (ei − ej)

+
2

Ne

Ne
∑

j=1

GΣ (ej) e
T
j Σ

−1∇θej.

(7.21)

Note that the term ∇θ (ei − ej) is common to the gradients of Shannon’s and Rényi’s

entropy, as well as the MQD. In addition to that, ∇θei can be identified in the gradient

of the correntropy and MQD cost. In fact, the LMS-, LPS- and RPE-based algorithms

will differ only in these terms, which will be described in the following.

7.3.2 LMS-Based Algorithms - Equation-Error Formulation

Based on the equation-error formulation, the generic error signal en becomes the signal

ee,n defined in Eq. (7.3). Thus, the term ∇θ (ei − ej) becomes ∇θ (ee,i − ee,j), which can

be computed as

∇θ (ee,i − ee,j) = (Φe,j −Φe,i). (7.22)

The term ∇θei becomes ∇θee,i and results

∇θee,i = −Φe,i, (7.23)

being,

Φe,n =





























xn xn−1 · · · xn−M

xn−1 xn−2 · · · xn−M−1

...
...

...
...

xn−Nb
xn−Nb−1 · · · xn−M−Nb

dn−1 dn−2 · · · dn−M−1

...
...

...
...

dn−Na
dn−Na−1 · · · dn−M−1−Na





























. (7.24)

The substitution of these relations in the previously presented gradients yields the set

of LMS-based algorithms to be analyzed.

7.3.3 PLR-Based Algorithms - Output-Error Formulation

In the output-error formulation, the PLR approach considers a linear approximation

of the gradient, as described in Eq. (4.30). In this case, the term ∇θ (ei − ej) used in the

gradients becomes ∇θ (eo,i − eo,j) and results

∇θ (eo,i − eo,j) = (Φj −Φi); (7.25)
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and for the term ∇θei:

∇θeo,i = −Φi, (7.26)

being

Φn =





























xn xn−1 · · · xn−M

xn−1 xn−2 · · · xn−M−1

...
...

...
...

xn−Nb
xn−Nb−1 · · · xn−M−Nb

yn−1 yn−2 · · · yn−M−1

...
...

...
...

yn−Na
yn−Na−1 · · · yn−M−1−Na





























. (7.27)

To obtain the PLR-based algorithms, it is enough to replace these relations in the gradients

presented in Section 7.3.1.

7.3.4 RPE-Based Algorithm - Output-Error Formulation

Finally, for the simplified RPE-based algorithm, an approximated gradient is derived

from the assumption that the filter coefficients vary slowly along the time, i.e., θn ≈
θn−1 ≈ . . . ≈ θn−Ni

[Johnson Jr., 1984] – for more details, see Section 4.2.2.

In this case, the term ∇θ (ei − ej) can be expressed as

∇θ (eo,i − eo,j) = (Φ̇j − Φ̇i) (7.28)

and the term ∇θei as

∇θeo,i = −Φ̇i (7.29)

where,

Φ̇n =
























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

ẋn ẋn−1 · · · ẋn−M

ẋn−1 ẋn−2 · · · ẋn−M−1
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ẋn−Nb−1 · · · ẋn−M−Nb

ẏn−1 ẏn−2 · · · ẏn−M−1
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...
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
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. (7.30)

The signals ẋn and ẏn are obtained according to Eqs. (4.34), respectively. Hence, by

replacing of ∇θ (eo,i − eo,j) and/or ∇θeo,i in the gradients presented in Section 7.3.1, we

arrive, straightforwardly, at the desired RPE-based algorithms.

It is important to mention that, in all the cases above, it is necessary that Ne >

M+max{Na, Nb}, being max{·, ·} the element with the largest value; otherwise, there will

not be enough samples for estimation. Moreover, for the MQD-based and the Shannon’s
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and Rényi’s entropy-based costs, Ne needs to be necessarily greater than or equal to 2, so

that there can be at least one comparison between error samples.

In view of their higher potential when extracting the statistical information of the

underlying signals as well as the use of the inherent kernel features, we expect to identify an

improvement on the ITL-based algorithms performance in comparison with the classical

mean-squared approaches. In that sense, we present in the following the performance

analysis according to the two formulations: the equation- and the output-error.

7.4 Performance Analysis - Equation-Error Formula-

tion

The equation-error formulation is a supervised approach in which the use of the MSEE

criterion has already shown to be a an attractive method in identification problems [John-

son Jr., 1984; Treichler, 1985; Regalia, 1994]. However, the MSEE weakness is its high

sensitivity to the presence of noise, which may contribute to the rise of biased solu-

tions [Shynk, 1989]. In that sense, we analyze in this section the performance of the

proposed ITL algorithms in comparison with the classical MSEE approach, paying espe-

cial attention to their robustness against noise.

The analysis will firstly encompass the observation of the cost surfaces in a simple

scenario, being followed by the performance analysis itself of the LMS-based algorithms

in more complex scenarios. The cost surface analysis demands a simple scenario for the

sake of visualization of the surfaces, with an IIR equalizer with only two free coefficients.

To evaluate the performance of the solutions found by the algorithms, we will use the

QISI measure, defined as

QISIdB = 10 log10

(

∑Mc

i=0 |ci|2
)

−maxj |cj|2

maxj |cj|2
, (7.31)

where c = [c0 c1 . . . cLc
]T is the combined channel + equalizer impulse response. Since

the QISI assumes an FIR model for cn, the combined channel+equalizer IIR system (with

poles and zeros) will be approximated by a sufficiently large FIR system of length Lc = 300

(a system only with zeros) [Oppenheim et al., 1997].

With the objective of establishing a fair step size µ for all algorithms, they will be

adjusted to reach the equivalence of the coefficients mean displacement (or mean Eu-

clidean distance) between iterations after convergence. Mathematically, the displacement

is measured by

dispθ =
1

Nit −Nconv + 1

Nit
∑

i=Nconv

||θi+1 − θi||, (7.32)
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where Nit is the maximum number of iterations and Nconv is the number of iterations

required for convergence.

Besides the step size µ, the ITL algorithms also depend on the window length Ne, the

kernel size σ and the number of delays M . The window length Ne will be equal for all

algorithms (including the MSEE-LMS algorithm, whose coefficients update will be done

using the mean gradient using Ne error samples), while the kernel size σ and the number

of delays M will be varied in each case. Note that neither the σ nor the M parameters

are encompassed in the MSEE-LMS algorithm.

7.4.1 Equation-Error Formulation - Scenario 1

Assuming that sn is an i.i.d. BPSK modulated signal, we consider the scenario where

the channel has as transfer function

H(z) =
1 + 0.6z−1

1− 0.5z−1
, (7.33)

and there is AWGN with SNR level of 10 dB. The IIR equalizer presents the following

structure:

Θ(z) =
b0

1− a1z−1
, (7.34)

where b0 and a1 are two free parameters. Note that the equalizer structure is insufficient

to lead to a ZF condition.

The ITL Costs Surfaces

Firstly, we wish to observe the criteria surface shape. In order to do so, we considered

Ne = 200 for all criteria and varied b0 and a1 from −2 to 2. For comparison purposes, we

display in Fig. 7.2 the contours of the MSEE cost, for the noiseless and noisy case. It is

possible to note that, for both cases, the surface is a paraboloid with a single optimum.

However, with the presence of noise, Fig. 7.2(b), there is a clear shift or bias in the

solution [Shynk, 1989]. In that sense, we hope that the proposed criteria be more robust

against the noise bias.

To observe the surface of the ITL criteria, we first consider the kernel size of σ = 3, in

which the resulting contours for the HSEE, HREE, corEE and MQDEE are as illustrated

in Fig. 7.3. It is possible to note that the shape of the costs are similar to that of the

MSEE, i.e., they also form a paraboloid, with exception to the MQDEE cost, whose

surface is more flat and with contours in the shape of an “irregular ellipse”. Fig. 7.3 also

shows that the ITL criteria optimum points also suffers the bias effect, since their solution

does not match that of the MSEE in the noiseless case. However, the bias effect intensity

may vary, as we will see later.

By reducing the kernel size to σ = 0.7, it is possible to note, as displayed at Fig. 7.4,



193

b
0

a
1

J
MSEE

(θ)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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Figure 7.2: Equation-Error Formulation - Scenario 1 - MSEE Surface contours.
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(c) ĴcorEE .

b
0

a
1

J
MQDEE

(θ)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

MSEE solution
Noiseless case
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Figure 7.3: Equation-Error Formulation - Scenario 1 - ITL costs surface contours for
σ = 3, M = 0 and SNR of 10 dB.



194

that the cost surfaces become more irregular, with a slight change on the optima positions.

In general terms, the ITL criteria solutions, in comparison with the σ = 3 case, becomes

closer to the MSEE solution with no noise, which indicates that low values of σ may

improve the performance of the algorithms.
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Figure 7.4: Equation-Error Formulation - Scenario 1: ITL costs surface contours for
σ = 0.7, M = 0 and SNR of 10 dB.

In order to extract the error signal temporal information more effectively, we consider

now the increment on the number of delays M . By adopting M = 2, the ITL criteria

surface contours assumes the form displayed at Fig. 7.5. The temporal information of

the error signal caused a smoothing effect on the surfaces, but also provoked a slightly

change on the optima position: just like the kernel size smoothing effect, the increase

of M caused a larger deviation when compared to the MSEE solution in the noiseless

scenario. This indicates that, an increase in M may require a reduction of the kernel size

σ in order to keep the smoothing effect balanced. These two parameters will be analyzed

in more detail in the following, where we will also evaluate the criteria solutions via the
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LMS-based algorithms.
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Figure 7.5: Equation-Error Formulation - Scenario 1: ITL costs surface contours for
σ = 0.7, M = 2 and SNR of 10 dB.

LMS-Based Algorithms

As shown by the previous figures, the criteria surfaces present a single optimum, whose

values can be satisfactorily reached through the use of a gradient-based algorithm. In this

case, the LMS-based algorithms presented in Section 7.3 will be employed as optimization

tools.

For the same scenario 1 (with SNR level of 10 dB), we adopted the following pa-

rameters: Ne = 5; M = 0; step sizes µMSEE = 0.004, µHSEE = 0.004, µHREE = 0.027,

µcorEE = 0.015 and µMQDEE = 0.006; and kernel size σ = 1 for all kernel-based algorithms.

After running the LMS-based algorithms, we obtained the mean QISI performance along

iterations for 30 independent simulations, as displayed at Fig. 7.6(a). The measured

mean displacement given by Eq. (7.32) was of 1.4e − 3, being considered Nit = 10000
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(b) Mean QISI - M = 2.

Figure 7.6: Equation-Error Formulation - Scenario 1: QISI Performance of the
LMS-based algorithms for M = 0 and M = 2 and SNR of 10 dB.

(the maximum number of iterations) and Nconv = 2000 (the number of iterations required

for convergence). We repeated this procedure for M = 2, adopting the parameters:

Ne = 5; step sizes µMSEE = 0.0035, µHSEE = 0.002, µHREE = 0.2, µcorEE = 0.05 and

µMQDEE = 0.02; and σ = 1 for all algorithms. The measured mean QISI performance is

illustrated in Fig. 7.6(b). The measured mean displacement was of 1.4e − 3. As can be

noted, for M = 0, the HSEE-LMS and the HREE-LMS algorithms achieved together the

lowest QISI performance, with about −6.35 dB of mean QISI after convergence, being

followed by the MQDEE-LMS algorithm, with −6.02 dB, by the corEE-LMS, with −5.90

dB, and, at last, the classical MSEE-LMS algorithm, with −5.62 dB. The convergence

speed is practically the same for all algorithms (Nconv = 2000). For M = 2, the QISI per-

formance is slightly improved: the HSEE-LMS and the HREE-LMS algorithms achieved

−6.43 dB of QISI, the MQDEE-LMS algorithm achieved −6.11 dB and the corEE-LMS

algorithm −6.08 dB. This might indicate that the use of the temporal structure is not

effective in this case, however, if the scenario conditions are changed, the effect of using

more delays can be more significant, as we will see later.

To obtain a more accurate kernel size adjustment, we performed a linear sweep on σ

for the M = 0 and M = 2 cases – keeping the same previous parameters – to investigate

its influence on the solutions. After each execution of the LMS-based algorithms, the

mean performance after convergence was evaluated in terms of QISI. For each considered

value of σ, 30 independent experiments were considered, being their average QISI values

displayed in Fig. 7.7. For M = 0, Fig. 7.7(a), it is possible to note that, for σ < 0.5,

the ITL-based algorithms presented poor performance. For σ = 0.6 the corEE and the

MQDEE algorithms attain their best performances. The HSEE algorithm presents the

best QISI value for σ ≈ 0.9 and gradually loses performance as σ increases; while the

HREE algorithm shows practically constant QISI performance for σ > 0.5. However, this
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Figure 7.7: Equation-Error Formulation - Scenario 1: QISI Performance σ sweep.

behavior changes when M is increased to 2. Indeed, as shown in Fig. 7.7(b), for σ > 1.5,

the HREE, the corEE and the MQDEE algorithms tend to perform poorer. The only

exception is the HSEE, which now maintains its performance even for σ > 1.5. In view

of this, one possible general σ choice for all criteria is σ = 1, which lies on an interval

acceptable for both M = 0 and M = 2 (although this may cause a small reduction on

the QISI performance for corEE and MQDEE whose best σ is 0.6, but, at least, it moves

them away from the unstable region of σ < 0.5).
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Figure 7.8: Equation Error - Scenario 1: QISI × SNR (M = 0).

Hence, adjusting the kernel sizes to their optimal values for M = 0, i.e., σHSEE = 0.9,

σHREE = 0.6, σcorEE = 0.6 and σMQDEE = 0.6, we varied the SNR levels from 0 to 28 dB

in order to obtain a QISI × SNR curve. The mean QISI values were measured after the

convergence of the algorithms for 30 independent experiments, whose average are shown

at Fig. 7.8. As can be observed, the use of the ITL-based algorithms is especially useful

for lower SNR levels (below 20 dB). For higher SNR levels, all the algorithms tend to
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converge to the same QISI performance of ≈ −6.85 dB. For most SNR values, the HSEE-

LMS and the HREE-LMS algorithms performed better and almost equivalently, staying

behind the corEE-LMS and MQDEE-LMS only for SNR levels close to zero dB.

Moving our attention to the number of delays M , we considered three SNR values,

i.e., 3 dB, 10 dB and 22 dB, and variedM from 0 to 3. The average performance in terms

of QISI for 30 independent experiments is as exhibited in Tab. 7.1. Again, we observe

Table 7.1: Mean QISI performance for several number of delays M .

QISI [dB] - SNR 3 dB
SNR 3 dB

M MSEE HSEE HREE CorEE MQDEE
0 −2.271 −3.648 −4.191 −3.971 −4.053
1 – −3.667 −4.382 −3.983 −4.146
2 – −3.883 −4.539 −4.192 −4.249
3 – −4.023 −4.508 −4.298 −4.326

SNR 10 dB
M MSEE HSEE HREE CorEE MQDEE
0 −5.798 −6.377 −6.410 −6.176 −6.254
1 – −6.414 −6.523 −6.338 −6.349
2 – −6.485 −6.628 −6.506 −6.510
3 – −6.495 −6.624 −6.483 −6.505

SNR 22 dB
M MSEE HSEE HREE CorEE MQDEE
0 −6.765 −6.851 −6.838 −6.784 −6.811
1 – −6.811 −6.832 −6.794 −6.805
2 – −6.836 −6.844 −6.782 −6.824
3 – −6.844 −6.847 −6.799 −6.829

the particular efficiency of the ITL algorithms in the noisier conditions (i.e., for low SNR

values). For an SNR of 3 dB, all the ITL algorithms take advantage of the number of

delays M and are able to improve their performance as M increases. Among all of them,

we highlight the performance of the HREE algorithm, which is better than that of other

algorithms and twice as better than that of the MSEE forM = 2. Even though, the other

ITL algorithms performance are not far from the HREE. For an SNR of 10 dB, increasing

the number of delays only provokes slight improvements on the QISI performance, while,

for 22 dB, the QISI performance is practically kept constant.

This first analysis suggests that the ITL-based approaches might be useful in the

equation-error formulation, since they are able to exhibit good performance even on strong

noise scenarios. But we remind the reader that the present scenario encompasses a simple

IIR equalizer, and some features can be hidden due to structural limitations. In that

sense, we analyze more complex cases in the following.
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7.4.2 Equation-Error Formulation - Scenario 2

In the second scenario, we consider more complex channel and equalizer models. The

source sn is an i.i.d. BPSK modulated signal and the channel has the transfer function

H(z) =
0.76− 0.25z−1 + 0.44z−2 − 0.02z−3

1 + 0.2z−1 − 0.5z−2
. (7.35)

The IIR equalizer is of the type:

Θ(z) =
b0 + b1z

−1

1− a1z−1 − a2z−2 − a3z−3
. (7.36)

Note that, in this case, the equalizer is not able to completely equalize the channel.

We consider two types of noise, the usual AWGN and the impulsive noise, whose PDF

is given by

fη(v) = ǫGσ2

1
(v) + (1− ǫ)Gσ2

2
(v), (7.37)

where we considered ǫ = 0.1 and σ1/σ2 = 30, the same relation of the previous chapter.

By varying the noise energy, it is possible for us to draw a QISI × SNR curve.

We considered the LMS-based algorithms for optimization and assumed M = 0, Ne =

5 and the step sizes µMSEE = 0.0016, µHSEE = 0.0015, µHREE = 0.01, µcorEE = 0.0062

and µMQDEE = 0.0025, Nit = 10000 and Nconv = 4000, with mean displacement dispθ =

1.1e−3 for SNR of 10 dB (AWGN). The kernel sizes were chosen to be σ = 1 for all ITL-

based criteria (a general choice, as previously discussed). The performance of the solutions

of the algorithms were evaluated in terms of QISI – i.e., mean QISI after convergence –

for 30 independent experiments, considering the Gaussian and the impulsive noise cases.

The average QISI values along experiments can be verified in Fig. 7.9. For the Gaussian
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Figure 7.9: Equation-Error Formulation - Scenario 2: QISI × SNR for M = 0.

noise, Fig. 7.9(a), it is possible to note that the ITL-based algorithms outperform the
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MSEE-LMS algorithm for all SNR values. The performances of the corEE-LMS and of

the MQDEE-LMS algorithms attain the best levels for low SNR values (SNR lower than

3 dB), however, above 5 dB, the HSEE-LMS and the HREE-LMS practically present the

same performance and achieve the lowest QISI levels. Differently from scenario 1, the ITL-

based algorithms outperform the MSEE-LMS algorithm even for greater SNR values (i.e,

for SNR levels greater than 20 dB). In fact, this performance gain is mainly observed

for the HSEE-LMS and the HREE-LMS algorithms, since the corEE-LMS algorithm

converges to the same QISI level as the MSEE-LMS. The MQDEE-LMS algorithm, which

can be viewed as a combination of the HREE-LMS and corEE-LMS algorithms, exhibits

an intermediate performance. We emphasize that the good performance achieved by the

HSEE-LMS and the HREE-LMS even on high SNR levels is a consequence of the higher

degree of freedom of the IIR equalizer, which allows a more flexible processing of the

data. For the impulsive noise, Fig. 7.9(b), we observe a similar behavior of the ITL-based

algorithms. However, as the kernel estimators mitigate the impulsive effect of the noise,

their performance is improved for lower SNR levels (less than 20 dB). Indeed, for an SNR

of 5 dB, the ITL-algorithms outperform the MSEE-LMS by more than 3 dB.
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Figure 7.10: Equation-Error Formulation - Scenario 2: QISI × SNR for M = 3.

Regarding the multivariate case, we consider now M = 3 delays. The criteria pa-

rameters for this case were M = 3, Ne = 5 and the step sizes µMSEE = 0.0016 (with

M = 0 for MSEE), µHSEE = 0.0006, µHREE = 0.22, µcorEE = 0.045 and µMQDEE = 0.02,

Nit = 10000 and Nconv = 4000, with mean displacement dispθ = 1.1e−3 for SNR of 10 dB

(AWGN). The QISI × SNR curves are as shown in Fig. 7.10. Comparing with the uni-

variate case (M = 0), Fig. 7.9, we can observe a slight improvement on the performance:

for instance, for SNR levels 3, 10 and 22 dB, the mean QISI performance is exhibited in

Tab. 7.2 for M = 0 and M = 3, where it is clear that the gain on performance mostly

occurs for lower SNR values. Under impulsive noise, the performance improvement is

more pronounced, as can be veryfied in Tab. 7.3, mainly for lower SNR levels, in which
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Table 7.2: Scenario 2: Mean QISI performance for Gaussian noise and for M = 0 and
M = 3.

QISI [dB] - SNR 3 dB
SNR 3 dB

M MSEE HSEE HREE CorEE MQDEE
0 −1.825 −3.571 −3.749 −3.397 −3.733
3 – −3.905 −3.926 −3.516 −3.741

SNR 10 dB
M MSEE HSEE HREE CorEE MQDEE
0 −8.158 −10.537 −10.582 −8.673 −9.162
3 – −10.690 −10.638 −8.879 −9.177

SNR 22 dB
M MSEE HSEE HREE CorEE MQDEE
0 −14.425 −16.913 −16.915 −14.464 −15.014
3 – −16.965 −16.918 −14.559 −14.988

Table 7.3: Scenario 2: Mean QISI performance for impulsive noise and for M = 0 and
M = 3.

QISI [dB] - SNR 3 dB
SNR 3 dB

M MSEE HSEE HREE CorEE MQDEE
0 −1.632 −4.084 −4.508 −4.673 −4.884
3 – −5.166 −5.087 −5.416 −5.571

SNR 10 dB
M MSEE HSEE HREE CorEE MQDEE
0 −8.262 −11.572 −11.835 −10.207 −10.626
3 – −12.561 −12.293 −10.869 −11.042

SNR 22 dB
M MSEE HSEE HREE CorEE MQDEE
0 −14.591 −16.936 −16.922 −14.724 −15.229
3 – −16.944 −16.926 −14.785 −15.234

the gain is up to 1 dB of QISI for SNR of 3 and 10 dB (for the HSEE-LMS algorithm).

We highlight the performance of the HSEE-LMS and the HREE-LMS algorithms, which

were similar and attained the best QISI values.

7.4.3 Equation-Error Formulation - Scenario 3

Within the same context of scenario 2, it is now assumed that the equalizer has the

following transfer function

Θ(z) =
b0 + b1z

−1 + b2z
−2

1− a1z−1 − a2z−2 − a3z−3 − a4z−4
, (7.38)

being able to completely invert the channel and to achieve the ZF condition.
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The algorithm parameters were chosen to be exactly the same of scenario 2 for M = 0

(which also leads the algorithms to the mean displacement of dispθ = 1.1e−3 for SNR

level of 10 dB). The QISI × SNR curves were obtained through the same procedure, as

shown in Fig. 7.11. For Gaussian noise, Fig. 7.11(a), the performances in the neighbor-
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0 5 10 15 20 25
−35

−30

−25

−20

−15

−10

−5

0

SNR [dB]
Q

IS
I 
[d

B
]

 

 

MSEE−LMS

HSEE−LMS

HREE−LMS

corEE−LMS

MQDEE−LMS

HSEE−LMS

HREE−LMS

MQDEE−LMS

corEE−LMS

MSEE−LMS

(b) Impulsive noise - M = 0.

Figure 7.11: Equation-Error Formulation - Scenario 3: QISI × SNR for M = 0.

hood of SNR level of 13 dB are similar among the algorithms. Curiously, the HSEE-LMS

and the HREE-LMS algorithms – that achieved the best QISI performances in the pre-

vious scenarios – occupy now positions very close to the classical MSEE-LMS algorithm.

This behavior suggests that, when the error can be substantially small (e.g., and the ZF

condition is attainable) and the noise is Gaussian, the (Shannon’s and Rényi’s) error en-

tropy becomes practically equivalent to the MSEE. On the other hand, the corEE-LMS

and the MQDEE-LMS algorithms obtain now the best performances, specially for SNR

values lower than 5 dB and higher than 20 dB. For the impulsive noise case, Fig. 7.11(b),

the ITL-based algorithms show better QISI performance in comparison with the MSEE-

LMS algorithms (due to their greater robustness against this type of noise), except for

the HSEE-LMS and the HREE-LMS algorithms, whose performance above SNR of 17

dB becomes very close (and sometimes slightly worst) to the MSEE-LMS algorithm. The

corEE-LMS and the MQDEE-LMS algorithms are about 4 dB of QISI better than the

MSEE-LMS algorithm for SNR levels lower than 5 dB, and about 1 dB better for SNR

values greater than 15 dB under impulsive noise.

By increasing the number of delays to M = 3, the resulting QISI performance is as

shown in Fig. 7.12. In this case, the algorithms parameters were equal to those of the

previous scenario for M = 3. For both noise cases, the gain in the QISI performance is

mainly observed for SNR values higher than 20 dB in comparison with the M = 0 case.

This becomes more evident from the QISI measures for SNR of 3, 10 and 26 dB, as shown

in Tabs. 7.4 and 7.5 for the Gaussian and impulsive noise, respectively. More specifically,

for the Gaussian noise, the HSEE-LMS and the HREE-LMS algorithms practically remain
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Figure 7.12: Equation-Error Formulation - Scenario 3: QISI × SNR for M = 3.

Table 7.4: Scenario 3: Mean QISI performance for Gaussian noise and for M = 0 and
M = 3.

QISI [dB] - SNR 3 dB
SNR 3 dB

M MSEE HSEE HREE corEE MQDEE
0 −3.657 −3.796 −3.887 −4.806 −4.959
3 – −3.958 −3.944 −4.876 −4.995

SNR 10 dB
M MSEE HSEE HREE CorEE MQDEE
0 −11.412 −11.397 −11.408 −11.837 −11.855
3 – −11.175 −11.213 −11.867 −11.872

SNR 26 dB
M MSEE HSEE HREE CorEE MQDEE
0 −29.314 −29.077 −29.061 −30.258 −30.052
3 – −29.084 −29.039 −31.356 −31.118

unchanged by increasing M to 3. However, for the corEE-LMS and the MQDEE-LMS

algorithms, the QISI performance is improved by approximately 1 dB for SNR of 26 dB.

When the noise has impulsive behavior, the HSEE-LMS and the HREE-LMS algorithms

can improve their performance for M = 3 and low SNR values (lower than 15 dB).

Contrarily, for the corEE-LMS and the MQDEE-LMS algorithms, the increase of M

leads to a performance improvement for higher SNR values (greater than 20 dB).

These results establish a clear disparity between the attainable and the non-attainable

ZF condition, in which the corEE-LMS and the MQDEE-LMS algorithms switch places

with the HSEE-LMS and HREE-LMS algorithms in occupying the best QISI performance

position. In fact, Shannon’s and Rényi’s entropy-based algorithms show to be promis-

ing choices when the ZF condition is not attainable; for attainable ZF solutions, these

entropy-based algorithms achieve a performance similar to that of the classical MSEE-
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Table 7.5: Scenario 3: Mean QISI performance for impulsive noise and for M = 0 and
M = 3.

QISI [dB] - SNR 3 dB
SNR 3 dB

M MSEE HSEE HREE CorEE MQDEE
0 −3.416 −4.667 −4.969 −6.819 −6.835
3 – −5.466 −5.384 −6.822 −6.838

SNR 10 dB
M MSEE HSEE HREE CorEE MQDEE
0 −11.531 −12.714 −12.615 −13.487 −13.458
3 – −13.487 −13.352 −12.976 −13.972

SNR 26 dB
M MSEE HSEE HREE CorEE MQDEE
0 −29.369 −29.139 −29.164 −30.357 −30.121
3 – −29.148 −29.167 −31.643 −31.386

LMS algorithm, but, on the contrary, the corEE-LMS and the MQDEE-LMS algorithms

are able to reach the lowest QISI values, being preferable in these cases; however, the

performance gain is more evident for SNR levels lower than 5 dB or higher than 20 dB.

In fact, when the ZF solution is reached by an algorithm, the error PDF is equivalent to

that of the noise, and, in the AWGN case, it is Gaussian distributed, a situation in which

the SOS (or, in other words, the MSEE) is sufficient for equalization, hence the similarity

in the performance. The error distribution tends to deviate from the Gaussian mainly for

lower (below 5 dB) SNR levels, where the algorithms are more susceptible to the noise,

and for higher (above 20 dB) SNR levels, in which the error distribution tends to an im-

pulse at the origin. In these two cases, the corEE-LMS and the MQDEE-LMS algorithms

performed better. When the noise is impulsive, the corEE-LMS and the MQDEE-LMS

algorithms presented good performance for all SNR levels, and, since the error distribu-

tion is not Gaussian, the HSEE-LMS and HREE-LMS algorithms also outperform the

MSEE-LMS algorithm for SNR under 20 dB.

7.5 Performance Analysis - Output-Error Formula-

tion

In the output-error formulation, we compare the surfaces for each cost and the perfor-

mance of the ITL algorithms based on the PLR and RPE approaches. Notwithstanding,

since the algorithms assume approximations on the IIR structure to compute the gradient,

it is expected that some divergences may arise on the optimal value. In that sense, we

employ, as an alternative optimization method, the DE metaheuristic [Storn and Price,

1997].
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7.5.1 Output-Error Formulation - Scenario 1

We assume that the source sn is an i.i.d. BPSK modulated signal transmitted through

the channel

H(z) =
1− 0.6z−1

1 + 0.2z−1
, (7.39)

and that the IIR equalizer is an all pole filter, with two free parameters a1 and a2:

Θ(z) =
1

1 + a1z−1 + a2z−2
, (7.40)

The presence of Gaussian noise with SNR level of 10 dB at the receiver input is also

considered. Note that the equalizer structure is insufficient to completely compensate the

channel.

The ITL Cost Surfaces

The reference approach is the MSOE, which, similarly to the equation-error formula-

tion in the context of channel equalization, also suffers from the noise bias effect. This

deficiency is also visible in the costs surfaces, as we intend to show.

We consider that there are Ne = 200 error samples available to estimate the MSOE

cost and that the coefficients taps a1 and a2 vary from −2 to 2. For the noiseless and noisy

(SNR of 10 dB) cases, the obtained contours of the MSOE cost are illustrated in Fig. 7.13.

Differently from the Equation-Error formulation, the surface cost is not a paraboloid, but
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Figure 7.13: Output-Error Formulation - Scenario 1 - MSOE Surface contours.

still presents a single optimum (denoted by a cross ‘+’ sign). Interestingly, it is possible

to clearly observe the shape of the stability triangle, the area where the IIR filter presents

stable behavior (as shown in Section 1.1.1) in both noiseless and noisy cases. When there

is noise, Fig. 7.13(b), it is possible to note that the solution becomes biased – as also
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occurs in the equation-error formulation. Hence, the objective in using the ITL-based

approaches here will also be to find methods that are more robust to noise. However,

since the PLR and RPE algorithms make use of an approximate gradient, the conclusion

might not be the same of the previous analysis. Fig. 7.13(b) also displays the evolution

of the PLR- and RPE-based algorithms along the iterations for a certain configuration,

but we will treat this topic later.

To start the investigation of the ITL criteria, we will observe their surfaces for certain

parameters values. We first consider a kernel size of σ = 3, Ne = 200 and M = 0 delays,

whose resulting contours for the HSOE, the HROE, the corOE and the MQDOE costs are

illustrated in Fig. 7.14. With exception of the MQDOE, which presents a flatter surface

and certain (non-minima) spikes, all the costs surfaces are similar to that of the MSOE,

with a clearly defined solution (denoted by the cross ‘+’ sign). However, the noise bias
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(b) ĴHROE .

a
1

a
2

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

J
corOE

(θ)

corOE−PLR

corOE−RPE

MSOE Solution
Noiseless Case
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Figure 7.14: Output-Error Formulation - Scenario 1: ITL costs surface contours for
σ = 3, M = 0 and SNR of 10 dB.

effect is still present and seems to be similar among the ITL costs.

Reducing the kernel size to σ = 1.2, we obtain the contours displayed at Fig. 7.15,
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in which the surfaces smoothness are reduced for all ITL costs, but the impact on the

solutions is very small, i.e., they practically do not change their positions. The MQDOE

cost presents a larger number of non-minima spikes, which now concentrates closer to the

solution.
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Figure 7.15: Output-Error Formulation - Scenario 1: ITL costs surface contours for
σ = 1.2, M = 0 and SNR of 10 dB.

Now we vary the number of considered delays, increasing it to M = 2 (for the MSOE

cost, the number of delays is fixed – M = 0). Keeping σ = 1.2, the resulting surface

contours of the ITL costs are as displayed in Fig. 7.16. It is possible to note that the

HROE and the corOE cost shapes change significantly, being the stability triangles not

completely visible anymore. In addition, for all costs, the solutions have changed their

position, being closer to the noiseless MSOE solution, which suggests that the performance

of the ITL approaches might be improved through the use the temporal information about

the error signal. However, the proper performance analysis will be held in the following.
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Figure 7.16: Output-Error Formulation - Scenario 1: ITL costs surface contours for
σ = 1.2, M = 2 and SNR of 10 dB.

Gradient-Based Methods - The Kernel Size

To measure the performance of the ITL-based approaches, we will use the LPR- and

RPE-based algorithms, as well as the DE metaheuristic to find the global optimum, since

the algorithms might deviate from the solution due to the approximate gradient.

Starting with the gradient-based methods, we choose – for scenario 1 – the pa-

rameters: Ne = 5, M = 0, step sizes µMSOE−PLR = 0.003, µHSOE−PLR = 0.0035,

µHROE−PLR = 0.03, µcorOE−PLR = 0.015 and µMQDOE−PLR = 0.0065, andµMSOE−RPE =

0.002, µHSOE−RPE = 0.0027, µHROE−RPE = 0.025, µcorOE−RPE = 0.01 and µMQDOE−RPE =

0.005. For the kernel size, we performed a linear sweep on σ, similarly to the previous

section. The QISI performance of the algorithms after convergence was registered in 30

independent simulations, whose mean values are displayed in Fig. 7.17. For both type of

algorithms, low σ values (σ < 0.5 for the PLR-based algorithms and σ < 0.7 for the RPE-

based algorithms) may cause the algorithms to diverge, resulting in poor performance in

some cases. For greater values of σ, the PLR- and RPE-based algorithms are able to
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Figure 7.17: Output-Error Formulation - Scenario 1: PLR and RPE algorithms
Performance - σ sweep (M = 0).

improve their performances and, in the vicinity of σ = 1.9, all the algorithms attain their

best performances. For larger σ values, the QISI tends to increase – more slowly for the

PLR-based algorithms. Nonetheless, there is an acceptable range of σ between 1.2 and 2

that yields practically the same QISI performance for the PLR algorithms. For the RPE-

based algorithms, this range is somehow valid for the corOE-RPE and the MQDOE-RPE

algorithms, but, for the HSOE-RPE, the range goes from 1.9 to 2.5 and, for the HROE-

RPE, from 1.7 to 2.2. In all cases, σ = 1.9 leads to a reasonably good performance and,

for this reason, we choose this value for the kernel size when M = 0 – but other values of

σ would result in similar performance, according to the Fig. 7.17. Under these conditions,

the choice of the parameters yielded a mean displacement of dispθ = 5e−4 for Nit = 10000

and Nconv = 4000 for both PLR and RPE approaches.

For M = 2, we adopted the parameters: Ne = 5, step sizes µHSOE−PLR = 0.002,

µHROE−PLR = 0.19, µcorOE−PLR = 0.07, µMQDOE−PLR = 0.03, µHSOE−RPE = 0.002,

µHROE−RPE = 0.0012, µcorOE−RPE = 0.04 and µMQDOE−RPE = 0.02. The linear sweep

on σ, in this case, resulted in the QISI performance shown in Fig. 7.18. Again, low SNR

values (below 1 dB) may result in poor performance or make the algorithms diverge. For

the HSOE-PLR and HROE-PLR algorithms (Fig. 7.18(a)), the range from 1.6 to 1.9 is

a promising region, with minimum QISI at 1.8. For the corOE-PLR and MQDOE-PLR

algorithms, there is a plateau from σ = 1 to σ = 2, with a minimum (almost imperceptible)

at σ = 1.4, in both cases. For the HSOE-RPE algorithm (Fig. 7.18(b)), σ = 1.3 is the

kernel size that leads to the best QISI performance, but the range of σ from 2 to 2.5

also leads to very close QISI levels. For HSOE-RPE algorithm, there is a clear minimum

at σ = 1.4. For the corOE-RPE and MQDOE-RPE algorithms, the minimum QISI is

achieved for σ = 1.9. Thus, for M = 2, the kernel sizes are chosen to be as shown in

Tab. 7.6. These parameters yielded a mean displacement of dispθ = 5e−4 for Nit = 10000
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Figure 7.18: Output-Error Formulation - Scenario 1: PLR and RPE algorithms
Performance - σ sweep (M = 2).

and Nconv = 4000 for both PLR and RPE approaches. Once the parameters are defined,

we are able to proceed with the analysis of the algorithms.

Table 7.6: Output-Error Formulation: Algorithms Parameters for M = 0 and M = 2.

M = 0
PLR RPE

step size µ kernel size σ step size µ kernel size σ
MSOE 0.003 – 0.002 –
HSOE 0.0035 1.9 0.0027 1.9
HROE 0.03 1.9 0.025 1.9
corOE 0.015 1.9 0.01 1.9

MQDOE 0.0065 1.9 0.005 1.9
M = 2

PLR RPE
step size µ kernel size σ step size µ kernel size σ

MSOE – – – –
HSOE 0.002 1.8 0.002 1.3
HROE 0.19 1.8 0.0012 1.4
corOE 0.07 1.4 0.04 1.9

MQDOE 0.03 1.4 0.02 1.9

Optimization Methods

For the M = 0 case, the QISI performance was measured along iterations throughout

30 independent experiments, whose mean values are illustrated in Fig. 7.19 for the PLR-

and the RPE-based algorithms (the parameters were adjusted as indicated in Tab. 7.6).

The convergence speeds were very similar between the two approaches. It can also be seen

that the MSOE algorithms presented the poorer QISI performance along with the corOE
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Figure 7.19: Output-Error Formulation - Scenario 1: QISI Performance of the PLR- and
RPE-based algorithms for M = 0 and SNR of 10 dB.

approaches. The MQDOE algorithms present a slightly better performance for both PLR

and RPE versions. With some advantage, the HSOE and the HROE algorithms attained

the lowest values of QISI. To understand this behavior, we have plotted on the contours

of Figs. 7.13(b), 7.14 and 7.15 the weight evolution along iterations for the PLR- and

RPE-based algorithms in one of the experiments. Very interestingly, the convergence

of the HSOE-PLR, HSOE-RPE, HROE-PLR and HROE-RPE algorithms do not match

the cost optima. Indeed, as previously mentioned, the approximation carried out on the

gradient by both PLR and RPE algorithms causes a deviation on the optima, which, in

this case, seems to lead to improved solutions. This deviation also exists for the MSOE,

corOE and MQDOE algorithms, but to a smaller degree.

For comparison purposes, we have also evaluated the performance of the solutions

found by the DE metaheuristic, which are expected to be more ‘precise’ according to

adopted criteria. For this, we have considered Ne = 200, the kernel sizes indicated in

Tab. 7.6 (for the RPE algorithm and for M = 0) and the DE parameters NP = 100,

F = 0.5, CR = 0.9 and 100 iterations. The mean QISI performance for 30 independent

experiments is displayed in Tab. 7.7 along with the QISI convergence values of the algo-

rithms. It is possible to see that the DE solutions for the MSOE, corOE and MQDOE

criteria presented similar performances to the solutions found by the PLR and RPE ap-

proaches. However, for the HSOE and HROE criteria, the DE solution remained distant

from the QISI level of −21 dB obtained by the algorithms. This indicates that the PLR

and RPE algorithms along with the entropy-based approaches might establish a particular

and beneficial relationship.

IncreasingM to 2, we observe the effect of the temporal information on the algorithms.

We adopted the parameters: Ne = 5 and step sizes and kernel size according to Tab. 7.6.

The mean QISI performance for 30 experiments throughout iterations is illustrated in
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Fig. 7.20 for the PLR and the RPE-based algorithms. As can be noted, the algorithms
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Figure 7.20: Output-Error Formulation - Scenario 1: QISI Performance of the PLR- and
RPE-based algorithms for M = 2 and SNR of 10 dB.

behavior is very similar to the M = 0 case and the performance at convergence is only

slightly improved for the corOE and the MQDOE algorithms (both PLR and RPE ver-

sions), as can be also verified from Tab. 7.7. For the HSOE and HROE algorithms, the

performance is practically kept the same.

The performance associated with the solutions found by the DE metaheuristic for

M = 2 can also be seen in Tab. 7.7. Interestingly, the QISI values were about 1 dB

lower than that for M = 0, which indicates that the criteria are able to use the temporal

information efficiently, but not the algorithms. This result is in accordance with the

behavior observed in the surface analysis, in which, by increasingM , the solutions became

closer to the desired noiseless solution case.

Other interesting topic to be analyzed is the effect of the SNR level. In that sense, by

performing a sweep on the SNR values from 0 to 28, we obtained the QISI × SNR curves

depicted in Fig. 7.21 for the PLR- and RPE-based algorithms in the M = 0 case, as well

as the performance of the solution found by the DE metaheuristic (note, however, that

Table 7.7: Output-Error Formulation - Scenario 1: Mean QISI performance for M = 0
and M = 2 (SNR level of 10 dB).

QISI [dB]
M Otim. MSOE HSOE HROE corOE MQDOE

0
PLR −14.542 −21.407 −21.365 −14.624 −15.418
RPE −14.857 −21.362 −21.253 −14.964 −15.843
DE −14.198 −14.362 −14.335 −14.197 −14.335

2
PLR – −21.416 −21.767 −15.051 −15.518
RPE – −21.363 −21.356 −15.576 −16.066
DE – −15.301 −15.386 −14.7014 −15.386
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we have used Ne = 5 for the algorithms while Ne = 200 for the DE; the other parameters

were kept the same, according to Tab. 7.6). For the PLR-based algorithms performance,
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Figure 7.21: Output-Error Formulation - Scenario 1: QISI×SNR for M = 0.

Fig. 7.21(a), we are able to observe two distinct groups of similar performances: the

first one is composed by the MSOE-PLR, corOE-PLR and MQDOE-PLR algorithms

and the second group is the HSOE-PLR and the HROE-PLR algorithms. In the first

group, the MSOE-PLR and the corOE-PLR algorithms perform very similarly, while the

MQDOE-PLR algorithm is able to attain smaller QISI measures for SNR levels lower

than 20 dB. For SNR values greater than 20 dB, the MQDOE-PLR algorithm is close

to the MSOE-PLR, but with a slightly greater QISI value. On the second group, we

observe the practically identical QISI performance of the HSOE-PLR and HROE-PLR

algorithms. For SNR lower than 19 dB, the HSOE-PLR and HROE-PLR outperform all

the other algorithms. For instance, for SNR level of 7 dB, the HSOE-PLR and HROE-

PLR algorithms attain −20 dB of QISI, while the MSOE-PLR only −11 dB of QISI, i.e.,

a reduction of about 9 dB of QISI, which is an impressive performance gain. On the other
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hand, for SNR greater than or equal to 20 dB, the QISI performance of the HSOE-PLR

and HROE-PLR algorithms stagnates and the performance is worst than the classical

MSOE-PLR algorithm.

Regarding the RPE-based algorithms performance, Fig. 7.21(b), we also observe the

same two groups of the PLR case. In the first group (MSOE-RPE, corOE-RPE and

MQDOE-RPE), for low SNR values, the performance is very similar to the PLR case,

but for an SNR higher than 10 dB, the QISI performance is improved for all algorithms.

For example, for an SNR equal to 25 dB, the QISI performance is about −30 dB, while

the MSOE performance for the PLR case achieves about −27 dB. The second group –

composed by the HSOE-RPE and HROE-RPE algorithms – presents poor performance

for SNR lower than 7 dB, but, for SNR levels between 7 and 24 dB, their performances

are the best among the RPE-based algorithms. In comparison with the PLR algorithms,

the HSOE-RPE and HROE-RPE algorithms outperform their PLR counterparts for SNR

higher than 10 dB, but, for an SNR lower than 10, the HSOE-PLR and HROE-PLR

algorithms are preferred.

Finally, for the solutions found by the DE metaheuristic, Fig. 7.21(c), the criteria

performances are worst than the PLR and RPE algorithms, but very similar among each

other. The major difference occurs for SNR values from 2 to 6 dB (the zoomed area in

Fig. 7.21(c)), where the MSOE is outperformed by the HSOE, the corOE, the HROE and

the MQDOE algorithms.

Now, to investigate the effect of the temporal information, we perform the same anal-

ysis for the M = 2 case, whose parameters were adjusted according to Tab. 7.6. The

resulting QISI × SNR curves for the PLR- and RPE-based algorithms as well as for the

DE metaheuristic are shown in Fig. 7.22. For the PLR-based algorithms, Fig. 7.22(a), the

ITL-based approaches showed an improvement on the performance for SNR values lower

than 20 dB in comparison with the M = 0 case. The corOE-PLR and the MQDOE-PLR

experienced a more intense reduction on the QISI measures for lower SNR levels: for

SNR of 0 dB, the corOE-PLR and MQDOE-PLR algorithms achieved, for M = 2, −7.4

and −7.6 dB, respectively; when M = 0, the QISI performances were −6.1 and −6.9 dB,

respectively. This difference gradually diminishes as the SNR increases. The HSOE-PLR

and the HROE-PLR algorithms expressed similar behavior, being able to achieve, for

SNR of 0 dB and M = 2, approximately −15 dB of QISI, instead of −12 dB of QISI for

M = 0. It is also worth mentioning that the HROE-PLR algorithm performed better than

the HSOE-PLR for SNR values between 5 and 24 dB (out of this range, the performance

was very similar). However, for SNR levels higher than 24 dB, the algorithms converged

to the same QISI values of the M = 0 case.

In Fig. 7.22(b), the QISI curves for the RPE-based algorithms showed a similar effect

for the corOE-RPE and the MQDOE-RPE algorithms, i.e., their QISI performance were

improved mainly for lower SNR values in comparison with the M = 0 case. However, for
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Figure 7.22: Output-Error Formulation - Scenario 1: QISI×SNR for M = 2.

the HSOE-RPE and the HROE-RPE algorithms, the attained QISI values were practically

kept the same. For SNR values below 5 dB, these two algorithms may diverge, presenting

QISI levels higher than the M = 0 case.

The QISI performance of the solutions found by the DE metaheuristic (Fig. 7.22(c))

also revealed that, by increasingM , an improvement on the performance of the ITL-based

algorithms for lower SNR levels (less than 15 dB) can be observed. In fact, the MQDOE,

the HROE and the HSOE criteria showed similar QISI values and achieved the best

performance. After them, the corOE criterion showed an intermediate QISI performance,

but still better than the MSOE criterion. For above 15 dB, the QISI performance is

almost indistinguishable among the criteria.

In summary, considering this first scenario, we may say that the HSOE- and the

HROE-based algorithms were able to achieve the best performances for SNR levels below

20 dB, although this does not hold for the HSOE-RPE and the HROE-RPE algorithm for

SNR less than 7 dB. The corOE- and the MQDOE-based algorithms are able to perform

better than the classical MSOE-based algorithms for SNR levels below 20 dB. For SNR
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levels above 20 dB, the RPE-based algorithms presented better performances than their

corresponding PLR counterpart. Interestingly, through the comparison made with the

solutions found by the DE metaheuristic, we confirmed that the two PLR- and RPE-

based algorithms deviate from the actual solution provided by the algorithms and, in this

case, the deviation helped improving the QISI performance. The increase of the number of

delaysM also contributed for the performance improvement regarding the PLR, the RPE

(with exception of the HSOE-RPE and HROE-RPE algorithms) and the DE solutions.

Notwithstanding, to confirm that the deviations are not a mere coincidence, we investigate

in the following section two scenarios encompassing more complex channel and equalizer

models.

7.5.2 Output-Error Formulation - Scenario 2

In the second scenario, the source sn is an i.i.d. BPSK modulated signal, which is

transmitted through the channel with transfer function

H(z) =
1− 0.8z−1 + 0.2z−2 + 0.1z−3

1 + 0.2z−1
. (7.41)

and the IIR equalizer

Θ(z) =
b0 + b1z

−1

1− a1z−1 − a2z−2
, (7.42)

where b0, b1, a1 and a2 are free coefficients. It is important to remark that the ZF solution

can not be attained in this case due to structural limitations of the equalizer. We also

consider the presence of noise, that can be Gaussian or impulsive (the impulsive noise

model is as described in Section 7.4.2).

For the M = 0 case, we considered the following parameters for the algorithms: Ne =

5, kernel sizes according to Tab. 7.6 and the step sizes µMSOE−PLR = 0.003, µHSOE−PLR =

0.007, µHROE−PLR = 0.09, µcorOE−PLR = 0.06, µMQDOE−PLR = 0.022, µMSOE−RPE =

0.003, µHSOE−RPE = 0.008, µHROE−RPE = 0.1, µcorOE−RPE = 0.052 and µMQDOE−RPE =

0.022, which resulted in mean displacement of dispθ = 1.3e−3 for SNR of 10 dB (AWGN),

with Nit = 10000 and Nconv = 4000. The DE parameters were chosen to be NP = 300,

F = 0.5, CR = 0.9 and 300 iterations (Ne = 200 and the kernel sizes were the same of the

RPE approach). For 30 independent experiments, the QISI×SNR curves considering the

Gaussian and the impulsive noise cases are as displayed in Figs. 7.23 and 7.24, respectively.

For the Gaussian noise, Fig. 7.23, the observed performance for the PLR-based al-

gorithms is similar to that of scenario 1 (Fig. 7.21(a)), where the HSOE-PLR and the

HROE-PLR algorithms are more adequate for lower SNR levels (here, bellow 12 dB), but

for higher SNR levels, they perform poorer than the MSOE-PLR algorithm. The corOE-

PLR algorithm presents a QISI performance similar to that of the MSOE-PLR algorithm



217

0 5 10 15 20 25
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

SNR

Q
IS

I[
d
B

]

 

 

MSOE−PLR

HSOE−PLR

HROE−PLR

corOE−PLR

MQDOE−PLR

MSOE−PLR

corOE−PLR

MQDOE−PLR

HROE−PLR

HSOE−PLR

(a) PLR-based algorithms.
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Figure 7.23: Output-Error Formulation - Scenario 2: QISI×SNR for Gaussian noise and
M = 0.

for SNR values lower than 12 dB, but, as the SNR increases, it exhibits the best perfor-

mance, with about 1.5 dB lower than the MSOE-PLR algorithm for SNR of 25 dB. The

MQDOE-PLR algorithm presents the most consistent performance gain over all the SNR

values, with about 0.4 dB less than MSOE-PLR algorithm (as can be seen in Tab. 7.8).

From the RPE-based algorithms perspective, Fig. 7.23(b), the greater flexibility of the IIR

structure allowed the HSOE-RPE and the HROE-RPE algorithms to obtain the best QISI

performances even for lower SNR values (bellow 17 dB). The corOE-RPE algorithm, as

before, performed very similarly to the MSOE-RPE algorithm, while the MQDOE-RPE

algorithm was able to achieve the best QISI performance for higher SNR levels (above 17

dB) – for SNR of 26 dB, the MQDOE-RPE algorithm attained −25.1 dB of QISI and the

classical MSOE-RPE algorithm achieved −23.8 dB: more than 1 dB of QISI performance

gain. Finally, for the solutions found by the DE metaheuristic, Fig. 7.23(c), the perfor-

mances of the HROE and HSOE criteria are impaired in comparison with their respective

RPE-based algorithms for SNR levels below 20 dB (due to the mentioned approximate
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Figure 7.24: Output-Error Formulation - Scenario 2: QISI×SNR for impulsive noise and
M = 0.

gradient). The performance gain is mainly observed for higher SNR levels, in which the

HSOE and the MQDOE criteria achieve the best QISI performances. When there is

additive impulsive noise, Fig. 7.24, the resulting performance is similar to that of the

Gaussian noise case, but all the ITL-based approaches experience a slight improvement

on the performance for lower SNR levels. For instance, for an SNR of 5 dB with Gaussian

noise, the HSOE-PLR and the MQDOE-PLR algorithms achieved −8.9 dB and −6.6 dB

of QISI, respectively, while, for impulsive noise, the performance was of −9.4 dB and −7.1

dB, respectively. Similarly, the HSOE-RPE and the MQDOE-RPE algorithms achieved

−8.8 dB and −6.5 dB of QISI, respectively, for SNR of 5 dB with Gaussian noise, while,

for impulsive noise, the performance was of −9.28 dB and −7.0 dB, respectively. This

behavior can also be observed in Tab. 7.8 for the other algorithms.

By changing M to 2, we also evaluated the effect of the error temporal structure.

In this case, the parameters were: Ne = 5, kernel sizes according to Tab. 7.6 and the

step sizes µMSOE−PLR = 0.003 (M = 0), µHSOE−PLR = 0.0025, µHROE−PLR = 1.3,
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Table 7.8: Output-Error Formulation - Scenario 2: Mean QISI performance for M = 0.

QISI [dB]
M = 0 Gaussian Noise Impulsive Noise

5 dB 15 dB 26 dB 5 dB 15 dB 26 dB

MSOE
PLR −6.197 −14.865 −17.618 −6.546 −14.889 −17.617
RPE −6.113 −16.447 −23.845 −6.482 −16.540 −24.043
DE −6.327 −16.782 −24.021 −6.589 −16.801 −24.021

HSOE
PLR −8.923 −13.294 −13.188 −9.436 −12.823 −13.376
RPE −8.796 −17.553 −23.794 −9.353 −17.617 −23.864
DE −6.296 −16.539 −24.370 −6.811 −16.832 −24.548

HROE
PLR −8.910 −13.047 −12.762 −9.373 −12.575 −12.949
RPE −8.783 −17.179 −22.601 −9.285 −17.194 −22.680
DE −6.473 −16.874 −25.103 −7.002 −17.214 −25.265

corOE
PLR −6.233 −15.256 −18.995 −6.742 −15.402 −18.961
RPE −6.127 −16.247 −23.754 −6.629 −16.494 −23.931
DE −6.243 −16.389 −23.809 −6.697 −16.538 −23.811

MQDOE
PLR −6.595 −15.211 −18.063 −9.085 −15.336 −18.065
RPE −6.482 −16.870 −25.092 −7.014 −17.216 −25.271
DE −6.521 −16.923 −25.104 −7.081 −17.247 −25.293

µcorOE−PLR = 0.13, µMQDOE−PLR = 0.055, µMSOE−RPE = 0.003 (M = 0), µHSOE−RPE =

0.0018, µHROE−RPE = 0.42, µcorOE−RPE = 0.45 and µMQDOE−RPE = 0.2, which resulted

in mean displacement of dispθ = 1.3e−3 for SNR of 10 dB (AWGN), with Nit = 10000

and Nconv = 4000. The DE parameters where kept the same. The resulting QISI×SNR

curves for the Gaussian and impulsive noise cases are displayed in Figs. 7.25 and 7.26,

respectively.

Table 7.9: Output-Error Formulation - Scenario 2: Mean QISI performance for M = 2.

QISI [dB]
M = 2 Gaussian Noise Impulsive Noise

5 dB 15 dB 26 dB 5 dB 15 dB 26 dB

HSOE
PLR −9.091 −14.071 −14.937 −9.818 −13.612 −15.073
RPE −9.126 −18.733 −30.158 −10.221 −19.267 −30.165
DE −7.047 −17.405 −26.512 −7.799 −17.903 −26.744

HROE
PLR −9.023 −13.964 −14.810 −9.733 −13.528 −14.956
RPE −8.975 −17.843 −26.137 −9.903 −18.121 −26.179
DE −7.172 −17.549 −26.693 −7.922 −18.063 −26.894

corOE
PLR −6.571 −15.902 −22.235 −7.680 −16.524 −22.080
RPE −6.297 −16.637 −25.711 −7.096 −17.169 −26.041
DE −6.926 −17.266 −26.334 −7.679 −17.750 −26.582

MQDOE
PLR −6.761 −15.894 −21.547 −9.818 −13.615 −15.077
RPE −6.472 −16.842 −25.996 −7.272 −17.416 −26.248
DE −7.174 −17.552 −26.697 −7.924 −18.067 −26.898

When the noise is Gaussian, Fig. 7.25, the use of the temporal information in the
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(b) RPE-based algorithms.
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Figure 7.25: Output-Error Formulation - Scenario 2: QISI×SNR for Gaussian noise and
M = 2.

PLR approach is particularly beneficial to the corOE-PLR and the MQDOE-PLR algo-

rithms, whose performances improved in comparison with the M = 0 case mainly for

higher SNR levels, as can be seen in Fig. 7.25(a) and Tab. 7.9. With respect to the

RPE approach, Fig. 7.25(b), all the ITL-based algorithms experience an improvement on

the QISI performance for higher SNR levels (specially the HSOE-RPE algorithm, which

attains the best QISI performance for all considered SNR values, as shown in Tab. 7.9).

With respect to the DE optimization, the HSOE and the HROE criteria do not show

the same performances as the RPE-based algorithms, as previously observed, but it is

also possible to note from Fig. 7.25(c) the performance gain for higher SNR levels (above

20 dB). When the noise presents impulsive behavior, the QISI is slightly improved for

all optimization approaches, as shown in Fig. 7.26 and Tab. 7.9, with exception of the

PLR-based algorithms for SNR values greater than 10 dB.

As conclusions for this scenario, we have seen that an IIR equalizer with greater

flexibility (i.e., with more adjustable coefficients) is able to solve some limitations observed

in scenario 1. For instance, both the PLR- and the RPE-based algorithms led to QISI
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(a) PLR-based algorithms.
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(b) RPE-based algorithms.
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Figure 7.26: Output-Error Formulation - Scenario 2: QISI×SNR for impulsive noise and
M = 2.

values very similar to the MSOE approach for high SNR levels (with exception to the

HSOE-PLR and the HROE-PLR algorithms) in scenario 1, but, in scenario 2, the MSOE

approach could be outperformed in several cases. As before, the approximate gradient

led the algorithms to solutions different from that found by the DE metaheuristic, mainly

for the HSOE and the HROE approaches. For higher SNR values (greater than 12 dB),

the RPE-based algorithms performed better than their PLR counterparts. In all cases,

the use of the HSOE-RPE algorithm allied to the use of the temporal structure presented

the best QISI performance. The ITL-based algorithms showed to be more robust against

impulsive noise, as was expected from the use of the kernel method for estimation. At

last, the present scenario revealed that the use of the data temporal structure might

also be beneficial to the ITL algorithms and the ITL criteria as well (through the DE

metaheuristic).
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7.5.3 Output-Error Formulation - Scenario 3

Keeping the same transmitted symbols and the transmission channel of scenario 2, we

only change the IIR equalizer to

Θ(z) =
b0 + b1z

−1 + b2z
−2

1− a1z−1 − a2z−2 − a3z−3 − a4z−4
, (7.43)

which is now able to achieve the ZF condition.
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(a) PLR-based algorithms.
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(b) RPE-based algorithms.
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Figure 7.27: Output-Error Formulation - Scenario 3: QISI×SNR for Gaussian noise and
M = 0.

ForM = 0, the algorithm parameters were chosen to be: Ne = 5, kernel sizes according

to Tab. 7.6 and the step sizes step sizes µMSOE−PLR = 0.003, µHSOE−PLR = 0.0035,

µHROE−PLR = 0.03, µcorOE−PLR = 0.025, µMQDOE−PLR = 0.009, µMSOE−RPE = 0.002,

µHSOE−RPE = 0.0027, µHROE−RPE = 0.025, µcorOE−RPE = 0.018 and µMQDOE−RPE =

0.007, which resulted in mean displacement of dispθ = 1.6e−3 for SNR of 10 dB (AWGN),

with Nit = 10000 and Nconv = 4000. The DE parameters were chosen to be NP = 500,

F = 0.5, CR = 0.9 and 500 iterations (with Ne = 200 and kernel sizes equal of that
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used in the RPE approach). Following the same procedure, the QISI×SNR curves were

obtained for the Gaussian and impulsive noise cases, as illustrated in Figs. 7.27 and 7.28,

respectively.
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(a) PLR-based algorithms.
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(b) RPE-based algorithms.
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Figure 7.28: Output-Error Formulation - Scenario 3: QISI×SNR for impulsive noise and
M = 0.

For Gaussian noise, Fig. 7.27, it is possible to see that both PLR and RPE approaches

performed very similarly (Figs. 7.27(a) and 7.27(b)). In both cases, the corOE and the

MQDOE methods achieved a QISI performance close to that of MSOE, as can be verified

in Tab. 7.10. The HSOE- and the HROE-based algorithms presented very similar behavior

and attained the lowest QISI levels for all SNR values. As in the previous scenarios, the

HSOE and the HROE solutions found by the DE metaheuristic do not match the ones

found by the algorithms and the performance is similar to the MSOE case, as shown in

Fig. 7.27(c). When the noise presents impulsive behavior, Fig. 7.28, we observe the general

tendencies of the Gaussian noise case plus a slight improvement on the performance for

the ITL-based algorithms for SNR values less than 10 dB and greater than 20 dB, as can

also be noted in Tab. 7.10.
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Table 7.10: Output-Error Formulation - Scenario 3: Mean QISI performance for M = 0.

QISI [dB]
M = 0 Gaussian Noise Impulsive Noise

5 dB 15 dB 26 dB 5 dB 15 dB 26 dB

MSOE
PLR −6.294 −19.692 −34.884 −6.853 −19.148 −36.461
RPE −6.451 −19.416 −35.427 −6.815 −19.392 −37.930
DE −6.489 −19.436 −35.448 −6.847 −19.419 −37.986

HSOE
PLR −8.915 −22.820 −37.215 −9.671 −21.804 −37.243
RPE −8.980 −22.163 −37.459 −9.569 −21.935 −38.867
DE −6.731 −19.607 −35.032 −7.382 −19.871 −37.689

HROE
PLR −8.915 −22.824 −37.211 −9.547 −21.846 −37.472
RPE −8.942 −22.168 −37.446 −9.453 −21.903 −38.844
DE −6.898 −19.795 −35.250 −7.538 −20.062 −37.813

corOE
PLR −6.451 −19.737 −34.492 −7.197 −19.457 −36.204
RPE −6.569 −19.431 −34.833 −7.227 −19.685 −37.556
DE −6.573 −19.439 −34.845 −7.239 −19.697 −37.602

MQDOE
PLR −6.815 −20.128 −35.073 −7.516 −19.864 −36.515
RPE −6.906 −19.847 −35.267 −7.542 −20.071 −37.838
DE −6.911 −19.925 −35.274 −7.558 −20.084 −37.846

Increasing M to 2, we adjusted the algorithms parameters to Ne = 5, kernel sizes

according to Tab. 7.6 and the step sizes to µMSOE−PLR = 0.003 (M = 0), µHSOE−PLR =

0.0015, µHROE−PLR = 0.3, µcorOE−PLR = 0.12, µMQDOE−PLR = 0.055, µMSOE−RPE =

0.002 (M = 0), µHSOE−RPE = 0.001, µHROE−RPE = 0.22, µcorOE−RPE = 0.08 and

µMQDOE−RPE = 0.04, resulting in a mean displacement of dispθ = 1.6e−3 for SNR of

10 dB (AWGN), with Nit = 10000 and Nconv = 4000. For 30 independent simulations,

the QISI×SNR curves for Gaussian and impulsive noise are as displayed in Figs. 7.29 and

7.30, respectively.

The use of the data temporal information in the Gaussian noise case, for both PLR-

and RPE-based algorithms, Figs. 7.29(a) and 7.29(b), contributed to the performance

improvement of the ITL approaches in comparison with the M = 0 case for SNR values

less than 10 dB and, mainly, greater than 20 dB, as can also be verified in Tab. 7.11.

The solutions found by the DE metaheuristic were able to reduce the QISI levels for all

considered SNR values in comparison with the M = 0 case. For the impulsive noise case,

the ITL-based algorithms also showed to be more robust in comparison with the Gaussian

noise case, mainly when the SNR level is lower. As an exception, for an SNR greater than

22 dB, the PLR-based approaches had worse performances, as shown in Tab. 7.11.

Summarizing this scenario where the ZF solution is attainable, we have observed

that the HSOE- and the HROE-based algorithms can perform similarly and obtain the

best QISI performance measures, but the RPE-based algorithms performance is slightly

better than the PLR-based ones. Once more, we have observed that the HSOE and the

HROE solutions found by the algorithms diverged from the solutions found by the DE
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(a) PLR-based algorithms.
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(b) RPE-based algorithms.
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Figure 7.29: Output-Error Formulation - Scenario 3: QISI×SNR for Gaussian noise and
M = 2.
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(a) PLR-based algorithms.
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(b) RPE-based algorithms.
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Figure 7.30: Output-Error Formulation - Scenario 3: QISI×SNR for impulsive noise and
M = 2.
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Table 7.11: Output-Error Formulation - Scenario 3: Mean QISI performance for M = 2.

QISI [dB]
M = 2 Gaussian Noise Impulsive Noise

5 dB 15 dB 26 dB 5 dB 15 dB 26 dB

HSOE
PLR −9.067 −21.765 −38.341 −10.203 −21.827 −36.450
RPE −9.171 −21.712 −38.446 −10.078 −22.156 −38.532
DE −8.267 −19.857 −36.573 −8.775 −20.934 −38.079

HROE
PLR −8.996 −21.733 −38.274 −10.064 −21.842 −36.416
RPE −9.076 −21.601 −38.039 −9.960 −22.068 −38.137
DE −8.354 −19.946 −36.527 −8.839 −20.996 −37.981

corOE
PLR −6.758 −18.954 −36.580 −7.949 −19.913 −35.968
RPE −6.871 −19.048 −36.442 −8.012 −20.160 −37.463
DE −8.182 −19.770 −36.621 −8.712 −20.864 −38.167

MQDOE
PLR −6.887 −19.129 −36.661 −9.089 −20.062 −35.944
RPE −6.989 −19.152 −36.346 −8.139 −20.295 −37.282
DE −8.360 −19.949 −36.532 −8.846 −21.005 −37.985

metaheuristic. In general, the corOE and the MQDOE algorithms performed better than

the MSOE algorithms but are still close to it. The use of the temporal structure of the

error signal also contributed to increase the performance of ITL-based methods in this

scenario, except for intermediate SNR values (in the vicinity of 15 dB).

7.6 Conclusions

In this chapter, we focused on the use of IIR filters for the supervised channel equaliza-

tion problem. The study was based on the equation- and the output-error formulations,

with special attention dedicated to their underlying algorithms: the LMS, the PLR and

the (simplified) RPE algorithms. From the ITL framework, four criteria were chosen to be

investigated in this context: Shannon’s and Rényi’s entropy, correntropy and matching of

densities. The reason for this choice comes from their known capability of extracting the

statistical information about the error signal and their extensibility to the multivariate

case, which allows a more effective use of the error temporal structure. It is important to

remark that the application of these ITL criteria in the IIR equalization problem as well

as their extension to the multivariate case is a novelty introduced in our work.

In the equation-error formulation, the simplification on the IIR structure during the

training step immensely aids the optimization task, since the MSEE cost surface is a

paraboloid and the LMS algorithm is sufficient to find the single optimum. For the ITL

criteria, the cost surfaces are not as regular as in the MSEE case, and their smoothness

will depend on the kernel size and the number of considered delays. Nonetheless, the

clear existence of the single optimum is also favorable to the adoption of the LMS-based

algorithms for optimization. The performances of the algorithms were evaluated in terms
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of QISI in different scenarios, where it was possible to identify two distinct behaviors,

depending on the capability of the IIR structure to achieve the ZF condition. When the

ZF solution could not be achieved due to limitations of the IIR equalizer, Shannon’s and

Rényi’s entropy-based algorithms – HSEE-LMS and HREE-LMS, respectively – outper-

formed the classical MSEE-LMS, the correntropy-based (corEE-LMS) and the density

matching-based (MQDEE-LMS) algorithms for almost all range of SNR values consid-

ered, specially for impulsive noise, whose ITL algorithms robustness are known to be very

effective [Principe, 2010]. The use of the temporal structure also contributed significantly

for the performance improvement. Notwithstanding, when the ZF condition is reachable,

the corEE-LMS and the MQDEE-LMS algorithms are the ones who achieved the lowest

QISI levels, but only for low (below 5 dB) or high SNR levels (above 20 dB).

For the output-error formulation, no simplification is made on the IIR structure, lead-

ing to important implications like the use of approximate gradients. In that sense, two

approaches were considered: the LPR and the (simplified) RPE gradient approximation,

which, combined with the ITL criteria, led to a set of LPR- and RPE-based algorithms.

The analysis of the cost surfaces showed that they are more complex than the previous

paraboloids, however, similarly to the equation-error formulation, there is only a single

optimum in the supervised equalization problem, whose position might deviate depending

on the noise intensity. For the ITL criteria, the cost surfaces can have their smoothness

controlled by the kernel size and/or by the number of delays considered, which is an ad-

vantage in comparison with the classical MSOE cost. The performance of the PLR- and

the RPE-based algorithms were evaluated in scenarios with non-attainable and attainable

ZF solutions. Very interestingly, in both cases, the PLR and the RPE approximate gra-

dient versions caused the algorithms to deviate from the solution observed in the costs,

principally for Shannon’s and Rényi’s entropy-based (HSOE and HROE, respectively)

algorithms. Due to this, the DE metaheuristic was also employed for optimization. For

non-attainable ZF solutions, the Shannon’s entropy-based RPE algorithm (HSOE-RPE)

allied to the use of the temporal structure of the error presented the best QISI perfor-

mance for all considered SNR values, outperforming even the solutions found by the DE

metaheuristic. From a general perspective, the RPE-based algorithms performed better

than the PLR-based ones. When the ZF condition is achievable, the performance of the

PLR-based algorithms becomes closer to that based on the RPE, however, the RPE ap-

proach still led to slightly better QISI performance. More specifically, the HSOE-RPE

and the HROE-RPE algorithms exhibited the best performances, in which the use of the

temporal structure also contributed specially for SNR values out of the vicinity of 15 dB.

In general terms, the performed investigation revealed interesting features of the ITL-

based algorithms in both equation- and output-error formulations, where we highlight the

Shannon’s and Rényi’s entropy-based algorithms and their synergy with the error signals

and with the approximate gradients (mainly in the RPE approach). Although the results
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showed a performance improvement, a deeper investigation on the entropy properties

that justify the observed behavior is still lacking, which will be left for future works.

Other promising perspective is the application of these ITL methods in the identification

problem.
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Chapter 8

Blind Separation of Temporally Structured

Sources in Post-Nonlinear Mixtures

In the context of Blind Source Separation (BSS) [Comon and Jutten, 2010; Romano

et al., 2010], the use of the temporal information of the underlying signals is a well stud-

ied issue under the assumption of linear and instantaneous mixing models and mutually

independent sources. In fact, the temporal structure of the signals showed to provide

fundamental additional information to solve the problem, reducing the ICA requisites to

the simple SOS [Comon and Jutten, 2010]. Within this scope, a wide range of SOS-based

methods emerged, in which we cite the AMUSE [Hyvärinen et al., 2001], SOBI [Be-

louchrani et al., 1997], TDSEP method, among others [Comon and Jutten, 2010].

Notwithstanding, regarding their extension to the nonlinear mixing models, the use of

the signals temporal structure is still incipient. In fact, it is known that, from a general

standpoint, mutual independence may not be sufficient for performing separation, but a

promising way to work around this issue is to use the temporal information [Jutten and

Karhunen, 2004].

Due to the vastness and the inherent difficulties encompassed in general nonlinear

models, the study on this topic is usually focused on a restricted set of models. Par-

ticularly, the Post-Nonlinear (PNL) models [Taleb and Jutten, 1999] are of practical

interest in view of their application in several real world problems, such as hyperspectral

imaging [Meganem et al., 2011], sensor arrays, microwave communications and biological

models [Taleb and Jutten, 1999]. Furthermore, separation for the PNL mixing problem

using ICA-based methods has already shown to be effective under certain constraints on

the mixing/separating functions [Hosseini and Jutten, 2003]. However, its study in light

of the sole use of the temporal structure of the sources and SOS is still incipient. An initial

step in this direction was given for the two-stage approach [Deville and Duarte, 2015],

where the nonlinearities are compensated in a first step via a Gaussianization method,

leaving a linear BSS problem that can be solved using the temporal information via SOS-
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Figure 8.1: Mixing and separating systems in the PNL model.

based methods [Ziehe et al., 2003]. Nonetheless, the use of HOS is mandatory in the

Gaussianization step. In view of this, in this chapter, we focus on the analysis of the sole

use of the SOS in the PNL mixing problem, more specifically, for the case in which the

nonlinearities belong to a class of cubic polynomials. The case study encompasses two

important contributions, which are: a novel formulation of the PNL problem considering

its extension to the temporal structure of the data and the proposition of a SOS-based

criterion that is capable of performing source separation if a given number of time delays

is considered. As we intend to show, the temporal-extended formulation allows the ana-

lytic computation of the SOS-based cost functions and contributes to a richer analysis of

their performance.

Next, we present the temporal-extended formulation of the PNL mixtures in the case

in which the nonlinearities are modeled as cubic polynomials. Based on this formulation,

mutual information can be used under the hypothesis of colored (multivariate) Gaussian

sources, which will result in an SOS-based criterion.

8.1 The Post-Nonlinear Mixing Model

Recalling the PNL structure presented in Section 4.4.2, the main objective is to recover

the original sources s(n) from observed mixtures

x(n) = f (As(n)) , (8.1)

being x(n) = [x1(n) · · · xM(n)]T the observation vector with M mixtures, s(n) =

[s1(n) · · · sN(n)]
T the vector with N source signals at time instant n1 and f(·) the

set of M component-wise functions [Comon and Jutten, 2010], as shown in Fig. 8.1. The

separation system is the mirrored version of the mixing system, with output given by

y(n) = Wg (x(n)) , (8.2)

1Note that, as customary in the BSS formulation, we have used a different notation in this chapter,
in which the temporal index n is no longer in subscript, but inside parentheses
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where W is a N×M matrix and g(·) is a set of M component-wise functions [Comon and

Jutten, 2010].

Although the PNL structure engenders interesting features by itself, the additional

supposition that the sources possess temporal statistical information is also valuable to us.

Hence, in the following, we formulate a temporal-extended version of the PNL problem,

which shall be useful to encompass the temporal information in a more organic manner.

8.1.1 Time-Dependent Sources in the PNL Model

The temporal structure of the sources is usually seen as the inherent result of the

system which generates the sources. Notwithstanding, in some applications, it can be

modeled as the result of independent and identically distributed (i.i.d.) signals processed

by linear or nonlinear systems, whose signature is the temporal structure imprinted on the

signals. For simplicity, as assumed in Chapters 5 and 6, to investigate the Second-Order

Statistics (SOS) features in the PNL models, we restrain ourselves to the case in which

the temporal structure is obtained by means of linear systems called pre-coders – here

assumed to be unknown.

To suitably describe the temporal structure in the sources, we consider vectors with

the N sources at time instant n concatenated with d delayed versions of them in the

following form:

s(n) = [s1(n) . . . s1(n−d) s2(n) . . . s2(n−d) . . . sN(n) . . . sN(n−d)]T

= [s1(n) s2(n) . . . sN(n)]
T ,

(8.3)

where d is the maximum considered time delay and si(n) = [si(n) . . . si(n−d)]T , for

i = {1, . . . , N}. These vectors of Eq. (8.3) will be associated with the RV S. We wish

to express the sources (and its delays) s(n) in function of i.i.d signals r(n) (note that,

similarly to s(n) and s(n), all the underlined variables are the temporal-extended versions

of the classical formulation). In order to do so, we consider a set of N FIR filters (or pre-

coders) that are responsible to introduce correlation in the signals s(n). The coefficients

of each FIR filter is arranged in vectors pi, for i = {i, . . . , N}. Hence, for instance, a FIR

filter with impulse response Pi(z) = pi,0+pi,1z
−1 + . . . + pi,Lpi

z−Lpi is represented by the

vector pi = [pi,0 pi,1 . . . pi,Lpi
]. Based on this, we define

Pi = pi ⊗ Id+1 =













pi,0 · · · pi,Lpi
0 0 · · · 0

0 pi,0 · · · pi,Lpi
0 · · · 0

...
. . . . . . . . .

...

0 · · · 0 0 pi,0 · · · pi,Lpi













, (8.4)

which is a diagonal replication of the vector pi, being the resultant matrix Pi of dimension
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(d+1)× (Lpi+d+1), and Id+1 the identity matrix of size d+1.

For the sake of simplicity, we assume henceforth N = 2 sources without loss of gener-

ality. In this case, the sources s(n) can be written as a function of r(n):

s(n) = Pr(n) =

[

P1 0

0 P2

]

r(n), (8.5)

where P is a block-diagonal matrix with dimension N(d+1)×(
∑N

i=1 Lpi+d+1) and r(n) =

[r1(n) r1(n−1) . . . r1(n−Lp1−d) r2(n) r2(n−1) . . . r2(n−Lp2−d)]T is the temporal-

extended i.i.d. vector with the original signals r1(n), r2(n) and its delayed versions. Note

that the i.i.d. signals ri(n) will only be temporally mixed by P and that there is no

mixing between r1(n) and r2(n). Eq. (8.5) is important because it can express the sources

si(n) as function of an i.i.d. RV, which can be convenient to analytically compute certain

statistical moments.

Proceeding with the PNL temporal-extended formulation, we can write the linear

mixtures as u(n) = As(n), being A the extended linear mixing matrix:

A =

[

a11Id+1 a12Id+1

a21Id+1 a22Id+1

]

, (8.6)

in which each element is replicated along a diagonal of a (sub)matrix of size d+1. The

observations (nonlinear mixtures) x(n) can be written as

x(n) = F (u(n)) = F (As(n)) , (8.7)

where F(·) is a set of functions diagonally disposed as

F(·) =
[

f1(·)Id+1 0

0 f2(·)Id+1

]

. (8.8)

The separating system is a mirrored version of the mixing one, with output

y(n) = WG (x(n)) , (8.9)

where G(·) and W have structures similar to F(·) and A, respectively.

Interestingly, by combining Eqs. (8.9), (8.7) and (8.5), we are able to directly express

the separated sources y(n) in function of r(n) as

y(n) = WG (F (APr(n))) . (8.10)

Undoubtedly, in practical scenarios, the elements F , A, P and r(n) are considered un-

known and the separation task may be performed relying on, for instance, some statistical
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properties of the sources s(n), like the mutual independence. Notwithstanding, Eq. (8.10)

is of great theoretical importance, since it exposes a direct relation to an i.i.d. RV and

opens way to analytical computations of the statistics involved in the separation process,

as we intend to show. It is important to note that some additional assumptions may be

necessary, for example, the definition of the type of the nonlinearities F(·) and G(·).

8.1.2 A Special Case: The Cubic Nonlinearity

In order to simplify our analysis, we make the assumption that the combined nonlinear

function F ◦ G yields as output

z(n) = As(n) + Γ (As(n))⊙3 , (8.11)

where

Γ =

[

γ1Id+1 0

0 γ2Id+1

]

(8.12)

and (·)⊙3 is the Hadamard power of 3 (i.e., an element wise cubic operator). This can

be viewed as, for instance, a cubic nonlinearity F(x(n)) = x⊙3(n) and with G(x(n)) =

sgn(x(n))(|x(n)|)⊙1/3 + Γx(n). Finally, based on Eq. (8.10), the system output can now

be written as

y(n) = Wz(n) = WAPr(n) +WΓ (APr(n))⊙3 . (8.13)

Very interestingly, the nonlinear term can be expressed by means of a Volterra expan-

sion [Mathews and Sicuranza, 2000] (see Section 1.1.2) of the type:

(APr(n))⊙3 =

























(a11p1,1)
3r31(n) + (a11p1,2)

3r31(n−1) + · · ·
...

(a11p1,1)
3r31(n−d+1) + (a11p1,2)

3r31(n−d) + · · ·
(a21p1,1)

3r31(n) + (a21p1,2)
3r31(n−1) + · · ·

...

(a21p1,1)
3r31(n−d+1) + (a21p1,2)

3r31(n−d) + · · ·

























=

























θ311r
3
1(n) + θ312r

3
1(n−1) + · · ·

...

θ311r
3
1(n−d+1) + θ312r

3
1(n−d) + · · ·

θ321r
3
1(n) + θ322r

3
1(n−1) + · · ·

...

θ321r
3
1(n−d+1) + θ322r

3
1(n−d) + · · ·

























=

[

θ1 ⊗ Id+1

θ2 ⊗ Id+1

]













ρ(n)

ρ(n−1)
...

ρ(n−d)













= Θρ(n),

(8.14)
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where ρ(n) = [r31(n) r
3
1(n−1) r32(n) r

3
2(n−1) · · · ]T is the column vector with the Lv

terms involving the signals r1(n), r2(n) and some of their delayed versions, θij are the

matrix elements of the product AP , for i = 1, . . . ,N and for j = 1, . . . ,Lv, and θi =

[θi1 θi2 · · · θiLv
]; the number of elements Lv in ρ(n) is a combinatorial problem: assuming

that all pre-coders have the same maximum length Lp, without loss of generality, we

have that Lv = (NLp+2)!/(3!(NLp−1)!). As we concatenate all the d+1 considered

delays in the column vector ρ(n), its length is (d+1)(NLp+2)!/(3!(NLp−1)!); finally, Θ

is a N(d+1) × (d+1)(NLp+2)!/(3!(NLp−1)!) matrix. Observe that the computational

complexity can drastically increase, depending on the values of N (here chosen to be 2),

d and Lp.

It is interesting to note in Eq. (8.14) that ρ(n) encompasses elements of r(n) up to

the power of 3 (due to the assumed cubic nonlinearity) but we have expressed the terms

by means of a simple linear combination.

With the expanded Volterra terms at hand, it is possible to write a linear expression

for the separated sources:

y(n) = WAPr(n) +WΓΘρ(n). (8.15)

Example

For illustration purposes, we consider the following pre-coders p1 = [p1,0 p1,1] and

p2 = [p2,0 p2,1] and the mixtures

x(n) = (As(n))⊙3 , (8.16)

where A = [a11 a12 ; a21 a22]. The compensating nonlinearities are chosen to be g(x(n)) =

(x(n))⊙1/3 + x(n), which results

z(n) = As(n) + γ (As(n))⊙3 . (8.17)

In the temporal-extended domain, if we consider d = 1, the sources can be expressed

as

s(n) =













s1(n)

s1(n−1)

s2(n)

s2(n−1)













= Pr(n) =













p1,0 p1,1 0 0 0 0

0 p1,0 p1,1 0 0 0

0 0 0 p2,0 p2,1 0

0 0 0 0 p2,0 p2,1



































r1(n)

r1(n−1)

r1(n−2)

r2(n)

r2(n−1)

r2(n−2)























,

(8.18)
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and the mixtures

x(n) = F (As(n)) = (APr(n))⊙3

=

























a11 0 a12 0

0 a11 0 a12

a21 0 a22 0

0 a21 0 a22

























p1,0 p1,1 0 0 0 0

0 p1,0 p1,1 0 0 0

0 0 0 p2,0 p2,1 0

0 0 0 0 p2,0 p2,1













r(n)













⊙3

=



































ψ1,1 ψ1,2 0 ψ1,3 ψ1,4 0

0 ψ1,1 ψ1,2 0 ψ1,3 ψ1,4

ψ2,1 ψ2,2 0 ψ2,3 ψ2,4 0

0 ψ2,1 ψ2,2 0 ψ2,3 ψ2,4



































r1(n)

r1(n−1)

r1(n−2)

r2(n)

r2(n−1)

r2(n−2)













































⊙3

,

(8.19)

being ψi,j are the non-null elements resultant from the matrix product AP .

Proceeding with the Volterra expansion, as shown by Eq. (8.14), the vector ρ(n) has

Lv = (NLp+2)!/(3!(NLp−1)!) = 20 elements, which are all possible triplets among r1(n),

r1(n−1), r2(n) and r2(n−1), i.e.,

ρ(n) = [ r31(n) r31(n−1) r32(n) r32(n−1) . . .

r21(n)r1(n−1) r21(n)r2(n) r21(n)r2(n−1) r1(n)r
2
1(n−1) . . .

r1(n)r
2
2(n) r1(n)r

2
2(n−1) r21(n−1)r2(n) r21(n−1)r2(n−1) . . .

r1(n−1)r22(n) r1(n)r
2
2(n−1) r22(n)r2(n−1) r2(n)r

2
2(n−1) . . .

r1(n)r1(n−1)r2(n) r1(n)r1(n−1)r2(n−1) r1(n)r2(n)r2(n−1) . . .

r1(n−1)r2(n)r2(n−1) ]T ;

(8.20)

and the vector θi also has Lv = 20 elements:

θi = [ ψ3
i,1 ψ3

i,2 ψ3
i,3 ψ3

i,4 . . .

3ψ2
i,1ψi,2 3ψ2

i,1ψi,3 3ψ2
i,1ψi,4 3ψi,1ψ

2
i,2 . . .

3ψi,1ψi,3 3ψi,1ψi,4 3ψ2
i,2ψi,3 3ψ2

i,2ψi,4 . . .

3ψi,2ψ
2
i,3 3ψi,1ψ

2
i,4 3ψ2

i,3ψi,4 3ψi,3ψ
2
i,4 . . .

6ψi,1ψi,2ψi,3 6ψi,1ψi,2ψi,4 6ψi,1ψi,3ψi,4 . . .

6ψi,2ψi,3ψi,4 ]T ;

(8.21)
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for i = 1, . . . , d+1. Hence, the mixtures can be alternatively written as

x(n) = γ (As(n))⊙3

= Θρ(n) =













θ1 0

0 θ1

θ2 0

0 θ2













[

ρ(n)

ρ(n−1)

]

.
(8.22)

As Eq. (8.22) shows, the cubic nonlinearity can be expressed by means of a linear matrix

product of nonlinear elements, a property that shall be very usefull for us.

Finally, the vector z(n) becomes

z(n) = As(n) + Γ (As(n))⊙3

= APr(n) + ΓΘρ(n)

=













a11 0 a12 0

0 a11 0 a12

a21 0 a22 0

0 a21 0 a22

























p1,0 p1,1 0 0 0 0

0 p1,0 p1,1 0 0 0

0 0 0 p2,0 p2,1 0

0 0 0 0 p2,0 p2,1



































r1(n)

r1(n−1)

r1(n−2)

r2(n)

r2(n−1)

r2(n−2)























+













γ1 0 0 0

0 γ1 0 0

0 0 γ2 0

0 0 0 γ2

























θ1 0

0 θ1

θ2 0

0 θ2













[

ρ(n)

ρ(n−1)

]

,

(8.23)

whose coefficients A, P and Θ are considered to be fixed, r(n) and ρ(n) can vary at each

time instant and Γ should be adjusted in the separation process (along with W).

Although we focus on the cubic nonlinearity, the idea of using the Volterra expansion

is also valid for other polynomial functions. Such study will be left for future works. In

the following, we present the SOS-based criteria to perform separation and its analytical

form for the considered specific case.

8.2 Classical Joint Diagonalization of Correlation Ma-

trices

The use of SOS in the linear BSS problem is known to be effective when it involves

sources that present temporal structure [Comon and Jutten, 2010; Belouchrani et al.,

1997]. In such case, the main idea is to jointly diagonalize the correlation matrices be-
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tween separated sources for a given number of delays; in other words, the objective is to

mutually decorrelate the outputs, but considering different time delays. There are several

methods that perform the second-order separation, among which we cite the algorithms

SOBI [Belouchrani et al., 1997], AMUSE and TDSEP [Hyvärinen et al., 2001; Comon and

Jutten, 2010]. However, for PNL mixtures, the exclusive use of the SOS for separation

has not been addressed yet. In that sense, the analytical formulation of the PNL case may

give us important elements to help clarify certain theoretical aspects in this approach. In

the following, we present a classical SOS-based criterion for separation [Belouchrani et al.,

1997], but we pose it under the light of the temporal-extended formulation introduced in

the previous section.

Given a number of time delays d, it is desired that the correlation matrix

RY = E
[

y(n)yT (n)
]

=

[

Ry
1
y
1

Ry
1
y
2

Ry
2
y
1

Ry
2
y
2

]

. (8.24)

be block-diagonal, i.e., that the cross correlation matrices between outputs (red blocks in

Eq. (8.24)) are all null, where Ry
i
y
j
= E

[

y
i
(n)yT

j
(n)
]

, being y
i
(n) = [yi(n) yi(n−1) · · ·

yi(n−d)]T and y(n) = [yT
1
(n) yT

2
(n)]T . Hence, we can write the block-diagonalization

(BD) criterion as

JBD = min
W,G

blkoff(RY ), (8.25)

where blkoff(·) is the squared sum of all elements in the off-block-diagonal of a squared

matrix. Additionally, a norm constraint can be applied to force the main diagonal of RY

to be unitary, e.g., by adding to the cost:

Jc = min
N
∑

i=1

(

E
[

y2i (n)
]

− 1
)2
, (8.26)

This constraint is necessary in order to avoid the trivial solution. Note that, as the number

of delays d increases, the larger the cross correlation matrices get, and more information

can be considered by the criterion.

8.2.1 The Analytical BD Cost Function

As usual in SOS-based approaches, the main entity is the correlation matrix and,

considering the mixing model given by Eq. (8.15), the expanded correlation matrix RY
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can be computed analytically:

RY = E
[

y(n)yT (n)
]

= E
[

WAPr(n)rT (n)PTATWT
]

+ E
[

WAPr(n)ρT (n)ΘTΓTWT
]

+ E
[

WΓΘρ(n)rT (n)PTATWT
]

+ E
[

WΓΘρ(n)ρT (n)ΘTΓTWT
]

= WAPRrrPTATWT +WAPRrρΘ
TΓTWT +WΓΘRρrPTATWT

+WΓΘRρρΘ
TΓTWT ,

(8.27)

where Rrr = E
[

r(n)rT (n)
]

, Rrρ = E
[

r(n)ρT (n)
]

, Rρr = E
[

ρ(n)rT (n)
]

and Rρρ =

E
[

ρ(n)ρT (n)
]

are the correlation matrices in function of r(n) and ρ(n) – being ρ(n) the

Volterra expansion of r(n). Since r(n) is an i.i.d vector, these covariance matrices can

be easily computed (although this may demand an extensive effort due to the size of the

matrices), but the statistical moments E [r2i (n)], E [r4i (n)] and E [r6i (n)] must be known.

It is important to note that, due to the nonlinearity, some HOS are encompassed in the

correlation matrix, which might be essential to the nonlinear separation process.

In the BD cost function, only the off-block-diagonal elements are considered, so that

the matrices Ry
1
y
2

and Ry
2
y
1

are the ones effectively used. Assuming stationary discrete-

time stochastic processes, we have that Ry
1
y
2

= RT
y
2
y
1

(are Toeplitz) and, in this case,

a single matrix provides all statistical information needed for the BD cost. Based on

Eq. (8.27), we can write:

Ry
i
y
j
= W i

(

APRrrPTAT +APRrρΘ
TΓT

+ ΓΘRρrPTAT + ΓΘRρρΘ
TΓT

)

WT
j ,

(8.28)

where W i is the ith block with d+1 rows of W . It is possible to note that each of

the (d+1)2 elements of Ry
i
y
j
are quadratic polynomials in function of Γ and W i – the

separation coefficients – and can contribute with additional information for solving the

system, as we will see ahead.

8.3 Second-Order Mutual Information Measure

Although it has already been shown that the joint diagonalization of covariance ma-

trices is a solid approach for performing linear BSS, its study must not be limited to the

cost given by Eq. (8.25), since the use of SOS can be employed in very diversified ways

and lead to different perspectives of the problem at hand. Following this line of reason-

ing, we follow an alternative SOS-based separation measure that combines the temporal

formulation – presented in Section 8.1.1 – with the mutual information measure [Comon

and Jutten, 2010].
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Basically, we aim at a mutual independence definition that is able to encompass the

temporal structure of data, i.e.,

fY (v) =
N
∏

i=1

fy
i
(vi), (8.29)

being fY (v) and fvi(yi
) the multivariate probability density functions associated with

y(n) and y
i
(n), respectively (see Eq. (8.24)). The temporal structure, in this case, is in-

herently taken into account by the multivariate densities and the sources must be mutually

independent for all considered delays.

In order to measure the mentioned independence, one can use the mutual informa-

tion [Comon and Jutten, 2010]

I(y(n), . . . ,y(n−d)) = −HS(Y ) +
N
∑

i=1

HS(y
i
), (8.30)

where HS(·) is Shannon’s entropy, defined as

HS(Y ) = −
∫

D

fY (v) log (fY (v)) dv, (8.31)

being D ⊆ R
N(d+1). When independence is reached for all delays, the mutual information

is null. In its strict form, Eq. (8.30) is difficult to be calculated since it demands the

estimation of the densities (which is critical in our case, where all densities are multivari-

ate). Hence, to overcome this issue and also to restrain our analysis to the SOS – which

are easier to be estimated –, we make the following assumption: the sources are jointly

Gaussian distributed and present a time structure. Thus, it is expected that the recovered

sources be Gaussian as well, i.e., fY (v) ∼ N
(

0, RY

)

or

fY (v) =
1

√

(2π)d+1 det(RY )
exp

(−1

2
vTR−1

Y y

)

, (8.32)

being RY as defined in Eq. (8.24).

It can be shown that, by combining Eq. (8.32) with (8.30), the mutual information

reduces to the following criterion

JSOMI = min
W,G

1

2
log

(∏N
i=1 det(Ry

i
)

det(RY )

)

. (8.33)

It is important to mention that a similar expression was already obtained through the spec-

tral density of Gaussian sources, being named Gaussian Mutual Information (GMI) [Comon

and Jutten, 2010; Pham, 2001; Pham and Cardoso, 2001], and the use of the temporal-
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extended covariance matrices were used in the convolutive mixing problem [Buchner et al.,

2005], however, its application on the PNL problem is novel. Hence, we refer to Eq. (8.33)

as the Second-Order Mutual Information (SOMI). As the BD cost, Eq. (8.33) uses only

the SOS information, but instead of using summation of quadratic terms (Eq. (8.25)), the

determinant of matrices Ry
1

, Ry
2

and RY is considered.

The objective of the SOMI criterion is to minimize the cost JSOMI so that the mutual

information be null. However, the direct minimization of Eq. (8.33) may point towards a

null argument for the log(·) function, most probably leading to null determinants. Hence,

the norm constraint given by Eq. (8.26) might be essential for this criterion.

8.3.1 The Quadratic SOMI Cost

A closer observation of Eq. (8.33) reveals that it is, in fact, a matching between the

determinant terms
∏N

i=1 det(Ry
i
) and det(RY ). If equality is reached, the cost JSOMI is

equal to zero (i.e., the mutual information is null). In that sense, a similar cost can be

written without relying on the logarithm properties, but on the simplicity of a quadratic

difference:

JSOMIq = min
W,G

(

N
∏

i=1

det(Ry
i
)− det(RY )

)2

, (8.34)

where the minimal (and desired) cost value is zero as well. Note that the norm constraint

(Eq. (8.26)) is also necessary to avoid null determinants. This cost is named SOMIq due

to its quadratic term.

When the correlation matrix RY is block-diagonal, det(RY ) =
∏N

i=1 det(Ry
i
) and both

the costs of SOMI and SOMIq will be null. In that sense, we expect that the solutions

for SOMI and SOMIq be coincident, even though, the quadratic relation in SOMIq may

be able to provide a more fruitful cost shape in the optimization process – we will discuss

this point in more detail later.

Given Eqs. (8.27) and (8.28), the analytical costs of SOMI and SOMIq are straight-

forward.

8.4 Identifiability and Bounds

The three aforementioned criteria share a common feature when a solution is found:

the extended correlation matrix of the output signals RY is a block-diagonal matrix, i.e.,

all the off-block-diagonal elements are null. This observation allows us to write some

general aspects involving the SOS-based costs in the context of the considered special

PNL mixture case.
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8.4.1 Blind Identifiability

In the linear BSS problem, the study of the blind identification conditions for the

SOS-based approaches is a well studied topic [Belouchrani et al., 1997]: it is known that

the linear mixing matrix A can be identified, up to permutation and phase shifts, if

the source signals have different spectral shapes. Generally, the demonstration for this

linear problem is done by ensuring that the diagonalization process of the correlation

matrix for different delays yields eigenvalues that are distinct. Translating this idea to

our temporal-extended formulation, it is required that a block-diagonalized RY present

distinct eigenvalues.

The extension of this idea to the general PNL problem becomes more complex, since

the identification conditions must be valid for A and f(·). In our particular case, i.e.,

for the cubic nonlinearity given by Eq. (8.11), the problem is simpler, since identification

applies only to W and Γ. In that sense, we can pose the conditions for identification

as: based on Eq. (8.27), we have that W must jointly block-diagonalize the matrices

APRrrPTAT (which is the linear part), APRrρΘ
TΓT and ΓΘRρrPTAT and RY must

yield distinct eigenvalues. To solve this problem, we consider two cases: (i) Γ is null and

(ii) Γ has a non-null value.

In case (i), when Γ is null, i.e., the case in which the nonlinear part is solved, W must

block-diagonalize only APRrrPTAT and the conditions are the same as for the linear

case, viz., the source signals must have different spectral shapes.

For case (ii), all terms in Eq. (8.27) must be block-diagonalized. To illustrate, we

consider that the first term, APRrrPTAT , is block-diagonalized, where we have that

W = A−1. In this case,

RY = PRrrPT + PRrρΘ
TΓTWT +WΓΘRρrPT +WΓΘRρρΘ

TΓTWT , (8.35)

and, by construction, the terms involving Γ are not block-diagonal, regardless of the value

of Γ. The only exception happens when A = I, i.e., when the signals are not linearly

mixed, and all the terms will be block-diagonal. In this case, the SOS-based methods are

intended to fail. For other values of W , the linear term is not block-diagonal.

Thus, in short, the identifiability conditions are that the signals must present different

spectral shapes and that the linear mixing part of the PNL model must effectively occur.

8.4.2 Bounds on the Number of Delays

As previously mentioned, each element in the off-block-diagonal ofRY forms a quadratic

polynomial in function of Γ and W , and, as we will see in this section, they will compose

a system of quadratic equations. The unknown variables, in our studied case, are Γ and

W , which correspond to N(N+1) variables.
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Some elements (or equations) of RY , however, are redundant. For instance, the el-

ements of the main diagonal of Ry
i
y
j
form, from an statistical standpoint, the same

equation and, hence, they only contribute as a single equation (new information) to the

system. In addition, as we assume stationary signals, we have that Ry
i
y
j
= RT

y
j
y
i

, which

also reduces the effective number of equations in the system. In that sense, by remov-

ing the redundancy, we have N(N−1)/2 matrices Ry
i
y
j
, in which the number of effective

equations are d(d+1)+1 each one, resulting in a total of N(N−1)(d(d+1)+1)/2 equations

in the system.

Besides, the normalization given by Eq. (8.26) also performs a role as a constraint, and

can contribute to the system with N equations. Finally, it is possible to state that the

number of effective equations in the system is N(N−1)(d(d+1)+1)/2+N , which must be

equal to or higher than the number of unknown parameters. Considering, for example, the

case of 6 unknown variables and N=2, it is necessary that 2(2−1)(d(d+1)+1)/2 + 2 ≥ 6,

what implies in d ≥ 2.

Notwithstanding, it is also possible that some of the off-diagonal elements of Ry
i
y
j
be

equivalent, depending on the temporal structure of the mixtures and, in that case, the

number of valid equations might be reduced. In that sense, the expressionN(N−1) (d(d+1)

+1) /2+N is only an upper bound to the number of equations that can be valid to solve

the system. Hence, in the previous example of 6 unknown variables and N=2, d ≥ 2 is

just a lower bound on the number of delays d, probably leading to the need of a higher

value of d for a good quality separation.

In order to illustrate the system of equations, we consider a 2-source and 2-mixture

case in which the linear mixing part of the PNL model is a rotation matrix, i.e.,

A =

[

cos(φa) − sin(φa)

sin(φa) cos(φa)

]

. (8.36)

For the separation, based on Eq. (8.15), we have 2 unknown variables for the joint non-

linear part, γ1 and γ2, and 1 unknown variable, φw, for the linear separating matrix W

(which is a rotation matrix, similar to A). Thus, we have that, for N=2 and d=1, the

number of equations is, at most, N(N−1)(d(d+1)+1)/2 +N = 5. Fig. 8.2(a) shows the

surface contour of each equation for given colored sources, with φa = 1.02 rad. In this

case, the off-diagonal elements of Ry
1
y
2

are coincident and we only have 4 equations. The

intersection points of the surfaces will determine the regions where all equations are sat-

isfied. Indeed, any of these points will be a valid solution for the BD, SOMI and SOMIq

criteria.

Although the SOS-based criteria are intended to present the same solution, their costs

shape may differ. We consider the same previous case, however, the linear part is assumed

to be solved already, leaving just γ1 and γ2 to be adjusted. In Fig. 8.2(b), we show the
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Figure 8.2: Number of delays: equations and solutions.

contours as a function of γ1 and γ2 and for d equal to 1, 2 and 4. In all cases, the global

solution is γ1 = γ2 = 0 (denoted by an “X”), which is the desired solution, but local

minima can also be seen. Very interestingly, as d increases, the “weight” of the local

optima is reduced in the costs, being the global solution more evident. This effect is

particularly more intense for the SOMIq cost, whose shape changes significantly.

In the next section, we will consider the case where Γ and W have no constraints –

which will drastically increase the space of solutions candidates – to evaluate the criteria

performance.

8.5 Performance Analysis

So far, we verified that the SOS-based criteria share some features, but they might

differ in their costs shapes and, when an optimization task is performed, its effect on the

performance may be significant. In order to test this, we consider the two-source and

two-mixture simulation scenarios encompassing the SOS-cost obtained via the analytical

formulation and via samples estimation.

For the optimization of the weights (nonlinear and linear), we adopt, as in the pre-

vious chapters, the DE metaheuristic to avoid convergence to local optima [Price et al.,

2005]. Since we consider N=2 sources, it implies that, according to our particular cubic

nonlinearity case, 6 coefficients must be adapted: 2 for Γ and 4 for W . In this case, the 6-

dimensional search space is considerably large, but the DE metaheuristic can be adjusted

to use more resources and perform a more extensive search for the global optima. With

that in mind, the DE parameters were chosen to be NP = 500 (population size), F = 0.5,

CR = 0.9 and 5000 iterations. These DE parameters were constant for all simulation

cases.



245

With the DE solution at hand, the performance of the SOS-based methods can be

measured in terms of the Signal-to-Interference Ratio (SIR) (after permutation, sign and

variance correction), which is defined as

SIR = 10 log

(

E[yi(n)
2]

E[(si(n)− yi(n))2]

)

. (8.37)

In that sense, higher SIR values means better performance solutions.

8.5.1 Performance Using the Analytical Costs

In the first scenario, we wish to investigate the analytical costs and the effect of

the number of delays d considered. For the sources, two i.i.d. Gaussian signals (r1(n)

and r2(n)) are generated and temporally colored by the pre-coders p1 = [1 0.6 −
0.3 0.1 0.4 0.3 −0.22 0.18 0.5] and p2 = [1 −0.2 −0.8 0.2 0.1 −0.41 0.5 0.1], sepa-

rately. Note that the temporal structures provided by p1 and p2 are of finite length and,

hence, there is a limited amount of temporal information to be extracted. The linear

mixing matrix is A = [0.25 0.86; −0.86 0.25] and we wish to adapt Γ and W , according

to Eq. (8.15). Supposing that the pre-coders p1 and p2 as well as the mixing coefficients

are known, the BD, SOMI and SOMIq costs can be analytically computed without the

necessity of using samples for their estimation, as discussed in Sections 8.2, 8.3 and 8.3.1.

We considered that the number of delays d can vary from 1 to 7 and, for each value

of d, we performed 50 independent runs of the DE, whose solutions were evaluated in

terms of SIR for 700,000 test samples. Fig. 8.3(a) shows the mean SIR values for each

delay considered, while Fig. 8.3(b) shows the SIR values for the best solution found by

DE throughout the 50 runs. In the first case, one can note that the solutions found for the
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Figure 8.3: Mean and Best Performance - Analytical Costs.

BD and SOMI criteria leaded to a low value of SIR for all considered delays, indicating
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that their solutions might not be adequate for performing BSS. Notwithstanding, for the

best solution found, the BD criterion shows an intriguing result: for d ≥ 4, the solutions

for the BD are able to separate the sources with a higher level of SIR. This indicates that,

although we have employed a huge search resource for the DE, it has presented difficulties

in finding the best solution for BD. On the other hand, for the SOMIq criterion, the

DE found good results more easily, without great discrepancies between Figs. 8.3(a) and

8.3(b), and, from a general perspective, it is possible to say that the solutions SIR level

tends to increase with d, being the sources successfully separated. Note that, for d = 2,

the SOMIq best solution found by DE is already able to separate the sources, which is in

accordance with the bound on the number of delays.

In order to clarify the obtained results, we compare in Fig. 8.4(a) the costs values of

BD, SOMI and SOMIq for one of the 50 runs of the DE (that we will refer to as ‘regular’)

and its best solution (i.e., the lowest cost found throughout the 50 runs), all for d = 4. It

0

0.5

1

1.5

2

2.5

3

3.5

x 10
−9

B
e
s
t 
S

o
lu

ti
o
n
 F

o
u
n
d
  
  
  
  
 R

e
g
u
la

r 
S

o
lu

ti
o
n

BD

−1.16

−1.15

−1.14

−1.13

−1.12

−1.11

−1.1
x 10

−15 SOMI

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

x 10
−14SOMIq

3.7738x10
−9

1.8848x10
−15

−1.1043x10
−15

−1.1635x10
−15

4.1615x10
−14

3.5635x10
−14

(a) Costs - Regular and best cases.

R
s
 − Source

2 4 6 8 10

2

4

6

8

10

R
y
 − BD

2 4 6 8 10

2

4

6

8

10

R
y
 − SOMI

2 4 6 8 10

2

4

6

8

10

R
y
 − SOMIq

2 4 6 8 10

2

4

6

8

10

(b) Extended Correlation Matrices

Figure 8.4: Cost Comparison and Correlation matrices.

is possible to note that, for the BD cost, the difference between the two cases is larger,

being clear that the DE is presenting difficulties to find the global optima, differently

from the other costs, where the differences were relatively small. This can be seen as

an evidence that the BD cost suffers from low distinguishability of the global optima,

being necessary to increase the search power of the DE metaheuristic. For the SOMI, the

minimization of Eq. (8.33) leaded to negative values of the cost, which means that the

MI does not achieve its desired (null) value. The SOMIq cost, on the other hand, solves

the drawback of SOMI and converges to positive small values.

A more intuitive comparison can be obtained from Fig. 8.4(b), where we illustrate a

colored version of the extended correlation matrix of the sources RS and of the outputs

RY for the BD, SOMI and SOMIq solutions in one of the executions (the same ’regular’

run) of the DE metaheuristic, all for d=4. It is possible to note that, for RS, the main

block-diagonal is colored in different patterns, which reveals the temporal structure of
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the sources, while the off-block-diagonal are uncorrelated and presents a single color.

Ideally, the objective is to obtain RY as close as possible to RS. For the BD output, the

temporal structure of only one of the sources was preserved, while the other source was

temporally uncorrelated. A similar result also applies to SOMI, while, for the SOMIq

output, the solution found was the desired one, whose sources are uncorrelated and with

their temporal structure preserved. Although not visible, the residual correlation of the

off-block-diagonal for the BD and SOMI solutions are higher than that of SOMIq, which

indicates they converged to local minima in the regular run.

8.5.2 Performance Using Estimated Costs

When using an analytical formulation, the evaluation of the costs might gain infinite

precision. However, for real-world problems, the costs are generally estimated from sam-

ples, which certainly lead to approximated costs with reduced accuracy. This could be

determinant in the performance of the algorithms when local solutions are not too distinct

from the global ones, which, as indicated in the previous analysis, is the case of the BD

cost.

With the objective of measuring the SIR performance in more realistic scenarios, we

consider now the estimated costs of BD, SOMI and SOMIq, where the extended covariance

matrices are estimated via sample mean. Besides that, it is also desired to evaluate the

performance for the case in which the sources are not Gaussian. Since the costs only

depend on the SOS and the temporal structure, we expect that the distribution of the

sources cause no impact on the performance (even on the SOMI and SOMIq costs, whose

formulations are based on the assumption of Gaussian sources).

We consider a 2-source × 2-mixture case, being the linear mixing matrix

A =

[

0.55 −0.92

−0.82 0.38

]

(8.38)

and the cubic nonlinearity, Eq. (8.11), as adopted throughout this chapter. Again, the

temporal coloration is obtained through FIR filters as pre-coders, here chosen to be p1 =

[1 0.6 − 0.3 0.1 0.4] and p2 = [1 −0.2 −0.8 0.2 0.1]. Now, we assume two types of

distribution for r1(n) and r2(n): in the first case, r1(n) and r2(n) are two i.i.d. Gaussian

signals with zero mean and variance equal to 2 and, in the second case, they are two i.i.d.

signals uniformly distributed between −1 and +1. In an attempt to avoid precision issues

when estimating the costs, mainly the BD cost, we consider we have a large set of 50,000

samples for estimation. A test set with 700,000 samples will be used to estimate the SIR.

The number of considered delays is d = 4.

To adapt the coefficients Γ and W , we use the DE metaheuristic with the same pre-

viously defined parameters, but just perform a single run to search for the solution. The
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Table 8.1: Performance in terms of SIR [dB]

Scenario BD SOMI SOMIq

Gaussian
Source 1 −0.021 0.259 68.432
Source 2 −5.436 −5.400 65.060

Uniform
Source 1 −6.909 −3.404 42.421
Source 2 9.639 −6.900 47.927

resulting performance for the BD, SOMI and SOMIq solutions found by the DE are exhib-

ited in Tab. 8.1, for the Gaussian and uniform sources. It is possible to note that the BD

and the SOMI solutions presented similar but lower values of SIR, for both Gaussian and

uniform sources, while the SOMIq solutions achieved good performance: for the Gaussian

sources, an impressive high SIR level was obtained, however, for the uniform sources, the

SIR is lower, but still of high quality (above 30 dB). Note that this result is compatible

to what was observed in the analytical scenario.

(a) Gaussian sources.

(b) Uniform sources.

Figure 8.5: Estimated Costs: Scatter plots.
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(a) Gaussian sources.

(b) Uniform sources.

Figure 8.6: Estimated Costs: s(n)× y(n) plots.

In Fig. 8.5, we show the temporal scatter plots of the sources and its estimates via

BD, SOMI and SOMIq (after sign, mean and variance correction); in addition, in Fig. 8.6,

we show the s(n)× y(n) plots, in which a diagonal line will indicate that the source was

correctly recovered. The outputs for BD and SOMI are almost equivalent, indicating that

they might share the same local minimum – where the DE metaheuristic remained trapped

without finding the global optima – and that the type of the sources was indifferent in

this case. Due to the greater solution distinguishability of SOMIq, the solution found was

the desired one (or close enough to it). For the Gaussian sources case, Figs. 8.5(a) and

8.6(a), the SOMIq output is practically the sources themselves and, for the uniform case,

Figs. 8.5(b) and 8.6(b), the SOMIq solution is somehow similar to the sources, with SIR

value similar to the average SIR obtained in the analytical simulations.
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8.6 Conclusion

In this chapter, the problem of BSS was investigated in the context of PNL mixtures

from an SOS-based perspective. In order to extract the signals temporal structure in a

more extensive manner, an alternative formulation of the problem was presented, which

allowed us to write the classical SOS-based cost functions from a temporal-extended stand-

point, resulting in the BD (based on SOBI cost) and SOMI (based on GMI) costs. In

addition, to overcome some minimization problems with SOMI, a quadratic-like modifi-

cation was proposed and named SOMIq.

The temporal-extended formulation allowed the analytic computation of the SOS-

based costs by assuming the specific case in which the PNL nonlinearity is a cubic poly-

nomial (and using its Volterra expansion). Based on this, a simple analysis on the costs

defined some identifiability conditions and a lower bound on the number of delays that

must be considered for separation. To evaluate the performance of the criteria in the PNL

model with cubic nonlinearities, some simulations were held in scenarios using analytical

and estimated versions of the costs, being the optimization made by the DE metaheuris-

tic. In the analytical case, the extended correlation matrices could be obtained without

the use of samples (and were independent of the distribution of the sources). The results

indicated that the BD criterion was able to perform source separation, however, due to its

optima low distinguishability, the DE metaheuristic found difficulties during the solution

search process and led to poor SIR performance; the SOMI criterion presented some prob-

lems since its cost led to solutions that were not able to establish mutually independent

sources with the desired precision; on the other hand, the SOMIq criterion presented more

distinguishable optima when compared to BD and led the DE to solutions that preserved

the mutual independence (from a SOS point of view) and the temporal structure of the

data – also, by increasing the number of delays above the lower bound, we observed an

improvement of the performance in terms of SIR. For the estimated costs, a large number

of samples was necessary in order to increase the precision in the estimation step. The

obtained results corroborated with the performance analysis held in the analytical case

and revealed a good performance for Gaussian and for uniformly distributed sources.

Although the present analysis focus on a specific case of the PNL mixtures, i.e., for cu-

bic nonlinearities, we consider it an important step towards the use of the SOS framework

in the nonlinear BSS problem. In that sense, for future works, we consider the extension

of this analysis to other polynomial nonlinearities and other nonlinear mixing models.
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Chapter 9

Conclusions

In this Ph.D. thesis, the efforts were aimed at a more extensive extraction of the in-

formation on the temporal structure of the signals, which was possible via the use of the

ITL-based methods allied to a multivariate perspective. This approach was applied to

three important problems within the signal processing area: (i) blind channel equaliza-

tion with temporally structured sources, (ii) supervised equalization using IIR filtering

structures, and (iii) nonlinear BSS problems. In each case, the results led to relevant

contributions, extending the ITL paradigm to the multivariate approach and also to the

use of metaheuristics as optimization strategy, instead of the traditional gradients.

Throughout the presented work, several concepts from statistics, signal processing,

information theory, adaptive filtering and machine learning were used, as recapitulated in

the following.

It was shown that performing a task within the signal processing area necessarily

involves the use of three basic elements: the filtering structure, the criterion and the

optimization method, whose main features were presented in Chapters 1, 2 and 3, re-

spectively. More specifically, in Chapter 1 the linear FIR and IIR filters as well as the

nonlinear polynomial filters and the RBF neural networks were presented. The concepts

of the Information Theory and their contribution to the emergence of the ITL field were

presented in Chapter 2, which also included the discussion of the main uncertainty and

similarity measures and how to estimate them via the Parzen window method. At last,

Chapter 3 describes the gradient-based methods – with special attention the to stochastic

gradient approach – and the main concepts behind the DE metaheuristic for optimization.

Chapter 4 provided a brief overview on the methods for the channel equalization – for

both supervised and unsupervised perspectives – and the BSS problems. Regarding the

supervised channel equalization, the Wiener paradigm and the LMS algorithm derivation

were described, being followed by the ITL trends on this topic: the Rényi’s entropy and

the correntropy. For the IIR structures, the equation-error and output-error formulations

were considered, thus describing the LMS, PLR and RPE-based algorithms. Next, for the
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blind channel equalization, the theoretical basis provided by the BGR and SW theorems

were presented, being of fundamental importance to the justification of the HOS use in

the described Bussgang techniques, SW criterion and blind ITL-based approaches, such

as the distribution matching and correntropy approaches. For the BSS problem, the

linear case was presented with special emphasis on the MI-based approaches and on the

SOS-based ones – since they make use of the temporal structure of the sources –, while

the nonlinear case encompassed the PNL model and its joint or two-stage approaches for

adaptation. For each topic, the promising investigative lines were pointed out to motivate

the contributions of this work.

As for the contributions, Chapter 5 established the statistical conditions for the col-

ored blind channel equalization problem based on novel extensions of the BGR and SW

theorems, which, through antique theorems found in the literature and some empirical

results, revealed the necessity of the manipulation of multivariate distributions in order

to achieve the ZF condition. It was also pointed out that, under certain conditions on

the filtering structures, the multivariate statistical requirement can be relaxed and even

a SOS-based approach was sufficient to ensure equalization.

Following the results presented in Chapter 5, four criteria based on the notion of

statistics matching were considered in Chapter 6 due to their capabilities of extracting

the temporal structure of the signals: the matching of correlation, of cross-kurtosis, of

correntropies (state-of-the-art) and of multivariate distributions, being the matching of

cross-kurtosis and of multivariate distributions contributions of this work. The derivation

of special analytical cases and the gradient-based algorithms were presented as well as

some estimation issues. The performance of the criteria were evaluated in a set of repre-

sentative scenarios with results very favorable to the multivariate distributions matching

approach, being equivalent or superior than the correntropy-based approach.

In Chapter 7, the supervised channel equalization problem using IIR filters was con-

sidered from the perspective of the equation-error and output-error formulations. For

each case, the ITL-based Shannon’s and Rényi’s entropy as well as the correntropy were

extended to the multivariate perspective in order to extract the temporal dependence of

the signals more efficiently. The derivation of these multivariate ITL methods applied

to the supervised channel equalization problem is one of the contributions of this work.

For comparison purposes, the multivariate distribution matching criterion of the previ-

ous Chapter were also considered. For each criterion, versions of the LMS, PLR and

RPE algorithms were derived. In the simulated scenarios, the multivariate Shannon’s

entropy RPE-based algorithm presented the best performance results, but, in general, all

ITL-based algorithms performed better than the classical MSE-based approaches.

Finally, in Chapter 8, the PNL model with cubic nonlinear function was investigated.

Using a temporal-extended formulation, an SOS-based criterion was obtained from the MI

measure applied to multivariate Gaussian sources, but the method was not limited to these
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distributions. Indeed, the comparison with other classical SOS methods in BSS revealed

that the proposition was particularly useful in conjunction with the DE metaheuristic,

with much higher convergence rate for BSS solutions than the other methods.

Future Perspectives

From the obtained results, there emerges a number of interesting possibilities that can

be explored in future works:

• The colored blind channel equalization problem opens way to the use of coding

schemes at the symbol level in communications, being possible, for instance, to

extend the Viterbi coder/decoders to the continuous domain. In addition, following

an approach similar to that of Shannon’s, it would be interesting to investigate if

this approach can lead to an increase of the practical channel capacity.

• A promising idea is the application of the distribution matching criterion in within

Galois Fields. This would allow the equalization in corrupted digital data and

genomic databases.

• The notion of the correlation matching may establish important connections with

the predictive approach, since, in essence, the predictive methods only rely on the

correlation through a constrained filter adaptation.

• The methods considered in the colored blind equalization problem and in the su-

pervised IIR equalization can be easily extended to the unsupervised/supervised

system identification problem, which certainly will contribute to the development

of this problem.

• The combination of the ITL-based methods and the LMS/RPE-based approaches

for IIR filters revealed a particular synergy that might be also valid in unsupervised

scenarios. In that sense an investigation on the unsupervised methods can also be

promising.

• An investigation on the efficiency of the proposed SOS-based criterion in other types

of nonlinear mixtures and models.
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