
UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computação

Javier Richard Quinto Ancieta

IntelliFlow: A Proactive Approach To Add Cyber

Threat Intelligence To Software Defined Networking

IntelliFlow: Um Enfoque Proativo para Adicionar

Inteligência de Ameaças Cibernéticas a Redes

Definidas por Software

CAMPINAS

2015

Javier Richard Quinto Ancieta

IntelliFlow: A Proactive Approach To Add Cyber

Threat Intelligence To Software Defined Networking

IntelliFlow: Um Enfoque Proativo para Adicionar

Inteligência de Ameaças Cibernéticas a Redes

Definidas por Software

Dissertation presented to the Faculty of Electri-
cal and Computer Engineering of the University
of Campinas in partial fulfillment of the require-
ments for the degree of Master in Electrical En-
gineering, in the area of Computer Engineering.

Dissertação apresentada à Faculdade de Engen-
haria Elétrica e Computação da Universidade
Estadual de Campinas como parte dos requisi-
tos exigidos para a obtenção do título de Mestre
em Engenharia Eletrica, na Àrea de Engenharia
de Computação.

Supervisor: Prof. Dr. Christian Rodolfo Esteve Rothenberg

Este exemplar corresponde à versão
final da dissertação defendida pelo
aluno Javier Richard Quinto Ancieta,
e orientada pelo Prof. Dr. Christian
Rodolfo Esteve Rothenberg

CAMPINAS

2015

COMISSÃO JULGADORA - DISSERTAÇÃO DE MESTRADO

Candidato: Javier Richard Quinto Ancieta RA: 151566

Data da Defesa: 22 de setembro de 2015

Título da Tese:

“IntelliFlow: A Proactive Approach To Add Cyber Threat Intelligence To Software Defined

Networking”

“IntelliFlow: Um Enfoque Proativo para Adicionar Inteligência de Ameaças Cibernéticas a

Redes Definidas por Software”

Prof. Dr. Christian Esteve Rothenberg (Presidente, FEEC/UNICAMP)

Prof. Dr. Paulo Licio De Geus (IC/UNICAMP)

Prof. Dr. Marco Aurélio Amaral Henriques (FEEC/UNICAMP)

Ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora,

encontra-se no processo de vida acadêmica do aluno.

I would like to dedicate my whole work to Alexandra, my beautiful daughter, the person that

makes me happy everyday of this wonderful life.

Acknowledgements

My first and special thanks to my parents Mr. Gregorio and Mrs. Fortunata, for all

their support and constant advice, for trusting me forever, for giving me those words of courage

when I needed it. I am also deeply grateful to my whole family for all their moral and financial

support, always motivating me to go further.

Thank you so much Christian Rothenberg, my advisor, for all your constant effort

and be a great instructor for the development of my dissertation.

Thank you all in the INTRIG research group, for the support, company, friendship

and good moments together.

Thank you, Professors Marco Aurelio and Paulo Licio for all the valuable sugges-

tions and reviews of the dissertation.

Finally, thanks to CNPq for the financial support along this journey.

“The only way to do great work is to love what you do. If you haven’t found it yet, keep

looking. Don’t settle. As with all matters of the heart, you’ll know when you find it.”

Steve Jobs

Abstract

Security is a major concern in computer networking which faces increasing threats as the com-

mercial Internet and related economies continue to grow. Virtualization technologies enabling

scalable Cloud services pose further challenges to the security of computer infrastructures, de-

manding novel mechanisms combining the best-of-breed to counter certain types of attacks. Our

work aims to explore advances in Cyber Threat Intelligence (CTI) in the context of Software

Defined Networking (SDN) architectures. While CTI represents a recent approach to combat

threats based on reliable sources, by sharing information and knowledge about computer crimi-

nal activities, SDN is a recent trend in architecting computer networks based on modularization

and programmability principles. In this dissertation, we propose IntelliFlow, an intelligent de-

tection system for SDN that follows a proactive approach using OpenFlow to deploy counter-

measures to the threats learned through a distributed intelligent plane. We show through a proof

of concept implementation that the proposed system is capable of delivering a number of ben-

efits in terms of effectiveness and efficiency, altogether contributing to the security of modern

computer network designs.

Palavras-chaves: Computer Networks; Software Defined Networking; Cyber Threat Intelli-

gence; Intrusion Detection System; OpenFlow.

Resumo

Segurança tem sido uma das principais preocupações enfrentadas pela computação em rede

principalmente, com o aumento das ameaças à medida que a Internet comercial e economias

afins crescem rapidamente. Tecnologias de virtualização que permitem serviços em nuvem em

escala colocam novos desafios para a segurança das infraestruturas computacionais, exigindo

novos mecanismos que combinem o best-of-breed para reagir contra as metodologias de

ataque emergentes. Nosso trabalho busca explorar os avanços na Cyber Threat Intelligence

(CTI) no contexto da arquitetura de redes definidas por software, ou em inglês, Software De-

fined Networking (SDN). Enquanto a CTI representa uma abordagem recente para o combate

de ameaças baseada em fontes confiáveis, a partir do compartihamento de informação e con-

hecimento sobre atividades criminais virtuais, a SDN é uma tendência recente na arquitetura de

redes computacionais baseada em princípios de modulação e programabilidade. Nesta disser-

tação, nós propomos IntelliFlow, um sistema de detecção de inteligência para SDN que segue a

abordagem proativa usando OpenFlow para efetivar contramedidas para as ameaças aprendidas

a partir de um plano de inteligência distribuida. Nós mostramos a partir de uma implementação

de prova de conceito que o sistema proposto é capaz de trazer uma série de benefícios em ter-

mos de efetividade e eficiência, contribuindo no plano geral para a segurança de projetos de

computação de rede modernos.

Keywords: Redes de Computadores, Redes Definidas por Software, Inteligência de Ameaça

Cibernética, Sistema de Detecção de Intrusos, OpenFlow.

List of Figures

Figure 1 – Cloud computing top threats. Adapted from data available in (CLOUD SE-

CURITY ALLIANCE, 2015, p. 10) . 17

Figure 2 – KVM, Docker, and Native performance comparison. Adapted from data

available in (HUSSAIN, 2014) . 18

Figure 3 – Network and Local IDPSs Types . 24

Figure 4 – Wireless and NBA IDPSs Types . 25

Figure 5 – SDN Architecture . 36

Figure 6 – Reactive application design. Adapted from (AZODOLMOLKY, 2013). . . . 37

Figure 7 – Proactive application design. Adapted from (AZODOLMOLKY, 2013). . . 38

Figure 8 – IntelliFlow Architecture . 44

Figure 9 – IntelliFlow Framework . 45

Figure 10 – Knowledge Plane . 45

Figure 11 – Testbed for KVM servers . 53

Figure 12 – Testbed for containers . 53

Figure 13 – Intra-domain Scenario . 54

Figure 14 – Inter-domain Scenario . 55

Figure 15 – Methodology to counter password guessing-based attacks 61

Figure 16 – Comparison of the response time varying the amount of malicious hosts . . 62

Figure 17 – Comparison of the unanalyzed packets varying the amount of malicious hosts 63

Figure 18 – Methodology to counter port scanning-based attacks 64

Figure 19 – Methodology to counter SYN flood-based attacks 66

Figure 20 – Comparison of the response time varying the rate of packets per second sent

by the attacker . 66

Figure 21 – Comparison of the not analyzed packets varying the rate of packets per sec-

ond sent by the attacker . 67

Figure 22 – Comparison of the memory usage performance varying the rate of packets

per second sent by the attacker . 67

Figure 23 – Comparison of the CPU usage performance varying the rate of packets per

second sent by the attacker . 68

Figure 24 – Methodology to counter malicious website-based attacks 70

List of Tables

Table 1 – Intrusion Detection Methodologies . 24

Table 2 – Intrusion Detection Approaches . 27

Table 3 – Comparison between IDPS solutions . 29

Table 4 – Information versus Intelligence . 29

Table 5 – Comparison between intelligence frameworks 35

Table 6 – Comparison between different approaches 42

Table 7 – Bro fields . 48

Table 8 – Indicator types used by our proposal . 49

Table 9 – OpenFlow flows . 49

Table 10 – Values used for the servers virtualized on KVM 53

Table 11 – Comparison of the response time and received events by the victim server . . 62

Table 12 – Comparison of the response time, received events, memory, and CPU usage

percentage . 69

Acronyms

APIs Application Programming Interfaces. 20

CIA Confidentiality, Integrity, and Availability. 36

CIF Collective Intelligence Framework. 20, 44

CLI Command Line Interface. 36

CTI Cyber Threat Intelligence. 18, 20, 21, 29

DD4BC Distributed DoS for Bitcoin. 16

DDoS Distributed Denial of Service. 21, 40

DoS Denial of Service. 16

DPI Deep Packet Inspection. 18, 40

FINE Format for Incident Information Exchange. 33

GPB Google Protocol Buffer. 57

GPG GNU Privacy Guard. 33

IAP Intrusion Alert Protocol. 33

IDPS Intrusion Prevention and Detection System. 17, 18, 21, 22

IDS Intrusion Detection System. 21

IDSs Intrusion Detection Systems. 17

IDXP Intrusion Detection Exchange Protocol. 33

IF Intelligence framework. 45

IOC Indicator of compromise. 32, 50

IOCs Indicators of compromise. 58

IPS Intrusion Prevention System. 21

IPSs Intrusion Prevention Systems. 17

KP Knowledge Plane. 45

LISP Location Identifier Separation Protocol. 33

LXCs Linux Containers. 41

MDBLs Malicious Domain Blacklists. 69

NBA Network Behavior Analysis. 25

OS Operating System. 41

OSSIM Open Source Security Event and Information Management. 35

OVS Open vSwitch. 40

SDN Software-Defined Networking. 19, 36, 44

SMTP Simple Mail Transfer Protocol. 33

TTP Tactics, Techniques and Procedures. 32

VNs Virtual Networks. 55

XSS Cross-Site Scripting. 16

Contents

Acronyms .

1 Introduction . 16

1.1 Vision: Towards more secure and collaborative SDN 19

1.2 Research Objectives and Contributions . 20

1.3 Text Structure . 20

2 Literature Review . 21

2.1 Intruder Detection System . 21

2.1.1 Intrusion Detection Methodologies . 22

2.1.2 Intrusion Detection Types . 23

2.1.3 Detection Approaches . 25

2.1.4 Open Source IDPS tools . 27

2.2 Cyber Threat Intelligence . 29

2.2.1 Threat Intelligence Features . 30

2.2.2 CTI Methodologies . 31

2.2.3 Cyber Threat Intelligence Sources . 32

2.2.4 Share Threat Intelligence . 32

2.2.5 Shared Threat Frameworks . 33

2.3 Software Defined Networking (SDN) . 35

2.3.1 Reactive SDN applications . 37

2.3.2 Proactive SDN applications . 38

2.3.3 Hybrid SDN applications . 38

2.4 Related Work . 39

3 IntelliFlow Architecture . 43

3.1 Architecture . 43

3.2 Mode of Operation . 44

3.2.1 Reactive . 45

3.2.2 Proactive . 46

3.3 Input Framework . 46

3.3.1 Intelligence Sources . 46

3.3.2 Intelligence types . 47

3.4 IntelliFlow Implementation . 47

3.4.1 Bro IDS Input Fields . 48

3.4.2 OpenFlow Output Flows . 49

3.5 IntelliFlow Countermeasures . 49

4 Prototype and Experimental Evaluation 52

4.1 Proof of Concept Implementation . 52

4.2 Testbed . 52

4.2.1 Intra-Domain Scenario . 53

4.2.2 Inter-Domain Scenario . 55

4.3 Experimental Evaluation . 57

4.3.1 Mitigation of Brute-force and Dictionary attacks 59

4.3.2 Mitigation of Scanners . 62

4.3.3 Mitigation of Botnet Networks . 65

4.3.4 Mitigation of malicious Domains and URLs 68

4.3.5 Considerations on the cost of proactive approaches 70

5 Conclusions . 72

Bibliography . 74

16

1 Introduction

The deployment of Internet services has increased immensely during the last years,

as well as the access of the users to these services, especially in cloud computing environments.

Consequences of these changes are that many adversaries designed new forms of attacks with

malicious intents, having as their main goals potential economic gains. Therefore, these threats

represent an attractive, new model of business for cyber criminals.

Figure 1 shows the more common data security concerns that cloud users face daily,

in where the five highest concerns are data-related with exception of Compliance and legal is-

sues. According to Cloud Security Alliance (2013), some of the top threats are: (i) Data Breach,

(ii) Data Loss, (iii) Account Traffic Hijacking, and (iv) Denial of Service (DoS). For example,

Snapchat (SNAPCHAT, 2015), the application to share data that are self-destructed in time, suf-

fered a data breach of approximately 200 000 user private photos because of a vulnerability

in the third-party client application called SnapSaved1, so that all stolen information was pub-

lished on Internet forums such as 4chan2. Another similar case of data breach was targeted to

Play Station network, whose damage was estimated to $4.6 billion (LIBERTY GLOBAL, 2012,

p. 27). On the other hand, recently Google announced data loss after lightning struck near

one of Google’s data centers affecting permanently some of their servers (GOOGLE. . . , 2015),

although this only affected a small portion of users, we must consider making backup of our

data as well. Regarding the account hijacking, we have the cases of the Cross-Site Script-

ing (XSS) bug found in Amazon that allowed attackers to hijack credentials from the website in

2010, and the leak of 6.5 millions of LinkedIn passwords in 2012 (DARK. . . , 2014). And with

regard to DoS attacks, businesses are at an high risk of being extorted by large criminal groups

that by using of network flood attacks they extort their victims forcing to pay large amount of

money (FBI. . . , 2015), e.g., the Distributed DoS for Bitcoin (DD4BC) criminal group has been

rapidly increasing both the frequency and the scope of its DoS extortion attempts, having as

target online casinos, banks, and trading platforms (ARBOR SERT, 2015). These are just some

of many threats whereby most organizations face daily.

New container-based technologies with high degrees of isolation and efficiency

have emerged and allow to combat some of these security problems. Those new schemes can

avoid certain problems around the isolation of the virtual machines, but are helpless in face of

other significant threats such as DoS or password guessing attacks. The main difference between

containers and traditional virtualization is that the former runs in a single process namespace,

sharing the same kernel of the main operating system (SOLTESZ et al., 2007). The best known

1 First report of the data leak to Snapchat. Source: “http://www.businessinsider.com/snapchat-hacked-the-
snappening-2014-10/”

2 An image-based bulletin board where anyone can post comments and share any kind of on-line images as well
as post comments. Source: “http://www.4chan.org/”

Chapter 1. Introduction 17

Figure 1 – Cloud computing top threats. Adapted from data available in (CLOUD SECURITY
ALLIANCE, 2015, p. 10)

technologies based on containers include CoreOS, OpenVZ, Docker, among others. Docker has

become the most popular one and delivers containers to isolate applications with high network

throughput when compared to KVM (HUSSAIN, 2014). Figure 2 shows the network perfor-

mance comparison between a native machine, docker container, and KVM measured using the

iperf tool.

Despite the improvements in virtualization technologies, new attack techniques

continue to appear in virtual environments, so that security devices such as firewall are no

longer sufficient, due to new methodologies of the attackers, which have been improved greatly,

e.g., the actual threats are mostly directed to the network application layer, being often caused

by malicious insiders (INFORMATION SYSTEMS SECURITY, 2007).

Intrusion Detection Systems (IDSs) are security devices whose function is to mon-

itor, analyze and detect anomalous traffic directed to the application and Internet layers. How-

ever, they are not able to prevent attacks, but only to alert the existence of them. Intrusion

Prevention Systems (IPSs) together with IDSs filter malicious packets in a proactive or reactive

way. Both working together are known as Intrusion Prevention and Detection System (IDPS)

because of sometimes IPSs only function as IDSs.

For example, Snort (SNORT, 2015) is a typical IDS able to be configured as an

IPS to prevent attacks using the method of Deep Packet Inspection (DPI). However, Snort has

certain performance limitations in high speed networks such as dropping packets or slowing

down the traffic (MEHRA, 2012).

Chapter 1. Introduction 19

receive data from other security sources.

Recently, Software-Defined Networking (SDN) (KREUTZ et al., 2015) has emerged

as a new paradigm in networking, providing a clean and programmatic separation of the control

and data planes. The OpenFlow protocol (FOUNDATION, 2014a) is the best known program-

ming interface to allow such separation of planes, enabling direct data plane device programma-

bility, not available before in a standardized, vendor-independent way.

In SDN, network switches become simple forwarding devices and the control logic

is implemented in a logically centralized controller. Nevertheless SDN security needs to be built

into the architecture to protect the availability, integrity, and privacy of all connected resources

and information, as well as to be delivered as a service (SCOTT-HAYWARD et al., 2013).

In the last years, many research projects related to SDN emerged as a result of the

flexibility in the SDN architecture, building applications in order to execute instructions to the

data plane and to reconfigure the flow tables of the switches that were affected.

1.1 Vision: Towards more secure and collaborative SDN

The methodologies to detect attacks using conventional IDS rules may help to main-

tain an organization protected once, but not necessarily will show good results. This is due to

the fact that the threats change over time. For example, a malware located at the blacklists of

security organizations, may change slightly its behavior in order to bypass the IDSs. In this

case, the traditional sensors will not be able to properly detect that attack. However, sharing

threat information between trusted organizations may help to resolve the weaknesses in the

IDSs. Therefore, changing the security model from reactive to proactive with CTI would allow

the organizations to understand the behavior of the attackers and develop countermeasures to

filter those attacks before they are executed.

Relying only in the blacklists provided by security organizations may be a problem.

This is because the shared threat information must be relevant, actionable3 and valuable for

the organization; otherwise it would not be useful (ISIGHTPARTNERS, 2014). The advantages

of using the CTI is not only to filter many threats, but also to know who are the adversaries,

how they operate, and what are the next steps to protect the networks against those attacks.

If the organizations take advantage of the SDN network abstraction layer and the cyber threat

intelligence framework, they could program Application Programming Interfaces (APIs) that

allow them to generate countermeasures against attacks such as DDoS by interacting with the

underlying data plane devices. Our vision is that combining the CTI with SDN would allow the

protection of data in new cost-effective ways compared to traditional IDS-based solutions and

more efficient detection of attacks using the intelligence provided by reliable organizations.

3 Data that must be specific enough to trigger some type of response

Chapter 1. Introduction 20

1.2 Research Objectives and Contributions

In this work, we propose IntelliFlow, an intelligent system of intrusion detec-

tion and prevention, that acts against different types of known threats in a proactive or reactive

mode. IntelliFlow aims at taking advantage of Cyber Threat Intelligence (CTI) systems com-

bining known malicious information and IDS technology to create new security rules that allow

blocking malicious traffic by programming OpenFlow-based switches of the SDN architecture.

To this end, the objectives of the proposed IntelliFlow architecture include:

∙ Leverage Collective Intelligence Framework (CIF) to add security service to SDN.

∙ Integrate the Bro’s Intelligence framework to acquire intelligence from reliable sources.

∙ Evaluate the IntelliFlow architecture for different scenarios, validating it with a proof-of-

concept implementation and experiments to assess effectiveness and performance.

1.3 Text Structure

This dissertation is organized as follows: Chapter 2 introduces the literature review

and the related works. Chapter 3 gives the overview of the whole IntelliFlow architecture and

the intelligence framework. Chapter 4 describes the proof of concept and the experimental eval-

uations, and Chapter 5 present the conclusions of the dissertation.

21

2 Literature Review

Initially, security devices were mainly intended to protect the IP layer against a set

of well-known attacks. Over time, these devices were not able to combat more advanced threats

directed to the transport and application layers. New detection techniques and devices were

built to counter these types of attacks, e.g., Intrusion Detection System (IDS). These security

devices often work together with firewalls to block a lot of threats found on the Internet, acting

as Intrusion Prevention and Detection System (IDPS).

Recently, more sophisticated ways to combat several threats have emerged, e.g.,

intelligence frameworks, stateful protocol analysis, statistical-based detection, and so on. In the

following sections, we describe the Cyber Threat Intelligence (CTI), and how these security

intelligence data can be used to filter many attacks. Finally, we discuss various advantages

related to SDN, and a brief description of the mode of operation of SDN applications.

This section covers the main relevant concepts behind our research proposal. The

first part deals with network monitoring by using Intruder Detection System such as Bro-IDS.

The second discusses the use of Cyber Threat Intelligence to share valuable information be-

tween the organizations. Then, finally, we talk about the concepts related to software defined

network as well as the different types of SDN applications.

2.1 Intruder Detection System

Intrusion Detection System (IDS) is a network device that allows to monitor, an-

alyze and detect possible attacks on the network infrastructure in terms of confidentiality, in-

tegrity and availability (LIAO et al., 2013). These devices can be implemented in hardware

or software. However, IDS only reports suspected events, without guaranteeing an immediate

response to a specific attack.

Intrusion Prevention System (IPS) not only automates the intrusion detection pro-

cess, but also filters malicious packets to block the source of the attack (SANS, 2004). Thus, an

IPS extends the IDS capabilities, so both work as a single system known as Intrusion Preven-

tion and Detection System (IDPS). Besides detecting threats, IDPS also fix with a vulnerability,

however they are unable to fix Distributed Denial of Service (DDoS) attacks. Those may only be

tackled with a complex set of measures involving the end-user provider’s set of routers. These

DDoS attacks are attempts to make an online service unavailable to its intended users.

Chapter 2. Literature Review 22

2.1.1 Intrusion Detection Methodologies

According to (LIAO et al., 2013), the Intrusion Prevention and Detection System

(IDPS) methodologies can be classified into three different types: anomaly-based detection,

signature-based detection and stateful protocol analysis. Most of these IDPS devices combine

these methodologies, in order to provide a more accurate analysis.

Anomaly-based Detection (AD)

This type of detection identifies events which do not agree with an expected pattern

or that are unusual, e.g., DoS or brute-force attacks. It usually works through the comparison

of profiles that represent a normal behavior against observed events, in order to identify some

type of anomaly. This normal behavior refers to an initial profile performed through an analysis

of the applications, network connections, computers or system users. By monitoring of the

network in short periods of time, profiles of some applications are developed to give evidences

of any unusual activity occurred in a specific time, e.g., tries of access to a malicious portal from

the internal network during a certain time of day. To counter anomalous threats, administrators

often generate statistical reports comparing the actual activity with the threshold of a normal

profile.

Anomalous detection works with two types of profiles: static and dynamic. The

static profiles are not usually changed, unless they are manually modified to generate news

profiles; therefore, sometimes they may become inaccurate, so they’ll need to be updated even-

tually. Unlike the static ones, the dynamic profiles are updated constantly as required; however,

they are exposed to attacks from malicious users. For example, an attacker may perform a pas-

sive scanning on different time points, slowly increasing the frequency of its attack. As a result,

the IDPS relies on this activity and it could be included on its profile. Another disadvantage is

the generation of many false positives because of a complex network environment where the

profiles were created incorrectly.

Signature-based Detection (SD)

This other type of detection compares each network’s event with patterns or strings

located at a local database of threats, thus avoiding attacks from known sources, e.g., a mali-

cious e-mail with an attachment file called money.exe and a subject “Get easy Money!” may be

tentative for users downloading and executing this virus; another example consists in receiving

brute-force attacks from scanner networks to a sever’s port 22. However, this type of detection is

ineffective at detecting unknown threats if the methodology is not properly used. For example,

if a malicious file was recognized as explore.exe by many signatures, an attacker may change

the name of the file to explore1.exe, causing the signature to search incorrectly for the file,

since it would be looking for its former name and not the current one. On the other hand, sig-

natures also lack the ability to understand why some application service stopped working. This

Chapter 2. Literature Review 23

is also known as knowledge-based detection. However, despite the disadvantages mentioned

above, the signature-based detection is greatly improved when used together with cyber threat

intelligence.

Stateful Protocol Analysis (SP)

This methodology compares profiles previously created for each protocol with ob-

served events, identifying some types of unusual activity on networks. It also natively decodes

any application-layer protocols, tracking the state of the whole network, e.g., pairing requests

with replies.

Unlike anomaly-based detection, it depends on vendor-developed global profiles to

specify protocols being used; For instance, when an user tries to access a TELNET service, the

session initially provides helping information or only asks for username and password; then,

depending on the code type that appears after entering the credentials, the IDPS may know if

the access was successful or not. Therefore, in the case of access refused repeatedly, it would

be considered suspicious.

Table 1 makes a comparison based on advantages and disadvantages of each intru-

sion detection methodology mentioned above.

In (SCARFONE; MELL, 2007), the authors present an advancing guide on IDS,

evaluate the different capabilities of the intrusion detector and provide recommendations for

designing, implementing, configuring, securing, monitoring, and maintaining of the IDSs.

2.1.2 Intrusion Detection Types

The IDSs are divided into different types of technologies, depending on the event

they are monitoring and on how they are deployed. In the next sections, we go through the four

most well known IDS types:

Network IDS (NIDS)

The NIDS is a network security system that monitors and analyzes network traffic

in order to identify suspicious activities. This security device captures packets from a mirror

interface using the Libpcap library and examine packets in real time. Figure 3a shows how

NIDS works together with the firewall to block attack attempts from the Internet.

Host IDS (HDIS)

Unlike NIDS, HIDS only monitors individual hosts. It is commonly deployed on

critical hosts, e.g., public servers containing sensitive information. Figure 3b shows how IDS

works on particular hosts inside of the internal network.

Chapter 2. Literature Review 25

(a) Wireless IDS (b) Network behavior analysis

Figure 4 – Wireless and NBA IDPSs Types

Wireless IDS (WIDS)

WIDS monitors, analyzes and identifies certain malicious traffic on the wireless net-

work by capturing anomalous data coming from Access Points. However, they can not identify

malicious events on the application layer or protocols such as TCP or UDP, e.g., Packet injection

Aireplay-ng. Figure 4a shows a scenario of intrusion detection system with two mobile devices

connected to the wireless network. We note that the IDS device receives data from the access

point and then sends an alert message in the case of any anomalous threat being detected.

Network Behavior Analysis (NBA)

This system inspects monitored traffic in order to identify threats generating anoma-

lous traffic flows, such as DDoS, malwares, policy violations and so on. Its scope is on the or-

ganizational’s internal networks and sometimes also on the external networks. In Figure 4b, we

note that Network Behavior Analysis (NBA) provides capabilities to monitor the whole network

by analyzing data from switches or routers.

2.1.3 Detection Approaches

As the detection methodologies are becoming more complex, they are divided in

three subcategories including: computational approach, artificial intelligence and biological

concepts. However, the analysis of these approaches is of great complexity. Therefore, (LIAO

et al., 2013) presents a classification of five subclasses with an in-depth perspective on their

characteristics.

Chapter 2. Literature Review 26

Statistical-based Detection

This approach works by analyzing data traffic in real time and processing the infor-

mation with machine learning algorithms, in order to look for anomalies in established traffic

patterns. For instance, each event of the network has a particular anomaly’s level. If in a specific

moment, a certain anomaly is higher than the allowable threshold, then the IDS device would

generate an alert (FARSHCHI, 2010).

One of the advantages of this detection approach is the possibility to detect zero-day

attacks by sending alerts when there is an unusual activity in the network. Another noticeable

advantage is the detection of passive attacks, such as porn scanner attacks. Additionally, there

is no need to update signatures. However, the approach completely relies in learning patterns

generated by its own algorithms.

Pattern-based Detection

This approach monitors packets on the network and compares them with a database

of known attack patterns of threats. It consists of five modules: capture module, decode mod-

ule, detection module, known attack pattern module and action module (KSHIRSAGAR et al.,

2011). The first captures raw data of the internal network, the second decodes that data, the third

detects attacks from known sources, the fourth is a database in which the information on found

attacks created by the capture module is stored. Finally the fifth performs appropriate actions to

filter these attacks.

Rule-based Detection

This approach uses the anomaly and signature-based methodologies to decide if a

given behavior is considered an intrusion on host or network scenarios. The detection approach

detect unknown or known threats with a high performance of detection. The approach works

through the observation of events in the system, applying rules leading to a decision with regards

to a given pattern of activity suspicious (YANG et al., 2013).

State-based Detection

With the state-based detection, anomaly scores are computed to define the current

state of an associated event to the network. This approach only uses the anomaly detection to

determine an intrusion on host or network environments with a high detection performance. The

original idea behind state-based anomaly detection was that the detector would return a large

anomaly value when it found a missing transition, and return zero otherwise. But this is not

necessarily the best way to present the results of the detection, since users may want to adjust

the detector’s sensitivity. The detector should be able to return a number between zero and one

that somehow measures its confidence whether an intrusion is happening (CARCANO et al.,

2010).

Chapter 2. Literature Review 27

Heuristic-based Detection

This type of heuristic detection is also known as anomaly-based. It consists in build-

ing a model of acceptable behavior with certain exceptions. Its approach is used for efficient

detection of intrusion. For instance, when an administrator designs a determined behavior as

acceptable, the heuristic IDS will will also consider that behavior acceptable. Heuristics work

similarly to a common IDS. The IDS learns over time what types of traffic patterns are consid-

ered normal for your network. The heuristics feature then watches for anomalies in the traffic

pattern (SHAH, 2001).

In Table 2, we have a comparison between each detection approach according to its

methodology, detection type and detection of attack.

Approach Detection meth. Detection type Detection of attack
AD SD SP

Statistic-based X X - HIDS and NIDS Known and Unknown
Pattern-based - X - HIDS and NIDS Known
Rule-based - X - NIDS and WIDS Known
State-based X X X HIDS Known and Unknown
Heuristic-based X - - NIDS Unknown

Table 2 – Intrusion Detection Approaches

2.1.4 Open Source IDPS tools

Throughout the years, attacks have been improved with the use of more sophisti-

cated strategies, becoming more dangerous. Therefore, many efforts have been made by compa-

nies in order to improve threat combat technology, by developing security devices with evolving

strategies to block attacks. Currently, most companies use commercial hardware as security de-

vices, e.g., Cisco (CISCO. . . , 2015) offers an anomaly detection module against DDoS attacks,

IBM (IBM. . . , 2015) monitors and detects intrusions by extra sensor modules for the prevention

of attacks and blocking of packets.

On the other hand, the most famous open source IDSs are: snort (SNORT, 2015),

suricata (SURICATA, 2015) and bro (PAXSON, 1999). We will explain each of these open

source security devices in detail.

Snort

Snort is an open and free intrusion detection system capable of performing real-time

analysis and suspicious events logging. The packets are analyzed using signature databases or

anomalous detection methodologies.

This sensor works in three modes: sniffer, packet logger, and network intrusion

detection. The sniffer mode reads all allowed network packets to identify troubleshooting prob-

Chapter 2. Literature Review 28

lems, then displays them on a console. The packet logger mode stores analyzed packets into

a local directory. The last mode monitors the network traffic in real time, analyzing it regard-

ing rules previously defined by the user. Therefore, Snort will perform actions based on what

anomalous events it has detected before.

The architecture of Snort is based on four main components: Packet decoder, Pre-

processors, Detection engine, Alert generation. The packet decoder module filters packets from

any network for preprocessing by using AF_Packet module, and then sends the preprocessed

packets to the detection engine that, by using external rule set, generates alerts that are exported

to the Alert database module. Recently, Snort replaced its packet capture framework from Libp-

cap to AF_Packet, thus the performance was increased to 500MBit/sec (KHALIL, 2015). One

advantage is that Snort is supported by hardware platforms and operating systems. However,

Snort does not support load balancing across multiple CPUs, and it drops packets exceeding the

maximum capacity of a single CPU.

Suricata

Suricata is another open source, high performance intrusion detection system. This

technology also works as IPS and network security monitoring engine, similar to Snort. Unlike

Snort, Suricata supports both AF_Packet and PF_Ring for high-performance packet capture

and it also uses the standard capture PCAP. One advantage is that it is highly scalable, sup-

porting multi threated. Therefore, Suricata can run one instance and it will balance the load

of processing across all processors used. However, similar to Snort, Suricata only works with

signature-based rules.

Bro

Bro is a powerful network analysis framework with more advanced features than

other intrusion detection systems. For instance, it offers a policy script interpreter layer that ex-

ecutes a set of event handlers written in Bro’s own language; This permits taking actions when

attacks are found by the event engine, applying different policies such as dropping or redirect-

ing malicious packets. However, Bro still isn’t widely used by companies, because the learning

curve for implementing Bro can be steep for most users. The new version Bro 2.3 uses PF_Ring

for the line rate packet processing of 1 Gbps of transmission to 10Gbps of reception. Bro can

be configured for both NIDS or HIDS, inspecting all packets with its event engine. One of its

main advantages is that Bro supports intelligence from external sources using its intelligence

framework. The main goal of the framework is consuming data processed by security’s organi-

zations. The intelligence data can be loaded by an input framework that allows reading text files

with a defined format.

In Table 3 we make a comparison between these three most well known IDS. How-

ever, we chose Bro as our IDS device for testing, due to its flexibility in the description of its

Chapter 2. Literature Review 29

policies and supporting data intelligence.

Description Snort Suricata Bro
Multi-thread X X

Native IPS X

Own Language X

Operating system compatibility X X

High-speed monitoring X

Large user community X

Intelligence X

Table 3 – Comparison between IDPS solutions

2.2 Cyber Threat Intelligence

There are various concepts related to Cyber Threat Intelligence (CTI) because of the

emerging space in which many organizations work to offer reliable data processing. According

to Gartner (MCMILLAN, 2013), CTI is a recent methodology of evidence-based knowledge

that organizations employ to identify and successfully respond to a cyber attack. It includes

context, mechanisms, indicators, implications and actionable advice on emerging threats to

assets that can be used to inform decisions related to the subject’s response to the threat. In

addition, the FBI (FEDERAL. . . , 2015) considers that intelligence is the information that has

been analyzed and refined, so that it is useful to decision making on potential threats to the

information. Waltz (WALTZ, 1998) defines the intelligence as the information and knowledge

about an adversary, obtained through observation, investigation, analysis, or understanding the

same.

However, the security informations published on the Internet often are prone to

false positives because they are equating CTI with raw data information. For instance: a bad

IP address coming from an unreliable blacklist could result in an indicator wrongly employed

by organizations. Therefore, we believe intelligence is not simply any raw data: it is infor-

mation that has been analyzed and must be actionable; otherwise the information would no be

useful for organizations. In Table 4, we compare intelligence and information.

Intelligence Information
- Processed, sorted data. - Any raw and unfiltered data.

- Carefully analyzed by security analyst.
- Analyzed without a clear understanding of
security.

- Data are found from reliable sources. - Data are found from any unreliable source.

- Accurate, relevant, actionable and valuable.
- Data doubtfully reliable, incomplete or irrel-
evant.

Table 4 – Information versus Intelligence

Chapter 2. Literature Review 30

The techniques of cyber attackers have evolved during the last years, by using new

resources and developing new attack methods (FARNHAM; LEUNE, 2013). Unfortunately,

many intrusions remain undetected and, even in the case of them being detected, they will often

remain unpublished. This facilitates for malicious users to continue performing the same attack

patterns without disruption.

On the other hand, some organizations offer different types of intelligence, or even

most of them do not offer the required intelligence value; instead, they only provide some types

of raw information. Thus, a bad analysis of this information would generate any data but not

necessarily intelligence. Consequently, many false positives emerge caused by this misunder-

standing of the differences between raw information and intelligence.

To produce intelligence, a certain correlation is performed on the gathered data,

identifying malicious users and determining a confidence rating for each one of them; For in-

stance, a high confidence level, nearly 95% for a given IP address guarantees that such value

comes from a malicious user, and a low level confidence, close to 45%, can not assure a value

actually comes from a malign source.

Because of the rapid spread of threats, the value of CTI defined should be imme-

diately used to be analyzed at the time that the source of the attack was found. If CTI is not

used in time, its value can converge to zero within of few hours; For example: When an in-

stitution identifies some type of attack and successfully respond using the correct mitigation

procedure, it acquires an useful value, and this information can be shared within a set of trusted

organizations. Thus, another institution facing a similar problem would be able to rapidly de-

ploy countermeasures based on the experience acquired by another, thus intelligently preventing

attacks (JOHNSON et al., 2014).

2.2.1 Threat Intelligence Features

As of today, most organizations still rely on indicators found on the Internet. Though

this kind of data may be useful, it often does not represent a significant information value for

the organization. So a few years ago, the concept of intelligence emerged as a new security

space in which organizations could use data shared by other trusted organizations. Accordingly,

intelligence has seen a significant growth of its relevance in the last years. However, many

definitions recently appeared to define cyber threat intelligence, creating misunderstandings

between network administrators, whereby they often use raw data instead of intelligence. For

instance, security information provided by social network could be considered useful for some,

but not for others, though if the information has a considerable value for the organization, it is

named as intelligence. We base our definitions of intelligence through their five main features:

Chapter 2. Literature Review 31

Timely

The intelligence value is very high when it is used quickly. If it is used after some

days or even hours, its value could assume zero rapidly. Thus, if not employed in a reasonable

period of time, intelligence may become obsolete. On the other hand, if intelligence is used

within a acceptable time-span, it provides enough opportunity for an organization to anticipate

threats or prepare for an effective response.

Relevant

The intelligence should be applicable or useful for the organization. If it is not

relevant, it wont be considered intelligence, despite any other factors.

Accurate

The intelligence as value should be correct, complete to avoid false positives, false

negatives or irrelevant data. If these features are not fulfilled, the result could be a inappropriate

response or a false sense of security.

Specific

The level of understanding of the intelligence must be optimal, allowing the recip-

ient a good understanding about how the threat was detected and how the process was carried

out.

Actionable

The intelligence must be sufficiently clear to stimulate some response. It should

identify actions so organizations can counter threats or develop a suitable response..

2.2.2 CTI Methodologies

According to (FARNHAM; LEUNE, 2013), CTI can be classified in Strategic

or Tactical. Strategic focuses on the adversaries’ motivations in executing attacks. Tactical

is the ability to represent the intelligence in understandable terms. Its components are Tactics,

Techniques and Procedures (TTP) and Indicator of compromise (IOC). TTP represents the be-

havior of the attackers including an understanding of such behavior along a time-frame. The

IOC (GRAGIDO, 2012) is an actionable data type observed on a network or computer, cate-

gorized by a certain confidence level. These indicators are classified in various types of CTI,

e.g., IP Address, Domain, URL, Files Hashes, Certificate Hashes, EMAIL, among others. We

describe the most commonly used IOC by adversaries, which are indicators we will use for

our experiments. For example: the IP indicators are malicious servers from the Internet that are

Chapter 2. Literature Review 32

represented by IP address; the Domain indicators are websites with malicious code such as mal-

ware, web pages with exploit code, web pages with driveby downloads (XU et al., 2014); and

finally the URL indicator, unlike of Domain indicators, it contains malwares on the allocated

website, however this indicator’s type blocks the URLs with malwares without needing to block

the entire domain itself.

2.2.3 Cyber Threat Intelligence Sources

SANS (FARNHAM; LEUNE, 2013) divides CTI into three categories: internal,

community and external.

Internal

This CTI refers to the internal process realized within the organization, which in-

cludes network servers such as firewalls, IPS as well as softwares like anti-viruses. These reports

comes from forensic analysis and are not often publicly available.

Community

The community category is often a closed group of organizations that share pro-

cessed and analyzed information through their trusted relationship. There are several of these

groups, e.g., REN-ISAC1 that promotes cybersecurity operation protection and response within

the research and higher education (R&E) communities.

External

This last category consists in external intelligence sources provided by private and

public organizations. The public sources are available to anyone interested in using it as input

source for their security devices. For instance: malware domains provide a list of malicious

domains found on the Internet, with lists regularly updated. The private sources are only avail-

able through payment, so it is important to subscribe to a reliable organization. For instance,

Emerging Threats offers subscription services for IDS rules and IP reputation.

2.2.4 Share Threat Intelligence

Currently there is not a standard mechanism to share intelligence between or-

ganizations, which makes the communication more complex between them. Most of these

organizations still share their data using CSV files and web servers with basic authentica-

tion (YOUNG, 2013). Others organizations have been using SMTP with GPG, which requires

previous authentication to validate messages sent to a secure channel. For this reason, different

1 Research and Education Networking Information Sharing and Analysis Center. Source:“http://www.ren-
isac.net/”

Chapter 2. Literature Review 33

format exchange mechanisms appeared as a standard for that the organizations can share data

between themselves.

Common Intrusion Detection Framework (CIDF)

This methodology provides a structure similar to Location Identifier Separation Pro-

tocol (LISP) format to express information about events, attacks, and responses. It is used

like protocols to interchange intrusion detection information. However, it has become obso-

lete(IETF, 1998).

Incident Object Description Exchange Format (IODEF)

This methodology provides a way to share information between CSIRTs. The lan-

guage is based on XML structures. However, this framework has been interrupted and then

recontinued by Format for Incident Information Exchange (FINE) sponsored by IETF. The in-

terchange of information after the incidents are used to prevent future attacks (DANYLIW et

al., 2007).

Intrusion Detection Message Exchange Format (IDMEF)

Unlike IODEF, this methodology defines the data format for the interchange of

information between IDSs. There are two protocols used to transfer the data between them.

The first Intrusion Alert Protocol (IAP) based on HTTP, and the second Intrusion Detection

Exchange Protocol (IDXP) (DEVARM et al., 2007).

Extended Abuse Report Format (X-ARF)

This methodology reports incidents via e-mail about network abuses. However, X-

ARF is not able to add multiple security events in a single message, and it is only allowed

messages with a specific target (SHAFRANOVICH et al., 2010).

2.2.5 Shared Threat Frameworks

There are multiples CTIs frameworks as well as security tools in order to combat

the cyber threats. However, they would not be useful if the inteligence is not relevant, actionable

and valuable for the goals of the organizations. In the next section we present the most important

frameworks that offer intelligence through a shared channel.

Open Indicators of Compromise (OpenIOC)

Initially introduced by Mandiant (MANDIANT, 2015), then released as an open

standard. OpenIOC(OPENIOC, 2013) is a open framework for sharing threat intelligence. Ope-

nIOC is also composed by a community that provides advanced threat detection capability.

Chapter 2. Literature Review 34

One of the advantages of OpenIOC is its capability to offer the creation of its own

custom sets of indicators, so that organizations can describe technical characteristics to identify

either known threats, or an attacker’s methodology, or other evidences of compromise. Because

sophisticated threats require sophisticated indicators, OpenIOC also provides advanced threat

detection by using extensible XML schema.

Vocabulary for Event Recording and Incident Sharing (VERIS)

The VERIS framework (VERIS. . . , 2015) provides a common language for defining

and sharing incident information. One of the advantages of VERIS is that other organizations

can contribute data in a standard format to be used as a larger data set for deeper analysis.

According to (FARNHAM; LEUNE, 2013), VERIS can be divided into five sections: victim

demographics, incident description, discover & response, and impact assessment. Each one of

them has multiple elements with specific data types and variable names.

One of the advantages of VERIS is to be part of a community that adds intelligence

into a database available from Verizon (VERIZON, 2015). VERIS also is able to store data in a

custom format.

MITRE Standards

MITRE (MITRE. . . , 2015) makes use of three standards to complement the needs

of the CTI. The first is CybOX (CYBOX, 2015), a standardized schema for the specification,

capture, characterization, and communication of events that are observable in the operational

domain. The second is STIX (STIX, 2015), a structured language to represent the full range

of cyber threat information, which consists of 9 key constructs and the relationships between

them: observables, indicators, incidents, adversary TTP, exploit targets, courses of action, cam-

paigns, and threat actors. The latest is TAXII (CONNOLLY et al., 2014), a Trusted Automated

eXchange of Indicator Information, which defines a set of services and messages exchanges

for exchanging cyber threat information; In addition it also supports multiple sharing models to

push or pull transfer of CTI data.

Open Threat Exchange (OTX)

OTX (OTX, 2015) is widely considered the world’s first truly open threat intel-

ligence community that enables collaborative defense with actionable, community-powered

threat data. OTX is a centralized system for collecting intelligence, that is available at (ALIEN-

VAULT, 2015). The intelligence is provided by AlienVault and interoperates with Open Source

Security Event and Information Management (OSSIM) system to update the intelligence to

OTX.

Chapter 2. Literature Review 35

Collective Intelligence Framework (CIF)

CIF is a cyber threat intelligence management system (YOUNG, 2013) that com-

bines multiple known malicious threat informations from trusted organizations. CIF was devel-

oped by REN-ISAC2, and supported by a community where many developers contribute offer-

ing improvements in the system. One of the most advantageous features of CIF is its capability

for sharing threat intelligence data between multiple reliable organizations and general users,

through a client/server system. The IOC used by CIF are IP addresses, domains and URLs. CIF

is also able to export intelligence for specific security tools, such as Snort or Bro IDS. Finally,

CIF supports an intelligence framework to add more reliable data from trusted organizations.

Therefore, we can conclude that the intelligence frameworks aforementioned offer

interesting features to be used in CTI. In Table 5, we make a comparison between the multiple

frameworks, taking into consideration several factors such as the capacity to import and export

IOC, structured incident data in a standard format, among others features of the intelligence

framework.

Intelligence Framework OpenIOC VERIS MITRE OTX CIF
Import and export IOC from/to
other systems in a standard format

X X X

Import and Export structured inci-
dent data from/to other systems in
a standard format

X X X

Import, Export, Query and Man-
age CTI through CLI

X

Enforce data sharing based at-
tributes attached to CTI data

X

Support CIA when sharing data X X

Export and select data based on
creation dates of CTI data

X

Automatize to import and export
CTI data

X

Table 5 – Comparison between intelligence frameworks

2.3 Software Defined Networking (SDN)

Network architectures and devices are experiencing a significant growth in their

complexity due to requirements of modern deployments, cost pressures at buying and opera-

tion time, and new demands of Cloud-scale virtualized data center infrastructures (NADEAU;

GRAY, 2013). Recently, Software-Defined Networking (SDN) (KREUTZ et al., 2015) has en-

tered the networking scene as an architectural effort based on four main principles. Firstly,

control and data planes are decoupled. Secondly, forwarding decisions are no longer based on

2 Research and Education Networking Information Sharing and Analysis Center

Chapter 2. Literature Review 39

2.4 Related Work

In (LOPEZ et al., 2014), the authors of BroFlow propose a system capable of react-

ing against DoS attacks in real time, combining an intruder detection system and an OpenFlow

application programming interface. BroFlow is an extension of the Bro architecture (PAXSON,

1999) with two additional modules, one for the security policies and the other for message coun-

termeasure. If a threat is found, POX (NOX, 2015) application either drops packets to eliminate

malicious events or uses an output to forward packets to a specific target. According to (FEL-

TER et al., 2014), one of the disadvantages of BroFlow is to use hardware virtualization based

on XEN instead of an operating system-level virtualization. Another is the use of reactive ap-

plications to counter DoS attacks, so it does not ensure effective response against that type of

attack.

Our work is different because we propose an intelligent mode to drop known threats

using proactive applications in the SDN environment using multiple isolated Linux systems (FEL-

TER et al., 2014).

In (LOBATO et al., 2014), the authors propose an elastic architecture for intrusion

detection and prevention. It uses certain mechanisms to detect anomalies on an intra-domain

network with multiple virtual networks. They employ Deep Packet Inspection (DPI) for analyz-

ing packets as well as the balance of traffic directed to virtual machines. These virtual machines

perform intrusion detection and take action in case of malicious activity. By mirroring switch

ports, traffic is forwarded both to the original destination and to the IDS which is not directly

in the flow path. When the IDS discovers an attack, an alarm is sent to the controller indicating

the reconfiguration of the flow table. Similar to (LOPEZ et al., 2014), the work environment

is based on hardware virtualization instead of containers and does not focus on preventing the

Distributed Denial of Service (DDoS) attack. Our work scenario is not only intended to an

intra-domain environment, but also to an inter-domain, and makes effective use of cyber threat

intelligence as an important tool for defense against malicious users on the Internet.

SnortFlow (XING et al., 2013) is one of the early works on IDS and SDN, in order

to build a flexible IPS system in cloud virtual networking environments. SnortFlow is based on

the performance evaluation of the virtual machines, reconfiguring the network in case of any

abnormal activity. However, it only focuses on an intra-domain environment, with a snort agent

acting on the domain of the XEN virtualization platform.

Our proposal uses Bro (PAXSON, 1999) instead of Snort (SNORT, 2015) because,

Bro has the ability to run in high-speed environments and allows exchanging information in real-

time with other security applications (MEHRA, 2012), e.g., threats intelligence sources. Thus,

IntelliFlow takes advantage of Bro design’s ability to integrate with the intelligence framework,

in order to increase the database with sophisticated security rules.

SDNIPS (XING et al., 2014) is an IPS based on Snort and Open vSwitch (OVS).

Chapter 2. Literature Review 40

SDNIPS’s authors compare a SDN solution with the traditional IPS approach and shows that,

using SDN, the network reconfiguration designed by the controller enhances the prevention

flexibility. The authors demonstrated the SDN feasibility and efficiency over traditional ap-

proaches. However, different from our proposal, the authors use Snort as IDS. We believe that

IntelliFlow is a better alternative because it works in a proactive way, achieving optimal results

in terms of feasibility and efficiency over other similar proposals.

IPSFlow (NAGAHAMA et al., 2012) is a solution of IPS based on SDN/OpenFlow

with automatic blocking of malicious traffic. One of its advantages is the selective and dis-

tributed capture of traffic in the switches for data analysis by one or more IDSs. IPSFlow uses

an application named IPSFlowApp that allows communication with the controller of actions to

be taken. The main drawback of the proposal is the time taken to detect some attacks in the

network, since each IDS waits the confirmation of the controller to continue sending packets,

as it does not mirror interfaces. Thus, some mechanisms are required to send a copy to the IDS

for further analysis. IntelliFlow uses mirror interfaces to capture packages of the network in

search of malicious activity, then these packages are analyzed by Bro IDS and sent to the SDN

application.

Radware (RADWARE, 2015) is a commercial SDN application, which improves

the security, performance and availability by optimally forwarding traffic to deliver network

services. Their applications are dedicated to specific hardware platforms and support network

throughputs up to 40Gbps. The main disadvantage of this system is the high cost of purchasing

one of these products, e.g., Defense Flow and Defense Protection. Another drawback is the time

taken for learning to properly use the tool. Our proposal uses a simple network architecture

based on open source and proactive applications using SDN.

In (FELTER et al., 2014), the authors propose a performance comparison between

the traditional virtualization technology (Virtual Machines) and Linux Containers (LXCs). The

main difference is that the VMs run a full Operating System on a virtual hardware. Unlike VMs,

the containers modify an existing Operating System (OS) to provide extra isolation. The authors

conclude that containers such as docker (DOCKER. . . , 2015) have equal or better performance

than VMs. For that reason, we use Docker in our work environments.

In (BRAGA et al., 2010), the authors propose a lightweight procedure to extract

feature information needed for traffic analysis in order to detect DDoS attacks. They use SDN

with OpenFlow to achieve low overhead. IntelliFlow offers better methods for DDoS attack

detection and a lower rate of false positives compared to other proposals.

SciPass (BALAS; RAGUSA, 2014) proposes an OpenFlow application to transport

“clean” data such as large scientific data and send it to its destination without going through

firewalls and other security devices that introduce performance hits. SciPass improves the data

transfer and reduces the load on network infrastructure. Evaluations are performed taking into

account proactive and reactive modes. The authors compare the throughput of the proposal with

Chapter 2. Literature Review 41

the conventional firewall method in the proactive mode. The results were such that the reactive

bypass performance doubled throughput of firewall in 250ms, while with an equivalent through-

put the transfer performance achieved 1.5s without a firewall. The disadvantage of SciPass is

that proactive rules are manually created, according to the attacks on the network. IntelliFlow

uses an intelligent system to create security rules automatically.

The table 6 comparison each proposal in terms of mode of action, main contribution,

countermeasures, and inter-domain.

C
h

a
p

ter
2

.
L

itera
tu

re
R

eview
42

Name Operation
Mode

Inter
domain

Controller Countermeasure

SnortFlow Xing et al.

(2013)
Reactive No POX Performance evaluation about SnortFlow agent deployed at Dom 0 is better than at

Dom U for about 40 %
BroFlow (LOPEZ et

al., 2014)
Reactive No POX Effective detecting DoS attacks caused by flooding and blocking attacks from its ori-

gin. It reduces delay at 10 times on the networks under the attack and ensures the
delivery of useful packets in the maximum rate of the link.

Elastic (LOBATO et

al., 2014)
Reactive No POX Blocking a malicious flow; evaluation of resources consumed for packet analysis and

elasticity overload and discharge in Detecting Module intrusion.
IPSFlow (NAGA-
HAMA et al., 2012)

Proactive No Undefined Automatic blocking of malicious traffic close to the orign

DefenseFlow (RAD-
WARE, 2015)

Proactive No ODL, Cisco DDoS protection as a native network service and collecting statistics

SciPass (BALAS; RA-
GUSA, 2014)

Reactive &
Proactive

No Owner Improve transfer performance and reducing load on network infrastructure. Load bal-
ancing, bypass rules to avoid forwarding good data through firewalls of good data

IntelliFlow Proactive yes any Detect and prevent certain threats on networks by a proactive mode and deploying
countermeasures to the threats learned through the CTI which lead to the networking
infrastructure layer being reconfigured through flow table updates to the data plane
switches

Table 6 – Comparison between different approaches

43

3 IntelliFlow Architecture

This chapter introduces IntelliFlow, the proposed intelligence system that aims to

detect, prevent and/or react against security incidents in Software-Defined Networking (SDN)

environments. IntelliFlow leverages mechanisms of Cyber Threat Intelligence (CTI) technolo-

gies and BroIDS to proactively drop different types of Internet threats. IntelliFlow also works

in a reactive way against threats that have not been proactively blocked but are stored in the

so-called knowledge plane.

3.1 Architecture

As shown in Figure 8, the IntelliFlow architecture is composed of the following

modules: Process Connectors, Decider, False Positive, Intelligence Framework, Knowledge

Plane, Flow Mapping, and IntelliFlow application. The remaining components present in the

figure are either part of the original Bro IDS or the SDN controller architectures. IntelliFlow

reads intelligence feeds by using both the Collective Intelligence Framework (CIF)1 and Bro

IDS input framework.

- Process Connectors is the module responsible for receiving notifications from Bro IDS

about a possible threat. In addition, it removes certain inconsistencies in the notifications

and sends them to the Decider module.

- Decider is the module which takes a decision according to the type of analyzed informa-

tion, deciding if the resulting notification comes from a known or unknown source. In the

case of a known source, this data is sent to the Intelligence Framework, otherwise it is

sent to the Notice Framework.

- False Positive is the module responsible for deciding whether an unknown source is a

false positive or not. It is based on the logic of a detection algorithm, which defines the

number of times (threshold = 10) that our system can resist to take no corrective actions

against a supposed attack. For example, if the number of times a threat executes attacks

exceeds the threshold, countermeasures are executed using the Bro detection algorithm

together with the Notice Framework to drop those attacks immediately.

- Intelligence framework (IF) processes and handles all the intelligence from known

sources and the resulting information is represented in terms of Bro internal data struc-

tures that we refer to Knowledge Plane (KP). Figure 9 shows how the intelligence Frame-

work works.
1 Collective Intelligence Framework. Source: http://csirtgadgets.org/collective-intelligence-framework/

Chapter 3. IntelliFlow Architecture 46

3.2.2 Proactive

The proactive approach is commonly used by the CTI communities to proactively

block all threats considered dangerous. The advantage of this approach is that, if we understand

the adversaries, we can develop tactics to counter attacks proactively. The disadvantage is that

we need to constantly update the KP based on the security feeds.

3.3 Input Framework

Bro provides an interface between its event engine and the CIF intelligence data,

known as Input Framework. This interface is able to read intelligence files formatted into a bro

table, and then send it to the Intelligence framework for processing. To accomplish reading the

file, we add the absolute file path in the Bro local site policy as shown below:

redef Intel::read_files += { “/home/bro-ids/INTELLIGENCE/intelligence-data.intel”, };

3.3.1 Intelligence Sources

As shown in Section 2.2, there is a notable difference between intelligence and in-

formation. However, there are many websites on the Internet that still publish security informa-

tion without a deep analysis of the data. Here, we only show a list of three reliable intelligence

sources, which have been properly analyzed, and that are used by the CIF server for loading in

its configuration file to generate reliable security feeds. Then, these feeds are used as input for

our KP.

- Malware Domain List (MDL) is a non-commercial community project, that publishes

malicious domain information containing malwares.

- Alienvault is a commercial organization focused on providing network security to large

companies. This reliable organization owns a threat intelligence laboratory containing an

unified security management platform to identify the last malicious hosts from Internet.

- Spamhaus is a trusted organization that provides cyber threat informations to security

devices in order to prevent different type of attacks from Internet. For example: Spamhaus

Block List (SBL) is a database of IP addresses that acts as spam. Exploit Block List (XBL)

is a realtime database of IP addresses that were infected by malwares, and that are being

controlled by a botnet master. Policy Block List (PBL) is a DNS black list database that

have no reason to be delivering unauthenticated SMTP emails to any internet mail server.

PBL provides a central repository of dynamic IP’s and that are not maintained directly by

Spamhaus.

Chapter 3. IntelliFlow Architecture 47

3.3.2 Intelligence types

These intelligence types are threat indicators where malicious users use to be effec-

tive their attacks. There are a lot of types of intelligence, but we only show three of them because

they are more used by organizations, and that also are the indicators used in our experiments on

Chapter 4.

IP Address

The IP-based threats often come from botnet networks, or from scanner networks

and malwares. The way to detect these threats using CIF is:

$ cif -q infrastructure/botnet -c 85 -p bro

$ cif -q infrastructure/scan -c 85 -p bro

$ cif -q infrastructure/malware -c 85 -p bro

Domain

The Domain-based threats are located in remote bot servers infected with malwares.

Many times, the domain names are difficult to detect because these modern bots talk to Com-

mand&Control servers (C&Cs) whose domain names are generated randomly and might be

valid for a single day only or maybe a few hours only, rendering a centralized source utterly

useless. However, several of the reliable sources update their threat informations each hour or

day. The way to detect these threats using CIF is:

$ cif -q domain/botnet -c 85 -p bro

$ cif -q domain/malware -c 85 -p bro

URL

Similarly to Domain, the Url-based threats are located in remote servers infected

with malwares or phishing. These servers contains different types of malwares within a pre-

defined path of the URL. Often they are used to infect the computers of their victims with

malwares. The way to detect these threats using CIF is:

$ cif -q url/malware -c 85 -p bro

$ cif -q url/phishing -c 85 -p bro

3.4 IntelliFlow Implementation

In order to implement our proposed architecture, we developed an API in Python

that acts on the SDN application layer. This implementation can be well used for both local

Chapter 3. IntelliFlow Architecture 48

environment as well as different domain’s environments. In Chapter 4, we will explain in more

detail where the IntelliFlow API can be implemented. In the next sections, we describe the

procedures used for flow mapping and reconfiguration of OpenFlow flows.

3.4.1 Bro IDS Input Fields

Once Bro executes the monitoring of live traffic on a mirrored network, it produces

several types of human-readable ASCII log files, properly classified according to the event being

triggered. Each different event produces a file with a defined output format; these are controlled

by the logging framework. This allows fine-grained control of what situation generated which

event and the reasons behind how it was produced (PAXSON, 1999). Bro also warns anomalous

or potentially interesting situations produced by the Notice Framework. These events are shown

in a Notice.log file.

On the other hand, the intelligence data are handled by the Intelligence frame-

work in conjunction with the Input framework, in order to log hits seen on a specific network

and to send the results of the analysis to a formatted file called intel.log. The intelligence

data are read off disk by calling the constant read_files located in the Bro’s input frame-

work. In addition, Bro needs to load scripts located within the intelligence framework default

directory. The fields shown in the intelligence file are shown in Table 7.

Field Description
id.orig_h Connection originator’s endpoint IP address
id.orig_p Connection originator’s endpoint TCP/UDP or ICMP code
id.resp_h Connection responder’s endpoint IP address
id.resp_p Connection responder’s endpoint TCP/UDP or ICMP mode
seen.indicator The indicator that triggered the match, e.g., a malicious IP.
seen.indicator_type The indicator type that represents a threat, e.g., DOMAIN
seen.where Location where the event was triggered, e.g., DNS:request

Table 7 – Bro fields

We emphasize the use of the seen.indicator field because it give us clues of

where the attack was originated. In addition, we also emphasize the seen.indicator_type

and seen.where fields because these generate the indicator type and location’s service in which

the event was triggered respectively.

The seen indicator, also known as Indicator of compromise (IOC), can be one or

more hosts or networks that are identified as actors suspected of an attack. Those are determined

through a process of rigorous analysis realized by security experts.

The types of indicators supported by Bro are shown in (PROJECT, 2015). In the

present work, we only use the following types of IoC: Intel::ADDR, Intel::DOMAIN, In-

tel::URL, because we consider that they are the indicators more used by organizations that

share intelligence on the Internet. With regard to where the data were discovered, we use

Chapter 3. IntelliFlow Architecture 49

certain parameters to determine the origin of the attack, e.g., Conn::IN_ORIG, Conn::IN_RESP,

HTTP::IN_HOST_HEADER, and HTTP::IN_URL. In Table 8, we show the relation between

the Bro indictator types with their respective localizations where the threat is found:

Indicator Type Localization
Intel::ADDR Conn::IN_ORIG and Conn::IN_RESP
Intel::DOMAIN HTTP::IN_HOST_HEADER
Intel::URL HTTP::IN_URL

Table 8 – Indicator types used by our proposal

3.4.2 OpenFlow Output Flows

This section describes the entries of the OpenFlow flow tables used by the Intel-

liFlow application. As this table varies depending of the OpenFlow version, we use the latest

OpenFlow 1.3, which contains seven main components shown in (FOUNDATION, 2014a). Two

of them identify a unique flow in a specific flow table: a match field entry to match against

packets, and a priority entry to match precedence of the flow entry. The instructions flow

entry contains actions to be performed on the packet, such as dropping packets or forwarding

them to another target. In Table 9 we have a description of each flow used by our API. We can

see that there are some values used by default that are necessaries to build the new OpenFlow

flows.

Flow Value used Description
dl_type 0x800 Matches ethernet protocol type ethertype
nw_proto 6 Matches IP protocol type proto
nodeid any Bridge’s mac address
priority 0-65535 The order that an entry will match in comparison to other
nw_src any Matches the source IP address
nw_dst any Matches the destination IP address
tp_src any Matches the TCP source port
tp_dst any Matches the TCP destination port
actions any Represents a list of actions done on a packet when its entry has

been matched

Table 9 – OpenFlow flows

3.5 IntelliFlow Countermeasures

The countermeasures sent by the IntelliFlow API are based on the sending of flow

data to the SDN controller using the HTTP PUT method and the module Requests of Python.

The execution of the API automatically corrects certain malicious activity sent to the network,

by adding new entries with action field drop for dropping malicious flows, and output for

forwarding the bad flows to a specific output interface, belonging to a HoneyPot server.

Chapter 3. IntelliFlow Architecture 50

In the frame below, we note that the sending of flow data to the controller passes

through four parameters: url, data, headers, authentication. The URL indicates the path where

the controller flow administration is found. The data parameter contains the new flow, without

encryption, that will be passed to the controller for processing. The header gives more specific

information on the request. And, the auth parameter gives us the option to include the creden-

tials of access from OpenDaylight server.

r = requests.put(url, json.dumps(d), headers=‘Content-Type’ : ‘application/json’,

auth=(‘username’, ‘******’))

One essential part of our work consists in defining new flows according to the event

triggered. For example, the new flow created for a Denial of Service attack is different from the

one created for blocking malicious websites. Therefore, we create four different functions for

each experiment being analyzed. Each function reads the last intel.log alarm file created by

Bro.

Regarding the flow mapping, it is performed by translating the intelligence values

from Bro to OpenFlow parameters, in order to create new OpenFlow flows. To differentiate a

flow from another, we use a different priority value for each one. Thus, flows created will not

be duplicated and can be interpreted by OpenFlow switches.

Finally, these flows created are sent to the controller by the RESTful application and

the Northbound interface. The pseudocode of IntelliFlow details how the application is built to

detect and drop attacks from known sources.

Chapter 3. IntelliFlow Architecture 51

Pseudocódigo 3.1 Detection of different threats by using of the proactive approach

α = The indicator that triggered the match “seen.indicator"
β = The type of indicator “seen.indicator_type"
γ = Location in Bro’s where the event triggered “seen.where"
δ = Connection originator’s endpoint IP address “id_orig"
θ = Connection responder’s endpoint IP address “id_resp"
ψ = Array of the set of indicators already used
η = Honeypot Server to study the features of the attack and to replicate the victim server.

if β == Intel::ADDR and γ == Conn::IN_ORIG then
α ← δ

if (α,θ) /∈ in ψ then
Dropping “α” of the flow tables and forwarding it to “η"
Including (α,θ) in ψ

else
Nothing to do

end if
else if β == Intel::ADDR and γ == Conn::IN_RESP then

α ← θ

if (δ ,α) /∈ in ψ then
Denying access to the remote service “α” and forwarding it to “η"
Including (δ ,α) in ψ

else
Nothing to do

end if
else if β == Intel::DOMAIN or Intel::URL then

α ← is a malicious website
if γ == HTTP::IN_HOST_HEADER or γ == HTTP::IN_URL then

if (δ ,α) /∈ in ψ then
Denying access to the malicious site “α” and forwarding it to “η"
Including (δ ,α) in ψ

else
Nothing to do

end if
else

Nothing to do
end if

else
Nothing to do

end if

52

4 Prototype and Experimental Evaluation

In this chapter, we present the proof-of-concept implementation as well as a series

of experiments to validate and evaluate the IntelliFlow architecture considering both reactive

and proactive modes of operation.

4.1 Proof of Concept Implementation

To validate the proof of concept, we designed two types of work scenarios imple-

mented on our INTRIG1 laboratory infrastructure, which are: Intra-domain and Inter-domain

Ssenarios. These are composed ofscentainers (DOCKER. . . , 2015), virtual switches (PFAFF

et al., 2009) and virtual machines on KVM. This implementation also allows the coexistence

of multiple parallel virtual networks, each one executing several services, based on the ODL

SDN controller, that sends instructions to each virtual network in order to modify the be-

havior, by using of OpenFlow protocol, on the vSwitches (OVS) to which the containers are

attached to. Application scripts and other codes related to the present work is available at

“https://github.com/richardqa/IntelliFlow”. We refer to the organizations that publish threats

found on the Internet as just “organizations”, container-based virtualized systems that are at-

tacked by malicious users as just “victim”, known threats as just “threats” and security filters as

“intelligence” in this text.

4.2 Testbed

Figure 11 shows the testbed for KVM servers whose components are CIF server, a

master Bro-IDS and an OpenDaylight Controller. With regard to the testbed for Linux contain-

ers, we have the scenario shown in Figure 12, that simulates Bro IDS sensors, victim servers

and several malicious hosts. Both the KVMs and containers use Ubuntu 14.04 as operational

system, including the machine that hosts all these services that we call as main server. Re-

garding virtual bridges, we use Open vSwitch 2.3 because it allows the programming the data

plane by using the OpenFlow protocol. Moreover, Open vSwitch also provides the interaction

with docker through pipework2. We also use the OpenDaylight controller, because it supports

an extensive collaborative community based on open source and because also provide REST

interfaces which makes possible to program flows from external applications. And finally a

HoneyPot server for data analysis in deep of the anomalies found on the network.

1 A network laboratory interested in the state-of-the-art of Internet technologies and innovation.
Source:“http://intrig.dca.fee.unicamp.br”

2 A lightweight tool that allows you connect together containers in arbitrarily complex scenarios through
cgroups and namespace. Source: “https://github.com/jpetazzo/pipework”

Chapter 4. Prototype and Experimental Evaluation 56

Most of organizations often publish their reputation-database lists in a period of

time of one hour approximately, each one containing enough information about a particular

threat, so users may query this intelligence for their own further analysis. In this work, we use

the CIF Server, an intelligence framework that allows to make queries against different rep-

utation’s databases by using Google Protocol Buffer (GPB). This framework is also able to

maintain different sources of data synchronized, marking each one with a particular confidence

rating. The GPB allows better performance compared with XML or JSON. The organizations

that contribute with intelligence to CIF update their data using a confidence rate from 0 to 100%

and in interval of one hour. However, our CIF server loads intelligence data each five minutes

and enables to generate processed data to the KP in a period of 45 minutes. In the frame below,

we show the procedure used to automate the intelligence feeds used by CIF server, also it shows

the frequency to pull feed data is each 5 minutes, and to generate the feeds to be sent to the KP

is of 45 minutes.

Pulling the feed data

05 * * * * /opt/cif/bin/cif_crontool -p hourly -P -d -A root »/var/log/cif/crontool_hourly.log

2>&1

Feeding the data generation in the CIF server

45 * * * * /opt/cif/bin/cif_feed -d »/var/log/cif/cif_feed.log 2>&1

NOTE:

#cif_crontool: Tool used for importing external data.

The configure lines is located in the file ‘/etc/crontab’.

Then, these feeds are gathered at the KP as intelligence, and by using of the

Rsync synchronization tool and the SSH authentication protocol we can maintain updated the

local KP of each VN. Below, we show the procedure used to generate SSH cryptographic keys

and how to transfer fast intelligence by using of Rsync. This tool also copies remote files from

the CIF server to the main Bro IDS using the SSH authentication agent together with the Rsync

and SSH.

Chapter 4. Prototype and Experimental Evaluation 57

Step 1: Both CIF and main Bro generate GPG keys in order to create a relationship between

them.

ssh-keygen -t rsa -b 4096 -C “This is my new KEY”

Step 2: Each one shares its own public key through the SCP command.

CIF$ scp ∼/cif/.ssh/id_rsa.pub bro@192.168.122.3:/home/bro/.ssh/authorized_keys

BRO$ scp ∼/bro/.ssh/id_rsa.pub cif@192.168.122.2:/home/cif/.ssh/authorized_keys

Step 3: Configure SSH-Agent in order does not have to enter the passphrase each time you

make a ssh or scp connection.

exec /usr/bin/ssh-agent $SHELL

ssh-add (enter the passphrase)

Enter passphrase for /root/.ssh/id_rsa:

Identity added: /root/.ssh/id_rsa (/root/.ssh/id_rsa)

Step 4: As both were identified like trusted servers, we launch directly the Rsync command

on CIF Server

rsync -az --delete /home/cif/INTEL/ 192.168.122.3:/home/bro/IntelliFlow/

NOTE:

#The path “/home/bro/IntelliFlow” contains the list of Indicators of compromise (IOCs) ob-

tained from CIF Server.

4.3 Experimental Evaluation

We evaluate six different types of attacks: brute-force, dictionary, botnets, scanners,

malicious domains, and URLs. The first four attacks use ADDR as IoC, the fifth attack (malicious

domains) use DOMAIN as IoC and the sixth attack (malicious URLs) use URL as IoC. These

experiments are based on the methodology presented in Chapter 3.

Our proposal aims to protect the network against threats mentioned above by using

both methodologies: proactive and reactive with intelligence. The first methodology uses new

security filters to be pro-actively added to each OpenFlow virtual switch before a new threat,

detected by our intelligence framework, is executed against victim servers. For example, when

one of these attacks is launched, the victim or victims do not receive malicious packets, because

these are immediately blocked by the corresponding bridge before they can affect any of these

servers. What is then reported is only the packets going to Bro IDS sensor through the mirror

interface and its event engine. The second methodology intelligently reacts against threats that

are not found at the Knowledge plane, responding to an anomaly at the detection engine. For

example, at the time an attack is launched, the local Bro-IDS sensor looks to match threats in

the local KP. If no attack is found, Bro queries to the shared KP about the attack. And, if the

threat is found, Bro automatically sends a security alarm generating an Intel.log file to the KP,

Chapter 4. Prototype and Experimental Evaluation 58

then the IntelliFlow API executes countermeasures, reconfiguring the flow table of the affected

switch dropping any next malicious activity coming from the same source.

The reliable organizations provide the types of threat indicators, that will be peri-

odically added to the shared KP, and therefore to the local KP of each VN in a period of time of

five minutes, hence IntelliFlow constantly will read the information contained in its local KP,

dropping malicious flows in the bridges. As a benefit, the bridges will be prepared to drop any

malicious flow coming from these known sources. Despite the methodology with intelligence

has an extensive information database, this methodology consumes less computing processing

evaluated for different amount of malicious hosts.

Both automate tools, preventing or reacting against different adversaries, and drop-

ping the majority of malicious packets directed to vulnerable servers within the shortest time

possible. By the time we block these packets, our system will also have forwarded all the traffic

to a HoneyPot Server, in order to understand how they operate and what specific steps we should

do to protect our data. Alike, we are making a more efficient use of the time, e.g., to counter

a small cyber-crime group, we would require a different time compared with a big group of

dangerous criminals. Therefore, our work joins the cyber threat intelligence with the reactive

methodology to drop the most of packets that were previously analyzed by other reliable orga-

nizations. As shown in Figure 12, we enabled six test servers: SSH, FTP, LDAP, HTTP, VNC

and SMTP which are exploited by sophisticated hacking tools such as Hydra4 for brute-force

and dictionary attacks, Hping35 for DDoS attacks and Nmap6 for port scanning attacks.

The communication between each Bro IDS, controller, and CIF is through a ded-

icated channel by using of the SSL protocol, ensuring an secure and isolated communication

between them. The countermeasure messages are in the JSON format, and these contain flow in-

formations such as “destination and source IPs”, “destination port”, “ethertype”,

“priority”, and the “protocol field” that indicate the actions to match against a specific

flow. To simulate the behavior of these attackers, we designed a script in bash that executes

instructions from master docker through the “docker exec” command. For more reliable re-

sults, each experiment is executed ten rounds, varying the number of containers involved at the

attack from 1, 5, 10, 20, and 40 for password-guessing attacks, and from 1, 5, 10 bots for DoS

attacks.

In order to explicitly evaluate the proposed IntelliFlow architecture, we propose

four study cases that include both methodologies. In the next sections, we demonstrate the

use of the methodology reactive with intelligence applied to counter each type of threat previ-

ously mentioned, also we make a comparison between each one of them with the conventional

4 A very fast network logon cracker which support many different services. Source: “https://www.thc.org/thc-
hydra”

5 Network tool able to send custom TCP/IP packets and to display replies like ping program does with ICMP
replies. Source: “http://www.hping.org”

6 Open source tool for network discovery and security auditing. Source: “https://nmap.org”

Chapter 4. Prototype and Experimental Evaluation 59

methodology. Throughout these proposed experiments, we intended to find answers to ques-

tions such as: How fast can attacks be detected?. How effective are the proposed methods?. Our

proposal also can be applied of a hybrid mode, using functionalities of the proactive mode, auto-

matically dropping known threats, and of the reactive mode with intelligence executing scripts

for reconfiguring the flow tables as soon as that a threat is detected on the network.

4.3.1 Mitigation of Brute-force and Dictionary attacks

To perform this first experiment, we evaluate two types of password-guessing at-

tacks, which are brute-force and dictionary-based, and that are launched from the main server.

They work in an automatized and distributed way, launching their attacks to authentication

servers such as SSH, FTP, LDAP, and so on, in order to gain illegitimate access to user accounts

of the companies or personal user accounts such as Gmail, Facebook, or Yahoo.

These types of attacks do not act by directly looking for a flaw or bypass, but rather

trying to guess passwords by combinations of different characters or using a word list. These

attacks can either be on-line or off-line attack. The first allows that the attacker automates rou-

tines against any open authentication protocol, without looking at the creation of an exploit, but

to abuse of some weaknesses in the networks. The second attempts to emulate the encryption

together with the hash in order to gain access to a system account. We evaluate on-line attacks

because we consider that they can be blocked in time.

To execute a brute-force attack, hydra generates random passwords of variable size

by using of characters that contains 1 for numbers, a for lowcase, and A for upcase characters.

Any other added may be put into the list. In the example above, the passwords generated have a

length of 3 to 4 characters and contain lowercase letters, numbers, a percentage sign and a dot.

Unlike the brute-force, the dictionary attack only needs of two text files: one for usernames and

another for passwords.

The behavior of the attacker was simulated by designing a script that invokes dif-

ferent docker containers at the same time, being executed against a SSH authentication server.

In our simulations, we use an extensive list of words for both usernames and password, that are

obtained from the Internet.

Chapter 4. Prototype and Experimental Evaluation 60

#!/usr/bin/bash

for ((i=1; i<=10; i++))

do

docker exec -d bruteforce$i /usr/bin/hydra -L user.txt -x 3:4:a1%. victim proto

docker exec -d dictionary$i /usr/bin/hydra -L user.txt -P pass.txt victim proto

done

NOTE:

victim: IP Address of the victim server. E.g., SSH, FTP, LDAP.

proto: Authentication protocol of the victim server. E.g., 22,21,389.

user.txt: List of usernames. It contains an extensive list of the more known usernames.

pass.txt: List of passwords. It contains an extensive list of the more known passwords.

To counter these types of threats, we use the proactive and reactive methodologies,

and the intelligence stored in the Knowledge Plane module presented in the Chapter 3. For

example, many password-guessing hosts are proactively dropped in the OpenFlow flow table,

therefore the attacks coming from one of them will be automatically blocked. The malicious

hosts that are not located in the local KP, could be found in the shared KP as long as there is a

match with the indicator of the threat.

The procedure to detect how many authentication tries crossed the network without

being detected by the local Bro IDS is performed by counting the number of Keys Exchange

events that received the server from the attacker. Therefore, we could measure the amount of

authentication tries, and the maximum time that the victim server stops receiving the malicious

events. Figure 15 show how our proposed system reduces the amount of access tries against a

SSH server. The same results could also be obtained using other servers such as FTP, HTTP,

VNC, SMTP as well as any another type of authentication server, included Gmail, Facebook,

or Yahoo accounts that are exposed to these types of password-guessing attacks, because the

access of the users to these social networks use authentication methodologies that also could be

corrupted by brute-force or dictionary attacks.

We also defined the number of concurrent tasks and the maximum wait time in

seconds for responses, because most of IDSs have predefined signatures to detect password

cracking attacks; however, they are based on a defined rates.

Table 11 shows the response times that a victim server and the Bro IDS delay to

drop the next malicious packets sent by the attacker, and the amount of authentication events

that spanned the network and reached the victim server before countermeasures were installed

on the network. These values are obtained by using of both methodologies with intelligence

(+I) or without intelligence (−I), and the comparison of the two values obtained (△I). We can

note that for 1 and 5 malicious hosts, the methodology with intelligence consumes much

less time to drop tries of authentication. However from 10 to more malicious hosts, the time

Chapter 4. Prototype and Experimental Evaluation 62

#Malicious Hosts M Brute-force & dictionary
Response time(s) Unanalyzed events

Victim Bro Victim Bro
+I 0.15 0.01 16 18
−I 9,80 11,74 19 124

1 malicious host △I 9.65 11.67 3 106
+I 0.48 0.10 51 34
−I 10.77 32.71 55 314

5 malicious host △I 10.29 32.61 4 280
+I 16.09 11.36 99 86
−I 13.75 46.74 108 679

10 malicious host △I 11.19 3 5.38 9 619
+I 59.53 45.49 179 283
−I 35.01 144.58 117 2019

20 malicious host △I 24.52 99.09 62 1736
+I 82.59 82.54 185 311
−I 41.89 230.51 139 3044

40 malicious host △I 40.70 147.97 46 2733

M: Methodology used for each experiment.
+I: With Intelligence. −I: Without intelligence.△I: Difference between +I and −I

Table 11 – Comparison of the response time and received events by the victim server

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 5 10 20 40

R
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
)

Number of malicious hosts

+Intelligence

-Intelligence

Figure 16 – Comparison of the response time varying the amount of malicious hosts

4.3.2 Mitigation of Scanners

TCP port scanners are computer programs that scans network services looking for

connections with open TCP/UDP ports, in order to discover vulnerable services that can be

corrupted by using of exploits and thereby access to the data network. These threats are multi-

threaded, because they scan multiple hosts for a specific listening port, and they also execute

port sweeping to remote networks.

To avoid being detected by firewalls or IDSs, scanners use advanced techniques

such as TCP SYN or TCP ACK, in order to discover hosts running a particular service and also

Chapter 4. Prototype and Experimental Evaluation 63

 0

 50

 100

 150

 200

 1 5 10 20 40

U
n
a
n
a
ly

z
e
d
 p

a
c
k
e
ts

Number of malicious hosts

+Intelligence

-Intelligence

Figure 17 – Comparison of the unanalyzed packets varying the amount of malicious hosts

some other features of the target host. These malicious users use half-open TCP connections

to trick the victim server. These methods of scanning are difficult to be detected by security

devices.

As port scanning is often used by attackers, it is important to know how they work

and what possible targets are used to exploit their tools. IntelliFlow leverages the relationships

of organizations to advance threat analysis and security intelligence. For example, (ATLAS. . . ,

2015), a reliable organization that uses a distributed network of sensors to capture and analyze

data, it also provides malicious scanner lists that IntelliFlow may use to store these data into the

knowledge plane.

By using intelligence, we prevent many of these scanners that were previously

identified as threat indicators. Therefore, knowing their existence allows the security admin-

istrators maintain the servers free to be scanned by these malicious users. We simulate the

behavior of these threats by designing a script based in nmap, that executes port sweeping

against one of the test servers. This script performs a slight scanning by setting of the TCP SYN

requests asking for TCP ports of the victim server.

#!/usr/bin/bash

for ((i=1; i<=10; i++))

do

docker exec -d scanner$i /usr/bin/nmap -PS -p 1-100 victim

done

NOTE:

victim: IP Address of the victim server. E.g., SSH, FTP, LDAP.

Chapter 4. Prototype and Experimental Evaluation 65

4.3.3 Mitigation of Botnet Networks

To accomplish the mitigation of these types of threats, we simulate a DDoS attack

launched from a internal botnet network and directed to a victim server. With regard to real

DDoS attacks, we does not consider the problem of the external link’s bandwidth, because our

work only focus attacks performed by our test servers.

Below, we show a script that executes this type of attack by using of hping3 to-

gether with the configuration options such as the SYN flag (−−syn option), the destination port

(−−destport option) and a variable rate of packets per second (−−interval option). We

also note the use of −−verbose to enable verbose output showing more detailed information

about the attack and the parameters −−baseport together with victim for the source port and

the specific target respectively.

#!/usr/bin/bash

for ((i=1; i<=10; i++))

do

docker exec -d botnet$i /usr/sbin/hping3 −−verbose −−syn −−destport 80 −−interval

rate −−baseport sport victim

done

NOTE:

rate: Packets sent per second (e.g. u10000 for 100 pps).

sport: Source port used by the botnet network .

victim: IP Address of the victim server. E.g., SSH, FTP, LDAP.

Figure 19 describes how a DDoS attack works, and how our proposal, based on

SDN, get avoiding the SYN malicious packets flooding directed to a victim server. For example,

if we have M bots that form a botnet network and that each one sends 400 SYN packets using

a constant rate of 10 packets per second (pps), then 400*M packets would be sent to the victim

server per attack. However, this server only would receive P packets, that is a lesser amount

compared to the total number of packets initially sent by the attacker, due to some of them

are dropped by IntelliFlow, which executes countermeasures to reconfigure the flow tables by

adding drop rules to the affected bridge. Concerning the Bro IDS, it receives 400*M raw packets

including one packet of TCP retransmission (TCP rtns) for each bot. The TCP retransmissions

occur because there is a lost packet for each new indicator that is mirrored to the IDS. Thus,

the amount of TCP retransmissions is equivalent to the size of the botnet network. On the other

hand, as initial packets are sent with the SYN flag enabled, Bro does not know how to respond

to the victim with ACK flag, hence it only responds by sending RST packets indicating to stop

the TCP connection.

Figure 20 compares the response times against each different rate of packets per

Chapter 4. Prototype and Experimental Evaluation 67

In turn, Figure 21 compares unanalyzed packets against the same range of traffic

load, noting that for a rate of 2500 pps, the amount of unanalyzed packets increased slightly

faster in the without intelligence system, being more noticeable for the rate of 6000 pps, in

where these unanalyzed packets for the conventional system is more than twice compared with

our proposed system.

 0

 1

 2

 3

 4

 5

 6

 7

 2 3 6 12 16 25 40 60 100

U
n
a
n
a
ly

z
e
d
 p

a
c
k
e
ts

 (
1
0

5
)

Traffic load (10
2
 packets per second)

+Intelligence

-Intelligence

Figure 21 – Comparison of the not analyzed packets varying the rate of packets per second sent
by the attacker

Regarding the memory and processor usage percentage, Figure 22 and Figure 23

compare the consume of their resources for each variation of the rate of malicious packets. We

also note a similar trend where the intelligence system consume less resources than the other

methodology, nevertheless both they reach their maximum value for rates nearing to 104 packets

per second.

 0

 20

 40

 60

 80

 100

 2 3 6 12 16 25 40 60 100

M
e

m
o

ry
 u

s
a

g
e

 (
%

)

Traffic load (10
2
 packets per second)

+Intelligence

-Intelligence

Figure 22 – Comparison of the memory usage performance varying the rate of packets per sec-
ond sent by the attacker

Chapter 4. Prototype and Experimental Evaluation 68

 0

 20

 40

 60

 80

 100

 2 3 6 12 16 25 40 60 100

C
P

U
 u

s
a

g
e

 (
%

)

Traffic load (10
2
 packets per second)

+Intelligence

-Intelligence

Figure 23 – Comparison of the CPU usage performance varying the rate of packets per second
sent by the attacker

Table 12 shows the values of the response time, the amount of not analyzed events,

memory and CPU usage percentages that were obtained in our experiments. These values vary

depending of the size of the botnet network, the amount of packets per second sent by the

attacker, and the methodology used. For example, in the case of a network with 3 bots, each one

would send a succession of SYN requests to a target’s server using a constant rate of 100 pps,

so all the entire network would send the same attack to 300 pps, therefore the methodology with

intelligence would drop the most of the syn flood events leaving only to pass almost a quarter

compared to the other methodology, and in a time near the one-fifth to drop all the packets.

Regarding the memory allocation, the victim server consumed nearly the third part compared

to the used in the another methodology, and with regard to the CPU usage, near the half is

consumed using the intelligence compared the another methodology. We also note that for all

the cases, the amount of packets dropped is more effective using our proposed methodology

than the conventional methodology. We also note in the table that for the worst case of 104pps,

the CPU usage percentage is nearly 100%, so we assume that this rate of packets is the capacity

threshold of each docker container. Therefore, for this worst case, in the proposed methodology

the response time is less that the third part of the memory consumed, and less that half of the

not analyzed packets both being compared with the without intelligence methodology.

4.3.4 Mitigation of malicious Domains and URLs

In this experiment, we work with Malicious Domain Blacklists (MDBLs), in where

reliable organizations, such as Malware Domains, detect and publish malicious domains found

on the Internet. Therefore, any user connected to the Internet, may to know whether its web do-

main is in the blacklist database. However, in order to perform a successful attack, the attackers

would only use a very short period of time to execute their malwares on the infected computer,

so they would avoid being detected and blocked by these domain reputation systems.

Chapter 4. Prototype and Experimental Evaluation 69

r(pps) M #Bots Response Time(s) Not analyzed events %Memory %CPU
Victim Bro Victim Bro Victim Victim

+I 0.58 0.59 4 4 8.62% 3.17%
5 pps. −I 1 bot 11.61 23.60 54 102 12.50% 4.27%

△I 5 pps. 11.03 23.01 50 98 3.88 1.10
+I 0.87 0.87 10 10 8.65% 3.65%

10 pps. −I 1 bot 12.61 26.32 107 202 13.88% 4.51%
△I 10 pps. 11.74 25.45 97 192 5.23% 0.86
+I 1.63 1.59 165 24 8.72% 4.51

100 pps. −I 1 bot 14.01 32.01 1,071 1,993 17.01% 12.71%
△I 100 pps. 12.38 30.42 906 1,969 8.29% 8.20%
+I 3.50 3.15 1,045 50 9.07% 8.17%

300 pps. −I 3 bots 15.79 44.02 3,806 3,973 25.21% 15.44%
△I 100 pps. 12.29 40.87 2,761 3,923 16.14% 7.27%
+I 6.70 17.64 3,992 145 10.31% 12.42%

600 pps. −I 3 bots 26.59 48.76 15,813 11,717 32.27% 18.24%
△I 200 pps. 19.89 31.12 11,821 11,572 21.96% 5.82%
+I 10.13 27.51 11,986 145 13.41% 13.51%

1,200 pps. −I 3 bots 31.51 58.76 18,222 23,512 44.12% 27.48%
△I 400pps. 21.40 31.25 6,236 23,367 30.71% 13.97%
+I 19.43 14.89 31,805 230 19.24% 14.42%

2,500 pps. −I 5 bots 46.21 63.15 45,942 49,069 53.08% 36.26%
△I 500 pps. 26.78 46.26 14,137 48,839 33.84% 21.84%
+I 29.69 29.16 65,493 339 35.60% 26.67%

4,000 pps. −I 5 bots 52.62 71.41 116,083 78,306 57.37% 39.75%
△I 800 pps. 22.93 42.25 50,590 77,967 21.77% 17.08%
+I 34.37 33.63 200,116 418 58.04% 52.62%

6,000 pps. −I 6 bots 127.69 138.33 223,668 117,185 100% 100%
△I 1,000 pps. 93.32 104.70 23,552 116,767 41.96% 44.38%
+I 48.23 47.45 263,596 427 99.00% 86.92%

10,000
pps.

−I 10 bots 157.65 163.13 644,759 124,150 100% 100%

△I 1,000 pps. 109.42 115.68 381,163 123,723 1.00% 13.08%

r(pps): Total of rate of packets per second.
M: Methodology used for each experiment.
+I: With Intelligence. −I: Without intelligence.△I: The difference between +I and −I.

Table 12 – Comparison of the response time, received events, memory, and CPU usage percent-
age

To avoid that these malicious domains infect computers, we propose the same two

methodologies discussed above: reactive and proactive with intelligence. By using the proac-

tive methodology, we avoid any access to these websites, due to OpenFlow rules would im-

mediately being created to block any remote access from the users. Unlike the proactive, the

reactive methodology with intelligence would consist in reactively dropping any access to these

domains.

Figure 24 shows an example of how the malicious websites work. By the moment

an user accesses to a malicious website, the local Bro IDS looks for the domain indicator in the

KP. If this is found, Bro immediately sends a security alarm to the network indicating that one

threat has been found. Then, one countermeasure is executed disconnecting the access from the

user to the website in a very short time.

Chapter 4. Prototype and Experimental Evaluation 71

behavior in OpenFlow switches when adding a large amount of flow entries. 7 In case that a

hardware-based OpenFlow switch solution is considered, without further considerations on the

flow table sizes, a simple proactive approach may be infeasible since hardware switches have

strict limitations on the flow table sizes – typically in the range of 10s of thousands of entries in

today’s commercial equipments (KREUTZ et al., 2015). Therefore, future work may consider

state optimization strategies to add only the more relevant flows indicating malicious activities

to the data plane while keeping the remaining flows stored in the SDN controller and/or local

or shared KP.

7 Discuss mailing list OpenVSwitch. Topic: Able to add more than maximum number of flow entries in Flow
table. Source: “http://openvswitch.org/pipermail/discuss/2012-May/007276.html”

72

5 Conclusions

Malicious users keep innovating their attack techniques much faster than defend-

ers are finding ways to avoid them. Conventional defense and mitigation approaches such as

anomaly-based or signature-based detection methods are not enough to counter the increasing

amount and diversity of security threats. Security devices such as firewalls and IDS/IPS com-

monly rely on pre-defined rules added by humans. Many times security teams only focus on the

event itself and do not perform a proper deep analysis on the root security problem.

In order to understand how adversaries work, organizations are resorting to new

security approaches based on jointly processed information, actionable by security experts of

organizations, forming the so-called Cyber Threat Intelligence (CTI). This classified informa-

tion is known as intelligence, and it allows other organizations to updated their security

devices with up-to-date configuration based on the intelligence data.

In this thesis, we have proposed IntelliFlow as a security architecture that leverages

CTI in the context of Software-Defined Networking (SDN). More specifically, we use three

CTI threat indicators: IP address, Domain, and URL, available in the Collective Intelligence

Framework (CIF). CIF uses the IODEF format to exchange events or incident information, and

the GPB protocol to make queries against different reputation’s databases. Thus, CIF improves

the communication between the security team and the reliable organizations. After process-

ing the intelligence data and importing feeds from different reliable sources, we populate the

knowledge plane proposed in the IntelliFlow system.

Taking advantage of CTI feeds, the Bro IDS intelligence framework was used to

read the data processed by the CIF and to intelligently alert the network about possible threats.

Then, the OpenFlow protocol was used to reconfigure the flow tables of the affected switches

either reactively or proactively. When using the proactive methodology, our knowledge plane

(KP) was updated every five minutes with the data shared by reliable organizations participat-

ing in CIF. The data was immediately transformed into suitable OpenFlow rules to drop all

traffic matching the malicious indicators. In the reactive mode of operation using the intelli-

gence feeds, the system is able to react to different types of threats.

Our experiments demonstrated that, for brute-force or dictionary attacks, we can

mitigate long authentication attempts using the intelligence provided by CTI, unlike conven-

tional methodologies that would only manage to drop part of them. In the case of distributed

denial of service (DDoS) attacks, our system manages to drop packets in less time, receiving a

smaller amount of packets, using less memory and CPU. Therefore, the IntelliFlow architecture

allows better ways to intelligently prevent or react against some type of known threats when

present in our KP or in the KPs shared by different organizations participating in the threat

Chapter 5. Conclusions 73

intelligence layer.

One of the limitations of our proposal is updating all available intelligence period-

ically. Another limitation is having explored only the three most known indicators provided by

trusted organizations. Other indicators could also be used –provided proper methods to convert

indicators to OpenFlow rules is available.

As future work, we intend to explore with more detail the correlation between the

information obtained from reliable sources and from IDS sensors strategically located in differ-

ent public networks, in order to collect real data of attacks received in real time. By looking into

OpenFlow statistics we may be able to identify zero-day attacks and detect different threats.

Then, by leveraging machine learning techniques, we could provide capabilities to analyze the

behavior patterns from attackers.

Future efforts shall also be devoted to a better understanding of the costs in terms

of required state and its implications in software- and hardware-based OpenFlow switches. In

turn, state optimization opportunities shall be pursued. Another avenue of future work would

be generating automatic countermeasures to protect the data against newly attacks that are not

found in the intelligence database of the reliable sources. When applied to inter-domain scenar-

ios with real attacks from the Internet, developing new attack models based on machine learning

techniques would allow further levels of collaborative approaches towards a more secure Inter-

net.

74

Bibliography

ALIENVAULT. Public data reputation. 2015. Disponível em: <http://reputation.alienvault.
com/reputation.data>. Acesso em: 28 aug. 2015. Citado na página 34.

ARBOR SERT. ASERT Threat Intelligence Report: Dd4bc ddos extortion threat activity.
[S.l.], 2015. 48 p. Disponível em: <http://pages.arbornetworks.com/rs/082-KNA-087/images/
ATIB2015-04DD4BC.pdf>. Citado na página 16.

ATLAS: Summary Report. 2015. Disponível em: <https://atlas.arbor.net/summary/scans>.
Acesso em: 22 aug. 2015. Citado na página 63.

AZODOLMOLKY, S. Software Defined Networking with OpenFlow. [S.l.]: Packt Publishing,
2013. ISBN 1849698724, 9781849698726. Citado 3 vezes nas páginas , 37, and 38.

BALAS, E.; RAGUSA, A. Scipass: a 100gbps capable secure science dmz using openflow and
bro. In: . [S.l.: s.n.], 2014. Citado 2 vezes nas páginas 40 and 42.

BRAGA, R.; MOTA, E.; PASSITO, A. Lightweight ddos flooding attack detection using
nox/openflow. In: Proceedings of the 2010 IEEE 35th Conference on Local Computer

Networks. Washington, DC, USA: IEEE Computer Society, 2010. (LCN ’10), p. 408–415.
ISBN 978-1-4244-8387-7. Disponível em: <http://dx.doi.org/10.1109/LCN.2010.5735752>.
Citado na página 40.

CARCANO, A.; FOVINO, I.; MASERA, M.; TROMBETTA, A. State-based network intrusion
detection systems for scada protocols: A proof of concept. Critical Information Infrastructures

Security, v. 6027, p. 138–150, 2010. Citado na página 26.

CISCO. Cisco Anomaly Guard Module. 2015. Disponível em: <http://www.cisco.com/c/en/us/
products/interfaces-modules/catalyst-6500-cisco-7600-router-anomaly-guard-module/index.
html>. Acesso em: 28 aug. 2015. Citado na página 27.

CLOUD SECURITY ALLIANCE. The Notorious Nine Cloud Computing Top Threats in 2013.
[S.l.], 2013. 21 p. Citado na página 16.

CLOUD SECURITY ALLIANCE. How Cloud is Being Used in the Financial Sector: Survey

Report. [S.l.], 2015. 13 p. Disponível em: <https://downloads.cloudsecurityalliance.org/
initiatives/surveys/financial-services/Cloud_Adoption_In_The_Financial_Services_Sector_
Survey_March2015_FINAL.pdf>. Citado 2 vezes nas páginas and 17.

CONNOLLY, J.; DAVIDSON, M.; SCHMIDT, C. The Trusted Automated eXchange of

Indicator Information (TAXII). [S.l.], 2014. Citado na página 34.

CYBOX. 2015. Disponível em: <http://cybox.mitre.org>. Acesso em: 28 jun. 2015. Citado na
página 34.

DANYLIW, R.; MEIJER, J.; DEMCHENKO, Y. The Incident Object Description Exchange

Format. [S.l.], 2007. Citado na página 33.

DARK Side of the Cloud. 2014. Disponível em: <https://molescope.com/blog-post/
The-Dark-Side-of-the-Cloud>. Acesso em: 22 aug. 2015. Citado na página 16.

Bibliography 75

DEVARM, R.; CURRY, D.; FEINSTEIN, B. The Intrusion Detection Message Exchange

Format (IDMEF). [S.l.], 2007. Citado na página 33.

DOCKER Inc. 2015. Disponível em: <https://www.docker.com/>. Acesso em: 10 aug. 2015.
Citado 2 vezes nas páginas 40 and 52.

FARNHAM, G.; LEUNE, K. Tools and Standars for Cyber Threat Intelligence Projects. [S.l.],
2013. Citado 4 vezes nas páginas 30, 31, 32, and 34.

FARSHCHI, J. Statistical-Based Intrusion Detection. 2010. Disponível em: <https:
//www.sans.org/security-resources/idfaq/statistic_ids.php>. Acesso em: 28 aug. 2015. Citado
na página 26.

FBI warns of rise in DDoS extortion cases. 2015. Disponível em: <http://www.zdnet.com/
article/fbi-warns-of-rise-in-ddos-extortion-cases/>. Acesso em: 22 aug. 2015. Citado na
página 16.

FEDERAL Bureau of Investigation. 2015. Disponível em: <www.fbi.gov>. Acesso em: 30
aug. 2015. Citado na página 29.

FELTER, W.; FERREIRA, A.; RAJAMONY, R.; RUBIO, J. An Updated Performance

Comparison of Virtual Machines and Linux Containers. Austin, TX 78758, 2014. Citado 2
vezes nas páginas 39 and 40.

FOUNDATION, O. N. OpenFlow Switch Specification. [S.l.], 2014. Citado 2 vezes nas
páginas 19 and 49.

FOUNDATION, O. N. SDN Architecture. [S.l.], 2014. Citado na página 36.

GOOGLE loses data after lightning strikes. 2015. Disponível em: <http://money.cnn.com/
2015/08/19/technology/google-data-loss-lightning/>. Acesso em: 22 aug. 2015. Citado na
página 16.

GRAGIDO, W. Understanding Indicators of Compromise (IOC) Part I. 2012. Disponível em:
<https://blogs.rsa.com/understanding-indicators-of-compromise-ioc-part-i/>. Acesso em: 13
jan. 2015. Citado na página 31.

HUSSAIN, A. Benchmarking performance of docker and traditional vms. In: CLOUDOPEN
NORTH AMERICA. Chicago, 2014. Citado 3 vezes nas páginas , 17, and 18.

IBM: Real Secure Sensor Server. 2015. Disponível em: <http://www-935.ibm.com/services/th/
en/it-services/realsecure-server-sensor.html>. Acesso em: 26 aug. 2015. Citado na página 27.

IETF. Common Intrusion Detection Framework. 1998. Disponível em: <https://www.ietf.org/
proceedings/43/43rd-ietf-98dec-110.html>. Acesso em: 13 jan. 2015. Citado na página 33.

INFORMATION SYSTEMS SECURITY. Securing Against Insider Attacks. [S.l.], 2007. 48 p.
Citado na página 17.

ISIGHTPARTNERS. What is Cyber Threat Intelligence and why do I need it? [S.l.], 2014. 9 p.
Citado 2 vezes nas páginas 18 and 19.

JOHNSON, C.; BADGER, L.; WALTERMIRE, D. Guide to Cyber Threat Information Sharing

(DRAFT). U.S Departament of Commerce, 2014. 73 p. Citado 2 vezes nas páginas 18 and 30.

Bibliography 76

KHALIL, G. Open Source IDS High Performance Shootout. [S.l.], 2015. Citado na página 28.

Software-Defined Networking: A Comprehensive Survey, v. 103, n. 1. 63 p. Disponível em:
<http://arxiv.org/abs/1406.0440>. Citado 4 vezes nas páginas 19, 35, 38, and 71.

KSHIRSAGAR, D.; TAGAD, D.; SALE, S.; KHANDAGALE, G. Network intrusion detection
based on attack pattern. In: Electronics Computer Technology (ICECT), 2011 3rd International

Conference on. [S.l.: s.n.], 2011. v. 5, p. 283–286. Citado na página 26.

LIAO, H.-J.; LIN, C.-H. R.; LIN, Y.-C.; TUNG, K.-Y. Review: Intrusion detection
system: A comprehensive review. J. Netw. Comput. Appl., Academic Press Ltd.,
London, UK, UK, v. 36, n. 1, p. 16–24, jan. 2013. ISSN 1084-8045. Disponível em:
<http://dx.doi.org/10.1016/j.jnca.2012.09.004>. Citado 3 vezes nas páginas 21, 22, and 25.

LIBERTY GLOBAL. The value of our digital identity. [S.l.], 2012. 122 p. Disponível em:
<http://www.libertyglobal.com/PDF/public-policy/The-Value-of-Our-Digital-Identity.pdf>.
Citado na página 16.

LOBATO, A. P.; FIGUEIREDO, U.; LOPEZ, M. A.; DUARTE, O. C. M. B. Uma arquitetura
elástica para prevenção de intrusão em redes virtuais usando redes definidas por software.
In: SBRC 2014. Anais do XXXII Simpósio Brasileiro de Redes de Computadores e Sistemas

Distribuídos – SBRC 2014. Florianópolis, SC, Brazil, 2014. Citado 2 vezes nas páginas 39
and 42.

LOPEZ, M. A.; FIGUEIREDO, U.; LOBATO, A. P.; DUARTE, O. C. M. B. Broflow: Um
sistema eficiente de detecção e prevenção de intrusão em redes definidas por software. In:
CSBC2014. XXXIV Congresso da Sociedade Brasileira de Computação – CSBC 2014. Centro
de Convenções Brasil 21, 2014. Citado 2 vezes nas páginas 39 and 42.

MANDIANT. MANDIANT. 2015. Disponível em: <https://www.mandiant.com>. Acesso em:
13 jan. 2015. Citado na página 33.

MCMILLAN, R. Definition: Threat Intelligence. [S.l.], 2013. Citado na página 29.

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN COMPUTER AND
COMMUNICATION ENGINEERING. A brief study and comparison of Snort and Bro Open

Source Network Intrusion Detection Systems, v. 1 de ISSN : 2278 – 1021, (ISSN : 2278 – 1021,
v. 1). Disponível em: <http://www.ijarcce.com>. Citado 2 vezes nas páginas 17 and 39.

MITRE Coorporation. 2015. Disponível em: <http://www.mitre.org/>. Acesso em: 21 jun.
2015. Citado na página 34.

NADEAU, T. D.; GRAY, K. SDN: Software Defined Networks. [S.l.]: O’Reilly Media, 2013.
Citado 3 vezes nas páginas 35, 37, and 38.

NAGAHAMA, F. Y.; FARIAS, F.; AGUIAR, E.; LUCIANO, G.; GRANVILLE, L.;
CERQUEIRA, E.; ANTôNIO, A. Ipsflow–uma proposta de sistema de prevençao de intrusao
baseado no framework openflow. In: III WPEIF-SBRC. [S.l.: s.n.], 2012. v. 12, p. 42–47.
Citado 2 vezes nas páginas 40 and 42.

NOX. 2015. Disponível em: <http://www.noxrepo.org/pox/about-pox/>. Acesso em: 22 jul.
2015. Citado na página 39.

Bibliography 77

OPENDAYLIGHT. 2015. Disponível em: <https://wiki.opendaylight.org/>. Acesso em: 29
mar. 2015. Citado na página 36.

OPENIOC. Sophisticated Indicators for the Modern Threat Landscape: An Introduction to

OpenIOC. [S.l.], 2013. Citado na página 33.

OTX. Open Threat Exchange. 2015. Disponível em: <https://www.alienvault.com/
open-threat-exchange>. Acesso em: 28 jun. 2015. Citado na página 34.

PAXSON, V. Bro: a System for Detecting Network Intruders in Real-Time. Computer

Networks, v. 31, n. 23-24, p. 2435–2463, 1999. Disponível em: <http://www.icir.org/vern/
papers/bro-CN99.pdf>. Citado 4 vezes nas páginas 18, 27, 39, and 48.

PFAFF, B.; PETTT, J.; T., K.; AMIDON, K.; CASADO, M.; SHENKER, S. Extending
networking into the virtualization layer. In: . [s.n.], 2009. Disponível em: <http:
//openvswitch.org>. Citado na página 52.

PROJECT, T. B. Documentation and Training. 2015. Disponível em: <https://www.bro.org/
documentation>. Acesso em: 19 may. 2014. Citado na página 48.

RADWARE. DefenseFLow: The SDN Application that Programs Networks for DoS Security.
[S.l.], 2015. Disponível em: <http://www.radware.com/Products/DefenseFlow/>. Citado 2
vezes nas páginas 40 and 42.

SANS. Understanding IPS and IDS: Using IPS and IDS together for Defense in Depth. [S.l.],
2004. 14 p. Citado na página 21.

SCARFONE, K. A.; MELL, P. M. SP 800-94. Guide to Intrusion Detection and Prevention

Systems (IDPS). Gaithersburg, MD, United States, 2007. 127 p. Citado na página 23.

SCOTT-HAYWARD, S.; O’CALLAGHAN, G.; SEZER, S. Sdn security: A survey. In: Future

Networks and Services (SDN4FNS), 2013 IEEE SDN for. [S.l.: s.n.], 2013. p. 1–7. Citado na
página 19.

SHAFRANOVICH, Y.; LEVINE, J.; KUCHERAWY, M. An Extensible Format for Email

Feedback Reports. [S.l.], 2010. Citado na página 33.

SHAH, B. How to choose Intrusion Detection System. [S.l.], 2001. 10 p. Citado na página 27.

SNAPCHAT. 2015. Disponível em: <https://www.snapchat.com/ads/>. Acesso em: 10 jul.
2015. Citado na página 16.

SNORT: Get-started. 2015. Disponível em: <http://www.snort.org>. Acesso em: 22 aug. 2015.
Citado 3 vezes nas páginas 17, 27, and 39.

SOLTESZ, S.; PöTZL, H.; FIUCZYNSKI, M. E.; BAVIER, A.; PETERSON, L. Container-
based operating system virtualization: A scalable, high-performance alternative to hypervisors.
SIGOPS Oper. Syst. Rev., ACM, New York, NY, USA, v. 41, n. 3, p. 275–287, mar. 2007.
ISSN 0163-5980. Disponível em: <http://doi.acm.org/10.1145/1272998.1273025>. Citado na
página 16.

STIX. Structured Threat Information Expression. 2015. Disponível em: <http://stix.mitre.org/
language/usercases.html>. Acesso em: 11 dec. 2013. Citado na página 34.

Bibliography 78

SURICATA. 2015. Disponível em: <"http://suricata-ids.org">. Acesso em: 26 aug. 2015.
Citado na página 27.

VERIS Community. 2015. Disponível em: <http://veriscommunity.net>. Acesso em: 21 apr.
2014. Citado na página 34.

VERIZON. 2015. Disponível em: <http://www.verizon.com>. Acesso em: 29 mar. 2015.
Citado na página 34.

WALTZ, E. L. Information Warfare Principles and Operations. 1st. ed. Norwood, MA, USA:
Artech House, Inc., 1998. ISBN 089006511X. Citado na página 29.

XING, T.; HUANG, D.; XU, L.; CHUNG, C.-J.; KHATKAR, P. Snortflow: A openflow-based
intrusion prevention system in cloud environment. In: Proceedings of the 2013 Second

GENI Research and Educational Experiment Workshop. Washington, DC, USA: IEEE
Computer Society, 2013. (GREE ’13), p. 89–92. ISBN 978-0-7695-5003-9. Disponível em:
<http://dx.doi.org/10.1109/GREE.2013.25>. Citado 2 vezes nas páginas 39 and 42.

XING, T.; X., Z.; HUANG, D.; M., D. Sdnips: Enabling software-defined networking based
intrusion prevention system in clouds. 10th International Conference on Network and Service

Management, 2014. Citado na página 39.

XU, W.; SANDERS, K.; YANXIN, Z. We know it before you do: Predicting malicious
domains. In: Virus Bulletin Conference September 2014. [s.n.], 2014. Disponível em:
<https://www.virusbtn.com/conference/vb2014/>. Citado na página 32.

YANG, Y.; MCLAUGHLIN, K.; LITTLER, T.; SEZER, S.; WANG, H. Rule-based intrusion
detection system for scada networks. In: Renewable Power Generation Conference (RPG

2013), 2nd IET. [S.l.: s.n.], 2013. p. 1–4. Citado na página 26.

YOUNG, W. Collective Intelligence Framework. 2013. Disponível em: <https://code.google.
com/p/collective-intelligence-framework/>. Acesso em: 14 mar. 2014. Citado 2 vezes nas
páginas 32 and 35.

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	List of Figures
	List of Tables
	Acronyms
	Contents
	Introduction
	Vision: Towards more secure and collaborative SDN
	Research Objectives and Contributions
	Text Structure

	Literature Review
	Intruder Detection System
	Intrusion Detection Methodologies
	Intrusion Detection Types
	Detection Approaches
	Open Source IDPS tools

	Cyber Threat Intelligence
	Threat Intelligence Features
	CTI Methodologies
	Cyber Threat Intelligence Sources
	Share Threat Intelligence
	Shared Threat Frameworks

	Software Defined Networking (SDN)
	Reactive SDN applications
	Proactive SDN applications
	Hybrid SDN applications

	Related Work

	IntelliFlow Architecture
	Architecture
	Mode of Operation
	Reactive
	Proactive

	Input Framework
	Intelligence Sources
	Intelligence types

	IntelliFlow Implementation
	Bro IDS Input Fields
	OpenFlow Output Flows

	IntelliFlow Countermeasures

	Prototype and Experimental Evaluation
	Proof of Concept Implementation
	Testbed
	Intra-Domain Scenario
	Inter-Domain Scenario

	Experimental Evaluation
	Mitigation of Brute-force and Dictionary attacks
	Mitigation of Scanners
	Mitigation of Botnet Networks
	Mitigation of malicious Domains and URLs
	Considerations on the cost of proactive approaches

	Conclusions
	Bibliography

