
UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computação

Liu Yi Ling

Participatory Search Algorithms and Applications

Algoritmo de Busca Participativa e Aplicações

Campinas
2016

Liu Yi Ling

Participatory Search Algorithms and Applications

Algoritmo de Busca Participativa e Aplicações

Doctorate thesis presented to the School of Electrical and
Computer Engineering in partial fulfillment of the require-
ments for the degree of Doctor in Electrical Engineering. Con-
centration area: Automation

Tese de doutorado apresentada à Faculdade de Engenharia
Elétrica e de Computação como parte dos requisitos exigidos
para a obtenção do t́ıtulo de Doutora em Engenharia Elétrica.
Área de concentração: Automação.

Orientador: Prof. Dr. Fernando Antonio Campos Gomide

Este exemplar corresponde à versão final
da tese defendida pela aluna, e orientada
pelo Prof. Dr. Fernando Antonio Campos
Gomide

Campinas
2016

COMISSÃO JULGADORA - TESE DE DOUTORADO

Candidato: Liu Yi Ling RA: 089280
Data da Defesa: 27 de outubro de 2016

T́ıtulo da Tese: Participatory Search Algorithms and Applications (Algoritmo de
Busca Participativa e Aplicações)

Prof. Dr. Fernando Antonio Campos Gomide (Presidente, FEEC/UNICAMP)
Prof. Dr. Maury Meirelles Gouvêa Júnior (PUC-MG)
Prof. Dr. Jorge Luis Machado do Amaral (UERJ)
Prof. Dr. Fernando Jos?on Zuben (FEEC/UNICAMP)
Prof. Dr. Fábio Luiz Usberti (IC/UNICAMP)

A ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora,
encontra-se no processo de vida acadêmica do aluno.

COMISSÃO JULGADORA - TESE DE DOUTORADO

Candidato: Liu Yi Ling RA: 089280
Data da Defesa: 27 de outubro de 2016

T́ıtulo da Tese: Participatory Search Algorithms and Applications (Algoritmo de
Busca Participativa e Aplicações)

Prof. Dr. Fernando Antonio Campos Gomide (Presidente, FEEC/UNICAMP)
Prof. Dr. Maury Meirelles Gouvêa Júnior (PUC-MG)
Prof. Dr. Jorge Luis Machado do Amaral (UERJ)
Prof. Dr. Fábio Luiz Usberti (IC/UNICAMP)
Prof. Dr. Fernando José Von Zuben (FEEC/UNICAMP)

A ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora,
encontra-se no processo de vida acadêmica do aluno.

Acknowledgement

I would like to thank all the people who contributed in some way to the work developed in
this thesis. First and foremost, I thank my advisor Professor Fernando Antonio Campos
Gomide who has offered his unreserved help and guidance that lead me to my thesis step
by step. His words can always inspire me and bring me to a higher level of thinking.
Without his kind and patient help, it would be much more difficult to finish this thesis.

I am grateful to Professor Alexandre Falcão and Professor Fernando Von Zuben for
their contributions offered during my presentation in the qualifying exam, when they
carefully indicated paths and made inspiring comments that helped me to improve this
work.

I also want to thank my friends who encouraged and supported me during the graduate
days. The simple phrase, ”thank you”, cannot present how much their friendship means
to me.

Finally, I am very grateful to my family, who provided me a fruitful and peaceful envi-
ronment, so that I could concentrate on my study. Although they may hardly understand
what writing thesis is and what I research on, my family always supported the decision I
made. I am so lucky to have them as my family.

Abstract

Search is one of the most useful procedures employed in numerous situa-
tions such as optimization, machine learning, information processing and re-
trieval. This work introduces participatory search, a population-based search
algorithm based on the participatory learning paradigm. Participatory search
is an algorithm in which search progresses forming pools of compatible indi-
viduals, keeping the one that is the most compatible with the current best
individual in the current population, and introducing random individuals in
each algorithm step. Recombination is a convex combination modulated by
the compatibility between individuals while mutation is an instance of differ-
ential variation modulated by compatibility between selected and recombined
individuals. The nature of the recombination and mutation operators are stud-
ied. Convergence analysis of the algorithm is pursued within the framework
of random search theory.

The participatory search algorithm with arithmetical-like recombination
is evaluated using ten benchmark real-valued optimization problems, and its
performance is compared against population-based optimization algorithms
representative of the current state of the art in the area. The participatory
search algorithm arithmetical recombination is also evaluated using a suite of
twenty eight benchmark functions of the evolutionary, real-valued optimiza-
tion competition of the IEEE CEC 2013 (IEEE Congress on Evolutionary
Computation) to compare its performance against the competition winners.
Computational results suggest that the participatory search algorithm is as
good as the winners.

An application concerning development of fuzzy rule-based models from
actual data is given. The performance of the models produced by partici-
patory search algorithms are compared with a state of the art genetic fuzzy
system approach. Experimental results suggest that the participatory search
algorithm with arithmetical-like recombination performs best.

Keywords: Population-Based Search, Participatory Learning, Compatibility-
Based Optimization, Fuzzy Modeling.

Resumo

Busca é um dos procedimentos mais úteis em inúmeras aplicações, entre
elas otimização, aprendizagem de máquina, processamento e recuperação da
informação. Este trabalho sugere busca participativa, um algoritmo popula-
cional baseado no paradigma de aprendizagem participativa. Busca participa-
tiva é um algoritmo em que a busca prossegue orientada pela compatibilidade
entre indiv́ıduos de uma população, sempre mantendo o melhor indiv́ıduo nas
populações posteriores e introduzindo indiv́ıduos aleatoriamente em cada passo
do algoritmo. A recombinação é uma combinação convexa modulada pela com-
patibilidade entre os indiv́ıduos e a mutação é similar à variação diferencial
modulada pela compatibilidade entre indiv́ıduos selecionados e recombinados.
A natureza dos operadores de recombinação e mutação são estudados. A con-
vergência dos algoritmos também é estudada no âmbito da teoria de busca
aleatória.

O algoritmo de busca participativa com recombinação aritmética é valiado
utilizando dez problemas de otimização considerados como benchmarks na lit-
eratura e seu desempenho é comparado com algoritmos populacionais repre-
sentativos do estado da arte atual. O algoritmo de busca participativa também
é valiado utilizando um conjunto de vinte e oito funções de uma competição
realizada como parte do IEEE CEC 2013 (IEEE Congress on Evolutionary
Computation) e é comparado com os algoritmos vencedores desta competição.
Resultados computacionais mostram que o algoritmo de busca participativa
com recombinação aritmética compete igualmente com os vencedores.

Aplicações dos algoritmos de busca participativa foram estudadas no con-
texto de modelagem lingúıstica de dados. Para isso, utilizaram dados reais
dispońıveis na literatura, dados estes de diferentes naturezas e dimensionali-
dades. O desempenho dos algoritmos de busca participativa foi avaliado e com-
parado com um dos mais representativos sistemas genético fuzzy dispońıveis
na literatura. Os resultados computacionais corroboram que o algoritmo de
busca participativa com recombinação aritmética é competitivo, computa-
cionalmente simples e eficiente.

Palavras-chave: Busca Baseada em População, Aprendizagem Participativa,
Otimização Baseada em Compatibilidade, Modelagem de Sistemas Fuzzy.

List of Figures

3.1 Genetic fuzzy rule-based system. 26

4.1 Participatory learning. 31
4.2 Participatory search algorithms (PSA). 35
4.3 A population and its pool. 36
4.4 Selection. 37
4.5 f : Griewank function. 38
4.6 f : Rosenbrock function. 38
4.7 Selective transfer. 39
4.8 Recombination. 41
4.9 Mutation. 41
4.10 Selective transfer . 44
4.11 Sphere function. 52
4.12 A step of PSAR. 55

5.1 Convergence PSAR using the Griewank function with n = 5 and N = 50. . 66
5.2 Convergence PSAR using the Griewank function with n = 10 and N = 50. 67
5.3 Convergence PSAR using the Griewank function with n = 20 and N = 50. 67
5.4 Convergence PSAR using the Griewank function with n = 30 and N = 50. 68
5.5 Convergence PSAR using the Griewank function with n = 30 and N = 100. 68
5.6 Convergence PSAR using the Griewank function with n = 30 and N = 200. 69

6.1 A double-encoding scheme C1 and C2. 78
6.2 Lateral displacement of the linguistic variable V values V1, V2, and V3. . . . 78
6.3 Rule base constructed using WM algorithm. 79
6.4 Data and rule base developed by PSA from ELE data. 84

B.14 Test functions on real-parameter optimization for IEEE CEC 2013. 110

List of Tables

4.1 Initial population. 53
4.2 Compatibility degrees for the 4 individuals. 53
4.3 Mating pool. 53
4.4 Selection, Recombination and Mutation. 54

5.1 Characteristics of the Benchmark Test Functions. 57
5.2 Comparison of BBO, PSAR and GA with n = 5 and N = 50. 59
5.3 Comparison of BBO, PSAR and GA with n = 10 and N = 50. 60
5.4 Comparison of BBO, PSAR and GA with n = 20 and N = 50. 61
5.5 Comparing BBO, PSAR and GA for n = 30 and N = 50. 62
5.6 Holm’s Post-hoc test for BBO, PSAR and GA with ε = 0.05 and different

dimensions. 63
5.7 Comparison of BBO, PSAR and GA with n = 30 and N = 100. 64
5.8 Comparing BBO, PSAR and GA for n = 30 and N = 200. 65
5.9 Holm’s Post-hoc test for BBO, PSAR and GA for ε = 0.05 and different

population sizes. 66
5.10 Optimal Values of the Benchmark Functions. 71
5.11 Average Ranking of the Algorithms. 72
5.12 Holm’s Post-Hoc Test for ε = 0.05. 72
5.13 IEEE CEC 2013 competition test suite. 73
5.14 Average error values for PSAR, ICMAESILS and NBIPOPaCMA. 75
5.15 Holm’s Post-hoc test for PSAR, ICMAESILS and NBIPOPaCMA with

ε = 0.05 for D = 30. 76

6.1 Summary of the Datasets. 80
6.2 Methods Considered by the Computational Experiments [Alcalá et al., 2011]. 80
6.3 Average MSE of PSA and GFS Algorithms. 82
6.4 Average rank of the algorithms. 83
6.5 Holm’s Post-Hoc for ε = 0.05. 83
6.6 Average time of a run of the algorithms - (minutes and seconds - M:S) . . 83

List of Acronyms

ACO Ant Colony Optimization
ABA Data of Abalone Age
ANA Data of Categorical Analysis
BBO Biogeography-Based Optimization
CGA Canonical Genetic Algorithm
DB Data Base
DE Differential Evolution
DPSA Differential Participatory Search with Arithmetical Recombination
DPST Differential Participatory Search with Selective Transfer
EC Evolutionary Computation
ELE Data of Electric Maintenance
ES Evolutionary Strategy
FRBS Fuzzy Rule-Based Systems
FSMOGFS Fast and Scalable Multiobjective Genetic Fuzzy System
FSMOGFSe FSMOGFS including fast error estimation
FSMOGFS+TUN FSMOGFS with tuning of MF parameters and rule selection by

SPEA2
FSMOGFSe+TUNe FSMOGFS+TUN including fast error estimation
GA Genetic Algorithm
GFRBS Genetic Fuzzy Rule-Based Systems
GFS Genetic Fuzzy Systems
IEEE CEC IEEE Conference on Evolutionary Computation
KB Knowledge Base
KEEL Knowledge Extraction based on Evolutionary Learning
KNN k-Nearest Neighbors Method
MF Membership Function
MPG6 Data of Auto MPG6
MSE Mean-Squared Error
PBIL Probability-Based Incremental Learning
PCBLX Parent-Centric BLX operator
PL Participatory Learning
PS Participatory Search
PSA Participatory Search Algorithm

PSAR Participatory Search with Arithmetical Recombination
PSO Particle Swarm Optimization
PSST Participatory Search with Selective Transfer
RB Rule Base
RL Reinforcement Learning
r-CGA Real-Coded Genetic Algorithm
SBSMs Similarity-Based Surrogate Models
SGA Stud Genetic Algorithm
SPEA2 Improving the Strength Pareto Evolutionary Algorithm
WM Wang and Mendel Algorithm
WM(3) Rule Base Produced by WM, 3 Linguistic Labels for Each Variable
WM(5) Rule Base Produced by WM, 5 Linguistic Labels for Each Variable
WM(7) Rule Base Produced by WM, 7 Linguistic Labels for Each Variable

List of Symbols

St population at step t
v(t) current knowledge at step t
z(t) input information at step t
α basic learning rate
ρt compatibility degree at step t
at arousal index at step t
β parameter that controls the rate of arousal
S

′

mating pool
N population size
n fixed length strings
s an individual of S
s
′

an individual of S
′

r remaining individuals
s∗ current best individual
best best individual
f objective function
ρs compatibility degrees between s and s∗

ρs
′

compatibility degrees between s
′

and s∗

pselected selected individual
ρr compatibility degrees for recombination
pr offspring from recombination
ρm compatibility degree for mutation
pm mutated individuals
last(St) last individual in population St

P probability
R

n real space of n dimension
µ probability measures
Rǫ,M optimality region
σ essential infimum
L Lebesgue measure
L Lebesgue measurable sets

D function for conceptual algorithm condition
U uniforme distribution
B Borel set
H0 null hypothesis

Contents

1 Introduction 16

2 Publications 19

3 Background and Literature Review 20
3.1 Evolutionary Computation . 20
3.2 Participatory Learning . 24
3.3 Similarity Based Approaches . 25
3.4 Genetic Fuzzy Systems . 26
3.5 Random Search Techniques . 27
3.6 Summary . 29

4 Participatory Search Algorithms 30
4.1 Participatory Search Learning . 30
4.2 Participatory Search Operators . 34

4.2.1 Selection . 34
4.2.2 Recombination . 38

4.2.2.1 Selective Transfer . 38
4.2.2.2 Arithmetical Recombination 40

4.2.3 Mutation . 40
4.3 Analysis of the Participatory Operators . 41
4.4 Convergence Analysis of Participatory Search 46
4.5 Illustrative Example using PSAR . 52
4.6 Summary . 55

5 Computational Results 56
5.1 Evaluation of PSAR, BBO and GA algorithms 56
5.2 Evaluation of PSAR, ACO, BBO, DE, ES, GA, PBIL PSO and SGA algo-

rithms . 69
5.3 PSAR and the IEEE CEC 2013 competition 72
5.4 Summary . 76

6 Participatory Search Algorithms in Fuzzy Modeling 77
6.1 Linguistic Fuzzy Models . 77
6.2 Experiments and Results . 80
6.3 Summary . 85

7 Conclusion 86

A Test Problems for Population-Based Optimization 93
A.1 Definition of the Test Functions . 93

B Test Problems for IEEE CEC 2013 competition 97
B.1 Definition of the Test Functions . 97

B.1.1 Unimodal Functions . 97
B.1.2 Basic Multimodal Functions . 98
B.1.3 Composition Functions . 103

16

Chapter 1
Introduction

The development of algorithms for problem solving has been a major subject in ap-
plied mathematics, computer science and engineering. Evolutionary computation provides
a path to solve complex problems in many areas, especially in optimization and system
modeling. They are robust, do not need too much specialization to specific classes of
problems, and deliver good solutions within reasonable time [Eiben and Smith, 2015].
Evolutionary computation technique is an abstraction from the theory of biological evolu-
tion that is used to biological evolution that is used to create optimization procedures or
create optimization procedures or methodologies, usually implemented on methodologies,
usually implemented on computers, that are used to solve computers, that are used to
solve problems.

One of the most fertile and practical evolutionary computation approaches is the ge-
netic algorithm (GA). The basic idea of GA is to maintain a population of individuals
that evolves using selection, recombination, and mutation operators working in sequence
during several steps called generations. A fitness function determine the chance of an
individual to survive. Higher fitness means higher chance of survival. Computationally
speaking, a genetic algorithm is a stochastic search algorithm biased towards better so-
lutions. The search technique aims at finding the fittest individual in a population of
individuals. Individuals are candidate solutions of a target problem.

Differential evolution (DE) is another important component of evolutionary computa-
tion. Like GA, DE is a population-based stochastic search scheme whose purpose is to find
the fittest individual. It is fairly a fast and reasonably robust optimization method [Storn
and Price, 1997]. The basic idea of DE is to maintain a population of candidate solutions
and to create new candidate solutions for each solution by using one constant member
and two random members working in sequence during generations. DE is elitist, that
is, it keeps the candidate solutions that achieves the best fitness function value in the
population.

Learning is not a pure context-free process situated in a neutral environment. It is
affected by the state of the learner. In particular, in the actual survival of the fittest saga
there appears to be an additional process going on. Besides being determined by some
external requirement, reproduction is always strongly affected by the population itself. It
is well known that genetic compatibility is a mechanism by which individuals obtain fitness
benefit through mate choice [Agbali et al., 2010]. Reproductive assurance and the benefits
of self-compatibility may also be strongly influenced by density, diversity, or population
size [Busch, 2005]. These observations suggest the possibility of building participatory
search algorithms in which the population plays a role in determining reproduction and its

17

ensuing evolutionary path. In this sense, learning can be viewed as a sort of fitness learning
once fitness shapes the reproductive suitability of individuals. When the population affects
evolution, fitness of each individual results from the combination of its own objective and
its compatibility with different individuals. In natural environments, often the effect of
the population in crafting fitness is to try to make individuals more like themselves [Yager,
2000].

One way to address the role that the population itself plays in evolution is participatory
learning [Yager, 1990]. The basic hypothesis of the participatory learning paradigm is that
learning occurs in the framework of what is already learned or believed. The implication of
this is that every aspect of the learning process is affected and guided by the current belief
system. The name emphasizes the fact that in learning we are in an environment in which
the current knowledge of what we are attempting to learn participates in the process of
learning about itself. Participatory learning introduces compatibility between individuals
to account for their involvement in the learning process. The notion of compatibility,
likewise similarity, is recurrent in many machine and evolutionary learning schemes. For
example, the ratio between the number of distinct genes and the total number of genes,
called difference degree in [Chen and Wang, 2010], is a way to measure similarity of a pair
of chromosomes [Chen and Yin, 2012]. The idea of difference degree together with uni-
modal normal distribution crossover and a variant of non-uniform mutation have shown to
produce efficient real-coded genetic algorithms. Similarity has also been shown to be ef-
fective in evolutionary multiobjective optimization once similarity-based mating schemes
have shown to increase diversity [Ishibuchi et al., 2007]. For instance, [Ishibuchi et al.,
2008] introduces a similarity-based mating scheme in which an extreme solution is se-
lected in the current population as a parent, and a similar solution to the parent selected
is chosen as a mate. In addition to improve diversity, similarity-based mating schemes
help to avoid recombination of dissimilar mates from which good offspring are unlikely
to be produced. Other forms of participation in evolutionary learning include symmet-
ric and asymmetric interactions between individuals. Crossover is a symmetric variation
mechanism reflecting interaction through a recombination procedure that exchanges in-
formation from congruent parts of chromosomes. Selective transfer [Birchenhall et al.,
1997] is an asymmetric variation mechanism that casts interaction via recombination [Liu
and Gomide, 2013c], [Liu and Gomide, 2013a].

Participatory fuzzy systems are fuzzy systems with added participatory components.
They result from the hybridization of participatory search algorithms and fuzzy systems
within the structure of soft computing and computational intelligence. Participatory fuzzy
systems offer a systematic approach and an effective design tool to address challenging
issues such as fuzzy modeling, classification, and system control. Hybridization has been
a fertile avenue for intelligent systems development. For instance, the combination of
fuzzy systems with genetic learning induces genetic fuzzy systems (GFS) [Cordón et al.,
2001], [Herrera, 2008]. Currently, there is a growing interest in data-driven fuzzy modeling
using GFS. For instance, multiobjective evolutionary algorithms have been developed to
build linguistic fuzzy rule-based systems with embedded genetic database learning for fast
learning of parsimonious and accurate models [Alcalá et al., 2011], [Antonelli et al., 2013].

This work introduces participatory search learning, a collection of learning procedures
constructed upon evolutionary computation and participatory learning. It introduces a
new class of population-based search algorithms using participatory selection, recombina-
tion and mutation (variation) operators. The nature of the participatory selection and
variation operators are formally studied. In particular, this work focuses on the Participa-

18

tory Search with Arithmetical Recombination (PSAR), analyses its convergence behavior,
and evaluates its performance. PSAR uses compatibility between individuals during selec-
tion, recombination and mutation. Jointly, compatibility degrees and objective function
shape the evaluation of the fitness of the individuals and govern population evolution.
PSAR recombination emerges from an instance of a participatory learning update formula
and resembles arithmetical crossover except that it is modulated by a compatibility degree
and an arousal index. PSAR mutation depends on compatibility degree and arousal index
of participatory learning as well. It arises from a scheme similar to mutation of differential
evolution. Performance of the PSAR is evaluated using benchmark optimization prob-
lems and compared against the results produced by several population-based algorithms
reported in the literature. Computational experiments show that PSAR is, statistically
speaking, at least as good as the current best algorithms. The PSAR is further evaluated
using actual data of electric maintenance, Auto MPG6, categorical analysis, and abalone
age. Computational results show that PSAR outperforms state of the art genetic fuzzy
systems [Alcalá et al., 2011], [Antonelli et al., 2013]. PSAR is simpler and produces better
solutions faster.

The remainder of the work is organized as follows. Chapter 1 briefly reviews back-
ground methodological and theoretical notions, covering evolutionary computation, par-
ticipatory learning, similarity based approaches, genetic fuzzy systems, and random search
techniques. Chapter 2 develops the participatory learning approach and performs a the-
oretical analysis of the participatory variation operators. It shows that the participa-
tory variation operators induce diversification and intensification. Also, we introduce the
random search techniques to study the convergence of participatory search with arith-
metical recombination (PSAR). Analysis shows that PSAR converges in probability to
global optimum. Chapter 3 evaluates PSAR and compares its performance against sev-
eral population-based algorithms using classic benchmark optimization problems [Simon,
2008]. The results show that, assuming maximum number of generations as a stop crite-
rion, the PSAR is simpler and finds the optimum solutions for the majority of the problem
instances. The PSAR is also compared with the top two performing algorithms of IEEE
Congress on Evolutionary Computation (IEEE CEC) 2013 competition. Computational
results show that, statistically, PSAR is as good as the best IEEE CEC 2013 algorithms.
Chapter 4 addresses applications concerning fuzzy rule-based modeling using real world
data. The results show that PSAR outperforms current state of the art genetic fuzzy
systems approaches. Finally, Chapter 5 summarizes the contributions and suggests issues
for further investigation.

19

Chapter 2
Publications

Journal

• Liu, Y. L. and Gomide, F. “A Participatory Search Algorithm.” Evolutionary Intel-
ligence. Springer, Germany, 2016, Accepted for publication.

Book chapter

• Liu, Y. L. and Gomide, F. “On the Use of Participatory Genetic Fuzzy System
Approach to Develop Fuzzy Models.”Frontiers of Higher Order Fuzzy Sets. Springer,
New York, pp. 67-86, 2015.

International conferences

• Liu, Y. L. and Gomide, F. “Participatory Search Algorithms in Fuzzy Modeling.”
Proc. World Conference in Soft Computing, May 22-25, 2016, Berkeley, CA, USA.

• Liu, Y. L. and Gomide, F. “Genetic participatory algorithm and system modeling.”
Proceeding of the fifteenth annual conference companion on Genetic and evolution-
ary computation conference companion - GECCO, 2013, New York: ACM Press,
pp. 1687.

• Liu, Y. L. and Gomide, F. “Fuzzy systems modeling with participatory evolution.”
IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013, Ed-
monton, AB, Canada, pp. 380-385.

• Liu, Y. L. and Gomide, F. “Evolutionary participatory learning in fuzzy systems
modeling.” IEEE International Conference on Fuzzy Systems, July 1-10, 2013, Hy-
derabad, India, pp. 1-8.

• Liu, Y. L. and Gomide, F.“Participatory genetic learning in fuzzy system modeling.”
IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems, April
15-19, 2013, Singapore, pp. 1-7.

20

Chapter 3
Background and Literature Review

This chapter gives a brief overview of evolutionary computation and addresses the no-
tions of participatory learning, similarity based computation, genetic fuzzy systems, and
random search theory. It reviews evolutionary algorithms, explains the main concepts and
notions of participatory learning, the idea of similarity based participatory approaches,
and genetic fuzzy systems. A random search technique for real-valued optimization prob-
lems and its properties are also reviewed.

3.1 Evolutionary Computation

Evolutionary computation is an area of computer science and engineering that uses
ideas from biological evolution, such as reproduction, mutation, recombination, natu-
ral selection and survival of the fittest, to solve optimization problems. Evolutionary
computation techniques mostly involve metaheuristic optimization procedures. The area
includes genetic algorithms, evolution strategies, differential evolution, ant colony opti-
mization, particle swarm optimization , biogeography-based optimization [Michalewicz,
1996], [Eiben and Rudolph, 1999], [Price et al., 2006], [Simon, 2008], [Eberbach, 2005]
and many other bioinspired procedures.

Ant colony optimization (ACO) is an algorithm inspired by the pheromone deposition
of ants. ACO aims at searching for an optimal path in a graph, based on the behavior
of ants seeking a path between their colony and a source of food. The original idea has
been diversified to solve a wider class of numerical problems, and as a result, several
alternatives have emerged, drawing on various aspects of the behavior of ants [Colorni
et al., 1991] and [Dorigo, 1992]. Algorithm 1 summarizes the main steps of the ACO
algorithm [Dorigo et al., 2006].

Algorithm 1 Ant colony optimization

1: procedure ACO

2: repeat Schedule Activities
3: ConstructAntsSolutions()
4: UpdatePheromones()
5: DaemonActions()
6: until end-Schedule Activities
7: end procedure

21

The main procedure of the ACO manages the scheduling of the three components
of ACO algorithms via the schedule activities construct. The ConstructAntsSolutions
procedure manages a colony of ants that will be used to build a solution in the graph. The
UpdatePheromones procedure is the process by which the pheromone trails are modified.
Finally, the DaemonActions procedure is used to implement centralized actions which
cannot be performed by single ants [Dorigo et al., 2006].

Biogeography is the study of the geographical distribution of biological organisms.
Mathematical models of biogeography describe the migration of species between islands,
along with their speciation and extinction [Lomolino et al., 2006] and [Whittaker and
Fernández-Palacios, 2007]. Biogeography-based optimization (BBO) was first introduced
in 2008 [Simon, 2008]. BBO uses biogeography as a metaphor for evolutionary computa-
tion. The key idea of BBO is to use probabilistic information sharing between candidate
solutions based on their fitness values [Simon et al., 2011]. The main steps of the BBO
algorithm are shown in Algorithm 2 [Simon, 2008].

Algorithm 2 Biogeography-based optimization

1: procedure BBO

2: Initialize
3: repeat
4: Evaluation()
5: Migration()
6: Mutation()
7: until termination criteria are met
8: end procedure

In Algorithm 2 the Evaluation() procedure computes the fitness for each solution and
defines the probability of immigration and emigration. The Migration() procedure cal-
culates both, the immigration and emigration probabilities. Good solutions have high
emigration probability and low immigration probability. Bad solutions have low emi-
gration probability and high immigration probability. The Mutation() process performs
mutation based on the mutation probability.

Differential evolution (DE) is a method that employs the difference between two solu-
tions to probabilistically adapt a third solution. In other words, the DE is an optimization
method that iteratively tries to improve a candidate solution using vector differences to
perturb a population of vectors [Price et al., 2006]. The main steps of the DE algorithm
are as follows, Algorithm 3 [Storn and Price, 1997].

In Algorithm 3 the Mutation procedure perturbs vectors using the scaled difference
of two randomly selected population vectors. DE adds the scaled difference to a third
randomly selected population vector. The Recombination procedure uses a crossover
value CR ∈ [0, 1] to produce the trial vector. Finally, the trial vector is evaluated to
decide whether or not it should be selected.

Evolution strategy (ES) uses mutation, recombination, and selection applied to a
population of individuals containing candidate solutions to iteratively evolve better and
better solutions. An ES may allow more than two parents to contribute to an off-
spring [Michalewicz, 1996]. The main steps of the ES algorithm are summarized in
Algorithm 4.

Algorithm 4 first defines the number of parents and children. Next, it performs re-
combination using the parents to form children, and perform mutation on all the children.

22

Algorithm 3 Differential evolution

1: procedure DE

2: Initialization
3: Evaluation
4: repeat
5: Mutation()
6: Recombination()
7: Evaluation()
8: Selection()
9: until termination criteria are met
10: end procedure

Algorithm 4 Evolution strategy

1: procedure ES

2: Initialization
3: Evaluation
4: repeat
5: Recombination()
6: Mutation()
7: SelectSurvivors()
8: until termination criteria are met
9: end procedure

Finally, it selects individuals to assemble the new population.
Genetic algorithm (GA) is a method for moving from one population of individuals to

a new population using a kind of nature-like selection together with the genetic operators
of crossover and mutation. The main steps of the GA algorithm are as in Algorithm 5.

Algorithm 5 Genetic algorithm

1: procedure GA

2: Initialization
3: Evaluation
4: repeat
5: Selection()
6: Recombination()
7: Mutation()
8: until termination criteria are met
9: end procedure

In Algorithm 5, Selection() chooses, in the current population, candidate individuals
for the next population. Recombination() chooses genes from parent chromosomes to
create new offspring. Mutation() randomly modifies the offspring.

Probability-based incremental learning (PBIL) is a type of genetic algorithm where
the genotype of an entire population (probability vector) is evolved rather than individual
members [Gupta, 1999]. PBIL combines elements from evolutionary computation (EC)
and reinforcement learning (RL). PBIL is a population-based stochastic search where the
population is essentially a random sample based on an estimated probability distribution

23

for each variable. The main steps of the PBIL algorithm are given in Algorithm 6 [Baluja,
1994].

Algorithm 6 Probability-based incremental learning

1: procedure PBIL

2: Initialize probabilities
3: repeat
4: GenerateSamples()
5: FindBest()
6: UpdateProbability()
7: MutateProbability()
8: until termination criteria are met
9: end procedure

In Algorithm 6, the GenerateSamples() procedure generates the samples using the
current probability matrix and selects the best sample. In UpdateProbability() proce-
dure updates the matrix of probabilities using the best sample to guide the direction of
probability update. MutateProbability() performs the mutation rule probabilistically.

Stud genetic algorithm (SGA) is a genetic algorithm that uses the best individual at
each generation for crossover [Khatib and Fleming, 1998]. The main steps of the SGA
algorithm are summarized in Algorithm 7 [Khatib and Fleming, 1998].

Algorithm 7 Stud genetic algorithm

procedure SGA

Initialize population
repeat

Selection()
Crossover()
Mutation()

until termination criteria are met
end procedure

In Algorithm 7, the Selection() procedure chooses the fittest individual for mating.
The Crossover() procedure uses the best individual in the population to mate with all
others and to produce the new offspring. The mutation is the standard bit mutation with
low probability.

Particle swarm optimization (PSO) is inspired by social behavior. PSO optimization
uses a population of candidate solutions, called particles, and moves these particles in the
search-space according to their position and velocity. Each particle movement is influenced
by its local best known position and is also guided toward the best known positions in
the search-space, which are updated as better positions are found by other particles.
The idea is to move the swarm toward the best solutions [Eberhart and Kennedy, 1995]
and [Kennedy et al., 2001]. The main steps of the PSO algorithm are as in the Algorithm
8 [Kennedy et al., 1995].

The PSO algorithm 8 starts choosing particles with random position and velocity
vectors. The EvaluateFitness() procedure calculates fitness values to choose the particle
with the best solution (pbest). The CalculateVelocity() and UpdatePosition() procedures

24

Algorithm 8 Particle swarm optimization

1: procedure PSO

2: Initialize particles
3: repeat
4: EvaluateFitness()
5: Selection()
6: CalculateVelocity()
7: UpdatePosition()
8: until termination criteria are met
9: end procedure

change the velocity and location of each particle toward the best solution, randomly
weighting the acceleration at each step.

3.2 Participatory Learning

Search algorithms are at the crossroads of many important areas of increasing relevance
for the current technological scenario. These include artificial intelligence [Russell and
Norvig, 2003], evolutionary computation [Eiben and Smith, 2015], swarm intelligence
[?], learning [Sra et al., 2012], and optimization [Simon, 2013]. In computer science,
search algorithms use the simplest method of searching through the search space, whereas
informed search algorithms use heuristic functions to apply knowledge about the structure
of the search space to try to reduce the amount of time spent searching [Meghanathan
et al., 2012]. Evolutionary computation use ideas from evolution as heuristics for reducing
the search space.

In the early 1990s Yager suggested participatory learning as a scheme in which the
process of learning depends on what is already known or believed [Yager, 1990]. A central
characteristic of the idea of participatory learning is that an observation has the greatest
impact in causing learning or knowledge revision when it is compatible with the current
knowledge. Learning occurs in an environment in which the current knowledge partici-
pates in the process of learning about itself. Therefore, a fundamental part of this learning
scheme is the compatibility between observation and knowledge. The implication of this
in search algorithms is that every aspect of the search process is affected and guided by the
individuals of a population St at step t. The name emphasizes the fact that during search
we are in an environment in which the current state of the search process, as mirrored by
current population St, participates in the process of the search itself. In particular, par-
ticipatory search uses the compatibility between individuals of the population St to direct
the steps of the search process via next population St+1. The notion of compatibility and
similarity are recurrent in machine learning, computational intelligence, and evolutionary
computation.

We anticipate that the aim of this work is to introduce participatory search algo-
rithms (PSA), population-based search procedures derived from the participatory learn-
ing paradigm [Yager, 1990]. There are four main instances of PSA, respectively, par-
ticipatory search with selective transfer (PSST), participatory search with arithmetical
recombination (PSAR), differential participatory search with selective transfer (DPST),
and differential participatory search with arithmetical recombination (DPSA). They are
distinguished by the nature of the recombination operation, and the order in which the

25

operations of selection, recombination, and mutation are processed at each step. In PSA
the compatibility between individuals affects selection, recombination and mutation at
every algorithm step. The emphasis will be in PSAR where, as it will be shown shortly,
recombination resembles arithmetical crossover except that it emerges from an instance
of a participatory learning formula. The effect of recombination is modulated by com-
patibility and arousal indexes. PSAR mutation is a form of differential variation as in
differential evolution weighted by compatibility and arousal indexes.

More specifically, this work introduces a new class of population-based search algo-
rithms based on participatory learning. In common with other types of evolutionary
algorithms, participatory search operates with a population of solutions, rather than with
a single solution at a step, and employs procedures to combine these solutions to create
new ones. Participatory search is a novel instance of search algorithm because it violates
the premise of most evolutionary approaches in that they must necessarily be based on
randomization [Fogel, 1998], [Glover et al., 2000] though it adds a randomization step as
a diversification mechanism. Participatory search algorithms embody principles that are
still not used by other evolutionary approaches, and that prove advantageous to solve a va-
riety of complex optimization problems. Distinct types of participatory search algorithms
have been reported [Liu and Gomide, 2016]. They differ in the order in which selection,
recombination, and mutation are performed at each algorithm step, and in the type of the
recombination operation they use. In particular, PSAR performs convex combinations
modulated by the compatibility during recombination, followed by differential variation
modulated by compatibility during mutation.

3.3 Similarity Based Approaches

Many similarity-based schemes have been reported in the literature whose aim is to
enhance the performance of population-based algorithms target for optimization problems.
This section reviews evolutionary approaches based on similarity.

Similarity-based mating was suggested by Ishibuchi and Shibata [Ishibuchi and Shi-
bata, 2003b]. The idea of similarity-based mating is to recombine similar parents. This
mating scheme was extended to recombine extreme and similar parents in [Ishibuchi and
Shibata, 2003a]. Similarity-based mating mechanisms have been explored and successful
results have been achieved. For instance, [Ishibuchi and Shibata, 2003a] select two sets
with a specified number of randomly chosen individuals. The farthest individual from
the average fitness of the individuals of the first set is selected as the first parent. Next,
the most similar to the farthest is selected among the individuals of the second set of
individuals as the second parent. The idea is to avoid recombination of dissimilar mates
from which good offspring are not likely to be created. Experimental results show that
similarity-based mating improves the performance of evolutionary algorithms for multi-
objective combinatorial optimization problems.

In [Fonseca et al., 2009] similarity is used as a similarity-based surrogate mechanism to
enhance performance of genetic algorithms. Similarity-based surrogate models (SBSMs)
belong to the class of lazy learners (memory-based learners). SBSMs simply store their
inputs and defer processing until a prediction of the fitness value of a new individual is
requested. Then they reply by combining their stored data using a similarity measure, and
discard the constructed answer as well as any intermediate results [Fonseca et al., 2009].
The similarity-based surrogate model is based on the k-nearest neighbors method (K-NN).
Numerical experiments reported show that the framework is an attractive alternative in

26

applications that require expensive fitness function evaluations.
In many real-coded genetic algorithms (r-CGA), crossover and mutation operations

are performed using similarity between individuals instead of given probability [Chen
and Wang, 2010], where similarity is based on the difference-degree between a pair of
chromosomes. The difference degree is calculated as the ratio between the number of
distinct genes and the total number of genes. The idea has produced efficient real-coded
genetic algorithms [Chen and Yin, 2012].

3.4 Genetic Fuzzy Systems

This section briefly overviews genetic fuzzy systems (GFS) and applications. More
specifically, we address genetic fuzzy rule-based systems (GFRBS), one of the most im-
portant types of GFS. The structure of GFRBS is shown in Figure 3.1.

Figure 3.1: Genetic fuzzy rule-based system.

GFRBS is a fuzzy rule-based system enhanced by a learning procedure based on genetic
algorithms. A fuzzy rule-based system (FRBS) has a knowledge base (KB) that encodes
the knowledge of a target model. The KB contains two main components, a data base
and a fuzzy rule base. The data base (DB) stores the linguistic variables used by the
fuzzy rules, the membership functions that define the semantics of the linguistic labels,
and the parameters of the model. The fuzzy rule base (RB) is a collection of fuzzy if-
then rules. Other three components complete fuzzy rule-based models. The first is a
fuzzification module to serve as an input interface with the fuzzy reasoning process. The
second is an inference engine to perform fuzzy reasoning. The third is a defuzzification
output interface module to convert a fuzzy output into a representative pointwise output.
An effective approach to construct the KB of an FRBS is to simultaneously develop the
DB and the RB within the same process, but in two steps such as in embedded GFRBS
learning. Embedded GFRBS is a scheme to learn the DB using simultaneously a simple
method to derive a RB for each DB.

The embedded GFRBS, however, does not necessarily provide simple, transparent,
and competitive models in terms of the generalization capability. Also, they do not scale

27

well in terms of processing time and memory, two essential requirements to handle high-
dimensional, large-scale, and complex problem solving efficiently [Alcalá et al., 2011].
These issues are addressed in [Alcalá et al., 2011] suggesting a way to reduce the search
space in an embedded genetic DB learning framework and fast multiobjective evolutionary
algorithm. Lateral displacement of fuzzy partitions using a unique parameter for all
membership functions of each linguistic variable is one of the mechanisms the authors
adopt to reduce search space dimension. The idea is to prescreen promising partitions to
avoid overfitting and maintain coverage and semantic soundness of the fuzzy partitions.
In addition, the evolutionary algorithm includes incest prevention, restarting, and rule-
cropping in the RB generation process to improve convergence and learning. Despite the
use of a mechanism to manage dimensionality, the algorithm does not scale up on the
number of data in datasets. The mechanism to deal with scalability is to avoid large
percentage of samples, and error estimation using a reduced subset. A post-processing
step further refines the algorithm.

Application examples of GFS are many. For instance, [Voget and Kolonko, 1998]
presents a multi-objective optimization in which a fuzzy controller regulates the selection
procedure and fitness function of genetic algorithms. This approach is used to develop
timetables of railway networks aiming at reducing passenger waiting time when switching
trains, while at the same time, minimizing the cost of new investments to improve the
necessary infrastructure. The result of the genetic optimization is a cost-benefit curve
that shows the effect of investments on the accumulated passenger waiting time and
trade-offs between both criteria. In [Hwang, 1998] the aim is to optimize trip time and
energy consumption of a high-speed railway with fuzzy c-means clustering and genetic
algorithm. The method is applied to derive a control strategy for a planned high-speed
train line. An economical train run with a trip time margin of less than 7% and an energy
saving of 5% is reported. A model to relate the total length of low voltage line installed
in a rural town with the number of inhabitants in the town and the mean of the distances
from the center of the town to the three furthest clients in it is discussed in [Cordón,
2001]. The authors compare the training and test set error achieved by different modeling
techniques for low line estimation.

3.5 Random Search Techniques

Heuristic search algorithms are procedures whose purpose is to find approximate op-
timal solutions, that is, feasible solutions that are not guaranteed to yield exact optima.
Although empirical results indicate that heuristic search algorithm can indeed find good
solutions to complex problems, there are few theoretical results concerning their con-
vergence properties [Rudolph, 1994]. In random search theory, an algorithm is said to
converge to the global optimum if it generates a sequence of feasible solutions or functions
values in which the global optimum is a limit value [Klenke, 2013].

Random search techniques offer an appropriate model for analyzing optimization prob-
lems and they have been used in [Karnopp, 1963] and [Solis and Wets, 1981] to address
probabilistic convergence behavior of the best solution of a population to the global op-
timum under elitist selection. That is, the best individual survives with probability one.
Convergence of the participatory search algorithm can be approached within random
search theory. Here we review the notion of random search and establish a connection
between its limiting behavior and global search. The idea is to obtain conditions for
which the participatory search algorithm converges to the global optimum. The condi-

28

tions needed are based on a conceptual algorithm described next. The purpose of the
algorithm is to solve the following problem:

Problem P : Given a function f from R
n to R, and S a subset of Rn, find s in S

which minimizes f on S or at least which produce an acceptable approximation of the
infimum of f on S.

Thus, the problem is to find the global minimum. Sometimes, the global minimum
may not exist or the minimum occurs at point in which f is singularly discontinuous. To
avoid these pathological situations, the search for the infimum is replaced by the search
for the essential infimum of f on S, and characterization of the optimality region, as
suggested in [Solis and Wets, 1981].

Definition 1. σ is the essential infimum of f on S, defined as follows:

σ = inf{t : υ[s ∈ S|f(s) < t] > 0}, (3.1)

where υ(A) denotes n-dimensional volume of the set A, υ is the Lebesgue measure.

In measure theory, the Lebsegue measure is the concrete way to measure the subsets of
n-dimensional Euclidean space. For n = 1, 2, or 3, it coincides with the measure of length,
area, or volume. For simplicity, it is called n-dimensional volume or simply volume.

Definition 1 means that the set of points s that produce values f(s) close to the
essential infimum σ has nonzero υ-measure, where υ is a nonnegative measure defined on
subsets B of Rn with υ(S) > 0. Therefore, we avoid the case in which the infimum of the
function occurs at a point in which it is singularly discontinuous.

For example, let f(s) = s2 when s 6= 1 and f(1) = −10. Thus inf(f) = −10 with
s = 1. The essential infimum of function is 0.

To avoid the issue of nonexistence of a global minimum, we assume that there exists an
optimality region circumscribing the candidates for a minimum [Royden and Fitzpatrick,
1988].

Definition 2. Optimality region for P is given by

Rǫ,M =

{
{s ∈ S|f(s) < σ + ǫ} if σ is finite,

{s ∈ S|f(s) < M} if σ = −∞.

where ǫ > 0 and M < 0.
Definition 2 means that whenever a point s is produced such that it is in the optimality

region R, then s is considered an optimal solution.
The algorithm in the following serves as a general conceptual random search algorithm

(RSA).

Algorithm 9 Conceptual random search algorithm

1: procedure RSA

2: Start with a solution s0 in S and let t = 0
3: repeat
4: Generate ξt from the sample space (Rn,B, µt)
5: Set st+1 = D(st, ξt), choose µt, set t = t+ 1
6: until termination criterion is met
7: end procedure

29

Referring to conceptual algorithm, D is a mapping that combines the new sample,
ξt, with the current solution, st. The algorithm produces new solutions according to D,
which means that newly produced ones are no worse than the current best solution.

Let Mt be the support of the probability measure µt. That is, Mt is the smallest closed
subset of Rn with measure 1. Almost all random search algorithms are adaptive, with µt

depending on the previous solutions, s0, ..., st−1 generated by the algorithm. Thus µt may
be viewed as conditional probability measure.

The following assumptions are required to prove global convergence [Solis and Wets,
1981].

Assumption 1: The map D with domain S × R
n and the nonincreasing sequence

{f(st)}∞t=1 are such that
f(D(s, ξ)) ≤ f(s) (3.2)

and
ξ ∈ S ⇒ f(D(s, ξ)) ≤ min{f(ξ), f(s)}. (3.3)

Here, convergence means with probability 1 to obtain a monotone sequence {f(st)}∞t=1

which converges to the infimum of f on S.
Assumption 2: For any subset A of S with υ(A) > 0 we have that

∞∏

t=0

(1− µt(A)) = 0. (3.4)

This assumption means zero probability of repeatedly missing any positive volume
subset of S. In other words, the sampling strategy given by µt cannot consistently ignore
a part of S with positive volume σ > 0. In the case of global search algorithms, the
Assumption 2 is sufficient to prove convergence to a global minimum. We introduce the
global search convergence theorem as follows.

Theorem 1. Suppose that f is a measurable function, S is a measurable subset of Rn

and that (Assumption 1) and (Assumption 2) hold. Let {st}∞t=0 be a sequence generated
by the conceptual random search algorithm. Then

lim
t→∞

P
(
st ∈ Rǫ,M

)
= 1 (3.5)

where P (st ∈ Rǫ,M) is the probability that at step t, the points st generated by the algorithm
is in Rǫ,M .

The proof of the theorem is found in [Solis and Wets, 1981].

3.6 Summary

This chapter has reviewed the notions of evolutionary computation, participatory
learning, similarity based search, genetic fuzzy systems, and random search theory. They
are necessary ingredients to develop the participatory search algorithms and to derive
their properties. Next chapter details the participatory search algorithms, analyses the
operators they use and the convergence of the participatory search algorithms.

30

Chapter 4
Participatory Search Algorithms

This chapter introduces a class of the population-based participatory search algo-
rithms. It starts showing the role of the participatory learning idea and concepts play
in the participatory search algorithm. The participatory search operators, respectively,
selection, recombination, and mutation, are explained and the role of compatibility and
arousal justified. Next, we develop the convergence analysis of participatory search al-
gorithm using the random search theory. An explanation on how participatory search
algorithm works is given using a simple optimization problem as a vehicle.

4.1 Participatory Search Learning

Learning is the act of acquiring new or modifying an existing knowledge or belief. It
may involve different types of information. The ability to learn is possessed by humans,
and machines sometimes. Usually learning is a multi-step build up procedure weighted
by what is already known. Learning may be viewed as a process that produces changes
in the environment and changes to itself. In particular, in the realm of the survival of the
fittest mechanism it seems that an additional process occurs. External requirements and
the population itself strongly affect reproduction.

A population affects reproduction of its individuals through interaction, compatibil-
ity, and imitation among the individuals themselves. It seems natural to investigate the
possibility of constructing population-based algorithms that account for the role the pop-
ulation plays in its own reproduction and evolution. Reproductive suitability is the joint
effect that results when an individual determines its fitness using its own aims and its
compatibility with the remaining individuals. In natural environments, often the effect
of the population participation in the crafting fitness is to try to make fitness more like
itself [Yager, 2000].

In many situations, learning is a form self-sustaining process in the sense that we learn
and revise our beliefs in the context of what we already know or believe. Participatory
learning (PL) is a learning paradigm of this type. The name emphasizes that our current
knowledge of what we are trying to learn participates in the process of learning about
itself [Yager, 1990]. A key property of participatory learning is that input information has
the greatest impact in causing learning or knowledge revision when it is compatible with
the current knowledge. A fundamental factor of participatory learning is the compatibility
degree between input information and current knowledge. Figure 4.1 summarizes the
idea. The current knowledge, denoted by v(t), in addition to provide a standard against

31

which input information z(t) is compared via the lower loop, directly affects the learning
process. The upper right loop indicates that current knowledge affects how the system
accepts and processes input information. It corresponds to the participatory nature of
learning process. High compatibility between the current knowledge and current input
information enhances the environment for learning. In PL, this enhancement is expressed
by a compatibility degree. Several questions can be raised about the PL structure. One
question is that no facility is provided to measure the confidence we have in the current
knowledge structure, as we proceed as if we have complete confidence in our current
knowledge. If a long sequence of inputs have low compatibility with current knowledge, we
may believe that what has been learned so far is wrong, not the observations. This is seen
as a form of arousal. Participatory learning introduces an arousal mechanism to monitor
the performance of the learning process by looking at the values of the compatibility
degree of the current knowledge with inputs. Monitoring information is feedback, via the
upper arousal loop of Figure 4.1, in terms of an arousal index that subsequently affects
the learning process.

Figure 4.1: Participatory learning.

The instance of participatory learning we adopt in this works uses the compatibility
degree between current knowledge and current input to update knowledge employing a
smoothing like procedure [Brown, 2004], [Yager, 1990] as follows

v(t+ 1) = v(t) + αρt(z(t)− v(t)) (4.1)

where v(t) and z(t) are n-dimensional vectors that denote the current knowledge and
current input, respectively. We assume, without loss of generality, that v(t), z(t) ∈ [0, 1]n.
The parameter α ∈ [0, 1] is the basic learning rate and ρt ∈ [0, 1] is the compatibility
degree between v(t) and z(t) at step t. The product of the basic learning rate by the
compatibility degree produces the effective learning rate. If an input is far from the
current knowledge, then the value of the corresponding compatibility degree is small and
the input is filtered once the effective learning rate is lowered by the compatibility degree.
This means that if input data are too conflicting with the current knowledge, then they
are discounted [Yager, 1990]. Low values of effective learning rate avoid swings due to
spurious values of input information which are far from current knowledge. Expression
(4.1) corresponds to the lower feedback loop of Figure 4.1. As it will be shown in the

32

next subsection, (4.1) plays a key role in this work because it produces the recombination
operator of PSA.

The mechanism to monitor compatibility degrees during learning is the arousal index.
We can introduce arousal in the basic PL knowledge update formula (4.1) as follows

v(t+ 1) = v(t) + αρ1−at
t (z(t)− v(t)) (4.2)

where at ∈ [0, 1] is the arousal index at t.
One way to compute the compatibility degree ρ at step t is

ρt = 1− 1

n

n∑

k=1

|zk(t)− vk(t)|. (4.3)

In (4.3) ρt is the complement of the average absolute difference between input informa-
tion z(t) and current belief v(t). In a more general sense, ρt may be seen to be a measure of
similarity between z(t) and v(t). If ρt = 0, then v(t+1) = v(t) and the current input z(t)
is completely incompatible with the current knowledge v(t). This condition means that
the system is not open to any learning from the current information. On the other hand,
if ρt = 1, then v(t + 1) = z(t). In this case input information is in complete agreement
with the current knowledge and the system is fully open to learn.

A metric is a function that computes the distance between pairs of elements of a set.
It is shown next that ρ is such that, for any x, y, z ∈ [0, 1]n

1. ρ(x, y) ≥ 0

2. ρ(x, y) = 0⇔ x = y

3. ρ(x, y) = ρ(y, x)

4. ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

that is, ρ is a distance measure. To see this, rewrite ρ as follows

ρ = 1− 1

n

n∑

k=1

|zk − vk| (4.4)

=
1

n

n∑

k=1

(1− |zk − vk|). (4.5)

Consider the term 1−|zk−vk| = Sk, which can be understood as a measure of similarity
between z and v.

For property 1,

ρ(z, v) =
1

n

n∑

k=1

Sk ≥ 0 because Sk ∈ [0, 1].

For property 2,

ρ(z, v) =
1

n

n∑

k=1

Sk = 0⇒
n∑

k=1

Sk = 0, thus, z = v.

33

On the other hand,

z = v ⇒
n∑

k=1

Sk = 0, thus,
1

n

n∑

k=1

Sk = 0 = ρ(z, v).

For property 3,

ρ(z, v) = 1− 1

n

n∑

k=1

|zk − vk| (4.6)

= 1− 1

n

n∑

k=1

|vk − zk| (4.7)

= ρ(v, z). (4.8)

Finally, for property 4, let z, v, w ∈ S,

ρ(z, w) = 1− 1

n

n∑

k=1

|zk − wk| (4.9)

= 1− 1

n

n∑

k=1

|zk + vk − vk − wk| (4.10)

= 1− 1

n

n∑

k=1

|(zk − vk) + (vk − wk)| (4.11)

≤ 1− 1

n

n∑

k=1

|zk − vk| −
1

n

n∑

k=1

|vk − wk| (4.12)

= ρ(z, v) + ρ(v, w)− 1 (4.13)

≤ ρ(z, v) + ρ(v, w). (4.14)

A way to model arousal is to see it as the complement of the confidence in the current
knowledge. A simple procedure is to update the arousal index a at step t is

at+1 = (1− β)at + β(1− ρt+1) (4.15)

where β ∈ [0, 1] controls the rate of change of arousal. The higher at, the less confident is
the learning system in current knowledge. If ρt+1 = 1, then we have a highly compatible
input and the arousal index decreases. On the other hand, if ρt+1 = 0, then input
information compatibility is low and the arousal index increases.

The notion of compatibility degree contributes with PSA to form pools of individuals
for selection, recombination, and mutation. The pools are assembled by two populations
St and St′ . The individuals of St′ are those of St which are the most compatible, one to
one. Selection uses compatibility to select individuals of the pool which are closer with
current best individual. Recombination is done pairwise between individuals of the mating
pool, modulated by their compatibility and arousal indexes. Mutation proceeds by adding
to the current best individual a variation proportional to the difference between selected
and recombined individuals modulated by the corresponding compatibility indexes.

In analogy with the participatory learning paradigm, the current population and the
current best individual play the role of current knowledge, whereas the new population

34

plays the role of the new knowledge. The learning object is the individual whose value,
as measured by an objective/fitness function, is the highest. The effect of compatibility
in PSA is to encourage selection and recombination of similar mates from which good
offspring are likely to be produced.

A class of participatory search algorithms that incorporates participatory learning is
shown in Figure 4.2. There are four instances, respectively, participatory search with
selective transfer (PSST), participatory search with arithmetical recombination (PSAR),
differential participatory search with selective transfer (DPST), and differential partici-
patory search with arithmetical recombination (DPSA). They are distinguished by the
nature of the recombination, and the order in which the operations of selection, recom-
bination, and mutation are processed in each generation. They also differ from similar
evolutionary approaches developed in [Liu and Gomide, 2013c] [Liu and Gomide, 2013a]
and [Liu and Gomide, 2013b] in the way the mating pool is constructed to produce the
new population.

PSST is similar to the algorithm introduced in [Liu and Gomide, 2013c] in that both
use participatory selective transfer and mutation. PSAR uses participatory arithmetical
recombination and mutation, processed in a different order than PSST. DPST is similar
to the algorithm of [Liu and Gomide, 2013a] because it also uses selective transfer and
participatory mutation. Likewise, DPSA is similar to the algorithm of [Liu and Gomide,
2013b] and uses participatory arithmetical recombination and mutation. DPSA proceeds
similarly as DPST except that it uses arithmetical recombination instead of selective
transfer. PSST, PSAR, DPST and DPSA differ from all previous approaches because
selection is done for each of the N individuals of the current population. Participatory
recombination and mutation are performed likewise. PSST, PSAR, DPST and DPSA are
all elitist: the best individual is always kept in the current population.

The participatory search algorithms (PSA) will be detailed in Section 2.4.
Earlier computational evaluations of PSAR performs best amongst PSST, DPSA and

DPST have been performed and the results, summarized in [Liu and Gomide, 2016], show
that PSAR performs best among the remaining ones. Therefore, performance evaluation,
comparisons with alternative population-based algorithms, and convergence analysis will
be focused on PSAR only. All the participatory search operators and their properties are,
however, detailed next.

4.2 Participatory Search Operators

This section addresses the participatory search operators introduced in this work and
studies their properties. The study reveals their exploitation, exploration behavior, items
of utmost importance in population-based search algorithms.

4.2.1 Selection

Let S be a set of N strings of fixed length n, and s, s
′ ∈ S be two individuals, s

′

distinct of s, such that

s′ = argmaxr∈S(ρ(s, r)) (4.16)

35

Figure 4.2: Participatory search algorithms (PSA).

36

where

ρ(s, r) = 1− 1

n

n∑

k=1

|sk − rk|, (4.17)

and s = (s1, s2, .., sN) and r = (r1, r2, .., rN). The individual s
′

is the one whose compati-
bility index with s is the largest. This procedure is repeated for each individual s of S to
assemble the pool S

′

with N individuals. Notice that construction of the pool is biased
by the compatibility degrees between the individuals of S. Figure 4.3 illustrates how the
population S and S ′ are assembled.

Figure 4.3: A population and its pool.

In PSA, selection is done by computing the compatibility degrees between s ∈ S and
the corresponding s

′ ∈ S
′

with the current best individual best = s∗, and picking the one
that is the most compatible to assemble a population L of selected individuals, that is,
the ones that are the closest to the current best individual. Formally,

s∗ = argmins∈Sf(s), (4.18)

where f is the objective functin.

More specifically, selection computes the compatibility degrees ρs(s, s∗) and ρs
′

(s
′

, s∗)
using

ρs = 1− 1

n

n∑

k=1

|sk − s∗k| (4.19)

and

ρs
′

= 1− 1

n

n∑

k=1

|s′

k − s∗k|, (4.20)

and the individual whose compatibility degree is the largest, denoted by pselected, is se-
lected. That is, PSA selection proceeds as follows

if ρs ≥ ρs
′

then pselected = s else pselected = s
′

. (4.21)

Figure 4.4 illustrates the process of selection.

37

Figure 4.4: Selection.

Selection depends on the objective function f(s), which identifies current best s∗, and

on ρs(s, s∗) and ρs
′

(s
′

, s∗) which measure the compatibility between s∗ and the corre-
sponding pair of individuals s and s

′

of the current pool. Jointly, f , ρs and ρs
′

decide if
an individual is selected or not. Figures 4.5 and 4.6 illustrate the effect of selection when
PSA is run using Griewank and Rosenbrock functions [Michalewicz, 1996], respectively.
The values of ρ(pselected, best) and |f(pselected)−f(best)| are plotted for several generations.
Figures 4.5 and 4.6 show the values of the compatibility ρ(pselected, best) between the se-
lected and best individuals are highly correlated with the respective objective function
values: the higher the compatibility, the closer the values of the objective function.

38

Figure 4.5: f : Griewank function.

Figure 4.6: f : Rosenbrock function.

4.2.2 Recombination

Recombination is performed by means of two mechanisms: selective transfer and arith-
metical recombination. We explain the processes of selective transfer and arithmetical
recombination next.

4.2.2.1 Selective Transfer

During the last few years, we have witnessed a growing interest to use economic
principles and models of learning in genetic algorithms. For instance, evolutionary pro-

39

cesses have been used to model the adaptive behavior of a population of economic agents
[Birchenhall and shin Lin, 2000]. Here agents develop models of fitness to their environ-
ment in conjunction with the corresponding economic activities. Economists believe that
behavior acquired through individual experience can be transmitted to future generations,
and that learning changes the way to search the space in which evolution operates. This
is an argument in favor of the interaction between the processes of evolution and learning.
Since technical knowledge is distributed across the economic population, technological
change can be viewed as a process of distributed learning. Here, the term learning is
used in a broad sense, that is, there is no distinction between learning as propagation of
knowledge through the population and the process of innovation, creation, and discovery.
The distributed learning perspective helps to understand technological change and focus
on the population suggests that an evolutionary perspective may be appropriate.

Birchenhall et al. [Birchenhall and shin Lin, 2000] claim that our knowledge and tech-
nology are modular, i.e., they can be decomposed into several components or modules.
From the evolutionary computation point of view, they suggest that the crossover opera-
tor of genetic algorithms could be seen as a representative of modular imitation. To bring
these ideas together, they advocate an algorithm that replaces selection and crossover
operators by an operator based on selective transfer. Essentially, selective transfer is a
filtered replacement of substrings from one string to another, without excluding the pos-
sibility that the entire sequence is copied [Birchenhall et al., 1997]. Clearly, the selective
transfer is similar to Holland crossover, but it is one-way transfer of strings, not on ex-
change of strings. The behavior selective transfer is likely to be very different from the
combination of selection and crossover. PSST and DPST translate the selective transfer
idea into a recombination procedure as follows.

Assume that an individual pselected is selected using the objective function and compat-
ibility as described in the step of the selection. Two positions h ≤ k in the pselected string
are chosen randomly, and a fair coin is tossed. If the coin turns head, then the substrings
from pselected(h) to pselected(k) of pselected is replaced by the corresponding substrings from
s∗(h) to s∗(k) of s∗. If the coin turns up tail, then the substrings from pselected(1) to
pselected(h − 1) and from pselected(k + 1) to pselected(n) are replaced by the corresponding
substrings of s∗. Figure 4.7 illustrates the idea of selective transfer.

Figure 4.7: Selective transfer.

40

Despite similarity with crossover of the standard genetic algorithms, there are some
differences. The most important one is that selective transfer uses one-way relocation
of substrings, from the best individual to the individual selected, and hence it is not a
crossover. This is important because selective transfer is much more schemata destructive
than the standard crossover [Birchenhall et al., 1997].

4.2.2.2 Arithmetical Recombination

Recombination derives from the participatory learning update formula (4.2). To see
this, notice that (4.2) can be rewritten as

v(t+ 1) = v(t) + αρ
(1−at)
t (z(t)− v(t))

= (1− αρ
(1−at)
t)v(t) + αρ

(1−at)
t z(t). (4.22)

Let γ = αρ
(1−at)
t . Thus (4.22) becomes

v(t+ 1) = (1− γ)v(t) + γz(t). (4.23)

Expression (4.23) is of the following type

sv(t+ 1) = (1− δ)sv(t) + δsz(t) (4.24)

where δ ∈ [0, 1]. Clearly (4.24) is a convex combination of sv(t) and sz(t) whose result
is the offspring sv(t + 1). Noticeably (4.23) is similar to (4.24) and hence (4.23) is an
arithmetical-like recombination. While parameter δ of (4.24) is either a constant or vari-
able, depending on the age of population, the value γ of (4.23) is variable and modulated
by compatibility and arousal.

Participatory recombination proceeds as in (4.23) to produce offspring pr from indi-
viduals s and s

′

of pools S and S
′

, respectively, as follows

pr = (1− αρ(1−a)
r)s+ αρ(1−a)

r s
′

. (4.25)

Figure 4.8 illustrates the process of participatory recombination. Addition in Figure
4.8 is weighted as in (4.25)

4.2.3 Mutation

There are many ways to do mutation in search algorithms. For example, assume
a population of N individuals represented by n-dimensional vectors denoted by sri,t at
generation t. Differential evolution produces new individuals by adding the weighted
differences between distinct vectors to a third vector [Storn and Price, 1997]. For each
vector sri,t, i = 1, 2, ..., N, a mutated vector is produced using

si,t+1 = sr1,t + φ · (sr2,t − sr3,t) (4.26)

where r1, r2, r3 ∈ {1, 2, ..., N} are random indexes, and φ > 0 is a parameter which controls
the amount of the differential variation (sr2,t − sr3,t).

Mutation in participatory search is similar to differential evolution mutation. It pro-
duces a mutated individual pm as follows

pm = best+ ρ1−a
m (pselected − pr). (4.27)

41

Figure 4.8: Recombination.

Figure 4.9 illustrates the process of mutation.

Figure 4.9: Mutation.

In participatory mutation, the amount of the variation of the best individual best =
s∗ is controlled by compatibility between the selected and recombined individuals and
arousal.

4.3 Analysis of the Participatory Operators

This section studies the nature of the participatory search operators. Generally speak-
ing, recombination aims at mixing individuals to combine their properties. Recombina-
tion operators should fulfill some design requirements to produce offspring with desirable
properties. One condition requires recombination to group together solutions of related
fitness [Radcliffe and Surry, 1994]. The idea is to use a set of existing solutions to create a

42

new solution by recombining the relevant properties of those solutions. Another require-
ment is to account for the metric used. For example, given two parent solutions sp1 and
sp2 and an offspring s0, recombination operators should be such that [Rothlauf, 2011]

d(sp1, sp2) ≥ max(d(sp1, s0), d(sp2, s0)). (4.28)

Inequality (4.28) expresses the requirement on the distance of offspring and its parents
be equal to or smaller than the distance between the parents. If the distance d(sp1, sp2)
between sp1 and sp2 is viewed as a measure of similarity, than (4.28) guarantees that
offspring are similar to parents. In a extreme case, the same parents, that is sp1 = sp2,
produce offspring equal to themselves, s0 = sp1 = sp2. An example of recombination
operator that fulfills (4.28) is the arithmetical crossover [Michalewicz, 1996]. Recall that,
given two parents sp1 and sp2, the arithmetical crossover (4.24) produces offspring s0 as
follows

s0 = γsp1 + (1− γ)sp2, (4.29)

where γ ∈ [0, 1]. If γ = 0.5, then offspring is the mean of the parents solutions. From
the city-block metric point of view, arithmetical crossover with γ = 0.5 produces distance
between offspring and parents smaller than the distance between the parents [Rothlauf,
2011] and the the similarity between offspring and parents is higher than between parents.

Recombination of PSA resembles the arithmetical crossover, and it should be reason-
able to expect (4.28) to hold for participatory recombination as well. Indeed, this is the
case as it is shown next.

Theorem 2. The participatory recombination operator of PSA produces offspring pr from
parents s and s′ such that

d(s, s′) ≥ max(d(s, pr), d(s
′, pr)).

Proof. Recombination of PSA uses parents s and s′ to produce offspring pr as follows

pr = (1− γ)s+ γs′

where γ = αρ1−a
r . Individuals s, s′ and pr play the role of sp1, sp2 and s0 in (4.28). We

must show that

d(s, s′) ≥ max(d(s, pr), d(s
′, pr)). (4.30)

We have that

d(s, pr) = d(s, (1− γ)s+ γs′)

≤ d(s, (1− γ)s) + d(s, γs′)

= (1− γ)d(s, s) + γd(s, s′)

= γd(s, s′) ≤ d(s, s′) (4.31)

We also have that

d(s′, pr) = d(s′, (1− γ)s+ γs′)

≤ d(s′, (1− γ)s) + d(s′, γs′)

= (1− γ)d(s′, s) + γd(s′, s′)

= (1− γ)d(s′, s) ≤ d(s, s′) (4.32)

43

Because 0 ≤ γ ≤ 1, (4.31) and (4.32) yield

d(s, s′) ≥ max(d(s, pr), d(s
′, pr)).

In what follows, an analysis of the selective transfer behavior is developed.

Theorem 3. The selective transfer operator of PSA produces offspring c from parents s∗

and pselected such that

d(s∗, pselected) ≥ max(d(s∗, c), d(pselected, c))

Proof. Selective transfer proceeds as follows.

(a). choose h, k, h ≤ k, and r ∈ [0, 1] randomly.

(b). if r ≤ 1/2 then c = [s∗(1 : h), pselected(h+ 1 : k), s∗(k + 1 : n)];
else c = [pselected(1 : h), s∗(h+ 1 : k), pselected(k + 1 : n)].

Notice that s∗, pseleted and c play the role of sp1, sp2 and s0 in (4.28). Notation
c = [s∗(1 : h), pselected(h + 1 : k), s∗(k + 1 : n)] means that the string c is assembled
merging the substrings s∗(1 : h), pselected(h + 1 : k), and s∗(k + 1 : n), respectively.
Substring s∗(1 : h) is a copy of the first h components of string s∗, pselected(h + 1 : k) is
a copy of pseleccted from component h + 1 up to k. Similarly s∗(k + 1 : n) is a copy of
components from h+ 1 to n of string s∗.

To analyze the behavior of selective transfer, we must verify if

d(s∗, pselected) ≥ max(d(s∗, c), d(pselected, c)) (4.33)

Because pselected is the individual whose compatibility degree of either s or s
′

with s∗

is the largest, we have two options to be verified, respectively

1. If pselected = s, then
d(s∗, s) ≥ max(d(s∗, c), d(s, c)) (4.34)

2. If pselected = s′, then
d(s∗, s

′

) ≥ max(d(s∗, c), d(s
′

, c)) (4.35)

First, to verify (4.34) we need to check if d(s∗, s) ≥ d(s∗, c) and d(s∗, s) ≥ d(s, c) hold
simultaneously. From Figure 4.10, if r ≥ 1/2, then d(s∗(1 : h), c(1 : h)) = 0, d(s∗(k + 1 :
n), c(k+1 : n)) = 0, and hence d(s∗, s) ≥ d(s∗, c). Similarly, since d(s(h : k), c(h : k)) = 0,
d(s∗, s) ≥ d(s, c). If r < 1/2, from Figure 4.10 we see that d(s∗(h : k), c(h : k)) = 0, and
consequently d(s∗, s) ≥ d(s∗, c). Also, because d(s(1 : h), c(1 : h)) = 0 and d(s(k + 1 :
n), c(k + 1 : n)) = 0, d(s∗, s) ≥ d(s, c). Thus, (4.34) holds. It can be shown similarly
that (4.35) also holds. Therefore, both (4.34) and (4.35) hold. Intuitively speaking, this
result suggests that, because the distance of offspring and parents are equal to or smaller
than the distance between the parents, selective transfer essentially is an exploitation
mechanism.

44

Figure 4.10: Selective transfer

The role of mutation is to induce variability in a population to prevent premature
convergence [Blum and Roli, 2003]. In this sense, participatory mutation should encourage
exploration of the search space. In participatory mutation, however, an individual may
move to closer areas in the search space depending of the amount of variation (pselected −
pr). To show that mutation induces exploration is analogous to show that it fulfills the
inequality (4.28) reversed. The following theorem shows participatory mutation has this
property.

Theorem 4. The participatory mutation operator of PSA produces pm from pselected and
pr such that

d(pselected, pr) ≤ max(d(pselected, pm), d(pr, pm))

Proof. PSA mutation uses pselected and pr to produce pm from

pm = s∗ + ρ1−a
m (pselected − pr).

We have to show that

d(pselected, pr) ≤ max(d(pselected, pm), d(pr, pm)) (4.36)

From (4.21) pselected is either s or s′. Assume that pselected = s. We must check if

d(s, pr) ≤ max(d(s, pm), d(pr, pm)) (4.37)

Indeed, this is the case because

pr = (1− γ)s+ γs′

where γ = αρ1−a
r , we have

d(s, pr) = d(s, (1− γ)s+ γs′)

≤ (1− γ)d(s, s) + γd(s, s′)

= γd(s, s′)

≤ d(s, s′) (4.38)

45

Similarly,

d(s, pm) = d(s, s∗ + δ(s− (1− γ)s− γs′))

= d(s, s∗ + δγ(s− s′))

≤ d(s, s∗) + δγd(s, s′ − s)

≤ d(s, s∗) + δγd(s, s′)

≤ d(s, s∗) + d(s, s′) (4.39)

where δ = ρ1−a
m . Computing d(pr, pm) we obtain

d(pr, pm) = d(pr, s
∗ + δ(s− pr))

= d(pr, s
∗ + δs− δpr)

≤ d(pr, s
∗) + δd(pr, s)− δd(pr, pr)

= d(pr, s
∗) + δd(pr, s)

≤ d(pr, s
∗) + d(s, s′) (4.40)

From (4.38) and (4.39)
d(s, pm)− d(s, pr) ≤ d(s, s∗) > 0 (4.41)

and hence d(s, pm) > d(s, pr).
From (4.38) and (4.40) we have

d(pr, pm)− d(s, pr) ≤ d(pr, s
∗) > 0 (4.42)

thus d(pr, pm) > d(s, pr). Therefore,

d(s, pr) ≤ max(d(s, pm), d(pr, pm)). (4.43)

Assume that pselected = s′. We must show that the following inequality holds

d(s′, pr) ≤ max(d(s′, pm), d(pr, pm)) (4.44)

Indeed, calculation of d(s′, pr) gives

d(s′, pr) = d(s′, (1− γ)s+ γs′)

≤ (1− γ)d(s′, s) + γd(s′, s′)

= (1− γ)d(s′, s)

≤ d(s′, s) (4.45)

and calculation of d(s′, pm) gives

d(s′, pm) = d(s′, s∗ + δ(s′ − (1− γ)s− γs′))

= d(s′, s∗ + δ(1− γ)(s′ − s))

≤ d(s′, s∗) + δ(1− γ)d(s′, s′ − s)

= d(s′, s∗) + δ(γ − 1)d(s′, s)

≤ d(s′, s∗) + d(s′, s) (4.46)

46

Computing d(pr, pm) we obtain

d(pr, pm) = d(pr, s
∗ + δ(s′ − pr))

= d(pr, s
∗ + δs′ − δpr))

≤ d(pr, s
∗) + δd(pr, s

′)− δd(pr, pr)

= d(pr, s
∗) + δd(pr, s

′)

≤ d(pr, s
∗) + d(s′, s) (4.47)

From (4.45) and (4.46) we have

d(s′, pm)− d(s′, pr) ≤ d(s′, s) > 0 (4.48)

and hence d(s′, pm) > d(s′, pr).
From (4.45) and (4.47) we get

d(pr, pm)− d(s′, pr) ≤ d(pr, s
∗) > 0 (4.49)

thus d(pr, pm) > d(s′, pr). Therefore,

d(s′, pr) ≤ max(d(s′, pm), d(pr, pm))

which means that

d(pselected, pr) ≤ max(d(pselected, pm), d(pr, pm)).

Theorems 3 and 4 identify the requirements the search operators need to produce in-
tensification and diversification. Diversification means to generate diverse solutions so as
to explore the search space on the global scale, while intensification means to focus on
the search in a local region by exploiting the information that a current good solution is
found in this region [Blum and Roli, 2003]. Thus, while participatory mutation induces
a diversification mechanism by an exploration of the search space, the participatory re-
combination and selective transfer have an intensification nature. This means that the
participatory search operators may quickly identify regions in the search space with high
quality solutions, and try to reduce the amount of time spent in searching.

4.4 Convergence Analysis of Participatory Search

Algorithms 10-13 detail the participatory search procedures PSAR, PSST, DPSA,
DPST. We assume St as a set of N with strings of length n at step t.

In particular, the PSAR works as follows. It starts a population St at t = 0 with N
randomly chosen individuals and, for each individual of St, the most compatible individual
amongst the remaining ones is chosen to assemble the population St′ with N individuals.
St and St′ form the mating pool. Next step computes the best individual s∗ in the current
population St, denoted by best. For instance, for minimization problems best is such that

best = argmins∈Stf(s). (4.50)

Selection proceeds by selecting, amongst each individual of St and the corresponding
mate in St′ , the one which is closest to best. Recombination is done pairwise between the

47

individuals of the mating pool, weighted by the values of compatibility and arousal. Mu-
tation uses the selected and recombined individuals to produce variations whose amount
is weighted by compatibility and arousal. If a offspring is better than current best in-
dividual, then it replaces the current best. On the other hand, if a mutated individual
is better than current best individual, then it replaces the current best. A new iteration
starts with a new population St+1 composed by the current best individual, with the re-
maining (N − 1) individuals chosen randomly. We should remark that PSA is elitist: the
best individual encountered is always kept in a population. The directive last(St)← best
means that the best individual found up to generation t, denoted by best, is kept at the
position that corresponds to the last individual of the population at step t+ 1.

Algorithm 10 Participatory Search with Arithmetical Recombination.

1: procedure PSAR

2: f an objective function
3: s ∈ St and s

′ ∈ St′

4: set best randomly
5: set a0 ← 0; t← 0
6: while t ≤ tmax do
7: generate population St randomly
8: last(St)← best
9: St′ ← s′ = argmaxr∈St(ρ(s, r))
10: find best in St

11: Selection:
12: compute ρs(s, best) and ρs

′

(s
′

, best)

13: if ρs ≥ ρs
′

then
14: pselected ← s
15: else
16: pselected ← s

′

17: end if
18: Recombination:
19: choose α, β ∈ [0, 1] randomly
20: compute ρr = ρ(s, s

′

)
21: compute at+1 = at + β((1− ρr)− at)
22: pr = (1− αρ1−at

r)s+ αρ1−at
r s

′

23: Mutation:
24: compute ρm = ρ(pselected, pr)
25: pm = best+ ρ1−at+1

m (pselected − pr)
26: if f(pr) better than f(best) then
27: best← pr
28: end if
29: if f(pm) better than f(best) then
30: best← pm
31: end if
32: t← t+ 1
33: end while
34: return best
35: end procedure

48

Algorithm 11 Participatory Search with Selective Transfer.

1: procedure PSST

2: f an objective function
3: s ∈ St and s

′ ∈ St′

4: set best randomly
5: set a0 ← 0; t← 0
6: while t ≤ tmax do
7: generate population St randomly
8: last(St)← best
9: St′ ← s′ = argmaxr∈St(ρ(s, r))
10: find best in St

11: Selection:
12: compute ρs(s, best) and ρs

′

(s
′

, best)

13: if ρs ≥ ρs
′

then
14: pselected ← s
15: else
16: pselected ← s

′

17: end if
18: Selective Transfer :
19: choose h, k, h ≤ k, and r ∈ [0, 1] randomly
20: if r ≤ 1/2 then
21: c = [best(1 : h), pselected(h+ 1 : k), best(k + 1 : n)]
22: else
23: c = [pselected(1 : h), best(h+ 1 : k), pselected(k + 1 : n)]
24: end if
25: Mutation:
26: compute ρm = ρ(pselected, c)
27: pm = best+ ρ1−at+1

m (pselected − c)
28: if f(c) better than f(best) then
29: best← c
30: end if
31: if f(pm) better than f(best) then
32: best← pm
33: end if
34: t← t+ 1
35: end while
36: return best
37: end procedure

49

Algorithm 12 Differential Participatory Search with Arithmetical Recombination.

1: procedure DPSA

2: f an objective function
3: s ∈ St and s

′ ∈ St′

4: set best randomly
5: set a0 ← 0; t← 0
6: while t ≤ tmax do
7: generate population St randomly
8: last(St)← best
9: St′ ← s′ = argmaxr∈St(ρ(s, r))
10: find best in St

11: Mutation:
12: choose β ∈ [0, 1] randomly
13: compute ρm = ρ(s, s

′

)
14: compute a(t+ 1) = a(t) + β((1− ρm)− a(t))
15: pm = best+ ρ1−at+1

m (s− s
′

)
16: Recombination:
17: choose α ∈ [0, 1] randomly
18: compute ρr = ρ(s, s

′

)
19: compute at+1 = at + β((1− ρr)− at)
20: pr = (1− αρ1−at

r)s+ αρ1−at
r s

′

21: Selection:
22: compute ρpr(pr, best) and ρpm(pm, best)
23: if ρpr ≥ ρpm then
24: pselected ← pr
25: else
26: pselected ← pm
27: end if
28: if f(pselected) better than f(best) then
29: best← pselected
30: end if
31: t← t+ 1
32: end while
33: return best
34: end procedure

50

Algorithm 13 Differential Participatory Search with Selective Transfer.

1: procedure DPST

2: f an objective function
3: s ∈ St and s

′ ∈ St′

4: set best randomly
5: set a0 ← 0; t← 0
6: while t ≤ tmax do
7: generate population St randomly
8: last(St)← best
9: St′ ← s′ = argmaxr∈St(ρ(s, r))
10: find best in St

11: Mutation:
12: choose β ∈ [0, 1] randomly; compute ρm = ρ(s, s

′

)
13: compute a(t+ 1) = a(t) + β((1− ρm)− a(t))
14: pm = best+ ρ1−at+1

m (s− s
′

)
15: Selective Transfer :
16: choose h, k, h ≤ k, and r ∈ [0, 1] randomly
17: if r ≤ 1/2 then
18: c = [best(1 : h), pm(h+ 1 : k), best(k + 1 : n)]
19: else
20: c = [pm(1 : h), best(h+ 1 : k), pm(k + 1 : n)]
21: end if
22: Selection:
23: compute ρc(c, best) and ρpm(pm, best)
24: if ρc ≥ ρpm then
25: pselected ← c
26: else
27: pselected ← pm
28: end if
29: if f(pselected) better than f(best) then
30: best← pselected
31: end if
32: t← t+ 1
33: end while
34: return best
35: end procedure

51

We address the convergence analysis and the limiting behavior of PSAR using the
random search theory [Solis and Wets, 1981]. The random search technique gives a way
to model the behavior of the algorithms. The focus is on the convergence and the limiting
behavior of the PSAR algorithm from the point of view of random search theory. The
analysis of the remaining instances of PSA proceeds similarly because they fit the same
conceptual framework as does PSAR. The following algorithm serves as a conceptual
description of PSAR.

Algorithm 14 Conceptual PSAR algorithm.

1: procedure PSAR

2: Set t← 0
3: Choose bestt

4: repeat
5: Generate St using µt

6: Compute St′

7: Find bestt in St

8: Set last(St) = D(St, bestt)
9: Set t← t+ 1
10: until termination criterion is met
11: end procedure

where µt is a uniform probability distribution, and best is

best = argminsi{f(si)}, si ∈ St. (4.51)

Recall that PSAR, like all remaining instances of PSA, is elitist. Therefore, the best
individual is always kept in the current population St. This is done via statement last(St)
which assigns best to the last position of the list of individuals that encodes St. The
conceptual PSAR algorithm assumes that generation of new individuals using µt does not
overwrites the last individual.

Function D, as stated in the conceptual PSAR algorithm, is as follows

D(St, bestt) =





ptr = (1− αρtr)s
t + αρtrs

t′ if f(ptr) < f(bestt) (4.52)

ptm = bestt + ρtm(p
t
selected − ptr) if f(ptm) < f(bestt) (4.53)

bestt otherwise (4.54)

where pm is as in (4.27), pr as in (4.25) and ρm, ρr, α ∈ [0, 1].

We notice that if f(ptr) < f(bestt), where ptr is as in (4.52), then ptr becomes current
best. Otherwise, if f(ptm) < f(bestt), where ptm is as in (4.53), then ptm becomes current
best. Otherwise, D(St, bestt) = bestt and the best found so far is kept. Hence, the
sequence {f(st)}nt=0 is monotonic and nonincreasing.

Moreover, the sequence generated by PSAR produces the best solution in finite time,
that is, the optimal solution will be found in finite number of steps and will never be
lost. This is because the individual kept at last(St+1) = D(St, bestt) is created by the
successive application of the participatory selection, recombination and mutation steps.
Further, because µt is an uniform distribution in [0, 1], any subset St ⊂ [0, 1]N×n has a

52

positive measure, which means zero probability of repeatedly missing a subset of St of
[0, 1]N×n. In other words, µt can not consistently ignore any part of [0, 1]N×n.

We conclude that the sequence {f(st)}nt=0 produced by PSAR is monotonic and non-
increasing, and thus satisfies Assumption 1 of Chapter 1. Also, recall that because µt as
a uniform distribution in [0, 1] any St ⊂ [0, 1]N×n has a positive measure, and hence it
satisfies Assumption 2 as well. Therefore we have the following result.

Theorem 5. Suppose that f is a measurable function, S is a measurable subset of [0, 1]N×n

and that Assumption 1 and Assumption 2 hold. Let {bestt}∞t=0 be a sequence generated by
the algorithm PSAR. Thus, PSAR converges with probability 1 to the global optimum.

Proof. Expressions (4.52,4.53,4.54) generate monotonic sequences and S is contained in
[0, 1]N×n. Therefore, Assumption 1 and Assumption 2 hold and hence, from Theorem (1)
of Chapter 1, (3.5) holds and the convergence of PSAR is proved.

4.5 Illustrative Example using PSAR

The participatory search process is illustrated using PSAR and a sphere function with
two variables.

Figure 4.11: Sphere function.

The sphere function we consider in the simplest one

f(s1, s2) = (s1 − 0.5)2 + (s2 − 0.5)2 (4.55)

where s1, s2 ∈ [0, 1]. The problem is to find s∗ that minimizes f(s1, s2).
The sphere function is continuous, convex and unimodal function as Figure 4.11 shows.

The global minimum at s∗ = (0.5, 0.5) and f(s∗) = 0.
Assume a population with four individuals. Table 4.1 shows an initial population.

53

Table 4.1: Initial population.

Individual (s1, s2) f(s1, s2)
1 (0.0305 0.9047) 0.3842
2 (0.7441 0.6099) 0.0717
3 (0.5000 0.6177) 0.0139
4 (0.4799 0.8594) 0.1296

Table 4.2: Compatibility degrees for the 4 individuals.

ρ(s1, s2) 1 2 3 4
1 0.4232 0.5673 0.7171
2 0.4232 0.8560 0.7062
3 0.5673 0.8560 0.8502
4 0.7171 0.7062 0.8502

From Table 4.1, individual 3 (s1 = 0.500 and s2 = 0.6177) is the current best and
f(s1, s2) = 0.0139. To form the mating pool, the most compatible individual amongst
the remaining individuals is found. This is repeated for each individual of the current
population. For instance the compatibility degrees of individual 1, namely ρ(1, 2), ρ(1, 3)
and ρ(1, 4), are

ρ(1, 2) = 1− 1

2
[0.7136 + 0.2948] = 0.4232,

ρ(1, 3) = 1− 1

2
[0.4695 + 0.287] = 0.5673,

ρ(1, 4) = 1− 1

2
[0.4494 + 0.0453] = 0.7171.

Table 4.2 shows the values of the compatibility degrees for the remaining individuals
of the population.

The highest compatibility values, marked bold in the Table 4.2, define the most com-
patible individuals. Highest compatibility individuals assemble the pool shown in Table
4.3.

Next, the algorithm uses (4.19), (4.20), (4.21) and each pair of individuals of the mating
pool of Table 4.3 to select the individuals which are closest to current best individual,

Table 4.3: Mating pool.

Individual (S) Mating Pool (S ′)
1 4
2 3
3 2
4 3

54

Table 4.4: Selection, Recombination and Mutation.

pselected pr pm f(pm)
4 (0.2777 0.7536) (0.6851 0.5045) 0.0343
3 (0.7441 0.6099) (0.2867 0.6245) 0.0609
3 (0.6853 0.6117) (0.3339 0.6230) 0.0427
3 (0.4883 0.7583) (0.5107 0.4888) 0.0002

shown in the first column of Table 4.4.
Recombination is done for each pair of corresponding individuals of the current mating

pool using (4.25). The recombined individuals produced are in the second column of Table
4.4.

Mutation uses (4.27) the recombined individuals pr, the selected individuals pselected
with the current best individual s∗ = (0.500, 0.6177) to produce the mutant population
with individuals pm shown in the third column of Table 4.4, with the respective values of
the objective function for each mutant individual collected in the fourth column.

We notice from the Table 4.4 that the value of the objective function for the mu-
tant pm = (0.5107, 0.4888) is f(pm) = 0.0002 (marked bold) which is better than f(s∗) =
0.0139 of the current best individual s∗ = (0.5000, 0.6177). Thus mutant pm = (0.5107, 0.4888)
replaces current best in the population of the next generation.

The steps of the participatory search detailed above are illustrated in Figure 4.12.
The figure shows the contour of the objective function, the initial population, and the
best mutant and its respective generators pr and pselected. The orange dot is the optimal
solution s∗ = (0.5, 0.5) we are looking for, the purple diamond is the mutation individual
pm = (0.5107, 0.4888), the green triangle is the individual pr = (0.4883, 0.7583). The blue
stars are the initial population.

Notice from Table 4.3, 4.4, and Figure 4.12 that the individual 4 has individual 3 as
a mate, and that the individual 3 is selected as pselected in the selection step. Thus, the
individuals 4 and 3 produce offspring pr. Participatory mutation produces pm using the
combination of best with a variation whose amount is proportional to (pselected − pr), but
points in the direction from individual 3 to the mutant. Recall that the individual 3 is the
current population best and that a new best individual is produced in this step. Thus, as
Figure 4.12 suggests, search progress towards the optimal solution.

55

Figure 4.12: A step of PSAR.

4.6 Summary

This chapter has introduced the notion of participatory search, the search operators
it uses, the nature of the operators. It has been shown that selective transfer and partic-
ipatory recombination emphasize intensification, while participatory mutation enhances
diversification strategy. We also addressed the convergence of the participatory search
algorithms, focusing on PSAR, the participatory search with arithmetical recombination
procedure. The notions of random search and convergence in probability have shown that
the participatory search learning algorithm converges to global infimum. Next chapter
evaluates the performance of PSAR using benchmark optimization problems available in
the literature and compares PSAR with the current state of the art population-based
optimization algorithms.

56

Chapter 5
Computational Results

This chapter investigates the performance of the participatory search algorithm, fo-
cusing in the PSAR. First we evaluate and compare PSAR with biogeography-based op-
timization (BBO), and genetic algorithm (GA) using classic benchmark, real-valued op-
timization problems of different dimension, and considering populations of different sizes.
Next, the performance of PSAR is evaluated in front of BBO, GA, ant colony (ACO), dif-
ferential evolution (DE), evolution strategy (ES), probability-based incremental learning
(PBIL), particle swarm (PSO), and the stud genetic algorithm (SGA) using fixed popu-
lation size and number of generations. PSAR is also evaluated against the winners of the
2013 IEEE Congress on Evolutionary Computation competition.

5.1 Evaluation of PSAR, BBO and GA algorithms

We start with an overview of the ten benchmark optimization problems to be consid-
ered during the evaluations. The benchmark functions, listed in Table 5.1, are amongst the
most widely used in the literature to evaluate evolutionary optimization algorithms [Si-
mon, 2008], [Simon et al., 2011]. The test problems concern finding the global minimum
of each function fi(s), s ∈ R

n, i = 1, ..., 10, where n is the dimension of the decision space.
Functions f1, f2 and f4 are multimodal functions in which the number of local minimum
increases exponentially. Function f3 is a noisy quartic function, with random[0, 1) a uni-
formly distributed random variable in [0, 1). Functions f5 to f9 are unimodal functions.
Function f10 is the step function which has one minimum and is discontinuous. Additional
information about the defining characteristics of the benchmark functions are summarized
in Table 5.1 and detailed in Appendix A. Recall that a function is separable if it can be
expressed as a sum of functions of just one variable. A function is regular if it is analytic
at each point of its domain. See [Simon, 2008] and [Yao and Liu, 1996] for further details.

First, we evaluate and compare PSAR with BBO and GA for n = 5, 10, 20 and 30 with
the population size fixed at N = 50. We run PSAR, BBO, and GA 100 times for each
benchmark function fi with 200 generations. The results are shown in Tables 5.2, 5.3, 5.4
and 5.5. PSAR performance improves upon BBO and GA as dimension of the decision
variable increases. For n = 5 BBO performs best on two of the ten benchmarks, whereas
PSAR performs best in eight of them. As n increases BBO performs best for only one
of the benchmarks while PSAR performs best for the remaining nine benchmarks. Also,
the standard deviation of the PSAR is larger as the dimension of the decision variable
increases, minus the function f3, f4, f9 that are separable regular.

57

Table 5.1: Characteristics of the Benchmark Test Functions.

Function Multimodal Separable Regular Domain
f1 Ackley Yes No Yes [-32, 32]
f2 Griewank Yes No Yes [-600, 600]
f3 Quartic No Yes Yes [-1.28, 1.28]
f4 Rastrigin Yes Yes Yes [-5.12, 5.12]
f5 Rosenbrock No No Yes [-30, 30]
f6 Schwefel 1.2 No No Yes [-100, 100]
f7 Schwefel 2.21 No No No [-100,100]
f8 Schwefel 2.22 Yes No No [-10, 10]
f9 Sphere No Yes Yes [-100, 100]
f10 Step No Yes No [-100, 100]

As [Derrac et al., 2011] and [Antonelli et al., 2013] suggest, nonparametric tests for
multiple comparison must be done to verify if there exist statistical differences among the
performance of PSAR, BBO and GA. Here the null hypothesisH0 is that all the algorithms
are equivalent. Hence, rejection of this hypothesis means that there are differences in
the performance of the algorithms studied. To accept H0 means that the difference in
performance is not statistically relevant. In other words, there is no statistical evidence
to support similar performance of the algorithms.

First, the Friedman test is used to rank the algorithms. Friedman’s test way of working
is described as follows: It ranks the algorithms for each data set separately, the best
performing algorithm getting the rank of 1, the second best rank 2, and so on. In case of
ties average ranks are assigned. Let rji be the rank of the j-th of k algorithms on the i-th
of n data sets. The Friedman test compares the average ranks of algorithms,

Rj =
1

n

∑

i

rji . (5.1)

Under the null hypothesis, which states that all the algorithms are equivalent and so their
ranks Rj should be equal, the Friedman statistic:

χ2
F =

12n

k(k + 1)

[
∑

j

R2
j −

k(k + 1)2

4

]
(5.2)

is distrubuted according to χ2
F with (k − 1) degrees of freedom [Sheskin, 2006].

Next, the Iman and Davenport test evaluates whether there exist statistically relevant
differences in the performance of the algorithms. In [Iman and Davenport, 1980], Iman
and Daveport showed that friedmans χ2

F presents a conservative behavior and proposed
a better statistic

FF =
(n− 1)χ2

F

n(k − 1)χ2
F

(5.3)

which is distributed according to the F−distribution with (k − 1) and (k − 1)(n − 1)
degrees of freedom.

If there is statistical difference, then the Holm’s post-hoc procedure is used for further
evaluation. Holm’s test is a multiple comparison procedure that work with a control

58

algorithm (usually the one assumed to be the best). These are nonparametric tests,
conducted using the R package http://CRAN.R-project.org.

Table 5.2, 5.3, 5.4 and 5.5 show the Friedman rank and Iman-Davenport p-values.
Recall that, if the p-value is lower than the significance level ε (ε = 0.05 in this work),
then the null hypothesis is rejected and we conclude that there are statistical differences
between the performance of the algorithms. In other words, the algorithms do not have
the same performance. Table 5.2, 5.3, 5.4 and 5.5 show that the p-values are lower than
0.05. There exist differences in the performance of the three algorithms. Thus, we proceed
with the Holm post-hoc test with PSAR as the control algorithm. Holm’s test rejects the
hypothesis because p < ε/i, where i is the order of the significant p-value. Table 5.6
shows that the difference of the performance is not statistically relevant between PSAR
and BBO because the null hypothesis is accepted, but the PSAR outperforms GA because
PSAR is ranked higher than GA, and the hypothesis in the Holm’ test is rejected.

Next we evaluate and compare PSAR with BBO and GA for population sizes N =
50, 100 and 200, keeping the dimension of the decision variable s fixed at n = 30. As
before, we run PSAR, BBO and GA 100 times for each benchmark function. The results
are shown in Tables 5.5, 5.7 and 5.8. The performance of PSAR improves upon BBO and
GA as the population size increases. For N = 50, BBO performs best for only one of
the benchmarks, while PSAR performs best for the remaining nine benchmarks. As the
population size increases up to N = 200, BBO performs best for two of the benchmarks,
and PSAR performs best for eight. On the other hand, the standard deviation of the
PSAR is smaller as the size of population increase at 100. When the size of population is
200, the standard deviation of few function is greater. It means that there is a limit of
population size to improve performance when the size of the population increases. Thus,
the performance of the PSA is extremely sensitive to population size.

Table 5.5, 5.7 and 5.8 show that the p-values are lower than 0.05. Thus, we proceed with
the Holm post-hoc test with PSAR as the control algorithm, Table 5.9. The hypothesis
cannot be rejected for BBO, but it is rejected for GA.

Summing up, the ranking and nonparametric tests show that PSAR is significantly
better than GA and BBO when looking at the rankings.

59

T
ab

ela
5.2:

C
om

p
arison

of
B
B
O
,
P
S
A
R

an
d
G
A

w
ith

n
=

5
an

d
N

=
50.

BBO PSAR GA
Function Mean SD Best Mean SD Best Mean SD Best

f1 2.9 1.2 0.036 0.5556 0.1409 0.0679 3.6 1.7 0
f2 1.02 0.022 1.0003 0.0472 0.0182 0 1.037 0.027 1.0032
f3 6.2E-22 6.2E-24 0 0.0144 0.0016 0.003 6.1E-7 1E-8 0
f4 0.9 0.033 0 0.3088 0.3084 0 2 0.16 0
f5 3.8 1.8 0 0.5698 0.2419 0.2637 7.9 2 0
f6 150 16 0.34 10.2512 9.116 0.0001 290 61 2.8
f7 4.1 1.7 0.26 0.0668 0.0269 0.0128 5 2.3 0.068
f8 0.29 0.048 0 0.0001 0.0003 0 0.48 0.1 0
f9 0.0064 0.00022 0 32.3582 6.7046 0 0.024 0.0018 0
f10 15 2.5 0 4.85 4.1203 0 14 4.1 0

Friedman rank 2.1 1.3 2.6
p-value 0.006351
H0 Rejected

60

T
ab

ela
5.3:

C
om

p
arison

of
B
B
O
,
P
S
A
R

an
d
G
A

w
ith

n
=

10
an

d
N

=
50.

BBO PSAR GA
Function Mean SD Best Mean SD Best Mean SD Best

f1 4.1 2.6 0.75 1.13 0.9041 0.705 4.9 3.1 0.82
f2 1.6 1.2 1 0.9648 0.4292 0.6825 1.8 1.3 1.016
f3 1.9E-7 2E-9 0 0.1191 0.0204 0.031 0.00019 2.2E-6 0
f4 3 0.28 0 0.1543 0.0646 0.0004 3 0.75 0
f5 82 14 0 69.2734 36.58 0.1052 74 20 5.5
f6 1200 380 55 378.6823 65.6126 10.4554 2800 790 89
f7 15 8.2 3.8 6.4992 5.4036 0.0077 23 10 3.5
f8 0.64 0.22 0 0.2248 0.0644 0 0.96 0.41 0
f9 0.11 0.0077 0 0.2855 0.1914 0.0239 0.17 0.023 0
f10 74 25 5 18.4 15.3747 0 140 38 8

Friedman rank 2.05 1.35 2.6
p-value 0.01127
H0 Rejected

61

T
ab

ela
5.4:

C
om

p
arison

of
B
B
O
,
P
S
A
R

an
d
G
A

w
ith

n
=

20
an

d
N

=
50.

BBO PSAR GA
Function Mean SD Best Mean SD Best Mean SD Best

f1 6 4.5 3.1 1.877 1.7893 0.0131 7.3 5.2 3
f2 7.5 3.3 1.6 5.9377 3.2 0.9999 6.7 4 2.3
f3 0.0006 0.00002 0 0.4373 0.4007 0.321 0.0026 0.0001 0
f4 6.8 2.7 0 5.4372 0.7255 0.0031 10 3.8 0.013
f5 150 68 12 69.8631 40.01 20.3841 190 96 18
f6 6400 3100 1000 5503.9696 1533.4439 147.3146 9500 5300 1400
f7 38 25 11 4.4398 4.2564 0.0168 41 31 17
f8 3.6 1.8 0.22 0.0025 0.0015 0 5.8 2.6 0.96
f9 1.3 0.3 0.0061 0.6873 0.6577 0.0377 1.9 0.63 0.012
f10 430 250 82 346 135.6852 0 680 350 130

Friedman rank 2 1.2 2.8
p-value 1.01E-4
H0 Rejected

62

T
ab

ela
5.5:

C
om

p
arin

g
B
B
O
,
P
S
A
R

an
d
G
A

for
n
=

30
an

d
N

=
50.

BBO PSAR GA
Function Mean SD Best Mean SD Best Mean SD Best

f1 8 6.4 4.1 2.4703 1.8863 0.0057 9.3 7.1 4.7
f2 16 9.2 4.5 3.0606 2.7007 1 19 12 5.1
f3 0.049 0.0038 7.7E-8 0.2903 0.2808 0.1098 0.37 0.031 1E-5
f4 14 7.4 2 10.1666 4.808 0.0036 16 9.7 5
f5 340 170 38 280.9419 235.8698 0.2259 370 200 61
f6 14000 8900 5000 11029.08 7032.9442 186.4789 27000 15000 6300
f7 49 36 24 3.0283 2.9872 0.0053 58 43 30
f8 10 5.9 1.6 0.0004 0.0002 0 13 7.4 3.8
f9 4.2 1.9 0.41 3.4653 1.2266 0.21 6.6 2.8 0.85
f10 1500 900 340 1302.01 504.309 30 2600 1200 650

Friedman rank 2.1 1 2.9
p-value 3.87E-10
H0 Rejected

63

Table 5.6: Holm’s Post-hoc test for BBO, PSAR and GA with ε = 0.05 and different
dimensions.

Dimension n=5
Control algorithm: PSAR

i Algorithm p-value ε/i H0

2 GA 0.00365 0.025 Rejected
1 BBO 0.26355 0.05 Accepted

Dimension n=10
Control algorithm: PSAR

i Algorithm p-value ε/i H0

2 GA 0.00518 0.025 Rejected
1 BBO 0.21875 0.05 Accepted

Dimension n=20
Control algorithm: PSAR

i Algorithm p-value ε/i H0

2 GA 0.00034 0.025 Rejected
1 BBO 0.07363 0.05 Accepted

Dimension n=30
Control algorithm: PSAR

i Algorithm p-value ε/i H0

2 GA 0.00002 0.025 Rejected
1 BBO 0.07363 0.05 Accepted

Figure 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 show how PSAR converges using the Griewank
function with different dimension and the size of population as illustrations. The variation
of the best fitness (lower curve) and the mean fitness in each generation. We can see that
in the begining there is a strong decline in both lines, showing that the bad solutions are
eliminated quickly and the best solutions are obtained with each new generation. The
downward trend is declining over the generations, seeming to be nearly stabilized around
100 generations, but even after 200 generations we can still notice a small decrease in
Figure 5.1 and 5.6.

Figure 5.4, 5.5 and 5.6 show how PSAR converges using the Griewank function with
the different size of population as illustrations.

64

T
ab

ela
5.7:

C
om

p
arison

of
B
B
O
,
P
S
A
R

an
d
G
A

w
ith

n
=

30
an

d
N

=
100.

BBO PSAR GA
Function Mean SD Best Mean SD Best Mean SD Best

f1 5.548 0.592 3.565 3.008 2.649 0.034 17.521 1.023 14.619
f2 4.179 0.915 2.333 3.924 0.908 1 48.297 18.998 14.71
f3 0.017 0.013 0.002 0.338 0.148 0.248 1.72 1.121 0.194
f4 24.718 4.568 14.988 23.305 3.392 3E-4 256.892 31.799 189.037
f5 103.569 28.074 41.179 276.174 203.134 90.96 809.414 292.43 347.062
f6 470.933 143.051 213.314 208.927 46.835 245.112 1799.376 565.896 779.148
f7 7187.019 2102.306 3662.482 3.242 3.238 0.005 13970.008 3545.413 4426.331
f8 4.482 1.066 2.1 0.013 0.002 0 54.443 9.177 36.7
f9 0.969 0.337 0.372 0.348 0.187 0.161 39.521 11.795 15.44
f10 357 124.738 126 147 93.367 0 6242.19 2603.085 1814

Friedman rank 2.2 1 2.8
p-value 6.87E-8
H0 Rejected

65

T
ab

ela
5.8:

C
om

p
arin

g
B
B
O
,
P
S
A
R

an
d
G
A

for
n
=

30
an

d
N

=
200.

BBO PSAR GA
Function Mean SD Best Mean SD Best Mean SD Best

f1 4.005 0.468 2.84 2.869 0.4794 0.114 17.488 1.046 14.031
f2 2.187 0.379 1.464 2.008 1.381 0.15 33.843 15.53 8.461
f3 0.004 0.005 2E-4 0.283 0.222 0.067 1.155 0.758 0.205
f4 12.661 2.61 6.065 11.916 9.833 0.006 250.508 25.376 174.029
f5 71.349 30.591 33.102 75.583 5.408 19.602 690.155 249.876 271.77
f6 175.069 57.903 75.44 142.733 53.832 93.688 1167.761 371.306 306.297
f7 4093.147 1372.64 1326.526 2.659 2.551 0.085 12182.611 3550.315 5231.045
f8 1.915 0.541 0.9 0.028 0.0158 0 49.208 8.237 27
f9 0.333 0.093 0.181 0.212 0.181 0.001 39.031 10.606 13.354
f10 130.27 46.89 54 125.1 117.712 0 3712.85 1619.69 897

Friedman rank 2.2 1 2.8
p-value 6.87E-8
H0 Rejected

66

Table 5.9: Holm’s Post-hoc test for BBO, PSAR and GA for ε = 0.05 and different
population sizes.

Population size 50
Control algorithm: PSAR

i Algorithm p-value ε/i H0

2 GA 0.00002 0.025 Rejected
1 BBO 0.07363 0.05 Accepted

Population size 100
Control algorithm: PSAR

i Algorithm p-value ε/i H0

2 GA 0.000069 0.025 Rejected
1 BBO 0.179712 0.05 Accepted

Population size 200
Control algorithm: PSAR

i Algorithm p-value ε/i H0

2 GA 0.00729 0.025 Rejected
1 BBO 0.179712 0.05 Accepted

Figure 5.1: Convergence PSAR using the Griewank function with n = 5 and N = 50.

67

Figure 5.2: Convergence PSAR using the Griewank function with n = 10 and N = 50.

Figure 5.3: Convergence PSAR using the Griewank function with n = 20 and N = 50.

68

Figure 5.4: Convergence PSAR using the Griewank function with n = 30 and N = 50.

Figure 5.5: Convergence PSAR using the Griewank function with n = 30 and N = 100.

69

Figure 5.6: Convergence PSAR using the Griewank function with n = 30 and N = 200.

5.2 Evaluation of PSAR, ACO, BBO, DE, ES, GA,

PBIL PSO and SGA algorithms

This section evaluates and compares PSAR with state of the art population-based
algorithms using the real-valued benchmark optimization problems of [Simon, 2008] and
[Yao and Liu, 1996], the ones adopted in the previous section. See Table 5.1.

The parameters used by the population-based optimization algorithms considered here
are the same as the ones reported in [Simon, 2008]. They are:

1. ACO initial pheromone value τ0 = 1E − 6, pheromone update constant Q = 20,
exploration constant qo = 1, global pheromone decay rate ρg = 0.9, local pheromone
decay rate ρl = 0.5, pheromone sensitivity α = 1, and visibility sensitivity β = 5.

2. BBO habitat modification probability= 1, immigration probability bounds per gene=
[0, 1], step size for numerical integration of probabilities = 1, maximum immigration
and migration rates for each island = 1, and mutation probability = 0.

3. DE with differential F = 0.5 and crossover constant CR = 0.5.

4. ES λ = 10 offspring each generation, and standard deviation σ = 1.

5. GA roulette wheel selection, single point crossover with crossover probability = 1,
and mutation probability = 0.01.

6. PBIL learning rate = 0.05, good population member = 1 and 0 bad population
member = 0, elitism parameter = 1, and probability vector mutation rate = 0.

70

7. PSO global learning, inertial constant = 0.3, cognitive constant = 1, and social
constant for swarm interaction = 1.

8. SGA single point crossover with crossover probability = 1 and mutation probability
= 0.01.

The results, summarized in Table 5.10, were produced using the computer codes avail-
able at http://academic.csuohio.edu/simond/bbo for ACO, BBO, DE, ES, GA, PBIL,
PSO and SGA. The decision variable is n = 20 dimensional. Each algorithm uses a pop-
ulation of size 50 and are run for 200 generations. The results are the average of 100 runs
of each algorithm. Table 5.10 highlights the following. Strictly speaking, PSAR is the
most effective because it gives the best value of the objective function for five, out of ten
functions. Also, PSAR, SGA, DE and BBO perform better than remaining algorithms
because they achieve rank of 1.7, 2, 3.5 and 4.6 in the Friedman test, respectively, with the
p-values lower than 0.05, Table 5.11. From the Holm post-hoc procedure, with PSAR as
control algorithm, Table 5.12, we can see that the hypothesis cannot be rejected for SGA,
DE and BBO. Thus, PSAR outperforms the previous approaches, and that the perfor-
mance difference between SGA, DE and BBO is not statistically relevant. In particular,
the rank of PSAR is higher than the remaining algorithms.

Overall, from the results of this and Section 5.1 we conclude that PSAR performs best
amongst ACO, BBO, DE, ES, GA, PBIL PSO and SGA.

71

T
ab

ela
5.10:

O
p
tim

al
V
alu

es
of

th
e
B
en
ch
m
ark

F
u
n
ction

s.

Function ACO BBO DE PSAR ES GA PBIL PSO SGA
f1 Mean 13.121 6 5.58 1.789 18.898 7.3 19.532 16.131 5.325

SD 1.475 4.5 0.55 0.877 0.517 5.2 0.296 0.619 0.835
Best 10.385 3.1 4.302 0.013 17.287 3 18.59 14.294 3.449

f2 Mean 6.603 7.5 2.383 9.003 104.6 6.7 219.491 73.401 2.323
SD 2.335 3.3 0.442 5.937 24.744 4 29.349 12.081 0.676
Best 2.686 1.6 1.534 0.999 49.779 2.3 148.283 42.608 1.339

f3 Mean 0.283 6E-4 0.007 0.437 15.053 0.002 16.014 2.851 0.001
SD 0.198 2E-5 0.004 0.4 4.336 1E-4 4.365 1.226 0.001
Best 0.047 0 0.001 0.321 4.83 0 4.643 0.577 6.22E-5

f4 Mean 130.794 6.8 111.335 5.437 216.551 10 219.219 155.856 24.502
SD 17.707 2.7 10.124 1.7255 17.679 3.8 12.345 11.578 5.113
Best 94.783 0 81.787 0.003 148.318 0.013 187.122 125.879 13.801

f5 Mean 1638.838 150 83.114 69.863 2455.094 190 1846.62 542.895 72.436
SD 461.459 68 22.262 40.01 569.146 96 343.952 176.688 29.905
Best 744.811 12 37.055 20.384 830.463 18 1075.813 228.797 13.584

f6 Mean 973.143 6400 2554.381 5503.969 3761.797 9500 5039.527 4718.627 324.988
SD 258.235 3100 260.821 1533.443 326.785 5300 371.546 583.581 140.444
Best 399.451 1000 2030.463 147.314 2909.344 1400 4043.034 3009.151 96.639

f7 Mean 6317.128 38 8960.712 4.439 12248.32 41 12222.978 8051.164 5471.211
SD 1807.57 25 1598.457 4.256 2256.061 31 1737.911 1858.519 1578.138
Best 2624.572 11 4990.6 0.016 7520.481 17 7501.599 4201.678 2074.698

f8 Mean 42.484 3.6 5.038 0.015 79.247 5.8 59.846 38.347 4.491
SD 7.413 1.8 0.837 0.002 13.548 2.6 5.144 15.588 0.987
Best 16.8 0.22 3.104 0 36.233 0.96 45.9 25.635 2.2

f9 Mean 19.625 1.3 0.415 2.657 67.302 1.9 65.429 21.603 0.529
SD 6.263 0.3 0.12 0.687 9.491 0.63 7.11 3.256 0.224
Best 9.352 0.006 0.197 0.037 43.954 0.012 51.098 13.38 0.141

f10 Mean 799.61 430 163.37 346 15692.78 680 24077.93 7978.4 137.1
SD 285.842 250 48.02 135.685 2760.347 350 3414.351 1429.256 66.308
Best 384 82 55 0 8466 130 15564 4952 27

72

Table 5.11: Average Ranking of the Algorithms.

Algorithm Friedman rank p-value H0

ACO 6.3
BBO 4.6
DE 3.5
PSAR 1.7
ES 7.3 3.04E-14 Rejected
GA 5.2
PBIL 7.8
PSO 6.6
SGA 2

Table 5.12: Holm’s Post-Hoc Test for ε = 0.05.

Control algorithm: PSAR
i Algorithm p-value ε/i H0

8 PBIL 4.82E-6 0.0062 Rejected
7 ES 1.5E-5 0.0071 Rejected
6 PSO 0.0019 0.0083 Rejected
5 ACO 0.00274 0.01 Rejected
4 GA 0.00864 0.0125 Rejected
3 BBO 0.4142 0.0166 Accepted
2 DE 0.5676 0.025 Accepted
1 SGA 0.683 0.05 Accepted

5.3 PSAR and the IEEE CEC 2013 competition

This section evaluates the PSAR against the winners of the IEEE CEC 2013 competi-
tion. The IEEE CEC 2013 competition was held as a Special Session on Real-Parameter
Optimization of the IEEE Congress on Evolutionary Computation held on 2013. The test
suite considers 28 benchmark functions involving a large number of features that arise
in real world situations. The main characteristics of each of these functions is given in
Table 5.13. Detailed description of the competition and the test suite is in the Appendix
B [Liang et al., 2013a].

The PSAR algorithm was run for the 28 benchmark functions using a population
with 200 individuals to compare with the results of the top two winning IEEE CEC
2013 algorithms, respectively ICMAESILS and NBIPOPaCMA [Liang et al., 2013b]. The
computational experiments were performed according to the same experimental set-up of
the IEEE CEC 2013 competition [Liang et al., 2013a]. It is summarized below:

1. Dimensions: n = 10, 30

2. Runs: 51

3. MaxFES: 10000*n (maximum number of function evaluations)

4. Search Range: [−100, 100]n

73

Table 5.13: IEEE CEC 2013 competition test suite.

Characteristics i Functions f ∗
i = fi(s

∗)
Unimodal 1 Sphere Function -1400

2 Rotated High Conditioned Elliptic Function -1300
3 Rotated Bent Cigar Function -1200
4 Rotated Discus Function -1100
5 Different Powers Function -1000

Basic Multimodal 6 Rotated Rosenbrock’s Function -900
7 Rotated Schaffers Function -800
8 Rotated Ackley’s Function -700
9 Rotated Weierstrass Function -600
10 Rotated Griewank’s Function -500
11 Rastrigin’s Function -400
12 Rotated Rastrigin’s Function -300
13 Non-Continuous Rotated Rastrigin’s Function -200
14 Schwefel’s Function -100
15 Rotated Schwefel’s Function 100
16 Rotated Kasuura Function 200
17 Lunacek Bi-Rastrigin Function 300
18 Rotated Lunacek Bi-Rastrigin Function 400
19 Expanded Griewank’s plus Rosenbrock’s Function 500
20 Expanded Scaffer’s Function 600

Composition 21 Composition Function 1 (n=5, Rotated) 700
22 Composition Function 2 (n=3, Unrotated) 800
23 Composition Function 3 (n=3, Rotated) 900
24 Composition Function 4 (n=3, Rotated) 1000
25 Composition Function 5 (n=3, Rotated) 1100
26 Composition Function 6 (n=5, Rotated) 1200
27 Composition Function 7 (n=5, Rotated) 1300
28 Composition Function 8 (n=5, Rotated) 1400

5. Initialization: uniform random within the search space.

6. Global Optimization: all problems have the global optimum within the given bounds
fi(s

∗) = fi(o) = f ∗
i , where o is the shifted global optimum.

7. Termination: terminate when either MaxFES or error smaller than 10−8 holds.

Table 5.14 shows the average error values produced by PSAR and winners ICMAESILS
and NBIPOPaCMA [Liang et al., 2013b]. The average error value corresponds to the
error measured at the maximum number of function evaluations. Average error values are
reported for n = 10 and n = 30 in Table 5.14.

Table 5.14 shows that PSAR performs best in 15 (n = 10) and 16 (n = 30) of the
benchmark functions while ICMAESILS performs best in 12 (n = 10) and 14 (n = 30),
and NBIPOPaCMA performs best for 15 (n = 10) and 13 (n = 30) of the benchmark
functions.

74

The results of the Friedman, and Iman and Davenport tests in Table 5.15 highlights
the following: for n = 10 the Friedman test ranks PSAR = 1.9642, ICMAESILS = 2.1071
and NBIPOPaCMA = 1.9285. The large p-value= 0.0784 indicates that the difference of
of performance of the algorithms is not statistically significant. This means that we do
not have the statistical evidence to show the same performance between the algorithms
in spite of the rank of NBIPOPaCMA be better than others. But, for n = 30, the p-value
is lower than 0.05. Thus, there are differences in the performance of the three algorithms.
Considering PSAR as the control algorithm in the Holm post-hoc test, we notice that the
null hypothesis cannot be rejected for ICMAESILS, but it is rejected for NBIPOPaCMA.
Hence PSAR outperforms NBIPOPaCMA, but does not outperform ICMAESILS.

Overall, although acceptance of the null hypothesis for n = 10 indicates that the differ-
ence of performance of algorithms is not statistically relevant, for n = 30 the Holm’s test
shows that the difference of performance between PSAR and NBIPOPaCMA is signifi-
cant, and that the rank of PSAR is higher than NBIPOPaCMA. Thus, PSAR outperforms
NBIPOPaCMA. On the other hand, the acceptance of null hypothesis in Holm’s test for
ICMAESILS means that we can not compare the performance of PSAR with ICMAE-
SILS because the statistical evidence is insufficient, but the rank of PSAR is the highest.
Thus, we conclude that PSAR can be considered as competitive with NBIPOPaCMA and
ICMAESILS.

75

T
ab

ela
5.14:

A
verage

error
valu

es
for

P
S
A
R
,
IC

M
A
E
S
IL
S
an

d
N
B
IP

O
P
aC

M
A
.

n = 10 n = 30
Function PSAR ICMAESILS NBIPOPaCMA PSAR ICMAESILS NBIPOPaCMA

f1 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8
f2 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8
f3 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8
f4 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8
f5 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8
f6 1.00E-8 3.89E+0 1.00E-8 1.00E-8 1.00E-8 1.00E-8
f7 1.00E-8 4.91E-6 1.00E-8 1.00E-8 7.01E-2 2.31E+0
f8 6.66E+1 2.04E+1 2.03E+1 7.97E+1 2.09E+1 2.09E+1
f9 5.71E+1 2.86E-1 2.32E-1 6.68E+1 4.34E+0 3.30E+0
f10 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8 1.00E-8
f11 1.00E-8 4.77E-1 3.64E-1 1.00E-8 2.25E+0 3.04E+0
f12 1.00E-8 2.34E-1 2.38E-1 1.00E-8 1.72E+0 2.91E+0
f13 2.53E-1 3.33E-1 4.84E-1 1.00E-8 2.16E+0 2.78E+0
f14 3.26E+1 5.08E+1 1.15E+2 7.09E+2 7.08E+2 8.10E+2
f15 1.52E+2 4.42E+1 1.58E+2 1.52E+2 2.59E+2 7.65E+2
f16 3.94E+1 3.73E-1 1.20E-1 1.52E+2 3.75E-1 4.40E-1
f17 6.52E+1 1.12E+1 1.13E+1 9.37E+1 3.43E+1 3.44E+1
f18 8.61E+1 1.12E+1 1.13E+1 1.10E+2 4.01E+1 6.23E+1
f19 9.83E+1 6.98E-1 5.25E-1 2.63E+2 2.24E+0 2.23E+0
f20 1.17E+2 2.72E+0 2.73E+0 1.18E+2 1.44E+1 1.29E+1
f21 1.42E+2 2.18E+2 1.53E+2 1.76E+2 1.88E+2 1.92E+2
f22 4.72E+2 1.66E+2 1.75E+2 7.77E+2 5.33E+2 8.38E+2
f23 2.05E+2 4.08E+1 1.74E+2 3.24E+2 2.69E+2 6.67E+2
f24 1.59E+2 1.32E+2 1.20E+2 1.68E+2 2.00E+2 1.62E+2
f25 1.92E+2 1.92E+2 1.77E+2 2.08E+2 2.40E+2 2.20E+2
f26 1.58E+2 1.18E+2 1.11E+2 1.64E+2 2.16E+2 1.58E+2
f27 2.29E+2 3.25E+2 3.17E+2 2.63E+2 3.00E+2 4.69E+2
f28 1.40E+2 2.24E+2 2.49E+2 1.96E+2 2.45E+2 2.69E+2

Friedman rank 1.9642 2.1071 1.9285 1.6785 2 2.3214
p-value 0.0784 0.0426
H0 accepted rejected

76

Table 5.15: Holm’s Post-hoc test for PSAR, ICMAESILS and NBIPOPaCMA with ε =
0.05 for D = 30.

Dimension of 30
Control algorithm: PSAR

i Algorithm p-value ε/i H0

2 NBIPOPaCMA 0.01615 0.025 rejected
1 ICMAESILS 0.2291 0.05 accepted

5.4 Summary

This chapter has evaluated and compared the performance of the participatory search
algorithm PSAR with state of the art population-based algorithms. Computational results
suggest that participatory search algorithm PSAR outperforms the previous approaches
from the point of view of the quality of the solution.

The difference of the ranking of PSAR and the top two algorithms ICMAESILS and
NBIPOPaCMA of IEEE CEC 2013 is small in low dimensional problem instances. PSAR,
ICMAESILS, and NBIPOPaCMA perform differently in higher dimensional instances.
Holm’s test shows that the difference in performance between PSAR and NBIPOPaCMA
is significant, and the rank of PSAR is higher than NBIPOPaCMA. On the other hand, the
null hypothesis is accepted for ICMAESILS, which means that the performance between
PSAR and ICMAESILS are not comparable due to lack of statistical evidence, but PSAR
achieves higher rank.

77

Chapter 6
Participatory Search Algorithms in Fuzzy

Modeling

This chapter addresses applications of participatory search algorithms in fuzzy rule-
based system modeling. The aim is to illustrate potential applications of PSA and to
evaluate and compare the performance of PSST, PSAR, DPST and DPSA algorithms
using actual data and results reported in the literature.

6.1 Linguistic Fuzzy Models

The problem of interest here is to develop linguistic fuzzy models using actual data of
electric maintenance (ELE), Auto MPG6 (MPG6), categorical data analysis (ANA), and
abalone age (ABA). The features of the data sets are summarized in Table 6.1. The ELE,
MPG6, ANA and ABA datasets are part of KEEL, an open state of the art genetic fuzzy
system (GFS) environment [Alcalá-Fdez et al., 2009]. These data were adopted in [Alcalá
et al., 2011], one of the most representative GFS reported in the literature [Fazzolari et al.,
2013], the reason why it is adopted here for evaluation and comparison purposes. The
same representation and encoding schemes of [Alcalá et al., 2011] are used by all PSA
algorithms. They are summarized as follows.

1. Database encoding: (C = C1, C2) a double-encoding scheme.
First, equidistant strong fuzzy partitions are identified considering the granularity
(labels) specified in C1. Second, the membership functions of each variable are uni-
formly rearranged to a new position considering lateral displacement values specified
in C2.

• Number of labels C1: this is a vector of integers of size n representing the
number of linguistic variables.

C1 = (L1, ..., Ln). (6.1)

Gene Li is the number of labels of the ith linguistic variable, Li ∈ {2, ..., 7}.
• Lateral displacements C2: this is a vector of real numbers of size n that encodes
displacements αi of the different variables, αi ∈ [−0.1, 0.1]. A detailed descrip-
tion of the linguistic 2-tuple representation is given in [Herrera and Mart́ınez,
2000] and [Alcalá et al., 2007].

C2 = (α1, ..., αn). (6.2)

78

An example of the encoding scheme is given in Figure 6.1.

Figure 6.1: A double-encoding scheme C1 and C2.

Figure 6.2 illustrates the lateral displacement of V for α = −0.05.

Figure 6.2: Lateral displacement of the linguistic variable V values V1, V2, and V3.

2. Rule base: constructed using the Wang and Mendel algorithm (WM) [Wang and
Mendel, 1992] and [Wang, 1994] as follows:

(a) granulate the input and output spaces;

(b) generate fuzzy rules using the given data;

(c) assign a certainty degree to each rule generated to resolve conflicts;

(d) create a fuzzy rule base combining the rules generated and rules provided by
experts (if available);

(e) determine the input-output mapping using the combined fuzzy rule base and
a defuzzification procedure.

An example of a fuzzy rule-base developed for ELE is shown in Figure 6.3.

Example of rules of the rule base of Figure 6.3 include:

rule 1: IF X1 is 1 and X2 is 1 and x3 is 1 and x4 is 1 THEN Y is 1

79

Figure 6.3: Rule base constructed using WM algorithm.

rule 2: IF X1 is 2 and X2 is 1 and x3 is 1 and x4 is 2 THEN Y is 3

rule 3: IF X1 is 3 and X2 is 3 and x3 is 2 and x4 is 3 THEN Y is 4
...

...
...

...

3. Objective function: the mean-squared error (MSE)

MSE =
1

2|D|

|D|∑

l=1

(F (xl)− yl)2 (6.3)

where |D| is the size of the dataset, F (x) is the output of the FRBS model, and y
the actual value of the output. Fuzzy inference uses the max-min procedure with
center of gravity deffuzification.

4. Initial population: each chromosome has the same number of linguistic labels, from
two to seven labels for each input variable. For each label of the inputs, all possible
combinations are assigned to the respective rules consequents. Moreover, for each
combination, two copies are added with different values in the C2 part. The first has
values randomly chosen in [−0.1, 0] and the second random values chosen in [0, 0.1].

5. Recombination: pr ← floor(pr) for C1.
If a gene g of pr in C1 is lower than 2, then Lg = 2, else if a gene g is higher than
7, then Lg = 7.

6. Mutation: pm ← floor(pm) for C1.
If a gene g of pm in C1 is lower than 2, then Lg = 2, else if a gene g is higher than
7, then Lg = 7.

The electric maintenance model has four input variables and one output variable.
The ELE dataset contains electrical maintenance data and has 1056 samples. This is an

80

Table 6.1: Summary of the Datasets.

Problem Abbr. Variables Samples
Electrical maintenance ELE 4 1056
Auto MPG6 MPG6 5 398
Analact ANA 7 4052
Abalone ABA 8 4177

instance in which we expect learning methods to develop large number of rules. ELE
modeling involves a large search space [Alcalá et al., 2011]. The MPG data concerns
city-cycle fuel consumption in miles per gallon (mpg), to be predicted in terms of one
multivalued discrete and five continuous attributes. The MPG6 dataset has 398 samples.
The categorical data (ANA) is one of the data sets used in the book Analyzing Categorical
Data by Jeffrey S. Simonoff. It contains information about the decisions taken by a
supreme court. The ANA dataset concerns seven variables and 4052 samples. Abalone
age data come from physical measurements. The abalone model has eight input variables
and one output variable. The abalone dataset (ABA) contains 4177 samples. The ELE,
MPG6, ANA and ABA datasets are available at http://sci2s.ugr.es/keel/index.php.
The methods considered in [Alcalá et al., 2011] are summarized in Table 6.2. The method
of Wang and Mendel (WM) is also a reference because PSA and the GFS use it as a rule
generation procedure during evolution.

Table 6.2: Methods Considered by the Computational Experiments [Alcalá et al., 2011].

Method Type of learning
WM(3) rule base produced by WM, 3 linguistic labels for each variable
WM(5) rule base produced by WM, 5 labels for each variable
WM(7) rule base produced by WM, 7 labels for each variable
FSMOGFS Gr. Lateral partition parameters, and rule base produced by WM
FSMOGFS+TUN FSMOGFS + Tuning of MF parameters and rule selection by

SPEA2
FSMOGFSe+TUNe FSMOGFS+TUN including fast error estimation

6.2 Experiments and Results

The inputs parameters adopted by participatory search algorithms in the experiments
reported in this section are population size of 60, and maximum number of function eval-
uations of 1000. Data sets were randomly divided into five folds, each partition containing
20% of the dataset. Four of these partitions are used for training and the remaining one
is used for testing. The algorithms are run six times for each data partition using six
distinct seeds.

The results show that the average mean-squared error for the test data achieved by
the fuzzy models developed by PSAR, Table 6.3, is lower than the average mean-squared

81

error of test data achieved by the FSMOGFSe+TUNe, except for ANA data. Also, the
MSE for the test data achieved by DPSA is lower than PSAR for ELE and MPG6 data.
For the test data of ANA and ABA, FSMOGFSe+TUNe and PSAR achieve the lowest
MSE value. Considering the test data PSAR, with WM using different number of labels
for each linguistic variable, is more accurate than when the number of linguistic labels
for each linguistic variable is kept fixed, WM(3),WM(5) and WM(7), respectively. Thus,
PSAR performs better than FSMOGFSe+TUNe from the point of view of the test data
of MSE.

Further analysis is pursued as suggested in [Derrac et al., 2011] and [Antonelli et al.,
2013] to verify if there exist statistical differences among the performance of the algo-
rithms. We use the same nonparametric tests as in Chapter 5.1. Recall that the confi-
dence level is ε = 0.05. Table 6.4 shows how PSA and GFS are ranked. PSAR achieves the
highest rank. Also, recall that the null hypothesis H0 is that PSA and GFS algorithms are
equivalent, that is, H0 means that the rank of all algorithms are equal. If the hypothesis
is rejected, then we conclude that the algorithms perform differently.

Iman-Davenport’s test suggests that there are significant differences among the algo-
rithms in all datasets once the null hypothesis is rejected (p-value= 3.3E − 4). Thus the
Holm post-hoc test is conducted with PSAR as the control algorithm. Table 6.5 shows
that the Holm post-hoc test rejects the hypothesis concerning WM(3), WM(5), WM(7),
PSST and DPST (p < ε/i), but do not reject FSMOGFSe+TUNe and DPSA. Therefore,
PSAR outperforms WM(3), WM(5), WM(7), PSST and DPST because the rank pf PSAR
is the highest and rejects the hypothesis in the Holm test. On the other hand, we notice
that the difference of the performance of FSMOGFSe+TUNe, DPSA and PSAR are not
statistical relevant because the null hypothesis is accepted.

82

T
ab

ela
6.3:

A
verage

M
S
E

of
P
S
A

an
d
G
F
S
A
lgorith

m
s.

Algorithm Dataset ELE MPG6 ANA ABA
Measure mean sd mean sd mean sd mean sd
Rule 27 43 72 68

WM(3) Tra 192241 9658 13.552 1.239 0.187 0.001 8.407 0.443
Tst 192647 14436 14.649 3.204 0.189 0.005 8.422 0.545
Rule 65 115 124 199

WM(5) Tra 56135 1498 4.136 0.317 0.027 0 3.341 0.13
Tst 56359 4685 6.096 2.416 0.03 0.002 3.474 0.247
Rule 103 194 171 368

WM(7) Tra 53092 1955 2.642 0.11 0.012 0 3.057 0.084
Tst 55495 9452 6.382 2.126 0.017 0.003 3.268 0.185
Rule 8 20 10 8

FSMOGFSe+TUNe Tra 9665 823 2.86 0.218 0.003 0 2.445 0.114
Tst 10548 1150 4.562 0.714 0.003 0.001 2.509 0.184
Rule 28 57 6 34

PSAR Tra 9502 3951.94 1.6132 1.3712 0.0256 0.0833 1.67E-3 2.95E-4
Tst 10480 3986.8 1.5205 1.2983 0.0156 0.0574 4.76E-3 2.42E-4
Rule 27 77 4 23

PSST Tra 11409 3874.74 3.424 1.3093 0.0292 0.0875 1.83E-3 1.82E-4
Tst 10560 3906.8 3.1699 1.2639 0.0682 0.0485 5.01E-3 2.39E-4
Rule 23 85 7 34

DPSA Tra 9586 3914.4058 1.8901 1.1779 0.0274 0.0913 1.83E-3 2.95E-4
Tst 10434 3753.2432 1.5151 1.2563 0.0807 0.0866 4.76E-3 2.41E-4
Rule 23 63 5 30

DPST Tra 11250 3020.37 2.0641 1.1532 0.0292 0.0836 5.5E-3 5.75E-4
Tst 10544 3260.55 2.467 1.299 0.0795 0.0373 4.85E-3 2.74E-4

T
h
e
an

aly
sis

of
T
ab

le
6.6

h
igh

ligh
ts

th
at

for
each

d
ataset,

th
e
average

of
ex
ecu

tion

83

Table 6.4: Average rank of the algorithms.

Algorithm Friedman rank p-value H0

WM(3) 8
WM(5) 6
WM(7) 5.5
FSMOGFSe+TUNe 3.75
PSAR 1.875 3.3E-4 Rejected
PSST 4.75
DPSA 2.125
DPST 4

Table 6.5: Holm’s Post-Hoc for ε = 0.05.

Control algorithm: PSAR
i Algorithm z value p-value ε/i H0

7 WM(3) 3.5362 0.0004 0.0071 Rejected
6 WM(5) 2.3815 0.00723 0.0083 Rejected
5 WM(7) 2.0928 0.00363 0.01 Rejected
4 PSST 1.6598 0.0096 0.0125 Rejected
3 DPST 1.2268 0.02198 0.0166 Rejected
2 FSMOGFSe+TUNe 0.2790 0.2482 0.025 Accepted
1 DPSA 0.1443 0.8852 0.05 Accepted

of FSMOGFSe+TUNe and PSA in minutes and seconds. We can observe the different
complexity of the solutions which generated during the evolutionary process. The com-
putational cost of the fitness evaluation depends on the complexity of number of rules
and number of conditions in the rules. In the case of ANA, the PSA needs less time than
FSMOGFSe+TUNe due to the small number of rule. Further, it is more than 3 minutes
in the case ANA and ABA due to the large number of samples.

Table 6.6: Average time of a run of the algorithms - (minutes and seconds - M:S)

Algorithm ELE MPG6 ANA ABA
FSMOGFSe+TUNe 00:42 1:00 5:17 3:54

PSAR 00:45 00:53 5:05 4:25
PSST 00:42 1:02 5:06 3:57
DPSA 00:41 1:03 5:16 4:06
DPST 00:38 0:58 5:13 4:18

84

Figure 6.4: Data and rule base developed by PSA from ELE data.

Figure 6.4 shows a data and rule base developed by PSA from ELE data. Examples
of rules are:

rule 1: IF X1 is 1 and X2 is 1 and x3 is 1 and x4 is 1 THEN Y is 1

rule 2: IF X1 is 1 and X2 is 2 and x3 is 1 and x4 is 1 THEN Y is 1

...
...

...
...

Summing up, the use of PSA to develop fuzzy rule-based models of actual electric
maintenance, city-cycle fuel consumption in miles per gallon, analysis categorical, and
age of abalone data illustrate its potential to solve complex problems. Overall, the results
suggest that PSA with arithmetical-like recombination (PSAR) performs better than cur-
rent state of the art genetic fuzzy system approaches from the point of view of the test

85

data of average mean square error. Participatory search algorithms are simpler, have high
computational performance, and require few parameters to run. Thus, we may conclude
that PSAR is a highly competitive population-based search approach.

6.3 Summary

Participatory search is a population-based instance of the participatory learning paradigm.
The applications addressed in this chapter concerned the use of PSA to develop fuzzy lin-
guistic models of actual data. The performance of the models produced by the PSA
algoritms were evaluated and compared with a state of the art genetic fuzzy system ap-
proach. The results suggest that the participatory search algorithm with arithmetical-like
recombination (PSAR) performs best.

86

Chapter 7
Conclusion

This work has introduced a new class of population-based search algorithms based
on participatory learning. Participatory search is a population-based algorithm whose
individuals affect the search process through individuals compatibility and an arousal
mechanism. Compatibility and arousal are mechanisms to account for the influence of the
individuals during search. Recombination arises from an instance of participatory learning
formula, and mutation uses selected and recombined individuals to produce variations
weighted by compatibility and arousal.

Analysis to the participatory search algorithm using random search theory suggests
that the participatory search algorithm with arithmetical recombination converges to
global optimum with probability one. It visits and keeps the global optimum in a finite
number of steps, and the optimum is never lost regardless of initialization. Because all
participatory search instances share the same foundations, a similar convergence behavior
is expected from all the instances.

Results obtained from extensive computational experiments were developed to eval-
uate and compare the performance of the participatory search learning algorithms with
population-based algorithms representative of the current state of the art in the area. In
particular, the participatory search algorithm with arithmetical-like recombination per-
formed the best. Nonparametric statistical tests also endorses that this instance of the
participatory search performs best among the algorithms considered herein.

Applications of participatory search in fuzzy rule-based modeling using actual data
illustrate the potential of participatory search to solve complex problems. Computational
results suggest that the participatory search algorithm performs better than current state
of the art genetic fuzzy system approach. In addition to its performance from the point of
view of the quality of solutions they develop, participatory search algorithms are simpler,
are faster, and require fewer parameters, which makes them very attractive in practice.

This work has introduced essential operational ant theoretical constructs for further
development of participatory serch algorithms. The participatory search algorithm def-
inition allows other tools to be added in the design stage. An advantage to design is
that participatory search algorithm requires few parameters and it is very easy to merge
with other metaheuristic algorithm to improve the performance. Further, the main aim in
doing this is to balance between the exploration versus the exploitation behavior of these
algorithms. Therefore, new opportunities emerge, which may lead to more powerful and
flexible solution methods for optimization problems. In the near future, an important re-
search topic is to combine multiple meta-heuristic algorithms to improve their individual
performance.

87

References

[Agbali et al., 2010] Agbali, M., Reichard, M., Bryjová, A., Bryja, J., and Smith, C.
(2010). Mate choice for nonadditive genetic benefits correlate with mhc dissimilarity in
the rose bitterling (rhodeus ocellatus). Evolution, 64(6):1683–1696.

[Alcalá et al., 2007] Alcalá, R., Alcalá-Fdez, J., Herrera, F., and Otero, J. (2007). Ge-
netic learning of accurate and compact fuzzy rule based systems based on the 2-tuples
linguistic representation. International Journal of Approximate Reasoning, 44(1):45–64.

[Alcalá et al., 2011] Alcalá, R., Gacto, M. J., and Herrera, F. (2011). A fast and scalable
multiobjective genetic fuzzy system for linguistic fuzzy modeling in high-dimensional
regression problems. IEEE Transactions on Fuzzy Systems, 19(4):666–681.

[Alcalá-Fdez et al., 2009] Alcalá-Fdez, J., Sánchez, L., Garćıa, S., Ventura, S., del Jesus,
M., Herrera, F., Otero, J., Garrell, J., Romero, C., Bacardit, J., Rivas, V., and Fernán-
dez, J. (2009). Keel: A software tool to assess evolutionary algorithms to data mining
problems. Soft Computing, 13(3):307–318.

[Antonelli et al., 2013] Antonelli, M., Ducange, P., and Marcelloni, F. (2013). An effi-
cient multi-objective evolutionary fuzzy system for regression problems. International
Journal of Approximate Reasoning, 54(9):1434–1451.

[Baluja, 1994] Baluja, S. (1994). Population-based incremental learning. a method for
integrating genetic search based function optimization and competitive learning. In
Technical report, volume 94, Carnegie Mellon University Pittsburgh, USA.

[Birchenhall et al., 1997] Birchenhall, C., Kastrinos, N., and Metcalfe, S. (1997). Genetic
algorithms in evolutionary modelling. Journal of Evolutionary Economics, 7(4):375–
393.

[Birchenhall and shin Lin, 2000] Birchenhall, C. and shin Lin, J. (2000). Learning and
adaptive artificial agents: Analysis of an evolutionary economic model. In Computing
in Economics and Finance, number 327. University of Manchester, United Kingdom.

[Blum and Roli, 2003] Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial op-
timization: Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–
308.

[Brown, 2004] Brown, R. G. (2004). Smoothing, forecasting and prediction of discrete
time series. Prentice-Hall, New Jersey, USA.

88

[Busch, 2005] Busch, J. W. (2005). The evolution of self-compatibility in geographically
peripheral populations of leavenworthia alabamica (brassicaceae). American Journal of
Botany, 92(9):1503–1512.

[Chen and Wang, 2010] Chen, Z.-Q. and Wang, R.-L. (2010). An efficient real-coded
genetic algorithm for real-parameter optimization. Sixth International Conference on
Natural Computation, 5:2276–2280.

[Chen and Yin, 2012] Chen, Z.-Q. and Yin, Y.-F. (2012). An new crossover operator
for real-coded genetic algorithm with selective breeding based on difference between
individuals. Eighth International Conference on Natural Computation, 5:2276–2280.

[Colorni et al., 1991] Colorni, A., Dorigo, M., Maniezzo, V., et al. (1991). Distributed op-
timization by ant colonies. In Proceedings of the first European Conference on Artificial
Life, volume 142, pages 134–142, Paris, France.

[Cordón, 2001] Cordón, Ó. (2001). Genetic fuzzy systems: Evolutionary tuning and learn-
ing of fuzzy knowledge bases. Advances in Fuzzy Systems. World Scientific Publishing,
Singapore.

[Cordón et al., 2001] Cordón, O., Herrera, F., Gomide, F., Hoffmann, F., and Magdalena,
L. (2001). Ten years of genetic fuzzy systems: Current framework and new trends. In
IFSA World Congress and 20th NAFIPS International Conference, volume 3, pages
1241–1246.

[Derrac et al., 2011] Derrac, J., Garćıa, S., Molina, D., and Herrera, F. (2011). A practical
tutorial on the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation,
1(1):3–18.

[Dorigo, 1992] Dorigo, M. (1992). Optimization, learning and natural algorithms. In Ph.
D. Thesis, System and Information Engineering. Politecnico di Milano, Italy.

[Dorigo et al., 2006] Dorigo, M., Birattari, M., and Thomas, S. (2006). Ant colony opti-
mization. IEEE Computational Intelligence, 1(4):28–39.

[Eberbach, 2005] Eberbach, E. (2005). Toward a theory of evolutionary computation.
BioSystems, 82(1):1–19.

[Eberhart and Kennedy, 1995] Eberhart, R. C. and Kennedy, J. (1995). A new optimizer
using particle swarm theory. In Proceedings of the Sixth International Symposium on
Micro Machine and Human Science, volume 1, pages 39–43, New York, USA.

[Eiben and Smith, 2015] Eiben, A. and Smith, J. (2015). Introduction to evolutionary
computing. Springer-Verlag, Berlin, Germany.

[Eiben and Rudolph, 1999] Eiben, A. E. and Rudolph, G. (1999). Theory of evolutionary
algorithms: A bird’s eye view. Theoretical Computer Science, 229(1):3–9.

[Fazzolari et al., 2013] Fazzolari, M., Alcala, R., Nojima, Y., Ishibuchi, H., and Herrera,
F. (2013). A review of the application of multiobjective evolutionary fuzzy systems:
Current status and further directions. IEEE Transactions on Fuzzy systems, 21(1):45–
65.

89

[Fogel, 1998] Fogel, D. (1998). Evolutionary computation: The fossil record. Wiley-IEEE
Press, New York, USA.

[Fonseca et al., 2009] Fonseca, L., Barbosa, H., and Lemonge, A. (2009). A similarity-
based surrogate model for enhanced performance in genetic algorithms. Opsearch,
46(1):89–107.

[Glover et al., 2000] Glover, F., Laguna, M., and Mart́ı, R. (2000). Fundamentals of
scatter search and path relinking. Control and Cybernetics, 29(3):653–684.

[Gupta, 1999] Gupta, M. M. (1999). Soft computing and intelligent systems: Theory and
applications. Academic Press Series in Engineering, San Diego, USA.

[Herrera, 2008] Herrera, F. (2008). Genetic fuzzy systems: Taxonomy, current research
trends and prospects. Evolutionary Intelligence, 1(1):27–46.

[Herrera and Mart́ınez, 2000] Herrera, F. and Mart́ınez, L. (2000). A 2-tuple fuzzy lin-
guistic representation model for computing with words. IEEE Transactions on Fuzzy
Systems, 8(6):746–752.

[Hwang, 1998] Hwang, H.-S. (1998). Control strategy for optimal compromise between
trip time and energy consumption in a high-speed railway. Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on Systems, 28(6):791–802.

[Iman and Davenport, 1980] Iman, R. and Davenport, J. (1980). Approximations of the
critical region of the friedman statistic. Communications in Statistics-Theory and Meth-
ods, 9(6):571–595.

[Ishibuchi et al., 2008] Ishibuchi, H., Narukawa, K., Tsukamoto, N., and Nojima, Y.
(2008). An empirical study on similarity-based mating for evolutionary multiobjective
combinatorial optimization. European Journal of Operational Research, 188(1):57–75.

[Ishibuchi and Shibata, 2003a] Ishibuchi, H. and Shibata, Y. (2003a). An empirical study
on the effect of mating restriction on the search ability of emo algorithms. In Evolution-
ary Multi-Criterion Optimization, pages 433–447, Berlin, Germany. Springer-Verlag.

[Ishibuchi and Shibata, 2003b] Ishibuchi, H. and Shibata, Y. (2003b). A similarity-based
mating scheme for evolutionary multiobjective optimization. Springer-Verlag, Berlin,
Germany.

[Ishibuchi et al., 2007] Ishibuchi, H., Tsukamoto, N., and Nojima, Y. (2007). Choosing
extreme parents for diversity improvement in evolutionary multiobjective optimization
algorithms. In Man and Cybernetics, 2007. ISIC. IEEE International Conference on
Systems, pages 1946–1951.

[Karnopp, 1963] Karnopp, D. (1963). Random search techniques for optimization prob-
lems. Automatica, 1(2):111–121.

[Kennedy et al., 1995] Kennedy, J., Eberhart, R., et al. (1995). Particle swarm optimiza-
tion. In Proceedings of IEEE International Conference on Neural Networks, volume 4,
pages 1942–1948, Perth, Australia.

90

[Kennedy et al., 2001] Kennedy, J. F., Kennedy, J., and Eberhart, R. C. (2001). Swarm
intelligence. Morgan Kaufmann, San Francisco, USA.

[Khatib and Fleming, 1998] Khatib, W. and Fleming, P. J. (1998). The stud GA: A mini
revolution. Springer-Verlag, Berlin, Germany.

[Klenke, 2013] Klenke, A. (2013). Probability theory: A comprehensive course, volume 10.
Springer-Verlag, London, United Kingdom.

[Liang et al., 2013a] Liang, J., Qu, B., Suganthan, P., and Hernández-Dı́az, A. G.
(2013a). Problem definitions and evaluation criteria for the cec 2013 special session
on real-parameter optimization. In Technical Report 2012, volume 2012, Singapore.
Zhengzhou University and Nanyang Technological University.

[Liang et al., 2013b] Liang, J., Qu, B., Suganthan, P., and Hernández-Dı́az, A. G.
(2013b). Ranking results of cec’13 special session and competition on real-parameter sin-
gle objective optimization. In Technical Report 2012, pages 1–11, Singapore. Zhengzhou
University and Nanyang Technological University.

[Liu and Gomide, 2013a] Liu, Y. L. and Gomide, F. (2013a). Evolutionary participa-
tory learning in fuzzy systems modeling. In IEEE International Conference on Fuzzy
Systems, pages 1–8, Hyderabad, India.

[Liu and Gomide, 2013b] Liu, Y. L. and Gomide, F. (2013b). Fuzzy systems modeling
with participatory evolution. In IFSA World Congress and NAFIPS Annual Meeting
(IFSA/NAFIPS), pages 380–385, Edmonton, AB, Canada.

[Liu and Gomide, 2013c] Liu, Y. L. and Gomide, F. (2013c). Participatory genetic learn-
ing in fuzzy system modeling. In IEEE International Workshop on Genetic and Evo-
lutionary Fuzzy Systems, pages 1–7, Singapore.

[Liu and Gomide, 2016] Liu, Y. L. and Gomide, F. (2016). Participatory search algo-
rithms in fuzzy modeling. In Proc. World Conference in Soft Computing, Berkeley,
USA.

[Lomolino et al., 2006] Lomolino, M., Brett, R., and James, H. (2006). Biogeography.
Sinauer Associates, Sunderland, USA.

[Meghanathan et al., 2012] Meghanathan, N., Chaki, N., and Nagamalai, D. (2012). Ad-
vances in Computer Science and Information Technology. Computer Science and En-
gineering: Second International Conference. Springer, Bangalore, India.

[Michalewicz, 1996] Michalewicz, Z. (1996). Genetic algorithms+ data structures= evo-
lution programs. Springer, Charlotte, USA.

[Price et al., 2006] Price, K., Storn, R. M., and Lampinen, J. A. (2006). Differential evo-
lution: A practical approach to global optimization. Springer-Verlag, Berlin, Germany.

[Radcliffe and Surry, 1994] Radcliffe, N. J. and Surry, P. D. (1994). Formal memetic
algorithms. In Evolutionary Computing: AISB Workshop, pages 1–16. Springer-Verlag,
Berlin, Germany.

91

[Rothlauf, 2011] Rothlauf, F. (2011). Design of modern heuristics: Principles and appli-
cation. Springer-Verlag, Berlin, Germany.

[Royden and Fitzpatrick, 1988] Royden, H. and Fitzpatrick, P. (1988). Real analysis.
Macmillan, New York, USA.

[Rudolph, 1994] Rudolph, G. (1994). Convergence analysis of canonical genetic algo-
rithms. IEEE Transactions on Neural Networks, 5(1):96–101.

[Russell and Norvig, 2003] Russell, S. and Norvig, P. (2003). Artificial intelligence a mod-
ern approach. Prentice hall, New Jersey, USA.

[Sheskin, 2006] Sheskin, D. (2006). Handbook of parametric and nonparametric statistical
procedures. Chapman Hall, New York, USA.

[Simon, 2008] Simon, D. (2008). Biogeography-based optimization. IEEE Transactions
on Evolutionary Computation, 12(6):702–713.

[Simon, 2013] Simon, D. (2013). Evolutionary optimization algorithms. John Wiley &
Sons, New Jersey, USA.

[Simon et al., 2011] Simon, D., Rarick, R., Ergezer, M., and Du, D. (2011). Analytical
and numerical comparisons of biogeography-based optimization and genetic algorithms.
Information Sciences, 181(7):1224–1248.

[Solis and Wets, 1981] Solis, F. and Wets, R. (1981). Minimization by random search
techniques. Mathematics of Operations Research, 6(1):19–30.

[Sra et al., 2012] Sra, S., Nowozin, S., and Wright, S. (2012). Optimization for machine
learning. Mit Press, London, United Kingdom.

[Storn and Price, 1997] Storn, R. and Price, K. (1997). Differential evolution–a simple
and efficient heuristic for global optimization over continuous spaces. Journal of Global
Optimization, 11(4):341–359.

[Voget and Kolonko, 1998] Voget, S. and Kolonko, M. (1998). Multidimensional opti-
mization with a fuzzy genetic algorithm. Journal of Heuristics, 4(3):221–244.

[Wang, 1994] Wang, L.-X. (1994). Adaptive fuzzy systems and control: Design and sta-
bility analysis. Prentice-Hall, Upper Saddle River, USA.

[Wang and Mendel, 1992] Wang, L.-X. and Mendel, J. M. (1992). Generating fuzzy rules
by learning from examples. Man and Cybernetics, IEEE Transactions on Systems,
22(6):1414–1427.

[Whittaker and Fernández-Palacios, 2007] Whittaker, R. J. and Fernández-Palacios,
J. M. (2007). Island biogeography: Ecology, evolution, and conservation. Oxford Uni-
versity Press, United Kingdom.

[Yager, 1990] Yager, R. (1990). A model of participatory learning. Man and Cybernetics,
IEEE Transactions on Systems, 20(5):1229–1234.

[Yager, 2000] Yager, R. (2000). Participatory genetic algorithms. BISC Group List.

92

[Yao and Liu, 1996] Yao, X. and Liu, Y. (1996). Fast evolutionary programming. In
Proceedings of the Fifth Annual Conference on Evolutionary Programming, pages 451–
460. MIT Press, London, United Kingdom.

93

Appendix A
Test Problems for Population-Based

Optimization

This appendix introduces the benchmark optimization problems to evaluate the pro-
posed algorithm PSAR in the Chapter 4. The following definition and parameter of the
problems are available in the literature [Simon, 2008].

A.1 Definition of the Test Functions

Test functions are minimization problems with global minimum [01, ..., 0D] and D = 30
dimensions. The search ranges are adopted in the literture [Simon, 2008] for all test
functions.

1. Ackley Function

f1(x) = −20 exp(−0.2

√√√√ 1

n

n∑

i=1

x2
i)− exp(

1

n

n∑

i=1

cos(2πxi))) + 20 + e (A.1)

The graphical presentation of this problem in two-dimensional space is given in
Figure A.1A.1.1. Ackley function is non-separable, regular, multi-modal and the
number of local minima increases exponentially with the problem dimension.

2. Griewank Function

f2(x) =
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos(
xi√
i
) + 1 (A.2)

The graphical presentation of this problem in two-dimensional space is given in
Figure A.1A.1.2. Griewank function is non-separable, regular, multi-modal and the
number of local minima increases exponentially with the problem dimension.

3. Quartic Function

f3(x) =
n∑

i=1

ix4
i + random[0, 1) (A.3)

94

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure A.2A.2.1. Quartic function is separable, regular, unimodal and nosiy function,
where random[0, 1) is a uniformly distributed random variable in [0, 1).

4. Rastrigin Function

f4(x) =
n∑

i=1

[x2
i − 10 cos(2πxi) + 10] (A.4)

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure A.2A.2.2. Rastrigin function is separable, regular, multi-modal and the number
of local minima increases exponentially with the problem dimension.

5. Rosenbrock Function

f5(x) =
n∑

i=1

[100(xi+1 − x2
i)

2 + (xi − 1)2] (A.5)

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure A.3A.3.1. Rosenbrock function is unimodal, non-separble and regular function.

6. Schwefel 1.2 Function

f6(x) =
n∑

i=1

(
i∑

j=1

xj)
2 (A.6)

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure A.3A.3.2. Schwefel 1.2 function is unimodal, non-separble and regular function.

7. Schwefel 2.21 Function

f7(x) = max
i
{|xi|, 1 ≤ i ≤ n} (A.7)

The graphical presentation of this problem in two-dimensional space is given in
Figure A.4A.4.1. Schwefel 2.21 function is unimodal, non-separble and non-regular
function.

8. Schwefel 2.22 Function

f8(x) =
n∑

i=1

|xi|+
n∏

i=1

|xi| (A.8)

The graphical presentation of this problem in two-dimensional space is given in
Figure A.4A.4.2. Schwefel 2.22 function is non-separble, non-regular and multi-
modal function.

9. Sphere Function

f9(x) =
n∑

i=1

x2
i (A.9)

The graphical presentation of this problem in two-dimensional space is given in
Figure A.5A.5.1. Sphere function is separable, regular and unimodal function.

95

10. Step Function

f10(x) =
n∑

i=1

⌊xi + 0.5⌋ (A.10)

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure A.5A.5.2. Step function is separable, non-regular, unimodal and discontinuous
function.

(A.1.1) Ackley Function.
(A.1.2) Griewank Function.

(A.2.1) Quartic Function.
(A.2.2) Rastrigin Function.

96

(A.3.1) Rosenbrock Function.
(A.3.2) Schwefel 1.2 Function.

(A.4.1) Schwefel 2.21 Function. (A.4.2) Schwefel 2.22 Function.

(A.5.1) Sphere Function.
(A.5.2) Step Function.

97

Appendix B
Test Problems for IEEE CEC 2013

competition

This appendix details the problems for the IEEE CEC 2013 on real-parameter opti-
mization which included 28 benchmark functions to evaluate the proposed algorithm in
the Chapter 4. The following definition and parameter of the problems are available in
the technical report [Liang et al., 2013b].

B.1 Definition of the Test Functions

Test functions are minimization problems defined as following:

Minf(x), x = [x1, x2, ..., xD]
T

where D is dimension and o = [o1, o2, ..., oD]
T is the shifted global optimum, which is ran-

domly distributed in [−80, 80]D. The same search ranges are defined for all test functions
[−100, 100]D.

M is the rotation matrix generated from standard normally distributed by Gram-
Schmidt orthonormalization. Λα is a diagonal matrix on D dimensions with the ith diag-

onal elements as λii = α
i−1

2(D−1) , i = 1, 2, .., D.

T β
asy : if xi > 0, xi = x

1+β i−1
D−1

√
xi

i , for i = 1, ..., D.
Tosz : for xi = sign(xi) exp(x̂i + 0.049(sin(cix̂i) + sin(c2x̂i))), for i = 1 and D.

where x̂i =

{
log(|xi|) if xi 6= 0
0 otherwise

, sign(xi) =





−1 if xi < 0
0 if xi = 0
1 otherwise

c1 =

{
10 if xi > 0
5.5 otherwise

, and c2 =

{
7.9 if xi > 0
3.1 otherwise

B.1.1 Unimodal Functions

1. f1: Sphere Function

f1(x) =
D∑

i=1

z2i + f ∗
1 , z = x− o (B.1)

98

The graphical presentation of this problem in two-dimensional space is given in
Figure B.1B.1.1. Function f1 is unimodal and separable function with f ∗

1 = −1400.

2. f2: Rotated High Conditioned Elliptic Function

f2(x) =
D∑

i=1

(106)
i−1
D−1 z2i + f ∗

2 , z = Tosz(M1(x− o)) (B.2)

The graphical presentation of this problem in two-dimensional space is given in
Figure B.1B.1.2. Function f2 is unimodal and non-separable function with f ∗

2 =
−1300. The main feature of this function is quadratic ill-conditioned and smooth
local irregularities.

3. f3: Rotated Bent Cigar Function

f3(x) = z21 + 106
D∑

i=2

z2i + f ∗
3 , z = M2T

0.5
asy(M1(x− o)) (B.3)

The graphical presentation of this problem in two-dimensional space is given in
Figure B.2B.2.1. Function f3 is unimodal and non-separable function with f ∗

3 =
−1200. The main feature of this function is smooth but narrow ridge.

4. f4: Rotated Discus Function

f4(x) = 106z21 +
D∑

i=2

z2i + f ∗
4 , z = Tosz(M1(x− o)) (B.4)

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure B.2B.2.2. Function f4 is unimodal and non-separable function with f ∗

4 = −1100.
The main feature of this function is asymmetrical and smooth local irregularities
with one sensitive direction.

5. f5: Different Powers Function

f5(x) =

√√√√
D∑

i=1

|zi|2+4 i−1
D−1 + f ∗

5 , z = x− o (B.5)

The graphical presentation of this problem in two-dimensional space is given in
Figure B.3B.3.1. Function f5 is unimodal and non-separable function with f ∗

5 =
−1000. The main feature of this function is that sensitivities of the zi-variables are
different.

B.1.2 Basic Multimodal Functions

1. f6: Rotated Rosenbrock’s Function

f6(x) =
D−1∑

i=1

(100(z2i −zi+1)
2+(zi−1)2)+f ∗

6 , z = M1(
2.048(x− o)

100
+100) (B.6)

99

The graphical presentation of this problem in two-dimensional space is given in
Figure B.3B.3.2. Function f6 is unimodal and non-separable function with f ∗

6 =
−900. The main feature of this function is multi-modal, non-separable and having
a very narrow valley from local optimum to global optimum.

2. f7: Rotated Schaffers Function

f7(x) = (
1

D − 1

∑

i=1

D − 1(
√
zi +
√
zisin

2(50z0.2i)))2 + f ∗
7 (B.7)

zi =
√
y2i + y2i+1 for i = 1, ..., D, y = Λ10M2T

0.5
asy(M1(x− o))

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure B.4B.4.1. Function f7 is unimodal and non-separable function with f ∗

7 = −800.
The main feature of this function is multi-modal, non-separable and asymmertical.
Local optima’s number is huge.

3. f8: Rotated Ackley’s Function

f8(x) = −20 exp(−0.2

√√√√ 1

D

D∑

i=1

z2i)− exp(
1

D

D∑

i=1

cos(2πzi)) + 20 + e+ f ∗
8 (B.8)

z = Λ10M2T
0.5
asy(M1(x− o))

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure B.4B.4.2. Function f8 is multi-modal, non-separable and asymmertical function
with f ∗

8 = −700.

4. f9: Rotated Weierstrass Function

f9(x) =
D∑

i=1

(
kmax∑

k=0

[ak cos(2πbk(zi + 0.5))])−D
kmax∑

k=0

[ak cos(2πbk · 0.5)] + f ∗
9 (B.9)

a = 0.5, b = 3, kmax = 20, z = Λ10M2T
0.5
asy(M1

0.5(x− o)

100
)

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure B.5B.5.1. Function f9 is multi-modal, non-separable and asymmetrical function
with f ∗

9 = −600. The main feature of this function is continuous but differentiable
only on a set of points.

5. f10: Rotated Griewank’s Function

f10(x) =
D∑

i=1

z2i
4000

−
D∏

i=1

cos(
zi√
i
) + 1 + f ∗

10 (B.10)

z = Λ100M1
600(x− o)

100
The graphical presentation of this problem in two-dimensional space is given in
Figure B.5B.5.2. Function f10 is multi-modal, non-separable and rotated function
with f ∗

10 = −500.

100

6. f11: Rastrigin’s Function

f11(x) =
D∑

i=1

(z2i − 10 cos(2πzi) + 10) + f ∗
11 (B.11)

z = Λ10T 0.2
asy(Tosz

5.12(x− o)

100
)

The graphical presentation of this problem in two-dimensional space is given in
Figure B.6B.6.1. Function f11 is multi-modal, separable and asymmertical function
with f ∗

11 = −400. Local optima’s number is huge.

7. f12: Rotated Rastrigin’s Function

f12(x) =
D∑

i=1

(z2i − 10 cos(2πzi) + 10) + f ∗
12 (B.12)

z = M1Λ
10M2(Tosz(M1

5.12(x− o)

100
))

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure B.6B.6.2. Function f12 is multi-modal, non-separable and asymmertical function
with f ∗

12 = −300. Local optima’s number is huge.

8. f13: Non-continuous Rotated Rastrigin’s Function

f13(x) =
D∑

i=1

(zi − 10 cos(2πzi) + 10) + f ∗
13 (B.13)

x̂ = M1
5.12(x− o)

100
, z = M1Λ

10M2T
0.2
asy(Tosz(y))

yi =

{
x̂i if |x̂i| ≤ 0.5 for i = 1, 2, ..., D
round(2x̂i) if |x̂i| > 0.5

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure B.7B.7.1. Function f13 is multi-modal, non-separable, Rotated and asymmertical
function with f ∗

13 = −200. The main feature of this function is non-continuous and
local optima’s number is huge.

9. f14: Schwefel’s Function

f14(z) = 418.9829×D −
D∑

i=1

g(zi) + f ∗
14

z = Λ10(
1000(x− o)

100
) + 420.9687462275036

g(zi) =





zi sin(|zi|1/2) if |zi| ≤ 500

(500−mod(zi, 500) sin(
√
|500−mod(zi, 500))− (zi−500)2

10000D
if zi > 500

(mod(|zi, 500)− 500) sin(
√
|mod(|zi|, 500)− 500|)− (zi+500)2

10000D
if zi < −500
(B.14)

101

The graphical presentation of this problem in two-dimensional space is given in
Figure B.7B.7.2. Function f14 is multi-modal, non-separable, Rotated and asym-
mertical function with f ∗

14 = −100. The main feature of this function is that local
optima’s number is huge and second better local optimum is far from the global
optimum.

10. f15: Rotated Schwefel’s Function

f15(z) = 418.9829×D −
D∑

i=1

g(zi) + f ∗
15

z = Λ10M1(
1000(x− o)

100
) + 420.9687462275036

g(zi) =





zi sin(|zi|1/2) if |zi| ≤ 500

(500−mod(zi, 500) sin(
√
|500−mod(zi, 500))− (zi−500)2

10000D
if zi > 500

(mod(|zi, 500)− 500) sin(
√
|mod(|zi|, 500)− 500|)− (zi+500)2

10000D
if zi < −500
(B.15)

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure B.8B.8.1. Function f15 is multi-modal, non-separable and asymmertical function
with f ∗

15 = 100. The main feature of this function is that local optima’s number is
huge and second better local optimum is far from the global optimum.

11. f16: Rotated Katsuura Function

f16(x) =
10

D2

∏
(1 + i

32∑

j=1

|2jzi − round(2jzi)|
2j

)
10

D1.2 − 10

D2
+ f ∗

16 (B.16)

z = M2Λ
10(M1

5(x− o)

100
)

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure B.8B.8.2. Function f16 is multi-modal, non-separable and asymmertical function
with f ∗

16 = 200. The main feature of this function is continuous everywhere yet dif-
ferentiable nowhere.

12. f17: Lunacek bi-Rastrigin Function

f17(x) = min(
D∑

i=1

(x̂i−µ0)
2, dD+s

D∑

i=1

(x̂i−µ1)
2)+10(D−

D∑

i=1

cos(2πẑi))+f ∗
17 (B.17)

µ0 = 2.5, µ1 = −
√

µ2
0 − d

s
, s = 1− 1

2
√
D + 20− 8.2

, d = 1

y =
10(x− o)

100
, x̂i = 2sign(x∗

i)yi + µ0, for i = 1, 2, ..., D

z = Λ100(x̂− µ0)

The graphical presentation of this problem in two-dimensional space is given in
Figure B.9B.9.1. Function f17 is multi-modal and asymmertical function with f ∗

17 =
300.

102

13. f18: Rotated Lunacek bi-Rastrigin Function

f18(x) = min(
D∑

i=1

(x̂i−µ0)
2, dD+s

D∑

i=1

(x̂i−µ1)
2)+10(D−

D∑

i=1

cos(2πẑi))+f ∗
17 (B.18)

µ0 = 2.5, µ1 = −
√

µ2
0 − d

s
, s = 1− 1

2
√
D + 20− 8.2

, d = 1

y =
10(x− o)

100
, x̂i = 2sign(x∗

i)yi + µ0, for i = 1, 2, ..., D

z = M2Λ
100(M1

x̂− µ0

)

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure B.9B.9.2. Function f18 is multi-modal, non-separable and asymmertical function
with f ∗

18 = 400. The main feature of this function is continuous everywhere yet dif-
ferentiable nowhere.

14. f19: Rotated Expanded Griewank’s plus Rosenbrock Function

Basic Griewank’s Function: g1(x) =
∑D

i=1
x2
i

4000
−∏D

i=1 cos(
xi√
i
) + 1

Basic Rosenbrock’s Function: g2(x) =
∑D−1

i=1 (100(x2
i − xi+1)

2 + (xi − 1)2)

f19(x) = g1(g2(z1, z2)) + g1(g2(z2, z3)) + ...+ g1(g2(zD−1, zD)) + g1(g2(zD, z1)) + f ∗
19

(B.19)

z = M1(
5(x− o)

100
) + 1

The graphical presentation of this problem in two-dimensional space is given in
Figure B.10B.10.1. Function f19 is multi-modal and non-separable function with
f ∗
19 = 500.

15. f20: Rotated Expanded Scaffer’s Function

Scafffer’s Function:g(x, y) = 0.5 +
(sin2

√
x2 + y2 − 0.5)

(1 + 0.001(x2 + y2))2)

f20(x) = g(z1, z2) + g(z2, z3) + ...+ g(zD−1, zD) + g(zD, z1) + f ∗
20 (B.20)

z = M2T
0.5
asy(M1(x− o))

The graphical presentation of this problem in two-dimensional space is given in
Figure B.10B.10.2. Function f20 is multi-modal, non-separable and asymmetrical
function with f ∗

20 = 600.

103

B.1.3 Composition Functions

f(x) =
n∑

i=1

{ω∗
i [λigi(x) + biasi]}+ f ∗ (B.21)

f(x): new composition function

gi(x): ith basic function used to construct the composition function

n: number of basic functions

oi: new shifted optimum position for each gi(x), define the global and local optima’s
position

biasi: define which optimum is global optimum

σi: used to control each gi(x)’s coverage range, a small σi give a narrow range for the
gi(x)

λi: used to control each gi(x)’s height

wi: weight value for each gi(x), calculated as below:

wi =
1√∑D

j=1(xj − oij)2
exp(−

∑D
j=1(xj − oij)

2

2Dσ2
i

) (B.22)

Then normalize the weight ωi = wi/
∑n

i=1 wi

So when x = oi, ωj =

{
1 j = i
0 j 6= i

for j = 1, 2, ..., n, f(x) = biasi + f ∗.

The local optimum which has the smallest bias values is global optimum. Functions
fi′ = fi − f ∗

i are used as gi. In this way, the function values of blobal optima of gi are
equal to 0 for all composition functions in this work.

1. f21: Composition Function 1
n = 5, σ = [10, 20, 30, 40, 50]
λ = [1, 1e− 6, 1e− 26, 1e− 6, 0.1]
bias = [0, 100, 200, 300, 400]
g1: Rotated Rosenbrock’s Function f ′

6

g2: Rotated Different Powers Function f ′
5

g3: Rotated Bent Cigar Function f ′
3

g4: Rotated Discus Function f ′
4

g5: Sphere Function f ′
1

The graphical presentation of this problem in two-dimensional space is given in
Figure B.11B.11.1. Function f21 is multi-modal, non-separable and asymmetrical
function with f ∗

21 = 700. The main feature of this function is different properties
around different local optima.

104

2. f22: Composition Function 2
n = 3
σ = [20, 20, 20]
λ = [1, 1, 1]
bias = [0, 100, 200]
g1−3: Schwefel’s Function f ′

14

The graphical presentation of this problem in two-dimensional space is given in Fig-
ure B.11B.11.2. Function f22 is multi-modal, separable and asymmetrical function
with f ∗

22 = 800. The main feature of this function is different properties around
different local optima.

3. f23: Composition Function 3
n = 3
σ = [20, 20, 20]
λ = [1, 1, 1]
bias = [0, 100, 200]
g1−3: Rotated Schwefel’s Function f ′

15

The graphical presentation of this problem in two-dimensional space is given in
Figure B.12B.12.1. Function f23 is multi-modal, non-separable and asymmetrical
function with f ∗

23 = 900. The main feature of this function is different properties
around different local optima.

4. f24: Composition Function 4
n = 3
σ = [20, 20, 20]
λ = [0.25, 1, 2.5]
bias = [0, 100, 200]
g1: Rotated Schwefel’s Function f ′

15

g2: Rotated Rastrigin’s Function f ′
12

g3: Rotated Weierstrass Function f ′
9

The graphical presentation of this problem in two-dimensional space is given in
Figure B.12B.12.2. Function f24 is multi-modal, non-separable and asymmetrical
function with f ∗

24 = 1000. The main feature of this function is different properties
around different local optima.

5. f25: Composition Function 5
All settings are same as Composition Function 4, except σ = [10, 30, 50]
The graphical presentation of this problem in two-dimensional space is given in
Figure B.13B.13.1. Function f25 is multi-modal, non-separable and asymmetrical
function with f ∗

25 = 1100. The main feature of this function is different properties
around different local optima.

6. f26: Composition Function 6
n = 5 σ = [10, 10, 10, 10, 10]
λ = [0.25, 1, 1e− 7, 2.5, 10]
bias = [0, 100, 200, 300, 400]
g1: Rotated Schwefel’s Function f ′

15

g2: Rotated Rastrigin’s Function f ′
12

g3: Rotated High Conditioned Elliptic Function f ′
2

g4: Rotated Weierstrass Function f ′
9

105

g5: Rotated Griewank’s Function f ′
10

The graphical presentation of this problem in two-dimensional space is given in
Figure B.13B.13.2. Function f26 is multi-modal, non-separable and asymmetrical
function with f ∗

26 = 1200. The main feature of this function is different properties
around different local optima.

7. f27: Composition Function 7
n = 5 σ = [10, 10, 10, 20, 20]
λ = [100, 10, 2.5, 25, 0.1]
bias = [0, 100, 200, 300, 400]
g1: Rotated Griewank’s Function f ′

10

g2: Rotated Rastrigin’s Function f ′
12

g3: Rotated Schwefel’s Function f ′
15

g4: Rotated Weierstrass Function f ′
9

g5: Sphere Function f ′
1

The graphical presentation of this problem in two-dimensional space is given in
Figure B.14B.14.1. Function f27 is multi-modal, non-separable and asymmetrical
function with f ∗

27 = 1300. The main feature of this function is different properties
around different local optima.

8. f28: Composition Function 8
n = 5 σ = [10, 20, 30, 40, 50]
λ = [2.5, 2.5e− 3, 2.5, 5e− 4, 0.1]
bias = [0, 100, 200, 300, 400]
g1: Rotated Expanded Griewank’s plus Rosenbrock’s Function f ′

19

g2: Rotated Schaffer’s Function f ′
7

g3: Rotated Schwefel’s Function f ′
15

g4: Rotated Expanded Scaffer’s Function f ′
20

g5: Sphere Function f ′
1

The graphical presentation of this problem in two-dimensional space is given in
Figure B.14B.14.2. Function f28 is multi-modal, non-separable and asymmetrical
function with f ∗

28 = 1400. The main feature of this function is different properties
around different local optima.

106

(B.1.1) f1 (B.1.2) f2

(B.2.1) f3 (B.2.2) f4

(B.3.1) f5 (B.3.2) f6

107

(B.4.1) f7 (B.4.2) f8

(B.5.1) f9 (B.5.2) f10

(B.6.1) f11 (B.6.2) f12

108

(B.7.1) f13 (B.7.2) f14

(B.8.1) f15 (B.8.2) f16

(B.9.1) f17 (B.9.2) f18

109

(B.10.1) f19 (B.10.2) f20

(B.11.1) f21 (B.11.2) f22

(B.12.1) f23 (B.12.2) f24

110

(B.13.1) f25 (B.13.2) f26

(B.14.1) f27 (B.14.2) f28

Figure B.14: Test functions on real-parameter optimization for IEEE CEC 2013.

	Introduction
	Publications
	Background and Literature Review
	Evolutionary Computation
	Participatory Learning
	Similarity Based Approaches
	Genetic Fuzzy Systems
	Random Search Techniques
	Summary

	Participatory Search Algorithms
	Participatory Search Learning
	Participatory Search Operators
	Selection
	Recombination
	Selective Transfer
	Arithmetical Recombination

	Mutation

	Analysis of the Participatory Operators
	Convergence Analysis of Participatory Search
	Illustrative Example using PSAR
	Summary

	Computational Results
	Evaluation of PSAR, BBO and GA algorithms
	Evaluation of PSAR, ACO, BBO, DE, ES, GA, PBIL PSO and SGA algorithms
	PSAR and the IEEE CEC 2013 competition
	Summary

	Participatory Search Algorithms in Fuzzy Modeling
	Linguistic Fuzzy Models
	Experiments and Results
	Summary

	Conclusion
	Test Problems for Population-Based Optimization
	Definition of the Test Functions

	Test Problems for IEEE CEC 2013 competition
	Definition of the Test Functions
	Unimodal Functions
	Basic Multimodal Functions
	Composition Functions

