
Paul Joseph Hidalgo Flores

Compact features for mobile visual search

Descritores compactos para busca visual em
dispositivos móveis

Campinas

2015

i

ii

UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Paul Joseph Hidalgo Flores

Compact features for mobile visual search

Descritores compactos para busca visual em

dispositivos móveis

Dissertação apresentada à Faculdade de En-
genharia Elétrica e de Computação da Univer-
sidade Estadual de Campinas como parte dos
requisitos exigidos para a obtenção do título
de Mestre em Engenharia Elétrica, na Área de
AE - Engenharia de Computação .

Supervisor: Prof. Dr. Eduardo Alves do Valle Junior.

Este exemplar corresponde à versão
Ąnal da tese defendida pelo aluno
Paul Joseph Hidalgo Flores, e orien-
tada pelo Prof. Dr. Eduardo Alves
do Valle Junior.

Campinas

2015

iii

v

vi

Abstract

Mobile Visual Search (MVS) applications became possible due to the computational power

and multiple sensors on current mobile devices (smart-phones, tablets). In addition, the state-

of-the-art in content based image retrieval (CBIR) has reached a maturity to perform these

tasks efficiently. In this dissertation, we present a study of the major techniques in CBIR.

An extensive study of the literature was performed, including the most common descriptors

based on gradients and the recently proposed binary descriptors. As a result of comparative

analysis between the main techniques in the context of MVS, we present the most appropriate

alternatives to use in such applications.

Keywords: Visual Search, Descriptors, Compact descriptors, Mobile aplications.

Resumo

Aplicações de busca visual em aparelhos móveis (Mobile Visual Search Ű MVS) tornaram-se

possíveis devido ao alto poder computacional e a multiplicidade de sensores dos novos dis-

positivos móveis (smart-phones, tablets). Além disso, o estado da arte em recuperação de

informação multimídia baseada no conteúdo (Content Based Image Retrieval - CBIR) alcan-

çou uma maturidade que permite realizar estas tarefas de forma eĄciente. Nesta dissertação,

apresentamos um estudo das principais técnicas em CBIR. Uma vasta investigação da lite-

ratura foi realizada, que inclui desde os descritores baseados em gradiente mais comuns aos

mais recentes descritores binários e compactos. Como resultado da análise comparativa entre

as principais técnicas no contexto de MVS, apresentamos as alternativas mais apropriadas

para serem utilizadas em tais aplicações.

Palavras-chaves: Busca Visual, Descritores, Descritores compactos, Aplicações móveis.

vii

viii

Contents

1 Introduction . 1

1.1 Background . 3

1.1.1 Target Retrieval by Image Matching 3

1.1.2 Image ClassiĄcation . 4

1.1.3 Feature Extraction . 4

1.2 Contributions . 5

1.3 Organization . 5

2 State of the Art . 7

2.1 Feature Detectors . 7

2.1.1 Corner Detectors . 8

2.1.2 Blob Detectors . 11

2.1.3 Optimized Implementations . 14

2.1.3.1 Difference-of-Gaussians (DoG) 14

2.1.3.2 Fast-Hessian . 15

2.1.3.3 Center Surround Extremas (CenSurE) 16

2.1.3.4 Features from Accelerated Segment Test (FAST) 17

2.2 Feature Descriptors . 20

2.2.1 Descriptors Based on Histograms of Gradients 20

2.2.1.1 Scale-Invariant Feature Transform (SIFT) 21

2.2.1.2 Gradient Location and Orientation Histogram (GLOH) . . . 22

2.2.1.3 Histograms of Oriented Gradients (HOG) 22

2.2.1.4 Speeded Up Robust Features (SURF) 23

2.2.1.5 DAISY . 23

2.2.1.6 Compressed Histogram of Gradients (CHoG) 24

2.2.1.7 Boosting Binary Keypoint Descriptor (BinBoost) 26

2.2.1.8 Binary ResIzable Gradient HisTogram (BRIGHT) 27

2.2.2 Descriptors Based on Binary Intensity Test 28

2.2.2.1 Binary Robust Independent Elementary Features (BRIEF) . 28

2.2.2.2 Oriented FAST and Rotated BRIEF (ORB) 29

2.2.2.3 Binary Robust Invariant Scalable Keypoints (BRISK) . . . 30

2.2.2.4 Fast Retina Keypoint (FREAK) 31

2.2.2.5 Fast Robust Invariant Feature (FRIF) 32

2.2.3 Summary . 32

ix

3 Experiments and Results . 35

3.1 Experimental Setup . 35

3.1.1 DeĄnitions . 35

3.1.2 Resources . 36

3.1.3 Data Sets . 37

3.2 Feature Detector Evaluation . 41

3.2.1 Evaluation WorkĆow. 42

3.2.2 Feature Detector Comparison . 42

3.2.3 Repeatability Test . 45

3.2.4 Summary . 51

3.3 Feature Descriptor Evaluation . 52

3.3.1 Evaluation WorkĆow. 53

3.3.2 Retrieval Experiments . 53

4 Conclusions . 56

4.1 Lessons Learned . 56

4.2 Future Work . 58

Bibliography . 59

Appendix 63

APPENDIX A CHoG: detailed study . 64

A.1 Huffman Tree Coding . 64

A.2 Type Quantization Coding . 66

APPENDIX B CHoG Implementation . 69

B.1 Interest Point Detection . 69

B.1.1 Parameter Estimation . 69

B.1.2 Patch size selection . 72

B.2 Descriptor Implementation . 72

B.2.1 Histogram Binning . 73

B.2.2 Spatial Binning . 73

B.2.3 Compression . 73

x

Acknowledgements

First and foremost, I would like to thank Prof. Eduardo Valle for being a great mentor and

advisor. He has been instrumental in guiding this work over the years. I have learnt a lot

from Prof. Eduardo: how to pick fruitful research problems to work on, how to face new

theoretical contents, and how to communicate research goals and results effectively, skills I

hope to implement in my own research career. I am also grateful to him for his unwavering

support during the highs and lows of my Msc and for encourage me to continue my research

work. I would like to thank Sandra Avila, her priceless advice and insights have inĆuenced

this work at different points.

I would like to thank University of Campinas (UNICAMP) and Faculty of Electrical

and Computing Engineering (FEEC) for giving me the opportunity to do my Msc studies.

I am also grateful to Coordination for the Improvement of Higher Level -or Education-

Personnel (CAPES) for their support during these 2 years of my Msc at UNICAMP. This

work would not be possible without their funding. I would also like to thank the Reasoning

for Complex Data Laboratory (RECOD Lab) and the Laboratory of Computer Engineering

and Industrial Automation (LCA), groups with which I have collaborated closely.

I would like to thank my family for their encouragement and support. Finally, I would

like to thank some of my friends at UNICAMP, who have made these years memorable:

Roberto Medeiros, Augusto Cavalcante, Eliezer de Souza da Silva, Micael Carvalho, Jomara

Bindá, Wallace Loos, Gaby Zemanate, Elvis Jara, José Hinostroza and Jackelyn Sedano.

xi

xii

List of Figures

Figure 1 Ű A Pipeline for image retrieval (Reproduced from Girod et al. [2011]). . . 3

Figure 2 Ű Client/Server approach for mobile image search (Reproduced from Girod

et al. [2011]). 4

Figure 3 Ű SUSAN corner detector examples: ŞsimilarŤ (orange) and ŞdissimilarŤ (blue)

regions. A ratio of ≍ 25% dissimilarity represents corners (a); for near

edges, this ratio is ≍ 50% (b); in homogeneous regions almost the entire

circular region has a similar intensity (c). 9

Figure 4 Ű Construction of intensity-based regions. The image presents a local ex-

trema, its rays and the irregularly-shaped region which is obtained by join-

ing the values that maximize 𝑓(𝑡) for each ray. (Reproduced from Tuyte-

laars and Van Gool [2000]). 13

Figure 5 Ű Overview of DoG detection scheme. From left to right: image sampling

using a Gaussian convolution mask, the Difference-of-Gaussians and the

comparison of local extrema in scaleŰspace (Reproduced from Tuytelaars

and Van Gool [2000]). 14

Figure 6 Ű Using integral images, it takes only three operations to calculate the area

of any rectangular region inside the image (Reproduced from Bay et al.

[2008]). 15

Figure 7 Ű The Gaussian second-order partial derivative in 𝑦-direction (a) and 𝑥𝑦-

direction (b). SURFŠs box-Ąlters approximation for the second-order Gaus-

sian partial derivative in 𝑦-direction (c) and 𝑥𝑦-direction (d). The gray

regions are equal to zero (Reproduced from Bay et al. [2008]). 16

Figure 8 Ű Progression of Center-Surround bi-level Ąlters. Left to right: circular sym-

metric BLoG (Bi-level LoG) Ąlter. Successive Ąlters (octagon, hexagon,

box) have less symmetry. (ModiĄed from Agrawal et al. [2008]). 16

Figure 9 Ű Segment test corner detection. The highlighted squares (right side) are

considered as the circular region around the pixel under test (Reproduced

from Rosten and Drummond [2006]). 17

Figure 10 Ű Spatial binning conĄguration examples in a square patch. A square grid

4 × 4 deĄnes 16 square spatial bins (left). A log-polar conĄguration with

4 angular bins and 2 radial bins deĄnes 9 spatial bins (right). 21

xiii

Figure 11 Ű Histrogram bin conĄguration. (a) distribution of gradients. (b) Contour

curves of distribution. (c) examples of histogram bin conĄgurations referred

as Vector Quantization (VQ). Although Ągure (c) shows well-delimited

regions, it is important to remember that soft binning is employed. The

red lines mark the regions where a particular bin has dominant, but not

necessarily exclusive, inĆuence. (Reproduced from V. Chandrasekhar et

al. Chandrasekhar et al. [2012]). 25

Figure 12 Ű Hierarchical HOG layers. A layer is constructed agregating the 2×2 blocks

of the previous layer (Reproduced from K. Iwamoto Iwamoto et al. [2013]). 27

Figure 13 Ű Different approaches to choosing the 128 test locations over a patch. (a)

Uniform distribution, (b) isotropic Gaussian distribution, (c) Gaussian dis-

tribution oriented in the horizontal axis Ş𝑋Ť (d) random sample from polar

grid.(e) random sample from polar grid and (0, 0). (Reproduced from M.

Calonder Calonder et al. [2010]). 29

Figure 14 Ű The BRISK sampling pattern with 60 sampling points: blue circles de-

note the sampling locations and red dashed circles are drawn at a radius

corresponding to the standard deviation à of the Gaussian kernel used to

smooth the intensity values. (Reproduced from S. Leutenegger Leutenegger

et al. [2011]. 30

Figure 15 Ű From retinal photoreceptors to pixels. (a) Density of ganglion cells over

the retina, (b) Retina areas, (c) FREAK sampling pattern, each circle

represents the region of inĆuence to be considered to compute the intensity

value. Each one of this regions will consider a Gaussian kernel to smooth

this region before to compute the intensity value (Reproduced from A.

Alahi Alahi et al. [2012]). 31

Figure 16 Ű Repeatability test: example of covariant regions. 35

Figure 17 Ű Oxford Affine Covariant Regions Data set. Examples of reference images

(left) and their transformations (right) for each image sequence: (a) and

(b) viewpoint changes in structured scene and textured scene, respectively.

(c) and (d) zoom+rotation in structured scene and textured scene, respec-

tively. (e) Blur in structured scene and (f) Blur in texture scene. (i) Light

changes, (j) JPEG compression. 38

Figure 18 Ű Stanford Mobile Visual Search (SMVS) data set: consists of images for

different categories captured with a variety of camera-phones and under

widely varying lighting conditions. Each line in the Ągure shows 2 examples

of reference image and 2 examples of a query images for an speciĄc category. 40

xiv

Figure 19 Ű Viewpoint change for structured scene: Graffiti data set. (left) Repeatabil-

ity score for viewpoint changes. (right) Number of corresponding regions. 46

Figure 20 Ű Viewpoint change for texture scene: Wall data set. (left) Repeatability

score for viewpoint changes. (right) Number of corresponding regions. . . 47

Figure 21 Ű Scale change and rotation for structured scene: Boat data set. (left) Re-

peatability score for viewpoint changes. (right) Number of corresponding

regions. 48

Figure 22 Ű Scale change and rotation for texture scene: Bark data set. (left) Repeata-

bility score for viewpoint changes. (right) Number of corresponding regions. 48

Figure 23 Ű Blur for structured scene: Bikes data set. (left) Repeatability score for

viewpoint changes. (right) Number of corresponding regions. 49

Figure 24 Ű Blur for texture scene: Trees data set. (left) Repeatability score for view-

point changes. (right) Number of corresponding regions. 49

Figure 25 Ű Illumination change for Leuven data set. (left) Repeatability score for view-

point changes. (right) Number of corresponding regions. 51

Figure 26 Ű JPEG compression for UBC data set. (left) Repeatability score for view-

point changes. (right) Number of corresponding regions. 51

Figure 27 Ű Example of Huffman tree coding for 5 leaves (𝑚 = 5). P is the initial

normalized vector and Q is the encoded vector. 65

Figure 28 Ű Type lattices and their Voronoi partitions in 3-D. 𝑚 = 3 and 𝑛 = 1, 2, 3.

(reproduced from Chandrasekhar et al. Chandrasekhar et al. [2012]). . . 67

Figure 29 Ű Correspondence between keypoints obtained using SIFT OpenCV (left)

and DoG of binary CHoG (right). 72

xv

xvi

List of Tables

Table 1 Ű Overview of the feature detectors presented in this chapter. FAST and

AGAST are not invariant to changes in scale and rotation by themselves,

but they can obtain robustness against changes in scale by using a scale-

space pyramid (e.g. Multi-scale AGAST) and against rotations by estimat-

ing the orientation of the point of interest (e.g. oFAST). 19

Table 2 Ű Overview of the feature descriptors presented in this chapter. In the column

ŞdimensionŤ: a number alone represents a vector of that dimensionality and

a number followed by ŞbŤ represents the length of the bit string. In column

ŞdistanceŤ: L2 is the Euclidean distance and KL is the Kullback Leibler

divergence. 34

Table 3 Ű OpenCV implementations used in the experimental comparison. 37

Table 4 Ű Sequences of images and their transformations in the Oxford Affine Covari-

ant Regions DataSets. 37

Table 5 Ű Number of query and database images in the SMVS data set for different

categories. 39

Table 6 Ű SMVS Data Set description: Each category and their correspondent query

images. Check mark indicates when the image query is available for an

speciĄc category. 41

Table 7 Ű Results of execution time comparison on feature detectors in a CD category

from SMVS data set. ŞRuntimeŤ reports the average time (of 100 images) to

compute the each feature detector. These processes were executed 10 times

to guarantee their consistency. ŞKeypointsŤ shows the average number of

keypoints obtained for each image. The two last columns show the time

proportion between each method and the fastest one (FAST detector) and

also to the de facto standard SURF feature detector, respectively. 43

xvii

Table 8 Ű Results obtained using the repeatability test: we choose to put two or more

detectors in the same rank when there is no absolute dominance of one

of them in the interval evaluated. In viewpoint changes we are considering

changes until 30 degrees to determine the order of feature detectors evalu-

ated. In scale changes, we put FAST at the end because this detector drops

quickly when the transformation become bigger. In Blur changes, the result

of BRISK is drastically worst than other feature detectors. In illumination

changes, the order presented is less meaningful because all detectors have

good values of repeatability. 52

Table 9 Ű Feature detector-descriptor combinations. We use the three feature detec-

tor: FAST and oFAST (ORB) was selected as a best candidates in Sec-

tion 3.2 and the reference SURF detector. The feature descriptors compared

are the four binary feature descriptors. 54

Table 10 Ű Results for feature detector-descriptor combinations. The queries corre-

spond to images obtained using the cameras 5800, canon, droid and iPhone,

respectively. The numbers express the percentage of correct retrieval using

the book category from the SMS data set. 55

Table 11 Ű Number of interest points for 5 images from VallePics using DoG (binary)

and SIFT OpenCV implementation (default parameters values and esti-

mated parameter values). 70

Table 12 Ű Parameter description and its values used to perform the estimation process. 71

Table 13 Ű Results of perfomance in retrieval task. 74

xviii

1

1 Introduction

A few years ago, the thought of advanced mobile applications was preposterous, considering

that mobile phones had low computational, and wireless networks were sparsely spread and

had low bandwidth. Since then, thanks to technological advances on both devices and net-

works, mobile phones evolved into ŞsmartŤ devices that are equipped with high-resolution

cameras and displays, and powerful processing abilities. Nowadays, ŞsmartphonesŤ are a per-

vasive element of daily activities due to the large and constantly growing number of appli-

cations they support. According to comScore Report1, in October 2013, 149.2 million people

in the U.S. owned smartphones (62.5% mobile market penetration). A similar study, in June

2013, revealed that 84% of Brazilians between 16 and 64 years-old owned mobile phones,

36% of which corresponded to smartphones users2).

Mobile image-retrieval applications are a hotspot in academic research, at the junction

of mobile devices and Content-Based Image Retrieval (CBIR). The idea is to enable a cam-

era phone to obtain images and initiate search queries about objects in the ŚclickableŠ visual

proximity to the user. Those online applications are closely involved with augmented reality

and can be used in different tasks e.g., product identiĄcation, game development, weather

queries, location services, and queries about movies, compact disks (CDs), books or artworks.

Some of the initial deployments like Google Goggles3, Nokia Point and Find, Kooaba4 and

Amazon SnapTell (an early version of Flow5) are just a few examples of pioneering industrial

products mentioned in a study on mobile image search [Nikolopoulos et al., 2011].

CBIR depends on the extraction of feature vectors from the images. The feature vec-

tors are used to establish the similarity or dissimilarity between the images. Feature extraction

schemes that can be roughly classiĄed into Şglobal descriptionsŤ (one feature vector for the

entire image), or Şlocal descriptionsŤ (several feature vectors per image, each describing a

small patch, usually around an invariant location, like a point of interest). Local descriptors

have been extensively used for CBIR systems and continue to be a very active area of com-
1 http://www.comscore.com/Insights/Press_Releases/2013/12/comScore_Reports_October_2013_

US_Smartphone_Subscriber_Market_Share
2 Source, Nielsen: http://www.nielsen.com/br/pt/insights/reports/2013/o-consumidor-movel.

html
3 Google Goggles: http://www.google.com/mobile/goggles/
4 Kooaba: www.kooaba.com
5 Flow Amazon: http://www.a9.com/whatwedo/mobile-technology/flow-powered-by-amazon/

Chapter 1. Introduction 2

puter vision. Over the years, numerous local descriptors have been proposed in the literature

and the highly discriminative SIFT [Lowe, 2004] proposed by D. Lowe remains the most

commonly used. Other popular local descriptors include Gradient Location and Orientation

Histogram (GLOH) proposed by Mikolajczyk and Schmid [2005] and Speeded Up Robust Fea-

tures (SURF) proposed by Bay et al. [2008]. Winder and Brown [2007], Winder et al. [2009]

and Mikolajczyk and Schmid [2005] provide a comprehensive analysis of several descriptors in

a common framework. For mobile applications, however, there is a strong trade-off between

the cost of computation in the (mobile) client and the bandwidth for transmitting either the

image, either the descriptors extracted. Therefore, the use of compact local descriptors has

been an active area of study. Those could be simply a compressed version of a traditional lo-

cal descriptor, or a descriptor projected from scratch to have low bit-rate. The 60-b MPEG-7

trace-transform descriptor [Brasnett and Bober, 2007], the Compressed Histogram of Gradi-

ents (CHoG) [Chandrasekhar et al., 2012] and more recently binary descriptors like Binary

Robust Indepent Elementary Features (BRIEFs) [Calonder et al., 2010], Oriented FAST and

Rotated BRIEF (ORB) [Rublee et al., 2011], Binary Robust Invariant Scalable Keypoints

(BRISK) [Leutenegger et al., 2011], Fast Retina Keypoint (FREAK) [Alahi et al., 2012] and

Boosting Binary Keypoint Descriptors (BinBoost) [Trzcinski et al., 2013] are some examples

of low bit-rate or compact descriptors. In this work, we are studying and comparing feature

descriptors (with emphasis in compact representations), since the intended application will

be in a mobile device.

To take advantage of the computational power of modern mobile phones the trend is

to perform more computational processes on the client. Therefore, it might be reasonable to

compute the local features on the mobile phone, provided that the time of computing those

features on the client is not offset by the cost of transmitting them. This is far from obvious,

because the local descriptors that are the most effective in terms of retrieval precision are

often those that take the most space, sometimes more than the original image. The most

common descriptor, SIFT, provides as an output a set of 128-dimensional feature vectors

and conventionally each vector is stored as 1024 bits (8 bits/dimensions). Because often

there are hundreds, or even thousands of vectors per image, typically the collective size of

SIFT vectors from an image will be larger than the JPEG image itself. Therefore, for SIFT

descriptor it is often better to transmit the image instead of transmitting the feature vectors.

In contrast, if a compact descriptor is used, transmitting the feature vectors may become

advantageous. Furthermore, using compact feature descriptors enable to represent an image

using few amount of bits. Then, the computational load in matching becomes cheaper than

using a traditional feature descriptor like SIFT.

Chapter 1. Introduction 3

1.1 Background

We present a brieĆy introduction of the basic concepts in Mobile Visual Search (MVS) and a

discussion of the related literature. We should distinguish two application contexts: retrieval

by image matching, and image classiĄcation. In the former, we are interested in a ŞtargetŤ

image, object or scene. Retrieving a CD by its cover, a book by its cover, information about a

shop by its façade, or about a monument in a city by its appearance, all those are examples of

ŞtargetŤ retrieval. Image classiĄcation is a more complex problem because we are no longer

interested only in an speciĄc object or scene, but in a ŞclassŤ of objects or scenes. This

introduces an additional visual diversity, like all Ćowers of a given species, or all chairs. The

scope of this dissertation is retrieval by image matching, but we present the classiĄcation

problem for the sake of completeness.

1.1.1 Target Retrieval by Image Matching

A typical image matching and retrieval pipeline is shown in Figure 1, which is basically

composed of an offline and an online stage. First, in the offline stage, the feature descriptors

of data set images are computed and stored. Then, in the online stage, the local features

are extracted from query image, this set of features is used to assess the similarity between

query and database images. A short list of database images (candidates) is selected based

on the number of features they have in common with the query image. Finally, geometric

veriĄcation process rejects matches where the correspondence between local features is not

consistent.

Figure 1 Ű A Pipeline for image retrieval (Reproduced from Girod et al. [2011]).

However, in mobile visual search context, the retrieval framework adopt a clientŰ

server approach (Figure 2) and divide the computational load between server and mobile

client instead of perform all processes on server.

Chapter 1. Introduction 4

Figure 2 Ű Client/Server approach for mobile image search (Reproduced from Girod et al.

[2011]).

The Ąnal step in retrieval pipeline, as shown in Figures 1 and 2, is geometric veriĄca-

tion (GV). In this stage, the location information of features are used to establish geometric

correspondence between query image and one database images. To estimate this geometric

correspondence are used robust regression techniques such as Hough transform [Lowe, 2004]

or RANSAC [Fischler and Bolles, 1981], the latter being the dominant approach. This process

tend to be computationally expensive, therefore the list of candidates is limited to a small

number of database images.

1.1.2 Image Classification

For classiĄcation, the ŞBag of FeaturesŤ (BoF) or ŞBag of Visual WordsŤ (BoVW) is one

of the most successful approaches, mainly for its capability to perform a very fast retrieval

operation. The BoF was presented by Sivic and Zisserman [2003] as an idea borrowed from

text retrieval (where a document can be represented by a vector of word frequencies) by

making an analogy between the local descriptors and the words in a document. Either in

text or image retrieval that approach ignores the structure of the document (order of the

textual words, position of the visual words).

The ŞbagŤ is a single feature vector built from the many local features. It can be used,

during the training phase, to build a model from the training samples. This model can then

be used for retrieval purposes, with the bag extracted from the query image. Support Vector

Machines (SVM) are the most common classiĄer used with BoVW, since they are robust to

the high feature vector dimensionalities that the BoVW model usually implies.

1.1.3 Feature Extraction

In CBIR a feature is a relevant piece of information of an image and can be classiĄed into

global and local. In global features, the whole image is processed and all spatial information

about color or texture is destroyed. This lack of spatial information generate a poor discrim-

Chapter 1. Introduction 5

inating power in target retrieval tasks. On the other hand, local features aim to conserve

spatial information and consequently are useful in target retrieval applications. Since the

spatial information is essential for visual search applications, hereafter, we only discuss local

feature extractors.

Local feature extraction typically involves two main steps: feature detection and fea-

ture description. Feature detection or interest point detection consists in identifying interest

points in the image (e.g. edges, corners), these interest points must be repeatable under

transformations (e.g. scale changes, viewpoint changes and rotation), illumination variations

and blur. Feature description consists in computing a discriminative feature vector on each

normalized patch, where image patches are regions centered in the interest points.

1.2 Contributions

The major contributions in this dissertation are as follows:

∙ Comprehensive study of feature extractors: We perform an extensive historical review of

feature extractors, this allow us to visualize the evolution of such methods over the years

and emphasize the increasing level of computational efficiency. We make this review as

exhaustive as possible in the effort to put together the state of the art and the current

developments, this was an special motivation due to the fact that existing surveys do

not include the most recent feature extractors mainly because of the temporal gap

between their date of publication.

∙ Experimental evaluation using a common framework: We perform an experimental com-

parison of feature detectors and feature descriptors, In contrast to previous evaluations,

we perform this evaluation using the Stanford Mobile Visual Search Data Set: a data

set composed of images obtained from actual camera phones. This allow us to evaluate

the efficiency and effectiveness of such methods in a context of mobile applications.

1.3 Organization

The dissertation is organized as follows:

∙ In Chapter 2, we present a general review of the state of the art (SoA) in content-based

image retrieval (CBIR). This includes feature detection, feature description and image

matching. We emphasize on the topics relevant to mobile visual search.

Chapter 1. Introduction 6

∙ In Chapter 3, we describe the experimental procedure to evaluate the feature detectors

and feature descriptors. We describe the resources employed (datasets, implementa-

tions, tests) and discuss the results. This experimental chapter aims to Ąnd the best

feature extractor for mobile visual applications.

∙ Finally, in Chapter 4, we summarize the results and draw conclusions. We discuss open

questions and suggest topics for future work.

7

2 State of the Art

In this chapter we present a review of the literature in local feature extractors which is one of

the most important concepts in Content Based Image Retrieval (CBIR). A feature extractor

creates from the image a set of feature vectors, which is a mathematical representation

about the content of the image and is designed to be discriminant and invariant over several

transformations, i.e., the notion of similarity or dissimilarity between images are preserved

by their feature vectors and will be transferred to the feature space. The procedure of the

feature extractor can be split into two steps clearly distinguishable: feature detection, which is

studied in the section 2.1; and feature description, presented in the section 2.2. In both cases,

detection and description, we present a general review of the most remarkable contributions

with an emphasis in the computational efficiency, aiming at identifying the most suitable

detector-descriptor for Mobile Visual Search applications.

2.1 Feature Detectors

Local feature detection goes back to 1954, when Attneave [1954] Ąrst observed that Şinforma-

tion is concentrated along contours and is further concentrated at those points on a contour

at which its direction changes most rapidly (e.g. at peaks of curvature)Ť. Since then, numer-

ous advances were made in the effort to interpret images as local features and the literature

on feature detection became extensive. Our aim here is to review some of the most important

feature detectors proposed over the years and not to provide an exhaustive survey. For the

most comprehensive review available, the reader is referred to the work of Tuytelaars and

Mikolajczyk [2008] or to the work of Gauglitz et al. [2011] which includes recent contributions

in speed-up for feature detectors.

The most important property expected from a good local feature is repeatability, a no-

tion introduced by Schmid et al. [2000]. Repeteatability (explained in detail in Section 3.1.1)

measures the fraction of features detected in an object or scene under a speciĄc viewing

condition that are also detected on another different viewing condition.

Feature detectors can be classiĄed using multiple criteria; here we adopt a classiĄca-

tion based upon the type of feature extracted from the image (corner, blob or region) used

in [Tuytelaars and Mikolajczyk, 2008]. The most important techniques from each family are

presented below.

Chapter 2. State of the Art 8

2.1.1 Corner Detectors

Corners are points in the image where edges change direction, i.e., points of high curvature

in edges [Attneave, 1954]. Corner detectors may be derivative-based, like the Harris detec-

tor [Harris and Stephens, 1988], or morphological-based, like the SUSAN detector [Smith and

Brady, 1997]. Basic detectors are invariant to translation and rotation. More advanced ex-

tensions will seek invariance to scale changes (e.g., HarrisŰLaplace, [Mikolajczyk and Schmid,

2004]), and most generally to affine transformations (HarrisŰAffine, [Mikolajczyk and Schmid,

2004]).

∙ Harris Detector

Proposed by Harris and Stephens [1988], this detector is based on the second-moment

matrix, or auto-correlation matrix 𝑀 , deĄned below. Rotation invariance is provided

by an eigenvalue analysis: a corner happens when both eigenvalues have large values.

More formally, considering 𝐼(𝑥, 𝑦) as the grayscale image function at point (𝑥, 𝑦), the

Harris detector considers the variation of intensity 𝐶 on 𝑥, 𝑦 when shifted by (Δ𝑥, Δ𝑦)

(over an averaging window 𝑤(𝑥, 𝑦) centered on 𝑥, 𝑦):

𝐶(Δ𝑥, Δ𝑦) =
∑︀

x,y 𝑤(𝑥, 𝑦)[𝐼(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) ⊗ 𝐼(𝑥, 𝑦)]2.

Using Ąrst-order Taylor expansion in the shifted image function 𝐼(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) this

average intensity variation can be expressed in a matrix form as:

𝐶(Δ𝑥, Δ𝑦) =
[︁

Δ𝑥 Δ𝑦
]︁

(
∑︁

x,y

𝑤(𝑥, 𝑦)

⋃︀

⨄︀
𝐼2

x 𝐼x𝐼y

𝐼y𝐼x 𝐼2
y

⋂︀

⋀︀)

⏟ ⏞

M

⋃︀

⨄︀
Δ𝑥

Δ𝑦

⋂︀

⋀︀ .

Where 𝐼x and 𝐼y are respectively the partial derivatives of the image along the 𝑥 and

𝑦 variables.

In order to save computation, the eigenvalues (Ú1, Ú2) are not computed directly, in-

stead, a ŞcornernessŤ measure 𝐻 compares the determinant and the trace of the matrix,

the eigenvalues are big when the difference between those values is large.

𝐻 = det (𝑀) ⊗ 𝑘 (trace(𝑀))2.

Where det (𝑀) = Ú1Ú2, trace(𝑀) = Ú1 + Ú2 and 𝑘 = 0.04 (commonly used value).

The Harris detector is derivative, but is also integrative, due to the averaging window

𝑤 (the sum in both equations correspond to integrative operations over that window).

Chapter 2. State of the Art 9

Therefore, a hidden parameter of the technique is the choice and width of the window.

For several theoretical and practical reasons, a Gaussian window is often employed (e.g.,

a Gaussian window avoids introducing artifacts of its own [Lindeberg, 1994]). The choice

of the variance of the Gaussian window becomes a hidden parameter, related to the

scale of the detected corner. Because of that, the Harris detector lacks scale invariance.

This problem is addressed by more sophisticated detectors presented below.

∙ SUSAN detector

The Smallest Univalue Segment Assimilating Nucleus (SUSAN) was proposed by Smith

and Brady [1997]. This descriptor considers a circular area of preestablished radius

around each pixel in the image, and sets the intensity value of center pixel (nucleus)

as reference. Then, the pixel intensities inside the circular area are compared to the

nucleus, and classiĄed as ŞsimilarŤ or ŞdifferentŤ. Finally, those nucleus whose circular

regions are ≍ 25% similar to them are considered corners (Figure 3a).

The idea of computing corners by comparing pixels instead of computing complex

derivative/integrative Ąlters inspired fast feature detectors that will be explained in

Section 2.1.3.4.

Figure 3 Ű SUSAN corner detector examples: ŞsimilarŤ (orange) and ŞdissimilarŤ (blue) re-

gions. A ratio of ≍ 25% dissimilarity represents corners (a); for near edges, this

ratio is ≍ 50% (b); in homogeneous regions almost the entire circular region has

a similar intensity (c).

∙ MIC detector

The Minimum Intensity Change (MIC) was proposed by Trajković and Hedley [1998].

For a candidate point, MIC makes a number of checks ŞkŤ in a circle around it, to

determine whether that candidate is a corner or not. Each check takes two points in a

diameter lying accross the circle and verify whether their values are similar of different.

In a corner, all checks must reveal different values.

Chapter 2. State of the Art 10

More formally. MIC deĄnes the Corner Response Function (CRF):

𝐶𝑅𝐹N = mink ((𝑓p ⊗ 𝑓N)2 + (𝑓p′ ⊗ 𝑓N)2).

Where 𝑁 is the central point, 𝑓N is the image intensity at point 𝑁 , 𝑓p and 𝑓p′ are the

image intensity values at either end of a diameter line across a pre-established discrete

circle or Bresenham circle.

A corner point will present large CRF response, which means, for all diameter lines, the

response of the intensity value comparison are large. A non-corner point will present a

low CRF response, which imply that at least for one diameter of the Bresenham circle

the response of the intensity value comparison is low. Then, this point belongs to an

uniform region or an edge.

∙ HarrisŰLaplace / Affine

These extensions of Harris detector were developed by Mikolajczyk and Schmid [2004].

In order to make feature detection scale-invariant, a sophisticated scale–space theory

was developed [Lindeberg, 1994].

Intuitively, the theory of scaleŰspace establishes that the scale of structures in the

image was intimately related to the resolution at which those structures Ąrst become

apparent. This allows to detect the characteristic scale of different points in the image,

by applying progressively stronger blurs and detecting when the point change the most

(the reversal, in time, of the appearance of the structure of that point).

Gaussian Ąlter is often used for the blurring. There are strong theoretical arguments for

this, e.g. the Gaussian is the maximum entropy distribution for a given variance (width),

and thus tends to add the least extraneous information, in the form of artifacts. The

theory of scaleŰspace provides other compelling reasons [Lindeberg, 1994]. Because we

will be usually looking for points of maximum change in appearance, derivatives (Ąrst

and second) of the Gaussian are often employed.

The HarrisŰLaplace detector is a scale-invariant version of Harris corner detector. In

the Harris operator, the scale is determined by the variance of the Gaussian window

used in the integration. This technique performs a multi-scale point detection using

several (previously chosen) values for the variance of the Gaussian, and then uses the

extrema of the Laplacian-of-Gaussian to pick the characteristic scale of the point.

For a long time, an affine-invariant detector with correspondence to the scaleŰspace

theory was sought, that could be used as a basis for designing feature extractors invari-

ant under arbitrary affine geometrical transformations (rotations, scales and transla-

tions obviously; but also local perspective changes). HarrisŰAffine is the affine-invariant

Chapter 2. State of the Art 11

version of Harris corner detector. It takes an initial region detected using the HarrisŰ

Laplace detector, and, in an iterative process, uses the second moment matrix to es-

timate the affine shape of this region. The affine region is normalized into a circular

region and in the normalized region the location and scale are re-detected. The iteration

stops when the eigenvalues of the second moment matrix for the new point are equal

(i.e., a circular region).

Affine-invariance, however, proved computationally very expensive, and ultimately the

similarity-invariance (rotations, scales and translations) proved sufficient for most prac-

tical purposes, since, in practice, scale-invariant detectors tend to be also robust to small

baseline (perspective) changes.

2.1.2 Blob Detectors

Blob detection typically provides complementary features to the corner detection, detecting

stable ŞpeaksŤ and ŞtroughsŤ in the image. Often the ŞblobŤ is represented by an oriented

circle (similarity-invariant extractors) or oriented ellipse (affine-invariant extractors).

We also consider in this category feature detectors without shape restrictions also

known as region detectors. Although region detectors provide features with no regular shape,

the Ąrst and second moments of the shape can be used to provide an ellipse instead. Therefore,

all region detectors can be used as oriented-ellipse detectors (but not vice-versa).

∙ Hessian Detector

Hessian detector, as explained in Tuytelaars and Mikolajczyk [2008, Section 4.1], is a

detector based on the matrix of second derivatives. This detector searches for image

locations that exhibit strong derivatives in two orthogonal directions. If we consider

𝐼(𝑥) as the image function at point (𝑥), the Hessian matrix will be:

𝐻 =

⋃︀

⨄︀
𝐼xx(𝑥, àD) 𝐼xy(𝑥, àD)

𝐼xy(𝑥, àD) 𝐼yy(𝑥, àD)

⋂︀

⋀︀ .

Where 𝐼(𝑥, àD) is the convolution of the image with the Gaussian 𝑔(𝑥, àD) deĄned as:

𝐼(𝑥, àD) = 𝑔(àD)*𝐼(𝑥). Then, 𝐼xx(𝑥, àD), 𝐼xy(𝑥, àD) and 𝐼yy(𝑥, àD) are the second-order

partial derivatives of an image smoothed by the Gaussian kernel.

The elements of a Hessian matrix encode the shape information of a region and cap-

ture important properties of local image structures. The local scaleŰspace extremas

of the determinant of the Hessian matrix (DoH) and the trace of the Hessian matrix

Chapter 2. State of the Art 12

(Laplacian) provide a differential blob detector. Similar to the Harris detector, the Hes-

sian detector has an integrative component given by the Gaussian kernel, and a hidden

scale parameter given by the variance à2
D of that kernel. This detector can also be made

scale-invariant using the same scaleŰspace apparatus used for the Harris detector.

∙ HessianŰLaplace / Affine

These extensions of Hessian detector were also developed by Mikolajczyk and Schmid

[2004] and are quite analogous to their Harris-based counterparts, explained in Sec-

tion 2.1.1. That turns HessianŰLaplace/Affine detector into viewpoint invariant blob

detectors.

∙ Salient Regions

Proposed by Kadir and Brady [2001], this method focuses on visual saliency, the idea

that certain parts of a scene are pre-attentively distinctive in the Human Visual System

(HMS). Saliency is deĄned as local complexity or unpredictability, and implies rarity.

Then, saliency becomes discriminative and can be measured by the entropy of the

probability distribution 𝐻 within a local image region. The local maxima of entropy are

recorded as candidates and in order to localize the features over scales these maxima are

weighted by some measure of the self-dissimilarity in scaleŰspace 𝑊 . Then, the saliency

is computed as 𝑌 = 𝑊𝐻. Finally, candidates are sorted by their saliency 𝑌 and the

top 𝑘-ranked are selected. This method is considered as a blob detector because the

weighting step tends to give preference to blob-like structures in the image, but could

also be considered a region detector.

∙ Maximally Stable Extremal Regions (MSER)

Proposed by Matas et al. [2004], MSER regions are deĄned by an extremal property of

the intensity function within the region and beyond its border. Formally, a region of the

image is called extremal if setting an appropriate threshold all pixels inside the region

have either higher (maximal extremal regions) or lower (minimal extremal regions)

intensity than pixels outside the boundary.

More intuitively, looking at the image as a 3D proĄle (the coordinates x, y as the

plane, and the intensity as the elevation), imagine a Ćooding procedure similar to a

watershed transform [Roerdink and Meijster, 2000] in which we progressively plunge

the image proĄle in deeper and deeper water. The low-intensity areas of the image will

be Ćooded Ąrst, forming ŞlakesŤ, and the high-intensity areas will form ŞislandsŤ. At

different steps of the Ćooding, some lakes and islands will suffer strong changes (lakes

growing, islands shrinking) while other will change very little. The MSER regions are

Chapter 2. State of the Art 13

those going through the least change during the Ćooding, i.e., for each lake or island,

those moments where their area is very stable.

MSER provides an arbitrary region as a feature, that can be replaced by a ellipse using

the Ąrst and second moments of the shape, if desired.

∙ Intensity-based regions (IBR)

Proposed by Tuytelaars and Van Gool [2000] this method is directly based on the

analysis of the image intensity. The procedure of this detector starts detecting local

intensity extrema at multiple scales and then explores his neighborhood in a radial

way as showed in Figure 4. Given a local extrema, the function presented below 𝑓(𝑡)

is evaluated along each ray. For each ray, the function 𝑓(𝑡) has a point (along the ray)

which maximizes its value. These points are linked to enclose an irregularly-shaped

region. Analogous to MSER, this region is replaced by an ellipse that has the same

Ąrst and second shape moments. Finally, the area of the ellipse is doubled to provide

a higher distinctive power. This Ąnal region (ellipse) determines the region of interest

and is invariant to affine deformations.

𝑓(𝑡) =
♣𝐼(𝑡) ⊗ 𝐼0♣

𝑚𝑎𝑥(
√︃ t

0
♣I(t)⊗I0♣dt

t
, 𝑑)

.

Where 𝑡 is an arbitrary parameter along the ray, 𝐼(𝑡) is the intensity at position 𝑡, 𝐼0 is

the intensity value at the extrema and 𝑑 is a small number added to prevent a division

by zero.

Figure 4 Ű Construction of intensity-based regions. The image presents a local extrema, its

rays and the irregularly-shaped region which is obtained by joining the values that

maximize 𝑓(𝑡) for each ray. (Reproduced from Tuytelaars and Van Gool [2000]).

The feature detectors studied until this point (2004) have constructed a theoretical apparatus

that in conjunction with some intelligent simpliĄcations/approximations will lead to a new

set of computationally efficient feature detectors. In the next section, called optimized im-

plementations, we will study the most successful computationally efficient feature detectors.

Chapter 2. State of the Art 14

2.1.3 Optimized Implementations

In this section we will describe feature detectors designed to avoid computationally expensive

processes (e.g computation of derivatives, second moment matrices, or the entropy of salient

regions). The Scale-Invariant Feature Transform (SIFT) [Lowe, 2004] explores the Difference-

of-Gaussians (DoG) to approximate the Laplacian-of-Gaussian (LoG), in Speeded Up Robust

Features (SURF) [Bay et al., 2008] a rough approximation of Hessian matrix (Fast-Hessian)

is obtained using integral images. CenSure detector [Agrawal et al., 2008] approximates the

Laplacian also using integral image and square Ąlters.

Finally, we describe another class of feature detectors, that further emphasize compu-

tational efficiency, sacriĄcing repeatability and invariance in the name of extremely stream-

lined implementation. The FAST detector [Rosten and Drummond, 2006], and its several

proposed improvements.

2.1.3.1 Difference-of-Gaussians (DoG)

SIFT [Lowe, 2004] proposes a detector that is a streamlined feature detector based on scaleŰ

spaces. Instead of using the expensive Laplacian-of-Gaussian Ąlters, SIFT employs Difference-

of-Gaussians (DoG) in a scheme that halves the image resolution whenever the standard devi-

ation of the Gaussian doubles. That ingenious scheme saves a lot of computation by avoiding

the large convolution masks associated to large-variance Gaussian kernels. The whole process

is illustrated in Figure 5: the image is smoothed using progressively stronger (larger variance)

Gaussian Ąlters; then, the difference between each pair of smoothed neighbors is computed

(DoG); Ąnally, the local maxima or minima is obtained in the scaleŰspace comparing each

sample point with its 26 neighbors in the 3 × 3 regions at the current and adjacent scales.

Figure 5 Ű Overview of DoG detection scheme. From left to right: image sampling using a

Gaussian convolution mask, the Difference-of-Gaussians and the comparison of

local extrema in scaleŰspace (Reproduced from Tuytelaars and Van Gool [2000]).

Chapter 2. State of the Art 15

2.1.3.2 Fast-Hessian

The scale-invariant feature detector Fast-Hessian, also known as SURF detector, was pro-

posed by Bay et al. [2008]. The Fast-Hessian approach for interest point detection approx-

imates the Hessian matrix using a set of box-type Ąlters. This lends to the use of integral

images, which reduces the computation time drastically. The calculation time of an integral

image is independent of the size of the rectangular area, it allows to apply box Ąlters of any

size at exactly the same speed directly on the original image and even in parallel. Therefore,

the scale-space is analyzed by up-scaling the Ąlter size rather than iteratively reducing the

image size.

∙ Integral images

Integral images allow fast computation of box-type convolution Ąlters. An integral

image at a location 𝑋 = (𝑥, 𝑦) is expressed as 𝐼∑︀(𝑥) and represents the sum of all

pixels in the input image 𝐼 within a rectangular region formed by the origin (𝑂) and

𝑋.

𝐼∑︀(𝑥) =
i⊘x
∑︁

i=0

j⊘y
∑︁

j=0

𝐼(𝑖, 𝑗).

Using this expression, we can calculate the sum of the intensities inside any rectangular

region in the image only with three additions as shown in Figure 6.

Figure 6 Ű Using integral images, it takes only three operations to calculate the area of any

rectangular region inside the image (Reproduced from Bay et al. [2008]).

∙ Hessian matrix-based interest points

The Fast-Hessian detector is a blob detector based on the determinant of the Hessian

and uses box Ąlters to approximate the Hessian matrix. These boxes approximate the

second order Gaussian derivatives and can be easily evaluated using integral images

(three operations). Then, the computation time becomes independent of the Ąlter size.

The SURFŠs box-Ąlters approximation are shown in Figure 7.

Chapter 2. State of the Art 16

(a) (b) (c) (d)

Figure 7 Ű The Gaussian second-order partial derivative in 𝑦-direction (a) and 𝑥𝑦-direction
(b). SURFŠs box-Ąlters approximation for the second-order Gaussian partial
derivative in 𝑦-direction (c) and 𝑥𝑦-direction (d). The gray regions are equal to
zero (Reproduced from Bay et al. [2008]).

2.1.3.3 Center Surround Extremas (CenSurE)

The scale-invariant center-surround detector was proposed by Agrawal et al. [2008]. While

SIFT [Lowe, 2004] uses DoG to approximate the Laplacian, CenSurE proposes a simpler

approximation using center-surround Ąlters that are bi-level (inner box and outer box). These

boxes are used to multiply the image value by either 1 or -1. Figure 8 shows a progression of

bi-level Ąlters.

Figure 8 Ű Progression of Center-Surround bi-level Ąlters. Left to right: circular symmetric

BLoG (Bi-level LoG) Ąlter. Successive Ąlters (octagon, hexagon, box) have less

symmetry. (ModiĄed from Agrawal et al. [2008]).

The circular Ąlter is the most faithful bi-level approximation for the Laplacian, but

hardest to compute. The other Ąlters can be computed rapidly using a slightly modiĄcation of

integral images presented in Fast-Hessian detector. This modiĄed version of integral images

can be exploited to compute polygonal Ąlters, where the degree of slant is controlled by a

parameter Ð.

∑︁

α

(𝑥, 𝑦) =
y

∑︁

j=0

x+α(y⊗j)
∑︁

i=0

𝐼(𝑖, 𝑗).

Chapter 2. State of the Art 17

2.1.3.4 Features from Accelerated Segment Test (FAST)

The FAST detector was proposed by Rosten and Drummond [2006] and takes further the

idea of comparing pixels used in SUSAN detector [Smith and Brady, 1997] and MIC detec-

tor [Trajković and Hedley, 1998]. FAST compares pixels values on a discretized circle of 16

pixels around the central pixel under test 𝑝 (corner candidate) as illustrated in Figure 9 . The

candidate 𝑝 is considered as corner if 𝑛 contiguous pixels are darker than (𝐼p ⊗ 𝑡) or brighter

than (𝐼p + 𝑡). Where 𝐼p is the intensity value of the candidate pixel 𝑝 and 𝑡 is a threshold

parameter.

Figure 9 Ű Segment test corner detection. The highlighted squares (right side) are considered

as the circular region around the pixel under test (Reproduced from Rosten and

Drummond [2006]).

To accelerate the process, a high-speed test was explored, using 𝑛 = 12. This test

consists in making only four comparisons, between the pixel under test and pixels 1, 5, 9,

and 13 in the circle, if three of these pixels are darker than (𝐼p ⊗ 𝑡) or brighter than (𝐼p + 𝑡)

the candidate is retained, otherwise the candidate is rejected. Then, the full segment test is

performed only on the remaining candidates. Nevertheless, the high-speed test does not reject

as many candidates for n < 12 and also the choice of pixels is not optimal because it assumes

an order of pixels and the distribution of corner appearances. In order to overcome those

difficulties the authors use a machine learning approach based on decision tree classiĄers and

then this decision tree is used for fast detection in other images. In practice the decision tree

detects multiple interest points in adjacent locations, which is undesirable. To avoid adjacent

corners, a score function must be computed for each corner and remove corners which have

an adjacent corner with higher score, this procedure is called non-maximal suppression and

is applied since the segment test does not compute a corner response function.

Chapter 2. State of the Art 18

FAST detector became widely used, particularly in systems where low cost and fast

computation are crucial constraints, mainly due to its computational efficiency. On the other

hand, FAST detector has several weaknesses when used for image retrieval, mainly because

the detector itself does not produce multi-scale features, does not compute keypoint orienta-

tion and also does not produce a response allowing to select the best keypoints. To overcome

these limitations, variations and improvements of FAST were proposed recently, and we will

describe brieĆy the most important ones.

The authors themselves, propose an enhanced repeatability version of FAST called

FASTŰER [Rosten et al., 2010]. This FAST derivation, as well as FAST, uses the ID3 algo-

rithm to build a decision tree, but using a 3 pixels discretized circle instead of the 1 pixel

discretized circle used in FAST (BresenhamŠs circle-Figure 9). Both, FAST and FASTŰER,

perform the learning step over corner candidates detected from a training set of images using

the segment test criteria. Since those candidates do not represent all possible corner conĄgu-

rations, the decision tree is optimized for the speciĄc set of training images or environment,

and by consequence the decision tree leads to false positive and false negative responses of

the corner detector.

The Adaptive and Generic Accelerated Segment Test Ů AGAST [Mair et al., 2010]

makes the decision trees more generic and provides high performance for an arbitrary en-

vironment, this is achieved by combining two binary trees which are optimized, one for

homogeneous and one for structured regions. AGAST also performs non-maximum suppres-

sion as FAST. An additional scheme providing invariance to scale can be implemented over

AGAST with a scaleŰspace pyramid, as described in BRISK [Leutenegger et al., 2011] (further

discussed in Section 2.2.2).

Another important FAST derivation was introduced as Oriented FAST Ů oFAST in

ORB [Rublee et al., 2011] (further discussed in Section 2.2.2), this detector is essentially a

multi-scale FAST with orientation. Features at multiple scales are obtained using a scaleŰ

space pyramid and the corner orientation correspond to the orientation of the vector from

the patchŠs center to the intensity centroid or gravity center of the patch.

Efficient implementations are crucial in the context of mobile visual applications,

where the response time has to be as fast as possible to provide a good a user experience,

without draining the limited computational and power resources. All of those efficient imple-

mentations described before will be considered in the experimental procedure to determine

the most suitable ones for mobile applications. Finally, we summarize the feature detectors

presented in this section into the Table 1. This overview highlights the type of the feature

detected and its major achievement (invariance to certain transformations).

C
h
a
p
ter

2
.

S
ta

te
o
f

th
e

A
rt

19

Rotation Scale Affine
Feature Detector Corner Blob Region invariant invariant invariant Reference
Harris X X Harris and Stephens [1988]
Hessian X X

SUSAN X X Smith and Brady [1997]
MIC X X Trajković and Hedley [1998]
HarrisŰLaplace X X X Mikolajczyk and Schmid [2004]
Hessian-Laplace X X X Mikolajczyk and Schmid [2004]
HarrisŰAffine X X X X Mikolajczyk and Schmid [2004]
HessianŰAffine X X X X Mikolajczyk and Schmid [2004]
Salient Regions X X X X Kadir and Brady [2001]
MSER X X X X Matas et al. [2004]
Difference-of-Gaussians (DoG) X X X Lowe [2004]
Fast-Hessian X X X Bay et al. [2008]
CenSurE X X X Agrawal et al. [2008]
FAST X Rosten and Drummond [2006]
AGAST X Mair et al. [2010]
oFAST X X Rublee et al. [2011]
Multi-scale AGAST X X Leutenegger et al. [2011]

Table 1 Ű Overview of the feature detectors presented in this chapter. FAST and AGAST are not invariant to changes in scale
and rotation by themselves, but they can obtain robustness against changes in scale by using a scale-space pyramid (e.g.
Multi-scale AGAST) and against rotations by estimating the orientation of the point of interest (e.g. oFAST).

Chapter 2. State of the Art 20

2.2 Feature Descriptors

A feature descriptor translates each local image information into a feature vector. Local

information can be sampled using local features detectors (around regions of interest or

patches), but, sometimes can be densely sampled on a regular grid over the image. Sampling

sparsely around repeatable features is more commonly employed in target recognition tasks

(targetting, recognizing or tracking an speciĄc object, scene or image), while dense sampling

is more common for classiĄcation tasks (recognizing broad classes, like ŞcatsŤ or ŞpeopleŤ).

Usually, description is performed on normalized patches, i.e., regions already scaled

and rotated according to information obtained by the feature detectors. Therefore, some of

the invariances provided by local description are responsibility of the detector (e.g., transla-

tion, scale and rotation), while others are responsibility of the descriptor (e.g., illumination

changes). Feature description and feature detection have a close relationship, since they are

the main steps in feature extraction. Sometimes, a single technique (e.g. SIFT) is associated

both to detection and description. Then, to avoid misunderstandings, keep in mind that

detection returns a sequence of interest points, oriented circles, oriented ellipses, or region

coordinates; while the descriptor processes that information to obtain feature vectors.

In general, description is more expensive to compute than detection (e.g. SIFT, SURF,

BRISK [Leutenegger et al., 2011, Section 4.3]). Therefore, efficient implementations are even

more crucial than in detection stage. Although there are several methods to measure the

performance of a descriptor, all of them are based on establishing a degree of discriminative

power and robustness to minor variations. Over the years, many feature descriptors were

proposed and is out of the scope of this dissertation to perform a detailed study of each one. In

this section we will explore the most important feature descriptors grouped according to two

major approaches: those descriptors based on histograms of gradients and those descriptors

based on binary intensity tests. For each family of descriptors, we will study their evolution

over the years, pursuing high performance and computational efficiency.

2.2.1 Descriptors Based on Histograms of Gradients

Many of the most important descriptors in the literature are variations upon histograms of

gradients (HoG). These descriptors, in general, share a common pipeline of processes: Ąrst,

a smoothing Ąlter is applied to the patch in order to avoid abrupt changes and to give less

emphasis to gradients that are far from the center of the patch. Then, the gradients are

computed using derivative masks. Next, the feature vector is obtained by concatenating the

accumulative result of the gradient histogram binning over the spatial binning. These two

terms are extensively used in [Winder et al., 2009; Chandrasekhar et al., 2012].

Chapter 2. State of the Art 21

Gradient histogram binning: A histogram itself implies to ŞbinŤ the range of values

(quantization), i.e., slicing the entire range of values into intervals. For gradients, the range

of values to be divided correspond to all possible angles of the gradient (0◇Ű360◇). Then,

every gradient (𝑑x, 𝑑y) is assigned to one bin (hard assignment) or more than one bin (soft

assignment).

Spatial binning: In this case the binning is done over the patch. Then, we found

sampled regions or subregions distributed in two main conĄgurations, those with a square grid

or SIFT-like distribution and those with log-polar conĄgurations or DAISY-like as presented

in Figure 10. In both cases, the sampled regions may or may not allow overlapping, called as

soft-assignment and hard-assignment, respectively.

Figure 10 Ű Spatial binning conĄguration examples in a square patch. A square grid 4 × 4
deĄnes 16 square spatial bins (left). A log-polar conĄguration with 4 angular
bins and 2 radial bins deĄnes 9 spatial bins (right).

Gradient histogram binning and spatial binning are performed in the space of derivates

(𝑑x, 𝑑y) and both have a set of parameters to determine the number of bins or granularity

and their distribution. As we will see, these parameters can be obtained empirically or by

using learning processes.

2.2.1.1 Scale-Invariant Feature Transform (SIFT)

Proposed by D. Lowe Lowe [2004], this is undoubtly the most well-known and inĆuential

local descriptor in the literature. SIFT is both a feature detector (based upon Differences-of-

Gaussians, or DoG, which approximate Laplacians-of-Gaussians), and a feature descriptor.

As a descriptor, it computes the gradient magnitude and orientation at each point in the

patch. Gradient magnitudes are weighted with a Gaussian centered at the interest point

to give less emphasis to those in the border, and gradient orientations are rotated relative

to the keypoint orientation in order to achieve rotational invariance. In the common SIFT

conĄguration, those gradients are accumulated into 8 orientation bins over 4×4 spatial cells.

Chapter 2. State of the Art 22

Then, each one of these 4 × 4 spatial bin has a ŚstarŠ of 8 orientation bin 𝐷SIF T .

𝐷SIF T (𝑖) =
∑︁

dx,dy∈Ωi

√︁

𝑑2
x + 𝑑2

y.

Where: Ωi =
{︁

(𝑑x, 𝑑y) ♣ π(i⊗1)
4

⊘ 𝑡𝑎𝑛⊗1 dy

dx
< πi

4

}︁

and 𝑖 = ¶1, ≤ ≤ ≤ , 8♢.

The resulting descriptor is 4 × 4 × 8 = 128-dimensional descriptor. This basic SIFT

scheme of description inspired several new feature descriptors with various reĄnements, some

of them are described in the next pages.

2.2.1.2 Gradient Location and Orientation Histogram (GLOH)

Proposed by K. Mikolajczyk and C. Schmid Mikolajczyk and Schmid [2005]. This descriptor

quantizes the gradient into 16 orientation bins and uses a log-polar conĄguration as spatial

bin. The optimized conĄguration presented by the authors correspond to 17 spatial bins (8

angular bins, 2 radial bins and a central bin). Furthermore, they use PCA as a dimensionality

reduction technique to obtain a 128-dimensional vector descriptor.

2.2.1.3 Histograms of Oriented Gradients (HOG)

Introduced by N. Dalal and B. Triggs Dalal and Triggs [2005] in a context of object detection.

HOG works in a portion of image or window setted a priori (64 × 128 pixels in a detection

window for original article). A description of HOG with the best conĄguration attained by

the authors is as follows: gradients are computed using the simplest scheme (1 ⊗ 𝐷 mask

[⊗1, 0, 1] without previous smoothing) and then use 9 orientation bins equally spaced over

0◇ ⊗ 180◇ (ŞunsignedŤ gradient). They use two spatial conĄgurations: square spatial cells,

similar to SIFT, to obtain the R-HOG descriptor and circular blocks partitioned into cells in

log-polar conĄguration, similar to GLOH, to obtain the C-HOG descriptor. Then, each block

(group of cells) is normalized separately and the Ąnal descriptor will be the concatenation

of the vector of all components of the normalized cell responses from all of the blocks in the

detection window. The optimal conĄguration values are:

R-HOG: use cells of 8 × 8 pixels and blocks of 2 × 2 cells.

C-HOG: number of angular bins = 4, number of radial bins = 2, radius of the central bin =

4 pixels. Then, this conĄguration has 9 spatial bins.

The Ąnal feature for R-HOG is a 3780-dimensional vector: 3780 = 7 × 15 × 2 × 2 × 9. Since

the window of 64 × 128 pixels has 7 × 15 blocks and every block has 2 × 2 cells. Finally, there

are 9 orientation bins.

Chapter 2. State of the Art 23

2.2.1.4 Speeded Up Robust Features (SURF)

Arguably the second most important local descriptor in the literature, it was proposed by

Bay et al. [2008] as an accelerated version of SIFT. SURF is also both a detector and de-

scriptor. As a descriptor, it splits the patches into 4×4 square cells. For each cell, the Haar

wavelet responses are computed. The horizontal and vertical Haar wavelet responses can

be interpreted as 𝑑x and 𝑑y respectively. To bring information about polarity of intensity

changes, SURF employs the sum of absolute values of the horizontal and vertical responses

♣𝑑x♣ and ♣𝑑y♣. Then, each spatial bin has a 4-dimensional vector 𝑣 that describes the intensity

structure.

𝐷SURF = 𝑣 = (
∑︁

dx

∑︁

dy

𝑑x,
∑︁

dx

∑︁

dy

𝑑y,
∑︁

dx

∑︁

dy

♣𝑑x♣ ,
∑︁

dx

∑︁

dy

♣𝑑y♣).

Finally, these 𝑣 vectors are concatenated for all spatial bins, resulting in a 4 × 4 × 4 =

64-dimensional feature vector. SURF descriptor is very similar to SIFT descriptor because

they both use a square grid 4 × 4 spatial bin in their conĄguration and are focused on the

spatial distribution of gradients.

2.2.1.5 DAISY

Introduced by E Tola, V Lepetit and P. Fua Tola et al. [2008]. DAISY is inspired by ear-

lier descriptors SIFT and GLOH. First, the gradients are computed and quantized into

𝑁 = 8 directional bins. From interest point 𝑃 (𝑥, 𝑦) use these directions and choose 𝑁

points at distances 𝑅1, 𝑅2, 𝑅3 generating a sort of log-polar conĄguration and use these

points 𝑃1⊘i⊘N(𝑥, 𝑦, 𝑅1⊘j⊘3) as centers for spatial sub-regions. Then, a convolution of direc-

tional bins with Gaussian kernels are performed and the interest values of this process are

those related to the points 𝑃 (𝑥, 𝑦), 𝑃1(𝑥, 𝑦, 𝑅1), ≤ ≤ ≤ , 𝑃8(𝑥, 𝑦, 𝑅1) convolved with Gaussian of

à1, 𝑃1(𝑥, 𝑦, 𝑅2), ≤ ≤ ≤ , 𝑃8(𝑥, 𝑦, 𝑅2) convolved with Gaussian of à2, 𝑃1(𝑥, 𝑦, 𝑅3), ≤ ≤ ≤ , 𝑃8(𝑥, 𝑦, 𝑅3)

convolved with Gaussian of à3 and Ąnally these values are normalized. These convolutions

are an efficient way to compute the weighted sums in the accumulative process of orientation

bins over spatial sub-regions. For optimal values of à1, à2 and à3 this spatial sub-regions are

overlapping achieving smooth transitions between the regions. The optimized conĄguration

has: 8 + 8 × 3 × 8 = 200-dimensional feature vector.

Winder and Brown [2007] shows that DAISY conĄgurations are better than square

grid conĄgurations in the designing of a discriminative local image descriptor. This is based

mainly on his polar Gaussian accumulative process (polar Gaussian pooling) and the fact

that this kind of conĄguration can be very efficiently computed. As a consequence of these

results, S. Winder performs a learning study of the optimal descriptors with DAISY con-

Ągurations Winder et al. [2009]. In this study, the pipeline used attempt to optimize the

Chapter 2. State of the Art 24

parameters of DAISY in order to obtain the best matching performance using a training set

of matching and non-matching image patches.

The feature descriptors described before were inspired by SIFT and consequently they

also share some of its properties. SIFT descriptor is highly discriminant and has become a

standard, but its feature vectors have 128 components (high dimensionality) and also is

slow to compute for real-time tasks. Conventionally, each one of the 128-dimensional SIFT

feature vector is stored as 1024 bits and store millions of descriptors becomes impractical.

SURF and DAISY address the issue of speed, but their feature vectors still have high di-

mensionality, 64-𝐷 for SURF and 200-𝐷 for DAISY, this high dimensionality is an issue

not only for storage but also for further matching process. To reduce the amount of data to

be stored we can identify two major approaches: dimensionality reduction and binarization.

For more information about compression schemes, the reader is referred to the comprehen-

sive survey of Scale Invariant Feature Transform (SIFT) compression schemes performed

by V. Chandrasekhar Chandrasekhar et al. [2010a]. In general, compression techniques are

applied to feature vectors previously obtained e. g. using Principal Component Analisis:

PCA-SIFT/PCA-DAISY to reduce the dimensionality or using hashing techniques like Lo-

cality Sensitive Hashing (LSH) to build a binary string for high dimensional descriptors.

These compression schemes provide satisfactory results, this means, they reduce the amount

of data to be stored with only a small loss in performance. Nevertheless, they are even more

expensive to compute than SIFT or DAISY, since they also perform a compression, which

involves an additional computation time.

2.2.1.6 Compressed Histogram of Gradients (CHoG)

The Compressed Histogram of Gradient was introduced in Chandrasekhar et al. [2012] as

an alternative to compute a low bit-rate descriptor. This descriptor achieves similar perfor-

mance to 1024-bits SIFT at aproximately 60 bits/descriptor and also performs better than

schemes that simply take SIFT-like descriptors in tandem with a compression algorithm. One

of the main vantages of CHoG descriptor is the capability to match and compare the com-

pressed feature vectors (without decompressing Ąrst), thus saving time and computational

power Girod et al. [2011].

CHoG descriptor, as well as all the descriptors based on histograms of gradients

described so far, performs a spatial binning and gradient histogram binning. Since DAISY

conĄgurations perform better than square-grid conĄgurations, the patch is divided into subre-

gions using a log-polar conĄguration as proposed by Mikolajzyc and Schmid Mikolajczyk and

Schmid [2005]. The spatial bin in CHoG descriptor uses overlapping regions (soft-binning)

instead of disjointed cells (hard-binning) as used in ŞPicking the best DAISYŤ Winder et al.

Chapter 2. State of the Art 25

[2009]. The histogram bin1 conĄguration of CHoG, aims at describing the distribution of

2D-gradients. But, unlike other descriptors described before, CHoGŠs histogram bin is ob-

tained performing a statistical study over 10000 cells from a training data set. The gradients

of these cells are computed and plotted. As a result, is observed that the distribution of

gradients is strongly peaked around (0, 0) as shown in Figure 11a, and slightly more oriented

over the 𝑌 axis (Figure 11b). Finally, the histogram bin conĄguration is chosen considering

this statistical behaviour. Some examples of conĄgurations and their associated quantized

cells are shown in Figure 11c.

Figure 11 Ű Histrogram bin conĄguration. (a) distribution of gradients. (b) Contour curves
of distribution. (c) examples of histogram bin conĄgurations referred as Vector
Quantization (VQ). Although Ągure (c) shows well-delimited regions, it is impor-
tant to remember that soft binning is employed. The red lines mark the regions
where a particular bin has dominant, but not necessarily exclusive, inĆuence.
(Reproduced from V. Chandrasekhar et al. Chandrasekhar et al. [2012]).

The result of concatenating the normalized accumulated histograms of gradients over

each spatial bin is called as UHoG (Uncompressed Histogram of Gradients) and is a high

dimensional vector. Probably, the most innovative process of CHoG descriptor lies in its com-

pression approach, and as we explain before, the compression is typically applied on the Ąnal

feature vector. But, since UHoG has a Ąxed-length normalized histogram binning for each
1 Although the term histogram binning is somewhat ambiguous it is extensively used in the Chandrasekhar

et al. [2012]; Winder and Brown [2007] papers, meaning the gradient histogram binning.

Chapter 2. State of the Art 26

spatial bin, it is feasible to apply the compression directly on these normalized histograms.

Three compression schemes were tested: Huffman Tree Coding, Entropy Constrained Vector

Quantization (ECVQ) and Type Quantization Chandrasekhar et al. [2010b] Reznik et al.

[2010]. Among them, ECVQ is the more expensive to compute (its cost being comparable to

a k-means algorithm) and the lattice-based Type Quantization presents the better results.

The CHoG conĄguration that has a slightly better performance than SIFT corre-

sponds to a 9-dimensional spatial binning and 7-dimensional histogram binning. Then, the

UHoG is a 9 × 7 = 63-dimensional descriptor. Then, each one of the normalized accumulated

7-bin histogram distribution is compressed independently and represented with few bits as

possible. In Huffman Tree Coding each normalized accumulated histogram bin is encoded into

a binary tree and as the number of all possible binary trees is limited, we can enumerate them

and store only the index of the tree that represent the normalized histogram distribution. In

Type Quantization the basic idea is to quantize the normalized histogram distributions using

a set of reconstruction points or codebook. This codebook, is obtained by constructing a

Lattice of distributions or Types. Then, each normalized histogram distribution is quantized

into the closest Type. The number of types is limited and can be enumerated, again only the

index will be stored. Finally, the descriptor is obtained concatenating these indexes.

CHoG is the most sophisticated descriptor based on the analysis of the histogram of

gradients and is considered as a pioneer in low-bitrate representation for local descriptors.

Therefore, due to its relevance, we have studied CHoG in detail and reimplemented it from

scratch. This effort was very rewarding in terms of the high amount of knowledge gained

about the deepest details in the processes and implementation of a descriptor based on

histogram of gradients, but no so much in terms of replicability of its results. The Content

about our implementation can be found in Appendix B. A more detailed numerical study of

the bit-rate of the descriptor and additional information about the compression algorithms

can be founded in Appendix A.

2.2.1.7 Boosting Binary Keypoint Descriptor (BinBoost)

The Boosting Binary Keypoint Descriptors was proposed by Trzcinski et al. [2013] as a fast

and compact descriptor.

Considering: 𝐶(𝑥) = [𝐶1(𝑥), ≤ ≤ ≤ , 𝐶D(𝑥)] the binary BinBoost descriptor that maps a

patch 𝑥 into a D-dimensional binary string (D = 64 bits, in the optimal case). Each bit is

represented as 𝐶d(𝑥), where: 𝑑 ∈ ¶1, ≤ ≤ ≤ 𝐷♢ and is computed as:

𝐶d(𝑥) = 𝑠𝑔𝑛(𝑏T
d ℎd(𝑥)).

Chapter 2. State of the Art 27

Where: ℎd(𝑥) = [ℎd,1(𝑥), ≤ ≤ ≤ , ℎd,K(𝑥)]T are 𝐾 weak learners (𝐾 = 128, in the optimal

case) weighted by a vector 𝑏d = [𝑏d,1, ≤ ≤ ≤ , 𝑏d,K]. These weak learners are gradient-based image

features obtained by function that considers the orientation of the gradients over the patch.

The problem formulation (optimization problem) for a labeled training set is closely

related to the AdaBoost standard, i.e. the problem is based on weak learners and the formu-

lation will produce a strong learner or classiĄer. After solving the optimization problem, the

values of the weights 𝑏d are known. Then, since ℎd is obtained for each patch and now we

know 𝑏d, we can compute the BinBoost descriptor of new patches.

Note: We choose to not go deep into this formulation because at this point it is not

relevant for us to know the solution in detail. Also, we skip the deĄnition of weaker learners

since it is not crucial to know the formalism to obtain them.

2.2.1.8 Binary ResIzable Gradient HisTogram (BRIGHT)

Proposed by K. Iwamoto Iwamoto et al. [2013]. BRIGHT is a binary descriptor based on

hierarchical histogram of oriented gradients and a progressive bit selection. The hierarchical

HOG provides an extra robustness to scale changes and consists in three layers as showed in

Figure 12.

Figure 12 Ű Hierarchical HOG layers. A layer is constructed agregating the 2×2 blocks of the
previous layer (Reproduced from K. Iwamoto Iwamoto et al. [2013]).

Then, the resultant 150 + 96 + 54 = 300-dimensional feature vector is binarized by

comparing to a threshold Ś𝑡Š. The HOG has 6 orientation bins ¶ℎ0, ℎ1, ≤ ≤ ≤ , ℎ5♢ and their

binarization is computed as follows:

𝑏i =

∏︁

⨄︁

⋃︁

1 𝑖𝑓 : ℎi > 𝑡

0 𝑖𝑓 : ℎi ⊘ 𝑡

Where 𝑡 is: 𝑡layer1 = 0.063
∑︀5

i=0 ℎi, 𝑡layer2 = 0.1
∑︀5

i=0 ℎi, 𝑡layer3 = 0.12
∑︀5

i=0 ℎi

Chapter 2. State of the Art 28

Since the 300-dimensional vector is binarized, a progressive bit selection is performed

following a pre-established pattern that selects a half of the bits of each block as maximum.

Then, the descriptor is a string bits: 300/2 = 150 bits in full size and 32 bits as minimum

(progressive scalable from 32 bits to 150 bits).

2.2.2 Descriptors Based on Binary Intensity Test

In 2010 M. Calonder Calonder et al. [2010] introduces his BRIEF descriptor with a novel

approach to compute a highly efficient and discriminative descriptor. The algorithm proposed

computes a set of intensity value comparisons and it avoids any computation of gradients,

quantization schemes, compression processes or even an accumulative histogram over spatial

conĄgurations. This descriptor represents the comparison responses into binary values (0, 1),

and it generates a bit string as output. Feature descriptors based in this binary intensity test

are called as binary descriptors and due to their nature, these descriptors allow to compute a

highly efficient distance between two feature vectors (Hamming distance). After BRIEF was

released, several extensions come to light, improving mainly the spatial arrangement of pairs

to be tested. In this section we will present a review of these recent binary descriptors.

2.2.2.1 Binary Robust Independent Elementary Features (BRIEF)

BRIEF is the Ąrst descriptor based on binary intesity test and was proposed by M. Calon-

der Calonder et al. [2010]. This descriptor shows to be a highly discriminant descriptor and

more efficient than descriptors previously proposed. The BRIEF efficiency is achieved thanks

to the novel approach applied, which consists mainly in generating binary strings from sim-

ple intensity value comparisons over a smoothed image patch. The intensity value test (á)

represents the comparison responses whether by Ş0Ť or Ş1Ť.

á(𝑃 ; 𝑥, 𝑦) =

∏︁

⨄︁

⋃︁

1 𝑖𝑓 : 𝐼(𝑥) < 𝐼(𝑦)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where, 𝑃 is the patch smoothed using a Gaussian kernel and 𝐼(𝑥) represents the

intensity value at pixel 𝑥. The patches are obtained with the Fast-Hessian detector, but it is

not limited only to the use of this feature detector. In fact, we can use any feature detector

and describe using the intensity value test.

Then, each test (á) generates a binary value. These binary values are concatenated

into a binary string that will be the Ąnal feature vector. Commonly, the bit-length of BRIEF

descriptor are 128, 256 or 512 bits and due to their correspondence in bytes they can also

be referred as BRIEF-16, BRIEF-32 and BRIEF-64, respectively. An empirical comparison

Chapter 2. State of the Art 29

between several spatial arrangements of binary tests (Figure 13) shows the best results on

tests sampled from an isotropic Gaussian distribution (Figure 13b).

Figure 13 Ű Different approaches to choosing the 128 test locations over a patch. (a) Uniform
distribution, (b) isotropic Gaussian distribution, (c) Gaussian distribution ori-
ented in the horizontal axis Ş𝑋Ť (d) random sample from polar grid.(e) random
sample from polar grid and (0, 0). (Reproduced from M. Calonder Calonder et al.
[2010]).

2.2.2.2 Oriented FAST and Rotated BRIEF (ORB)

Proposed by E. Rublee Rublee et al. [2011]. ORB descriptor is, in different aspects, an

improved BRIEF.

First, as the name itself allude, ORB uses the oriented FAST detector (oFAST) de-

scribed in 2.1.3, which is more efficient to compute than the Fast-Hessian detector used in

BRIEF. Second, ORB descriptor uses a learning process to determine the spatial arrange-

ment of binary tests. First, the training set of patches (31×31) are smoothed using an integral

image, where each test point is a 5×5 sub-window. Then, the number of possible tests result

in
⎞

26
2

)︁

= 205590. The learning algorithm search for a set of 256 uncorrelated tests, which

will produce a 256 bit string. Finally, once the spatial arrangement is known, the BRIEF

binary string is computed. For cases with in-plane rotations, the spatial arrangement of tests

is rotated (steered BRIEF) instead of rotate the patch itself (more efficient).

Since ORB include a training process, the spatial arrangement obtained will be better

for an speciĄc dataset (from which the training set was selected) than the spatial arrangement

of test for the BRIEF descriptor.

Chapter 2. State of the Art 30

2.2.2.3 Binary Robust Invariant Scalable Keypoints (BRISK)

Proposed by S. Leutenegger Leutenegger et al. [2011]. BRISK is a super-fast descriptor

which uses a DAISY inspired deterministic sampling pattern for intensity tests. The BRISK

efficiency is obtained by using the accelerated extension of FAST, the AGAST detector Mair

et al. [2010].

Figure 14 Ű The BRISK sampling pattern with 60 sampling points: blue circles denote the
sampling locations and red dashed circles are drawn at a radius corresponding
to the standard deviation à of the Gaussian kernel used to smooth the intensity
values. (Reproduced from S. Leutenegger Leutenegger et al. [2011].

BRISK descriptor uses sampling locations in a DAISY pattern (Figure 14). The

intensity value at each sampling location 𝑃i is obtained by using a Gaussian smoothing

with a standard deviation (à) proportional to the distance between sampling locations on

the same concentric circle. Then, the smoothed intensity values at sampling point pair

(𝑃i, 𝑃j) are 𝐼(𝑃i, ài) and 𝐼(𝑃j, àj). Those pairs where the distance ‖𝑃j ⊗ 𝑃i‖ is bigger than

Ómin = 13.67 × (𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡_𝑠𝑐𝑎𝑙𝑒) are grouped into the long-distance pairs 𝐿 and those pairs

where the distance is less than Ómax = 9.75 × (𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡_𝑠𝑐𝑎𝑙𝑒) are grouped into the short-

distance pairs 𝑆. The 𝐿 subset of sampling pairs is used to estimate the orientation of the

keypoint. The local gradient 𝑔(𝑃i, 𝑃j) can be estimated as:

𝑔(𝑃i, 𝑃j) = (𝑃j ⊗ 𝑃i).
I(Pj ,σj)⊗I(Pi,σi)

‖Pj⊗Pi‖2 .

Then, the direction of the keypoint (orientation) can be estimated by the aggregation

of local gradients of the 𝐿 pairs.

𝑔 =
⎞

gx

gy

)︁

=
∑︀

(Pi,Pj)∈L 𝑔(𝑃i, 𝑃j).

Chapter 2. State of the Art 31

To obtain invariance to in-plane rotations the sampling pattern is rotated by Ð =

𝑎𝑟𝑐𝑡𝑎𝑛2(𝑔y, 𝑔x) around the keypoint. Finally, the intensity value tests are performed over the

𝑆 subset of sampling pairs to obtain the 512 bits BRISK descriptor.

2.2.2.4 Fast Retina Keypoint (FREAK)

Proposed by A. Alahi Alahi et al. [2012]. The two major contributions of FREAK descriptor

are inspired by the human visual system, its retinal sampled pattern for intensity tests and

its capability to perform a saccadic search. FREAK descriptor uses the same multi-scale

AGAST feature detector used in BRISK and also uses a similar approach to estimate the

keypoint orientation.

The FREAK sampling pattern is an analogy to the topology of the retina (Figure 15).

The sampling points are distributed along concentric circles but unlike BRISK, the density of

points decrease exponentially with the distance to the keypoint (center of the patch). Finally,

a learning algorithm similar to ORB is applied to Ąnd the 512 most relevant pairs and build

the FREAK bit string.

Figure 15 Ű From retinal photoreceptors to pixels. (a) Density of ganglion cells over the retina,
(b) Retina areas, (c) FREAK sampling pattern, each circle represents the region
of inĆuence to be considered to compute the intensity value. Each one of this
regions will consider a Gaussian kernel to smooth this region before to compute
the intensity value (Reproduced from A. Alahi Alahi et al. [2012]).

The 512 FREAK bit string is sorted by its relevance and this allows to perform a

mimic of the human phenomena of saccadic search by performing a cascade of comparisons.

Then, the Ąrst cascade corresponds to the Ąrst 128 bits (16 bytes) of FREAK descriptor,

the second cascade correspond to the next 128 bits, and so on, until the fourth cascade (last

128 bits). Then, each cascade has 16 bytes and the cost to compare 1 byte or 16 bytes is

almost the same with the use of Single Instruction and Multiple Data (SMID) instructions.

Finally, the Ąrst cascade of comparisons discards more than 90% of the candidates and can

be executed with the computational cost of comparing two bytes.

Chapter 2. State of the Art 32

2.2.2.5 Fast Robust Invariant Feature (FRIF)

Proposed by Z. Wang Wang et al. [2013]. FRIF descriptor is a binary descriptor which

adds local pattern information to the bit string obtained from intensity value tests. The

FRIF sampling pattern is a slightly modiĄed version of the BRISK spatial arrangement

(more overlapping areas) and the keypoint orientation is obtained using the same procedure

described in BRISK.

FRIF is called as mixed descriptor because its bit string is a concatenation of local

pattern information and responses to intensity value tests. For each one of the 𝑁 pattern

locations (pattern location is a point in the spatial arrangement of binary tests), the local

pattern information is encoded by computing a pair-wise comparison between four points

𝑆(𝑃i) = ¶𝑠i,k, 𝑘 = 1, 2, 3, 4♢ sampled on a circle centered at 𝑃i (𝑖 = ¶1, 2, 3, ≤ ≤ ≤ , 𝑁♢). Then,

the local information is a
⎞

4
2

)︁

× 𝑁 = 6 × 𝑁 bit string. On the other hand, the intensity

value test is performed over 512 ⊗ 6 × 𝑁 short-distance pairs using the same algorithm as

BRISK descriptor. Finally, the local pattern information and the intensity value tests are

concatenated into a 6 × 𝑁 + 512 ⊗ 6× = 512 bit string.

2.2.3 Summary

In this chapter we have studied the state of the art of feature descriptors and their evolu-

tion over the years. We have established a major distinction between them based on their

approaches: whether the method is focused in the distribution of the gradients (histogram of

gradients) or focused in the distribution of the intensity (binary test). At the Ąrst glance, these

two families of descriptors have a big difference in terms of their computational cost. Binary

descriptors only compute a intensity test of pixels over the smoothed patch while gradient-

based descriptors have to compute gradients, histograms and accumulative processes over

each spatial bin. We can summarize all methods just by highlighting two feature descrip-

tors: SIFT as the most successful and representative feature descriptor based on histogram

of gradients and BRIEF as a pioneer binary descriptor.

Overall, descriptors based on histogram of gradients have experienced a notorious

evolution in terms of bit-rate (compactness), conĄgurations and efficiency. SIFT descriptor

is one of the most cited, used and successful algorithm in multimedia retrieval and computer

vision. We also, have to emphasize the importance of some other feature descriptors studied

along this chapter. SURF descriptor presents an accelerated algorithm maintaining good

performance and is probably the most successful algorithm after SIFT. DAISY descriptor has

explored intensively the spatial conĄgurations (spatial binning), even using learning methods.

CHoG descriptor goes further in the effort to accomplish compactness as a gradient based

Chapter 2. State of the Art 33

descriptor, this descriptor explores intensively compressed algorithms. On the other hand,

binary descriptors are drastically more compact and more efficient to compute, but in general

they experience losses in terms of quality and invariance against transformations.

Feature vectors represent an image and can be used to establish whether two images

are similar or not. To compare feature vectors we have to look into the characteristics of

such feature vectors. Then, each one of them have an speciĄc measure of distance that

Ąts better. Descriptors like SIFT, SURF and DAISY generate a feature vector with high

dimensionality and generally use the euclidean norm (L2) to measure the distance between

two feature vectors. CHoG descriptor pursues compression and compactness. Then, their

vectors are better represented as a sequence of normalized vectors and use the kullback

Leibler divergence (KL) as a distance. On the other hand, those descriptors that produce a

binary bit string are drastically more efficient to compare because this comparison can be

performed using the Hamming distance, which is a simple XOR operation and a count of

Ş1Ťs or count of population (popcount).

Finally, we summarize the feature descriptors studied in Table 2 and highlight their

approach and characteristics of their feature vectors.

C
h
a
p
ter

2
.

S
ta

te
o
f

th
e

A
rt

34

Feature Based on Based on
Descriptor Histograms of Gradients Binary Intensity Test dimension distance Reference
SIFT X 128 L2 Lowe [2004]
GLOH X 128 L2 Mikolajczyk and Schmid [2005]
HOG X 3780 L2 Dalal and Triggs [2005]
SURF X 64 L2 Bay et al. [2008]
DAISY X 200 L2 Tola et al. [2008]
CHoG X 45 KL Chandrasekhar et al. [2012]
BinBoost X 64 b Hamming Trzcinski et al. [2013]
BRIGHT X 32 to 150 b Hamming Iwamoto et al. [2013]
BRIEF X 128, 256, 512 b Hamming Calonder et al. [2010]
ORB X 256 b Hamming Rublee et al. [2011]
BRISK X 512 b Hamming Leutenegger et al. [2011]
FREAK X 512 b Hamming Alahi et al. [2012]
FRIF X 512 b Hamming Wang et al. [2013]

Table 2 Ű Overview of the feature descriptors presented in this chapter. In the column ŞdimensionŤ: a number alone represents a
vector of that dimensionality and a number followed by ŞbŤ represents the length of the bit string. In column ŞdistanceŤ:
L2 is the Euclidean distance and KL is the Kullback Leibler divergence.

35

3 Experiments and Results

In Chapter 2 we presented a review of the most important feature detectors and feature

descriptors proposed in the literature. We described their procedures and established several

key differences between them, mainly based on their approaches and outputs. In this chapter

we will perform an experimental comparison to study not only their computational efficiency,

but also their performance in a common workĆow. The organization of this chapter is as

follows: Ąrst, we will introduce the experimental setup and the resources used throughout

the experiments. Then, we will compare the most important feature detectors reviewed in

the literature. This comparison consists in an execution time comparison and an evaluation

of their quality using the well-known repeatability test. Finally, we will brieĆy present an

evaluation of the effectiveness of feature descriptor in a target retrieval application.

3.1 Experimental Setup

3.1.1 Definitions

Repeatability Test: this procedure measures the quality of feature detectors and was pro-

posed by Schmid et al. [2000]. They deĄne: ŞThe repeatability explicitly compares the ge-

ometrical stability of the detected interest points between different images of a given scene

taken under varying viewing conditionsŤ. The repeatability can be measured by the repeata-

bility rate, i.e. the percentage of points simultaneously present in two images (repeated). The

regions that are repeated are commonly known as covariant regions. An example of covariant

regions is showed in Figure 16.

Figure 16 Ű Repeatability test: example of covariant regions.

Chapter 3. Experiments and Results 36

Target Retrieval: as deĄned in 1.1.1, the target retrieval by image matching compares a

query image against a set of candidates (image data set). The pipeline consists in several

steps such as database feature extraction, query feature extraction, computation of distances

and feature matching, voting&ranking and geometric veriĄcation.

The feature extraction (detection and description) of the images is performed once

using the same algorithm for all images. The feature matching consists in a comparison of

the features vectors of the query image against the feature vectors of the data set. This

comparison is performed using some measure of distance and will be used to determine

which feature vector of the data set is the nearest one to each feature vector of the query

image. Then, each query feature vector will grant a vote (e.g. Ş+1Ť) to their nearest data set

feature vector. Finally, the images of the data set are sorted (ranked) according to their votes

obtained. This process will return a list of the best ranked candidates among the images in

the data set. Additionally, a geometric veriĄcation can be performed to eliminate some false

positives (good ranked candidates, but without geometric consistency).

3.1.2 Resources

OpenCV (Open Source Computer Vision): among the implementations of feature de-

tectors and feature descriptors available, we choose to use the open source computer vision

and machine learning software library OpenCV. This decision was encourage by three major

considerations: Ąrst, OpenCV give us the conĄdence to be working with reliable implementa-

tions (in various cases the code was contributed to OpenCV by the people who proposed the

feature detector-descriptor). Second, OpenCV offers a variety of feature detectors-descriptors

that are consistent with our experimental comparison needs. Third, OpenCV was designed

to be cross-platform. SpeciĄcally, in 2010 OpenCV was ported to the Android environment

and it allows to use the full power of the library in mobile applications development. Also,

since 2012 it includes a full integration to iOS (since version 2.4.2).

In our experiments, we have used the version 2.4.6.1 (2013) which includes all the

cross-platform capabilities. Table 3 shows the implementations used in the experimental

comparison of feature detectors and feature descriptors.

Repeatability test: this test measures the performance of a detector by the repeatability

criterion explained in subsection 3.1.1. To carry out the test, we have used the Matlab code1.

This toolbox was developed and released in conjunction with the Oxford Affine Covariant

Regions DataSet (presented in the next subsection). Then, both resources attain the condition

to perform the repeatability test.
1 Detectors Evaluation: http://www.robots.ox.ac.uk/~vgg/research/affine/evaluation.html

Chapter 3. Experiments and Results 37

Detector Descriptor
DoG (SIFT) SURF
Fast-Hessian (SURF) BRIEF
FAST ORB
STAR (Censure) BRISK
MSER FREAK
AGAST (BRISK)
oFAST (ORB)

Table 3 Ű OpenCV implementations used in the experimental comparison.

Time Measure: to measure the execution time for each feature detector we choose to use

the line⊗proĄler2 which is a module for doing line-by-line proĄling of functions for Python.

Computational Resources: all experimental procedures were performed in a computer

with Intel Core i7-2600 3.40GHz processor running Ubuntu 12.04 (64-bits).

3.1.3 Data Sets

Oxford Affine Covariant Regions DataSets [Mikolajczyk and Schmid, 2005]: is an image

data set with an accurate homography (plane projective transformations) between images.

Then, ad hoc data set for repeatability test. It includes 8 image sequences, each one containing

a raw scene (reference) and 5 images with a gradual geometric or photometric transformation

as showed in Figure 17. All images are of medium resolution, approximately 800× 640 pixels,

and the increasing level of transformation can be obtained by one or more transformations

as showed in Table 4.

Category Transformations Images
Bark Scale and Rotation 6
Bikes Blur 6
Boat Scale and Rotation 6

Graffiti Viewpoint Change 6
Leuven Illumination 6
Trees Blur 6
UBC JPEG compression 6
Wall Viewpoint Change 6

Table 4 Ű Sequences of images and their transformations in the Oxford Affine Covariant
Regions DataSets.

Transformations as rotation, scale change, viewpoint change, and blur, are present

in two different scenes. One structured scene (homogeneous regions with distinctive edge
2 Line

−
profiler: https://github.com/rkern/line_profiler

Chapter 3. Experiments and Results 38

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 17 Ű Oxford Affine Covariant Regions Data set. Examples of reference images (left)
and their transformations (right) for each image sequence: (a) and (b) view-
point changes in structured scene and textured scene, respectively. (c) and (d)
zoom+rotation in structured scene and textured scene, respectively. (e) Blur
in structured scene and (f) Blur in texture scene. (i) Light changes, (j) JPEG
compression.

boundaries), and the other is a texture scene. This is helpful to distinguish the inĆuence of

such transformations in each scene type separately.

Geometric transformations: image rotations are in the range of 30 and 45 degrees.

The maximum scale changes are about a factor of four and are obtained by varying the cam-

era zoom and viewpoint changes are obtained by varying the camera position. Photometric

transformations: blur sequences are acquired by varying the camera focus. The light changes

Chapter 3. Experiments and Results 39

are introduced by varying the camera aperture and the JPEG sequence is generated with

a standard xv image browser with the image quality parameter varying from 40% to 2%

percent.

The homographies between the reference image and the other images in a particular

dataset are accurate computed. This means, the mapping function relating images is known

and can be used to determine a ground truth matches for speciĄc regions of interest ob-

tained in the detection process. Then, this ground truth knowledge allow us to perform a

repeatability test in this homography annotated data set.

SMVS—Stanford Mobile Visual Search Data Set [Chandrasekhar et al., 2011]: al-

though at the time there are many image data set available, none of them was oriented to

be used in mobile applications environment. The SMVS data set was released in 2011, this

data set not only has the advantage to be obtained from low and high-end camera phones

but also has several key properties that turn it into a good data set for mobile applications:

the data set contains rigid objects, i.e. it is possible to estimate a transformation between

reference image and query image. The images are captured within a wide range of lighting

conditions and presents a foreground-background clutter. Finally, the data set has common

perspective distortions (rotation, scale changes, viewpoint changes).

The SMVS data set has 3300 query images for 1200 distinct classes (objects) grouped

into 8 categories as showed in Table 5. Due to the variety of categories, this data set can be

used in a wide range of visual search applications like product recognition (CD, DVD, Books,

etc), landmark recognition, augmented reality, text recognition or even video recognition.

Examples of query and database images are shown in Figure 18.

Category Database Query
CD 100 400

DVD 100 400
Books 100 400

Video Clips 100 400
Landmarks 500 500

Business Cards 100 400
Text documents 100 400

Paintings 100 400

Table 5 Ű Number of query and database images in the SMVS data set for different categories.

Reference images are clean versions of images obtained from different sources: product

websites (CDs, DVDs, books), data collected by NavteqŠs vehicle-mounted cameras (land-

marks), website that mines the front pages of newspapers and research papers (text docu-

ments), high quality scan (business card) or the Cantor Arts Center at Stanford University

Chapter 3. Experiments and Results 40

CDs

DVDs

Books

Videos

Landmarks

Cards

Texts

Paints

Figure 18 Ű Stanford Mobile Visual Search (SMVS) data set: consists of images for different
categories captured with a variety of camera-phones and under widely varying
lighting conditions. Each line in the Ągure shows 2 examples of reference image
and 2 examples of a query images for an speciĄc category.

Chapter 3. Experiments and Results 41

for museum paintings. All reference images are high quality JPEG compressed color images

and their resolution varies for each category. Query images were captured with several dif-

ferent camera phones, including some digital cameras. The list of companies and models

used is as follows: Apple (iPhone4), Palm (Pre), Nokia (N95, N97, N900, E63, N5800, N86),

Motorola (Droid), Canon (G11) and LG (LG300). Query images present wide variations in

lighting conditions and foreground and background clutter. Also, for video clips, the query

images were taken from laptop, computer and TV screens to include specular distortions. The

resolution of the query images varies for each camera phone. The table 6 shows the query

images available for each category. The Landmarks category only have one query image for

each object and these query images do not correspond to a unique camera model.

Category N5800 Canon Droid Iphone E63 Palm N97 N900
CD Ű X X Ű X X Ű Ű

DVD Ű X X Ű X X Ű Ű
Books X X X X Ű Ű Ű Ű

Video Clips X Ű Ű X Ű Ű X X

Business Cards Ű X X Ű X X Ű Ű
Text documents Ű X X Ű X X Ű Ű

Paintings Ű X X Ű X X Ű Ű

Table 6 Ű SMVS Data Set description: Each category and their correspondent query images.
Check mark indicates when the image query is available for an speciĄc category.

3.2 Feature Detector Evaluation

First of all, we have to mention that there is not a unique approach to evaluate feature de-

tectors. The decision-making to use certain measures and tests in our procedure were highly

inĆuenced by the special attention we put to the trade-off between computational cost and

performance, due to the speciĄc context of mobile applications. To evaluate the performance

of feature detectors we take into consideration three important aspects that will determine

our outline procedure and scope. First, we will not consider the whole bunch of feature de-

tectors presented in Section 2.1 because various of them are computationally inefficient to be

considered good candidates for MVS applications. Then, we have to determine the minimum

requirements for a feature detector to be considered as an appropriate candidate. Second,

as feature detectors have a set of properties (e.g repeatability, locality, quantity, accuracy,

etc), we have to Ąnd which of them will be considered more important for MVS applications.

Finally, we have to establish a measure to evaluate the quality of feature detectors.

The organization of this section is as follows: initially, we describe our general frame-

work to evaluate feature detectors. Then, we present a brief discussion to set the starting

Chapter 3. Experiments and Results 42

point of feature detectors candidates. With this initial subset of candidates, we perform a

comparison of time consumption, the results will help us to identify a smaller subset of good

feature detector candidates. Lastly, we brieĆy discuss several methods to evaluate perfor-

mance of feature detectors which will lead us to perform a repeatability test to determine

the most suitable methods to be used in MVS applications.

3.2.1 Evaluation Workflow.

We brieĆy describe the evaluation procedure used. Our main goal with this evaluation is

to identify a small set of fast and robust feature detectors to be used in MVS applications.

Then, each step serves as a Ąlter to reduce the number of candidates.

Step 1: Initial Selection. Due to the constraints of computing power and time

consumption in mobile applications context, we select a subset of feature detector described

in Chapter 2. This selection is based on a comparison of their computational efficiency.

Step 2: Time Comparison. In MVS applications, fast computation is a major

requirement. Then, we perform a time consumption comparison. For this purpose, we select

a subset of images from the SMVS—Mobile Visual Search Data Set [Chandrasekhar et al.,

2011] to measure the time used in the computation of the detection process for each method.

Finally, we compare the average time for each method in order to determine a subset of fast

and therefore most suitable detectors for MVS applications.

Step 3: Quality Test. Whereas in the previous steps we were focused on fast com-

putation, in this last step we will put focus on the feature detectorŠs effectiveness. Initially,

we brieĆy describe several methods used to evaluate the quality of feature detectors. Then,

we perform the repeatability test on each method using the Oxford Affine Covariant Regions

DataSets released by Mikolajczyk and Schmid [2005].

Both data sets were described in detail in Section 3.1.3.

3.2.2 Feature Detector Comparison

From all feature detectors studied in the Chapter 2 the most successful is the SIFT [Lowe,

2004], as we stated before, part of the importance of SIFT lies in its capability to be invariant

to scale changes and its success being highly discriminant and robust to transformations.

SIFT is also the Ąrst computationally efficient detector and descriptor. Then, since we are

considering SIFT as a good candidate, we will discard feature detectors that came to light

before SIFT (e.g. SUSAN, MIC, Salient Regions, IBR, Harris and Hessian detectors). In

fact, after SIFT came to light, the main aim became to Ąnd a feature detector-descriptor

Chapter 3. Experiments and Results 43

that perform as well as SIFT, but faster and cheaper. In this enterprise, the most remarkable

contribution to compute a fast feature detector was proposed in 2008, SURF by Bay et al.

[2008]. SURF uses a Hessian matrix approximation based on computing image integrals.

Then, SIFT and SURF became standard methods for detection and description processes.

After them, to validate any new contribution in feature detector-descriptor a comparison

with SIFT and/or SURF on a common baseline is almost mandatory in practice. We will

consider in this comparison the feature detectors grouped into optimized implementations

(Section 2.1.3) because they are intended to be efficient to compute.

For any image retrieval application the execution time has a direct inĆuence on the

user experience and this is even more signiĄcant in mobile applications. Taking both, SIFT

and SURF as reference, we perform an initial experiment to compare the average time of

execution for each feature detector. Due to the computational resources constraints in a

mobile environment, we have special interest in feature detectors that are faster and cheaper

than SURF.

We compare the execution time of several feature detectors previously studied in

section 2.1. The results obtained are presented in Table 7. Each ŞruntimeŤ value represents

the average time (in milliseconds) of feature detection for an image of the CD category from

the SMVS data set. We choose to use the reference images (100 images) from the CD category,

where all images have the same size (500×500 pixels).

Runtime Time Comparison
Feature Detector (ms) # Keypoints Respect to FAST Respect to SURF
DoG (SIFT) 99.36 1426 53.7× 2.28×
Fast-Hessian (SURF) 43.46 1839 23.5× 1×
FAST 1.84 4655 1× 0.04×
STAR (CenSure) 6.08 306 3.3× 0.14×
MSER 19.60 261 10.6× 0.45×
AGAST (BRISK) 8.00 460 4.3× 0.18×
oFAST (ORB) 5.63 499 3× 0.13×

Table 7 Ű Results of execution time comparison on feature detectors in a CD category from
SMVS data set. ŞRuntimeŤ reports the average time (of 100 images) to compute the
each feature detector. These processes were executed 10 times to guarantee their
consistency. ŞKeypointsŤ shows the average number of keypoints obtained for each
image. The two last columns show the time proportion between each method and
the fastest one (FAST detector) and also to the de facto standard SURF feature
detector, respectively.

Before we interpret the results and derive conclusions, we will brieĆy describe the

experimental context. We choose to use an image subset from the MVS data set for this

Chapter 3. Experiments and Results 44

experimental comparison because at the end we want to evaluate the performance of these

feature detectors in a mobile visual system, i.e. evaluate the quality of feature detectors on

images obtained by actual camera phones. On the other hand, we choose to use OpenCV

(version 2.4.6.1) to perform the common comparison pipeline due to the several reasons

explained in 3.1.2. SIFT and SURF detectors are commonly known as DoG and Fast-Hessian

feature detectors and OpenCV has its own implementations that are consistent with the

original ones, but not exactly the same. STAR feature detector is a slightly modiĄcation of

CenSure detector. ORB and BRISK detectors correspond to an oriented FAST (oFAST) and

adaptive FAST (AGAST), respectively. To measure the execution time, we choose to use the

line⊗proĄler3 module which performs a line-by-line proĄling of functions.

In Table 7 we show the average time detection for each method and their ratio relative

to FAST. As expected, SIFT and SURF are expensive to compute (in time) and FAST is the

fastest one. Because ORB and BRISK derive from FAST, they two are slower than FAST,

but faster than SURF. STAR detector uses a generic integral image and performs almost 7×

faster than SURF. Finally, MSER detector is faster than SURF and SIFT, but is almost 10×

slower than FAST. Table 7 also reports the number of keypoints for each method. In general,

as the number of keypoints increases so does the information to represent the image. This

lead us to argue that small amount of keypoints will offer a poor representation of the image.

Nevertheless, in practice, the number of keypoints tends to be larger than desired and has

to be reduced by keeping only the bests. To reduce or limit the number of features detected,

a common approach is use a measure of robustness (e.g. cornerness measure described in

Harris detector). In the OpenCV environment this measure is provided as a response output

by which the strongest keypoints can be selected.

For further experiments, SIFT will no longer be maintained as a reasonable candidate

because of its computational expensiveness, and we will establish SURF as a reference feature

detector. In fact, is the common practice to consider SURF as a reference to evaluate efficient

implementations [Rublee et al., 2011; Leutenegger et al., 2011]. Also, we no longer use MSER,

because this method obtains a small amount of keypoints and is expensive to compute in

comparison to the remaining feature detection candidates. Then, we have a SURF detector as

reference of performance and FAST, STAR, BRISK and ORB as feature detector candidates.

Until this point, we only have looked at the efficiency and computational cost of the feature

detector candidates. In the next subsection we will go into the comparison of the effectiveness

of feature detectors using the well known repeatability test, explained in 3.1.1.
3 Line

−
profiler: https://github.com/rkern/line_profiler

Chapter 3. Experiments and Results 45

3.2.3 Repeatability Test

Over the years, several methods were proposed in the effort to measure the quality and robust-

ness of feature detectors. This measure of quality has a strong relationship with the properties

expected in a good feature detector and even with the feature detected itself (regions, blobs,

corners). Among these methods, the most popular are those based on ground truth veriĄca-

tion and visual inspection, but both methods are restricted to the human interpretation of

the image since the ground-truth is created by a human and the visual inspection methods

depend on the human evaluation. The successful of these methods and the complexity of the

images used are limited due to their inherently subjective interpretation of the image. Other

methods to evaluate feature detectors are based on a theoretical analysis. These methods use

theoretical models to examine the behavior of detectors, but unfortunately, they can only

be used with a small set of very speciĄc features. Another non general methods are focused

on the location accuracy and how well the features are prepared to be used in speciĄc tasks

(camera calibration, 3𝐷 reconstruction), but they cannot be generalized.

Looking to the features characteristics: features detected should be local and accurate

to reduce the probability of occlusion and also to allow the approximation of the geometric

deformation. The number of features detected should be sufficient to provide a good image

representation and features should be robust to geometric and photometric transformations.

Finally, arguably the most important property, feature should have high repeatability, this

means, for two images of an speciĄc scene obtained under different viewing conditions, a high

percentage of the features detected should be detected in both images. The repeatability does

not depends on an speciĄc feature and also is not limited by a human interpretation as the

approaches mentioned before. Repeatability test was proposed by Schmid et al. [2000] to

evaluate the performance of interest point detectors. Since then, it became the most mean-

ingful measure to evaluate feature detectors. Mikolajczyk and Schmid [2005] released the

Oxford Affine Covariant Regions DataSets4 and the Matlab code5 to carry out the perfor-

mance test. The precomputed homography matrices between reference image and images

under transformations were also released with the data set. In our experimental evaluation,

we use the previously selected feature detector candidates: SURF, FAST, BRISK (AGAST),

ORB (oFAST) and STAR (CenSure).

To perform the repeatability test we set a maximum number of keypoints (1000) for

each feature detector in order to perform a fair comparison, i.e. if the feature detector returns

more keypoints, only the best 1000 are retained based on their response measure. The released

Matlab code sets an overlap error threshold of 40%. The overlap error measures how well
4 Image Dataset: http://www.robots.ox.ac.uk/~vgg/research/affine/
5 Detectors Evaluation: http://www.robots.ox.ac.uk/~vgg/research/affine/evaluation.html

Chapter 3. Experiments and Results 46

Figure 19 Ű Viewpoint change for structured scene: Graffiti data set. (left) Repeatability score
for viewpoint changes. (right) Number of corresponding regions.

the regions correspond under a transformation (homography). It is deĄned by the ratio of

the intersection and union of the regions. If the overlap error is bigger than the threshold

the regions will not be considered convariant (repeated). Finally, the results of the test are

expressed in percentages of repeatability (relative repeatability) and the actual number of

correspondences between the reference image and the other images in the sequence (absolute

repeatability).

We will present and discuss the repeatability test results by grouping the data sets as

follows: graffiti and wall (viewpoint changes), bark and boat (zoom and rotation), bikes and

trees (blurring), leuven (light changes) and UBC (JPEG compression). Note that the three

Ąrst transformations have an structured and texture image sequences to be evaluated.

The ideal case: all features detected within the part of the scene visible in both images

should be detected in both images (reference image and each other image in the sequence).

This means, the ideal result for repeatability corresponds to an horizontal line at 100% in

the Ągure (relative repeatability vs degree of transformation), but this cannot be accomplished

in practice. In general, the repeatability decreases as the transformation becomes more severe

as showed in Figures 19 to 26.

Viewpoint change: the effect of changing viewpoint is evaluated in two different image

sequences: graffiti (structured scene) and Wall (texture scene). For both cases the reference

image correspond to a frontal scene and the other 5 images are obtained under a viewpoint

change of 20, 30, 40, 50 and 60 degrees. Graffiti sequence: as showed in Figure 19, in the

structured scene ORB and FAST have high repeatability for small viewpoint changes, but

FAST decreases rapidly in repeatability percentage and also in the actual number of corre-

Chapter 3. Experiments and Results 47

Figure 20 Ű Viewpoint change for texture scene: Wall data set. (left) Repeatability score for
viewpoint changes. (right) Number of corresponding regions.

spondences while ORB continues to present the best repeatability percentages and highest

number of correspondences. In fact, ORB detector has better repeatability than the reference

SURF detector for all images in the sequence. BRISK detector (AGAST) presents the lowest

repeatability and also have small values of correspondence. Wall sequence: The results of the

evaluation of viewpoint changes for a texture scene are showed in Figure 20. The reference

detector (SURF) performs better than the other methods, but FAST, ORB and STAR have

similar results in repeatability percentage and number of correspondence. BRISK, similarly

to the structured scene case, presents the worst repeatability values throughout the viewpoint

changes.

The repeatability scores for the initial viewpoint change (20 degrees) are between

48% and 90% for graffiti and between 42% and 74% for wall sequence. These scores decrease

quickly for larger viewpoint angles and the number of correspondences present a similar

behavior. Looking to these results we can also derive that viewpoint changes modify strongly

the image because the repeatability goes down rapidly while increasing the viewpoint angle.

As we can see for graffiti sequence, independently of the detector used, the repeatability goes

to zero for 50 degrees while for wall it goes to 10% at the most severe viewpoint change.

Scale change: the sequences used to evaluate scale changes have also in-plane rotations. The

two image sequences are: boat (structured scene) and bark (texture scene). The maximum

scale change for boat scene is about a factor of 2.8 and about 4 for bark sequence. Boat

sequence: as showed in Figure 21, in the structured scene the repeatability of FAST and

BRISK drop down really quickly while ORB and SURF have better results and also have

a similar behavior as the scale grows. STAR detector have the lowest repeatability score

at the beginning, but as the scale change gets bigger, it is not affected to much and its

Chapter 3. Experiments and Results 48

Figure 21 Ű Scale change and rotation for structured scene: Boat data set. (left) Repeatability
score for viewpoint changes. (right) Number of corresponding regions.

Figure 22 Ű Scale change and rotation for texture scene: Bark data set. (left) Repeatability
score for viewpoint changes. (right) Number of corresponding regions.

behavior is almost horizontal. Bark sequence: in Figure 22, FAST drops down quickly while

SURF outperforms other methods and has an quasi-horizontal behavior. ORB repeatability

decreases as the scale change gets bigger and STAR detector presents an oscillating behavior.

The number of actual correspondences is very small for STAR and BRISK detectors in all

cases while for SURF detector the number of correspondences starts with almost 350 and

decreases as the scale grows.

An interesting observation is that even if STAR detector presents good repeatability

percentages, this not imply an actual good performance of the detector. This can be perceived

looking at the actual number of correspondences for STAR detector and realize that this

number is always small (under 50) and as we stated before, the number of features should

Chapter 3. Experiments and Results 49

Figure 23 Ű Blur for structured scene: Bikes data set. (left) Repeatability score for viewpoint
changes. (right) Number of corresponding regions.

Figure 24 Ű Blur for texture scene: Trees data set. (left) Repeatability score for viewpoint
changes. (right) Number of corresponding regions.

be big enough to provide a good representation of the image. Then, STAR has less than

50 common features (with correspondence) over a 1000 possible is not a good result of

repeatability.

Blur: the effect of blurring an image is evaluated in two different image sequences: Bikes

(structured scene) and Trees (texture scene). Bikes sequence: Figure 23 shows the results

for the structured bikes scene. ORB and FAST have the better repeatability percentages

and share a similar quasi-horizontal behavior. The repeatability score for SURF and STAR

slightly decrease as the blur degree increases, but the number of correspondences of STAR

is lower than the other three methods. Finally, the score and number of correspondences for

BRISK result the smallest for all blurred images. Trees sequence: the results for this test

Chapter 3. Experiments and Results 50

are showed in Figure 24. Again, BRISK losses against the other methods. ORB, FAST and

SURF have a similar results and behavior in both cases (repeatability score and number of

correspondence).

Until this point, we have already evaluated the performance of our feature detectors

under three different transformations (two geometric transformations: scale+rotation and

viewpoint change and one photometric transformation: blur) and using two types of scenes

(structured scene and textured scene). So far, we can extract some important and non-explicit

consequences of our results: for any sequence of textured scene evaluated, the SURF detector

outperforms the rest of feature detectors compared, i.e. SURF detector is effective and robust

to detect features at small scales under viewpoint changes, scale and blur transformations.

But, for structured scenes SURF is partially surpassed by ORB detector or even FAST in

the case of bikes sequence. FAST detector goes almost straight to zero repeatability under

scale changes and this reveal its lack of scale invariance. The sequence with blurring images

presents better results than the previous sequences. Then, we can infer that photometric

transformations have less impact in the representation of the image, since the repeatability

does not decrease as much as for geometric transformations. Also, two common characteristics

along these results can be summarized: First, BRISK detector returns features with low

repeatability and is outperformed by every other method used in the evaluation. Second,

even if STAR detector obtains similar results than ORB and SURF, it generally lost its

value due to the fewer number of correspondences. Then, till now, FAST and ORB are better

candidates.

Light change: Figure 25 shows the repeatability score and the absolute number of correspon-

dences obtained for Leuven sequence under illumination changes. The repeatability curves

as well as the correspondence curves are nearly horizontal for all feature detector evaluated.

This reveals a good degree of robustness to illumination changes. Since all methods obtain

similar repeatability scores we have to use the total number of correspondence in order to

distinguish which one of the candidates is better. Then, we can identify, in general, that

FAST and ORB are better candidates than BRISK and STAR even when ORB detector has

slightly less repeatability score than the others.

JPEG Compression: Figure 26 shows the scores for the structured UBC sequence (large

homogeneous areas and distinctive corners) under JPEG compression transformation. The

repeatability curves are almost horizontals and evidence the robustness of the candidates un-

der JPEG compression. BRISK and STAR are clearly outperformed by the other candidates.

Overall, the scores for JPEG compression are the bests (from 90% to 70% along the degrees

of JPEG compression present in the image sequence).

Chapter 3. Experiments and Results 51

Figure 25 Ű Illumination change for Leuven data set. (left) Repeatability score for viewpoint
changes. (right) Number of corresponding regions.

Figure 26 Ű JPEG compression for UBC data set. (left) Repeatability score for viewpoint
changes. (right) Number of corresponding regions.

3.2.4 Summary

As we initially stated, in image retrieval applications, SIFT detector is a standard of perfor-

mance, but in the context of mobile applications the major constraints of time and computa-

tional power lead us to use SURF feature detector as standard of comparison throughout the

experiments. Then, we use SURF to select a set of candidates that are cheaper to compute

and faster than SURF. We also set SURF as the reference of performance in the repeatability

test. This allow us to compare the performance of the remaining candidates against SURF

in different scenarios (various transformations).

SURF detector obtains better repeatability results for texture scenes in comparison

to structured scenes. This reĆects its capability to detect features at small scales. On the

Chapter 3. Experiments and Results 52

other hand, in structured scenes, ORB performs better than the other feature detectors and

evidently is good for detecting features at bigger scales. The last two photometric trans-

formations reinforce previous observations: feature detectors, in general, have higher level

of robustness to photometric transformations (illumination) and signal degradation (blur

and JPEG compression) than geometric transformations (rotation, scale, viewpoint). Sec-

ond, BRISK detector have poor performance for all transformations evaluated. Third, ORB

and FAST are the best candidates, even though FAST performs poorly for scale change

transformations.

The Table 8 summarizes the main observations for each transformation evaluated.

Transformation(s) Category Detectors sorted by their repeatability %
Viewpoint Change Graffiti 1. ORB, FAST 2. SURF 3. STAR 4. BRISK
Viewpoint Change Wall 1. FAST 2. SURF 3. ORB 4. STAR 5. BRISK
Scale and Rotation Boat 1. ORB 2. SURF 3. STAR 4. BRISK 5. FAST
Scale and Rotation Bark 1. ORB 2. SURF 3. STAR 4. FAST 5. BRISK

Blur Bikes 1. ORB 2. FAST 3. SURF 4. STAR 5. BRISK
Blur Trees 1. SURF, FAST 2. ORB 3. STAR 4. BRISK

Illumination Leuven 1. FAST 2. BRISK 3. SURF 4. STAR 5. ORB
JPEG compression UBC 1. ORB 2. SURF 3. FAST 4. STAR 5. BRISK

Table 8 Ű Results obtained using the repeatability test: we choose to put two or more de-
tectors in the same rank when there is no absolute dominance of one of them in
the interval evaluated. In viewpoint changes we are considering changes until 30
degrees to determine the order of feature detectors evaluated. In scale changes, we
put FAST at the end because this detector drops quickly when the transformation
become bigger. In Blur changes, the result of BRISK is drastically worst than other
feature detectors. In illumination changes, the order presented is less meaningful
because all detectors have good values of repeatability.

3.3 Feature Descriptor Evaluation

While in the previous section we have performed an experimental procedure to determine

the most suitable detectors for mobile visual applications. In this section we will present

an experimental procedure to compare the results in a target retrieval experiment. Similar

to the case of feature detection evaluation, there is not a unique approach to measure the

effectiveness of feature descriptors. For this experimental comparison, we will use the SMVS

data set. This data set will help us to Ągure out the performance of feature descriptors in

a mobile devices environment because their images were obtained by different sources of

camera phones.

Chapter 3. Experiments and Results 53

Note: the procedure and results presented below are still incomplete. We have decided

to include this content to show some interesting results and possible extensions of this work.

The inclusion of this section was also encouraged by the judging committee.

3.3.1 Evaluation Workflow.

We brieĆy describe the evaluation procedure used in this section. Our main goal with this

evaluation is to identify the best combination of detection-descriptor to be used in MVS

applications.

Step 1: Database Description. We compute and store the feature vectors for the

complete database using each feature detector-descriptor combination. We also create an

index of database images and their relative feature vectors.

Step 2: Query Description. We compute and store the feature vector for each one

of the query images using all combinations of detector-descriptor considered plausible to be

used in mobile application context.

Step 3: Matching. We execute a brute-force matcher between query image and

database images for each detector-descriptor combination.

Step 4: Voting. Using the list obtained in the previous process and the index gener-

ated during the database description, we are able to attribute votes to the database images.

A vote is assigned to a certain data set image whenever one of their feature vectors match

(is the nearest one) to one feature vector of the query image.

Step 5: Ranking. Finally, for each query image, we are able to create a sorted list

of the most voted database images.

The Ąrst two steps are execute once (offline process) for each detector-descriptor

combination. We store this feature vectors to be able to use an efficient Hamming distance

algorithm implemented in OpenCV. In our implementation, we set the simplest scheme for

voting and ranking. Each query feature vector votes only for their nearest data set feature

vector. The ranking is performed by summing the votes for each image in the data set

(candidates) and sorting them by their number of votes. We consider as a correct target

retrieval (success) if the correct image is within the 10 top ranked candidates.

3.3.2 Retrieval Experiments

We chose to use the workĆow presented before because this procedure give us an actual

measure of the quality of the detector-descriptor combination in a real target retrieval task

with images obtained by camera phones. In the experimental comparison we will use the

Chapter 3. Experiments and Results 54

detector-descriptor combinations presented in Table 9. These combinations include the three

feature detectors selected in Section 3.2: FAST, oFAST(ORB), SURF(Fast-Hessian). For the

description stage we will use the highly compact (low bit-rate) binary feature descriptors

studied in Section 2.2.2: BRIEF, ORB, BRISK and FREAK.

Detector Descriptor Maximum # of feature vectors
FAST BRIEF 1000
FAST ORB 1000
FAST BRISK 1000
FAST FREAK 1000

oFAST (ORB) BRIEF 1000
oFAST (ORB) ORB 1000
oFAST (ORB) BRISK 1000
oFAST (ORB) FREAK 1000

Fast-Hessian (SURF) BRIEF 1000
Fast-Hessian (SURF) ORB 1000
Fast-Hessian (SURF) BRISK 1000
Fast-Hessian (SURF) FREAK 1000

Table 9 Ű Feature detector-descriptor combinations. We use the three feature detector: FAST
and oFAST (ORB) was selected as a best candidates in Section 3.2 and the refer-
ence SURF detector. The feature descriptors compared are the four binary feature
descriptors.

The target retrieval experiments were performed using the book category of the SMS

data set described in 3.1.3 and the results were expressed as the percentage of correct retrieval

(success: correct image within the top 10 ranked candidates). Table 10 shows the results for

FAST, ORB and SURF (fast-Hessian) detectors used in combination with the four feature

descriptors. SURF descriptor and SURF detector was also evaluated to establish a reference.

These results show a good effectiveness of the SURF detector when combined with

BRISK and FREAK descriptors. These combinations obtain similar results to the SURF-

SURF (reference). For ORB detector the combinations with BRISK and FREAK also have

good results. This is an evidence that the combination of two highly efficient detector-

descriptor as ORB-BRISK and ORB-FREAK can obtain similar results (effectiveness) than

the SURF detector-descriptor, but much more faster and using less computational resources.

C
h
a
p
ter

3
.

E
x
perim

en
ts

a
n

d
R

esu
lts

55

Detector Descriptor Query: 5800 Query: Canon Query: Droid Query: iPhone
FAST BRIEF 15.8 17.8 24.7 29.7
FAST ORB 18.8 14.8 15.8 33.6
FAST BRISK 15.8 13.8 12.8 33.6
FAST FREAK 22.7 17.8 17.8 56.4

oFAST (ORB) BRIEF 17 15.8 15.8 29
oFAST (ORB) ORB 85 24 69 92
oFAST (ORB) BRISK 97 20 71 94
oFAST (ORB) FREAK 61 20 61 85

Fast-Hessian (SURF) ORB 27.7 15.8 22.7 64.3
Fast-Hessian (SURF) BRISK 91 82.1 93 97
Fast-Hessian (SURF) FREAK 85.1 77.2 89 96
Fast-Hessian (SURF) SURF 90 84.1 94 98

Table 10 Ű Results for feature detector-descriptor combinations. The queries correspond to images obtained using the cameras
5800, canon, droid and iPhone, respectively. The numbers express the percentage of correct retrieval using the book
category from the SMS data set.

56

4 Conclusions

Throughout this work, we have explored several topics related to Mobile Visual Search. We

mainly explore the state of the art of feature detectors and feature descriptors, establishing

a line of evolution over the years in terms of performance, invariance and efficiency. In this

Ąnal chapter we will highlight the key content presented throughout this work and comment

some inherent implications. We will also present ongoing works and possible future works.

4.1 Lessons Learned

First and foremost, we have to highlight the satisfaction it is to work in this Ąeld of computer

vision (image understanding). The active and highly productive community in this area over

the latest years turned our work educational as well as pleasant. The constant improvement of

algorithms and advances of techniques, have been leading this Ąeld to a deeper understanding

of images, human visual system and how humans perceive and interpret images. The success

of this Ąeld is not limited to the academic community. Over the last years, we have seen

the emergence of companies focused in the visual search market, some of them mentioned in

Chapter 1.

Throughout this work, we have experienced an interesting phenomena of interaction

with the state of the art (back to the 50Šs) and the huge amount of new content in this area.

As we observed before, binary descriptors show to be very compact (low bit-rate) compared

to the traditional state of the art. These compact descriptors achieve reasonable good results

by using few amount of bits. Nevertheless, there is a trade-off between performance and

bit-rate to be considered.

The whole image retrieval process can be divided into various steps using several

approaches: computational processes: detection, description and query search (matching).

Application status: offline, online (query search). Theoretical: Low-level, Mid-level, High-

level (semantic interpretation). The more extensive way to characterize a retrieval process

consists in the last approach mentioned. So far, the content we have explored is mainly

concentrated in the low-level interpretation of images. This is an important observation to

positioning our work into the general and vast context of retrieval by using image content.

The main computational load that affect the user experience lies in the online search

process. The time to compute this process corresponds to the time used to compute a compar-

ison between query feature vectors and data set reference feature vectors, this impacts directly

Chapter 4. Conclusions 57

the actual user interaction. This search time has a direct relationship with the amount of

data to be processed, i.e. if the bit-rate of the feature descriptor increases and/or the number

of images in the data set increases, then the cost to compute the search time increases as

well. One way to avoid this problem is the use of compact descriptors (low bit-rate), as we

have seen through this work, the use of binary descriptors provides a compact representation

of an image.

As stated before, the search process can be extremely expensive (slow). Then, we have

to explore a little bit more the search process. From the descriptors studied in chapter 2,

the standard SIFT/SURF descriptor utilize the L2 norm to perform a comparison process

between feature vectors (one from the query and one from the database). CHoG goes forward

and evaluates three different measures to compute distance: Euclidean (L2-norm), Earth

MoverŠs Distance (EMD) which is a total cost to transform one histogram into another

and Kullback-Leibler divergence (KL), a bin-by-bin distance commonly used to measure the

difference between two probability distributions. Overall, CHoG shows that for normalized

histograms KL divergence outperforms the other two alternatives. Binary descriptors return

a string of bits as feature vector and the computation of distance is performed just by using

a XOR operation followed by a simple population count or the total number Ş1Ťs (Hamming

distance). Then, binary descriptors overall, not only present a fast algorithm to detect and

describe features, but also are far more efficient for the search process.

From all feature detectors evaluated, FAST and ORB are the two best alternatives

to be used in mobile applications because they are highly efficient without greater loss of re-

peatability (trade-off of efficiency and performance). BRISK and FREAK feature descriptors

in combination with the ORB detector show to be effective in a target retrieval application

(obtaining good results, similar to the SURF). On the other hand, these detector-descriptor

combinations offer an efficient use of computational resources in processing and storage be-

cause they are binary and compact. The distance between two feature vectors can be

computed using the Hamming distance, which is more efficient than the use the L2 distance

or the KL divergence. The amount of data to be stored is also drastically improved because

these binary descriptors provide a compact representation of the feature vector, i.e. a string

of bits (commonly 128, 256 and 512 bits) against the common SIFT feature vector of 128

dimensions (128×8 = 1024 bits, considering 8 bits per each int value in the vector).

Finally, for MVS application, the feature detector-descriptor used must be efficient to

compute, effective in target retrieval tasks and compact to be able to work with big amounts

of data. These requirements are accomplished by the use of fast and efficient feature detectors

(FAST, ORB) and binary and compact Şlow bit-rateŤ descriptors (BRISK, FREAK).

Chapter 4. Conclusions 58

4.2 Future Work

We are working in a more exhaustive and detailed survey of binary feature descriptors includ-

ing an actual theoretical analysis to determine the complexity and cost of each algorithm.

We are using a similar protocol presented in this dissertation to perform the experimental

comparison between feature detectors-descriptors and will include an extended experimen-

tal procedure to evaluate the performance in matching and retrieval processes. This work

will also be implemented to perform experiments with big data sets (big scale experiments).

Looking to mobile applications, we will implement a target retrieval application in an ac-

tual mobile device. For this purpose we will take advantage of the cross-platform design of

OpenCV.

A possible further work is related to the study and use of Hamming distance compu-

tation in current hardware architectures. This can allow us to use some build-in instructions

to accelerate this process of comparison between binary feature vectors. As we know, modern

Intel processors (i5, i7) have a set of instructions SSE 4.2 (optimized popcount).

59

Bibliography

Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. Censure: Center surround extremas

for realtime feature detection and matching. In Computer Vision–ECCV 2008, pages 102Ű

115. Springer, 2008. Cited 4 times in pages xiii, 14, 16, and 19.

Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Freak: Fast retina keypoint.

In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages

510Ű517. Ieee, 2012. Cited 4 times in pages xiv, 2, 31, and 34.

Fred Attneave. Some informational aspects of visual perception. Psychological review, 61(3):

183, 1954. Cited 2 times in pages 7 and 8.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust features

(surf). Computer vision and image understanding, 110(3):346Ű359, 2008. Cited 9 times

in pages xiii, 2, 14, 15, 16, 19, 23, 34, and 43.

Paul Brasnett and Miroslaw Bober. Robust visual identiĄer using the trace transform. In

Proc. of IET visual information engineering conference (VIE), 2007. Cited in page 2.

Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary ro-

bust independent elementary features. In Computer Vision–ECCV 2010, pages 778Ű792.

Springer, 2010. Cited 5 times in pages xiv, 2, 28, 29, and 34.

Vijay Chandrasekhar, Mina Makar, Gabriel Takacs, David Chen, Sam S Tsai, Ngai-Man

Cheung, Radek Grzeszczuk, Yuriy Reznik, and Bernd Girod. Survey of sift compression

schemes. In Proc. Int. Workshop Mobile Multimedia Processing. Citeseer, 2010a. Cited in

page 24.

Vijay Chandrasekhar, Yuriy Reznik, Gabriel Takacs, David Chen, Sam Tsai, Radek

Grzeszczuk, and Bernd Girod. Quantization schemes for low bitrate compressed his-

togram of gradients descriptors. In Computer Vision and Pattern Recognition Workshops

(CVPRW), 2010 IEEE Computer Society Conference on, pages 33Ű40. IEEE, 2010b. Cited

2 times in pages 26 and 64.

Vijay Chandrasekhar, Gabriel Takacs, David M Chen, Sam S Tsai, Yuriy Reznik, Radek

Grzeszczuk, and Bernd Girod. Compressed histogram of gradients: A low-bitrate descrip-

tor. International Journal of Computer Vision, 96(3):384Ű399, 2012. Cited 8 times in

pages xiv, xv, 2, 20, 24, 25, 34, and 67.

Bibliography 60

Vijay R Chandrasekhar, David M Chen, Sam S Tsai, Ngai-Man Cheung, Huizhong Chen,

Gabriel Takacs, Yuriy Reznik, Ramakrishna Vedantham, Radek Grzeszczuk, Jeff Bach,

et al. The stanford mobile visual search data set. In Proceedings of the second annual

ACM conference on Multimedia systems, pages 117Ű122. ACM, 2011. Cited 2 times in

pages 39 and 42.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, volume 1, pages 886Ű893. IEEE, 2005. Cited 2 times in pages 22 and 34.

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model

Ątting with applications to image analysis and automated cartography. Communications

of the ACM, 24(6):381Ű395, 1981. Cited in page 4.

Steffen Gauglitz, Tobias Höllerer, and Matthew Turk. Evaluation of interest point detectors

and feature descriptors for visual tracking. International journal of computer vision, 94

(3):335Ű360, 2011. Cited in page 7.

Bernd Girod, Vijay Chandrasekhar, David M Chen, Ngai-Man Cheung, Radek Grzeszczuk,

Yuriy Reznik, Gabriel Takacs, Sam S Tsai, and Ramakrishna Vedantham. Mobile visual

search. Signal Processing Magazine, IEEE, 28(4):61Ű76, 2011. Cited 4 times in pages xiii,

3, 4, and 24.

Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey vision

conference, volume 15, page 50. Manchester, UK, 1988. Cited 2 times in pages 8 and 19.

Kota Iwamoto, Ryota Mase, and Toshiyuki Nomura. Bright: A scalable and compact binary

descriptor for low-latency and high accuracy object identiĄcation. In ICIP, pages 2915Ű

2919, 2013. Cited 3 times in pages xiv, 27, and 34.

Timor Kadir and Michael Brady. Saliency, scale and image description. International Journal

of Computer Vision, 45(2):83Ű105, 2001. Cited 2 times in pages 12 and 19.

Stefan Leutenegger, Margarita Chli, and Roland Yves Siegwart. Brisk: Binary robust invari-

ant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE International Conference

on, pages 2548Ű2555. IEEE, 2011. Cited 8 times in pages xiv, 2, 18, 19, 20, 30, 34, and 44.

Tony Lindeberg. Scale-space theory: A basic tool for analyzing structures at different scales.

Journal of applied statistics, 21(1-2):225Ű270, 1994. Cited 2 times in pages 9 and 10.

David G Lowe. Distinctive image features from scale-invariant keypoints. International

journal of computer vision, 60(2):91Ű110, 2004. Cited 9 times in pages 2, 4, 14, 16, 19,

21, 34, 42, and 69.

Bibliography 61

Elmar Mair, Gregory D Hager, Darius Burschka, Michael Suppa, and Gerhard Hirzinger.

Adaptive and generic corner detection based on the accelerated segment test. In Computer

Vision–ECCV 2010, pages 183Ű196. Springer, 2010. Cited 3 times in pages 18, 19, and 30.

Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla. Robust wide-baseline stereo

from maximally stable extremal regions. Image and vision computing, 22(10):761Ű767,

2004. Cited 2 times in pages 12 and 19.

Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point detectors.

International journal of computer vision, 60(1):63Ű86, 2004. Cited 4 times in pages 8, 10,

12, and 19.

Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local descrip-

tors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(10):1615Ű1630,

2005. Cited 7 times in pages 2, 22, 24, 34, 37, 42, and 45.

Spiros Nikolopoulos, Stavri G Nikolov, and Ioannis Kompatsiaris. Study on mobile image

search. NEM Summit: Implementing Future Media Internet, 2011. Cited in page 1.

Yuriy A Reznik, Vijay Chandrasekhar, Gabriel Takacs, David M Chen, Sam S Tsai, and

Bernd Girod. Fast quantization and matching of histogram-based image features. In Proc.

of SPIE Vol, volume 7798, pages 77980LŰ1, 2010. Cited 2 times in pages 26 and 64.

Jos BTM Roerdink and Arnold Meijster. The watershed transform: DeĄnitions, algorithms

and parallelization strategies. Fundamenta informaticae, 41(1):187Ű228, 2000. Cited in

page 12.

Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection. In

Computer Vision–ECCV 2006, pages 430Ű443. Springer, 2006. Cited 4 times in pages xiii,

14, 17, and 19.

Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A machine learning

approach to corner detection. Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, 32(1):105Ű119, 2010. Cited in page 18.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: an efficient alterna-

tive to sift or surf. In Computer Vision (ICCV), 2011 IEEE International Conference on,

pages 2564Ű2571. IEEE, 2011. Cited 6 times in pages 2, 18, 19, 29, 34, and 44.

Cordelia Schmid, Roger Mohr, and Christian Bauckhage. Evaluation of interest point de-

tectors. International Journal of computer vision, 37(2):151Ű172, 2000. Cited 3 times in

pages 7, 35, and 45.

Bibliography 62

Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object matching

in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference

on, pages 1470Ű1477. IEEE, 2003. Cited in page 4.

Stephen M Smith and J Michael Brady. SusanŮa new approach to low level image processing.

International journal of computer vision, 23(1):45Ű78, 1997. Cited 4 times in pages 8, 9,

17, and 19.

Engin Tola, Vincent Lepetit, and Pascal Fua. A fast local descriptor for dense matching. In

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages

1Ű8. IEEE, 2008. Cited 2 times in pages 23 and 34.

Miroslav Trajković and Mark Hedley. Fast corner detection. Image and vision computing, 16

(2):75Ű87, 1998. Cited 3 times in pages 9, 17, and 19.

Tomasz Trzcinski, Mario Christoudias, Pascal Fua, and Vincent Lepetit. Boosting binary

keypoint descriptors. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE

Conference on, pages 2874Ű2881. Ieee, 2013. Cited 3 times in pages 2, 26, and 34.

Tinne Tuytelaars and Krystian Mikolajczyk. Local invariant feature detectors: a survey.

Foundations and Trends R÷ in Computer Graphics and Vision, 3(3):177Ű280, 2008. Cited

2 times in pages 7 and 11.

Tinne Tuytelaars and Luc J Van Gool. Wide baseline stereo matching based on local, affinely

invariant regions. In BMVC, volume 412, 2000. Cited 3 times in pages xiii, 13, and 14.

Zhenhua Wang, Bin Fan, and Fuchao Wu. Frif: Fast robust invariant feature. 2013. Cited

2 times in pages 32 and 34.

Simon Winder, Gang Hua, and Matthew Brown. Picking the best daisy. In Computer Vision

and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 178Ű185. IEEE,

2009. Cited 5 times in pages 2, 20, 23, 24, and 74.

Simon AJ Winder and Matthew Brown. Learning local image descriptors. In Computer

Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1Ű8. IEEE,

2007. Cited 3 times in pages 2, 23, and 25.

Appendix

64

APPENDIX A – CHoG: detailed study

The CHoG conĄguration that performs slightly better than SIFT correspond to 9-dimensional

spatial binning and 7-dimensional histogram binning. Then, this 9 × 7 = 63-dimensional

descriptor is named as UCHoG (Uncompressed Histogram of Gradients). This UCHoG is

still high dimensional and remains inappropriate for mobile visual retrieval implementations.

Compression schemes typically are applied on the Ąnal feature descriptor or feature vector.

But, since UCHoG has a Ąxed-length normalized histogram binning for each spatial bin, it is

feasible to apply the compression directly on these normalized histograms. Three compression

encoding were employed: Huffman Tree Coding, Entropy Constrained Vector Quantization

(ECVQ) and Type Quantization Chandrasekhar et al. [2010b] Reznik et al. [2010]. ECVQ

method will not be described because it performs as well as Type Quantization, but results

much more expensive (its costs being comparable to a k-means algorithm). In the following,

we will consider that for each of the 9 spatial bins we obtain a normalized accumulated 7-bin

histogram distribution as follows:

𝑃 = ¶𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7♢ .

Normalization implies that 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5 + 𝑝6 + 𝑝7 = 1.

CHoGŠs aim is to represent (or approximate) this 7D vector with as few bits as

possible. This can be generalized whatever the number of spatial or histogram bins. In the

description that follows, we consider that each spatial bin has a 𝑚-bin histogram of gradients.

A.1 Huffman Tree Coding

Huffman Tree Coding is a classic algorithm to encode data that uses weights or frequency of

occurrence for each symbol (character) in the input and assign a variable-length bit string to

each symbol. The characters to be encoded are arranged on a strict binary tree (each node

has zero or two children) and an encoding for each symbol is found by following a binary tree

from the route Şroot nodeŤ to the symbol in the Şleaf nodeŤ. Hence, The symbols with highest

weights have shorter encoding lenght because these symbols are more close to the root node.

The basic recursive operation to arrange those symbols on a binary tree is: combine the two

least weight nodes into a tree which is assigned the sum of the two leaf node weights as the

weight for this new node.

APPENDIX A. CHoG: detailed study 65

P Huffman Tree Depth Code Q

0.8271 1 1 0.5000

0.0011 4 0111 0.0625

0.0312 4 0110 0.0625

0.0625 3 010 0.1250

0.0781 2 00 0.2500

Figure 27 Ű Example of Huffman tree coding for 5 leaves (𝑚 = 5). P is the initial normalized

vector and Q is the encoded vector.

In general for 𝑚 leaves:

𝑃 = ¶𝑝1, 𝑝2, ≤ ≤ ≤ , 𝑝m♢

𝑄 = ¶𝑞1, 𝑞2, ≤ ≤ ≤ , 𝑞m♢.

Each normalized histogram is considered as a probability distribution or weight dis-

tribution. Then, this distribution, P, is used to construct a Huffman tree as shown in Figure

27. The reconstructed distribution, Q, are obtained as 𝑞i = 2⊗bi where 𝑏i is the depth of i-𝑡ℎ

symbol. Depth is deĄned as the number of bits used to encode this symbol or the distance

from the route to the leaf node. The Huffman tree can be stored as follows:

∙ Case 1. Store the depth of each leaf node in the Huffman tree:

Considering a distribution with 𝑚 leaf nodes, the maximum depth in the Huffman tree

constructed is 𝑚 ⊗ 1. Hence, each symbol needs ⌈𝑙𝑜𝑔2(𝑚 ⊗ 1)⌉ bits to store the depth

of each symbol. Then, to store the Huffman tree, we need 𝑚 ⌈𝑙𝑜𝑔2(𝑚 ⊗ 1)⌉ bits. But, as

the
∑︀

𝑞i = 1, the last leaf node can be computed using the other 𝑚 ⊗ 1 leaves and does

not need to be stored. Finally, the Huffman tree that represents a normalized histogram

distribution can be stored with a Ąxed length code in (𝑚 ⊗ 1) ⌈𝑙𝑜𝑔2(𝑚 ⊗ 1)⌉ bits.

∙ Case 2. (Optimization) Stores the index of the Huffman tree.

Considering 𝑚 elements in the probability distribution, the upper bound of the total

number of Huffman codes can be estimated. The problem is stated as follows: ŞWith

𝑚 leaves, how many Huffman trees can be found?Ť. There is not a closed form to solve

this problem, but, an upper bound can be established using a combinatorial result of

the number of non-isomorphic trees with 𝑚 leaves known as Catalan number (𝐶m⊗1

for 𝑚 leaves). Unlike non-isomorphic tree problem, the order of elements is important

APPENDIX A. CHoG: detailed study 66

because the same elements in a different order denotes a different tree. Therefore, the

upper bound of the number of Huffman trees 𝑇 (𝑚) can be estimated as:

𝑇 (𝑚) < 𝑚! 𝐶m⊗1.

Where 𝐶n = 1
n+1

⎞
2n

n

)︁

is the Catalan number. The index of Huffman tree representing

a normalized histogram distribution 𝑃 = ¶𝑝1, 𝑝2, ≤ ≤ ≤ , 𝑝m♢ with a Ąxed-length encoding

that requires at most ⌈𝑙𝑜𝑔2𝑇 (𝑚)⌉ bits to encode.

Comparison:

For the CHoG conĄguration with 𝑚 = 7, the depth of each leaf node of a Huffman

tree can be stored in 6 ⌈𝑙𝑜𝑔2(6)⌉ = 6 ⌈2.585⌉ = 6 × 3 = 18 bits. On the other hand,

the number of Huffman trees for 𝑚 = 7 is 𝑇 (𝑚) = 4347. Then, the index of Huffman

tree can be stored in ⌈𝑙𝑜𝑔24347⌉ = ⌈12.086⌉ = 13 bits. Therefore, storing the index of

the Huffman tree is better to encode these normalized histograms distribution because

the bit-rate is lower than storing depths of each leaf node. This particular conclusion

is true for small values of 𝑚.

A.2 Type Quantization Coding

The basic idea of type coding is to quantize the normalized histogram distributions, 𝑃 , using

a set of reconstruction points (or codebook), that must have some regular structure. This

codebook is obtained constructing a Lattice of distributions or Types 𝑄 using type coding.

The lattice of distribution 𝑄(𝑘1, 𝑘1, ≤ ≤ ≤ , 𝑘m) has probabilities 𝑞i = ki

n
, where 𝑘i ∈ Z+ (non-

negative integer),
∑︀

i 𝑘i = 𝑛, and 𝑛 is a parameter used to control the density of the codebook

(how many points) over the space. The lattice is deĄned within a bounded subset of the 𝑅m

space, which is the unit (𝑚 ⊗ 1)-simplex that contains all possible input probability distri-

butions.

Then, for 𝑚 = 3 (𝑃 = ¶𝑝1, 𝑝2, 𝑝3♢) the 2-simplex unit is a triangle and contain all

possible normalized histogram distribution as shown in Figure 28. Notice that as 𝑛 increases,

the number of types also increases.

For 𝑛 = 1: 𝑞i = 𝑘i and 𝑘1 + 𝑘2 + 𝑘3 = 1 ⇒ 𝑘i = ¶0, 1♢. Then, 𝑞1 + 𝑞2 + 𝑞3 = 1 and 𝑞i = ¶0, 1♢.

For 𝑛 = 2: 𝑞i = ki

2
and 𝑘1 + 𝑘2 + 𝑘3 = 2 ⇒ 𝑘i = ¶0, 1, 2♢ . Then, 𝑞1 + 𝑞2 + 𝑞3 = 1 and

𝑞i =
{︁

0, 1
2
, 1

}︁

.

APPENDIX A. CHoG: detailed study 67

For 𝑛 = 3: 𝑞i = ki

3
and 𝑘1 + 𝑘2 + 𝑘3 = 3 ⇒ 𝑘i = ¶0, 1, 2, 3♢. Then, 𝑞1 + 𝑞2 + 𝑞3 = 1 and

𝑞i =
{︁

0, 1
3
, 2

3
, 1

}︁

.

In 3-Dimensions these 2-simplex surfaces has a normal vector
{︁

1√
3
, 1√

3
, 1√

3

}︁

, because the plane

equation for all is: 𝑞1 + 𝑞2 + 𝑞3 = 1

Figure 28 Ű Type lattices and their Voronoi partitions in 3-D. 𝑚 = 3 and 𝑛 = 1, 2, 3. (repro-

duced from Chandrasekhar et al. Chandrasekhar et al. [2012]).

The original normalized histogram distribution 𝑃 is quantized into the closest type

𝑄. To perform this quantization, we use the algorithm described below, that is similar to

Conway and SloaneŠs quantizer for 𝐴n lattice.

1. Compute values (𝑖 = 1, 2, ≤ ≤ ≤ , 𝑚)

𝑘
′

i =
⌊︁

𝑛𝑝i + 1
2

⌋︁

, 𝑛′ =
∑︀

i 𝑘
′

i.

2. If 𝑛 = 𝑛
′

the nearest type is given by: 𝑘i = 𝑘
′

i . Otherwise, compute errors:

Ói = 𝑘
′

i ⊗ 𝑛𝑝𝑖,

and sort them such that

⊗1
2

⊘ Ój1 ⊘ Ój2 ⊘ ≤ ≤ ≤ ⊘ Ójm < 1
2
.

3. Let Δ = 𝑛
′

⊗ 𝑛. If Δ > 0 then decrement Δ values 𝑘
′

i with largest errors

𝑘ji =

∏︁

⋁︁⨄︁

⋁︁⋃︁

𝑘
′

ji 𝑗 = 1, ≤ ≤ ≤ , 𝑚 ⊗ Δ ⊗ 1.

𝑘
′

ji ⊗ 1 𝑖 = 𝑚 ⊗ Δ, ≤ ≤ ≤ , 𝑚.

Otherwise, If Δ < 0 then increment Δ values 𝑘
′

i with smallest errors

APPENDIX A. CHoG: detailed study 68

𝑘ji =

∏︁

⋁︁⨄︁

⋁︁⋃︁

𝑘
′

ji + 1 𝑖 = 1, ≤ ≤ ≤ , ♣Δ♣ .

𝑘
′

ji 𝑖 = ♣Δ♣ + 1, ≤ ≤ ≤ , 𝑚.

4. Return quantities 𝑘1, ≤ ≤ ≤ , 𝑘m.

To store these quantized distribution we need to enumerate all possible type lattices

in order to index them. The total number of types is a combinatorial problem: Şhow many

𝑚-dimensional vector exists that the sum of elements (nonnegative integer) is 𝑛?Ş and its

result is given by a multiset coefficient. The total number of type lattices for 𝑚-dimensional

distributions with parameter associated 𝑛, is a multiset coefficient and can be computed as an

equivalent combination:
⎞⎞

m

n

)︁)︁

=
⎞

m+n⊗1
m⊗1

)︁

. Therefore, the normalized histogram distribution

requires at most
⌈︁

𝑙𝑜𝑔2

⎞⎞
m

n

)︁)︁⌉︁

bits to be encoded in a type lattice. The closed solution to

enumerate each type with an index Ý(𝑘1, ≤ ≤ ≤ , 𝑘m) is:

Ý(𝑘1, ≤ ≤ ≤ , 𝑘m) =
∑︀n⊗2

j=1

∑︀kj⊗1
i=0

(︂⎞
m⊗j

n⊗i⊗
∑︀j⊗1

l=1

)︁)︂

+ 𝑘n⊗1.

This direct enumeration allows to encode without storing any "codebook" or index

of reconstruction points. For CHoG conĄguration with 𝑚 = 7 the number of type lattices

for 𝑛 = 7 is
⎞⎞

7+7⊗1
7⊗1

)︁)︁

=
⎞⎞

13
6

)︁)︁

= 1716. Then, the index of type lattice can be stored in

⌈𝑙𝑜𝑔21716⌉ = ⌈10.745⌉ = 11 bits.

A binary version1 of CHoG descriptor is available, but the sources belong to Nokia (the

mobile visual search project that was developed at Nokia Research Center Ů Palo Alto)

and have not been released. The main author (then PhD. Vijay Chandrasekhar) is no longer

reachable to comment on parameters and implementation details. Therefore we have faced a

very laborious work of reimplementing the technique from scratch and we are still working

on a complex parameter guesswork in order to match their results.

1 http://www.stanford.edu/~dmchen/documents/chog-release.zip

69

APPENDIX B – CHoG Implementation

The implementation can be divided into detector and descriptor steps. In the original article

the authors explain the description process of CHoG assuming as an input normalized patch

regions of 64 × 64 pixels, but no further information about the detection process of these

regions is provided. This detection step is very important because it has a direct inĆuence

on the performance of descriptor in retrieval tasks.

To implement the CHoG descriptor we use the OpenCVŰPython interface and the

Numpy package to perform operations on the image arrays. The decision to work with

OpenCVŰPython is due the good trade-off between convenience, portability and performance.

B.1 Interest Point Detection

The reference Linux binary implementation CHoG offers two methods for feature detection:

DoG, and Fast Hessian. Since, those seem to correspond to the techniques used in SIFT

and SURF, we have tried to establish such correspodence, but with less-than-perfect results.

OpenCV implementation of SIFT and SURF depends on several parameters, which we are

still to exhaust.

To evaluate the detectors we selected a collection of 20 real images of VallePics image

dataset including outdoor scenes, human presence and aerial photographs, the results for 5

of these 20 images are presented in the Table 11. For SIFT, OpenCVŠs implementation with

default paramenters detect almost 10× more features than CHoG binaryŠs DoG.

B.1.1 Parameter Estimation

The procedure used is to vary the parameters in the detector to get a similar number of inter-

est points to the binary version. Each parameter is described in the OpenCV documentation1

as follows:

⊗ nfeatures: the number of best features to retain. The features are ranked by their scores.

⊗ nOctaveLayers: the number of layers in each octave. 3 is the value used in D. Lowe

paper Lowe [2004].
1 OpenCV Documentation: http://docs.opencv.org/modules/nonfree/doc/feature_detection.html

A
P

P
E

N
D

IX
B

.
C

H
o
G

Im
p
lem

en
ta

tio
n

70

CHoG-DoG SIFT-OpenCV SIFT-OpenCV
Image (binary version) (default parameters) (guessed parameters, trying to match CHoG)

number of keypoints number of keypoints number of keypoints
qcam2F 5260 19713 5312
qcam3D 1488 19667 1885
qcam14 3542 16044 3721
qcel01 3126 13599 3364
qcel6F 3731 9648 3905

Table 11 Ű Number of interest points for 5 images from VallePics using DoG (binary) and SIFT OpenCV implementation (default
parameters values and estimated parameter values).

APPENDIX B. CHoG Implementation 71

⊗ contrastThreshold: the contrast threshold used to Ąlter out weak features in semi-

uniform (low-contrast) regions. The larger the threshold, the less features are produced

by the detector.

⊗ edgeThreshold: the threshold used to Ąlter out edge-like features. The larger the ed-

geThreshold, the less features are Ąltered out (more features are retained).

⊗ sigma: the sigma of the Gaussian applied to the input image at the octave #0. If your

image is captured with a weak camera with soft lenses, you might want to reduce the

number.

The default values for these parameters are: SIFT(nfeatures= 0, nOctaveLayers= 3,

contrastThreshold= 0.04, edgeThreshold= 10, sigma= 1.6). Where, nfeatures= 0 indicates

that the number of features is not limited.

We have explored those parameters, testing all combinations of values as showed in

Table 12. Thus, for each probe image, 5×9×10×10 = 4500 trials were run. We then selected

the conĄguration [0, 3, 0.11, 10, 16], which returns the closest number of interest points slightly

above the binary version (Table 11).

Parameter Type Default Values tested
nfeatures int 0 0

nOctaveLayers int 3 [1, 2, 3, 4, 5]
contrastThreshold double 0.04 [0.01, 0.02, 0.04, 0.06, 0.08, 0.09, 0.10, 0.11, 0.15]

edgeThreshold double 10 [2, 4, 6, 8, 9, 10, 11, 12, 14, 16]
sigma double 1.6 [0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4]

Table 12 Ű Parameter description and its values used to perform the estimation process.

Typically, detection methods return the interest point location (𝑥, 𝑦), the scale or size

(à) and the orientation (𝜃). From these values, we can establish a correspondence between

some keypoints detected using DoG (binary) and SIFT OpenCV as follows:

∙ OpenCV SIFT: 𝑥1, 𝑦1, à1, 𝜃1.

∙ Binary CHOG (DoG): 𝑥2, 𝑦2, à2, 𝜃2.

Where, 𝑥1 = 𝑥2, 𝑦1 = 𝑦2, à1 = 2 × à2 and 𝜃2 = 𝜃1 × Þ × 180⊗1.

That is, location units are transposed, OpenCV considers the diameter while the

reference binary considers the radius as size, and while OpenCV measures orientation in

degrees, the reference binary uses radians. Making the appropriate conversions we obtain

very similar keypoints distribution for both detectors (using the parameter speciĄed above

for SIFT OpenCV) as shown in Figure 29.

APPENDIX B. CHoG Implementation 72

Figure 29 Ű Correspondence between keypoints obtained using SIFT OpenCV (left) and DoG
of binary CHoG (right).

B.1.2 Patch size selection

We take a patch centralized on the detected point, with a radius of 3 times the DoG detector

size (à in SIFT OpenCV). This is justiĄed by the Gaussian weighting, which uses à as

standard deviation: 3 × à from the mean retains almost all useful information. The patch is

scaled and rotated such that it is normalized into 64 × 64 pixels, with its main orientation

pointing upright. Those implementation choices were based on those of VLFeat2 and Daisy3.

B.2 Descriptor Implementation

The descriptor implementation follows the pipeline explained in the original article, as listed

below:

⊗ A set of patchs of 64 × 64 are used as input.

⊗ The patch illumination is normalized in mean and variance.

⊗ We apply to the patch a Gaussian smoothing, with à = 2.7 pixels.

⊗ Image gradients 𝑑𝑥 and 𝑑𝑦 are computed with a sobel convolutional Ąlter.

Then, we use the conĄguration of orientation and spatial bins to compute a descriptor.
2 VLFeat: http://www.vlfeat.org/overview/sift.html
3 Optimized parameters for DAISY: http://www.cs.ubc.ca/~mbrown/patchdata/tutorial.pdf

APPENDIX B. CHoG Implementation 73

B.2.1 Histogram Binning

As described in Section 2.2.1.6 the conĄguration of histogram bin is slightly more oriented

over the 𝑦 axis. Using the Figure 11 as reference, we can set the bin centers for VQ-7 as

follows:

HistBinCenters

= (0, 0.1), (⊗0.07, 0.05), (0.07, 0.05), (0, 0), (⊗0.07, ⊗0.05), (0.07, ⊗0.05), (0, ⊗0.1).

The value of à used for the Gaussian soft-assigment corresponds to the 𝑑min/3 between

histogram bin centers: 𝑑min/3 = 0.028675.

B.2.2 Spatial Binning

There is no deĄnitive reference to determine the spatial bin centers. The most comprehensive

source for good conĄgurations of spatial bin center, is the non-refeereed tutorial parameter

optimization for DAISY but this tutorial mentions no conĄguration for DAISY-9 (9 centers).

The most similar conĄguration corresponds to DAISY-13. Adapting DAISY-13 by removing

the outermost centers, we have decided the following bin centers:

SpatBinCenters

= (⊗15, 15), (15, 15), (0, 8), (⊗8, 0), (0, 0), (8, 0), (0, ⊗8), (⊗15, ⊗15), (15, ⊗15).

The value of à used for the Gaussian soft-assigment corresponds to the 𝑑min/3 between

spatial bin centers: 𝑑min/3 = 2.666667.

B.2.3 Compression

Huffman code and type quantization were implemented. They are applied independently over

each accumulated normalized histogram distribution (one for each spatial bin).

Ů Huffman Code. To enumerate all possible trees we wrote a program to determine the

number of tree structures with 𝑛 leaves, and then another piece of code to determine the

number of labeled trees that can be constructed using 𝑛 leaves. To index a distribution

we implemented a program that construct a tree based on this distribution and compare

to the enumerated trees and save the number or index of the correspondent tree as

encoded value.

Ů Type Quantization. The algorithm described before (on the theory section of type

quantization) was implemented using Python. Then, when a normalized histogram is

APPENDIX B. CHoG Implementation 74

received the program use the closed solution described in Appendix A to determine the

number or index of this normalized distribution.

We performed a retrieval experiment using the reference binary CHoG (with both DoG

and Fast Hessian detectors) and also testing the initial (non-optimal parameters) versions of

the implemented CHoG. The results of these retrieval procedures are shown in the Table 13,

where an image was considered as correctly retrieved when the correct image is among the

top 10 ranked (most voted). As explained before, the effort to obtain an optimal parameters

for SURF was unsuccessful and is evidenced in the lower percentage of the correctly retrieved

images compared to its counterpart CHoG (Fast Hessian).

All experiments described in this section were performed using images from VallePics4

dataset and its related query images5.

CHoG CHoG CHoG
Fast Hessian DoG (SURF-OpenCV)

% of images successfully retrieved 89 97 62

Table 13 Ű Results of perfomance in retrieval task.

The methodology of parameter evaluation and learning that was proposed for Daisy

[Winder et al., 2009] is applied with slight modiĄcations for CHoG. Once we have our tech-

nique working, we want to translate such methodology for CHoG and test different parameter

conĄgurations. Having a reference implementation in a mobile device is one of our aims, for

both tasks of retrieval and classiĄcation.

4 VallePics: http://www.dca.fee.unicamp.br/~dovalle/VallePics/base.tar
5 Queries: http://www.dca.fee.unicamp.br/~dovalle/VallePics/queries.tar.gz

	Title page
	Abstract
	Contents
	Acknowledgements
	List of Figures
	List of Tables
	Lista de Acrônimos e Abreviações
	Introduction
	Background
	Target Retrieval by Image Matching
	Image Classification
	Feature Extraction

	Contributions
	Organization

	State of the Art
	Feature Detectors
	Corner Detectors
	Blob Detectors
	Optimized Implementations
	Difference-of-Gaussians (DoG)
	Fast-Hessian
	Center Surround Extremas (CenSurE)
	Features from Accelerated Segment Test (FAST)

	Feature Descriptors
	Descriptors Based on Histograms of Gradients
	Scale-Invariant Feature Transform (SIFT)
	Gradient Location and Orientation Histogram (GLOH)
	Histograms of Oriented Gradients (HOG)
	Speeded Up Robust Features (SURF)
	DAISY
	Compressed Histogram of Gradients (CHoG)
	Boosting Binary Keypoint Descriptor (BinBoost)
	Binary ResIzable Gradient HisTogram (BRIGHT)

	Descriptors Based on Binary Intensity Test
	Binary Robust Independent Elementary Features (BRIEF)
	Oriented FAST and Rotated BRIEF (ORB)
	Binary Robust Invariant Scalable Keypoints (BRISK)
	Fast Retina Keypoint (FREAK)
	Fast Robust Invariant Feature (FRIF)

	Summary

	Experiments and Results
	Experimental Setup
	Definitions
	Resources
	Data Sets

	Feature Detector Evaluation
	Evaluation Workflow.
	Feature Detector Comparison
	Repeatability Test
	Summary

	Feature Descriptor Evaluation
	Evaluation Workflow.
	Retrieval Experiments

	Conclusions
	Lessons Learned
	Future Work

	Bibliography
	Appendix
	CHoG: detailed study
	Huffman Tree Coding
	Type Quantization Coding

	CHoG Implementation
	Interest Point Detection
	Parameter Estimation
	Patch size selection

	Descriptor Implementation
	Histogram Binning
	Spatial Binning
	Compression

